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ABSTRACT
This paper presents a method for providing stationary solutions
for rotor systems with a considerable number of unilateral con-
straints, such as normal contact due to cracks or delaminations
in rotating shafts. In more general manner, systems with moving
continua or internal flow, for example a pipe resting on unilateral
supports, rank among the same class of problems. It is shown
that, by virtue of centrifugal effects, the existence of stationary
solutions is not guaranteed without restrictions. Sufficient exis-
tence conditions are given for an important class of rotor systems
and are based on findings from the theory of Complementarity
Problems. Furthermore, the presented method comprises an ap-
proach to assess the stability of the solution and a modification
is given to determine the velocity jumps when a contact configu-
ration change occurs during the system’s non-smooth evolution.

1 Introduction
An extensive literature on the dynamics of systems with unilat-
eral constraints has been published in the last decades. Much
of the work in this field has been motivated by problems in the
dynamics of systems of rigid bodies, see for instance [1–4].Uni-
lateral constraints imposed on continuous structures are nowa-
days mainly investigated in the context of general FEM con-
tact problems, cp. [5, 6]. In conjunction with impact and vibro-
impact problems research often focusses on specific structures
like impacting rods, beams or lumped masses impacting on flex-
ible structures, [7–9], with fundamental contributions already in
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the 18th and 19th century, for instance by D. BERNOULLI and
F. NEUMANN , cp. [10,11].

Many structural imperfections such as cracks or delamina-
tions of plies in composites can be typically modelled as unilat-
eral constraints, in particular ifbreathingof the gaps due to these
defects is involved. Such imperfections are also of interest in ro-
tordynamics as numerous publications give evidence, cp. refer-
ences in surveys and books, respectively, [12,13]. Other types of
rotordynamical contact problems arise from rotor-stator contacts
or loose parts, cp. [14,15]. Static problems of continua with sta-
tionary internal flow and unilateral supports can be tackledwith
the same methods as will be presented for rotorsystems.

Any investigation of contact problems is based on more or
less drastically simplifying assumptions on the contact physics.
So the modelling is often done in a way that keeps the number
of potential contact points small or even fixed to one. In doing
so, one avoids providing a huge number of different sets of equa-
tions of motion, one set for each possible contact configuration,
which makes a total of 2k sets,k being the number of potential
contact points. This problem is often circumvented by replac-
ing rigid constraints by compliant members such as unilateral
springs, which can only transmit compressive forces. It is true
that this approach keeps the degree of freedom constant but it in-
troduces considerably stiff nonlinear elements – a fact that could
make simulation more costly.

In rotordynamics described in a rotating reference frame and
dealing with the above mentioned imperfections, constant cen-
trifugal effects due to these defects often prevail compared to
harmonic gravitational excitation. It might therefore be worth-
while to investigate oscillations about stationary solutions – os-
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cillations that can be harmonic provided the excitation is suffi-
ciently small so that inactive constraints are not touched.

An investigation procedure of such a kind corresponds to
linearization about stationary solutions in the case when differ-
entiation is feasible. With unilateral constraints, differentiability
is impaired. In this paper a procedure is given that circumvents
this obstacle.

First of all, however, the stationary solutions and thus the
set of active constraints have to be found. With unilateral con-
straints, the straightforward procedure would be checkingeach
possible contact configuration and assessing afterwards wether
the obtained solutions are physically feasible. This procedure in-
volves assessing 2k configurations, againk being the number of
potential contact points – fork ≫ 1 a costly technique. From
the mathematical perspective, as will be seen, the mechanical
problem corresponds, with some restrictions, to a well known al-
gebraic problem. Hence, some useful findings known from the
related algebraic theory can be successfully applied to theme-
chanical problem.

1.1 Introductory Example
The most simple model of a LAVAL -rotor with unilateral con-
straints is depicted in Fig. 1. The unilateral constraint be
y(τ) ≥ 0. The equations of motion in the rotating frame read
(nondimensionalized constants: rotational speedη, y-x-stiffness
ratioκ, external dampingδ, unbalance described byε,αε, gravity
γ; nondimensionalized timeτ)
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wherein Eqn. (2) expresses the auxiliary conditiony = 0 for
the bilaterally constrained case andλ is a Lagrangian-multiplier,
which can be interpreted here as the constraint force iny-
direction. As long as the constraint is inactive (y > 0), the equa-
tions of motion are obtained by discarding the auxiliary condi-
tion Eqn. (2) and settingλ = 0 in Eqn. (1). An active constraint
(y = 0) changes the ordinary differential equation (ODE) into a
Differential-Algebraic-equation (DAE). The transition from an
inactive to an active constraint is not discussed, yet.

The stationary solutions are obtained by ignoring time de-
pendant excitations and time derivatives. Following the men-
tioned straightforward strategy of assessing the physicalplausi-
bility of every solution obtained by cycling through every po-
tential constraint configuration is not really costly for this exam-
ple. Because there is only one constraint and hence are only two

Figure 1. Most simple unilaterally constrained LAVAL -rotor model.
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Figure 2. Stationary solutions and constraint forces in y-direction for un-

constrained and constrained rotor, respectively, vs. rotational speed.

possibilities:constraint active/ inactive. Keeping all parameters
fixed apart from the rotational speedη , we check the plausibil-
ity of the stationary solutions by monitoringy vs. η for the case
without constraint (λ = 0) andλ vs. η for the case with constraint
(y = 0) as plotted in Fig. 2. In this example the parameters are
set as follows:κ = 1,δ = 0.1,ε = 1,αε = π

2 .
A stationary solutiony for the caseinactive constraintis also

admissible for the case of a unilateral constraint ify≥ 0, which
physically plausibly means:no penetration. This is seen in re-
gion A in Fig. 2.

Correspondingly, a stationary solutionλ for the caseactive
constraintis also admissible for the case of a unilateral constraint
if λ ≥ 0, which physically plausibly means:no tensile constraint
force. This behavior is depicted in region B.

A solution for the case of a unilateral constraint doesnot



exist if y < 0 andλ < 0 for the casesconstraint inactiveand
constraint active, respectively. In the plots this happens in region
C where the rotor spins at overcritical speedη > 1.

One could imagine that non-unique solutions would have
been found if there had been regions wherey ≥ 0 andλ ≥ 0
simultaneously for the casesconstraint inactiveor constraint ac-
tive, respectively. Regions with such a property are not found in
the present example since the stationary solution plots fordis-
placement and corresponding constraint force show simultane-
ous zero crossings, see Fig. 2, at least forη < 1. As will be
explained later, this does not happen accidently.

1.2 Outline
The main problems with a class of unilateral constraints in rotor
systems have all been touched in the introductory example and
will be revisited in a more general manner in this paper. It is
organized as follows:

Discrete equations of motionUpon applying HAMILTON ’s
Principle for continuous structures in a formulation that
accounts for auxiliary constraints and upon discretizing,the
equations of motion are derived under the presumptions

• linear elasticity,
• formulation in rotating frame with constant rotational

speed,
• constraint formulation is not explicitly time-

dependant, i.e. cracks, stops etc. rotate with the
frame,

• friction, i.e. tangential contact interaction, is negligi-
ble,

• little breathing of constraints during operation, i.e.
unilateral auxiliary conditions can be reasonably as-
sumed linearizeable.

Stationary Solutions Under certain assumptions on the contin-
uous constraint force distribution the problem of finding sta-
tionary solutions is shown to be equivalent to aLinear Com-
plementarity Problem(LCP). The related theory provides
some useful results for the mechanical problem.

Minimal coordinates and stability Having found the station-
ary solutions the set of active constraints is determined and
thus the actual degree of freedom. Since the underlying
structure is assumed linear elastic and the constraint inequal-
ities are assumed linear, too, it is possible to formulate the
linear equations of motion in minimal coordinates, i.e. elim-
inating the constraint forces. At this stage it is possible to
apply the usual matrix stability theory.

Transition conditions During the motion of the system, new
constraints come into play what implies that the material
points where new constraints become active, experience ve-
locity jumps. Moreover, since reduced discretized models
are used, velocity jumps at one point can immediately affect

Figure 3. Sketch of potential contact.

distant points. It is shown, how the transition from one con-
tact configuration to an other one can be cast in a physically
plausible formulation.

2 Equations of motion
2.1 Hamilton’s Principle for unilaterally constrained

systems
As depicted in Fig. 3, it is given an inertial system

~a= (~a1~a2~a3)
⊺ and a rotating (constant angular velocity~Ω) frame

~b = (~b1~b2~b3)
⊺, each with orthonormal basisvectors~ak,~bk, so

that~a~a⊺ =~b~b⊺ = I equals the 3×3 identity matrix. It is thereby
assumed that the scalar products between the vectors are evalu-
ated according to the rules of matrix multiplication.

Given two elastic bodiesV(k),k = 1,2, or two separate parts
of one body, whose boundaries∂V(k) are subdivided into disjoint

setsΓ(k)
σ , Γ(k)

u ,Γ(k)
c , where stress-, displacement- or impenetrabil-

ity boundary conditions due to contact are applied, respectively.
The potential contact point is formally found by means of the
closest-point-operatorcp(·), the impenetrability condition can
be expressed by a gap functiong as

g(~x,~u(~x)) ≥ 0 onΓ(1)
c (3)

with the related variation [5]:

cp(~x) = arg min
~y∈V(2)

‖~x−~y‖ , (4)

g(~x,~u(~x)) = −
(

~x+~u(1) (~x)−cp(~x)−~u(2) (cp(~x))
)

·~n(1), (5)

δg = n(1) ·
(

−δ~u(1) + δ~u(2)
)

, (6)

wherein~u(k),~n(1) are displacement vectors and normal unit vec-
tors, respectively. If here and in what follows superscripting is



omitted it is meant to be read:~u(~x) =~u(k) if ~x∈V(k).
HAMILTON ’s Principle reads

∫ t1

t0

(
δ(T −U)+Wvirt

)
dt = 0, (7)

with kinetic energyT and elastic potential energyU , the latter
one as usual expandable to comprise other forces that have a po-
tential and that are not taken into account in the virtual work
Wvirt .

Before dealing with the virtual work in more detail, we no-
tice that upon partial integration in the time domain and exploit-
ing vanishing variations at the time boundariest0,t1, the variation
of the kinetic energy can also be written as

δT = −
∫

V
ρδ~r ·~̈rdV (8)

with densityρ andV = V(1) ∪V(2),~r =~x+~u, Lagrangian refer-
ence point~x. Upon expressing the displacement with respect to
the rotating frame by

~u =~b⊺u; u = (u1u2u3)
⊺, (9)

the acceleration and the variation read

~̈r =~b⊺ü+2~Ω×~b⊺u̇+~Ω× (~Ω× (~x+~b⊺u)) (10)

δ~r = δu⊺~b. (11)

The virtual work is composed of the usual partW0, which does
not take the contact into account, and the partWc that includes
traction on the contact boundary:

Wvirt = W0 +Wc, (12)

where

W0 = ∑
k=1,2

(∫

V
~f ·δ~udV+

∫

Γσ

~t ∗ ·δ~udΓ
)(k)

, (13)

Wc = ∑
i=1,2

∫

Γ(i)
c

~t (i) ·δ~u(i) dΓ (14)

=
∫

Γ(1)
c

~t (2) · (−δ~u(1) + δ~u(2))dΓ (15)

=

∫

Γ(1)
c

(λn~n
(1) + ~tT

︸︷︷︸

~0

) · (−δ~u(1) + δ~u(2))dΓ (16)

=

∫

Γ(1)
c

λnδgdΓ. (17)

Herein is~f a given volume force inV, is~t ∗ the prescribed stress
vector onΓσ and is~t the unknown stress vector in the still un-
known contact zoneΓc. Equation (15) follows from~t (2) =−~t (1),
i.e. Actio=Reactio, Eqn. (16) from the decomposition of the
stress vector into normal and tangential part, the latter one being
zero since friction is neglected. Eventually, Eqn. (17) is obtained
by plugging in Eqn. (6).

The difficulty remains that the contact zone itself is depen-
dant on the displacement and thus not constant.

By simultaneously demanding

λn ≥ 0, g≥ 0, λng = 0, (18)

the contact zone can be expanded to the constant boundary por-

tion Γ(1)
c = ∂V(1) \Γ(1)

σ \Γ(1)
u . Because now with the conditions

(18) integration in Eqn. (17) over the now constant domainΓ(1)
c

gives no contribution to the integral value when there is no con-
tact, i.e. gap functiong > 0, since in this case the third condition
in (18) ensuresλn = 0. The conditions (18) are called the SIG-
NORINI complementarity conditions for normal contact.

2.2 Discretization
The discretization of the displacements is done in the rotating
frame by substituting the location dependant displacementcoor-
dinatesu ∈ R

3 in Eqn. (9) and their variations by

u = ΦΦΦ(~x)⊺q(t), (19)

δu⊺ = δq⊺ΦΦΦ(~x), (20)

with appropriately chosen admissible functionsΦΦΦk(~x) ∈ R
3,

k = 1, . . . ,N, concatenated inΦΦΦ(~x) = (ΦΦΦ1(~x), . . . ,ΦΦΦN(~x))⊺ ∈
R

3×N andN generalized coordinatesq = (q1, . . . ,qN)⊺.
Due to the assumption on the constraints in section 1.2, the

gap function in Eqn. (5) can be approximated by a discretized
and linearized formulation. It can be assumed to have the fol-
lowing form, likewise its variation:

g = g(~x)⊺q+g0(~x), (21)

δg = δq⊺g(~x). (22)

Moreover, the distributed normal constraint forceλn(~x,t) ∈
R in Eqn. (17) has to be discretized:

λn(~x,t) = ΛΛΛ(~x)⊺λλλ(t), (23)

whereΛΛΛ(~x) = (Λ1(~x), . . . ,ΛM(~x))⊺ ∈ R
M contains appropriate

shape functions for the force distribution whose scalar weight-
ing factors are comprised in the time dependant column matrix
λλλ ∈ R

M.



The SIGNORINI inequality conditions (18) are approximated

by discretization through weighted averaging inΓ(1)
c to ensure

that the inequalities are at least satisfied in an averaging sense.
In order to preserve meaningful inequalities, the weighting func-

tions must be non-negative inΓ(1)
c . The equality constraint in the

conditions (18) is sufficiently discretized by averaging with one
constant weight function since, provided the factors are positive,
the integral over the product vanishes if, and only if, the prod-
uct itself is zero. Eventually, we get the discretized SIGNORINI

conditions

∫

Γ(1)
c

ΛΛΛg⊺ dΓ
︸ ︷︷ ︸

J⊺

q+

∫

Γ(1)
c

ΛΛΛg0dΓ
︸ ︷︷ ︸

j

≥ 0, (24)

∫

Γ(1)
c

ΛΛΛΛΛΛ⊺ dΓ
︸ ︷︷ ︸

Y

λλλ ≥ 0, (25)

λλλ⊺

(∫

Γ(1)
c

ΛΛΛg⊺ dΓq+

∫

Γ(1)
c

ΛΛΛg0dΓ
)

= 0, (26)

whereby the force shape functionsΛΛΛ are simultaneously used
as weight functions and hence have to be non-negative. The
inequality sign between column matrices is meant to apply be-
tween the referring entries.

Upon discretizing the Hamilton functional Eqn. (7) by
means of the displacement and variation approximations in Eqn.
(19,20) and applying the reformulation of the kinetic energy vari-
ation in Eqn. (8-11) one eventually ends up with

Mq̈+(G+D)q̇+(K +P)q = f +Jλλλ, (27)

J⊺q+ j ≥ 0, (28)

Yλλλ ≥ 0, (29)

λλλ⊺ (J⊺q+ j) = 0, (30)

together with auxiliary conditions (24-26). Hereby is

M =

∫

V
ρΦΦΦΦΦΦ⊺ dV (31)

the symmetric and positive-definite mass matrix,

G =

∫

V
2ρΦΦΦΩ̃ΩΩΦΦΦ⊺ dV (32)

the skew-symmetric gyroscopic matrix. The skew-symmetry is
due to the skew-symmetry of the cross-product tensor’s coordi-

nate matrix with respect to the rotating frame

Ω̃ΩΩ =





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



 , (33)

with ~Ω = ∑3
k=1 Ωk

~bk. Furthermore isD = Dint +Dext the sym-
metric damping matrix, comprising internal damping effects, for
instance modelled asRayleigh-Damping and external damping
effects

Dext=
∫

∂V
dextΦΦΦΦΦΦ⊺ dΓ (34)

so that together with the skew symmetric damping matrix

P =

∫

∂V
dextΦΦΦΩ̃ΩΩΦΦΦ⊺ dΓ, (35)

the virtual work of the external damping forces can be expressed
with a given damping constantdext as

−
∫

∂V
dextδ~r ·~̇rdV = −δq⊺ (Dextq̇+Pq) . (36)

The overall stiffness matrixK = K0 + K c comprises elastic and
centrifugal effects, respectively, the latter ones by

K c =

∫

V
ρΦΦΦΩ̃ΩΩΩ̃ΩΩΦΦΦ⊺ dV. (37)

The in general rectangular gradient matrixJ is obtained by
evaluating the contact integral in Eqn. (17) together with the
discretized versions of the normal constraint force and variation
from Eqn. (23, 22) and comparing with the abbreviation in Eqn.
(24).

3 Stationary solutions
3.1 Formulation as Linear Complementarity Problem
Upon cancelling the explicitly time dependant forces in time
derivatives in Eqn. (27) the problem of the stationary solution
reads

Q
︷ ︸︸ ︷

(K +P)q = f +Jλλλ, (38)

J⊺q+ j ≥ 0, (39)

Yλλλ ≥ 0, (40)

λλλ⊺ (J⊺q+ j) = 0, (41)



Figure 4. Ansatz functions for constraint force.

wherein f is constant, i.e. it comprises forces constant in the
rotating frame, for instance centrifugal unbalance effects. Elimi-
nating the generalized displacementsq and thereby assumingQ
to be invertible yields

Aλλλ+a ≥ 0, (42)

Yλλλ ≥ 0, (43)

λλλ⊺(Aλλλ+a) = 0, (44)

with

A = J⊺Q−1J, (45)

a = J⊺Q−1f + j . (46)

In comparison with the inequality system

Aλλλ+a ≥ 0, (47)

λλλ ≥ 0, (48)

λλλ⊺(Aλλλ+a) = 0 (49)

with given square and column matricesA and a, respectively,
which is the general form of a much studied algebraic problem
known asLinear Complementarity Problem– usually abbrevi-
ated by LCP(A,a) – for the unknown column matrixλλλ, cp. [16],
Eqn. (42-44) differ only in the matrixY.

It is sufficient for the equivalence of Eqn. (48) and (43) that
Y is diagonal, since it is guaranteed that the diagonal entries are
non-negative as the ansatz functions inΛΛΛ, cp. Eqn. (23), are cho-
sen to be non-negative. The matrixY is diagonal if, and only if,
the ansatz functions have disjoint supports, for example general-
ized rectangle-functions or Diracδ-functions, see Fig. 4. Such
kinds of discretization can be interpreted as an averaged section-
wise constraint enforcement or pointwise constraint enforcement
(collocation), respectively

3.2 Solution of the LCP
According to the LCP theory, cp. [16], the LCP in Eqn.
(47-49) is guaranteed to have a unique solution if the LCP matrix
A is positive-definite(pd), i.e. q⊺Aq > 0 for any fitting column
matrixq.

If A is notpd, the LCP(A,a) can have from 0 up to an infi-
nite number of solutions. To the authors’ knowledge there isno
known generally applicable method to predict the non-existence
of solutions.

The LCP matrixA does not have to be symmetric. However,
it solely depends on its symmetric part, wetherA is pd.

For rotor systems described in the rotating frame, the LCP
matrixA = J⊺Q−1J in Eqn. (45) typically is obtained from

Q = K0 +

=Kc, negative definite
︷ ︸︸ ︷

(−Ω2
∫

V
ρΦΦΦEkΦΦΦ⊺ dV)

︸ ︷︷ ︸

symmetric part

+P, (50)

whereinK0 is the symmetric and in this paper presumedly pos-
itive definite portion that is derived from the elastic potential.
According to Eq. (37), centrifugal effects are taken into account
by the matrixK c where moreover is assumed that the angular
velocity vector with magnitudeΩ is parallel to thek-th coordi-
nate axis in the rotating frame~b. Due to Eq. (33) this implies

Ω̃ΩΩ2
= −Ω2Ek with Ek = diag(1− δik; i = 1,2,3).
In order to obtain apd LCP matrix A, Q−1 has to bepd

andJ of full rank. If the latter condition were not satisfied, for
instance for linearly dependant unilateral constraints,A would in
general be onlypositive-semi-definite(psd), a fact that can cost
the uniqueness of the solution. It can be shown, that for any
invertible matrixQ applies, thatQ beingpd or psd is equivalent
to Q−1 beingpd or psd, respectively.

For the given rotor system two conclusions thus can be
drawn:

1. A unique stationary solution exists if the overall stiffness
matrix K = K0 −Ω2∫

V ρΦΦΦEkΦΦΦ⊺ dV, including centrifugal
effects, ispd and the constraintsJ have full rank. This
means, at subcritical angular velocity, the unilaterally con-
straint rotor has a uniquely determined stationary solu-
tion. The existence condition is independent from the skew-
symmetric external damping matrixP and the applied con-
stant forces.

2. Presently, no theory exists that can a priori give existence
conditions in case of supercritical speed.

Coming back to the introductory example in section 1.1, it
can now be understood that at subcritical speedη < 1 a solu-
tion has to uniquely exist in regionsA andB in Fig. 2. This also
explains that the zero crossings of the constraint force andthe



Figure 5. Rotating EULER-BERNOULLI-Beam.

displacement plots in Fig. 2 have to happen simultaneously at
subcritical speed, since otherwise no solution would exist. The
non-existence of a solution at supercritical speed cannot be pre-
dicted.

3.2.1 Numerical solution of LCP As to the actual
solution technique, LEMKE’s algorithm can be used to solve an
LCP(A,a), cp. [16,17], a pivoting scheme that is proved to find a
solution in a finite number of steps ifA is pd. If A is notpd there
again are no known general conditions for the algorithm to find
a solution. However, experience shows, that in a slightly modi-
fied version, cp. [17], where an initial guess can be providedto
the algorithm, it often reliably works if a good guess value is ap-
plied. In view of Eqn. (50) this observation suggests a homotopy
method, using a homotopy parameter 0≤ h≤ Ω2. Starting with
h = 0 yields apd LCP-matrix and hence a starting guess value,
since the centrifugal portion tending to negative-definiteness is
faded out.

3.3 Example: Rotating Euler-Bernoulli Beam

Upon upgrading the introductory example in section 1.1 to a
simple continuous model one ends up with the rotating EULER-
BERNOULLI-Beam, cp. Fig. 5. The original constraint in Eq. (2)
is replaced by a sectionwise continuous constraint as lower
boundglb(x) according to the deflections plotted in Fig. 6. In

this example, all constraints act in~b2-direction. In addition, an
upper bound constraintgub(x) is introduced in two seperate do-
mains. Upon discretization of the displacements accordingto

Figure 6. Stationary solutions u2 of unilaterally constrained rotating

EULER-BERNOULLI-Beam.

Eq. (19), the constraints

u2 =~b2 ·~u ≤ gub(x), (51)
~b2 ·~u ≥ glb(x) (52)

transform to

[
−~b2 ·~b⊺ΦΦΦ⊺

~b2 ·~b⊺ΦΦΦ⊺

]

q+

(
gub(x)
−glb(x)

)

≥ 0. (53)

Each row of this equation corresponds to a discretized gap func-
tion according to Eq. (21). Thereby, eigenfunctions of a sim-
ply supported beam are employed, with a~b3-~b2-stiffness ratio
κ3 = 1.1.

In this example, the beam is deflected only due to a constant
unbalance (nondimensionalized quantity)ε2(x) = 0.001 in~b2-
direction and external damping (nondimensionalized)δ = 0.1.
The plots in Fig. 6 show the sationary solutions in~b2-direction
for ascending (nondimensionalized) rotational speeds 0≤ η ≤
7π2, i.e. supercritical speed forη > π2. Without upper bound
constraints, no stationary solution can be computed for supercrit-
ical speed, which in this case seams reasonable, since at least for
a one mode repesantation in either lateral direction, unbalance
tended to be compensated due to self-balancing at supercritical
speed, were the unilateral constraint not present. This, ofcourse,
cannot happen with the active constraint.



4 Transformation to Minimal Coordinates
4.1 Updating the actual constraints
Solving the LCP in Eqn. (42-44) yields a solution for the con-
straint force ansatz multipliersλλλ. The entries inλλλ being zero
indicate that the referring constraint are inactive, the actual con-
straint gradient matrixJA of active constraints emerges fromJ by
cancelling the referring columns of the inactive constraints. That
means, for a finite time interval the system appears like a bilater-
ally constrained one, as long as the constraint configuration does
not change. The equations of motion (27-30) in this time interval
therefore read

Mq̈+(G+D)q̇+(K +P)q = f +JAλλλ, (54)

JA
⊺q+ jA = 0. (55)

Be the columns of the overall constraint matrixJ denoted
according to

J = [n1, . . . ,nm] . (56)

For the sake of brevity,J is assumed to have full rank. Further-
more be

J′0 =
[
n′

1, . . . ,n′
m
]

so thatJ⊺J′0 = Im×m (57)

a pseudoinverse and the columns of

B0 = [b1, . . . ,bn−m] so thatJ⊺B0 = O (58)

a basis for the kernel ker(J), i.e. nullspace, ofJ. Without limita-
tions one can assume the constraint with gradientn1 to become
inactive – enforced by reordering, in case of several inactive con-
straints by repetitive application of the following scheme– and
hence cancelling the referring row gives

JA = [n2, . . . ,nm] . (59)

The active constraints reduce the space of possible motions,
which is now spanned by

q̇ =
[
B0,n′

1
]

︸ ︷︷ ︸

B

(
ż1

ż2

)

︸ ︷︷ ︸

ż

. (60)

This implies, in view of Eqn. (57,58), thatB⊺JA = 0 and thus
the constraint forces can be eliminated by left-multiplication of

B⊺. Upon integration of Eqn. (60) with the stationary solutionas
initial condition and differentiation, respectively, substitution in
Eqn. (54,55) gives the equations of motion

B⊺MBz̈ +B⊺(G+D)Bż+B⊺(K +P)Bz= B⊺f (61)

in minimal-coordinates. This equation corresponds to the lin-
earized equations ofsmall – so the meaning ofsmall will have
been explained below – vibrations about stationary solutions
with differentiable non-linearities. For practical applications it
is the starting point for the usual matrix-stability theoryin or-
der to decide wether the stationary solution is stable. In practice,
the kernel basisB0 is computed by means of a Singular-Value-
Decomposition [18]. It has to be noted that the costly kernel
computation has to be done only once with all ever possible con-
straints.

4.2 Small forced vibrations
In the context of discrete unilateral constraints, the termsmall
with vibrations is meant to indicate that during the forced mo-
tion the constraint configuration does not change and hence the
generalized constraint forces remain positive and inactive con-
straints are never touched. Then forced vibrations with excitation
f = f̂eiωt and responsez = ẑeiωt are described by

(
−ω2B⊺MB + iωB⊺(G+D)B+B⊺(K +P)B

)
ẑ = B⊺ f̂, (62)

λ̂λλ = J′A
⊺

((
−ω2MB + iω(G+D)B+(K +P)B

)
ẑ− f̂

)

, (63)

J′A =
[
n′

2, . . . ,n′
m
]
, (64)

whereini =
√
−1 andJ′A is the pseudinverse of the active con-

straints, which is obtained by cancelling columnn′
1 in the over-

all pseudoinverse in Eqn. (57) with assumedly inactive constraint
with gradientn1 as above.The column matrixλ̂λλ contains the com-
plex constraint force amplitudes of the active constraints. Its
magnitudes must not be greater than the non-zero entries in the
stationary solutionλλλ from Eqn. (42-44) since otherwise negative
constraint forces occur.

5 Transition conditions for percussive normal con-
tacts

In the previous sections a change of the constraint configuration
was tacitely excluded. The motion actually was a smooth one.
Non-smoothness in form of velocity-jumps comes into play ifan
inactive unilateral constraint is touched. It can be shown,cp. [1],
that the motion remains smooth if an active constraint becomes
inactive, so that only the transition inactive to active constraint
has to be considered.



In this case the Eqn. of motion (27-30) are valid onlyal-
most everywhere, since the generalized accelerationq̈ does not
exist if a jump in the velocities occurs. The generalized velocity
jumps fromq̇ = q̇− during the infinitesimally small time interval
I = [t−,t+] immediately before the impact att− to q̇ = q̇+ imme-
diately after the impact att+. The jumps are calculated under the
usual assumptions in impact mechanics of rigid bodies, cp. [3]:
All forces that are no constraint forces, which in turn have to
be compressive, are neglected duringI as well as the position
remains unchanged, i.e.+q = −q.

Immediately before impact, the set of active constraints be
expanded by the constraints that just have been touched and re-
duced by those constraints that are about to become inactive, i.e.
whose referring entries inJ⊺

Aq̇− are positive. The problem now is
to decide, which of those constraints remain active immediately
after the impact att+.

Upon integrating Eqn. (27) under the above assumptions
and additionally assuming constraint force ansatz functions so
that Y in Eqn. (43) becomes diagonal, for the same reasons as
discussed in section 3.1, one gets

M(q̇+ − q̇−) = JAλ̄λλ, (65)

J⊺

Aq̇+ ≥ −εJ⊺

Aq̇−, (66)

λ̄λλ ≥ 0, (67)

λ̄λλ⊺

(J⊺

Aq̇+ + εJ⊺

Aq̇−) = 0, (68)

wherein inequality (66) is a Newtonian restitution law withposi-
tive scalar restitution coefficientε that demands that for each con-
straint the depart velocity after impact be at least−ε times the ap-
proach velocity before impact, inequality (67) demands that the
impact impulses be non-tensile and eventually Eqn. (68) ensures
that impulses be only transmitted if inequality (66) is satisfied
as equality. The latter condition ensures, that active constraints
that were already active before impact can become inactive after
impact.

Upon elimination of the unknowṅq+, which is feasible
since M is pd, Eqn. (65-68) can again be transferred to a
LCP(A,a) for λ̄λλ with

A = J⊺

AM−1JA, (69)

a = (1+ ε)J⊺

Aq̇−. (70)

This LCP always has a solution, which is unique ifA is pd. The
latter property is given ifJA has full rank.

The upcoming time interval before the next contact config-
uration change occurs is now governed by a new set of active
constraints. These are found to be those whose referring entries
in the column matrixJ⊺

Aq̇+ are zero, meaning the constraint re-
mains active. Applying the very same scheme as in section 4.1

gives the updated equations of motion for the new constraintcon-
figuration.

6 Conclusion
A variational formulation upon HAMILTON ’s Principle was
given for systems with tangentially frictionless unilateral con-
straints, which are assumed to be explicitly time-independent in
the rotating frame. The discrete equations of motion with re-
spect to the rotating frame were derived together with discretized
SIGNORINI contact conditions. The problem of finding station-
ary solutions was transferred to aLinear Complementarity Prob-
lem. Finally, transition conditions on the basis of a Newtonian
restitution law for the non-smooth motion with changing contact
configurations were given adopting a formulation of rigid-body
mechanics.

It was shown that a stationary solution always exists at
subcritical rotational speed, even in the case of external damp-
ing uniquely for linearly independent constraints. An efficient
method for the transformation on minimal coordinates was pre-
sented, which comes with a practical method to assess stability
of the stationary solution.
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