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Abstract

This work presents investigations of liquid phase velocity fluctuations based on direct nu-
merical simulations (DNS) of dilute bubbly flows by the computer code TURBIT-VoF. The
investigations are performed by statistical analysis of instantaneous liquid flows generated
by the rise of monodisperse bubble-arrays through initially quiescent liquid within a plane
semi-infinite channel (phase density ratio 0.5, phase viscosity ratio 1 and bubble Eötvös
number 3.065). DNS are conducted for three magnitudes of overall gas volumetric fraction,
0.818%, 4.088% and 6.544%, where one, five and eight ellipsoidal bubbles, respectively, are
suspended within a cubic computational domain. Effects of bubble rise velocity, bubble
trajectory and bubble shape are analyzed for flow configurations with 8 bubbles with the
ratio of liquid viscosity 1 :

√
10 : 10.

In all the considered bubble-array flows a significant degree of the liquid turbulence
anisotropy has been found with the velocity fluctuations in vertical direction being domi-
nant to the horizontal ones. While in very dilute two-phase mixtures the liquid turbulence
kinetic energy increases almost linearly with the gas volumetric fraction, in mixtures with
the dense bubble packing due to mutual hydrodynamic interactions of bubble wakes a
stronger increase of the liquid turbulence kinetic energy with the gas content has been
observed.

In order to shed some light on mechanisms governing behaviour of the liquid turbulence
kinetic energy in bubble-driven liquid flows, the balance terms in the basic equation for
liquid turbulence kinetic energy (kl equation) are analyzed and the obtained results are
used to assess the accuracy of corresponding closure assumptions applied in engineering
turbulence models. The main conclusions drawn from these analyzes are as follows.

Evaluations based on rigorous mathematical formulations of balance terms in kl equation
revealed that the fluctuating liquid flow is continuously supplied by energy only through
the work of fluctuating liquid stress upon the moving phase interfaces. Since this mecha-
nism is related to the presence of bubbles, the local non-equilibrium between the turbulence
generation and turbulence dissipation causes an intensive diffusion transport of liquid tur-
bulence kinetic energy over the flow domain. Especially, the redistribution by the pressure
fluctuations is found to be essential.

All currently used engineering approaches strongly overestimate the production term and
strongly underestimate the diffusion term. The the dissipation term in one-equation models
is underestimated in flow regions with high gas volumetric fractions and overestimated in
the domains with low gas content. The approximation of the interfacial generation of liquid
turbulence kinetic energy by the work of the drag force performs quite well.



Statistische Analyse der
Geschwindigkeitsfluktuationen der flüssigen Phase

basierend auf direkten numerischen Simulationen von
Blasenströmungen

Zusammenfassung
Die vorliegende Arbeit befasst sich mit Untersuchungen der Geschwindigkeitsfluktuationen
in der flüssigen Phase basierend auf Ergebnissen der direkten numerischen Simulationen
(DNS) von dünnen Blasenströmungen. Die Untersuchungen werden mittels statistischer
Analysen der momentanen Flüssigkeitsströmungen durchgeführt, die durch aufsteigende
mono-disperse Blaseschwärme in einem halb-unendlichen vertikalen Plattenkanal erzeugt
werden (Dichteverhältnis der Phasen 0,5, Viskositätsverhältnis der Phasen 1,0 und Blasen-
Eötvös-Zahl 3,065). Die Simulationen umfassen drei Werte des Gasgehalts, 0,818%, 4,088%
und 6,544% wobei eine, fünf und acht ellipsoidförmige Blasen in einem kubischen Rechenge-
biet suspendiert sind. Der Einfluss von Blasenaufstiegsgeschwindigkeit, Blasenbahn und
Blasenform wird weiter für Blasenströmungen mit acht Blasen untersucht, bei denen die
Viskosität der Flüssigkeit im Verhältnis 1 :

√
10 : 10 steht.

Alle betrachteten Blasenströmungen zeigen eine signifikante Anisotropie der Flüssigkeit-
sturbulenz, wobei die Geschwindigkeitsfluktuationen in vertikaler Richtung jeweils über
die in horizontaler Richtung dominieren. Während die turbulente kinetische Energie der
Flüssigkeit in sehr dünnen Zweiphasengemischen mit dem Gasgehalt nahezu linear steigt,
wird für eine dichtere Packung der Blasen aufgrund der hydrodynamischen Wechselwirkun-
gen der Blasennachläufe ein steilerer Anstieg festgestellt.

Die quantitative Analyse der Bilanzgleichung für die kinetische turbulente Energie der
Flüssigkeit (kl-Gleichung) zeigt, dass dem fluktuierenden Anteil der Flüssigkeitsströmung
kontinuierlich Energie durch die Arbeit der flüssigkeitsseitigen fluktuierenden Spannun-
gen an den bewegten Phasengrenzflächen zugeführt wird. Da dieser Mechanismus an die
Anwesenheit der Blasen gebunden ist, führt das Nicht-Gleichgewicht zwischen Turbulenz-
Erzeugung und Turbulenz-Dissipation zu einem intensiven diffusiven Transport der turbu-
lenten kinetischen Energie innerhalb des Strömungsgebietes. Als wesentlich erweist sich
dabei speziell die Umverteilung aufgrund von Druckfluktuationen.

Die DNS basierten Auswertungen der einzelnen Bilanz-Terme in der kl-Gleichung werden
weiterhin verwendet um Schließungsannahmen in Turbulenzmodellen zu bewerten. Es wird
gezeigt, dass alle derzeit verwendeten ingenieurtechnischen Ansätze den Produktionsterm
stark überschätzen und den Diffusionsterm stark unterschätzen. Der Dissipationsterm in
Eingleichungsmodellen ist unterschätzt in Bereichen mit hohem Gasgehalt und überschätzt
in Domänen mit niedrigem Gasgehalt. Dagegen erweisen sich auf der Arbeit der Wider-
standskraft basierende Modelle für die grenzflächenbedingte Erzeugung der turbulenten
kinetischen Energie der Flüssigkeit als geeignet.
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Chapter 1

Introduction

The two-phase flow pattern where a population of gas bubbles is immersed in a liquid
continuum is called bubbly flow. Bubbly flows are encountered in a number of natural
phenomena such as propagation of sound in oceans, exchange of gases and heat between
oceans and the atmosphere and explosive volcanic eruptions. Various types of bubbly flows
are also widely used in engineering systems such as power generation, chemical engineering,
petro-chemical plants and metallurgical facilities. The applied bubbly flow regimes in these
systems span from very slow buoyancy driven flows in bubble columns and air-lift reactors
to forced flows in pipes and ducts. Whatever the regime under consideration, low- or high
Reynolds number, all bubbly flows have a common characteristic - the relative motion of
bubbles induces perturbations of the continuous liquid phase. These fluctuations of the
liquid phase pressure and velocity are caused by various mechanisms: random stirring of
the liquid by moving bubbles, vortex shedding in the bubble wakes and deformations of
gas-liquid interfaces. To emphasize the different nature of such fluctuations from those
existing in single-phase flows, the phenomenon is called bubble-induced turbulence.

Despite the same fluctuating character the bubble-induced and the shear-induced liquid
turbulence interact in a complex manner. In low-sheared flows bubbles enhance the in-
tensity of liquid phase fluctuations [55] [25] [51] [8] [76] [12], whereas in flows with high
Reynolds numbers the shear-induced liquid turbulence is often locally suppressed by bub-
bles [69] [49] [68] [16] [45]. Augmented or attenuated, the resulting liquid phase turbulence
is recognized as the key parameter that determines the spatial phase distribution and ex-
change mechanisms in bubbly flows. A prominent example is provided by the wall void
peaking in upward bubbly flows where lift effects are associated with the liquid turbulent
entrainment [88] [39] [67]. Another case of practical interest is encountered in stirred ves-
sels and chemical reactors where the dispersed phase tendency to break up the large eddies
and create small vortical structures in bubble wakes causes strong mixing beneficial for
mass and heat transfer in many industrial processes [74] [23] [37].
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A few aforementioned examples imply that the realistic description of the liquid turbulence
structure is one of the fundamental requests for accurate predictions of physical processes
in bubbly flows. However, contrary to the domain of single-phase flows, where turbulence
modelling has already reached a certain level of maturity, models for the liquid turbu-
lence in bubbly flows are still at the infancy [72]. Among several engineering approaches
currently used to predict the liquid turbulence, far the most popular concept is based
on balance equation for turbulence kinetic energy of the liquid phase (hereafter called kl
equation). Balance terms in this equation are formulated by an extension of correspond-
ing closure assumptions well-established for single-phase turbulent flows where the effects
of suspended bubbles are either completely ignored or implemented through more or less
empirically derived relations. In this context, many proposals available in the literature
are contradictory with model parameters mainly fitted to the particular problem under
consideration.

Most of the difficulties faced in the development of improved closure assumptions for bal-
ance terms in kl equation concern an extremely poor understanding of mechanisms in which
bubbles alter the liquid phase turbulence. Mathematically, these mechanisms were rigor-
ously formulated by derivation of basic balance equations for turbulence kinetic energy in
gas-liquid flows [32]. However, although known for more than a decade, these equations
could not be exposed to an appropriate quantitative analysis because highly resolved data
about the flow field and the phase interface structure required for such an analysis have
not been available.

These information cannot be obtained experimentally since even the most advanced tech-
niques such as particle-image-velocimetry yield at best two-dimensional projections of the
flow at a given instant in time [7].

Recent improvements in computer performances and positive experience from single-phase
flows suggest use of direct numerical simulations (DNS). Based on computational grids suf-
ficiently fine to resolve all flow scales and auxiliary algorithms to track gas-liquid interface,
DNS of bubbly flows provide complete information on instantaneous three-dimensional flow
field and phase-interface topology. In spite of serious limitations concerning the magnitude
of liquid Reynolds number and the number of bubbles that can be tracked, DNS approach
opens a new promising way to gain a detailed insight into mechanisms governing the liquid
turbulence in bubbly flows of practical importance. Various industrial processes, namely,
involve slow very dispersed gas-liquid flows where no shear-induced turbulence occurs and
where the main flow features such as distribution of phases and mixing are controlled by
the bubble agitation of the liquid phase. Among these, the simplest case concerns a con-
fined multi-phase flow where the gas phase is through a distributor sparged into a quiescent
liquid medium. A prominent example of such a flow is encountered in flat bubble columns
widely used in chemical industries.

Current DNS based liquid turbulence analyses employ the concept of a fully periodic com-
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putational domain where an unbounded gas-liquid flow with uniformly sized bubbles and no
bubble coalescence is approximated by infinite monodisperse bubble-arrays rising through
otherwise quiescent liquid [9] [24]. As the bubbles originally inside the domain leave through
one boundary, new ones come in through the opposite boundary. In this way a homoge-
neous bubbly flow, that allows use of the volume averaging, is put into consideration. Such
a flow configuration is, however, not appropriate for the aforementioned quantitative anal-
ysis of mechanisms governing the liquid turbulence behaviour because the imposed spatial
uniformity excludes considerations of the diffusion transport as well as of the transfer of
energy between the mean and fluctuating liquid flow. Consequently, reported turbulence
investigations are restricted to evaluations of the liquid turbulence kinetic energy and its
dissipation rate [10] [11]. On the other hand, to the best knowledge of the author, no DNS
of non-homogeneous multiple bubble systems are reported in the literature.

At the Institute for Reactor Safety of the Research Centre Karlsruhe, where this work is
done, the computer code TURBIT-VoF for direct numerical simulations of incompressible
gas-liquid flows is developed [63] and extensively used for the various analyses of single
bubble rise [85] [84] [83] [21]. Different to other DNS codes, TURBIT-VoF is designed to
perform computations of a gas-liquid flow within the domain confined with two rigid walls.
In relation to this, DNS of multiple bubble systems by TURBIT-VoF can quite realistically
approximate a non-homogeneous developed gas-liquid flow within a flat bubble column with
the moderate ratio of the bubble diameter to the column depth and, in this way, provide
an appropriate data basis for the corresponding analyses of mechanisms governing the
behaviour of liquid turbulence kinetic energy.

The fascinating issue of turbulence phenomena in bubbly flows, the popularity of liquid
turbulence models based on kl equation and the availability of TURBIT-VoF code moti-
vated the research to be presented in this work. The objective of the research concerns
investigations of liquid phase velocity fluctuations by DNS of bubbly gas-liquid flows. The
main goals of the research are:

1. to conduct DNS of non-homogeneous bubble-column-like flows and provide input
data basis for sophisticated analyses of liquid phase turbulence behaviour on the
level of its rigorous mathematical formulation,

2. to perform statistical analyzes of bubble-induced liquid velocity fluctuations with the
special emphasis focused on the distribution of liquid turbulence kinetic energy and
its interplay with flow parameters such as velocity field, phase distribution and phase
interface topology,

3. to elucidate mechanisms of generation, redistribution and dissipation of liquid turbu-
lence kinetic energy by quantitative analysis of balance terms in kl equation on the
basis of their basic mathematical formulation and
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4. to estimate the accuracy of closure assumptions for balance terms in kl equation and
to discuss possibilities for improvement of their performance.

The presentation of the performed research is organized as follows.

The chapter 2 reports the background information needed for the investigation of liquid
phase turbulence by DNS of bubbly flows. In this context, the rigorous mathematical
description of liquid phase turbulence is presented, currently used engineering models for
the liquid turbulence in bubbly flows are reviewed and the methodology implemented in
the computer code TURBUT-VoF is outlined.

In the chapter 3 the bubbly flow pattern to be simulated is described, the detailed specifi-
cation of computational set-up for DNS by computer code TURBIT-VoF is presented and
the computed motion of bubbles is analyzed in detail.

The statistical analyzes of the computed liquid motion is presented in the chapter 4, where
the data about the instantaneous liquid flow are completed evaluating the interfacial liq-
uid velocity and pressure, appropriate averaging techniques are adopted and computed
statistical characteristics of the mean and fluctuating liquid flow are discussed. A special
attention is paid to the analyzes of liquid turbulence kinetic energy by considering effects
of the suspended gas content and the liquid phase viscosity.

The chapter 5 focuses on the quantitative analysis of balance equation for liquid turbulence
kinetic energy. Using DNS data the diffusion transport, viscous dissipation, interfacial gen-
eration and transfer of turbulence kinetic energy between the mean and fluctuating liquid
flow are evaluated on the basis of their rigorous mathematical formulations and the ob-
tained results are discussed in detail. The relation between different mechanisms governing
the liquid turbulence in simulated bubbly flows is analyzed considering the budget of kl
equation.

The objective of the chapter 6 is the assessment of closure assumptions for balance terms
in kl equation. In relation to this, performance of commonly used closure assumptions is
tested against the corresponding balance terms evaluated in the chapter 5.

The work is completed by conclusions.



Chapter 2

Background information for
investigating liquid turbulence by
direct numerical simulations of
bubbly flows

This chapter reports the background information that motivated the investigation of liquid
phase turbulence by direct numerical simulations of bubbly flows. The chapter is organized
as follows. The first section presents the basic balance equations for the liquid phase
turbulence where the mathematical formulation of turbulence phenomena is rigorous. The
section 2 reviews the current status of liquid turbulence models applied in engineering
modelling of bubbly flows. The methodology implemented in the computer code TURBIT-
VoF for direct numerical simulations of gas-liquid bubbly flows is outlined in section 3.

2.1 Mathematical formulation of liquid turbulence in

bubbly-flows: a review

The relative motion of bubbles induces fluctuations of liquid phase quantities giving rise to
Reynolds stresses and other phenomena inherent to the turbulence. Mathematically, these
phenomena were rigorously formulated by Kataoka and Serizawa [32] and Kataoka et al.
[31] who derived conservation equations for the turbulence kinetic energy and Reynolds
stresses in gas-liquid flows. Based on these two references this section presents basic equa-
tions for the liquid phase turbulence in bubbly flows.

The basic equations for turbulence in gas-liquid mixtures are derived for an adiabatic,
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incompressible two-phase flow without mass transfer between the phases. The starting
point in the derivation method represent local instant conservation equations for mass and
momentum of the liquid phase, respectively given by:

Φl
∂ûlβ
∂xβ

= 0 (2.1)

Φl
∂ûlα
∂ϑ

+ Φl
∂

∂xβ
(ûlαûlβ) = −Φl

1

%l

∂p̂l
∂xα

+ Φl
1

%l

∂τ̂lαβ
∂xβ

+ Φlgα, (2.2)

where the subscripts α, β and γ denote Cartesian coordinate directions, the subscript l
indicates the liquid phase1, %l denotes the liquid density and gα stands for the gravity vector.
The instantaneous liquid velocity and pressure are indicated by ûlα and p̂l, respectively,
while the instantaneous viscous stress of the liquid phase is defined by:

τ̂lαβ = µl(
∂ûlα
∂xβ

+
∂ûlβ
∂xα

), (2.3)

where µl represents the liquid molecular viscosity. The liquid phase indicator function, Φl,
is formulated as:

Φl(x, ϑ) = 1 if (x, ϑ) is occupied by the liquid phase

= 0 otherwise (2.4)

for any space point x and time instant ϑ.

Applying appropriate averaging (time, spatial or ensemble) on 2.1 and 2.2 the following
conservation equations of averaged mass and momentum, respectively, can be derived:

∂ulβ
∂xβ

= − 1

Φl

u′liβnlβai (2.5)

∂ulα
∂ϑ

+
∂(ulαulβ)

∂xβ
= − 1

%l

∂pl
∂xα

+
1

%l

∂

∂xβ
(τ lαβ − %lu′lαu

′
lβ)−

ulα

Φl

u′liβnlβai −
1

Φl

1

%l
p′linlαai

+
1

Φl

1

%l
τ ′liαβnlβai +

1

Φl

1

%l
u′lαu

′
lβnlβai, (2.6)

where the subscript i denotes the value at the phase interface2, nlα indicates the outward
unit normal vector at the liquid side of the phase interface and ai represents the local instant
interfacial area concentration (interfacial area per unit volume). The single overbar denotes

1Einstein’s summation rule applies to the subscripts α, β and γ, while the rule does not apply to the
subscript l

2Einstein summation rule is not applied to this subscript
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the averaging, while the double overbar indicates the so-called phase-weighted averaging
defined as:

Ψl =
ΦlΨ̂l

Φl

, (2.7)

where Ψ̂l represents an arbitrary instantaneous quantity of the liquid phase. Fluctuating
parts of liquid quantities within the bulk fluid and at the phase interface are, respectively,
given by:

Ψ
′

l = Ψ̂l −Ψl and Ψ
′

li = Ψ̂li −Ψl. (2.8)

The mass conservation equation for fluctuating terms is obtained subtracting 2.5 from 2.1:

Φl

∂u
′

lβ

∂xβ
= −Φl

Φl

u
′
liβnlβai, (2.9)

while subtracting 2.6 from 2.2 gives the momentum conservation equation for fluctuating
terms:

Φl
∂u

′

lα

∂ϑ
+ Φl

∂

∂xβ
(u

′

lαu
′

lβ + u
′

lαulβ + u
′

lβulα) = −Φl
1

%l

∂p
′

l

∂xα
+ Φl

1

%l

∂

∂xβ
(τ

′

lαβ + u
′
lαu

′
lβ)

+
Φl

Φl

ulαu
′
liβnlβai +

Φl

Φl

1

%l
p

′
linlαai −

Φl

Φl

1

%l
τ

′
liαβnlβai −

Φl

Φl

1

%l
u

′
lαu

′
lβnlβai. (2.10)

Multiplying 2.10 by u
′

lβ and averaging one obtains the basic conservation equation of liquid

Reynolds stress, u
′
lαu

′
lβ. The general form of this equation is given as [31]:

∂

∂ϑ
(Φlu

′
lαu

′
lβ) +

∂

∂xβ
(Φlulβu

′
lαu

′
lβ) = Diff + Πlαβ + φlαβ + εlαβ + Υlαβ, (2.11)

where the first four terms on the right-hand-side represent:

- diffusion

Diff =
1

%l

∂

∂xβ
(Φlτ

′
lαβu

′
lγ + Φlτ

′
lγβu

′
lα)−

∂

∂xβ
(Φlu

′
lαu

′
lβu

′
lγ)−

1

%l

∂

∂xα
(Φlp

′
lu

′
lγ)−

1

%l

∂

∂xγ
(Φlp

′
lu

′
lα),

- production by mean shear

Πlαβ = −Φl

(
u

′
lαu

′
lβ

∂ulγ
∂xβ

+ u
′
lβu

′
lγ

∂ulα
∂xβ

)
,

- redistribution by pressure-strain correlation

φlαβ = Φl
1

%l

(
p

′
l

∂u
′
lγ

∂xα
+ p

′
l

∂u
′
lα

∂xγ

)
and
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- viscous dissipation

εlαβ = −Φl
1

%l

(
τ

′
lαβ

∂u
′
lγ

∂xβ
+ τ

′
lγβ

∂u
′
lα

∂xβ

)
.

Except for being multiplied by Φl these terms are analogous to those in the Reynolds stress
equation for single-phase turbulence and are, therefore, named single-phase-like terms. The
last term on the right-hand-side of equation 2.11 is given by:

Υlαβ = − 1

%l
(p

′
liu

′
liγnlαai + p

′
liu

′
liαnlγai) +

1

%l
(τ

′
liαβu

′
liγnlβai + τ

′
liγβu

′
liαnlβai) (2.12)

and represents the peculiarity of gas-liquid flows. This term, namely, takes into account
effects of bubble interfaces on the liquid phase turbulence and is called interfacial term.

From practical point of view the turbulence kinetic energy of the liquid phase,

kl =
u

′
lαu

′
lα

2
, (2.13)

is the fundamental turbulence quantity because it represents the basis for the number of
engineering turbulence models3. Applying the methodology4 analogous to the one used to
derive 2.11 the basic equation of the liquid turbulence kinetic energy in bubbly flows can
be formulated as [32]:
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∂
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(Φlklulβ) = − 1

%l

∂

∂xα
(Φlp

′
lu

′
lα)−

∂

∂xβ
(Φl

1

2
u

′
lαu

′
lαu

′
lβ) +

1

%l

∂

∂xβ
(Φlτ
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′
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∂ulα
∂xβ
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′
liu

′
liαnlαai +

1
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τ

′
liαβu

′
liαnlβai. (2.14)

Similar to 2.11 on the right-hand-side of 2.14 two groups of terms can be distinguished. The
group of single-phase-like terms involves the diffusion (the three first terms), the viscous
dissipation (the fourth term) and the production by mean shear (the fifth term), while the
interfacial transport of the liquid turbulence kinetic energy is represented by the last term.

2.2 Engineering models for liquid turbulence in bub-

bly flows: a review

Predictions of liquid phase Reynolds stresses in bubbly flows of practical interest cannot be
performed by equation 2.11 since it requires highly resolved data about the instantaneous

3The review of engineering models for the liquid turbulence in bubbly flows is given in the next section.
4Note that the conservation equation for the liquid turbulence kinetic energy can be obtained by taking

the trace of the equation 2.11.
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three-dimensional liquid flow and the phase interface topology. Instead, in engineering
praxis various modelling approaches are developed to struggle the liquid phase turbulence.
This section reviews the current status of the liquid turbulence models.

The important role that the Reynolds stress term, u
′
lu

′
l, plays even in very slow bubble-

driven liquid flows has been proven when the modelling of a locally aerated flat bubble
column was attempted without taking into account turbulence effects [18] [71]. That
such an approach may not be accepted as a reliable one was shown by Sokolochin and
Eigenberger [71], who reported an excellent agreement of their numerical results with the
one of Delinoij et al. [18], but a strong disagreement with the experimental data obtained
by Becker et al. [2] for the same bubble column. Moreover, it was shown that this so-called
laminar approach strongly depends on the refinement of the imposed numerical grid - the
finer the grid, the more resolved vortices.

In majority of references the modelling of the liquid phase turbulence is based on the
assumption that Boissinesq eddy-viscosity concept can be extended on two-phase gas-liquid
flows. Reynolds stress in this concept is related to the mean velocity of the liquid phase
by [78]:

u
′
lu

′
l = νRel (∇ul +∇u

T
l )− 2

3
Ikl, (2.15)

where νRel represents the eddy viscosity of the liquid phase, kl indicates the liquid turbulence
kinetic energy as defined by 2.13 and I denotes the unit tensor. Concerning the way
followed to evaluate the eddy viscosity of the liquid phase, νRel , three principally different
approaches can be distinguished: so-called algebraic models, one-equation (k − l) models
and two-equation (k − ε) models.

Algebraic models. One of the first proposals for the evaluation of the liquid phase eddy
viscosity is given by Sato et al. [65] [64]. They supposed that νRel can be expressed as the
sum of the shear-induced eddy viscosity (modelled using relations originally developed for
single-phase flows) and the bubble-induced eddy viscosity defined by the following algebraic
expression:

νbl = 0.6αgdb|ur|, (2.16)

where αg denotes the mean gas volumetric fraction, db represents bubble diameter and ur
stands for the mean relative velocity between the phases.

Michiyoshi and Serizawa [49] used a similar approach expressing the eddy viscosity induced
by bubbles in terms of the terminal bubble velocity, ut, as:

νbl = 0.06αgl0(
y

r
)utD(y+) for y > db

1.2αg(
y

r
)utD(y+) for y∗ < y < db, (2.17)

where y represents the radial distance from the pipe wall and y+ denotes the distance from
the wall beyond which bubbles cannot penetrate. Parameters l0 and m are given in terms of
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pipe radius, r, and the mean gas volumetric fraction, αg. The wall damping factor, D(y+),
is defined using van Driest’s expression for single-phase flows (see for example [82]).

Contrary to the aforementioned approaches, where only the enhancement of the liquid
turbulence due to the bubble agitation can be accounted for, the algebraic model developed
by Kataoka et al. [36] provides also the evaluation of the turbulence suppression induced
by bubbles. In this model the eddy viscosity is using the coefficient β1 = 0.56 related to
two-phase mixing length, ltp, by:

νRel = β1ltp
√
kl. (2.18)

The two-phase mixing length, ltp, is assumed to be a linear superposition of the mixing
length due to shear-induced turbulence, lsi, and the mixing length due to bubble-induced
turbulence, lb:

ltp = lsi + lb. (2.19)

The shear-induced mixing length is given as: lsi = 0.4y, while the mixing length induced
by bubbles is defined by: lb = αgdb/3. Radial distribution of the liquid turbulence kinetic
energy is evaluated from:

kl =

[
3

4

ltp
db

αgCd
0.04αl + αgltp/db

] 2
3

u2
t , (2.20)

where αl represents the mean liquid volumetric fraction and Cd denotes the drag force
coefficient.

k-l models. Further development of the presented model of Kataoka et al. [36] resulted
in the so-called k− l model [34] [33] [35]. In this model the turbulence kinetic energy of the
liquid phase is, instead by algebraic expression 2.20, determined by the following transport
equation:

∂αlkl
∂ϑ

+∇ · (αlklul) = Diff(kl) + Πl − εl + Υl. (2.21)

The three first terms on the right-hand-side of the equation above represent the group of
single-phase-like terms, diffusion, production by mean shear and viscous dissipation of the
liquid turbulence kinetic energy, respectively, while the last term takes into account effects
of bubble interfaces.

The influence of the dispersed gas phase on the turbulence diffusion, production by mean
shear and dissipation is taken into account introducing the two-phase mixing length defined
by 2.19 into the corresponding closure relations originally established for single-phase flows.
The mixing length of shear-induced turbulence is evaluated using the following single-phase
relation:

lsi = 0.4y(1− e
−

yuf
26νl ), (2.22)
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where uf represents the friction velocity and νl stands for the kinematic viscosity of the
liquid phase. The model for the bubble-induced mixing length, lb, is based on the assump-
tion that the movement of a bubble across the control surface causes exchange of the liquid
in the amount of the bubble volume and is given by:

lb =
1

3
αgdb for

3

2
db ≤ y ≤ r

=
1

6
αg[db + (y − 0.5db)] for db ≤ y ≤ 3

2
db

=
1

6

[
db +

4
3
− y

db

2− 4
3
y
db

]
for 0 ≤ y ≤ db. (2.23)

The interfacial term, Υl, accounts for two effects: the turbulence absorption by bubbles
(related to small scales of gas-liquid interface and expressed in terms of the liquid turbulence
velocity and the mean gas volumetric fraction) and the turbulence generation by bubbles
(related to the relative motion of bubbles and expressed through the work of the drag
force).

k− ε models. k − ε models for bubbly gas-liquid flows are derived by an adjustment
of transport equations for turbulence kinetic energy and its dissipation rate of the well-
established single-phase k − ε model (see for example [61] or [82]).

In the simplest approach [80] [86] [57] [66] [59] the original form of the balance terms
from the single-phase k − ε model (production, diffusion and dissipation) is kept and the
influence of the dispersed phase is taken into account only through the multiplication of
the whole equation by the mean liquid volumetric fraction, αl. Due to its similarity to the
single phase k − ε model, this approach is, usually, called standard k − ε model.

In more complex approaches the effects of suspended bubbles on the liquid phase turbulence
are included in model. In this context, two main directions in the development of k − ε
models for bubbly flows can be identified.

In the first one, hereafter called extended k − ε model, transport equations for liquid
turbulence kinetic energy, kl, and its dissipation rate, εl, constituting the standard k − ε
model are extended by additional closure terms that account for effects of bubble interfaces
[73] [26] [70] [3] [47] [78] [54] [22] [74] [50]. In this context, the structure of the transport
equation for the liquid turbulence kinetic energy is identical to the one used in k− l models
(see equation 2.21), while the following form of the transport equation for the turbulence
energy dissipation rate is applied:

∂αlεl
∂ϑ

+∇ · (αlεlul) = Diff(εl) +
αl
τ

[
Cε1Πl − Cε2εl

]
+ Υε

l , (2.24)

where τ denotes the time scale of turbulence, τ = kl/εl, Υε
l represents the interfacial

term and ’standard’ constants of the single-phase k − ε model, σε = 1.3, Cε1 = 1.44 and
Cε2 = 1.92, are retained.
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The evaluation of the liquid phase Reynolds stresses in both, the standard and the extended
k−εmodel, is based purely on the Boussinesq hypothesis (equation 2.15). On the other side,
when the representative eddy viscosity of the liquid phase is concerned, various approaches
can be found in the literature. The basis for all of them represents the eddy viscosity
evaluated by corresponding k − ε model:

νkεl = Cµ
k2
l

εl
, (2.25)

where Cµ = 0.09. However, in addition to νkεl some authors take into account the liquid
kinematic viscosity, νl, and/or the bubble-induced eddy viscosity, νbl , as proposed by Sato
et al. [65] [64] (see equation 2.16).

The second approach [47] [46] [73] [42] [53] is based on the assumption that the total tur-
bulence kinetic energy of the liquid phase, kl, can be decomposed into two statistically
independent contributions: a real turbulence part, kl0, induced by mean shear that also
contains the turbulence generated in bubble wakes and an irrotational part named pseudo
turbulence, klb, that involves liquid velocity fluctuations generated through the liquid dis-
placement by moving bubbles:

kl = kl0 + klb. (2.26)

The real turbulence is modelled by the standard single-phase transport equation multiplied
by the mean liquid volumetric fraction:

∂αlkl0
∂ϑ

+∇ · (αlkl0ul) = Diff(kl0) + Πl − εl0. (2.27)

It is noted that the structure of the equation above is only apparent. It is, namely, the
result of the assumption that the total dissipation rate, εl, can be decomposed into two
independent contributions: the one due to cascading, εl0, and the one in bubble wakes, εlw.
Such an idea originates from Lance and Bataille [43], who observed that in homogeneous
bubbly flows turbulence eddies generated in bubble wakes were dissipated by the viscosity
before their spectral transfer could take place. Assuming that this result might be ex-
tended to a large range of bubbly flows the formulation of the transport equation for kl0 is
significantly simplified since the closure assumptions for the generation and dissipation of
the liquid turbulence kinetic energy in bubble wakes do not have to be specified explicitly.
Further, the transport equation for the dissipation rate reduces to its single-phase form
since only εl0 remains to be determined. For this purpose the following single-phase-like
transport equation is employed:

∂αlεl0
∂ϑ

+∇ · (αlεl0ul) = Diff(εl0) +
αl
τ0

[
Cε1Πl − Cε2εl0

]
, (2.28)

where the time constant due to the eddy stretching is given by:

τ0 =
kl0
εl0
. (2.29)
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The pseudo turbulence transport is, formally, modelled by the following first-order relax-
ation type equation [47]:

∂αlklb
∂ϑ

+∇ · (αlklbul) = Diff(klb) +
1

τb
(kalb − klb), (2.30)

that contains the diffusion term and the source term taking into account added mass effects.
However, in practical applications klb is set equal to its asymptotic value kalb given by:

kalb =
1

2
αgCam|ur| (2.31)

where Cam represents the coefficient of the added mass force.

It is noted that in addition to the characteristic time scale of turbulent eddy stretching,
τ0, as defined by 2.29, this approach involves the time scale related to the relative motion
of bubbles:

τb = CR
db

|ur|
, (2.32)

where CR is a constant. For that reason, the models based on the aforementioned method-
ology are named two-time-scale k − ε models.

Reynolds stress in two-time-scale k − ε models is evaluated as the sum of a turbulent
contribution evaluated by the Bousinesq expression 2.15 and a pseudo turbulent term,
2Aklb, where A represents the anisotropy matrix. Theoretically, this matrix is a function
of the bubble shape and the bubble trajectory, but in practice it is approximated with the
diagonal matrix A = [4/10, 3/10, 3/10] derived for the case of a potential flow around a
spherical bubble. The liquid phase eddy viscosity in the Bousinesq expression is, principally,
evaluated employing the standard k − ε formula:

νkεl0 = Cµ
k2
l0

εl0
, (2.33)

but, like in the case of the extended k − ε model, magnitude of νkεl0 is, in some references,
increased by adding νl and / or νbl as given by 2.16.

Beyond the Boussinesq’s hypothesis two types of models for the liquid phase turbulence
have been developed: algebraic stress models and differential stress models.

Algebraic stress models. Modelling of the liquid phase turbulence by use of an algebraic
stress model (ASM) represents the further development of the two-time-scale k− ε model.
In ASM the pseudo turbulent Reynolds stress is evaluated in the same way as in the two-
time scale k − ε model, but in the evaluation of the turbulent Reynolds stress part the
Bousinesq hypothesis is replaced by an algebraic stress law. It is, however, noted that
no specific two-phase algebraic stress law has been developed, but well-established single-
phase formulations are employed. Thus, while Lahey et al. [42] [40] [38] [41] applied the
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approximation proposed by Rodi [61], Afshar and Baliga [1] used the algebraic stress law
of Gataski and Speziale [20].

Differential stress models. In order to allow for the different development of vari-
ous Reynolds stresses, differential stress models employ balance equations for the individ-

ual components, u
′
lαu

′
lβ. Similar to considerations of the liquid turbulence kinetic energy,

two different approaches are applied to establish transport equations for liquid Reynolds
stresses.

In the first one, applied by Lopez de Bertodano et al. [48] and Lance et al. [44], the balance

of the total Reynolds stress in the liquid phase, u
′
lαu

′
lβ, is considered. Lopez de Bertodano

et al. extended the single phase form of transport equations for u
′
lαu

′
lβ with an interfacial

term defined as:
Υl = CiF

d
αurα, (2.34)

where F d
α represents the drag force exerted by bubbles to the liquid and the parameter

Ci ≤ 1.0 takes into account that the turbulence induced by bubbles is of smaller length
scale than the shear-induced turbulence. This source is, further, assumed to be shared only
among normal Reynolds stresses:

Υlαβ = [4/5, 3/5, 3/5]Υl. (2.35)

Lance et al. [44], however, kept such a structure only apparently adopting the mentioned
hypothesis of production-dissipation equilibrium in bubble wakes under which interfacial
effects on the turbulence generation / dissipation are not explicitly specified in the transport
equations.

In the other approach followed by Chahed et al. [15] [13] [14] the total Reynolds stress of
the liquid phase is decomposed into two contributions that can be linearly superimposed:

a turbulent part, u
′
lαu

′
lβ

0

, and a non-dissipative pseudo-turbulent part, u
′
lαu

′
lβ

b

, induced
by the liquid displacement by moving bubbles. The hypothesis of the equilibrium of the
turbulence generation-dissipation in bubble wakes is here also adopted implying that the

differential equations for u
′
lαu

′
lβ

0

reduce to its single-phase form. Transport equations for

u
′
lαu

′
lβ

b

include the diffusion term, the interfacial turbulence production by added mass
force:

Υb
lαβ = 0.5

D

Dϑ
αgurαurα, (2.36)

where D/Dϑ denotes material derivative, and the term that accounts for the liquid turbu-
lence redistribution by the pressure strain correlation:

Φb
lαβ =

3

10
Υb
lγγδαβ −

9

10
Υb
lαβ, (2.37)

where δαβ represents the unit tensor.
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While Lopez de Bertodano et al. directly applied the single-phase Daly-Harlow diffusion
model (see for examle [61]), Chahed et al. used the following form of the diffusion term:

Diff(ψ) =
Csψ
αl

∂

∂xα

[
αl

(
τ0u

′
lαu

′
lβ

0

+ τbu
′
lαu

′
lβ

b
)
∂ψ

∂xβ

]
, (2.38)

where ψ stands for the turbulent, u
′
lαu

′
lβ

0

, i.e. the pseudo turbulent, u
′
lαu

′
lβ

b

, part of liquid
Reynolds stress, Csψ = 0.11 and the time scales τ0 and τb are defined in the same way as
in the two-time constant k − ε model (by 2.29 and 2.32, respectively).

Similar to single-phase flows the pressure-strain correlation is decomposed into two contri-
butions: the slow term and the rapid term. Lance et al. and Chahed et al. assumed that
the motion of bubbles is not relevant to the rapid term and that its single-phase functional
form is valid for dilute bubbly flows. On the other side, the authors did modifications of
the slow term attempting to incorporate effects of experimentally observed increased ten-
dency towards isotropy in bubbly flows [43]. For this purpose the time scale of turbulent
stretching in the single-phase formulation of Launder (see for example [61]) is modified.
Therefore, while Lance et al. formulated the slow term considering the entire turbulence
in the liquid phase:

φstlαβ = (C1
kl
εl0

+ C3
|ur|
db

)

(
u

′
lαu

′
lβ −

2

3
kl

)
, (2.39)

where C1 = 2.2 and C3 = 8, Chahed et al. took into account only the turbulent part of
the Reynolds stress in order to avoid inappropriate redistribution rates when the pseudo-
turbulence is high:

φstlαβ = C1(τ
−1
0 + αgτ

−1
b )

(
u

′
lαu

′
lβ

0

− 2

3
kl0

)
, (2.40)

where C1 = 1.8.

Lopez de Bertodano et al. followed a different approach. Therefore, they kept original
form of Launder’s expression for both the slow and the rapid term, and took into account
the bubble presence introducing the following additional term:

φblαβ = −C2

(
Υlαβ −

Υlγγ

3
δαβ

)
, (2.41)

where Υlαβ represents the interfacial source of turbulence as defined by 2.35.
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2.3 Computer code TURBIT-VoF for direct numeri-

cal simulations of bubbly flows

The computer code TURBIT-VoF developed5 at the Institute for Reactor Safety of the
Research Centre Karlsruhe is used to perform direct numerical simulations (DNS) of bubbly
gas-liquid flows to be presented in this work. For an easy reference the methodology applied
in TURBIT-VoF is here briefly presented. More details can be found in [62], [63] and [21].

The attention is focused on an adiabatic flow of two incompressible immiscible Newtonian
fluids without phase change. Theoretically, such a flow is formulated by local instantaneous
conservation equations for mass 2.1 and momentum 2.2. A numerical simulation of two-
phase flows on the basis of these equations would require computational grids with an
extent of refinement which provides not only that no cell contains two-phase mixture, but
also that the boundary layer at the phase interface is resolved. Imposing such grids on
a two-phase flow domain is not practical due to high computational costs as well as the
deterioration of the accuracy and stability of the numerics with the increased complexity of
the interfacial topology. Instead, in DNS of gas-liquid flows local instant equations 2.1 and
2.2 are firstly locally averaged and then discretized on grids with a currently acceptable
resolution.

In TURBIT-VoF the averaging of an arbitrary instantaneous phase quantity Ψ̂k is per-
formed applying the following operators:

Ψk =
1

V

∫
V

Ψ̂kΦk(x, ϑ)dV and Ψk,k =
1

Vk

∫
V

Ψ̂kΦk(x, ϑ)dV, (2.42)

where the subscript k indicates the phase (k = l for the liquid and k = g for the gas),
Φk indicates phase indicator function, V represents the volume of mesh cell and Vk stands
for the volume of mesh cell occupied by the phase k. In the text hereafter, this type
of averaging is named local in order to distinguish it from the one applied in the later
turbulence analysis.

Applying the local averaging on the liquid phase indicator function, Φl, a new quantity
named the local liquid volumetric fraction:

f =
1

V

∫
V

Φl(x, ϑ)dV, (2.43)

is introduced. Physically, f represents the fraction of cell volume occupied by the liquid
phase and, different to the stepwise liquid phase indicator function, Φl, takes a continuous
value between zero and unity.

5The code is originally developed by Sabisch [62] for the purpose of DNS of adiabatic dilute bubbly
flows in plane channels. Further, it was significantly improved by Ghidersa [21], who considered slug flow
in small rectangular channels and included procedures for simulation of heat transfer phenomena.
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Using the local liquid volumetric fraction to define mixture material properties such as
density and viscosity:

% = f%l + (1− f)%g and µ = fµl + (1− f)µg (2.44)

and mixture flow properties such as center-of-mass velocity and pressure:

u =
f%lul,l + (1− f)%gug,g

f%l + (1− f)%g
and p = fpl,l + (1− f)pg,g, (2.45)

the behaviour of both phases, the liquid and the gas, as well as the dynamic boundary
condition at the phase interface can be described by a single set of governing equations
that express conservation of mass and momentum within the entire computational domain.
In TURBIT-VoF these equations are given in the following dimensionless form:

mass:

∇ ·U = 0 (2.46)

momentum:

∂ρU

∂θ
+∇ · (ρUU) = −∇P +

1

Reref
∇ ·T− (1− f)Eöref

Weref

g

|g|
+

κAin
Weref

n, (2.47)

where the following scaling applies:

θ =
ϑuref
lref

, ρ =
%

%ref
, U =

u

uref
, T =

lref
µrefuref

τ, P =
p− %lg · x
%refu2

ref

and Ain = lrefain,

(2.48)
with the material properties of the liquid phase taken to be reference values (%ref = %l
and µref = µl) and the reference length, lref , and reference velocity, uref , to be specified.
The reference Reynolds, Weber and Eötvos number appearing as the result of scaling are,
respectively, given by:

Reref =
%luref lref
µref

, Weref =
%lu

2
ref lref

σ
and Eöref =

(%l − %g)|g|l2ref
σ

, (2.49)

where σ represents the surface tension. The third term on the right-hand-side of the
momentum equation 2.47 represents the buoyancy term, while the last term expresses
the contribution of the surface tension force (κ stands for twice the mean dimensionless
interface curvature and n represents the unit normal vector at the phase interface pointing
from the gas to the liquid phase).

Employing the transport equation for the local liquid volumetric fraction:

∂f

∂θ
+ U · ∇f = 0, (2.50)
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flow regions containing pure liquid (f = 1) are distinguished from the pure gas ones (f = 0).
If 0 < f < 1, an interface exists within the computational cell. In such cells the model
of a homogeneous two-phase mixture is applied where the equality of phase velocities and
pressures is assumed.

The equation 2.50 is numerically solved employing a Volume-of-Fluid (VoF) procedure.
The interface orientation and location inside each mesh cell is first reconstructed using
a rather geometrical method EPIRA (Exact P lane Interface Reconstruction Algorithm)
which yields a linearly-accurate interface reconstruction on a three-dimensional struc-
tured orthogonal non-equidistant fixed grids. The algorithm belongs to the class of PLIC
(P iecewise Linear Interface Calculation) methods which employ straight oblique lines to
reconstruct the interface and provide more accurate allocation of fluid properties and inter-
facial area. Once the updated interface information is known liquid fluxes across the faces
of the mesh cell can be computed and the local liquid volumetric fraction can precisely be
advected.

The Navier-Stokes equations are solved by a standard finite difference projection method
on the staggered three-dimensional Eulerian grid. All spatial derivatives are evaluated
by second order centered differences, while the integration over time is performed by an
explicit third order Runge-Kutta scheme.

The methodology is verified comparing numerical results with experimental data for the
rise of an ellipsoidal bubble and an oblate ellipsoidal cap bubble [63].



Chapter 3

Direct numerical simulations of
bubble-array flows with computer
code TURBIT-VoF

This chapter deals with direct numerical simulations (DNS) of dilute bubbly flows per-
formed in order to provide an input data basis for statistical analyses of the liquid phase
turbulence. The chapter is organized as follows. In the first section the bubbly flow pattern
to be simulated is described and different simulation scenarios are outlined. The section 2
presents the detailed specification of computational setup for DNS by the computer code
TURBIT-VoF. The analyses of DNS results presented in this chapter mainly concern the
dynamics of bubbles. In this context, the section 3 focuses on the analyses of bubble tra-
jectories and bubble velocities as well as on the parameters concerning the bubble shape
and the bubble orientation. Peculiarities of the bubble-induced liquid flow are, due to its
relevance to the liquid phase turbulence characteristics, presented in the next chapter.

3.1 Definition of bubble-array flow

This section describes bubbly flow configurations for which direct numerical simulations
(DNS) by the computer code TURBIT-VoF are performed.

The simulated flow pattern is named bubble-array flow. The term ’bubble-array flow’ refers
to the flow regime where monodisperse arrays of bubbles rise through otherwise stagnant
liquid within a plane infinite channel. The simplest case of such a flow is depicted in
Figure 3.1. For the sake of clarity, only one array of bubbles is displayed. The whole
bubble-array flow can be imagined as an entity where the array presented in Figure 3.1 is
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indefinite number of times periodically repeated in the lateral non-wall direction. From the
geometrical and hydrodynamical point of view such a flow domain can fully be represented
by a fixed doubly periodic unit cell highlighted on the right-hand-side of Figure 3.1. In
this context, two types of bubble-array flow can be distinguished.

Fixed bubble-array flow corresponds to the flow pattern presented in Figure 3.1 where only
one bubble is suspended within the periodic cell. Such a definition of the flow configuration
implies that all the bubbles within the whole channel are of an identical shape, move with
the same velocity and are at constant distances from their neighbours.

Free bubble-array flow represents a flow pattern where the periodic cell contains a swarm
of several freely interacting bubbles. The number of bubbles within the swarm is specified
to be constant by preventing the bubble coalescence. As the bubble population in this
flow configuration is denser than in the case of the fixed bubble-array flow, the rise of an
individual bubble is through the mutual interactions of bubble wakes influenced by the
motion of other bubbles. Therefore, despite the same equivalent diameter, the bubbles
within a free bubble-array are, in principle, not of an identical shape and do not rise with
the same velocity.

x1 x2

x3

g

l3

l 1

l 2

Figure 3.1: Fixed bubble-array flow with extracted unit cell.

Although the developed flow regime in flat bubble columns is more realistically described
by the concept of free bubble-arrays than by the pattern consisting of fixed bubble-arrays,
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the latter is for the following two reasons used as the first approximation. First, due to its
simplicity (only one phase interface within computational domain, less agitated liquid flow)
this flow configuration was more convenient for developing and testing the computational
tool needed for statistical analysis of the bubble-induced liquid phase fluctuations. Second,
comparing characteristics of liquid phase perturbations generated by fixed bubble-arrays
with the ones driven by free bubble-arrays the effects of the bubble relative motion can be
distinguished from the effects of hydrodynamic interactions between bubble wakes.

In order to examine how the magnitude of overall gas content and the distribution of
suspended bubbles influence the liquid velocity fluctuations, the motion of monodisperse
bubble populations involving different number of suspended bubbles is simulated.

Finally, the influence of physical properties of gas-liquid system on the agitation of the
liquid phase by moving bubble swarms is considered. In this purpose, the motion of
geometrically identical free bubble-arrays through the liquids with different viscosity is
computed.

3.2 Computational set-up for direct numerical simu-

lations of bubble-array flows

Employing the computer code TURBIT-VoF in total five numerical experiments with
bubble-array flows are conducted: one with the fixed bubble-array and four with free
bubble-arrays. Computations are performed on a single processor of Fujitsu VPP 5000
parallel vector computer. Since the analyses of the liquid turbulence structure require the
knowledge on steady state flow characteristics, numerical runs are associated with the long
CPU time and high computational costs. This section presents the geometrical, physical
and initial parameters of conducted DNS. For an easy reference the details of the compu-
tational setup used to specify all the simulations of bubble-array flows are summarized in
Table 3.1.

3.2.1 Geometrical parameters of simulations

The computational domain for all the simulations is specified to be a cubic channel bounded
with two vertical rigid walls. The size of the domain is l1 = l2 = l3 = l = lref . The domain
is discretized with 643 uniform mesh cells. Imposed boundary conditions are non-slip ones
at the lateral rigid walls and periodic ones in stream-wise (x1) and span-wise (x2) direction.
The equivalent bubble diameter, db, in all the simulations is prescribed to be one fourth of
the computational domain size and is, thus, resolved with 16 mesh cells.
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Since the assumption of incompressibility is adopted for both phases, the overall gas volu-
metric fraction can be expressed only in terms of geometrical quantities as:

〈αg〉 =
nbd

3
bπ

6l3
, (3.1)

where nb represents the number of bubbles contained within the computational domain.

In the case of fixed bubble-array flow the overall gas volumetric fraction is 〈αg〉 = 0.818%,
i.e. a very dilute bubbly flow is considered.

DNS with free bubble-arrays are performed for two magnitudes of overall gas volumetric
fraction. A dilute mixture (〈αg〉 = 4.088%) is simulated with five bubbles suspended
within the flow domain, while the lower limit of a moderate bubbly flow (〈αg〉 = 6.544%) is
achieved in the numerical experiment where the swarm consists of eight bubbles. The flow
configuration with 8 bubbles is not chosen arbitrarily, but seems to be the densest one that
the current version of TURBIT-VoF can successfully track during the long time period
needed to reach the steady flow regime and under the request of no bubble coalescence.
The population consisting of 5 bubbles is also chosen on purpose. Hence, when a swarm
with an odd number of bubbles rises within a channel confined with two vertical walls, the
phase distribution is suspected to differ significantly from the one where the swarm involves
an even number of bubbles - the dispersion of bubbles towards lateral channel walls almost
symmetrically with respect to the channel axis is expected in the scenario with 8 bubbles,
but not in the scenario with 5 bubbles. In this context, comparing perturbations of the
liquid phase induced by the rise of 5 bubbles with the ones generated by the motion of 8
bubbles one can analyze, not only the influence of the overall gas volumetric fraction, 〈αg〉,
but also the effects of the bubble distribution on the liquid phase turbulence.

3.2.2 Physical parameters of fluids

The influence of physical parameters on the rise of gas bubbles with the equivalent diameter
db and the density %g through the liquid with the density %l and the viscosity µl is taken
into account by bubble Eötvös number and Morton number respectively defined as:

Eöb = |g|d2
b

(%l − %g)

σ
and M = |g|µ4

l

%l − %g
%2
l σ

3
, (3.2)

where g represents the gravity and σ stands for the surface tension.

In all the performed simulations of bubble-array flows Eöb = 3.065 is specified. The
simulation of the fixed bubble-array flow (further called scenario 1BM61) and free bubble-
array flow with 5 bubbles (scenario 5BM6) are performed specifying M = 3.06 · 10−6. In

1Bubble-array scenarios are named following the pattern ’nbBMm’ where nb represents the number of
bubbles suspended within the computational domain and m indicates the order of magnitude of specified
Morton number.
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this way all the parameters of the simulation scenario 1BM6 are chosen to be the same as
in [63], where the ability of TURBIT-VoF to accurately predict the shape, the path and
the rise velocity of a single bubble moving within an initially quiescent liquid was validated
through the comparison of numerical results with experimental data.

In order to analyze the influence of bubble shape and bubble rise velocity on characteristics
of generated liquid flow, free bubble-array flow simulations with 8 bubbles are performed
for three different values of Morton number. In Figure 3.2 specified physical parameters of
two-phase systems are highlighted in the diagram of Clift et al. [17].

1BM6
5BM6
8BM6

8BM4

8BM2

Figure 3.2: Diagram of Clift et al. [17] used for the preliminary estimation of bubble shape and bubble
rise velocity. Dashed red line represents air bubbles in water.

It is noted that this diagram is established for the case of a single bubble rising within
an unbounded domain filled with quiescent liquid and can, thus, provide only a rough
estimate of bubble parameters for rather different flow conditions prescribed here (doubly
periodic flow domain confined with two rigid walls, multiple bubble flow with intensive
bubble-wake interactions). Nevertheless, it is expected that a decrease of Morton number
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from M = 3.06 ·10−2 (scenario 8BM2) to M = 3.06 ·10−4 (scenario 8BM4) will cause change
in the bubble shape from spherical to slightly ellipsoidal. A further decrease of Morton
number to M = 3.06 ·10−6 (scenario 8BM6) should result in an increase of the ellipsoid axis
aspect ratio. Physically, such a decrease of Morton number while keeping Eötvos number
constant can be achieved by choosing the liquid phase of a lower viscosity.

In Figure 3.2 it can be seen that the specified values of bubble Eötvös number and Morton
number are rather far from that, for practice more interesting, case of air bubbles in water.
Such a choice is dictated by the expected bubble deformation and bubble Reynolds number:

Reb =
%ldbub
µl

, (3.3)

where ub denotes the bubble rise velocity. The current numerical scheme and limited
computer resources, namely, make it difficult to perform long-time three dimensional com-
putations of bubble swarms consisting of bubbles that exhibit complex unsteady motion
characterized by wobbling and rocking, vortex shedding and shape oscillations. This con-
strain is not associated only with TURBIT-VoF, but is more a general problem associated
with DNS of bubbly flows. Moreover, while a number of authors have simulated the mo-
tion of a single bubble, for multiple bubble systems the literature is quite limited. To the
best knowledge of the author the most complex simulations of free bubble-array flows are
carried out by Bunner and Tryggvason. In [9] and [10] they considered even 216 bubbles.
However, specified parameters of the simulation (fully periodic computational domain,
Eöb = 1,M = 1.543 · 10−4) resulted in a rather academic flow configuration with a spheri-
cal bubble shape and almost rectilinear bubble trajectories. Their most recent paper [11]
reports the simulation of free arrays consisting of ellipsoidal bubbles. Although 27 bubbles
were tracked, due to the larger computational domain, the overall gas volumetric fraction
in [11] is the same as in here presented simulation scenarios with 8 bubbles, 〈αg〉 = 6.544%.
However, when the agitation of the liquid phase is concerned the ellipsoidal bubbles in here
specified numerical experiment 8BM6 are expected to be more aggressive than the ones
simulated in [11]. This statement is based on the higher magnitude of expected bubble
Reynolds number in the simulation run 8BM6 (see Figure 3.2) than Reb ∼ 25 achieved in
the computations reported by Bunner and Tryggvason [11].

The ratios of phase densities and viscosities:

Γ% =
%g
%l

and Γµ =
µg
µl

(3.4)

are physical parameters that also have to be specified. Although these ratios are very
low in most bubbly flows, for computational reasons the simulations are performed for the
following values: Γ% = 0.5 and Γµ = 1. The choice of these parameters was motivated by
results reported by Wörner [84] [83], who using TURBIT-VoF investigated the influence
of the density ratio on the rise of a single ellipsoidal bubble with parameters Eöb = 3.065,
M = 3.06 · 10−6 and Γµ = 1. Comparing results of numerical simulations for Γ% =0.5,
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0.2, 0.1 and 0.02 he found that the phase density ratio, Γ%, has a notable influence on
the initial acceleration of the bubble, but does not affect the bubble shape and bubble
Reynolds number when the bubble terminal velocity was reached. Moreover, the liquid
velocity scaled by the bubble rise velocity turned out to be virtually independent on Γ%
when the steady flow regime was reached.

The fluids are taken to be free of contaminants so that the tangential stress is continuous
across the phase interface.

3.2.3 Initial conditions and time step width

The fixed bubble-array flow is simulated starting from an initial situation where one spher-
ical bubble is positioned in the centre of the channel filled with stagnant liquid.

In numerical experiments with free bubble-arrays 5BM6, 8BM6 and 8BM2 spherical bub-
bles are placed inside the quiescent liquid and arranged by slight perturbations of a regular
pattern in each coordinate direction. In order to save computational time, initial conditions
for the scenario 8BM4 are derived from the computed steady flow regime of the simulation
run 8BM2.

The time step width is estimated considering the criteria imposed by the convective, vis-
cous, capillary and buoyancy force, respectively formulated as [83]:

∆θc =
4x

max|un|
, ∆θµ =

1

6
4x2Rerefmin

(
Γ%
Γµ

)
, ∆θσ =

√
4x3

4π
Weref (1 + Γ%)

and ∆θg = 24x
{

max|un|+

√(
max|un|

)2

+
44x
Γ%

∣∣∣∣ Eöref
Weref

∣∣∣∣}, (3.5)

where ∆x represents the mesh cell size of a uniform grid and the subscript n = 1, 2, 3
indicates Cartesian coordinate directions. The reference Reynolds, Eötvös and Weber
number are computed from:

Eöref =

(
lref
db

)2

Eöb, Weref =
Eöref
1− Γ%

u2
ref

|g|l2ref
and Reref =

(
EörefWe2

ref

M

)0.25

,

with the reference length and the reference velocity respectively specified as lref = 4m and
uref = 1m/s.

The width of the dimensionless time step actually used in computations, ∆θ, is determined
when the minimal value evaluated by 3.5, min(∆θc,∆θµ,∆θσ,∆θg), is multiplied by a safety
factor. In the simulation of the fixed bubble-array flow this safety factor is taken to be
0.2, while in the more dynamic cases of free bubble-array flows even more rigid value of 0.1
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turned out to be necessary. The magnitudes of the time step width specified for different
simulation cases are presented in Table 3.1.

3.2.4 Prevention of bubble-wall interaction

An inspection of the momentum equation 2.47 shows that an additional body force, −%lg,
is imposed on both fluids. This force is equivalent to the pressure gradient generated by the
base of a flow container which prevents the gravitational force to cause the acceleration of
the entire flow field in the downward vertical direction. As a consequence, the velocity field
in the whole domain will be oriented upwards. Such a flow situation could be acceptable
for DNS of the fixed bubble-array flow because in that case the bubble rises rectilinearly
upwards through the central part of the channel and makes no interaction with lateral
channel walls. However, when a free bubble-array flow is concerned, due to the denser
bubble population as well as lateral bubble movements, the liquid velocity profile in the
vicinity of channel walls decides the destiny of simulations.

Ellipsoidal bubbles in an upward liquid flow are, namely, exposed to the action of lift force
[88] that makes them move towards the wall (see Figure 3.3a). On the other side, repelling
action of the wall force ensures the existence of the liquid layer along the channel walls
that prevents bubbles touch the wall. However, since this liquid film is very thin, it cannot
be resolved by TURBIT-VoF.

w
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bubble

bubble

direction 
of bubble
motion
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liquid  upflow liquid downflow

a) b)

Figure 3.3: Preferential direction of bubble motion in the vicinity of rigid wall within an upward (a) and
a downward (b) liquid flow.

Therefore, in its approaching to the wall the bubble touches it. As the methodology
currently implemented in TURBIT-VoF is not able to resolve phase interface in such a
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situation, the simulation has to be stopped. On the other hand, when the liquid flow is
oriented downwards, the direction of the lift force changes and, instead towards the wall,
an ellipsoidal bubble is pushed towards the core region of the channel (see Figure 3.3b).

In order to provide a downward flow of the liquid phase in the vicinity of the channel walls,
the magnitude of the additional body force from the equation 2.47 had to be decreased.
Therefore, in the simulations of bubble-array flows presented here the additional body
force is specified as −〈%〉g, where 〈%〉 = %l + 〈αg〉(%g − %l) represents the mean density of
the two-phase mixture. Consequently, the buoyancy term in the momentum equation 2.47
takes the following form:

− (1− f − 〈αg〉)Eöref
Weref

g

|g|
, (3.6)

where f represents the local liquid volumetric fraction.

Table 3.1: Computational set-up specified in DNS of bubble-array flows with code TURBIT-VoF

type of bubble-array flow fixed free
simulation scenario 1BM6 5BM6 8BM6 8BM4 8BM2

reference length 4m 4m 4m 4m 4m
reference velocity 1m/s 1m/s 1m/s 1m/s 1m/s
computational domain sizea 1x1x1 1x1x1 1x1x1 1x1x1 1x1x1
number of grid points 643 643 643 643 643

bubble equivalent diametera 0.25 0.25 0.25 0.25 0.25
number of bubbles 1 5 8 8 8
overall gas volume fraction 0.818% 4.088% 6.544% 6.544% 6.544%
phase density ratio 0.5 0.5 0.5 0.5 0.5
phase viscosity ratio 1 1 1 1 1
Morton number 3.06 · 10−6 3.06 · 10−6 3.06 · 10−6 3.06 · 10−4 3.06 · 10−2

bubble Eötvös number 3.065 3.065 3.065 3.065 3.065
reference Eötvös number 49.05 49.05 49.05 49.05 49.05
reference Weber number 2.5 2.5 2.5 2.5 2.5
reference Reynolds number 100 100 100 31.6 10
time step widtha 10−4 0.5 · 10−4 0.5 · 10−4 0.5 · 10−4 0.5 · 10−4

initial conditions stagnant stagnant stagnant 8BM2b stagnant
a scaled
b steady state flow regime from scenario 8BM2 is used to specify initial conditions for scenario

8BM4
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3.3 Analyses of computed three-dimensional motion

of bubble-arrays

Our intuition suggests that the bubble-induced velocity fluctuations of the liquid phase are
strongly related to the dynamics of bubbles. This is, particulary, expected in free bubble-
array flows where, owning to the proximity of other bubbles, the motion of an individual
bubble is more complex. For the later turbulence analysis it is, therefore, advantageous
to determine bubble trajectories and bubble velocities as well as characteristics of bubble
shape and orientation. In this context, this section presents a detailed analysis of three-
dimensional bubble-array evolution for all the simulation cases. For an easy reference main
characteristics of bubble motion are summarized in Table 3.2.

3.3.1 Methodology for analyses of bubble-array motion

To obtain a first overall impression on the bubble-array dynamics, simulation results are
visualized using AVS software. For more detailed analysis the methodology to be presented
in this subsection is developed and implemented in the evaluation part of TURBIT-VoF.

Since the flow is incompressible the centre-of-mass of the mth bubble2 can be evaluated by:

rmb =

∫
Vm

b
rInd(r)dV∫

V m
b
Ind(r)dV

, (3.7)

where r represents the centroid position of the mesh cell belonging to the mth bubble.
In order to avoid an interference of individual bubbles within a free bubble-array, cells
belonging to a certain bubble are marked introducing a bubble indicator function, Ind(r).
This function is defined to have a zero value if the considered cell is fully occupied with
the liquid phase and a constant value m if the cell is a part of the bubble with the ordinal
number m.

The relation 3.7 for evaluating rmb is based on the assumption that r overlaps with the
geometrical centre of computational cell. Although such an assumption does not hold for
interfacial cells being only partially filled with the gas phase, due to very fine computational
grid the evaluation of bubble trajectories may be accepted as sufficiently accurate.

As all the bubbles within a considered swarm of bubbles have the same volume, the tra-

2The notation used in the presentation of the applied methodology concerns more general case of the free
bubble-array flow where an individual bubble within the considered swarm of bubbles is associated with
its ordinal number m (m = 1, nb). To apply corresponding formulae on the case of the fixed bubble-array
flow one should simply put m = 1.
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jectory of the swarm as an entity can be determined by the simple average:

〈r〉 =
1

nb

m=nb∑
m=1

rmb . (3.8)

The velocity of the bubble centroid is evaluated either by:

umb =

∫
Vm

b
uInd(r)dV∫

Vm
b
Ind(r)dV

, (3.9)

where u represents velocity computed by TURBIT-VoF, or differentiating the bubble path:

umb =
drmb
dϑ

. (3.10)

It has been verified numerically that these two formulae give identical results. The former
is used for the initial time step (ϑ = 0), while the latter is applied when positions of the
bubble centroid are known for two subsequent time steps (ϑ > 0).

The rise velocity of the swarm (further called mean bubble rise velocity) is computed as
the arithmetic mean of the individual bubble rise velocities:

〈ug〉 =
1

nb

m=nb∑
m=1

umb1, (3.11)

where the subscript 1 denotes vertical (x1) direction.

In order to be compatible with Bunner and Trygvason [9] [10] [11] the bubble rise is
characterized by bubble drift Reynolds number:

Remd =
%lu

m
d db
µl

, (3.12)

where umd indicates bubble drift velocity defined as:

umd = umb1 − j. (3.13)

The second term on the right-hand-side of the above equation represents the superficial
velocity of two-phase mixture:

j = jl + jg, (3.14)

with superficial velocities of the liquid and gas phase respectively formulated by:

jl = (1− 〈αg〉)〈ul〉 and jg = 〈αg〉〈ug〉, (3.15)



44 3. Direct numerical simulations of bubble-array flows with computer code TURBIT-VoF

where 〈ug〉 is given by 3.11 and the mean velocity of the liquid phase in vertical direction
is determined from:

〈ul〉 =
1

1− 〈αg〉

∫
V

fu1dV. (3.16)

Finally, the drift Reynolds number for the whole swarm of bubbles is computed as:

〈Red〉 =
1

nb

m=nb∑
m=1

Remd . (3.17)

3.3.2 Comparison of bubble-arrays with different number of bub-
bles

This section presents the three-dimensional evolution of bubble-arrays with the same bub-
ble size and physical properties of fluids, but with different number of suspended bubbles.
In this context, the analyses concern characteristics of the bubble motion computed in sim-
ulation scenarios 1BM6, 5BM6 and 8BM6, where the magnitudes of overall gas volumetric
fraction stand in the following relationship:

〈αg〉1BM6 : 〈αg〉5BM6 : 〈αg〉8BM6 = 0.818% : 4.088% : 6.544%. (3.18)

In Figure 3.4 bubble shape and liquid phase velocities are visualized for the fixed bubble-
array flow (numerical run 1BM6). It can be seen that bubble takes the shape of an ellipsoid
with the major axis parallel to the horizontal plane. The ellipsoid is axisymmetric with
the axis aspect ratio κ = 1.555.

In the central part of the channel the rising bubble induces an intensive upward motion
of the liquid phase, while in the peripheral domains of the channel cross-section the liquid
slowly flows downwards. The region where the liquid flow changes direction from upwards
to downwards is, in the form of the light circular annuli, visible in Figure 3.4b. Due to
the motion of neighbouring bubble-arrays the intensity of the downward liquid flow in the
vicinity of the periodic lateral boundaries is slightly lower than along the channel walls.

The trajectory of fixed bubble-array may be considered as an approximatively straight path
taking into account that during the whole simulation time an individual bubble within the
array vertically rose a distance of 19l what corresponds to 76db, while the maximal lateral
deviation of its trajectory was less than 0.05l i.e. 0.2db. Therefore, it can be concluded that
the chosen flow configuration ensures that neither laterally neighbouring bubble-arrays nor
channel walls influence the shape of the fixed bubble-array rising path.
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Figure 3.4: Visualization of bubble-array flow computed in simulation scenario 1BM6.

In order to obtain an overall impression about the effects of other bubbles on the liquid
flow structure and individual bubble deformation, simulation results for both free bubble-
array flow scenarios, 5BM6 and 8BM6, are visualized in Figure 3.5. For clarity reasons
views at all three coordinate planes are presented. The striking difference to the fixed
bubble-array flow case is much more agitated liquid flow. Although given only in one
section, perturbations of the liquid phase by moving bubbles are evident, not only through
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Figure 3.5: Visualization of bubble-array flows computed in simulation scenarios 5BM6 (left) and 8BM6
(right).
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the bubble-induced displacement of the liquid, but also through the formation and mutual
interaction of bubble wakes. Bubbles generally took an ellipsoidal shape with major axis
not perfectly aligned with the horizontal plane. Although some differences in the shape of
individual bubbles can be observed, in both simulation scenarios they may be considered
as negligible and the average ellipsoid axis aspect ratio of κ = 1.535 and κ = 1.526 can be
estimated for the case 5BM6 and the case 8BM6, respectively.

Individual bubble trajectories in the free bubble-array flows 5BM6 and 8BM6 are presented
in Figure A.1 and Figure A.2, respectively (see Apendix A). It can be seen that different to
the case of the fixed bubble-array flow, the bubbles move, not only into the adjacent periodic
box in the vertical direction through buoyancy, but also in both horizontal directions, wall-
normal and span-wise, through the dispersion. These lateral movements of bubbles in
the free bubble-array scenario 8BM6 resulted in the formation of two distinctive bubble
populations. To analyze the time evolution of this free bubble-array in more detail, a movie
has been made. The movie has revealed that bubbles tend to align at approximatively
constant distance from the walls making a kind of bubble curtains between the central
liquid core and downward flowing liquid layers next to the walls (such a situation can
also be observed in Figure 3.5f). In the case 5BM6, however, lateral bubble movements
resulted in a more or less uniform bubble distribution over channel cross-section with no
distinctive pattern with respect to the channel walls (see Figure 3.5c). Further, while the
lateral bubble movements in scenario 8BM6 are approximatively symmetric with respect
to the diagonal channel plane, no similarity of individual bubble trajectories is observed
in the simulation scenario with 5 bubbles (compare projections of bubble trajectories on
x2 − x3 plane in Figure A.1 and Figure A.2).

Further information about the rise of bubble-arrays with different number of bubbles can
be drawn from Figure 3.6, where the time evolution of drift Reynolds number for the en-
tire bubble-arrays as well as for the individual bubbles within the free bubble-arrays is
presented. It is evident that, except for a short initial phase of simulation, the accelera-
tion of the fixed bubble-array is stronger than the one of the free bubble-arrays. Such a
behaviour is caused by the larger drag due to increased vorticity deposition in the case of
thicker bubble population. Even though the individual bubble motion show the transient
behaviour owning to mutual bubble wake interactions, the whole swarm of bubbles reaches
a well defined steady state quite quickly. In the steady state regime the mean bubble
rise velocities computed for the different bubble-array scenarios (see Table 3.2) satisfy the
following relation:

〈ug〉1BM6
r

〈αg〉1BM6
r

:
〈ug〉5BM6

r

〈αg〉5BM6
r

:
〈ug〉8BM6

r

〈αg〉8BM6
r

=
1

1
:
0.725

5
:
0.674

8
(3.19)

the subscript r indicates relative to the simulation case 1BM6.
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Figure 3.6: Time evolution of drift Reynolds number for bubble-arrays with different number of bubbles.
Drift Reynolds number of individual bubbles in free bubble-array flows 5BM6 and 8BM6 is, respectively,
depicted with lines (colours compatible with Figure A.1) and symbols (shapes compatible with Figure
A.2). Subfigure presents drift Reynolds number of the representative bubble-swarm in bubble-array flow
scenarios 1BM6 (red), 5BM6 (blue) and 8BM6 (black).

Contrary to the simulations 1BM6 and 5BM6 that passed smoothly, the simulation run
8BM6 was corrupted. An inspection of the bubble-array evolution has shown that this cor-
ruption was caused by a local unsteadiness of the flow. In the free bubble-array flow 8BM6,
namely, beside approaching the walls, bubbles also tend to align themselves horizontally
(a careful analysis of Figure A.2 shows that throughout the simulation the vertical bubble-
bubble distances in the free bubble-array flow scenario 8BM6 decrease). This phenomenon,
known as the bubble rafting [11], caused a transient behaviour of the whole two-phase sys-
tem. Thus, reaching approximatively the same vertical position and owning to the large
shape deformations, bubbles occupied significant part of the channel cross-section. Due
to the locally increased buoyancy the liquid layer at the channel walls could not retain its
downward orientation. As a consequence the lift force changed direction and made one of
the bubbles hit the channel wall. Since TURBIT-VoF could not resolve the phase interface
in such a flow configuration, the simulation had to be stopped.

Finally, an observation from the aforementioned analysis is pointed out as beneficial for the



3.3 Analyses of computed three-dimensional motion of bubble-arrays 49

later turbulence considerations. Therefore, despite the conspicuously different dynamics
of the considered bubble-array flows, only slight differences are observed when the bubble
shape and bubble orientation are concerned. Subsequently, in comparisons of liquid phase
velocity fluctuations induced by the rise of bubble-arrays with different number of bubbles,
effects of the bubble shape do not have to be considered as a parameter of the analysis.

3.3.3 Comparison of bubble-arrays moving in liquids with differ-
ent viscosity

This subsection focuses on effects of the liquid phase viscosity on the dynamics of geometri-
cally identical bubble-swarms. In this context, the motion of free bubble-arrays computed
by TURBIT-VoF in numerical runs 8BM2, 8BM4 and 8BM6 is analyzed. It is reminded
that the number of suspended bubbles, individual bubble volume and computational do-
main size are identical for all the considered simulation cases (see Table 3.1), while the
corresponding liquid viscosities relative to the viscosity specified in the case 8BM2 stand
in the following relation:

µ8BM6
l,r : µ8BM4

l,r : µ8BM2
l,r = 0.1 : 0.316 : 1, (3.20)

where the superscripts indicate simulation scenarios and the subscript r indicates the di-
vision by µ8BM2

l .

The visualization of the bubble shape and the liquid phase velocity for free bubble-array
flow scenario 8BM2 is presented in Figure 3.7. As expected, in this, the most viscous case,
bubble deformation is absent, i.e. bubbles retained their initial spherical shape. The eval-
uation of bubble trajectories3 has shown that individual bubbles move almost rectilinearly
keeping initially prescribed distances from each other. A detailed inspection of the liquid
flow structure revealed no existence of bubble wakes, what leads to the conclusion that the
generated liquid motion is the result of pure liquid displacement by moving bubbles.

Figure 3.8 shows a rather different flow configuration in the case 8BM4 - only slightly
ellipsoidal bubbles (bubble axis aspect ratio κ = 1.132) agitate the liquid phase consider-
ably, not only through the liquid displacement, but also through the formation of vortical
structures. Comparing to the case 8BM2 larger lateral deviations of individual bubble
trajectories can be observed in Figure A.5. On the other hand, when compared to the run
8BM6, these lateral movements are significantly less pronounced. Nevertheless, bubbles
show tendency to approach channel walls.

The time evolution of drift Reynolds number computed for the bubble swarms moving

3Details on bubble trajectories for each individual simulation scenario with 8 bubbles can be seen in
Figure A.2, A.3 and A.4. Lateral bubble movements are highlighted in Figure A.5 for all the simulation
cases.
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Figure 3.7: Visualization of free bubble-array flow computed in numerical run 8BM2.
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Figure 3.8: Visualization of free bubble-array flow computed in numerical run 8BM4.
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through the liquids with different viscosity is presented in Figure 3.9. It can be seen that
the steady state for the case with the highest liquid viscosity (scenario 8BM2) is reached
within the shortest time period, after which the two-phase system behaves very stable.

The Table 3.2 shows that the liquid viscosity influences the magnitudes of the mean bubble
rise velocity strongly and changes the values of the drift bubble Reynolds number dramat-
ically. Therefore, the relationship between the liquid viscosities given by 3.20 results in the
following ratios:

〈ub〉8BM6
r : 〈ub〉8BM4

r : 〈ub〉8BM2
r = 5.174 : 2.717 : 1 (3.21)

and
〈Red〉8BM6

r : 〈Red〉8BM4
r : 〈Red〉8BM2

r = 55.640 : 9.365 : 1, (3.22)

where the subscript r indicates relative to the case 8BM2.

Finally, it is noted that the numerical experiment 8BM2 is the only simulation scenario with
8 bubbles that was not broken due to flow instabilities that occurred after the stationary
regime has been reached. An analysis of the history of the simulation runs 8BM4 and 8BM6
revealed an important role that bubble wakes play in the evolution of three-dimensional
bubble-array motion. Intuitively, one would expect that the bubble coalescence will occur
rather in the numerical experiment 8BM6, where the bubble deformation is large, the
bubble rise velocity is high and the bubble lateral movements are significant, than in the
simulation scenario 8BM4, where only slightly deformed bubbles rise slowly along paths
with small lateral deviations. However, bubble coalescence in the scenario 8BM6 did not
occur because approaching of a certain bubble to the other one beyond a critical distance
was stopped by repelling effects of bubble wakes. On the other side, in the scenario 8BM4
the acceleration of the trailing bubble in the wake of the leading bubble caused formation
of tight bubble clusters and resulted, finally, in the bubble coalescence.

At the end the following is stressed: In all the presented simulations of bubble-array flows
a steady flow regime has been reached and kept sufficiently long to provide the data basis
required for the statistical analyses of liquid phase velocity fluctuations. In this way it is
demonstrated that DNS can successfully be used for the turbulence investigation in dilute
bubble-driven liquid flows.
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Figure 3.9: Time evolution of drift Reynolds number for simulated bubble-arrays moving through liquids
with different viscosity.

Table 3.2: List of main DNS results for the dynamics of simulated bubble-arrays

type of bubble-array fixed free
simulation scenario 1BM6 5BM6 8BM6 8BM4 8BM2

computed time a 6 5.85 3 2.15 2.1
rise length a 19.10 14.28 6.89 2.26 0.94
lateral bubble motionc negligible strong strong slight negligible
bubble distributionb core uniform wall-aligned wall-aligned initial
mean bubble rise velocity abd 3.53 2.56 2.38 1.25 0.46
Reynolds number bd 88.2 64.1 59.5 9.87 1.15
drift Reynolds number bd 84.1 50.3 47.3 7.96 0.85
bubble axis aspect ratio b 1.555 1.535 1.526 1.132 1
a scaled
b in steady state
c during the whole simulation period
d in free bubble-arrays mean value for the swarm of bubbles



Chapter 4

Statistical analyses of liquid flow
induced by motion of bubble-arrays

This chapter presents the statistical analysis of the liquid motion computed by direct
numerical simulations (DNS) of bubble-array flows using the computer code TURBIT-VoF.
An inspection of the raw DNS data has shown that the information about the instantaneous
liquid flow is not complete, since the liquid behaviour at the phase interface is not accurately
described by the current version of TURBIT-VoF. In this context, the first section presents
the methodology applied to determine the instantaneous velocity and pressure at the liquid
side of the phase interface. The section 2 deals with averaging of the instantaneous liquid
flow. First, the choice of the most feasible averaging technique is discussed and adopted
procedures are described in detail. Further, evaluated statistical characteristics of the mean
and fluctuating liquid flow are presented for different bubble-array flow cases. The topic of
section 3 is the liquid turbulence kinetic energy itself. This section gives a detailed insight
into the distribution of the liquid turbulence kinetic energy evaluated on the basis of DNS
data for different bubble-array flow scenarios. Next, effects of the gas content and the liquid
viscosity on the behaviour of the liquid turbulence kinetic energy are analyzed. Finally,
DNS based results are compared with predictions based on the potential flow theory.

4.1 Determination of instantaneous liquid flow at

phase-interface

While the raw data obtained by DNS of bubble-array flows using the computer code
TURBIT-VoF fully determine the instantaneous liquid flow within the bulk fluid, the infor-
mation about the actual liquid flow at the phase interface is not provided. The interfacial
liquid flow is, namely, not realistically described by DNS data because the methodology
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implemented in TURBIT-VoF assumes a homogeneous two-phase mixture in cells con-
taining gas-liquid interface (further called interfacial cells). On the other hand, in order
to quantify effects of bubble interfaces on the balance of liquid turbulence kinetic energy
the instantaneous interfacial liquid flow has to be known. In this context, this section
presents the methodology applied for the determination of the instantaneous velocity and
the instantaneous pressure at the liquid side of the phase interface.

4.1.1 Determination of liquid interfacial velocity

Since in the considered bubble-array flows no phase change occurs, interfacial velocities of
both phases, the liquid and the gas, are equal to the velocity of the phase interface [29]:

uil = uig = ui, (4.1)

where l and g indicate the liquid and gas phase respectively, and i denotes the interface.
The considerations may, therefore, be confined to the motion of the interfacial surface.
The velocity of the interfacial surface, ui, can, as any vector, be decomposed into two
perpendicular components. For an analysis of interfacial effects particularly convenient is
the following decomposition [29]:

ui = ui,t + ui,n, (4.2)

where ui,t represents the component that lies in the plane tangential to the interfacial
surface and ui,n denotes the component in the direction of the unit normal vector, n =
ng = −nl, pointing from the gas to the liquid phase (see Figure 4.1).

The tangential component of the interfacial velocity, ui,t, is theoretically defined to be equal
to the tangential velocity of a fluid particle lying at the interface [29]. Since interfacial
cells are occupied with two-phase mixture, ui,t is assumed to be equal to the tangential
component, ut, of the mixture velocity, u, computed by TURBIT-VoF:

ui,t = ut = u− (u · n) · n. (4.3)

The normal component of the velocity of the interfacial surface is given by [30] [29]:

ui,n = −∂F (x, ϑ)/∂ϑ

|∇F (x, ϑ)|
· n, (4.4)

where F (x, ϑ) = 0 represents the equation of the interfacial surface. In TURBIT-VoF this
surface is at any time instant, ϑ, defined via the unit normal vector, n, and a point lying
on the interface, M(b) [62]:

F (x, ϑ) = (b− x) · n = 0. (4.5)
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Figure 4.1: Decomposition of interfacial velocity in normal and tangential component

Since the function F (x, ϑ) as given by the equation 4.5 is not explicit with respect to time,
the methodology for determining ∂F (x, ϑ)/∂ϑ had to be developed. In the following the
applied procedure is presented.

Consider two subsequent time instants ϑ0 and ϑ0 + δϑ at which the interfacial surface
passes through the points M(b0) and M(b0 + δx), respectively (see Figure 4.2). At these
time instances the equation of the interfacial surface satisfies:

F (b0, ϑ0) = 0 (4.6)

and
F (b0 + δx, ϑ0 + δϑ) = 0. (4.7)

If the distance δx is small, the function F given by equation 4.7 can be extended into the
Taylor series:

F (b0 + δx, ϑ0 + δϑ) = F (b0, ϑ0) +
∂F (x, ϑ)

∂ϑ

∣∣
b0,ϑ0

δϑ+∇F (x, ϑ)
∣∣
b0,ϑ0

· δx + HOT, (4.8)

where HOT stands for higher order terms. Assuming HOT ≈ 0 and subtracting the
equation 4.6 from the equation 4.8 the following is obtained:

∂F (x, ϑ)

∂ϑ

∣∣
b0,ϑ0

δϑ = −∇F (x, ϑ)
∣∣
b0,ϑ0

· δx. (4.9)
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Figure 4.2: Interface position within mesh cell at two subsequent time instances

Dividing the above equation with δϑ the time derivative of the function F (x, ϑ) at the
position M(b0) and time instant ϑ0 needed in equation 4.4 can be expressed as:

∂F (x, ϑ)

∂ϑ

∣∣
b0,ϑ0

= − 1

δϑ
∇F (x, ϑ)

∣∣
b0,ϑ0

· δx. (4.10)

Further, taking into account the following geometrical relation [30]:

n =
∇F (x, ϑ)

|∇F (x, ϑ)|
, (4.11)

the normal component of the interfacial velocity in the point M(b0) and at the time instant
ϑ0 can, finally, be formulated as:

ui,n
∣∣
b0,ϑ0

=
1

δϑ
(n

∣∣
b0,ϑ0

· δx)n
∣∣
b0,ϑ0

. (4.12)

The validity of the presented methodology for evaluation of the interfacial velocity is tested
for the following flow configuration. A channel of the dimensionless size 1x1x1 is discretized
with 643 uniform mesh cells. The channel is laterally confined with two rigid walls, while
in the vertical and span-wise direction periodic boundary conditions are imposed. Two
immiscible fluids of identical physical properties are arranged in the following flow pattern:
the fluid 1 occupies a spherical space with the dimensionless diameter 1/4 and the fluid 2
fills the rest of the channel. Both fluids move vertically upwards at constant dimensionless
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velocity Uf = 1. Under such flow conditions the interface rises together with fluids, i.e.
the velocity of fluid-fluid interface is, theoretically, equal to the velocity of fluids, Uf .

The performance of the presented methodology for the evaluation of interfacial velocity
in the case of the described flow configuration is illustrated in Table 4.1 for the set of
computational cells lying in the span-wise plane x2 = 0.4292l. The comparison of the
evaluated interfacial velocity, Ui, with the theoretical value, Uf = 1, over the whole fluid-
fluid interface has shown that the accuracy of the presented methodology is acceptable. It
has, namely, been found that the maximal discrepancy is:

max

[
|Ui − Uf |

Uf

]
= 7.214%, (4.13)

while the mean error computed for N interfacial cells is:

1

N

m=N∑
m=1

|Uim − Uf |
Uf

= 1.904%. (4.14)

Table 4.1: Evaluated interfacial velocity for the flow configuration where two immiscible fluids with
identical physical properties move with constant velocity Uf = 1.0. Results are given for span-wise position
x2 = 0.4292l.

ka

ib 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40

39 0.952 0.997 0.999 0.999 0.997 0.952

38 0.997 0.999 1.000 1.000 1.000 1.000 0.999 0.997

37 1.071 0.996 1.000 1.000 0.996 1.071

36 1.012 0.996 1.012

35 0.988 0.996 0.996 0.988

34 1.003 1.003

33 0.999 0.999

32 1.002 1.002

31 0.999 0.999

30 0.991 1.033 1.033 0.991

29 1.000 1.027 1.027 1.000

28 1.000 1.004 1.004 1.000

27 0.999 1.016 1.016 0.999

26 0.993 1.000 1.000 0.999 0.999 1.000 1.000 0.993

25

a indices of mesh cells in wall-normal direction
b indices of mesh cells in vertical direction
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When the interfacial velocity evaluated by the presented methodology, ui, is compared
with the velocity of two-phase mixture computed by TURBIT-VoF in interfacial cells, u,
dramatic differences are not observed in any of the considered bubble-array flows. Here,
as an illustration, the difference between the vertical components, ui1 − u1, is presented in
Table 4.2 for the fixed bubble-array flow scenario 1BM6.

Table 4.2: Difference between vertical components of the interfacial and mixture velocity, ui1−u1(m/s),
computed for the fixed bubble-array flow (scenario 1BM6). Results are given for span-wise position x2 =
0.4292l and time instant θ = 5.06. Presented data are multiplied with 10.

ka

ib 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

61 .01 -.41 - .34 - .35 -.35 -.34

60 -.24 -.36 -.99 2.67 -1.33 -1.73 -1.07 -1.95 .09

59 -.03 -2.34 -2.49 .19 .07 -.25

58 -.23 .86 -2.22 .56 -.27

57 -.52 .56 .76 .28 -.68

56 -.25 .33 .08 -.19

55 .01 -.00 -.00 .01

54 -.12 -.07 -.08 -.01

53 -.06 .08 -.22 -.17 .03 .40

52 .08 .18 - .50 .23 .35

51 1.32 -.80 .01 -.47 2.40 .04 .027 .61

50 .01 .13 .94 .06 .20 .19 .04 .99 1.45

49

a indices of mesh cells in wall-normal direction
b indices of mesh cells in vertical direction

4.1.2 Determination of liquid interfacial pressure

The next important point in dealing with the interfacial liquid flow was to determine the
instantaneous pressure at the liquid side of the phase interface. As it can be seen in Table
4.2 drastic errors will not be made if one, instead of the interfacial velocity, adopts the
velocity of two-phase mixture computed by TURBIT-VoF in interfacial cells. The situation
is, however, significantly different when the liquid pressure at the interface is concerned.
It is, namely, stressed that the pressure of the liquid phase must be used, otherwise a
dramatic overestimation of interfacial effects in the balance equation for liquid turbulence
kinetic energy will be caused.

Different to considerations of the interfacial liquid velocity, no methodology for the eval-
uation of the liquid phase interfacial pressure could be developed. Instead, it is assumed
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that gradients of the liquid pressure in the vicinity of the phase interface are weak and
that the liquid interfacial pressure is equal to the pressure in the closest adjacent cell fully
occupied with the liquid phase. Although good results are obtained with such an approach,
for certain time instances difficulties appeared. The difficulties are related to the incor-
rectness of the TURBIT-VoF reconstruction algorithm, i.e. to the existence of interfacial
cells that do not have any adjacent cell completely filled with the liquid phase. In such
a case, looking for the cell fully occupied with the liquid phase is continued exploring the
local liquid volumetric fraction in cells that are neighbours of neighbours.

4.2 Computation of statistical quantities of liquid flow

induced by motion of bubble-arrays

In multiphase flow literature the decomposition of the instantaneous flow field in its mean
and fluctuating component is, usually, performed applying either time averaging [29] or
ensemble averaging [19] [32]. The first part of this section presents a spatial averaging
technique that is found as the most appropriate for here performed statistical analysis of
the liquid phase motion induced by the rise of bubble-arrays. The evaluated characteristics
of the mean and fluctuating liquid flow field are outlined for all the considered bubble-array
flow scenarios. When the statistical turbulence quantities are considered, the attention is
mainly paid on the general features of bubble-induced liquid perturbations. It is noted
that much more information concerning the fluctuating liquid phase flow can be found in
the next section, where the distribution of the liquid turbulence kinetic energy in different
bubble-array flows is discussed in detail.

4.2.1 Averaging of instantaneous liquid flow

The existing version of TURBIT-VoF code provides a record of instantaneous quantities
(velocity components and pressure) at each time step of integration for only one bar of mesh
cells in wall-normal direction. An analysis of the basic balance equation for turbulence
kinetic energy of the liquid phase (equation 2.14) requires, however, the knowledge of the
instantaneous flow field over the whole computational domain. A storage of DNS data
for each computed time instant and over the whole computational domain requires, on
the other side, a huge memory space. For instance, in the statistical analysis of liquid
fluctuations in the free bubble-array flow scenario 8BM6 the steady state regime within
the time interval θ = 0.6−2.5 should be considered, what for the specified time step width
∆θ = 0.5 · 10−4 means that 38000 full data sets have to be stored. On the other hand,
when the spatial averaging is applied, the detailed information on instantaneous flow field
is required for only one instant in time. Therefore, replacing the time averaging by the
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spatial one provides a lot of advantages. In the following possibilities for the application
of the spatial averaging on flow configurations analyzed in this work are discussed.

In all the considered bubble-array flows the main flow direction is vertical (x1 direction).
Since all the analyses are performed for a developed steady flow regime, the mean velocity
in x1 direction is constant. When in addition, periodic boundary conditions imposed in
this direction are taken into account, it may be assumed that the turbulence structure of
the liquid phase induced by a steady rise of monodisperse bubble-arrays within an infinite
plane channel does not change vertically.

When the span-wise direction, x2, is concerned the situation is more complex. Although
periodic boundary conditions are also applied in this direction, the structure of the liquid
flow within one periodical domain strongly depends on the number of suspended bubbles.
For instance, in the case of fixed-bubble array flow an intensive upward liquid motion
generated in the cental part of the channel is, at a very short distance from the domain
where bubble rises, reduced and, finally, reoriented into a slow downward flow. It is,
therefore, expected that such a pronounced local character of the span-wise liquid velocity
distribution for cases of very dilute bubbly flows (scenario 1BM6 and scenario 5BM6) would
lead to an overestimation of fluctuating liquid quantities if averaging along x2 direction
were attempted. On the other hand, the structure of the liquid phase flow generated by
arrays with 8 bubbles (scenarios 8BM2, 8BM4 and 8BM6) is quite different. The motion
of the liquid phase is, namely, driven by two distinctive densely packed bubble populations
that rise approximatively parallel to the channel walls (see Figure 3.5). In such a flow
configuration perturbations of the liquid phase might be assumed to depend spatially only
on the distance from the channel walls, i.e. the liquid turbulence structure in other two
directions, vertical and span-wise, might be considered as homogeneous.

Finally, due to the existence of lateral rigid walls, the fluctuating liquid flow may not, in
any case, be assumed as homogeneous in the wall-normal (x3) direction.

In the context of the above discussions two types of spatial averaging are applied in this
work: line averaging and plane averaging.

Based on the assumption of homogeneous liquid turbulence in the main flow direction, line
averaging is defined over vertical columns of mesh cells (see Figure 4.3a) as:

A
L

βγ =
1

m1

m1∑
α=1

Aαβγ, (4.15)

where the subscripts α, β and γ denote indices in vertical (x1), span-wise (x2) and wall-
normal (x3) direction, respectively, and m1 represents the number of mesh cells in the
vertical direction.

Extending the assumption of homogeneous liquid turbulence on both directions, vertical
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and span-wise, plane averaging is defined over vertical slabs of mesh cells parallel to channel
walls (see Figure 4.3b ) by:

A
P

γ =
1

m1m2

m1∑
α=1

m2∑
β=1

Aαβγ, (4.16)

where m2 stands for the number of mesh cells in span-wise direction. Note that in the text
hereafter the superscripts L and P are used to indicate line and plane averaged quantities,
respectively.

The averaging as defined above may be applied only on field quantities (quantities defined in
all space and time domains under consideration). For instance, the mean liquid volumetric
fraction, αl, is theoretically defined as an average of the liquid indicator function, Φl (the
definition of Φl is given by equation 2.4). Since the concept of DNS assumes that the liquid
phase indicator function, Φl, may be replaced by the local liquid volumetric fraction, f ,
mean magnitudes of the liquid volumetric fraction are computed as:

αLlβγ =
1

m1

m1∑
α=1

fαβγ and αPlγ =
1

m1m2

m1∑
α=1

m2∑
β=1

fαβγ. (4.17)

Mean values of non-field liquid phase quantities are defined introducing the so-called phase-
weighted averaging, where only domains occupied by the liquid phase are accounted for.
Using the local liquid volumetric fraction, f , to indicate mesh cells entirely filled with liquid
phase-weighted liquid quantities in this work are computed as:

Al
L

βγ =
1

αLlβγ

1

m1

m1∑
α=1

fαβγAαβγ, (4.18)

and

Al
P

γ =
1

αPlγ

1

m1m2

m1∑
α=1

m2∑
β=1

fαβγAαβγ. (4.19)

Finally, liquid phase fluctuations in the bulk fluid are evaluated as:

A
′L
lαβγ = Alαβγ − Al

L

βγ and A
′P
lαβγ = Alαβγ − Al

P

γ (4.20)

and at the liquid side of phase interface as:

A
′L
liαβγ = Aliαβγ − Al

L

βγ and A
′P
liαβγ = Aliαβγ − Al

P

γ , (4.21)

where the subscript i denotes a liquid interfacial quantity. It is noted that liquid phase
fluctuations A

′

l and A
′

li are also not field quantities. Therefore, when different correlations
of liquid fluctuations are computed, the phase-weighted averaging has to be performed. On



62 4. Statistical analyses of liquid flow induced by motion of bubble-arrays

x1
a=1

g=1

 b=1

x2

x3

a=m1

 b=m2

g=m3

(a) line averaging

x3

x2x1

(b) plane averaging

Figure 4.3: Definition of averaging domains. Entities of mesh cells over which averaging is performed
are coloured yellow. Blue areas represent suspended gas phase. Notations given in (a) apply to the entire
figure.
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the other side, correlations involving fluctuations at the phase interface are field quantities
since they always involve interfacial area concentration, ai (interfacial area concentration
is field quantity because it is defined via the gradient of the phase indicator function,
∇Φl = ainl).

The plane averaging is performed in statistical analysis of the liquid motion induced by
the rise of free bubble-arrays with 8 bubbles (scenarios 8BM2, 8BM4 and 8BM6). The line
averaging is used in the case of fixed bubble-array flow scenario 1BM6 and both free-bubble
array flow scenarios with low liquid viscosity (5BM6 and 8BM6). While the choice of the
line averaging in cases 1BM6 and 5BM6 was dictated by the local flow structure, in the case
8BM6 this type of averaging is applied in order to provide data comparable with the ones
computed in scenarios 1BM6 and 5BM6. A comparison of statistical turbulence quantities
evaluated by the line averaging and the plane averaging is, namely, not appropriate. First,
because the corresponding profiles obtained by line averaging are two-dimensional, while
the ones obtained by plane averaging spatially depend only on the wall-normal coordinate.
Second, as the local structure of the liquid flow is in more details recognized by the line
than by the plane averaging, evaluated liquid fluctuations are somewhat higher when the
latter is concerned. In this context, results obtained applying the line averaging and the
plane averaging for the bubble-array flow scenario 8BM6 are not for comparison, too.

The aforementioned averaging techniques can successfully be performed using DNS data
for any single time instant within the steady regime1 of a bubble-array flow. However,
in order to obtain smooth profiles of liquid turbulence quantities the following procedure
is applied. First, evaluations based on spatial averaging are done for the number of time
steps within the interval of fully developed flow regime and then the arithmetic mean of the
results obtained for individual time instances is computed. The number of time instances
at which this additional time averaging is performed is given in Table 4.3 together with the
corresponding time intervals of the developed flow regime for different bubble-array flows.

4.2.2 Computed characteristics of mean and fluctuating liquid
flow

Components of the mean liquid velocity for the bubble-array flow scenarios where the plane
averaging is applied are presented in Figure 4.4. It can be seen that for all the considered

cases the vertical component of the mean liquid velocity, u
P
l1, is, at least, an order of

magnitude higher than the ones in both horizontal directions, u
P
l2 and u

P
l3.

Figure 4.5 shows that, despite the same buoyancy force that drives the liquid flow in all

1Bubble-array flow is considered as steady when the mean velocity of the two-phase mixture is approx-
imatively constant in time.
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Figure 4.4: Mean liquid velocities and gas volumetric fraction computed by plane averaging for bubble-
array flows with different liquid viscosity.
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Table 4.3: Averaging set-up for different bubble-array flows.

scenario averaging time intervala number of data sets

1BM6 5.5− 6.0 20
5BM6 line 3.5− 4.5 40
8BM6 0.6− 2.5 76
8BM2 0.2− 2.1 76
8BM4 plane 2.5− 4.0 60
8BM6 0.6− 2.5 76
a dimensionless time interval where flow is developed

these scenarios, the corresponding profiles of u
P
l1 remarkably differ, not only in magnitudes,

but also in shapes. Although some other parameters such as bubble shape and bubble
trajectories certainly influence the mean liquid flow, the observed differences are, in the
greatest extent, caused by drastically different magnitudes of the liquid viscosity. Therefore,
in the very viscous case 8BM2 the significant portion of the energy transferred to the liquid
by rising bubbles is dissipated by viscous stresses, while the rest induces a slow upwards
oriented liquid flow in the major part of the channel cross-section. On the other hand, in
the low viscous case 8BM6 the internal friction plays a minor role and the liquid flow is
mainly governed by the competition of buoyancy and inertial forces. As a result the strong
liquid upflow in the domains where bubbles rise occurs, while in the core of the channel
and in the vicinity of the lateral walls permanently occupied by the liquid phase the flow
is oriented downwards. The bubble-array flow scenario 8BM4 represents an intermediate
case where the viscosity is sufficiently strong to prevent the downward liquid flow in the
central part of the channel.

Since in bubble-array flow cases where the line averaging is applied (scenarios 1BM6, 5BM6
and 8BM6) two-dimensional averaged quantities are obtained, the presentation of mean
liquid velocity components through wall-normal and/or span-wise profiles is not convenient.
As in all these cases the horizontal components of the mean liquid flow are very low (see
Table 4.4), in Figure 4.5 only contour plots of the mean liquid velocity in the vertical
direction are depicted. Figure 4.5 shows that characteristics of the mean liquid flow are
governed by the number and the distribution of bubbles. Generally, an upward mean
liquid flow is developed behind and in the vicinity of bubbles, while in the rest of the
channel liquid flows downwards. However, while in case 5BM6 the mean liquid flow is,
mainly, determined by the motion of individual bubbles (positions of individual bubbles
can clearly be recognized in Figure 4.5b) in the case 8BM6 mean flow of the liquid phase
is driven by two distinctive bubble populations. Finally, due to lower bubble rise velocities
the upward mean liquid velocities are locally less intensive in systems with higher gas
contents (mean bubble rise velocities for different simulation scenarios can be seen in Table
3.2).
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Table 4.4: Range of horizontal mean liquid velocities evaluated by line averaging for bubble-array flow
scenarios with different number of bubbles.

simulation scenario u
L
l2(m/s) u

L
l3(m/s)

1BM6 −0.036÷ 0.035 −0.028÷ 0.041
5BM6 −0.094÷ 0.083 −0.102÷ 0.115
8BM6 −0.060÷ 0.055 −0.069÷ 0.070
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Figure 4.5: Mean liquid velocities in vertical direction computed by line averaging for free bubble-array
flows with low liquid viscosity.
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The comparison of liquid phase velocity fluctuations generated by the rise of different
bubble-arrays is performed by computing the probability density function (p.d.f.).

In order to examine the influence of the suspended gas content on the intensity of induced
liquid phase perturbations, in the left part of Figure 4.6 probability density functions of
liquid velocity fluctuations are compared for three different magnitudes of the overall gas
volumetric fraction: 〈αg〉 = 0.818% (scenario 1BM6), 〈αg〉 = 4.088% (scenario 5BM6)
and 〈αg〉 = 6.544% (scenario 8BM6). It can be seen that liquid velocity fluctuations are
significantly amplified in multiple bubble cases. However, while the p.d.f. of the horizontal
fluctuations is symmetric, the p.d.f. of vertical fluctuations is asymmetric with moderately
intense fluctuations (|u′

l1| = 0.1 ÷ 0.6m/s) occurring more frequently in the downward
direction and very intense fluctuations (|u′

l1| > 0.6m/s) occurring in the upward direction.
The comparison of p.d.f.-s for liquid velocity fluctuations in horizontal directions reveals
damping effects of lateral channel walls on the intensity of liquid perturbations for both
free bubble-array flow scenarios. However, in the case of fixed bubble-array flow the curves
representing corresponding p.d.f.-s totally overlap implying the absence of any wall effect.

The asymmetry of p.d.f. found for liquid velocity fluctuations in the vertical direction
and the symmetry of the ones in horizontal directions are in agreement with experimental
findings of Risso and Ellingsen [60], who investigated the rise of a monodisperse swarm of
ellipsoidal air bubbles within a big tank filled with stagnant tap water. However, contrary
to the results of Risso and Ellingsen, the overlapping of p.d.f. curves for liquid velocity
fluctuations in here considered bubble-array flows with different number of bubbles could
not be obtained by scaling with 〈αg〉0.4. This situation is related to the differences in the
range of considered gas contents (in [60] 〈αg〉 = 0.64 ÷ 1.05%), to the differences in two-
phase flow configuration (bubbly flow in [60] may be assumed as homogeneous) and to the
differences in the magnitudes of bubble rise velocity (in [60] Reb ∼ 800).

A strong suppression of the liquid velocity fluctuations with an increase of the liquid vis-
cosity can be seen in Figure 4.6-right. Similar to the aforemention observation for the
bubble-array flows with different number of bubbles, in all the cases of bubble-array flows
with different liquid viscosity the computed p.d.f.-s for horizontal components of liquid
velocity fluctuations are symmetric and the one in the vertical direction is asymmetric.
The shape of p.d.f.-s for the vertical component of liquid velocity fluctuations, further, sig-
nificantly changes with change of liquid viscosity. Therefore, intensive velocity fluctuations
in the negative direction noticed in the low viscous case 8BM6 are appreciably suppressed
in the medium viscous case 8BM4 and almost dampened in the very viscous case 8BM2.

Significantly different magnitudes of liquid velocity fluctuations for three coordinate direc-
tions observed in p.d.f.-s (Figure 4.6) imply that the liquid phase turbulence is anisotropic.
More details about the anisotropy of the liquid fluctuating field can be drawn from Figures
C.1, C.2 and C.3, where components of the root-mean-square (r.m.s.) of liquid velocity

fluctuations, urmslα = u
′
lαu

′
lα

0.5

, are presented. There it can be seen that the fluctuations
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in the vertical direction strongly dominate the ones in the horizontal directions in all the
bubble-array flow scenarios. Except for fixed bubble-array flow (scenario 1BM6), the mag-
nitudes of r.m.s. of liquid velocity fluctuations in span-wise direction are higher than the
one in the wall-normal direction. Moreover, in Figure C.4 it can be seen that this is also
true for the fluctuating flow field induced by the motion of free-bubble arrays through the
liquids with different viscosity.

The higher magnitudes of liquid velocity fluctuations evaluated by the plane averaging
than by the line averaging as discussed in the previous subsection can be observed by
comparison of corresponding p.d.f.-s for the scenario 8BM6. However, despite the different
magnitudes, the p.d.f.-s of both evaluated liquid fluctuations show the same trend, what
supports the use of plane averaging.

4.3 Analysis of the distribution of liquid turbulence

kinetic energy in bubble-array flows

The turbulence kinetic energy of the liquid phase is under the assumption of incompress-
ibility defined by [32]:

kl =
1

2
u

′
l · u

′
l, (4.22)

where u
′

l represents the fluctuating component of the liquid phase velocity and the double
overbar indicates the phase-weighted averaging.

For bubble-array flows where the averaging is done over vertical columns of mesh cells (line
averaging) the turbulence kinetic energy of liquid phase is evaluated as:

kLlβγ =
1

2αLlβγ

m1∑
α=1

fαβγu
′

αβγu
′

αβγ, (4.23)

where the subscripts α, β and γ indicate Cartesian coordinate directions, m1 represents the
number of cells in the column, αLlβγ denotes the mean liquid volumetric fraction evaluated
by line averaging and f stands for the local liquid volumetric fraction.

When averaging is performed over vertical blocks of mesh cells parallel to the channel walls
(plane averaging) the liquid turbulence kinetic energy is computed from:

kPlγ =
1

2αPlγ

m1∑
α=1

m2∑
β=1

fαβγu
′

αβγu
′

αβγ, (4.24)

where αPlγ represents the mean liquid volumetric fraction evaluated by the plane averaging
and m2 denotes the number of cells in span-wise direction.
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Figure 4.6: Probability density function (p.d.f.) of liquid velocity fluctuations in bubble-array flows
computed by line averaging (left) and plane averaging (right).
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The evaluated distribution of the liquid turbulence kinetic energy for bubble-array flows
where the line averaging applies (scenarios 1BM6, 5BM6 and 8BM6) is, in the form of
contour plots, presented in Figure 4.7 and, in the form of wall-normal profiles, in Figure
4.8 for bubble-array flow cases where the plane averaging is performed (scenarios 8BM2,
8BM4 and 8BM6). In these two figures the detailed information about the effects of local
flow parameters on the distribution of liquid turbulence kinetic energy for each individual
case of considered bubble-array flows (like influence of bubble distribution, effects of rigid
walls, etc.) is provided. On the other hand, except for a visual illustration, Figure 4.7 and
Figure 4.8 are not convenient either for a corresponding quantitative comparison between
different bubble-array flows or an analysis of the effects of global flow parameters on the
behaviour of the liquid turbulence kinetic energy (such as influence of liquid viscosity,
effects of total gas content, etc.). For that reason in Table 4.5 the following overall data
are given:

• overall turbulence kinetic energy of liquid phase evaluated as:

〈kLl 〉 =
1

m2m3

m2∑
β=1

m3∑
γ=1

αLlβγk
L
lβγ, (4.25)

for cases where the line averaging is applied and by:

〈kPl 〉 =
1

m3

m3∑
γ=1

αPlγk
P
lγ, (4.26)

for cases where the plane averaging is applied;

• overall turbulence kinetic energy of liquid phase in two-phase domain, 〈kLl 〉tp and
〈kPl 〉tp, evaluated applying equation 4.25 and equation 4.26, respectively, on columns
/ blocks of cells occupied by two-phase mixture (where the mean liquid volumetric
fraction is less than 1), and

• overall turbulence kinetic energy of liquid phase in single phase domain, 〈kLl 〉sp and
〈kPl 〉sp, evaluated applying equation 4.25 and equation 4.26, respectively, on columns
/ blocks of cells fully occupied by the liquid phase (where the mean liquid volumetric
fraction is equal 1).
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Table 4.5: Overall magnitudes of liquid turbulence kinetic energy (m2/s2) for different bubble-array flow
scenarios.

line averaging (A=L) plane averaging (A=P)
scenario 1BM6 5BM6 8BM6 8BM6 8BM4 8BM2

〈kAl 〉 8.813 · 10−3 4.535 · 10−2 8.552 · 10−2 1.658 · 10−1 3.917 · 10−2 3.992 · 10−3

〈kAl 〉tp 7.164 · 10−2 7.067 · 10−2 1.182 · 10−1 1.869 · 10−1 4.894 · 10−2 4.870 · 10−3

〈kAl 〉sp 3.705 · 10−3 2.236 · 10−2 1.804 · 10−2 1.839 · 10−2 1.177 · 10−2 8.858 · 10−4

4.3.1 Effects of gas content on distribution of liquid turbulence
kinetic energy in bubble-array flows

The contour plot of the liquid turbulence kinetic energy computed for the case of fixed
bubble-array flow is presented in Figure 4.7a. As a consequence of the specified flow
configuration, where the agitation of the liquid phase is done by only one bubble per
computational domain and where the bubble moves along an approximatively rectilinear
path, the distribution of kLl has a pronounced local character and is closely related to the
bubble shape and bubble trajectory. Therefore, while in the channel core high values of kLl
are noticed, in the peripheral regions of the channel liquid perturbations can be neglected.
Surprisingly, in the only centre of the channel, where the highest values of the mean gas
volumetric fraction are recorded, magnitudes of liquid turbulence kinetic energy are lower
than in the surrounding annular-like domain. An analysis of the instantaneous liquid flow
has revealed that the reason for such a distribution of liquid turbulence kinetic energy is
the symmetry of the flow pattern that results in very low magnitudes of horizontal liquid
velocity fluctuations in the channel core (see Figure C.1). In regions where only liquid
phase flows kLl decreases so steeply that values an order of magnitude lower than in the
channel core are noticed already at a distance of approximatively one half of the bubble
size away from the two-phase domain. As the volume of the channel permanently occupied
by the liquid phase is significantly larger than the one where bubbles rise (∼ 7.5 times),
the overall magnitude of the liquid turbulence kinetic energy in the two-phase domain is
conspicuously higher than the one in the single-phase region (〈kLl 〉tp/〈kLl 〉sp = 19.336).

Figure 4.7c shows a quite different distribution of liquid turbulence kinetic energy computed
for the case of the free bubble-array flow with the densest bubble population (scenario
8BM6). Although values of the liquid turbulence kinetic energy in domains where bubbles
rise are appreciably higher than in the single phase regions (〈kLl 〉tp/〈kLl 〉sp = 6.552), the
liquid flow is disturbed over the whole channel cross-section. The highest values of kLl are
noticed in regions with the highest magnitudes of the mean gas volumetric fraction and
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are caused by a partial alignment of bubbles in the vertical direction. The low values of
kLl seen in the wall-vicinity are due to damping effects of rigid walls and the downwards
oriented liquid flow that prevents bubbles to approach this part of the channel. Patches
of low kLl values in the central part of the channel are associated with the absence of
bubbles. Therefore, it may be concluded that the dense bubble packing in the simulation
scenario 8BM6 results in a fully disturbed liquid phase flow where the distribution of liquid
turbulence kinetic energy is governed by the collective motion of bubble populations rather
than by the motion of each individual bubble.

The distribution of kLl computed for the free bubble-array flow scenario 5BM6 (Figure 4.7b)
owns some features of both, the rigid fixed bubble-array flow 1BM6 and the fully disturbed
free bubble-array flow 8BM6. Although the whole liquid flow is agitated, the distribution
of the liquid turbulence kinetic energy in the case 5BM6 still shows a local character and
strongly depends on the motion of individual bubbles. Due to the uniform distribution of
bubbles over channel cross-section low values of kLl are, in this scenario, noticed only in the
vicinity of walls and not in the core region like in the case 8BM6. The positions with the
highest values of kLl in the bubble-array flow 5BM6 are not related to maximal values of
the mean gas volumetric fraction like in the case 8BM6, but to the intensive lateral bubble
movements.

Finally, if figurative speaking were allowed, the effects of the number of suspended bubbles
on the distribution of liquid turbulence kinetic energy could be described as follows. The
contour plot of kLl for the fixed bubble-array flow 1BM6 makes an impression of a lonely
island within a big still ocean, for the free bubble-array flow 5BM6 looks more like an
archipelago, while for the simulation scenario 8BM6 reminds to a pair of giant bridges.

When the data are concerned, the effects of the suspended gas content on the bubble-
induced perturbations of the liquid phase are illustrated in Figure 4.9a through the relation
of the overall liquid turbulence energy, 〈kLl 〉, and the overall gas volumetric fraction, 〈αg〉.
Figure 4.9a shows a non-linear character of the dependance 〈kLl 〉 = f(〈αg〉): for lower
gas contents 〈kLl 〉 ∝ 1.116〈αg〉 (scenario 1BM6 to scenario 5BM6), while in the range of
higher gas volumetric fractions 〈kLl 〉 ∝ 1.637〈αg〉 (scenario 5BM6 to scenario 8BM6). The
observed dependance of 〈kLl 〉 on 〈αg〉 is in agreement with experimental results of Lance
and Bataille [43], who analyzing fluctuations of water velocity induced by rising air bubbles
found a linear variation 〈kLl 〉 ∝ 1.05〈αg〉 only for very dilute mixtures (〈αg〉 < 3%), while
for higher gas contents the increase of the overall liquid turbulence kinetic energy with the
overall gas volumetric fraction was stronger and non-linear.

Taking into account that bubbles in all bubble-array flows considered here are of the same
volume and approximatively of the same shape, the following conclusions about the be-
haviour of 〈kLl 〉 with 〈αg〉 can be drawn. The almost proportional increase of liquid turbu-
lence kinetic energy with gas content observed in very dilute two-phase mixtures (scenario
1BM6 to scenario 5BM6) implies that the total agitation of the liquid phase can be repre-
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sented as a linear superposition of perturbations performed by individual bubbles through
the liquid displacement and formation of bubble wakes. However, in mixtures with the
dense bubble packing the bubble-bubble distances are sufficiently short to provide the
occurrence of mutual hydrodynamic interactions between bubble wakes. Due to this ad-
ditional agitation fluctuating liquid flow receives a greater amount of kinetic energy, what
results in the stronger increase of the overall turbulence kinetic energy with the overall gas
volumetric fraction.

4.3.2 Effects of liquid viscosity on distribution of liquid turbu-
lence kinetic energy in bubble-array flows

The distribution of the liquid turbulence kinetic energy, kPl , computed on the basis of
DNS data for free bubble-array flows with different viscosity of the liquid phase is given
in Figure 4.8, while Figure 4.9b presents the dependance of the overall turbulence kinetic
energy, 〈kPl 〉 on the liquid viscosity2.

A drastic decrease of the liquid turbulence kinetic energy with the increase of the liquid
viscosity can be noticed in both figures. The decrease has a non-linear nature. Therefore, in
the range of less viscous flows (scenario 8BM6 to 8BM4) the increase of the liquid viscosity
of
√

10 times decreases 〈kPl 〉 by the factor of 4.233. However, in the range of more viscous
flows (scenario 8BM2 to 8BM4) the same increase of the liquid viscosity (

√
10 times) causes

9.812 times lower values of 〈kPl 〉. Taking into account the differences of the considered flow
configurations, at least three parameters that are associated with such a behaviour of the
liquid turbulence kinetic energy can be identified: the magnitude of the relative bubble
velocity, the bubble shape and the formation of bubble wakes. In the following effects of
each parameter are discussed.

The simple formulation of the energy in the fluctuating liquid motion produced by the rise
of a single bubble [79]:

1

2
mam〈ub〉2, (4.27)

implies that the dynamics of the bubble motion affects magnitudes of the liquid turbulence
kinetic energy through two parameters: the bubble rise velocity, 〈ub〉, and the added mass,
mam.

The relative phase velocity certainly strongly influences magnitudes of the liquid turbulence
kinetic energy in here considered bubble-array flows since 〈ub〉 dramatically decreases with
the increase of the liquid viscosity (see Table 3.2). However, a rough estimate shows that
the dependance 〈kPl 〉 = f(µl) is remarkably steeper than the dependance 〈ub〉2 = g(µl).

2Note that 〈kP
l 〉 in Figure 4.9b is drawn against the liquid viscosity relative to the viscosity specified

in scenario 8BM2
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Figure 4.7: Distribution of liquid turbulence kinetic energy in fixed (a) and free (b and c) bubble-array
flows evaluated applying line averaging. Red contour lines represent gas volumetric fraction αg = 0.1%
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Figure 4.8: Kinetic energy of liquid velocity fluctuations induced by rise of free bubble-arrays through
liquids with different viscosity.

This gives rise to the consideration of effects related to the added mass. The added mass
for a spherical bubble with the volume Vb is defined as:

ms
am = 0.5%lVb, (4.28)

while in the case of an ellipsoidal bubble with the same volume Vb and with the ratio of
longer to shorter axis κ by [79]:

me
am = Q(κ)ms

am, (4.29)

where:

Q(κ) = 2
(κ2 − 1)1/2 − cos−1 κ−1

cos−1 κ−1 − (κ2 − 1)1/2/κ2
. (4.30)

Using the aforementioned relations and the data on bubble axis aspect ratio, κ, from Table
3.2 it can be shown that the shape of bubbles significantly influences the magnitudes of
the liquid turbulence kinetic energy. Evaluations of added mass, namely, revealed that
comparing to the bubble-array flow case with spherical bubbles (scenario 8BM2) the mag-
nitude of liquid turbulence kinetic energy should be higher 1.159 times in the case 8BM4
and even 1.641 times in the case 8BM6 only due to the ellipsoidal bubble shape in two
latter scenarios.

Finally, the formation and mutual interference of bubble wakes are suspected to influence
the magnitudes and the distribution of liquid turbulence kinetic energy in bubbly flow
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scenarios 8BM2, 8BM4 and 8BM6. The strong liquid viscosity in the bubble-array flow
case 8BM2 dissipates the greatest portion of the energy generated by the motion of slow
spherical bubbles preventing in that way any formation of bubble wakes. In the medium
viscous case 8BM4 a part of the energy generated by the motion of slightly ellipsoidal
bubbles is dissipated by viscosity, but a part is released in vortical structures behind the
bubbles. Since in this case bubbles move approximatively rectilinearly at significant lateral
distances from each other, mutual interactions of their wakes are negligible. In the low
viscous case 8BM6, however, bubbles are aggressive oblate ellipsoids moving along non-
rectilinear paths and agitating the liquid through the formation of strong wakes and their
intensive mutual interactions. The effect of bubble wakes on the distribution of liquid
turbulence kinetic energy can be observed analyzing the shapes of corresponding kPl profiles
given in Figure 4.8. Therefore, while kPl profiles in the cases 8BM2 and 8BM4, where the
influence of bubble wakes is very weak, are smooth, kPl profile in the case 8BM6 has
a double saddle-like shape with pronounced peaks in the domains of low gas volumetric
fractions. The analysis of the instantaneous liquid velocity field has shown that these peaks
are caused by the formation of intensive vortical structures around the bubble equator.

4.3.3 Comparison of computed liquid turbulence kinetic energy
in bubble-array flows with predictions based on potential
flow theory

The presented DNS based results for the liquid turbulence kinetic energy in bubble-
array flows are, further, used to examine the performance of corresponding theoretical
approaches. Theoretically, the problem of bubble-induced velocity fluctuations of the liq-
uid phase was firstly addressed by Biesheuvel and van Wijngaarden [5] who applied the
potential flow theory on a dilute suspension of spherical identical gas bubbles. Extending
considerations to the ellipsoidal bubble shape van Wijngaarden [79] gave the following more
general formulation of the turbulence kinetic energy generated in the liquid phase by the
relative motion of bubbles:

〈kl〉pt =
1

2

nbmam

%lV
〈ur〉2, (4.31)

where 〈ur〉 denotes the volume averaged relative velocity between phases, V represents the
volume of flow domain, and nb stands for the number of bubbles (note that 〈αg〉 = nbVb/V ,
where Vb is the volume of an individual bubble).

In order to determine whether the description of the liquid phase turbulence by use of
the potential flow theory is valid for flow situations at finite Reynolds numbers, Bunner
and Tryggvason [10] compared the results obtained by equation 4.31 with the ones evalu-
ated on the basis of their DNS data. DNS based evaluations have shown that turbulence
kinetic energy of the liquid phase generated by spherical bubbles rising approximatively
rectilinearly at Reynolds number of about 20 is ∼ 2.76 times higher than the one evaluated
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by equation 4.31. On the basis of this result Bunner and Tryggvason concluded that the
fluctuations produced in wakes of bubbles represent a significant portion of the total tur-
bulence kinetic energy in the liquid phase. On the other side, Lance and Bataille [43] found
a good agreement between their experimental results and the corresponding potential flow
solution for the kinetic energy of liquid phase velocity fluctuations generated by the rise of
homogeneous swarm of large ellipsoidal air bubbles through the originally stagnant water
(the equivalent bubble diameter ∼ 5mm, bubble Reynolds number ∼ 1000, helical bubble
trajectories). Consequently, they concluded that wakes contribute only a small amount to
the total kinetic energy of the fluctuating liquid motion.

The comparison of results obtained by use of the potential flow approach with the ones
obtained by use of DNS data in this work is, unfortunately, not straightforward due to
the existence of lateral channel walls. Therefore, as the turbulence is in any case not
homogeneous in the wall-normal direction, the volume averaging may not be applied and
the strict use of the equation 4.31 is not possible. Instead, an engineering approach is
adopted. This approach is here presented in detail for the case of plane averaging.

The turbulence kinetic energy of the liquid phase is using the potential flow approach and
plane averaging evaluated as:

kP,ptlγ =
1

4
Q(κ)αPgγ|u

P
rγ|2 (4.32)

where the subscript γ indicates the wall-normal direction, and u
P
r represents the plane

averaged relative velocity between phases. In order to obtain the corresponding overall
quantity, profiles of the liquid turbulence kinetic energy evaluated by 4.32 are, further,
averaged over the wall-normal distance (replacing kPl by kP,ptl in 4.26 the overall quantity
〈kP,ptl 〉 is computed). Performing an analogous procedure in cases where line averaging is
applied 〈kL,ptl 〉 is evaluated.

Results for 〈kL,ptl 〉 and 〈kP,ptl 〉 are presented in Figure 4.9. It can be seen that the overall
turbulence kinetic energy of the liquid phase obtained using the potential flow approach is,
comparing to the one evaluated on the basis of DNS data, generally underestimated. Due
to higher Reynolds numbers the underestimation is somewhat lower in scenarios with low
liquid viscosity than in very viscous bubble-array flow cases: ∼ 1.7 times for the case of
fixed bubble array flow (scenario 1BM6), ∼ 2 times for both free-bubble array flow cases
(scenarios 5BM6 and 8BM6) and ∼ 2.4 times in scenarios 8BM2 and 8BM4.
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Figure 4.9: Overall turbulence kinetic energy of the liquid phase evaluated on the basis of DNS data
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Chapter 5

Quantitative analysis of mechanisms
governing balance of liquid
turbulence kinetic energy in
bubble-array flows

This chapter focuses on the quantitative analysis of balance terms in the basic equation
for liquid turbulence kinetic energy (kl equation) based on results of presented direct nu-
merical simulations (DNS). The chapter is organized as follows. The first section outlines
the software module developed for the numerical evaluation of balance terms in kl equa-
tion. Evaluated results for diffusion transport, viscous dissipation, interfacial generation
and transfer of turbulence kinetic energy between the mean and fluctuating liquid flow
are presented and discussed in detail in section 2. The relation between different mech-
anisms governing the liquid turbulence in simulated bubbly flows is analyzed considering
the budget of kl equation in section 3.

5.1 The software module GENERG-TP for evalua-

tion of balance terms in turbulence kinetic energy

equation for the liquid phase in bubble-array flows

In order to perform the numerical evaluation of balance terms in the basic equation for the
liquid turbulence kinetic energy (equation 2.13), a computer program is developed and as a
separate module implemented in the evaluation part of the computer code TURBIT-VoF.
This section outlines main features of the developed program structure.
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The module is called GENERG-TP. ’GENERG’ is adopted to be the same as the name
of the existing module for single-phase turbulence analysis, while ’TP’ indicates that this
modul deals with two-phase flows.

The module GENERG-TP consists of two main parts:

• The part called EXACT performs the numerical evaluation of balance terms in the
turbulence kinetic energy equation for the liquid phase on the basis of the rigorous
mathematical definitions given by equation 2.14. Results are used for the quantitative
analysis of mechanisms governing the balance of liquid turbulence kinetic energy in
bubble-array flows (presented in this chapter).

• The part called MODELS computes corresponding balance terms on the basis of
modelling approaches commonly applied to approximate for practice inappropriate
formulations in equation 2.14. Results are used to estimate the assessment of closure
assumptions employed in engineering considerations of the liquid phase turbulence
in bubbly gas-liquid flows (presented in the next chapter).

Within the part EXACT four subprogram are developed, where the diffusion, dissipation,
production and interfacial term are computed on the basis of strict mathematical for-
mulations given by equation 2.14. While the first three routines are independent on the
previously existing TURBIT-VoF program structures, the routine for the evaluation of the
interfacial term strongly relies on the integration part of TURBIT-VoF.

As presented in the previous chapter, namely, the evaluation of the liquid velocity at the
phase interface requires a very precise information about the motion of the interfacial
surface. On the other hand, in order to avoid storage of a huge amount of data, results of
direct numerical simulations are not saved for each time step of the integration, δϑ, but at
significantly larger time distances, δϑe (in the case of fixed bubble-array flow δϑe = 500δϑ
and for free bubble-array flow scenarios δϑe = 250δϑ). Concerning the equation 4.12, this
means that the available DNS data provide the information about the unit normal vector,
n, at the time instant ϑ0, but not the information about the distance δx since the position
of the phase interface at the time instant ϑ0 + δϑ is not stored. In order to obtain these
data the module GENERG-TP is connected with the TURBIT-VoF integration part (see
Figure 5.1). In other words, for each time instance considered in the module GENERG-TP,
local liquid volumetric fraction is advected by TURBIT-VoF integration job for one time
step. After the data on the local liquid volumetric fraction at the time instance ϑ0 + δϑ
are known, the interface reconstruction is performed relating once more to corresponding
subroutines in the integration part (details on advection and reconstruction algorithms
applied in TURBIT-VoF can be found in [62]).

Due to essentially different procedures used to obtain an averaged quantity, most of the
subroutines in the module GENERG-TP could not be used for both concepts, line aver-
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aging and plane averaging, but had to be written separately for each averaging case. The
additional time averaging of the results obtained using line / plane averaging is performed
by subroutines originally implemented in the module GENERG. Time intervals, where the
flow is assumed to be steady, as well as the number of data sets used for additional time
averaging are presented in Table 4.3 for all the considered bubble-array flows.

All evaluations by the module GENERG-TP are based on the use of dimensionless quan-
tities as defined in TURBIT-VoF methodology (see section 2.3). For consistency reasons,
dimensionless formulations of corresponding balance terms from the equation 2.14 are given
in the next section together with the results computed by the module GENERG-TP.

5.2 Balance terms in basic equation for liquid turbu-

lence kinetic energy in bubble-array flows: results

and discussions

In this section the quantitative analysis of mechanisms governing the balance of liquid
turbulence kinetic energy is performed on the basis of DNS data for bubble-array flows. In
this context, the diffusion transport, viscous dissipation, interfacial generation and transfer
of turbulence kinetic energy between the mean and fluctuating liquid flow evaluated by the
module GENERG-TP are presented and discussed in detail.

5.2.1 Diffusion transport of liquid turbulence kinetic energy in
bubble-array flows

In the basic balance equation for turbulence kinetic energy of the liquid phase (equation
2.14) the diffusion term is represented by the following sum:

Diff(kl) =
1

%l

∂

∂xβ
(αlτ

′
lαβu

′
lα)−

∂

∂xβ
(
1

2
αlu

′
lαu

′
lαu

′
lβ)−

1

%l

∂

∂xα
(αlp

′
lu

′
lα), (5.1)

where subscripts α and β indicate Cartesian coordinate directions to which Einstein sum-
mation rule applies, and the double overbar denotes phase-weighted averaging, while the
liquid phase density, pressure fluctuation, velocity fluctuation and mean volumetric frac-
tion are, respectively, represented by %l, p

′

l, u
′

l and αl. The fluctuating viscous stress of the
liquid phase is defined by:

τ
′

lαβ = µl

(
∂u

′
α

∂xβ
+
∂u

′

β

∂xα

)
, (5.2)

where µl stands for the liquid viscosity.
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Like in single-phase flows the diffusion transport of liquid turbulence kinetic energy in
bubbly gas-liquid flows involves three contributions. Thus, the first term in expression 5.1,
called molecular diffusion, represents the diffusion of liquid turbulence kinetic energy caused
by molecular transport process, the second term, named triple correlation, is regarded as
the rate at which liquid turbulence kinetic energy is transported by velocity fluctuations,
while the last term represents another form of turbulent transport resulting from the cor-
relation of the liquid pressure and velocity fluctuations and is called pressure correlation.
In a general case, each of these terms represents a sum of three contributions in Cartesian
coordinate directions, i.e. the total diffusion term, Diff(kl), contains nine subterms to be
evaluated. However, when the liquid turbulence is homogeneous in certain direction, the
diffusion process in this direction does not occur, what significantly simplifies expression
5.1 (partial derivatives in the direction of homogeneous turbulence are zero-valued).

In the context of the aforementioned, the evaluation of the diffusion term by the module
GENERG-TP is performed as follows. In cases where the liquid phase turbulence is con-
sidered to be homogeneous in the vertical (x1), direction, i.e. where the line averaging
is applied (scenarios 1BM6, 5BM6 and 8BM6) the diffusion of liquid turbulence kinetic
energy is computed from:
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lref
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1
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molecular diffusion

−
u3
ref

lref

[
∂

∂X2

(
αLl

1

2

3∑
β=1

U
′
lβU

′
lβU

′
l2

L
)

+
∂

∂X3

(
αLl

1

2

3∑
β=1

U
′
lβU

′
lβU

′
l3

L
)]

︸ ︷︷ ︸
triple correlation

−
u3
ref

lref

1

ρl

[
∂

∂X2

(
αLl P

′
lU

′
l2

L
)

+
∂

∂X3

(
αLl P

′
lU

′
l3

L
)]

︸ ︷︷ ︸
pressure correlation

(5.3)

where the superscript L denotes the line averaging.

In cases where the liquid phase turbulence is assumed to be homogeneous in both directions,
vertical (x1) and span-wise (x2), i.e. where the plane averaging is applied (scenarios 8BM2,
8BM4 and 8BM6), the expression 5.1 reduces to:

Diff(kl)
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u3
ref
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1
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1
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molecular diffusion
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︸ ︷︷ ︸
pressure correlation

, (5.4)
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where the superscript P stands for the plane averaging.

Since the evaluation of balance terms in the module GENERG-TP is based on use of di-
mensionless quantities (indicated by capital letters) in expressions 5.3 and 5.4 the reference
velocity, uref , reference length, lref , and reference Reynolds number, Reref , appear. It is
reminded that the dimensionless liquid density has unit value, ρl = 1, because the density
of the liquid phase is adopted as a reference one.

Contour plots of the diffusion term, DiffL(kl), evaluated by the module GENERG-TP for
bubble-array flow scenarios 1BM6, 5BM6 and 8BM6 are presented in Figure 5.2. It can
be seen that the turbulence kinetic energy generated in the part of the channel where the
bubbles rise is through an intensive diffusion process transported towards the single-phase
domains. However, in Figure 5.2 significant differences can be observed when the plot
of the diffusion term computed for the fixed bubble-array flow (scenario 1BM6) is com-
pared with the ones evaluated for free bubble-array flows (scenarios 5BM6 and 8BM6).
Although something lower values are noticed in the only centre of the channel, the diffu-
sion in the case 1BM6 is over significant part of the two-phase domain negative and almost
constant. Therefore, the liquid turbulence kinetic energy is, in this case, almost symmet-
rically transported from the regions where bubbles rise towards the domains where only
the liquid flows. In these domains, however, the diffusion steeply decreases and at a very
short distance from the bubble interface may be considered as negligible. Contrary to the
fixed bubble-array flow (scenario 1BM6) where the intensity of the diffusion term mainly
depends on the position relative to the bubble centre, in scenarios with free bubble-arrays
(5BM6 and 8BM6) a strong influence of other bubbles on the diffusion process is evident
(see Figure 5.2b and c).

Contributions of corresponding subterms to the total diffusion term are illustrated in Figure
5.3 for the fixed bubble-array flow (scenario 1BM6) at the span-wise position x2 = 0.5859l1

and for free-bubble array flow (scenario 8BM6) at span-wise position x2 = 0.1015l2 3. In
Figure 5.3a it can be seen that the contribution of the pressure correlation to the total
diffusion term is, in the case of fixed bubble-array flow, the dominant one, particularly
in the single-phase domains, while the contributions of the molecular diffusion and triple
correlation are approximatively equal. The dominance of the pressure correlation over the
contributions of the molecular diffusion and the triple correlation is also observable in the

1Due to symmetrical profiles of liquid turbulence quantities in the fixed bubble-array flow (scenario
1BM6) the central plane x2 = 0.5l is not convenient to represent the portion of the total diffusion term
contributed by an individual subterm.

2This position is chosen because the intersection of the corresponding wall-normal plane with the bubble
moving on the right-hand side passes through its central part, while the section with the bubble rising
on the left-hand side is approximatively in the middle between the bubble centre and the bubble hip. In
this way the profiles of the diffusion subterms for two different structures of the liquid flow are put into
consideration.

3For the sake of consistency corresponding wall-normal profiles in the cases where line averaging applies
are presented at mentioned span-wise positions for other balance terms, too.
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Figure 5.2: Diffusion of liquid turbulence kinetic energy evaluated by module GENERG-TP for fixed
(scenario 1BM6) and free (scenarios 5BM6 and 8BM6) bubble-array flows.
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Figure 5.3: Wall-normal profiles of diffusion term and diffusion subterms evaluated by module GENERG-
TP for fixed bubble-array flow 1BM6 (at x2 = 0.5859l) and free bubble-array flow 8BM6 (at x2 = 0.1015l).
Solid red line represents mean gas volumetric fraction.

free-bubble array flow 8BM6 (see Figure 5.3b).

In Figure 5.4 wall-normal profiles of the total diffusion term and diffusion subterms evalu-
ated applying the plane averaging are compared for free bubble-array flows with different
liquid viscosity (scenarios 8BM2, 8BM4 and 8BM6). It can be seen that all the profiles
are symmetric with respect to the channel axis, what is to expect since in the case of
plane averaging the distribution of bubbles is apparently symmetric with respect to the
channel axis. However, the shape of diffusion profiles for different bubble-array flows is
significantly different. Therefore, while the diffusion profile for the very viscous case 8BM2
is almost smooth, the profile in the case with the lowest liquid viscosity (scenario 8BM6)
is associated with the number of local peaks.

In order to find a proper explanation for observed differences in profiles of the diffusion
term the analysis is in the following focused on corresponding diffusion subterms. Wall-
normal profiles of diffusion subterms presented in Figure 5.4 show that an increase in the
liquid viscosity has a dramatic effect on the role of mechanisms that govern the diffusion
transport of the liquid turbulence kinetic energy. Thus, in the case 8BM6 the transport of
liquid turbulence kinetic energy from the domains with high gas volumetric fractions is, at
a great extent, performed by the work of the fluctuating liquid pressure gradient (expressed
by pressure correlation) and, at a lower extent, by the fluctuating velocity (represented by
triple correlation). The transport by the fluctuating viscous stress (molecular diffusion)
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in this domain is almost negligible. In domains with low gas volumetric fractions and
in single-phase regions the role of the different contributions to the total diffusion term
is quite different - the molecular diffusion gains importance, while the triple correlation
plays a minor role. The pressure correlation, however, represents a significant form of
the diffusion transport over almost the whole domain. An increase of the liquid viscosity
by the factor of

√
10 (scenario 8BM4), changes the situation appreciably. Therefore, the

transport by velocity fluctuations is completely suppressed, while the contributions of the
molecular diffusion and the pressure correlation are almost equal. A further increase of the
liquid phase viscosity (scenario 8BM2) additionally suppresses the turbulent transport of
the liquid turbulence kinetic energy. Although the contribution of the pressure correlation
in this case is lower than the one of the molecular diffusion, it is remarkable that even in
such a very viscous liquid flow, the diffusion of liquid turbulence kinetic energy resulting
from the correlation of pressure and velocity fluctuations is not to neglect.

The observed different intensity of the diffusive transports due to the fluctuating liquid flow
is important for the derivation of closure assumptions for the diffusion term. As it will be
seen in chapter 6, namely, the approaches for the diffusion modelling are based on closure
assumptions derived for single-phase forced flows. In these flows the pressure correlation
is of minor importance and is, subsequently, either neglected or grouped with the triple
correlation and, further, modelled as a gradient-like process. Since here presented analyses
have pointed out the significant role that the pressure correlation plays in the redistribution
of the liquid turbulence kinetic energy, the validity of such an assumption for gas-liquid
flows may be judged as questionable, at least, for the class of slow bubble-driven liquid
flows considered in this work.

5.2.2 Viscous dissipation of liquid turbulence kinetic energy in
bubble-array flows

The dissipation term represents the rate at which the turbulence kinetic energy is converted
into the thermal internal heat and is equal to the mean rate at which work is done by the
fluctuating part of the strain rate against the fluctuating viscous stress. In the basic balance
equation for the liquid turbulence kinetic energy 2.14 this term is defined by:

εl = − 1

%l
αlτ

′
lαβ

∂u
′
lα

∂xβ
, (5.5)

where the fluctuating viscous stress of the liquid phase, τ
′

l , is given by equation 5.2.

The evaluation of the dissipation term by the module GENERG-TP is performed using
the following expression:
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Figure 5.4: Wall-normal profiles of diffusion term and diffusion subterms evaluated by module GENERG-
TP for free bubble-array flows with different liquid viscosity. Solid red line represents mean gas volumetric
fraction.
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for the cases where the line averaging is applied (scenarios 1BM6, 5BM6 and 8BM6), and
by:
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, (5.7)

when the plane averaging is performed (scenarios 8BM2, 8BM4 and 8BM6). Note that in
expressions 5.6 and 5.7 ηl represents dimensionless liquid viscosity, ηl = µl/µl,ref .

The dissipation rate εLl evaluated by the module GENERG-TP for bubble-array flows with
the low liquid viscosity (scenarios 1BM6, 5BM6 and 8BM6) is displayed in Figure 5.5. The
first impression is that the dissipation rate of liquid turbulence kinetic energy increases
with the number of bubbles, i.e. with the gas volumetric fraction. In order to make a
straightforward estimate of this dependance, the overall magnitudes of the dissipation rate
are computed within the whole flow domain, 〈εLl 〉, within the two-phase domain, 〈εLl 〉tp,
and within the single-phase domain, 〈εLl 〉sp. The results are presented in Figure 5.7. It can
be seen that the magnitude of 〈εLl 〉 increases non-linearly with 〈αg〉: in the range of lower
gas volumetric fractions 〈εl〉 ∝ −3.664〈αg〉 (scenario 1BM6 to 5BM6), while for higher gas
contents 〈εl〉 ∝ −5.464〈αg〉 (scenario 5BM6 to 8BM6).

The non-linear increase of the dissipation rate with the overall gas volumetric fraction has,
already, been observed experimentally by Wang et al. for a pipe bubbly flow and by Lance
for a bubbly flow with grid-generated liquid turbulence [81]. Due to essentially different
types of considered bubbly flows results obtained in this work cannot be quantitatively
compared to the aforementioned ones. It is, however, worth to mention that the dependance
of 〈εLl 〉 on 〈αg〉 presented in Figure 5.7 qualitatively agrees with observations of Lance, i.e.
in the range of higher gas contents the increase of the dissipation rate with the overall gas
volumetric fraction is stronger.

Bunner and Trygvason [11] reported DNS based data for the dissipation rate of liquid turbu-
lence kinetic energy in a bubble-driven liquid flow of the similar type to the one considered
in this work. They found that increasing the overall gas volumetric fraction by the factor
of 3 (from 2% to 6%) causes an increase of the overall dissipation rate by a factor of 3.056.
Hence, the relative increase of the overall dissipation rate with the overall gas volumetric
fraction reported by Bunner and Tryggvason (3.056/3 = 1.018) is slightly lower comparing
to the increase evaluated in this work: 〈εLl 〉5BM6/〈εLl 〉1BM6 = 1.074〈αg〉5BM6/〈αg〉1BM6 and
〈εl〉8BM6/〈εl〉5BM6 = 1.194〈αg〉8BM6/〈αg〉5BM6 (note that superscripts indicate bubble-array
flow scenario). The observed differences are only partially caused by the different parame-
ters of bubble-array flow simulations specified in [11] (fully periodic computational domain,
Eöb = 5, Reb = 23−25). What seems to be more important is the way used by Bunner and
Tryggvason to set up the simulations with higher gas content. Therefore, the increase of
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Figure 5.5: Dissipation rate of liquid turbulence kinetic energy evaluated by module GENERG-TP for
fixed (scenario 1BM6) and free (scenarios 5BM6 and 8BM6) bubble-array flows.
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the gas volumetric fraction in [11] is achieved by specifying the larger diameter of bubbles
and not by the addition of new bubbles to the flow domain like it is done in the work
presented here. The ratio 1.018, thus, expresses mainly effects of the change in structure
and size of bubble wakes due to larger bubbles, and not the effects of increased number of
agitators on the dissipation of liquid turbulence kinetic energy.

Figure 5.5 shows that the maximal values of the dissipation rate in bubbly flows with low
liquid viscosity are, generally, reached at the peripheral parts of bubbles. This effect as-
sociated to the large gradients of the fluctuating liquid flow in the vicinity of gas-liquid
interface is, especially, pronounced in the case of fixed bubble-array flow. In Figure 5.5a
it can, namely, be seen that in the narrow annular-like region containing bubble interface
the magnitude of the dissipation rate is locally more than double higher comparing to the
neighbouring central domain. This is even more evident in Figure 5.6a, where correspond-
ing wall-normal profiles of the dissipation term and dissipation subterms are depicted.
There it can be seen that all the profiles change steeply in the vicinity of the bubble border
and reach a local minimum in interfacial cells (positions where the mean gas volumetric
fraction changes from zero).

In scenarios with free bubble-array flows the situation is, however, more complex. For
instance, the wall-normal profile of the dissipation term for the free bubble-array flow
scenario 8BM6 (Figure 5.6b) shows that the mentioned peaks at the positions of bubble
interfaces are also observable, but are significantly less pronounced with respect to the
magnitudes of the dissipation in the domains where bubbles rise. On the other hand, the
profile of the dissipation term in the single-phase region seems to be even steeper than the
one in the fixed bubble-array flow scenario 1BM6. This fact implies that the portion of the
dissipation rate within two-phase domains increases in scenarios with multiple bubbles.
Figure 5.7 shows that such a situation is also valid on the level of overall dissipation
quantities. Moreover, it can be seen that the overall dissipation rate within the two-phase
domain is drastically increased in the case with the densest bubble population: comparing
to the case 1BM6 〈εLl 〉tp is only ∼ 7% higher in the case 5BM6, but even ∼ 70% in the case
8BM6. This effect hardly can be related to the increased gradients of liquid turbulence
quantities due to lateral movements of bubbles because in both scenarios with free bubble-
arrays, 5BM6 and 8BM6, bubbles rise along non-rectilinear paths (see Figure A.1 and
Figure A.2).

The observed phenomenon indicates that the mechanism governing the dissipation of liquid
turbulence kinetic energy is closely related to the mutual bubble-bubble distances. There-
fore, since the bubbles in scenarios 1BM6 and 5BM6 are at significant distances from each
other, the turbulence structures formed in bubble wakes are, mainly, controlled by the flow
induced by individual bubbles. This means that small eddies produced in the two-phase
domain can freely penetrate in the single-phase regions. In the scenario 8BM6, however,
the bubble packing is sufficiently dense to prevent a free release of turbulent eddies in
domains permanently occupied by the liquid phase. Consequently, the eddies generated
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(a) fixed bubble-array flow (scenario 1BM6)
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Figure 5.6: Wall-normal profiles of dissipation term and dissipation subterms evaluated by module
GENERG-TP for fixed bubble-array flow 1BM6 (at x2 = 0.5859l) and free bubble-array flow 8BM6 (at
x2 = 0.1015l). Solid red line represents mean gas volumetric fraction.
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in wakes of individual bubbles decay faster owing to the shear stress associated with the
motion of other bubbles.
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Figure 5.7: Overall dissipation rate of liquid turbulence kinetic energy within the whole flow domain,
〈εL

l 〉, within the single-phase domain, 〈εL
l 〉sp, and within the two-phase domain, 〈εL

l 〉tp, in dependance on
overall gas volumetric fraction for bubble-array flows with low liquid viscosity.

It is, further, suspected that the very intensive dissipation of the liquid turbulence kinetic
energy in the two-phase domain observed in the simulation scenario 8BM6 is related to
the mutual interaction of turbulence structures with interfacial structures. That such an
interaction can be an important energy exchange mechanism in bubbly flows and can
even reduce the intensity of the liquid turbulence was firstly postulated by Serizawa and
Kataoka [68]. The currently accepted explanation of the phenomenon is as follows. On
their way towards the single-phase regions turbulence eddies generated in the two-phase
domains come into collisions with bubble interfaces. As a result of these interactions an
eddy fragmentation process occurs intensifying the generation rate of small turbulence
scales that can be dissipated by the viscosity.

Wall-normal profiles of the dissipation term computed for free bubble-array flows with
different liquid viscosity (scenarios 8BM2, 8BM4 and 8BM6) are compared in Figure 5.8,
while corresponding overall magnitudes of the dissipation rate evaluated within the whole
domain, 〈εPl 〉, within the single-phase domain, 〈εPl 〉sp, and within the two-phase domain,
〈εPl 〉tp are presented in Figure 5.9. It can be seen that the shape of the dissipation profiles
significantly changes with change of the liquid viscosity: contrary to the smooth εPl profile
in the very viscous case 8BM2, the dissipation profile in the low viscous case 8BM6 is
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Figure 5.8: Dissipation rate of liquid turbulence kinetic energy evaluated by module GENERG-TP for
free bubble-array flows with different liquid viscosity.
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Figure 5.9: Overall dissipation rate of liquid turbulence kinetic energy within the whole flow domain,
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l 〉, within the single-phase domain, 〈εP
l 〉sp, and within the two-phase domain, 〈εP

l 〉tp for bubble-array
flows with different liquid viscosity.



5.2 Balance terms in basic equation for liquid turbulence kinetic energy in bubble-array flows:
results and discussions 95

accompanied with almost flat parts in domains where bubbles rise and very steep gradients
in regions where the gas volumetric fraction changes to zero. The differences between the
considered bubble-array flows are, further, illustrated comparing the size of turbulence
structures at which the dissipation of the liquid turbulence kinetic energy occurs. An
average size of turbulence eddies that are dissipated by viscosity is defined by Kolmogorov
length scale [75]:

ηKl =

(
ν3
l

|εl|

)1/4

, (5.8)

where νKl stands for the kinematic viscosity of the liquid phase and εl is the total dissipation
rate. Here Kolmogorov length scale is evaluated by replacing εl in expression 5.8 by 〈εLl 〉
in the case of line averaging, i.e. by 〈εPl 〉 when the plane averaging is applied. In order to
obtain dimensionless quantities scaling with equivalent bubble diameter, db, is performed.
The results are presented in Table 5.1. It can be seen that Kolmogorov length scale is,
except for the case 8BM2, always smaller than the bubble diameter, but significantly larger
than the mesh cell size4. This means that the numerical grid imposed on the flow domain
in all the bubble-array flow scenarios is sufficiently fine to resolve the smallest flow scales.
Magnitudes of Kolmogorov length scale relative to the bubble diameter further indicate
crucial differences in approaches used in numerical simulations of two-phase particulate
and two-phase bubbly flows. In numerical simulations of flows with particles, namely,
the Kolmogorov length scale is assumed to be larger than the particle size, what implies
that the particles may be modelled as points. The values of ηKl /db presented in Table 5.1
indicate that such an assumption is impossible even for very slow bubbly flows.

Table 5.1: Kolmogorov length, ηK
l , scaled with equivalent bubble diameter, db = 0.25l, for simulated

bubble-array flows.

averaging type line plane
scenario 1BM6 5BM6 8BM6 8BM6 8BM4 8BM2

ηKl /db 0.3108 0.2042 0.1736 0.1659 0.4602 1.4179

The aforementioned results indicate a complex influence of the flow parameters on the
dissipation of liquid turbulence kinetic energy. An attempt to shed some light on the
dependance of the overall dissipation rate on overall flow conditions is presented in the
following. In a rough estimate the dissipation rate of the liquid turbulence kinetic energy in
slow bubble-driven liquid flows can be related to the work of interfacial forces. Considering
the drag force to be the dominant one the following relation can be established [43]:

εl ∝
αg
db
Cdu

3
r, (5.9)

4It is reminded that in all the simulations cubic cells of the size 0.0625db are specified
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where Cd represents the drag coefficient. The performance of the expression 5.9 cannot be
tested because the proportionality coefficient is not given. However, using the DNS based
data the nature of the dependance of the dissipation rate on flow parameters as proposed
by expression 5.9 can be examined.

Adopting the commonly used formulation of the drag coefficient as function of Morton
(M), bubble Eötvös (Eöb) and bubble Reynolds (Reb) number [4]:

Cd =
4

3

Eö
3/2
b

M1/2Re2
b

, (5.10)

it can be shown that the behaviour of the overall dissipation rate in flow configurations
where only number of bubbles changes (scenarios 1BM6, 5BM6 and 8BM6) should obey
to:

〈εLl 〉 = CL〈αg〉〈ur〉, (5.11)

while in systems where only the viscosity of liquid phase is different (scenarios 8BM2,
8BM4 and 8BM6) to:

〈εPl 〉 = CP 〈ur〉, (5.12)

where CL and CP represent proportionality coefficients.

Evaluations performed here have revealed an optimistic result concerning the expression
5.12. Therefore, despite dramatically different magnitudes of the mean relative velocity in
simulation scenarios 8BM2, 8BM4 and 8BM6 (see Table 3.2), the coefficient, CP turned out
to be approximatively constant, CP ∼ −0.4. On the other side, no rule for the behaviour
of the coefficient CL from the expression 5.11 could be found.

Finally, the reliability of an experimental determination of the dissipation rate in bubble-
driven liquid flows is tested. In an experimental approach, namely, the expression 5.5
cannot be used because nine components of the fluctuating strain rate cannot be measured
with currently available experimental techniques. In the isotropic single-phase turbulence,
however, the dissipation rate can be expressed as [27] [75]:

ε = −15ν

(
∂u

′
1

∂x1

)2

, (5.13)

where the single overbar indicates averaging. When the liquid phase within a bubbly flow
is concerned, the expression 5.13 takes the following form:

εl = −15αlνl

(
∂u

′
l1

∂x1

)2

. (5.14)

From experimental point of view it would be extremely gratifying to use this simple expres-
sion for εl since only the component of the fluctuating liquid velocity in the rise direction,
u

′

l1, should be measured.
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Evaluations based on DNS data have, unfortunately, shown that magnitudes of εl deter-
mined by expression 5.14 differ significantly from the ones computed using the fundamental
definition of the dissipation rate 5.5 for all the cases of bubble-array flows. Here, the poor
performance of the expression 5.14 is illustrated in Figure 5.10 for the case of free bubble-
array flow 8BM6, where a systematic overestimation of the magnitudes of the dissipation
rate can be seen. However, while in the single-phase domains expression 5.14 predicts the
correct trend of the dissipation curve with an overestimation of below 20%, in the regions
where bubbles rise it totally fails. It is, therefore, stressed that an experimental determi-
nation of the dissipation rate based on its simplified formulation 5.14 cannot be accepted
as a reliable one, at least, for the class of slow bubble-driven liquid flows considered in this
work.
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Figure 5.10: Dissipation term evaluated under the assumption of isotropic liquid phase turbulence (ex-
pression 5.13) versus the exact one (expression 5.5) for free bubble-array flow 8BM6. Evaluations are done
applying line averaging. Results are presented for span-wise position x2 = 0.1015l.

5.2.3 Transfer of turbulence kinetic energy between the mean
and fluctuating flow of the liquid phase in bubble-array
flows

The production term represents the rate at which the turbulence kinetic energy is trans-
ferred between the mean and the fluctuating flow field. This term is seen to be the rate at
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which work is done by the mean strain against the turbulent stresses and is given as:

Πl = −αlu
′
lαu

′
lβ

∂ulα
∂xβ

. (5.15)

In the module GENERG-TP the production term is evaluated as:

ΠL
l = −αLl

u3
ref

lref

[ 3∑
β=1

U
′
lβU

′
l2

L∂U
L

lβ

∂X2

+
3∑

β=1

U
′
lβU

′
l3

L∂U
L

lβ

∂X3

]
(5.16)

in cases where the line averaging is applied (scenarios 1BM6, 5BM6 and 8BM6), and as:

ΠP
l = −αPl

u3
ref

lref

[ 3∑
β=1

U
′
lβU

′
l3

P ∂U
P

lβ

∂X3

]
(5.17)

for scenarios where the plane averaging is performed (8BM2, 8BM4 and 8BM6).

This term is called production, because in shear flows it is always positive. Figure 5.11,
however, shows that in the major part of the channel negative values of the production
term are evaluated by the module GENERG-TP. This is, especially, pronounced in the case
of fixed bubble-array flow (scenario 1BM6), where no positive magnitude of the production
term is found. Although, this result may seem surprising and bring into discussion the
name of this term, the physics lying behind it is easy to understand taking into account
that the motion of the liquid phase is driven by rising bubbles, i.e. that the energy in the
liquid flow is transferred from the fluctuating liquid flow caused by moving bubbles to the
mean liquid flow.

Since the considered bubble-driven liquid flows are slow, the mean strain rate of the liquid
phase is weak, what results in low absolute magnitudes of the production term (in the
next section it will be seen that the magnitude of the production term is significantly
lower comparing to the magnitudes of other balance terms). This is, particularly, true for
bubble-array flow scenarios where the plane averaging is applied (scenarios 8BM2, 8BM4
and 8BM6). As in these cases the mean liquid strain includes only derivatives in the wall-
normal direction negligible values of the production term (order of magnitude 10−3m2/s3)
are evaluated by the module GENERG-TP.

5.2.4 Interfacial generation of liquid turbulence kinetic energy
in bubble-array flows

The interfacial effects in the basic balance equation for the liquid turbulence kinetic energy
2.14 are expressed as:

Υl = − 1

%l
p

′
liu

′
liαnlαai +

1

%l
τ

′
liαβu

′
liαnlβai, (5.18)
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Figure 5.11: Production term in equation 2.14 evaluated by module GENERG-TP for fixed (scenario
1BM6) and free (scenarios 5BM6 and 8BM6) bubble-array flows.
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where p
′

li and u
′

li stand for fluctuating interfacial liquid pressure and velocity, respectively,
nlα represents the unit normal vector at the interface pointing outward the liquid and ai
denotes the interfacial area concentration. The fluctuating interfacial viscous stress of the
liquid phase, τ

′

li, is defined replacing u
′

l by u
′

li in 5.2.

In the module GENERG-TP the interfacial term is evaluated using the following expression:

ΥL
l =

1

ρl

u3
ref

lref

[
− P

′
liU

′
liαnlαAi

L
+

1

Reref
T

′
liαβU

′
liαnlβAi

L
]
, (5.19)

when the line averaging is applied, and as:

ΥP
l =

1

ρl

u3
ref

lref

[
− P

′
liU

′
liαnlαAi

P
+

1

Reref
T

′
lαβU

′
liαnliβAi

P
]
, (5.20)

when the plane averaging is performed.

The evaluation of the interfacial term comparing to the evaluations of other balance terms
in the equation 2.14 is the most complex one. The interfacial term, namely, involves 12
subterms all of them requiring the detailed information about the interfacial structure (unit
normal vector and interfacial area concentration) as well as about the fluctuating velocity
and pressure at the liquid side of the phase interface. In this context, an experimental de-
termination of the interfacial term with the current status of measuring technique cannot
be expected. Further, as the interfacial term is peculiar to gas-liquid flows, the knowledge
collected in the domain of single-phase turbulence cannot be used as a basis for the inves-
tigation of this term. Direct numerical simulations of bubbly flows, therefore, represent
the only alternative to elucidate the effects of bubble interfaces on the liquid phase turbu-
lence. However, in spite of the significant progress in this domain, to the best knowledge
of the author, no evaluation of the interfacial term by the use of its basic definition 5.18
is reported so far. On the other hand, in the number of references, where an engineering
approach5 is adopted or where pure theoretical considerations are performed (see for ex-
ample [32] [68]), it is postulated that this term plays an important role in the conservation
of liquid turbulence kinetic energy.

The evaluations performed by the module GENERG-TP prove that this postulation is
correct. The effects of phase interfaces on the transfer of liquid turbulence kinetic energy
are, namely, more than evident in Figure 5.12, where contour plots of the interfacial term
are presented for bubble-array flows with low liquid viscosity (scenarios 1BM6, 5BM6 and
8BM6), as well as in Figure 5.14, where wall-normal profiles of the interfacial term for
bubble-array flows with different liquid viscosity (scenarios 8BM2, 8BM4 and 8BM6) are
given.

5An overview of liquid turbulence models is given in chapter 2, while details about modelling of inter-
facial turbulence transfer are presented in chapter 6
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Figure 5.12: Interfacial generation of liquid turbulence kinetic energy evaluated by module GENERG-TP
for fixed (scenario 1BM6) and free (scenarios 5BM6 and 8BM6) bubble-array flows.
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Because the interfacial term is directly related to the presence of bubble interfaces, non-
zero values are evaluated only in domains of the channel where bubbles rise. In both
figures, 5.12 and 5.14, it is clearly seen that the interfacial term represents a source of
liquid turbulence kinetic energy 6. Moreover, since the so-called production term turned
out to be negative and the diffusion term has no net contribution, the interfacial term is
the only one that supplies the fluctuating liquid flow with energy.

Figure 5.12 shows that an increase of the number of suspended bubbles has significant
effect on the magnitude and distribution of the interfacial term. A non-linear intensifi-
cation of the interfacial liquid turbulence generation with the increase of the gas phase
content is illustrated in Figure 5.13 where overall magnitudes of interfacial term, 〈ΥL

l 〉,
are presented versus the overall gas volumetric fraction, 〈αg〉. Therefore, in the range of
lower gas volumetric fractions (scenario 1BM6 to scenario 5BM6) the following relation
is found 〈ΥL

l 〉 ∝ 3.4771〈αg〉, while for higher gas contents (scenario 5BM6 to 8BM6) the
dependance of 〈ΥL

l 〉 on 〈αg〉 is stronger, 〈ΥL
l 〉 ∝ 5.128〈αg〉. Since the interfacial area

concentration linearly changes with the number of bubbles, 〈ai〉 ∝ 6.195〈αg〉, such an in-
crease in magnitudes of the interfacial term is, certainly, associated with the intensification
of liquid phase fluctuations in the vicinity of phase interfaces. This can be even better
observed when the interfacial production of the liquid turbulence kinetic energy in free
bubble-array flows with different liquid viscosity is compared (see Figure 5.14). Therefore,
despite the identical magnitudes of the interfacial area concentration, computed values of
the interfacial term differ remarkably.

The expression 5.18 does not look attractive for an analysis of effects that bubble interfaces
make on the liquid phase turbulence. Moreover, it looks frightening. An attempt to draw
conclusions about the physical meaning and behaviour of interfacial term on the basis of
its 12 different contributions does not seem reasonable. In this context, the analyses of the
interfacial term are performed as follows.

After some simple mathematical manipulations the definition of the interfacial term 5.18
can be expressed in the following form [78]:

Υl =
1

%l
u

′
li

[
−

(
pli − pli

)
I + τli

]
∇Φl −

1

%l

[(
pli − pl

)
I + τ l

]
: u

′
li∇Φl, (5.21)

where the unit tensor is denoted by I, the gradient of the liquid phase indicator function
is given by:

∇Φl = nlai, (5.22)

and the average interfacial pressure of the liquid phase is defined as [32]:

pli =
pliai
ai

. (5.23)

6It is noted that small patches with negative values of interfacial term in Figure 5.12 are suspected to
be caused by numerical inaccuracy in the evaluation of characteristics of the interfacial structure and / or
the interfacial velocity of the liquid phase and, should, therefore, not be taken into consideration.
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Figure 5.14: Interfacial generation of liquid turbulence kinetic energy evaluated by module GENERG-TP
for free bubble-array flows with different liquid viscosity.
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Reminding, further, that the instantaneous interfacial force density is formulated by [19]:

Ml =

[
−

(
pli − pli

)
I + τli

]
∇Φl, (5.24)

two mechanisms that govern the interfacial generation of the liquid turbulence kinetic
energy can be identified in expression 5.21: the one defined by the correlation between
the instantaneous interfacial force density, Ml, and the liquid velocity fluctuation, u

′

li, and
the other one involving the correlation between the liquid velocity fluctuation, u

′

li, and
the dynamics of the interface (expressed through the gradient of the liquid phase indicator
function, ∇Φl).

Evaluations performed by the module GENERG-TP have revealed an optimistic result:
the contribution of the first term in expression 5.21 to the total interfacial generation of
liquid turbulence kinetic energy is absolutely dominant comparing to the contribution of
the second term (for an illustration see Figure 5.15). In order to demonstrate the benefit of
this result for the derivation of corresponding closure assumption for the interfacial term,
Υl, considerations are extended to the whole two-phase mixture.

Therefore, assuming that the aforementioned conclusion about the negligible contribution
of the correlation between the velocity fluctuations and the interface dynamics may be
extended to the gas phase (u′

g∇Φg ∼ 0), the interfacial generation of the turbulence kinetic
energy in the gas phase can be expressed by:

Υg =
1

%g
u

′
giMg, (5.25)

where the subscript g indicates the gas. The interfacial generation of the turbulence kinetic
energy in two-phase mixture, Υtp, is, subsequently, given as:

%tpΥtp = %lΥl + %gΥg =
∑
k=l,g

u
′
kiMk, (5.26)

where, the subscripts k and tp indicate the phase (liquid or gas) and the two-phase mixture,
respectively. From the expression above the following formulation of the interfacial term
in the balance equation for the liquid turbulence kinetic energy can be established:

Υl =
1

%l

∑
k=l,g

u
′
kiMk −

%g
%l

Υg. (5.27)

Having in mind the definition of interfacial velocity fluctuation, u
′

ki = uki−uk, the equality
of phase interface velocities in the absence of phase change, uli = ugi, and validity of the
principle of action and reaction on the phase interface, Ml = −Mg, the expression 5.27
can be given in the following form:

Υl =
1

%l
Ml(ul − ug)−

%g
%l

Υg. (5.28)
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Figure 5.15: Total interfacial term evaluated by 5.18 (pink triangles) and interfacial subterms in expres-

sion 5.21, u′
liMl/%l (green circles) and

[(
pli − pl

)
I + τ l

]
: u′

li∇Φl/%l (red squares), for free bubble-array

flow 8BM6. Results are presented for span-wise position x2 = 0.1015l.

The benefit of the relation 5.28 is indispensable for engineering considerations of the liquid
turbulence in bubbly flows. Since in typical bubbly gas-liquid flows, namely, the ratio of
phase densities, %g/%l, is very low, it is reasonable to neglect the second term in 5.28 and
express the interfacial generation of liquid turbulence kinetic energy as the rate at which
the work of interfacial forces in the relative motion of bubbles is performed. In this way the
problem of proper modelling of interfacial effects on the liquid phase turbulence is shifted
to the determination of proper closure assumptions for interfacial forces. Although the
accuracy of closure laws for the interfacial force density is still an open question, it is noted
that in that field much more knowledge is collected comparing to the domain of the liquid
turbulence modelling in bubbly flows.

5.3 Budget of basic equation for turbulence kinetic

energy of the liquid phase in bubble-array flows

In order to examine the relation between different mechanisms governing the liquid turbu-
lence in bubble-array flows, the results presented in the previous section are here summa-
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rized and the budget of the basic balance equation for the turbulence kinetic energy of the
liquid phase (further called kl equation) is established.

The budget of the kl equation is presented in Figures 5.16 through 5.18 for bubble-array
flows with the low liquid viscosity (scenarios 1BM6, 5BM6 and 8BM6) and in Figure 5.19
for bubble-array flows with different liquid viscosity (scenarios 8BM2, 8BM4 and 8BM6).
It is noted that for simulation scenarios 1BM6, 5BM6 and 8BM6, where the line averaging
is applied due to two-dimensional profiles of balance terms it was not possible to present a
detailed budget of the exact kl equation for the whole flow domain. Instead, the relation
between the balance terms in kl equation is given locally at the representative wall-normal,
i.e. span-wise positions.

In the case of fixed bubble-array flow (scenario 1BM6) wall-normal profiles of all the balance
terms on the right-hand-side of the equation 2.14 are given for two span-wise positions:
the one intersecting the bubble through its central part (Figure 5.16a) and the other one
intersecting bubble in the middle between its centre and its hip (Figure 5.16b). Note that,
due to the symmetry of the fluctuating liquid flow in this scenario, span-wise profiles show
the same behaviour of balance terms as corresponding wall-normal profiles.

Figure 5.16 shows that in the fixed bubble-array flow scenario profiles of all the balance
terms are symmetric with respect to the channel axis. Non-zero values are noticed only
in the central part of the channel where bubbles rise. Strong gradients of the liquid phase
quantities in the region between the part of the channel through which bubbles move and
the one permanently occupied with the liquid phase cause sharp peaks in profiles of all
the balance terms at these locations. In Figure 5.16a it can, further, be observed that the
diffusion from the two-phase domain towards the single-phase regions represents an impor-
tant mechanism of the liquid turbulence energy transfer. A rough estimate of the mean
magnitudes in the core region of the two-phase domain, where profiles of balance terms do
not change steeply (x3 = (0.4÷ 0.6)l) reveals, namely, that approximatively one fourth of
the turbulence kinetic energy generated by bubble interfaces is dissipated, while the rest
is through an intensive diffusion process transported towards domains occupied only with
the liquid phase. In regions containing peripheral parts of bubbles and in the single-phase
domain close to bubble interfaces this portion of energy is intensively dissipated, not only
through the work performed by the fluctuating strain against the fluctuating viscous stress
(dissipation term), but also through the work of the mean strain against the turbulent
stresses (production term). The comparison of Figure 5.16a with Figure 5.16b shows that
the relative position with respect to the bubble centre influences the magnitude of the
balance terms, but not the mechanisms of turbulence energy transport (ratio between in-
dividual balance terms in Figure 5.16b is approximatively the same as in Figure 5.16a).
Wall-normal profiles of balance terms in kl equation for bubble-array flow scenario 5BM6
are presented for span-wise position x2 = 0.1015l, where the corresponding wall-normal
plane on the left-hand-side passes through the middle between the center and the hip of
the bubble rising in this domain, while on the right-hand-side intersects the single-phase
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region very close to the interface of the bubble rising in that part of the channel.
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(b) x2 = 0.5547l

Figure 5.16: Wall-normal profiles of balance terms in basic equation for liquid turbulence kinetic energy
2.14 evaluated by module GENERG-TP for fixed bubble-array flow 1BM6.

This span-wise position is chosen on purpose because it provides the analysis of the effects
of other bubbles on the turbulence kinetic energy transfer. Concerning the relative position
to the bubble centre, namely, profiles on the left-hand-side of Figure 5.17a are comparable
with the ones given in Figure 5.16b. Therefore, since the liquid flow in the system with
multiple bubbles is more uniformly agitated than in the rigid case of the fixed bubble-array
flow, peaks of balance terms in Figure 5.17a are significantly less pronounced than the ones
in Figure 5.16b. Since the bubble-induced liquid perturbations in the scenario 5BM6 are
also stronger than in the case 1BM6, higher magnitudes of all balance terms noticed in
Figure 5.17a than in Figure 5.16b are to expect. It is, however, surprising that the presence
of other bubbles almost does not affect the mentioned quantitative relationship between
different mechanisms of the liquid turbulence energy transfer. Profiles of balance terms on
the left-hand-side of Figure 5.17a show, namely, that in the core of the flow domain, where
bubble rises, approximatively one fourth of the liquid turbulence kinetic energy generated
by moving bubble interfaces is dissipated, while the rest diffuses. Moreover, Figure 5.17b
indicates that, like in the fixed bubble-array flow case, this ratio is independent on the
relative position to the bubble centre (profiles of balance terms in Figure 5.17b are presented
for the span-wise plane x3 = 0.8047l that intersects both bubbles approximatively through
the middle between the bubble centre and the bubble hip). Finally, on the right-hand-side
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of Figure 5.17a it can be seen that the portion of turbulence kinetic energy transported to
the single-phase domain is, in the only vicinity of the bubble interface, intensively dissipated
into the thermal internal heat.
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Figure 5.17: Wall-normal (a) and span-wise (b) profiles of balance terms in basic equation for liquid
turbulence kinetic energy 2.14 evaluated by module GENERG-TP for the free bubble-array flow 5BM6.

The budget of kl equation for the free bubble-array flow scenario 8BM6 is illustrated in
Figure 5.18a for the span-wise position x2 = 0.1015l and in Figure 5.18b for the wall-normal
distance x3 = 0.2734l. Concerning the relative position to the bubble centre, Figure 5.18a
provides the comparison of the evaluated balance terms for the scenario 8BM6 with the
ones for the scenario 5BM6 (the left part of the Figure 5.18a is comparable with the left
part of Figure 5.17a), and with the ones in the case of fixed bubble-array flow (the right
part of Figure 5.18a is comparable with Figure 5.16a). The comparison reveals significant
differences between the liquid turbulence energy budget for the case 8BM6 and the ones
for the scenario 5BM6 and for the scenario 1BM6. In Figure 5.18a, namely, any sharp
peaks are not seen in the dissipation profile, while the peaks in the diffusion profile are
significantly suppressed comparing to the case 5BM6 and, particularly, to the case 1BM6.

The relationship between the mechanisms governing the balance of liquid turbulence ki-
netic energy is also different than in two other cases of bubble-array flows with the low
liquid viscosity. Thus, compared to the bubble-array flow scenarios 1BM6 and 5BM6 the
dissipated portion of the liquid turbulence kinetic energy in two-phase domains is increased
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in the bubbly flow scenario 8BM6. Subsequently, the diffusion towards single-phase do-
mains is suppressed. The relationship between these balance terms, further, depends of
the relative position to the bubble centre so that an estimate equivalent to the one in cases
1BM6 and 5BM6 could not be made.
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Figure 5.18: Wall-normal (a) and span-wise (b) profiles of balance terms in basic equation for liquid
turbulence kinetic energy 2.14 evaluated by module GENERG-TP for free bubble-array flow 8BM6.

It has, already, been mentioned that the peculiar behaviour of balance terms in the kl
equation for the case with the densest bubble population (scenario 8BM6) is suspected
to relate to the short bubble-bubble distances. An attempt to illustrate this effect is
made in Figure 5.18b, where the span-wise profiles of balance terms in kl equation are
given for such a dense bubble packing that the gas volumetric fraction is non-zero valued
over the whole distance. Therefore, due to the high agitation of liquid flow by bubble
displacements as well as by mutual hydrodynamic interactions of bubble wakes, the curve
representing the dissipation term lies in the range |εLl | ∼ 0.4 ÷ 0.6m2/s3 with no peaks,
but rather with moderate hesitations. On the other hand, since the interfacial generation
of the liquid turbulence kinetic energy is strictly related to the bubble presence, the profile
of the interfacial term consists of parabolic-like pieces with magnitudes spanning from
∼ 1.0m2/s3 in the domains containing central parts of the bubbles to zero in the domains
where the liquid phase mainly flows. The magnitude of the production term is, further,
so low that it may be neglected. Therefore, in order to establish a local balance, some
energy from the two-phase domains must be transported towards the single-phase regions,
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what should be performed by the diffusion term. Indeed, Figure 5.18b shows that, in spite
of the very intensive dissipation, a significant part of the liquid turbulence kinetic energy
produced by the interfacial term diffuses towards the bubble interspaces occupied by the
liquid phase. It can, therefore, be concluded that even in a flow with such a dense bubble
population, the diffusion process is an important mechanism that affects the balance of the
liquid turbulence kinetic energy.

Figure 5.19 presents the budget of kl equation for free bubble-array flows with different
liquid viscosity. It is reminded that the balance terms given in Figure 5.19 are obtained
by applying the plane averaging, i.e. assuming the homogeneous liquid turbulence in both
directions, vertical and span-wise. Such an assumption results in something lower portion
of the liquid turbulence energy that is through the diffusion process transported from
the two-phase domains towards the single-phase regions. Nevertheless, Figure 5.19 shows
that, due to the local nature of the interfacial term, the diffusion term acts to redistribute
the turbulence kinetic energy of the liquid phase. Thus, for scenario 8BM6 and scenario
8BM2 approximatively the same portion of liquid turbulence kinetic energy generated by
bubble interfaces diffuses into single-phase domain (∼ 16%), while in the scenario 8BM4
the portion is something higher (∼ 23%).
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Figure 5.19: Budget of the basic equation for liquid turbulence kinetic energy 2.14 evaluated by module
GENERG-TP for free bubble-array flows with different liquid viscosity.
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Chapter 6

Assessment of closure assumptions
for balance terms in turbulence
kinetic energy equation for the liquid
phase in bubble-array flows

The objective of this chapter is to test the assessment of closure assumptions for balance
terms in turbulence kinetic energy equation for the liquid phase in bubbly gas-liquid flows
(kl equation). In this context, engineering formulations for both single-phase-like and
interfacial terms applied in kl equation of currently used k − l, k − ε and algebraic stress
models are put into consideration. Performance of these closure assumptions for here
considered bubble-array flows is tested against the corresponding balance terms evaluated
according to their basic definitions. Possibilities for the development of improved closure
relations are discussed.

6.1 Use of direct numerical simulations for improve-

ment of liquid turbulence models: advantages and

limitations

The accurate modelling of bubbly gas-liquid flows crucially depends on the realistic descrip-
tion of the liquid phase turbulence. Current generation of computational fluid dynamic
codes for bubbly flows employs several different concepts for modelling of the liquid phase
turbulence - starting from a trivial case where turbulence effects are completely neglected
to the very complicated differential Reynolds stress models (the review of engineering liquid
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turbulence models is given in section 2.2). Among these, far the most popular approach is
the two-phase k − ε model, not only because it is most often used, but also because the
range of its application spans from very slow flows in bubble columns and air-lift reactors to
the high Reynolds number flows in pipes and ducts. Further, when one takes into account
that:

1. laminar models are proven to be inappropriate,

2. algebraic models used in early phase of liquid turbulence modelling are today con-
sidered as outdated and

3. differential Reynolds stress models are, due to their complexity, not expected to find
a wide application,

it turns out that all the promising approaches, k − l, k − ε and algebraic stress models,
are based on the balance equation for the liquid turbulence kinetic energy (kl equation).
It is, therefore, not an exaggeration to state that kl equation represents a corner stone of
turbulence modelling in the domain of bubbly flows.

The current status of closure assumptions employed in kl equation against the rigorous
mathematical formulations given by equation 2.14 can be summarized as follows.

• Single-phase-like terms involve production, diffusion and dissipation of liquid turbu-
lence kinetic energy. Except for being multiplied with the mean liquid volumetric
fraction, these terms are, principally, of the same form as the ones involved in the
turbulence kinetic energy equation for single-phase flows. Subsequently, the deriva-
tion of closure assumptions for single-phase-like terms in kl equation for bubbly flows
is based on an adjustment of the respective single-phase approximations. As it is not
clear whether / how far the closure assumptions originally developed for single-phase
flows can retain their validity when the dispersed phase is present, such an approach
might be argued as highly uncertain.

• Interfacial transfer of the liquid turbulence kinetic energy is in basic kl equation 2.14
expressed through an additional term that represents the peculiarity of gas-liquid
flows and is called interfacial term. On the other hand, effects of suspended bubbles
are in modelling approaches either totaly neglected or included through more or less
empirically established relations. However, although having a similar starting point,
proposed closure assumptions differ from author to author conspicuously. It may,
therefore, be stated that a generally accepted closure for the interfacial term is not
available.

In relation to the aforementioned, it can be concluded that the formulation of closure
assumptions for balance terms in kl equation needs to be rigorously examined with the
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particular attention focused on the effects of moving interfaces. The main goal of this
chapter is to test how the corresponding closure assumptions perform for here considered
bubble-array flows. In this context, balance terms evaluated by currently available engi-
neering formulations are compared with the ones presented in the previous chapter where
rigorous mathematical formulations given by equation 2.14 are used. For the sake of clarity,
in the text hereafter the former is called modelled, while the latter is named exact.

The analyses to be presented do not cover the whole family of liquid turbulence models
based on kl equation. As it could be seen in section 2.2, namely, the complexity of the prob-
lem resulted in different ways followed by engineers, not only to specify closure assumptions
for balance terms, but also to establish the modelled structure of kl equation. Therefore, in
number of references two-equation models (k−ε and algebraic stress models) are reported,
where the total turbulence kinetic energy is decomposed into two statistically independent
contributions: the one resulting from the liquid displacement by moving bubbles and the
other one shear-induced that also contains the liquid turbulence kinetic energy in bubble
wakes. These models, further, consider the dissipation rate of liquid turbulence kinetic
energy as a linear superposition of the dissipation in bubble wakes and the dissipation due
to cascading. However, since here applied averaging method provides only the information
about the total liquid velocity fluctuations, i.e. the total turbulence kinetic energy and the
total dissipation rate, the assessment of closure assumptions applied in such an approach
could not be examined. In order to isolate each effect that contributes to the liquid velocity
fluctuations, one should introduce two different averaging operators: the first one would be
an average over all configurations of the bubble swarm for a given realization of the liquid
turbulent field; the second an average over all realizations of the turbulent field, but for
a given configuration of the swarm. Such a method is, however, unrealistic, because it is
impossible to control each random process separately - the motion of the bubbles is affected
by large-scale liquid fluctuations and turbulent eddies in the liquid phase are distorted by
velocity gradients induced by bubble displacements [43].

The use of direct numerical simulations (DNS) for the verification and further improvement
of closure assumptions employed in liquid turbulence models is associated with significant
restrictions. The reported engineering approximations are, namely, developed for the two-
fluid formulation of bubbly flows where the strongly heterogeneous gas-liquid flow is re-
placed by a mixture of two coexisting equivalent fluids with averaged physical properties.
The profiles of exact balance terms through the bubble centre, through the bubble hip, in
the vicinity of the bubble interface, etc. are useful to elucidate mechanisms governing the
liquid turbulence kinetic energy, but are too academic to test semi-empirical engineering
descriptions of these mechanisms. When a slow bubble-driven liquid flow between two
infinite rigid walls is considered, an engineer focuses only on the wall-normal profiles of
corresponding flow parameters. For this reason, considerations in this chapter concern
only bubble-array flows with the densest bubble population where the plane averaging1 is

1Since only the plane averaging is considered its indicating with the superscript P is omitted in this
chapter.
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applied (simulation scenarios 8BM2, 8BM4 and 8BM6).

6.2 Assessment of closure assumptions for single-

phase-like terms

This section deals with the assessment of closure assumptions for single-phase-like terms
in balance equation for liquid turbulence kinetic energy. In this context, performance of
commonly used engineering formulations for production, diffusion and dissipation term is
tested for bubble-array flows considered in this work.

6.2.1 Production term

Commonly used model for the production term is based on the assumption that turbulent
stresses are proportional to the mean strain rate in the liquid phase:

Πl = αlν
eff
l [∇ul +∇u

T
l ] : ∇ul (6.1)

where αl indicates the mean liquid volumetric fraction, ul denotes the mean liquid velocity
and νeff

l represents the so-called effective viscosity of the liquid phase.

In two-phase k − l models the liquid effective viscosity, νeff
l , is given by [34] [33] [35]:

νeff
l = β1ltp

√
kl, (6.2)

where ltp denotes the two-phase mixing length, kl represents the turbulence kinetic energy
of the liquid phase and the coefficient β1 = 0.56. It is noted that the method proposed for
the determination of ltp is not strictly followed when the assessment of closure assumptions
applied in k− l model is estimated for bubble-array flows. The definition of ltp as the sum
of shear-induced mixing length, lsi, and bubble-induced mixing length, lb, used in [34] [33]
[35] for analysis of bubbly flows with high Reynolds numbers is found to be inappropriate
for here considered very slow bubble-driven liquid flows. In this context, it was reasonable
to neglect lsi and assume ltp = lb (further details about lb can be seen in section 2.2).

When the two-equation models are concerned, approaches used to evaluate νeff
l can be

classified into the following three groups:

• Only the eddy viscosity evaluated by two-phase k − ε model, νkεl , is considered [6]
[22] [74] [78] [58] [50] [80] [86] [70] [73] [28] [59] [26] [52] [53] [66]:

νeff
l = Cµk

2
l /|εl|︸ ︷︷ ︸
νkε

l

. (6.3)
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• Beside νkεl the molecular viscosity of the liquid phase, νl is taken into account [54]
[57] [56] [87]:

νeff
l = Cµk

2
l /|εl|︸ ︷︷ ︸
νkε

l

+νl. (6.4)

• In addition to νkεl the bubble-induced eddy viscosity, νbl , evaluated by model of Sato
et al. [65] is taken into consideration [38]:

νeff
l = Cµk

2
l /|εl|︸ ︷︷ ︸
νkε

l

+ 0.6αgdb|ur|︸ ︷︷ ︸
νb

l

. (6.5)

The following notation is used in the aforementioned relations: εl represents the dissipation
rate of the liquid turbulence kinetic energy, νl denotes the kinematic liquid viscosity, αg
is the mean gas volumetric fraction, ur stands for the mean relative velocity between the
phases and db indicates the equivalent bubble diameter. It is noted that the coefficient
Cµ = 0.09 is adopted by all the authors.

Using presented closure assumptions the production term is evaluated for bubble-array
flow scenarios 8BM6, 8BM4 and 8BM2. The comparison of obtained results with the exact
production term is presented in Figure 6.1 for the bubble-array flow scenario 8BM6. It
is noted that analogous evaluations for two other bubble-array flow scenarios (8BM4 and
8BM2) revealed approximatively the same relationship between the exact and modelled
production term as observed in the case 8BM6. In this context, the results for these two
scenarios are here not presented.

Results presented in Figure 6.1 indicate an extremely poor modelling of the production
term. First, none of the applied closure assumptions was able to predict negative values
of the production term evaluated by its basic mathematical formulation. Second, absolute
magnitudes of the production term are overestimated. However, while this overestimation
is in the case of k − l model and k − ε with νeff

l = νkεl moderate, it is strong for the case
where νeff

l = νkεl + νl and drastic when bubble-induced eddy viscosity is accounted for
(νeff
l = νkεl + νbl ). For the type of bubbly flows considered here this fact is very important.

Therefore, since the magnitudes of the exact production term are very low, this term
does not influence the balance of the liquid turbulence kinetic energy significantly. In this
context, having positive or negative, but very low magnitudes of the production term, will
not dramatically change predicted values for the liquid turbulence kinetic energy. However,
having the production term evaluated by a k− ε model where the effective liquid viscosity
is modelled as νeff

l = νkεl + νbl will certainly result in unacceptable discrepancies.
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Figure 6.1: Performance of closure assumptions for the production term in kl equation for bubble-array
flow scenario 8BM6.

6.2.2 Diffusion term

The common closure relation for the diffusion term is, like in single phase flows, based on
the assumption that the diffusion flux of kl is proportional to the gradient of kl:

Diff(kl) = ∇ · [αlνDiff
l ∇kl], (6.6)

where αl denotes the mean liquid volumetric fraction and νDiff
l represents coefficient of the

diffusion.

In k − l models the diffusion coefficient is evaluated employing the following relation [34]
[33] [35]:

νDiff
l = 0.5νl + β2ltp

√
kl︸ ︷︷ ︸

νkl
l

, (6.7)

where the coefficient β2 = 0.38.

When two-equation models are concerned, νDiff
l is evaluated in an analogous way as the

effective eddy viscosity, νeff
l . Therefore, the different approaches can be selected as follows:
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• νDiff
l = νkεl (see 6.3) [78] [58] [50] [70] [66]

• νDiff
l = νkεl + νl (see 6.4) [6] [22] [74] [80] [86] [73] [54] [28] [59] [26] [52] [53] [57] [56]

[87]

• νDiff
l = νkεl + νbl (see 6.5) [38].

Profiles of the diffusion term evaluated on the basis of presented closure assumptions are
compared with the exact one in Figure 6.2 for all three considered bubble-array flows.
Contrary to the production term where similar relationship between the modelled and
exact results is observed for all the considered bubble-array flows, significantly different
behaviour of the predicted diffusion term is noticed when scenarios 8BM2, 8BM4 and
8BM6 are compared.

In the case 8BM2 it can be seen that closure assumptions used in k − l and k − ε models
with νDiff

l = νkεl + νl underestimate the magnitudes of the diffusion term, but correctly
predict the shape of the diffusion profile over the whole channel width. Such a situation is
to expect when one reminds that in this the most viscous case significant contribution to
the exact diffusion term is made by the molecular diffusion that is in these two modelling
approaches included through νl. On the other side, closures where the liquid viscosity is
not taken into account totally failed predicting approximatively zero values of the diffusion
term. Since the analysis of the exact diffusion term has shown that the contribution of
the triple correlation in this case of bubble-array flow is negligible, this implies that the
modelling of the pressure correlation term is not appropriate.

However, while the results for the scenario 8BM2 give a hope that acceptable modelling
of the diffusion term could be achieved establishing a proper closure for the diffusion
coefficient, νDiff

l , the evaluations for the bubble-array flow with the lowest liquid viscosity
(scenario 8BM6) clearly indicate that the whole concept of currently used engineering
formulations for the diffusion transport of liquid turbulence kinetic energy in bubbly flows
is inappropriate. There, it can be seen that dramatic disagreement between the modelled
and exact diffusion terms occurs in the two-phase regions of the channel - not only the
magnitudes of the diffusion term are incorrectly predicted, but also its sign. The attempt
to include the two-phase effects in the diffusion coefficient through the bubble-induced eddy
viscosity, νbl , resulted in even higher discrepancies.

Therefore, it may be stated that the modelling approaches where the diffusion flux is related
to the gradient of the liquid turbulence kinetic energy cannot provide a realistic description
of the transport processes in fluctuating bubble-driven liquid flows.
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Figure 6.2: Performance of closure assumptions for the diffusion term in kl equation for bubble-array
flows with different liquid viscosity. Notations given in c) apply to the whole Figure.
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6.2.3 Dissipation term

While the production and diffusion of liquid turbulence kinetic energy are in all the consid-
ered models expressed in the form of closure assumptions, the dissipation term in k−ε and
algebraic stress models is evaluated by a separate transport equation. An analysis of clo-
sure assumptions employed in the transport εl equation requires corresponding evaluations
of involved balance terms on the basis of their strict mathematical formulations. However,
such an analysis is not straightforward because the structures of the basic εl equation and
the transport εl equation used in turbulence models are not identical. The basic εl equa-
tion is derived applying rigorous mathematical formulations of gas-liquid two-phase flows
and contains, therefore, number of terms that include higher order correlations of velocity,
pressure, viscous stress and interface dynamics [32]. On the other side, the transport εl
equation is merely a model itself since it is established by introducing dimensionally ap-
propriate terms corresponding to each term in kl equation. Therefore, testing modelling
approaches for the dissipation rate employed in two-equation models requires very complex
analysis and is beyond the scope of this work. In this context, when the dissipation term
is concerned, considerations are restricted on closure assumptions used in the one-equation
k − l model.

Therefore, in [34], [33] and [35] the following closure assumption for the dissipation rate
has been proposed:

εl = γ1αlk
3/2
l /ltp, (6.8)

where the coefficient γ1 = 0.18.

Results obtained using the above definition of the dissipation term are presented in Figure
6.3. Since two-phase mixing length, ltp, as defined in this work involves only the bubble-
induced contribution, the dissipation rate in channel regions permanently occupied by
the liquid phase could not be computed by 6.8. The comparison of the dissipation term
evaluated by expression 6.8 with the exact one shows poor performance of 6.8 for all the
considered bubble-array flows.

6.3 Assessment of closure assumptions for interfacial

turbulence energy transfer

Contrary to the modelling of single-phase-like terms, where no specific two-phase closure
assumptions have been developed, various models for the interfacial term are proposed in
the bubbly flow literature. Despite the variety of the modelling approaches, a generally
followed concept relates the interfacial term to the work of interfacial forces.

The validity of such an approach has, already, been confirmed in chapter 5. It has, namely,
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been shown that for commonly used gas-liquid mixtures with high density ratios the rig-
orous mathematical formulation of the interfacial term in kl equation can with, an accept-
able accuracy, be approximated by the first term on the right-hand-side of equation 5.28
that represents the work of interfacial forces in the relative motion of bubbles. However,
since bubble-array flows considered in this work are associated with the low density ratio
(%g/%l = 0.5), the second term on the right-hand-side of equation 5.28 has to be taken
into account. In this context, the performance of closure assumptions for the interfacial
turbulence energy transfer is tested against the following sum:

Υ = Υl +
%g
%l

Υg, (6.9)

where Υl denotes the exact interfacial term for the liquid phase evaluated in chapter 5 and
Υg represents the exact interfacial term for the gas phase to be evaluated here.
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Figure 6.3: Performance of closure assumption for the dissipation term in k − l models for bubble-array
flows with different liquid viscosity.

The interfacial generation of the turbulence kinetic energy in the gas phase is defined by
[32]:

Υg = − 1

%g
p

′
giu

′
giαngαai +

1

%g
τ

′
giαβu

′
giαngβai, (6.10)
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Table 6.1: List of currently used engineering formulations of interfacial turbulence transfer

Reference Model Υd model Υnd model

Morel [50] M1 D1 ND1
Troshko and Hassan [78] M2 D1 -
Boisson and Malin [6] M3 D2 -
Olmos et al. [54] M4 D3 -
Pfleger and Becker [56] M5 D4 -
Kataoka and Serizawa [33] [34] M6 D5 ND2
Lahey and Drew [41] M7 D6 -
Sheng and Irons [70] M8 D7 ND3
Hill et al. [26] M9 D8 -
Oey et al. [53] M10 D9 -

where p
′
gi, u

′
gi and τ

′
gi respectively represent fluctuating pressure, velocity and viscous stress

at the gas side of the phase interface, ngα denotes the unit normal vector at the phase
interface pointing outward the gas and ai stands for the interfacial area concentration.

It is noted that the evaluation of interfacial turbulence effects in the gas phase required
the development of numerous procedures concerning the averaging of the instantaneous gas
flow, the determination of the interfacial gas quantities and the computation of Υg itself.
The applied methods are analogous to the ones used when the liquid phase is considered
and are, from this reason, here not presented. Instead, the attention is focused to the
obtained results.

Figure 6.4 shows that the interfacial generation of turbulence kinetic energy in the liquid
phase is higher than in the gas one for all considered bubble-array flows. The observed
differences are, however, not dramatic: the ratio Υl/Υg is ∼ 2.441 for scenario 8BM2,
∼ 5.181 for scenario 8BM4 and ∼ 5.655 for scenario 8BM6. Therefore, accounting for the
second term in 6.9 is reasonable for here analyzed gas-liquid flows with the low density ratio.
In this context, the performance of closure assumptions applied in engineering turbulence
models for bubbly flows is in the text hereafter examined with respect to Υ as defined by
6.9.

An inspection of reported formulations reveals that closure assumptions for the interfacial
term can be decomposed into two parts: the one including the drag, Υd, and the other one
where all other non-drag effects are involved, Υnd. Table 6.1 shows that Υd is not only
included in all the models, but is also considered as the only contribution to the interfacial
term by most of the authors. In this context, closure approximations for the interfacial
term are, here, considered from this point of view.
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Figure 6.4: Interfacial generation of turbulence kinetic energy of the liquid and the gas phase evaluated
on the basis of DNS data for bubble-array flow scenarios with different liquid viscosity.
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When the drag contribution to the interfacial term is concerned in Table 6.1 it can be seen
that, although the same physical effect is modelled, surprisingly many different approaches
are reported. An attempt to group the various models is presented in the following.

1. Υd is evaluated on the basis of mean flow properties.

• Υd is equal to the total work of the drag force, Υd = W d.

– Model D1 [50] [78]: Work of the drag force is expressed in terms of the mean
relative velocity between the phases, ur, as:

W d = Fd · ur, (6.11)

where the drag force exerted to the liquid phase by bubbles is given by:

Fd =
3

4
Cd%l

αg
db
|ur|ur. (6.12)

The drag coefficient is evaluated from the ’standard’ relation:

Cd =
2

3

√
Eöb

1 + 17.67α1.3
l

18.67α1.5
l︸ ︷︷ ︸

fα

, (6.13)

where Eöb represents bubble Eötvos number and fα takes into account multiple
bubble effects.

• Υd is equal to a portion, Cb, of the total work of the drag force,Υd = CbW
d.

In models D2, D3 and D4 the definition 6.11 is used to express W d while Fd is given
by 6.12. The values specified for Cb and applied formulations for the drag coefficient
are as follows.

– Model D2 [6]: Cb = 0.05αl and

Cd = 16/Reb for Reb < 0.49 (6.14)

= 20.68/Re0.643
b for 0.49 < Reb < 100

= 6.3/Re0.385
b for Reb � 100

= 8/3 for Reb � 100 and Web > 8

= Web/3 for Reb � 100 and Reb > 2065.1/We2.6
b ,

where Reb represents bubble Reynolds number and Web stands for bubble Weber
number.
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– Model D3 [54]: Cb = 0.75 and

Cd =
2

3

√
Eöb(1− 〈αg〉)p, (6.15)

where 〈αg〉 represents the overall gas volumetric fraction and p is an integer
dependent on the bubble diameter and gas superficial velocity (for conditions of
bubble-array flows considered here p takes the value of 0).

– Model D4 [56]: Cb = 1.44αl and Cd = 0.44 (valid for flow around a rigid sphere
at Reynolds number Re > 1000).

– Model D5 [34] [33]: Contrary to the above presented models where drag effects
are expressed in terms of the mean relative velocity between the phases, ur, in
this model the terminal velocity of a single bubble is used:

ut = 1.414

[
σ|g|(%l − %g)

%2
l

]1/4

, (6.16)

where g represents the gravity and σ stands for the surface tension. In this
context, the drag force, Fd, and the work of the drag force, W d, are defined
replacing2 ur by ut in 6.12 and 6.11, respectively. The coefficient of the drag
force, Cd, is determined by 6.13, while

Cb = 0.075

(
1− e

−
yuf
26νl

)
, (6.17)

where y represents the distance from the channel wall and uf denotes the friction
velocity.

• Work of the drag force is not explicitly contained in Υd.

– Model D6 [38]:

Υd = Cpαlαg

(
1 + C

4
3
d

)
u

3
r

db
, (6.18)

where Cp = 0.25 and the correlation for Cd is not reported. In here performed
computations Cd is evaluated by equation 6.13.

2. Υd is formulated taking into account both mean and turbulent quantities.

• Only liquid turbulence quantities are taken into account.

2Doing so one should keep in mind that ut is a scalar and ur is a vector.
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– Model D7 [70]:

Υd
l = Ck2

3

4
%lCd

αg
db
|ur|kl, (6.19)

where kl represents the liquid turbulence kinetic energy and the constant
Ck2 = 0.6. The correlation for the drag coefficient, Cd, is not reported. In
here performed computations Cd is evaluated by 6.13.

• Turbulence quantities of both, the gas and the liquid phase, are accounted for.

– Model D8 [26]

Υd =
3

4

Cd
db
|ur|

[
2αg%l(Ct − 1)kl −

νkεl
αlαg

ur · ∇αg
]
, (6.20)

where νkεl represents the eddy viscosity evaluated by 2.25 and the drag coeffi-
cient, Cd is computed from 6.13. The ratio of gas turbulence intensity to the
liquid one is given by:

Ct =

(
9 + β0β

1 + β0β

) 1
2

with (6.21)

β0 = 0.8 and β =
12

πdb

%l
µl

3

4
Cd
αg
db
|ur|

(
le
db

)2
1

Ret
, (6.22)

where µl stands for the liquid viscosity. The turbulence length scale and
Reynolds number are, respectively, defined as:

le =
k

2
3
l

εl
and Ret =

le
νl

√
2

3
kl, (6.23)

where εl stands for the dissipation rate of the liquid turbulence kinetic energy.

– Model D9 [53]: The procedure analogous to the one in Model D8 is applied, but
the coefficient Ct is, instead of using the equation 6.21, formulated as:

Ct =
3 + β

1 + β + 2%g/%l
. (6.24)

The non-drag contributions to the interfacial term are taken into account only by a few
authors. In the following these models are outlined.

• Υnd is equal to the work of the added mass force, Fam:

– Model ND1 [50]:

Υnd = Cam
1 + 2αg
1− αg

αg%l

(
Dgug
Dϑ

− Dlul
Dϑ

)
︸ ︷︷ ︸

Fam
l

·ur, (6.25)
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where D/Dϑ indicates the material derivative and Cam = 0.5 is the added mass
coefficient.

• Υnd takes into account turbulence reduction by bubble interfaces

– Model ND2 [34] [33]:

Υnd = αg%l
k

2/3
l

db
. (6.26)

• Υnd is related to the energy transfer between the mean and fluctuating liquid flow.

– Model ND3 [70]:

Υnd = Ck1αgαlΠl, (6.27)

where Πl represents the liquid turbulence production by mean shear and the
constant Ck1 = 2.5.

The performance 3 of all the presented closure assumptions is tested for the bubble-array
flow scenario 8BM6 (see Figure 6.5). The comparison of obtained results with the exact
interfacial term, Υ, revealed the following:

• Models M3, M6, M8, M9 and M10 totally failed predicting almost zero magnitudes
of interfacial term, Υ. For this reason, these closure assumptions are eliminated from
further considerations.

• Models M4, M5 and M7 underestimated the magnitudes of the exact interfacial term,
Υ.

• Models M1 and M2 resulted in acceptable discrepancies and seem to be the promising
approach in interfacial term modelling.

3Models for interfacial term are presented in the form as they are published in references. However,
in order to be compatible with its exact formulation (equation 5.18), normalization with liquid density is
performed where necessary when performance of interfacial term modelling is examined.
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Figure 6.5: Performance of closure assumptions for the interfacial turbulence transfer for bubble-array
flow scenario 8BM6.

An inspection of models M1 and M2 shows that the good agreement with the exact results
seen in Figure 6.5) is achieved by a quite simple approach where the interfacial term Υ is
identified with the work of the drag force4. In this context, it is interesting to see how such
an approach performs for bubble-array flow scenarios 8BM2 and 8BM4. Figure 6.6 shows
that the obtained results do not look optimistic at all: pronounced underestimation of the
exact interfacial term is seen in scenario 8BM4 and total suppression of interfacial effects
in the scenario 8BM2.

Taking into account significantly different flow conditions in scenarios 8BM2 and 8BM4
the situation presented in Figure 6.6 is not surprising. In relation to this it is supposed
that the better performance of models M1 and M2 can be achieved by use of advanced
correlations for the drag coefficient. In this context, the following analysis are performed.

4The evaluation of the work of the added mass force in Model 1 revealed its negligible contribution to
the interfacial term Υ.
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(b) scenario 8BM2

Figure 6.6: Performance of closure assumptions for the interfacial turbulence transfer for bubble-array
flow scenarios with increased liquid viscosity.

Since the correlation for the drag coefficient given by expression 6.13 is developed for the
most often used two-phase mixture of air bubbles in water, its applicability to bubble-array
flows 8BM4 and especially 8BM2 is seriously limited due to increased liquid viscosity. On
the other side, using direct numerical simulations to investigate balance of forces acting
on bubbles Tomiyama [77] derived constitutive equations for the drag coefficient, that
have experimentally been verified within a wide range of fluid properties (bubble Eötvos
number Eöb = 10−2−103, Morton number, M = 10−14−107 and bubble Reynolds number,
Reb = 10−3 − 105). For a pure gas-liquid system the following drag coefficient relation has
been proposed:

Cd = max

[
min

(
16

Reb
(1 + 0.15Re0.687

b ),
48

Reb

)
,
8

3

Eöb
Eöb + 4

]
. (6.28)

In the context of aforementioned the following analysis is performed. The interfacial terms
as defined in models M1 and M2 are evaluated using the drag coefficient formulation 6.28
instead of 6.13. The comparison of obtained results for the interfacial term with the exact
ones presented in Figure 6.7 reveals the importance of the proper drag coefficient formu-
lation. Therefore, although discrepancies between the modelled and the exact profiles are
not negligible, modelling concept for the interfacial term adopted in models M1 and M2,



6.3 Assessment of closure assumptions for interfacial turbulence energy transfer 131

0 , 0 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 , 7 0 , 8 0 , 9 1 , 00 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

0 , 7

0 , 8

0 , 9

1 , 0
I N T E R F A C I A L  T E R M  ( m 2 / s 3 )
e x a c t :            8 B M 6     8 B M 4       8 B M 2
m o d e l l e d :      8 B M 6     8 B M 4       8 B M 2

x 3 / l

Figure 6.7: Improvement of closure assumptions for interfacial turbulence transfer (models M1 and M2)
by use of the advanced drag coefficient relation 6.7.

where the bubbly flows are assumed to be drag dominated, may be judged as correct. Fur-
ther, when one takes into account that in Figure 6.7 results computed by a semi-empirical
engineering approach are drawn versus ones evaluated on the basis of rigid mathematical
formulations for an extremely wide range of bubbly flow parameters, it may be stated that
modelling of the interfacial turbulence effects by models M1 and M2 is acceptable.
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Chapter 7

Summary and conclusions

This work presents investigations of liquid phase turbulence in dilute bubble-driven flows.
The investigations are based on statistical analyses of liquid velocity fluctuations, where the
liquid turbulence kinetic energy is considered as the fundamental turbulence quantity. The
main goal of the performed analyses was to improve understanding of mechanisms in which
bubbles alter generation, redistribution and dissipation of turbulence kinetic energy in the
liquid phase. A secondary goal concerns assessment of closure assumptions commonly used
in engineering liquid turbulence models.

Input data for the aforementioned liquid turbulence analysis are provided by direct numer-
ical simulations (DNS) of bubbly flows. The simulated flow pattern, called bubble-array
flow, represents an approximation of steady developed flow regime in flat bubble columns.
A total of five numerical runs are performed, where the rise of moderately large bubbles
within cubic channel with two lateral walls (ratio of bubble diameter to the channel size,
db/l = 0.25) is computed. All the simulations are conducted for the same phase density
ratio (Γ% = 0.5), phase viscosity ratio (Γµ = 1) and bubble Eötvös number, (Eö = 3.065).
In order to consider effects of suspended gas content, 〈αg〉, motion of monodisperse bub-
ble swarms consisting of only one bubble (〈αg〉 = 0.818%, five bubbles (〈αg〉 = 4.088%)
and eight bubbles (〈αg〉 = 6.544%) is simulated. In these simulations Morton number
M = 3.06 · 10−6 is specified. In order to analyze the influence of bubble shape and bubble
rise velocity on characteristics of generated liquid flow, two additional simulations are per-
formed, where the rise of bubble swarms consisting of 8 bubbles through the liquids with
viscosity increased by a factor of

√
10 i.e. 10 is considered (corresponding values of Morton

number are M = 3.06 · 10−4 and M = 3.06 · 10−2).

The DNS data show significant differences in motion of simulated bubble-arrays. A stable
bubble rise velocity and a rectilinear bubble trajectory characterizes the steady state of
fixed bubble-array flow (configuration with one bubble within the computational domain).
The motion of individual bubbles in multiple bubble scenarios with low liquid viscosity is
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accompanied with a pronounced unsteadiness of bubble rise velocity and significant lateral
deviations of bubble paths. In the simulation scenario with 8 bubbles an approximatively
symmetric bubble distribution is observed with two distinctive bubble populations rising
at constant distance from the channel walls. In the numerical experiment with 5 bubbles
a more or less uniform bubble distribution over channel cross-section with no distinctive
pattern with respect to the channel walls is found. Despite the significant differences in the
dynamics of the considered bubble-array flows, bubbles generally took an approximatively
identical ellipsoidal shape (bubble axis aspect ratio κ ∼ 1.5) in all the simulation scenarios
of bubble-array flows with low liquid viscosity.

The motion of aforementioned bubble-arrays with 8 bubbles through the liquid with viscos-
ity increased by a factor of

√
10 resulted in slightly ellipsoidal bubbles (bubble axis aspect

ratio κ = 1.132) and significantly suppressed lateral deviations of individual bubble paths,
whereas the liquid viscosity increase of 10 times made the bubbles rise almost rectilinearly
keeping the initial spherical shape.

An inspection of the instantaneous liquid flow has revealed that the rise of bubble-arrays
induces complex perturbations of the liquid phase. In the following main results of per-
formed investigations of these bubble-induced liquid velocity fluctuations are summarized
and conclusions are drawn.

Performed statistical analyses have shown the following characteristics of the fluctuating
liquid flow generated by rise of mono-disperse bubble-arrays:

1. Computed probability density functions have revealed a significant amplification of
liquid velocity fluctuations in multiple bubble systems. The velocity fluctuations in
vertical direction strongly dominate the horizontal ones implying a significant degree
of the liquid turbulence anisotropy in all the considered bubble-array flows.

2. The distribution of liquid turbulence kinetic energy (kl) in bubble-array flows is,
principally, dictated by bubble distribution - in domains where bubbles rise high
values of kl are observed, while in single-phase regions perturbations of the liquid
phase are significantly lower.

3. Effects of the gas volumetric fraction on magnitudes of the liquid turbulence kinetic
energy are found to be as follows.

(a) In very dilute two-phase mixtures an almost proportional increase of the liquid
turbulence kinetic energy with the gas volumetric fraction is observed, what
means that the total agitation of the liquid phase can be represented as a linear
superposition of perturbations performed by the motion of individual bubbles.

(b) In low viscosity mixtures with the dense bubble packing, where bubble-bubble
distances are short, the increase of the liquid turbulence kinetic energy with
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the gas content is stronger due to mutual hydrodynamic interactions of bubble
wakes through which a greater amount of the kinetic energy is supplied to the
fluctuating liquid flow.

4. An increase of the liquid viscosity causes a drastic decrease of the liquid turbulence
kinetic energy. Three flow parameters have been identified as reasons for such a
behaviour of the liquid turbulence kinetic energy: the decrease of bubble rise veloc-
ity, the change of bubble shape from ellipsoidal to spherical (reflected through the
decrease of added mass) and the suppression of vortical structures in bubble wakes.

The aforementioned results are in agreement with observations reported in other experi-
mental and/or DNS based studies of bubble-driven liquid flows. It is, however, noted that
the comparisons with measured data could be done only on the level of general trends
observed in behaviour of liquid turbulence quantities. This situation is caused by dramati-
cally different physical properties of gas-liquid mixtures used in experimental investigations
(usually air-water systems) from the ones that, due to computational restrictions, have to
be specified in this study. Comparisons with corresponding DNS based analyses are also
limited for two reasons. The first one is related to quite different parameters of gas-liquid
systems considered in DNS studies of other authors. The second one concerns the peculiar-
ity of DNS performed in this work, where bubble-column-like flows with included effects
of columns walls are simulated. Since no simulation of multiple bubble systems within
confined geometries are reported so far, even parameters concerning the motion of bubbles
and the bubble-induced liquid flow could not be verified.

The quantitative analysis of balance equation for liquid turbulence kinetic energy performed
in this work represents a conceptually new approach to investigating turbulence phenomena
in bubbly flows. In relation to this, hereafter presented results can be considered as original
and represent the most important findings of the presented research by which some light
is shed on complex physical mechanisms in which bubbles alter the liquid turbulence.

The evaluation and analysis of balance terms in equation for liquid turbulence kinetic
energy on the basis of their rigorous mathematical definitions have revealed the following.

1. The transfer of kinetic energy between the mean and fluctuating flow of the liquid
phase (so-called production term) plays an appreciable role only for the very academic
case of fixed bubble-array flow, where it behaves as a sink, while in other investigated
cases of free bubble-array flows is very low and may, therefore, be neglected.

2. The viscous dissipation of the liquid turbulence kinetic energy non-linearly increases
with the magnitude of suspended gas content. The intensification of the dissipation
rate is, especially, pronounced in the simulation scenario with the densest bubble
population, where eddies generated in the wake of an individual bubble decay faster
owing to the shear stress associated with the motion of other bubbles. An engineering
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based analysis has shown that the viscous dissipation of kinetic energy of liquid
velocity fluctuations generated by the rise of identical bubble-arrays through liquids
with different viscosity scales well with the relative phase velocity.

3. The generation of liquid turbulence kinetic energy is continuously maintained by
moving bubbles through the work of fluctuating liquid stress upon the bubble inter-
faces. An analysis based on DNS data has revealed that the interfacial generation of
the liquid turbulence kinetic energy can, with reasonable accuracy, be represented as
the work of interfacial forces in the relative motion of bubbles.

4. The evaluation of the diffusion term revealed an intensive transport of liquid turbu-
lence kinetic energy from the domains where bubbles rise to the regions of the channel
permanently occupied with the liquid phase. A detailed analysis of the diffusion sub-
terms has shown that the molecular transport process plays an important role and
may, therefore, not be neglected in bubble-driven liquid flows. The dominant form of
the diffusive transport in all the bubble-array flows with low liquid viscosity turned
out to be correlation including pressure fluctuations. Although in the very viscous
bubble-array flow the redistribution of the liquid turbulence kinetic energy is, mainly,
performed by the molecular diffusion, the pressure correlation still plays an impor-
tant role. This result implies that the commonly used modelling approaches, where
the diffusion due to pressure fluctuations is of minor importance, cannot provide a
realistic description of transport processes in fluctuating bubble-driven liquid flows.

The above presented analyses of individual balance terms revealed that only the interfacial
term is the source of liquid turbulence kinetic energy. Since this term has a local char-
acter determined by the distribution of bubbles, the local non-equilibrium between the
turbulence generation and turbulence dissipation gives importance to the diffusion term
that redistributes turbulence kinetic energy over the flow domain. The balance of liquid
turbulence kinetic energy is, therefore, governed by the competition among three mech-
anisms: the viscous dissipation, the diffusive transport and the external generation by
bubble interfaces.

The DNS based evaluations of balance terms in the basic equation for liquid turbulence
kinetic energy are, further, used to estimate the accuracy of corresponding closure as-
sumptions applied in engineering models for the liquid phase turbulence. The performed
analyses have revealed the following:

1. Currently used closure assumptions failed to realistically predict both, the production
term and the diffusion term - while the production term is strongly overestimated,
the diffusion transport of liquid turbulence kinetic energy is strongly underestimated
by all closure assumptions. The closure assumption for the dissipation term proposed
in k − l models is also found to be inappropriate - the magnitude of the dissipation
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rate in channel regions with high gas volumetric fractions is underestimated, while
in the domains with low gas content is strongly overestimated. These results im-
ply that the reliable modelling of liquid phase turbulence in bubbly flows cannot be
achieved by an extension of closure assumptions originally derived for the turbulence
in single-phase flows. However, while the analyses performed in this work suggest ne-
glecting the production term, only hints for the modelling of the diffusion term could
be offered. A DNS based analysis of individual contributions to the diffusion term
revealed that the proper modelling of liquid turbulence redistribution in bubbly flows
with low Reynolds number requires improved assumptions for the diffusion transport
by pressure fluctuations. The development of reliable closures for the pressure corre-
lation term cannot be achieved by an experimental approach since current measuring
techniques are inoperative in view of providing complete data for the pressure field.
Such considerations must, therefore, fully rely on the use of DNS data and are pro-
posed as a further challenging task in DNS based investigations of the liquid phase
turbulence in bubbly flows.

2. While the most of the available closure assumptions resulted in a strong underestima-
tion of the interfacial turbulence generation, predictions made by the model of Morel
[50] are quite acceptable. An inspection of the results obtained by this modelling
approach indicated that the interfacial term can be formulated as the work of the
drag force. It is, however, emphasized, that a great caution has to be paid when
the closure relation for the drag coefficient is specified. According to the analysis
performed here, the use of drag coefficient relations proposed by Tomiyama [77] is
suggested.

Finally, it is noted that the aforementioned analyses suffer from the lack of an extensive
validation. As mentioned in Introduction, highly resolved data on three-dimensional flow
field and phase-interface topology necessary for the quantitative analysis of balance equa-
tion for liquid turbulence kinetic energy cannot be provided with the current status of
measuring techniques, so that an experimental validation of the results presented in this
work was not possible. On the other side, a validation by numerical results of other authors
could not be made since to the best knowledge of the author no DNS based analyses of
mechanisms governing balance of liquid turbulence kinetic energy is reported so far.
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Figure A.1: Trajectories of individual bubbles for numerical run 5BM6. Symbols represent initial bubble
centroid positions. Back channel wall is highlighted gray and the other one is considered to be transparent.
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Figure A.2: Trajectories of individual bubbles for numerical run 8BM6. Symbols represent initial bubble
centroid positions. Back channel wall is highlighted gray and the other one is considered to be transparent.
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Figure A.3: Trajectories of individual bubbles for numerical run 8BM4. Symbols represent initial bubble
centroid positions. Back channel wall is highlighted gray and the other one is considered to be transparent.
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Figure A.5: Lateral movements of individual bubbles rising through the liquid with different viscosity.
Symbols indicate initial bubble positions.
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Figure B.1: Mean gas volumetric fraction in bubble-array flows with different number of bubbles.
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Figure C.1: Root-mean-square of liquid velocity fluctuations for fixed bubble-array flow (scenario 1BM6).
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Figure C.2: Root-mean-square of liquid velocity fluctuations for free bubble-array flow scenario 5BM6.
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Figure C.3: Root-mean-square of liquid velocity fluctuations for free bubble-array flow scenario 8BM6.
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Figure C.4: Root-mean-square of liquid velocity fluctuations induced by motion of bubble-arrays through
liquids with different viscosity.
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