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NEWTON REGULARIZATIONS FORIMPEDANCE TOMOGRAPHY: A NUMERICAL STUDY.ARMIN LECHLEITER∗† AND ANDREAS RIEDER‡Abstra
t. The inexa
t Newton iteration reginn for regularizing nonlinear ill-posedproblems 
onsists of two 
omponents: the (outer) Newton iteration, stopped by a dis
rep-an
y prin
iple, and the inner iteration, whi
h 
omputes the Newton update by solvingapproximately a linearized system. The se
ond author proved 
onvergen
e of reginn fur-nished with the 
onjugate gradients method as inner iteration [Numer. Anal., 43 (2005),pp. 604-622℄. Amongst others the following feature distinguishes reginn from otherNewton-like regularization s
hemes: The regularization level for the lo
ally linearizedsystems 
an be adapted dynami
ally in
orporating information on the lo
al degree of ill-posedness gained during the iteration. Of 
ourse, the potential of this feature 
an befully explored only by meaningful numeri
al experiments in a realisti
 setting. Therefore,we apply reginn to the 2D-ele
tri
al impedan
e tomography problem with the 
ompleteele
trode model. This inverse problem is known to be severely ill-posed. The a
hievedre
onstru
tions are 
ompared qualitatively and quantitatively with re
onstru
tions from aone-step method whi
h is 
losely related to the noser algorithm [Int. J. Imag. Syst. Te
h-nol., 2 (1990), pp. 66-75℄, an often used solver in impedan
e tomography. Our detailednumeri
al 
omparison reveals reginn to be a 
ompetitive solver outperforming the one-step method when noise 
orrupts the data and/or a moderately large number of ele
trodesis used.Key words. Impedan
e tomography, 
omplete ele
trode model, inexa
t Newtoniteration, 
onjugate gradients, dis
repan
y prin
ipleAMS subje
t 
lassi�
ations. 35R30, 47A52, 65J201. Introdu
tion. Ele
tri
al Impedan
e Tomography (eit) entails thedetermination of the ele
tri
 
ondu
tivity distribution of an obje
t by ap-plying ele
tri
 
urrents at the boundary through ele
trodes and measuringthe resulting voltages at the boundary as well. Potential appli
ations are,for instan
e, medi
al imaging and non-destru
tive testing.Be
ause of its promising appli
ations and its 
hallenging mathemati
seit attra
ted a vast amount of resear
h during the last two de
ades, both,theoreti
ally and pra
ti
ally; all starting out from the pioneering work ofCaldéron [9℄. The nonlinearity and the severe ill-posedness of eit remain
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2 A. Le
hleiter and A. Riedera 
hallenge for re
onstru
tion algorithms nontheless. Algorithms known tous 
an be 
ategorized as1. noniterative algorithms based on global linearization,2. iterative solvers ta
kling the full nonlinear problem, and3. dire
t methods.Noniterative algorithms based on global linearization 
an be build by stop-ping any iterative algorithm after the �rst step, a prominent example isthe noser algorithm [11℄. For the iterative inverse solvers one usually ex-ploits Fré
het di�erentiability of the forward operator and uses a regularizedNewton-type method. A somewhat di�erent approa
h is propagated in [3℄where a nonlinear multigrid method solves a Tikhonov-regularized �rst or-der optimality 
ondition of an output least-squares formulation. The 
lassof dire
t methods splits into two sub
lasses: a) fa
torization methods usespe
ial singular testfun
tions to 
hara
terize in
lusions in a homogeneousba
kground medium [5, 6, 8, 7℄ and b) dire
t methods that implement a
onstru
tive existen
e and uniqueness proof [30, 31, 23, 1℄. As far as weknow both dire
t methods are not able to deal with �nite ele
trode mod-els but need to apply 
urrents and measure the voltages along the wholeboundary of the obje
t (in mathemati
al terms: they need to observe theDiri
hlet-to-Neumann mapping). Their use for a realisti
 setting is thereforelimited.Our work at hand 
ontributes to the se
ond 
lass: We apply the nonlinearregularization method reginn (REGularization based on INexa
t Newtoniterations), developed and analyzed by the se
ond author [26, 27, 29℄, to the2D-eit problem with the 
omplete ele
trode model. The most deli
ate partof any Newton-like regularization is the stable 
omputation of the Newtonstep from the lo
ally linearized system. As the degree of ill-posedness ofthe lo
ally linearized system may 
hange dramati
ally during the Newtoniteration, a 
areful sele
tion of the level of regularization of the linear systemis indispensable. Surprisingly, this is not the 
ase for most Newton methods,see, e.g., [2, 21℄. Also the nonlinear multigrid method from [3℄ works witha-priori regularization parameters on the intermediate grids. In 
ontrast,reginn sele
ts the level of regularization of the lo
ally linearized systemin
orporating information on the lo
al degree of ill-posedness gained duringthe iteration. This unique selling proposition designates reginn to solveseverely ill-posed problems, as we are 
onvin
ed. Indeed, it is the purpose ofour work to substantiate our opinion and to promote reginn as a helpful toolnot only for the eit-
ommunity but also for all needing to solve nonlinearill-posed problems.To put reginn in perspe
tive we 
ompared it with a one-step solverbeing akin to the noser algorithm. In spite of its simpli
ity the one-step



Newton regularizations for impedan
e tomography 3solver delivers re
onstru
tions of an astonishing quality. In parti
ular, whenonly a small number of ele
trodes is used, that is, the data 
ontain onlylittle information on the 
ondu
tivity, the one-step solver is hard to beat.Nevertheless, the reginn-re
onstru
tions 
ontain less noise and appear morefo
used with a higher 
ontrast. They are also quantitatively better than there
onstru
tions by the one-step solver.We start our paper in the next se
tion by introdu
ing the mathemati
almodel for eit we work with. For the dis
retization of the governing ellipti
equation we rely on �nite elements as we show in Se
tion 3. Se
tion 4 isdevoted to the Fré
het di�erentiability of the eit operator allowing us tota
kle the inverse problem by Newton-like solvers in Se
tion 5. Here we alsoreport the numeri
al experiments with the noser-like one-step solver (Se
-tion 5.1). Next we present reginn with the 
onjugate gradients method asinner iteration (Se
tion 6) followed by numeri
al experiments and a qual-itative 
omparison of both solvers. The quantitative 
omparison togetherwith our 
on
lusions is 
ontent of the �nal se
tion. The paper ends with anappendix where we explain how to 
ompute e�
iently the Fré
het derivativeof the dis
retized eit operator.2. The 
omplete ele
trode model. In this se
tion we give a briefa

ount on the mathemati
al model for eit.PSfrag repla
ements
E1

E2

E3

E4

E5

E6 E7

+

−Figure 2.1. The experimental setup of an eit tomography system with seven ele
-trodes. The body B 
ontains two in
lusions.Assume that p ele
trodes have been �xed around the surfa
e of the obje
t,for instan
e around a human 
hest (see Figure 2.1). Current is applied tosome subset of these ele
trodes and the resulting voltages at all p ele
trodesare measured. This pro
edure, 
alled the eit experiment, is repeated severaltimes with di�erent ele
trodes until a su�
ient amount of data has beengained. The inverse problem of eit is then to re
onstru
t the inner stru
tureof the investigated obje
t using this data set. Clearly, the eit problem 
an besolved only if the inner stru
ture 
onsists of areas with substantially di�erent



4 A. Le
hleiter and A. Rieder
ondu
tivities. In medi
al imaging this prerequisite is often ful�lled, seeCheney, Isaa
son and Newell [11, 10℄.In the 
orresponding forward problem one wants to �nd the ele
tri
 po-tential in the interior of the obje
t and at the ele
trodes, given some applied
urrent. If we assume that the obje
t under 
onsideration does not 
ontainany 
urrent sour
e in its interior and that the frequen
y of the 
urrent issmall enough then a s
aling analysis [10℄ shows that Maxwell's equationsdes
ribing the ele
tromagneti
 �elds inside the obje
t redu
e to the ellipti
equation
∇.

(
σ∇u

)
= 0 in B, (2.1)where σ denotes the ele
tri
 
ondu
tivity in the obje
t B and u denotes thevoltage potential. We assume in the following that σ is a bounded positives
alar fun
tion in the 
losure B of B. Moreover, σ is assumed to be Lips
hitz
ontinuous in B with possible jump dis
ontinuities in B. Thus, a tra
e σ|∂Bis meaningfully de�ned. We denote the 
lass of admissible 
ondu
tivies by

A :=
{
σ ∈ L

∞(B)
∣∣ σ ≥ σ0 > 0,there are (Bj)

m
j=1 : Bj ⋐ B,Bj open, σ|Bj

∈ W 0,1(Bj),∪jBj = B
}
.In the 
ase of real 
ondu
tivities several uniqueness results for the inverseproblem have been proved under stronger regularity assumptions, see forinstan
e [32, 33, 34, 24℄.A 
areful modeling of the ele
trodes turns out to be of highest importan
ewhen 
omparing the predi
tions of the resulting mathemati
al models withexperimental data [13, 12℄. The 
omplete ele
trode model [12, 10℄, nowadaysthe standard model for medi
al appli
ations, takes into a

ount the followingthree physi
al properties of the EIT experiment.First, the ele
trodes are a dis
rete set. Let us denote by E1, . . . , Ep the

p ele
trodes, ea
h Ej is 
onsidered to be an open subset of the boundary
∂B with positive surfa
e measure. We assume furthermore that the Ej are
onne
ted and separated, i.e., dist(Ek, Ej) > 0 for k 6= j. Let Ij ∈ R bethe 
urrent applied to Ej and de�ne I = (I1, . . . , Ip)

⊤. Due to the prin
ipleof 
onservation of 
harge we require that ∑
Ij = 0. The ve
tor I is 
alled
urrent pattern or 
urrent ve
tor. For 
onvenien
e, let us denote the spa
eof 
urrent patterns of length p by

R
p
♦ :=

{
I ∈ R

p
∣∣∣
∑

j
Ij = 0

}
.Se
ond, we model the ele
trode Ej to be a perfe
t 
ondu
tor, that is, weassume that the potential along this ele
trode is 
onstant: u|Ej

= 
onst.This is the so-
alled shunting e�e
t. To ease the notational burden, let
u|Ej

=: Uj for j = 1, . . . , p.



Newton regularizations for impedan
e tomography 5Note that U := (U1, . . . , Up)
⊤ is measured in the eit experiment. To endup with a well-posed problem we need an additional boundary 
ondition.As we model the ele
trodes as perfe
t 
ondu
tors, the 
urrent sent to theseele
trodes is applied 
ompletely to B. This implies that the total �ux over

Ej equals Ij:
∫

Ej

BνudS = Ij for j = 1, . . . , p, where Bνu := σ∇u.νis the 
onormal derivative and ν denotes the outer unit normal to B.Third, the 
omplete ele
trode model in
ludes the e�e
t of 
onta
t im-pedan
e at the ele
trodes: When eit is used in a medi
al 
ontext, a thinlayer with high resistivity forms at the boundary between the ele
trodes andthe skin due to dermal moisture. We in
orporate this e�e
t by introdu
ing
onstants zj, j = 1, . . . , p, whi
h denote the positive resistivity of the 
onta
tlayer at ele
trode Ej. A

ording to Ohm's law the potential u at Ej dropsby zjBνu.Hen
e, the 
omplete ele
trode model gives rise to the following (weak)formulation of the forward problem: Given a 
urrent ve
tor I = (I1, . . . , Ip) ∈
R

p
♦, a 
ondu
tivity σ ∈ A, and positive 
onta
t impedan
es z1, . . . , zp �nd apotential u ∈ H1(B) and a set of ele
trode voltages U ∈ R

p
♦ that satisfy

∇.
(
σ∇u

)
= 0 in B, (2.2)

u + zjBνu = Uj on Ej , (2.3)∫

Ej

BνudS = Ij for j = 1, . . . p, (2.4)
Bνu = 0 on ∂B r ∪p

j=1Ej . (2.5)The 
ondition U ∈ R
p
♦, i.e., ∑p

j=1 Uj = 0, 
an be interpreted as a groundingof the potential. Indeed, without this 
ondition the above problem wouldnot be unique. A

ording to [12℄, the a

ura
y of the model mat
hes themeasurement pre
ision of the experiment. Note that we assume in the sequelof this work that the 
onta
t impedan
es zj are known and not part of theinverse problem.Existen
e and uniqueness of a solution (u,U) ∈ H1(B) ⊕ R
p
♦ 
an beenshown using the Lax-Milgram Lemma. Indeed, in [12℄ it is shown that (u,U)ful�lls (2.2)-(2.5) if and only if

b
(
(u,U), (v, V )

)
= f(v, V ) (2.6)for all (v, V ) ∈ H1(B) ⊕ R

p
♦ where the stri
tly ellipti
 bilinear form b isde�ned by

b
(
(u,U), (v, V )

)
:=

∫

B

σ∇u∇v dx +

p∑

j=1

1

zj

∫

Ej

(u − Uj)(v − Vj) dS,and f(v, V ) :=
∑p

j=1 IjVj for (v, V ) ∈ H1(B) ⊕ R
p
♦.
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hleiter and A. Rieder3. Dis
retization by fem. Sin
e the solution (u,U) of the forwardproblem 
annot be 
omputed analyti
ally we use the Finite Element Method(fem) to �nd an approximate solution. Following the usual pro
edure offem we use a triangulation T = {T1, . . . , T|T|} of the domain B and de�nethe �nite-dimensional subspa
e Hh of H1(B) to be the set of 
ontinuousfun
tions in H1(B) that are pie
ewise linear on ea
h triangle of T. Supposethat the triangulation T 
onsists of ℓ nodes. Then we denote by φk the hatfun
tion that takes the value 1 at node k and vanishes at all the other nodes.Any element uh in Hh is represented by
uh =

ℓ∑

k=1

αk φk for αk ∈ R.For notational reasons we identify uh with its 
oordinates in the basis {φk}and write uh = (α1, . . . , αℓ). Finally, we still denote the voltages at the pele
trodes by U = (U1, . . . , Up) ∈ R
p
♦.Testing uh and U in (2.6) against v = φi and V = 0 yields

ℓ∑

k=1

αk

∫

B

σ∇φk∇φi dx +

p∑

j=1

1

zj

∫

Ej

( ℓ∑

k=1

αk φk − Uj

)
φi dS = 0, (3.1)for i = 1, . . . , ℓ. The dis
rete system (3.1) gives rise to a matrix-ve
torequation in the following way: Let A ∈ R

ℓ×ℓ be the admittan
e matrix withentries
Ai,k =

∫

B

σ∇φk∇φi dx +

p∑

j=1

1

zj

∫

Ej

φk φi dS.Furthermore, let B ∈ R
ℓ×p be the matrix de�ned by

Bi,j = −
1

zj

∫

Ej

φi dS.With these de�nitions equation (3.1) 
an be rewritten as Auh + BU = 0.Until now we have ignored the boundary 
onditions for uh arising from the
omplete model. Testing uh and U in (2.6) now against v = 0 and V i =
(δi,k)

p
k=1 we �nd that

1

zi

∫

Ei

(
Ui −

ℓ∑

k=1

αk φk

)
dS = Ii (3.2)or equivalently that

Ui
|Ei|

zi
−

ℓ∑

k=1

αk

zi

∫

Ei

φk dS = Ii, for i = 1, . . . , ℓ.



Newton regularizations for impedan
e tomography 7Introdu
ing the diagonal matrix D ∈ R
p×p,

Di,i =
1

zi

∫

Ei

dS =
|Ei|

zi
,we may write (3.2) as B⊤uh + DU = I. Finally, we end up with the linearsystem (

A B
B⊤ D

)(
uh

U

)
=

(
0
I

) (3.3)for 
omputing the fem solution of the forward problem. The above systemhas to be augmented to guarantee the grounding 
ondition ∑
j Uj = 0. Aneasy way to in
lude this 
onstraint is to solve




A B
B⊤ D
0 1




(
uh

U

)
=




0
I
0


 (3.4)where 1 ∈ R

1×p is the row ve
tor (1, . . . , 1). This straightforward approa
h,however, destroys symmetry and positive de�niteness of (3.3). Kaipio etal. [18℄ suggest a more sophisti
ated way how to augment system (3.3) re-spe
ting its favorable stru
ture.A-priori error estimates for the fem solution uh are di�
ult to obtainsin
e the solution u of the 
omplete model does not belong to H2(B). Thisis due to the possible jumps of σ ∈ A and be
ause the Neumann boundaryvalues Bνu do only belong to Hs(∂B) for s < 1/2. We do not want to
omment further on the 
onvergen
e of uh but refer to the paper ofMolariniet al. [22℄.4. Fré
het Di�erentiability of the eit Operator. The inverse prob-lem of impedan
e tomography under the 
omplete ele
trode model is to esti-mate the 
ondu
tivity distribution σ from all pairs of 
urrent ve
tors I ∈ R
p
♦and resulting voltage ve
tors U ∈ R

p
♦. As U depends linearly on I for a �xed
ondu
tivity σ there is a resistivity matrix R ∈ R

p×p su
h that U = RI.This is again Ohm's law. Moreover, R is symmetri
 for s
alar real σ [12℄whi
h we assume in the remainder of the paper. Now, we de�ne for a �xed
urrent ve
tor I and �xed positive 
onta
t impedan
es (zj)
p
j=1

F : A ⊂ L∞(B) → H1(B) ⊕ R
p
♦, σ 7→ (u,U),to be the forward operator that maps the 
ondu
tivity σ to the solution ofthe forward problem. Later we solve the inverse problem by Newton-likeiterations. A ne
essary ingredient is the Fré
het di�erentiability of F. Re
allthat Fré
het di�erentiability of F in σ means that

lim
‖η‖∞→0

‖F(σ + η) − F(σ) − F′(σ)η‖H1(B)⊕R
p

♦

‖η‖∞
= 0.



8 A. Le
hleiter and A. RiederTheorem 4.1. Let I be a �xed 
urrent ve
tor and z1, . . . , zp be �xedpositive 
onta
t impedan
es. The operator F whi
h maps σ ∈ int(A) to thesolution (u,U) ∈ H1(B) ⊕ R
p
♦ of the forward problem with 
urrent ve
tor

I is Fré
het di�erentiable. If η ∈ L∞(B) is su
h that σ + η ∈ A, then thederivative F′(σ)η =: (w,W ) satis�es the following variational problem:
−bσ

(
(w,W ), (v, V )

)
=

∫

B

η∇u0∇v dx (4.1)for all (v, V ) ∈ H1(B) ⊕ R
p
♦, where (u0, U0) := F(σ).Proof. Kaipio et al. [18℄ give a proof in the 
ase of the quotient spa
e

H̃ := (H1(B) ⊕ R
p
♦)/R. However, the spa
es H̃ and H1(B) ⊕ R

p
♦ are normequivalent. Sin
e

‖(u,U)‖2
eH

= ‖∇u‖2
L2(B) + inf

c∈R

{
‖u + c‖2

L2(B) + |U + c|22

}

≤ ‖∇u‖2
L2(B) + ‖u‖2

L2(B) + |U |22 = ‖(u,U)‖2
H1(B)⊕Rpthe embedding H1(B) ⊕ R

p
♦ →֒ H̃ is 
ontinuous and bije
tive. Hen
e, theopen mapping theorem yields norm equivalen
e.Theorem 4.1 shows espe
ially that σ 7→ U is Fré
het di�erentiable asse
ond argument of a di�erentiable mapping and the derivative is given byformula (4.1). The ni
e part of this formula is that the derivative 
an be
omputed using the variational formulation of the forward problem. On theother hand, solving this variational problem means to 
ompute one dire
-tional derivative. Unfortunately, Newton-like methods require to 
omputelots of dire
tional derivatives and this is usually the bottlene
k of these al-gorithms.5. Newton-type methods for the inverse eit problem. In thisse
tion we 
onsider iterative methods of Newton-type for the inverse eitproblem. These methods work by lo
al linearization of the nonlinear oper-ator F and by regularization of the Newton step. The well-known noseralgorithm of the Rensselaer group is one example, see Cheney et al. [10, 11℄.Assume that we apply l 
urrent ve
tors Ij ∈ R

p
♦, j = 1, . . . , l, in theeit experiment and measure the 
orresponding voltage ve
tors U j ∈ R

p
♦.The set {I1, . . . , I l} is 
alled a 
urrent frame. For notational 
onvenien
e wede�ne a ve
tor

I := (I1, . . . , I l) = (I1
1 , . . . , I1

p , . . . , I l
1, . . . , I

l
p) ∈ R

lp,su
h that all the Ij's are stored in one single 
olumn ve
tor. Let further
U ∈ R

lp be the 
olumn ve
tor that arranges all the voltage ve
tors U j in thesame way. For simpli
ity, we write U = RI for I ∈ R
lp, where R is now a

lp × lp matrix su
h that every Ij is mapped on the 
orresponding U j. Forthe remainder of this work we �x I, having in mind that we use always thesame 
urrent frame.



Newton regularizations for impedan
e tomography 9In the next step we transform the 
ontinuous setting in a dis
rete one.Suppose we are given a triangulation T = {T1, . . . , T|T|} of the domain B.Then we denote by S the spa
e of step fun
tions spanned by the indi
atorfun
tions 1Tt
and de�ne Ad = A ∩ S, i.e., any s ∈ Ad takes the form

s(x) =

|T|∑

t=1

ct1Tt
(x) for x ∈ B and ct > 0.We always identify s with its 
oordinate representation: s = (st)t=1,...,|T|.Let us de�ne the dis
rete forward operator Fd by

Fd : Ad → R
lp, s 7→ U =

(
RsI

1, . . . , RsI
l
)
∈ R

lp, (5.1)where I = (I1, . . . , I l) is a �xed 
urrent frame in R
lp and Rs is the resis-tivity matrix asso
iated to s ∈ Ad. Note that Fd 
an be seen as a non-linear ve
tor �eld from R

|T| → R
lp. Sin
e F : Ad → R

p is Fré
het di�er-entiable, F′
d is a matrix, 
alled the Ja
obian of Fd. As a 
onsequen
e, if

F′
d(s)ηd = (W 1, . . . ,W p) ∈ R

lp then W j ∈ R
p
♦ 
an be 
omputed by solvingthe variational problem (4.1). For the implementation of the Newton-likeiterations below we need to evaluate the matrix-ve
tor produ
t F′

d(s)η andthe matrix F′
d. How this 
an be realized e�
iently we explain in Appendix A.The natural norm on S is a weighted Eu
lidean norm. For s = (st) ∈ Swe set

|s|22,a =

|T|∑

t=1

at|st|
2, (5.2)where a = (at) is the ve
tor 
ontaining the areas of the triangles of thetriangulation T. Please observe that |s|2,a = ‖s‖L2(B) for any s ∈ S.Assume now we are given measured data U ∈ R

lp. In order to �nd anestimate for the 
orresponding 
ondu
tivity distribution σ we seek σ⋆ ∈ Athat �ts our data U , that is, F(σ⋆) = U . Note that U is �nite-dimensionaland hen
e there may exist lots of su
h σ⋆. In an iterative method we try toimprove our a
tual guess σj ∈ Ad, j ∈ N, by adding a 
orre
tion step hj .We wish to have hj su
h that σj +hj = σ⋆. Sin
e Fd is di�erentiable we 
anwrite
F
′
d(σj) (σ⋆ − σj) = U − Fd(σj) − E(σ⋆;σj)with the linearization error E(σ⋆;σj). As the linearization error is unknownwe try to solve

F
′
d(σj)hj

!
= U − Fd(σj) (5.3)in the spa
e of step fun
tions S. All Newton-like solvers start in solving theabove equation some way or other.Due to the ill-posedness of the inverse eit problem [4, 5℄ we expe
t insta-bilities in solving (5.3). To 
ompensate the instabilities we apply a regular-ization s
heme to (5.3). The regularization of ill-posed problems is addressed
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h is Tikhonov regularization where
hj =

(
F

′⊤
d (σj)F

′
d(σj)+θj diag(a)

)−1
F

′⊤
d (σj)

(
U−Fd(σj)

) for θj > 0. (5.4)Note that the perturbation term is 
hosen to respe
t the norm | · |2,a. Thestep hj serves as Newton update for our guess σj by
σj+1 = σj + hj . (5.5)The iterative s
heme (5.4) and (5.5) is 
alled the Levenberg-Marquardtmethod, see Lionheart and Polydorides [25℄ and Hanke [15℄. A similarmethod is due to Bakushinskii [2℄,

hj =
(
F

′⊤
d (σj)F

′
d(σj) + θjdiag(a)

)−1(
F

′⊤
d (σj)(U − Fd(σj))

+ θj(σ0 − σj)
)
,

(5.6)where the right most term, whi
h prevents the iterates σj to diverge toofar from the initial guess σ0, brings in additional stability. The methoddes
ribed in equation (5.6), together with (5.5), is known as the iterativelyregularized Gauÿ-Newton method, see, e.g., Kaltenba
her [20, 21℄. Allpresented regularization s
hemes for (5.3) are linear so far.We have not yet mentioned how to stop the iterative s
hemes (5.4) or(5.6). The reason is that inverse solvers of Newton-type applied to eit usu-ally stop after one step, at least in the two dimensional 
ase. Therefore theeit problem is not lo
ally but globally linearized about the initial guess σ0.For the appli
ations reported in [11, 10, 18℄ global linearization yields su�-
ient a

ura
y while allowing real-time re
onstru
tions. Our numeri
al ex-periments in the next subse
tion are based on the following one-step solver:Initial guess σ0;Regularization parameter θ;
σ1 = σ0 +

(
F

′⊤
d (σ0)F

′
d(σ0) + θ diag(a)

)−1
F

′⊤
d (σ0)

(
U − Fd(σ0)

)return σ1;The noser∗ algorithm uses the diagonal of the matrix F
′⊤
d (σ0)F

′
d(σ0) insteadof the diagonal matrix diag(a) as in (5.4), see [11℄.5.1. Numeri
al experiments with noser-like regularization. Theexperimental proto
ol for the numeri
al experiments with the Tikhonov one-step solver is the following. The data for the re
onstru
tion algorithms areobtained syntheti
ally. In our data retrieval we try to avoid the most obviousinverse 
rime and use di�erent meshes for the forward data 
omputation of

Fd and the inverse 
omputations (i.e., the re
onstru
tion of a 
ondu
tivity).
∗Newton One-Step solvER
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Figure 5.1. On the left: mesh for the re
onstru
tion when 16 ele
trodes are used.On the right: adaptively re�ned mesh for the 
omputation of the Ja
obian F
′.Moreover, to 
al
ulate the Newton step in (5.4) one also needs to 
omputethe Ja
obian F′

d whi
h is de�ned by a variational problem and approximatedusing a FEM, see Appendix A. For the 
omputation of the Ja
obian, a thirdmesh is employed. In Figure 5.1 we show the re
onstru
tion mesh that isused in 
ase of 16 ele
trodes together with the re�ned mesh to 
ompute theJa
obian. The forward 
omputations are done on an even more re�ned gridto guarantee quality of the data. The meshes for the 
omputation of theforward operator and the Ja
obian are re�ned towards the ele
trodes usingthe adaptive mesh re�nement pro
edure provided by MATLAB's† partialdi�erential equation toolbox. Of 
ourse, the 
omputation of these meshes isperformed independently of and before the inverse 
omputations. Espe
ially,these meshes are the same for all our examples under the same number ofele
trodes.Re
all that the data set for the inverse solver is the 
urrent frame I ∈ R
lpand the resulting voltage ve
tor U ∈ R

lp. In our experiments we set l = p anduse 
urrent ve
tors of the form (0, . . . , 0, 1,−1, 0, . . . , 0) whi
h are the mostsimple ones and easy to implement. The question of the 
hoi
e of 
urrentpatterns is nontrivial and there exist 
on
epts of optimal 
urrent patternsand distinguishability, see Isaa
son [16℄ or Kaipio et al. [19℄ for details.We do not 
are on these questions but remark that, in view of pra
ti
alexperiments, we only in
orporate voltages from ele
trodes in the forwarddata set where no 
urrent is fed.Newton s
hemes always need some initial guess as starting point for theiteration. We always use the ba
kground 
ondu
tivity σ ≡ 1 as initial guessfor the one-step solver (as well as later for the reginn algorithm). This isan appropriate 
hoi
e sin
e it mat
hes the ba
kground 
ondu
tivity of ourexamples. Re
all that the 
omplete ele
trode model, whi
h is our model
†MATLAB is a trademark of The MathWorks, In
.
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hoi
e, in
ludes a 
onta
t impedan
e e�e
t at the ele
trodes. In our
omputations the 
onta
t impedan
e is set to 0.25 for all ele
trodes. Wefound this numeri
al value from [18, Figure 4℄.Some of the subsequent re
onstru
tions are 
omputed from syntheti
data in the presen
e of arti�
ial noise. Our input data for the inversionalgorithm are the 
urrent patterns I1, . . . , I l and the 
orresponding voltageve
tors U1, . . . , U l whi
h we store for algorithmi
 reasons in p × l-matri
es.Therefore, the noise is measured in the Frobenius norm and the relative errorbetween 
omputed and perturbed data is given in per
ent.All �gures presenting our di�erent results are organized in the same fash-ion: In the upper left 
orner the reader �nds the proje
tion of the original
ondu
tivity distribution on a �ne grid whi
h is only used for plotting. Be-
ause of the proje
tion the boundaries of the inhomogeneities are frayed out.Next, we plot �ve re
onstru
tions where the regularization parameter θ isdivided by 3 su

essively. All re
onstru
tions are 
omputed simulating an nele
trodes system. By this term we mean a regular polygonal domain with
2n 
orners su
h that every se
ond side of the polygon is used as ele
trode.We re
onstru
t s
alar real 
ondu
tivities and emphasize that the same 
ol-ors (grey values) in di�erent re
onstru
tions do usually not refer to the same
ondu
tivity, i.e., the 
olormaps of the plots are in general di�erent.Figure 5.2 shows the re
onstru
tion of a non-
onvex in
lusion in form oftwo overlapping 
ir
les whi
h are pla
ed inside the domain. The re
onstru
-tion has been obtained simulating a 32 ele
trodes system without arti�
ialnoise. We used θ = 0.35 as initial regularization parameter. The bestre
onstru
tion seems to be the one in the middle of the bottom row. Thisre
onstru
tion shows the 
orre
t pla
e but fails to distinguish the two 
ir
les.Nevertheless, the re
onstru
tion seems to respe
t the 
onvex hull of the non-
onvex in
lusion. The numeri
al value of the 
ondu
tivity of the in
lusion is
1.4 and underestimated by 1.2. Morever, the dis
ontinuity of the in
lusionis strongly smoothed by Tikhonov regularization and the ele
trodes 
lose tothe in
lusion a�e
t the re
onstru
tion when the regularization parameter issmall, see right plot on the bottom. Note that our re
onstru
tion algorithmdoes not use penalty terms involving di�erential operators whi
h might 
opewith this e�e
t. Also the quasistati
 imaging te
hnique [17℄ designed to
orre
t errors in the ele
trode model does not improve the re
onstru
tions.Figure 5.3 shows re
onstru
tions of an L-shaped in
lusion. We simulatedagain an 32 ele
trodes system with 0.5 per
ent arti�
al noise and started with
θ = 0.35. The best re
onstru
tion seems to be the left most of the bottomrow. The lo
ation of the in
lusion is found while its size is too large and thenon-
onvexity is only slightly visible. As before, the numeri
al value of the
ondu
tivity is underestimated and ele
trodes being next to the in
lusionspoil the re
onstru
tion as the regularization parameter gets smaller.The re
onstru
tions up to now have been 
omputed simulating a 32 ele
-trodes system. The plots in Figure 5.4 are now 
omputed simulating a 64
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Figure 5.2. One step re
onstru
tion of a non-
onvex in
lusion (32 ele
trodes, initialparameter θ = 0.35, no arti�
ial noise).

Figure 5.3. One step re
onstru
tion of an L-shaped in
lusion (32 ele
trodes, initialparameter θ = 0.35, 0.5 per
ent arti�
ial noise).
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Figure 5.4. One step re
onstru
tion of two opposite in
lusions (64 ele
trodes, initialparameter θ = 0.48, 1 per
ent arti�
ial noise).ele
trodes system. We added 1 per
ent arti�
ial noise to the data and 
hose
θ = 0.48 for the �rst re
onstru
tion. As an additional di�
ulty the 
ondu
-tivities of the two in
lusions are above and below the ba
kground 
ondu
-tivity. Again the lo
ations of the two in
lusions are roughly found but theirsizes are overestimated. Using a small regularization parameter we are ableto re
over the shape satisfa
torily but instabilities from the ele
trodes spoilthe re
onstru
tion near the boundary. On the other hand, large parameterssmooth the 
ondu
tivity strongly.We have performed more numeri
al experiments than reported here. Allour experiments showed that the Tikhonov one-step solver is able to �ndsome main 
hara
teristi
s of the in
lusions as, for instan
e, their lo
ations.The approximate shapes 
an usually be guessed but 
ompli
ated shapes arehard to re
over, even if lots of ele
trodes are used. An experien
ed usermight be able to guess the 
orre
t shape by playing with the parameters.The one-step approa
h o�ers only little 
ontrol over the magnitude of theregularization and instability problems, espe
ially near to the boundary, o
-
ur even if the information in the interior of the domain has not yet beenfully exploited.6. The reginn algorithm. A very e�
ient iterative s
heme for regu-larizing equation (5.3) is the method of 
onjugate gradients (
g-method), see,e.g., Engl et al. [14, Chap. 7℄ or Rieder [28, Chap. 5.3℄. It starts from aninitial guess ξ0 ∈ S and 
omputes iteratively a sequen
e (ξk)k∈N satisfying
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ξk = argmin

{
|(U − Fd(σj)) − F

′
d(σj)ξ|2

∣∣ ξ ∈ S and ξ − ξ0 ∈ Uk

}
, (6.1)where

Uk = span
{
F

′⊤
d (σj)r0,

(
F

′⊤
d (σj)F

′
d(σj)

)
F

′⊤
d (σj)r0, . . .

. . . ,
(
F

′⊤
d (σj)F

′
d(σj)

)k−1
F

′⊤
d (σj)r0

}
.is the kth Krylov subspa
e with respe
t to the initial residual r0 := U −

Fd(σj) − F′
d(σj)ξ0. Therefore, the kth iterate has the representation

ξk = ξ0 + pk−1

[
F

′⊤
d (σj)F

′
d(σj)

]
F

′⊤
d (σj)r0 (6.2)with a suitable polynomial pk−1 of degree k − 1. Note that pk−1 depends on

U − Fd(σj) making the 
g-method a nonlinear regularization s
heme.In starting the 
g-method with ξ0 = 0 and in setting hj := ξN(j) theNewton iteration (5.5) be
omes
σj+1 = σj + pN(j)

[
F

′⊤
d (σj)F

′
d(σj)

]
F

′⊤
d (σj)[U − Fd(σj)] (6.3)where N(j) is determined as the smallest number at whi
h the relative (lin-ear) residual is smaller than a given toleran
e µj ∈ (0, 1], that is,

|F′
d(σj)ξN(j) + Fd(σj) − U |2 < µj|Fd(σj) − U |2 ≤ |F′

d(σj)ξk + Fd(σj) − U |2for all k = 1, . . . , N(j)− 1. A meaningful strategy to adapt the µj 's dynam-i
ally is presented in (6.4) below.Finally, iteration (6.3), 
alled reginn (REGularization based on INexa
tNewton iterations), has to be stopped in time to avoid noise ampli�
ation.Here we rely on a dis
repan
y prin
iple: Choose R > 0 and a

ept thatiterate σn as approximation to the 
ondu
tivity s whi
h ful�lls
|U − Fd(σn)|2 ≤ R < |U − Fd(σj)|2 for all j = 0, . . . , n − 1.For the the sake of 
larity we give an algorithmi
 realization of reginn inpseudo 
ode:Initial guess σ0;Regularization parameters {µj}, R;

j = 0;while |U − Fd(σj)|2 > R{
i = 0;repeat

i = i + 1;
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ξj,i = pi

(
F

′⊤
d (σj)F

′
d(σj)

)
F

′⊤
d (σj)

(
U − Fd(σj)

);until |F′
d(σj)ξj,i + Fd(σj) − U |2 < µj |Fd(σj) − U |2

σj+1 = σj + ξj,i;
j = j + 1;}return σj.In the inner repeat-loop the Newton update is 
al
ulated using the 
g-method and the outer while-loop implements the Newton iteration stoppedby the dis
repan
y prin
iple.reginn was propagated by the se
ond author and analyzed in a seriesof papers [26, 27, 29℄. Termination of the inner and outer loop as wellas stability and 
onvergen
e results have been obtained for a large 
lass ofnonlinear inverse problems. At the present we do not know whether the
onvergen
e analysis applies to impedan
e tomography as well. Therefore,our present work is mainly experimental and numeri
al.One of the big advantages of reginn is that the toleran
es {µj} ⊂ (0, 1)
an be adapted dynami
ally in
orporating information on the lo
al degree ofill-posedness gained during the iteration. The following strategy (6.4) from[26, Se
. 6℄ for 
hoosing the toleran
es 
omplies with the 
onvergen
e analy-sis: The smaller the toleran
es are the less Newton steps (passes through thewhile-loop) are required to terminate reginn ([26, Cor. 4.7℄). On the otherhand the toleran
es must not be too small to avoid noise ampli�
ation whilesolving (5.3) ([26, Lem. 3.2 and (3.6)℄). In the starting phase of reginnthe repeat-loop terminates even for small toleran
es ([26, (3.6)℄). A

ord-ingly we start with a small toleran
e and in
rease it during the iteration.An in
rease of the toleran
e is needed if the number of passes through therepeat-loop of two 
onse
utive Newton steps in
reases. The toleran
es shallbe de
reased whenever su

essive numbers of passes through the repeat-loop drop. Moreover, we apply a safeguarding te
hnique: If the nonlineardefe
t |U −Fd(σj)|2 is already 
lose to R, then it is unne
essary to 
hoose asmall toleran
e µj sin
e then |U −Fd(σj+1)|2 might be 
onsiderably smallerthan R.The above 
onsiderations a realized in (6.4): Initialize µstart ∈ (0, 1),

µmax ∈ (µstart, 1), ζ ∈ (0, 1) and de�ne auxiliary parameters µ̃0 = µ̃1 =
µstart. Then,

µj := µmax max
{
R/|U − Fd(σj)|2, µ̃j

}
, j = 0, 1, . . . ,N(j) − 1, (6.4)wherẽ

µj :=

{
1 − N(j−2)

N(j−1) (1 − µj−1) : N(j − 1) ≥ N(j − 2),

ζ µj−1 : otherwise, j ≥ 2.
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e tomography 17In our numeri
al experiments for impedan
e tomography we worked withthe parameter setup µstart = 0.8, µmax = 0.99 and ζ = 0.97.6.1. Numeri
al experiments with the reginn algorithm. The ex-perimental proto
ol for the experiments with the reginn algorithm is thesame as for the Tikhonov one step solver in Se
tion 5.1. More pre
isely, we
ompute the syntheti
al data and the Ja
obian of the forward operator withthe 
omplete model on two di�erent meshes whi
h are both very �ne nearthe ele
trodes, whereas the inverse solver works on a 
oarse mesh.In experimenting with reginn the residual error |U − Fd(σj)|2 of theiterates σj does sometimes in
rease during the outer iteration pro
ess. Usu-ally, this happens when the iteration rea
hes the saturation point. Possibleinterpretations are twofold. On one hand the regularization parameter R
ould be too small. On the other hand, the residual error may not de
reasemonotoni
ally for the eit problem sin
e eit does not belong to the 
lassof problems where we 
an prove monotone de
rease. Our implementationsolves this problem from the numeri
al point of view. If the residual errorin
reases, then we have no hope that the error itself de
reases and we stopthe iteration.With the initial toleran
e µ0 = 0.8 we found that the toleran
es in
reaseround about monotoni
ally during the re
onstru
tion pro
ess and thereforewe believe that these values are adapted to the problem (
ompare Table 6.1below). When we perturb the data with arti�
ial noise we measure theperturbation of the data in the Frobenius norm as mentioned in Se
tion 5.1and indi
ate the relative error between 
omputed and perturbed data inper
ent. As for the one-step solver we always use a 
onstant 
ondu
tivity(with value one) as initial guess for the inverse solver.The reginn re
onstru
tions are presented together with the original 
on-du
tivity and the evolution of the relative error during the (outer) iteration.In Figure 6.1 we observe that reginn is able to �nd the approximate shapeof the L-shaped in
lusion from Figure 5.3. We used 32 ele
trodes in thisexample and added 0.5 per
ent arti�
ial noise. The size of the re
onstru
tedin
lusion is moderately larger than the original. Only little noise 
omesfrom the ele
trodes and the 
onvex 
orners of the in
lusion are quite welldetermined 
ompared to Figure 5.3.The stability of the reginn re
onstru
tions is 
ontrolled by the adap-tively 
hosen toleran
es µj. Table 6.1 shows this adaption pro
ess for theexample of Figure 6.1. The toleran
e sele
tion s
heme (6.4) works as pre-di
ted: For instan
e, from step 3 to step 4 the number of inner iterationsin
reases from 3 to 6 and reginn a

ordingly 
hooses µ5 larger than µ4. Onthe other hand, the number of inner iterations drops from 6 to 2 from step4 to step 5 and reginn sele
ts a µ6 smaller than µ5. During the 
ompleteiteration pro
ess the toleran
es in
rease from 0.799 to 0.991.The 
ondu
tivity distribution in Figure 6.2 is the same as in Figure 5.4 as
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Figure 6.1. reginn re
onstru
tion of an L-shaped in
lusion (32 ele
trodes, R = 1,
µ0 = 0.8, 0.5 per
ent arti�
ial noise). Table 6.1Parameter adaption of reginn during the re
onstru
tion pro
ess. The 
orrespondingre
onstru
tion is shown in Figure 6.1. Entries in 
olumn j denote the outer iteration
ounter, N(j) is the number of inner iterations in the jth step and µj is the 
hosentoleran
e for the jth step. The relative error is given in per
ent.

j N(j) µj error0 0 � 34.721 2 0.799 29.922 4 0.799 27.353 3 0.899 27.204 6 0.871 25.885 2 0.935 25.846 6 0.906 25.017 1 0.968 25.008 6 0.938 24.529 1 0.989 24.5210 2 0.958 24.5011 1 0.978 24.5012 5 0.948 24.3013 1 0.989 24.2914 5 0.958 24.1515 1 0.991 24.15are the number of ele
trodes (p = 64) and the noise level (1 per
ent). reginnlo
ates the in
lusions 
orre
tly and also shows that their 
ondu
tivities areabove and below the referen
e 
ondu
tivity. The reginn re
onstru
tions aremore 
on
entrated and less smoothed than the noser-like re
onstru
tionsin Figure 5.4.
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Figure 6.2. reginn re
onstru
tion of a two 
ir
les with di�erent 
ondu
tivity (64ele
trodes, R = 2.5, µ0 = 0.8 , 1 per
ent arti�
ial noise).The sear
hed-for 
ondu
tivity of Figure 6.3 is smooth and attains valuesabove and below the ba
kground medium. The re
onstru
tion is 
omputedwith simulated data of a 64 ele
trodes with 1 per
ent arti�
ial noise andparameters R = 2.5, µ0 = 0.8. The lo
ation of the two inhomogeneities isfound, their size is slightly overestimated. The iteration de
reases the re
on-stru
tion error from round about 20 to 10 per
ent, however, the redu
tionof the error during the last iterations is small.

Figure 6.3. reginn re
onstru
tion of two smooth in
lusions (64 ele
trodes, R = 2.5,
µ0 = 0.8, 1 per
ent arti�
ial noise).In Figure 6.4 we investigate the re
onstru
tion of a jump 
ondu
tivitydistribution being not an in
lusion in a homogenous ba
kground medium,that is, we have a dis
ontinuity also on the boundary of the domain. We
orrupted the 64 ele
trodes data by 2 per
ent arti�
ial noise and 
hose R =
3.6 and µ0 = 0.8. reginn �nds the boundary between the two 
onstantparts of the 
ondu
tivity a

urately. The two values of the 
ondu
tivity arewell approximated in both parts of the domain, however, in the upper halfof the domain the ele
trodes are 
learly visible.Figure 6.5 presents the re
onstru
tion of two 
lose 
ir
ular disks that are
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Figure 6.4. reginn re
onstru
tion of pie
ewise 
onstant 
ondu
tivity (64 ele
trodes,
R = 3.6, µ0 = 0.8, 2 per
ent arti�
ial noise).pla
ed 
lose to the boundary of the domain. We worked with 64 ele
trodes, 5per
ent arti�
ial noise and 
hose µ0 = 0.8 and R = 8. The two in
lusions arelo
ated but the numeri
al value of the 
ondu
tivity is dramati
ally underes-timated. reginn fails to re
onstru
t the two separated disks but indi
atesat least slightly the non-
on
onvexity of the in
lusion. Noise appears nearto the boundary of the domain but this is to be expe
ted under a noise levelof 5 per
ent.

Figure 6.5. reginn re
onstru
tion of two 
lose 
ir
les (64 ele
trodes, µ0 = 0.8,
R = 8, 5 per
ent arti�
ial noise).reginn applied to the inverse eit problem takes full advantage of thedynami
 adaption of the level of regularization to the lo
al degree of ill-posedness. Therefore, reginn outperforms the Tikhonov one-step method ingeneral with respe
t to image quality sin
e less noise ease the interpretationof the re
onstru
tions, espe
ially near to the boundary. The images are morefo
used and have a higher 
ontrast.7. Quantitative Comparison. In the last se
tion we 
ompared the
lassi
al Tikhonov one-step solver with reginn in a qualitative way andfound that reginn produ
es re
onstru
tions of at least the same quality
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onstru
tion while avoiding some of its drawba
ks.Now we will substantiate this observation with a quantitative study. We
onsider the relative error of both re
onstru
tion methods with respe
t tothe original resistivity distribution in the dis
rete L2(B) norm (5.2). Pleasenote that our results presented in this se
tion are stable under small 
hangesin the parameters µ0, R and θ of the algorithms.Table 7.1Relative errors in per
ent for di�erent 
ondu
tivity distributions (32 ele
trodes, 0.5per
ent arti�
ial noise, R = 1.5).
p = 32 reginn TikhonovFigure µ0 = 0.8 θ = 0.04 θ = 0.135.2 10.3 11.0 9.85.3 24.1 27.5 25.95.4 20.0 20.4 19.86.4 23.9 29.3 32.46.5 21.6 21.6 20.76.3 12.0 14.5 12.5Table 7.1 
ompares the inverse solvers for a 32 ele
trodes system and 0.5per
ent arti�
ial noise. We see that reginn produ
es smaller or 
omparableerrors than Tikhonov regularization, but does never perform signi�
antlyworse. This observation agrees with our experien
e and with our examplespresented in Se
tions 5 and 6. Table 7.2Relative errors in per
ent for di�erent resistivity distributions (64 ele
trodes, 1 per
entarti�
ial noise, R = 2.5).

p = 32 reginn TikhonovFigure µ0 = 0.8 θ = 0.053 θ = 0.0175.2 9.59 10.95 9.955.3 22.6 27.5 26.15.4 20.2 21.6 20.86.4 22.8 31.1 33.86.5 18.6 21.8 21.16.3 8.91 14.3 12.7Table 7.2 
ontains results for a 64 ele
trodes system with 1 per
ent ar-ti�
ial noise. reginn now outperforms the Tikhonov one-step solver as thedi�eren
es between the two algorithms are more pronoun
ed than for the 32ele
trodes system. This indi
ates, as we think, that reginn extra
ts moreinformation from perturbed data, 
ompare, e.g., the performan
e of reginn
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onstru
ting the 
ondu
tivity of Figure 6.4.Finally, we 
on�rm our observations on
e again: Table 7.3 
ompares thetwo algorithms for a 64 ele
trodes system under 5 per
ent relative noise.Table 7.3Relative errors in per
ent for di�erent resistivity distributions (64 ele
trodes, 5 per
entarti�
ial noise, R = 8).
p = 64 reginn TikhonovFigure µ0 = 0.8 θ = 0.078 θ = 0.0255.2 9.74 11.9 11.65.3 25.2 28.4 27.05.4 20.0 22.1 21.76.4 22.3 30.5 32.96.5 19.8 22.4 21.96.3 10.2 15.3 14.4Let us summarize our experimental �ndings for the inverse eit-problem:Compared to the simple Tikhonov one-step solver reginn is able to ex-tra
t more stru
tural information from noisy data. Additionally, it pro�tsmore strongly from in
reasing the number of ele
trodes. All these advan-tages of reginn originate, as we think, from the adaptive 
hoi
e of thetoleran
es (6.4) allowing a �ne-tuned regularization of the lo
ally linearizedproblems (5.3).Of 
ourse the Tikhonov one-step solver has its advantages: Only onelinear problem has to be solved (if the regularization parameter θ is deter-mined a priori!) making it a relatively fast algorithm. It is therefore hardto beat if the measured data 
ontain little information on the sear
hed-for
ondu
tivity as in the 
ase of few ele
trodes.Nevertheless our experiments reveal reginn to be a 
ompetitive solverfor the inverse eit-problem. Its proven potential deserves further explorationunder real-life 
onditions.Appendix A. Computing the Ja
obian. In this appendix we explainhow to 
ompute the Ja
obian F′

d(s) e�
iently as we learned from [25℄. Let usdenote by ∇tFd(s) the gradient of Fd(s) with respe
t to the tth 
omponentof s ∈ Ad. Then F′
d has the form

F
′
d(s) =




∇1Fd(s)
⊤

∇2Fd(s)
⊤...

∇|T|Fd(s)⊤


 ∈ R

|T|×lp. (A.1)Re
all that Theorem 4.1 shows how to 
ompute the partial derivatives ap-



Newton regularizations for impedan
e tomography 23pearing in (A.1). If we denote
∇tFd(s) =: Wt = (W 1

t , . . . ,W l
t ) ∈ R

lp,then we 
an 
ompute the ve
tor W m
t ∈ R

p
♦ as part of the solution (wm

t ,W m
t ) ∈

H1(B) ⊕ R
p
♦ of the variational problem

bs

(
(wm

t ,W m
t ), (v, V )

)
= −

∫

B

1Tt
∇um∇v dx (A.2)for all (v, V ) ∈ H1(B)⊕R

p
♦, where um ∈ H1(B) is the solution of the forwardproblem with respe
t to the 
urrent pattern Im and the 
onta
t impedan
eve
tor z; see Theorem 4.1.The reader might feel as this way of 
omputing the Ja
obian is highlyexpensive. One 
omputes indeed not only the needed ve
tors W1, . . . ,W|T|+pbut also all the potentials wm ∈ H1(B) whi
h are not needed a priori. Infa
t, using this method, one has to 
ompute l · |T| forward problems.Fortunately, we are able to simplify substantially the 
omputation of theJa
obian by the following tri
k: We introdu
e the auxiliary �
urrent frame�

J = (J1, . . . , Jp), Jk being the Krone
ker symbol
Jk := (δj,k)

p
j=1 for k = 1, . . . p,and let (vk, V k) ∈ H1 ⊕ R

p
♦ be the (grounded) solution of the variationalproblem

bs

(
(vk, V k), (y, Y )

)
= 〈Jm, Y 〉 = Ym for all (y, Y ) ∈ H1(B) ⊕ R

p
♦for k = 1, . . . , p. Even if the Jk are no 
urrent patterns in the usual sense(∑j Jk

j 6= 0), this problem is well-posed, be
ause the linear form on theright-hand side is bounded and the bilinear form on the left is an ellipti
form on H1 ⊕ R
p
♦ [12℄. Then we 
ompute

∇tF (s) =
(
W 1

t , . . . ,W l
t

)
=

(
〈W m

t , Jk〉pk=1

)l

m=1

=
(
bs

(
(vk, V k), (wm

t ,W m
t )

))
l,m(A.2)

=

(∫

B

1Tt
∇um

t ∇vk dx

)

l,m

=

(∫

Tt

∇um
t ∇vk dx

)

l,m

.

(A.3)
Hen
e, all we have to do to obtain the Ja
obian is to 
ompute the p forwardproblems for the (vk, V k), the l forward problems for the (um, Um), and toassemble the obtained solution in the way indi
ated by (A.3). This makes
p + l forward problems to solve. As p ≪ |T| in general, the redu
tion of thenumeri
al e�ort is tremendous. Moreover, the 
omputation of the forward
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hleiter and A. Riedersolutions uses always the same bilinear form and this fa
t provides additionalspeedup for the implementation.An experien
ed reader might obje
t to 
ompute the Ja
obian at all:reginn, as in iterative solver, only requires the a
tion of the Ja
obian andits adjoint on a ve
tor. Both matrix-ve
tor produ
ts 
an indeed be realizedby solving variational problems, see (4.1) for F′
d(σ)η. However, observe theappearan
e of F(σ) in the right-hand side of (4.1). To set up the right-handside for 
omputing F′

d(σ)η one a

ordingly needs to evaluate the forwardoperator Fd whi
h means solving an additional ellipti
 problem. Moreover,(4.1) addresses the 
ase of one single 
urrent ve
tor only. Our setting dealswith 
urrent frames of size l. So we need to solve 2l ellipti
 problems allin all to evaluate F′
d(σ)η (negle
ting the stru
tural work for setting up theright-hand side). Sin
e we work with p = l in our implementations the eval-uation of F′

d(σ)η requires to solve 2p forward problems. The same numeri
ale�ort is needed to obtain F′
d(σ)⊤ζ via variational problems. Computing theJa
obian expli
itly is therefore the 
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