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ABSTRACT

This paper presents a method for providing stationary sohs
for rotor systems with a considerable number of unilateai-c
straints, such as normal contact due to cracks or delamdmeti
in rotating shafts. In more general manner, systems withingov
continua or internal flow, for example a pipe resting on utglal
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the 18th and 19th century, for instance by DemvouLLI and
F. NEUMANN , cp. [10, 11].

Many structural imperfections such as cracks or delamina-
tions of plies in composites can be typically modelled adatmi
eral constraints, in particularlifreathingof the gaps due to these
defects is involved. Such imperfections are also of intére-

supports, rank among the same class of problems. It is shown tordynamics as numerous publications give evidence, dgr-re

that, by virtue of centrifugal effects, the existence ofiGtary
solutions is not guaranteed without restrictions. Suffitiexis-
tence conditions are given for an important class of rotateyns

ences in surveys and books, respectively, [12,13]. Othperstpf
rotordynamical contact problems arise from rotor-statotacts
or loose parts, cp. [14,15]. Static problems of continudn\sit-

and are based on findings from the theory of Complementarity tionary internal flow and unilateral supports can be tack&t

Problems. Furthermore, the presented method comprisepan a
proach to assess the stability of the solution and a modiéinat
is given to determine the velocity jumps when a contact cenfig
ration change occurs during the system’s non-smooth eweolut

1 Introduction

An extensive literature on the dynamics of systems withatnil
eral constraints has been published in the last decadesh Muc
of the work in this field has been motivated by problems in the
dynamics of systems of rigid bodies, see for instance [1J4]-
lateral constraints imposed on continuous structures anean
days mainly investigated in the context of general FEM con-
tact problems, cp. [5, 6]. In conjunction with impact andreib
impact problems research often focusses on specific stasctu
like impacting rods, beams or lumped masses impacting on flex
ible structures, [7-9], with fundamental contributionsealy in

*Address all correspondence to this author.

the same methods as will be presented for rotorsystems.

Any investigation of contact problems is based on more or
less drastically simplifying assumptions on the contagtsats.

So the modelling is often done in a way that keeps the number
of potential contact points small or even fixed to one. In doin
S0, one avoids providing a huge number of different sets odeq
tions of motion, one set for each possible contact configamrat
which makes a total of*2sets k being the number of potential
contact points. This problem is often circumvented by repla
ing rigid constraints by compliant members such as unidter
springs, which can only transmit compressive forces. Itug t
that this approach keeps the degree of freedom constaritibut i
troduces considerably stiff nonlinear elements — a fad¢tdbald
make simulation more costly.

In rotordynamics described in a rotating reference frante an
dealing with the above mentioned imperfections, constant ¢
trifugal effects due to these defects often prevail compaoce
harmonic gravitational excitation. It might therefore berti-
while to investigate oscillations about stationary san$ — os-

1



cillations that can be harmonic provided the excitationufis
ciently small so that inactive constraints are not touched.

An investigation procedure of such a kind corresponds to
linearization about stationary solutions in the case whéare
entiation is feasible. With unilateral constraints, diffetiability
is impaired. In this paper a procedure is given that circumse
this obstacle.

First of all, however, the stationary solutions and thus the
set of active constraints have to be found. With unilateca-c
straints, the straightforward procedure would be checkiach
possible contact configuration and assessing afterwarttseewe
the obtained solutions are physically feasible. This pdoce in-
volves assessing‘Zonfigurations, agaik being the number of
potential contact points — fdg > 1 a costly technique. From
the mathematical perspective, as will be seen, the mecdhlanic
problem corresponds, with some restrictions, to a well kmaly
gebraic problem. Hence, some useful findings known from the
related algebraic theory can be successfully applied tartbe
chanical problem.

1.1 Introductory Example

The most simple model of aAvAL -rotor with unilateral con-
straints is depicted in Fig..1 The unilateral constraint be
y(t) > 0. The equations of motion in the rotating frame read
(nondimensionalized constants: rotational spgegx-stiffness
ratiok, external damping, unbalance described byu,, gravity

y; hondimensionalized tine
X d —-2n) [ x 1-n? —nd x\
(5@ ) 0) (s 15) () -
(S ) e (S )+ (3) @
0\T /x
(2) ()o@

wherein Eqn. (2) expresses the auxiliary conditioa: 0 for
the bilaterally constrained case akhd a Lagrangian-multiplier,
which can be interpreted here as the constraint forceg-in
direction. As long as the constraint is inactiyex 0), the equa-
tions of motion are obtained by discarding the auxiliary dien
tion Eqn. (2) and settingg = 0 in Eqn. (1). An active constraint
(y = 0) changes the ordinary differential equation (ODE) into a
Differential-Algebraicequation (DAE). The transition from an
inactive to an active constraint is not discussed, yet.

The stationary solutions are obtained by ignoring time de-
pendant excitations and time derivatives. Following thenme
tioned straightforward strategy of assessing the phygiealsi-
bility of every solution obtained by cycling through everg-p
tential constraint configuration is not really costly foistexam-
ple. Because there is only one constraint and hence arewaly t

Figure 1. Most simple unilaterally constrained L AVAL -rotor model.
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Figure 2.  Stationary solutions and constraint forces in Yy-direction for un-
constrained and constrained rotor, respectively, vs. rotational speed.

possibilities:constraint active/ inactiveKeeping all parameters
fixed apart from the rotational spegd we check the plausibil-
ity of the stationary solutions by monitoringvs. n for the case
without constraintX = 0) andA vs. ) for the case with constraint
(y = 0) as plotted in Fig. 2In this example the parameters are
setas followsk =1,0=0.1,e =1,0¢ = 7.

A stationary solutioly for the casénactive constrainis also
admissible for the case of a unilateral constrairyt ¥ 0, which
physically plausibly meansio penetration This is seen in re-
gion Ain Fig. 2

Correspondingly, a stationary solutiarfor the caseactive
constraintis also admissible for the case of a unilateral constraint
if A > 0, which physically plausibly meangap tensile constraint
force This behavior is depicted in region B.

A solution for the case of a unilateral constraint does$




exist if y < 0 andA < 0O for the casegonstraint inactiveand
constraint activerespectively. In the plots this happens in region
C where the rotor spins at overcritical spegd 1.

One could imagine that non-unique solutions would have
been found if there had been regions whgre 0 andA > 0
simultaneously for the caseenstraint inactiveor constraint ac-
tive, respectively. Regions with such a property are not found in
the present example since the stationary solution plotsliter
placement and corresponding constraint force show simeHta
ous zero crossings, see Fig.& least forn < 1. As will be
explained later, this does not happen accidently.

1.2 Outline

The main problems with a class of unilateral constraint®tor
systems have all been touched in the introductory example an
will be revisited in a more general manner in this paper. It is
organized as follows:

Discrete equations of motionUpon applying HMILTON'’S
Principle for continuous structures in a formulation that
accounts for auxiliary constraints and upon discretizihg,
equations of motion are derived under the presumptions

e linear elasticity,

o formulation in rotating frame with constant rotational
speed,

e constraint formulation
dependant, i.e.
frame,

e friction, i.e. tangential contact interaction, is nedligi
ble,

e little breathing of constraints during operation, i.e.
unilateral auxiliary conditions can be reasonably as-
sumed linearizeable.

is not explicitly time-
cracks, stops etc. rotate with the

Stationary Solutions Under certain assumptions on the contin-
uous constraint force distribution the problem of findirey st
tionary solutions is shown to be equivalent tbinear Com-
plementarity Problen{LCP). The related theory provides
some useful results for the mechanical problem.

Minimal coordinates and stability Having found the station-
ary solutions the set of active constraints is determinetl an

—
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Figure 3. Sketch of potential contact.

distant points. It is shown, how the transition from one con-
tact configuration to an other one can be cast in a physically
plausible formulation.

2 Equations of motion
2.1 Hamilton’s Principle for unilaterally constrained
systems

As depicted in Fig. 3 it is given an inertial system
@ = (d18,d3)T and a rotating (constant angular velodlyframe
b = (b1b2b3)T, each with orthonormal basisvectadg by, so
thataa™ = bbT = | equals the 3 3 identity matrix. It is thereby
assumed that the scalar products between the vectors due eva
ated according to the rules of matrix multiplication.

Given two elastic bodie¢ ¥ k = 1,2, or two separate parts

of one body, whose boundari@g %) are subdivided into disjoint

setsl’gk), r&"),rékﬁ where stress-, displacement- or impenetrabil-

ity boundary conditions due to contact are applied, respagt
The potential contact point is formally found by means of the
closest-point-operatocp(-), the impenetrability condition can
be expressed by a gap functigras

g(%,U(x)) > 0 onr 3)

thus the actual degree of freedom. Since the underlying \ith the related variation [5]:

structure is assumed linear elastic and the constraintialeq
ities are assumed linear, too, it is possible to formulage th
linear equations of motion in minimal coordinates, i.emeli
inating the constraint forces. At this stage it is possible t
apply the usual matrix stability theory.

Transition conditions During the motion of the system, new
constraints come into play what implies that the material

points where new constraints become active, experience ve-

locity jumps. Moreover, since reduced discretized models

cp(X) = arg min [|X—Y]|, 4
yev(2)

g u(X) =— (?+ a® (%) — cp(x) — u® (cp(x))) A, (5)
3g = n). (_mm I 5u<2>) , (©)

whereint®, /(Y are displacement vectors and normal unit vec-

are used, velocity jumps at one point can immediately affect tors, respectively. If here and in what follows supersanipts



omitted it is meant to be read(x) = t if x e V1,
HAMILTON''s Principle reads

/ :
to

with kinetic energyT and elastic potential energdy, the latter
one as usual expandable to comprise other forces that haxe a p
tential and that are not taken into account in the virtual kwor

WVIrtBefore dealing with the virtual work in more detail, we no-
tice that upon partial integration in the time domain andexp
ing vanishing variations at the time boundatigt, the variation
of the kinetic energy can also be written as

(8(T —U) +Wjr) dt = 0, @)

5T — — / 057 - FdV ®)
\Y

with densityp andV =V® UV(@ ¥ = X+, Lagrangian refer-
ence poin®. Upon expressing the displacement with respect to
the rotating frame by

d=DbTu;u= (urupu3)T, 9)

the acceleration and the variation read
F=D0T0+20xbTu+Qx (Qx (X+DbTu))  (10)
5F = duTh. (11)

The virtual work is composed of the usual pai, which does
not take the contact into account, and the peytthat includes
traction on the contact boundary:

Wirg = Wo-+ Wi, (12
where

) )

Wo = (/ f-6UdV+/ f*-éudr) . (13)
k=T2 \/V F'o

We — / £0). 5g0) dr 14
(9 I;Z rg) ( )
_ r'<l)f<2> (~5uY + 5u@)ydr (15)

_ [ @y & ). (—sd® 4+ 5g@
_/rél)()\nﬁ + B ) (e +au®)dr - (16)

0

= [ MBgar (17)

Herein isf a given volume force i, ist* the prescribed stress
vector onlg and ist the unknown stress vector in the still un-
known contact zonE¢. Equation (15) follows froni(® = —t(1),
i.e. Actio=Reactig Eqn. (16) from the decomposition of the
stress vector into normal and tangential part, the lattertuging
zero since friction is neglected. Eventually, Eqn. (17)dsained
by plugging in Eqn. (6).

The difficulty remains that the contact zone itself is depen-
dant on the displacement and thus not constant.

By simultaneously demanding

)\n 2 O, g 2 O, )\ng = 0, (18)

the contact zone can be expanded to the constant boundary por
tion Fél) =ov® \ FE,l) \ F&l). Because now with the conditions
(18) integration in Egn. (17) over the now constant donféjﬁ
gives no contribution to the integral value when there is ol-c
tact, i.e. gap functiog > 0, since in this case the third condition

in (18) ensured, = 0. The conditions (18) are called thecs
NORINI complementarity conditions for normal contact.

2.2 Discretization

The discretization of the displacements is done in the irgat
frame by substituting the location dependant displacemeort
dinatesu € R3 in Eqgn. (9) and their variations by

u=®X)Tq(t),
SuT = 8qTP(X),

(19)
(20)

with appropriately chosen admissible functiof&(X) € R3,
k =1,...,N, concatenated i®(X) = (®1(X),...,®n(X))T €
R3>N andN generalized coordinates= (qs,...,qn)T.

Due to the assumption on the constraints in section 1.2, the
gap function in Eqn. (5) can be approximated by a discretized
and linearized formulation. It can be assumed to have the fol
lowing form, likewise its variation:

(21)
(22)

g=9(X)Tq+go(X),
89 = 6q7g(X).

Moreover, the distributed normal constraint fodggX,t) €
R in Eqn. (17) has to be discretized:
An(X ) = AX)TA(L), (23)
whereA(X) = (A1(X),...,Am(X))T € RM contains appropriate
shape functions for the force distribution whose scalamghei

ing factors are comprised in the time dependant column ratri
AeRM.



The SGNORINI inequality conditions (18) are approximated

by discretization through weighted averagingl’lﬁL> to ensure
that the inequalities are at least satisfied in an averaginges
In order to preserve meaningful inequalities, the weighfimc-

tions must be non-negativel'rﬁn. The equality constraint in the
conditions (18) is sufficiently discretized by averaginghnone
constant weight function since, provided the factors asitpe,
the integral over the product vanishes if, and only if, thedsr
uct itself is zero. Eventually, we get the discretizad$oRINI
conditions

L AGTdr g+ [ Agodr >0, (24)

re red

JT j
[ AATAT A= 0, (25)
‘C\,_/

Y

AT ([ AgTdrq+ [ Agedr) =0, (26)
Jri Jri)

whereby the force shape functioMsare simultaneously used

as weight functions and hence have to be non-negative. The
inequality sign between column matrices is meant to apply be

tween the referring entries.

Upon discretizing the Hamilton functional Egn. (7) by
means of the displacement and variation approximationgjm E
(19,20) and applying the reformulation of the kinetic eryargri-
ation in Eqn. (8-11) one eventually ends up with

MG+ (G+D)g+ (K+P)g=f+JA, 27)
JTg+j >0, (28)
YA >0, (29)
AT(JTgq+j) =0, (30)
together with auxiliary conditions (24-26). Hereby is
M — / pODT dV (31)
\%
the symmetric and positive-definite mass matrix,
G= / 200Q®T dV (32)
JV

the skew-symmetric gyroscopic matrix. The skew-symmedry i
due to the skew-symmetry of the cross-product tensor'sdtoor

nate matrix with respect to the rotating frame

) 0 Qs
Q=| Q3 0 —-Qq1 ],
-Q, Q1 O

with Q = 32, Quby. Furthermore i© = Djp; + Dext the sym-
metric damping matrix, comprising internal damping eféeébr
instance modelled aRayleighDamping and external damping
effects

(33)

Dext= / . dext®®T dlr (34)
v

so that together with the skew symmetric damping matrix

P /av dex@Q®Tdr, (35)

the virtual work of the external damping forces can be exgeés
with a given damping constadgyt as

_ /av dextdF -7V = —5qT (Dexd + PA). (36)

The overall stiffness matriKk = Ko+ K¢ comprises elastic and
centrifugal effects, respectively, the latter ones by

Ke= / pPAAGT dV. 37)
JV

The in general rectangular gradient matliis obtained by
evaluating the contact integral in Eqn. (17) together with t
discretized versions of the normal constraint force anéatian
from Eqn. (23, 22) and comparing with the abbreviation in Egn
(24).

3 Stationary solutions

3.1 Formulation as Linear Complementarity Problem

Upon cancelling the explicitly time dependant forces ingim
derivatives in Eqn. (27) the problem of the stationary sotut
reads

PN
(K+P)q =f+JA, (38)
JTg+j >0, (39)
YA >0, (40)
AT(J7q+j) =0, (42)



Figure 4. Ansatz functions for constraint force.

whereinf is constant, i.e. it comprises forces constant in the
rotating frame, for instance centrifugal unbalance effeEtimi-
nating the generalized displacemeaqtand thereby assuming

to be invertible yields

AX+a >0, (42)
YA >0, (43)
AT(AA+a) =0, (44)
with

A=JTQ°1, (45)
a=JTQ f+j. (46)

In comparison with the inequality system
AN+a>0, (47)
A>0, (48)
AT(AA+a)=0 (49)

with given square and column matricAsand a, respectively,
which is the general form of a much studied algebraic problem
known asLinear Complementarity Probler usually abbrevi-
ated by LCPA,a) — for the unknown column matrik, cp. [16],
Eqn. (42-44) differ only in the matri¥X .

It is sufficient for the equivalence of Eqn. (48) and (43) that
Y is diagonal, since it is guaranteed that the diagonal enarie
non-negative as the ansatz functionéircp. Eqn. (23), are cho-
sen to be non-negative. The matixs diagonal if, and only if,
the ansatz functions have disjoint supports, for examphega-
ized rectangle-functions or Dira&functions, see Fig..4Such
kinds of discretization can be interpreted as an averaggibae
wise constraint enforcement or pointwise constraint exgorent
(collocation), respectively

3.2 Solution of the LCP

According to the LCP theory, cp. [16], the LCP in Eqgn.
(47-49) is guaranteed to have a unique solution if the LCRirmat
A is positive-definitépd), i.e. qTAq > 0 for any fitting column
matrixg.

If A is notpd, the LCPA,a) can have from O up to an infi-
nite number of solutions. To the authors’ knowledge therois
known generally applicable method to predict the non-erise
of solutions.

The LCP matrixA does not have to be symmetric. However,
it solely depends on its symmetric part, wetheis pd.

For rotor systems described in the rotating frame, the LCP
matrix A = JTQ1J in Eqn. (45) typically is obtained from

=K., hegative definite

Q=Ko+ (—0Q? /V POEDT dV) +P, (50)

symmetric part

whereinKg is the symmetric and in this paper presumedly pos-
itive definite portion that is derived from the elastic pdieh
According to Eq. (37), centrifugal effects are taken intoamt

by the matrixK where moreover is assumed that the angular
velocity vector with magnitud® is parallel to thek-th coordi-
nate axis in the rotating frante Due to Eq. (33) this implies
0% = —Q2E, with Ey = diag(1— &i;i = 1,2,3).

In order to obtain gd LCP matrixA, Q! has to bepd
andJ of full rank. If the latter condition were not satisfied, for
instance for linearly dependant unilateral constraidtg/ould in
general be onlypositive-semi-definitsd), a fact that can cost
the uniqueness of the solution. It can be shown, that for any
invertible matrixQ applies, thatQ beingpd or psdis equivalent
to Q1 beingpd or psd respectively.

For the given rotor system two conclusions thus can be
drawn:

1. A unique stationary solution exists if the overall stifs
matrix K = Ko — Q2 [, p®E(®T dV, including centrifugal
effects, ispd and the constraintd have full rank. This
means, at subcritical angular velocity, the unilateratipc
straint rotor has a uniquely determined stationary solu-
tion. The existence condition is independent from the skew-
symmetric external damping matrixand the applied con-
stant forces.

2. Presently, no theory exists that can a priori give existen
conditions in case of supercritical speed.

Coming back to the introductory example in section 1.1, it
can now be understood that at subcritical spged 1 a solu-
tion has to uniquely exist in regiodsandB in Fig. 2 This also
explains that the zero crossings of the constraint forcethad
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Figure 5. Rotating EULER-BERNOULLI-Beam.
Figure 6. Stationary solutions Uy of unilaterally constrained rotating
EULER-BERNOULLI-Beam.

displacement plots in Fig. 2 have to happen simultaneously a

subcritical speed, since otherwise no solution would existe

non-existence of a solution at supercritical speed canaqtre- Eg. (19), the constraints

dicted.
Uz = B2 U < gup(X), (51)
3.2.1 Numerical solution of LCP As to the actual bz U > gin(X) (52)
solution technique, EMKE’s algorithm can be used to solve an
LCP(A,a), cp. [16,17], a pivoting scheme that is proved to find a transform to
solution in a finite number of stepsAfis pd. If A is notpdthere
again are no known general conditions for the algorithm td fin
a solution. However, experience shows, that in a slightlgimo —by-bT@T Jub(X)
fied version, cp. [17], where an initial guess can be provitded Py -DTHT —0ib(X) 2 0. (53)

the algorithm, it often reliably works if a good guess valsi@p-
plied. In view of Eqn. (50) this observation suggests a hamyt
method, using a homotopy parameter & < Q2. Starting with

h = 0 yields apd LCP-matrix and hence a starting guess value,
since the centrifugal portion tending to negative-defiretes is
faded out.

Each row of this equation corresponds to a discretized gap-fu
tion according to Eq. (21). Thereby, eigenfunctions of a-sim
ply supported beam are employed, wittbab,-stiffness ratio
Kz=1.1.

In this example, the beam is deflected only due to a constant
unbalance (nondimensionalized quantity}x) = 0.001 in [
direction and external damping (nondimensionalizéd) 0.1.

The plots in Fig. 6 show the sationary solutionsjadirection
for ascending (nondimensionalized) rotational speegsm<

3.3 Example: Rotating Euler-Bernoulli Beam

Upon upgrading the introductory example in section 1.1 to a

simple continuous model one ends up with the rotating £R- 712, i.e. supercritical speed fay > 2. Without upper bound
BERNOULLI-Beam, cp. Fig. 5The original constraintin Eq. (2)  constraints, no stationary solution can be computed foesuit-

is replaced by a sectionwise continuous constraint as lower jca| speed, which in this case seams reasonable, sincesafdea
boundgp(x) according to the deflections plotted in Fig. fn a one mode repesantation in either lateral direction, moal

this example, all constraints actﬁz-direction. In addition, an
upper bound constrairp(X) is introduced in two seperate do-
mains. Upon discretization of the displacements accortiing

tended to be compensated due to self-balancing at supeatrit
speed, were the unilateral constraint not present. Thizyofse,
cannot happen with the active constraint.



4 Transformation to Minimal Coordinates

4.1 Updating the actual constraints

Solving the LCP in Egn. (42-44) yields a solution for the con-
straint force ansatz multipliers. The entries inA being zero
indicate that the referring constraint are inactive, theaocon-
straint gradient matrida of active constraints emerges franby
cancelling the referring columns of the inactive constiaifhat
means, for a finite time interval the system appears likeadri
ally constrained one, as long as the constraint configuraes
not change. The equations of motion (27-30) in this timerirae
therefore read

Mg+ (G+D)q+ (K+P)g=f+JaA,
JATq+ja=0

(54)
(55)

Be the columns of the overall constraint matdixdenoted
according to

J=1ny,...,Nm]. (56)

For the sake of brevity] is assumed to have full rank. Further-
more be

Jo=[n1,...,n"m] sothatd™Jo = Imxm (57)
a pseudoinverse and the columns of
Bg = [b;]_7 e bnfm] so thatJTBg = O (58)

a basis for the kernel k&), i.e. nullspace, of. Without limita-
tions one can assume the constraint with gradienb become
inactive — enforced by reordering, in case of several inaan-
straints by repetitive application of the following schemand
hence cancelling the referring row gives

Ja=[n2,...,Nm]. (59)

The active constraints reduce the space of possible motions
which is now spanned by

q: [Bo,nll] (Zl) .
—— 2
———

B

(60)

This implies, in view of Eqn. (57,58), th@&T7Ja = 0 and thus
the constraint forces can be eliminated by left-multigima of

BT. Upon integration of Egn. (60) with the stationary solutamn
initial condition and differentiation, respectively, sitution in
Eqgn. (54,55) gives the equations of motion

BTMBZ + BT(G+D)Bz+BT(K +P)Bz=BTf  (61)

in minimal-coordinates. This equation corresponds to the |
earized equations efmall— so the meaning agmall will have
been explained below — vibrations about stationary sabstio
with differentiable non-linearities. For practical amggaltions it

is the starting point for the usual matrix-stability thedmnyor-

der to decide wether the stationary solution is stable. &ttice,

the kernel basiBg is computed by means of a Singular-Value-
Decomposition [18]. It has to be noted that the costly kernel
computation has to be done only once with all ever possilite co
straints.

4.2 Small forced vibrations

In the context of discrete unilateral constraints, the temall
with vibrations is meant to indicate that during the forced-m
tion the constraint configuration does not change and hdwe t
generalized constraint forces remain positive and inaaton-
straints are never touched. Then forced vibrations witlitatian

f = fé“ and response= z&“* are described by

(~w?BTMB +iwBT(G +D)B+BT(K +P)B) 2= BTf, (62)
A:J/AT(( W2MB +iw(G + D)B+ (K +P)B)2— ),(63)
J’A:[nz,...,nm},(64)

whereini = /-1 andJ'x is the pseudinverse of the active con-
straints, which is obtained by cancelling columin in the over-

all pseudoinverse in Eqn. (57) with assumedly inactive traimgt
with gradieni; as above.The column matixcontains the com-
plex constraint force amplitudes of the active constrairits
magnitudes must not be greater than the non-zero entriégin t
stationary solutio from Eqgn. (42-44) since otherwise negative
constraint forces occur.

5 Transition conditions for percussive normal con-

tacts
In the previous sections a change of the constraint configuara
was tacitely excluded. The motion actually was a smooth one.
Non-smoothness in form of velocity-jumps comes into plagnif
inactive unilateral constraint is touched. It can be shapn[1],
that the motion remains smooth if an active constraint bexsom
inactive, so that only the transition inactive to active staint
has to be considered.



In this case the Egn. of motion (27-30) are valid oaly gives the updated equations of motion for the new constcaimt
most everywheresince the generalized acceleratiprloes not figuration.
exist if a jump in the velocities occurs. The generalizeaeiy
jumps from@ = g~ during the infinitesimally small time interval
| = [t,tT] immediately before the impactt to g = g™ imme-
diately after the impact at". The jumps are calculated under the
usual assumptions in impact mechanics of rigid bodies,3p. [
All forces that are no constraint forces, which in turn have t
be compressive, are neglected durlngs well as the position
remains unchanged, i.&éq = —q.

Immediately before impact, the set of active constraints be
expanded by the constraints that just have been touchecdeand r
duced by those constraints that are about to become ingictive
whose referring entries il,q~ are positive. The problem now is
to decide, which of those constraints remain active imntefia
after the impact at’.

Upon integrating Eqn. (27) under the above assumptions
and additionally assuming constraint force ansatz funetiso
thatY in Eqn. (43) becomes diagonal, for the same reasons as
discussed in section 3.1, one gets

6 Conclusion

A variational formulation upon BWMILTON’s Principle was
given for systems with tangentially frictionless unilatiecon-
straints, which are assumed to be explicitly time-indegenéh
the rotating frame. The discrete equations of motion with re
spect to the rotating frame were derived together with disoed
SIGNORINI contact conditions. The problem of finding station-
ary solutions was transferred td.enear Complementarity Prob-
lem Finally, transition conditions on the basis of a Newtonian
restitution law for the non-smooth motion with changing tamt
configurations were given adopting a formulation of rigiodlg
mechanics.

It was shown that a stationary solution always exists at
subcritical rotational speed, even in the case of exteraalm
ing uniquely for linearly independent constraints. An efic
method for the transformation on minimal coordinates was pr
_ sented, which comes with a practical method to assessistabil

M(@"—q7) = Jah, (65) of the stationary solution.
T > —edhg, (66)
A>0, (67)
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