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NEWTON REGULARIZATIONS FOR
IMPEDANCE TOMOGRAPHY: A NUMERICAL STUDY.

ARMIN LECHLEITER*' AND ANDREAS RIEDER?

Abstract. The inexact Newton iteration REGINN for regularizing nonlinear ill-posed
problems comnsists of two components: the (outer) Newton iteration, stopped by a discrep-
ancy principle, and the inner iteration, which computes the Newton update by solving
approximately a linearized system. The second author proved convergence of REGINN fur-
nished with the conjugate gradients method as inner iteration [Numer. Anal., 43 (2005),
pp. 604-622]. Amongst others the following feature distinguishes REGINN from other
Newton-like regularization schemes: The regularization level for the locally linearized
systems can be adapted dynamically incorporating information on the local degree of ill-
posedness gained during the iteration. Of course, the potential of this feature can be
fully explored only by meaningful numerical experiments in a realistic setting. Therefore,
we apply REGINN to the 2D-electrical impedance tomography problem with the complete
electrode model. This inverse problem is known to be severely ill-posed. The achieved
reconstructions are compared qualitatively and quantitatively with reconstructions from a
one-step method which is closely related to the NOSER algorithm [Int. J. Imag. Syst. Tech-
nol., 2 (1990), pp. 66-75], an often used solver in impedance tomography. Our detailed
numerical comparison reveals REGINN to be a competitive solver outperforming the one-
step method when noise corrupts the data and/or a moderately large number of electrodes
is used.

Key words. Impedance tomography, complete electrode model, inexact Newton
iteration, conjugate gradients, discrepancy principle
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1. Introduction. Electrical Impedance Tomography (EIT) entails the
determination of the electric conductivity distribution of an object by ap-
plying electric currents at the boundary through electrodes and measuring
the resulting voltages at the boundary as well. Potential applications are,
for instance, medical imaging and non-destructive testing.

Because of its promising applications and its challenging mathematics
EIT attracted a vast amount of research during the last two decades, both,
theoretically and practically; all starting out from the pioneering work of
CALDERON [9]. The nonlinearity and the severe ill-posedness of EIT remain
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a challenge for reconstruction algorithms nontheless. Algorithms known to
us can be categorized as

1. noniterative algorithms based on global linearization,
2. iterative solvers tackling the full nonlinear problem, and
3. direct methods.

Noniterative algorithms based on global linearization can be build by stop-
ping any iterative algorithm after the first step, a prominent example is
the NOSER algorithm [11]|. For the iterative inverse solvers one usually ex-
ploits Fréchet differentiability of the forward operator and uses a regularized
Newton-type method. A somewhat different approach is propagated in [3]
where a nonlinear multigrid method solves a Tikhonov-regularized first or-
der optimality condition of an output least-squares formulation. The class
of direct methods splits into two subclasses: a) factorization methods use
special singular testfunctions to characterize inclusions in a homogeneous
background medium |5, 6, 8, 7| and b) direct methods that implement a
constructive existence and uniqueness proof [30, 31, 23, 1]. As far as we
know both direct methods are not able to deal with finite electrode mod-
els but need to apply currents and measure the voltages along the whole
boundary of the object (in mathematical terms: they need to observe the
Dirichlet-to-Neumann mapping). Their use for a realistic setting is therefore
limited.

Our work at hand contributes to the second class: We apply the nonlinear
regularization method REGINN (REGularization based on INexact Newton
iterations), developed and analyzed by the second author |26, 27, 29], to the
2D-EIT problem with the complete electrode model. The most delicate part
of any Newton-like regularization is the stable computation of the Newton
step from the locally linearized system. As the degree of ill-posedness of
the locally linearized system may change dramatically during the Newton
iteration, a careful selection of the level of regularization of the linear system
is indispensable. Surprisingly, this is not the case for most Newton methods,
see, e.g., [2, 21]. Also the nonlinear multigrid method from [3] works with
a-priori regularization parameters on the intermediate grids. In contrast,
REGINN selects the level of regularization of the locally linearized system
incorporating information on the local degree of ill-posedness gained during
the iteration. This unique selling proposition designates REGINN to solve
severely ill-posed problems, as we are convinced. Indeed, it is the purpose of
our work to substantiate our opinion and to promote REGINN as a helpful tool
not only for the EIT-community but also for all needing to solve nonlinear
ill-posed problems.

To put REGINN in perspective we compared it with a one-step solver
being akin to the NOSER algorithm. In spite of its simplicity the one-step
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solver delivers reconstructions of an astonishing quality. In particular, when
only a small number of electrodes is used, that is, the data contain only
little information on the conductivity, the one-step solver is hard to beat.
Nevertheless, the REGINN-reconstructions contain less noise and appear more
focused with a higher contrast. They are also quantitatively better than the
reconstructions by the one-step solver.

We start our paper in the next section by introducing the mathematical
model for EIT we work with. For the discretization of the governing elliptic
equation we rely on finite elements as we show in Section 3. Section 4 is
devoted to the Fréchet differentiability of the EIT operator allowing us to
tackle the inverse problem by Newton-like solvers in Section 5. Here we also
report the numerical experiments with the NOSER-like one-step solver (Sec-
tion 5.1). Next we present REGINN with the conjugate gradients method as
inner iteration (Section 6) followed by numerical experiments and a qual-
itative comparison of both solvers. The quantitative comparison together
with our conclusions is content of the final section. The paper ends with an
appendix where we explain how to compute efficiently the Fréchet derivative
of the discretized EIT operator.

2. The complete electrode model. In this section we give a brief
account on the mathematical model for EIT.

Es
Es

Eq
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Eg B

FIGURE 2.1. The experimental setup of an EIT tomography system with seven elec-
trodes. The body B contains two inclusions.

Assume that p electrodes have been fixed around the surface of the object,
for instance around a human chest (see Figure 2.1). Current is applied to
some subset of these electrodes and the resulting voltages at all p electrodes
are measured. This procedure, called the EIT experiment, is repeated several
times with different electrodes until a sufficient amount of data has been
gained. The inverse problem of EIT is then to reconstruct the inner structure
of the investigated object using this data set. Clearly, the EIT problem can be
solved only if the inner structure consists of areas with substantially different
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conductivities. In medical imaging this prerequisite is often fulfilled, see
CHENEY, ISAACSON and NEWELL |11, 10].

In the corresponding forward problem one wants to find the electric po-
tential in the interior of the object and at the electrodes, given some applied
current. If we assume that the object under consideration does not contain
any current source in its interior and that the frequency of the current is
small enough then a scaling analysis [10] shows that Maxwell’s equations
describing the electromagnetic fields inside the object reduce to the elliptic
equation

V.(6Vu) =0 in B, (2.1)

where o denotes the electric conductivity in the object B and w denotes the
voltage potential. We assume in the following that ¢ is a bounded positive
scalar function in the closure B of B. Moreover, o is assumed to be Lipschitz
continuous in B with possible jump discontinuities in B. Thus, a trace alop
is meaningfully defined. We denote the class of admissible conductivies by

A= {JGLOO(B)|UZJO>O,
there are (B;)jL, : B; € B, Bj open, a]Bj e W*(B;),U;B; = B}.

In the case of real conductivities several uniqueness results for the inverse
problem have been proved under stronger regularity assumptions, see for
instance (32, 33, 34, 24].

A careful modeling of the electrodes turns out to be of highest importance
when comparing the predictions of the resulting mathematical models with
experimental data [13, 12]. The complete electrode model [12, 10], nowadays
the standard model for medical applications, takes into account the following
three physical properties of the EIT experiment.

First, the electrodes are a discrete set. Let us denote by Fy,..., E, the
p electrodes, each Ej is considered to be an open subset of the boundary
OB with positive surface measure. We assume furthermore that the F; are
connected and separated, i.e., dist(Ej, E;) > 0 for k # j. Let I; € R be
the current applied to E; and define I = (I, ... ,Ip)T. Due to the principle
of conservation of charge we require that ) I; = 0. The vector I is called
current pattern or current vector. For convenience, let us denote the space
of current patterns of length p by

RY = {IeRP(ZjIjzo}.

Second, we model the electrode Ej; to be a perfect conductor, that is, we
assume that the potential along this electrode is constant: u]Ej = const.
This is the so-called shunting effect. To ease the notational burden, let

u|Ej =U; forj=1,...,p.
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Note that U := (Uy,...,U,)" is measured in the EIT experiment. To end
up with a well-posed problem we need an additional boundary condition.
As we model the electrodes as perfect conductors, the current sent to these
electrodes is applied completely to B. This implies that the total flux over
Ej equals I;:

/ ByudS =1; forj=1,...,p, where Byu:=oVu.v
Ej

is the conormal derivative and v denotes the outer unit normal to B.
Third, the complete electrode model includes the effect of contact im-
pedance at the electrodes: When EIT is used in a medical context, a thin
layer with high resistivity forms at the boundary between the electrodes and
the skin due to dermal moisture. We incorporate this effect by introducing

constants z;, j = 1,...,p, which denote the positive resistivity of the contact
layer at electrode Ej. According to Ohm’s law the potential v at E; drops
by z;B,u.

Hence, the complete electrode model gives rise to the following (weak)
formulation of the forward problem: Given a current vector I = (I,...,1,) €
RZ, a conductivity o € A, and positive contact impedances 21, ..., z, find a
potential u € H'(B) and a set of electrode voltages U € RY that satisfy

V.(oVu) =0 in B, (2.2)

u+2;B,u=U; onEj, (2.3)

/ BoudS=1; forj=1,...p, (2.4)
Ej

B,u=0 ondB\ U§:1Ej- (2.5)

The condition U € RE, i.e., Z?:l U; = 0, can be interpreted as a grounding
of the potential. Indeed, without this condition the above problem would
not be unique. According to [12]|, the accuracy of the model matches the
measurement precision of the experiment. Note that we assume in the sequel
of this work that the contact impedances z; are known and not part of the
inverse problem.

Existence and uniqueness of a solution (u,U) € H*(B) ® R% can been
shown using the Lax-Milgram Lemma. Indeed, in [12] it is shown that (u, U)
fulfills (2.2)-(2.5) if and only if

b((u, U),(’U,V)) = f(v,V) (2.6)

for all (v,V) € HY(B) ® RY where the strictly elliptic bilinear form b is
defined by

b((u,U), (v, V) ::/BaVquda:—l—sz/ u—Uj)(v—V;)dS,

and f(v, V)= 0_, I;V; for (v,V) € H'(B) © R.
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3. Discretization by rFEM. Since the solution (u,U) of the forward
problem cannot be computed analytically we use the Finite Element Method
(FEM) to find an approximate solution. Following the usual procedure of
FEM we use a triangulation T = {T1,...,Tjg} of the domain B and define
the finite-dimensional subspace Hj, of H'(B) to be the set of continuous
functions in H'(B) that are piecewise linear on each triangle of . Suppose
that the triangulation T consists of £ nodes. Then we denote by ¢, the hat
function that takes the value 1 at node k and vanishes at all the other nodes.
Any element uy, in Hp, is represented by

l

Up = Zakqﬁk for o, € R.
k=1

For notational reasons we identify w;, with its coordinates in the basis {¢y}
and write up = (aq,...,ay). Finally, we still denote the voltages at the p
electrodes by U = (Uy,...,U,) € RY.

Testing up, and U in (2.6) against v = ¢; and V = 0 yields

¢
Zak/aV¢kV¢,dx+Z / Zamk— )¢ dS =0, (3.1)
k=1 B

=17

for i = 1,...,¢. The discrete system (3.1) gives rise to a matrix-vector
equation in the following way: Let A € R®‘ be the admittance matriz with
entries

A = / UV(ka(ﬁde—i—Z / o ¢i dS.

=15
Furthermore, let B € R®P be the matrix defined by

B;; = 1 ¢; dS.
Zj E;
With these definitions equation (3.1) can be rewritten as Auy, + BU = 0.
Until now we have ignored the boundary conditions for uj, arising from the
complete model. Testing up and U in (2.6) now against v = 0 and V* =
(6ik)k—, we find that

—/ Zak or)dS =1I; (3.2)

or equivalently that

)4
E;
‘ | E ordS =1, fori=1,... ¢
’l k= Z E,
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Introducing the diagonal matrix D € RP*P,

D;; = l/ s = ‘EZ’=
E;

Zi Zq

we may write (3.2) as B'uy, + DU = I. Finally, we end up with the linear

(00 ()

for computing the FEM solution of the forward problem. The above system
has to be augmented to guarantee the grounding condition Zj Uj =0. An
easy way to include this constraint is to solve

A B u 0
BT D <U’}> = (I (3.4)
0 1 0
where 1 € RY? is the row vector (1,...,1). This straightforward approach,

however, destroys symmetry and positive definiteness of (3.3). KAIPIO et
al. |18| suggest a more sophisticated way how to augment system (3.3) re-
specting its favorable structure.

A-priori error estimates for the FEM solution wuy, are difficult to obtain
since the solution u of the complete model does not belong to H?(B). This
is due to the possible jumps of ¢ € A and because the Neumann boundary
values B,u do only belong to H*(0B) for s < 1/2. We do not want to
comment further on the convergence of up but refer to the paper of MOLARINI
et al. [22].

4. Fréchet Differentiability of the EIT Operator. The inverse prob-
lem of impedance tomography under the complete electrode model is to esti-
mate the conductivity distribution o from all pairs of current vectors I € RY
and resulting voltage vectors U € RY. As U depends linearly on I for a fixed
conductivity o there is a resistivity matrix R € RP*P guch that U = RI.
This is again Ohm’s law. Moreover, R is symmetric for scalar real o [12]
which we assume in the remainder of the paper. Now, we define for a fixed
current vector I and fixed positive contact impedances (Zj)g']:l

F:ACL®B)— HYB)®RY, o~ (u,U),

to be the forward operator that maps the conductivity ¢ to the solution of
the forward problem. Later we solve the inverse problem by Newton-like
iterations. A necessary ingredient is the Fréchet differentiability of &F. Recall
that Fréchet differentiability of & in ¢ means that

1F(o +n) = F(o) = F(0)nll i (myary,

im
700 —0 17| 0o
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THEOREM 4.1. Let I be a fizred current vector and z1,...,2, be fived
positive contact impedances. The operator F which maps o € int(A) to the
solution (u,U) € HY(B) ® RY of the forward problem with current vector
I is Fréchet differentiable. If n € L°°(B) is such that o +n € A, then the
derivative F' (o)n =: (w, W) satisfies the following variational problem:

—be ((w, W), (v,V)) :/BnVuOVvdx (4.1)

for all (v,V) € HY(B) ® R, where (u°,U°) := F(0).
_ Proof. KAIPIO et al. [18] give a proof in the case of the quotient space
H = (HY(B) ® RY)/R. However, the spaces H and H'(B) ® R} are norm

equivalent. Since
I O = 19022 + inf {1+ el gy + 10 + 3}
< IVullfzgy + lullFz s + U = 1w, U) i 50w

the embedding H(B) & RY — H is continuous and bijective. Hence, the
open mapping theorem yields norm equivalence. [

Theorem 4.1 shows especially that o +— U is Fréchet differentiable as
second argument of a differentiable mapping and the derivative is given by
formula (4.1). The nice part of this formula is that the derivative can be
computed using the variational formulation of the forward problem. On the
other hand, solving this variational problem means to compute one direc-
tional derivative. Unfortunately, Newton-like methods require to compute
lots of directional derivatives and this is usually the bottleneck of these al-
gorithms.

5. Newton-type methods for the inverse EIT problem. In this
section we consider iterative methods of Newton-type for the inverse EIT
problem. These methods work by local linearization of the nonlinear oper-
ator ¥ and by regularization of the Newton step. The well-known NOSER
algorithm of the Rensselaer group is one example, see CHENEY et al. [10, 11].

Assume that we apply [ current vectors I/ € RE, 5 =1,...,1, in the
EIT experiment and measure the corresponding voltage vectors U’/ € RE.
The set {I',... ,Il} is called a current frame. For notational convenience we
define a vector

I=("....IY=(,. . I},....1},....I.) eR?,

such that all the I7’s are stored in one single column vector. Let further
U € R be the column vector that arranges all the voltage vectors U7 in the
same way. For simplicity, we write U = RI for I € R!?, where R is now a
Ip x lp matrix such that every I/ is mapped on the corresponding U7. For
the remainder of this work we fiz I, having in mind that we use always the
same current frame.
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In the next step we transform the continuous setting in a discrete one.
Suppose we are given a triangulation T = {T1,...,Tjz} of the domain B.
Then we denote by S the space of step functions spanned by the indicator
functions 17, and define Ag = A NS, i.e., any s € Aq takes the form

|7
s(z) = th]th (x) forx € B and ¢ > 0.
t=1

We always identify s with its coordinate representation: s = (St)tzl,...,l‘f\'
Let us define the discrete forward operator ¥y by

Fy:Ag —RP, s U= (Rsll, . ,Rsﬂ) e R, (5.1)

where I = (I',...,I') is a fixed current frame in R"? and Ry is the resis-
tivity matrix associated to s € Agq. Note that Fq can be seen as a non-

linear vector field from RI7l — R, Since F : Ay — RP is Fréchet differ-

entiable, ¥ is a matrix, called the Jacobian of F4. As a consequence, if

Fi(s)na = (W ,WP) e R then W/ € RE can be computed by solving
the variational problem (4.1). For the implementation of the Newton-like
iterations below we need to evaluate the matrix-vector product F/(s)n and
the matrix ;. How this can be realized efficiently we explain in Appendix A.

The natural norm on S is a weighted Euclidean norm. For s = (s;) € S

we set
7]
‘3‘5@ = Zat’é’t\z, (5.2)
t=1
where a = (a;) is the vector containing the areas of the triangles of the

triangulation T. Please observe that |s|2, = [|s][12(p) for any s € S.

Assume now we are given measured data U € R, In order to find an
estimate for the corresponding conductivity distribution o we seek o* € A
that fits our data U, that is, F(o*) = U. Note that U is finite-dimensional
and hence there may exist lots of such ¢*. In an iterative method we try to
improve our actual guess o; € Aq, 7 € N, by adding a correction step h;.
We wish to have h; such that o; 4 h; = 0*. Since Fq is differentiable we can
write

Fa(oj) (0" = 0j) =U = Fa(o;) — E(c™; 05)
with the linearization error E(c*;0;). As the linearization error is unknown
we try to solve

Fy(oj)h; = U — Fa(oy) (5:3)

in the space of step functions S. All Newton-like solvers start in solving the
above equation some way or other.

Due to the ill-posedness of the inverse EIT problem [4, 5| we expect insta-
bilities in solving (5.3). To compensate the instabilities we apply a regular-
ization scheme to (5.3). The regularization of ill-posed problems is addressed
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by, e.g., ENGL et al. [14] or RIEDER [28]. Probably the most often used ap-
proach is Tikhonov regularization where

hj = (F4 (0)F,(0;)+0; diag(a)) " Fy (o) (U~Fa(oy)) for ;> 0. (5.4)

Note that the perturbation term is chosen to respect the norm |- |o,. The
step h; serves as Newton update for our guess o; by

Oj+1 :O'j—l-hj. (5.5)

The iterative scheme (5.4) and (5.5) is called the Levenberg-Marquardt
method, see LIONHEART and POLYDORIDES [25] and HANKE [15]. A similar
method is due to Bakushinskii |2],

hy = (T4 (07)F4(0;) + 6;diag(a)) ™ (T4 (o) (U — Fa(oy))

(5.6)
+ 9j(0'0 — Uj)),

where the right most term, which prevents the iterates o; to diverge too
far from the initial guess og, brings in additional stability. The method
described in equation (5.6), together with (5.5), is known as the iteratively
regularized Gauf-Newton method, see, e.g., KALTENBACHER |20, 21|. All
presented regularization schemes for (5.3) are linear so far.

We have not yet mentioned how to stop the iterative schemes (5.4) or
(5.6). The reason is that inverse solvers of Newton-type applied to EIT usu-
ally stop after one step, at least in the two dimensional case. Therefore the
EIT problem is not locally but globally linearized about the initial guess og.
For the applications reported in [11, 10, 18] global linearization yields suffi-
cient accuracy while allowing real-time reconstructions. Our numerical ex-
periments in the next subsection are based on the following one-step solver:

Initial guess oy;
Regularization parameter 0; .
o1 = 00+ (F4 (00)Fy(00) + 0 diag(a)) ~ Fy (00) (U — Fa(00))

return oq;

The NOSER* algorithm uses the diagonal of the matrix F," (09)F(c0) instead
of the diagonal matrix diag(a) as in (5.4), see [11].

5.1. Numerical experiments with NOSER-like regularization. The
experimental protocol for the numerical experiments with the Tikhonov one-
step solver is the following. The data for the reconstruction algorithms are
obtained synthetically. In our data retrieval we try to avoid the most obvious
inverse crime and use different meshes for the forward data computation of
F4 and the inverse computations (i.e., the reconstruction of a conductivity).

*Newton One-Step solvER
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Fiaure 5.1. On the left: mesh for the reconstruction when 16 electrodes are used.
On the right: adaptively refined mesh for the computation of the Jacobian F'.

Moreover, to calculate the Newton step in (5.4) one also needs to compute
the Jacobian ¥/ which is defined by a variational problem and approximated
using a FEM, see Appendix A. For the computation of the Jacobian, a third
mesh is employed. In Figure 5.1 we show the reconstruction mesh that is
used in case of 16 electrodes together with the refined mesh to compute the
Jacobian. The forward computations are done on an even more refined grid
to guarantee quality of the data. The meshes for the computation of the
forward operator and the Jacobian are refined towards the electrodes using
the adaptive mesh refinement procedure provided by MATLAB’s! partial
differential equation toolbox. Of course, the computation of these meshes is
performed independently of and before the inverse computations. Especially,
these meshes are the same for all our examples under the same number of
electrodes.

Recall that the data set for the inverse solver is the current frame I € R?
and the resulting voltage vector U € R'P. In our experiments we set [ = p and
use current vectors of the form (0,...,0,1,—1,0,...,0) which are the most
simple ones and easy to implement. The question of the choice of current
patterns is nontrivial and there exist concepts of optimal current patterns
and distinguishability, see ISAACSON [16] or KAIPIO et al. [19] for details.
We do not care on these questions but remark that, in view of practical
experiments, we only incorporate voltages from electrodes in the forward
data set where no current is fed.

Newton schemes always need some initial guess as starting point for the
iteration. We always use the background conductivity o = 1 as initial guess
for the one-step solver (as well as later for the REGINN algorithm). This is
an appropriate choice since it matches the background conductivity of our
examples. Recall that the complete electrode model, which is our model

TMATLAB is a trademark of The MathWorks, Inc.
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of choice, includes a contact impedance effect at the electrodes. In our
computations the contact impedance is set to 0.25 for all electrodes. We
found this numerical value from [18, Figure 4].

Some of the subsequent reconstructions are computed from synthetic
data in the presence of artificial noise. Our input data for the inversion
algorithm are the current patterns I',...,I' and the corresponding voltage
vectors U, ..., U which we store for algorithmic reasons in p x l-matrices.
Therefore, the noise is measured in the Frobenius norm and the relative error
between computed and perturbed data is given in percent.

All figures presenting our different results are organized in the same fash-
ion: In the upper left corner the reader finds the projection of the original
conductivity distribution on a fine grid which is only used for plotting. Be-
cause of the projection the boundaries of the inhomogeneities are frayed out.
Next, we plot five reconstructions where the regularization parameter 6 is
divided by 3 successively. All reconstructions are computed simulating an n
electrodes system. By this term we mean a regular polygonal domain with
2n corners such that every second side of the polygon is used as electrode.
We reconstruct scalar real conductivities and emphasize that the same col-
ors (grey values) in different reconstructions do usually not refer to the same
conductivity, i.e., the colormaps of the plots are in general different.

Figure 5.2 shows the reconstruction of a non-convex inclusion in form of
two overlapping circles which are placed inside the domain. The reconstruc-
tion has been obtained simulating a 32 electrodes system without artificial
noise. We used # = 0.35 as initial regularization parameter. The best
reconstruction seems to be the one in the middle of the bottom row. This
reconstruction shows the correct place but fails to distinguish the two circles.
Nevertheless, the reconstruction seems to respect the convex hull of the non-
convex inclusion. The numerical value of the conductivity of the inclusion is
1.4 and underestimated by 1.2. Morever, the discontinuity of the inclusion
is strongly smoothed by Tikhonov regularization and the electrodes close to
the inclusion affect the reconstruction when the regularization parameter is
small, see right plot on the bottom. Note that our reconstruction algorithm
does not use penalty terms involving differential operators which might cope
with this effect. Also the quasistatic imaging technique [17] designed to
correct errors in the electrode model does not improve the reconstructions.

Figure 5.3 shows reconstructions of an L-shaped inclusion. We simulated
again an 32 electrodes system with 0.5 percent artifical noise and started with
6 = 0.35. The best reconstruction seems to be the left most of the bottom
row. The location of the inclusion is found while its size is too large and the
non-convexity is only slightly visible. As before, the numerical value of the
conductivity is underestimated and electrodes being next to the inclusion
spoil the reconstruction as the regularization parameter gets smaller.

The reconstructions up to now have been computed simulating a 32 elec-
trodes system. The plots in Figure 5.4 are now computed simulating a 64
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FIGURE 5.2. One step reconstruction of a non-conves inclusion (32 electrodes, initial
parameter § = 0.35, no artificial noise).
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: . e 4

FIGURE 5.3. One step reconstruction of an L-shaped inclusion (32 electrodes, initial
parameter = 0.35, 0.5 percent artificial noise).
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Original Error: 22.97 Error. 22.37

S ST

Error: 21.61 Error: 20.82 Error: 20.15

O

FI1GURE 5.4. One step reconstruction of two opposite inclusions (64 electrodes, initial
parameter 6 = 0.48, 1 percent artificial noise).

electrodes system. We added 1 percent artificial noise to the data and chose
0 = 0.48 for the first reconstruction. As an additional difficulty the conduc-
tivities of the two inclusions are above and below the background conduc-
tivity. Again the locations of the two inclusions are roughly found but their
sizes are overestimated. Using a small regularization parameter we are able
to recover the shape satisfactorily but instabilities from the electrodes spoil
the reconstruction near the boundary. On the other hand, large parameters
smooth the conductivity strongly.

We have performed more numerical experiments than reported here. All
our experiments showed that the Tikhonov one-step solver is able to find
some main characteristics of the inclusions as, for instance, their locations.
The approximate shapes can usually be guessed but complicated shapes are
hard to recover, even if lots of electrodes are used. An experienced user
might be able to guess the correct shape by playing with the parameters.
The one-step approach offers only little control over the magnitude of the
regularization and instability problems, especially near to the boundary, oc-
cur even if the information in the interior of the domain has not yet been
fully exploited.

6. The REGINN algorithm. A very efficient iterative scheme for regu-
larizing equation (5.3) is the method of conjugate gradients (cg-method), see,
e.g., ENGL et al. [14, Chap. 7| or RIEDER [28, Chap. 5.3]. It starts from an
initial guess &y € S and computes iteratively a sequence (&)ken satisfying
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the minimization property
& = argmin {|(U — Fa(0;)) — Fi(0;)€l2| £ € S and £ — & € Uy}, (6.1)
where
Uy = span{Fy' (o;)r0, (F4' (07)F4(0)))Fa (05)r0, - -
(T (0)F4(09) " (@m0}

is the kth Krylov subspace with respect to the initial residual rg := U —
Fa(oj) — F(05)&. Therefore, the kth iterate has the representation

&k = &0 + Pr—1 [%T(Uj)rfé(aj)} Fa (o)r0 (6.2)

with a suitable polynomial p;_1 of degree k — 1. Note that pr_1 depends on
U — F4(0;) making the cg-method a nonlinear regularization scheme.

In starting the cg-method with {y = 0 and in setting h; := {y(;) the
Newton iteration (5.5) becomes

0j+1 =05+ png) [Fa (0)F4(0)] T (@)U — Fa(o)] (6.3)

where N (j) is determined as the smallest number at which the relative (lin-
ear) residual is smaller than a given tolerance p; € (0, 1], that is,

1Fa()En ) + Falos) = Ula < pj|Fa(os) = Ula < [Fg(oj)ék + Faloy) — Ula

)
forall k =1,...,N(j) — 1. A meaningful strategy to adapt the y;’s dynam-
ically is presented in (6.4) below.

Finally, iteration (6.3), called REGINN (REGularization based on INexact
Newton iterations), has to be stopped in time to avoid noise amplification.
Here we rely on a discrepancy principle: Choose R > 0 and accept that
iterate o, as approximation to the conductivity s which fulfills

U = F4(on)l2 <R < |U—=F4(0j)|]2 forall j=0,...,n—1.

For the the sake of clarity we give an algorithmic realization of REGINN in
pseudo code:

Initial guess op;
Regularization parameters {u;}, R;

J=0;
while ’U — S:d(dj)‘g >R
{

1=0;

repeat

1=14+1;
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&i = Di (%T(Uj)f’té(ffj)) F4 (o) (U = Faloy));
until |F4(05)E) + Faloy) — Ula < pj|Faloy) — Ul2
Oj+1 =05+ &jis
J=J+1

}

return 0j.

In the inner repeat-loop the Newton update is calculated using the cg-
method and the outer while-loop implements the Newton iteration stopped
by the discrepancy principle.

REGINN was propagated by the second author and analyzed in a series
of papers [26, 27, 29]. Termination of the inner and outer loop as well
as stability and convergence results have been obtained for a large class of
nonlinear inverse problems. At the present we do not know whether the
convergence analysis applies to impedance tomography as well. Therefore,
our present work is mainly experimental and numerical.

One of the big advantages of REGINN is that the tolerances {u;} C (0, 1)
can be adapted dynamically incorporating information on the local degree of
ill-posedness gained during the iteration. The following strategy (6.4) from
[26, Sec. 6] for choosing the tolerances complies with the convergence analy-
sis: The smaller the tolerances are the less Newton steps (passes through the
while-loop) are required to terminate REGINN (|26, Cor. 4.7]). On the other
hand the tolerances must not be too small to avoid noise amplification while
solving (5.3) (|26, Lem. 3.2 and (3.6)|). In the starting phase of REGINN
the repeat-loop terminates even for small tolerances (|26, (3.6)]). Accord-
ingly we start with a small tolerance and increase it during the iteration.
An increase of the tolerance is needed if the number of passes through the
repeat-loop of two consecutive Newton steps increases. The tolerances shall
be decreased whenever successive numbers of passes through the repeat-
loop drop. Moreover, we apply a safeguarding technique: If the nonlinear
defect |U — F4(0j)]2 is already close to R, then it is unnecessary to choose a
small tolerance 1, since then |U — Fq(0j41)|2 might be considerably smaller
than R.

The above considerations a realized in (6.4): Initialize pgiary € (0,1),
Umax € (Ustarts 1), ¢ € (0,1) and define auxiliary parameters fig = i1 =
Mstart- Then,

1 = prmax max {R/|U — Fa(o;)l2, 5}, 7=0,1,....N(j)—1, (6.4)
where

Q= 1-— %8:?; (1—pj—1) @ N@G-1)>N(—2),
] C -1 : otherwise,

J =2
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In our numerical experiments for impedance tomography we worked with
the parameter setup pstart = 0.8, ttmax = 0.99 and ¢ = 0.97.

6.1. Numerical experiments with the REGINN algorithm. The ex-
perimental protocol for the experiments with the REGINN algorithm is the
same as for the Tikhonov one step solver in Section 5.1. More precisely, we
compute the synthetical data and the Jacobian of the forward operator with
the complete model on two different meshes which are both very fine near
the electrodes, whereas the inverse solver works on a coarse mesh.

In experimenting with REGINN the residual error |[U — F4(oj)|2 of the
iterates o; does sometimes increase during the outer iteration process. Usu-
ally, this happens when the iteration reaches the saturation point. Possible
interpretations are twofold. On one hand the regularization parameter R
could be too small. On the other hand, the residual error may not decrease
monotonically for the EIT problem since EIT does not belong to the class
of problems where we can prove monotone decrease. Our implementation
solves this problem from the numerical point of view. If the residual error
increases, then we have no hope that the error itself decreases and we stop
the iteration.

With the initial tolerance pg = 0.8 we found that the tolerances increase
round about monotonically during the reconstruction process and therefore
we believe that these values are adapted to the problem (compare Table 6.1
below). When we perturb the data with artificial noise we measure the
perturbation of the data in the Frobenius norm as mentioned in Section 5.1
and indicate the relative error between computed and perturbed data in
percent. As for the one-step solver we always use a constant conductivity
(with value one) as initial guess for the inverse solver.

The REGINN reconstructions are presented together with the original con-
ductivity and the evolution of the relative error during the (outer) iteration.
In Figure 6.1 we observe that REGINN is able to find the approximate shape
of the L-shaped inclusion from Figure 5.3. We used 32 electrodes in this
example and added 0.5 percent artificial noise. The size of the reconstructed
inclusion is moderately larger than the original. Only little noise comes
from the electrodes and the convex corners of the inclusion are quite well
determined compared to Figure 5.3.

The stability of the REGINN reconstructions is controlled by the adap-
tively chosen tolerances p;. Table 6.1 shows this adaption process for the
example of Figure 6.1. The tolerance selection scheme (6.4) works as pre-
dicted: For instance, from step 3 to step 4 the number of inner iterations
increases from 3 to 6 and REGINN accordingly chooses us larger than puy. On
the other hand, the number of inner iterations drops from 6 to 2 from step
4 to step 5 and REGINN selects a pug smaller than ps. During the complete
iteration process the tolerances increase from 0.799 to 0.991.

The conductivity distribution in Figure 6.2 is the same as in Figure 5.4 as
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FIGURE 6.1. REGINN reconstruction of an L-shaped inclusion (32 electrodes, R = 1,
o = 0.8, 0.5 percent artificial noise).

TABLE 6.1
Parameter adaption of REGINN during the reconstruction process. The corresponding
reconstruction s shown in Figure 6.1. Entries in column j denote the outer iteration
counter, N(j) is the number of inner iterations in the jth step and p; is the chosen
tolerance for the jth step. The relative error is given in percent.

j N(@) p;  error
0 0 34.72
1 2 0.799 29.92
2 4 0.799 27.35
3 3 0.899 27.20
4 6 0.871 25.88
D 2 0.935 25.84
6 6 0.906 25.01
7 1 0.968 25.00
8 6 0.938 24.52
9 1 0.989 24.52
10 2 0.958 24.50
11 1 0.978 24.50
12 ) 0.948 24.30
13 1 0.989 24.29
14 ) 0.958 24.15
15 1 0.991 24.15

are the number of electrodes (p = 64) and the noise level (1 percent). REGINN
locates the inclusions correctly and also shows that their conductivities are
above and below the reference conductivity. The REGINN reconstructions are
more concentrated and less smoothed than the NOSER-like reconstructions
in Figure 5.4.
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FIGURE 6.2. REGINN reconstruction of a two circles with different conductivity (64
electrodes, R = 2.5, uo = 0.8 , 1 percent artificial noise).
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The searched-for conductivity of Figure 6.3 is smooth and attains values
above and below the background medium. The reconstruction is computed
with simulated data of a 64 electrodes with 1 percent artificial noise and
parameters R = 2.5, up = 0.8. The location of the two inhomogeneities is
found, their size is slightly overestimated. The iteration decreases the recon-
struction error from round about 20 to 10 percent, however, the reduction
of the error during the last iterations is small.

Error

Original oth Iterate 20

1
1

FIGURE 6.3. REGINN reconstruction of two smooth inclusions (64 electrodes, R = 2.5,
o = 0.8, 1 percent artificial noise).

5

2 4 6 8 10
Iterations

In Figure 6.4 we investigate the reconstruction of a jump conductivity
distribution being not an inclusion in a homogenous background medium,
that is, we have a discontinuity also on the boundary of the domain. We
corrupted the 64 electrodes data by 2 percent artificial noise and chose R =
3.6 and po = 0.8. REGINN finds the boundary between the two constant
parts of the conductivity accurately. The two values of the conductivity are
well approximated in both parts of the domain, however, in the upper half
of the domain the electrodes are clearly visible.

Figure 6.5 presents the reconstruction of two close circular disks that are
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FIGURE 6.4. REGINN reconstruction of piecewise constant conductivity (64 electrodes,
R = 3.6, po = 0.8, 2 percent artificial noise).

placed close to the boundary of the domain. We worked with 64 electrodes, 5
percent artificial noise and chose pg = 0.8 and R = 8. The two inclusions are
located but the numerical value of the conductivity is dramatically underes-
timated. REGINN fails to reconstruct the two separated disks but indicates
at least slightly the non-conconvexity of the inclusion. Noise appears near
to the boundary of the domain but this is to be expected under a noise level
of 5 percent.
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z
0 H15
1

FIGURE 6.5. REGINN reconstruction of two close circles (64 electrodes, po = 0.8,
R =8, 5 percent artificial noise).
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REGINN applied to the inverse EIT problem takes full advantage of the
dynamic adaption of the level of regularization to the local degree of ill-
posedness. Therefore, REGINN outperforms the Tikhonov one-step method in
general with respect to image quality since less noise ease the interpretation
of the reconstructions, especially near to the boundary. The images are more
focused and have a higher contrast.

7. Quantitative Comparison. In the last section we compared the
classical Tikhonov one-step solver with REGINN in a qualitative way and
found that REGINN produces reconstructions of at least the same quality
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as Tikhonov one-step reconstruction while avoiding some of its drawbacks.
Now we will substantiate this observation with a quantitative study. We
consider the relative error of both reconstruction methods with respect to
the original resistivity distribution in the discrete L?(B) norm (5.2). Please
note that our results presented in this section are stable under small changes
in the parameters pg, R and 6 of the algorithms.

TABLE 7.1
Relative errors in percent for different conductivity distributions (32 electrodes, 0.5
percent artificial noise, R = 1.5).

p=32 REGINN Tikhonov

Figure pp=0.8 6=0.04 6=0.13
5.2 10.3 11.0 9.8
5.3 24.1 27.5 25.9
5.4 20.0 20.4 19.8
6.4 23.9 29.3 32.4
6.5 21.6 21.6 20.7
6.3 12.0 14.5 12.5

Table 7.1 compares the inverse solvers for a 32 electrodes system and 0.5
percent artificial noise. We see that REGINN produces smaller or comparable
errors than Tikhonov regularization, but does never perform significantly
worse. This observation agrees with our experience and with our examples
presented in Sections 5 and 6.

TABLE 7.2
Relative errors in percent for different resistivity distributions (64 electrodes, 1 percent
artificial noise, R = 2.5).

p =32 REGINN Tikhonov
Figure pp=08 6=0.053 6=0.017
5.2 9.59 10.95 9.95
5.3 22.6 27.5 26.1
5.4 20.2 21.6 20.8
6.4 22.8 31.1 33.8
6.5 18.6 21.8 21.1
6.3 8.91 14.3 12.7

Table 7.2 contains results for a 64 electrodes system with 1 percent ar-
tificial noise. REGINN now outperforms the Tikhonov one-step solver as the
differences between the two algorithms are more pronounced than for the 32
electrodes system. This indicates, as we think, that REGINN extracts more
information from perturbed data, compare, e.g., the performance of REGINN
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when reconstructing the conductivity of Figure 6.4.
Finally, we confirm our observations once again: Table 7.3 compares the
two algorithms for a 64 electrodes system under 5 percent relative noise.

TABLE 7.3
Relative errors in percent for different resistivity distributions (64 electrodes, 5 percent
artificial noise, R = 8).

p =64 REGINN Tikhonov
Figure pp=0.8 6=0.078 6=0.025
5.2 9.74 11.9 11.6
5.3 25.2 28.4 27.0
5.4 20.0 221 21.7
6.4 22.3 30.5 32.9
6.5 19.8 224 21.9
6.3 10.2 15.3 14.4

Let us summarize our experimental findings for the inverse EIT-problem:
Compared to the simple Tikhonov one-step solver REGINN is able to ex-
tract more structural information from noisy data. Additionally, it profits
more strongly from increasing the number of electrodes. All these advan-
tages of REGINN originate, as we think, from the adaptive choice of the
tolerances (6.4) allowing a fine-tuned regularization of the locally linearized
problems (5.3).

Of course the Tikhonov one-step solver has its advantages: Only one
linear problem has to be solved (if the regularization parameter 6 is deter-
mined a priori!) making it a relatively fast algorithm. It is therefore hard
to beat if the measured data contain little information on the searched-for
conductivity as in the case of few electrodes.

Nevertheless our experiments reveal REGINN to be a competitive solver
for the inverse EIT-problem. Its proven potential deserves further exploration
under real-life conditions.

Appendix A. Computing the Jacobian. In this appendix we explain
how to compute the Jacobian F,(s) efficiently as we learned from [25]. Let us
denote by V;Fq4(s) the gradient of F4(s) with respect to the tth component
of s € Aq. Then F) has the form

Vlg.'d(s)T

VaFq(s)T
Fis)= | f( ) e RITIxp, (A1)
V‘(J-Iﬂfd(g)—r

Recall that Theorem 4.1 shows how to compute the partial derivatives ap-
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pearing in (A.1). If we denote
thfd(S) = Wt = (th’ s )th) € Rlp)

then we can compute the vector W/ € RE as part of the solution (w}™, W;™) €
HY(B) ® R of the variational problem

b (wi™, W™, (v,V)) = —/B]thVuvadx (A.2)

for all (v,V) € HY(B)®RE, where u™ € H'(B) is the solution of the forward
problem with respect to the current pattern I™ and the contact impedance
vector z; see Theorem 4.1.

The reader might feel as this way of computing the Jacobian is highly
expensive. One computes indeed not only the needed vectors Wy, ..., Wq4,
but also all the potentials w™ € H'(B) which are not needed a priori. In
fact, using this method, one has to compute [ - |T| forward problems.

Fortunately, we are able to simplify substantially the computation of the
Jacobian by the following trick: We introduce the auxiliary “current frame”
J=(JY ..., JP), J* being the Kronecker symbol

Jk = (5j7k)§:1 for k=1,...p,

and let (vF,VF) € H' @ RZ be the (grounded) solution of the variational
problem

bs (V" VF), (4,Y)) = (J™,Y) =Y, forall (y,Y)e H(B)® R,

for k = 1,...,p. Even if the J* are no current patterns in the usual sense
(Zj J]"-c # 0), this problem is well-posed, because the linear form on the
right-hand side is bounded and the bilinear form on the left is an elliptic
form on H* ® R% [12]. Then we compute

V. F(s) = (W,},...,Wf) = <<thaJk>£:1);

= (b5 V). (g W),
.2)

A3
</ ﬂTtVu;”Vvkdaz> (4.3)
B Im

:< Vu;”Vvkdx> .
T: I,m

Hence, all we have to do to obtain the Jacobian is to compute the p forward
problems for the (v*, V*), the I forward problems for the («™,U™), and to
assemble the obtained solution in the way indicated by (A.3). This makes
p + [ forward problems to solve. As p < |T| in general, the reduction of the
numerical effort is tremendous. Moreover, the computation of the forward

=1

S
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solutions uses always the same bilinear form and this fact provides additional
speedup for the implementation.

An experienced reader might object to compute the Jacobian at all:
REGINN, as in iterative solver, only requires the action of the Jacobian and
its adjoint on a vector. Both matrix-vector products can indeed be realized
by solving variational problems, see (4.1) for F,(o)n. However, observe the
appearance of F(o) in the right-hand side of (4.1). To set up the right-hand
side for computing JF,(c)n one accordingly needs to evaluate the forward
operator ¥4 which means solving an additional elliptic problem. Moreover,
(4.1) addresses the case of one single current vector only. Our setting deals
with current frames of size [. So we need to solve 2[ elliptic problems all
in all to evaluate F/(o)n (neglecting the structural work for setting up the
right-hand side). Since we work with p = [ in our implementations the eval-
uation of F(o)n requires to solve 2p forward problems. The same numerical
effort is needed to obtain ?Q(J)Tg via variational problems. Computing the
Jacobian explicitly is therefore the cheaper way.
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