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Abstract  
 
Congenital heart disease is the most common birth defect occurring in 1 out of 100 

live births. Gene inactivation has shed significant light on the genes that are 

involved in regulating the proper morphogenesis of the heart. One of them is the 

T-box transcription factor TBX1, which has been implicated in 22q11 deletion 

syndrome, (22q11.DS; DiGeorge/velo-cardio-facial syndrome). Patients with 

22q11DS exhibit multiple congenital malformations including severe 

cardiovascular defects. One goal is to understand the etiology of the 

cardiovascular defects in this syndrome. However, though inactivation of Tbx1 in 

the mouse results in neonatal lethality due to severe heart defects, the molecular 

mechanisms of Tbx1 are still elusive. In this thesis, I show that Tbx1 is co-

expressed with the bicoid-like homeobox transcription factor Pitx2 in cells of the 

left secondary heart field from E8.0 onwards. In situ hybridization studies reveal 

down-regulation of Pitx2 in these cells in the Tbx1-/- embryos. To investigate a 

possible genetic interaction of both genes, I crossed Tbx1+/- and Pitx2+/- mice. 

The double heterozygous mice showed reduced viability and died perinatally due 

to severe cardiac defects including double outlet right ventricle, atrial-septal and 

ventricular-septal defects. All these defects occurred with variable penetrance. 

Asymmetric expression of Pitx2 is regulated by an enhancer that is located 

between exons 4 and 5, in which I identified a putative T-half site near an Nkx2.5 

binding site. I show that Tbx1 can bind to this T-half site and in addition, can 

activate the Pitx2 enhancer with the synergistic action of Nkx2.5. The results in 

this thesis link Tbx1, for the first time, to asymmetric cardiac morphogenesis and 

unravel a novel Tbx1-Pitx2 pathway in the secondary heart field which is 

indispensable for proper asymmetric heart development.  
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1. Introduction 
 

In this thesis the role of Tbx1, a member of the T-gene family of 

transcription factors, in heart development is discussed. TBX1 is a strong candidate 

gene for the etiology of 22q11.2 deletion syndrome (22q11DS; also known as 

velo-cardio-facial syndrome (VCFS)/DiGeorge syndrome (DGS); MIM 

192430/188400). Congenital heart defects occur prominently in this syndrome. 

The role of Tbx1 in heart development, its genetic interaction with Pitx2, a 

homeobox transcription factor and putative down stream target of Tbx1, will be 

investigated by using mouse models and in vitro studies. 

 

1.1 The mammalian heart 
 

1.1.1 Structure of the adult heart 

The mammalian heart is a modified muscular vessel, composed of separate 

but anatomically fused units: the right and left ventricle, and the right and left 

atrium. These four chambers are necessary to regulate the systemic and pulmonary 

circulation in the body (reviewed in Harvey, 2002). Venous blood from the body 

goes into the right atrium (RA) from where it enters the right ventricle (RV) 

through the tricuspid valve. From the RV the blood reaches the lungs through the 

pulmonary arteries. Then, oxygenated blood from the lungs flows through the 

pulmonary veins to the left atrium (LA) and passes through the mitral valve into 

the left ventricle (LV) from where it enters the arterial vascular circulation of the 

body through the aorta (Fig. 1.1 E) (reviewed in Harvey, 2002). 

The heart consists additionally of specialized muscle cells that are 

responsible for the electrical conduction controlling the heart beat. These cells are 

organized into nodes or tracts. The electrical impulse is initiated at the so called 

sinuatrial node which lies at the junction between the RA and the superior caval 
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vein. This impulse spreads throughout the atria to the atrioventricular node (AVN) 

from where it is passed on to the ventricles. The bundle of His, its bundle branches 

and the Purkinje fibers are responsible for the rapid conduction to the apex of the 

ventricle and throughout the ventricle, respectively (reviewed in Harvey, 2002).  

 

1.1.2 Development of the Heart 

Congenital heart defects (CHDs) are found in ~ 1% of live births and are 

the most common of all birth defects (Hoffman and Kaplan, 2002), since the 

developing heart is very sensitive to genetic and environmental perturbation 

(reviewed in Harvey, 2002). The heart is the first organ to develop in the embryo 

and is essential for its survival. The development of the heart is a complex process, 

as its structures derive from three different cellular origins, the cardiac crescent, 

the anterior/secondary heart field and the cardiac neural crest. To understand the 

etiology of CHDs, it is therefore important to study cardiac development. 

Genetically engineered mice have proven to be a good model to gain insight into 

the complex processes during heart development and into the genes which are 

involved.  

 

1.1.2.1 Early heart development  

 

1.1.2.1.1 The cardiac crescent or primary heart field 

Cardiac progenitor cells originate in the epiblast lateral to the primitive 

streak, from where they migrate into the splanchnic layer of the lateral pate 

mesoderm (LPM) and are recognizable as a crescent–shaped structure, the cardiac 

crescent or primary heart field, at 7.75 d.p.c. (Harvey, 2002) (Fig. 1.1 A). At day 

8.25 p.c. the progenitors fuse ventrally to form the linear heart tube. The heart tube 

consists of an outer myocardial epithelium which surrounds an endothelial lining. 

At this time point the inflow tract of the heart lies caudally and the outflow tract 

(OFT) region is positioned cranially (Fig. 1.1 B). The heart is still connected to the 
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foregut through the dorsal mesocardium. At E8.5, the regions of the common 

atrium, atrioventricular canal (AVC), primitive ventricle and OFT are 

recognizable in the heart. At this stage the linear heart tube starts to undergo a 

process called cardiac looping in which the tube bends to the right side. During 

this process the inflow tract is progressively moved dorsally and cranially above 

the ventricles (reviewed in Harvey, 2002). The process of looping is almost 

completed at E10.5. At this stage, the endocardial cushions form in the 

atrioventricular canal (AVC) and in the OFT. They are the precursors of the 

tricuspid and mitral valves, the aortico-pulmonary septum, aortic and pulmonary 

valves. Massive cell proliferation occurs at the inner surface of the ventricles 

which results in the formation of the trabeculae. Between the ventricles the inter-

ventricular septum is formed (Fig. 1.1 C). Remodeling of the heart is a process 

which starts concomitantly to the looping event and is almost completed by E12.5. 

Further spiraling of the heart tube positions the OFT ventrally between and the 

inflow tract dorsally from the two ventricles. The division of the heart to a four 

chambered unit is completed, around E14.5, through the fusion of the muscular 

inter-atrial and inter-ventricular septae with the non-muscular atrio-ventricular 

septum, which leads to clearly distinguishable LV, RV, LA and RA (reviewed in 

Harvey, 2002) (Fig. 1.1 D).  
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                                                                           Modified after Srivastava and Olson, 2000 

 

Fig. 1.1: Schematic representation of heart development 

A: At E7.5, cardiac precursor cells form a crescent shape structure located in the 

mesoderm of the embryo. Specific regions of the cardiac crescent will give rise to certain 

structures in the heart (color coded). B: At E8.5, the linear heart tube forms, with the 

inflow tract located caudally and the outflow tract (OFT) located cranially. C: During the 

looping of the heart the atria are placed above the ventricles. And the ventricles balloon 

out form the outer curvature of the heart by massive trabeculation. The endocardial 

cushions, precursors of the valves and septae form in the atrio-ventricular canal (AVC) 

and the OFT. Cardiac neural crest cells migrate into the heart and contribute to the aortic 

arch arteries as well as to the OFT. Remodeling of the aortic arch arteries into the mature 

aortic arch begins. D: At E12.5, the inter-ventricular septum (IVS) and the inter-atrial 

septum (IAS) forms during the so called remodeling phase of the heart. E: At birth, the 

four-chambered heart is established. A, atrium; AS, aortic sac; DA, ductus arteriosus; 

LA, left atrium; LCC, left common carotid; LSCA, left subclavian artery; LV, left 

ventricle; PA, pulmonary artery; RA, right atrium; RCC, right common carotid; RSCA, 

right subclavian artery; RV, right ventricle; V, ventricle. 
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1.1.2.1.2 The anterior heart field (AHF) or secondary heart field (SHF) 

The AHF or SHF is a recently discovered cell population of cardiac 

precursor cells in the pharyngeal mesoderm. This cardiac progenitor population 

expresses myocardial transcription factors such as Nkx2.5, Gata4 and Mef2c that 

also can be found in cardiac precursor cells of the primary heart field (Waldo et 

al., 2001; Dodou et al., 2004). Lineage tracing experiments revealed contribution 

of cells from the pharyngeal mesoderm to the arterial as well as to the venous pole 

of the developing heart (Meilhac et al., 2004; reviewed in Kelly, 2005).  It has 

been shown that they are added to the distal outflow tract myocardium (Kelly et 

al., 2001; Waldo et al., 2001; Mjaatvedt et al., 2001). In addition, recent studies 

provided evidence that SHF cells also contribute to the right ventricle, the 

interventricular septum (Kelly et al., 2001; Zaffran et al., 2004), the left ventricle, 

the atria and the inflow region of the heart (Meilhac et al., 2004). Perturbation or 

ablation of SHF cells leads to congenital heart defects (reviewed in Kelly, 2005; 

Ward et al., 2005). The understanding of the molecular pathways involved in the 

development of the cardiac progenitor cells in the pharyngeal/splanchnic 

mesoderm have just begun to be unraveled and implicate Lim homeobox, T-box, 

Mef2, Gata, Smads and forkhead genes (Cai et al., 2003; Yamagishi et al., 2003; 

Hu et al., 2004; Lee et al., 2004; Xu et al., 2004; Von Both et al., 2004). 
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                                                                                            Modified after van den Hoff et al., 2004 

 

Fig. 1.2: Relation between the primary heart field and the secondary heart field 

The primary heart field or cardiac crescent is depicted in green. The SHF which lies 

anterior to the primary heart field is depicted in blue. A-D show the relative position of 

both cardiac regions between stage E7.5 - E8.5. The primary heart field gives rise to the 

left ventricle (LV) and the atrio-ventricular canal (AVC) and parts of the right ventricle 

(RV), whereas cells of the SHF give rise to the outflow tract (OFT) and the right ventricle 

(RV). 

 

1.1.2.1.3 The cardiac neural crest 

Neural crest cells (NCCs) originate in the developing neural tube in the 

embryo. During neural tube formation cells detach from the border of the neural 

and epidermal ectoderm and then migrate along specific pathways throughout the 

embryo. Finally, they will differentiate into various cell types depending on their 

destination. NCCs can be divided into two major groups, the cranial and the trunk 

neural crest (Gilbert, 2003). The cardiac neural crest derives from the caudal 

region of the cranial neural crest and contributes to the formation of the 

endothelium of the aortic arch arteries, the aortico-pulmonary septum in the 

outflow tract of the heart as well as the thymus, thyroid and parathyroid glands 

(Kirby, 1989; Kirby and Waldo, 1995; Waldo et al., 1998). 
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1.1.3 Formation of the septae during cardiac remodeling and associated 

defects 

Formation of all the septae is a very crucial step during heart development, 

since abnormalities in endocardial cushions and subsequent failure in septum 

formation can cause a variety of life threatening cardiac malformations (Fig. 1.3) 

like atrial septal defect (ASD), ventricular septal defect (VSD), defects involving 

the great vessels, transposition of the great arteries (TGA) and tetralogy of Fallot 

(TOF) as well as persistent truncus arteriosus (PTA) (Sadler, 2000). 

 

Fig. 1.3: Schematic representation of common cardiac malformations 
A shows a normal heart. B depicts a VSD (arrow). The septum between the two 

ventricles is disrupted leading to mixing of oxygenated and deoxygenated blood from the 

left (lv) and the right ventricle (rv). 



 8

C represents an ASD (arrow), an opening between the left and the right atrium leading to 

mixing of oxygenated and deoxygenated blood from the left (la) and the right atria (ra). D 

shows TGA, where the aorta (ao) originates from the right instead of from the left 

ventricle and the pulmonary artery (pa) originates from the left instead of from the right 

ventricle. E illustrates a PTA. The pulmonary artery (pa) arises above an undivided 

truncus, caused by failure of the fusion of the endocardial cushions in the outflow tract. 

PTA is always associated with a VSD. F depicts TOF which is characterized by the 

stenosis of the infundiblum of the pulmonary artery (arrow), hypertrophy of the right 

ventricle, VSD and an overriding aorta that originates directly above the VSD. 

A, E: modified after www.rch.org.au; B, D and F: modified after www.inova.org; C: 

modified after www.pediheart.org.  

 

1.1.3.1 Formation of the atrial septum 

The septum primum descends from the top of the common atrium and 

divides it. The two atria are still connected through an opening, the ostium 

primum. The latter will eventually be obliterated through the fusion of the septum 

primum with the endocardial cushions in the AVC. Cell death in the septum 

primum leads to a new opening, the ostium secundum. It ensures further 

communication between the atria.  A new septum, the septum secundum, forms on 

the right side of the septum primum, as a consequence of the incorporation of the 

sinus horn into the right atrium. The septum secundum extends from the top into 

the lumen of the atrium and progressively overlaps with the septum primum but a 

small opening, the foramen ovale, persists. At birth the two septae are pressed 

against each other through increased blood pressure in the left atrium and the 

opening will be closed preventing mixing of deoxygenated and oxygenated blood 

(Sadler, 2000). 
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1.1.3.2 Formation of the mitral and tricuspid valves in the AVC 

The AVC is surrounded by four endocardial cushions. The superior and the 

inferior cushions fuse and divide the common AVC into a left and right AVC. 

Failure in fusion leads to persistence of a common AVC. After fusion the cushion 

tissue becomes fibrous and forms the mitral valve in the left and the tricuspid 

valve in the right ventricle (Sadler, 2000).  

 

1.1.3.3 Formation of the interventricular septum 

The interventricular septum (IVS) consists of a myocardial and a 

mesenchymal part. The myocardial part is formed by the medial walls of the 

ventricles during extensive growth of the myocardium. The mesenchymal part is 

formed by the inferior endocardial atrial-ventricular cushion, the right and the left 

endocardial cushions in the outflow tract region. Fusion of all these parts results in 

formation of the IVS. A ventricular septum defect (VSD) occurs often in the 

mesenchymal part of the septum and is one of the most common birth defects (Fig. 

1.3 B) (Sadler, 2000).   

 

1.1.3.4 Formation of the aortico-pulmonary septum 

The endocardial cushions on the left and right side in the outflow tract grow 

and finally fuse to form the aortico-pulmonary septum. The septum divides the 

outflow tract into the pulmonary trunk and the aorta. Defective division of the 

outflow tract can lead to abnormalities such as transposition of the great arteries 

(TGA) (Fig. 1.3 D). This means that the aorta originates from the right instead 

from the left ventricle and the pulmonary artery originates from the left instead of 

the right ventricle. Failure in fusion of the septum leads to persistent truncus 

arteriosus (PTA) (Fig. 1.3 E) (Sadler, 2000). 
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1.2 Cardiac defects in the 22q11DS 
 

22q11DS has an incidence of 1 in 4,000 live births (Burn and Goodship, 

1996). This makes it the most common interstitial deletion syndrome in humans 

(Scambler, 2000). Its main clinical features are outflow tract and aortic arch 

defects (see Table 1.1). In addition, patients have a characteristic facial 

appearance, learning disabilities, velopharyngeal insufficiency, hypernasal speech, 

cleft palate, (Sphrintzen et al., 1978), hypoplastic or absent thymus resulting in 

immunodeficiencies, and hypocalcemia (DiGeorge, 1965). Adult patients can 

develop schizophrenia and bipolar disorder (Karayiorgou et al., 1995). The 

majority of the deletions are sporadic, though 10-20% are autosomal dominant 

inherited (reviewed in Yamagishi, 2002). 

 

Table 1.1:  Frequency of cardiac defects in 22q11DS patients (n = 305) (after 

Emanuel et al., 2001) 

 
Cardiac Defect % 

Tetralogy of Fallot (TOF) 20

Ventricular septal defect (VSD) 14

Interrupted aortic arch  12

Truncus arteriosus  6

Vascular ring  6

Atrial septal defect (ASD)  3

Right-sided aorta  2

Others incl. transposition of the great arteries, 

pulmonary atresia or stenosis, coarctation of 

aorta, hypoplastic left heart syndrome and 

heterotaxy 

 6

 

In approximately 90% of the cases the patients have a 3 Mb deletion 

encompassing ~30 genes, 8% have a nested 1.5 Mb deletion encompassing 27 
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genes (Morrow et al., 1995; Lindsay et al., 1995a; Carlson et al., 1997) Deletions 

of other sizes have also been described in a small subset of patients (reviewed in 

Yamagishi, 2002).  However, there is no genotype-phenotype correlation. The 

phenotype is fully penetrant but with variable expressivity (Lindsay et al., 1995a; 

Lindsay et al., 1995b). The deletions occur through chromosomal rearrangements. 

Chromosome 22q11 seems to be very prone to such chromosomal rearrangements, 

since three congenital malformation syndromes could be mapped to this region, 

22q11DS, der(22) syndrome and cat eye syndrome (CES) (Edelmann et al., 1999a; 

1999b; Funke et al., 1999; Edelmann et al., 2001). The reason for this 

susceptibility lies in certain regions of the chromosome, characterized by low copy 

repeats (LCRs), which are very susceptible to rearrangements (Edelmann et al., 

1999a; 1999b; Shaikh et al., 2000). 

 

1.2.1 Mouse models for 22q11DS 

To understand the etiology of the 22q11DS several groups generated mouse 

models. A major part of the 3 Mb region including the 1.5 Mb deleted region of 

chromosome 22q11 is syntenic to a region on mouse chromosome 16 (MMU16).  

This advantage led to the generation of genetically engineered mice harboring 

different nested deletions of this region (Puech et al., 1997; Kimber et al., 1999; 

Lindsay et al., 2001; Merscher et al., 2001) (Fig. 1.4) The large deletion mouse 

(Lgdl/+) generated by Merscher et al. (2001) contains a 1.5 Mb deletion 

encompassing more than 24 genes. It mimics the human 1.5 Mb deletion.  

Phenotypical analysis showed a reduced viability due to conotruncal heart 

defects in about 50% of the Lgdl/+ mice. To define the critical region that is 

responsible for the cardiac defects in the Lgdl/+ mouse mutant, complementation 

studies were carried out. Mice harboring smaller deletions as well as BAC 

(bacterial artificial chromosomes) transgenic mice over-expressing specific genes 

of 1.5 Mb region were used (Lindsay et al., 2001; Merscher et al., 2001). The 

mouse mutant containing a  BAC harboring the 4 human genes GP1Bβ, PNUTL1, 
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TBX1 and WDR14 was able to rescue most of  the cardiac phenotype of Lgdl/+ 

mutant mice (Merscher et al., 2001). Out of the four genes, TBX1 was the only 

gene that was expressed in the affected structure in patients during embryogenesis 

(see 1.3.3.1). Thus, TBX1 was considered the only strong candidate for the 

phenotype in the mouse mutants and hence in the 22q11DS patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                        Modified after Merscher et al., 2001 

 

Fig. 1.4: Map of part of human chromosome 22q11 (HSA22) affected in 22q11DS 

patients and its corresponding region on mouse chromosome 16 (MMU16). 

The relative order of the genes (circles) is depicted on both chromosomes. The arrows 

indicate differences in orientation of the genes between the mouse and the human 

chromosome, respectively. Generated mouse models harboring different deletions of the 

region and genes of BAC transgenic mice are indicated and referenced.  
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1.2.2 Phenotype of the Tbx1+/- and Tbx1-/- mutant mouse 

Based upon the fact that Tbx1 was expressed in the structures affected in 

22q11 patients, null mutants of Tbx1 were generated. Haploinsufficiency of Tbx1 

in mice did not display the full spectrum of defects seen in 22q11DS patients as it 

had been expected. They only exhibited mild cardiovascular defects such as 

abnormal patterning of the great vessels, abnormal origin of the RSA, 

retroesophageal RSA and interrupted aortic arch. The difference in the phenotype 

is possibly due to different sensitivity to Tbx1 dosage of organ development in the 

mouse versus humans (Merscher et al., 2001; Liao et al., 2004). 

The Tbx1 null mutant however, exhibited a far more severe phenotype 

compared to 22q11DS patients. Tbx1-/- mice die perinatally and suffer from 

severe cardiovascular defects such as PTA, VSD and right sided aortic arch. An 

outer, middle and inner ear, masseter and pterygoid muscles are missing.  In 

addition, they have craniofacial abnormalities, thymus and parathyroid gland 

aplasia as well as thyroid gland hypoplasia (Liao et al., 2004).  

 

1.3 The T-box transcription factor, Tbx1 
 

1.3.1 T-box transcription factors 

Tbx1 belongs to the family of T-box genes, which are dosage sensitive 

transcription factors. T-genes serve different roles in many aspects of development 

and they are highly conserved throughout all animal species. The vertebrate 

genome contains at least 18 different T-box genes (Papaionnaou, 2001; Naiche et 

al., 2005). It is assumed that the T-box genes all derive from a single precursor 

gene and gene duplication led to the expansion of T-genes during evolution 

(Papaionnaou and Silver, 1998; Fig. 1.5). The T-genes are characterized through 

the T-box region which is homologous to the DNA-binding domain of Brachyury 

or T, hence their name. The T-gene was first discovered in 1927 (Dobrovolskaia-
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Zavadskaia) and cloned in 1992 (Beddington et al.). Since then, many T related 

genes have been discovered in different species. Several T-box genes can be 

linked to human syndromes which emphasizes their significant role in 

development. Besides TBX1, which is involved, as mentioned above, in the 

etiology of 22q11DS (Merscher et al., 2001), mutations in TBX3 cause Ulnar-

Mammary-Syndrome (UMS). UMS is an autosomal dominant disorder which is 

characterized through upper limb malformations, mammary gland hypoplasia 

and/or dysfunction, dental and genital abnormalities (Bamshad et al., 1997; 1999).  

Mutations in TBX5 lead to Holt-Oram syndrome (HOS), an autosomal dominant 

disorder. Patients exhibit cardiac and limb malformations (Li et al., 1997). TBX19 

or T-PIT was shown to be required for the expression of pro-opiomelanocortin 

(POMC), precursor of the adrenocorticotrophic hormone (ACTH) and melanocyte 

stimulating hormone in the corticotroph and melanotroph cell lineages in the 

pituitary. Mutations in TBX19 lead to loss of ACTH resulting in adrenal 

insufficiency (Yi et al., 1999). TBX4 has recently been linked to the small patella 

syndrome (SPS) which shows its important role in skeletal development of patella, 

pelvis and feet (Bongers et al., 2004).  
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                                               Modified after Papaioannou and Silver, 1998; Naiche et al., 2005 

 

Fig. 1.5: Phylogenetic tree of T-box genes 

The T-box genes are an ancient family and have arisen through gene duplication from 

one ancestor gene. There are at least five different T-box subfamilies (each family is 

color coded) in animal species. Members of each subfamily have similar or overlapping 

expression patterns (Chapman et al., 1996).  
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1.3.2 Structure and function of T-box genes 

The T-box proteins are about 50 – 78 kDa in size. They are characterized 

through a sequence-specific DNA binding domain, termed T-box, and a 

transcriptional activator or repressor domain (reviewed in Wilson and Conlon, 

2002) (Fig. 1.6). The relative position of these domains is variable among the 

different T-box proteins. However, it is conserved in the T-box protein and its 

orthologs (reviewed in Wilson and Conlon, 2002). The T-box, a stretch of 180-190 

aa residues, is defined as the minimal region that is necessary for the sequence-

specific binding to the DNA (Papaioannou and Silver, 1998).  It encompasses one 

third of the protein. All members, studied thus far, bind to the DNA consensus 

sequence 5’-AGGTGTGAAA-3’. Homology of the T-box domain varies between 

the different T-box proteins, though some specific residues are 100% conserved. 

The differences in the T-box region may reflect binding specificity to their target 

genes. T-box proteins have shown to be transcriptional activators, repressors or 

both, depending on the developmental context. The activator or repressor domain 

lies in the C-terminus of the protein, a region of low homology between T-box 

proteins (reviewed in Wilson and Conlon, 2002). The functional domain in Tbx1 

has not been identified yet. It is likely that Tbx1 can act as both, repressor and 

activator (Raft et al., 2004; Takeuchi et al., 2005).  

T-box proteins have been shown to interact with other transcription factors 

to regulate gene expression. Cooperative binding of promoters and synergistic 

activation of target genes have been demonstrated for T-box proteins and 

homeodomain, Lim domain and Gata zinc finger proteins (Stennard et al., 2003; 

Garg et al., 2003; Krause et al., 2005). 
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                                                                                   modified after Wilson and Conlon, 2002 

 

 

Fig. 1.6:  Protein structure of the T-box proteins Xbra and Tbx1 

Depicted are the schematic protein structures of Xbra, the homolog of T in Xenopus, and 

Tbx1 in mouse. The structure of T-box proteins is conserved. The DNA-binding domain 

or T-box (red) encompasses one third of the protein and is necessary for binding 

specificity to downstream targets. Transcriptional regulatory domains are located in the 

C-terminus of the protein; Xbra has a transcriptional activation domain (yellow). A 

regulatory domain has not been described for Tbx1 yet. Xbra as well as Tbx1 contain a 

nuclear localization signal (green) enabling them to shuttle into and out of the nucleus. 

 

 

 

 

 

DNA - binding domain

Transcriptional  
activation
domain

Nuclear localization signal 

Xbra 

Tbx1 
1 10 28 4741 42

1 1 22 28 30 38 43
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1.3.3 Tbx1 in mouse development 

 

1.3.3.1 Tbx1 expression in murine embryogenesis 

Tbx1 expression can be detected as early as E7.5 in the mesoderm and 

splanchnopleura. The latter comprises the splanchnic mesoderm, a part of the 

LPM, and the endoderm in the developing embryo. At stages E9.5 - 10.5 it is 

expressed in the mesenchyme and endoderm of the pharyngeal arches, the head 

mesenchyme, the otic vesicle, the somites (Chapman et al., 1996, Nowotschin, 

unpublished data) as well as in the outflow tract of the heart (Vitelli et al., 2002). 

At later stages of embryogenesis Tbx1 is found in the craniofacial muscles, 

including muscles of mastication and the pterygoid muscles, the tongue muscles, 

the tooth buds (Chapman et al., 1996; Nowotschin, unpublished data). 

Immunohistochemistry suggests that Tbx1 can shuttle between the nucleus and 

cytoplasm (Aggarwal, unpublished data; Braunstein, unpublished data, 

Nowotschin, unpublished data). Its nuclear localization signal has recently been 

published (Stoller and Epstein, 2005). 

 

1.3.3.2 Role of Tbx1 in development 

Until now, the function of Tbx1 in many developmental processes has been 

elusive. However, recent studies implicated important roles for Tbx1 in the 

development of the ear, the craniofacial muscles, and the heart (Raft et al., 2004; 

Moraes et al., 2005; Kelly et al., 2004; Vitelli et al., 2002a; 2002b; Xu et al., 

2004). 

 

1.3.3.2.1 Tbx1 is important for ear development 

It has been proposed that Tbx1 is necessary for patterning of the otocyst and 

proper morphogenesis of the inner ear sensory organs. It does so by suppressing 

neurogenin mediated neural fate determination of cells in the otocyst (Raft et al., 
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2004). In addition, Tbx1 was shown to be important for proper neural crest cell 

migration during middle and inner ear development (Moraes et al., 2005). 

 

1.3.3.2.2 Tbx1 plays a role in craniofacial development  

Craniofacial development is based on interactions of the pharyngeal 

ectoderm, mesoderm and endoderm and neural-crest derived mesoderm. Tbx1 is 

expressed in the pharyngeal core mesoderm which gives rise to craniofacial 

muscles. The development of the latter is perturbed in Tbx1 null mutants. Early 

markers of the myogenic lineage, the bHLH transcription factors MyoD and Myf5 

are not expressed in the Tbx1-/- embryos. Therefore, it is hypothesized that Tbx1 

regulates the onset of branchiomeric myogenesis in the core mesoderm of the 

pharyngeal arches (Kelly et al., 2004).  

In addition, a cell autonomous and a non cell autonomous role have been 

proposed for Tbx1 in the pharyngeal pouch endoderm. Tbx1 acts cell 

autonomously by propagating growth and patterning of the endoderm. The 

expression of Tbx1 in the endoderm is assumed to be regulated by forkhead 

protein, Foxa2. Foxa2 and Foxc2/Foxc1 binding sites in the Tbx1 promoter 

possibly drive its expression in the pouch endoderm and in the head mesenchyme, 

respectively (Yamagishi et al., 2003). Moreover, it is hypothesized that Tbx1 

supports the development of the pharyngeal pouch derivatives via signaling non 

cell autonomously through the neural crest cells. Though Tbx1 is not expressed in 

neural crest cells, their migration pathways have shown to be defective in the Tbx1 

null mutants (Vitelli et al., 2002a) 

 

1.3.3.2.3 Role of Tbx1 in cardiovascular development 

Since Tbx1-/- mice display severe cardiac defects Tbx1 must play an 

important part in cardiovascular development. Tbx1 is expressed in cells of the 

SHF. Tbx1 has been implicated in controlling cell proliferation in the SHF and 

thereby regulating outflow tract development (Xu et al., 2004). Cell proliferation 
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in the SHF has been shown to be regulated by the fibroblast growth factor, Fgf10. 

(Kelly et al., 2001) There is evidence that Fgf10 might be a direct downstream 

target of Tbx1 since it is down regulated in the pharyngeal mesoderm of Tbx1 null 

mutants (Vitelli et al., 2002b; Xu et al., 2004). Further proof for this hypothesis 

comes from cell culture studies which showed activation of an Fgf10-reporter 

gene by Tbx1 (Xu et al., 2004). Further proof for a role of Tbx1 in cardiovascular 

development provided the conditional knock out of Tbx1 in Nkx2.5-expressing 

cells (Xu et al., 2004). Nkx2.5 is a marker for cardiomyocytes and required for 

OFT development (Lyons et al., 1995). Loss of Tbx1 in Nkx2.5-expressing cells 

led to the same OFT defects as in the complete knock out of Tbx1 (Xu et al., 

2004). 

 

1.4 The homeobox gene Pitx2 (pituitary homeobox 2) 
 

The transcription factor PITX2 was first identified by positional cloning in 

humans. The gene was originally called RIEG, since point mutations in this gene 

can cause Rieger syndrome, the most extreme form of Rieger-Axenfeld syndrome 

(Semina et al., 1996). Most of the mutations found in Rieger syndrome affect the 

PITX2 homeobox region which plays a major part in the recognition and binding 

of DNA of target genes. Since then, Pitx2 has been cloned from mouse and other 

species. The mouse homologue of PITX2 was identified by a group of researchers 

who were looking for homeobox genes that are expressed in the pituitary (Ptx2) 

and brain (Otlx2, Brx1) (Gage and Camper, 1997; Mucchielli et al., 1996; 

Kitamura et al., 1997). In addition, it was identified to be a target gene (ARP1) of 

the human acute leukemia ALL1 protein (Arakawa et al., 1998). The official 

nomenclature in the Mouse Genome Database is now Pitx2. 

Pitx2 belongs to the class of homeobox genes which share a highly 

conserved domain throughout evolution, called homeodomain which encompasses 

60 aa. Homeobox genes play crucial roles in embryonic development of many 
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organisms. According to their similarities, they have been subdivided into 

different classes. Pitx2 belongs to the bicoid-related Pitx gene family, a 

subdivision of the paired-class homeobox genes which includes three vertebrate 

paralogues Pitx1, 2 and 3 and the fly cognate (Gage et al., 1999).  All members of 

the paired-class have a characteristic aa residue at position 50 of the 

homeodomain, position 9 of the third helix, which is responsible for the 

recognition of DNA (Gehring et al., 1994; Hanes and Brent, 1991). All Pitx genes 

have a lysine residue at this position which recognizes the sequence 5’-

TAATTTCC-3’, a bicoid-like sequence, hence their name (Gage and Camper, 

1997). The amino acid sequence of the Pitx2 homeodomain shows high 

conservation between species. It is identical in Homo sapiens, Mus musculus, 

Xenopus laevis and Danio rerio (Campione et al., 1999) and shares homology 

with other bicoid-like homeodomain proteins like Otx1, Otx2, Otd, gsc and unc-30 

(Semina et al., 1996). In addition to the homeodomain, another conserved region 

has been found within the Pitx2 gene. It comprises a 14 aa stretch in the C-

terminus of the coding region (Semina et al., 1996) and is important for protein-

protein interactions (Amendt et al., 1998). 

 

1.4.1 Pitx2 and Rieger Syndrome 

As mentioned above, mutations in human PITX2 were found in patients 

with Rieger syndrome (RGS1; MIM 180500). This autosomal dominant disorder 

was first defined in 1935 (Rieger) and was mapped to chromosome 4q25 (Murray 

et al., 1992). It is the most extreme form of a family of diseases summarized as 

Axenfeld-Rieger syndrome. The most common feature of this syndrome is ocular 

anomalies like anterior chamber anomalies leading to glaucoma manifested in 

50% of affected individuals. Rieger syndrome is further characterized by dental 

hypoplasia (missing, small or malformed teeth), mild craniofacial dysmorphism, 

and umbilical stump anomalies. Other features associated with Rieger syndrome 

but less common are abnormal cardiac, limb and pituitary development (Amendt 
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et al., 2000; Semina et al., 1996, Mammi et al., 1998). Expression studies of Pitx2 

during murine embryonic development showed its expression in all the affected 

structures in this syndrome. 

 

1.4.2. Role of Pitx2 in mouse development 

 

1.4.2.1 Expression of Pitx2 during embryogenesis 

The earliest expression of Pitx2 is detected at E7.5 in the head folds, in the 

left lateral plate mesoderm (LPM) and left splanchopleura (Piedra et al., 1998, 

Yoshioka et al., 1998; Campione et al., 1999). Later, during organogenesis from 

E9.5 through E14.5, Pitx2 is expressed asymmetrically in handed organs such as 

heart, left lung bud, gut and vitelline vessels. Symmetric expression sites are the 

pharyngeal arches, the mesenchyme adjacent to nasal structures, the eye and the 

somites. Later in development, Pitx2 expression can be found in the muscles of the 

trunk, craniofacial muscles, developing teeth, hind limb buds, the brain and 

pituitary (Kitamura et al., 1997; Mucchielli et al., 1997; Nowotschin, 1997). Pitx2 

expression in the pituitary and the brain has been studied extensively. In the 

pituitary it is detected as early as E9.5 in Rathke’s pouch which develops into the 

anterior and intermediate lobes of the pituitary, in which its expression persists in 

distinct hormone producing cells (Gage and Camper, 1997).  Early expression in 

the brain has been shown in areas such as the midbrain, zona limitans 

intrathalamica and ventral diencephalon. Later, the expression becomes restricted 

to certain brain nuclei (Kitamura et al., 1997; Mucchielli et al., 1996).  

 

1.4.2.2 Isoforms of Pitx2 

In humans as well as in mice three isoforms of Pitx2 have been 

characterized: Pitx2a, Pitx2b, Pitx2c (Schweickert et al., 2000; Liu et al., 2001). A 

fourth one, PITX2d, has been found only in humans so far (Cox et al., 2002). The 

isoforms are generated either by alternative splicing (Pitx2a and Pitx2b) or by 
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alternative promoter usage (Pitx2c) and differ in their N-terminus while the C-

terminus is identical in all isoforms (Fig. 1.7) The isoforms are differentially 

expressed during development (Kitamura et al., 1999; Schweickert et al., 2000; 

Yu et al., 2001). Pitx2a and b are co-expressed with Pitx2c in structures that are 

symmetric. Pitx2c is the only isoform that is asymmetrically expressed on the left 

side of LPM and later in the heart and other handed organs (see 1.4.2.4). It plays a 

major role in patterning of the left-right axis in vertebrates and in cardiac 

morphogenesis in early embryonic development (Logan et al., 1998; Piedra et al., 

1998; Ryan et al., 1998; Campione et al., 1999). 
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Fig. 1.7: Schematic representation of the Pitx2 isoforms in the mouse 

The C-terminus which contains the homeobox (black) in exon 5 and 6 is conserved in all 

Pitx2 isoforms. The isoforms differ in their N-termini: Pitx2a and b share exons 1 and 2 

(green and pink). Exon 3 (yellow) only included in Pitx2b. The N-terminus of Pitx2c 

consists of exon 4 (blue) which is unique to this isoform. ex, exon. 

 

 

1.4.2.3 The Pitx2 null mutant 

To study the role of Pitx2 during mouse development Pitx2 deficient mouse 

lines were generated (Lin et al., 1999; Lu et al., 1999; Kitamura et al., 1999). The 

Pitx2 null mutant is embryonic lethal. 35% of the homozygous mice die between 

day 9.5 p. c. and 10.5 p. c.. 100% of the Pitx2-/- embryos are dead by E15. 

Analysis of the phenotype showed that Pitx2-/- embryos fail to close the ventral 
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body wall leading to an external position of thoracic and abdominal organs. In 

50% of the Pitx2-/- embryos embryonic turning was arrested though by E9 - E10. 

Severe cardiac defects, such as hypoplasia of the ventricles, ASD, DORV and 

PTA, were also a major component of the phenotype. In 50% of the Pitx2-/- mice 

the heart is positioned on the right instead on the left side (Lin et al., 1999; Lu et 

al, 1999; Kitamura et al., 1999; Kioussi et al., 2002). Other features of the Pitx2 

phenotype were craniofacial anomalies, reduction of the pituitary gland, right 

pulmonary isomerism, hypoproliferation of the spleen, the liver, the periorbital 

musculature and the lens.  Moreover, the stomach of the null mutants turned to the 

left instead of to the right. Generation of allelic series of Pitx2 mutations, null and 

hypomorphic alleles, showed varying severity of the above described phenotype 

suggesting a tissue specific dosage dependency on Pitx2 for laterality and 

organogenesis (Gage et al., 1999).  

 

1.4.2.4 Pitx2c is a mediator of left-right asymmetry 

Vertebrates show a bilateral external symmetry but organs such as the 

heart, gut, lung, spleen and liver develop asymmetrically. The left-right 

positioning of these organs is conserved between species (situs solitus). 

Disturbances in patterning of the left-right axis can lead to full reversal of the body 

plan (situs inversus) or partly reversal of some organs (situs ambiguus or 

heterotaxia). In the last few years several publications shed light on the signaling 

events during left right patterning in the embryo.  

Pitx2c is asymmetrically expressed early in the left LPM and in the heart, 

gut and lung during organogenesis. Though the upstream signals can vary between 

species the asymmetric expression in the LPM and later in the developing organs 

was shown to be conserved between chick, mouse, Xenopus and zebrafish making 

Pitx2c an important player in the evolution of the left-right signaling pathways of 

vertebrate asymmetry (Logan et al., 1998; Piedra et al., 1998; Ryan et al., 1998; 

Yoshioka et al., 1998; Campione et al., 1999). 
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Pitx2c continues to be asymmetrically expressed during organ 

morphogenesis. Therefore, it is believed that it transduces left-right identity to the 

organs. Evidence for this assumption came from studies of null mutants of the 

transforming growth factors-β (Tgf-β) related genes lefty-1 and Activin Receptor 

IIB. Activin Receptor IIB is the receptor for Tgf-β-related factor nodal, which is 

expressed early in the left LPM and known to be upstream of Pitx2. Lefty-1 has 

been shown to restrict the expression of nodal and hence Pitx2 to the left side 

(Meno et al., 1998). 

In the lefty-1 null mutant Pitx2 is misexpressed on both sides of the heart leading 

to left-left isomerism of heart (Meno et al., 1998). Whereas in the Activin Receptor 

IIB knock out mouse (Oh and Li, 1997) Pitx2 fails to be expressed leading to a 

right isomerism of the heart. However, absence of Pitx2 in the gut does not cause 

isomerism but left-right reversal only. It still remains elusive how Pitx2 translates 

the left identity into correct heart looping and gut coiling. Since Pitx2 is also 

expressed in myocytes in these tissues, it is speculated that it can mediate changes 

in cell shape through contractile proteins in the cytoskeleton of these cells (Logan 

et al., 1998; Campione et al., 1999). However, null mutants of Pitx2 did show a 

normal rightward looping, which questions the specific role of Pitx2 in this 

process. 

 

1.4.2.5 The role of Pitx2c in heart development and the Pitx2c null 

mutant  

Analysis of Pitx2-/- mutants implies that it is more likely that Pitx2 plays a 

crucial role in cardiac morphogenesis rather than in the process of looping. To 

understand its role in cardiac morphogenesis, the Pitx2c expression pattern in the 

heart was studied more closely (Campione et al., 2002; Franco and Campione, 

2002). Earliest expression was seen in cardiac precursor cells in the left LPM at 

day E7.5. As the primitive heart tube forms, Pitx2c is expressed in its left part, 

subsequently as the heart begins its rightward looping Pitx2c expression is 
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maintained in those parts that derive from the left tubular heart components. At 

later stages during organogenesis its expression becomes restricted to the left 

inflow tract, the left atrial appendage myocardium and the left atrioventricular 

canal myocardium. In fetal stages Pitx2c is found in the left atrium, left AVC, the 

left superior caval vein as well as in the primary and secondary atrial septa (Fig. 

1.8) (Campione et al., 2002; Franco and Campione, 2003). Besides in the heart, 

Pitx2c expression has been described in cardiac neural crest cells (Kioussi et al., 

2002) as well as in cardiac precursor cells of the pharyngeal arch mesoderm, the 

presumptive SHF (Liu et al., 2002).   

To assess the role of Pitx2c in development, Pitx2c null mutants were 

generated. Inactivation of the Pitx2c isoform leads to defects in remodeling of the 

pharyngeal arches arteries (right sided aortic arch and left innominate artery). In 

addition, Pitx2c-/- mice exhibit DORV, ASD, VSD, abnormal AV-cushions, valve 

defects, abnormal pulmonary and caval veins (Liu et al., 2002). These results 

suggest that that Pitx2c has distinct functions in the development of the aortic arch 

vessels, the outflow and inflow tract of the heart. It is needed for the correct 

asymmetric remodeling of the pharyngeal arch arteries.  Moreover, Liu et al. could 

show that Pitx2c is necessary for patterning of the SHF as well as the outflow tract 

myocardium to ensure proper development of the conotruncus. Fate mapping 

experiments elucidated that the pulmonary and caval veins are populated by Pitx2 

daughter cells which accounts for the defects in the null mutant (Liu et al., 2002). 

Generation of Pitx2ab knockout mice with varying expression levels of Pitx2c 

revealed the importance of Pitx2c for cardiovascular development since only null 

mutants with normal Pitx2c expression levels did not display any cardiac defects. 

In addition, analysis of the hypomorphic mutants showed that different organs 

require different expression levels of Pitx2c. Low levels of Pitx2c expression were 

sufficient for normal atrial development, whereas organs such as the duodenum 

and the lungs required higher levels. Requirement of only low levels of Pitx2 for 
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correct heart development could be an explanation for scarce incidences of cardiac 

abnormalities in Rieger syndrome patients (Liu et al., 2001). 

Studies of the Pitx2c null mutants and hypomorphic allels showed that 

Pitx2 is indispensable for proper heart development. Direct upstream regulators in 

the inflow and outflow tract of the heart have been elusive so far. Until now, direct 

upstream regulator genes of Pitx2 are only known in the LPM, where Pitx2 is 

activated initially through nodal signaling. Later, its expression is maintained by 

the homeobox transcription factor Nkx2.5 (Shiratori et al., 2001). However, it is 

not clear if Nkx2.5 is regulating maintenance of Pitx2 expression by itself or 

whether there are other transcription factors involved.  
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                                                                              Modified after Franco and Campione, 2003 

 

Fig. 1.8: Schematic representation of Pitx2c expression (blue) during cardiac 

development  
A: Pitx2c is expresses at E7.5 in the left cardiac crescent (lcc). 

B: Pitx2c is expressed exclusively in cells on the left side of the inflow (in) and outflow 

(out) region in the linear heart tube. 

C and D: While the heart undergoes looping, Pitx2 stays expressed in cells that 

originated from the left side of the linear heart tube. Thus, it is expressed in part of the 

outflow tract (oft), right ventricle (rv), left ventricle (lv) and left atrium (la). Expression 

can also be found in the aortic arches (aa) and in the cardiac neural crest cells (CNC) that 

migrate into the outflow tract. 

E and F: Later in development, Pitx2 expression is restricted to the left atrium (la), the 

interatrial septum (ias), pulmonary vein (pv) and the left superior caval vein (lsc). 

Endocardial cushions are depicted in green. ivs, interventricular septum; ra, right atrium; 

rcc, right cardiac crescent; rscv, right superior caval vein. 
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1.5 Rationale  

 
Congenital heart diseases (CHD) make up 1:100 live births and are 

responsible for the majority of the prenatal deaths. The cause for CHD is mostly 

unknown. In the last few years genetically engineered mice have shed significant 

light on the genes involved in cardiac development. One of them is the 

transcription factor, Tbx1. Its human homolog, TBX1 has been shown to be a 

strong candidate for the cardiac defects in 22q11DS patients. Expression analysis 

of Tbx1 during murine embryogenesis as well as severe outflow tract and aortic 

arch patterning defects in the Tbx1 null mutant point to an important role of Tbx1 

in cardiac morphogenesis. However, the molecular pathways of Tbx1 are still 

elusive. To elucidate its role during early heart development, I took a candidate 

gene approach to identify possible downstream targets and pathways of Tbx1. One 

gene of particular interest was the homeobox transcription factor Pitx2, since it is 

expressed in cells of the SHF like Tbx1. Detailed analysis of the expression pattern 

of both genes should help to understand whether both genes are co-expressed in 

the same cells of the SHF. In addition, expression studies in Tbx1 null mutants 

should elucidate if Pitx2 expression is altered in those mice. Indeed, down 

regulation of Pitx2 in cells of the SHF was found suggesting that Pitx2 acts 

downstream of Tbx1. To ascertain whether Pitx2 acts in the same genetic pathway 

like Tbx1, Pitx2 heterozygous mice were intercrossed with Tbx1 heterozygous 

mice. Double heterozygous mice displayed a more severe cardiac phenotype than 

single heterozygotes suggesting a genetic interaction between these two genes. To 

assess the nature of the interaction between Tbx1 and Pitx2, in vitro studies should 

be performed. Luciferase assays using a Pitx2 enhancer reporter construct and a 

Tbx1 expression construct should determine whether Tbx1 could activate the Pitx2 

gene. Moreover, electromobility shift assays should be carried out to see whether 
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Tbx1 can directly bind to the Pitx2 enhancer. The mouse model generated in this 

thesis should lead to more insight into the role of Tbx1 in cardiac morphogenesis 

and serve as a basis to understand the etiology of cardiac defects in 22q11DS and 

CHDs in general. 
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2. Materials and Methods 
 

2.1 Materials 
 

2.1.1 Sources of chemicals, reagents and equipment 
 

ABC (Avidin-biotinylated peroxidase 

complex) 

DAKO, Carpinteria, CA 

Agarose  ISC Bioexpress, Kaysville, UT 

Alcian Blue Sigma, St. Louis, MO 

Alizaren Red Sigma, St. Louis, MO 

Ammonium hydroxide (NH4OH) Sigma, St. Louis, MO 

Ammoniumpersulfate (APS) BIORAD, Hercules, CA 

Ampicillin Sigma, St. Louis, MO 

Anti-Flag Affinity Gel Sigma, St. Louis, MO 

Antigen Unmasking Solution Vector laboratories, Burlingame, CA 

Acrylamide/Bisacrylamide (37.5:1) Roche, Indianapolis, IN 

Axioskop 2 plus Zeiss, Thornwood, NY 

BM-Purple staining solution Roche, Indianapolis, IN 

Beta-Galactosidase reporter gene 

activity Kit 

Sigma, St. Louis, MO 

Beta-mercaptoethanol BIORAD, Hercules, CA 

Boehringer Block Roche, Indianapolis, IN 

Bovine Serum Albumine (BSA) New England Biolabs, Beverly, MA 

Sigma, St. Louis, MO 

Bradford Reagent BIORAD, Hercules, CA 

Bromphenol blue Sigma, St. Louis, MO 
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Chaps (3-[(3-Cholamidopropyl)-

dimethylammonio]-1-propane-sulfonate 

Sigma, St. Louis, MO 

Chloroform Fisher, Pittsburgh, PA 

Citric Acid Fisher, Pittsburgh, PA 

Citrate buffer 6% Vector laboratories, Burlingame, CA 

Competent cells INV110 Invitrogen, Carlsbad, CA 

Competent cells Top10 one shot  Invitrogen, Carlsbad, CA 

Cover slips Fisher, Pittsburgh, PA 

DAB substrate buffer and Chromogen DAKO, Carpinteria, CA 

Deoxycholate acid Sigma, St. Louis, MO 

Deoxy-nucleosidtriphosphates Roche, Indianapolis, IN 

Digoxigenin labeling Mix Roche, Indianapolis, IN 

Dimethylsulphoxide (DMSO) Fisher, Pittsburgh, PA 

Dissecting tools Fine Science Tools, Foster City, CA 

DNA Gel Purification Kit Qiagen, Valencia, CA 

DNA-Ladder 1Kb Invitrogen, Carlsbad, CA 

DNase, RNase free water Gibco/Invitrogen, Carlsbad, CA 

DNeasy Tissue Kit Qiagen, Valencia, CA 

Dry Milk (Blotting grade) BIORAD, Hercules, CA,  

Dulbecco’s Mod Eagle Medium Gibco/Invitrogen, Carlsbad, CA 

ECL, Western Lightning 

Chemiluminescent Reagent  

Perkin ElmerTM, Wellesley, MA 

EDTA 0.5 M  Gibco/Invitrogen, Carlsbad, CA 

Embedding cassettes Fisher, Pittsburgh, PA 

Eosin B Poly Scientific, Bayshore, NY 

Ethanol 200 proof Fisher, Pittsburgh, PA 

Ethidium bromide Sigma, St. Louis, MO 

Fetal Bovine Serum Gemini Bioproducts, Woodland, CA 
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Filtered pipette tips Scitech Instruments, Franklin, NJ 

Formalin, 10% Neutral Buffered  

(Accustain) 

Sigma, St. Louis, MO 

Formamide Fisher, Pittsburgh, PA 

G-50 Sephadex Spin Columns Amersham, Pharmacia Biotech, 

Piscataway, NJ 

Gel Slick FMC Bioproducts, Rockland, ME 

Glacial Acetic Acid Fisher, Pittsburgh, PA 

Glutaraldehyde 25% Sigma, St. Louis, MO 

Glycine Gibco/Invitrogen, Carlsbad, CA 

Glycine (Blotting Grade) BIORAD, Hercules, CA,  

Glycerol Sigma, St. Louis, MO 

Goat Serum Sigma, St. Louis, MO 

Hematoxylin Poly Scientific, Bayshore, NY 

Heparin Sigma, St. Louis, MO  

Hepes Sigma, St. Louis, MO 

Histowax Surgipath Surgipath, Richmond, IL 

Hotstart PCR kit Qiagen, Valencia, CA 

Hydrochloric acid 12.5 N Fisher, Pittsburgh, PA 

H2O2 3% DAKO, Carpinteria, CA 

Immunocal Decal Chemical Corporation, NY 

Isopropanol Fisher, Pittsburgh, PA 

Kanamycin Sigma, St. Louis, MO 

Kodak ultrasensitve film (Biomax MS) Fisher, Pittsburgh, PA 

L-Glutamine Gibco/Invitrogen, Carlsbad, CA 

Laemmli Buffer BIORAD, Hercules, CA,  

Ligase buffer (10x) Roche, Indianapolis, IN 

Lithiumchloride (LiCl) Sigma, St. Louis, MO 
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Low mass DNA ladder Gibco/Invitrogen, Carlsbad, CA 

Luciferase Assay System Promega, Madison, WI 

Magnesium chloride (MgCl) Sigma, St. Louis, MO 

Magnesium chloride solution (PCR) Roche, Indianapolis, IN 

Maleic acid Sigma, St. Louis, MO 

Microtome, Leica RM 2155 Leica, Bannockburn, IL 

Methanol Fisher, Pittsburgh, PA 

Microscopic slides Superfrost Plus Fisher, Pittsburgh, PA 

Mini Quick Spin Columns Roche, Indianapolis, IN 

N, N, N’, N’-

Tetramethylethylendiamine (TEMED) 

BIORAD, Hercules, CA,  

NBT/BCIP Staining solution Roche, Indianapolis, IN 

Oligonucleotides Invitrogen, Carlsbad, CA 

Paraformaldehyde Sigma, St. Louis, MO 

Pap pen Vector Laboratories, Burlingame, CA 

PCR tubes USA Scientific, Ocala, FL 

Penicillin/Streptomycin Gibco/Invitrogen, Carlsbad, CA 

Petri dishes Fisher, Pittsburgh, PA 

Permount, mounting medium Fisher, Pittsburgh, PA 

Peroxidase Block DAKO, Carpinteria, CA 

Phenol Fisher, Pittsburgh, PA 

Phosphate buffered saline with or 

without Calcium and Magnesium 

Mediatech, Herndon, VA 

Pipette tips USA Scientific, Ocala, FL 

Pipettes ( 1ml, 5ml, 10ml, 25ml) Fisher, Pittsburgh, PA 

Polyfect Reagent Qiagen, Valencia, CA 

Potassium chloride (KCL) Sigma, St. Louis, MO 

Potassium hydroxide (KOH) Sigma, St. Louis, MO 
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Precision Plus Protein Dual Color 

Standard 

BIORAD, Hercules, CA 

Protran (Nitrocellulose membrane 

0.45µm) 

Schleicher und Schuell,  

Protein G Agarose Sigma, St. Louis, MO 

Proteinase K Roche, Indianapolis, IN 

Qiagen buffers P1-P3 Qiagen, Valencia, CA 

Restriction enzymes and buffers New England Biolabs, Beverly, MA 

RNase Inhibitor (RNase Out) Invitrogen, Carlsbad, CA 

Slide staining rack EMS, Fort Washington, PA 

Sodium acetate (NaAc) Sigma, St. Louis, MO 

Sodium chloride (NaCl) Sigma, St. Louis, MO 

Sodium dodecyl sulfate (SDS) BIORAD, Hercules, CA, 

Sodium hydroxide Sigma, St. Louis, MO 

SSC (Saline-sodium citrate) Buffer 20 x Sigma, St. Louis, MO 

Stereomicroscope Leica, Bannockburn, IL 

Surgipath Histowax Surgipath, Richmond, Il 

T3, T7 and SP6-Polymerase and 10 x 

Transcription buffer 

Roche, Indianapolis, In 

T4 Kinase & 10 x Kinase Buffer New England Biolabs, Beverly, MA 

 

T4 Ligase & 10 x Ligation buffer Roche, Indianapolis, IN 

Taq polymerase  Roche, Indianapolis, IN 

TBE-(Tris-Borate-EDTA-) Buffer, 10 x Sigma, St. Louis, MO 

Tissue culture plates Fisher, Pittsburgh, PA 

Torula-RNA Sigma, St. Louis, MO 

Tris buffered Saline (pH 8) Sigma, St. Louis, MO 

TGS-(Tris-Glycine-SDS-) Buffer,  10 x  BIORAD, Hercules, CA,  
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Tris HCl, Tris Base Sigma, St. Louis, MO 

Tris-HCL (10%)  SDS Gels BIORAD, Hercules, CA,  

Triton X-100 Sigma, St. Louis, MO 

Trizol Invitrogen, Carlsbad, CA 

Trypsine Gibco/Invitrogen, Carlsbad, CA 

Tween 20 Sigma, St. Louis, MO 

Whatman 3MM paper Fisher, Pittsburgh, PA 

Xylene Fisher, Pittsburgh, PA 

 

 

2.1.2 Plasmids 
 

pBluescript II KS +/- Stratagene, La Jolla, CA 

pGl3 SV40 luciferase vector Promega, Madison, WI 

pcDNA 3.1 Invitrogen, Carlsbad, CA 

pCR II Topo Vector Invitrogen, Carlsbad, CA 

pEGFP-N1 Clontech,  

CMV-β-Gal Obtained from Dr. L. D’Adamio 

Flag-Nkx2.5 in pCI  Obtained from Dr. V.M. Christoffels 

 

 

2.1.3 Bacteria 
 

Top 10 E.coli Invitrogen, chemical competent cells, 

FmcrA ∆(mrr-hsd RMS-mcrBC) 

Φ80lacZ ∆M15 ∆lacX74 recA1 

ara∆139 ∆(ara-leu)7697 galU galK 

rpsL (StrR) endA1 nupG 
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Inv 110 E.coli Invitrogen, chemical competent cells, 

F’tra ∆36proAB lacI9Z∆M15 rpsL 

(StrR) thr leu endA thi-1 lacY galK 

galT ara tonA tsx dam dcm dupE44 

∆(lac-proAB) ∆(mcrC-mrr102::Tn10 

(TetR) 

 

 

2.1.4 Cell lines 
 

Cos 7 fibroblast-like cell line from monkey 

kidney 

293T Human kidney carcinoma cell line 

 

 

2.1.5 Mouse lines 
 

FVB Taconic laboratories, Germantown, NY 

C57/Bl Jackson laboratories, Bar Harbor, ME 

Pitx2+/- mice in C57/Bl Obtained from Dr. Philip Gage,  

(Gage et al., 1999) 

Tbx1+/- in C57/Bl  Merscher et al., 2001 

Tbx1+/- in FVB  Liao et al., 2004 
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2.1.6 Probes used for in situ hybridization 
 

mPitx2 full length in pBluescript SK Obtained from Dr. Marina Campione, 

(Campione et al., 1999)  

mTbx1 full length in pCRII Topo was cloned in pCRII TOPO by PCR 

mNkx2.5  Obtained form Dr. Richard Harvey,  

(Lyons et al., 1995) 

mIslet-1 Obtained form Dr. Silvia Evans, 

(Cai et al., 2003) 

 

 

2.1.7 Antibodies 
 

Anti-bromodeoxyuridine (monoclonal, 

mouse) 

Roche, Indianapolis, IN 

Anti-Pitx2 (polyclonal, rabbit) Received from Dr. Tord Hjalt (Hjalt et 

al., 2000) 

Anti-Tbx1 (polyclonal, rabbit) Zymed, San Francisco, CA 

Anti-Digoxigenin, Fab-Fragments 

coupled with Alkaline Phosphatase  

Roche, Indianapolis, IN 

Goat-anti-rabbit, biotinylated DAKO, Carpinteria, CA 

Goat-anti-mouse, biotinylated DAKO, Carpinteria, CA 
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2.1.8 Oligonucleotides 
 

2.1.8.1 Tbx1 genotyping primers 

 

Set1:  

Tbx1KO1-F 5’-TTGGTGACGATCATCTCGGT-3’ 

Tbx1KO2-R 5’-ATGATCTCCGCCGTGTCTAG-3’ 

mut2-R 5’-AGGTCCCTCGAAGAGGTTCA-3’ 

  

Set2:  

Tbx1-WT-F 5’-AGTCTTGGGCAGGTGCATAA-3’ 

Tbx1-WT-R 5’-CACAGAACATGTTAAGCGGG-3’ 

Hygro-F 5’-CCATCACAGTTTGCCAGTGA-3’ 

Hygro-R 5’-GATTCCGGAAGTGCTTGACA-3’ 

 

 

2.1.8.2 Pitx2 genotyping primers 

 

Set1:  

Pitx2-31130 5’-TCGTGTCTTAAAAGGATGTGTTTCTTC-3’ 

Pitx2-30266 5’-TTCTGGAGGGTTTTCTTGTTCTAGG-3’ 

Pitx2-30265 5’-AGACTAGTGAGACGTGCTACTTCCATTTGT-3’ 

Set2:  

Pitx2-F 5’-GTGTCTGTAAAACACGCGCATG-3’ 

Pitx2-R 5’-GTCTCCAGTGAAGCCAAGCCT-3’ 
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2.1.8.3 Oligonucleotides in EMSA 

 

Wt-short:      5’-CAATCAGGTGTAAAGAGGAA-3’ 

 

M1-short:      5’-CAATCAGATTTGAAGAGGAA-3’ 

 

M2-short:      5’-CAATCAAATTTGAAGAGGAA-3’ 

 

Cons-short:   5’-CAATCAGGTGTGAAAAGGAA-3’ 

 

 

 

 

2.1.9 Solutions for whole mount and section in situ 

hybridization 
 

PBSw PBS (-Ca2+/Mg2+), 0.1% Tween-20 

Hybridization buffer 0.5 g Boehringer Block, 25 ml 

Formamide, 20 x SSC pH 7.0, dissolve 

at 65°C while stirring, then add  6 ml 

ddH2O,  5 ml 10 mg/ml torula RNA, 

100µl 50 mg/ml Heparin, 250µl 20% 

Tween-20, 10% CHAPS, 500µl 0.5 M 

EDTA pH 8.0; store at -20°C  

Maleic acid buffer 100 mM Maleic acid, 150 mM NaCl, 

pH 7.5 adjusted with NaOH 

BM-Block buffer 10% Goat serum, 1% Boehringer Block, 

dissolve in PBSw at 65°C for 1 hr 
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AP1-buffer, NTM-buffer 100 mM Tris pH 9.5, 100 mM NaCl, 50 

mM MgCl2 

 

 

2.1.10 Solutions for immunohistochemistry 
 

1 x TBS 10 x TBS (Sigma) in 1 l H2O 

ABC  5 ml 1 x TBS plus 1 drop avidin and 1 

drop Biotin (DAKO) 

DAB solution 1 ml Substrate buffer plus 1 drop 

Chromogen 

Blocking  solution 5% Serum, 2% BSA and 0.1% Triton 

X-100 in TBS 

Solution for secondary antibody 2.5% Serum in TBS 

Antigen retrieval solution 2 ml Antigen Unmasking Solution 

(Vector), 213 ml dH2O 

 

 

2.1.11 Solutions and media 
 

Ethidium bromide solution 10 mg/ml Ethidium bromide 

5 x Loading Dye for agarose gels 40 ml Glycerol, 50 ml 10 x TBE, 5 ml 

10% Bromphenol Blue, 5 ml 1% 

Xylene Cyan 

1 x LB-Medium 0.5% yeast extract, 2% Bacto-Tryptone, 

10 ml NaCl, add dH2O up to 1 l and 

autoclave afterwards 

SOC Medium Invitrogen, Carlsbad, CA 
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2.1.12 Media and Solutions for cell culture 
 

Culture medium for COS7 and 293T 

cells 

DMEM (GIBCO/Invitrogen), 10% FCS, 

1% L-Glutamine, 1% 

Penicillin/Streptamycin 

Freezing medium for COS7 and 293T 

cells 

DMEM, 1% DMSO, 1%  FCS 

Cell lysis buffer For cell extracts of luciferase assays and 

EMSAs: Passive cell lysis buffer 

(Promega) 

For CoIP: RIPA-Buffer (50 mM Tris 

pH 7.5, 200 mM NaCl, 1% Triton X-

100, 0.25% DOC, 1 mM EDTA) 

 

 

2.1.13 Radioactivity 
 

γ-32P-dCTP 

 

Amersham Pharmacia 

Biotech  

 

 

2.1.14 Solutions for Western blot  
 

Transferbuffer 1x 3.03 g Tris, 14.4 g Glycine, 20%MeOH 

in 1 l H2O 

Blocking buffer PBS, 0.1% Tween-20, 5% Dry milk 
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2.1.15 Solutions for EMSA 
 

DNA-binding buffer 5% glycerol, 10 mM Hepes pH 7.5, 25 

mM KCl, 1 mM DTT, 1 mM EDTA, 5 

mM MgCl2 
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2.2 Methods 
 

2.2.1 Analysis of nucleic acids 
 

2.2.1.1 Phenol/Chloroform extraction of nucleic acids 

The DNA was extracted with an equal amount of a 

phenol/chloroform/isoamyl (25:24:1) alcohol mixture to remove 

contaminating proteins. The mixture was then vortexed vigorously for 30 sec 

and centrifuged for 5 min at 12,000 x g. The top (aqueous) phase was 

removed and transferred into a new tube and was extracted again with an 

equal volume of chloroform. After extraction the top phase was removed and 

transferred into a new tube for EtOH precipitation. 

 

2.2.1.2 Precipitation of nucleic acids out of aqueous solutions 

In order to precipitate nucleic acid from an aqueous solution, it had to 

be adjusted to a 0.2 M salt concentration with  3 M Sodium acetate (pH 4.8). 

Then 2.5 vol. of 100% EtOH was added and the nucleic acids were 

precipitated for 0.5 hr at -20°C. Afterwards the sample was centrifuged for 

10 min at a speed of 10,000 x g. To remove excessive salt the pellet was 

washed with 70% Ethanol. Finally, the pellet was air dried at RT or in speed 

vacuum. Nucleic acids were stored in H2O or in TE-Buffer at -20°C. 

 

2.2.1.3 Precipitation of nucleic acids out of aqueous solutions with 

isopropanol 

DNA in an aqueous solution was precipitated with an equal volume of 

isopropanol. The mixture was precipitated on ice for 20 min and centrifuged 

at 10,000 x g for 10 min. The DNA pellet was washed with 70% Ethanol to 
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remove salts, air dried and resuspended in an appropriate volume of H2O or 

TE-buffer. 

 

2.2.1.4 Determination of nucleic acid concentration 

The concentration of DNA in a sample was measured in a 

spectrophotometer where its absorbance of UV light at a wave length of 260 

nm and 280 nm was measured against a blank (solvent of the DNA). One 

absorption unit at 260 nm equals 50 µg/ml of DNA, 40 µg/ml of RNA and 20 

µg/ml of single stranded oligonucleotides. The quotient of the absorption at 

260 nm and 280 nm is a measurement for the purity of the nucleic acid 

solution. The measurement should be at ~ 1.8 for DNA and ~ 2 for RNA. 

 

2.2.2 DNA-Preparation 
 

2.2.2.1 Preparation of small amounts of plasmid DNA (Mini-Prep) 

A volume of 1.5 ml of a 3 ml over night culture (1 x LB-medium) was 

transferred into an 1.5 ml tube, centrifuged for 1 min at 12,000 x g and the 

supernatant except for 100 µl discarded. The bacterial pellet was resupended 

and lysed in 50 µl Phenol/Chloroform (1:1). The suspension was vortexed. 

After centrifugation at 12,000 x g for 5 min the upper, aeqeous phase which 

contained the DNA and bottom, organic phase that contained proteins had 

separated. The upper phase (~ 100 µl) was transferred into a fresh tube. To 

precipitate the DNA, 2 µl of 5 M NaCl and 200 µl of EtOH were added and 

incubated for 30 min at -20°C. The sample was then centrifuged at 12,000 x 

g for 10 min, the supernatant discarded and the pellet washed with 70% 

EtOH. After air drying the DNA was resuspended in 20 µl - 50 µl H2O.  
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2.2.2.2 Preparation of large amounts of DNA (Maxi-Prep) 

Large amounts of DNA were prepared using the commercially 

available Qiagen buffers. An over night culture of 30 ml (1 x LB-Medium, 

containing antibiotics for selection) was distributed into 1.5 ml tubes and 

centrifuged for 1 min at 12,000 x g. Supernatant was completely discarded 

and the bacterial pellet was resuspended in 150 µl P1-Buffer (10 mM EDTA 

pH 8.0, 50 mM Tris/HCl, 100 µg/ml, and RNase A). Subsequently, two tubes 

were combined to one, containing 300 µl of lysed bacteria. A volume of 300 

µl P2-Buffer (200 mM NaOH, 1% SDS) was added to each tube to lyse the 

cells. The tubes were inverted 5 to 6 times and the suspension was incubated 

for 5 min at RT. To precipitate proteins and genomic DNA, 300 µl P3-Buffer 

(2.6 M KAc, pH 4.8) were added, samples incubated on ice for 15 min and 

centrifuged at 12000 x g for 6 min. Supernatant was transferred to fresh 1.5 

ml tubes, filled with isopropanol and incubated 30 min – 1 hr on ice to 

precipitate the DNA. To collect the DNA, the samples were centrifuged at 

12,000 x g for 15 min at 4°C. The DNA pellets were washed in 70% EtOH, 

air dried and resuspended in an appropriate amount H2O and then combined. 

Plasmid DNA was stored at -20°C. 

 

2.2.3 Gel electrophoresis of DNA and RNA 
 

2.2.3.1 Agarose gel electrophoresis  

Dependent on the size of the fragment of interest, a 0.8% - 2% agarose 

gel was made. The appropriate amount of agarose was dissolved completely 

in 1 x TBE buffer in a microwave (volume was dependent on size of gel 

tray). After adding 5 µl ethidium bromide (10 mg/ml) per 100 ml, the 

solution was poured into an appropriate gel apparatus.  
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Dependent on sample volume, a comb with the appropriate size was used. 

After polymerization of the gel was put into a gel box filled with 1 x TBE 

buffer and samples were loaded in 5 x Loading Dye (40 ml Glycerol, 50 ml 

10 x TBE, 5 ml 10% Bromphenol Blue, 5 ml 1% Xylene Cyan). Final 

concentration of Loading Dye was 1 x. The voltage used to separate the DNA 

or RNA bands ranged between 70 and 190 volt dependent on the size of the 

gel. 

  

2.2.3.2 Isolation and purification of DNA fragments from agarose 

gels 

The DNA band of interest was cut out with a razor blade under UV 

light. The DNA bands are visible under UV light because the ethidium 

bromide in the gel intercalates with DNA. Purification of the DNA from the 

gel was done using the Qiagen DNA Gel Purification Kit according to the 

manufacturer’s protocol. 

 

2.2.4 Cloning techniques 
 

2.2.4.1 Restriction digests of DNA 

A total of 3 units of restriction enzyme per 1 µg of DNA were used for 

a restriction digest. One U defines the amount of enzyme that is necessary to 

digest 1 µg lambda DNA in 1 hour. The volume of a restriction digest was at 

least 10 times larger than the volume of the enzyme in order to dilute the 

glycerol, contained in the enzyme mix. The digest was done in the 

appropriate buffer and at the recommended temperature for 4 - 6 hrs or over 

night. 
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2.2.4.2 Ligation of DNA fragments 

The DNA fragment to be ligated was used in a four fold molar excess 

to the vector. The appropriate amount of T4-Ligase and Ligase buffer were 

added and the ligation was incubated in a water bath over night at 16°C. 

 

2.2.4.3 LB/Ampicillin or LB/Kanamycin plates 

 A total of 5 g yeast extract, 10 g bacto tryptone, 10 g NaCl and 15 g 

bacto-agar was dissolved in 1 l ddH2O and autoclaved. Before pouring, the 

agar was cooled down to 60°C. Ampicillin, kanamycin, or both (final conc. 

50 µg/ml (Amp), 25 µg/ml (Kan)) were added for antibiotic selection and the 

agar was poured into Petri dishes (10 cm in diameter). 

 

2.2.4.4. Transformation of DNA into competent bacterial cells 

To transform DNA into competent bacteria, chemically competent 

TOP10 one shot cells or INV 110 cells from Invitrogen were used. About 

100 ng DNA were added to 50 - 100 µl competent cells and incubated for 30 

min on ice. Cells were heat shocked in a 42°C water bath for 30 sec. (Top 10) 

or 45 sec. (INV 110), respectively. Then, cells were immediately quenched 

on ice. 250 µl of SOC medium was added and cells were shaken in an 

incubator at 37°C for an hour. Cells were plated on LB agar plates with the 

appropriate antibiotics. 

 

2.2.5 Isolation of genomic DNA from mouse tails and yolk 

sacs for genotyping 
Mouse tails or yolk sacs from embryos were used for genotyping. 

Isolation of genomic DNA from these tissues was done using the DNeasy 

Tissue Kit from Qiagen. Tails and yolks sacs were incubated in 180 µl ATL-

Lysis Buffer and 20 µl Proteinase K at 55°C in a heat block shaking for 6 hrs 
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- over night to break down the tissue. The purification of the DNA was done 

according to the manufacturer’s protocol, except for yolk sacs isolated from 

embryos E7.5 - E8.5. Here, the genomic DNA was eluted from the column 

using 50 µl Elution buffer (Qiagen). Genomic DNA of tails and yolk sacs 

was stored at 4°C. 

 

2.2.6 Polymerase chain reaction (PCR) 
The PCR is used to amplify exponentially DNA of interest. A standard 

reaction in total volume of 25 µl contains 2.5 pmol of each primer, 0.4 µl of 

Taq Polymerase (5 U/µl) (HotStart Taq, Qiagen, for Pitx2 genotyping) 

FastStart Taq; Roche, for Tbx1 genotyping), 3 µl MgCl2 (25mM) 4µl dNTPs 

(1.25 mM), 2.5 µl Reaction buffer (10 x), and 20 ng of template DNA. Tails 

or yolk sacs were used for genotyping mice and embryos, respectively (see 

2.2.5). PCR conditions varied depending on primer pairs used. 

 

PCR conditions for Pitx2 genotyping using the primers: Pitx2-F, Pitx2-R or 

Pitx2-31130, Pitx2-30266 and Pitx2-30265 

 

94°C 15:00 min 1 cycle

94°C 0:30 min

60°C 0:30 min

72°C 2:30 min

37 cycles

72°C 10:00 min 1cycle
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PCR conditions for Tbx1 genotyping using the primers: Tbx1KO1-F, 

Tbx1KO2-R and mut-2-R 

 

94°C 10:00 min 1 cycle

94°C 0:30 min

55°C 0:30 min

72°C 2:30 min

35 cycles

72°C 10:00 min 1 cycle

 

 

PCR conditions: Genotyping for Tbx1 using the primers: Hygro-F, Hygro-R, 

Tbx1wt-F and Tbx1wt-R 

 

 

94°C 10:00 min 1 cycle

94°C 1:00 min

60°C 1:00 min

72°C  1:00 min

35 cycles

72°C 10:00 min 1 cycle
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2.2.7 Histology of mouse embryos 
 

2.2.7.1 Isolation of mouse embryos 

Mice were anesthetized using CO2 and then killed by cervical 

dislocation. The animal was laid on its back and its abdomen soaked in 70% 

EtOH, which reduces the risk of contaminating the dissection. A lateral 

incision on the ventral side of the animal was made using scissors. The skin 

could be pulled away so that the entire abdomen was exposed. Using fine 

scissors and Dumont forceps the peritoneum was cut open and the uterus 

duplex was isolated and transferred into PBS on ice. Embryos still in the 

uterus were separated from each other and each single embryo was isolated 

under the stereomicroscope in ice cold PBS. The uterus, the decidua and the 

yolk sac were removed using extra fine Dumont forceps. The yolk sac was 

used for genotyping the embryo.  

  

2.2.7.2 Fixation of mouse embryos and newborns 

Embryos E7.5 - E11.5 and E10.5 hearts for whole mount in situ 

hybridization as well as embryos for in situ hybridization (ISH) on sections 

were fixed in 4% PFA in PBS (-Ca2+/-Mg2+) at 4°C. Fixation times depended 

on embryonic stage and varied between 4hrs -16hrs. After fixation embryos 

for whole mount ISH were washed twice in PBS, 0.1% Tween-20 (PBSw) 

and then dehydrated in a MeOH series (25%, 50% and 75%) each step 10 

min. Embryos for ISH on sections were washed twice in PBS (-Ca2+/-Mg2+) 

and then dehydrated in an EtOH series (25%, 50% and 70%). The times for 

the dehydration steps varied according to the size of the embryo. Newborns 

and embryos for histological analysis and antibody staining were fixed in 

10% neutral buffered formalin. Fixation times varied according to the size of 
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the embryo (see Table 2.2.1). After fixation embryos were dehydrated 

through an EtOH series (25%, 50% and 70%). 

 

Table 2.2.1: Fixation times for mouse embryos and newborns in 10% neutral 

buffered Formalin 

 

Age  Fixation time 

Newborns  3 days

E15.5 – E18.5 2 days

E11.5 – E14.5 16 hrs

E9.5 – E10.5 6 hrs

 

 

2.2.7.3 Embedding of mouse embryos and newborns 

Specimens in 70% EtOH were put into embedding cassettes to be 

processed in an embedding machine using vacuum to make tissues or 

embryos permeable for wax. Newborns and fetuses (E16.5 - E18.5) had to be 

decalcified in Immunocal (Fisher) for 4 hrs prior to embedding. Specimens 

were dehydrated and incubated in wax according to Table 2.2.2. Then, 

specimens were transferred into embedding molds, where they were oriented 

in the desired position and submerged in melted wax (60°C). A microtome 

holding cassette was put on top. The mold was transferred onto a cold plate 

for 30 min. until the wax had hardened. A scalpel was used to remove the 

mold. The wax block was trimmed to be ready for sectioning with a 

microtome. 
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Table 2.2.2: Incubation times for tissue processing 

 

Reagent Stages  
E15.5 –  
E16.5 

Newborns and
decidual 
swellings 

Stages 
E10.5 –  
E14.5 

Stages E7.5 - 
E9.5 
(processed 
manually) 

70% Ethanol 5 min 5min 5min 5min
70% Ethanol 15min 20min 5min 5min
80% Ethanol 15min 20min 5min 5min
95% Ethanol 15min 20min 5min 5min

100% Ethanol 8min 20min 5min 5min
100% Ethanol 10min 20min 5min 5min
100% Ethanol 15min 25min 7min 5min

Xylene 10min 20min 5min 10min
Xylene 10min 25min 5min 10min
Xylene 15min 25min 7min -

Paraffin 15min 30min 15min 15min
Paraffin 15min 35min 20min 15min
Paraffin 15min 40min 20min 15min

 

 

2.2.7.4 Sectioning of tissue 

Tissue blocks were trimmed with a razor blade. The wax block with 

the specimen to be cut was then fixed to the microtome via the holding 

cassette. Specimens for in situ hybridization on sections were cut at 10-12 

µm, specimens for immunohistochemistry and histological analysis were cut 

at 7 µm. Ribbons of sections for immunohistochemistry or histological 

analysis were transferred into a 40°C water bath, so that sections could 

spread on the surface of the water. Sections were then transferred onto a slide 

and dried vertically at room temperature. Ribbons of sections for in situ 

hybridization on sections were transferred onto prepared slides with a drop of 

sterile water. These slides were put on a slide warmer (50°C) for 30 min to 

spread the sections. Finally, sections were dried vertically at RT. 
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2.2.8 Analysis of the phenotype of mutant mice 
 

2.2.8.1 Hematoxylin and eosin staining of histological sections  

Counterstaining with hematoxylin and eosin of histological sections of 

mouse embryos and newborn mice was used to analyze the morphology and 

histology of the mouse mutants. Sections of embryos or newborns were 

deparaffinized in xylene (1 x 8 min, 1 x 7 min), rehydrated in an 2 x 100% (3 

min), 95% (2 min), 80% (2 min) and 70% (1 min) EtOH series and rinsed 

under running tap water for 3 min. Sections were then stained in hematoxylin 

(1/3 dilution in H2O) for 2 -5 min and washed again under running tap water 

to get rid of an excess of hematoxylin. A destaining step in acid alcohol (1% 

HCl (12.5 N) in 70% EtOH) followed for 5 sec. Slides were washed again in 

running tap water for 5 min and stained again in Mordant stain (1.5 ml of 

28% NH4OH in 600 ml H2O) for 5 sec. Slides are subsequently washed under 

running tap water (8 min) and 80% EtOH (1 min) and then stained in eosin (8 

min). Finally, sections were rehydrated through an 80% (30 sec), 95% (45 

sec), 95% (1 min), 2 x 100% (1 min) EtOH series and 2 steps in xylene (7 

and 8 min). Slides were mounted using Permount. Morphology of the 

specimens was examined under a light microscope (Axioskop 2 Plus, Zeiss) 

and pictures were taken using a digital camera (Leica DC300). 

 

2.2.8.2 Immunohistochemistry on paraffin sections  

Immunohistochemistry was used to examine the spatial and temporal 

expression of proteins in embryos as well as in adult tissue.  Compared to in 

situ hybridization for which RNA probes can be synthesized for basically any 

gene of interest, the immunohistochemistry is strongly dependent on a well 

working antibody for the protein of interest. Alternatively, frozen sections 

instead of paraffin sections and immunofluorescence instead of 



 56

immunohistochemistry can be used. To dewax the tissue, slides were 

incubated at 60°C for 30 min and then processed through 2 x 10 min xylene 

and then rehydrated through a 2 x 100%, 95%, 80% and 70% EtOH series (2 

min each). Subsequent washings steps were done in H2O and 2 x TBS 

(Sigma) for 2 min each. To block endogenous peroxidase activity, slides 

were treated with 3% H2O2 (DAKO) for 15 min at RT. Then, slides were 

washed with TBS for 2 min and incubated in citrate buffer (pH 6.0; Vector) 

in a steamer for 20 min to retrieve the antigen and then cooled down for 30 

min before continuing with the blocking step. To reduce unspecific binding, 

the sections were blocked in 5% goat serum (The type of serum used in the 

blocking buffer depends on where secondary antibody was raised in.), 2% 

BSA, 0.1% Triton X-100 for 1 hr at RT. Incubation of primary antibody was 

carried out for 1 hr (rabbit-anti-Tbx1) and 2 hrs (rabbit-anti-Pitx2) at RT. 

Working dilution of the used antibodies were: Tbx1: 1/500 and Pitx2: 1/50. 

After the incubation slides were washed in TBS (6 x 5 min) and then the 

secondary antibody, a biotinylated goat-anti-rabbit antibody (DAKO), was 

applied in a dilution of 1/500 in TBS and 2.5% goat serum and incubated for 

1 hr. Two washing steps for 5 min followed and then the avidin-biotinylated 

peroxidase complex (ABC from DAKO; pre-incubated in TBS for at least 30 

min) was put onto the sections and incubated for 30 min. After two more 

washes in TBS for 5 min the sections were exposed to the substrate, the 

chromogen (DAKO) to stain the sections through an enzymatic reaction.  

Slides were rinsed in H2O, counterstained in hematoxylin for 10 sec, 

dehydrated through an EtOH series and xylene and subsequently mounted. 
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2.2.8.3 BrdU staining (cell proliferation assay) on sections  

BrdU is incorporated into transcribed RNA and hence, serves for 

detection of proliferating cells. BrdU was injected intraperitoneal into 

pregnant mice 2 hrs prior isolation of embryos. Embryos were fixed and 

sectioned using standard protocols. Sections were then subjected to the same 

procedures mentioned in the protocol for immunohistochemistry, with the 

following exceptions. After the antigen retrieval the sections were treated 

additionally in 3 N HCl for 45 min at RT to denature the DNA and then 

washed in TBS (2 x 3 min) to neutralize the pH value. Blocking buffer 

consisted of 5% rabbit serum, 2% BSA 0.1% Triton X-100. As a primary 

antibody a mouse anti-BrdU (Roche) was used in a 1/50 dilution in blocking 

buffer. As a secondary antibody a biotinylated rabbit-anti-mouse antibody 

(DAKO) was used in a 1/500 dilution in 2.5% rabbit serum in TBS. 

 

2.2.8.4 Digoxigenin-labeling of RNA probes for in situ hybridization 

by in vitro transcription 

Sense and antisense riboprobes are synthesized from a linearized 

cDNA using T7, T3 or SP6 RNA polymerase depending on which vector the 

template is cloned in. During the in vitro transcription digoxigenin-labeled 

dUTP will be used for the synthesis of the riboprobe. Later the labeled RNA 

can be detected through a color reaction using an enzyme coupled anti-

digoxigenin antibody. 

For the synthesis of the antisense or sense RNA probe 10 µg of the 

plasmid of interest were linearized with the appropriate enzyme and purified 

by phenol/chloroform extraction with subsequent EtOH precipitation. The 

purified linearized plasmid was resuspended in nuclease free ddH2O (Gibco). 

For the labeling reaction 1 µg of the linearized plasmid was added to 2 µl of 

10 x transcription buffer, 2 µl of Digoxigenin Labeling Mix (Roche), 2 µl of 

the appropriate RNA-Polymerase and 1 µl RNase Inhibitor. The reaction was 
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carried out in total volume of 20 µl in nuclease free water. The reaction was 

incubated for 3 hrs at 37°C. To get rid of an excess of free nucleotides, the 

labeled RNA probe was run through a mini quick spin sephadex column 

(Roche). 

 

2.2.8.5 Non-radioactive in situ hybridization 

In situ hybridization to RNA is used as a tool to determine the spatial 

and temporal expression pattern of a gene of interest. Non-radioactive in situ 

hybridization is based on the use of a digoxigenin-labeled anti-sense RNA 

probe of the gene of interest, which is hybridized to the endogenous RNA in 

the embryo or tissue. The RNA is detected indirectly via an anti-digoxigenin-

antibody, conjugated to alkaline phosphatase. Addition of the substrate BM-

Purple, leads to conversion of the chromogen in an enzymatic reaction by the 

alkaline phosphatase to a blue precipitate in the tissues where the RNA is 

expressed. In situ hybridization methods are used to detect RNA in whole 

embryos, embryonic tissues as well as on embryonic sections. 

  

2.2.8.5.1 Whole mount in situ hybridization (modified after Belo et 

al., 1997) 

All of the following steps were carried out on ice, except for those 

stated otherwise. Embryos which had been stored in 75% MeOH/PBSw were 

rehydrated through a 50% and 25% MeOH series in PBSw (5 - 10 min 

depending on age of embryos). After washes in PBSw (3 x 5 min) embryos 

were treated with 4.5 µg/ml Proteinase K in PBSw at RT to permeable the 

embryo which facilitates entering of the RNA probe. Depending on the age 

of the embryos or tissue size the time of Proteinase K treatment varied (E6: 3 

min; E7.5: 5 min; E8.5: 7 min; E9.5: 9 min; E10.5: 11 min; E11.5: 20 min). 

Digestion with Proteinase K was stopped by adding freshly prepared 2 mg/ml 

glycine in PBSw. Embryos were rinsed and washed in PBSw (2 x 5 min) and 
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then refixed in freshly prepared 4% PFA/0.2 % glutaraldehyde in PBS for 15 

min. After fixation the embryos were washed in PBSw (3 x 5 min), in 1 ml 

50% PBSw; 50% hybridization solution for 3 min and in 1 ml of 

hybridization solution for 3 min. After replacing 900 µl of hybridization 

solution with fresh solution embryos were pre-hybridized for 2 - 3 hrs at 

65°C. The RNA probe was denatured in 100 µl hybridization solution at 

95°C (final conc. of RNA probe was 200 ng/ml) and then added to the 

embryos. Hybridization was carried out over night at 70°C in a water bath. 

On the second day the hybridization solution was replaced with 800 µl 

of fresh solution and embryos were incubated for 5 min at 70°C. 

Subsequently, 400 µl 2 x SSC (pH 4.5) (3 x 1 min) were added. The low pH 

stabilizes negative charges of the riboprobe and facilitates the hybridization. 

Next, the solution was removed and 2 x 30 min washes in 2 x SSC (pH 7.4) 

at 70°C in the water bath followed. To reduce background, the samples were 

subsequently washed in Maleic Acid Buffer (2 x 10 min at RT and 2 x 30 

min at 70°C). Additional washing steps were carried out in PBSw (2 x 10 

min, 1 x 5 min) at RT. Embryos were then incubated in 1 ml BM-block-

mouse antibody buffer for 2 hrs at 4°C to block unspecific binding sites.  

Following the blocking step, 1.5 ml of a 1:10,000 dilution of the anti-

Digoxigenin antibody was added and incubated at 4°C over night. The 

antibody had been pre-absorbed in the BM-blocking buffer for 2 hrs at 4°C.  

On the third day the samples were washed in 0.1% BSA/PBSw 5 x 45 

min to reduce unspecific binding of the antibody, 2 x 30 min in PBSw and 2 

x 10 min in AP1-Buffer. All the washes were carried out at RT. Samples 

were then transferred into 1 ml BM-Purple solution and placed into the dark 

for the staining reaction. Specimens were stained until background appeared. 

The staining reaction was stopped by washing in PBS (at least 3 times). 

Embryos were post-fixed in 4% PFA and then stored in PBS at 4°C. Pictures 
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of whole mount embryos were taken using the stereomicroscope (Leica M12) 

and digital camera Leica DC300. 

  

2.2.8.5.2 In situ hybridization on paraffin wax sections (after 

Franco et al., 2000) 

Fixation, embedding and sectioning of the tissues were done according 

to standard procedures (2.2.7.2 - 2.2.7.4). Paraffin sections were cut as thick 

as possible ranging from 10 µm - 12 µm depending on age of the embryo to 

enhance the signal. 

Slides with paraffin sections were pretreated in xylene (3 x 7 min) and 

50% xylene/50% EtOH to remove the wax from the tissue. Sections were 

then rehydrated in a 2 x 100% (2 min), 1 x 96%, 1 x 90%, 1 x 70% and 1 x 

50% (each 1 min) EtOH series. After washing in PBS (2 x 5 min) sections 

were treated with Proteinase K (20 µg/ml) in PBS for 10 - 15 min (depending 

on tissue size) at 37°C in a water bath to facilitate the entering of the RNA 

probe. Proteinase K treatment was stopped by transferring slides into 0.2% 

glycine in PBS. After 2 washes in PBS for 5 min sections were refixed in 4% 

PFA/0.2% glutaraldehyde in PBS for 20 min. Then, slides were washed in 

PBS (2 x 5 min). Subsequently, sections were surrounded with a PAP pen 

and the hybridization solution was put on each section for the pre-

hybridization for 1 hr at 70°C. 

The digoxigenin-labeled probe was diluted in the hybridization 

solution to a final conc. of 200 ng – 4 µg/ml (each probe has its own optimal 

concentration) and denatured at 95°C for 5 min and quenched on ice. The 

prepared probe was then added to each section and incubated over night at 

70°C. The following day the slides were rinsed in 2x SSC (pH 4.5) and 

washed in 50% formamide/2 x SSC (pH 4.5) for 3 x 30 min at 65°C to 

facilitate hybridization of the RNA probe. Sections were washed in PBSw (3 

x 5 min) and then incubated in BM-block-mouse antibody buffer for 1 hr at 
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RT in a humidity chamber. The anti-digoxigenin antibody was diluted in 

BM-block-mouse antibody buffer 1:1,000 (The anti-digoxigenin antibody 

can also be used at lower conc. (1:3,000) to reduce background). Sections 

were incubated with the diluted antibody for 2 hrs at RT in a humidity 

chamber. Following washes in PBSw (3 x 5 min) and NTM buffer (2 x 5 

min), sections were incubated with a 1:50 dilution of NBT/BCIP in NTM 

buffer (staining solution) over night or longer in a humidity chamber in the 

dark at RT. Afterwards, slides were rinsed in H2O and dehydrated through a 

50%, 70%, 90%, 96%, 2x 100% EtOH series, 50% xylene/50% EtOH (1 

min) and xylene (3 x 5 min). Slides were mounted using Permount. Pictures 

of stained sections were taken using a light microscope with DIC (Axioskop, 

Zeiss) and the digital camera (Leica DC300).  

 

2.2.8.6 Alizarin Red and Alcian Blue staining of bone and cartilage 

in 18.5 dpc embryos 

This staining technique is used to reveal skeletal structures of embryos 

or newborns. Cartilage is stained in blue and bone in red. E18.5 mouse 

fetuses were delivered by cesarean section and euthanized in CO2. Then, their 

skin was peeled off with forceps and fetuses were fixed in 95% - 100% EtOH 

over night. Specimens were stained for cartilage in Alcian Blue stain (15 mg 

Alcian Blue 8GX (Sigma), 80 ml 95% EtOH, 20 ml glacial acetic acid) for 

24 hrs. After rinsing twice in 95% EtOH, the soft tissue of the fetuses was 

dissolved in 2% KOH for 6 hrs. Through the alkaline treatment the bones 

become visible. The bones were counterstained in Alizarin Red (75 µg/ml 

Alizarin Red S (Sigma) in 1% KOH over night. Samples were cleared using 

20% glycerol in 1% KOH for 3 - 7 days, changing the solution daily. Loose 

tissue was dissected away if necessary. The skeletal preparations were 

transferred into 20% glycerol, 20% EtOH over night and then into 50% 

glycerol, 50% EtOH for further clearing and storage. 



 62

2.2.9 Cell culture 
 

2.2.9.1 Culture of 293T cells and COS7 cells  

293T cells (human kidney carcinoma cells) and COS7 were cultured 

in DMEM medium containing 10% FCS, 1% L-Glutamine and 1% 

Penicillin/Streptomycin. Cells were split every second day 1:10. They were 

trypsinized and subsequently centrifuged in 5 ml culture medium at 1000 rpm 

for 3 min. Supernatant was discarded and cells were resuspended in culture 

medium and distributed on cell culture dishes. 

 

2.2.9.2 Freezing and thawing of 293T and COS7 cells 

Cells were trypsinized with 0.25% Trypsin, EDTA, pH 8 and 

centrifuged in 5 ml culture medium at 1,000 rpm for 3 min. Supernatant was 

discarded and cell pellet was resuspended in freezing medium (1% DMSO, 

1% FCS, 8% DMEM-Medium). Cells were then stored at -80°C. 

Cells were thawed in a 37°C water bath, washed with DMEM-

Medium containing 10% FCS, 1% L-Glutamine and 1% 

Penicillin/Streptomycin and then plated on tissue culture dishes. 

   

2.2.9.3 Transient transfections of COS7 cell and 293T cells 

Constructs used in transfection for Luciferase Assays: 

• 900 bp enhancer element of Pitx2c isoform (Pitx2-ASE) (Shiratori 

et al., 2001) cloned into pGl3 SV40 luciferase vector (Promega)  

• Full length cDNA Tbx1 cloned into pcDNA3.1 

• Flag-Nkx2.5 cloned into in pCI (Promega) 

• CMV-βGal construct 

Transfections were performed in 6-well plates using Polyfect Reagent 

(Qiagen) according to manufacturer’s protocol.  
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COS7 cells were transfected with 0.15 µg of the Pitx2-ASE luciferase 

construct and with 0.3 µg of the expression constructs Tbx1 in pcDNA3.1, 

Nkx2.5 in pCI, respectively. The empty vectors pcDNA3.1 and pCI were 

used as controls. A total of 0.03 µg of CMV-βGal construct was co-

transfected to normalize transfection efficiency. Cells were lysed in 1 x Lysis 

buffer (Promega) and harvested after 48 hrs.  Luciferase and β-Galactosidase 

activity were assayed using Luciferase assay system (Promega) in a TD-

20/20 luminometer and β-Galactosidase reporter gene activity detection Kit 

(Sigma), respectively. 

 

Construct used in tranfections for EMSA: 

• Full length cDNA Tbx1 in pcDNA3.1 

 A total of 8 µg of Tbx1 expression vector was tranfected into a 10 cm dish of 

80% confluent 293T cells. Untransfected cells were used as controls. The 

transfection was carried out in 10 cm tissue culture dishes using Polyfect 

Reagent (Qiagen) according to manufacturer’s protocol. 

 

Constructs used in transfection for CoIp: 

• Tbx1-GFP cloned into pEGFP-N1 (Clontech)  

• Flag-Nkx2.5 cloned into in pCI (Promega) 

A total of 4 µg of Tbx1-GFP and 4 µg of Flag-Nkx2.5 were co-transfected 

into 293T cells. Cells transfected with 8 µg Tbx1-GFP, cells transfected with 

8 µg Flag-Nkx2.5 and untransfected cells were used as controls. 

Transfections were carried out in 10 cm tissue culture dishes using Polyfect 

Reagent (Qiagen) according to manufacturer’s protocol.  
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2.2.9.4 Determination of Luciferase reporter gene activity 

To determine the luciferase reporter gene activity, the Luciferase 

Assay System (Promega) was used to measure the activity of Firefly 

luciferase. The Firefly luciferase oxidizes its substrate beetle luciferin using 

ATP, Mg2+ and O2 to oxyluciferin, AMP, PPi, CO2 and light. The emission of 

light is quantified in a luminometer. Transfected cells were lysed in 1 x 

passive lysis buffer (Promega) for 15 min on a shaker at RT. (For 6-well 

plates 500 µl and for 10 cm dishes 1 ml of 1 x Passive Lysis Buffer 

(Promega) were used.) The lysates were transferred to 1.5 ml tubes and 

cleared by centrifugation for 30 min at 12,000 x g. 20 µl of cell lysate was 

added to 50 µl of Luciferase Reagent II (Promega) and the luciferase activity 

was measured in a TD-20/20 luminometer (Turner Design).  

 

2.2.9.5 Determination of β-galactosidase reporter gene activity   

For normalization of the efficiency of transfections a CMV-β-gal 

expression construct was transfected into cells along with other reporter and 

expression construct (2.2.9.3). Cell lysates were tested for β-galactosidase 

activity using the β-galactosidase reporter gene activity Kit (Sigma) 

according to the manufacturer’s protocol. Cells were lysed in 1 x Passive 

Lysis Buffer (Promega). 50 µl of each cell lysate was pipetted into a well of  

a 96-well plate. 50 µl of 1 x Lysis buffer were used as blank. 50 µl 2 x assay 

buffer (200 mM sodium phosphate buffer (pH 7.3), 2 mM MgCl2, 100 mM β-

mercaptoethanol, 1.33 mg/ml o-nitrophenyl β-D-galactopyranoside (ONPG)) 

were added to each well and mixed. β-Galactosidase uses ONPG as substrate 

and catalyzes its hydrolysis to yellow colored o-nitrophenol. Samples were 

incubated at 37°C until yellow color developed.  The reaction was stopped by 

adding 150 µl stop solution (1 M NaCO3). The β-galactosidase activity was 

measured in an ELISA reader (Victor 2 1420 Multilabel Counter; Perkin 

ElmerTM) at a wave length of 420 nm. 
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2.2.9.6 Determination of Protein concentration (Bradford assay) 

The protein concentration of cell lysates was determined using the 

Bradford protein assay (BIORAD). A total of 5 µl cell lysate was added to 

795 µl H2O. Protein concentrations were measured against a standard curve 

using 2, 5, 10, 15, and 20 µg/ml BSA. 5 µl of 1 x Passive Lysis buffer 

(Promega) in 795 µl H2O was used as blank. A total of 200µl of BIORAD 

reagent was added to each sample and incubated for 15 min. The absorbance 

was read at 595 nm in a spectrophotometer to determine the protein 

concentration. 

 

2.2.10 Co-Immunoprecipitation (Co-IP) 

The Co-IP identifies protein-protein interactions. Proteins of interest 

are transfected into cells and the cells are harvested under conditions that 

preserve protein-protein interactions. The protein is immunoprecipitated from 

the cell extract and then subjected to SDS-PAGE for separation. The identity 

of the protein is detected by Western blot analyis. 

  For this analysis, 293T cells transfected with either the expression 

construct Tbx1-GFP cloned in pEGFP-N1 (Clontech), a Flag-Nkx2.5 

(obtained from Dr. V. M. Christoffels) or both using Polyfect Reagent 

(Qiagen). Cells were lysed and harvested after 48 hrs in RIPA-buffer (50 mM 

Tris pH 7.5, 200 mM NaCl, 1% Triton X-100, 0.25% DOC, 1 mM EDTA). 

Cell lysates were pre-cleared using 30 µl Protein G Agarose per 500 µl cell 

extract for 30 min rotating at 4°C. Co-Ip was performed with an Anti-Flag 

M2 affinity gel (Sigma) according to manufacturer’s protocol. 

Co-IPs were subjected to SDS-PAGE (see 2.2.11) to separate proteins 

according to size. After blotting, proteins were detected by Anti-Flag M2 

(Sigma) and Anti-Tbx1 (Zymed) antibodies. Blots were exposed to Kodak 

film (Biomax MS). 
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2.2.11 SDS-PAGE 

 
Proteins were separated using denaturing polyacrylamide gel 

electrophoresis (SDS-PAGE). SDS denatures proteins. These are 

consequently separated in the gel according to their molecular weight only. 

The mobility of the proteins in the gel also depends on the pore size of the 

gel and the voltage used.   

Cell lysates or Co-Ip samples were loaded into wells of a 10% Tris-

HCl-SDS-Gel (BIORAD). The gel was positioned vertically in gel chamber 

filled with 1x Tris-glycine-SDS running buffer (BIORAD). The SDS-Gel 

was electrophoresed at 100 V for 1.5 hrs. To determine the molecular weight 

of the protein, a Protein marker (BIORAD) was loaded. Gels were 

subsequently subjected to Western blotting. 

 

2.2.12. Western blot and immunodetection of proteins 

 
To detect the identity of proteins separated on SDS-Gels, they were 

transferred to a nitrocellulose membrane (Protran, Schleicher-Schuell). 

Proteins on the membrane could then be detected by specific antibodies. 

SDS-gels and membranes were pre-soaked in transfer buffer (3.03 g Tris, 

14.4 g Glycine and 20% MeOH in 1 l H2O) prior to transfer. The transfer was 

performed in a wet blot apparatus. The wet blot apparatus consists of a tank 

holding the blot sandwich in vertical position between the two electrodes. 

The blot sandwich was completely submerged in transfer buffer. The blot 

sandwich for the transfer was set up as follows: anode, cushion, blotting 

paper, gel, membrane, blotting paper, cushion, and cathode. Proteins were 

transferred to the membrane at 100 V for 2 hrs at 4°C.   
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Membranes were incubated in blocking buffer (25 g Blotting Grade Dry Milk 

in 500ml PBS, 0.1% Tween-20) to block unspecific binding of the 

antibodies. Incubation of the primary antibody (Anti-Tbx1, Zymed and Anti-

Flag M2, Sigma) was performed on a shaker over night at 4°C. The Anti-

Tbx1 antibody was used in a dilution of 1:500. Anti-Flag M2 was used in a 

dilution of 1:5,000. Membranes were washed in PBSw (3 x 15 min) and then 

incubated with the secondary antibody. Biotin-labeled anti-rabbit-IgG and 

biotin-labeled anti-mouse-IgG were used for detection of Anti-Tbx1 and 

Anti-Flag, respectively. Both secondary antibodies were used in a dilution of 

1:3,000. Membranes were subsequently washed in PBSw (3 x 15 min).  

Protein signals on the membranes were detected performing ECL (Perkin 

Elmer) according to the manufacturer’s protocol and exposure to Kodak film 

(Biomax MS) 

 

2.2.13 Electro-Mobility-Shift Assay (EMSA) 
 

2.2.13.1 Annealing of oligonucleotides for the DNA-binding assay 

A total of 100 pmol of each oligonucleotide were added to 5 µl 

annealing buffer (100 mM Tris pH 8, 500 mM NaCl, 10 mM EDTA pH 8) 

and 43 µl H2O. The reaction was boiled for 15 min and slowly annealed by 

cooling down to room temperature. 

 

2.2.13.2 Radioactive end-labeling of DNA-oligonucleotides using T4 

Polynucleotide Kinase 

The T4 Polynucleotide Kinase is used to phosphorylate DNA ends. It 

catalyzes the transfer of the γ-phosphate of ATP to the 5’ hydroxyl terminus 

of the DNA and can thereby label 5’ends of DNA. 
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A total of 20 pmol of double stranded oligonucleotides were radio-

labeled with 5µl [γ-32P]dATP using 1 µl T4-Kinase (NEB), 2 µl 10 x Kinase 

Buffer (NEB) and 11 µl H2O. The kinase reaction was incubated for 30 min 

at 37°C and then purified on Sephadex G-50 spin columns (Amersham).  

 

2.2.13.3 DNA-Binding Assay 

The DNA binding assay uses non-denaturing polyacrylamide gel 

electrophoresis (PAGE) to detect specific binding of proteins from cell 

extracts or purified proteins to DNA. Proteins that bind to radioactively end-

labeled oligonucleotides slow down the mobility of the oligonucleotide in the 

gel which results in discrete bands. 

For the DNA-binding assay, radioactive-labeled oligonucleotides were 

used containing the T- half site of the Pitx2-ASE (WT), mutated (M1, M2) or 

a consensus (Cons) T- half site. The sequences of the oligonucleotides are as 

follows: 

WT: CAATCAGGTGTAAAGAGGAA 

M1: CAATCAGATTTGAAGAGGAA 

M2: CAATCAAATTTGAAGAGGAA 

Cons: CAATCAGGTGTGAAAAGGAA. 

 

Full length cDNA of Tbx1 was cloned into pcDNA3.1 (Invitrogen) 

and transfected into 293T cells.  Crude cell lysates of Tbx1 transfected 293T 

cells were used for DNA binding assay and incubated for 30 min on ice in a 

reaction containing 5% glycerol, 10 mM Hepes pH 7.5, 25 mM KCl, 1 mM 

DTT, 1 mM EDTA and 5 mM MgCl2 (DNA-Binding buffer), 1 µg dIdC and 

0.1 pmol radio-labeled probe of either Wt, M1, M2 or Cons, respectively. In 

a competition assay unlabeled wild type competitor oligonucleotides in a 100 

fold molar excess were added. In this case samples were pre-incubated for 20 

min on ice before adding radio-labeled probe. When adding the Tbx1 
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antibody to the DNA binding assay to perform a supershift assay, samples 

were again pre-incubated for 20 min on ice before radio-labeled probe was 

added. The DNA-protein complexes were resolved on a 6% non-denaturing 

polyacrylamide gel in 0.5 x TBE. Gels were exposed to Kodak film (Biomax 

MS). 
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3. Results 
 

A candidate gene approach was used to screen for downstream targets of 

the T-box transcription factor, Tbx1 to investigate its role during early cardiac 

morphogenesis in the mouse. Possible downstream genes should be identified by 

up or down regulation in the Tbx1 homozygous mutants using whole mount in situ 

hybridization (ISH) of E8.0 - 10.5 mouse embryos. Genes that are co-expressed 

with Tbx1 during early development were considered as candidates. One gene of 

particular interest was the homeobox gene Pitx2, which is important for 

asymmetric development of the heart. It is expressed in the SHF where Tbx1 has 

recently been implicated to play major role in (Vitelli et al., 2002b; Hu et al., 

2004; Xu et al., 2004). In this thesis, I present a detailed analysis of Tbx1 and 

Pitx2 co-expression in the left SHF during early embryogenesis. Furthermore, I 

show down-regulation of Pitx2 in the Tbx1 null mutants suggesting a possible 

interaction of both genes. Crosses of Pitx2 heterozygous and Tbx1 heterozygous 

animals result in severe cardiac defects and consequent neonatal lethality in the 

Pitx2+/-; Tbx1+/- mice. Subsequent molecular studies reveal a direct activation of 

the Pitx2 gene through Tbx1 by interaction with Nkx2.5. In summary the results in 

this thesis provide evidence for a novel Tbx1-Pitx2 pathway in the left SHF. 
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3.1 Co-expression of Tbx1 and Pitx2 in the cardiac precursor 

cells of the secondary heart field (SHF) during early mouse 

embryogenesis 
 

Whole mount in situ hybridization of E7.75 embryos revealed Pitx2 and 

Tbx1 co-expression in the lateral plate mesoderm (LPM) during early mouse 

embryogenesis (Fig. 3.1) To investigate co-expression in more detail, in situ 

hybridization on sections were performed of wild type embryos of stages E8.0 – 

9.5 using Tbx1, Pitx2, Nkx2.5 as a marker for cardiomyocytes (Lyons et al., 1995) 

as well as the LIM homeodomain transcription factor Islet-1 (Isl-1). The latter has 

been previously described as a marker for cardiac progenitor cells of the SHF (Cai 

et al., 2003). In situ hybridization on sections showed that Tbx1 and Pitx2 are co-

expressed in the arterial and the venous pole of the heart as early as E8.0 until 

E9.5. Co-expression of both genes occurred in Nkx2.5 and Isl-1 positive regions 

meaning that they are expressed in cardiac precursor cells of the SHF. At E8.0, co-

expression of Tbx1, Pitx2, Nkx2.5 and Isl-1 occurred at the venous pole of the 

developing heart in the left horn of the sinus venosus (lsv) (Fig. 3.2 A-D) and at 

the arterial pole in the ventricular region (vr) and the pharyngeal mesoderm (pm) 

(Fig. 3.2 E-H). At day E8.5, co-expression of all four genes persisted in the left 

sinus venosus (lsv), the pharyngeal mesoderm (pm) and in the inner curvature of 

the common ventricle (cv) (Fig. 3.2 I-P). In addition, Tbx1, Pitx2, Nkx2.5 and Isl-1 

were co-expressed in the outflow tract at this stage. In situ hybridization of sagittal 

sections of embryos of stage E9.5 showed that co-expression persisted in the 

pharyngeal mesoderm (pm), in cells of the common ventricle (cv) and the outflow 

tract (oft) (Fig. 3.2 Q-T). 
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Nkx2.5Tbx1Pitx2 lpm lpm lpm

hf hf hf

A B C

Nkx2.5Tbx1Pitx2 lpm lpm lpm

hf hf hf

A B C

 
 

Fig. 3.1: Co-expression of Tbx1 and Pitx2 in cardiac precursor cells 

Whole mount in situ hybridization of wt embryos stage E7.75 show co-expression 

(arrows) of Pitx2 (A) and Tbx1 (B) in Nkx2.5 (C) expressing cells in the left lateral plate 

mesoderm (lpm). hf, head folds. 
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Fig. 3.2: Co-expression of Tbx1 and Pitx2 in cardiac precursor cells in the SHF  

In situ hybridization on transverse sections of E8.0 and E8.5 embryos and sagittal 

sections of E9.5 embryos show co-expression of Tbx1 (A, E, I, M, Q) and Pitx2 (B, F, J, 

N, R) within the Nkx2.5 (C, G, K, O, S) and Islet-1 domains (D, H, L, P, T).  Overlapping 

expression of Tbx1, Pitx2, Nkx2.5 and Islet-1 was found in the left horn of sinus venosus 

(lsv) at stages E8 - E8.5 (A-D; M-P) and in the left pharyngeal mesoderm (pm) at stages 

E8 - E9.5 (E-T), in the inner curvature of the common ventricle (cv) at stages E8 – E8.5 

(E-L;) and in the outflow tract (oft), at stages E8.5 (I-L) – E9.5 (Q-T). rsv, right horn of 

sinus venosus; vr, ventricular region. Arrowheads mark regions of co-expression. 
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3. 2 Transient asymmetric expression of Tbx1 in early mouse 

development 
 

Pitx2 has been reported to be asymmetrically expressed in the left 

splanchnic/pharyngeal mesoderm and in the heart on the left side (Piedra et al., 

1998; Yoshioka et al., 1998; Campione et al., 1999). Later, during remodeling of 

the heart its expression will be maintained in cells that originated from the left 

side. Pitx2 expression can thus be found in the left atrium, parts of the right 

ventricle and the outflow tract (Franco and Campione, 2002).  Closer examination 

of Tbx1 expression at stage E9.0 using sections of whole mount in situs showed a 

transient asymmetric expression of Tbx1 in Pitx2 positive regions, the left 

pharyngeal mesoderm (pm) (Fig. 3.3 C) and the left atrium (la) (Fig. 3.3 D). 

In addition, in situ hybridization of sagittal sections of stage E9.0 showed that the 

left-sided Tbx1 expression in the pharyngeal mesoderm (pm) extends more 

caudally compared to its expression on the right side (Fig. 3.3 A-B). Thus, left 

asymmetric co-expression of Pitx2 and Tbx1 indicates that this aspect of their 

regulation might be shared. 
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Fig. 3.3: Transient asymmetric Tbx1 expression during embryogenesis  

In situ hybridization with a Tbx1 probe of E9.0 sagittal sections and sections of whole 

mount in situs of E9.0 wt embryos show asymmetric expression of Tbx1. Tbx1 is 

asymmetrically expressed on the left side in the pharyngeal mesoderm (pm) (arrowhead 

in C and D) and in the left atrium (la) (arrowhead in D). Note that Tbx1 expression in 

pharyngeal mesoderm extends more caudally on the left side (arrowhead in B) compared 

to the right side (A). Dotted line marks end of expression. cv, common ventricle,  ra, right 

atrium, oft outflow tract.  
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3.3. Down-regulation of Pitx2 in Tbx1 null mutants during 

stages E8.0 and E10.5 
 

To ascertain whether there is a potential epistatic relationship between the 

two genes, I performed expression studies in Tbx1 null mutants. In situ 

hybridization in Tbx1-/- embryos revealed reduced expression of Pitx2. At E8.0 

Pitx2 expression was down-regulated in the outflow tract (oft) (Fig. 3.4 A-B) and 

in the region of the left SHF, the left splanchnic mesoderm (sm) (Fig. 3.4 C-D). At 

this stage Pitx2 expression in the head mesenchyme (hm) was also reduced in the 

Tbx1-/- embryos (Fig. 3.4 A-B). This was possibly due to fewer cells in this region 

in Tbx1 null mutants. However, Pitx2 expression was unaltered in other regions of 

the embryo (data not shown). To determine whether Pitx2 expression was also 

changed later in heart development, I examined embryos of stages E10.0 - E10.5. 

Whole mount in situ hybridization of dissected hearts and in situ hybridization of 

sections through the heart revealed that Pitx2 expression was down-regulated in 

the left atrium (la), the ventral portion of the right ventricle (rv), the inner 

curvature and the outflow tract (oft) of the Tbx1 null mutants (Fig. 3.4 E-J). 

However, down-regulation was variable in the null mutants, ranging from total 

absence (Fig. 3.4 J) of expression to general down-regulation (Fig. 3.4 G, H). 

Thus, these studies implicate that Pitx2 acts downstream of Tbx1 in a genetic 

pathway during early cardiac morphogenesis.  
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Fig. 3.4: Down-regulation of Pitx2 in Tbx1-/- embryos at stages E8.5 and E10. 
Transverse sections of whole mount in situs of stage E8.5 show down-regulation of Pitx2 

in the outflow tract (oft) and in left splanchnic mesoderm (sm) in the Tbx1-/- (B, D) 

compared to corresponding wild-type sections (A, C). Whole mount in situ hybridization 

of embryonic hearts of stage E10 show reduction of Pitx2 expression in the left atrium 

(la), the outflow tract (oft) and right ventricle (rv) in Tbx1-/- (G, H) compared to wild 

type hearts (E, F). In situ hybridization on transverse sections of E10 Tbx1+/- (I) and 

Tbx1-/- (J) hearts show absence of Pitx2 expression in the left atrium (la) and the right 

ventricle (rv) in the null mutant (arrows). lv, left ventricle; ra, right atrium. da, dorsal 

aorta; fg, foregut; hm, head mesenchyme. 

 

 

 

3.4 Determination of a genetic interaction of Tbx1 and Pitx2 by 

crossing Tbx1+/- and Pitx2+/- mice  
 

To validate the hypothesis that Pitx2 acts downstream of Tbx1 in the same 

genetic pathway, I generated Pitx2+/-; Tbx1+/- mice. If there is a genetic 

interaction the phenotype of the double heterozygous mice should be more severe 

than that of the single heterozygous animals.  Previous work on Tbx1+/- mice has 

shown that these mice survive in normal Mendelian ratios and exhibit only mild 

cardiovascular effects, primarily of the aortic arch such as abnormal origin of the 

right subclavian artery (RSA), or retroesophageal RSA (Jerome and Papaioannou, 

2001; Lindsay et al., 2001; Merscher et al., 2001; Liao et al., 2004). 

Cardiovascular defects have never been reported in Pitx2+/- mice (Gage et al., 

1999; Kitamura et al., 1999), nor have I seen any in my study. Analysis of the 

genotype distribution of the offspring of the Pitx2+/- and Tbx1+/- crosses at P10 

revealed a significantly reduced viability of the double heterozygous mice 

compared to wt, Tbx1 and Pitx2 single heterozygous mice (Table 3.1). This 
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suggested that the double heterozygous mice die during embryogenesis or in the 

neonatal period. 

 

Table 3.1: Genotype distribution of crosses between Pitx2+/- and Tbx1+/- 

mice at P10 

 

Genotype Pitx2+/- Pitx2+/-; 

Tbx1+/- 

Tbx1+/- WT Total 

Number of mice 

analyzed 

(percentage) 

28 

(26.92%) 

2 

(1.92%) 

27 

(25.96%)

47 

(45.19%) 

104 

(100%) 

Number of mice 

expected 

according to 

Mendelian ratio 

(percentage) 

26 

(25%) 

 

26 

(25%) 

 

26 

(25%) 

 

26 

(25%) 

 

104 

(100%) 

 

 

 

 

3.5 Phenotype analysis of the Pitx2+/-; Tbx1+/- mice 
 

To assess the time point when Pitx2+/-; Tbx1+/- are dying, fetuses during 

late gestation were isolated and genotyped. Genotyping of E17.5 fetuses showed 

normal Mendelian ratios of all genotypes (Table 3.2). Consequent closer 

examination of the newborn mice revealed that the Pitx2+/-; Tbx1+/- mice 

survived embryogenesis. However, the majority of the double heterozygous mice 

became cyanotic in the early neonatal period and died due to respiratory distress.  
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Table 3.2: Genotype distribution of crosses between Pitx2+/- and Tbx1+/- 

mice at E 17.5 

 

Genotype Pitx2+/- Pitx2+/-; Tbx1+/- Tbx1+/- WT Total 

Number of mice 

analyzed 

(percentage) 

14 

(33.3%) 

11 

(26.19%) 

6 

(14.29%)

11 

(26.19%) 

42 

(100%) 

Number of mice 

expected 

according to 

Mendelian ratio 

(percentage) 

10.5 

(25%) 

 

10.5 

(25%) 

 

10.5 

(25%) 

 

10.5 

(25%) 

 

42 

(100%) 

 

 

 

 

3.5.1 Analysis of the craniofacial and skeletal structures of 

Pitx2+/-; Tbx1+/- 
 

To exclude any malformation of the rib cage and craniofacial region, bone 

and cartilage staining of E17.5 embryos of wt, Pitx2+/-, Tbx1+/- and Pitx2+/-; 

Tbx1+/- was performed. Examination of the bone and cartilage of the skeleton 

showed neither malformations in the craniofacial region nor in the trunk region of 

the double heterozygous mice (Fig. 3.5). 
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Fig. 3.5: Pitx2+/-; Tbx1+/- do not exhibit any craniofacial anomalies  

A-C show bone and cartilage staining of an E18.5 Pitx2+/-; Tbx1+/- embryo. A: lateral 

view of the head, B: ventral view of the head C: lateral view of the fetus. No 

malformations could be detected in the craniofacial and trunk region of Pitx2+/-; Tbx1+/-. 

apx, alveolus of premaxilla; at, atlas; bo, basioccipital bone; et, ectotympanic; eo, 

exoccipital bone; fmx, frontal process of maxilla ; fr, frontal bone; hu, humerus; ic, inner 

ear capsule; iof, infraorbital foramen; ipr, interparietal bone; jg, jugal bone; mb, 

mandible; mx, maxilla; na, nasal bone; pl, palate; ppmx, palatal process of maxilla; pr, 

parietal bone; ptg, pterygoid bone; ra, radius; rtp, retrotympanic process; sc, scapula; sq, 

squamosal bone; ul, ulna; vb, vertebrae; zpm, zygomatic process of maxilla; zps, 

zygomatic process of squamosal. 
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3.5.2 Histological analysis E18.5 mice 
 

Histological analysis of E18.5 embryos and newborns (n = 25) revealed 

severe cardiac defects in the double heterozygous animals. The defects though 

occurred with variable expressivity, possibly due to genetic modifiers or stochastic 

factors, because the mice were in a mixed background. 

Double heterozygous mice displayed double outlet right ventricle (DORV), 

where both, the aorta and the pulmonary artery arise from the right ventricle 

(arrow in Fig. 3.6 A). DORV was not observed in either Tbx1 (Fig. 3.6 B) or Pitx2 

(Fig. 3.6 C) single heterozygous mice in the genetic background analyzed. 

Stenosis of the infundibulum (the upper angle of the right ventricle where the 

pulmonary artery arises) of the pulmonary trunk (pt) (arrow head in Fig. 3.6 A) 

was found in the double mutants.  Atrial septal defcts (asd), ventricular septal 

defects (vsd) (Fig. 3.6 D) and atrio-ventricular valve defects (vad) (Fig. 3.6 E) 

were present in the Pitx2+/-; Tbx1+/- mice, whereas in Tbx1 (Fig. 3.6 G) and Pitx2 

(Fig. 3.6 H) single heterozygous mice, the atrial and ventricular structures were 

normal. In addition, abnormal drainage of the pulmonary vein into a common (Fig. 

3.6 F) instead into a left atrium (Fig. 3.6 H) were found. Moreover, malpositioning 

of the aorta, malformation of the coronary vessels, pulmonary and caval vein 

atresia did occur in the mutant mice (data not shown).  The severe cardiac 

phenotype found in the Pitx2+/-; Tbx1+/- mice compared to normal heart 

structures in the Tbx1 or Pitx2 single heterozygous mice provides evidence for a 

genetic interaction between Tbx1 and Pitx2. 
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Fig. 3.6: Pitx2+/-; Tbx1+/- newborns exhibit cardiac defects. 

Histological analysis reveals that Pitx2+/-; Tbx1+/- exhibit double outlet right ventricle 

(dorv; arrow) and stenosis of the infundibulum (arrowhead; A), atrial septal defect (asd) 

and ventricular septal defect (vsd) (D), atrio-ventricular valve defects (vad), a common 

atrio-ventricular junction (cav) (E) and abnormal drainage of pulmonary vein (pv) (F) 

into a common atrium (ca) instead of into the left atrium (la; H). Pitx2+/- (B, G) and 

Tbx1+/- (C, H) mice served as controls. They do not show any malformations in the 

heart. Dotted line in D marks the location of the missing inter-atrial septum and inter-

ventriuclar septum, respectively. ao, aorta; la, left atrium; lv, left ventricle; pt, pulmonary 

trunk; ra, right atrium; rv, right ventricle. 

 

 

3.5.3 Histological analysis of Pitx2+/-; Tbx1+/- of stage E10.5 
 

To determine the developmental onset of these defects, I analyzed Pitx2+/-; 

Tbx1+/- embryos at E10.5. At this stage in embryogenesis, as a consequence of the 

looping process of the heart, the common atrium is located dorsally to the 

ventricles. Within the heart the endocardial cushions form, which give rise to the 

septae in the atrio-ventricular canal as well as in the outflow tract. Shape and size 

differences of the hearts of the double heterozygotes were already visible at this 

stage (Fig. 3.7 A-D). An enlarged atrio-ventricular canal (avc), reduced ventricular 

expansion, abnormal ventricular shape (Fig. 3.7 A-B) and malformation of the 

outflow tract (oft) (Fig. 3.7 C-D) were observed. The severity of the malformation 

was also variable between the different double heterozygous mice at this stage, 

consistent with the later variable phenotype. 
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Fig. 3.7: Pitx2+/-; Tbx1+/- embryos exhibit malformation of the heart at E10.5 

Pitx2+/-; Tbx1+/- embryos of stage E10.5 (B, D) have grossly malformed hearts if 

compared to wild type (A, B) embryos. They display an enlarged atrio-ventricular canal 

(avc), a reduced ventricular expansion and abnormal shape of the outflow tract (oft). la, 

left atrium; lv, left ventricle; ra, right atrium; rv, right ventricle. 

 

 

3.6 Molecular studies to examine direct genetic interaction of 

Tbx1 and Pitx2 
 

There exist three Pitx2 isoforms in the mouse. Pitx2c is the only isoform 

that is asymmetrically expressed. Its expression is regulated by a 900 bp enhancer 

(Pitx2-ASE) located between exon 4 and 5 of the Pitx2 gene (Fig. 3.8).  The Pitx2-

ASE contains one Nkx2.5 binding site as well as three binding sites for the 

forkhead transcription factor FAST. The FAST binding sites are Nodal-responsive 

elements and are required for activation of asymmetric Pitx2 expression through 

Nodal in the left lateral plate mesoderm, whereas the Nkx2.5 binding site is 



 86

required later for the maintenance of the Pitx2 expression during organogenesis 

(Shiratori et al., 2001). 

Sequence analysis revealed a putative T-half site (AGGTGTAAAG) in the 

enhancer, 26 bp downstream of the Nkx2.5 binding site (Fig. 3.8). The site differs 

from the T-consensus sequence only in two bases (AGGTGTGAAA), which do 

not belong to the most critical bases for the binding. Thus, I hypothesized that 

Pitx2c might be a direct downstream target of Tbx1. To test this hypothesis, I 

performed in vitro assays. 

 

 

 
 

Fig. 3.8: Location of the T-half site in the Pitx2c enhancer  

The Pitx2c enhancer (Pitx2-ASE) is located in the intron between exons 4 and 5 of the 

Pitx2 gene (Shiratori et al., 2001). Sequence analysis revealed that it contains a putative 

T-half site close to an Nkx2.5 binding site. 
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3.6.1 Luciferase assays using the Pitx2c enhancer (Pitx2-ASE) 
 

The Pitx2-ASE was cloned into pGL3 SV40 vector (Promega), which 

contains a minimal promoter and a luciferase reporter gene.  Moreover, the full 

length cDNA of Tbx1 was cloned into the expression vector pcDNA3.1 and a 

Flag-Nkx2.5 expression vector (pCI) was obtained from Dr. V. M. Christoffels 

(Fig. 3.9). COS7 cells were co-transfected with the Pitx2-ASE luciferase reporter 

construct and either Tbx1 or Flag-Nkx2.5 expression vectors. In both cases 

transfection of the expression vector resulted only in a weak activation of the 

Pitx2c enhancer. The empty expression vectors, pcDNA3.1 and pCI were 

transfected as controls (Fig. 3.10). 

T-box transcription factors often require co-factors to regulate transcription. 

It has previously been shown that Nkx2.5 can interact with other T-box proteins to 

repress or activate gene function. For example, during development of the cardiac 

chamber myocardium Tbx2 and Nkx2.5 form a complex on the atrial natriuretic 

(ANF) or Nppa promoter to repress its activity (Habets et al., 2002).  A similar 

interaction has been reported for the T-box protein Tbx5. It interacts with Nkx2.5 

on the Nppa promoter and this complex synergistically activates the Nppa gene 

(Bruneau et al., 2001; Hiroi et al., 2001). In light of this fact, I co-transfected both 

expression constructs, Tbx1 and Flag-Nkx2.5 with the Pitx2-ASE reporter. This 

resulted in strong activation (~12-fold) of the Pitx2c enhancer. The empty 

expression vectors pcDNA3.1 and pCI were co-transfected as a control and did not 

lead to any activation of the reporter (Fig. 3.10). 

Though Tbx1 alone is able to activate the Pitx2c enhancer only weakly, in 

combination with Nkx2.5, however, strong activation occurs. This indicates that 

Tbx1 and Nkx2.5 can synergistically activate the Pitx2c enhancer. These in vitro 

experiments provide evidence that Tbx1 acts upstream of Pitx2c. 
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SV40

Tbx1 in pcDNA 3.1

Flag-Nkx2.5 in pCI

Pitx2-ASE in pGL3/SV40

CMV

Luciferase

Tbx1

Nkx2.5

Pitx2-ASE

CMV

 
 

Fig. 3.9: Expression and reporter constructs used in luciferase assays. 

In transfections for luciferase assays the following constructs were used: a full length 

cDNA of Tbx1 cloned into the expression vector pcDNA3.1. A fusion of Flag (black 

box) and Nkx2.5 in the expression vector pCI. Both expression constructs are driven by a 

CMV promoter. The Pitx2-ASE (900 bp) was cloned into the pGl3-promoter vector, 

which contains a SV40 minimal promoter upstream of the luciferase gene.  
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Fig. 3.10: Tbx1 activates the Pitx2c enhancer (Pitx2-ASE)  

Luciferase reporter assays using the Pix2c enhancer and Tbx1 and Nkx2.5 as expression 

vectors shows weak activation of the Pitx2-ASE by either Tbx1 or Nkx2.5 in COS7 cells.  

Co-transfection of both, Tbx1 and Nkx2.5 leads to a 12-fold activation of the Pitx2-ASE. 

Data are presented as means and error bars for three independent experiments are 

indicated.  
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3.6.2 Tbx1 binds specifically to the T-half site in the Pitx2-ASE 
 

Specific binding of Tbx1 to the T-half site of the Pitx2-ASE was assayed 

using gel shift experiments (Fig. 3.13). Whole-cell extracts of 293T cells 

transfected with a Tbx1 expression vector (Tbx1 full length cDNA in pcDNA3.1) 

and synthesized oligonucleotides either containing the T-site of the Pitx2-ASE 

(Wt-oligo), mutated T-half sites (M1, M2) or a consensus T-half site, were used in 

the DNA-binding assay. Mutated oligonucleotides were designed as such they 

contained mutation in bases most critical for T-box protein binding (compare Fig. 

3.11 and 3.12).  

Lysates transfected with the Tbx1 expression vector resulted in the 

formation of a Tbx1-DNA complex in the presence of Wt-oligo (arrow in Fig. 

3.13). To prove the specificity of the binding, 100-fold excess of non-labeled Wt-

oligo was added, resulting in loss of the signal. Addition of a Tbx1 antibody, 

which recognizes a peptide in the carboxyl terminal third of the Tbx1 protein, 

outside the conserved T-box, resulted in a supershift of the Tbx1-DNA complex 

(arrowhead in Fig. 3.13), whereas addition of pre-immune serum as a control did 

not. Part of the DNA-protein complex had not been supershifted. This is possibly 

due other T-genes present in the cell extract that can bind to the same sequence. 

For example, it has recently been reported that Tbx20 can also activate the Pitx2c 

enhancer (Takeuchi et al., 2005); it is likely that it binds to the same T-half site. A 

DNA-protein complex that could not be supershifted with the Tbx1 antibody was 

also visible in control experiments in non-Tbx1 transfected 293T cells, suggesting 

that endogenous T-box proteins may be present in these cells (data not shown). 

Lysates transfected with Tbx1 expression vector resulted in a weak Tbx1-DNA 

complex in the presence of an oligonucleotide containing the consensus T-half 

site. Addition of 100-fold excess of the consensus oligonucleotide resulted in loss 
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of the signal (Fig. 3.13). The oligonucleotides, M1 and M2 which contain mutated 

T-sites did not lead to the formation of a T-box protein-DNA complex (Fig. 3.13).  

In summary, the EMSA demonstrates that Tbx1 can specifically bind to the 

T-half site detected in the sequence of the Pitx2c enhancer. Mutations of critical 

bases of the T-half site lead to loss of Tbx1 binding. Thus, Pitx2 is likely to be 

direct downstream target of Tbx1.  
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Fig. 3.11:  Oligonucleotides used in electromobility shift assays (EMSAs). 

Oligonucleotides of 20 bp were used in EMSAs. Oligonucleotides contained either the T-

half site (red) found in the Pitx2-ASE (Wt), mutated T-half sites, (M1, M2, resp.; mutated 

sites are highlighted in blue) and a consensus T-half site (Cons). Note that the T-half site 

in the Pitx2-ASE (Wt) differs only in two bases (green) from the consensus T-half site 

(Cons). 

 

 
 

Fig. 3.12: Critical bases in the consensus T-half site 

Critical bases for T-box protein binding that have been evaluated for TBX5 (Ghosh et al., 

2001) are the bases 2-6 (red) of the T-half site. Other bases in the T-site are subject to 

variation suggesting they are not essential for the binding. Mutated oligonucleotides in 

the EMSA (Fig. 3.13) have mutations in these bases. 

5’-  A/G  G  G  T  G  T  C/G/T  A/G N  N  -3’ 

WT:   5’-CAATCAGGTGTAAAGAGGAA-3’

M1:   5’-CAATCAGATTTGAAGAGGAA-3’

M2:   5’-CAATCAAATTTGAAGAGGAA-3’

CONS: 5’-CAATCAGGTGTGAAAAGGAA-3’
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Fig. 3.13: Tbx1 binds to a T-half site within the Pitx2c enhancer 

Electromobilty shift assays using whole cell extracts of Tbx1 transfected 293T cells 

confirms binding of Tbx1 to the T-half site within the Pitx2 enhancer (WT) (arrow).  

Addition of Tbx1-antibody results in a supershift of the complex (arrowhead). Mutation 

of the T-half site (M1, M2) does not lead to the formation of a Tbx1-DNA complex.  

Binding of Tbx1 to the consensus T-half site (Cons) is weak. 
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3.6.3 Interaction of Tbx1 and Nkx2.5 
 

To ascertain whether Tbx1 and Nkx2.5 interact physically with each other, 

I performed co-immunoprecipitation experiments using cell lysates of 293T cells 

transfected with the expression vectors Tbx1-GFP (cloned in EGFP-N1, Clontech) 

and Flag-Nkx2.5. Cell extracts of 293T cells transfected with Tbx1-GFP alone, 

Flag-Nkx2.5 alone and untransfected cells were used as controls.  The 

immunoprecipitation was performed with an antibody directed against the Flag 

epitope. The Tbx1 protein was then detected by immunoblotting with an anti-Tbx1 

antibody. Cell lysates transfected with either both, Tbx1 and Nkx2.5, Tbx1 alone, 

Nkx2.5 alone or untransfected cells served as controls for Tbx1 protein 

expression. Tbx1 expression could only be detected in Tbx1, Nkx2.5 co-

transfected and Tbx1 transfected cells. After co-immunoprecipitation with anti-

Flag antibody, Tbx1 protein could be detected in cell lysates transfected with Flag-

Nkx2.5 and Tbx1 (arrow in upper blot in Fig. 3.14). No Tbx1 protein was found in 

co-immunoprecipitation with an antibody directed against Flag using cells that 

were either untransfected or transfected with Tbx1, or Nkx2.5 only (upper blot in 

Fig. 3.14). The Flag-Nkx2.5 fusion protein was detected by immunoblotting with 

the Anti-Flag M2 antibody (Sigma). Control lysates showed protein expression of 

Nkx2.5 in cells transfected with Tbx1 and Nkx2.5 or with Nkx2.5 only (Fig. 3.14; 

arrow in bottom blot). No protein was found in lysates of untransfected and Tbx1 

transfected cells. After co-immunoprecipitation with anti-Flag antibody, Flag-

Nkx2.5 was detected in samples of Tbx1 and Nkx2.5 as well as Nkx2.5 transfected 

cells. Controls using untransfected and Tbx1 transfected cells did not show Flag-

Nkx2.5 protein expression (Fig. 3.14; bottom blot).  

Indeed, co-transfection of both, Tbx1 and Nkx2.5 expression vector 

constructs revealed interaction between Tbx1 and Nkx2.5. Thus, from the above 
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studies it can be concluded that Tbx1 might physically interact with Nkx2.5 on the 

Pitx2c enhancer and in that way synergistically activates the Pitx2 gene in cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14: Interaction of Tbx1 and Nkx2.5  

Co-transfection of Tbx1-GFP and Flag-Nkx2.5 in 293T cells and subsequent co-

immunoprecipitaton (Co-Ip) reveals interaction of Tbx1 and Nkx2.5. Upper blot shows 

immunoblot of Co-Ip followed by detection of Tbx1 protein (arrow). Bottom blot shows 

immunoblot of Co-Ip followed by detection of Flag protein (arrow). Co-IP of cell extracts 

transfected with Tbx1-GFP or Flag-Nkx2.5 alone or untransfected were used as controls 

and do not show interaction. Arrowhead marks unspecific bands. 
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3.7 Conservation of T-half site in the Pitx2 enhancer in 

mammals but not other vertebrates 
 

Pitx2 is a highly conserved gene throughout species. Its left-sided 

asymmetrical expression during early development is conserved in vertebrates 

(reviewed in Hamada et al., 2002). It is therefore of interest to understand if the 

regulatory elements driving the asymmetric Pitx2 expression are also conserved 

throughout the vertebrate species. 

Comparative sequence analysis using UCSC Genome Bioinformatics 

(http://genome.ucsc.edu) revealed that the T-half site, which I discovered in the 

murine Pitx2c enhancer, is not conserved in all vertebrate species. It is only found 

in mammalian species (mouse rats, human, and chimp) (Fig. 3.15). Sequence 

analysis revealed that a T-half site is not present in the Pitx2-ASE of Xenopus 

laevis (Fig. 3.16). A Pitx2-ASE in zebrafish has not been published yet. The 

genomic sequence of zebrafish pitx2 did not reveal any matches for a T-half site. 

This leads to the conclusion that the Tbx1-Pitx2 pathway discovered in this thesis 

has evolved recently.  

 

 

 

 

 

 

 

 

 Fig. 3.15: The T-half site in the Pitx2-ASE is conserved in mammals 

Sequences of T-half site in human, chimp, mouse and rat are shown. T-half site is 

conserved 100% in human and chimp. The T-half site in the rat differs from that in 

 

Human: 5’- GGGTGCAAAG -3’ 

Chimp: 5’- GGGTGCAAAG -3’ 

Mouse: 5’- AGGTGTAAAG -3’ 

Rat:   5’- GGGTGTAAAG -3’ 
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the mouse only in the first base, whereas mouse and human/chimp differ in 2 

bases. Rat and human differ in one base.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                            Modified after Shiratori et al., 2001 

 

Fig. 3.16: The T-half site in the Pitx2-ASE is only found in mouse but not in 

Xenopus 

Part of the sequences of the Pitx2-ASE in mouse and Xenopus are shown. Both have 

conserved Nkx2.5 binding sites (highlighted in blue) and conserved Fast binding sites 

(highlighted in red). However, the T-half site (highlighted in yellow), which Tbx1 binds 

to, is only found in the Pitx2-ASE of the mouse. 

 

Pitx2-ASE in mouse: 
 
CTGCAGCGGG TGCGCGCTCC AAAGGCCTAC TTCCAAACGC TTACTTTTTA 
GCCAAGTCCG TGAGGCTTGC TTCTTATAGC AATCAGGTGT AAAGAGGAAG 
GGGGGCGGAA TAGGAAATCA AGAATGAATG GGAAAAGAGG GGAAAAAAGC 
GGATTAGATG GCTGGGCGCG ACGGAGATGT GTAATGTGAA ACATCACCGT 
TGTCAGCCCT GGGCTGTTGA GCCAGGCCTC TCTCCAATAC ACAAAAGCTG 
CTCTCTGGGG CGACTGGCGG GCCGAGTGTG GATTGGAAGA GGGGTTTGGC 
GGGGCCACGG GACGCGGTGG GGGGTGGGGG TCGGCCAGCC TCCCGCAAAT 
CCACAAGAC… 
 
 
Pitx2-ASE in Xenopus: 
 
…ATAGCACAT CTTAAGGAAG GGGCTTTTTT TGGGGGGCAG TGAAATCAGG 
CACTTTATCA GGGCAGAGCC TTATCAGATT AGTACAATTT TGGGAATGCA 
AGGGGTGCCT TAAAATGGCT AATGGGCTTC TCCTGCACTG AGTGTGAGGG 
ATTAATGACA GAGTTGACAA CGATGTGCAA TGTCCAACAT GATTTGTATA 
AACAGGGCTC ATTGAGGAAC TGCTCAATAC ACAAAAGTCG CACTGCGGGA 
GGGTGACTGG CCGCTGAGAC GCACAGATGT GGATTGGAGA GATGGGAACG 
GATTGATAAC TGAATTCTCA ATTGTCTGGA GGGAGGATCT AGGGATCTCA 
TTTAGCACAT AGTTAAATAG ACAAGTCTTG CCAAAAGCCG GAGAAGGACA… 
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4. Discussion 
 

My studies provide in vivo as well as in vitro evidence for a novel Tbx1-

Pitx2 pathway, in the SHF. I have shown that genetic interaction of these two 

genes is crucial for proper asymmetric cardiac remodeling during early heart 

development. Perturbation of the Tbx1-Pitx2 pathway leads to severe cardiac 

defects. Pitx2+/-; Tbx1+/- mice exhibit defects that are common in several 

congenital heart diseases, and are reminiscent of the cardiac defects found in 

human patients with 22q11DS, for which TBX1 is a strong candidate. The 

Pitx2+/-; Tbx1+/- mice, therefore provide new insight into how cardiac defects 

occur in 22q11DS patients and which signaling pathways are involved during 

development. In addition, I have provided evidence for direct activation of the 

Pitx2c enhancer by Tbx1 in co-operation with Nkx2.5 in the SHF. 

 

4.1 Cardiac defects in Pitx2+/-; Tbx1+/- mice 
 

I have shown that hemizygous deletion of Tbx1 and Pitx2 together lead to 

severe defects of the arterial and venous pole of the heart. These defects resemble 

those previously described for the Pitx2c null mutant (Liu et al., 2002).  Both 

mutants, Pitx2c-/- and Pitx2+/-; Tbx1+/- mice, display VSD, DORV, malformation 

of the atrio-ventricular canal, pulmonary and caval veins. However, Pitx2c null 

mutants have much more severe defects occurring in the aortic arch vessels. Apart 

from DORV, they also exhibit right aortic arch, left innominate artery and left 

dominant double aortic arch (Liu et al., 2002).Thus, Pitx2 has also a major part in 

asymmetric patterning and remodeling of the branchial arch arteries, besides its 

function in cardiac remodeling. Severe aortic arch patterning defects occur also in 

Tbx1-/- mice, whereas the Tbx1 single heterozygous animals have only mild 

defects, such as retroesophageal right subclavian artery with variable expressivity 
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(Merscher et al., 2001). However, the Pitx2+/-; Tbx1+/- mice do not show more 

severe defects in the aortic arches than the Tbx1 single heterozygous. What could 

be the reason for this? One explanation could be that one copy of Pitx2 and/or 

Tbx1 are sufficient for proper remodeling of the aortic arches. Both transcription 

factors have been shown to be dosage sensitive (Gage et al., 1999; Liao et al., 

2004) suggesting that only low levels of both transcription factors are required for 

branchial arch patterning and remodeling. In addition, it has been shown that Tbx1 

is expressed in the pharyngeal endoderm where it acts upstream of the fibroblast 

growth factor, Fgf8. This Tbx1-Fgf8 pathway is thought to be important for 

branchial arch patterning (Abu-Issa et al., 2002; Frank et al., 2002; Hu et al., 

2004; Xu et al., 2004). Since this pathway is independent of the Tbx1-Pitx2 

pathway, Tbx1 signaling through Fgf8 could be sufficient to establish the correct 

branchial arch remodeling in the embryo. 

As mentioned above, Pitx2+/-; Tbx1+/- mice exhibit defects in the valves of 

the AV canal and in the pulmonary veins. It has been demonstrated by lineage 

tracing experiments that these structures are populated by Pitx2 daughter cells (Liu 

et al., 2002). It is likely that their precursor cells originate in the SHF meaning that 

they are descendants from cells expressing Tbx1 and Pitx2. A role for Pitx2 

involving cellular migration has been shown in cardiac neural crest cells (Kioussi 

et al., 2002). Thus, one can speculate that the Tbx1-Pitx2 pathway in the SHF 

might be required for cell movement of SHF cells into the pulmonary veins. 

Alternatively, the Tbx1-Pitx2 pathway could regulate proliferation of the 

precursors of the cells migrating into the veins. Lineage tracing of these cells 

would help to answer this question.  

Another defect shared between Pitx2-/- and Pitx2+/-; Tbx1+/- mice is a 

severe defect in the central mesenchymal mass that forms the AV-cushion and the 

valves (Kitamura et al., 1999; Liu et al., 2001). This results in a common AV-

canal. Similarly to the Pitx2 function in the morphogenesis of the pulmonary 

veins, it has been claimed that Pitx2 is as well required for cellular movement in 
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the AV-cushions. The AV-cushions are surrounded by Pitx2 expressing cells in 

the inner curvature myocardium of the heart. It has been shown that these 

myocardial cells invade the mesenchymal AV-cushions (van den Hoff et al., 

2001). However, it is speculated that another source of Pitx2 expressing cells in 

the AV-cushion could originate from the dorsal mesocardium (Liu et al., 2002), a 

structure that attaches the developing heart to the foregut. It is likely that cells, 

entering the heart through the dorsal mesocardium and invading the AV-cushions, 

derive from the SHF. The Tbx1-Pitx2 pathway could then be responsible for 

regulating the migration of these cells. 

As mentioned above, cardiac defects displayed by the Pitx2+/-; Tbx1+/- 

mice resemble the ones of the Pitx2c-/- mice (Liu et al., 2002). Pitx2 is essential 

for proper asymmetric cardiac remodeling (reviewed in Campione et al., 2002; 

Franco and Campione, 2003). In addition, I could present transient asymmetric 

Tbx1 expression in the SHF and in the left atrium, both Pitx2 expressing regions. 

The results of this thesis link Tbx1, for the first time, to asymmetric cardiac 

morphogenesis. Thus, defects resulting from perturbation of the Tbx1-Pitx2 

pathway can be considered as laterality defects. Hence, many forms of CHDs, 

especially in the 22q11DS can therefore be termed laterality defects. 

 

4.2 Interaction of Tbx1 and Nkx2.5 
 

This work shows for the first time in vitro evidence for the interaction of 

Tbx1 with the transcription factor Nkx2.5. I hypothesize that this interaction is 

necessary to synergistically activate the Pitx2-ASE (Fig. 4.1). Interactions of other 

T-genes with Nkx2.5 have already been reported previously. Tbx5 and Tbx2 have 

been shown to interact with Nkx2.5 on the promoter of the gene Nppa (ANF, atrial 

natriuretic factor) during cardiac chamber development (Bruneau et al., 2001; 

Hiroi et al., 2001; Habets et al., 2002) The promoter of Nppa contains an Nkx-
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binding site and several T-half sites. Tbx5 binds to the T-half site and interacts 

with Nkx2.5 to synergistically activate the Nppa promoter (Bruneau et al., 2001; 

Hiroi et al., 2001). In contrast, binding of Tbx2 and subsequent interaction with 

Nkx2.5 leads to repression of the Nppa gene (Habets et al., 2002). Interaction with 

Nkx2.5 has also been shown for another T-gene, Tbx20 on the connexin 40 

promoter (Stennard et al., 2003). These studies show that interactions of T-genes 

and Nkx2.5 are conserved in various processes during cardiac development and 

are indispensable for patterning the developing heart.  

 

 
 

Fig. 4.1: Interaction of Tbx1 and Nkx2.5 on the Pitx2c enhancer (Pitx2-ASE) 

The Pitx2-ASE in mouse contains an Nkx2.5-binding site (red box) and a T-half site 

(yellow box). Interaction of the transcription factors Nkx2.5 and Tbx1 on the enhancer 

lead to synergistic activation of the Pitx2c isoform. Activation through Nkx2.5 and Tbx1 

may be required for maintenance of Pitx2c expression in the left SHF. 
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4.3 Interaction of Nkx2.5 and Tbx1 leads to activation of the 

Pitx2c enhancer 
 

Establishing the left-right axis in the vertebrate embryos involves four 

steps: the determination of the left right polarity in or near the node, signals that 

transfer the left-right identity from the node to the lateral plate mesoderm (LPM), 

expression of signaling molecules Nodal and lefty in the left LPM and activation 

of Pitx2, which regulates asymmetric organ morphogenesis (Hamada, 2001). The 

asymmetric expression of Pitx2c is mediated by a specific left-side enhancer, 

called Pitx2-ASE, which is located in the intron between exons 4 and 5. The Pitx2-

ASE contains three FAST-binding sites and an Nkx2.5-binding site, which are 

necessary for asymmetric regulation of Pitx2. First, Pitx2 expression is initiated 

through Nodal signaling from the node through FAST transcription factors. It has 

been shown that Nodal is only transiently expressed between stages E 7.25 and E 

8.0 (Collignon et al., 1996; Lowe et al., 1996; Meno et al., 1996; 1997). Pitx2 

expression comes on around E 7.5 in the LPM but stays on much longer until E 

10.5 on the left side of primordia of asymmetric structures such as the sinus 

venosus, left atrium, cardinal veins and septum transversum, which gives rise to 

the liver and in a specific region of the foregut which gives rise to the lung and the 

gut (Meno et al., 1998; Yoshioka et al., 1998; Campione et al., 2000). After Nodal 

expression has ceased, Pitx2 expression is maintained by the transcription factor 

Nkx2.5 (Shiratori et al., 2001). The mechanism by which Pitx2 expression is 

maintained later is mainly unknown.  

It is likely that in different organs there are different transcription factors 

that interact with Nkx2.5 to maintain Pitx2 expression. This thesis elucidates one 

of them, the transcription factor Tbx1. Tbx1 interacts with Nkx2.5 and is most 

likely necessary to maintain Pitx2 expression in the SHF to regulate cell 

proliferation or migration to ensure correct asymmetric cardiac remodeling (Fig. 
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4.2). One can conclude that Pitx2 expression is established in two ways in the left 

SHF. First, Pitx2 becomes activated in the left LPM through Nodal and second, its 

expression is maintained through Tbx1 and Nkx2.5 (Fig. 4.2). It is tempting to 

speculate that Pitx2 expression is maintained in other asymmetric organs in a 

similar way, through interactions of other T-box genes, or other transcription 

factors with Nkx2.5 or other members of the Nkx2-family in organs, where 

Nkx2.5 is not expressed.  
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Fig. 4.2: Pitx2 expression is regulated in two ways in the SHF 

The Pitx2 gene is initially activated by Nodal. Nodal is only transiently expressed in early 

embryogenesis. However, Pitx2 expression in the left SHF stays on at later stages as well. 

Maintenance of Pitx2 expression in later stages is provided by synergistic action of Tbx1 

and Nkx2.5. 
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4.4 A novel Tbx1-Pitx2 pathway in the left secondary heart 

field 
 

The heart originates from three different cell populations, the cardiac 

crescent or primary heart field located in the anterior lateral mesoderm, the cardiac 

neural crest and the AHF/SHF. The AHF has recently been discovered in studies 

in chick and mouse. It was shown that cells from the pharyngeal mesoderm 

contribute to the distal part of the OFT and give rise to cardiomyocytes. Hence, the 

region of the pharyngeal mesoderm has been called AHF/SHF (Waldo et al., 2001; 

Mjaatvedt et al., 2001; Kelly et al., 2001). Further studies have elucidated that 

cells of the AHF not only contribute to the OFT but to several structures of the 

arterial pole as well as the venous pole of the heart (Meilhac et al., 2004). A 

current model to explain the origin of different cell populations that give rise to the 

heart was recently published by Kelly (2005). This model proposes that the entire 

embryonic heart derives from two cell lineages. The first lineage contributes to the 

left ventricle, atria, inflow region and partly to the right ventricle. The second 

lineage is thought to contribute mainly to the right ventricle and the outflow tract, 

but also to the atria and the inflow region. The AHF/SHF is thought to be a 

subpopulation of the second lineage.  The model assumes that cells from the SHF 

can contribute to both poles through the continuity of the splanchnic mesoderm. 

Cells can migrate into the heart as long as the dorsal mesocardium, a structure 

which attaches the heart to the foregut is still intact (Kelly and Buckingham, 

2002).  Supporting evidence for this model comes from studies of the LIM-

homeodomain protein Islet-1. The linear heart tube fails to extend in Islet-1-/- 

embryos. Islet-1 is only expressed in the pharyngeal mesoderm. Lineage tracing of 

these Islet-1 expressing cells showed that they contribute to the OFT, RV, atria 

and inflow region (Cai et al., 2003). In this thesis I have shown that Tbx1 and 

Pitx2 are co-expressed in Islet-1 positive regions, i.e. in cells of the SHF and that 
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double heterozygous mice for Tbx1 and Pitx2 exhibit defects in both the arterial 

and the venous pole. According to the current model the Tbx1-Pitx2 pathway must 

be a crucial part of the second lineage regulating or promoting migration of the 

SHF cells to the outflow and inflow region of the heart.   

Tbx1 expression has previously been identified in the region of the AHF in 

the pharyngeal mesoderm and in the pharyngeal endoderm. Since Tbx1 null 

mutants display OFT hypoplasia it is hypothesized that Tbx1 regulates addition of 

cells to the OFT by controlling cell proliferation through the fibroblasts growth 

factors Fgf10 /8 (Vitelli et al., 2000b; Hu et al., 2004; Xu et al., 2004). 

Cardiac defects in the Pitx2+/-; Tbx1+/- mice suggest that Tbx1 not only 

regulates cell proliferation via the fibroblast growth factors in the SHF but that 

there exists an additional pathway in the left SHF to ensure correct asymmetric 

cardiac morphogenesis (Fig.4.3). This pathway regulates cell proliferation or 

migration in a cell autonomous way through Pitx2, resulting in addition of cells to 

the right ventricle, atria and OFT. These are also sites of Pitx2 expression. In 

addition this study shows that not only daughter cells of Tbx1 are expressed in the 

heart (Vitelli et al., 2002b), but also Tbx1 it self is transiently asymmetrically 

expressed at E9.0 in Pitx2 positive regions, in the left atrium as well as in the 

caudal pharyngeal mesoderm which mainly contributes to the development of the 

OFT. This emphasizes the role of Tbx1 in correct asymmetric cardiac 

morphogenesis.  
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Fig 4.3: Model for the regulation of cardiac morphogenesis by Tbx1 in the 

secondary heart field 

Tbx1 exerts a dual role on the left side of the SHF.  Tbx1 acts through a novel second 

pathway in the left cardiac precursor cells of the SHF via Pitx2c. It regulates the 

activation of Pitx2c by interaction with Nkx2.5 to regulate cell proliferation or migration 

to ensure proper asymmetric cardiac morphogenesis. This pathway complements the 

previously described non cell autonomous Tbx1-Fgf8/10 pathway in the left SHF. The 

Tbx1-Fgf8/Fgf10 pathway is required for cell proliferation in the right and the left SHF. 
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4.5 Modifier genes for 22q11DS 
 

22q11DS is caused by a heterozygous deletion in chromosome 22q11.2. 

The majority of the patients have a 3 Mb deletion; some carry a 1.5 Mb nested 

deletion (Lindsay et al., 1995a; Morrow et al., 1995). Patients suffer from 

congenital heart disease (aortic arch defects, OFT defects), thymic and parathyroid 

aplasia or hypoplasia, craniofacial anomalies and learning difficulties. The 

phenotype is characterized through 100% penetrance and variable expressivity 

(Lindsay et al., 1995b; Morrow et al., 1995; Ryan et al., 1997; Scambler, 2000). 

There are no consistent differences in the phenotype between the 1.5 Mb and 3 Mb 

deletions (Carlson et al., 1997) suggesting that the variability must be due to 

genetic modifiers in form of single nucleotide polymorphisms (SNPs) or other 

polymorphisms and/or environmental factors. Mouse models have been used to 

address the issue of genetic modifiers. Mice in mixed backgrounds which harbor a 

deletion of 1 Mb deleting 18 genes of the 22q11.2 region showed variable 

penetrance of cardiac defects (Taddei et al., 2001) suggesting the presence of 

genetic modifiers. Nevertheless, variable severity of cardiac defects in Tbx1-/- 

mice in congenic FVB background (Liao et al., 2004) suggests that also stochastic 

factors might be a cause. Recently two genes, Fgf8 and the Vascular Endothelial 

Growth Factor (VEGF) have been linked to 22q11DS and are thought to be 

genetic modifiers of this syndrome.  

Mouse mutants that harbor hypomorphic alleles for Fgf8 have been shown 

to phenocopy the cardiac defects of the 22q11DS. Moreover, Fgf8 which is 

required for development of the pharyngeal arches acts in the same pathway as 

Tbx1. It is very likely that Fgf8 is a genetic modifier of the syndrome and 

contributes to the phenotypic variability (Frank et al., 2002), though evidence in 

humans is still elusive. 

VEGF is essential for vasculogenesis and angiogenesis. There exist three 

isoforms of 120, 164 and 188 aa (VEGF120, VEGF164 and VEGF188).  Mouse null 
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mutants for VEGF 164 display aortic arch defects, craniofacial, thymus and 

parathyroid anomalies as well as reduced density of the vasculature of the affected 

organs reminiscent of defects in 22q11DS patients (Stalmans et al., 2003). Tbx1 

expression was found to be reduced in these mice but it is not known whether this 

reduction is a direct down regulation or if it is a secondary effect. SNP analysis of 

22q11DS patients showed a SNP variant in the 5’ untranslated region of VEGF 

which was more frequent in patients with cardiac defects compared to WT. VEGF 

is a good candidate for a genetic modifier of the syndrome, though its interaction 

with Tbx1 still needs to be shown. 

The fact, that Tbx1 and Pitx2 act in the same pathway regulating 

asymmetric cardiac morphogenesis and that Pitx2+/-; Tbx1+/- mice exhibit a 

subset of cardiac defects of 22q11DS patients makes it tempting to speculate that 

PITX2 is a genetic modifier of this syndrome. It would be interesting to determine, 

if patients with cardiac defects have functional SNP variants in the PITX2 gene. 

Changes in an amino acid or in conserved non-coding regulatory regions of PITX2 

could alter the expressivity of the syndrome. This still needs to be determined. 

 

4.6 The T-half site in the Pitx2-ASE is only conserved in 

mammals  
 

The vertebrate heart is specialized to pump blood through gills or lungs to 

get oxygen. This oxygenated blood is then pumped throughout the body to supply 

the tissues. This is established using a highly specialized vascular circulation 

system. With the advance of a separate pulmonary system and division of the 

cardiac chambers in vertebrate evolution, oxygenated and deoxygenated blood 

could be separated more and more efficiently. The blood enters the heart of gill 

breathing fish through the sinus venosus, and passes then through the atrium and 

the ventricle, which are not yet divided by septae. It leaves the heart via bulbus 
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cordis directly into the ventral aorta. All blood in the body is oxygenated and the 

oxygen exchange takes place in the gills. However, the lungfish which possess a 

pulmonary system have already an incomplete subdivision of their atrium and 

ventricle. Though, mixing of oxygenated and deoxygenated blood still occurs. The 

amphibian heart consists of a sinus venosus, two atria that are fully divided by an 

atrial septum, a non-septated ventricle and a conus arteriosus which possesses a 

spiral valve.  This valve separates oxygenated and deoxygenated blood and leads it 

to the systemic and pulmocutaneous arches. Reptiles still have a small sinus 

venosus, a left and right atrium and an incompletely divided ventricle (except for 

crocodiles which have a fully developed ventricular septum). Birds and mammals 

are the only vertebrates which possess a four-chambered heart consisting of 

separate left and right atrium and ventricle, respectively. In addition, in contrast to 

other species, the outflow tract is fully subdivided into a pulmonary trunk and 

aorta which ensures complete separation of the oxygenated and the deoxygenated 

blood flow (Kardong, 2005).  

Formation of the different septae in the heart are managed by different 

genetic pathways during development and evolution. To ensure the correct 

development and remodeling of the septae and valves in the mammalian heart, 

additional pathways were necessary to coordinate their formation. The Tbx1-Pitx2 

pathway could be one of these pathways responsible for cell proliferation or 

migration of the cells necessary for septum formation in the outflow tract or in the 

ventricle and atria, respectively. Defects in these structures of Pitx2+/-; Tbx1+/- 

mice suggest that this pathway is indispensable for their proper development. 

Sequence analysis of the Pitx2-ASE in mouse, human, chimp, rat, frog and 

zebrafish has shown that the T-half site to which Tbx1 binds to activate the Pitx2 

gene in the left SHF is only conserved in mammals. This leads to my hypothesis 

that this T-half site represents an evolutionarily recent acquired regulator element 

in the enhancer. Asymmetric Pitx2 expression is conserved throughout the 

vertebrates. In the Pitx2-ASE of Xenopus the FAST binding sites and the Nkx2.5 
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binding sites which are needed for initiation and maintenance of Pitx2 expression 

in left-sided organs are conserved (Shiratori et al., 2001). However, a T-half site in 

the frog’s Pitx2c enhancer could not be detected. Through the addition of the T-

half site in the Pitx2-ASE of the mammalian species, the enhancer has gained an 

extra function. This function is likely used for regulating features like the complex 

cardiac remodeling especially the septum and valve formation which are distinct 

in the four-chambered heart of mammalian species.  

Moreover, comparative studies in animals have shown how evolution in 

non-coding regulatory sequences can contribute to evolution of anatomy. It is 

assumed that one possibility how changes in regulation during development lead 

to gain, loss or modification of morphological traits are alterations in cis-

regulatory elements. These changes in regulation of transcription factors can lead 

to changes in gene expression (Carroll, 2005). The addition of a cis-regulatory 

element, in this case a T-half site in the Pitx2-ASE leads to a more complex heart 

structure which provides advantages for mammals to survive in their specific 

environment.  

 

4.7 Summary 
 

In conclusion, this thesis unravels a novel Tbx1-Pitx2 genetic pathway. It 

shows that Tbx1 is able to bind directly to the Pitx2 enhancer and transactivates 

Pitx2c expression through interaction with Nkx2.5 in cells. I hypothesize that 

activation of Pitx2c by Nkx2.5 and Tbx1 is needed to maintain Pitx2c expression 

in the left cardiac precursor cells of the SHF after its initial activation through 

Nodal. It has been shown that Pitx2c acts cell autonomously within these cells by 

promoting their proliferation and/or migration into the heart (Kioussi et al., 2002). 

Thus, the Tbx1-Pitx2 pathway represents a novel cell autonomous function of 

Tbx1 in the SHF. This pathway complements the previously shown non-cell 

autonomous function of Tbx1 via Fgf10/Fgf8 regulating cell proliferation in the 
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SHF (Hu et al., 2004; Xu et al., 2004; Kelly, 2005).  The proven genetic 

interaction between the two genes and the reduced expression of Pitx2c in the 

Tbx1-/- mice must account for a discrete subset of the cardiac defects in these 

mice, which can, in the absence of asymmetric Pitx2c expression, be therefore 

classified as laterality defects.  

 

4.8 Future directions 
 

Targeted mutation of the T-half site in the endogenous Pitx2c enhancer 

which leads to abolishment of Tbx1 binding to the T-half site in vivo should help 

to verify the in vitro data obtained through the EMSA and the luciferase assays 

and will show if Tbx1 binding to the Pitx2c enhancer is crucial in cardiovascular 

development. 

Furthermore, it will be interesting to understand which mechanisms 

underlie the Tbx1-Pitx2 pathway, whether it regulates cell proliferation or cell 

migration into the heart or both. Cell proliferation can be assessed by applying 

BrdU staining. Preliminary data showed no differences in cell proliferation at the 

stage E10.0 between Pitx2+/-; Tbx1+/-, Pitx2+/-, Tbx1+/- and wt mice, 

respectively. Since co-expression of Tbx1 and Pitx2 starts much earlier in 

development, between E7.75 and E8.0 differences in proliferation might occur 

much earlier than E10.0. BrdU staining of E8.0 - E8.5 should help to clarify this 

aspect.   

Lineage tracing experiments in Pitx2+/-; Tbx1+/- and wt mice which harbor 

a Cre-regulated lacZ gene could be crossed with Islet1-Cre mice (Srinivas et al., 

2001). The resulting mice will express lacZ in SHF cells and their daughter cells 

only. LacZ staining of these embryos would help to understand if cell migration of 

SHF cells into heart plays a role in the defects of the Pitx2+/-; Tbx1+/- mice.  
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Moreover, it will be interesting to know which genes are immediately up- 

or downstream of the Tbx1-Pitx2 pathway. It is known that forkhead proteins 

Foxa2 and Foxc1 are upstream of Tbx1 in the pharyngeal endoderm and in the 

head mesenchyme, respectively. Fox binding sites have been identified in the Tbx1 

promoter (Yamagishi et al., 2003; Hu et al., 2004). Fox proteins might also be 

upstream of Tbx1 in the Tbx1-Pitx2 pathway in the SHF. One possible candidate 

could be Foxh1. It is expressed in SHF and null mutants have defects in the 

outflow tract and the right ventricle (Von Both et al., 2004). Luciferase assays 

using a Foxh1 expression construct and Tbx1 reporter as well as gel shift 

experiments to assess Foxh1 binding to the Tbx1 promoter could provide 

information whether Foxh1 is involved in this pathway.  

Only a limited number of Pitx2 downstream genes are known so far, two of 

them are CyclinD2 and Fgf8. Fgf8 is downstream of Pitx2 in craniofacial 

development (Liu et al., 2003). As mentioned before, Fgf8 hypomorphs exhibit 

similar cardiac defects as Pitx2+/-; Tbx1+/- mice (Frank et al., 2002). However, 

my preliminary data from crosses between Fgf8+/- and Pitx2+/- mice do not 

suggest that Fgf8 is a likely candidate. Fgf8+/-; Pitx2+/- double heterozygous mice 

survive in normal Mendelian ratios, which makes a genetic interaction between 

Fgf8 and Pitx2 in heart development unlikely. CyclinD2, another downstream 

target of Pitx2 has been shown to be involved in cell proliferation in the outflow 

tract, the pituitary and the muscle (Kioussi et al., 2002). It would be interesting to 

investigate if CyclinD2 is also downstream of Pitx2 in the SHF.
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