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Abstract 
 
The dynamic behavior of multi-section constructions with clearance during extending 
and retracting motion of the sections is analyzed. For an appropriate physical model the 
governing boundary value problem is derived by applying Hamilton’s principle and a 
classical discretization procedure is used to generate a coupled system of nonlinear ordi-
nary differential equations as the corresponding truncated mathematical model. On the 
basis of this model, a controller concept for preventing harmful vibrations is developed. 
The direct access to the system equations allows the application of established control 
strategies. A concept of state control via pole placement is designed which exhibits the 
desired effects. 
 
1. INTRODUCTION 

Graduated multi-section systems of structural components extending and retracting 
inside each other are interesting technical systems, e.g., mobile cranes, rack feeder, 
etc. (see [1], for example). Due to overall rigid body translation or slew maneuvers 
combined with the extending and retracting motion of the sections, bending vibra-
tions of the system perpendicular to the telescopic axis occur. In technical applica-
tions these vibrations lead to a reduction of the efficiency and to safety problems so 
that a controlled vibration suppression seems to be useful. 
A first step to develop efficient and safe multi-section constructions is an appropriate 
modeling of such systems and the examination of the vibrational behavior, which is 
done in [2] in all detail and briefly recapitulated in this contribution. 
The objective of the present paper is to develop a controller concept for preventing 
harmful vibrations. First, a system without clearance and with a fixed telescopic 
length which can be characterized by a time-invariant system of linear differential 
equations, is reduced to its dominating modes. Using this reduced model, a concept of 
state control via pole placement is designed which exhibits the desired effects. Intro-
ducing a so-called Luenberger observer, straightforward measurements of the motion 
of the telescope base and of the control variable of the actuator are sufficient to oper-
ate the controller. For real telescopic operations an adaptive controller and observer 
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are introduced.  The controller, developed for the reduced linear system model, is ap-
plied to the significantly more complicated system with clearance for studying the in-
fluence of clearance on the vibration suppression during telescopic motions. 
 

2. PHYSICAL MODEL 
From the viewpoint of mechanics, a non-linear field problem of vibrating structural 
members with variable geometry has to be considered. Material surface areas of par-
ticular components move along surface areas of other components and define compli-
cated boundary and transition conditions. The clearance produces non-linear effects. 
In many applications the different segments are slender and can be modeled as Ber-
noulli/Euler beams mounted on a rigid vehicle unit and carrying at some location, 
e.g., at the end of the last section, a load unit assumed to be rigid. The vehicle unit to-
gether with the first deformable segment and all the other segments (one of them to-
gether with the load) perform transverse motions and the extending or retracting mo-
tion of the sections is supplemented. The contact regions between two sections are 
modeled as discrete point contacts. A special feature of the modeling is to introduce 
the reaction forces at the contact points in the form of distributed line loads (by using 
Dirac impulse functions), so that for the contacting sections elementary boundary 
conditions remain. The contact formulation itself takes place via one-sided spring-
damper elements. 
The procedure is illustrated in Fig. 1a for a two-section telescopic beam system 
mounted on a rigid traverse performing a translational motion accompanied by an ex-
tending motion of the two beam segments with defined clearance between them. 
Beam 1 is fixed at a rigid vehicle unit; beam 2 carries a point load at its end. The ve-
hicle is driven by a horizontal force  as excitation. The deformation of the beams 
(including vehicle mass and load) is represented by the absolute displacements 

 and . The model is defined by the following parameters: beam 
lengths , constant cross-sectional areas , constant cross-sectional moments of 
inertia , density 

F

),( 1 txw ),( 2 txv
2,1l 2,1A

2,1I ρ  and Young’s modulus E  of the two flexible components, 
masses of load and vehicle  and , respectively, and telescopic length . 
The contact between the beams is realized (see Fig. 1b) via discrete spring-damper 
systems in the form of a so-called displacement condition (not a force condition) [3], 
the given number  of contact points, the clearance , spring stiffness , and damp-
ing coefficient .  can be estimated from the geometry and the material of the con-
tact partners whereas the estimation of  is more complicated. As the purpose of the 
model is the creation of a control concept for vibration suppression, it is important 
that the equations of motion stay as simple as possible. In the controlled system the 
clearance plays the role of an external disturbance and as the controller has to work 
for every kind of contact, a very accurate estimation of  is not necessary. In the ax-
ial direction it is assumed that there is no friction. This assumption is justifiable as the 
bearing between the different segments is realized as roller bearing in many applica-
tions. It is assumed here that the force flow leads from the upper part into the lower 
part.  
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3. FORMULATION 
 
Boundary value problem 
Applying Hamilton’s principle 
 
 ( )1 1

0 0

  

  
0,

t t

virtt t
T U dt W dtδ − +∫ ∫ =  (3.1) 

 
the governing boundary value problem can be derived. T  is the kinetic energy, U  the 
potential energy and  the virtual work of forces without potential of the consid-
ered system. The kinetic energy reads 

virtW

 

 1 2  2
1 1 2 0  0

1 1 ,
2 2

l l

tT A w dx A vρ ρ∗= +∫ ∫ 2
2t dx∗

1

 (3.2) 

 
where ( )1 1 TA A m xρ ρ δ∗ = +  and ( )2 2 2L 2A A m x lρ ρ δ∗ = + −  and the symbol ( ).δ  
represents Dirac’s delta-function. If the action of the spring-damper systems is com-
pletely included into the virtual work, for the remaining potential energy one obtains 
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1 1 1
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2 2 2
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  2 2
2 2 2 2 0  
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1     .
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l l l
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l l
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U EI w g A dx A dx w

EI v g A dx v dx

ρ

ρ

∗ ∗

∗

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤+ −⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫

1dx

)

 (3.3) 

 
Since no internal damping of the beam segments will be taken into consideration, as 
the worst case for control, the virtual work contains all the contact forces between the 
beams and the locally concentrated driving force of the vehicle as distributed loads 
(1 1,f x t  and (2 2 , )f x t  which couple the resulting field equations: 

 

  (3.4) 1 2  

1 1 2 0  0
.

l l

virtW f wdx f vdδ δ= +∫ ∫ 2x

 
Due to the formulation of all these locally concentrated forces by distributed loads us-
ing Dirac impulses, the boundary conditions will be homogeneous. Evaluating Hamil-
ton’s principle (3.1) introducing T ,  and  according to eqs. (3.2), (3.3) and 
(3.4), respectively, yields the governing field equations 

U virtW

 

 
( ) ( )

( ) ( ) ( )
1 1 1 1 1 1 1

1

1

1 1 1 1 1 2 2

1 1 1 1 2 2           = , ,

tt x x x x x L x xx

L x

A w EI w A g l x w g m A l w

f x t x l g m A l w

ρ ρ ρ

δ ρ

∗ ⎡ ⎤+ + − + +⎣ ⎦

+ − +
 (3.5) 
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( )

( ) ( ) ( ) ( )
2 2 2 2 2 2 2

2

2 2

2 2 2 2 2

2 2 2 2 2 2 2           = ,

tt x x x x x L x xx

L x L

A v EI v A g l x v gm v

xf x t x g m A l v x l gm v

ρ ρ

δ ρ δ

∗ ⎡ ⎤+ + − +⎣ ⎦

− + + −
 (3.6) 

 
and the corresponding boundary conditions 
 
 ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 11 10, 0, 0, 0, , 0, , 0,x x x x x x x x xw t w t w l t w l t= = = =  (3.7) 
 
 ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2 2 22 20, 0, 0, 0, , 0, , 0x x x x x x x x x xv t v t v l t v l t= = = =

1

 (3.8) 
 
for the two bodies. 
For the special case in which the beam segments contact each other at the two points 

1x l=  and  only, the distributed forces are specified as 2 0x =
 

 
( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1 1 1 1
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A K K

K K

df x F x l t F t t D t
dt

dx l F t t D t
dt

δ δ ξ ξ ξ
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2 1 2 2 2      .

K K

A K K

df x F t t D t
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δ ξ ξ ξ
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⎛ ⎞= − + ⋅⎜ ⎟
⎝
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⎝ ⎠

ξ

⎠  (3.10) 

 
The non-linear characteristic of the spring force ( )( )KF tξ  takes into account the fact 
that in the range of backlash no forces can be transferred. The same is valid for the 
assumed damping coefficient ( )( )KD tξ : 
 

 
( )( ) ( ) ( ) ( )

( ) ( )

1 sign
2 2 2

1                              sign ,
2 2 2

S S
K

S S

l lF t c t t t

l lt t

ξ ξ ξ ξ

ξ ξ

⎡ ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝⎣
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 (3.11) 

 

 ( )( ) ( ) ( )1 11 sign sign
2 2 2

S
K

lD t d t tξ ξ ξ⎡ ⎤⎛ ⎞ ⎛= − + + −⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
,

2
Sl ⎞
⎟
⎠

 (3.12) 

 
 ( ) ( ) ( )( ) ( ) ( )( )( ) ( )1 2 10, , , , , .A At v t w l t t t v l l t t w l tξ ξ= − = − − 1  (3.13) 
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Discretization 
The discretization of the coupled partial differential equations (3.5) and (3.6) (nonlin-
ear and time-variant in general) together with the corresponding boundary conditions 
(3.7) and (3.8) is based on Galerkin’s method. For that, the approximate solutions 
( )1,w x t  and ( )2 ,v x t  are represented by a series expansion 

 

 ( ) ( ) ( ) ( )
( ) ( )1

1 1
1 1

cos
, cos cosh

cosh

N
i

i i i
i i

l
w x t u t x x

l
λ

λ
λ=

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ 1 ,λ  (3.14) 
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N N N i i i
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i i

v x t u t u t x u t x x

l l
x x

l l

κ κ

κ κ
κ κ

κ κ

+ + +
=

= + + +⎡⎣

−
⎤− + ⎦−

∑ 2

 (3.15) 

 
fulfilling all boundary conditions (3.7) and (3.8). 
Galerkin’s averaging leads to a system of ordinary differential equations of the type 
 
 ( ), , .t=Mu F u u  (3.16) 
 

4. VIBRATION SUPPRESSION CONCEPT 
To suppress vibrations, a state space control concept is introduced. For a system with-
out clearance and with a fixed telescopic length eq. (3.16) represents a time-invariant 
system of linear ordinary differential equations which can be reformulated as 
 

 ( )F t∗+ =Mu Cu b  (4.1) 
 
where  is a 2 -dimensional vector,  is the mass matrix and C  is the stiffness 
matrix of the system. 

∗b N M

 
Reduction of order 
Eq. (4.1) represents a -degree-of-freedom system. The objective of an order re-
duction is to find, for a given model of high order, a model of significantly lower or-
der whose dynamic behavior approximates the original behavior as well as possible. 
This means that the approximate model has to contain the essential modes of the 
original system, since they dominate the dynamic behavior of the original system (see 
[4], for instance). For this purpose, the system equations (4.1) are transformed to prin-
cipal coordinates  by 

2N

y

R

 
 .=u M y  (4.2) 
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The columns of the ( )2 ,2N N -matrix  will be composed of the right eigenvectors 

 of the system.  is a matrix which contains the left eigenvec-

tors of the system ( . There is 

RM

Rim ( 1,2,..., 2i = )N

)
LM

1T
L R

−=M M
 
 ( )1 2 2

1 2 2diag , ,...,T
L R Nω ω ω− 2= −M M CM D=  (4.3) 

 
and 2

iω ( 1,2,..., 2i = )N  are the eigenvalues of the system. 
From eq. (4.1), using (4.2) and (4.3), it follows that 
 
 ( )1 .T

L F t− ∗= − +y Dy M M b  (4.4) 
 
If then the eigenvectors corresponding to the large eigenvalues are removed from  
and , one obtains the reduced 

RM

LM ( )2 , rN N -matrices  and , and with that 
the approximate model is 

RrM LrM

 
 ( )1 .T

r r r Lr F t− ∗= − +y D y M M b  (4.5) 
 
This type of order reduction is justified since the state control should control the rigid 
body motion and the lower modal vibrations of the system. The high-frequency oscil-
lations possess a small magnitude and will diminish strongly by material damping ef-
fects. The number of higher-order modes to be included into the reduced model has to 
be determined depending on the application and the quality of control desired. 
 
Driving unit 
The driving unit of the telescope will be represented by a scalar system of first order  
 
  (4.6) AT F F K U+ = A

+ =

 
with time constant  and amplification factor .  is the control voltage of the 
motor. Introducing the state variables 

AT AK U

 
  (4.7) 1 1 1 1 2 2 1,..., , ,..., , ,

r r r r r rr N rN N r N rN Nz y z y z y z y z F+= = = =

 
instead of (4.5) and (4.6) one obtains 
 
 .U= +z Az b  (4.8) 
 
Controllability and observability 
Controllability and observability are checked by computing the so-called controllabil-
ity matrix  and observability matrix  (see [5], for instance): SQ BQ
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  (4.9) 1 2 1 1, ,..., , , ,S S S S Si SiSN ∗ +⎡ ⎤= =⎣ ⎦Q q q q q b q Aq=

=

1,

 
  (4.10) 1 2 1 1, ,..., , ,

T T
B B B B wF Bi BiBN∗ +⎡ ⎤= =⎣ ⎦Q q q q q c q A q

 
where 
 
 2 rN N∗ = +  (4.11) 
 
  (4.12) ( ) ( ) ( )1 20 , 0 ,..., 0 ,0,..., 0

T

wF N RrW W W⎡ ⎤= ⎡⎣⎣ ⎦c M⎤⎦ S
 
and S  comes from 
 
 .r =y Sz  (4.13) 
 
The system is completely controllable if the determinant of  does not vanish, and 
it is completely observable if the determinant of  does not vanish. For real sys-
tems, both conditions are usually fulfilled, but it should be mentioned that for a very 
large mass  problems with the observability may occur since then the reaction of 
the telescope vibrations on the motion of the base is very weak. 

SQ

BQ

Tm

 
Control design by pole placement 
The control synthesis in the state space is directed to the goal of taking the state of the 
system from an initial state  to the state 0z 0E =z  fulfilling demands on the dynamic 
behavior of the system. The poles of the feedback control loop determine the transfer 
behavior, and therefore they have to be selected in such a manner that the require-
ments on the dynamic behavior are fulfilled. This leads to the desired characteristic 
polynomial of the closed control loop: 
 
 ( ) 1

0 1 1
... .N N

N
p s p p s p s s

∗ ∗

∗
−

−
= + + + +  (4.14) 

 
To achieve this aim, the N ∗ -dimensional vector r  (see Fig. 2) as defined by J. 
Ackermann reads (see [5], for instance) 
 
 1

0 1
...T T T N T N

S SN
p p S

∗ ∗

∗
−

−
= + + +r q q A q A  (4.15) 

 
where  is the last row of the inverse controllability matrix T

Sq 1
S
−Q  (see (4.9)). 

For a constant or a slowly changing (compared to the control loop) command variable 
 (see Fig. 2), the pre-filter  (see Fig. 2 and [5], for instance) reads FSw S
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1 .
( )T T

wF

S −=
−c br A b

 (4.16) 

 
Luenberger observer 
For the present problem, the state vector  cannot be measured directly, but the con-
trol voltage U  of the motor and the displacement 

z
( )0,w t  of the base are measurable. 

The objective of the so-called Luenberger observer is to find from this information an 
approximate value  of . The observer then is written as ẑ z
 
 ( )ˆ ˆ 0, .U w t= + +z Fz b k  (4.17) 
 
The eigenvalues of  are prescribed and placed on the left of the eigenvalues of the 
closed control loop, which leads to the desired characteristic polynomial 

F

 
 ( ) 1

0 1 1
... .N N

N
f s f f s f s s

∗ ∗

∗
−

−
= + + + +  (4.18) 

 
According to (4.15) k  then reads 
 
  (4.19) 1

0 1
... N N

B BN
f f

∗

∗
−

−
= + + +k q A q A qB

∗

 
where  is the last column of the inverse observability matrix Bq 1

B
−Q  (see (4.10)). 

F  reads (see [5], for instance) 
 
  (4.20) .T

wF= −F A kc
 
Telescopic operations with clearance 
For real telescopic operations the parameters of the controller and of the observer are 
determined for different telescopic lengths and approximated by polynomials which 
leads to an adaptive controller ( )( ) ( )( ),A Al t S l tr  and observer ( )( ) ( )( ), ,A Al t l tF b  

. Due to the Luenberger observer, straightforward measurements of the mo-
tion of the telescope base and of the control variable of the actuator are sufficient to 
operate the controller. This makes it possible, to apply the controller, developed for 
the reduced linear system model, to the significantly more complicated system with 
clearance (3.16) for studying the influence of clearance on the vibration suppression 
during telescopic motions. 

( )( Al tk )

 
5. SIMULATION RESULTS 

Quantitative results are presented here for a 2-sectional system. The results should il-
lustrate the effect of the controller on a telescopic system with and without clearance 
and only represent a small extract of the existing results. The parameters originate 
from a test rig of the Institut für Fördertechnik und Logistiksysteme, Universität 
Karlsruhe (TH): 
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1 2 1.35ml l= = , , , ,
, , , , . 

The calculation results are based on 4-term truncations (3.14) and (3.15). The control-
ler influences the rigid body motion and the first modal vibration of the system. The 
poles of the closed control loop and of the Luenberger observer are placed on the 
points -8 and -12 in the complex plane. 
The system starts from an initial point without any initial velocity and has to cover a 
straight distance of 8  before it stops after 8s . Fig. 3 shows the position of the base 
of the telescope versus time for a prescribed velocity of 1m  and for a motion pre-
scribed by the controller. Both simulations are done with 

2
1 2 0.001mA A= = 8 4

1 2 0.83 10 mI I −= = ⋅ 37850kg/mρ =

100kgTm = 17.897kgLm = 11 22.1 10 N/mE = ⋅ 710 N/mc = 310 Ns/md = 3n =

m
/s

( 0.01m)Sl =  and without 
 clearance. During the simulations, the telescopic length increases from 

 to  with constant velocity. Fig. 4 shows the position of the 
telescope tip relative to its base during the motion and illustrates the vibration sup-
pression by state control. The remaining deflection of the relative position in the 
simulation with clearance comes from the tilted position of the upper segment in the 
lower segment due to clearance. 
 

( 0mSl = )

( )0 0.15mAl = ( )8 1mAl =

6. CONCLUSIONS 
To improve efficiency and to overcome possible safety problems of multi-section 
constructions during extending and retracting motion of the sections, a vibration sup-
pression in such structural systems of variable geometry seems to be useful. To 
achieve this, an appropriate modeling of the system together with the development of 
an efficient control strategy are the essential problems to be treated. For slender 
beam-shaped structural members, the present contribution has suggested an approach 
to find a good solution with a justifiable computational expense. 
To suppress unavoidable vibrations, the concept of state control via pole placement 
seems to be very efficient. Based on a model reduction, it is possible to design a con-
trol approach which exhibits the desired effects without extensive effort. Introducing 
a so-called Luenberger observer, straightforward measurements of the motion of the 
telescope base and of the control variable of the actuator are sufficient to operate the 
controller. Additionally, this makes it possible to apply the controller developed for 
the reduced linear system model to the significantly more complicated system with 
clearance for studying the influence of clearance on the closed control loop. The 
straightforward handling opens the way for exhaustive parameter studies. 
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Fig. 1: a) System model, b) Contact formulation. 
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Fig. 2: State space control loop. 
 

 
 

Fig. 3: Position of the base.   Fig. 4: Relative position. 
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