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Spezifikation und Verifikation

objektorientierter

Software-Komponenten

(Deutsche Zusammenfassung)

In den letzten Jahren hat die formale Spezifikation und deduktive Verifikati-
on objektorientierter Programme, die in kommerziell eingesetzten Sprachen
geschrieben sind, wesentliche Fortschritte gemacht. Ein Beispiel für eine mo-
derne Spezifikations- und Verifikationsumgebung ist das KeY System, das die
Spezifikation mit Standard-Spezifikationssprachen unterstützt, und erlaubt,
sequentielle Java-Programme gegen diese zu verifizieren.

Formale Spezifikation und Verifikation auf der Ebene einzelner Klassen
und Methoden sind bei dem gegenwärtigen Stand der Wissenschaft recht gut
verstanden. Der konsequente nächste und in dieser Arbeit verfolgte Schritt
besteht heute darin, die erzielten Erfolge auf größere Programmeinheiten aus-
zudehnen, das heißt ganze Komponenten komplett zu spezifizieren und zu
verifizieren. Eine solche Vorgehensweise könnte das Vertrauen in von Dritten
entwickelte Komponenten wesentlich erhöhen und damit die Wiederbenut-
zung fremdentwickelter Komponenten fördern.

Zwar ist es mit den bisherigen Ansätzen möglich, eine einzelne Kompo-
nente oder auch ein aus Komponenten aufgebautes Programm zu verifizie-
ren. Darauf, dass eine verifizierte Komponente ihre Spezifikation in jedem
beliebigen Wiederverwendungs-Kontext erfüllt, kann allerdings nicht unmit-
telbar geschlossen werden. Ein Hauptgrund ist die Anfälligkeit von Klassen-
Invarianten, über Aliasing-Effekte unkontrolliert beeinflusst zu werden. Ein
weiterer Grund ist, dass über den Wiederverwendungs-Kontext keine Annah-
men getroffen werden können, z.B. dass Methoden nicht unbedingt konform
überschrieben werden. Da eine erneute Verifikation einer Komponente in je-
dem neuen Kontext jedoch generell sehr aufwändig ist, und dieser Aufwand
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Nutzern einer Komponente nicht zumutbar ist, ist modulare Korrektheit,
d.h. die Erhaltung von Korrektheit unter Komposition, ein unverzichtbares
Ziel. Ist dieses Ziel erreicht, ist es kein weiter Schritt mehr zu Komponenten,
deren formale Spezifikation garantiert eingehalten wird.

Die Arbeit beschränkt sich auf sequentielle Programme der Sprache Java.
Insbesondere leistet sie folgende Beiträge:

• Der Begriff der Korrektheit eines (möglicherweise in beliebigen Kontex-
ten eingesetzten) Java-Programms bezüglich einer funktionalen Spezi-
fikation auf der Basis getypter Prädikatenlogik wird formal gefasst. Das
zentrale Modell hierbei ist das eines Beobachters, der Aufrufe auf dem
Programm vornimmt, und die Ergebnisse nach Beendigung des Aufrufs
beurteilt.

• Ein im Vergleich zu bisherigen Ansätzen, wie Besitz-basierten (owner-
ship) Systemen [Müller, 2002] oder eindeutigen Zeigern (unique poin-
ters) [Boyland, 2001] sehr ausdrucksstarkes Konzept, die für die mo-
dulare Korrektheit essentielle Kapselung von Daten in Programmen
zu formalisieren, wird vorgeschlagen. Es lehnt sich stark an die For-
malisierung von üblichen Klassen-Invarianten an und erweitert hierzu
Spezifikationssprachen um Kapselungsprädikate.

• Da in den meisten Fällen der Kontext einer Komponente bestimmte
Voraussetzungen erfüllen muss, damit die Komponente die gewünschte
Leistung erbringt, wird der Begriff eines generischen Erweiterungsver-
trags definiert, mit dem Einschränkungen an den Kontext spezifiziert
werden können. Darauf aufbauend werden Komponentenverträge de-
finiert: Wenn ein Kontext bestimmte Erweiterungsverträge erfüllt, si-
chert eine Komponente ihre Korrektheit bezüglich einer herkömmlichen
Spezifikation zu.

• Der Kalkül für die Programmlogik Java Dynamische Logik, der sich
in Beckert [2000] auf einen festen Programmkontext bezog, wird so
verändert, dass man auch sich erweiternde Kontexte, wie sie im Zu-
sammenhang mit Komponenten auftreten, betrachten kann. Besonde-
res Augenmerk gilt der Regel zum Abarbeiten des dynamischen Me-
thodenbindens. Hier wird modulares Beweisen mit Hilfe von Metho-
denverträgen verlangt, die – durch Erweiterungsverträge sichergestellt
– auch vom Wiederverwendungskontext erfüllt werden müssen.
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• Den Kern der Arbeit bildet ein Ansatz zum Nachweis der modula-
ren Korrektheit von einfädigen Java Programmen. Es werden Beweis-
verpflichtungen zum Nachweis von Methoden-Kontrakten, Klassen-In-
varianten und Assignable-Klauseln (d.h. Angaben welche Lokationen
eine Methode höchstens verändern darf) vorgestellt. Ferner werden
Techniken zum Beweisen von Kapselungseigenschaften vorgestellt.

Modulare (dauerhafte) Korrektheit von Invarianten in offenen kom-
ponentenbasierten Systemen basiert auf der Analyse von Invarianten
über Abhängigkeitsklauseln und wird danach über zwei Techniken si-
chergestellt: Selbst-Wächter sind Klassen, die volle Kontrolle über ei-
ne für den Schutz der Invariante wichtigen Lokation haben. Wächter
sind Klassen, die dafür sorgen, dass für diese Lokationen relevanten
Objekte, nicht aus der Kontrolle der Wächter entkommen. Dies wird
über eine spezielle Beweisverpflichtung auf der Basis von Kapselungs-
prädikaten sichergestellt. Außerdem müssen sowohl Selbst-Wächter als
auch Wächter – und nur diese – die fragliche Invariante erhalten.

Mit diesem Ansatz können Programme spezifiziert und verifiziert wer-
den, die in unbekannten Kontexten oder in Kontexten mit bestimmten
Eigenschaften (die durch Erweiterungsverträge beschrieben sind) ein-
gesetzt werden.

• Die erarbeiteten Ansätze können mit dem KeY-System eingesetzt wer-
den und sind an kleinen Fallbeispielen erprobt worden.
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1 Introduction

Causa latet, vis est notissima.

(Ovid)

Imagine object-oriented software components which are guaranteed to do
what they promise to do. Imagine them to be used in an arbitrary context
and they still do what they promise to do.

This work is about coming a step closer towards making this vision true.
This work employs formal methods, which are the most rigid way of making
guarantees about software. More precisely from the area of formal methods,
we foster formal specification and deductive verification.

Using formal methods rigidly does not at all mean to be escapist; we
are attacking software components written in the real-world widely spread
object-oriented language Java [Gosling et al., 2000]. We are however not
considering multi-threaded Java, nor effects of garbage collection. Both are
completely different and on their own complex matters. On the specification
side we are only considering functional specifications.

To see which concrete problems this work is attacking, this chapter pro-
vides an overview of the state of the art in specification and verification of
object-oriented systems. Moreover it will present problems which make it—
despite the successes in this area—problematic to have fully specified and
verified, or short, trusted components.

1.1 State of the Art in Specification and
Verification of Object-oriented Programs

In the last few years, formal specification and deductive program verification
have made big steps forward towards being applied in commercial software
development. Real-world programming languages have been approached. Es-
pecially Java has been in the focus of research because of its quite precise—
though informal—foundations and its wide spread use in software develop-
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1 Introduction

ment. Moreover, non-trivial applications could be verified [Mostowski, 2005].
Finally tools were built which made formal specification and verification ac-
cessible to people who are no ultimate experts in formal methods. An ex-
ample is the KeY system [Ahrendt et al., 2005a], which quite well represents
the state of the art in the specification and verification of object-oriented
programs. Other systems are discussed in Sect. 11.1.

Verification is based on the existence of two artifacts: A program and a for-
mal specification. While software engineers generally consider it quite easy
to write code, writing formal specifications is usually considered much more
difficult. The KeY system assists users with this task by supporting speci-
fication languages which accommodate the world of software engineering as
well as that of formal methods—to the extend possible. The supported spec-
ification languages are the Object Constraint Language (OCL) [Warmer and
Kleppe, 1999], which is part of the well accepted Unified Modeling Language
(UML) [OMG] standard, and the Java Modeling Language (JML) [Leavens
et al., 2005] which tries to syntactically resemble Java. Both, OCL and JML,
are based on the idea of design by contract [Meyer, 1992] providing methods
and classes with operation contracts and class invariants. Moreover tools
are available within KeY which generate formal specifications from a pattern
template mechanism and natural language input. Finally, the KeY system
is integrated in the work bench of developers, as in a CASE tool or an in-
tegrated development environment. This allows for seamless integration of
specification and verification in the software development process.

With a formal specification written in one of the specification languages,
verification can start. Properties of specifications without relation to code
can be verified (so called horizontal properties) [Roth, 2006]. When program
code is there, its correctness with respect to the specification can be proven.

Indispensable ingredients of deductive verification are a logic and a calcu-
lus. KeY’s deduction component is based on the dynamic logic JavaDL and
the JavaDL calculus [Beckert, 2000]. In order to establish a link between the
specification languages and JavaDL, OCL and JML specifications are auto-
matically translated into the first order fragment of the JavaDL logic [Beckert
et al., 2002]. From these expressions proof obligations are generated and fed
into the theorem prover of KeY [Ahrendt et al., 2005a]. The implied cor-
rectness assertion are currently only on a per-method basis, that is, all make
statements about a single method call, such as: ‘this method preserves that
property’. Similar statements about a whole program, that is, a set of classes,
like ‘a program satisfies its specification entirely’, have not been supported.

2



1.2 Problems

1.2 Problems

Program verification systems like KeY quite comfortably and efficiently—
at least compared with the degree of guarantees that are made—deal with
single and local properties of programs. We may imagine a moment where
a developer has performed a number of such proofs successfully. Can he or
she be sure that the given program is correct with respect to the considered
specification? What exactly is correct? And under which circumstances will
correctness be ensured? We illustrate these questions with the help of the
following example.

Example 1.1. Figure 1.1 shows an example Java program similar to an ex-
ample in Bloch [2001]. The program provides Java classes Date (which does
not contain an attribute for a day, for brevity reasons) and Period, the latter
composed of two instances of the first. The month of a date is represented
by an instance of class Month. The start and end dates of a Period can
be retrieved from Period instances by ‘getter’ methods and set by ‘setter’
methods. The fields in Date can be got and set the same way. The side-effect
free (pure, query) method earlierOrEqual(Date) allows to check whether
the stored date is considered earlier than or equal to a given one. Most im-
portantly to the subject of this work, all getter and setter methods have one
peculiarity: they create a new instance of the argument object before storing
the copy and before returning an object. This follows the design patterns
Copy Mutable Parameters and Return New Objects from Accessor Method
(see Sect. 4.1.1), also known as defensive copies Bloch [2001]. ∗

Note that the implementation depicted in Figure 1.1 already contains a
(highly incomplete) functional specification of the expected behaviour, that
is it contains a class invariant attached to class Period and a method spec-
ification at the earlierOrEqual(Date) method of Date. As invariant we
conceive—as made popular by the design by contract methodology [Meyer,
1992]—a property being true in all states of a program except from inter-
mediate states reached during the invocation of a method or constructor;
as method specifications we employ contracts promising a post-condition to
hold after the method invocation if preconditions are met. As specification
language we have chosen here the Java Modeling Language (JML) [Leavens
et al., 2005], which should be quite intuitively conceivable for those who know
Java. The invariant says that the start date of the period should be before
or equal to the end date in the natural sense. And earlierOrEqual(Date)

3



1 Introduction

class Period {

/*@ instance invariant

@ start.year<end.year ||

@ (start.year==end.year

@ && start.month.val

@ <=end.month.val);

@*/

private Date start, end;

/*@ requires start!=null

@ && end!=null;

@*/

public Period(Date d1, Date d2){

if (d1.earlierOrEqual(d2)){

this.start=d1.copy();

this.end=d2.copy();

} else {

this.start=d2.copy();

this.end=d1.copy();

}
}

public Date getEnd(){

return end.copy();

}

public void setEnd(Date end){

if (!start.earlierOrEqual(end))

throw new RuntimeException();

this.end=end;

}
}

class Month {

/*@ invariant val>0 and val<=12 @*/

private /*@spec_public*/ int val;

public Month(int val){

setMonth(val);

}

public void setMonth(int v){

val = (v>0 && v<=12) ? v : 1;

}

public Month copy(){

return new Month(val);

}
}

class Date {

/*@ invariant month!=null; @*/

private /*@spec_public@*/

Month month;

private /*@spec_public@*/ int year;

/*@ requires month!=null @*/

public Date(Month month,int year){

this.month=month;

this.year=year;

}

public Month getMonth(){

return month.copy();

}

public int getYear(){return year;}

public void setYear(int y){year=y;}

/*@ normal_behavior

@ requires cmp != null;

@ ensures

@ \result==(year<cmp.year

@ ||(year==cmp.year

@ && month.val

@ <=cmp.month.val));

@*/

public /*@ pure @*/

boolean earlierOrEqual(Date cmp){

return (getYear()<cmp.getYear())

|| (getYear()==cmp.getYear()

&& getMonth()<=cmp.getMonth());

}

/*@ normal_behavior

@ ensures

@ \result.month.val==month.val

@ & \result.year==year

@ & \fresh(\result)

@ & \fresh(\result.month);

@*/

public Date copy(){

return new Date(getYear(),

getMonth());

}
}

Figure 1.1: A simple Java program modelling periods
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1.2 Problems

is specified in the sense that the argument lies before or on the same date
represented by the given object if and only if the method returns true.

Consider now first the invariant ϕPeriod of Period. A verification system
like KeY is able to prove, for instance, that a method setEnd(Date) in
Period preserves ϕPeriod, that is, assumed the invariant holds before method
invocation it will hold afterwards. It is important to note that the context
in which this check is performed is fixed. That means that KeY guarantees
the preservation of ϕPeriod if there are no further classes besides Period,
Date, and Month. All other methods of Period can be proven to preserve
ϕPeriod and the constructor provably establishes this invariant for the created
instance. Are we done now? Will the class invariant hold in all system states
as we have expected?

Example 1.2. Assume for a moment that the constructor of Period lacked
the copy method references and was instead implemented as follows:

public Period(Date d1, Date d2) {

if (d1.earlierOrEqual(d2)) {

this.start=d1;

this.end=d2;

} else {

this.start=d2;

this.end=d1;

}

}

As its unmodified counterpart, this constructor establishes the invariant of
Period.

We can now add the following class:

class Main {

public Period myPeriod() {

Date sep=new Date(new Month(9), 2002);

Date feb=new Date(new Month(2), 2006);

Period p=new Period(sep, feb);

sep.setYear(2006);

return p;

}

}
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1 Introduction

When a call to myPeriod() terminates, an instance of Period exists which
does not satisfy ϕPeriod: It represents a period which starts in September of
2006 and ends in February of 2006. ∗

Interestingly, it is not so obvious, whether we should consider this program
behaviour as a bug or not. On the one hand, one could have the opinion
that we were in fact not finished with verification of our program, because
(at least) one method, namely setYear() did not preserve the invariant of
Period. On the other hand, it is unrealistic that methods of Date, which is
(at least by its name) a pretty general class and not only thought to be used
as part of Period, should necessarily preserve an invariant of another class.
Moreover if the start and end fields of a Period were sufficiently hidden from
access from other classes than Period, as in the original implementation, we
could not have provoked the faulty behaviour. We can observe two facts:

(i) It is not so obvious which conditions must be satisfied for a system
to be classified as correct. For instance: in general all methods of a
system can violate invariants.

(ii) It can be a matter of encapsulation whether a program is correct.

Our first observation says that naive verification of invariants is highly
non-modular, since we need to consider verification conditions for every pair
of invariant and operation. Only good enough, and sufficiently specified and
verified encapsulation properties can help.

If we assumed that our program consisted of components, we could make
even more observations. For instance we can assume that the classes Date

and Month come from a library and our intend is to develop a component
consisting of the Period class on top of these. Now, code for Date and Month

would not necessarily be available and it would be even more unrealistic that
these classes preserve the invariant of our new component Period. Even if
we verify all methods and constructors of all the code that we have, that
is, that of the new component, we cannot be sure that invariants hold in an
arbitrary context; for instance they do not hold in a context which involves
the Main class. We can draw the conclusion that,

(iii) with components it is even more crucial to have a sufficient degree of
encapsulation, since it is no more possible to check that all methods
cannot possibly violate invariants.
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public interface Set {

/*@ model Object[] elems;

@ public instance invariant

@ \forall(int i,j;

@ i>=0 && i<elems.length && j>=0 && j<elems.length;

@ elems[i].equals(elems[j]) ==> i==j) */

}

Figure 1.2: JML invariant for java.util.Set

Another way how we could consider the modified example to be correct, is
that the context in which Period is used satisfies certain requirements. As a
trivial example, if every method in the context would be obliged to preserve
the invariant of Period, it would be forbidden to implement Main as above
and thus we had no invariant violation. We observe that

(iv) it may depend on the behaviour of the context in which a component
is used whether the component is considered correct.

For a more realistic example for this phenomenon, we have a look at the
interface Set from the Java Collections Framework, here specified with JML:

Example 1.3. Consider the extract from the Set interface in Fig. 1.2. It is
specified with a model field elems representing the entries in the set and an
invariant requiring the elements to be all different w.r.t. the equals method.

This invariant is prone to be violated if clients of a java.util.Set instance
modify elements of the set in a way that two elements which were not equal
before are becoming equal. This danger is also reflected in the informal
description of the Set interface [Sun Microsystems, Inc., a]:

Note: Great care must be exercised if mutable objects are used
as set elements. The behavior of a set is not specified if the
value of an object is changed in a manner that affects equals
comparisons while the object is an element in the set.

From the viewpoint of formal methods, it would be desirable to formalise
this informal and vague warning. ∗

Good encapsulation and a restricted context are two instruments to support
the functional correctness of programs in an open world. They are comple-
mentary concepts which can be combined ad libitum. They are however not
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1 Introduction

equally desirable. Encapsulation is clearly the best choice, since we want to
have as little obligations to the user of a component. Only if encapsulation
is not possible we have to switch to restrictions of the context.

So far we have discussed what Meyer [1997] calls the indirect invariant
effect. There is another problem with specifications in open programs, which
we illustrate now. Programs using our Period component could make use
of it by subclassing Date, quite a common way of re-using object-oriented
programs. The subclass could be defined as follows:

class Date2 extends Date {

public boolean earlierOrEqual(Date cmp) {

return getYear()<=cmp.getYear();

}

}

Clearly this implementation violates the specification of earlierOrEqual in
Date. Even worse, overriding this method makes it possible to violate the
invariant of Period. Assume the user of our component writes the following
class:

class Main2 {

public Period myPeriod2() {

Date sep=new Date2(new Month(9), 2006);

Date feb=new Date(new Month(2), 2006);

Period p=new Period(sep, feb);

return p;

}

}

Then again a Period instance exists which does not satisfy its invariant, al-
though we did not exploit the effect that we changed a date object ‘through
the back-door’. Even worse, a local judgement like ‘a constructor call to
Period establishes the invariant’ provable by KeY in the required fixed pro-
gram context is invalidated if the context is extended by a subclass of Date.
We note that

(v) context extensions can invalidate judgements on programs (like the
preservation of invariants or the fulfilment of operation contracts).

Here again we have two choices: We could either restrict the context,
by requiring that earlierOrEqual(Date) may only be overridden in a way
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conforming to the original implementation. The alternative is to disallow
the overriding of this method at all by declaring it final, which corresponds
roughly to the encapsulating solution from above.

It can be argued that the observed phenomena are deficiencies of the used
programming language or object-oriented programming in general. This is
probably right and many complaints, with similar arguments as above, about
object-orientation have been raised (see for example Broy and Siedersleben
[2002]). So we could design our own fancy programming language which
would evoke the mentioned problems. Or we could at least extend an exist-
ing language with new features. We will not do this. First of all, some of the
above problems are also popular features of object-orientation, for instance,
code inheritance is in practice used to adapt behaviour. Second, we have to
face reality: Object-orientation and Java are currently used in practical soft-
ware development and programming languages tend to have a comparably
long life. Moreover we, and this is also the philosophy of the KeY project,
do not want to develop techniques for unused toy languages as in the early
years of formal methods. Instead, we rely on the abilities of developers to
make for enough encapsulation with existing programming languages and to
impose appropriate constraints on allowed contexts.

What would an experienced Java programmer do if he knew that his classes
(as Period) were reused in an unpredictable way (as by Main or Main2)?
There are some patterns that address these problems: Bloch [2001], for
instance, recommends ‘defensive copies’ before storing the start and end

fields. This recipe has been obeyed in the initial implementation of Ex. 1.1.
In general it is enough to ensure that writable references to the objects stored
in start and end objects are not exposed to the ‘outside’ of Period. And
for the second problem concerning non-conforming overriding methods a pro-
grammer would declare his methods final as mentioned above or would at
least write a comment that subclasses should be careful when overriding this
method.

Already today, with current languages, programmers can write programs
which are modularly sound. They do not necessarily need additional pro-
gramming language features that support them, like they do not need ad-
ditional languages features to write functionally correct software. What is
missing however are means to specify and verify encapsulation required for
modular correctness of a program. What is moreover missing is a clear no-
tion of correctness of components. And what is finally missing is a system
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of proof obligations that allows to prove a program modularly correct. This
work aims at providing these missing instruments.

1.3 Contributed Solutions

The two main contribution of this work are

• a definition of formal requirements on the correctness of object-oriented
programs which run in an unknown context and

• a system of proof obligations to prove in a theorem prover that these
requirements are satisfied.

On a more detailed level, the following solutions are provided:

• The essentials of a functional specification for sequential object-oriented
programming languages are defined at the example of sequential Java
and on the basis of typed first order logic.

• We elaborate on the notion of correctness of a program with respect to
a specification. In particular a notion of correctness which can not be
affected by program extensions is defined. More precisely we define two
notions of correctness: observed-state call correctness and observed-
state durable correctness. The first is simple to prove, but only useful
in a closed context, and the second is more difficult to establish but
desired in an open context.

• We provide a novel way of specifying and verifying encapsulation of
object-oriented programs, suiting well to functional specifications in
a design by contract style. Compared to competing approaches, our
way to specify encapsulation is more general, does not require exten-
sions of programming languages, and suits better to the way functional
properties are specified. Static analysis techniques developed in other
approaches can still be used, provided that the specified encapsulation
property is that simple.

• The notion of a component contract is introduced, reflecting the fact
that the context in which a component is used is often obliged to satisfy
certain conditions. Generic extension contracts play the role of pre-
conditions by imposing conditions on the context a component is used
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1.3 Contributed Solutions

Specification S
of P

Program P

Specification of
allowed contexts

Specification of
Encapsulation in P

(partially)
unknown
context

Encapsulation

Calculus

Proof obligations

Figure 1.3: Overview on specification and verification of open object-
oriented programs

in. Extension contracts make use of the concept of type parameters
which allows to constrain the behaviour of types which are unavailable
at the time of specification.

• An existing powerful, but non-modular program calculus for Java is
investigated and lifted to the possible extend to a modular program
calculus. Issues with the problem of dynamic binding, inherent to mod-
ularly proving Java programs, are solved by constraining the context
with generic extension contracts.

• Proof obligations for program correctness in closed programs are pre-
sented and proven correct, among them a novel proof obligation for the
correctness of the change information in assignable clauses. Starting
from an analysis of specifications and the provably correct extraction of
depends clauses, proof obligations for the correctness of open programs
and components are provided. For complex invariants certain classes
must be designated as a guard for which correctness and encapsulation
properties must modularly be proven. If encapsulation is impossible,
extension contracts are employed to at least ensure a relative notion of
correctness. This solves the problems of indirect invariant effects.

These contributions have been placed in the schematic picture Fig. 1.3.
Basically we are facing the classical situation of program verification, namely
to relate a formal specification S and a program P with the goal to achieve
a proof that the program is correct with respect to the specification. The
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1 Introduction

new obstacles we are facing in this work is that P is a component which is
composed in an unknown or at most partially known way with other compo-
nents. Two techniques, depicted by the two ‘wings’ of Fig. 1.3, are discussed
in this work to cope with this: (a) to impose requirements on the context
P is used in and (b) to encapsulate data of P . Correctness is proven with
the two ingredients of deductive verification: proof obligations and calculus.
Both of them must be adapted to the new situation taking into account the
unknown context.

1.4 Outline

Basic material of a more common nature is presented in Chapter 2. Most
importantly, here, the program logic needed in specification and verification
is introduced.

The rest of this work is divided into two main parts: one concerned with
formal specification techniques for programs which are designed to be ex-
tended, the other with an approach for deductive verification in a modular
fashion.

Part I is started with Chapter 3. It defines what program specifications
are and defines two variants of correctness of programs. Chapter 4 motivates
and describes our approach to specify properties of encapsulation. Finally,
Chapter 5 introduces the notion of a component contract.

In Part II we discuss modular verification as an issue of a calculus and of
proof obligations. Chapter 6 covers the calculus, by modifying an existent
non-modular program calculus to be more modular. Chapter 7 is concerned
with the simpler part of a system of proof obligations suited to programs not
subject to be extended. Chapter 8 provides means to prove encapsulation
properties, which is a requirement to ensure correctness of programs modu-
larly. This is done in Chapter 9, where we present a more sophisticated and
modular system of proof obligations for closed programs. In Chapter 10 the
final step towards modular correctness of open programs and components is
made, by again modifying the proof obligation systems developed before.

We conclude the work with an overview on related approaches in Chap-
ter 11.

12



2 Preliminaries

Excludat iurgia finis.

(Horace)

This chapter defines basic concepts which are used throughout this work.
We define open and closed programs, the used logics JavaFOL and JavaDL,
as well as our notion of proof obligation. Mostly, these are common notions
and notations developed in other contexts. In particular Sects. 2.2 and 2.3
present concepts elaborated in the KeY project. For a complete reference
see Beckert et al. [2006a]. Nevertheless, some details are presented in a novel
way or are generalised slightly, as for instance the notion of extended terms
in Sect. 2.2.4.

2.1 Closed and Open Programs and Components

We are considering the programming language Java as described in Gosling
et al. [2000]. The following limitations and conventions are to be followed:

• Only sequential programs are considered. Multi-threaded programs
are outside of the scope of this work. A clearly defined sequential
subset of Java is JavaCard [Sun Microsystems, Inc., b], which can be
seen as target language of this work. However, we do not stick to all
other strong limitations of JavaCard, concerning for instance a limited
dimensionality of arrays and peculiarities with class initialisation.

• We consider only programs with private and protected fields. It is obvi-
ous that, with fields of default or public visibility, encapsulation needed
for modularity is almost impossible to achieve. Such fields are thus
disallowed. Note, that it is however possible to transform programs
containing package private or public fields into programs having fields
of allowed visibilities. For this, these fields are turned into protected
fields and appropriate setter and getter methods are implemented and
used.
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2 Preliminaries

When referring to Java programs, the standard terminology as described
in [Gosling et al., 2000] is used. In addition, we use the word operation when
referring to a method or constructor. We speak of an operation in a class
or interface when this operation is declared in that class or interface and we
classify an operation as applicable if there is an operation in that class or
interface T or in a supertype of T which can be called by objects referencing
a T -instance. Sometimes when referring to classes or interfaces we speak of
a (Java) type.

In the next chapter we need to extract first order signatures from programs.
We want to have available function symbols which correspond to certain
operations in that program. More precisely, this narrows down to side-effect
free operations. Since there is no syntactical criterion provided in Java (as
opposed to UML, for instance, where queries can be tagged), if an operation
belongs to this class of operations, the notion of a pre-specified program is
introduced. This simply means that we are annotating operations with a
keyword pure. Later side-effect freeness must be checked (see Sect. 7.2.7) for
these operations.

Definition 2.1. A pre-specified type is a Java type which unlike normal
Java classes allows to mark some of its non-void operations as pure. These
operations are called pure operations.

Only rarely, programs are monolithic self-contained blocks of code. Usu-
ally programs make use of libraries and frameworks. In its extreme form and
envisaged by software engineering pioneers, programs are composed of com-
ponents. When a developer writes a new component cnew he will often not be
able to access internals of the components c1 he uses. His component is open
in the sense that it depends on components which he has only incomplete
knowledge about. In particular he does not know if clients of cnew do access
c1 separately and accidentally modify the state of c1 though they only access
cnew.

To reflect incomplete knowledge but maintaining a certain sort of com-
pilability the notion of a class skeleton is introduced. Comparable to Java
interfaces such skeletons just consist of operation declarations without im-
plementation.

Definition 2.2 (Class Skeleton). A class skeleton is a pre-specified Java class
except that it contains no method bodies.
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2.1 Closed and Open Programs and Components

A program P of pre-specified Java classes complies with a set Sk of skeletons
if P declares those classes, methods, and constructors which are declared in
Sk.

With these two notions in mind, closed and open programs can be defined:

Definition 2.3. 1. A closed (Java) program is a set P of pre-specified
Java classes that can independently be compiled according to Gosling
et al. [2000]. Any superset P ′ ⊇ P of closed programs is a closure of
P .

2. A set of pre-specified Java types is an open (Java) program if it is not
a closed program.

3. A program is either an open program or a closed program.

For an open program P there is a minimal set Sk of class skeletons such
that P can be compiled together with a set P ′ of classes which complies with
Sk. P ′ is called a closure of P . Often we refer to an open program as a set
of classes and skeletons P ∪ Sk.

A closed program P always comprises a set of standard Java types, these
are1 Object, Throwable, String, Cloneable, Serializable. The set of
these (pre-specified) classes is referred to as JCl.

By default we assume that open programs include JCl as skeletons.

The notion of a software component is controversial and often vaguely
defined. One popular way to define component is to characterise obligatory
properties, as for instance that it [Szyperski, 1998] (a) can be in multiple-use,
(b) is not context-specific, (c) composable with other components, (d) en-
capsulated i.e., non-investigable through its interfaces, and (e) a unit of in-
dependent deployment and versioning.

In this work, we are going to use the quite general notion of a component
as a software item that is subject to software composition [Aßmann, 2003] on
the one hand and on the other hand a very precise instance of this definition
as described in the following.

A component is, concerning the considered code, not much more than an
open program. However with the term component it is emphasised that such
open programs are made to be composed: Components are (in the sense of

1For the standard library classes from package java.lang we will omit the package prefix if no ambiguities
can arise.
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2 Preliminaries

this work) open programs which are developed and deployed together and
which are, according to Aßmann [2003], subject to composition. Composition
means that components are put together in such a way that they make up a
meaningful closed program.

Because of the deployment-as-a-whole and composition aspect, compo-
nents have the characteristic that they are documented and specified in a
way that makes composition with other components feasible. Since we are
interested in a precise functional formal specification, components may have
attached a special kind of specification, called component contract, which
will be discussed in Chapter 5. Apart from this, the reader can most often
simply associate the notions of open program and component as synonyms.

2.2 Java First Order Logic

Functional specifications of object-oriented programs are based on a typed
first order logic, as will be described in Sect. 3. In the following, we describe
a first-order fragment JavaFOL of JavaDL [Beckert, 2000]. The presentation
mainly follows Giese [2006]. JavaFOL will be extended in Chapter 4.

2.2.1 Syntax

A signature (T ,Fnr,F r,Pnr,Pr,�, σ, τ) consists of

• a set T of type symbols,

• a set Fnr of non-rigid function symbols,

• a set F r of rigid function symbols,

• a set Pnr of nonrigid predicate symbols,

• a set Pr of rigid predicate symbols,

• a function σ which assigns an n-tuple of types, the function or predicate
symbol signature, from T to each predicate or function symbol p ∈
Pnr ∪ Pr ∪ Fnr ∪ F r,

• a function τ which assigns a type, the result type, from T to each
function symbol f ∈ Fnr ∪ F r,
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2.2 Java First Order Logic

• a transitive and reflexive binary relation �⊆ T × T , the subtype rela-
tion; we say t1 is a subtype of t2 if (t1, t2) ∈� and write alternatively
t1 � t2.

Sometimes, we write σi(f) to denote Ti if σ(f) = (T1, . . . , Tn) (n ≥ 0, i =
1, . . . , n). The arity of the σ(f)-tuple is denoted by α(f).

We require that all signatures contain the types Integer,Boolean ∈ T
as well as the usual rigid functions and predicates for these types. For
Integer we have, for instance, the predicates: ≤,≥, <,> and the functions
representing arithmetical operators (+,−, etc.), for the terms constructed
with the usual 0 and succ functions we write 0, 1, 2, . . .. For Boolean, we
only define the functions true and false of arity 0.

Furthermore, Null ∈ T . For Null we have only the 0-ary function null.
Finally signatures must contain the type Any, for which for all types T ∈ T :
T � Any.

Given a signature Σ, a program P is a Σ-program if

• all types T ∈ P are represented by some r(T) ∈ T , in particular

JCl ⊆ T

Furthermore Null ∈ T . Finally for every type T ∈ T there is an array
type T[] ∈ T .

• the subtype relation of P is reflected by �, that is, for the types
T1, T2 ∈ T induced by the program: (T1 � T2) iff T2 is assignment
compatible [Gosling et al., 2000, §5.2] to T1.

• all local program variables of P of type T are represented by 0-ary
non-rigid function symbols f in Σ with τ(f) = r(T ) (these function
symbols are called program variable symbols),

• all fields a of P of type T declared in a class D are represented by
a unary non-rigid function symbol in Σ with the name a@(D) and
σ(a@(D)) = (r(D)) and τ(a@(D)) = r(T ) (these function symbols are
called instance field symbols)

• all static fields a of P of type T declared in a type D are represented
by a 0-ary non-rigid function symbol in Σ with the name a@(D) and
τ(a@(D)) = r(T ) (these function symbols are called static field sym-
bols)
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2 Preliminaries

• in Σ there is a binary non-rigid function symbol []T for every array type
T[] ∈ T , called array access symbols, with σ([]T ) = (T[], integer)
and τ([]T ) = T ,

• in Σ there is further an n+ 1-ary (n ≥ 0) non-rigid function qT0
with

σ(qT0
) = (r(T0), . . . , r(Tn)) and τ(qT0

) = r(S)

for every pure n-ary instance method in P declared in type T0 as
S q(T1,..., Tn) (these function symbols are called instance query
symbols),

• in Σ there is an n-ary (n ≥ 0) non-rigid function qT0
with

σ(qT0
) = (r(T1), . . . , r(Tn)) and τ(qT0

) = r(S)

for every n-ary static method in P declared as S q(T1,..., Tn) in
type T0 (these function symbols are called static query symbols),

• in Σ we have the unary rigid function symbol InstanceOfT for every
T ∈ T with

σ(InstanceOfT ) = (Object) and

τ(InstanceOfT ) = Boolean ,

• there are no further non-rigid function symbols than those described
above in Σ (that is instance field symbols, static field symbols, array
access symbols, instance query symbols, and static query symbols).

The last item is mainly to simplify our reasoning in later chapters.
We furthermore require from a signature Σ and a Σ-program P that Σ

contains an unbounded reservoir of function symbols which do not represent
features of P . We will refer to these symbols as being fresh.

The following lemma will ensure that terms and formulae built over a
signature Σ for a Σ-program P are also terms and formulae (resp.) if P is
extended with additional classes and interfaces.

Lemma 2.1. Let Σ1 = (F nr
1 , F r

1 , P
nr
1 , P r

1 ,�1, σ1, τ1) be a signature and P1 a
Σ1-program. Let P2 be a program with P1 ⊆ P2. Then there is a signature
Σ2 for which P2 is a Σ2-program with Σ2 = (F nr

2 , F r
2 , P

nr
2 , P r

2 , σ2, τ2) and

F nr
1 ⊆ F nr

2 , F r
1 ⊆ F r

2 , P
nr
1 ⊆ P nr

2 , P r
1 ⊆ P r

2 ,�1⊆�2, σ1 ⊆ σ2, σr,1 ⊆ σr,2

For the latter property we write simpler: Σ1 ⊆ Σ2.
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For the relation � and a set of types P ⊆ T we define the set

P� := {T ′ | T ′ � T, T ∈ P}

As usual, we need, in addition to the signature, a set V of typed logical
variables, which we assume to be present in the following without further
notice. Logical variables have assigned a type T from the signature. From
time to time this is, for a logical variable v denoted as v : T , if the type is
relevant and not clear from additional explanations.

Definition 2.4. Let Σ = (T ,Fnr,F r,Pnr,Pr,�, σ, τ) be a signature. The
set TermΣ

T of terms of type T is simultaneously for all types T ∈ T defined
to be the smallest set with

• v ∈ TermΣ
T if v is a logical variable of type T .

• f(t1, . . . , tα(f)) ∈ TermΣ
T if f ∈ Fnr ∪ F r, ti ∈ TermΣ

T ′
i
, Ti, T

′
i ∈ T ,

T ′i � Ti, σ(f) = (T1, . . . , Tα(f)), and τ(f) = T for all i = 1, . . . , α(f).

The set TermΣ of all terms is TermΣ :=
⋃
T∈T

TermΣ
T

The set FmaΣ of formulae of JavaFOL is the smallest set with

• true, false ∈ FmaΣ,

• p(t1, . . . , tα(p)) ∈ FmaΣ if p ∈ Pnr∪Pr, ti ∈ TermΣ
T ′

i
, Ti, T

′
i ∈ T , T ′i � Ti,

σ(p) = (T1, . . . , Tα(f)) for all i = 1, . . . , α(p),

• t1
.
= t2 ∈ FmaΣ for t1, t2 ∈ TermΣ,

• ¬ϕ1 ∈ FmaΣ, (ϕ1∧ϕ2) ∈ FmaΣ, (ϕ1∨ϕ2) ∈ FmaΣ, (ϕ1 → ϕ2) ∈ FmaΣ,
(ϕ1 ↔ ϕ2) ∈ FmaΣ,
(if ϕ1 thenϕ2 elseϕ3) ∈ FmaΣ

if ϕ1, ϕ2, ϕ3 ∈ FmaΣ; ¬, ∧, ∨, →, ↔, if then else are junctors,

• (∀x :T. ϕ) ∈ FmaΣ, (∃x :T. ϕ) ∈ FmaΣ if ϕ ∈ FmaΣ, x is a logical
variable (of type T ), and T ∈ T ; ∀ and ∃ are quantifiers.

As a convention, terms a(t) with instance attribute symbols a as top-level
operator are written as t.a, terms []T (t1, t2) with the array access symbol
[]T as top-level operator are written as t1[t2]T or just t1[t2]. If there are
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2 Preliminaries

no ambiguities, that is, if no ‘shadowing’ occurs, field symbols a@(D) are
written just as a.

Often we will use notations like
∧
ϕ∈Φ

to denote a conjunction ϕ1 ∧ . . . ∧ ϕn

of all elements in a finite set Φ = {ϕ1, . . . , ϕn} (n ≥ 1) of formulae. If Φ = ∅
then

∧
ϕ∈Φ

means the neutral element true. This is analogously stipulated for

disjunctions.
As a further convention, we will use the abbreviating notation t0 6

.
= t1

instead of ¬(t0
.
= t1). Furthermore, from time to time we use InstanceOf as

a predicate. That is, if InstanceOfT is used as a predicate it is an abbreviation
for InstanceOfT (·) .

= true.
As usual we define closed formulae: these are formulae where every occur-

rence of a logical variable is bound by a quantifier.

2.2.2 Semantics

The semantics of a first order logic is defined by a first order structure con-
sisting of a universe and an interpretation of predicate and function symbols.
Since we are later extending JavaFOL to a dynamic logic JavaDL, we identify
first order structure and state with each other.

Definition 2.5 (State). Let Σ be a signature and P a Σ-program. A state
s is a first order structure for Σ and P . It thus consists of

• a universe U of Java objects, primitive values, and the natural numbers,
partitioned into disjoint sets UT for every T ∈ P ∪ {N, boolean}; for
each type T ∈ T we define

Dom(T ) :=
⋃
T ′∈T
T ′�T

UT ′

• an interpretation ·s,P mapping n-ary (n ≥ 0) function symbols f with
σ(f) = (T1, . . . , Tn) to functions

f s,P : Dom(T1)× · · · ×Dom(Tn) −→ Dom(τ(f))

and n-ary predicate symbols p with σ(p) = (T1, . . . , Tn) to relations

ps,P : Dom(T1)× · · · ×Dom(Tn)
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2.2 Java First Order Logic

Note that we have disjoint sub-universes, the type hierarchy is reflected in
Dom. If an individual e is an object and e ∈ UT then T is its unique dynamic
type.

The subset of the universe of primitive values is called Uprim.

We particularly fix the interpretations of fields, arrays, and queries, as well
as for InstanceOf . Since the first three are partial functions for some argu-
ments, we employ a choice function ch that delivers, for a function symbol
and a sequence of objects, an unknown but fixed universe element. This han-
dling of undefinedness follows Gries and Schneider [1995]. In the following
cases the interpretations are fixed:

• for an instance field symbol a:

as,P (e) =


e.a if a is defined for e

and e is created

ch(a, e) otherwise

• for a static field symbol a@(C):

a@(C)s,P =


C.a if a is defined in class C

and C is initialised

ch(a) otherwise

• for an array access symbol []T :

[]
s,P
T (e1, e2) =


e1[e2] if e1 is a created array

and e2 is a valid slot in e1

ch([]T , e1, e2) otherwise
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• for an n-ary query symbol q:

qs,P (e1, . . . , en) =



the returned value of the method reference
e1.q(e2, . . . , en) called in P in state s if this is a
valid method reference to an instance method

the returned value of the method reference
q(e1, . . . , en) called in P in state s if this is a
method valid reference to a static method

otherwise (also in the case of abrupt
termination): ch(q, e1, . . . , en)

• for the function symbol InstanceOfT :

InstanceOfs,PT (e) = true iff e ∈ dom(T )\{null}

We further require that, if we fix the interpretations of field and array
access symbols, then also the interpretations of all other non-rigid function
symbols and the predicate symbols are fixed. That is, for all states s1 and s2,
if f s1(e1, . . . , en) = f s2(e1, . . . , en) for all n-ary field or array access symbols
f , then also gs1(e1, . . . , en) = gs2(e1, . . . , en) for all other non-rigid function
and predicate symbols g.

Note that the interpretation of queries depends on programs. In all other
cases from above this is however not the case, such that we may just write
·s instead of ·s,P . The particularity of queries is due to dynamic binding
of methods in Java, which we reflect in JavaFOL. Consider the following
illustrating example.

Example 2.1. In the introductory example of Sect. 1.2 we had a pure
method which occurs in a signature suiting to the example program as binary
non-rigid function symbol earlierOrEqual with

σ(earlierOrEqual) = (Date, Date) and τ(earlierOrEqual) = Boolean

Let d1, d2 ∈ Dom(Date) represent the dates January 2006 and February 2006.
In the program depicted in Fig. 1.1: earlierOrEquals,P (d1, d2) = true.
However, if earlierOrEqual(Date) was implemented as in Date2 then we
yield the result earlierOrEquals,P (d1, d2) = false. ∗

22



2.2 Java First Order Logic

Because of the dependency from programs the valuation function and the
validity relation is, deviating from usual first order semantics definitions,
parameterised w.r.t. a program P .

The valuation function is thus defined as follows:

Definition 2.6. Let Σ be a signature, P a Σ-program, s be a state, and
β : V → U a variable assignment. Then we define inductively:

• vals,P,β(x) = β(x) for a logical variable x

• vals,P,β(f(t1, . . . , tn)) = f s,P (vals,P,β(t1), . . . , vals,P,β(tn)) if t1, . . . , tn ∈
TermΣ are terms and f is an n-ary function symbol of Σ.

The validity relation is defined as usual:

Definition 2.7. The validity |=P of formulae ϕ ∈ FmaΣ in a Σ′-program P
(with Σ ⊆ Σ′) is defined inductively as follows (for formulae ϕ1, ϕ2, ϕ3, terms
t1, t2, . . . ∈ TermΣ, logical variables x):

• s, β |=P t1
.
= t2 iff vals,P,β(t1) = vals,P,β(t2)

• s, β |=P p(t1, . . . , tn) iff (vals,P,β(t1), . . . , vals,P,β(tn)) ∈ ps,P

• s, β |=P ¬ϕ1 iff not s, β |=P ϕ1

• s, β |=P ϕ1 ∧ ϕ2 iff s, β |=P ϕ1 and s, β |=P ϕ2

• s, β |=P ϕ1 ∨ ϕ2 iff s, β |=P ϕ1 or s, β |=P ϕ2

• s, β |=P ϕ1 → ϕ2 iff not s, β |=P ϕ1 or s, β |=P ϕ2

• s, β |=P ϕ1 ↔ ϕ2 iff (s, β |=P ϕ1 iff s, β |=P ϕ2)

• s, β |=P if ϕ1 thenϕ2 elseϕ3 iff s, β |=P (ϕ1 → ϕ2) ∧ (¬ϕ1 → ϕ3)

• s, β |=P ∃x :T. ϕ1 iff there is an object d ∈ Dom(T ) such that s, βdx |=P

ϕ1

• s, β |=P ∀x :T. ϕ1 iff s, β |=P ¬∃x :T. ¬ϕ1.

If s, β |=P ϕ holds for all β, we just write s |=P ϕ. If s |=P ϕ for all s we
write: |=P ϕ.
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2.2.3 Locations

A concept used in several places throughout this work are locations. They
are special in the sense that they are pairs, where one element is a syntactical
symbol whereas the second part is from the semantical domain. Locations
can be updated by a state change (see Sect. 2.3.1). They will also play a role
in proofs of assignable clauses (Sect. 7.2.7) and depends clauses (Sect. 9.1)
and are thus an important instrument in our work.

Definition 2.8. Let Σ = (T ,Fnr,F r,Pnr,Pr,�, σ, τ) be a signature. Let
further be U a universe. A location is a pair (f, (e1, . . . , eα(f))) with f ∈ F nr,
ei ∈ Dom(σ(f)i) (i = 1, . . . , α(f))). The set of all locations for a signature
Σ is LΣ

The subset of locations which have as top level operator a field or an array
symbol is called concrete locations.

Sometimes it will be convenient to denote with (f, (E1, . . . , En)) and Ei ⊆
U the set of locations

{(f, (e1, . . . , en)) | ei ∈ Ei, i = 1, . . . , n}

2.2.4 Extended Terms

With terms we can specify locations in our program. For instance let s be a
state, t be a ground term and a a field defined in the static type of t. Then
t.a describes the location of field a in object vals(t). Such descriptions can be
used when we need to specify which locations may change during a method
invocation. Unfortunately this is no sufficient means. We might want to say
that all slots of an array described by the term t may change by the method
invocation. For this a more powerful construct than terms, called extended
terms, is needed. Extended terms are evaluated to sets of individuals. In our
example, we would write:

(for i : Integer ; 0 ≤ i ∧ i < t.length ; t[i])

This follows closely the idea of Rümmer [2005] of quantified updates, which
will be discussed in Sect. 2.3.1.

The set ExtTermΣ
T of extended terms is the smallest set with

• v ∈ ExtTermΣ
T if v is a logical variable of type T .
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• f(t1, . . . , tα(f)) ∈ ExtTermΣ
T if f ∈ Fnr∪F r, ti ∈ ExtTermΣ

T ′
i
, Ti, T

′
i ∈ T ,

T ′i � Ti, σ(f) = (T1, . . . , Tα(f)) and τ(f) = T for all i = 1, . . . , α(f).

• (for x ; ϕ ; t) ∈ ExtTermΣ
T if t ∈ ExtTermΣ

T , ϕ ∈ FmaΣ, and x a logical
variable of some type. In t and ϕ at most the logical variables x may
occur free.

The set ExtTermΣ of all extended terms is ExtTermΣ :=
⋃
T∈T

ExtTermΣ
T .

It is easy to see that TermΣ ⊆ ExtTermΣ.

Extended terms are evaluated to subsets of the universe. Let us call the
valuation function val′s,P,β : ExtTermΣ → 2U for a moment. We will define it

such that val′s,P,β(t) = {vals,P,β(t)} for t ∈ TermΣ. We identify an individual
e with the singleton set {e}. Then vals,P,β can be simply re-used for the
valuation function of extended terms.

Let s be a state, P a program, and β a variable assignment, then the
valuation function vals,P,β : ExtTermΣ → 2U is inductively (re-)defined as
follows:

• vals,P,β(x) = {β(x)} for a logical variable x.

• vals,P,β(f(t1, . . . , tn))
= {f s,P (t′1, . . . , t

′
n) | t′1 ∈ vals,P,β(t1), . . . , t

′
n ∈ vals,P,β(tn)}

if t1, . . . , tn ∈ ExtTermΣ.

• vals,P,β(for x ; ϕ ; t) =
⋃
∗

vals,P,β′(t) where x is a variable of type T and

the union ∗ is over all β′ for which there exists an e ∈ Dom(T ) with
β′ = βex such that s, β′ |=P ϕ. Furthermore t ∈ ExtTermΣ, ϕ ∈ FmaΣ.

Top-Level operators

For extended terms we define the following function which delivers the top-
level operator if this is a non-rigid function symbol and otherwise the symbol
⊥:

• top(v) = ⊥ for a logical variable v,

• top(f(t1, . . . , tn)) = f if f ∈ F nr

• top(f(t1, . . . , tn)) = ⊥ if f ∈ F r
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• top(for x ; ϕ ; t) = top(t)

Location Terms

Definition 2.9. The set of extended terms which have a field symbol or
array access symbol as top level operator is called LocTermΣ, also called
(concrete) location terms :

LocTermΣ :=

{
t ∈ ExtTermΣ

∣∣∣∣ top(t) 6= ⊥ and top(t) is a field
or array access symbol

}
LocTermΣ will be of particular importance later on since these extended

terms are used to specify assignable clauses (see Sect. 3.1.1) and depends
clauses (see Sect. 9.1).

Given a state, a term with a field as top operator may represent a loca-
tion (see Sect. 2.2.3), and an extended term may represent a set of locations.
The following definition clarifies the mapping between extended terms and
locations.

Definition 2.10. Let β be an arbitrary variable assignment. The function
Locs,P,β delivers a set of locations for a closed extended term t ∈ LocTermΣ,
a state s, and a program P . Locs,P,β(t) is inductively defined as follows:

• Locs,P,β(f(t1, . . . , tn)) =

{
(f, (e1, . . . , en)) ∈ LΣ

∣∣∣∣ for all i=1, . . . , n :
ei ∈ vals,P,β(ti)

}
• Locs,P,β(for x ; ϕ ; t′) =

⋃
∗

Locs,P,β(t
′) if x is of type T

• Locs,P,β(t) = ∅ in all other cases for location terms t ∈ LocTermΣ

The condition ∗ of the union in the second line is: There exists e ∈ Dom(T )
and a variable assignment β such that s, βex |=P ϕ

Locs,P,β is canonically continued for sets of location terms. With E ⊆
LocTermΣ:

Locs,P,β(E) = {Locs,P,β(t) | t ∈ E}

In essence, Locs,P,β picks the top-level operator of an extended term (as
first argument of the returned location) and evaluates the arguments of the
term (which it takes as further arguments of the returned location).

26



2.2 Java First Order Logic

Example 2.2. Assume t is the extended term

(for i ; 0 ≤ i ∧ i < self.length ; self.a[i])

Then Locs,P,β(t) results in

Locs,P,β(t) = Locs,P,β(self.a[i]); β
′(i) = e1 ∈ {0, . . . , selfs.lengths − 1}

= {([], selfs.as, 0), ([], selfs.as, 1), . . . ,

([], selfs.as, selfs.lengths − 1)} ∗

Prenex Normal Form of Extended Terms

As a shorthand notation we use

(for x1, . . . , xn ; ϕ1, . . . , ϕn ; t)

in place of

(for x1 ; ϕ1 ; (for x2 ; ϕ2 ; · · · (for xn ; ϕn ; t) · · · ))

We further note that (for x1, . . . , xn ; ϕ1, . . . , ϕn ; t) is equivalent to

(for x1, . . . , xn ; ϕ1 ∧ . . . ∧ ϕn ; t)

Each extended term can be translated into an extended term of the fol-
lowing shape:

(for x1, . . . , xn ; ϕ ; t)

where t ∈ TermΣ. We assume that all variables bound by a (for ; ; ) in the
following terms are distinct and are also distinct from occurring free variables.
By applying the following equation (from left to right) this normal form is
achieved:

f(t1, . . . , tn) = (for x ; ϕ ; f(t′1, . . . , t
′
n))

for one ti = (for x ; ϕ ; t′i) and tj = t′j for all j ∈ {1, . . . , n}\{i}. Applying
the above equation preserves validity, that is for every extended term there is
an equal one (w.r.t. the valuation function) which is in prenex normal form.
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Shorthands

Especially in Chapter 9 the following, very typical shape of extended terms
appears quite often:

(for x : T ; true ; x.a1. . . . .an)

We thus introduce the following shorthand notation:

∗T := (for x : T ; true ; x)

We can then simply write ∗T .a1. . . . .an (for x : T ; true ; x).a1. . . . .an. For
any even more convenient notation we write for a function symbol f : f(∗)
instead of f(∗σ(f)).

2.3 Java Dynamic Logic

Java Dynamic Logic (JavaDL) is a multi-modal logic to reason about se-
quences of Java statements, described in detail in Beckert [2000] and Beck-
ert et al. [2006b]. It extends JavaFOL, so every formula of JavaFOL is a
JavaDL formula. Moreover the semantics of JavaFOL terms (and formulae)
and JavaDL terms (and formulae, resp.) is the same on the common sub-
set. For an intuitive understanding it may be sufficient to state roughly that
sub-formulae can be of the shapes 〈α〉ϕ and [α]ϕ, where α is a sequence of
Java statements and ϕ is again a formula. 〈α〉 and [α] are the modalities
of JavaDL. Since there are infinitely many sequences of Java statements
the logic consists of infinitely many modalities. The intuitive meaning of
[α]ϕ is that, if α terminates normally ϕ holds in the final state; 〈α〉ϕ means
that α must terminate and afterwards ϕ must hold. The logic is closed un-
der the usual first-order quantifiers and junctors, so the typical Hoare triple
{ψ}α{ϕ} is formalised as ψ → [α]ϕ.

There is a third kind of modality in JavaDL, called updates. Updates are
a concise notation of state changes, and in fact the JavaDL calculus (see
Sect. 2.3.5) transforms the other modalities step by step into updates. With
updates we start a more thorough introduction to JavaDL following in the
rest of this section. Note however that we can only discuss certain aspects
of the logic since this is not the primary focus of our work. The ultimate
references for a more thorough discussion are Beckert [2000] and Beckert
et al. [2006a].
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2.3.1 Updates

The notion of updates was introduced by Beckert [2000] and was refined
by Rümmer [2005]. The following presentation of syntax and semantics of
updates follows these sources.

Definition 2.11 (Syntax of Updates). If Σ is a signature, the set of updates
UpdΣ

0 over Σ is defined to be the smallest set with

• skip ∈ UpdΣ
0 (the empty update)

• t1 := t2 ∈ UpdΣ
0 if t1 ∈ LocTermΣ, t2 ∈ TermΣ (an elementary update)

• u1|u2 ∈ UpdΣ
0 if u1, u2 ∈ UpdΣ

0 (a parallel update)

• (for x ; ϕ ; u) ∈ UpdΣ
0 if ϕ ∈ FmaΣ, x a logical variable, u ∈ UpdΣ

0 (a
quantified update)

We define the set UpdΣ of updates as

UpdΣ := UpdΣ
0 ∪{∗0, ∗1, ∗2, . . .}

where (∗0, ∗1, ∗2, . . .) is an unbounded sequence of anonymous updates.

Updates modify locations of a program as defined in Def. 2.8. With the
help of locations we define the semantics of updates as follows; explanations
follow.

Definition 2.12 (Semantics of Updates). A semantic update is a partial
function LΣ → U .

Let u ∈ UpdΣ
0 be an update. The semantic update updvals,P,β(u) is defined

for u in a state s, a program P , and a variable assignment β inductively as
follows:

• updvals,P,β(skip)(loc) = ⊥ for all loc ∈ LΣ

• updvals,P,β(f(t1, . . . , tn) := t)

= {(f, (vals,P,β(t1), . . . , vals,P,β(tn))) 7→ vals,P,β(t)}

• updvals,P,β(u1|u2)(loc)=

updvals,P,β(u1)(loc) if updvals,P,β(u2)(loc)
= ⊥

updvals,P,β(u2)(loc) otherwise
for all loc ∈ LΣ
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• updvals,P,β(for x ; ϕ ; u)(loc)=



updvals,P,βe
x
(loc) where e is the

smallest element
of Dom(T ) such
that s, βex |=P ϕ

⊥ if no such e
exists

for all loc ∈ LΣ where x is of type T

This definition requires some additional comments:

• We allow for updating several locations in parallel, which is intended
by the symbol |. Parallel updates may cause clashes, which need to be
resolved by the semantics. In our definition a last-win clash resolution
is in place, that is the most right update decides. Note, that the
operator | is thus not commutative. It is however associative.

• For quantified updates it may be possible that several locations qualify
to be updated. To resolve this clash, we choose one of them, namely
the smallest. This requires a well-order on the universe. This can
be achieved quite naturally, for instance, objects of each class can be
ordered according to the order in which they are (to be) created.

• For the semantics of anonymous updates, we employ choice functions as
above delivering an unknown but fixed universe element. We presume
that there is one such choice function ch∗ for every anonymous update
∗ with a signature accepting a function symbol and a list of universe
elements. Then: updvals,P,β(∗)(f(e1, . . . , en)) := ch∗(f, e1, . . . , en) for
all anonymous updates ∗ and all locations (f, (e1, . . . , en)). The range
of updvals,P,β(∗) is thus fixed for every anonymous update ∗ but not
further specified.

Relation between Extended Terms and Quantified Updates

Extended terms have a close correspondence with updates. For each ex-
tended term t with a non-rigid top operator and a set of names for rigid
functions we can associate a special anonymising update u(t) with t. This
update assigns a rigid term to all locations (f, (e1, . . . , en)) described by t.
This rigid term has the same appearance as the f with the exception that it
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is rigid. Such an update is later (for instance in Sect. 7.2.7) used to override
the effects of assignments to the locations described by t.

Definition 2.13. For extended terms t ∈ LocTermΣ with non-rigid top level
operator an anonymising update u(t) is inductively defined as follows. We
assume that Σ contains special reserved rigid function symbols f r for every
non-rigid function symbol f with the same signature and result type.

u(f(t1, . . . , tn)) := (f(t1, . . . , tn) := f r(t1, . . . , tn))

u(for x ; ϕ ; t) := (for x ; ϕ ; u(t))

For non-empty finite sets E = {t1, . . . , tn} ⊆ LocTermΣ, we make u pro-
duce a parallel update. In the case of an empty set, the empty update is
obtained:

u(E) =

{
u(t1)| · · · |u(tn) n > 0
skip otherwise

2.3.2 Syntax

The definition of syntax and semantics of Java Dynamic Logic, JavaDL for
short, relies on the notion of a program context [Beckert, 2000] (or just context
for short, if not subject to be mixed up). The context is just a closed program
in our sense, that is, a legal (e.g. compilable) set of JavaCard class and
interface definitions.

Definition 2.14. A (program) context is a closed program.

Definition 2.15. The set DLFmaΣ of JavaDL formulae over signature Σ is
defined to be the smallest set with

• FmaΣ ⊆ DLFmaΣ

• If ϕ ∈ DLFmaΣ and α is a sequence of statements [Gosling et al., 2000]
then 〈α〉ϕ, [α]ϕ ∈ DLFmaΣ

• If u ∈ UpdΣ then {u}ϕ ∈ DLFmaΣ

When we refer to modal formulae independent from their kind, we write
[〈]〉.
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2.3.3 Semantics

The semantics of JavaDL is defined in terms of Kripke structures (S, ρ) for
a given signature Σ and a Σ-program P , with a set S of states over Σ and ρ
is a family of relations ρα ⊆ S × S for every sequence of Java statements or
update α. We require ρ to have some additional properties:

Definition 2.16. A pair (S, ρ) is a JavaDL-Kripke structure if

• all universes in all states in S are the same set (constant domain as-
sumption),

• rigid functions and predicates have the same interpretations in all states
of S,

• S consists of all possible states over Σ.

• if α is a sequence of Java statements then ρα is defined according to the
Java semantics [Gosling et al., 2000]. Let s1 be a state. It is required
that there is a state s2 with (s1, s2) ∈ ρα iff α terminates normally when
started in s1. In particular, if α terminates abruptly when started in
s1 then there is no s2 with (s1, s2) ∈ ρα.

• if α is an update we define ρ with the help of semantic updates. Let U
be a semantic update. For a state s we define the state sU as follows:

f s
U ,P (d1, . . . , dn) =

{
U(f, (d1, . . . , dn)) if U(f, (d1, . . . , dn)) 6= ⊥
f s,P (d1, . . . , dn) otherwise

Then we require from (S, ρ) for all s ∈ S and with U ′ = updvals,P,β(u):

(s, sU
′
) ∈ ρu

Consequently ρα for some sequence of Java statements or update α is a
partial function since it reflects the semantics of Java, which is deterministic.
We can thus write ρα as a function. More precisely, for an update u, ρu is
always total by the definition of ρu.

Moreover for a given signature Σ, a Σ-program P , and a universe there is
exactly one JavaDL-Kripke structure. We will associate ρ with a program
P .

We define validity of JavaDL formulae as follows:
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Definition 2.17. Let ϕ ∈ DLFmaΣ and P a program. The validity relation
is defined as in Def. 2.7 if ϕ ∈ FmaΣ. For the other cases:

• s, β |=P 〈α〉ϕ if there exists a state s′ with s′ = ρα(s) and s′, β |=P ϕ

• s, β |=P [α]ϕ for all states s′ with s′ = ρα(s): s
′, β |=P ϕ

• s, β |=P {u}ϕ if s′, β |=P ϕ with s′ = ρu(s)

Note, that as already for JavaFOL terms (because of the occurrences of
queries), a JavaDL-Kripke structure, and thus the validity of formulae, de-
pends on the context, that is in particular, if we extend the context by
additional elements, the validity of formulae changes too. We may extend
the context but build programs only over the unextended context; even then
the meaning of JavaDL formulae differs between extended and unextended
context.

Definition 2.18. A JavaDL formula ϕ ∈ FmaΣ is valid in a context of a
Σ-program P if it is valid in all states of the JavaDL-Kripke structure for P .
We write: |=P ϕ.

A set of JavaDL formulae is valid in a context if all elements are valid in
that context.

2.3.4 Additional Details

We cannot describe JavaDL in depth. Instead we emphasise properties which
play a role in the rest of this work.

Abrupt Termination. It is obvious that we cannot completely explain the
properties of the transition relations ρα of JavaDL-Kripke structures since it
reflects the whole (officially only informally described [Gosling et al., 2000])
Java semantics. The state transitions are in most cases natural and described
in Beckert [2000]. There is however an issue in how to model abrupt termina-
tion. JavaDL is designed to treat abrupt termination [Gosling et al., 2000] as
non-termination [Beckert and Sasse, 2001]. That is if α terminates abruptly,
ρα(s) is undefined for all s. Consequently |=P [α] false.
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Method Body Statements. So far we have just said that a program α
contained in formulae [〈α]〉ϕ are sequences of Java statements containing plain
Java statements. This is not entirely true since we allow a bit more. Actually
there are two extensions [Beckert, 2000] of which one is needed in the rest
of this work. Whenever a statement is expected according to the original
Java grammar, we allow a method body statement. If p1,...,pn are local
variables of types T1, . . . , Tn, and r is a local variable of type T , further self
a local variable of type D, then method body statements can have one of the
following forms:

r=self.m(p1,...,pn)@D if there is a non-void instance method
m declared in D as T0 m(p1,...,pn)

self.m(p1,...,pn)@D if there is a void instance method m

declared in D as void m(p1,...,pn)

Method body statements are semantically equivalent to the implementation
of the method in the indicated class. Return values are assigned to the
variable called r above.

Referring to Previous States Sometimes a formula behind a modality aims
to refer to the interpretation of a non-rigid function symbol f in some state
before execution of this modality. The approach of Baar et al. [2001] to
solve this problem works by introducing rigid functions symbols f@pre for
f . f@pre is appropriately defined in front of the modality and used behind
the modality. This works since the interpretations of rigid functions remain
constant by state changes. The following definition formalises this concept.
It introduces a function pre which delivers for a term or formula a pair
which consists of the corresponding term which refers to the pre-state and
a mapping which defines which non-rigid function f corresponds to which
rigid function f@pre .

Definition 2.19. Let Σ = (T ,Fnr,F r,Pnr,Pr,�, σ, τ) be a signature. For
an extended term t ∈ ExtTermΣ or a formula ϕ ∈ FmaΣ, the function pre
delivers a tuple (t@pre , F@pre) where t@pre ∈ ExtTermΣ (or t@pre ∈ FmaΣ,
resp) and F@pre is a mapping from non-rigid function or predicate symbols
f to rigid function or predicate (resp.) symbols f@pre . pre is inductively
defined as follows:

• pre(v) = (v, ∅) if v is a logical variable,
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• pre(f(t1, . . . , tn)) = (f@pre(t′1, . . . , t
′
n), F

@pre
0 ∪ {(f, f@pre)})

if f ∈ Fnr ∪ Pnr, pre(ti) = (t′i, F
@pre
i )

for i = 1, . . . , n, F@pre
0 =

⋃
i=1,...,n

F@pre
i ,

• pre(f(t1, . . . , tn)) = (f(t′1, . . . , t
′
n), F

@pre
0 )

if f ∈ F r ∪ Pr ∪ { .=}, pre(ti) = (t′i, F
@pre
i ) for i = 1, . . . , n,

F@pre
0 =

⋃
i=1,...,n

F@pre
i ,

• pre((for x ; ϕ ; t)) = ((for x ; ϕ′ ; t′), F@pre
1 ∪ F@pre

2 )

if pre(ϕ) = (ϕ′, F@pre
1 ), pre(t) = (t′, F@pre

2 )

• pre(¬ϕ) = (¬ϕ′, F@pre
0 ) if ϕ ∈ FmaΣ, pre(ϕ) = (ϕ′, F@pre

0 ),

• pre(ϕ1 ∧ ϕ2) = (ϕ′1 ∧ ϕ′2, F
@pre
1 ∪ F@pre

2 )

if ϕ1, ϕ2 ∈ FmaΣ, pre(ϕi) = (ϕ′i, F
@pre
i ) for i = 1, 2 (analogously for the

other junctors),

• pre(∀x :T. ϕ) = (∀x :T. ϕ′, F@pre
0 ), pre(ϕ) = (ϕ′, F@pre

0 ),

• pre(∃x :T. ϕ) = (∃x :T. ϕ′, F@pre
0 ), pre(ϕ) = (ϕ′, F@pre

0 ).

For a map F@pre as defined in this definition, the following defining term
Def(F@pre) is created:

Def(F@pre) :=
∧

(f,f@pre)∈F@pre

Def(f, f@pre)

Def(f, f@pre) :=


∀x1 :T1. · · · ∀xn :Tn. if f ∈ F nr,
f(x1, . . . , xn)

.
= f@pre(x1, . . . , xn) σ(f)=(T1, . . . , Tn)

∀x1 :T1. · · · ∀xn :Tn. if f ∈ P nr,
(f(x1, . . . , xn) ↔ f@pre(x1, . . . , xn)) σ(f)=(T1, . . . , Tn)

2.3.5 The JavaDL Calculus

The JavaDL calculus is a sequent calculus for JavaDL. Main characteristics
are symbolic execution of code and lazy evaluation of state changes through
updates.
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Sequent Calculus

The set SeqΣ of sequents over a signature Σ is the smallest set containing all
constructs of the form

ψ1, . . . , ψm ` ϕ1, . . . , ϕn (m,n ≥ 0)

where ψ1, . . . , ψm, ϕ1, . . . , ϕn ∈ DLFmaΣ. The formulae on the left-hand side
of the sequent symbol ` are called the antecedent and those on the
right-hand side are called the succedent of the sequent. The validity of this
sequent (in a state) is the same as the validity (in a state) of the formula

ψ1 ∧ . . . ∧ ψm → ϕ1 ∨ . . . ∨ ϕn

The set RuleΣ of rules of a sequent calculus over a signature Σ is the
smallest set of elements of the form (k ≥ 0):

seq1 · · · seqk
seq0

with seq0, . . . , seqn ∈ SeqΣ We call seq0 the conclusion and seq1, . . . , seqk the
premises of this rule.

Usually RuleΣ is described by means of rule schemas. These are schemat-
ical representations of rules. A typical rule schema of a sequent calculus for
propositional logic is for instance the rule

Γ ` ψ → ϕ,∆
Γ, ψ ` ϕ,∆

This construct is schematical because we say in addition that ϕ and ψ stand
for arbitrary formulae and Γ and ∆ represent arbitrary sets of formulae. It
thus represents infinitely many rules. Apart from this rather informal (we
need to annotate side-conditions on legal instantiations in textual form!)
traditional way, rule schemas can also be denoted in formal languages like
the taclet language [Beckert et al., 2004].

With a set of rules we can construct a proof of an initial sequent:

Definition 2.20. A (closed) proof in RuleΣ of a sequent seq is a tree with
the following properties:
(a) each node is either marked with a sequent or is empty,
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(b) for all nodes with sequent seq0: if seq1, . . . , seqn are the sequents of all
the children nodes then

seq1, . . . , seqn
seq0

=: r ∈ RuleΣ

(we say: seq1, . . . , seqn are the result of an application of r on (the node
with) seq0)

(c) the root is the sequent seq,
(d) all leaves are empty.
A (closed) proof in RuleΣ of a formula ϕ is a (closed) proof of the sequent `ϕ.

JavaDL Rules

A unique set of rule schemas defines the JavaDL calculus. It is described
in Beckert [2000]. The actual rule instances depend on a signature and a
program. For a signature Σ and a Σ-program P , we call the set of rules of
the JavaDL calculus over a signature JavaDLRuleΣ

P .
Note, that rules and a proof using these rules refer to a program context

P . Soundness of rules is thus defined relative to the context.

Definition 2.21. With seq0, seq1, . . . , seqk ∈ SeqΣ, a rule

seq1 · · · seqk
seq0

is sound in a context P if the following implication holds: If seq1, . . . , seqk
are valid in P then seq0 is valid in P . A rule is sound if it is sound in all
contexts.

Overview of the Calculus

We continue with a short excursus to how the JavaDL calculus works. The
JavaDL calculus rules that work on JavaDL sequents can be divided into the
following categories [Ahrendt et al., 2005b]:

1. axiomatic program transformation rules,

2. axiomatic rules connecting program and first order logic,

3. axiomatic first-order or theory specific rules,
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4. derived rules, i.e. rules whose application could be simulated by apply-
ing a series of axiomatic rules,

5. axiomatic rules that apply state changes (updates, see Sect. 2.3.1) on
first order formulae.

The basic concept behind the JavaDL calculus is the paradigm of symbolic
execution. In order to resolve a formula [〈α]〉 ϕ , the first active statement,
i.e. the statement following an inactive prefix consisting of opening braces,
trys, labels, etc., is taken into focus first. If it contains complex expressions,
rules of group 1 transform it into less complex expressions. Otherwise the
state change of the first statement is, by applying rules of group 2, memorised
as an update written in front of the modality. When code in a modality is
completely worked off, rules of group 5 make the formula pure first order, by
simplifying and executing the accumulated updates.

Soundness of JavaDL Rules

The soundness of calculus rules is, of course, crucial to the verification of
programs. Unfortunately, the point of reference to rules capturing the Java
semantics is the informal description of the Java language [Gosling et al.,
2000], which makes it impossible to formally verify the rules against the
official specification.

There are however a number of techniques which help to ensure the sound-
ness of rules:

• Calculus rules, and also those covering the Java semantics, can be im-
plemented in a simple declarative schematic way as taclets [Beckert
et al., 2004]. Taclets are representations of traditional rule schemas,
but have in addition an operational meaning, which makes them easy to
compile into the graphical user interface of interactive theorem provers.
Most importantly however they have a precise notion of schematic ex-
pressions which is the basis for all formal soundness considerations as
described in the following items.

• Under the co-supervision of the author, a procedure has been imple-
mented which ensures the soundness of derived rules, these are rules
which are justified by other axiomatic rules but which are useful to im-
prove interactive and automatic proof construction [Bubel et al., 2004,
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Rümmer, 2003]. The procedure generates proof obligations for non-
axiomatic rules. The proof obligations are formulae of JavaDL, and
can then be proven using the original set of taclets. Thus this tech-
nique can can also be referred to as bootstrapping. With this approach
it is made impossible to introduce rules into the calculus which are
unsound with respect to a set of core axiomatic taclets.

• Likewise under the co-supervision of the author a procedure has been
implemented [Ahrendt et al., 2005b, Sasse, 2005] which cross-validates
a special kind of axiomatic JavaDL taclets, namely the large set of
taclets which perform a local program transformation (group 1 of the
enumeration above), against a high-level Java language specification.
This Java semantics is given in terms of a an existing SOS style Rewrit-
ing Logic semantics. With the help of the rewriting system Maude and
a special lifting procedure (to cope with schematic programs) the pro-
gram transformation encoded in the taclet is verified w.r.t. the rewrit-
ing logic semantics. Though this procedure does not ensure the sound-
ness of the considered type of rules, it at least reinforces confidence in
the soundness.

• For some Java specific taclets from group 2 in the enumeration from
above, Trentelman [2005] has proven other taclets formally in the in-
teractive proof system Isabelle w.r.t. the Java formalisation Bali.

Soundness of Java specific rules cannot, due to the informal language spec-
ification, be guaranteed. Nevertheless, the above enumeration showed that
it is possible to come at least ‘very close’ to soundness. We thus postulate:

Lemma 2.2. Given a signature Σ and a Σ-program P . All r ∈ JavaDLRuleΣ
P

are sound in P .

Lemma 2.3 (Soundness). If there is a closed proof in JavaDLRuleΣ
P of a

formula ϕ then |=P ϕ.

2.3.6 Initialisation

The complete sophisticated class initialisation mechanism of Java is covered
by the JavaDL calculus [Bubel, 2001]. We are giving a brief impression of
this issue, just enough to understand the role of initialisation when defining
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Modifier specification-only Field Declared Explanation Initial
Value

private

static
T <first> T refers to the first object of

the repository
private

static
T <nextToCreate> T the object to be used when

the next instance creation
expression is evaluated

private T <next> T instance field implementing
the object repository as an
acyclic infinitely long list

protected boolean <created> Object indicates whether the ob-
ject has been created

false

protected boolean <initialised> Object indicates whether the ob-
ject has been initialised

false

private

static

boolean

<classPrepared>
T indicates whether the class

has been prepared
false

private

static

boolean

<classInitInProgress>
T indicates whether the class

is currently being initialised
false

private

static

boolean

<classInitialized>
T indicates whether the class

has been initialised success-
fully

false

private

static

boolean

<classErroneous>
T indicates whether an error

has occurred during initial-
isation

false

Table 2.1: Specification-Only fields for class and instance initialisation
(adopted from Bubel [2001])

admissible initial states for invoking an operation of a specified program.
Object and class initialisation are symbolically simulated with the help of
special specification-only fields (referred to in Bubel [2001] as implicit fields)
which indicate the state of initialisation of classes and objects. The state of
class initialisation is captured by specification-only static fields and the state
of object initialisation by specification-only instance fields. Table 2.1 gives a
brief overview on the present specification-only fields and their meaning.

Specification-only fields are assigned during the symbolic execution of the
class initialisation routine and the constructor. These assignments take
place at the positions which are required by the Java language specifica-
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tion [Gosling et al., 2000] and the descriptions in Table 2.1. Since for ex-
ample the static initialisation routine can not be invoked directly, for proof
purposes it is available as a specification-only method <clinit>(). With
these specification-only fields and methods we have an explicit2 representa-
tion of the state of class initialisation and object creation.

We can in particular specify the initial state of a program P as indicated
in the last column of Table 2.1. The initial state can also be characterised
by means of a JavaFOL formula:

ϕinit :⇔
∧
C∈P

C.<classPrepared>
.
= false

The state of all other specification-only fields can be concluded from this
property since <classPrepared> is set to true when static initialisation
starts. Thus if it is assigned false all other variables are still set to their
default values. This is thus a built-in property of JavaDL and axiomatised
in the JavaDL calculus.

With the help of specification-only fields we can also formalise judgements
in JavaFOL like ‘all created objects of type T satisfy property ϕ’. This is
written down as follows:

∀o :T.
(
o.<created>

.
= true → ϕ

)
Often, when talking about programs and quantifying this is exactly what is
intended; it occurs quite rarely that all, even not created objects, are to be
qualified. Thus we introduce an abbreviating notation for all formulae ϕ and
all logical variables o of type T :

∀̇o :T. ϕ :⇔ ∀o :T.
(
o.<created>

.
= true → ϕ

)
Similarly for the existential quantifier:

∃̇o :T. ϕ :⇔ ∃o :T. (o.<created>
.
= true ∧ ϕ)

2.4 Proof Obligations

The notion of proof obligation is quite central to the second main part of
this work. We give a precise characterisation of proof obligation but do not
define a further (unnecessary) formal language on top of JavaDL.

2This is why we do not use the original term implicit for specification-only fields. Implicit was introduced
to state that these fields and methods are always implicitly be present.
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A proof obligation template is a JavaDL formula schema with an attached
name which (possibly) depends on schema parameters. Schema parameters
may occur in the JavaDL formula at any node of the syntax tree. By replac-
ing (instantiating) the schema parameters of a proof obligation with concrete
elements, a concrete instantiated formula results. Attached (informal) de-
scription describes two aspects of an instantiation. It requires that

• the instantiations to the schema parameters are restricted to certain
syntactical categories like formulae, operations, etc. This ensures that
syntactically correct JavaDL formulae result.

• some parameters are instantiated a bounded number of times, for in-
stance it may say that a schema parameter is instantiated for all op-
erations of a certain class.

A proof obligation is a set of JavaDL formulae originating from an instan-
tiation of a proof obligation template. Consequently a proof obligation is
valid in a context if all elements are valid in that context. In the sequel
we introduce two other flavours of validity. Validity on proof obligations is
always interpreted in the sense of validity (in the respective flavour) of a set
of formulae.

Proof obligations which relate programs and specifications are often called
vertical proof obligations or program correctness proof obligations as opposed
to horizontal proof obligations or design validation proof obligations which
are properties of specifications only. In this work we only focus on program
correctness proof obligations. See Roth [2006] for an account on horizontal
proof obligations.
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Specifications for Extensibility
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Ignoranti quem portum petat
nullus suus ventus est.

(Seneca)

A specification is a description of the behaviour of a system. In this work
we are merely concerned with functional behaviour, and not with temporal
properties nor with performance guarantees.

The nature of specifications can be very different concerning the degree
of formalisation. The range starts with informal descriptions which can be
found in user handbooks and still informal though more precise description of
Application Programming Interfaces (API) like those for the Java libraries.
True formal specifications can be created with the help of formal specifica-
tion languages which are backed by a precise semantics. This is the degree
of formalisation we are focusing in the sequel. Yet the most precise and
most formal kind of ‘specification’ is a concrete implementation of a system:
All behaviour is (at least for sequential programs) clearly and unambigu-
ously defined and even executable. So why should there be other kind of
specifications at all?

Specifications that are different from implementations are important: They
abstract away from how a behaviour is realised and just describe declara-
tively what is expected. They can be partial, that is, they may specify only
certain aspects of a program and not the entire behaviour. Because they are
(often) much clearer than algorithms, they are a better means to commu-
nicate to users of a system such as developers extending the system. This
is particularly important with open programs which are designed to be ex-
tended. Finally formal specifications are besides implementations a second
formal artifact which makes it possible to formally reason about the cor-
rectness of systems. Specifications are thus the necessary basis of formal
methods like formal verification. Formal specifications are moreover a good
compromise between the accessibility to human developers and the formality
needed to do formal reasoning.
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In the last decade one dominating concept of how object-oriented systems
are specified has emerged: the methodology of design by contract [Meyer,
1992]. Specifications are designed according to the conceptual metaphor
of legal contracts. As when a legal contract is entered, there are different
parties, in object-oriented programming these are usually objects, which state
certain promises to the respective other party and enter into a commitment to
this party. On the other hand each party benefits from the reliable services
the other party provides. Contracts for a program are thus a system of
mutual obligations which must be fulfilled by the objects emerging from the
program.

Outline. This chapter starts with the definition of what formal contracts
are in the context of object-oriented programs, and more concretely Java
programs. In Sect. 3.2 we are dealing with the question under which cir-
cumstances a program fulfils a contract-based specification. To continue the
analogy to contracts, this section will constitute the law of contract for the
formal contracts we are looking at. Finally, in Sect. 3.3 we briefly survey
two specification languages which allow us to create formal contract-based
specifications.

3.1 Essentials of Formal Specifications of
Programs

In this section we define the syntax of formal contracts for operations and
classes and give intuitive explanations of their meaning. A precise semantics
of these contracts is discussed later (Sect. 3.2).

Contracts are always defined relative to a program P , which is, as de-
fined in Sect. 2.1, a set of Java classes and interfaces. The parties which
are involved in the contract are program elements of P . A contract is usu-
ally concerned with a specific program element, usually a method or class
declaration, of the contract parties.

The nature of contracts is that they promise reliable services and hold
obligations. Services and obligations of a contract must always be seen as an
implication: If all obligations are fulfilled then all services can be provided.

Summarised, we can say all contracts have in common to consist of

• a set of parties, which are program elements from P ,
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• an object of contract which is (part of) a party,

• an obligation the parties have to establish such that

• a service, concerning the contracted element, is provided by the parties.

Note that this general notion of contract is a mere mental model and the
above is, by far, no formal definition. In particular, when we now more
precisely capture operation and invariant contracts, the involved parties do
not all need to be explicitly given.

Technically we define two sets of contracts on a program P in the following
sub-sections: the set of operation contracts and the set of invariants. These
two sets together form a specification of P .

Definition 3.1. Given a signature Σ and a Σ-program P , a (JavaFOL)
specification over Σ of P is a pair (OpCt, Inv) consisting of

• a set OpCt of operation contracts of P over Σ (Def. 3.2),

• a set Inv of invariants of P over Σ (Def. 3.8).

The union of two specifications (OpCt1, Inv1) and (OpCt2, Inv2) is defined
component-wise:

(OpCt1 ∪OpCt2, Inv1 ∪ Inv2)

3.1.1 Operation Contracts

The classical representative of a contract is an operation contract. In this
case, the concerned program element is a declaration of an operation1 op.
The involved parties are the following two types:

• the unknown class which is the runtime type of an object which may
call op,

• the type in which op is defined.

The latter can be derived from the description of the operation declaration
op, which we assume to hold information on where it is declared, while the
former is not specific to the contract; it can be just any type. The formal

1Remember that we denote methods and constructors as operations.
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representation of an operation contract will thus only contain the operation
declaration; there are no explicit entries for the involved parties.

According to Meyer [1992], the obligation in an operation contract is that
the caller object ensures a condition ϕpre (called precondition) before calling
op. The service the contract guarantees is that the called method ensures
the postcondition ϕpost to hold in the state when the method has terminated.

Beyond this classical form of an operation contract, there are a couple of
more elements and details that must be available to cover the behaviour of
programs sufficiently and to allow for modular reasoning.

First and foremost, as an additional obligation, assignable clauses (also
known as modifies or modifier clauses) are part of a contract. An assignable
clause indicates which locations are allowed to be modified by op. Modifica-
tions not visible to the outside, such as temporary modifications during the
execution of op, are allowed though. Their precise semantics is discussed in
Sect. 3.2.3.

Moreover a specifier may want to express the termination behaviour of
op. It turns out that it is sufficient to specify whether the operation must
terminate or if non-termination is allowed. From a practical point of view
both options make sense: The first since almost never non-termination should
be allowed, and the second since it can be quite difficult to prove termination.
Skipping the obligation that op must terminate will thus facilitate formal
verification. If operations are required to terminate and are correct in all
other aspects, one refers to this assertion as total correctness, if termination
is not required but assumed, this is referred to as partial correctness.

An operation may as well terminate abruptly by throwing an exception.
We can however encode this in the postcondition ϕpost as follows: A special
variable exc is used which can be specified to be equal to null, then no
exception has been thrown by op, or contain an exception object, which is
then specified to be the one thrown by op.

Preconditions and postconditions describe first order properties of a state.
They are thus denoted as JavaFOL formulae as defined in the last chapter.
Similarly, assignable clauses specify locations, which can be described by an
extended term, so that an assignable clause is denoted as a set of extended
terms.

Definition 3.2. Let Σ be a signature and P a Σ-program. An operation
contract over Σ for an operation of P consists of

• the description op of an operation declaration in a class or interface
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declaration of P ; according to Gosling et al. [2000] this is a triple
consisting of:

– the identifier of the operation,

– the parameter types T1, . . . Tn, and

– the class or interface (or just skeleton) T which declares the op-
eration.

This suffices to identify an operation in a Java program; the return
type T r can be uniquely derived from the above information.

• a precondition ϕpre(self; p1, . . . , pn) ∈ FmaΣ containing program vari-
ables2 self of type T for the receiver object, and p1, . . . , pn of types
T1, . . . , Tn for the parameters,

• a postcondition ϕpost(self; p1, . . . , pn; r; exc) ∈ FmaΣ containing pro-
gram variables self for the receiver object, p1, . . . , pn for the param-
eters (all of the same types as above), r of type T r for the returned
value or object, and exc of the built-in type java.lang.Throwable for
the thrown exception; exc and r are optional if the method’s thrown
exception or return type (resp.) is irrelevant or non-existent,

• a set Mod(self; p1, . . . , pn) ⊆ LocTermΣ of location terms, i.e. ex-
tended terms with field or array access symbol as top-level operator
(Sect. 2.2.4), as assignable clause which may contain program vari-
ables self for the receiver object and p1, . . . , pn for the parameters
(all of the same types as above); the set is missing in the contract or
is equivalently replaced by the marker everything if no restrictions on
modifications are required,

• a marker from {partial , total}; the marker total is set if and only if
the operation contract requires the operation to terminate, otherwise
partial is set.

Definition 3.3. An operation contract with operation description op is for
an operation declaration op′ if op describes op′.

2These program variables act as formal parameters, and are substituted on demand by other expressions,
we could equally have chosen logical variables as formal parameters. self is skipped throughout the
definition if the considered operation is a static method.
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An operation contract opct is applicable to an operation op′ if opct is a
contract for op′ or for a method which op′ (indirectly) overrides.

Note that the formulae and location terms being part of a specification are
parameterised with variables self, p1, . . . , pn, r, and exc. This is to make the
expressions aware of the receiver object, the parameter objects or primitive
values, the returned object or primitive value, and the exception object exc
which was the reason for the abrupt termination of op and which is assigned
null if no such abrupt termination happened.

Note further, that we, for a uniform treatment, assume that all opera-
tions have an operation contract; operations without contract have true as
precondition, true as postcondition, the partial marker, and everything as
assignable clause. The same defaults are set if a particular part of an oper-
ation contract is missing. For all operation contracts of an operation op, we
write OpCtop.

3.1.2 Invariants

Invariants are properties that must hold in all states that can be observed.
We will define this more closely in Sect. 3.2.

Following the Java Modeling Language [Leavens et al., 2006], two types of
invariants can be distinguished:

Instance invariants. These invariants make statements about a specific (cre-
ated) object o of type T . In certain states, the specified property must
hold for all created instances o of T . We define these states precisely
in Sect. 3.2. An instance invariant could be represented in JavaFOL
as a formula with a free logical variable o; the free variable represents
the object which the instance invariant must hold for.

Static invariants. These invariants do not refer to a specific object. Their
representations as JavaFOL formulae are closed. The specified property
must hold even if no object of the type a static invariant is attached
to exists, and even if no object exists at all.

Looking more closely at these two kinds of invariants, there is in fact no
need to further distinguish between static and instance invariants. The se-
mantics of an instance invariant, represented in JavaFOL formula as ϕ(self)
is equivalent to the meaning of the static invariant ∀̇o :T. ϕ(o). As required,
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and assured by quantifying over all created objects, if this formula is valid,
the corresponding instance invariant holds for all created instances of T .

Later in Sect. 3.2.4 we will allow that our program adopts states where
classes are not statically initialised. Note, that this is extending JavaCard
where all classes are statically initialised beforehand, so that we would not
have to cope with this case if we were not extending our focus to sequential
Java. If such states are allowed however, say that in a state class C is not
initialised, a formula like a@(C)

.
= 0 (a is a static field of C) would not

hold. In the case of instance invariants we escape from this problem since
we quantified over all created instances; here we cannot ‘quantify’ over all
statically initialised classes, since we are only having a first order logic. The
way out is that static invariants need to ‘take care’ themselves that they are
valid in the initial state.

The example from above a@(C)
.
= 0 could be re-written as

<classInitialized>@(C)
.
= true → a@(C)

.
= 0

this is then trivially the case. When we imagine a scenario like in the KeY
tool where invariants in FOL are created from a translation from a specifi-
cation language like JML, then this translation needs to take care that such
qualifications are introduced. Instance invariants in the normalised quanti-
fied form ∀̇o :T. ϕ(o) are trivially covered by the characterisation from above
and are legal invariants for arbitrary ϕ(o) with a single free variable o.

So we treat instance invariants and static invariants in a uniform manner.
They are represented as closed JavaFOL formulae. One could say we only
have static invariants.

We remark in conclusion, that though it cannot be seen as easily as with
operation contracts, invariants can be considered as contracts, too. The role
of the contract parties and the object of contract is played by all classes
in P , the obligation of all classes in P is that their methods establish the
invariant, and the provided service is that invariants can be assumed when
an operation is called.

3.2 Observed-State Program Correctness

In this section we define what we consider to be a correct program with
respect to a JavaFOL specification. We define a new notion of correctness,
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Set of Classes P

Arbitrary Observer Program Obs

Call visible operation Judge result w.r.t. S

Figure 3.1: Illustration of the observer model

called observed-state correctness. This notion of correctness comes in two
variants: observed-state call correctness and observed-state durable correct-
ness. The first is valuable only in the context of closed programs, while the
latter makes sense in the presence of open programs. However it is more
difficult to show durable correctness. In Chapters 7 and 10 we present proof
obligations which ensure the correctness criteria imposed here.

Let P be a Java program and S a specification for P . Under which con-
ditions is P correct with respect to S? To define correctness of a program
we consider it most natural to take the view of an observer of P . We can
think of the observer as an external program that calls a series of methods or
constructors of P . By picking out an arbitrary one of these calls it is possible
to judge whether the execution corresponded to the behaviour specified in
S. Fig. 3.1 illustrates these settings.

The decision to take the view of an observer implies that we are not in-
terested in intermediate states that are reached during the execution of the
called method or constructor. The only states of interest are the state which
the operation is invoked in (pre-state) and the state in which it terminates
(post-state). Note, that this decision complies best with the design by con-
tract methodology.

In the pre- and post-state, the observer may however inspect all internal
details of the whole program P , that is he can see all locations of P for the
purpose of judging whether P is correct.

The pre-state and the post-state of an operator call have to be charac-
terised in more detail. It must be made clear which conditions can be as-
sumed in the pre-state of the method or constructor and which must be
ensured in its post-state. Furthermore, we should investigate which calls
from the observer to the operation are allowed.

Apart from invoking a method or constructor, an observer of P may trig-

52



3.2 Observed-State Program Correctness

ger the static initialisation of classes in P . As sketched in Sect. 2.3.6, the
JavaDL calculus simulates the static initialisation routine as a static implicit
method C.<clinit>() of every class C. Like ordinary methods or construc-
tors, <clinit>() can be invoked by the observer. Due to its special nature
there are different assumptions and assertions to apply than for ordinary
methods or constructors. This issue is discussed in Sect. 3.2.4. To make
the approach manageable in practice, we require stronger conditions than
actually necessary after static initialisation, and can thus make stronger as-
sumptions on the state of static initialisation when calling ordinary methods
and constructors (see Sect. 3.2.4).

Finally we remark that observer is a mere metaphor to justify our decisions
concerning correctness. Since the observer is just a closure of the observed
program, it becomes also manifest in the notion of a program context in which
the observed program runs. There would even be no principal obstacle to
identify these two notions. We however believe that it is a good mental
model to think of an observer as an actor which calls a program and judges
the results of the call.

3.2.1 Assumptions before Operation Calls

From an abstract point of view, both, the implementation and the specifi-
cation of an operation describe a function that transfers a pre-state spre to
a post-state spost. When we consider the specification of an operation, this
function is however (most often) partial. This means, a specification may
not define for all pre-states which post-state the operation establishes. This
strategy strictly assigns the responsibility to check for conditions which are
necessary for the operation to ‘behave well’ to the caller. With this clear
division of labour, unnecessary checks (i.e. both in caller and receiver) are
avoided [Meyer, 1992]. Moreover, working with assumptions allows for par-
tial specifications that can at a later stage be completed to full functional
specifications. Note, that the implementation of an operation is total if and
only if the operation terminates; when it terminates but there is no pre-
condition met, possibly unintuitive results may be the consequence for some
inputs.

A not satisfied assumption does not mean that calling an operation is
forbidden. It just means that with such a particular pre-state there is no be-
haviour specified. In such a case, anything can happen, be it non-termination,
a thrown exception, or any other behaviour.
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Two kinds of specifications and an implicit condition constrain the states
spre for which there is a specified behaviour of the method. They will be
discussed in detail below:

• preconditions,

• invariants,

• state of initialisation and static initialisation.

Moreover we require that spre is reachable from the start state of the system
by calling operations on P and performing statements in the observer. A
reachable state can be any intermediate state in the observer. Without using
the term intermediate we define:

Definition 3.4. A state s is reachable by a program P if there is an arbitrary
closure P cl of P such that at the end of a method execution of P cl\P state
s is reached.

Obviously other states do not need to be considered as pre-states of an
operation, since it will never be the case that, when an operation of P is
invoked, program execution is in another state.

In fact it would suffice to say that the only assumptions imposed on spre
are, that preconditions of the invoked operation hold (see below) and that
spre is reachable. When formalising proof obligations, such a requirement
is unfortunately impossible to meet as our first order specification language
is not capable of making statements about reachability of states. The way
out is that we must characterise reachable states by properties which they
must satisfy. And this is exactly what invariants do. Nevertheless for the
theoretical definition of allowed pre-states we include the condition that these
states must be reachable. When formalising proof obligations, we will weaken
this assumption and allow even unreachable states as pre-states.

Preconditions

Preconditions in operation contracts describe states for which the operation
must establish the specific assertion in the operation contract. Since an op-
eration may posses more than one operation contract, there is also more than
one precondition available for this operation. All preconditions together de-
fine under which conditions calls to the operation yield a specified result. Or,
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in turn, if no precondition is valid, there is no result of the operation speci-
fied. So at least one of the preconditions or, in other words, the disjunction
of all preconditions can be assumed to hold in the pre-state.

If Φ(self; p1, . . . , pn) is the set of preconditions of all operation contracts
for an operation op then states spre satisfying

spre |=P

∨
ϕpre(self; p1, . . . , pn)∈Φ

ϕpre(self; p1, . . . , pn)

qualify as pre-states for a call to op with self as receiver and p1, . . . , pn as
arguments.

When we are considering the correctness of an implementation w.r.t. one
particular operation contract opct , this statement can of course be made
more specific: we then require that the precondition of this particular oper-
ation contract opct must hold. The assumption stated above is obviously a
consequence of such a stronger one.

Invariants

Invariants describe conditions that are, for an observer, always present in
the observed program. Though invariants are typically (and enforced by
the specification languages UML/OCL and JML) defined in one class or
interface, their effective scope is in fact global. In particular, a method called
by the observer can rely on the fact that invariants hold which are defined
in other types than that which the method is declared in. On the other
hand, we will state below that an observed method must in turn establish
the invariants of all other classes.

Assume that Inv is the set of all invariants in JavaFOL representation.
Remember, that we have normalised instance invariants to closed formulae,
so that we can treat instance invariants in the same manner as other static
invariants.

An observer may now assume in the pre-state of a method or constructor,
that the judgements formalised in Inv hold.

To validate this decision it is worthwhile to look at the assumptions in the
following special cases:

• Consider a state where no classes are initialised and no objects created.
According to our mental model, instance invariants do not need to hold
in such a state. And in fact the instance invariant quantified over all
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created objects evaluates trivially to true. In Def. 3.8 we will, moreover,
only allow static invariants which evaluate to true if all classes are not
initialised.

• Before the invocation of a constructor, the instance invariant of the
object to be created is not assumed to hold since we restrict our quan-
tification to all created objects. This is as desired.

• When the constructor terminates normally an object is created and
quantification includes it. Again this reflects our idea of what we expect
from an invariant.

• When the constructor terminates abruptly the object is created but
not initialised. We must however require that invariants hold for such
objects, too. The reason is that during object initialisation references
may have leaked and are then available to other objects. If this is
really the case could be checked and in the case that it has not hap-
pened calculus rules would ‘destroy’ the unreachable object. This has
however not been realised in JavaDL. The current solution makes it
practically impossible to throw exceptions in constructors, invariants
must be established before this can happen. This leads to unnatural
code.

An alternative would be to make invariants hold for all initialised ob-
jects only. This would however have the drawback that it would al-
most become impossible to apply invariants during verification, since
it would be necessary to show that objects are initialised. This would
however again require to specify in pre-conditions that all (reachable)
objects are initialised, which would result in unreadable and impracti-
cal specifications.

As a summary, we have as additional requirement for a state spre which
qualifies for a call to op:

spre |=P

∧
ϕ∈Inv

ϕ

Initialisation

It makes sense to have additional implicit assumptions to be present. For
methods, we should require that the called object is already created, such
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that the following is always an implicit assumption at the method entry.

self.<created>
.
= true

This is however only true if there is a receiver object. In case of a con-
structor or a static method it does not make sense to add this assumption.

Note, that this requirement is stronger than just self 6 .= null, since, as
described in Sect. 2.3, we have a constant domain assumption, so all objects
are assumed to exist before they are created. It is however not possible for
an observer to call methods on such objects.

Moreover we have to require for all arguments p1, . . . , pn of the operation
call to invoke that they are created or equal to null. Obviously an observer
cannot use not created objects as arguments. So for all parameters i =
1, . . . , n:

pi.<created>
.
= true ∨ pi

.
= null

Furthermore some more assumptions are made due to static class initiali-
sation in Sect. 3.2.4. Since these assumptions are also assertions we will treat
them as additional invariants which are always present in our assumptions.

The General Assumption

Altogether, this yields the following general assumption for a set I of invari-
ants and for the implicitly given set OpCt of operation contracts, an instance
method op, and suitable variables o, p1, . . . , pn for the receiver object and the
parameters of op:

Aop(I; o; p1, . . . , pn) :=
∧
ϕ∈I

ϕ ∧
( ∨

ϕpre

precondition
of OpCtop

ϕpre(o; p1, . . . , pn)
)

∧ o.<created> .
= true

∧
∧

i=1,...,n

(
pi.<created>

.
= true ∨ pi

.
= null

)

57



3 Functional Specifications of Programs

for static methods and constructors op:

Aop(I; ; p1, . . . , pn) :=
∧
ϕ∈I

ϕ ∧
( ∨

ϕpre

precondition
of OpCtop

ϕpre(p1, . . . , pn)
)

∧
∧

i=1,...,n

(
pi.<created>

.
= true ∨ pi

.
= null

)
Most often, we use the general assumption for the case I = Inv, where (as
always) Inv are all invariants of the whole program. Thus we write

Aop(o; p1, . . . , pn) := Aop(Inv; o; p1, . . . , pn)

Aop(; p1, . . . , pn) := Aop(Inv; ; p1, . . . , pn)

This general assumption subsumes all the requirements stated above for
states which qualify as pre-states for a call to op with o as receiver (if there
is one) and p1, . . . , pn as parameters. It is thus generally sufficient to require
from pre-states spre:

spre |=P Aop(o; p1, . . . , pn)

and spre |=P Aop(; p1, . . . , pn) resp.

Only if we are focusing on a special operation contract, we may narrow
down the set of allowed pre-states by requiring that the precondition of this
operation contract holds in spre.

In the sequel we use, for brevity, only the form spre |=P Aop(o; p1, . . . , pn),
and not the one lacking the o.

Note again, that we would, if it was possible to formalise in JavaFOL,
require that spre is a reachable state.

3.2.2 Operation Calls

To compare implemented and specified behaviour, the observer must invoke
the method or constructor. The call is arbitrary in the sense that we have
arbitrary receiver and arguments for the call. We are thus using unknown
but fixed objects which we assume to be stored in the suitably typed program
variables self (for the receiver object, if one is needed) and as well suitably
typed argument program variables p1, . . . , pn. Depending on the signature,
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αop(self; p1, . . . , pn; r)

r=self.m(p1,...,pn)@D;
if op is a method implemented in type D
declared as D0 m(D1,...,Dn)

self.m(p1,...,pn)@D;
if op is a method implemented in type D
declared as void m(D1,...,Dn)

r=D.m(p1,...,pn);
if op is a method implemented in type D
declared as static D0 m(D1,...,Dn)

D.m(p1,...,pn);
if op is a method implemented in type D
declared as
static void m(D1,...,Dn)

r=new D(p1,...,pn);
if op is a constructor
declared as D(D1,...,Dn)

Table 3.1: Programs in Proof Obligations

a variable (usually called r) that captures the returned value of a non-void
method call is needed.

The observer basically uses the statement αop(self; p1, . . . , pn; r) listed in
Table 3.1, depending on the program variables introduced above, as call to
method or constructor op. Note, that we use method body statements as
introduced in Sect. 2.3. This means, dynamic binding is not triggered by the
observer call, instead a concrete method body is executed.

This is however not completely what is desired. Our observer should nat-
urally not see the assignments made to the arguments of the operation call.
Thus we assign the arguments p1, . . . , pn to fresh variables p′1, . . . , p

′
n before

the method body statement. So if T1, . . . , Tn are the static types of p1, . . . , pn
we use instead of αop the following statements:

T1 p′1 = p1;
...

Tn p′n = pn;

αop(self; p
′
1, . . . , p

′
n; r)

Recall that JavaDL defined abrupt termination as non-termination. If
the observer ‘executes’ αop(self; p1, . . . , pn; r) this implies that no statement
about the post-state of an abruptly terminated op can be made, at least with
the standard modalities 〈·〉 and [·]. Thus, this Java sequence is not sufficient
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to make statements about exceptional behaviour of methods. Not too much
is missing, though, to get information on thrown exceptions: Potentially
thrown exceptions are caught and assigned to an additional program variable
exc which is assigned null before invoking the method or constructor:

α̃op(self; p1, . . . , pn; r; exc) :=



T1 p′1 = p1;
...

Tn p′n = pn;

exc=null;

try{

αop(self; p
′
1, . . . , p

′
n; r)

} catch (Throwable e) {

exc = e;

}

In post conditions the value of exc may now be referred to. It is either null,
then op terminated normally, or is assigned an exception which is the reason
for the abrupt termination.

From time to time however, we are not interested in the actual thrown
exception but would only like to know that a postcondition holds indepen-
dently of the question whether the method terminated normally or abruptly.
Then, the following Java sequence suffices:

α̃op(self; p1, . . . , pn; r) :=



T1 p′1 = p1;
...

Tn p′n = pn;

try{

αop(self; p
′
1, . . . , p

′
n; r)

} catch (Throwable e) {}

3.2.3 Assertions of Operation Calls

As stated above it must be ensured that an operation, called by an observer in
an allowed pre-state, establishes the postcondition of an operation contract,
preserves all invariants of the program, respects the modifies clause, and
complies with the specified termination behaviour.

For now we ignore termination behaviour and assume that an operation
op called by an observer in an allowed state spre terminates in a state spost.
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While it is quite clear that the postcondition of the contract must be satisfied
in spost, we are now more closely looking at assignable clauses.

Correctness of Assignable Clauses

An assignable clause should specify those locations which are allowed to
change. The set may, though, be larger, that is an assignable clause describes
a superset of those locations that actually change.

With the help of the Locs,P,β evaluation, we can quite easily define the
semantics of an assignable clause: If a location is modified between the
pre-state and the post-state, then this location must be specified by the
assignable clause.

Definition 3.5 (Satisfaction of Assignable Clause [Beckert and Schmitt,
2003]). Let Mod(self; p1, . . . , pn) be an assignable clause over signature Σ.
It is satisfied by a pre-state spre and a post-state spost if for all n-ary instance
field symbols and array access symbols f of Σ, all i = 1, . . . , α(f) and all
ei ∈ Dom(σi(f)) the following holds:

f spre(e1, . . . , en) 6= f spost(e1, . . . , en)

implies that (f, (e1, . . . , en)) ∈
⋃

t∈Mod(self;p1,...,pn)
Locspre,β(t).

We write: (spre, spost) |=P Mod(self; p1, . . . , pn).

We conclude the investigation of the correctness of assignable clauses with
the following property of assignable clauses [Beckert and Schmitt, 2003].

Lemma 3.1. Let M = Mod(self; p1, . . . , pn) be an assignable clause over
Σ and ρ the family of state transition functions ρα from a JavaDL Kripke
structure for a Σ-program P . If the following three conditions hold:

there is spost with (spre, spost) ∈ ρα
(spre, ρα(spre)) |=P M

spre |=P u(M)ϕ

then spre |=P 〈α〉ϕ

Proof. See Beckert and Schmitt [2003] for a proof with simple locations
terms.
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Note that u(M) denotes the anonymising update as defined in Def. 2.13.
This update assigns each location in the assignable clause a fresh rigid con-
stant (or function term).

Obligations of an Operation

There are some properties a program must fulfil independently from specifi-
cations. Remember from Def. 2.1 that we are considering pre-specified classes
and interfaces, that is, some operations are marked as being pure. Purity
means that this particular operation op does not modify the state and termi-
nates [Leavens et al., 2005] or in other words all operation contracts assigned
to op have an empty assignable clause and the total marker.

Example 3.1. In Ex. 1.1, earlierOrEqual(Date) is pure. Its operation
contract is thus implicitly complemented with

@ requires false;

@ assignable nothing; ∗

Alternatively we could add an operation contract with empty assignable
clause and the total marker, but this would also include an implicit pre-
condition true in the added contract. Thus the operation would have an
effective general assumption which is equivalent to true. It would hence be
obliged to preserve invariants (as we will see soon) in every pre-state. This
is clearly not the intend of making a method pure, so that we do not pursue
this alternative.3

Note: From now on we assume that every specification of a program in-
cludes these operation contracts for all pure operations.

Suppose the conditions imposed in Sect. 3.2.1 hold in a reachable state
spre. Then, the following is asserted for every call to op in such a state:

1. if the total marker of opct is set, the call must terminate in a post-state

2. if it terminates, then in the post-state spost

a) the postcondition ϕopct(self; p1, . . . , pn; r; exc) of opct is valid in
spost:

spost |=P ϕopct(self; p1, . . . , pn; r; exc)

3See also discussion on JML mailing list [Jmlspecs-interest] from 2005-01-08.
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b) the assignable clause Mod(self; p1, . . . , pn) is satisfied by the pre-
state spre and the post-state spost:

(spre, spost) |=P Mod(self; p1, . . . , pn)

c) all invariants are valid in spost, that is: spost |=P Inv

A crucial question is that of abrupt termination, for which we need to
refine the statements from above. In contrast to the terminology in JavaDL
we define, on the level of specifications, that a method terminates if it ter-
minates abruptly, since otherwise we could not make any statements about
the conditions of abrupt termination. The postcondition, however, may con-
tain expressions which control abrupt termination. As already pointed out
above, these expression formalise properties about the variable exc which
represents the exception thrown by the operation, or null if there was no
abrupt termination. So for instance, by requiring exc

.
= null as a top-level

conjunct of the postcondition, a specifier can forbid abrupt termination.
For invariants, there are neither markers total or partial to indicate if

termination is required nor is it possible to make statements about thrown
exceptions. This is quite natural since, if the operation call does not termi-
nate, there is no need to establish the invariant in any state. If it terminates
however, in its post-state all invariants must be valid. This must even be
the case if the operation terminates abruptly, since the caller might catch
thrown exceptions and continue with the execution of other statements, for
which the general assumption that all invariants hold would otherwise be
violated.

We summarise the results of the discussions so far. It turns out, when
we define proof obligations, that it makes sense to separate (a) the tasks
of fulfilling operation contracts and (b) the task of establishing invariants
after an operation call. We thus provide notions for both obligations of an
operation.

In practice it is useful to have a relativised notion of fulfilling an operation
contract and preserving invariants. When we make use of contracts in a
proof then it will be useful that we make less assumptions than the complete
general assumption. We thus provide variants of our two new notions with
the addition under the assumption of a subset of all invariants.

Definition 3.6. Let op be an operation declared in type T with parame-
ter types T1, . . . , Tn and return type T r in a program P . Let further be

63



3 Functional Specifications of Programs

self a program variable of type T , p1, . . . , pn be program variables of types
T1, . . . , Tn, r be a program variable of type T r, and exc a program variable
of type java.lang.Throwable.

1. Let opct = (op, ϕpre, ϕpost,Mod , τ) be an operation contract of a specifi-
cation of P . Furthermore I ⊆ Inv. op′ fulfils the operation contract opct
under the assumption of I if opct is applicable to op′ and for all reach-
able states spre and all eself ∈ Dom(T ), ei ∈ Dom(Ti) (i = 1, . . . , n)
with selfspre = eself and p

spre

i = ei with

spre |=P Aop′(I; self; p1, . . . , pn)

spre |=P ϕpre(self; p1, . . . , pn)

the following conditions hold:

• if the total marker is set there is a state spost with

(spre, spost) ∈ ρα̃op′(self;p1,...,pn;r;exc)

• if there is such a state spost then:

spost |=P ϕpost(self; p1, . . . , pn; r; exc)

(spre, spost) |=P Mod(self; p1, . . . , pn)

2. op′ fulfils the operation contract opct if it fulfils opct under the assump-
tion of Inv.

3. op preserves a set of invariants I of a specification of P under the
assumption of a set of invariants I ′ ⊆ Inv if for all reachable states spre
and all eself ∈ Dom(T ), ei ∈ Dom(Ti) (i = 1, . . . , n) with selfspre =
eself and p

spre

i = ei with

spre |=P Aop(I
′; self; p1, . . . , pn)

(spre, spost) ∈ ρα̃op(self;p1,...,pn;r)

the following condition holds for all ϕ ∈ I:

spost |=P ϕ

4. op preserves a set of invariants I of a specification of P if it preserves
I under the assumption of Inv.
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With this, the basic notions of observed-state correctness are fixed and will
be completed by the definitions in Sections 3.2.7 and 3.2.8. Before, we have
to consider the subtle issue of static class initialisation and the assertions for
initial states.

3.2.4 Treatment of Static Initialisation

We must make rather strong but realistic assumptions on the state of static
class initialisation in all states an observer can consider. We assume the fol-
lowing: All classes in P have either already successfully processed static class
initialisation or have not started with their static initialisation. In patholog-
ical cases, classes can be in an erroneous state after having processed class
initialisation, though such classes and their instances may behave according
to their specifications. Although the JavaDL calculus allows a correct treat-
ment of these cases, we rule out that erroneous classes exist when a method
or constructor is called, since in practice it is

• unlikely that a programmer ever intends to have erroneous classes dur-
ing the execution of his program; if they occur something is likely to
be wrong, and

• highly complicated to prove properties with more liberal assumptions
than we are postulating.

Thus we forbid programs which produce erroneous classes. Such programs
are defined not to be correct.

The static initialisation routine of a class C is simulated in JavaDL by a
static method <clinit>() implicitly declared in C. As for ordinary methods
and constructors, an observer may invoke <clinit>(), that is—in reality—
the observer triggers static initialisation.

The following assumptions are encoded and treated as implicitly present
invariants, that is we include the following to the set of all invariants Inv:∧

C∈P
and C is

not abstract

(
<classErroneous>@(C)

.
= false

∧<classInitialisationInProgress>@(C)
.
= false

) (3.1)

We require that assumptions and assertions for ordinary methods and
constructors, which were postulated above, should hold for <clinit>(), too.
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There is only a minor adjustment to be made which we express by means of
an implicit operation contract for <clinit>().

Definition 3.7. The standard operation contract of C.<clinit>() consists
of the precondition

<classInitialised>@(C)
.
= false

∧ <classPrepared>@(C)
.
= false

and the termination marker total .
A JavaFOL specification complies to the standard initialisation policy if it

contains the standard operation contract and has (3.1) as part of its invari-
ants.

Note: From now on, in the rest of this work, we only consider specifications
which comply to the standard initialisation policy.

To summarise: For static initialisation we assume the general assumption
and the precondition from the standard operation contract to hold. As we in-
cluded (3.1) to the invariants, the general assumption contains the condition
that no class is erroneous and not being initialised as well as all invariants
hold. It is asserted that static initialisation terminates, again no class is
erroneous, and all invariants hold. Java by itself ensures that no class is
currently being initialised after a static initialisation terminates, so that this
part of the implicitly given invariant can never be made false.

3.2.5 Assertions in the Initial State

We have already defined the notion of preserving invariants. The obvious
reasoning is then, roughly, as follows: All operations preserve all invariants,
then they are valid in all reachable states. Obviously there is an element
missing for such an inductive reasoning4: that is the base case. Invariants
must hold in initial states too.

Most of our invariants are instance invariants, which are quantified over
all created instances. Since in the initial state no classes are initialised and
thus no instances created, these invariants are trivially true in these states.

Consider however our example static invariant in its original form from
Sect. 3.1.2: a@(C)

.
= 0. In the initial state this formula is not true and thus

4We will explicitly see such an induction in Lemma 9.9.
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this formula is not an invariant. The modified version

<classInitialized>@(C)
.
= true → a@(C)

.
= 0

is however true in the initial state characterised by the formula ϕinit as defined
in Sect. 2.3.6 and could thus be an invariant.

Definition 3.8. An invariant over signature Σ of a Σ-program P must satisfy
the following property:

|=P ϕinit → ϕ

We say: The invariant is valid in the initial state of P .

The following property is important when dealing with extended contexts.
Assume an invariant holds in the initial state. If we extend our program
with further classes, the validity of the invariant in the initial state does not
change.

Lemma 3.2. Suppose P is a Σ-program and P ′ a closure of P . If a formula
ϕ ∈ FmaΣ is valid in the initial state of P then it is valid in the initial state
of P ′.

Proof. Let s be the initial state of P and s′ the initial state of P ′. All
interpretations in s are the same as in s′, s′ is just based on a larger signature,
with one exception: The only dependency to programs in JavaFOL formulae
comes from query terms which are dynamically bound. Such query terms
are in an initial state evaluated to a fixed but unknown value since no object
exists. They thus cannot play a role when evaluating ϕ. s |=P ϕ implies
s′ |=P ′ ϕ

3.2.6 Naive Correctness

Naive correctness is the simplest definition of correctness we can imagine and
it is probably the one which comes into ones mind without having carefully
thought about the intricate issue. On the other hand it is quite easy to prove
naive correctness. This semantics will not play a big role in the rest of this
work, though we later, in Sect. 5.1.3, come back to it.

Definition 3.9 (Naive Correctness). Given a program P and a specification
S for P . Let op be an operation and C be the class in which op is declared.
Let I be all invariants declared for C, that is:

I := {ϕ | ϕ = (∀̇o :T. ϕ′) ∈ Inv}
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op is naively correct if it fulfils its operation contracts in S under the as-
sumption of I and if it preserves I under the assumption of I. C is correct
if all its operations are naively correct. A program P is naively correct if all
its classes are naively correct.

Example 3.2. In our introductory example from Sect. 1.2, Period is naively
correct, since all operations of Period preserve Period’s invariant under the
assumption of this invariant. That Date does not so in the modification,
does not matter and explains why we call this semantics naive. ∗

3.2.7 Observed-State Call Correctness

We sum up the discussion from above in the following definition of observed-
state call correctness:

Definition 3.10 (Observed-State Call Correctness). A program P is ob-
served-state call correct w.r.t. a specification S, if

1. all operations op fulfil all operation contracts of S for op,

2. all invariants Inv of S are preserved by all operations of P , and

3. all invariants are valid in the initial state of P .

Our observer model does not directly occur in this definition. We can
however imagine that the observer is a class with a static method in which
it invokes the operations. Before doing that this static method establishes
all invariants of S.

Example 3.3. Consider again Ex. 1.1. We observe that the closed program
{Period, Date, Month} is call correct since no method call can violate ϕPeriod.
In particular setYear(int) cannot invalidate Period’s invariant because an
observer (like Main in Ex. 1.2) cannot produce a state where he can call
setYear(int) on the start or end date of a period.

In the modified example Ex. 1.2 this is however the case as Main demon-
strates. {Period, Date, Month} is here not call correct.

The open program {Period} is call correct in both versions as all oper-
ations of this class fulfil their obligations, that is fulfil operation contracts
and preserve invariants. ∗
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3.2.8 Observed-State Durable Correctness

Call correctness is insufficient if we think of the following situation. A pro-
gram P is finished and proven to be call correct. Then it is distributed and
used by some clients. They may now trust in the specification possibly at-
tached to P , but only under the assumption that they establish all invariants
of P before they call a method in P . Though one can expect from a client to
establish a precondition of the operation it calls, it is unacceptable to demand
the establishment of invariants; in particular since invariants are spread over
the whole system and every invariant needs to be taken into account.

The notion of durable correctness re-orders responsibilities concerning in-
variants. Invariants only have the character of an obligation to those classes
inside of P . For the outside (that is, the observer) they are guaranteed. As
only proviso for the outside we demand that calls to P satisfy one of the pre-
conditions of the called operation. This remaining requirement is in fact so
essential for the design by contract approach that it will be kept throughout
this work.

Definition 3.11 (Observed-State Durable Correctness). Let P cl be a closure
of a program P and S a specification for P . We call Obs := P cl\P the
observer of P . Furthermore we assume that every method or constructor op
of P with an operation contract in S is called by Obs only in a state where
the precondition of at least one fitting operation contract from S is satisfied.
P is durable invariant correct w.r.t. S if for all choices of P cl: all invariants

Inv hold in all states in which no operation of P is in progress (or on the
stack) and all invariants are valid in the initial state of P .
P is (observed-state) durable correct w.r.t. S if

1. all operations op fulfil the operation contracts of S which are for op
and

2. P is durable invariant correct.

Lemma 3.3. Let S be a specification for an open program P . P is durable
correct (w.r.t. S) iff every closure of P is durable correct (w.r.t. S).

Proof. ‘⇐’: Let P cl be a closure of P , we assume that it is durable cor-
rect. Furthermore, we can assume that every call to an operation of P from
Obs := P cl\P satisfies preconditions according to S (otherwise the direction
is trivially true). Because P cl is durable correct it preserves the operation
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contracts of S and its operations terminate in states where the invariants of
S hold, P is durable correct.

‘⇒’: Let P cl be a closure of P . And Obs an observer of P cl. That is
Obs′ := Obs ∪ P cl\P is an observer of P . In all intermediate states of Obs′

invariants hold because of the durable correctness of P , thus this is the case
also in Obs ⊆ Obs′. Operation calls on P fulfil contracts in S likewise.

Example 3.4. The closed program {Period, Date, Month} in Ex. 1.1 is not
durable correct since an observer may subclass Date2 as seen in the example.
With it, the observer reaches an intermediate state in which Period’s invari-
ant does not hold. If we however forbid overriding of earlierOrEqual(Date)
by declaring it final (and do the same for the copy() method of Date) then
{Period, Date, Month} would be durable correct.

In Ex. 1.2, {Period, Date, Month} is not durable correct, since it is not call
correct and therefore not durable invariant correct: A method of the observer
can simply terminate when the method setYear(int) has performed its
malicious state change.
{Period} in Ex. 1.1 is not durable correct for the same reasons as for the

already discussed program {Period, Date, Month}, but by making the called
methods in Date final as above, {Period} is durable correct.

The variant of {Period} in Ex. 1.2 is, not durable correct for the same
reasons, but even declaring operations final would not help, since there is
anyway an observer which produces a state in which the invariant of Period
does not hold. The set of classes {Main, Period, Date, Month} is such a cor-
responding closure. ∗

3.2.9 Relations between Durable and Call Correctness

It is quite easy to show the call correctness of a program as we will see later
with the help of suitable proof obligations. Unfortunately, the following
lemma uncovers that call correctness for open programs does not help much
to achieve durable correctness.

Lemma 3.4. Let S be a specification for an open program P .

1. P is call correct (w.r.t. S) if every closure of P is call correct (w.r.t. S).
The other direction does not hold in general.

2. P is call correct (w.r.t. S) if it is durable correct (w.r.t. S). The other
direction does not hold in general.
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Proof. 1. Let P cl be an arbitrary closure of P . We assume that P cl is
call correct, that is all operations fulfil their operation contracts of S
and all invariants Inv of S are preserved by all operations of P cl. This
applies in particular for all operations of P since they are a subset of
those of P cl. Thus P is call correct.
Example 1.1 in its modified version shows a counterexample for the
other direction: Period and Date together, a closure of Period, are
not call correct, since a call to setYear(int) would invalidate the
invariant of Period, though Period is call correct.

2. Let P be a durable correct program. Since all observer programs which
stop after calling an operation of P establish all invariants in that state,
all invariants are preserved by all operations of P . Fulfilling operation
contracts is a condition to both call correctness and durable correctness.
Thus P is call correct.
Again, Example 1.1 shows a counterexample for the other direction:
Period is call correct, that is, all calls to Period preserve the invari-
ants of P , but not durable correct, as the observer program in Main

demonstrates.

Also for closed programs call correctness follows from durable correctness.

Lemma 3.5. Let S be a specification of a closed program P . P is call correct
(w.r.t. S) if it is durable correct (w.r.t. S). The other direction does not hold
in general.

Proof. Proof as for open programs (Lemma 3.4(2)).

A counterexample for the other direction can be obtained when considering
the closed program {Period, Date, Month}. It is call correct, but not durable
correct as demonstrated before.

Altogether the relation between call correctness and durable correctness
of open and closed programs is depicted in Fig. 3.2.

Call correctness is a notion of correctness that is quite easy to ensure
by deductive verification. Since it is not sufficient for open programs to
ensure durable correctness we need to bridge the gap between call correctness
and durable correctness. We will thus need to find ways to strengthen call
correctness such that the other direction of Lemma 3.4(2) holds.
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all closures of P are call correct ⇐ all closures of P are durable correct

⇓ m

P is call correct ⇐ P is durable correct

Figure 3.2: Durable and call correctness of open and closed programs

3.2.10 Discussion of Observed-State Correctness

Instead of an observed-state semantics, JML [Leavens et al., 2005] obeys in
the tradition of Larch [Guttag and Horning, 1993] a visible state seman-
tics [Poetzsch-Heffter, 1997]. We discuss this issue extensively in the follow-
ing since it is important to motivate that observed-state correctness is really
what is desired.

A state is visible [Leavens et al., 2005] for an object o if it occurs at one
of the following moments during the execution of a program5:

• at the end of a constructor invocation which is initialising o,

• at the beginning and end of a non-static method call with o as receiver,

• at the beginning and end of a static method which is declared in the
class of o or a superclass.

• when no constructor, non-static method invocation with o as receiver,
or static method invocation for a method in o’s class or a superclass is
in progress.

A state is visible for a type T if it occurs after static initialisation for T is
complete and it is a visible state for some object that has type T .

A visible state semantics requires all instance invariants declared in type
T to hold for every object o of type T and for every visible state for o. All
static invariants declared in T must hold in every visible state for T .

Clearly this semantics is stronger than observed-state durable correctness.
The example program in Fig. 3.3 is durable correct but not visible-state
correct: With the visible-state semantics, the methods m1(), m2(), and m3()

are disallowed:
5We leave out finalizers and JML’s helper methods for simplicity.

72



3.2 Observed-State Program Correctness

public class A {

private int i = 1;

/*@ instance invariant i>0 */

public int getI() { return i; }

/*@ requires p>0;

@ ensures i==p;

@*/

public void setI(int p) { i=p; }

public void m1() {

setI(0);

i=1;

}

public void m2() {

i=0;

setI(1);

}

public int m3() {

i=0;

i=(new B()).m5(this);

}

/*@ ensures \result>0 @*/

public int m4() {

return 42/i;

}

}

public class B {

/*@ ensures \result>0 @*/

public int m5(A a) {

if (a.getI()<=0) a.setI(1);

return a.m4();

}

}

Figure 3.3: An example program demonstrating the differences between
visible state semantics and observed-state semantics

• The invariant that field a is positive must be established when the
call from method m1() to setI(int) terminates. This is not the case.
With observed-state correctness, this state does not matter since it is
not observed by an observer.

• In m2() the visible state semantics requires that the invariant holds
before the call to setI(int) starts. This is not the case but again an
observer does not notice such a state and when m2() terminates the
invariant is valid again.

• m3() is disallowed for the same reason with the visible state semantics,
but it is allowed in the observed-state semantics.

We believe that our view is more natural and liberal. Only states observed
from the outside must be correct.

An often quoted reason for a visible state semantics (cf. Barnett and Nau-
mann [2004], Huizing and Kuiper [2000]) is the danger of reentrant calls
(another, equivalent, notion is call-back). Consider the classes A and B from
our example. We make the assumption that an observer may only override
methods if the same specifications as in the overridden methods are anno-
tated. Moreover we require for m5(A) and all overridden versions the stricter
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contract that its postcondition is satisfied independently of any invariant.
The mechanism for constraining other classes not present in the considered
program are described in Chapter 5.

When an A instance a executes m3() it calls method m5(A) on a B instance.
By that time, a does not satisfy its invariant. This is however a state which
is not observable from outside the considered program {A, B}. The B instance
calls back to a, namely the method m4(), but before it ‘repairs’ a by making
A’s invariant valid. Consequently the returned value, which is then assigned
to a.i is admitted for the invariant.

Obviously the program {A, B} is durable correct: Which ever method we
(the observer) invoke, after the method returns A’s invariant holds. We see
no reason why it should not be classified as correct.

As anticipation of Chapter 6, we remark that with the help of our JavaDL
calculus we can enforce visible state semantics. When we do modular proofs
by symbolic execution (for instance of m2()) and want to use contracts (here:
that of setI(int)) we need to show that the precondition of setI(int) and
all invariants hold. This shows that the exclusive use of method contracts
which include all invariants as part of their precondition establishes the
visible-state semantics. The correctness of the above example could then
not be shown. On the other hand, we could simply symbolically execute (or
‘inline’) setI(int), and thus can prove the correctness of A. Please note
however, that all these considerations are on the calculus level, not on the
semantics level.

3.3 Specification Languages

JavaFOL specifications provide the very essentials of specifications. There
are no syntactic convenience notations, it is not standardised. Recent stan-
dard specification languages for object-oriented systems are much more suit-
able for the practitioner. In this section we describe how two popular speci-
fication languages, UML/OCL and JML, can be mapped to JavaFOL speci-
fications.

3.3.1 UML/OCL

The Unified Modeling Language (UML) is a graphical modelling and speci-
fication language for object-oriented systems. It consists of several diagram
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types which allow to model different aspects of a system. UML is stan-
dardised by the Object Management Group. As a sub-standard the Object
Constraint Language (OCL) [Object Modeling Group] is part of UML. OCL
provides a textual notation for requirements of the specified system which
cannot be modelled by the graphical diagram types of UML. Specifications
in OCL are mostly concerned with functional specification of the static struc-
ture of a system.

More precisely, if the types of a Java program P are considered as UML
classes, Java fields as UML attributes and Java methods and constructors as
UML operations, and OCL constraints for such a UML structure diagram
are given, the OCL constraints can be translated [Beckert et al., 2002] into
a specification of P using JavaFOL in the sense presented in Sect. 3.1. A
translation following Beckert et al. [2002] has been implemented under the
supervision of the author and is integrated in the KeY system.

OCL provides mere pre- and postcondition pairs for defining operation
contracts. Abrupt termination cannot be modelled in the standard version,
we showed however earlier how OCL can be conservatively enhanced to model
such implementation details [Roth, 2002] by using an implicitly extended
underlying UML model. Termination behaviour can neither be modelled
with OCL: the standard requires constrained operations to terminate, which
obviously makes sense, but complicates verification. Tools like KeY thus offer
possibilities to show—if desired—only partial correctness of operations.

Assignable clauses are missing as well in standard OCL. A usual argument
why they are not needed is that only those locations mentioned in a post-
condition may change. But since this is a notion of change which is quite
hairy and difficult to approach with formal methods, tools like KeY have
developed their own assignable clauses following Beckert and Schmitt [2003],
Katz [2003]. Assignable clauses are simply considered sets of ground terms of
FOL, thus not taking into account that also extended terms can be allowed.

Operation contracts in OCL are, as in our FOL specifications, attached to
an operation declaration, and are not inherited to subtypes.

The OCL standard [Object Modeling Group] specifies the validity of in-
variants as follows:

An invariant [. . . ] must be true for each instance of the classi-
fier at any moment in time. Only when an instance is executing
an operation, this does not need to evaluate to true.

The first sentence implies that OCL supports instance invariants only. Static
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invariants are not formalisable. The second sentence justifies that we use
observed-state correctness, and that we use durable observed-state correct-
ness when dealing with open programs.

Altogether, our approach, using our JavaFOL specifications with observed-
state correctness, fits to the—in this respect, at least, quite imprecise—
UML/OCL standard specification.

3.3.2 JML

The Java Modeling Language (JML) is characterised [Leavens et al., 2006]
as a behavioural interface specification language that can be used to specify
the behaviour of Java programs. Specifying with JML works by annotating
comments to the Java source code or by providing an extra file containing
annotations and a copy of the signature of the specified Java source.

Compared to OCL the abundance of language features is overwhelming.
JML provides pre- and postcondition pairs, assignable clauses, possibilities
to specify termination behaviour and abrupt termination behaviour, instance
and static invariants. In addition it has a concept of visibilities of specifi-
cations, inheritance and overriding of contracts, and most importantly of
‘specification-only’ model elements, such as model fields, model methods, and
model classes, which allow to specify even Java interfaces appropriately.

These JML features can all be represented in our notion of specification
(Def. 3.1) using JavaFOL. A translation from JML to JavaFOL has been
designed and implemented under the supervision of the author [Engel, 2005].

In the following we want to give a brief overview of features where the
representation of JML features in the specification format of Def. 3.1 is not
so obvious.

Termination Behaviour. JML specifies termination with a diverges clause
in an operation contract. The keyword is followed by a boolean ex-
pression (corresponding to a JavaFOL formula) indicating the condi-
tion which holds in the pre-state if the operation does not terminate.
Thus diverges true indicates that the operation is allowed not to
terminate, and diverges false specifies that termination is required.
These two cases are easy to translate into our specifications: for the
former partial is set and for the latter total . For all other conditions
ϕ, the operation contract is replaced by one with partial (or equiv-
alently diverges true). And another contract is introduced having
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as precondition the original precondition conjunctively joined with ϕ
and total (or equivalently diverges true) as termination specification.
Obviously these two contracts have the same meaning as the original
one, but use only means equivalent to the total and partial markers.

Abrupt Termination. Abrupt termination is specified with the help of a
special signals clause6 with attached exception type E and a condition
ϕ, with the intended meaning that if an exception of type E is raised ϕ
holds in the post-state. In our model, we assign the thrown exception
to a variable which we access in the regular postcondition. Thus if exc
is that variable, we can write equivalently to signals(E) ϕ:

InstanceOfE(exc)
.
= true → ϕ

as a top level conjunct of the postcondition of a contract. Details can
be found in Engel [2005].

Assignable Clauses. Assignable clauses in JML are expressions with field
or array access as top-level operator. The semantics is defined by the
statement that

from the client’s point of view, only the locations named
[. . . ] can be assigned to during the execution of the method.
However, locations that are local to the method (or methods
it calls) and locations that are created during the method’s
execution are not subject to this restriction.

Liberalising this definition, we allow for temporary violations during
the run of the method. For most practical applications this specifica-
tion does not make a big diference. Special constructs are allowed such
as a[*] standing for an arbitrary access to an array slot, a[i..j] for
an array access at indices between i and j, and a.* as a substitute for
an arbitrary field access. It is no problem to represent the former two
constructs; we translate them to our extended terms as follows:

a[*] −→ (for k ; 0 ≤ k ∧ k < a.length ; a[k])

a[i..j] −→ (for k ; i ≤ k ∧ k ≤ j ; a[k])

6Note: normal_behavior and exceptional_behavior are just syntactic sugar for this.
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To translate a.* is not immediately possible, but the practical use of
such an assignable element is questionable. An extension to regular
expressions over field and array accesses seems more useful.

The semantics of JML specifications is, though not formally, but quite
precisely described. To a large extend, the semantics of JML reflects our
semantics, for instance, the handling of undefined expression is the same.
There is one major difference: JML uses a visible state semantics for invari-
ants, which we discussed in Sect. 3.2.10. We have decided to (slightly) deviate
from the JML visible state semantics when we transfer JML specifications to
our contract notion. However, we do this for good reasons: Our semantics is
more oriented at the client view of a component, and is less interested in its
internal states, which serves information hiding. Finally if someone wants
to stick to the stricter notion of visible states, consequential use of method
contracts including all invariants in preconditions establishes that goal, too.

3.4 Summary

In this chapter we have introduced our notion of specification of a Java pro-
gram, which consists of operation contracts and static and instance invariant
contracts, using first order formulae and extended first order terms. We have
assigned an observed-state semantics to the contracts. Two variants were
given: call correctness and durable correctness, and their relations were dis-
cussed. Most importantly we will use durable correctness for open programs.
Finally we have investigated the source of specifications, which (usually) arise
from specification language (such as UML/OCL and JML) expressions and
observed that we may—with one minor and acceptable modification—have
a faithful mapping from specification language constraints to our JavaFOL
specifications.

In Chapter 5 we will weaken the notion of durable correctness to a notion
of relative-durable correctness: The context will be obliged again to satisfy
certain conditions. The whole Part II will be concerned with deductively
treating the notions of observed-state correctness introduced in this chapter.
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Properties

Bene qui latuit bene vixit.

(Ovid)

Durable correct open programs are in general impossible to write without
a good degree of encapsulation. Developers may design such well encap-
sulated programs, but in state-of-the-art object-oriented specification lan-
guages, there are no or only insufficient means to specify properties of en-
capsulation. This lack of specification power means that it is also impossible
to verify components to be durable correct. We thus need to enhance our
languages of specification with capabilities to specify encapsulation. This is
what is approached in this chapter. The developed concept has also been
presented in Roth [2005]; the presentation here follows that paper in some
parts.

Apart from the mere correctness and verification issue, encapsulation plays
a major role in object-oriented software development: It reduces the com-
plexity of inter-object relations, and thus makes the division of tasks into
subtasks, indispensable to master complex problems, much easier. This is
manifested when investigating common design patterns. Properties of encap-
sulation are informally described with pattern descriptions; attached formal
specification (as it is done for functional properties, for instance in Bubel
and Hähnle [2005]) would increase the precision of pattern descriptions.

The way, encapsulation properties are made specifiable to developers, is
important to the acceptance of this technique. We thus analyse in detail
what the requirements are for a specification language capable of expressing
encapsulation properties. We will finally decide to extend existing specifica-
tion languages like JML or UML/OCL to meet these requirements. To show
how this extension works, we will perform it at the example of JavaFOL
specifications.

79



4 Specification of Encapsulation Properties

Outline. We sketch requirements and design considerations for the way we
specify encapsulation properties in Sect. 4.1. The state-of-the-art solutions
to deal with encapsulation in real-world object-oriented languages are only
partially satisfactory. We review these approaches in Sect. 4.1.2. As a con-
sequence of our analysis, we present the basic extensions to JavaFOL and to
functional specification languages in Sect. 4.2, before we provide means to
conveniently specify important patterns of encapsulation on top of them as
described in Sect. 4.3.

4.1 Requirements for Specifying Encapsulation

Encapsulation is important in object-oriented designs. Evidence that this
so, can be found for instance in ‘good’ software designs, usually documented
in design pattern catalogues. Further evidence is the fact that other re-
cent research approaches are concerned with related issues; these concepts
shall be called alias control approaches in the following. Of course the al-
ready mentioned, and in later chapters in more detail explained, need for
encapsulation to allow for durable correctness of open programs, is a reason
that encapsulation is important. In this section, we analyse the two former
fields: how does encapsulation occur in design patterns and alias control
approaches, and what conclusions can be drawn for a new powerful way to
specify encapsulation.

4.1.1 Design Patterns

We investigate the pattern catalogues Gamma et al. [1995], Buschmann et al.
[1996], Grand [1998, 1999] for encapsulation properties. A selection of pat-
terns that affect encapsulation is listed below; the list is not complete, but
these patterns are clear manifestations of real encapsulation properties:

Whole-Part. This is a structural pattern [Buschmann et al., 1996] which
provides a very strict encapsulation policy. There is an aggregate object
(Whole) at work which hides access to other objects which are called
Parts: ‘Clients should see the aggregate object as an atomic object that
does not allow any direct access to its constituent parts.’ [Buschmann
et al., 1996]
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Memento. This pattern [Gamma et al., 1995] captures the internal state of
an object in an extra Memento object in order to set the object back
to that state later. The access to internals of the Memento is forbidden
to clients.

Proxy. This pattern [Gamma et al., 1995] restricts the access to an object:
Accesses are only allowed through a Proxy object. Sample purposes
are to protect the access according to an access policy, or to avoid
unnecessary remote calls if the object to be accessed is located remotely.
Since the proxy might store or cache data, the direct access ignoring
the proxy might result in inconsistencies.

Copy Mutable Parameters and
Return New Objects from Accessor Method.

These patterns [Grand, 1999] ensure that, at a method call, the passed
mutable objects are copied before being stored at field locations and
the returned objects are copied before being returned. The purpose
of both patterns is to achieve encapsulation: No client of an object is
allowed to directly access its internals.

Iterator. This behavioural pattern [Gamma et al., 1995] ensures that an ag-
gregate object, like a linked list, does not expose its internal structure,
though it provides an Iterator object that traverses the aggregate.
Other clients of the list than iterators are not allowed to access its in-
ternals. They must however be enabled to put elements into the list,
which makes the objects referenced by the internals also referenced by
the clients.

These patterns have in common that they require some objects to be hid-
den from others in the one or the other way. If the graphs made up by the
references between objects in all states of a system have such a property we
speak of encapsulation. Often in literature, the term data hiding or infor-
mation hiding is used for similar meanings. Our notion of an encapsulation
property is by purpose rather vague: An encapsulation property describes
under which circumstances it is forbidden to have a reference from one object
to another.

We believe that there is no sharp distinction between encapsulation prop-
erties and functional properties. To require, for instance, an object stored
in the field slot of an object o to be different in all observed states from
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an object p can be considered both an encapsulation property (since we re-
strict the accessibility between objects) and a traditional functional invariant
property.

Example 4.1. To be more concrete, we take up the example of an applica-
tion of the Whole-Part pattern given in Buschmann et al. [1996]. We have an
object Triangle whose instances contain each three references (p0, p1, p2)
to objects of class Point. Points themselves consist of a pair of primitive
integer fields x and y. Though immutable Point objects would be prefer-
able, we explicitly allow in our design that Points are mutable. This is to
efficiently provide means to drag graphical objects like triangles with points
around in the space. Applying the Whole-Part pattern, Triangle should
play the role of a Whole object and Point should play the role of a Part.

Following the pattern, the Point objects must not be shared among other
graphical objects, since otherwise, for instance, performing a rotate opera-
tion on another graphical object could unintendedly change the shape of the
Triangle. Fig. 4.1 (without the grey parts) shows a UML class diagram of
the design and an object diagram for a snapshot of the system; we disallow
the reference labelled with ¬.

For a comprehensive specification of the design, we want to specify, in
addition to the mere functional behaviour (such as an invariant that the
nodes of a triangle are not collinear), that instances of Point cannot be
accessed by any other object than the specific triangle which it is a node of.
Since the desired property describes a behaviour that must be observed in
any visible state of an instance of Triangle, we would like to describe it as
a class invariant of Triangle. ∗

Example 4.2. To increase the level of complexity a bit, we assume now
that, in addition to Example 4.1, Point contains additional references to
other objects, such as to instances of Colour; the colour of the triangle is
determined to be the ‘gradient’ of the colours of its nodes. The representation
of a Colour object is left open, it may consist of an ‘RGB’ triple of primitive
integer fields, or may have references to further objects.

A possible design decision would be to make Colours in general sharable
among other graphical objects such as Points, but not if they belong to
Points that are constituent parts of different Triangles. This restriction
still allows Points of the same triangle to reference the same Colour. So
modifying a colour not belonging to a triangle t does not affect the state of
t: Each node together with its associated colour is in fact a true part of the
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Triangle Point
3

Colour
1

(a) Class diagram

t:Triangle

:Pointp0

:Pointp1

:Point
p2

other:GraphicalObject

¬

:Colour

:Colour

col

col

col

p3:Point


(b) Object diagram

Figure 4.1: UML class diagrams (top) and object diagrams (bottom) for
Example 4.1, extensions for Example 4.2 in grey

triangle, as the Whole-Part pattern requires. Like in the previous settings,
Point objects being part of a Triangle must not be shared among other
graphical objects.

Fig. 4.1 (including the grey extension) illustrates the design. The refer-
ences ¬ and  are not allowed in our design.

We would like to specify this more challenging encapsulation policy by
means of an invariant of Triangle. ∗

The brief investigation of patterns should have shown the following three
results:
(E1) Encapsulation is the result of purposely made design decisions.
(E2) There is not the encapsulation property, but there are many varying—

and arbitrarily complex—encapsulation properties.
(E3) There is no sharp line between functional and encapsulation properties.

4.1.2 Alias Control: Related Work on Encapsulation

Quite a number of techniques have been published in recent years that aim at
reducing the complexity introduced by aliasing in programs with pointers, as
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for example islands [Hogg, 1991], balloons [Almeida, 1997], uniqueness [Boy-
land, 2001], and different types of ownership [Clarke et al., 1998, Müller,
2002, Boyapati et al., 2003]. We refer to them as alias control policies.
Overviews are, for instance, in Noble et al. [2003]. According to our cri-
teria, these policies ensure properties that can be classified as encapsulation
properties.

Most, if not all, of these policies are however technology driven, that is
the properties are mostly statically checkable (for instance by means of a
type checker), which is the major justification that the approach exists. We
claim that we can formulate each of the properties summarised in Noble
et al. [2003] with our approach, and we will demonstrate this at some exam-
ples below. Moreover we can observe that the investigated design patterns
require more generality concerning their encapsulation properties than the
existing encapsulation policies provide. Finally, users are facing two ways of
writing specifications: the one they are usually used to, design by contract,
writing invariants and pre-/postcondition contracts, and on the other hand,
a completely different way of denoting encapsulation properties, for instance,
by labelling fields with a special modifier. We believe that this distinction
is unnecessary and unnatural, thus confusing for developers, especially for
those who are sceptical towards formal specification anyway.

To sum up, we can state the following weaknesses of the existing alias
control approaches to master encapsulation:
(R1) In recent approaches, there is an irritating difference between how func-

tional properties and how encapsulation properties are specified.
(R2) The way encapsulation properties are specified is closely coupled to

technologies that check them, which makes it likely that not all desired
properties can be formulated.

4.1.3 Guidelines for Specifying Encapsulation

Taking the results of our reviews of design patterns and alias control policies
into account, the central idea of our work is thus: Programmers know how
they encapsulate data (E1), they should be enabled to easily specify their
encapsulation concept formally and to check these properties with machine
assistance. Especially, (R1) and (E3) encourage us to make encapsulation
specifiable in a way traditional functional properties are, i.e. by applying
design by contract and using an extended specification language. Moreover,
the latter has the flexibility required by (E2) and the independence from
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concrete techniques required by (R2).
The obvious way to get new features, like encapsulation properties, into

specification languages is to make them accessible as special predicates of the
specification language. As any other predicate they can then be connected
with other expressions of the language. Language expressions containing the
predicates may then serve as preconditions, postconditions, or class invari-
ants.

4.2 Basic Encapsulation Predicates

In this section, the two basic encapsulation predicates, the Acc and the
Reach predicate, are defined for JavaFOL. Although we introduce them as
extensions to JavaFOL, they can likewise be defined for any specification lan-
guage that is capable of making statements about program states, like JML
or UML/OCL. In the next section these basic predicates are complemented
with a mere convenience layer, that is, we provide handy abbreviations. This
however means that this section presents all the needed extensions to express
encapsulation properties. All applications to design patterns and alias con-
trol properties (Sect. 4.3), as well as those in Chapter 9 could be done with
the basic predicates of this section only. The formulae would just be more
intricate.

4.2.1 The Acc Predicates

In object-oriented specification languages as well as in JavaDL there are
only means to reason about concrete field accesses but there is no way to talk
about an arbitrary field access, such as ‘there is a field such that. . . ’. Without
getting too much into the spheres of higher order logic, this restriction needs
to be relaxed by defining an Acc predicate [Roth, 2005]. It represents the
relation of objects which can be accessed with exactly one field or array access
from a list of allowed fields. We may omit the list of allowed symbols, with
the meaning that every field or array access counts. In extension to Roth
[2005] a variant is needed: An Acc predicate which expresses that one object
can be accessed by another one but not through fields of an attached list.
This predicate will be needed for a modular deductive treatment of Acc in
Sect. 8.3.

We extend a JavaFOL signature as follows:
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Definition 4.1 (Syntax). Let Σ=(T ,Fnr,F r,Pnr,Pr,�, σ, τ) be a JavaFOL
signature. Let A be the set of symbols in Σ which are either instance field
symbols or array access symbols. Then Acc(Σ) is defined as

P nr∗ := P nr ∪{Acc[A′](·, ·) | A′ ⊆ A,A′ not empty}
∪{Acc(·, ·)}
∪{Acc[A′](·, ·) | A′ ⊆ A,A′ not empty}

σ∗(f) :=

{
(Object,Any) if f ∈ {Acc[A′](·, ·),Acc(·, ·),Acc[A′](·, ·)}
σ(f) otherwise

Acc(Σ) := (T ,Fnr∗,F r,Pnr,Pr,�, σ∗, τ)

That is, the binary non-rigid predicate symbols Acc[·](·, ·), Acc(·, ·), and
Acc[·](·, ·), extend an existing signature.

Our definition of accessibility from an object e0 to an object e1 in a state
s will require that e0 holds a direct reference to e1 in one of its field (or
array) slots. Of course, this statement needs a justification as it must be
possible to adequately model the notion of accessibility in the description
of design patterns. In the Whole-Part pattern, the restricted accessibility
is supposed to ensure that the state of Parts cannot be modified by clients
others than from the corresponding Whole. State changes on a Part object
p are performed by invoking methods of p or directly assigning to field or
array slots of p. Both possibilities require that the object that performs the
modification holds a reference to p. References may be held either in a local
variable, a field, or an array slot. Like when invariants are considered, we
are however at most interested in observed states directly before and after
method invocations. Since such a method invocation cannot change the
assignments to local variables, all local variables can be ignored. There is
however one exception: the return value must be taken into account because
it can afterwards be assigned by the caller to a field for instance. The return
value is captured if we assume in the post-state that an (arbitrary) object
references the returned object or value (see Sect. 8.1). This justifies the
following two possibilities of how to access an object e1 directly from a given
one e0 (for now, without further restrictions by the set A):

Definition 4.2 (Access). An object e0 accesses an object e1

• by an arbitrary field a: if there is an instance field a in the class of e0
with e0.a = e1

86



4.2 Basic Encapsulation Predicates

• by an arbitrary array access: if e0 is an array and there is an i ∈
{0, . . . , e0.length− 1} with e0[i] = e1.

This is reflected in the semantics of the Acc symbols:

Definition 4.3 (Semantics). Let A be a non-empty set of instance field
symbols and array access symbols, and e0 ∈ Dom(Object)\{null}, e1 ∈
Dom(Any). The interpretations of the Acc symbols of a signature Acc(Σ)
in a state s, Acc[A]s,P , Accs,P , and Acc[A]s,P are relations Dom(Object) ×
Dom(Any). Moreover we require:

1. (e0, e1) ∈ Acc[A]s,P iff e0 accesses e1 by either a field a or an array
access []T and the symbol representing a is in A or []T ∈ A (resp.).

2. (e0, e1) ∈ Accs,P iff e0 accesses e1 by a field a or an array access.

3. (e0, e1) ∈ Acc[A]s,P iff e0 accesses e1 by a field or array access symbol
a not represented by a symbol in A.

Note that we do not care, at this stage, which visibilities the access provid-
ing fields have. For now, every reference counts, no matter if it is declared as
private or as protected (these were the visibilities we have allowed earlier).

For a finite A, adding Acc[A] is no real extension to JavaFOL, since an
equivalent formula could be written in the unextended JavaFOL. Also if we
were considering only closed programs, no extension would be needed, we
would just have to enumerate all fields in the program.

Example 4.3. Consider the following program:

public class C {

public Object a;

}

public class D {

public Object a;

public Object b;

}

public class M {

public static void main() {

D d = new D();

C c = new C();

d.a = c;

d.b = null;

c.a = null;

}

}
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In the state after the execution of main() the following formulae are

valid: not valid:

Acc[a@(D)](d, c) Acc[a@(C)](c, d)
Acc(d, c) Acc(c, d)
Acc[b@(D)](d, c) Acc[a@(D)](d, c) ∗

4.2.2 The Reach and Conn Predicates

Reasoning about encapsulation often means reasoning about the accessibility
of all objects reachable from a root object. In this section a parameterised
Reach predicate is defined which can be used to reason about reachability.
For use only in Sect. 8.4, when we exploit the Universe type system to prove
encapsulation properties, we define a similar predicate called Conn which
does not care about the direction of references.

Essentially, reachability is the reflexive and transitive closure of the Acc
relation defined in the last section. So we define Reach, a binary predicate
for each set of fields, as follows:

Definition 4.4 (Syntax of Reach). With Σ = (T ,Fnr,F r,Pnr,Pr,�, σ, τ),
let again A be the set of symbols in Σ which are either instance field symbols
or array access symbols. Then Reach(Σ) is defined as

P nr∗ := P nr ∪{Reach[A′](·, ·, ·) | A′ ⊆ A,A′ not empty}
∪{Reach(·, ·, ·)}

σ∗(f) :=

 (Object,Any, Integer) if f ∈ {Reach(·, ·, ·),
Reach[A′](·, ·, ·)}

σ(f) otherwise

Reach(Σ) := (T ,Fnr∗,F r,Pnr,Pr,�, σ∗, τ)

For the formulae FmaReach(Σ), we define the following abbreviation:

Reach[A](t0, t1) :⇔ ∃n :Integer. Reach[A](t0, t1, n)

Definition 4.5 (Semantics of Reach). Let A be a non-empty set of instance
field symbols and array access symbols, e0 ∈ Dom(Object), e1 ∈ Dom(Any),
e2 ∈ Dom(Integer). We define the interpretations of the Reach symbols of
a signature Reach(Σ) in a state s as follows:
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1. Reach[A]s,P is a relation Dom(Object)×Dom(Any)×Dom(Integer)
with the following property: (e0, e1, e2) ∈ Reach[A]s,P iff n ≥ 0 and
there is a finite sequence (e′0, . . . , e

′
n) with e′0, . . . , e

′
n ∈ U , e′0 = e0, ,

e′n = e1, n = e2 ≥ 0, and for all i = 1, . . . , n: (e′i−1, e
′
i) ∈ Acc[A]s,P .

2. Reachs,P is a relation Dom(Object) × Dom(Any) × Dom(Integer)
with the following property: (e0, e1, e2) ∈ Reachs,P iff n ≥ 0 and there
is a finite sequence (e′0, . . . , e

′
n) with e′0, . . . , e

′
n ∈ U , e′0 = e0, , e′n = e1,

n = e2 ≥ 0, and for all i = 1, . . . , n: (e′i−1, e
′
i) ∈ Accs,P .

As already said we also need a special predicate for the purpose of a better
integration of the Universe type system (see Sect. 8.4).

Definition 4.6 (Syntax of Conn). Let Σ and A be as before. Then Conn(Σ)
is defined as

P nr∗ := P nr ∪{Conn[A′](·, ·, ·) | A′ ⊆ A,A′ not empty}

σ∗(f) :=

{
(Any,Any, Integer) if f = Conn[A](·, ·, ·)
σ(f) otherwise

Conn(Σ) := (T ,Fnr∗,F r,Pnr,Pr,�, σ∗, τ)

Again we use the following abbreviation:

Conn[A](t0, t1) :⇔ ∃n :Integer. Conn[A](t0, t1, n)

Definition 4.7 (Semantics of Conn). Conn[A]s,P is a relation

Dom(Any)×Dom(Any)×Dom(Integer)

with the following property: (e0, e1, e2) ∈ Conn[A]s,P iff there is a finite
sequence (e′0, . . . , e

′
n) with e′0, . . . , e

′
n ∈ U , e′0 = e0, e

′
n = e1, n = e2 ≥ 0, and

for all i = 1, . . . , n: (e′i−1, e
′
i) ∈ Acc[A]s,P or (e′i, e

′
i−1) ∈ Acc[A]s,P and for all

i = 1, . . . , n: e′i 6= null

The last alternative is the only change to the Reach predicate: we allow
accesses in both direction between objects.

In the sequel of this chapter we assume to have only signatures which
contain all of the extensions defined above, that is we only have signatures
Σ with Σ = Conn(Reach(Acc(Σ))).
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4.3 Macro Encapsulation Predicates

Though the predicates Acc and Reach provide a basic vocabulary for specify-
ing encapsulation behaviour, their use is still tedious. We thus provide handy
abbreviations, or macro encapsulation predicates, for useful application pat-
terns. Below, their practicability is measured by formulating properties of
the design patterns and the alias control approaches. In the end, all predi-
cates introduced throughout this section are summarised in Table 4.1.

For notational convenience, we use in this section the convention that
quantification over logical variables without type information, means quan-
tification over the type java.lang.Object. For instance, ∀x. ϕ is a short-
hand for ∀x :Object. ϕ.

4.3.1 The Enc predicate

The main task of encapsulation is to allow access (in the sense of the last
section) to a set E1 of objects or values only from another set of designated
objects E0. So we want to express that for all ez ∈ E1, if there is an access
from an object ey to an object ez then ey ∈ E0. Usually it should be allowed
that the objects of E1 access each other. So we will additionally allow ey ∈
E1. So in short: if ey accesses ez ∈ E1 then ey ∈ E0 ∪ E1.

The characterisation of which objects belong to E0 and E1, can be done
using formulae with free variables which characterise those objects being
part of the respective set. The most general macro encapsulation predicate,
called Enc and defined in the following, imposes no a priori restrictions on
these sets or formulae. The objects to be protected from arbitrary access
(i.e. belonging to E1) are formalised as those z satisfying the formula p(z).
And the objects which are the only ones allowed to access the protected
objects from outside (i.e. belonging to E0) are formalised as those guarding
objects y which satisfy the formula g(y). The formula defining Enc says: if
there is an access from an object y to an object z, and p(z) holds, that is z
should be protected, then (a) y is either satisfying g(y), or (b) y is itself a
protected object (that is, p(y) holds).

Figure 4.2 illustrates these settings. The boxes depict objects in a certain
state. There are four areas marked by the two ellipses. Those objects y which
satisfy g(y), those z which satisfy p(z), those objects which satisfy both, and
those which satisfy none of both. There are some references depicted by
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arrows between the objects. The references represented by bold and crossed-
out arrows are disallowed by the Enc predicate.

those z satisfying p(z)those y
satisfying g(y)

those v
satisfying p(v)
and g(v)

XX

Figure 4.2: The Enc predicate illustrated. The bold and crossed-out refer-
ences are disallowed

For a proper definition of the new predicate (as well as of all defined in this
section) we would need to extend the signature Σ and define an interpretation
for the added symbols. Since the semantics of all predicates introduced
in this section can be expressed by means of an extended signature Σ =
Reach(Acc(Σ)) as defined in the last section, we simply say that formulae
with one of the new predicate symbols are just abbreviations for a regular
formula over Σ, which is expanded to these as needed. Again, the Enc
predicate comes in two versions, one of which is parameterised with a list of
fields (and additionally array access operators) which restrict the considered
accesses. So here follows the syntax of the predicates and their defining
formula:

Ency,z [A; g(y), p(z)] :⇔ ∀̇y. ∀̇z.
(
Acc[A](y, z) ∧ p(z) → p(y) ∨ g(y)

)
Ency,z [g(y), p(z)] :⇔ ∀̇y. ∀̇z.

(
Acc(y, z) ∧ p(z) → p(y) ∨ g(y)

)
All encapsulation tasks needed to be accomplished for modular verification

(see Sect. 9.3.3) are captured by this general predicate. However, often even
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more specialised patterns of encapsulation turn up. For a developer who
needs to specify encapsulation, it is extremely helpful if these patterns are
reflected in the vocabulary with which he can formalise encapsulation. The
following paragraphs thus define useful instances of Enc .

4.3.2 The GuardObj and UniqueAcc Predicates

We define a predicate for the following property: If there is an access from a
guard object y to an object u then y must satisfy ϕ(y). Or in other words:
With the formula ϕ(y), the set of guard objects y are defined which are
allowed to hold a reference to u. In JavaFOL over a signature extended as
described above, we formalise this property as:

GuardObjy[A;ϕ(y)](u) :⇔ Ency,z [A;ϕ(y), z
.
= u]

⇔ ∀̇y.
(
Acc[A](y, u) → ϕ(y) ∨ y .

= u
)

GuardObjy[ϕ(y)](u) :⇔ Ency,z [ϕ(y), z
.
= u]

⇔ ∀̇y.
(
Acc(y, u) → ϕ(y) ∨ y .

= u
)

This predicate is illustrated in Fig. 4.3 in the same manner as before.

u

those y
satisfying ϕ(y)

X

Figure 4.3: The GuardObj predicate illustrated. The bold and crossed-out
reference is disallowed

In the easiest and most common case, ϕ(y) will consist just of an equality
y
.
= g, thus having just one guard object g. This specification pattern is in

fact so common that we introduce another macro predicate called UniqueAcc
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which is defined as follows:

UniqueAcc(g, u) :⇔ GuardObjx[g
.
= x](u)

We continue with some examples of formalisations of approaches in liter-
ature using these two encapsulation predicates.

Example 4.4 (Unique Pointer). A unique object is an object that is refer-
enced by at most one object [Boyland, 2001]. The GuardObj predicate can
easily be used to model this property, for instance to say that u is a unique
object, we require that for every object y that has a direct reference to u,
all other objects referencing u must be equal to y. Or simpler, y is the only
guard object:

∀̇y. (Acc(y, u) → GuardObjx[x
.
= y](u))

Moreover there is an equivalent formulation with UniqueAcc:

∀̇y. (Acc(y, u) → UniqueAcc(y, u))

By inserting the definition of GuardObj and simplifying we get the following
formula, which obviously fits our expectations of a unique object:

∀̇y0. ∀̇y1.
(
Acc(y0, u) ∧ Acc(y1, u) → y0

.
= y1 ∨ y0 = u

)
This formalisation allows that u may reference itself, as . . .∨y0 = u indicates.
If this is not desired it is of course possible to define a macro predicate which
requires stricter uniqueness. ∗

Example 4.5 (Balloons). For balloons, it is required [Almeida, 1997] that
for an object b of a balloon type and the objects B indirectly referenced by b
the property holds: b is accessed at most once, the referencing object is not
in B, and all objects in B are only accessed by objects in B∪{b}. Formalised
in JavaFOL, this property is:

∀̇v.
(
Acc(v, b) → UniqueAcc(v, b) ∧ ¬Reach(b, v)

)
∧ Ency,z [y

.
= b,Reach(b, z) ∧ z 6 .= b] ∗

Example 4.6 (Whole-Part Pattern). The GuardObj or the UniqueAcc pred-
icate can be employed for simple versions of the Whole-Part pattern, namely
if the part’s state does not depend on additional objects. In this case, the
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Whole-Part pattern requires that there is no direct access to the parts (in-
stances of Part), only indirect accesses through the Whole object are allowed.
We can now formally denote this property as

∀̇p :Part. ∃̇w :Whole. GuardObjx[x
.
= w](p)

or if we already know that the value in field p is a part of a Whole and using
UniqueAcc, we write simpler: ∀̇w :Whole. UniqueAcc(w,w.p)

For the settings in Example 4.1, we would require the following invariant:

∀̇t :Triangle.
(
UniqueAcc(t, t.p0) ∧ UniqueAcc(t, t.p1)
∧UniqueAcc(t, t.p2)

)
This describes exactly the desired property that nodes may only be accessed
by means of Triangle. It is however not sufficient for the settings of Ex-
ample 4.2 since references to Colour objects would be allowed, even if they
‘bypass’ the corresponding Triangle object. ∗
Example 4.7 (Copy Mutable Parameters, Return New Objects from Ac-
cessors). These two patterns help to ensure that an object stored in a field
a of object o is only accessed through o itself, denoted in JavaFOL as

GuardObjx[x
.
= o](o.a)

In contrast to many other patterns, these two patterns exactly define how
encapsulation must be achieved, namely by copying parameters and return
values. Obviously only the effect of the pattern can be specified with encap-
sulation predicates. ∗
Example 4.8 (Confinement). Confinement defined by Vitek and Bokowski
[2001] allows developers to mark certain types as confined. Instances of these
types are required not to be accessed from outside the package in which the
type is defined. The formula that specifies the confinement demonstrates
that it is useful to have the possibility to use a formula ϕ(x) to qualify guard
objects.

We assume that we have a unary predicate confinedp which holds for every
object whose type is marked as being confined to package p. Let T1, . . . , Tn
be the types in package p. Only these classes may access types confined to
p. The following formula describes this property:

∀̇y.
(
confinedp(y)

→ GuardObjx[ExactInstanceOfT1
(x) ∨ . . . ∨ ExactInstanceOfTn

(x)](y)
)
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ExactInstanceOfT (t) is a variation of InstanceOfT (y) which requires that t
is not a strict subtype of T . A more formal definition of ExactInstanceOf()
can be found in Sect. 6.2.4. ∗

4.3.3 The GuardReg and UniqueReg Predicates

The GuardObj predicate restricts the accessibility of one single object. Of-
ten however, it is necessary to restrict the access to all objects indirectly
referenced by a particular one. To ensure, for instance, that in the object
graph of Fig. 4.1 references ¬ and  are not allowed, it must be required
that all objects reachable from t.p0 are only reachable through t. No re-
striction should however be imposed on references within the group of objects
reachable from t.p0.

Using the GuardObj predicate we can formalise such properties as follows
and define the GuardReg predicate:

GuardRegx[A;ϕ(x)](u)

:⇔ ∀̇z.
(
Reach[A](u, z) → z

.
= u ∨GuardObjx[ϕ(x) ∨ Reach[A](u, x)](z)

)
or equivalently:

GuardRegx[A;ϕ(x)](u)

⇔ ∀̇y. ∀̇z.
(
Reach[A](u, z) ∧ Acc(y, z) → z

.
= u ∨ Reach[A](u, y) ∨ ϕ(y)

)
In this formalisation one can associate the objects of the protected ‘region’
as those objects z which are reachable with fields A starting from an object
u. Any reference from an object y to such a z must either satisfy ϕ(y) or is
itself part of this region (i.e. reachable from u via fields A). Fig. 4.4 describes
GuardReg visually.

Like there was a UniqueAcc predicate introduced for the GuardObj predi-
cate we define a UniqueReg predicate as follows to capture the most common
application of GuardReg:

UniqueReg(g, u) :⇔ GuardRegx[x
.
= g](u)

Again, a survey of design patterns and alias control policies follows in-
tended to demonstrate the usefulness of the two additional macro predicates.
In addition, we mention how the predicate enables us to formally specify the
compositions-type associations of the modelling language UML.
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u

those y
satisfying ϕ(y)

X X

Figure 4.4: The GuardReg predicate illustrated. The bold and crossed-
out references are disallowed. The grey boxes are all objects
reachable from u

Example 4.9 (Islands). An object b plays the role of a bridge [Hogg, 1991]
if in all states the formula

∀̇x. (Acc(b, x) → UniqueReg(b, x))

holds. By applying the definition and simplifying we get:

∀̇x. ∀̇y. ∀̇z.
(
Acc(b, x) ∧ Acc(y, z) ∧ Reach(x, z) → Reach(x, y) ∨ b .= y

)
∗

Example 4.10 (Whole-Part Pattern, continued). The Whole-Part pattern
requires that there is no direct access to the parts (instances of Part), only
indirect accesses through the Whole object are allowed. For simple structures,
we have already observed above that it is sufficient to use a formulation using
the GuardObj predicate.

If, however, the Part objects’ representations consist of a more complex ob-
ject structure, this formulation is insufficient as Example 4.6 has illustrated.
Instead, we can express the desired property with the help of GuardReg.
The basic formalisation is:

∀̇p :Part. ∃̇w :Whole. UniqueReg(w, p) (4.1)

The validity of this formula implies that all objects that are (indirectly)
referenced by a Part are only accessed among each other or by a particular
Whole object.
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We take up the settings of Example 4.2. The special variant of the Whole-
Part pattern imposed there is that parts of the same aggregate may access
internals of each other. The guard object is thus not only the Whole instance
but also all objects reachable from the parts are guard objects, i.e. those x
satisfying

ϕg := x
.
= t ∨ Reach(t.p0, x) ∨ Reach(t.p1, x) ∨ Reach(t.p2, x)

The desired property is now formalised in JavaFOL as follows:

∀̇t :Triangle.
(
GuardRegx[ϕg](t.p0) ∧GuardRegx[ϕg](t.p1)

∧GuardRegx[ϕg](t.p2)
)

∗

Example 4.11 (Proxy Pattern). The proxy pattern requires exactly the
same property:

∀̇s :Subject. ∃̇p :Proxy. UniqueReg(p, s)

Note, that we can easily enable variations of the pattern, for instance we
might allow some objects (specified by the terms t0, . . . tn) to bypass the
proxy and have direct access to the subject:

∀̇s :Subject. ∃̇p :Proxy. GuardRegx[x
.
= p ∨ x .

= t0 ∨ . . . ∨ x
.
= tn](s) ∗

Example 4.12 (Iterator Pattern). With this pattern, it is demonstrated
that the parameterisation of the predicate with a set of fields A is in fact
useful. The objects that should only be accessible through the guard objects
are the internals of the aggregate object. For simplicity, we assume that the
aggregate object is a linked list LinkedList (like the Java implementation
java.util.LinkedList). We assume that the internals of the list are made
up by objects of a class Entry connected by a next field. The first object
of this region is stored in the header field of a LinkedList. The guard
objects are both the LinkedList instance and the ListItr iterator object
(this could be made more precise by describing only ListItr instances of the
particular list). The encapsulation property required for the Iterator pattern
is thus:

∀̇l :LinkedList.
GuardRegx[{next};x

.
= l ∨ InstanceOfListItr(x)](l.header) ∗
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AClass ItsPart
0..*

theParts

Figure 4.5: UML composition

Example 4.13 (UML Compositions). In the UML, classes and their interre-
lation can be modelled in class diagrams. The relation between instances of
classes are denoted as associations between classes. There are special kinds
of associations, for instance compositions. These are depicted with a filled
diamond adornment (see Fig. 4.5) and emphasise that one partner in the re-
lation has sole responsibility for managing the parts of the other partner. As
a consequence, accessing these objects directly is forbidden. We can capture
this property formally as in (4.1):

∀̇p :ItsPart. ∃̇w :AClass. UniqueReg(w, p) ∗

4.3.4 Expressing Advanced Ownership Systems

Ownership type systems are the most advanced technique to enforce encap-
sulation. In their first definition [Clarke et al., 1998], the expressible en-
capsulation properties were rather strict: All objects are owned by another
object and only the owner and objects with the same owner are allowed to
reference owned objects. The ownership relation is acyclic and is enforced
by annotating variables with the modifier rep. Annotating a variable ref-
erence v as rep makes objects stored in this location being owned by the
object which declares the variable reference v. Objects indirectly referenced
by such a rep reference belong to the object’s representation. In more recent
incarnations, restrictions have been lifted [Clarke et al., 1999, Müller, 2002,
Boyapati et al., 2003, Banerjee and Naumann, 2005].

As an example we consider Müller’s variant called Universe type system as
described in Müller [2002], Müller and Poetzsch-Heffter [2001]. The major
progress of the Universe type system is to allow for readonly references, which
forbid to write to objects obtained by such references.

Central paradigm of ownership systems is that every object has an owner
which is not transferable to other objects.1 Assume we have an acyclic partial

1In fact, there are ownership type systems which aim at owner transfer [Boyapati et al., 2003]. Universes
do not allow it however.
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Predicate Definition

Acc(t1, t2) (Axiom, ‘there are direct references from t1 to t2’)

Reach(t1, t2) (Axiom, ‘there are access paths from t1 to t2’)

Ency,z [A; g(y), p(z)] ∀̇y. ∀̇z. Acc[A](y, z) ∧ p(z) → p(y) ∨ g(y)

GuardObjx[ϕ(x)](u) ∀̇y. Acc(y, u) → ϕ(y)

UniqueAcc(g, u) GuardObjx[g
.
= x](u)

GuardRegx[A;ϕ(x)](u) ∀̇y. ∀̇z.
(
( Reach[A](u, z) ∧ Acc(y, z))
→ (z

.
= u ∨ Reach[A](u, y) ∨ ϕ(y))

)
UniqueReg(g, u) GuardRegx[g

.
= x](u)

Table 4.1: Overview of encapsulation predicates

function Own[R;F ]s being the interpretation of a binary predicate symbol
Own[R;F ] which we include into our signatures. This relation defines which
object is owned by which other one. It is parameterised with the fields
R declared as rep and the fields F declared as readonly. Every object
referenced through a rep field is owned by the object which declares this
field. Additionally, every object referenced by an owned object is owned by
the same owner unless this reference is in R ∪ F .

The ownership invariant then requires that only the owner of an object e
or objects owned by the same owner access e and that this access happens
using a field in R or that the reference is readonly. We can formalise this in
JavaFOL over the extended signature as follows:

∀̇x. ∀̇y. ∀̇z.
(

Own[R](x, z)

→
(
Acc[R](y, z) → y

.
= x

)
∧

(
Acc[R ∪ F ](y, z) → Own[R](x, y)

))

In Sect. 8.4 we will present a technique which infers encapsulation prop-
erties automatically using a very similar formalisation.

99



4 Specification of Encapsulation Properties

4.4 Summary

In this chapter we have investigated how encapsulation properties can be for-
malised. For a seamless integration with functional specification, we decided
to extend traditional specification languages, and as prototype JavaFOL,
with encapsulation predicates. Basic encapsulation predicates are the Acc
family of predicates and the Reach predicate. On top of these a number of
macro predicates (see Table 4.1) have been defined, the most powerful being
the Enc predicate restricting access from one set of objects to another, each
defined by a characteristic formula. Examples from alias control approaches
and common design patterns have shown the feasibility of the approach.

In Sect. 8 we will investigate how encapsulation properties can be checked,
possibly exploiting procedures developed in the area of type systems. In
Sect. 9.3.3 encapsulation predicates will turn out to be the important ingre-
dient from the specification side to enable modular verification of invariants.
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Facilius per partes in
cognitionem totius adducimur.

(Seneca)

The basic principle of contracts is to divide obligations between two par-
ties, so that one party can rely on the services of the other. In Chapter 3
these two parties were caller and callee of an operation. Callers were respon-
sible to ensure the precondition of an operation contract which in turn made
the callee promise to assert the corresponding post-condition, the correctness
of the assignable clause, a certain termination behaviour, and all invariants.

In this chapter the notion of contracts is extended to component contracts.
Though traditional contracts will not disappear they get wrapped in a second
layer of mutual responsibilities, which is quite similar to the first notion of
contract.

Operation contracts, more precisely their preconditions, restrict the set
of allowed calls to an operation; the caller, possibly not located within the
considered open program, is responsible to ensure the precondition, accord-
ing to the statement: If a caller ensures the precondition then the callee
promises to establish the postcondition. While there, we were concerned
with the dynamic caller/callee interface, we are now interested in the static
program/extension interface. The contract metaphor is used here as follows:
If an extension, that is, classes that use the open program, satisfies certain
conditions, then the considered open program fulfils its specification.

The new ‘preconditions’ are obligations the user of a component has to es-
tablish. They are written up as extension contracts as presented in Sect. 5.1,
while the new ‘post-conditions’, the properties the component ensures, are
the classical contracts from Chapter 3.

To impose restrictions on the context as ‘preconditions’ is ambivalent:
On the one hand, this is not desired at all in an open world, since it is
the contrary of our original goal to have trusted components no matter in
which environment they are employed. On the other hand it is obviously

101



5 Component Specifications

necessary and comes with no surprise that one needs to rely on contexts
which adhere to certain criteria: In a re-use context one deliberately wants
to adapt behaviour to the new context; it can then quite easily happen that,
with this change, behaviour is affected which is sensitive to the correctness
of the re-used program.

So the new preconditions are not a desired feature, they are a pure ne-
cessity with languages which aim at making programs easily extensible (or
re-usable). Especially object-oriented programming has ever been promoted
with this goal. From the perspective of formal methods, one ideally would
want component contracts with an empty set of extension contracts, but this
could only be achieved at the cost of an inextensible system.

There are two places where we need restrictions on the context:

• Modular proofs: subclasses must be behavioural subtypes.

• Ensuring invariants in an open poorly encapsulated context: For in-
stance, encapsulation behaviour is propagated to subclasses in the con-
text, or the context itself is made responsible to maintain invariants.

Outline. We describe the ‘preconditions’ of component contracts, that is,
generic extension contracts in the next section. In Sect. 5.2 contracts for
components are defined.

5.1 Generic Extension Contracts

This section defines how requirements on the context a program is used in
are specified. When we reason about correctness issues, this context can be
identified with the notion of an observer as defined in Chapter 3.

The obvious problem with specifying a context is, that a lot of information
is unavailable at the time such a specification is written: For instance, no
type or operation names of the context are known at the time of specification.
Thus specifications cannot simply be attached to a type or an operation.
Instead it is needed to

1. generically describe the context elements a specification is attached to,
and

2. provide conditions, which must be satisfied, if a context type should
comply to a specification.
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In the following we describe how we achieve this for JavaFOL specifications.
Since specifications are usually written in ‘real’ specification languages, these
features must be added to such languages. We exemplify these additions for
UML/OCL and JML in this section. Note that generic extension contracts
are not part of these languages but are proposals for extending them.

5.1.1 Syntax

Like for generic types in some programming languages (like Java 5 [Gosling
et al., 2005]), we introduce type parameters to make contracts generic. Type
parameters must be declared in a header in front of the specification which
uses them. They are accompanied with conditions (instantiation constraints)
on allowed instantiations of the parameters.

Every specification in JavaFOL or in a specification language has to name
the type(s) it imposes constraints on. We extend JavaFOL and specification
languages by allowing for type variables replacing these type names. More
generally, wherever a type name is expected according to the specification
language’s syntax, a type parameter may be used.

Instantiation constraints allow for specifying which classes may be instan-
tiated for the type parameter. For a type parameter T, the following instan-
tiation constraints are provided:

1. extends* <TypeName>

2. unconstrained

Note that these instantiation constraints are just those needed in this work,
for other applications one may think of other patterns, like for instance, T
are all classes in package p.

A header entry with the declaration of generic parameters and the instan-
tiation constraints looks as follows:

<TypeParameterName> <InstantiationConstraint> ;

A headers contains at least one of such entries.

Example 5.1. The following is a header which specifies that the type pa-
rameter T stands—in the following specification—for an arbitrary subtype of
Period.

T extends* Period; ∗
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Altogether, a generic contract consists of a header and a specification writ-
ten as usual in the considered specification language except that type names
may be replaced by type parameters. A generic contract is additionally bor-
dered by the key words generic contract and a pair of curly braces. A
generic contract thus has the following shape:

generic contract {

(<TypeParameterName> <InstantiationConstraint> ;)+

<SpecificationWithTypeParameters>

}

In the sequel, the concept is clarified by concrete applications using JavaFOL,
JML, and UML/OCL.

JavaFOL Specifications

In JavaFOL specifications, types appear

• in quantifications, e.g. as T in ∀x :T. ,

• as sorts of terms, and

• as part of the operation designation in an operation contract.

We allow that type parameters replace these concrete types. Therefore an
extension Generic(Σ) of a JavaFOL signature Σ is defined which comprises
the declared type parameters as part of their type symbols:

Definition 5.1. For a signature Σ with types T , the signature Generic(Σ)
augmented with type parameters R1, . . . , Rn is identical to Σ except that its
types are T ∪ {R1, . . . , Rn}.

We call specifications (according to Def. 3.1) over a signature augmented
by type parameters declared in a header generic specifications. Furthermore
we explicitely allow that a type parameter may occur in the description of
an operation (in extension to Def. 3.2).

JML

JML specifications are (in principal) annotations to Java source files. It is
however possible to separate specifications from implementations by using
extra files which contain copies of the signatures of the Java type to be
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specified. So even then, JML specifications keep the appearance of Java
source files. Consequently in JML, the type a specification is belonging to
is indicated by the Java class or interface declaration it is located in. For
instance, to specify class Period the specification of invariants and operations
follows the declaration of the class

public class Period { //...

In our modifications for extension contracts, type parameter may now simply
replace the type name. We give three examples on the realisation of extension
contracts in JML.

Example 5.2. In order to specify that all (indirect) subclasses of Period
must satisfy an instance invariant ϕ(self) we write:

generic contract {

T extends* Period;

class T {

/*@ instance invariant ϕ(this) */

}

} ∗

Example 5.3. We formalise that all methods declared as void m(int p) in
all (indirect) subclasses of Period behave according to an operation contract
with precondition ϕpre, post-condition ϕpost and assignable clause Mod as
follows:

generic contract {

T extends* Period;

class T {

/*@ public behavior

@ requires ϕpre;

@ ensures ϕpost;

@ assignable Mod;
@*/

public void m(int p);

}

} ∗

Example 5.4. Even all classes can be required to satisfy a (static) invariant
ϕ. This is done as follows:
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generic contract {

T unconstrained;

class T {

/*@ static invariant ϕ*/
}

}

Note that it is usually not possible to write instance invariants in generic
contracts where the type parameter is unconstrained. Instance invariants
typically refer to instance members, but since we are in a generic context it
is impossible to refer to instance members (except from those present in all
objects, like equals(Object). ∗

OCL

In OCL the constrained type is usually given following the keyword context.
To have generic contracts, this type name is replaced by a generic parameter.
Ex. 5.2 would thus be expressed in OCL as follows:

generic contract {

T extends* Period;

context T

inv: ϕ
}

5.1.2 Semantics

For defining a semantics of generic contracts we transform generic contracts
into regular specifications of the base specification languages. Therefore, we
replace or instantiate the type parameters with concrete types of a program
P and check whether the instantiation constraints are satisfied. If this is
not the case these contracts are sorted out. Otherwise the result (without
header) forms the new specification of P .

The first step is to assign classes and interfaces of a program to the type
parameters. In the sequel, let par(gct) be the set of type parameters occur-
ring in a generic contract gct.

Definition 5.2. An instantiation ι of gct to a program P is a total function

ι : par(gct) → Typenames(P )
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where Typenames(P ) is the set of names of the types of P . An instantia-
tion is canonically continued on instantiation constraints and whole generic
contracts over G (i.e. generic JavaFOL, JML, or UML/OCL specifications).

Example 5.5. Let MyPeriod be a subclass of Period and SomeClass be no
(even indirect) subclass of Period. Instantiations of the generic contract gct
from Example 5.2 to a program {MyPeriod, SomeClass} are the functions
ιi : {T} → {MyPeriod, SomeClass} for i = 1, 2 with ι1(T) = MyPeriod and
ι2(T) = SomeClass.

Further we have the instantiated generic contracts:

ι1(gct) =



generic contract {

MyPeriod extends* Period;

class MyPeriod {

/*@ instance invariant ϕ(this) */

}

}

ι2(gct) =



generic contract {

SomeClass extends* Period;

class SomeClass {

/*@ instance invariant ϕ(this) */

}

} ∗

Then we can check the instantiation constraints (containing only concrete
types) whether they are satisfied.

Definition 5.3. Let C and D be names of Java classes or interfaces. Instan-
tiation constraints are satisfied as described below:

• An instantiation constraint D extends* C is satisfied if D � C.

• The instantiation constraint C unconstrained is always satisfied.

Suppose gct is a generic contract and P a program. An instantiation ι of
gct to P is legal if all instantiation constraints of ι(gct) are satisfied.

Example 5.6. Continuing Ex. 5.5, the instantiation constraint in ι1(gct) :

MyPeriod extends* Period;
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is satisfied, while the instantiation constraint in ι2(gct):

SomeClass extends* Period;

is not. ι1(gct) is thus legal, while ι2(gct) is not. ∗

From now on we restrict the number of type parameters per contract to 1,
which covers all cases we need in this work. The final step is to say that legally
instantiated generic contracts are the resulting generated specification.

Definition 5.4. A generic contract gct generates the specification S for
program P if S is the union of all legal instantiations from gct to P ; hereby
the headers and the key word generic contract and the enclosing braces
are omitted such that syntactically valid specifications emerge.

Given now a set of generic contracts GCt. GCt generates the specification
S for a program P if S is the union of those specifications generated by the
generic contracts gct ∈ GCt.

Example 5.7. We continue Ex. 5.6. The generic contract gct generates the
following regular JML specification for the set {MyPeriod} of classes:

class MyPeriod {

/*@ instance invariant ϕ(this) @*/

} ∗

5.1.3 Relative-Durable Correctness

Generic extension contracts enable us to weaken durable correctness, which
was defined in Def. 3.11. In that definition, we were utilising an arbitrary
closure of the considered program and had thus an arbitrary observer1. This
arbitrariness is now lost: We require from an observer that contracts gener-
ated from an extension contract are fulfilled.

Definition 5.5 (Relative-Durable Correctness). Let S be a specification of
an open program P . Let further GCt be a set of generic contracts. Suppose
P cl is a closure of P and GCt generates the specification S ′ for Obs := P cl\P .
Furthermore we assume that every method or constructor op of P with an
operation contract in S is called by Obs only in a state where the precondition
of at least one fitting operation contract from S is satisfied. P is durable
correct relative to GCt w.r.t. S if

1Note, that arbitrariness is weakened in the sense that the observer must respect preconditions of opera-
tions.
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• Obs is naively correct w.r.t. S ′,

• all invariants hold after an arbitrary method of Obs has terminated,

• all invariants are valid in the initial state of P ,

• all operations op of P fulfil the operation contracts for op in S.

For restrictions on extensions of the context we use here the naive correct-
ness as defined in Def. 3.9. Since we want to make it as easy as possible for
developers extending or reusing a program to satisfy conditions which make
the used component correct and naive correctness is quite easy to establish,
this is a natural choice.

Example 5.8. We come back to the introductory example from Sect. 1.2. We
have seen that by overriding earlierOrEqual(Date) in Date2 in a context,
is was possible to violate an invariant, though the open program {Period}
seemed to be durable correct otherwise (with the original use of defensive
copies). We can now constrain a context in a way that arbitrarily overriding
earlierOrEqual(Date) is disallowed. We require earlierOrEqual(Date)

to conform to the specification in Date. This can be achieved with the generic
contract gctearlierOrEqual(Date)

generic contract {

T extends* Date;

class T {

/*@ normal_behavior

@ requires cmp !=null;

@ ensures \result == (year<cmp.year || (year==cmp.year

@ && month.val<=cmp.month.val));

@*/

/*@pure@*/ boolean earlierOrEqual(Date cmp);

}

}

Then all subclasses which override earlierOrEqual(Date) must fulfil the
operation contract as defined in Date. The code in Period can rely on a
proper implementation of this method and can thus establish (in the sense
of durable correctness) its invariant.

It can easily be seen that a similar effect is possible for the method copy()

which is called from the constructor of Period. Here we impose the generic
extension contract gctcopy():
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generic contract {

T extends* Date;

class T {

/*@ normal_behavior

@ ensures ( \result.month.val==month.val

@ & \result.year==year

@ & \fresh(\result) & \fresh(\result.month);

@*/

/*@pure@*/ Date copy();

}

}

We will later (in Sect. 10.2) aim to show that {Period} is durable correct
relative to {gctearlierOrEqual(Date), gctcopy()}. ∗

Note that it might be sometimes useful to strengthen generic contracts in
order to hide implementation details from the context. It is always possible
to

• make invariants stronger than originally required,

• likewise make postconditions stronger,

• weaken preconditions,

• allow for a subset of the original assignable clause,

• and require the same termination behaviour as before or total .

Concerning assignable clauses, we could even be more liberal by allowing
locations which are only present in the extensions to be part of the new
strengthened clause. This however requires more thorough investigations,
which is object of future work.

5.2 Component Contracts

As already motivated in the introductory notes to this chapter, a component
contract for a component consists of
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• a set GCt of generic extension contracts (as defined in the last section)
and

• a specification S imposed for classes and operations of the component
in question.

More precisely we define:

Definition 5.6. Let P be a component (or equivalently an open program).
Let further be S a specification (Def. 3.1) of P . Let GCt be a set of generic
contracts. Then the pair (GCt, S) is a component contract for P .

GCt plays the role of a ‘precondition’, in the sense that it is an obligation
for the ‘outside’ of the component to fulfil the specification generated by GCt
for this context. If it is fulfilled however, the component must in turn fulfil
its specification S.

With this, obligations for the clients of a component are introduced. Re-
member that, according to Def. 3.11, a client (or observer) was only required
to establish local operation preconditions before an operation was called. Still
though, no invariants of the considered component need to be established,
instead all invariants of the component are guaranteed.

Definition 5.7. A component P is correct w.r.t. the component contract
(GCt, S) for P if P is durable correct relative to GCt and with respect to S
(see Def. 5.5).

Example 5.9. Let P be the component consisting only of the class Period.
Let cct be the component contract consisting of the specification given by the
annotated JML specification and gctearlierOrEqual(Date), gctcopy(). Provided all
other requirements were met as assumed in Ex. 5.8, P is correct w.r.t. cct. ∗

5.3 Summary

This chapter introduced the notion of a component contract. Analogously to
operation contracts, clients making use of a component can benefit from the
promises of a component contract only if they fulfil certain preconditions.
These preconditions are expressed by means of generic extension contracts,
a formalism introduced here, which transfers the concept of type parameters
to specifications.
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We show how to verify component contracts in Chapter 10. Generic ex-
tension contracts are needed there and in Chapter 6 to allow for a liberal
notion of modular proofs.
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Modular Verification
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Omnia iam fient fieri quae
posse negabam.

(Ovid)

In Sect. 2.3, we have defined the validity of formulae, the soundness of
rules, and closed proofs relative to a closed program context. When dealing
with extensible or even open programs there is however no such unique closed
program. In a modular environment we give up a fixed context, but have an
unchanged core context with unknown extensions.

And in fact it is difficult to extend the notion of validity of JavaDL formulae
to programs which can arbitrarily be extended. Consider again the extension
made to Ex. 1.1 by subclassing Date with the class Date2 (see Sect. 1.2).
A formula which states that, after a Period object is constructed, the start
date lies before the end date in the usual sense:

∀d1 :Date. ∀d2 :Date. {d1 := d1, d2 := d2}
[p = new Period(d1,d2);]

(p.start.year < p.end.year

∨( p.start.year = p.end.year

∧p.start.month.val ≤ p.end.month.val))

(6.1)

is valid in a program context {Period, Date}, but it is not valid in the
context {Period, Date, Date2}. The reason for this is obviously that the call
to the method earlierOrEqual(Date) is bound dynamically w.r.t. to the
(statically unknown) runtime type of the object argument of the constructor
call. Without fixing or at least constraining a particular program context
(6.1) cannot be valid, in the presence of dynamic binding.

Dynamic binding is the primary vehicle to foster re-use of object-oriented
programs by making it possible to adapt programs. It would thus be no
help to forbid the use of dynamically bound methods in programs we ver-
ify. Instead it must be supported adequately. On the other hand it is the
most problematic one to deal with when we adapt JavaDL in this chap-
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ter for more modularity. We investigate in this section how a definition
of validity can be achieved which is independent from additions to the un-
derlying program. Such a validity is called modular validity. By declaring
earlierOrEqual(Date) final, we would forbid that this method is overrid-
den. It would be thus possible to achieve this strict notion of modular validity
in our example. If more reusability is desired however, we need a less restric-
tive version. Modular validity is thus weakened by imposing restrictions on
the reuse context. In this case we speak of relative modular validity.

Since we are approaching validity with a calculus, all notions of modu-
lar validity are transferred to notions of soundness of rules in the JavaDL
calculus.

Overview. First, we modify the notion of validity and soundness in a mod-
ular sense. In Sect. 6.2 we investigate the JavaDL rules according to these
new notions. Since it turns out that adaptations are needed, Sect. 6.3 defines
the weaker notion of relative modularity and soundness. In the subsequent
section the JavaDL calculus is made compliant to these relativised criteria.

6.1 Modular Validity and Modular Soundness

In Sect. 2.3 we have evaluated a JavaDL formula in one fixed context. Now
we know just a part of the context, the core context, in which the evaluation
happens while all the rest of the context is unknown.

Let Σ be a JavaDL signature and P a closed Σ-program. Let P ′ be a closed
program with P ⊆ P ′. A JavaDL-formula ϕ ∈ DLFmaΣ which is valid in P
is not necessarily valid in context P ′.

Example 6.1. We consider the following three Java classes:

class A {

public int p() {

return 0;

}

}

class B extends A {

public int p() {

return 1;

}

}

class Main {

public static int main(A a) {

return a.p();

}

}
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With P = {A, Main}∪JCl, and P ′ = {A, Main, B}∪JCl, the JavaDL formula

∀a :A. {a := a}(a 6 .= 0 → 〈 x=Main.main(a);〉 x .
= 0) (6.2)

is valid in P but not valid in P ′ because the method call a.p() in main is
bound dynamically. ∗

In this example the core context has been a closed program. We liberalise
this from now on, by allowing the core context to be an open program. This
gives rise to the following definition:

Definition 6.1. Let Σ be a JavaFOL signature and P a (possibly open)
Σ-program. A JavaDL formula ϕ ∈ DLFmaΣ is modularly valid in a core
context P if it is valid in all closures P ′ of P . We write: |=∅

P ϕ.

The reason for the notation |=∅
P ϕ will become clear in Sect. 6.3 when we

allow for other sets than ∅ as parameter.

Example 6.2. In the settings of Ex. 6.1, (6.2) is not modularly valid in the
core context P .

We may declare method p() in class A as final, which means, according to
the Java semantics that p() must not be overridden. Then (6.2) is modularly
valid in the core context {Main, A}. The subclass B, which overrides p() is
illegal, which will already be detected by the Java compiler. ∗

So far we have noticed that adding a class to a context could invalidate
JavaDL formulae. This is the interesting (and dangerous) case for modular
correctness. As a side-remark however, there is also the analogous phe-
nomenon that removing a class from the context can make a valid formula
invalid, though syntactic validity of the formula and compilability of the
context is maintained. Interestingly however, an example is much harder
to find than before, and seems impossible to find by exploiting the effects
of dynamic dispatching only. By referring to dynamic types of objects it is
however possible: The formula

∃x :A. (Reach[<nextToCreate>](A.<first>, x) ∧ ¬ InstanceOfA(x))

states that there is an instance of A which is no direct instance of A, that
is it must be an instance of a subclass of A. For the used specification-
only fields please refer to Sect. 2.3.6. This formula is valid in the context
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P ′ = {A, Main, B} but not in the subset P = {A, Main}. Thus in general, a
valid formula ϕ ∈ DLFmaΣ in context P ′ is not necessarily valid in context
P ⊆ P ′.

The definition of modular soundness is a variation of the regular soundness
for a fixed context in Def. 2.21. After having clarified what modularly valid
means, the definition of rule soundness is however straightforward:

Definition 6.2. A rule
seq1 · · · seqk

seq0

(with seq0, . . . , seqk ∈ SeqΣ) is modularly sound in the core context of a
Σ-program P which is a Σ-program if the following implication holds: If
seq1, . . . , seqk are defined for P and are modularly valid in the core context
P then seq0 is modularly valid in the core context P (Def. 6.1).

A rule r is modularly sound if for all signatures Σ with seq0, . . . , seqk ∈
SeqΣ: r is modularly sound in all core contexts P which are Σ-programs.

The following section analyses whether the rules of the JavaDL calculus
are modularly sound.

6.2 Modularity of the JavaDL Rules

Fortunately the JavaDL calculus is already well suited for modularity. Only
a few rules depend on the whole context. Thus only these few rules must be
specially adapted. We cope with this issue in the next section.

First we present and discuss the rules of the JavaDL calculus which turn
out to be problematic for extensible programs. In Sect. 6.2.4 the other rules,
which all pose no problem, are discussed.

6.2.1 Method calls

Method calls to methods which are not static and not private must be dis-
patched dynamically [Gosling et al., 2000], that is, the (dynamic type of the)
receiver object determines which concrete method body is invoked. In the
preceding example we have seen that the resolution of method calls which
are to be dynamically dispatched is problematic to treat in a modular way.
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Inlining methods

One possibility to deal with methods in the JavaDL calculus is to symbol-
ically execute (inline) their method body, like the virtual machine would
do. If dynamic binding is required, that is we have a non-private non-static
method call, a preprocessing step simulates dynamic binding by constructing
a cascade of if (. . .){. . .} else {. . .} statements. The cascade discrimi-
nates according to the dynamic type of the receiver expression. If static
binding is required only the method body is determined according to the
static type of the receiver object. Beckert [2000] describes this rule in more
detail.

Let e.m(p1,..., pn) be a (correctly typed) method reference, e, p1,. . . , pn
being expressions which are (already by their syntactical shape) side-effect
free, and let r be a program variable of the return type of the referenced
method. In JavaDL, we have the following rule scheme to resolve method
references which assign their return value to r1:

Γ `

〈
..

if (e instanceof C1) r=e.m(p1,. . ., pn)@C1;

else if (e instanceof C2) r=e.m(p1,. . .,pn)@C2;
...

else if (e instanceof C`) r=e.m(p1,. . .,pn)@Ck;

...

〉
ϕ,∆

Γ ` 〈.. r = e.m(p1,. . ., pn) ...〉ϕ,∆
(6.3)

The used symbols are explained in the following:

• C1, . . . , Ck is a topological order (i.e. Ci � Cj implies i < j) of those
k classes in the context which have a non-abstract method declara-
tion which is applicable [Gosling et al., 2000] to the method reference
m(p1, . . . , pn).

• if a static or a private method is referenced, then k = 1 and C1 = T if
T is the (static) type of e.

• the notation r=e.m(p1,...,pn)@Ci is called method body statement
and is a placeholder for the method body of the method declaration
which is applicable to m(p1,...,pn) in class Ci and assigns return
values to r, as defined in 2.3.4.

1When we consider method references, here and throughout this chapter, we only give rules for assignments
from method references (to a variable). The rules for method references which do not assign the returned
type or which reference void-methods are analogously defined.
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• As a general remark for JavaDL rule schemas, note, that the symbol ..
stands for a sequence of opening braces or trys, etc., and the symbol
... represents a continuation of the program which is not interesting
for the rule, since a JavaDL rule processes only the first active state-
ment. See Beckert [2000] for details.

For a more concise presentation, we ignore the fact that static analyses
might provide optimisations to this rule, for instance by reducing alterna-
tives. In particular, the sequence of classes C1, . . . , Ck can always stop at the
smallest supertype of the static type of e which provides a method declara-
tion (if there is one). Furthermore the sequence does not need to incorporate
classes which are no subtypes or supertypes of the static type of e. These
optimisations are in place in the original JavaDL calculus and implemented
in KeY. Though Rule (6.3) produces trivially closeable branches, it correctly
simulates dynamic dispatching according to the Java language specification.
Proving the soundness of this rule is however out of scope of this work; see
Sect. 2.3.5 for approaches to verify JavaDL rules. We thus postulate with
the help of Lemma 2.2: For every given context P , Rule (6.3) is sound in P .

If we identified the word context in Rule (6.3) with core context, Rule (6.3)
would not be modularly sound. Consider the following JavaDL derivation
with the (core) program context P = {A, Main}∪JCl as introduced in Ex. 6.1:

〈if (a instanceof A) r=a.p()@A;〉 r .
= 0

〈r = a.p();〉 r .
= 0

The premise is modularly valid in P , since—independent from the context—
the method body in A is executed, which returns 0. The conclusion is not
modularly valid in P : Though it is valid in context P , it is not valid in
P ∪ {B}. Altogether this rule (application) shows the non-modularity of
(6.3).

Moreover we run into problems since open programs are in general allowed
as core context: Some types are only provided as skeletons but their methods
are possibly referenced. Method bodies as requested by the method body
statements used in this rule may thus not exist.

Using Operation Contracts

There is an equivalent rule to (6.3) in JavaDL. It requires the existence of a
specification S which is over the same signature Σ as the sequents involved
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in the rule. Let the program context be a Σ-program P . The rule is more
suited to cope with open core program contexts. It requires, to be sound,
that additional conditions, namely the correctness of the needed operation
contracts in S, are proven in separate proofs but with the same program
context. The rule is defined as follows (with the same legend as in Rule (6.3));
the differences to that rule are described directly below:

Γ `

〈
..

if (e instanceof D1) m′D1
(e;p1,. . .,pn;r);

else if (e instanceof D2) m′D2
(e;p1,. . .,pn;r);

...

else if (e instanceof D`) m′D`
(e;p1,. . .,pn;r);

...

〉
ϕ,∆

Γ ` 〈.. r = e.m(p1,. . ., pn);...〉ϕ,∆
(6.4)

We use in this rule a sequence D1, . . . , D` instead of the sequence C1, . . . , Ck
from above. If a static or a private method is referenced, then ` = 1 and
D1 = T if T is the (static) type of e. Otherwise: In D1, . . . , D` we have,
compared to C1, . . . , Ck, skipped complete subtrees in the subtype hierarchy,
and included all method declarations, even those that are abstract and thus
do not provide a method body. Formally we can state these properties as
the existence of a set CS ⊆ P (called cut-set) with the following properties:

• D′
1, . . . , D

′
`′ is a topological order2 (i.e. if D′

i � D′
j then i < j) of those

` interfaces or classes in the context which declare a method that is
applicable [Gosling et al., 2000] to the method reference m(p1,...,pn).

• D1, . . . , D` is a subsequence of D′
1, . . . , D

′
`′,

• CS ⊆ {D1, . . . , D`},

• for all i = 1, . . . , ` and all supertypes T of Di: T ∈ {D1, . . . , D`}, and

• D1, . . . , D` does not contain strict subtypes of CS.

We can now define what m′C(e; p1, . . . , pn; r) means. This expression stands
for r = e.m(p1, . . . , pn)@C or for a virtual method body that fulfils all op-
eration contracts in S which are for the method declaration in C under the
assumption of invariants I. We write mS,IC (e; p1, . . . , pn; r); for such a method

2Since interfaces are involved we are now considering a DAG instead of a tree
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body; we will see later how we proceed with it in the calculus. Precisely, we
have:

m′C(e; p1, . . . , pn; r); =



e.m(p1, . . . , pn)@C; if C /∈ CS and if there is
an applicable non-abstract
method for m(p1,...,pn)

declared in C.

m
S,I
C (e; p1, . . . , pn; r); otherwise

Two issues with this rule need to be clarified in the following:

1. Under which circumstances is this rule sound?

2. How is m
S,I
C (e; p1, . . . , pn; r); precisely defined and how can it be re-

solved in the JavaDL calculus?

For Rule (6.4) to be sound for a method m requires that for all C ∈ CS�
and all operation contracts ct of S applicable to the method declaration of
m in C: m fulfils ct under the assumption of a subset I of Inv.

Let us assume that this condition holds. Let C ′ be an arbitrary subclass of
C and ϕ a formula. Moreover we assume that e is an instance of C ′. Then:

|=P 〈e.m(p1, . . . , pn)@C
′;〉ϕ (6.5)

implies

|=P

〈
m
S,I
C (e; p1, . . . , pn; r);

〉
ϕ

Thus (6.5) also implies

|=P

〈
..

if (e instanceof C ′
1) r=e.m(p1,...,pn)@C

′
1;

else if (e instanceof C ′
2) r=e.m(p1,...,pn)@C

′
2;

...

else if (e instanceof C ′
k) r=e.m(p1,...,pn)@C

′
k;

...

〉
ϕ

if C ′
1, . . . , C

′
k are all subclasses of C. With this implication we can further

conclude that the soundness of Rule (6.3) implies the soundness of Rule (6.4).
Like Rule (6.3), this rule is neither modularly sound as can be demon-

strated with the same settings as in Ex. 6.1. Since concrete method bodies
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of all classes are not needed, but specifications suffice, open programs can
however be dealt with.

To resolve the construct mS,IC (e; p1, . . . , pn; r);, ‘the method body that ful-
fils the operation contracts for m@C in S under the assumption of invariants
I’ the calculus provides the following rule:

Γ ` ϕpre(e; p1, . . . , pn),∆

Γ ` I,∆

Γ ` ( ϕpre(e; p1, . . . , pn) ∧ I
∧ {u}ϕpost(e; p1, . . . , pn; r; exc)) → {u}ϕ,∆

Γ `
〈
m
S,I
C (e; p1, . . . , pn; r);

〉
ϕ,∆ (6.6)

where ct is an operation contract of S with the precondition ϕpre(e; p1, . . . , pn)
and the post-condition ϕpost(e; p1, . . . , pn; r; exc). The update u is gener-
ated from the assignable clause Mod = Mod(e; p1, . . . , pn) of ct according to
Def. 2.13: u = u(Mod). Furthermore I is the subset of all invariants Inv in
S under the assumption of which ct is fulfilled.

This soundness of Rule (6.6) (under the assumption that C fulfils the
operation contract given for method declaration m in C) is proven in Katz
[2003] and Beckert and Schmitt [2003].

We would like to note that the interplay of Rules (6.4) and (6.6) requires
a sophisticated proof management system which we have integrated into the
KeY system. It keeps track of rule applications of (6.6) and of proofs of the
underlying contract. It forbids ‘cyclic applications’ of that rule. Imagine,
for instance, we would use (6.6) for mS,IC (e; p1, . . . , pn; r); in the proof of the

correctness of a method p and would then try to use p
S,I ′

C (e; p1, . . . , pn; r);
in the proof of m, we would not be able to argue as before that proofs using
Rules (6.4) and (6.6) can be transformed in proofs using only Rule (6.3).

Example 6.3. As illustrative example consider the following class:

public class A {

/*@ ensures \result==3 @*/

int m0() {

return m1()-1;

}
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/*@ ensures \result==4 @*/

int m1() {

return m0()+1;

}

}

The following formula, which tries to show the correctness of the method
contract of m0() (as annotated in JML), is not valid:

〈r=m0();〉 r .
= 3

Using the annotated specifications during proof construction and applying
Rules (6.4) and (6.6) with the annotated contracts without proof manage-
ment interdicting cyclic applications of lemmas, it is possible to prove this
formula. When we prove m0() we use the contract that m1() returns 4. And
when we prove m1() the contract that m0() returns 3 is employed. Proof
management intervenes when the second action is attempted. ∗

6.2.2 Static Analysis for Valid Array Store

According to Gosling et al. [2000] an ArrayStoreException is thrown if an
object e is assigned to an array slot of an array arr and e is not assignment
compatible [Gosling et al., 2000] to the element type of arr.

When KeY symbolically executes an assignment to an array slot, formulae
are created which contain a binary predicate ArrayStoreValid (relating the
array arr and the right hand side e). It is used to distinguish between the
case that an array store exception is thrown and the case that this does not
happen. The interpretation of this predicate is defined as follows: (e1, e2) ∈
ArrayStoreValids,P iff e1 6= null is an array and for all integers i in the range
of e1 the assignment e1[i]=e2; does not raise an array store exception.

The JavaDL calculus contains a rule to resolve ArrayStoreValid formulae
by statically analysing e1 and e2. It determines, depending on all possible dy-
namic types of the involved array and the right hand side of the assignment,
whether

1. an array store exception cannot arise from an assignment e1[i]=e2;,

2. an array store exception must necessarily arise from e1[i]=e2;,

3. no decision if an array store exception is thrown can be met with the
given information.
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In the first two cases the rule invoking the static procedure will replace the
predicate ArrayStoreValid by true or false (resp.). In the other case the
formula remains unchanged.

As one suspects, analysing all dynamic types of an expression, that is, all
subtypes of its static type, is non-modular. As an example we look at the
following application of this rule.

Example 6.4. Given a class A and a subclass B of A and the following Java
program:

public class Main {

public static boolean foo(A[] arr) {

try {

arr[0] = new A();

} catch (ArrayStoreException e) {

return false;

}

return true;

}

}

Let us assume that we work in the (core) context P = {Main, A}. During
symbolic execution we perform the step

Γ ` true
Γ ` ArrayStoreValid(arr, A.<nextToCreate>)

This rule instance is however not modularly correct. While the premise is
trivially valid in all contexts, the conclusion is valid in context P but not
necessarily in context P ∪ {B}, since the argument arr could be an array of
type B[]. ∗

6.2.3 Enumerating Dynamic Types

Consider the following rule which explicitely enumerates the dynamic types
the evaluation of an expression may have. The rule schema is denoted as
follows:

Γ,
∨

T ′�T
ExactInstanceOfT ′(e) ∨ e .

= null ` ϕ(e),∆

Γ ` ϕ(e),∆ (6.7)
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where T is the static type of e.
The predicate ExactInstanceOfT (t) is syntactic sugar for

Reach[<nextToCreate>](T.<first>, t)

describing that a term t of type T is not of a strict subtype of T . So this
predicate is part of the calculus as a matter of fact. We can note, that for
arbitrary terms t, ExactInstanceOfT (t) is not modularly valid:

∀x :A. (ExactInstanceOfA(x) ∨ x
.
= null)

says that all objects of type A are exact instances of A. In context {A} this
sequent is valid. When a subclass of A is added to the context, the formula
loses validity.

The following derivation step using Rule (6.7) is modularly unsound:

ExactInstanceOfC(e) ∨ e .
= null ` ExactInstanceOfC(e) ∨ e .

= null

` ExactInstanceOfC(e) ∨ e .
= null

The conclusion is true in all contexts while the conclusion is only valid in
contexts where only class C has instances. If a subclass of C is added, the
premise is not modularly valid; thus this rule is not modularly sound.

6.2.4 The Other Rules

We claim that all other rules of JavaDL are modularly sound. In particular
we can make the following observations:

1. Rules expressible as taclets [Beckert et al., 2004] without meta con-
struct are modularly sound if they are sound for some program context.

The justification for this claim lies in the design of taclets: the premises
‘produced’ by a taclet without meta construct only depend on the
(syntactical shape of the) conclusion. There is no dependency to the
set of types as a whole. Consider for instance the rule all-right :

[x/c]ϕ
∀x :T. ϕ

where c is a new constant of type T . This rule is modularly sound: Let
P be an arbitrary context. We assume that [x/c]ϕ is modularly valid
and the rule is sound in P . Then ∀x :T. ϕ is valid in P .
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2. The update simplification and update rules [Beckert et al., 2006a] of
JavaDL are modularly sound if they are sound for some program con-
text.

No program context is involved when an update rule is applied. Their
definition is completely possible without referring to a program context
or the set of types of the underlying signature.

3. Rules expressible with taclets containing meta constructs which do
not get type information on the whole program context are modularly
sound if they are sound for some program context.

If there is no access to information on all types of the signature, non-
modular effects cannot be achieved.

According to our investigations, all rules, except the treatment of dynamic
method binding and array store exceptions, are covered by these criteria.
Thus, all rules of the JavaDL calculus can be considered modularly sound.
A more formal investigation of all rules is however considered future work.

6.3 Relative Modular Validity and Soundness

So far we have considered a very strict notion of soundness. The fact that, in
reality of open programs, the program context must satisfy certain require-
ments, has not yet been taken into account. The instrument to constrain the
context has however already been introduced in Sect. 5.1: generic extension
contracts. It is a small step to use them for a relativised notion of modular
validity and soundness.

Definition 6.3. Let Σ be a signature, P be a possibly open Σ-program.
ϕ ∈ DLFmaΣ is modularly valid in the core context P relative to a set of
generic contracts GCt if for all closures P ′ of P and for the specification
S ′ which GCt generates for P ′\P : The naive correctness of P ′\P w.r.t. S ′

implies |=P ′ ϕ. We write: |=GCt
P ϕ.

Note that we used |=∅
P to denote (not relativised) modular validity. The

following lemma justifies these notations:

Lemma 6.1. A JavaDL formula ϕ is valid in a core context P relative to
the empty set iff ϕ is modularly valid in the core context P .
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Proof. ‘⇐’: Let ϕ ∈ DLFmaΣ and ϕ be modularly valid in the core context
P . Then ϕ is valid in all closures of P , even in those which have a com-
pletion which is naively correct w.r.t. the empty specification. The empty
set generates the empty specification. Thus ϕ is valid in a core context P
relative to ∅.
‘⇒’: Let ϕ ∈ DLFmaΣ and ϕ be valid in a core context P relative to the
empty set. Let P ′ be a closure of P . GCt = ∅ generates the empty spec-
ification for P ′\P . Since P ′\P is trivially naively correct w.r.t. the empty
specification, it follows that |=P ′ ϕ. Thus ϕ is modularly valid in the core
context P .

Example 6.5. Let gct be the following generic contract:

generic contract {

T extends* A;

class T {

/*@ ensures \result == 0; @*/

public int p();

}

}

With P = {A, Main} ∪ JCl and P ′ = {A, Main, B} ∪ JCl, this generates the
following concrete contract for P ′\P = {B}:
class B extends A {

/*@ ensures \result == 0; @*/

public int p();

}

If B is naively correct with respect to this specification, that is it fulfils the
operation contract defined by this JML specification (what it does not in the
implementation on p. 116),

∀a :A. {a := a}(a 6 .= 0 → 〈 x=Main.main(a);〉 x .
= 0)

would be valid in the core context P relative to {gct}. ∗
Finally the soundness definition for the relative modular case goes straight-

forward:

Definition 6.4. Let Σ be a signature, P be a possibly open Σ-program, and
GCt a set of generic contracts. A rule r ∈ RuleΣ defined as

seq1 · · · seqk
seq0
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is modularly sound relative to GCt in the core context P if the following
implication holds: If seq1, . . . , seqk are modularly valid in the core context P
relative to GCt then seq0 is modularly valid in the core context P relative
to GCt.
The rule r ∈ RuleΣ is modularly sound relative to GCt if, for all signatures
Σ′ with r ∈ RuleΣ′

, r is modularly sound in all core contexts P which are
Σ′-programs relative to GCt.

6.4 Relative Modular Dynamic Logic for Java

This section proposes a variation of the JavaDL calculus which is relative
modularly sound and establishes modular validity of JavaDL formulae.

6.4.1 Relative Modular Method Call Rule

Overriding methods and relying on the dynamic dispatching procedure is the
main feature of object-oriented programs to achieve re-use and extensibility.
It is thus no surprise that it is impossible to find an entirely modular rule
which would replace the modularly unsound method call rule (6.3). We can
at most achieve an acceptable compromise by aiming at relative modular
soundness.

Rule (6.4) already has a flavour of modularity since it allowed to disregard
some classes (namely those below a class in a cut-set). It is natural to
vary the rule by setting the cut-set to {D1, . . . , Dk}, where again D1, . . . , Dk

are the classes or interfaces with an applicable method declaration for the
considered method reference.

Γ `

〈
..

if (e instanceof D1) m′D1
(e;p1,...,pn;r);

else if (e instanceof D2) m′D2
(e;p1,...,pn;r);

...

else if (e instanceof D`) m′Dk
(e;p1,...,pn;r);

...

〉
ϕ,∆

Γ ` 〈.. r = e.m(p1,...,pn);...〉ϕ,∆
(6.8)

with D1, . . . , Dk is a topological order of those k interfaces or classes in the
context which declare a method that is applicable [Gosling et al., 2000] to
the method reference m(p1,...,pn).
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For this rule, we re-define m′C(e, p1,...,pn, r); as follows; the rest of
the used designations is the same as in Rule (6.4).

m′C(e; p1,..., pn, r); =


r=e.m(p1,...,pn)@C; if C or m is final

or m is private
or static

m
S,I
C (e; p1,...,pn; r); otherwise

This re-definition reflects the fact that all but final, static, and private meth-
ods and methods in final classes can be overridden by the unknown part of
the context. For all other methods the method specification must be used,
since we may not use more knowledge about the method than encoded in
the method contract. Otherwise overriding classes in a program extension
would not have the chance to behave like the overridden method.

For each m
S,I
C (e, p1,..., p`, r); an extension contract gctIm(C) is de-

rived. The purpose of gctIm(C) is to constrain extensions of the context: If
gctIm(C) generates a specification which the extension of the context fulfils
then Rule (6.8) is relative modular correct. Let the set Ct consist of all the
operation contracts from S applicable to the method declaration of m in class
C.

Then gctIm(C) is defined as follows:

generic contract {

T extends* C;
(Ct′, ∅)

}

where Ct′ is a set of operation contracts over Σ. Ct′ emerges from Ct by
• adding I conjunctively to the preconditions of Ct and
• replacing all occurrences of C in descriptions of operation declarations

by the type parameter T.

Example 6.6. Let the specification for a method p in class A emerge from
this JML specification:

class A {

/*@ normal_behavior

@ ensures \result == 0;

@*/

public int p();

}
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Then, from p
S,∅
A (r) the generic contract of Ex. 6.5 is derived. ∗

The following lemma shows that Rule (6.8) improves the modularity of
Rules (6.3) and (6.4) at least a bit.

Lemma 6.2. Rule (6.8) is modularly sound relative to {gctI1mD1
, . . . , gctImmD`

}
for some sets of formulae Ii (i = 1, . . . ,m) in a core context P .

Proof. Let the premise of (6.8) be modularly valid in core context P relative
to GCt. Let P ′ be a closure of P and let P̄ := P ′\P . Let S ′ be the
specification which {gctI1mD1

, . . . , gctImmD`
} generates for P̄ . Let P̄ be naively

correct w.r.t. S ′. Then the premise (6.8) is valid in P ′. Thus all subclasses
of Di (i = 1, . . . , `) in P̄ fulfil all operation contracts of S ′ applicable to the
method declaration of m in Di. This is the case under the assumption of the
empty set since no invariants are in S ′. Because of the soundness of (6.4) in
JavaDLRuleΣ

P ′, the conclusion of JavaDLRuleΣ
P ′ is valid in P ′.

Example 6.7. The following rule or derivation step is modularly sound
relative to the generic contract given in Ex. 6.5:〈

if (a instanceof A){pS,∅A (a, r);}
〉
r
.
= 0

〈r = a.p();〉 r .
= 0

With it, we can derive the original conjecture

∀a :A. {a := a}(a 6 .= 0 → 〈 x=Main.main(a);〉 x .
= 0)

in our calculus. Note again, that this is only a valid statement under the
precondition that classes inheriting from A, like B, satisfy the specification
generated from the generic contract from above. ∗

6.4.2 Other Non-modular Rules

Static Analysis of Valid Array Store. We propose quite a weak analysis
as substitute for the analysis sketched in Sect. 6.2.2. It resolves formulae
with top-level operator ArrayStoreValid to true if the first argument’s static
element type is final, otherwise the formula remains unmodified. Then no
subtypes are allowed which can give rise to an array store exception. Obvi-
ously this rule is modularly sound.
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Dynamic Type Enumeration. Apparently it is not possible to enumerate
the possible dynamic types of an expression unless the static type is declared
as final. Then there is only one possibility what the dynamic type of an
expression is: it is just the static type.

6.4.3 Modular Proofs with Generated Extension Contracts

We consider now the calculus consisting of the JavaDL rules except from the
method call rules (6.3) and (6.4) but including the ‘more modular’ method
call rule (6.8) and the weak analysis of array store exceptions as defined
before. This calculus shall further be called JavaDLm.

In the following definition, the notion is introduced that a proof generates
generic extension contracts whenever a method call is symbolically executed.

Definition 6.5. A (closed) modular proof with generated contracts of a for-
mula ϕ ∈ DLFmaΣ with a Σ-program P as core context (in JavaDLm) is
a closed proof of ϕ with program P , but each node which is a result of an
application of rule (6.8) is marked with a set of extension contracts gctm(C)
corresponding to the occurrences of e.mSC(p1, . . . , pn; r); in the node’s se-
quent.
We call the set of all of these extension contracts the generated extension
contracts of the proof.

Lemma 6.3 ((Relative) Modular Soundness of Proofs). Let Σ be a signature
and P a Σ-program.

1. If there is a closed modular proof with generated contracts GCt in
JavaDLRuleΣ of a formula ϕ ∈ DLFmaΣ with core context P , then ϕ
is modularly valid in the core context P relative to GCt.

2. If there is a closed modular proof with generated contracts of a formula
ϕ ∈ DLFmaΣ with core context P and the set of generated extension
contracts is empty, then ϕ is modularly valid in the core context P .

Proof. 1. Follows from Lemma 6.2 and the modular soundness of all other
rules in JavaDLm.

2. Follows from (1) and Lemma 6.1.
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If a proof generates the empty set of extension contracts we have a com-
pletely modular proof. This is however only possible if

• only private or static method calls have been performed,

• all involved non-private and non-static method calls were final, or

• with the help of more detailed type information it can be ensured that
a public method call does not target subclasses.

The last case shows that the definitions and lemmas from above are in fact
not precise enough, since they do not cover this case.

Example 6.8. In Sect. 1.2 the class Date has been subclassed by Date2,
which overrides the method earlierOrEqual(Date) in a way that violates
the invariant imposed on the overridden method.

We consider now the formula (6.1)

∀d1 :Date. ∀d2 :Date. {d1 := d1 | d2 := d2}
[p = new Period(d1,d2);]

(p.start.year < p.end.year

∨( p.start.year = p.end.year

∧p.start.month.val ≤ p.end.month.val))

In the core context {Period, Date, Month}, ϕ is not modularly valid as
Date2 demonstrates: If the core context is extended by this class, dynamic
dispatching might choose the overridden version of earlierOrEqual(Date)
in Date2 and would not establish the given post-condition.

We are however able to change the constructor of Date in a way that ϕ is
modularly valid:

public Period(Date d1, Date d2) {

Date d1new=new Date(new Month(d1.getMonth().getVal()),

d1.getYear());

Date d2new=new Date(new Month(d2.getMonth().getVal()),

d2.getYear());

if (d1new.earlierOrEqual(d2new)) {

this.start=d1new; this.end=d2new;

} else {

this.start=d2new; this.end=d1new;

}

}
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The reason that this helps is that the invocation of earlierOrEqual(Date)
is now guaranteed to happen on an exact instance of Date with a correct
implementation of earlierOrEqual(Date). ∗

The problem occurring in this example can however not be dealt with
Rule (6.8). That rule would still generate extension contracts for all sub-
classes of Date which is unnecessary since we have precise knowledge on the
runtime type of the receiver object. We can thus introduce the following
additional modularly sound method call rule for every class C in the core
context:

Γ ` 〈..r=e.m(p1,..., pn)@C;...〉ϕ,∆ Γ ` ExactInstanceOfC(e),∆

Γ ` 〈..r = e.m(p1,..., pn);...〉ϕ,∆

This rule allows to discharge the proof in Ex. 6.8.

6.5 Summary

In this chapter we have seen how to cope with an open world on the logic and
the calculus level. A calculus designed for a fixed closed program context
has been adapted to an open program context. This was only possible with
the cost of a constrained program context, and the weaker notion of rela-
tive validity and soundness w.r.t. these constraints. Here, generic extension
contracts have been employed to constrain the program context. Apparently
in the presence of dynamic binding, an object-oriented feature that is de-
sired for the benefit of extensibility, this is an inconvenience which cannot
be avoided.

When dealing with proof obligations for durable correctness of open pro-
grams in Chapter 10, we will make use of (relative) modular validity and
modular proofs.
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Correctness

Non est ad astra mollis
e terris via.

(Seneca)

In Part I of this work we have defined under which circumstances a program
is considered correct. How the required conditions can be verified in practice
has not been an issue yet.

This chapter takes the first step from the mere theoretical notion of cor-
rectness to proof obligations with the help of which correctness can be proven
deductively. Here, we are only concerned with the not so intricate observed-
state call correctness. Our goal for this chapter is to have a set of proof
obligations, abstractly defined in terms of proof obligation templates, which
ensures—if all elements can be proven—that a program is entirely call cor-
rect.

Moreover, since this chapter is the first concerned with proof obligations,
there are also some general and re-usable proof obligation templates which
will turn up over and over again in the rest of this work. These single proof
obligation templates serve also another purpose, which is to enable developers
to check for single properties of interest instead of a post mortem analysis of
the whole program. Such proof obligations are thus also called lightweight
proof obligations. So they are not only part of a complex proof obligation
template which checks entire correctness but are as well available directly to
users of a program analysis tool like KeY.

In the following chapters we will refer to these single proof obligations and
arrange them in an advanced manner to optimise and modularise verification
and take the step towards durable correctness and open programs.

Technically, we describe in this chapter, how to build JavaDL formulae,
the proof obligations, from JavaFOL formulae and terms which come from
JavaFOL specifications.
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Outline. First we briefly review the definitions of correctness and introduce
auxiliary notations. In Sect. 7.2, we define lightweight proof obligations
which are the starting points to prove correctness properties of programs.
Most extensively, we look at proofs for assignable clauses in Sect. 7.2.7. In
Sect. 7.3 we compose them to a simple system of proof obligations which
ensure call correctness of a program. Sect. 7.4 covers an optimisation which
allows to skip some proofs. Finally an improvement concerning the presen-
tation of proof obligations to the user of a prover is proposed.

7.1 Towards Proof Obligations for Call
Correctness

Except from the proof obligation on the correctness of an assignable clause,
proof obligation for a correctness property follow a specific shape, also known
as a Hoare triple {ψ}α{ϕ}, for first order formulae ψ (the precondition) and
ϕ (the postcondition) and a sequence of statements α. In JavaDL such a
Hoare triple is encoded as the following implication:

ψ → [α]ϕ (7.1)

In Chapter 3 it was already discussed which contents ψ, ϕ, and α should
have. There, we referred to ψ as the assumption, to ϕ as the assertion, and
to α as the operation call. We keep these designations in order not to get
confused with pre and post conditions in operation contracts.

As a summary of the discussion, the assumption ψ contains at least the
general assumption Aop(o; p1, . . . , pn) and possibly a more specific precon-
dition from an operation contract on op. It is not possible to include—
formalised in JavaFOL—the condition that the state described by ψ is reach-
able. Instead we have to rely on the adequateness of the invariants describing
admissible states. Of course however, we lose precision by not taking into
account the reachability assumption, while correctness is maintained.

The assertion ϕ covers all invariants of the considered program and the
postcondition of an operation contract. Moreover, the assignable clause must
be proven correct. Remember that we added a standard operation contract
to <clinit>() and an implicit invariant to appropriately reflect static ini-
tialisation.

We have as well discussed how the generic shape of sequences of statements
α looks like, which the observer of a program invokes.
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According to a termination marker from {total , partial}, JavaFOL speci-
fications distinguish whether an operation must terminate or if termination
can be assumed and must not be proven. This is not reflected in (7.1) yet,
where the ‘box’ modality of JavaDL is used and thus termination is assumed.
To be more flexible when formulating concrete proof obligation templates we
define the following function M(·, ·), which maps marker τ ∈ {partial , total}
and a program α to a modal operator:

M(τ, α) :=

{
[α] if τ = partial
〈α〉 if τ = total

The general shape of a proof obligations is thus rather:

ψ →M(τ, α)ϕ

7.2 Lightweight Program Correctness Proof
Obligations

Often while writing code one is not interested in the correctness of the whole
program but only in certain lightweight properties, for instance that a method
preserves its invariant. This section presents lightweight proof obligations
suited to such kind of verification. The section serves also to define single
proof obligations needed for a full verification of a program. Appropriate
systematic combinations of the lightweight proof obligations can be found in
Sect. 7.3 and Chapters 9 and 10.

7.2.1 The Basic Proof Obligation Template

Most proof obligation presented in the sequel are structured according to the
following proof obligation template:

Proof Obligation Template: Ensures(op; Ψ; Φ; τ ; self; p1, . . . , pn, r; exc).

for an operation op, sets of formulae Φ and Ψ, τ ∈ {partial , total} and
program variables self, p1, . . . , pn, r, exc:∧
ψ∈Ψ

ψ ∧ Aop(self; p1, . . . , pn) →M(τ, α̃op(self; p1, . . . , pn; r; exc))
∧
ϕ∈Φ

ϕ
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Informally, Ensures describes the following property: if the operation op
is called on an object self with the parameters p1, . . . , pn assigning the
returned value in r and the thrown exception to exc in a state which satisfies
ψ and the general assumption then all formulae in Φ hold in the post-state
if it exists. Furthermore, the call must terminate if τ is total .

Sometimes we skip the pre-condition in Ensures, which is then interpreted
as being true:

Proof Obligation Template: Ensures(op; Φ; τ ; self; p1, . . . , pn; r; exc).
with the designations from above:

Ensures(op; {true}; Φ; τ ; self; p1, . . . , pn; r; exc)

=Aop(self; p1, . . . , pn) →M(τ, α̃op(self; p1, . . . , pn; r, exc))
∧
ϕ∈Φ

ϕ

Remark: Often we instantiate the parameters self, p1, . . . , pn, r, and exc

with fresh program variables of the appropriate types. If this is the case, we
may omit occurrences of these parameters. For instance, we would just write

Ensures(op; Ψ; Φ; τ)

for

Ensures(op; Ψ; Φ; τ ; self; p1, . . . , pn; r; exc)

if self, p1, . . . , pn, r, exc are instantiated with fresh program variables of
the suitable types.

As another convention we can omit the self parameter if we are dealing
with static methods and we omit the r parameter if the operation is a void
method or a constructor.

These conventions apply to all the proof obligations in the sequel.

7.2.2 Invariant Preservation

Let I be a set of closed formulae. We think of them as static or (quantified)
instance invariants. Let now op be a method or constructor declaration in
type D. According to our discussion in Chapter 3, the invocation of op in
a state satisfying the general assumption must establish only post-states in
which all formulae of I hold.
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Proof Obligation Template: PreservesInv(op; I; self; p1, . . . , pn).
where self is a suitable receiver object for op and p1, . . . , pn are suitable
parameters for op:

Ensures(op; I; partial ; self; p1, . . . , pn; r; exc)

with a fresh program variable exc. This can be simplified to

Aop(self; p1, . . . , pn) → [α̃opD
(self; p1, . . . , pn; r)]

∧
ϕ∈I

ϕ

We abbreviate PreservesInv(op; Inv; self; p1, . . . , pn) with

PreservesInv(op; self; p1, . . . , pn)

7.2.3 Invariant Preservation Under Weaker Assumptions

Sometimes, even a stronger proof obligation than PreservesInv is useful.
Essentially, we skip the assumption that all invariants of the whole program
hold and assume just a subset of all invariants, for instance just those that
are to be established. The PreservesInvAssumpt proof obligation is thus
defined as follows for an operation op, two sets of invariants I and I ′, and
program variables self, p1, . . . , pn that suit to the signature of op:

Proof Obligation Template:
PreservesInvAssumpt(op; I ′; I; self; p1, . . . , pn).

Ensures(op; I ′; I; partial ; self; p1, . . . , pn; r; exc)

which is equivalent to∧
ϕ′∈I ′

ϕ′ → [α̃op(self; p1, . . . , pn; r)]
∧
ϕ∈I

ϕ

Lemma 7.1.

|=P PreservesInvAssumpt(op; I ′; I; self; p1, . . . , pn)

implies |=P PreservesInv(op; I; self; p1, . . . , pn)

if I ′ ⊆ I.
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An interesting special case is that an operation op preserves the static
and quantified instance invariants I of the class it is declared in only. This
lightweight proof obligation is thus defined as follows for suitable program
variables self, p1, . . . , pn:

Proof Obligation Template:
PreservesOwnInvAssumpt(op; self; p1, . . . , pn).

PreservesInvAssumpt(op; I)

=
∧
ϕ∈I

ϕ→ [α̃op(self; p1, . . . , pn; r)]
∧
ϕ∈I

ϕ

where op is declared in a class D and I are the quantified instance invariants
and static invariants of D.

7.2.4 Invariant Initialisation

As pointed out in Sect. 3.2.5, invariants have to hold in the initial state.
This must be checked by a proof obligation. It is simple to construct one
according to what has been said in Sect. 3.2.5. Remember from Sect. 2.3.6
that ϕinit is defined as∧

C∈P

C.<classPrepared>
.
= false

Proof Obligation Template: InitInv(I).
for a set of invariants I

ϕinit →
∧
ϕ∈I

ϕ

As mentioned earlier, instance invariants, that is, invariants of the shape
∀̇x :C. ϕ′, trivially pass this proof obligation. It is thus unnecessary to invoke
this proof obligation if the formula already has this shape.

7.2.5 Postcondition Assurance

For an operation op and an operation contract opct on op, we might want
to prove that op establishes the post-condition of opct. As discussed in
Sect. 3.2.1, the general assumption can be assumed, as the pre-condition of
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opct can be. We thus formalise the proof obligation as follows for suitable
program variables self, p1, . . . , pn for the invocation of op and a program
variable r to store the returned value and exc to capture the possibly thrown
exception:

Proof Obligation Template: EnsuresPost(opct ; self; p1, . . . , pn; r; exc).

Ensures(op; {ψopct}; {ϕopct}; τopct ; self; p1, . . . , pn; exc)

= Aop(self; p1, . . . , pn) ∧ ψopct
→M(τopct , α̃op(self; p1, . . . , pn; r; exc))ϕopct

which can further be simplified to∧
ϕ∈Inv

ϕ ∧ ψopct ∧ self.<created>
.
= true

∧
∧

i=1,...,n

(pi.<created>
.
= true∨pi

.
= null)

→M(τopct , α̃op(self; p1, . . . , pn; r; exc))ϕopct

where we abbreviated

• ψopct(self; p1, . . . , pn) as ψopct and

• ϕopct(self; p1, . . . , pn; r; exc) as ϕopct .

7.2.6 Postcondition Assurance Under Weaker Assumptions

As for invariants, it is possible to show a stronger proof obligation than
EnsuresPost , namely one with weaker assumptions by skipping some invari-
ants:

Proof Obligation Template:
EnsuresPostAssumpt(opct ; I; self; p1, . . . , pn; r; exc).

Ensures(op; I ∪ {ψopct}; {ϕopct}; τopct ; self; p1, . . . , pn; r; exc)
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or equivalently:∧
ϕ∈I

ϕ ∧ ψopct ∧ self.<created>
.
= true

∧
∧

i=1,...,n

(pi.<created>
.
= true∨pi

.
= null)

→M(τopct , α̃op(self; p1, . . . , pn; r; exc))ϕopct

7.2.7 Assignable Clauses

An assignable clause for an operation specifies the locations that it can
at most modify. Its semantics has been defined in Sect. 3.2.3. Checking
assignable clauses belongs amongst the most difficult tasks in program ver-
ification. The reason is that the focus is on those locations which are not
explicitely mentioned in the specification. All of them must be proven to be
unmodified.

Sasse [2004] aims at a ‘straightforward’ approach for checking assignable
clauses with the help of JavaDL by enumerating all locations which are not
described by an assignable clause and checking for their unchangedness. Un-
fortunately this approach produces huge proof obligations; their sizes grow
linear in the number of fields in the considered program. Moreover the ap-
proach is not modular in the sense that if the program context is extended,
the whole proof obligation changes.

In the following a new kind of proof obligation template to check assignable
clauses is presented which produces compact and readable formulae and
which remains unchanged if the program context changes. However, the
idea behind the proof obligation is, due to the nature of the problem, not as
intuitive as the other proof obligations in this chapter are. We thus proceed
in small steps to motivate the structure.

An assignable clause of an operation contract opct of an operation op
consists of a set of location terms Mod ⊆ LocTermΣ. Intuitively, Mod is
correct if a call α to op (which satisfies the general assumption and the
pre-condition of opct) assigns at most to the locations described in Mod .
Temporary violations of this rule, not visible to the observer, are however
allowed.

Let Spre be the set of states in which the pre-condition of opct and the gen-
eral assumption hold. Imagine that in these states the locations LocSpre

(Mod)
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described by Mod are assigned fixed but unknown values. Let us call the re-
sulting set of states S1.

We consider now an arbitrary anonymous method anon() of which we
only specify the following behaviour: anon() terminates if invoked in a state
of S1. All the rest of the behaviour of anon() is unknown. Thus, for all the
other states we must assume that termination is not specified. In particular
it could be possible that anon() does not terminate when invoking it from
other states than S1.

Let us look at a different set S2 of states which originate again from Spre
but by invoking op and, after that, assigning the locations LocSpre

(Mod) the
same values as above.

Assume now that anon(), characterised as above, terminates if started
in S2. Because anon() is arbitrary and only our assumptions from above
about the termination behaviour are known, we can conclude that S2 ⊆ S1.
Thus no other locations than LocSpre

(Mod) (and locations irrelevant to the
termination behaviour of anon(), i.e., local variables) have been modified by
op. Hence Mod is a correct assignable clause for op.

As follows, we formalise these considerations as a JavaDL proof obligation.
First of all, the states Spre have to be characterised by

ψopct(self; p1, . . . , pn) ∧ Aop(self; p1, . . . , pn)

for the pre-condition of opct and the general assumption. Further, we for-
malise the assignment of LocSpre

(Mod) to certain values as an update. In
order to reflect that the values assigned to these locations are arbitrary, we
use the anonymising update u(Mod) introduced in Sect. 2.3.1. The update
has as top level operators of its right hand side expressions rigid symbols
matching the signature of the top-level non-rigid symbols of the updated
terms. Termination of anon() is expressed, as usual, as 〈anon();〉 true.

When formalising the update, we must take some care since the update
occurs one time inside the scope of a modality; the locations that are to be
updated refer to the pre-state of this modality however. In Sect. 2.3.4 the
instruments needed to refer to pre-states have been defined: rigid functions
and predicates f@pre for every non-rigid function and predicate (resp.) f ,
which are appropriately axiomatised by Def(F@pre) if F@pre is the mapping
between normal function / predicate symbols and the @pre versions. So we
must modify the update u(Mod) according to the following definition.
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Definition 7.1 (Updates of Pre-State Objects). We extend the function
pre (see Def. 2.19) to updates. pre applied on an update delivers a tuple
(t@pre , F@pre) where t@pre ∈ UpdΣ and F@pre is a mapping from non-rigid
function or predicate symbols f to rigid function or predicate (resp.) symbols
f@pre . pre on updates is inductively defined as follows:

• pre(f(t1, . . . , tn) := t0) = (f(t′1, . . . , t
′
n) := t′0,

⋃
i=0,...,n

F@pre
i )

with pre(ti) = (t′i, F
@pre
i ) (for i = 0, . . . , n)

• pre(u1|u2) = (u′1|u′2, F
@pre
1 ∪ F@pre

2 ) with pre(ui) = (u′i, F
@pre
i ) (for i =

1, 2)

• pre(for x ; ϕ ; u) = ((for x ; ϕ′ ; u′), F@pre
1 ∪ F@pre

2 )

with pre(ϕ) = (ϕ′, F@pre
1 ), pre(u) = (u′, F@pre

2 )

Lemma 7.2. If pre(u) = (u′, F@pre) and spre |=P Def(F@pre) then for all
l ∈ LΣ and all states s: updvals,β(u

′)(l) = updvalspre,β(u)(l)

Altogether the proof obligation to prove that an assignable clause is correct
is as follows:

Proof Obligation Template: RespectsModifies(opct; self; p1, . . . , pn).

ψopct(self; p1, . . . , pn) ∧ Aop(self; p1, . . . , pn)

∧Def(F@pre) ∧ {u} 〈anon();〉 true

→ [α̃op(self; p1, . . . , pn)]{u′} 〈anon();〉 true

with u = u(Mod(opct)) as defined in Sect. 2.3.1 and pre(u) = (u′, F@pre)

Lemma 7.3. If |=P RespectsModifies(opct; self; p1, . . . , pn) then in all states
spre and spost with

spre |=P ψopct(self; p1, . . . , pn) ∧ Aop(self; p1, . . . , pn)

and spost = ρα̃op(self;p1,...,pn)(spre)

the assignable clause Mod(opct) ⊆ LocTermΣ is satisfied (in the pre-state
spre and the post-state spost).

Before we start to prove this lemma, a helper lemma is needed:
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Lemma 7.4. For all t ∈ LocTermΣ:
l ∈ Locs,P,β(t) iff updvals,P,β(u(t))(l) 6= ⊥

Proof. By structural induction on LocTermΣ:
(a) t = f(t1, . . . , tn). Then:

l ∈ Loc(t, s) ⇔ l = (f, (vals,P,β(t1), . . . , vals,P,β(tn)))

⇔ {(f, (vals,P,β(t1), . . . , vals,P,β(tn))) 7→ vals,P,β(t)}(l) 6= ⊥
⇔ updvals,P,β(u(f(t1, . . . , tn)))(l) 6= ⊥
⇔ updvals,P,β(u(t))(l) 6= ⊥

(b) t = (for x ; ϕ ; t′). Then:

l ∈ Locs,P,β(t) ⇔ l ∈
⋃

exists e∈U :
βe

x|=Pϕ

Locs,βe
x
(t′)

⇔ l ∈ Locs,βe
x
(t′) for some e with βex |=P ϕ

⇔ updvals,βe
x
(u(t′))(l) 6= ⊥ for some e with βex |=P ϕ

⇔ there exists an e ∈ U
with updvals,βe

x
(u(t′)(l) 6= ⊥ and s, βex |=P ϕ

⇔ updvals,P,β((for x ; ϕ ; u(t′)))(l) 6= ⊥
⇔ updvals,P,β(u((for x ; ϕ ; t′)))(l) 6= ⊥
⇔ updvals,P,β(u(t))(l) 6= ⊥

Proof of Lemma 7.3. Choose an arbitrary f ∈ F nr and e1, . . . , en ∈ U . Fur-
ther abbreviate l := (f, (e1, . . . , en)). We can assume:

|=P RespectsModifies(opct, self, (p1, . . . , pn)) (7.2)

f spre,P (e1, . . . , en) 6= f spost,P (e1, . . . , en) (7.3)

For a proof by contradiction we assume:

l = (f, (e1, . . . , en)) /∈
⋃

t∈Mod(opct)

Locspre,β(t) (7.4)

From (7.4) we can conclude that for all t ∈ Mod(opct) : l /∈ Locspre,β(t).
With Lemma 7.4: updvalspre,β(u(t))(l) = ⊥. Thus:

fρu(t)(spre),P (e1, . . . , en) = f spre,P (e1, . . . , en)
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7 Non-modular Verification of Call Correctness

Because of (7.2) we know: pre(u(t)) = (u′, F@pre) and spre, β |=P Def(F@pre).
Then, with Lemma 7.2, updvalspre,β(u(t))(l) = updvalspost,β(u

′)(l). And be-
cause of updvalspost,β(u

′)(l) = updvalspre,β(u(t))(l) = ⊥ we can conclude:

f spost,P (e1, . . . , en) = fρu
′(spost),P (e1, . . . , en)

We use the following designations for different intermediate states:

s′pre = ρu(t)(spre), s′post = ρu′(spost)

From (7.2) we get |=P ρanon()(s
′
pre) 6= ⊥ implies ρanon()(s

′
post) 6= ⊥ and can

conclude that s′pre = s′post. Altogether we have

f spre,P (e1, . . . , en) = f spost,P (e1, . . . , en)

in contradiction to (7.3).

Example 7.1. In Ex. 1.1 we had the empty assignable clause attached to
the operation earlierOrEqual(Date). Its correctness can be proven with
RespectsModifies instantiated as follows:

AearlierOrEqual(Date)(self; d) ∧ {skip} 〈anon();〉 true

→ [ try{ r=self.earlierOrEqual(d)@Date;}
catch (Throwable e) {}] {skip} 〈anon();〉 true

By the symbolic execution of the method body no updates are accumulated
so that the proof can easily be closed. ∗

7.3 A System of Proof Obligations for Entire
Call Correctness

The properties presented so far may help developers when questions con-
cerning single correctness issues occur during development. At some point,
the question might arise whether the complete program, finally finished be-
ing programmed, is entirely correct. Of course, the proofs originating from
lightweight correctness proof obligations (with the unmodified underlying
program context) remain useful in order to prove the entire correctness and
might thus be re-used here.

The following proof obligation consists of several elementary proof obli-
gations and ensures observed-state call correctness as defined in Def. 3.10.
That definition is directly formalised:
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Lemma 7.5. Let Σ be a signature, P a Σ-program, and S a JavaFOL spec-
ification of P . If for all non-private operations op of P the following proof
obligations are valid in P then P is observed-state call correct w.r.t. S:

for all operation contracts opct ∈ OpCtop :EnsuresPost(opct) (7.5)

for all operation contracts opct ∈ OpCtop :RespectsModifies(opct) (7.6)

for all invariants ϕ ∈ Inv :PreservesInv(op, {ϕ}) (7.7)

for all invariants ϕ ∈ Inv :InitInv({ϕ}) (7.8)

Proof. We simply write α instead of α̃op(self; p1, . . . , pn; r; exc). According
to Def. 3.10, the fulfilment of all operation contracts and the preservation of
invariants must be shown:

• (Fulfilled Operation Contracts) Let opct be an operation contract of s
applicable to op. Further assume that for all states spre:

spre |=P EnsuresPost(opct) (7.9)

spre |=P RespectsModifies(opct) (7.10)

spre |=P Aop(self; p1, . . . , pn) (7.11)

spre |=P ψopct(self; p1, . . . , pn) (7.12)

– If the total marker is set in opct , then M(τopct , α) = 〈τopct〉α.
Because of spre, β |=P (〈τopct〉α), there exists a state spost with
spost = ρα(spre) and spost, β |=P 〈α〉ϕ.

– Assume now there is a state spost = ρα(spre). Because of the
validity (7.11) and (7.12) the validity of EnsuresPost(opct) yields:

spost |=P ϕpost

– Assume again the existence of spost = ρα(spre). Then the satisfac-
tion of the assignable clause follows directly from Lemma 7.3.

Altogether the contract opct on op of S is fulfilled (Def. 3.6).

• (Preserved Invariants) Let op be an arbitrary operation of P . With
(7.11) and

spre |=P PreservesInv(op, Inv) (7.13)

spost = ρα(spre) (7.14)
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7 Non-modular Verification of Call Correctness

spost |=P Inv follows directly from (7.13).

The proof obligations (7.7) are equivalent to the following larger one:

PreservesInv(op, Inv) (7.15)

7.4 Non-modular Optimisations

With the system of proof obligations of the last section, the number of gen-
erated proof obligations explodes : with i the number of invariants in the pro-
gram and j the number of operations, we get i · j proof obligations, whereas
there are only 2 ·j proof obligations for ensuring that the operation contracts
are fulfilled.

The following chapters are devoted to alleviate this problem. The strategy
is to modularly analyse invariants and finding out which invariants must
be checked for which operations. Modularly in this sense means that we
can derive from the invariants which operations are affected and that other
operations than those do not need to be considered. Obviously, this approach
is the only one viable for open programs.

Nevertheless, in the section, we describe an alternative way to deal with
the problem. We analyse operations without having to symbolically execute
the operation body and without a need to pre-analyse the invariant.

Example 7.2. In Ex. 1.1 we have the invariant:

∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

It is intuitively clear that this invariant cannot be violated by setYear(int)

in Period. There should thus be no need to check that setYear(int) pre-
serves this particular invariant, though in this case symbolic execution would
be trivial. Clearly however there could be methods where a huge effort would
be needed to get deductively rid of the code, although the method has no
means to affect the evaluation of the considered invariant. ∗

The intuition of a developer recognises quite immediately if a method
cannot influence the evaluation of a certain invariant, since the locations
that get changed by the method on the one side and those that an invariant
depends on are distinct.
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We have already familiarised ourselves with the fact that those locations
an operation may assign values to are specified in assignable clauses. If
assignable clauses are checked as described above, we can make safe use of
this kind of specifications to decide that an operation cannot be affected by
an invariant.

More precisely we make use of Lemma 3.1 which states that if {u(Mod)}ϕ
is valid then ϕ is valid after the execution of a program for which Mod is an
assignable clause. So instead of symbolically executing the operation body
we can apply the update u(Mod) derived from the assignable clause Mod
of the operation. If this does not already affect a considered invariant, the
actual body will neither.

We exploit all these considerations in the following proof obligation and
lemma:

Proof Obligation Template: InvNotModified(op;ϕ).
if ϕ is an invariant, op an operation and Mod(op) the union of the assignable
clauses of all operation contracts in S applicable to op

Aop(self; p1, . . . , pn) ∧ ϕ→ {u(Mod(op))}ϕ

Lemma 7.6. For an invariant ϕ and an operation op, if

|=P InvNotModified(op, ϕ)

|=P RespectsModifies(opct) for all opct applicable to op in S

then op preserves ϕ.

Proof. Let spre be a state. α := α̃op(self; p1, . . . , pn). We assume:

spre |=P InvNotModified(op, ϕ)

spre |=P RespectsModifies(opct) for all opct applicable to op in S

spre |=P Aop(self; p1, . . . , pn)

spost = ρα(spre)

Let opct be an arbitrary operation contract in S which has a pre-condition
which holds in spre. There must be such an operation contract since the
general assumption is valid in spre. Since RespectsModifies(opct) holds for
this operation contract in spre, we have (spre, spost) |=P M for the assignable
clause of opct. Since M ⊆ Mod(op) also: (spre, spost) |=P Mod(op). Be-
cause of the validity of the general assumption spre |=P ϕ. With spre |=P
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7 Non-modular Verification of Call Correctness

InvNotModified(op, ϕ) we have spre |=P {u(Mod(op))}ϕ. Lemma 3.1 yields:
spre |=P 〈α〉ϕ. And finally spost |=P ϕ.

Example 7.3. Coming back to Ex. 7.2, setYear(int) has {self.year}
as union of assignable clauses of all applicable operation contracts. The
InvNotModified proof obligation pattern is thus instantiated as follows:

∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

→ {self.year := f(self)}∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

where f is a rigid function. According to update application rules [Beckert
et al., 2006b] this is equivalent to the tautology

∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

→ ∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

The lemma above ensures that setYear(int) preserves the considered in-
variant. Note that we did not look at the implementation of setYear(int)
to come to this statement. Of course an inspection of the code is needed when
the correctness of the assignable clause is proven with RespectsModifies . ∗

As a consequence of the above lemma, if the assignable clause of an op-
eration is (provably) empty, there is no need to check PreservesInv for that
operation, since this property is trivially true. This is why methods of im-
mutable objects always preserve all invariants.

Lemma 7.7. If all operation contracts opct applicable to an operation op
have an empty assignable clause and |=P RespectsModifies(opct) then op
preserves every invariant.

Proof. With u(∅) = skip and updvals,P,β(skip) = ⊥ we get for every ϕ:
|=P InvNotModified(op, ϕ). With Lemma 7.6, the preservation of ϕ can be
concluded.

Example 7.4. In Ex. 1.1, the assignable clause of getMonth() is empty in all
applicable operation contracts. Tehere is thus no need to check for invariant
preservation for any invariant at this method. ∗
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7.5 Pragmatics

7.5 Pragmatics

Usually, the formula described by a proof obligation is placed in the succe-
dent of an (otherwise empty) sequent, and is then deduced with the sequent
calculus rules of JavaDL. Unfortunately the general assumption involves all
invariants of the whole context and is part of this formula. Thus the sequent
presented to the user is huge and complex. Moreover, in practice it is un-
usual that all invariants are actually needed to conduct the proof, though
this case can almost never be excluded a priori.

This gives rise to an advanced strategy how the general assumption is
presented to the user. In this strategy, invariants contained in the general
assumption are available to a user of the prover only on demand, that is, they
are made visible in the antecedent of the sequent only if the user requests it.

Technically, we transform the formulae ϕ arising from the proof obligations
presented in this and the subsequent chapters into pairs (ϕ′, R) of formulae ϕ′

and sets R of rules, realised by the function simp : FmaΣ −→ FmaΣ×RuleΣ.
The rules are an extension to the regular calculus rules of JavaDL and intro-
duce formulae in the antecedent. They are thus of the form:

Γ, ψ ` ∆
Γ ` ∆

simp is defined as follows:

simp(ϕ) =

{
(ϕ′, R) if ϕ =

∧
ψ∈Ψ

ψ → [〈α]〉ϕ′′

(ϕ, ∅) otherwise

with sets of formulae Ψ0, Ψ1, Ψ = Ψ0 ]Ψ1 and:

ϕ′ =
∧

ψ0∈Ψ0

ψ0 → [〈α]〉ϕ′′ R =
⋃

ψ1∈Ψ1

Γ, ψ1 ` ∆
Γ ` ∆

Lemma 7.8. Assume: ϕ =
( ∧
ψ∈Ψ

ψ → [〈α]〉ϕ′′
)
∈ TermΣ, and simp(ϕ) =

(ϕ′, R). There is a closed proof in JavaDL of ϕ with Σ-program P if and
only if for every choice of Ψ0 there is a closed proof of ϕ′ with P using the
normal JavaDL rules extended by R.

Proof. There is a proof of ` ϕ in JavaDL iff there is a proof for Ψ ` [〈α]〉ϕ′′
because of the soundness and completeness preserving of the imp-right and
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and-left rules. There is however also a proof for ` ϕ with the extended rule
set iff there is a proof for Ψ ` [〈α]〉ϕ′′ in that set because of the soundness
and completeness preserving of imp-right, all-left, and R.

A good heuristics is to put the conjuncts of the general assumption in Ψ1
or to exclude from this set those invariants defined in the class of the receiver,
since they are more likely to be needed in a proof for one of the receiver’s
operations.

Example 7.5. For the invariant in Ex. 1.1:

∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

the following PreservesInv proof obligation for setVal(int) is generated:

∀̇p :Period. ( p.start.year < p.end.year
∨( p.start.year

.
= p.end.year

∧p.start.month.val ≤ p.end.month.val))

∧∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

→ [α̃setVal(int)(self; p1, . . . , pn; r)]∀̇m :Month. (0 ≤ m.val∧m.val ≤ 12)

With the technique presented above we can instead have as proof obligation:

[α̃setVal(int)(self; p1, . . . , pn; r)]∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12)

which is supposed to be discharged with the additional help of the following
rules:

Γ, ∀̇p :Period. ( p.start.year < p.end.year
∨( p.start.year

.
= p.end.year

∧p.start.month.val ≤ p.end.month.val))
` ∆

Γ ` ∆

Γ, ∀̇m :Month. (0 ≤ m.val ∧m.val ≤ 12) ` ∆
Γ ` ∆

Clearly this proof obligation formula is easier readable. Moreover, as already
mentioned alternative, it is possible according to the lemma above to leave
the invariant of Month in the formula and provide only the first (irrelevant)
invariant as rule. The criterion to do so is that Month is the receiver class
which makes it likely that its invariant is needed. ∗
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7.6 Summary

For all operation contracts in opct ∈ OpCt:

EnsuresPost(opct) or EnsuresPostAssumpt(I; opct) if I ⊆ Inv,

RespectsModifies(opct),

and



PreservesInv(op, Inv) or

for all invariants ϕ ∈ Inv:


PreservesInv(op, {ϕ}),
InvNotModified(op, {ϕ}), or
PreservesInvAssumpt(op; I; {ϕ})

if I ⊆ Inv

Figure 7.1: Verification strategies for entire observed-state call correctness

By encoding assumed invariants as rules, it is also possible to have a finer
grained proof management, since only the really applied rules ofR correspond
to those invariants which the proof later depends on. Imagine the conducted
proof P1 is to prove the fulfilment of an operation contract. If one later wants
to make use of this contract (according to Rule (6.6)) in a second proof P2,
one has to show the assumptions made by the contract. These are the pre-
conditions and the assumed invariants. If however one particular invariant
is not needed to conduct P1 it is also not needed to prove the establishment
of this invariant when the specification of the operation contract is used.
Having an invariant encoded as a rule allows to easier determine whether the
invariant has been used in P1, whereas having it within the original proof
obligation formula requires a much more intricate analysis of the proof.

7.6 Summary

We have discussed several single proof obligations, among others to verify
the assurance of post-conditions, the correctness of assignable clauses, and
the preservation of invariants. We have further seen that these single proof
obligations can be utilised to prove entire observed-state call correctness
in a non-modular way. There are several ways to establish this property,
in particular we can make use of non-modular optimisations, and it is the
choice of the individual developer to decide which of them to take. Fig. 7.1
illustrates the different options.
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7 Non-modular Verification of Call Correctness

We have finally seen that there are different possibilities how these proof
obligations are presented to the user. Ultimate goal is to reduce the com-
plexity of proof obligations in the user presentation.

Chapters 9 and 10 will refine the system of proof obligations presented here
with the focus on modular verification and on durable correctness of open
programs. Before that, some further instruments have to be developed. In
the next chapter the proof obligations presented here are especially adapted
to cope with encapsulation predicates.
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Num negare audes? quid taces?
Convincam, si negas.

(Cicero)

This chapter deals with the question how specifications containing encap-
sulation predicates, as introduced in Chapter 4, can efficiently be checked
against an implementation. The developed concept has been partly pre-
sented in Roth [2005].

Essentially there are two possibilities to check encapsulation properties:

• Using deductive methods for proving specifications of encapsulation is
most natural, as this is the preferred way to verify programs w.r.t func-
tional specifications. Since we make no distinction between encapsu-
lation properties and functional properties—both are specified in the
traditional design by contract way—they should be checkable the same
way. The special challenge with deduction is that deductive reasoning
should be modular as pointed out in Chapter 6.

• Static analysis methods are established means to check encapsulation
properties. The approaches described in Sect. 4.1.2 all come with a fast
static analysis. Static analyses have the appeal of a fully automated
technique which should thus be made use of whenever possible. We
must however find a save way back from the more general encapsulation
predicates to the restrictive but checkable alias control approaches.

The approach described below aims at a framework which integrates both
techniques, and which allows to check the easily statically checkable proper-
ties to be checked with static analysis and the others deductively.

Outline. Sect. 8.1 describes peculiarities with proof obligations for encap-
sulation properties. Compared to other proof obligations we must explicitely
state a special worst case of the caller. In the subsequent section we look at
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a first non-modular approach to deal with encapsulation predicates with a
deduction system. In Sect. 8.3, a modular approach, suited to the special en-
capsulation proof obligations, is proposed. Sect. 8.4 discusses the integration
of established static analysis techniques into our approach.

8.1 Proof Obligations

In this section we customise the proof obligations from the last section so that
they are applicable for formulae containing encapsulation predicates. More
precisely we only adapt the PreservesInv proof obligation since encapsulation
properties typically occur in invariants. All other proof obligations can be
adapted analogously.

The following example motivates the necessity for customisations. Let ϕ
be the following formula:

∀̇x. Acc(x, self.a) → x
.
= self

Let m be a method assigning an argument p to the field a:

public void m(T p) {

a = p;

}

If we put this formula in the normal PreservesInv proof obligation for m we
obtain:

Am(self; p) → [p=p0; try{self.m(p0)} catch(Throwable e){}]ϕ

This formula is valid in all states since Acc takes into account only fields and
not local variables, so that it is not relevant that p

.
= self.a holds in the

post-state. However, an observer may keep this reference in a field and ϕ
would thus not be an invariant of the system. So we need to refine our proof
obligations to match the observer model better. It is the worst case which
we should assume here: our observer acquires as many references that can
be obtained.

In general it must be modelled that the caller, that is, in our observer
model, the observer, may hold references (a) to the parameter objects and
(b) to the callee itself and (c) will, after the call has finished, hold a reference
to the returned value. (a) and (b) can be modelled by providing additional
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pre-conditions for parameters p1, . . . , pn and callee self:

ψacc(self; p1, . . . , pn) :=
∧

i=1,...,n

∃x. Acc(x, pi) ∧ ∃x. Acc(x, self)

That the return value r is afterwards possibly referenced, can be modelled
by qualifying the invariant ϕ appropriately, that is by referring to it as

∃x. Acc(x, r) → ϕ

An alternative is to use fields of an anonymous object as arguments of the
call and assigning the return value to another field of that class as pointed
out in Roth [2005]. Both alternatives are equally viable, though the first one
is more explicit and does not need an extension of the model, that is, no
special anonymous class must be added.

We thus obtain the following proof obligation template to prove that an
invariant ϕ ∈ TermAcc(Σ) containing encapsulation predicates is preserved by
an operation op:

Proof Obligation Template: PreservesInv∗(op, ϕ, self, (p1, . . . , pn)) .

Ensures(op,ψacc(self, (p1, . . . , pn)) ∧ ϕ,
∃x. Acc(x, r) → ϕ, partial , self, (p1, . . . , pn))

Note that this is the version of PreservesInv that must be used whenever
encapsulation predicates are involved, that is when the formula is built over
Acc(Σ). For all other proof obligations presented in this work, analogous
starred versions can be derived. For convenience we maintain the un-starred
versions to be used when no encapsulation predicate is in the considered
formulae.

In order to prove the preservation of an (encapsulation) property ϕ ∈
TermAcc(Σ) for a method call self.m(p); (in an environment where no in-
variants and preconditions are specified) the following proof obligation is
obtained:

∃x. Acc(x, self) ∧ ∃x. Acc(x, p) ∧ ϕ
→ [r = self.m(p);](∃x. Acc(x, r) → ϕ)

Example 8.1. Let us take up the settings from Example 4.1. To class
Triangle, we add a method getPoint0(). Our first attempt is to attach
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to getPoint0() the implementation return p0;. This is however not ac-
ceptable since the caller references p0 after getPoint0() returns, though
the encapsulation specification requires unique access through the Triangle

object.
Proof obligation template PreservesInv∗, instantiated as follows, is thus not
valid:

∃x. Acc(x, tria) ∧ ∀t :Triangle. GuardObjx[x
.
= t](t.p0)

→ [ r = tria.getPoint0(); ]

∃x. Acc(x, r) → ∀t :Triangle. GuardObjx[x
.
= t](t.p0)

If we change the implementation of getPoint0() to

return new Point(p0.getX(), p0.getY());

the above proof obligation is however, as desired, valid. ∗

8.2 Naive Deductive Approach

The two predicates defined in Sect. 4.2 must be axiomatised to deductively
treat encapsulation predicates. Both, Acc and Reach predicates are chal-
lenging: Acc is beyond the original JavaDL expressibility if no set of fields
is annotated and an open program is considered. For Reach a complete
axiomatisation is impossible.

The Acc Predicates

Let Σ be a signature and P a Σ-program, t0 ∈ TermΣ
T0

, t1 ∈ TermΣ
T1

. More-
over:

AccArr [A](t0, t1) :=

{
∃i :Integer. t0[i]

.
= t1 if [] ∈ A

false otherwise

The following axiomatisation of the Acc[A] predicates is modularly sound:

AccArr[A](t0, t1) ∨
∨
a∈A

τ(top(t0))�σ(a)

t0.a
.
= t1, Γ ` ∆

Acc[A](t0, t1), Γ ` ∆ (8.1)
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Lemma 8.1. Rules which are instances of Rule Scheme (8.1) are modularly
sound.

Proof. Let r ∈ RuleΣ be an instance of (8.1) and P a Σ-program. Let s be
a state and β a variable assignment with

vals,P,β(t0) = e0, vals,P,β(t1) = e1

The formula
AccArr[A](t0, t1) ∨

∨
a ∈ A

τ(top(t0)) � σ(a)

t0.a
.
= t1

is modularly valid in core context P if and only if one of these cases holds:

1. s, β |=∅
P

∨
a ∈ A

τ(top(t0)) � σ(a)

t0.a
.
= t1. This holds iff for some field a ∈ A:

s, β |=∅
P t0.a

.
= t1. This is true iff e0.a = vals,P,β(t0).a = vals,P,β(t1) = e1.

2. [] ∈ A and s, β |= ∃i.
(
t0[i]

.
= y

)
. This holds iff there is a j with

s, βij |= x[i]
.
= y

(We observe that e0 = vals(t0) must be an array since otherwise the
value of this sub-formula would depend on expressions ch(t0[i]) which
cannot be evaluated further. Also, 0 ≤ j < e0.length because other-
wise t0[i] evaluated to ch(t0[i]) and s, βij |= t0[i]

.
= t1 did not hold.) So

we have equivalently: e0[j] = vals,P,β(t0)[vals,P,β(i)] = vals,P,β(t0[i]) =
vals,P,β(t1) = e1.

By Def. 4.3 one of these cases holds iff s, β |=∅
P Acc[A](t0, t1).

The other Acc Predicates

The predicate Acc (without a list of fields) can be soundly axiomatised for
a fixed program context. We simply instantiate the above axiom with all
fields of P . This axiomatisation is however not modularly sound. Consider
the following classes:

class A { static A a;}

class B { static B b;}
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class A2 extends A {

private B b2;

public static m() {

a = new A2();

a.b2 = B.b;

}

}

Consider the core context {A, B}. Thus we get the following instantiation of
the rule scheme; since there are no instance fields in A the disjunction in the
premise is just false:

false,Γ ` ∆
Acc(a@(A), b@(B)),Γ ` ∆

The premise is thus valid in all contexts extending the core context. The
conclusion is however not valid in the context {A, B, A2}. This shows the
modular unsoundness of the rule scheme.

The same problem holds for the Acc[A] Predicates. We will deal with it
in Sect. 8.3.

The Reachable Predicate

The Reach predicate is axiomatised in a similar way as other attempts in
the literature, for instance by Nelson [1983]. Basically it is the reflexive and
transitive closure of Acc. The following axiomatisation is correct, that is,
the following is a true statement for the Reach predicate:

∀x :Object. ∀y :Any. ∀n :Integer.
(

Reach[A](x, y)

↔
(

(x
.
= y ∧ n .

= 0)

∨∃z :Object. (Acc[A](x, z) ∧ Reach[A](z, y, n− 1))
)) (8.2)

∀x :Object. ∀y :Any. ∀n :Integer.
(

Reach[A](x, y, n)

↔ ∃z :Object. ∃m :Integer.
(

Reach[A](x, z,m)

∧Reach[A](z, y, n−m))
)) (8.3)
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It is well known that there is no complete axiomatisation of the transitive
closure, and thus of Reach, in first order logic since the access graph may
contain cycles and our domain is infinite [Baar, 2003]. That is there can
be other predicates which satisfy the condition from above but which are
not the Reach predicate. However, it seems that the above (incomplete)
axiomatisation is sufficient for practical purposes.

The same axiomatisation can be done for the unparameterised version
exactly the same way, except that Acc is used instead of Acc[A]. Note
that this axiomatisation relies on the axiomatisation of the Acc predicates.
Thus for the unparameterised version of Reach the same problems as for the
unparameterised version of Acc arise.

8.3 Modular Treatment of Accessibility

The results on the axiomatisation of accessibility as described in the last
section is not satisfactory. The reasons are that, with open programs, mod-
ular proofs are needed such that a given conjecture can be proven modularly
valid as detailed in Sect. 6.4. The axiomatisation of Acc and Acc[A] as pre-
sented above does however refer to all types in the Java model and is thus
not modularly sound.

A closer look at the proof obligations for encapsulation properties from
Sect. 8.1 reveals that the involved sequents fortunately have a good-natured
character: They deal with the preservation of properties (involving Acc)
only. A typical sequent arising during a proof of an encapsulation property
following the Enc pattern conducted without Axiom 8.1 looks roughly as
follows:

{u}Acc(y0, z0),Γ ` Acc(y0, z0),∆

The succedent of the sequent originates from assuming the encapsulation
property in the pre-state; since it was on the left side of an implication
which was itself on the left side of the top level implication, it turns up in the
succedent. The antecedent describes the post-state, syntactically expressed
by an update u applied to a formula with the non-rigid Acc predicate.

With this observation it can be concluded that it would already help a lot if
Acc was modularly axiomatised for state changes, that is update applications.

In the following we will only discuss the Acc[A] predicate, though our
primary focus is on Acc. It is however easy to see that Acc can be seen as
abbreviation for Acc[∅].
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8 Verification of Encapsulation

We only consider updates u of the following normalised shape (for all
i = 1, . . . , n):

u := u1| . . . |un
ui := (for xi1, . . . , x

i
mi

; ϕi ; u′i)

u′i := ai(t
i
1, . . . , t

i
ki
) := ti0

Rümmer [2005] shows that this shape can always be achieved from an arbi-
trary update.

Our first type of update simplification rule ‘moves’ updates which cannot
influence Acc[A](r0, r1) (since they modify locations a ∈ A) ‘behind’ the
predicate (where u is an update and r0, r1 are terms):

{v̄}Acc[A]({v}r0, {v}r1),Γ ` ∆

{u}Acc[A](r0, r1),Γ ` ∆

Γ ` {v̄}Acc[A]({v}r0, {v}r1),∆
Γ ` {u}Acc[A](r0, r1),∆

(8.4)
where v is the subsequence of u with v′i = l := ti0 and top(l) ∈ A and v̄ is the
subsequence which complements v to u.

Now we introduce a function F which maps a term {u}Acc[A](r0, r1) to a
term F ({u}Acc[A](y, z)) (where again u is an update and r0, r1 are terms).
The intention is to obtain the following sound rules:

F ({u}Acc[A](r0, r1)),Γ ` ∆

{u}Acc[A](r0, r1),Γ ` ∆

Γ ` F ({u}Acc[A](r0, r1)),∆

Γ ` {u}Acc[A](r0, r1),∆

Let u be an update of the normalised shape with u′i = (li := ti0) , A0 =
{top(li) | i = 1, . . . , n} (for i = 1, . . . , n), and A ∩A0 = ∅. This form can be
obtained by applying rule (8.4). Moreover we require that no clashes occur
between the elements, this can be achieved (as a necessary condition) by
requiring that all top level symbols top(li) of left hand sides are distinct. We
define:

F (t) :=


(∃xn1 :T n1 . · · · ∃xnmn

:T nmn
. (ϕn ∧ tn1

.
= {u}r0 ∧ tn0

.
= {u}r1))

...
∨ (∃x1

1 :T 1
1 . · · · ∃x1

m1
:T 1

m1
. (ϕ1 ∧ t11

.
= {u}r0 ∧ t10

.
= {u}r1))

∨ Acc[A ∪ A0]({u}r0, {u}r1)


Lemma 8.2. The following rules are modularly sound for normalised up-
dates u with u′i = (li := ti0) (for i = 1, . . . , n), A0 = {top(li) | i = 1, . . . , n},
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and A ∩ A0 = ∅:

F ({u}Acc[A](y, z)),Γ ` ∆

{u}Acc[A](y, z),Γ ` ∆

Γ ` F ({u}Acc[A](y, z)),∆

Γ ` {u}Acc[A](y, z),∆

Proof. For simplicity we assume that the only possibility to access an object
from another is via an instance field access. Array accesses can be treated
in the analogous way.

Let Σ be a signature and P be a Σ-program. Let s be an arbitrary state
and β a variable assignment. Let s′ = ρu(s).

We show the equivalence of {u}Acc[A](y, z) and F ({u}Acc[A](y, z)) for
an elementary update u = t′.a := t0 under the assumption that a′ 6∈ A:

s, β |=∅
P (t′

.
= {u}r0 ∧ t0

.
= {u}r1) ∨ Acc[A ∪ {a}]({u}r0, {u}r1)

⇔ (vals,P,β(t
′) = vals′,P,β(r0) and vals,P,β(t0) = vals′,P,β(r1))

or exists b /∈ A ∪ {a} with: bs(vals′,P,β(r0)) = vals′,P,β(r1)

⇔ exists b /∈ A with:
if not (vals,P,β(t

′) = vals′,P,β(r0), vals,P,β(t0) = vals′,P,β(r1), and a = b)
then bs(vals′,P,β(r0)) = vals′,P,β(r1)

⇔ exists b /∈ A with bs
′
(vals′,P,β(r0)) = vals′,P,β(r1)

⇔ vals′,P,β(r0) accesses vals′,P,β(r1) by field access not in A

⇔ (vals′,P,β(r0), vals′,P,β(r1)) ∈ Acc[A]s
′

⇔ s, β |=∅
P {u}Acc[A](r0, r1)

8.4 Static Analysis Techniques

Sect. 4.1.2 already mentioned static analysis techniques called alias control
policies and the encapsulation properties they check. Though encapsulation
predicates provide a more general framework than these rather specialised
properties, the use of deductive verification to prove properties expressed by
means of encapsulation predicates has a major disadvantage compared to the
static analysis techniques employed for alias control : In general, deduction
requires user interaction, which is especially in the case of treating Reach
non-trivial, while the techniques to prove alias control properties are usually
fully automated static analyses. Non-trivial automated techniques can nev-
ertheless be used even in the general setting of encapsulation predicates as
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8 Verification of Encapsulation

mentioned in Roth [2005] and worked out in Weiß [2006]. We briefly present
the results of the latter here and relate them to our needs.

We introduce yet another encapsulation predicate, Univ, which serves only
the purpose of more adequately model the Universe approach. The Universe
alias control policy [Müller, 2002, Müller and Poetzsch-Heffter, 2001] has
already been discussed in Sect. 4.3.4. Its main characteristics are that it
allows to declare variables with three kind of annotations: rep, peer (which
is the default annotation), and readonly. The intention is that all objects
referenced through a rep variable can only be modified by the owner of the
object, which is the object which holds the rep reference. This restriction
extends to objects reachable via peer. References through a readonly an-
notated variable are however always allowed. In the original type system it
is however not allowed to make modifications by means of such a reference.
The check for these conditions, given a complete annotation of all variable
declarations, is done completely automatically.

Compared to the other encapsulation predicates the particularity of Univ
is that there are three lists of fields needed in this predicate. Each represents
one of the Universe modifiers rep (the set is called Rep), peer (Peer), and
readonly (Friend). It is defined as follows:

Univ[Rep;Peer ;Friend ] :⇔ ∀g. ∀z. (Own[Rep;Peer ](g, z)
(

→
(
∀y0. ¬Acc[Rep ∪ Peer ∪ Friend ](y0, z)
∧∀y1. (Acc[Rep](y1, z) → y1

.
= g)

))
Own[Rep;Peer ](g, z) :⇔ ∃u.

(
Acc[Rep](g, u) ∧ Conn[Peer ](u, z)

)
The first line states the situation which is to be described in more detail:
g owns z; here ownership means that there is an access from g via a rep

field into the owned context (to an object u) and there is a connection from
that object via peer references to z. If there is such an ownership relation
between g and z then we require that if there is an access to such a z, then
this is done via a rep or a readonly reference; if it is a rep reference then
it is held by the owner. This is described by the second and third lines:
No accesses are allowed via references not described by one of the sets and
accesses via rep are only allowed from g.

The predicate Univ has the following properties:

1. A property like

Univ[Rep;Peer ;Friend ] → [α] Univ[Rep;Peer ;Friend ]
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can be checked automatically with the help of the Universe type system.

2. It formalises an encapsulation property strong enough to protect in-
variants as detailed in Sect. 9.

Weiß [2006] deals in detail with item 1. The type annotations as partially
fixed by the sets Rep, Peer , and Friend are completed such that all variable
declarations in the program reachable by α are annotated and these annota-
tions make the program comply with the Universe type rules. The completion
works completely automatically by imposing constraints and solving them.
Weiß [2006] proves that each program state is well-formed with respect to the
annotations if and only if Univ[Rep;Peer ;Friend ] holds. This result justifies
the soundness of the following rule:

Γ,Univ[Rep;Peer ;Friend ] ` RESULT, [α] Univ[Rep;Peer ;Friend ],∆

Γ,Univ[Rep;Peer ;Friend ] ` [α] Univ[Rep;Peer ;Friend ],∆

where RESULT is

• true if the sketched procedure finds a set of annotation which satisfies
the Universe type rules or

• false otherwise.

In the latter case nothing is lost: one can try to discharge the goal with
purely deductive means.

So we have to show that this property is really useful for our purposes.
While we will see the requirements in the next chapter, we provide some
work already here.

LetGRep andGFriend be two mutually disjoint sets of classes from a program
P . Let further be Rep a subset of the fields of GRep and Friend a subset of
the fields in GFriend . Let g be a term of a type of GRep. Then the validity of
Univ[Rep;Peer ;Friend ] implies the validity of

Ency,z

 ∨
T∈GRep∪GFriend

InstanceOfT (y), ∃u.(Acc[Rep](g, u) ∧ Conn[Peer ](u, z))


We are later interested in general properties

Ency,z

[ ∨
T∈G

InstanceOfT (y), p(z)

]
(8.5)
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We have in fact proven this formula (8.5) if

• we can prove ∀z.
(
p(z) → ∃u.(Acc[Rep](g, u) ∧ Conn[Peer ](u, z))

)
,

• G = GRep ∪GFriend , and

• Univ[Rep;Peer ;Friend ] can be shown for legal choices of Rep, Peer ,
and Friend .

8.5 Summary

In this chapter we have investigated how encapsulation predicates can be
verified. Proof obligations needed to be adapted specially to cope with these
predicates in order to reflect the fact that callers may reference parameters
and return values. Then we looked at how calculi would treat encapsulation
predicates. A naive version axiomatised the basic predicates for a closed
world assumption. An advanced version took a more modular approach but
specified the Acc predicate under state changes, which seems sufficient for
our proof obligations. Finally we have discussed how static procedures like
alias control policies can be exploited for encapsulation predicates.

In Sect. 9.3.3 we make use of the proof obligation patterns presented here.
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Correctness

Sed quis custodiet ipsos
custodes?

(Juvenal)

This chapter resumes the discussion of proof obligations from Chapter 7.
Still we are only considering observed-state call correctness of closed pro-
grams, but are taking a crucial step towards a more modular way of verifica-
tion. Moreover the system of proof obligations presented now is more precise
than the one presented in that chapter because it classifies more call correct
programs as correct.

In Chapter 7, we needed to take into account all pairs of operations and
invariants, which led to an explosion of proof obligations. Although we pre-
sented a technique which alleviated this by easily discharging many irrelevant
invariants, the principal problem was not solved.

Our strategy is now to analyse specifications and exploit additional infor-
mation we get from this analysis. With them, invariants themselves reveal
that only certain types are relevant to them, we say that they are guarded
by these classes.

More precisely, our analysis delivers a depends clause for an invariant ϕ.
It specifies those locations for which special care must be taken, so that
no invariant-invalidating modifications can be performed. We provide two
possibilities of ‘taking care’ of a depends clause element d: Either

• the location described by d is controlled by an object which adheres to
ϕ, or

• there is a set of objects which are in control of the location described
by d and these objects can only be accessed from the outside of this
set through guard objects. Furthermore, the guard objects adhere to
ϕ.
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Overview. We start with the analysis of specifications, with the result of
finding depends clauses for the invariants of a specification. Constraints
on these depends clauses are discussed in Sects. 9.2 and 9.3; each section
is devoted to one of the approaches described above. In Sect. 9.4 these
approaches are combined and a system of proof obligations is defined which
ensures durable correctness.

9.1 Analysis of Dependencies in Specifications

In contrast to other approaches for modular verification, we do not impose
any a priori restriction on programs or specifications. Instead we let the
developer write arbitrary specifications and programs, and then analyse the
specification for possible drawbacks on needed encapsulation properties. The
analysis gives rise to a number of proof obligations which are then discharged
together with the proof obligations for functional correctness and encapsu-
lation. Parts of this analysis are described in Roth and Schmitt [2004].

In this section we develop an analysis instrument (depends clause) for
invariants which helps us to determine how invariants must be protected
against undesired modifications of their values. Depends clauses consist of
descriptions of locations using location terms. They specify at least those
locations which, if they all remain unchanged by a state change, make an
invariant, that is a JavaFOL formula, remain unchanged in its truth value
(w.r.t. the state change), too. In the next sections this property is exploited
in the sense that these locations are insulated from parts of the system which
preservation of invariants is not proven for.

9.1.1 Depends Clauses

Depends clauses are the main vehicle to determine how invariants must
be protected against undesired modifications. They are finite subsets of
LocTermΣ. Remember from Def. 2.9 that these are extended terms with
a field or array access as top-level operator. If the evaluations of all these
location terms remain unchanged in two different states, then the evaluation
of an invariant in these two states remains the same, too. Or the other way
round, for any state change in which the evaluation of the invariant changes,
one of the elements of the depends clause must be evaluated differently in
the two states.
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There is also a syntactical condition on the location terms t contained in
depends clauses: They must be in prenex normal form. This is to easily
transform these extended terms into formulae; the guards and quantified
variables can then more easily be read off.

Definition 9.1. A (query-free) depends clause of a JavaFOL formula ϕ ∈
FmaΣ in the context of a Σ-program P is a finite set Dϕ ⊆ LocTermΣ of
extended terms in prenex normal form which do not contain dynamically
bound query symbols and for which the following property holds for all states
s1 and s2: If, for all (f, (e1, . . . , en)) ∈ Locs1,P,β(Dϕ), f

s1,P (e1, . . . , en) =
f s2,P (e1, . . . , en) then (

s1 |=P ϕ iff s2 |=P ϕ
)

There are interesting structural similarities to the definition of assignable
clauses (Def. 3.5). Both times we are interested in sets of locations described
by location terms. While we analysed method bodies in the case of assignable
clauses, we are now analysing formulae. While we were in the former case
interested in locations which are the only relevant for a piece of program
to be evaluated differently in two states, we are now interested in locations
which are the only relevant ones for the valuation of a formulae to change in
two different interpretations.

Note: Until Sect. 10.4 we forbid the occurrence of dynamically bound
(that is, non-static and non-private) query symbols in depends clauses. This
is why we have added query-free to the definition. Queries complicate things
as also discussed in Sect. 9.1.4. Anyway, until Sect. 10.4 we refer to query-free
depends clauses simply as depends clauses.

Arbitrary suffixes of the elements of a depends clause which have the shape
∗.a1. . . . .an still form a depends clause.

Lemma 9.1. If D is a depends clause for ϕ and ∗.a1. · · · .an ∈ D then

D\{∗.a1. · · · .an} ∪ {∗.aj. · · · .an}

is a depends clause for ϕ for some 1 < j ≤ n.

Proof. We use the abbreviations: d1 := ∗.a1. . . . .aj−1, d2 := ∗.aj. · · · .an, and
D′ := D\{∗.a1. · · · .an} ∪ {d2}. Assume gs1(e′1, . . . , e

′
n′) = gs2(e′1, . . . , e

′
n′) for

all (g, (e′1, . . . , e
′
n′)) ∈ Locs1,β(D

′).
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• If g = an, then in particular

as1n (e′1) = as2n (e′1) for all e′1 ∈ {(a
s1
n−1(· · · (a

s1
j (e)) · · · )) | e ∈ Dom(σ(aj))}

Hence:

as1n (e′1) = as2n (e′1) for all e′1 ∈ {(a
s1
n−1(· · · (a

s1
1 (e)) · · · )) | e ∈ Dom(σ(a1))}

Thus: as1n (e′1) = as2n (e′1) for all (an, (e
′
1)) ∈ Locs1,β(D)

• If g 6= an then (g, (e′1, . . . , e
′
n′)) ∈ Locs1,β(D).

Since D is a depends clause, d1d2 ∈ D, and gs1(e′1, . . . , e
′
n′) = gs2(e′1, . . . , e

′
n′)

for all (g, (e′1, . . . , e
′
n′)) ∈ Locs1,β(D), it follows

(
s1 |=P ϕ iff s2 |=P ϕ

)
Example 9.1. Coming back to Ex. 1.1, the set

D =

 *Period.<created>, *.start, *.end, *.start.year,
*.end.year, *.start.month, *.end.month,
*.start.month.val, *.end.month.val


is a depends clause of ϕPeriod. Because of Lemma 9.1,

D′ = {*Period.<created>, ∗.start, ∗.end, ∗.year, ∗.month, ∗.val}

is as well a depends clause of ϕPeriod. We will see in the rest of this chapter
that despite its brevity D′ is not a good depends clause; instead we will
appreciate depends clauses which have ‘chains’ that all start in the same
type. ∗

The last example has shown that for the recurring pattern of depends
clause elements ∗.a1 · · · .an often all ‘prefixes’ ∗.a1 · · · .aj (j = 1, . . . , n) are
needed as well. Therefore we aim to introduce a shorthand notation, which
for the instance of an extended term ∗.a1 · · · .an makes Exp(∗.a1 · · · .an) des-
ignate the set {∗.a1 · · · .aj | j = 2, . . . , n}. Since we want to include array
accesses as well, we define slightly more general:

Definition 9.2.

1. The subset WFLocTermΣ ⊆ LocTermΣ of extended terms is defined as
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a set containing only extended terms of the following shape:

(for x : T, x1, . . . , xn ; ϕ ; fm(fm−1(· · · (f1(x), . . .), . . .), . . .)) (9.1)

(for x1, . . . , xn ; ϕ ; fm(fm−1(· · · (f1(t
′), . . .), . . .), . . .)) (9.2)

(for x : T, x′ : T ′, x1, . . . , xn ;
Reach(g`(g`−1(· · · (g1(x), . . .), . . .), . . .), x

′) ∧ ϕ ;
fm(fm−1(· · · (f1(x

′), . . .), . . .), . . .))
(9.3)

where x1, . . . , xn are logical variables of type Integer, x a logical
variable of type T , t′ a static field symbol, and fi (i = 1, . . . ,m) and
gj (j = 1, . . . , `) instance field or array access symbols.

2. The start type ST(t) of an extended term t ∈ WFLocTermΣ is defined
as T if t has shape (9.1) or (9.3). It is the type where the static variable
t′ is defined if t has shape (9.2).

For sets D ⊆ WFLocTermΣ: ST(D) = {ST (t) | t ∈ D}

3. Let be t ∈ WFLocTermΣ. If t is of the shape (9.1), then we denote
with Exp(t) the set

{(for x :T,x1,. . . ,xn ;ϕ ; fj(fj−1(· · · (f1(x), . . .), . . .), . . .)) | j = 2, . . . ,m}

If t is of the shape (9.2), then Exp(t) is defined as:

{(for x1, . . . , xn ; ϕ ; fj(fj−1(· · · (f1(t
′), . . .), . . .), . . .)) | j = 2, . . . ,m}

If t is of the shape (9.3), then Exp(t) is:

{(for x : T, x′ : T ′, x1, . . . , xn ;
Reach[A](g`(g`−1(· · · (g1(x), . . .), . . .), . . .), x

′) ∧ ϕ ;
fj(fj−1(· · · (f1(x

′), . . .), . . .), . . .) | j = 1, . . . ,m)}
∪ {(for x : T, x′ : T ′, x1, . . . , xn ;

Reach[A](g`(g`−1(· · · (g1(x), . . .), . . .), . . .), x
′) ∧ ϕ ; x′.a | a ∈ A)}

∪ {(for x : T, x′ : T ′, x1, . . . , xn ; ϕ ; gj(gj−1(· · · (g1(x), . . .), . . .), . . .))
| j = 2, . . . `}

The domain of Exp is extended to sets D ⊆ WFLocTermΣ :

Exp(D) :=
⋃
d∈D

Exp(d)
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For a reason which will be seen in the next section, we sieve out f1(t
′) (and

g1(x), resp.).

Example 9.2. In Ex. 9.1, D can alternatively be written as

D = Exp({ ∗.start.month.val, ∗.end.month.val,
∗.start.year, ∗.end.year)}

∪ {*.start, *.end, *Period.<created>} ∗

Later (Sect. 9.3.3), we will restrict attention to depends clauses which
are finite subsets of WFLocTermΣ and which are constructed (or can be
constructed) via Exp.

Before we investigate how we obtain depends clauses from an invariant,
we state the following obvious lemma:

Lemma 9.2. Every super set of a depends clause is still a depends clause.

Proof. Trivial, since we only specify elements which must be elements of a
depends clause.

9.1.2 Syntactical Criteria for Depends Clauses

In the majority of cases it is quite easily possible to determine depends
clauses of invariants simply by ‘reading off’ terms. Consider Ex. 9.1. The
depends clause of the invariant of Period exactly corresponds to the terms
of maximal length occurring in the formula representing the invariant. Only
the references to the arbitrary Period object must be replaced by ‘∗’.

For the general case we make use of a function Dep. During the definition
we take a set of logical variables V into consideration. This will matter only
when we refine the function below. For a first account, V can be considered
as the empty set.

Definition 9.3. The set Dep(ϕ) of terms for ϕ ∈ FmaΣ ∪TermΣ is the set
of all subterms of ϕ which are of the shape f(t1, . . . , tn) with terms t1, . . . , tn
where f ∈ Fnr.

The following lemma says that the set of location terms delivered by Dep
is in fact, after transforming it into prenex normal form, a depends clause.
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Lemma 9.3. Let ϕ ∈ FmaΣ be a closed formula without occurrences of other
non-rigid function or predicate symbols than field and array access symbols.
If D′ = Dep(ϕ) and D is a prenex normal form of D′, then D is a depends
clause of ϕ in P .

Proof. Assume two states s1 and s2 with s1 |=P ϕ but not s2 |=P . Further-
more we assume for all t ∈ Dep(ϕ): vals1,P,β(t) = vals2,P,β(t) for all β. Since
we have disallowed non-rigid predicates, there is a subformula of ϕ of the
shape p(t1, . . . , tn) where p is a predicate or the equality symbol and t1, . . . , tn
are terms and vals1,P,β(ti) 6= vals2,P,β(ti) for at least one i ∈ {1, . . . , n}.

In contradiction to this we have (by induction on the construction of terms)
for all subterms t of ϕ: vals1,P,β(t) = vals2,P,β(t) since if the top-level function
symbol is rigid this property holds trivially and otherwise our assumptions
applies. In case of logical variables we use the fact that we use the same β.
Thus the assumption s1 |=P ϕ and not s2 |=P cannot be true and the prenex
normal form of the set consisting of all subterms with non-rigid function
symbols is a depends clause of ϕ.

The depends clauses Dep(ϕ) satisfy the property Exp(D) ⊆ D.
The following example shows up that depends clauses derived by Dep are

not always the best way to go.

Example 9.3. Consider the formula

∀x. (x = a.b→ x.c > 0)

Suppose a is a static variable symbol, and b and c are instance field symbols.
Note, that this formula is equivalent to a.b.c > 0. Dep from above would
find the following depends clause:

{∗.c, a.b, a}
In fact {a.b.c, a.b, a} is as well a depends clause, which can easily be seen
by considering the equivalent formulation. Moreover we will see later that
depends clauses with ‘longer’ elements open up more possibilities to protect
the invariant. ∗
Example 9.4. The invariant ϕPeriod of our running example is assigned the
following depends clause Dep(ϕPeriod):

Dep(ϕPeriod) = Exp({ ∗.start.month.val, ∗.end.month.val,
∗.start.year, ∗.end.year})

∪ {∗.start, ∗.end, *Period.<created>}
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∗

To improve the performance of Dep we can take into consideration special
patterns of formulae. Consider for instance a formula of the shape

∀x :T. (Reach[A](t, x) → ϕ(x))

We claim that the following set is a depends clause:

{(for x : T ; Reach[A](t, x) ; t′) | t′ ∈ Dep{x}(ϕ(x))}
∪ {(for x : T ; Reach[A](t, x) ; x.a) | for instance fields a ∈ A}
∪ {(for x : T ; Reach[A](t, x) ; x[ ∗ ]) | for all [] ∈ A}

(9.4)

Note that we employed Dep parameterised with a set of variables which
makes the analysis more thorough. We justify our claim as follows:

s1, β |=P ∀x :T. (Reach[A](t, x) → ϕ(x)) (9.5)

iff for all objects en ∈ Dom(T ) and e1, . . . , en−1 ∈ Dom(Object) and e1 =
vals1,P,β(t

′) and (ei, ei+1) ∈ Acc[A]s1,P for all i = 1, . . . , n − 1: s1, β
en
x |=P ϕ.

Because of the second and third line of our depends clause, for all a ∈ A and
all suitable objects e: as1,P (e) = as2,P (e). Thus also Acc[A]s1,P = Acc[A]s2,P .
Because of the inductive argument as in the proof above and the first line
of the depends clause: (s1, β

en
x |=P ϕ iff s2, β

en
x |=P ϕ) and e1 = vals2,P,β(t

′).
Thus (9.5) holds if and only if for all objects en ∈ Dom(T ) and e1, . . . , en−1 ∈
Dom(Object) and e1 = vals2,P,β(t

′) and (ei, ei+1) ∈ Acc[A]s2,P for all i =
1, . . . , n− 1: s2, β

en
x |=P ϕ. And thus it is equivalent to

s2, β |=P ∀x :T. (Reach[A](t, x) → ϕ(x))

The construction of Dep can thus be extended to consider in the case
t = ∀x :T. ϕ the special shape (9.5). It then delivers the depends clause
described by (9.4).

It would be possible to identify more specification patterns with special
depends clauses as in the example above. This could for instance be cou-
pled with automatically generated specifications for design patterns and id-
ioms [Ahrendt et al., 2005a].

9.1.3 Proofs of Depends Clauses

In spite of the syntactical criteria from above, it can be in general a task
for a user of our system to find a depends clause, if tricky invariants are
investigated as Ex. 9.3 demonstrated.
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9.1 Analysis of Dependencies in Specifications

In this scenario, a user suggests a set of location terms and the system
provides a proof obligation to prove the suggestion to be a depends clause.
It is the only one throughout this work where no program is involved, instead
only the relation between invariant and depends clause is investigated. Roth
[2006] contains a number of other such horizontal proof obligations.

The idea of the proof obligation for depends clauses is as follows. Given a
formula ϕ which Dϕ is a presumed depends clause for. Let us assume that
ϕ is valid. Our goal is to establish the validity of ϕ after a state change of
which all but the locations described in Dϕ are updated to unknown values.
The locations described by Dϕ, however, are assigned their original values
before the state change. The anonymous state change is expressed by means
of an anonymous update (Def. 2.12).

As notational helper we introduce a function uid which delivers, for an
extended term t in prenex normal form, an update which updates the location
described by t to the value of t. Clearly this update is per se effectless. If
we however apply the function pre (Def. 7.1) on it, the update updates to
previous values. uid is defined as follows:

uid(for x1 : T1, . . . , xn : Tn ; ϕ ; d′) = (for x1 : T1, . . . , xn : Tn ; ϕ ; d′ := d′)

Further on sets {d1, . . . , dm} of extended terms in prenex normal form:

uid({d1, . . . , dm}) = uid(d1)| · · · |uid(dm)

Proof Obligation Template: CorrectDepends({d1, . . . , dm}, ϕ) .
for d1, . . . , dm extended terms in prenex normal form and ϕ ∈ FmaΣ

Def(F@pre) ∧ ϕ→ {∗}{u}ϕ

where pre(uid({d1, . . . , dm})) = (u, F@pre) and ∗ is an anonymous update not
occurring in ϕ.

Lemma 9.4. Let Σ be a signature and P a Σ-program.

|=P CorrectDepends({d1, . . . , dm}, ϕ)

implies that {d1, . . . , dm} is a depends clause of ϕ in P .

Proof. Set u as in the lemma. Let D = {d1, . . . , dm} ⊆ ExtTermΣ be a
set of extended terms in prenex normal form. Let s1, s2 be two states for
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9 Modular Verification of Call Correctness

which we assume that for all locations l = (f, (e1, . . . , en)) ∈ Locs1,β(D):
f s1,P (e1, . . . , en) = f s2,P (e1, . . . , en). We can thus characterise s2 as s2 =
ρu(s1). Moreover we may assume s1 |=P ϕ. Because of the validity of
CorrectDepends({d1, . . . , dm}, ϕ): s2 |=P ϕ.
Because of the symmetry of s1 and s2 in the definition of a depends clause,
the opposite direction (s2 |=P ϕ implies s1 |=P ϕ) can be shown the same
way.

Example 9.5. With this proof obligation template we can prove that the
set {a.b.c, a.b, a} is a depends clause of the formula

∀x. (x = a.b→ x.c > 0)

from Ex. 9.3. It is instantiated to

∀x. (x
.
= a.b→ x.c > 0) ∧ a@pre .

= a

∧ ∀x. b@pre(x)
.
= x.b ∧ ∀x. c@pre(x)

.
= x.c

→ {∗}{ b@pre(a@pre).c := c@pre(b@pre(a@pre))
| a@pre.b := b@pre(a@pre) | a := a@pre}

∀x. (x
.
= a.b→ x.c > 0)

When loaded into the KeY prover it can be proven correct with a couple of
(trivial) quantifier instantiations. ∗

9.1.4 Context-Independent Depends Clauses

We allowed for queries, these are side-effect free methods, being part of an
invariant. Queries are dynamically bound unless they are (see Sect. 2.2.2)
private or static. They are possibly overridden in other classes if they or
their class are not final. Using dynamically bound queries in invariants raises
problems of modularity.

The validity of an invariant containing a dynamically bound query depends
on the underlying program context. This is even the case in a ‘non-local’
sense: all concrete locations read by the invoked methods are relevant. Con-
sequently, if a query is overridden which occurs in an invariant, the read
concrete locations must additionally be part of the depends clause of the
invariant. This leads to non-modular properties of depends clauses as the
following example demonstrates.
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9.1 Analysis of Dependencies in Specifications

Example 9.6. Finding a depends clause in the following example is difficult:

public class A {

/*@ public instance invariant a.equals(b) */

private Object a;

private Object b;

}

The query symbol equals in the invariant refers to the method equals in-
herited from Object, which is by default implemented as the object identity.
Assumed the program to consider just consisted of class A (and the stan-
dard Java types, of course). {∗.a, ∗.b} would then be sufficient as depends
clause, but as soon as a class would override equals in a non-trivial way, the
depends clause would have to be extended. Obviously this is an undesired
non-modular behaviour. ∗

Depends clauses which do not depend on a context are called context-
independent. One is particularly interested in context-independence when
considering open programs, for obvious reasons: Contexts of open programs
have unknown concrete locations, thus it is in general impossible to determine
depends clauses of invariants in open programs—unless there is a context-
independent one.

Definition 9.4. A depends clause D of ϕ ∈ FmaΣ is context-independent
if D is a depends clause for every Σ′-program where Σ′ is a signature with
Σ ⊆ Σ′. All other depends clauses are called context-dependent.

Note that in this definition ϕ ∈ FmaΣ′
for all Σ′ with Σ ⊆ Σ′ according to

Lemma 2.1.
A good sufficient criterion for context-independent depends clauses is as

follows. If the depends clause D is for an invariant which contains only
queries which are declared as private, as static, as final, or in a final class,
then D is context-independent. Until Sect. 10.4 we will require that all
invariants satisfy this property and that thus all depends clauses are context-
independent.

In the next sections, we try to identify sets of classes, called the guard
or self-guard, which is ‘responsible’ to protect invariants against undesired
modifications and which behave in accordance with these invariants. De-
pends clauses are the basic instrument to analyse invariants and to deter-
mine whether a set of types is a suitable guard for them. We have already
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9 Modular Verification of Call Correctness

Figure 9.1: Instances of self-guards (filled boxes) protecting a set of loca-
tions (bold arrows)

mentioned in the introductory notes of this chapter that there are two ways
to protect invariants (or the corresponding depends clause), each of them is
devoted one of the subsequent sections. Finally we define in Sect. 9.4 that
an invariant is guarded if one of these possibilities applies.

9.2 Self-Guards

A set G of classes protects a set of locations LD as a self-guard by being
in full control of these locations. All modifications of the value assigned to
such a location must be done by an operation of an element of G (of which
we later can modularly ensure preservation of invariants). In Java, this can
only be the case if LD describes fields of a member of G.

Fig. 9.1 illustrates how self-guards work. The rectangles represent objects
in a certain state. The arrows represent locations with only one depending
object (i.e. of the shape (f, (e))), as they occur if we consider only instance
fields. The bold arrows represent those locations which must be guarded,
that is which are represented by the depends clause. Instances of self-guards
(represented by filled rectangles), can only protect locations they are the
origin of.

If the fields to be protected have sufficiently restrictive visibilities, as for
instance private, the assignment to this field can only be changed by methods
of the guard instances. And if these methods satisfy all needed requirements
(that is most importantly, preserve invariants), nothing bad can happen to
these requirements. In the case of protected fields things get more compli-
cated, since all subclass instances can change the field assignment. In that
case we impose the restriction that all subclasses of the field-declaring class
must be guards too. Note that the latter has implications for open programs,
since there can be an unknown number of subclasses.
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9.2 Self-Guards

Definition 9.5. Let LD ⊆ LΣ be a set of concrete locations. Moreover, let
G be a set of types of Σ.
G is a self-guard of LD in state s if all of the following conditions hold:

1. for all (f, (e1, . . . , en)) ∈ LD, f is an instance or static field symbol,

2. for all (f, (e1, . . . , en)) ∈ LD one of the following holds:

• f is declared private in a class of G,

• f is declared protected in a class C ∈ G then {C}� ⊆ G.

A special rule holds for the specification-only field <created> which can,
though protected, only be written in the constructor of its dynamic type. For
this field we do not require that all subclasses {C}� are part of the guard G.

The notion of self-guards is transferred to the syntax level. We use location
terms to describe the locations to be guarded.

Definition 9.6. Let D ⊆ LocTermΣ be a finite set of location terms (with
top(t) instance or static field) and G a set of types of Σ. G is a self-guard of
D in state s if G is a self-guard of Locs,P,β(D).
G is a self-guard of D if G is a self-guard of D in all states reached by P .

Example 9.7. Consider the invariant

ϕMonth := ∀̇m :Month. (1 ≤ m.val ∧m.val ≤ 12)

A depends clause of ϕMonth is {∗.val, *Month.<created>}. {Month} is a self-
guard of {∗.val} since, for any state s,

Locs,P,β(∗.val) = {(val, (e)) | e ∈ Dom(Month)}

and val is defined private in Month. Month is also a self-guard of <created>,
because of the special rule for this specification-only field. ∗

Example 9.8. Take the (static) invariant

ϕ := (jan@(Month) 6 .= null)

A depends clause of ϕ is {jan@(Month)} with

Locs,P,β(jan@(Month)) = {(jan@(Month), ())}

Month is a self-guard of this depends clause since jan is a private field. ∗
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9 Modular Verification of Call Correctness

Example 9.9. The (static) invariant

ϕ := jan@(Month).val
.
= 1

has, as well, Month as self-guard, because for any state s,

Locs,P,β(jan@(Month).val) = {(val, (vals,P,β(jan@(Month))))}

and val is declared private. ∗

It is not possible to update locations which have a self-guard in an other
way than by calling operations of the self-guard. If the self-guard is proven
to adhere to an invariant, and the locations protected by the self-guard are a
depends clause of that invariant, the invariant cannot get violated in any way.
In Ex. 9.7, if all operations of Month preserved the invariant ∀̇m :Month. (1 ≤
m.val ∧ m.val ≤ 12), then this is sufficient to ensure that it holds in all
observer states.

There is no need for a proof obligation to find out whether a given set
G is a self-guard for another set D. Instead a simple syntactic analysis is
sufficient: We just need to consider {σ(top(d)) | d ∈ D}. If this set contains
only elements which are a private field symbol declared in a type of G or
which are a protected field symbol declared in a type of G and every subtype
of G is element of G, then G is a self guard for D.

9.3 Guards

Self-guards are an option only for relatively simple invariants. Consider
Ex. 1.1. It is possible to find a self-guard for the depends clause D as found
in Ex. 9.1. The smallest self-guard is {Period, Date, Month}. However (as
we will see in detail in the next section), this would require to establish the
invariant ϕPeriod for all these three classes, which is impossible, since, as
already argued in Sect. 1.2, Date and Month are pretty general and not only
intended to be used as helper classes for Period.

In this section a new possibility is opened up for invariants with such a
wide ‘scope’. In our example, we would have solved the problem if only
Period preserved invariants but were, in addition, responsible not to leak
references to the referenced Date and Month objects. If Period behaves this
way we call it a guard. It is also possible—as for self-guards—that sets of
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9.3 Guards

Figure 9.2: Instances of guards (filled boxes) protecting a set of locations
(bold arrows)

classes play the role of a guard. Note, that guards are the only way how we
can cope with array accesses, which were not covered by self-guards, since
roughly, the character of an array access is more like a public field access.

9.3.1 Motivation

Assume, in a state s, a set of types G and a depends clause D are given.
Further we have a set Ins of objects which must be protected. These objects
are exactly those from which the locations described by the depends clause
emanate, that is, if (f, (e1, . . . , en)) is such a location then e1, . . . , en ∈ Ins.

The basic idea thatG is a guard forD is, that the types inG are responsible
for objects of Ins. In particular, it must be ensured that all accesses to these
objects are from instances of G, or in other words, if gs(e′1, . . . , e

′
m) ∈ Ins then

e′1, . . . , e
′
m are instances of an element of G. For example, if g is an instance

field symbol then e′1 must be an instance of an element of G. If, and we will
require this in the next section, the operations of the elements of G preserve
the invariant belonging to D, this invariant holds in all states which can be
observed by the observer in our model.

This is however not the complete truth. First of all it does not do any
harm if the objects of Ins have accesses among themselves. In our example,
a Date object references a Month object though both are in the Ins set and
Date is not in the guard. However since the Date object is itself already
protected, this protection naturally extends to Month. We can just allow Ins

objects to access each other.
Second, there are not only class instances at work but also arrays. Since

we are considering g with gs(e1, . . . , en) ∈ Ins, and impose requirements on
e1, . . . , en it must be taken into account that some of these individuals are
of primitive type. For array accesses, e2 is of a primitive type. Primitive
values however do not pose any problem since they cannot be the source of
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9 Modular Verification of Call Correctness

an object to leak from Ins.
Finally we need to refine requirements with respect to subtyping and vis-

ibilities of the accesses by g:

• Assume g is a private instance field symbol, but e1 6∈ Ins ∪Uprim is
a subclass of the class g is defined in. Instead of requiring that the
dynamic type T ′ of e1 is a guard we should rather request that the
class T (T � T ′) which g is defined in is part of the guard. The reason
is that operations declared in T ′ cannot read or write g and so it is not
necessary to check for the preservation of invariants in T ′ nor do we
need to check that the operations of T ′ leak references to the object
stored in g.

• Furthermore it is not sufficient to require that all accesses to an element
from Ins originate from a G-instance. Consider the following example.
We take Ex. 1.1 but widen visibility of field start in Date from private
to protected:

protected Date start;

Additionally we imagine a subclass Period2 of Period to exist which
contains a method which violates ϕ2, say by allowing to set the start
date later than the end date. Still Period does not violate ϕ2 and direct
instances do not leak references to the depending field start. Clearly,
by not changing visibility of start from private to protected we could
not have produced such behaviour. On the other hand, protected fields
should not be completely excluded. So we require in such cases that
the set of guards is closed under the subtype relation (as we did for self-
guards), that is in our example, all subtypes of Period must be part of
the guard, in particular Period2. Then the invariant-violating method
would have been disallowed, since guards have to respect invariants.

9.3.2 Definitions

As for self-guards we define a guard by means of a set of locations first.

Definition 9.7 (Guard). Let L ⊆ LΣ be a set of concrete locations. Further,
let G be a set of types of Σ.
Let Ins ⊆ U be defined as Ins = {e′1, . . . , e′n | (f, (e′1, . . . , e′n)) ∈ L}\Uprim. G is
a guard of L in state s if for all (g, (e1, . . . , em)) ∈ LΣ with gs(e1, . . . , em) ∈ Ins

one of the following three alternatives holds:
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• g is an instance field symbol and σ1(g) ∈ G; if g is declared as protected
then additionally: {σ1(g)}� ⊆ G

• g is a static field symbol and g is declared in a type T ∈ G; if g is
declared as protected then additionally: {T}� ⊆ G

• e1, . . . , em ∈ Ins ∪Uprim

In a closed program there is always a guard for every set of locations, at
least the set of all types will do. In open programs this changes however: A
program with a class that allows access to a private field via a get() method
can easily be extended by a class which references the exposed object in a
way forbidden by guardedness.

This notion is, as for self-guards, transferred to the syntax level:

Definition 9.8. Let D ⊆ LocTermΣ be a finite set and G a set of types of
Σ. G is a guard of D in state s if G is a guard of Locs,P,β(D).
G is a guard of D in a program P if G is a guard of D in all states reached
by P .

Example 9.10. Given the program in Ex. 1.1. Let P be the set of classes
occurring there. To simplify the invariant a bit, we use, instead of the one
presented in Ex. 1.1, the invariant

ϕ = ∀̇o :Period. o.start.month.val 6 .= o.end.month.val

Consider the set of extended terms

D := Exp({∗.start.month.val, ∗.end.month.val})

D is a depends clause of ϕ. We claim that GD = {Period} is a guard of D.
To prove our claim the following must be shown for every state s (reached
during execution of P ): With

LD = (val, (vals,P,β(∗.start.month))) ∪ (month, (vals,P,β(∗.start)))
∪(val, (vals,P,β(∗.end.month))) ∪ (month, (vals,P,β(∗.end)))

and Ins = vals,P,β(∗.start.month) ∪ vals,P,β(∗.start)
∪ vals,P,β(∗.end.month) ∪ vals,P,β(∗.end)

for all non rigid function symbols g and all ei ∈ σi(g) (i = 1, . . . , α(g)) with

gs(e1, . . . , eα(g)) ∈ Ins
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9 Modular Verification of Call Correctness

either e1, . . . , eα(g) ∈ Ins ∪Uprim or σi(g) = Period.
We need to inspect the implementation of the involved classes to show that
this property in fact holds. In the next section we see how this is solved
completely mechanically. ∗

The following lemma states a property of guards of depends clauses which
are subsets of WFLocTermΣ and which are created via Exp(D): Such a
clause always contains the start type of the depends clause. In our running
example Period is the start type of the depends clause determined for ϕPeriod

and thus it is necessarily part of a guard.

Lemma 9.5. Let G be a guard of a depends clause D of some invariant with
Exp(D) ⊆ D ⊆ WFLocTermΣ. Then ST(Exp(D)) ⊆ G.

Proof. Let t be an arbitrary extended term with t ∈ Exp(D).

• t is of the form (9.1):

(for x : T, x1, . . . , xn ; ϕ ; fm(fm−1(· · · (f1(x), . . .), . . .), . . .))

for some m > 1. Then in an arbitrary state s and for an arbitrary
object e ∈ Dom(σ(f)): f s1 (e) ∈ Ins. Thus σ(f1) ∈ G. Because of the
definition of a start type: ST(t) = σ(f1) ∈ G.

• t is of the following form (9.2) with a static field symbol f0 declared in
class C:

(for x1, . . . , xn ; ϕ ; fm(fm−1(· · · (f1(f0), . . .), . . .), . . .))

Then for some state s, f0 ∈ Ins. Thus ST(t) = C ∈ G.

• The shape (9.3) goes analogously to the first case.

9.3.3 Proof Obligations for Guards

From now on we will only deal with depends clauses which are subsets
of WFLocTermΣ and which are closed under the Exp operator (that is
Exp(D) ⊆ D). This will help us in finding an initial guard since start
types of depends clauses Exp(D) are always part of the guard according to
Lemma 9.5.
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9.3 Guards

That a set G of types is a guard of a finite set D ⊆ WFLocTermΣ of
extended terms can (at least partially) be formalised and turned into a proof
obligation with the help of the encapsulation predicate Enc [] (see Sect. 4.3.1);
for side-conditions concerning the properties of guard sets see below.

Proof Obligation Template: IsGuard(D,G).
For all T ∈ G ∪ ST(D), for all non-private operations op of T :

PreservesInv∗
(
op,

∧
k=1,...,m

∀xk1 :T k1 . · · · ∀xknk
:T knk

.

Ency,z

[ ∨
C∈G

InstanceOfC(y), ϕk ∧ z
.
= d′k

])
where D = {d1, . . . dm} and for k = 1, . . . ,m:

(for xk1 : T k1 , . . . , x
k
nk

: T knk
; ϕk ; f(d′k, t2, . . . , tn))

is a prenex normal form of dk.

On a first glance it might look strange that we only take into consideration
the first subterm d′k of the depends clause elements, but keep in mind that
we only have non-rigid function symbols which are of arity ≤ 2 and that
the binary functions are array accesses from which only the first subterm is
interesting since the second one is of primitive type.

Justifications and side-conditions for this proof obligation follow in the rest
of this chapter. Our goal is to find side-conditions such that IsGuard(D,G)
implies that ST(D) ∪G is a guard of D.

Lemma 9.6. If the following holds:

s |=P

∧
k=1,...,m

∀xk1 :T k1 . · · · ∀xknk
:T knk

.

Ency,z

[ ∨
C∈G

InstanceOfC(y),
(
ϕk ∧ z

.
= d′k

)] (9.6)

for a set of types G and a depends clause D = {d1, . . . , dm} in state s then the
following implication holds: If (g, (e1, . . . , em)) ∈ LΣ with gs(e1, . . . , em) ∈ Ins

then:

e1, . . . , em ∈
⋃
T∈G

Dom(T ) ∪ Ins ∪Uprim

(with the same designations as in the proof obligation above).
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By definition of Enc, the formula in (9.6) is equivalent to:∧
k=1,...,m

∀xk1 :T k1 . · · · ∀xknk
:T knk

. ∀y :Object. ∀z :Object.(
Acc(y, z) ∧ pk(z) → pk(y) ∨

∨
C∈G

InstanceOfC(y)
) (9.6’)

with pk(z) = ϕk ∧ z
.
= d′k

This is ‘almost’ the desired guard property of Def. 9.7. We just do not
know whether, in the case of e1, . . . , em ∈

⋃
T∈G

Dom(T ) an instance of σ(g) or

of a subtype of σ(g) is accessing an element of Ins.

Proof of Lemma 9.6. It must be shown: If s |=P (9.6’) for D ⊆ ExtTermΣ

and G a set of types and (g, (e1, . . . , em)) ∈ LΣ and gs(e1, . . . , em) ∈ Ins then
e1, . . . , em ∈

⋃
T∈G

Dom(T ) ∪ Ins ∪Uprim.

We set LD = Locs,P,β(D), (f, (e′1, . . . , e
′
n)) ∈ LD, (g, (e1, . . . , em)) ∈ LΣ, and

gs(e1, . . . , em) = e′i for some i. That is each ej accesses e′i.

Set β(y) = ej and β(z) = e′i. Because of (f, (e′1, . . . , e
′
n)) ∈ LD = Locs,P,β(D),

there is dk ∈ D with f s(e′1, . . . , e
′
n) ∈ vals,P,β(dk). f is no static field symbol

since otherwise there would be no e′i.

• Let f be an instance field symbol. i = n = 1 and e′i = e′1.

f s(e′1) ∈ vals,P,β(dk) ⇔f s(β(z)) ∈ vals,P,β(dk)

⇔β(z) ∈ vals,P,β(for xk1 :T k1 , . . . , x
k
nk

:T knk
; ϕk ; d′k)

⇔s, β |=P pk(z)

So we have s, β |=P pk(z). Thus because of s, β |=P (9.6’):

s, β |=p pk(y) ∨
∨
C∈G

InstanceOfC(y)

In the case that s, β |=P pk(y) then (as above) hs(β(y)) ∈ vals,P,β(d)
for some function symbol h and some d ∈ D. Thus (h, β(y)) ∈ LD and
β(y) ∈ Ins. Thus ej ∈ Ins.
In the case that s, β |=P

∨
C∈G

InstanceOfC(y) then there is C ∈ G with

β(y) ∈ Dom(C). Thus ej ∈ Dom(C).
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• Let f be an array access symbol. e′i = e′1 since e′2 ∈ Uprim.

f s(e′1, e
′
2)∈vals,P,β(dk) ⇔f s(β(z), e′2) ∈ vals,P,β(dk)

⇔β(z)∈vals,P,β(for xk1 :T k1 , . . . , x
k
nk

:T knk
;ϕk ; d′k)

⇔s, β |=P pk(z)

And further as in the last case.

If we had no inheritance then we could stop here as already mentioned.
With inheritance though, we have to impose additional obligations on guards.
To cope with the case that a super class declares the reference which points
into Ins we require that super classes with reference fields must be part of
the guard. This is captured by the notion of an admissible set of types.

In the case of protected fields also subclasses must be checked to preserve
invariants and not to leak references to the objects stored in these fields.
Thus all subclasses of classes with protected fields must be part of a guard.
To deal with this issue we define the subset of subclass-vulnerable classes.
Subclasses of them must be part of a guard, too, so that they are also checked
for preservation of invariants and non-leakage.

These two notion are defined as follows and used as indicated above in the
subsequent lemma.

Definition 9.9. Let G be a set of types (in a signature Σ).

1. Let Ḡ be all super types of G which declare at least one field which is
of a reference type. G is admissible if Ḡ ⊆ G.

2. We call the subset of classes in G with at least one protected field the
subclass-vulnerable classes SCV(G).

Lemma 9.7. G is a guard for D in s if

• G is admissible,

• SCV(G)� ⊆ G, and

• s |=P (9.6’).

Proof. Let (g, (e1, . . . , em)) ∈ LΣ with gs(e1, . . . , em) ∈ Ins. According to
Lemma 9.6:

e1, . . . , em ∈
⋃
T∈G

Dom(T ) ∪ Ins ∪Uprim
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The class which declares g is contained in Dom(T ) for some T ∈ Ḡ ⊆ G
because of the admissibility of G. If g is a protected field then the conditions
are met because SCV(G)� ⊆ G.

With this, we can state the final statement on guards: If the provisons of
the last lemma are met and we have a depends clause D which is constructed
via Exp and the start type is contained in D, then G is in fact a guard of D.

Lemma 9.8. If

• G is admissible,

• SCV(G)� ⊆ G,

• Exp(D) ⊆ D, and

• ST(D) ⊆ G

then: |=P IsGuard(D,G) implies that G is a guard for D.

Proof. We consider an arbitrary sequence (s0, s1, . . . , sn) of states which are
reached by calling operations on P . s0 is the initial state of the program.
We further require that the sequence contains all such reached states but
does not contain intermediate states in operations of classes of G and the
dynamic types of the Ins objects. By induction on the length of this sequence
we show: If |=P IsGuard(D,G) then for all states s in the sequence, G is a
guard of D in s.
n = 0. Trivial, since in initial states there are no references.
Step from n to n+1: Consider an arbitrary semantic update U : LΣ → U and
states sn, sn+1 with sn+1 = sUn . We consider a semantic update U consisting
w.l.o.g. of pairs ((g, (e1, . . . em)) 7→ e).
Consider an arbitrary such pair in U . If e /∈ Insn+1 the induction hypothesis
remains trivially true.

Otherwise e ∈ Insn+1. Assume e ∈ Insn. For all h with hsn(e′1, . . . , e
′
k) = e:

e′1, . . . , e
′
k ∈ Insn ∪Uprim or h is a private field declared in G by the induction

hypothesis. The operation which performs the update U must have a direct
reference to e. Thus the update must be executed during a call to an instance
of a class of G or during a call to an object of Insn.

• Assume first that U is executed during an operation call of a class of G
(This includes the case that the execution is put on the stack during call
to a subroutine). Then, because of |=P IsGuard(D,G): sn+1 |=P (9.6’).
By Lemma 9.7 the desired property follows for sn+1.
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• Assume now that U takes place in a class of Insn. Then since Insn

objects are in sn only referenced from instances of G or among them-
selves, the update happens as well during an operation call to G and
we can go on as before.

Consider now the case e ∈ Insn+1 \ Insn. Then either g ∈ top(D) or σ(g) =
ST(D). Thus the state change U takes place in a method of Insn or ST(D) ⊆
G. As before we can conclude that G is a guard for D in sn+1.

Example 9.11. In Ex. 9.10, we discovered the part of a depends clause

D′ := { ∗.start.month.val, ∗.end.month.val,
∗.start.month, ∗.end.month}

In that example it was concluded that {Period} could be a candidate for
a guard; an inspection of the implementation was considered necessary to
confirm this. With the above proof obligation we have the right instrument
in our hands.

First of all we note that D′ = Exp(D′). Furthermore all fields are private,
so that SCV(G)� ⊆ G is satisfied. But even if all fields in Period were
protected no problem would occur since {Period}� = {Period}. Moreover
the start type of D′ is Period and included in G.

It is thus sufficient to show proof obligation IsGuard . It produces for each
operation op of Period a formula, for which validity must be proven. As
example we take the constructor of Period (unqualified logical variables in
junctors are of type Object):

IsGuard(D′, G)

=∀x : Period. PreservesInv∗(op, {Ency,z [InstanceOfPeriod(y), p(x, z)]}
with p(x, z) = ( z

.
= x.start ∨ z .

= x.start.month
∨z .

= x.end ∨ z .
= x.end.month)

This is further expanded to:

∃v. Acc(v, s) ∧ ∃v. Acc(v, e)∧
∀x :Period. ∀y.∀z.

((
Acc(y, z) ∧ p(x, z) → p(x, y) ∨ InstanceOfPeriod(y)

))
→ [r=new Period(s, e);](

∃v. Acc(v, r)
→ ∀x :Period. ∀y. ∀z. ( Acc(y, z) ∧ p(x, z)

→ p(x, y) ∨ InstanceOfPeriod(y))
)
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9 Modular Verification of Call Correctness

for fresh program variables s and e of type Date. This formula is provably
valid in P . We can prove the corresponding formulae for the other operations
of Period, too. Period is thus a guard for D′ according to Lemma 9.8. ∗

9.4 Modular Verification of Invariants

So far, this chapter provided instruments to ensure that there is a sufficient
degree of encapsulation for modularly checking invariants. This section will
compile these techniques into an approach which ensures call correctness of
programs.

First we state that both, guards and self-guards, can be used to protect
or, as we will call it, guard invariants. This is just a matter of dividing the
depends clause of an invariant into two subsets. If G is a set of types then,
for one of these sets of location terms, G is a self-guard and for the other it
is a guard.

Definition 9.10 (Guarded Invariants). An invariant, represented as formula
ϕ ∈ FmaΣ, is guarded by a set of types G, if

• there is a depends clause D ⊆ LocTermΣ of ϕ,

• there are sets D1 ⊆ LocTermΣ and D2 ⊆ LocTermΣ with D = D1]D2,

• G is a self-guard for D1, and

• G is a guard for D2.

Example 9.12. Following Ex. 9.7, {Month} is a self-guard for ϕMonth. ϕMonth

is thus guarded by {Month}.
Resuming Ex. 9.10, assume we had shown that {Period} is a guard of

D′. Then D1 = {∗.start, ∗.end} complement D′ to a depends clause of
the invariant ϕ in that example. Since Period is a self-guard for D1, ϕ is
guarded by {Period}. ∗

With the tools developed so far, (7.7) can be refined modularly. We may
find guards or self-guards G and have to show for all invariants ϕ ∈ Inv:

1. if ϕ is guarded by a set of types G:

for all op declared in G: PreservesInv(op, {ϕ}) (7.7′)
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2. otherwise:
for all op in P : PreservesInv(op, {ϕ}) (7.7′′)

The following lemma states, that this condition is in fact sufficient to
replace (7.7), which required PreservesInv to hold for all operations of P .
The lemma and the proof aim at durable correctness of a closed program as
defined in Def. 3.11. Though we are currently only aiming at call correctness
for closed programs we are showing the stronger (Lemma 3.5) notion of
durable correctness. In the next chapter, when dealing with open programs,
we can ‘replay’ the proof, so that we take the more difficult way here.

Lemma 9.9. If the above proof obligations are valid in a closed program P
for a specification S then P is durable invariant correct w.r.t. S.

Proof. Let P cl be a closure of P and Obs := P cl\P the observer of P . We
consider an arbitrary path as a sequence (s0, s1, . . . , sk) of states through
the graph of states reachable during the execution of a program P cl. In
this sequence, intermediate states which occur during operation calls to G
(including states during subroutines of such operations) are filtered out. Fur-
thermore s0 is the initial state. By induction on the length of such a sequence
we show for all states sn: sn |=P ϕ for all ϕ ∈ Inv.

• Base case n = 0: s0 is the initial state. s0 |=P ϕinit by definition of the
initial state. Because of InitInv({ϕ}) for all ϕ ∈ Inv, as well s0 |=P ϕ
for all invariants ϕ.

• Step case from n to n + 1: Pick one arbitrary ϕ ∈ Inv. Then by the
induction hypothesis: sn |=P ϕ.
For some D1, D2 and a depends clause D = D1 ] D2 of ϕ, either G
is a self-guard of D1 or a guard of D2. If sn is a start state of an
operation op of P and ϕ is not guarded by a set of classes G then, by
|=P PreservesInv(op, ϕ), sn+1 |=P ϕ. If sn is a start state of op but ϕ is
guarded by a set of classes G, then, if op is declared in G, we continue
to reason as above.
In all other cases we aim to show for all (f, (e1, . . . , eα(f))) ∈ Locsn

(D):

f sn(e1, . . . , eα(f)) = f sn+1(e1, . . . , eα(f))

Then by the definition of a depends clause sn+1 |=P ϕ.
Suppose d = (f, (e1, . . . , eα(f))) ∈ Locsn

(D), sn+1 = sn
U for a semantic

update U and ((f, (e1, . . . , eα(f))) 7→ e) ∈ U (If there is no such pair in
U then our goal is trivially achieved.)
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– As the first case we assume that d ∈ Locsn
(D1). Because G is a

self-guard for D1, f is an instance or static field symbol declared
in a type of G. If f is a private field symbol, then an assignment
to it must occur in a type of G, thus an operation call to a class of
G is in progress in contradiction to our assumptions. Otherwise f
is a protected field symbol. Then an assignment to it must occur
in a type of SCV(G)� ⊆ G which yields again a contradiction.

– Consider the case d ∈ Locsn
(D2). For all field symbols or array

access symbols g and all e′1, . . . , e
′
α(g) ∈ U with g(e′1, . . . , e

′
α(g)) = ej

for some j: Either g is an instance field symbol and σ1(g) ∈ G.
Then however by performing U , an instance method of a class in
G must be in progress in contradiction to our assumptions. The
same holds for static fields. The third possibility is that e′1 ∈ Insn.
Then again a method of a class in G must be in progress, since
only through them access to Insn is possible in sn; this yields again
a contradiction. Finally e′j ∈ Ins (j > 1) is not possible because
of the considered non-rigid functions.

With the following lemma the results so far are summarised.

Lemma 9.10. Suppose P is a program and S a specification of P . If the
following conditions hold then P is call correct w.r.t. S:

• For all non-private operations op of P and all operation contracts opct
on op:

– |=P EnsuresPost(opct) (7.5)

– |=P RespectsModifies(opct) (7.6)

• For all invariants ϕ ∈ Inv, |=P InitInv and one of the following condi-
tions holds:

– (Guard, as (7.7′)) There is a depends clause D ⊆ LocTermΣ of ϕ
and a set G ⊆ P of types such that for all operations op of all
classes of G:

|=P PreservesInv(op, {ϕ})

and there are sets D1, D2 with D = D1 ] D2 with the following
properties
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∗ G is a self-guard of D1, that is, there exists t ∈ D such that
top(t) is a field symbol and σ(top(t)) ∈ G; if top(t) is declared
protected in C then {C}� ⊆ G.

∗ G is a guard for D2, that is (e.g.) Exp(D2) ⊆ D2, G is admis-
sible, SCV(G)� ⊆ G, ST(D2) ⊆ G, and |=P IsGuard(D2, G)

– (No Guard, as (7.7′′)) For all operations op in P :

|=P PreservesInv(op, {ϕ})

Proof. Because of (7.5) and (7.6) all operations fulfil the operation con-
tracts of S which are for op as in the proof of Lemma 7.5. Because of
Lemma 9.9, P is durable invariant correct. This yields durable correctness.
With Lemma 3.5 call correctness follows.

The following example demonstrates that this system of proof obligations
is stronger than that presented in Chapter 7.

Example 9.13. Consider, once more, Ex. 1.1. It was impossible to show
the call correctness of {Period, Date, Month} with the proof obligations of
Chapter 7. The reason was that setYear(int) in Date did not preserve the
invariant of Period. We could not exploit the fact that a state in which
an object assigned to start or end of Period was modified by that method
could never be reached.

With our new system of proof obligations, this is changed. The reachable
states are more adequately reflected if Period’s invariant is guarded.

On a more detailed level, the following steps must be performed to prove
call correctness:

• First a depends clause for ϕPeriod must be determined. Like in Ex. 9.1,
the clause

D = Exp({ ∗.start.month.val, ∗.end.month.val,
∗.start.year, ∗.end.year})

∪ {∗.start, ∗.end}

results as application of Dep.

For the invariant ϕMonth of Month the depends clause {∗.val} results.
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• Then we investigate guardedness of D. We can split D into

D1 = {∗.start, ∗.end}
and D2 = Exp({ ∗.start.month.val, ∗.end.month.val,

∗.start.year, ∗.end.year})

{Period} is a self-guard of D1 since start and end are declared private
in that class. Moreover {Period} is a guard of D2. The proof is done
similarly to Ex. 9.11.

All operations op of Period preserve ϕPeriod, that is, we can show

|=P PreservesInv(op, {ϕPeriod})

for all of them. Also |=P InitInv can be established trivially, since
ϕPeriod is an instance invariant.

In Ex. 9.7 we have discussed that ϕMonth is guarded by the self-guard
Month. All operations of Month preserve this invariant.

• Of course, the fulfilment of all attached operation contracts must be
shown. ∗

9.5 Summary

In this section we have done a main step towards verification of open pro-
grams though, for now, only closed programs have been considered. We have
found a technique which allows for a modular verification of invariants. It
includes an analysis the invariants which results in the extraction of depends
clauses. These are descriptions of locations the evaluation of an invariant
depends on. These locations must be protected from uncontrolled modifica-
tions with one of two techniques: either self-guard classes are found which
control the locations, or guard classes are found which do not leak references
to those objects which are allowed to modify a depends location. Based on
these approaches we could find a new more powerful system of proof obliga-
tions which ensures durable correctness of a closed programs.

In the next chapter we make use of the results of this chapter in the context
of open programs.
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of Open Programs

Gutta cavat lapidem.

(Ovid)

In the last chapter we provided a system of proof obligations to verify a
program modularly (in the sense of call correctness), in particular, allowing
for the modular verification of invariants. Modular verification of invariants
is, apart from modular program proofs (Chapter 6), the main step towards
durable correctness of open programs.

So the proof obligation system from Chapter 9 ‘almost’ establishes durable
correctness for open programs P . In the following we list the items that
prevent it to be a proof obligation system for durable correctness:

• Subclasses are in general not known when dealing with open programs.
So invariants without guards can only be supported by a system that
establishes durable correctness of open programs if the context behaves
sufficiently well.

• The needed proof obligations (7.5), (7.6), and (7.7′), were defined to
be valid in a fixed context where all additional subclasses comply to
certain criteria. Since a context can have subclasses which do not fulfil
this criteria, obligations on the context must be imposed.

There are the following instruments discussed in the previous chapters to
solve these problems:

1. We completely rely on guarded invariants.

2. The context is constrained, i.e. extension contracts are imposed as de-
scribed in Chapter 5 if there are no guards available.

3. Modular proof strategies are applied as discussed in Chapter 6, possibly
extension contracts are to be imposed here as well.
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This chapter thus re-arranges these instruments with the goal to prove
durable correctness of open programs.

Overview. We start with the strictest form of modularity, resulting in the
guarantee that after proving a system of proof obligations the program be-
haves correct in every context. Sect. 10.2 presents a weakened version of
the proof obligation system which only ensures relative durable correctness.
Then in Section 10.3 two examples are extensively discussed. An issue omit-
ted so far is discussed in Sect. 10.4, namely how dynamically bound queries
occurring in invariants are treated. Finally we take the (small) step to trans-
fer all this to component contracts.

10.1 Strict Durable Correctness

With durable correctness we can treat open programs. So our verified pro-
gram is not self-contained anymore, but refers to other components which are
not accessible to verification. Moreover the program is used in an unknown
context, so it will be part of a larger program. As noted earlier (Sect. 3.2),
it is not sufficient to establish call correctness, since for open programs, this
notion is not equivalent to durable correctness.

We define proof obligations which ensure durable correctness of open pro-
grams. When it is possible to establish all the indicated conditions, the
verified program can be put in any context and works as the specification
requires. There are three changes to the proof obligation system presented
in the last chapter.

• All proof obligations must be valid in every extending context. Thus
modular validity as introduced in Chapter 6 is necessary.

• In the former proof obligation system we allowed, in addition to the
modular ways, for the traditional way of showing a particular invariant
for all operations independent from its shape. This was appropriate if
the relevant locations were not sufficiently encapsulated. In an open
world, there is no handle on all operations. So we cannot get away
with this non-modular approach.

• We must be stricter concerning fields declared as protected. Such fields
were allowed in the definition of self-guards (Def. 9.5) under the pro-
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vision that the guard set was closed under subtypes. The latter is
not possible in an open program where closures can subclass existing
classes. So we must exclude protected fields. The analogous case holds
for guards.

We thus modify Lemma 9.10 as follows:

Lemma 10.1 (Proof Obligations for Durable Correctness). Suppose P is a
program and S a specification of P . If the following conditions hold then P
is durable correct w.r.t. S:

• For all non-private operations op of P and all operation contracts opct
for op:

– |=∅
P EnsuresPost(opct) (7.5)

– |=∅
P RespectsModifies(opct) (7.6)

• For all invariants ϕ ∈ Inv, |=∅
P InitInv holds and there is a context-

independent depends clause D ⊆ LocTermΣ of ϕ and a set G ⊆ P of
types such that for all operations op of all classes of G:

|=∅
P PreservesInv(op, {ϕ})

and there are sets D1, D2 with D = D1 ]D2 with the following prop-
erties:

– G is a self-guard of D1, that is, there exists t ∈ D such that top(t)
is a private field symbol and σ(top(t)) ∈ G.

– G is a guard for D2, that is, Exp(D2) ⊆ D2, G is admissible, all
fields in G are private, ST(D2) ⊆ G, and |=∅

P IsGuard(D2, G)

Proof. Follows from the more general Lemma 10.2 about relative-modular
correctness and Lemma 6.1.

Remember (from Sect. 6.4.3) that modular validity is only possible if we
are avoiding dynamic dispatching by declaring methods final and the like.
Moreover with this proof obligation system we have restrictive encapsula-
tion. To avoid severe restrictions on extensibility of our program—which is
definitely a design goal of object-oriented systems—, generic extension con-
tracts are imposed on the context. By making use of this possibility we can
liberalise the proof obligations. See Sect. 10.2 for how this works.
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Example 10.1. The open program {Period} in our running example Ex. 1.1
cannot be proven to be durable correct. The problem is the following: We
cannot prove modularly properties like the preservation of invariants for
Period’s methods without referring to methods in Date. Since Date is how-
ever outside the scope of the open program {Period} we have no means
to prove that methods of potential subclasses of Date adhere to their spec-
ification. We would need to require this by employing generic extension
contracts, but this is not possible with the strict notion of durable correct-
ness presented here. An alternative is to modify Date and declare the called
methods earlierOrEqual(Date) and copy() as final.

Then durable correctness can be shown with the help of the new proof
obligation system. Most is the same as in Ex. 9.13.

• No operation contract is attached to Period so nothing must be proven
here with EnsuresPost and RespectsModifies .

• For the invariant ϕPeriod the following is required:

– A depends clause D1 is extracted automatically (as in Ex. 9.13)
with the help of the procedure in Sect. 9.1.2:

D1 = Exp({∗.start.month.val, ∗.end.month.val,
∗.start.year, ∗.end.year})

∪{*.start, *.end}

– For D1 we find a guard {Period}. For this the following must be
proven

|=∅
P IsGuard(D1, {Period})

Therefore we need to take into account all operations op of Period.
We have elaborated on one of these proof obligations in Ex. 9.11.
Since we are now aiming at a modular proof we must not use the
non-modular method call rules (Rules (6.3) and (6.4)). Instead
we use the rules from JavaDLm containing Rule (6.8). When
this rule is applied in the proof of the above proof obligation
(for instance for the constructor of Period), no generic contract
is generated since earlierOrEqual(Date) is final. The same
holds for copy().
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– Then all operations op of the guard Period must preserve ϕPeriod.
It must be shown:

|=∅
P PreservesInv(op, {ϕPeriod})

In the proofs for the constructor again no generic contract is gen-
erated because of the final modifier. ∗

10.2 Durable Correctness with Extension
Contracts

As we have seen, strict modular validity and complete encapsulation is not
always feasible. After all it is a goal of object-orientation to foster re-usability
and one of the vehicles to do this is to override dynamically bound methods.
Overriding of relevant methods would however be forbidden when establish-
ing strict modular validity.

Thus we provide a system of proof obligations to establish relative-durable
correctness as defined in Def. 5.5. It contains elements of the proof obliga-
tions of Lemma 9.10 and those of Lemma 10.1. The two main characteristics
compared to these other proof obligation systems are:

• We can allow again for the non-modular way (that is, all operations
preserve the invariant) of establishing invariants as in Lemma 9.10,
but not entirely. It must be ensured in this case that the classes of the
context preserve this invariant. This requirement is met by generating
a suitable extension contract.

• Moreover we must use the relativised validity relation |=GCt
P for pro-

grams P and sets GCt of extension contracts as defined in Def. 6.3.

• Protected fields can be allowed again for use in self-guards and guards.
Compared to the case of closed programs, we must take care of the
classes SCV(G) in a different way. There it was sufficient to require
that all subtypes are part of the guard G, too. Now we must ensure
that subtypes in the context behave in the desired way by means of
extension contracts.
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Lemma 10.2 (Proof Obligations for Relative-Durable Correctness). Sup-
pose P is a program, S a specification of P , and GCt a set of generic con-
tracts. If the following conditions hold then P is durable correct relative to
GCt and w.r.t. S:

• For all non-private operations op of P and all operation contracts opct
on op:

– |=GCt
P EnsuresPost(opct) (7.5)

– |=GCt
P RespectsModifies(opct) (7.6)

• For all invariants ϕ ∈ Inv: |=GCt
P InitInv and one of the following

conditions holds:

– (Guard) There are a context-independent depends clause D ⊆
LocTermΣ of ϕ and a set G ⊆ P of types such that for all opera-
tions op of all classes of G:

|=GCt
P PreservesInv(op, {ϕ})

and there are sets D1, D2 with D = D1 ] D2 with the following
properties

∗ G is a self-guard of D1, that is, there exists t ∈ D such that
top(t) is a field symbol with σ(top(t)) ∈ G and if f is declared
as protected thenGCt contains the following generic contract:

generic contract {

T extends* σ(top(t));
(∅, {ϕ})

}

∗ G is a guard for D2, that is, Exp(D2) ⊆ D2, G is admissi-
ble, ST(D2) ⊆ G, |=GCt

P IsGuard(D2, G), and for all C ∈
SCV(G)� as well as for all super types of G declaring at least
one field which is of a reference type the following extension
contract, capturing the guard property (9.6’), is contained in
GCt:

generic contract {

T extends* C;
(∅, {ϕ, (9.6’)})

}
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– (No Guard) For all operations op: |=GCt
P PreservesInv(op, {ϕ})

and GCt contains the generic contract

generic contract {

T unconstrained;

(∅, {ϕ})
}

Proof. The proof is done as before for Lemma 9.10 but with the validity rela-
tion |=GCt

P instead of |=P . For it we need a claim corresponding to Lemma 9.9.
Since we did not exploit the fact that the program was closed and we proved
durable correctness directly, we can replay this proof exactly for the case of
open programs with the following exceptions: Whenever we used the fact
that SCV(G)� ⊆ G, we must now use that this condition is satisfied in all
closures of P since the

generic contract {

T extends* σ(top(t));
(∅, {ϕ})

}

must be fulfilled by the classes which are complemented for such a closure.
When we argue for the case that ϕ is not guarded by some classes G we have
to take into account that we have an extension contract which requires the
preservation for all suiting context methods.

Our lemma here also makes claims about proving guardedness. These
are based on the Lemmas 9.6, 9.7, and 9.8, for which we can as well use the
proofs made there, but for modular validity relative to GCt. The completion
for claiming, in the arbitrary closure, that all subtypes of a class declaring
a protected field are in G, is that we have the extension contract requiring
that the relevant subclasses satisfy guardedness and preserve invariants. The
same holds for super types in the context with a reference field.

Example 10.2. We apply the new proof obligation system to our running
example. Unlike in the last example we assume again that the methods
earlierOrEqual(Date) and copy() are not declared as final. This will ne-
cessitate to prove relative modular correctness of {Period}. Most is the
same as in Examples 9.13 and 10.1: The same depends clause and the same
treatment with self-guards and guards is applied. For the proofs we must use
the calculus JavaDLm and the generation of extension contracts. Extension
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contracts are generated whenever a method reference is symbolically exe-
cuted which is referring to a non-final dynamically bound method in a class
not in {Period}. Since the two mentioned methods are no more final, we get
the generic extension contracts GCt = {gctearlierOrEqual(Date), gctcopy()} with
the extension contracts as defined in Ex. 5.8, that is gctearlierOrEqual(Date):

generic contract {

T extends* Date;

class T {

/*@ normal_behavior

@ requires cmp !=null;

@ ensures \result == (year<cmp.year || (year==cmp.year

@ && month.val<=cmp.month.val));

@*/

/*@pure@*/ boolean earlierOrEqual(Date cmp);

}

}

and gctcopy():

generic contract {

T extends* Date;

class T {

/*@ normal_behavior

@ ensures ( \result.month.val==month.val

@ & \result.year==year

@ & \fresh(\result) & \fresh(\result.month);

@*/

/*@pure@*/ Date copy();

}

}

We must show that all operations of Period preserve ϕPeriod. This is shown
with PreservesInv(op, ϕPeriod) and a relative modular proof. Because the
same operation calls as in the proof for guardedness are symbolically exe-
cuted the same generic contracts would be generated here, too. There is no
operation contract attached to Period, so nothing must be proven with the
proof obligation templates EnsuresPost or RespectsModifies . Altogether this
proves that Period is durable modular correct relative to GCt.

In Ex. 1.1 we used the class Main to show how to violate ϕPeriod in a
modified variant of the example. It is now indeed allowed to write Main
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but it cannot do any harm because Period is sufficiently encapsulated. The
class Main2 which exploited non-conforming overriding of methods is still
disallowed because of the imposed generic extension contract. ∗

Example 10.3. We take again our running example but now in the mod-
ified version of Ex. 1.2. Though the invariant is fragile we can establish
relative-durable correctness of the program {Period}. Because references
to the representation of a Period may leak, Period cannot establish the
guardedness property. We must thus show the second of the alternatives
(‘No Guard’) in the above lemma. Again we have to prove the preservation
of invariants of all operations of Period. During the proof, the same generic
contract as in the last example is generated. We must include it in GCt to
prove

|=GCt
P PreservesInv(Period(Date, Date), {ϕPeriod})

We are however not finished yet, since GCt must include the extension con-
tract required by Lemma 10.2. In our case this is:

generic contract {

T unconstrained;

class T {

/*@ static invariant (\forall Period p;

@ start.year<end.year ||

@ ( start.year==end.year

@ && start.month.val<=end.month.val));

@*/

}

}

With these three extension contracts forming the set GCt, {Period} is mod-
ularly correct relative to GCt and w.r.t the specification consisting of ϕPeriod.
Contexts like Main or Main2 as described in Sect. 1.2 are thus not allowed
and violations of ϕPeriod cannot occur. ∗

10.3 Examples

In this chapter we present some examples demonstrating our system of proof
obligations. The examples are taken from literature on other approaches. In
some places we have made the scenario more difficult. We will always show
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first a way to establish strict durable correctness and then a way to establish
relative durable correctness.

All proofs mentioned in the examples have been conducted with the KeY
system. The proofs can often be done with large automatic support, on the
other hand often human input is needed almost always in order to instanti-
ate quantifiers. Almost all instantiations are however fairly trivial, and can
be expected to be discharged automatically while the automated deduction
engine of KeY is being improved.

10.3.1 Producer and Consumer with Shared Array

Consider the example program depicted in Figs. 10.1 to 10.2 adapted from Di-
etl and Müller [2005].

The depicted program implements a producer/consumer scenario in Java
and specifies the functional behaviour with JML. In the original version [Dietl
and Müller, 2005], protection against undesired modifications did only work
if the context adhered to the universe type system. In contrast to Dietl
and Müller [2005] our version includes sensible invariants of classes which
necessitate such protection.

The particularity of the example is that buffers, implemented as an ar-
ray of Product elements, of the classes Producer and Consumer are shared.
The (added) invariant of Producer specifies that there are no duplicates in
the buffer of a Producer, though multiple occurrences of null are allowed.
The obvious danger is that the buffer array object could as well leak to
an unknown object which could manipulate array entries and thus violate
Producer’s invariant.

The program in Figs. 10.1 to 10.2 reimplements the classes and ensures
modular correctness by standard Java means. That is, we must not rely
on programming language extensions like Universes. This requires how-
ever a more sophisticated initialisation procedure: First a Producer in-
stance is created, then a Consumer instance. As argument of the construc-
tor call of the latter, a Producer instance is passed. This should trigger
that Producer holds a reference to Consumer and that the buffer array is
shared among Producer and Consumer. Since that array is represented as
a private field in Consumer, it must necessarily be set via an operation like
setBuffer(Product[]). This method must however not be arbitrarily called
by an observer, since otherwise there could be references in the observer to
the array and the observer can violate invariants. Thus we require in the
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public class Producer {

private /*@ spec_public @*/ Product[] buf;

private /*@ spec_public @*/ int n;

private /*@ spec_public @*/ Consumer con;

/*@ public instance invariant buf!=null && buf.length>0

@ && 0<=n && n<buf.length

@ && (\forall int i,j;

@ buf[i]==buf[j] && 0<=i && i<buf.length && 0<=j

@ && j<buf.length;

@ i==j || buf[i]==null);

@*/

public Producer() {

buf = new Product[10];

}

/*@ requires p!=null;

@ ensures \result <==> (\exists int i;

@ 0<=i && i<buf.length; buf[i]==p);

@*/

public final /*@ pure @*/ boolean produced(Product p) {

int i=0;

/*@ loop_invariant (i>=0 && i<=buf.length

@ && !(\exists int j;

@ j>=0 && j<i && j<buf.length;

@ buf[j]==p));

@ assignable i;

@*/

while (i<buf.length) {

if (buf[i]==p) return true;

i++;

}

return false;

}

/*@ requires c.pro==this && c!=null;

@ ensures this.con==c && c.buf==buf;

@ assignable this.con, c.buf;

@*/

public final void setConsumer(Consumer c) {

this.con = c;

c.setBuffer(buf);

}

Figure 10.1: Producer class of consumer/producer scenario (Part 1)
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/*@ requires con!=null && con.n!=n && p!=null;

@ ensures (\forall int i; 0<=i && i<buf.length;

@ \old(buf[i])!=p) ==> ((buf.length-1==n ==> n==0)

@ && ((buf.length-1>n) ==> n==\old((n+1))));

@ assignable buf[n], n;

@*/

public void produce(Product p) {

if (!produced(p)) {

buf[n] = p;

if (n==buf.length-1) {

n=0;

} else {

n=(n+1);

}

}

}

}

public class Consumer {

private /*@ spec_public @*/ Product[] buf;

private /*@ spec_public @*/ int n;

private /*@ spec_public @*/ Producer pro;

/*@ invariant buf!=null && 0<=n

@ && n<buf.length && pro!=null

@ && pro.con==this && pro.buf==buf;

@*/

/*@ requires p!=null && p.con==null;

@*/

public Consumer(Producer p) {

pro = p;

pro.setConsumer(this);

}

/*@ requires b==pro.buf;

@ ensures b==this.buf;

@ assignable this.buf;

@*/

public final void setBuffer(Product[] b) { this.buf = b; }

}

public class Product {}

Figure 10.2: Producer class (Part 2) and consumer class of consumer/pro-
ducer scenario
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precondition that the array to set is the same as that of the corresponding
Producer. Calling the method setConsumer(Consumer) in Producer then
cares for safely initialising the sharing between Consumer and Producer. As
a result (of this implementation) no Java context (which obeys the annotated
preconditions) will be able to violate the class invariants of Producer and
Consumer. But this is still to be proven, as detailed in the following.

Durable Correctness

What has to be done to prove (not relativised) durable correctness of the
open program P = {Producer, Consumer} with respect to the annotated
JML specification S as defined in Sect. 10.1? We proceed step by step:

1. The invariants are translated from JML to JavaFOL as follows:

ϕProducer = ∀̇o :Producer. o.buf 6 .= null

∧0 ≤ o.n ∧ o.n < o.buf.length
∧∀i :Integer.∀j :Integer. (o.buf[i]

.
= o.buf[j]

∧0 ≤ i ∧ i < o.buf.length
∧0 ≤ j ∧ j < o.buf.length
→ i

.
= j ∨ o.buf[i] .= null)

ϕConsumer = ∀̇o :Consumer. o.buf 6 .= null

∧0 ≤ o.n ∧ o.n < o.buf.length
∧o.pro 6 .= null ∧ o.pro.con .

= o ∧ o.pro.buf .
= o.buf

2. First of all we have to identify depends clauses for both invariants. We
restrict our attention to Producer. We have two possibilities of finding
a depends clause for ϕProducer:

• The user finds a set of extended terms and proves that it is in fact
a depends clause. A natural choice for ϕProducer is

D =

{ ∗Producer.<created>, ∗.buf, ∗.buf.length, ∗.n,
(for x : Producer, i : Integer ;

0 ≤ i ∧ i < x.buf.length ; x.buf[i])

}

The found set of extended terms must be proven to be a de-
pends clause for ϕProducer. We use Proof Obligation Template
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CorrectDepends in the following instantiation:

Def ∧ϕProducer

→ {∗}{ (for o : Producer ; ; (o.buf := buf@pre(o)

| buf@pre(o).length := length@pre(buf@pre(o))
| o.n := n@pre(o)
| (for k : Integer ;

0 ≤ k ∧ k < length@pre(buf@pre(o)) ;

buf@pre(o)[k] := arr@pre(buf@pre(o), k))))}
ϕProducer

with

Def = ∀x :Producer. buf@pre(x)
.
= x.buf

∧∀x :Producer. n@pre(x)
.
= x.n

∧∀x :Product[]. length@pre(x)
.
= x.length

∧∀x :Product[]. ∀i :Integer. arr@pre(x, i)
.
= x[i]

• Alternatively we may use the function Dep which delivers the
following depends clause. It does not need to be verified by a
proof obligation according to Lemma 9.3.

Dep(ϕProducer) =

∗Producer.<created>, ∗.buf,∗.buf.length, ∗.n,
(for x :Producer, i :Integer ; ; x.buf[i])


In this case it does not play a role with which of both depends
clauses we continue our investigations.

3. For the subset of D consisting of the first, second, and the fourth de-
pends clause element (∗Producer.<created>, ∗.buf and ∗.n), Producer
is a self-guard. This is because buf and n are private fields in Producer,
and because of the special rule for <created>.

4. The type of the buf field, Producer[], is an array type. So there
cannot be a self-guard for the remaining items of D. We must thus
search for guards: Since both, Producer and Consumer reference .buf,
we define the guard to be G = {Producer, Consumer}.
Now it must be proven that G is in fact a guard. We can easily see
that Exp(D) ⊆ D. Moreover, ST (D) = {Producer} ⊆ G and all fields
in Producer and Consumer are private.
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Guardedness can thus be shown with the proof obligation

IsGuard(D′, {Producer, Consumer})

with

D′ =

{ ∗.buf.length,
(for x : Producer, i : Integer ;

0 ≤ i ∧ i < x.buf.length ; x.buf[i])

}

This requires to show the validity of a formula for every applicable
operation of the guard elements. As example we pick the method
setConsumer(Consumer) in Producer. With ϕenc defined as

∀x :Producer. Ency,z [InstanceOfConsumer(y) ∨ InstanceOfProducer(y),
z
.
= x.buf]

which is equivalent to

∀y. ∀x :Producer. (Acc(y, x.buf)

→ InstanceOfConsumer(y) ∨ InstanceOfProducer(y))

we get:

PreservesInv∗(setConsumer(Consumer), ϕenc, self, c)

which is equivalent to

∃x. Acc(x, self) ∧ ∃x. Acc(x, c) ∧ ϕenc
∧ϕConsumer ∧ ϕProducer ∧ c.pro

.
= self

→
[
try{ self.setConsumer(c0=c)@Consumer; }
catch (Throwable e) {}

]
ϕenc

This formula must be modularly valid. With the help of Lemma 6.3
a closed proof with an empty set of generated contracts suffices for
modular validity. Since the called method setBuffer(Product[]) in
Consumer is final this is possible.

5. In order to complete all the requirements of Lemma 10.1 there is one
step left: It must be modularly shown that all operations in Consumer
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and Producer preserve ϕProducer. This is possible as all public methods
called by some method in these two classes are final. In the example of
setConsumer(Consumer) it must be shown that the following formula
holds modularly:

PreservesInv(setConsumer(Consumer), ϕProducer)

which is equivalent to

ϕProducer ∧ ϕConsumer ∧ c.pro
.
= o

→
[
try{ self.setConsumer(c0=c)@Consumer; }
catch (Throwable e) {}

]
ϕProducer

6. Finally the other two requirements of Lemma 10.1 must be fulfilled.
We show

EnsuresPost(opct)

RespectsModifies(opct)

for all operation contracts opct attached as JML specifications in the
above program. The modularity of proofs poses no problem since meth-
ods are declared final as necessary.

Relative Durable Correctness

We are now aiming at a more extensible program. So we get rid of all final
modifiers, say only those in Producer. Moreover we declare the buf field in
Producer as protected.

The first two steps are identical to before: The invariants representation in
JavaFOL is the same as before and also the depends clauses do not change.

In step 3 we needed, before, the requirement that Producer’s buf field
is private. Since this is not the case now, a generic extension contract is
needed here. According to Lemma 10.2 all subclasses of Producer must
preserve ϕProducer, which is formalised as the following extension contract:

generic contract {

T extends* Producer;

(∅, {ϕProducer})
}
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Likewise, with the guards for the array access, the reasoning above suffices,
but we have to take care that classes which are subclassing a guard class
declaring a protected field satisfies the guard properties. Again we do this
with the help of generic extension contracts:

generic contract {

T extends* Producer;

(∅, {ϕProducer, ϕenc}})
}

with ϕenc as defined in (4).
Moreover we need to prove IsGuard(D′, {Producer, Consumer}) for the

program consisting of Producer and Consumer itself. This is done as before,
with one exception: the missing final modifiers of produced(Product) and
setConsumer(Consumer) trigger the generation of extension contracts when
the contracts of these methods are used during the proof. So we obtain as
extension contracts (written in the JML extension):

generic contract {

T extends* Producer;

/*@ ensures \result <==> (\exists int i; buf[i]==p);

@ assignable \nothing

@*/

public boolean produced(Product p);

}

generic contract {

T extends* Producer;

/*@ requires c.pro==this;

@ ensures this.con==c;

@ assignable this.con;

@*/

public void setConsumer(Consumer c);

}

All other proofs, for showing that invariants are preserved and operation
contracts are fulfilled, are done as before. Here extension contracts are gen-
erated as well but they are subsumed by the ones obtained during the proofs
above.

Altogether, we have achieved durable correctness of {Producer, Consumer}
relative to the (four) generic contracts denoted above.
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10.3.2 Linked List with Iterator

Doubly linked lists are an omnipresent example when ownership based sys-
tems are discussed. Ownership systems often run into problems with this
example since both the linked list and their iterators access the internals of
the list. Thus, with strict ownership, no iterators are allowed. The Universe
type system [Müller, 2002] attacks this issue by providing readonly references
which are used by iterators for their access to the internals. Then iterators
must not change anything directly. If they however do not violate invari-
ants, we can argue that nothing bad can happen. With our technique it is
no problem to allow for such modifying iterators.

Our linked list example is depicted in Figures 10.3 and 10.4. It is in-
spired by the class java.util.LinkedList from the standard Java Collec-
tions Framework as included in the Java 2 Platform, Standard Edition. That
version uses inner classes for entries and iterators. We have not used inner
classes since KeY cannot treat them presently. Whenever fields were accessed
exploiting the special visibility rules for inner classes we have used getter and
setter methods instead.

Durable Correctness

1. We are interested in the invariant ϕDLList defined as follows:

∀̇l :DLList. ∀e :Entry. (Reach[{next}](l.header, e)
→ e

.
= e.next.previous)

It states that the linked list has correct links. So for all entries e reached
from the list header: e.next references via previous the entry e.

2. A depends clause for this invariant is

D = {(for l : DLList, e : Entry ; Reach[{next}](l.header, e) ;
e.next.previous),

(for l : DList, e : Entry ; Reach[{next}](l.header, e) ; e.next),

∗ .header, ∗DLList.<created>}

This is obtained by the extended procedure Dep from Sect. 9.1.2.

3. For the third and the fourth element of this clause, DLList is a self-
guard because header is a private field in that class, and for <created>
the special rule applies.
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public class DLList {

private DLEntry head;

private int size;

public DLList() {

head=new DLEntry(null, null, null);

head.setNext(head);

head.setPrevious(head);

}

public DLItr listIterator(int index) {

return new DLItr(head, index, size);

}

public boolean add(Object o) {

DLEntry newDLEntry = new DLEntry(o, head, head.getPrevious());

newDLEntry.getPrevious().setNext(newDLEntry);

newDLEntry.getNext().setPrevious(newDLEntry);

size++;

return true;

}

}

final class DLEntry {

private Object element;

private DLEntry next, previous;

public DLEntry(Object element, DLEntry next, DLEntry previous) {

this.element = element;

this.next = next;

this.previous = previous;

}

public Object getElement() { return element; }

public void setElement(Object o) { element=o; }

public DLEntry getNext() { return next; }

public void setNext(DLEntry e) { next=e; }

public DLEntry getPrevious() { return previous; }

public void setPrevious(DLEntry e) { previous=e; }

}

Figure 10.3: Main class and entry class of the linked list
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class DLItr {

private DLEntry last, next, head;

private int nextIndex, size;

DLItr(DLEntry head, int index, int size) {

this.head = head;

last = head;

if (index < 0 || index > size) throw new RuntimeException();

next = head.getNext();

for (nextIndex=0; nextIndex<index; nextIndex++) {

next = next.getNext();

}

}

public boolean hasNext() {

return nextIndex != size;

}

public Object next() {

if (nextIndex == size) throw new RuntimeException();

last = next;

next = next.getNext();

nextIndex++;

return last.getElement();

}

public void set(Object o) {

if (last == head) throw new RuntimeException();

last.setElement(o);

}

}

Figure 10.4: Iterator of the linked list
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4. Entry cannot serve as a self-guard for the remaining depends clause
items since setNext(Entry) and setPrevious(Entry) do not preserve
ϕDLList. So a guard is needed. A suitable candidate is the set G :=
{DLList, DLItr} since both access the relevant objects induced by the
depends clause and preserve ϕDLList.

We see that Exp(D) ⊆ D and that the start type of D, which is
{DLList}, is part of G. We need to prove guardedness though.

The property ϕenc to be preserved by all operations of G is

∀l :DLList.∀e :Entry.Ency,z
[
InstanceOfDLList(y) ∨ InstanceOfDLItr(y),
Reach[{next}](l.header, e)

]
which is equivalent to

∀l :DLList. ∀y. ∀z :Entry. (Acc(y, z) ∧ Reach[next](l.header, z)

→ InstanceOfDLList(y) ∨ InstanceOfDLItr(y)

∨Reach[next](l.header, y))

It must be shown that this property is preserved by all operations of
the guards (which include the start type of D). We present as example
the case of the next() method in DLItr.

PreservesInv∗(next(), ϕenc, self)

which is equivalent to

∃x. Acc(x, self) ∧ ϕenc ∧ ϕDLList

→
[
try{ self.next()@DLItr; }
catch (Throwable e) {}

]
ϕenc

Again we have to show modular validity by finding a closed proof with
an empty set of generated contracts. Since getNext() in DLItr is final
no extension contracts need to be generated.

5. Finally all methods of G must be modularly proven to preserve ϕDLList.
We must, for instance, prove

PreservesInv(next()@DLItr, ϕDLList)
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equivalent to ϕDLList →
[
try{ self.next()@DLItr; }
catch (Throwable e) {}

]
ϕDLList.

Again the invocation to getNext() does not produce generic contracts
for the same reason as above.

6. Since there are no operation contracts we are done.

Relative Durable Correctness

In order to improve extensibility we could remove the final modifier in the
class declaration of DLEntry. This would, as in the last example, trigger
the generation of generic extension contracts. Also, we would need opera-
tion contracts for the methods in DLEntry. So, for example, the method
getNext() would get the following JML contract:

/*@ ensures \result = next;

@ assignable \nothing;

@*/

public DLEntry getNext();

Used in one of the relative-modular proofs, we obtain the extension contract:

generic contract {

T extends* DLEntry;

/*@ ensures result = next;

@ assignable \nothing;

@*/

public DLEntry getNext();

}

With the exception that during the proofs extension contracts emerge, the
steps equal the treatment for un-relativised durable correctness from above.

10.4 Durable Correctness in the Presence of
Abstraction in Invariants

So far we have ruled out (in Sect. 9.1.4 and with Def. 9.1) occurrences of dy-
namically bound queries in invariants. This guaranteed context-independent
query-free depends clauses. We have seen in Ex. 1.3 an example where a
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query (equals(Object)) occurs in an invariant. In closed programs, it was
possible to rewrite the invariant without using queries. In Ex. 9.6 we could
for instance use the fact that the default implementation of equals is the
object identity. If classes had overridden equals then we would have incor-
porated the concrete locations read in these implementations.

The same issue holds for abstract (that is, specification-only) fields in
specifications. Such fields are called model fields in JML. Every concrete
subclass may interpret abstract fields differently. We can simulate abstract
fields by employing queries. The binding to concrete fields corresponds to
overriding the query. We will thus only treat the case of queries. An explicit
treatment of abstract fields would be done analogously.

In this section we can only sketch at an example what needs to be done
to extend our approach. There are no formal proofs, which need to be done
as future work.

First of all we can state that it is necessary for dynamically bound queries
used in specifications of open programs that all overridings of these queries in
the context fulfil the same operation contract as the original query. Otherwise
it would be impossible to reason about this query, without knowledge of a
concrete context, at all.

Example 10.4. Assume the Period class of our running example contained
an invariant ϕ′Period:

∀̇p :Period. earlierOrEqual(p.start, p.end)
.
= true

The specification of earlierOrEqual(Date) is as before. By the invariant
the already known generic extension gctearlierOrEqual(Date) contract must be
created when durable correctness is proven:

generic contract {

T extends* Date;

class T {

/*@ normal_behavior

@ requires cmp !=null;

@ ensures \result == (year<cmp.year || (year==cmp.year

@ && month.val<=cmp.month.val));

@*/

/*@pure@*/ boolean earlierOrEqual(Date cmp);

}

}
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∗

If the specification of the used query is complete, that is, the functional
behaviour is completely determined by the method contract, and moreover
the contract does not contain query symbols, then it is always possible to
obtain a query-free invariant and thus a query-free depends clause. In our
example we would just need to replace the occurrence of the query with the
right hand side of the specification \result == . . . and substitute parame-
ters appropriately. We would then obtain the original invariant ϕPeriod.

Some query specifications are incomplete however, as for instance the fol-
lowing contract of earlierOrEqual(Date):

public class Date {

/*@ normal_behavior

@ requires cmp !=null;

@ ensures \result ==> (year<cmp.year || (year==cmp.year

@ && month.val<=cmp.month.val));

@*/

/*@pure@*/ boolean earlierOrEqual(Date cmp);

}

where the equivalence is replaced by an implication. A correct overriding of
this method satisfying the corresponding generic contract could be specified
as follows:

public class Date3 extends Date {

private Day day;

/*@ normal_behavior

@ requires cmp !=null;

@ ensures \result ==>

@ (year<cmp.year ||

@ (year==cmp.year && month.val<cmp.month.val) ||

@ (year==cmp.year && month.val==cmp.month.val &&

@ ((cmp instanceof Date3)

@ ==> day.val<=((Date3)cmp).day.val)));

@*/

/*@pure@*/ boolean earlierOrEqual(Date cmp);

}

This method however introduces a new dependency, namely to a new field
day and the integer value in day.val. At a first glance this has no implica-
tions for correctness, but imagine Period contained a method getObject()
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specified not to leak references to the usually protectable objects; this method
delegates to Date instance start and its implementation in Date3 returns
the Day instance stored in date. Then it would be possible for an observer
to get in control of such a reference and manipulate it such that the new in-
variant is violated. All this would not be prevented by the guard mechanism,
since the new location is not proven to be protected.

This is why we introduce additional requirements on newly added loca-
tions. All locations which are additional dependencies must

• either be a private field in a class which preserves the invariant of
question; this is clearly not the case for the Day instance, which is
again a quite general class and not specific for Period, or

• origin from a private field a and from a quite a strict encapsulation
must start: Let e be an instance of the class which declares a. Then
the locations to protect can be described by terms with a field as top
operator1 as e.a, e.a.a1, e.a.a1, . . . an and so on. Let D be this set of
location terms. In terms of encapsulation predicates we require the
following property:

Ency,z

[
y
.
= e,

∨
d∈D

z
.
= d

]

In the example of day, we would require from a Date3 instance d3:

Ency,z [y
.
= d3, z

.
= d3.day]

This means, only d3 is allowed to access d3.day.

There are two issues still to clarify:

• How do we determine dependencies of queries?

• How do we impose the mentioned restrictions on unknown subclasses?

The first question is answered by the following definition which follows quite
closely the depends clauses of formulae:

1This can easily be extended to full location terms.
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Definition 10.1. Let q be a query symbol with σ(q) = (T1, . . . , Tn) occurring
in a program P . A depends clause of the query symbol q in P is a finite
set Dq(p1, . . . , pn) of extended terms with possible free occurrences of logical
variables p1, . . . , pn of types T1, . . . , Tn; Dq(p1, . . . , pn) which does not contain
query symbols but satisfies the following property in all states s1 and s2
and for all β: If f s1(e1, . . . , em) = f s2(e1, . . . , em) for all (f, (e1, . . . , em)) ∈
Locs1,P,β(Dq(p1, . . . , pn)) then

vals1,P,β(q(p1, . . . , pn)) = vals2,P,β(q(p1, . . . , pn))

Example 10.5. The method declaration earlierOrEqual(Date) in Date of
our running example has the following depends clause with free occurrences
of the logical variable d of type Date:

{d.year, d.month, d.month.val}

The overridden version in class Date3 additionally contains

{d.day, d.day.val} ∗

We need to impose restrictions on the context in which our program is
used. And as we have done earlier, we employ generic extension contracts to
formalise these constraints. The needed property requires to talk about the
depends clause of a query on the object level. Clearly this is not expressible
by means of JavaFOL or our specification languages and thus also not by
generic contracts as defined in Sect. 5.1. In the sequel a quite specialised
extension to the specification machinery is thus introduced. Since we need
the extension only in generic contracts (Sect. 5.1), the extension is added
on that level. Note that this is only our second (after the basic encapsu-
lation predicates) and last extension to specification languages keeping our
invasions into existing languages as small as possible.

If the query q in question was declared in class C as

R q(p1, . . ., pn)

we write that property as follows as generic contract

generic contract {

T extends* C;
(qpt(q), ∅)

}
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where qpt(q) is the special query protection contract of q with the semantics
as discussed above.

For the invariant ϕ′Period we would need to impose the following generic
contract:

generic contract {

T extends* C;
(qpt(earlierOrEqual), ∅)

}

which would be instantiated for Date3 as

Ency,z [y
.
= d3, d3, z

.
= d3.day]

If this invariant property is preserved (naively) by the methods of Date3,
ϕ′Period with its dependency from the dynamically bound earlierOrEqual()

can be durably verified.

10.5 Verification of Components

We are now referring to component contracts as introduced in Sect. 5.2.
Component contracts were defined as pairs of a set GCt of generic exten-
sion contracts and a specification for the classes of the component. The
correctness of component contracts was defined in terms of durable correct-
ness relative to GCt. So the last Lemma 10.2 provided us with the proof
obligations to check for the correctness of components.

Lemma 10.3. A component is correct w.r.t. a component contract (GCt, S)
if the conditions of Lemma 10.2 are established.

Proof. Follows directly from Lemma 10.2 and Def. 5.7.

Example 10.6. Consider again Ex. 1.1 (without final modifiers at the
methods earlierOrEqual(Date) and copy()). As in Ex. 5.9, let P be the
component consisting only of Period and cct = (GCt, S) consisting of the
specification S given by the annotations in Fig. 1.1 and

GCt := {gctearlierOrEqual(Date), gctcopy()}

with gctearlierOrEqual(Date) and gctcopy() as defined in Ex. 10.2.
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To prove the correctness of Period as a component w.r.t. the sketched
component contract we have to prove the same proof obligations as in Ex. 5.9.
Thus the component {Period} is a correct component w.r.t. cct. ∗

Example 10.7. Consider now the modified version from Ex. 1.2 in which
start and end are insufficiently encapsulated. Everything is as in the last
example except that we cannot ensure

|=GCt
P IsGuard(D1, {Period})

So we have to impose more restrictions on the context, which is allowed by
the definition of component correctness. As in Ex. 10.3, we add the generic
contract gctϕPeriod

generic contract {

T unconstrained;

(∅, {ϕPeriod})
}

to GCt such that

GCt := {gctϕPeriod, gctearlierOrEqual(Date), gctcopy()}

Altogether, we have proven that the component {Period} is correct w.r.t.
(GCt, S). ∗

10.6 Design Implications

We have seen how open programs can be guaranteed to work in a partially or
completely unknown context. We have also observed that it is in some situ-
ations quite complex to take sufficient care of invariants. We would thus like
to briefly investigate the question how component design and specification
should be, such that verification becomes easier.

First of all we can observe a trade-off between the extensibility of a sys-
tem and the possibility of strict modular verification. An extensible program
typically contains non-final dynamically bound methods and provides only
little encapsulation. A program suited to modular verification offers only few
possibilities to adapt functionality: methods are favoured to be not overrid-
able or statically bound and there is much encapsulation. A program is less
extensible, the more it is suited to modular verification with the goal of strict
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modular correctness, and vice versa. It is our contribution to have made a
‘third way’ viable. With generic extension contracts it is possible to have
a user defined degree of encapsulation. So each developer can decide how
much his program should be extensible, what the requirements on extensions
are, and which parts should be entirely hidden from clients.

Another observation is that the use of components of a more common na-
ture hampers modular verification. Keep the Entry class of our null-free
linked list example in mind. This class was not designed to be used only
in this particular null-free linked list but in any other, for instance uncon-
strained, linked list. Thus the invariant for null-freeness was attached to
the list class and the methods of Entry were not specific enough to prevent
null elements. If we however had had a class NullFreeEntry with an in-
variant attached to this class, invariant protection would have been much
easier: Instead of employing a guard, we would have used simply the self-
guard Entry. Thus more specific classes with more specific invariants are
preferable for modular verification. One could equally state that it is dif-
ficult to protect invariants with a wide scope, such as making statements
over a list and all its reachable elements. On the other hand, it is the goal
of object-orientation to foster reuse, so verification must get along with the
reuse of components of a more general nature. We have shown that we can
cope with this demand on the verification side, but with considerable effort,
and in some cases only by constraining the reuse context. It will often be a
question of the application domain if more guarantees or more extensibility
is desired. In safety critical areas probably the former is more appreciated
while there might be other domains which require more extensibility and
adaptability at the cost of guarantees.

10.7 Summary

In this section we have taken the final step to the verification with the goal
of durable correctness of open programs and of component correctness. We
have presented two proof obligation systems. Thee first allowed for strict
proofs of durable correctness of open programs. The second liberalised this
by imposing extension contracts on the context in which the program is
used. This is needed if some properties cannot or are not intended to be
protected by encapsulation. For protection by encapsulation, the techniques
for modular verification of invariants from the last chapter have been trans-
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fered to open programs. We have seen at ‘benchmark’ examples that our
approach works in practice and have stated that, in practice, an appropriate
compromise between the possibility for modular verification and extensibil-
ity of programs must be found. Finally we have discussed how to extend
the technique to abstract specifications using queries, to the verification of
component contracts and we sketched some implications on how to specify
and design verifiable components.

This concludes Part II on modular verification. Conclusions of the whole
work follow.
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Nil actum reputa si quid
superest agendum.

(Lucan)

The conclusions of this thesis contain a review of related work, an outlook
to possible future activities improving or complementing our approach, and
a summary of the work.

11.1 Related Work

In the following we compare related work with ours. The first area to review
are general approaches to software specification and verification, both in the-
ory and as tools. Then we look at notions of correctness of whole programs.
Next are the two ‘wings’ of our approach: specifications of encapsulation
and context. The final part contains approaches which fully aim at modular
verification.

11.1.1 Program Specification and Verification

The idea of formally specifying programs with the intend to verify them is
old and can at least be dated back to Hoare [1969] such as the idea of assign-
ing pre- and postcondition pairs to pieces of programs. Meyer [1992] made
specifications of programs in the context of object-oriented programs widely
popular by referring to them as contracts. Formal specifications were becom-
ing a first class citizen of programs, here in Meyer’s Eiffel language. On the
academic side interface specification languages emerged, like the Larch family
of specification languages. An important offspring is the Java Modeling Lan-
guage (JML) as discussed in Sect. 3.3.2. Several other similar contract-based
languages are targeting Java, but are not as elaborated as JML. Examples
are described in Kramer [1998], Bartetzko et al. [2001], Karaorman et al.
[1999], Duncan and Hölzle [1998], and Findler and Felleisen [2001]. These
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developments have increased expressiveness of specifications over programs,
for instance, Meyer’s contract language did allow only boolean expressions
of Eiffel, while JML allows for quantifications and convenient abbreviations
for all kinds of purposes. All the above mentioned languages were primarily
intended for runtime checking, not for formal verification.

Another direction of impact were specifications languages more on the de-
sign level, like Z [Spivey, 1992] and B [Abrial, 1996], and object-oriented
derivations like Object-Z [Duke et al., 1991]. Even less formal approaches
like the Unified Modeling Language (UML) [OMG] were pushed in the di-
rection of formal specification languages with its integral part Object Con-
straint Language (OCL) [Warmer and Kleppe, 1999]. The application of such
design-oriented specification languages for the specification and verification
of programs requires a mapping from the more abstract domain to program
code.

We have captured the common logical core of formal specification lan-
guages for object-oriented programs in the definition of specifications in
Chapter 3. This is not a big deal, but progress is obtained in small steps: We
have for instance defined a unified representation of exceptional behaviour,
which is much simpler than in JML for instance. Another example is the
uniform representation of class invariants simply as closed first order for-
mulae, while for instance in JML there are two notions, static and instance
invariants, to be dragged along. While the above mentioned specification
languages tend to be quite verbose in order to make it specifiers easier to do
their job, we just aimed at a condensed representation. This still allows for
translations from specification languages into our representation.

A number of verification systems for Java-like languages have been devel-
oped in recent years. We have discussed the KeY system [Ahrendt et al.,
2005a] which our work is based on in Sect. 1.1. There are other program
verification tools, for instance Jack [Burdy et al., 2003], Krakatoa [Marché
et al., 2004] and the Loop system [Jacobs and Poll, 2004]. To our knowledge
they do not allow for the verification of assignable clauses. These systems
work on single methods only and do not establish a property comparable
to durable correctness. ESC/Java2 [Cok and Kiniry, 2004] is an automatic
extended static checker which is not sound. The Jive tool [Meyer et al.,
2000] is not yet available. Jive’s technique to modularly ensure invariants is
the Universe type system as discussed below. The extended static checker
Boogie [Barnett et al., 2005] built for the specification language Spec# for
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the programming language C# is an approach similar to ESC/Java2. Its
technique for invariants is discussed below.

11.1.2 Notions of Correctness of Programs

One would expect that formal specification languages come with a precise
semantics of under which conditions a program is correct with respect to
a word of the specification language. This is however not the case. Yet
the most precise semantics is the one of JML. JML is however still work
in progress and even some details of the relatively stable core are not yet
captured precisely.

The semantics of preconditions and postconditions is mostly common sense.
However from time to time languages require preconditions to hold and enter
into error handling otherwise, as Eiffel or the semantics induced by various
runtime assertion checkers advocate.

Assignable clauses are in general regarded as the only way out of what
is commonly known as the frame problem [Borgida et al., 1995]. A precise
semantics of assignable clauses is defined in Beckert and Schmitt [2003]. We
have followed this under the consideration of more complex modifier sets
which can capture reachable objects and array ranges. JML defines the
(roughly, see Sect. 3.3.2) same semantics informally. It however also allows
for abstractly describing locations by data groups [Leino and Nelson, 2002].
This allows to specify locations which do not yet exist, which is necessary
when contracts are inherited. We can solve this problem with the help of
extension contracts. Müller et al. [2003] deal with the issue of assignable
clauses containing abstract fields. Their semantics is based on the Universe
model. Other languages ignore the problem or refer, as OCL, to an implicit
assignable clause, which is in general insufficient [Roth and Schmitt, 2006].

Concerning the question of when invariants are supposed to hold, some
approaches follow the naive approach of Meyer [1997] that invariants defined
in a class must be established by operations of that class, which is too weak.

The most popular semantics refers to visible states [Poetzsch-Heffter, 1997,
Leavens et al., 2005, Huizing and Kuiper, 2000] as already discussed in
Sect. 3.2.10. In contrast to it, our observed-state semantics is not inter-
ested in intermediate states of the specified program, which is weaker but as
we have explained more adequate.

Müller et al. [2004] (see below for a thorough discussion of this work)
weaken the visible state semantics to a relevant invariant semantics. It
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is based on the Universe type system [Müller, 2002]. Thus a hierarchical
partition of objects in contexts with a unique owner object is available. An
object e is relevant to the execution of a method if e is in the context (or
in one up the context hierarchy) of the current receiver object. If this is the
case then e’s invariant must be satisfied in the visible states of that method
execution. This semantics still considers internal states, it is coupled to the
universe technique, and it is, in our opinion, highly complicated to explain to
a software developer with mediocre formal background. Müller [2002] follows
a similar approach but considers invariants simply as boolean model fields,
that is fields for specification-only purposes, with an appropriate definition
corresponding to the invariant.

The Boogie methodology is more extensively described below. It defines
the following special semantics of when invariants must hold: they must
hold whenever a specification-only inv field of an object explicitely requires
this. o.inv is set to a type name which is either the dynamic type of o
or a supertype. The invariants of all supertypes of o.inv must hold in any
state. The Boogie technique requires lots of new annotations with highly
complicated semantics to be done by the programmer. Moreover again, and
even more than with the visible state semantics, internal states are taken
into consideration.

11.1.3 Constraining Context

It is quite obvious that in languages where aliasing effects can occur, but
especially if dynamic binding takes place, it can never be excluded that
correctness of a program is violated by malicious extensions of a system. In
general only restrictions on the program context can help. The concept that
context must adhere to certain conditions is, as far as we know, made explicit
as formal constraints in our work for the first time.

Of course informal descriptions are around, as can be seen in the example
in Sect. 1.2 from the Java API. But they do not suffice when the rigour of
formal methods should be applied.

Some specification languages impose implicit requirements on the context:
JML requires a behavioural subtyping discipline. All contracts are inherited
to operations which override the specified operation. This makes all sub-
types, even those which are not known when specifying the type, conform
to their supertypes. This is however quite a strict policy, since programs
which do not follow these guidelines are excluded, though they might be
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functionally correct. With generic contracts we can specify more precisely,
which overriding methods must fulfil which conditions.

The Contracts technique by Helm et al. [1990] suggests, like our generic
contracts, to generalise the contract concept to include other unknown par-
ticipants of a contract than just the caller of a method. Moreover the idea
that instantiations of contracts might prove necessary is introduced there.
However the specification expressions used there are temporal properties and
thus completely different to ours. Finally instantiations occur on the object
level instead of on the type level.

Methodological similarities with the approach to constrain context instead
of the program itself can be found in assume-guarantee reasoning [Henzinger
et al., 1998]. As in our approach, reasoning about one module is done by
assuming properties of the other modules, which are later verified. However
the problem to be solved differs in many ways from ours and leads to other
technical consequences. Also approaches in the verification of concurrent pro-
grams follow a similar approach by assuming conditions of allowed changes
in the context a process is used. Only if these conditions are met a process
is obliged to guarantee a behaviour. This is referred to as rely-guarantee con-
ditions [Jones, 1983]. Our work can thus be considered as transferring these
approaches to the verification of sequential object-oriented components.

11.1.4 Specification and Verification of Encapsulation

Several approaches to specify and verify encapsulation properties have al-
ready been discussed in Sect. 4.1.2. They served as a basis to justify why
encapsulation should be specified differently. We have shown that we can
simulate all of them.

Very recently the Universe type system has been integrated in JML [Dietl
and Müller, 2005]. This integration is however quite loose. The usual an-
notations of the Universe type system are available as JML-like annotations
to be put next to field and variable declarations. Usual JML expressions
are almost not affected by these special annotations, except that there is a
specification-only owner field available. Functional and encapsulation speci-
fications however appear as completely unrelated issues.

We are not aware of any tight integration of functional specification lan-
guages and facilities to specify encapsulation comparable to ours.

There is also no work which tries to separate the issues of specifying en-
capsulation and checking it—a discipline which is conceived quite natural in
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the functional verification world. We have achieved this distinction, which
opens up the advantage to employ the checking techniques for those problems
which can be covered by them. For the verification of certain encapsulation
properties we have made use of the Universe type system by Müller [2002].

A very recent approach to check encapsulation with a static analysis dif-
ferent from type systems is Burrows [2005]. The analysis is currently only for
Featherweight Java. It seems possible to use this technique to prove certain
encapsulation predicates.

11.1.5 Verification of Operation Contracts

All the verification systems described in Sect. 11.1.1 can prove satisfaction
of pre-/post condition pairs, though ESC/Java2 does this in an unsound
way. Most systems use Hoare logic or weakest precondition calculi, with the
exception of KeY which uses a dynamic logic.

Proof obligations in a dynamic logic like JavaDL for the assurance of post-
conditions under the assumption of preconditions are quite standard. The
idea of encoding thrown exceptions as we did has been discussed for instance
in Beckert and Sasse [2001], Roth [2002].

Running systems which check assignable clauses are rare though. A more
intricate JavaDL proof obligation than ours for assignable clauses has been
presented by Sasse [2004]. The employed proof obligation potentially refers
to all possible locations of the program, which makes it change un-modularly
whenever the model changes. Spoto and Poll [2003] have designed an algo-
rithm which uses abstract interpretation to prove assignable clauses. That
work has not been implemented. Cataño and Huisman [2003] have imple-
mented the static checker Chase which checks assignable clauses, but lacks
soundness. Müller [2002] presents a technique to modularly verify assignable
clauses, but it is difficult to compare this approach since the semantics of
assignable clauses differs.

11.1.6 Analysis of Dependencies

Analyses of dependencies in specifications, like the use of our depends clauses
(see Sect. 9.1), have been performed in earlier work as for instance in Leino
and Nelson [2002]. Müller et al. [2004] informally introduce notions of de-
pendees and dependencies but do not use them formally during reasoning.
Instead they define admissible invariants on allowed access chains which
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makes it impossible to treat invariants which have an unpolished shape like
∀x. (x

.
= a.b → x.c

.
= 0) for which we would like to have Exp(a.b.c) as

depends clause, not {a.b, ∗.c}.
Both approaches do not cover advanced description of locations, like de-

pendencies from all slots of an array.

11.1.7 Modular Verification of Invariants

We are now reviewing complete approaches for the modular verification and
its main problem, the verification of invariants. The two main competing ap-
proaches are techniques around the Universe type system [Müller et al., 2004]
and the Boogie methodology developed at the Microsoft Research group [Bar-
nett et al., 2004].

Both approaches provide invariant protection by means of two principles:

Ownership. Objects are assigned owners. An owner is responsible for mod-
ifications of an owned object. Ownership is integrated as an extension
of the programming language by extending its type system.

Visibility. Invariants are visible for more objects than one. An invariant
must thus in general be proven for more than the class which declares
the invariant or for several objects of the same class.

A closer look reveals a relationship to our system of ensuring invariants
modularly with the help of depends clauses and guarded invariants. The
ownership technique corresponds to using guards, providing encapsulated
objects which do not escape from entities responsible for maintaining invari-
ants. The visibility technique corresponds in a sense to the use of self-guards
(see below).

Modular Verification Based on Universes

The most advanced approach aiming at modular verification with the help
of ownership types is Müller et al. [2004]. It is a variation of Müller [2002].
The focus in this work is on layered object structures. This results in restric-
tions on admissible invariants. Invariants are admissible if they are protected
from uncontrolled violations via ownership and via visibility. The agglutina-
tion of these two concepts makes the approach quite bulky. Our technique
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does in principal not sort out invariants a priori, though there are syntactic
restrictions as well, when guardedness must be proven.

The ownership technique in Müller et al. [2004] is based on Müller’s Uni-
verse type system [Müller, 2002] (see above). For the ownership technique
the invariants containing only the following access expressions a1 · · · an (ai
are field names or array accesses) are admissible: (a) single field name, (b) ac-
cess expression with admissible prefixes followed by a constant field access,
(c) sequence of field accesses with admissible prefixes and the first element
is annotated with rep and all other (except for the last) are annotated with
rep or peer. The proof obligations for the ownership technique aim at the
relevant invariant semantics (see above). They require for every call in a
method which is being verified that, before a method call, the current re-
ceiver object’s invariant holds if the called method is in the same context.
One may in turn assume that the invariants of all relevant objects hold before
and after a method call.

The visibility based part additionally allows for access expressions which
consist of field chains with peer annotated fields. The invariant containing
such a chain must be visible for each class which declares a field of such a
chain. Then one must show that the invariants of all visible classes in the
current receiver’s context hold after method execution and that the same
holds before a call to another method in the current receiver’s context is
performed.

The ownership approach relies, as our guards, on encapsulation. However
our encapsulation is more liberal: In the ownership jargon we allow for sev-
eral owners, if they all adhere to invariants. This makes instruments like
readonly references obsolete. For example the Producer-Consumer example
(Sect. 10.3.1) which serves in that work as an example for the expressiveness
of the technique could as well be solved by our technique (see Sect. 10.3.1).
Moreover we can even allow Consumer to update the common buffer, which
is not possible with the other approach.

Our technique does not have a direct visibility based part. Our self-guards
may take over the role of visibility based invariants, however. For instance, a
typical running example of Müller et al. [2004] for visibility based invariants,
as depicted in Fig. 11.1, is treated by our technique as an invariant which is
protected by a depends clause {∗.spouse.spouse, ∗.spouse}. Person is a
self-guard of it. An important difference can be seen at this example: our
guards are class based, not object based. This fits perfectly well to the fact
that static verification aims at classes, not objects. In the example, neither
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class Person {

private /*@spec_public@*/ Person spouse;

/*@ public invariant spouse==null || spouse.spouse==this @*/

public void marry(Person p) {

spouse=p;

p.spouse=this;

}

}

Figure 11.1: Example from Müller et al. [2004] as application of the visi-
bility technique

a particular Person instance p nor p’s spouse is responsible to protect the
invariant but the class Person itself.

Another paper about exploiting the Universe approach to modularly en-
sure invariants is van den Berg et al. [2001]. They discuss under which
conditions invariants can be assumed and which invariants must be proven.
They define a conservative approach which essentially corresponds to the
non-modular approach to preserve all invariants, but here with the restric-
tion that these objects are relevant, in all operations. Relevance is not
further specified. Moreover a more liberal approach is defined which relies
on a technique like Universes.

Another major difference between ours and Universe based approaches is
that, when a component is verified based on Universes, all reuse contexts
must be be specified with Universe annotations, too. With our approach
there are no such obligations to the context, except from generic contracts
which must be obeyed by the context.

The Boogie Methodology

The Spec# system [Barnett et al., 2005] supports an approach described
in Barnett et al. [2004] (also called Boogie Methodology in some places) which
makes explicit when invariants must hold. Classes contain always the field
inv which is only allowed in specifications and the special methods pack and
unpack. It is assigned the name of a supertype of its receiver object. Calling
o.pack(T) on an object o with a supertype of T requires that the invariant of
o holds and sets o.inv to T . o.unpack(T) sets o.inv to the direct superclass
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of T . Moreover there is a specification-only boolean field committed, with the
intention that o.committed is set to true only if o.inv equals the dynamic
type of o. Furthermore a notion of ownership is introduced: fields may
be declared with a rep modifier. Then o.pack(T) performs the following
additional tasks: it requires that inv is already set to the direct supertype
of T and that all object references through a rep field have set inv to their
dynamic type. It then commits these rep objects, and as already described,
sets o.inv to T . o.unpack(T) in turn sets all rep objects’ committed fields
to false.

Field updates to o.a are now only possible if o.inv is set to a strict super-
class of the class which a is declared in. With this, in every program state
and for every object o, if o.inv is set to T then all (instance) invariants of T
hold for o.

This approach is extended by the work of Leino and Müller [2004] and
of Barnett and Naumann [2004] which add more visibility based techniques,
but maintain the general idea.

The Boogie methodology needs lots of new specification constructs which
the developer must in detail know about. They are of an imperative nature
(pack, unpack) and thus do not fit well into what we usually consider as
functional declarative specification. The whole approach resembles more an
extension of a programming model, that is programmers must conform to a
certain protocol when assigning to locations. Moreover these annotation are
not on a per-method basis (like operation contracts), but are assertions to be
written inbetween of regular statements. All this clutters the usual design by
contract based approach of specifying object-oriented programs. Invariants
are furthermore treated as belonging to a particular object. We have seen
that this is not necessarily the case. Finally, we believe that the classical view
that invariants must hold at some places—according to durable observed-
state correctness in the observer—is still what ordinary programmers expect.
In general, they do not want to care about explicit markers that tell when
an object is in a valid state. But the latter is definitely a remark which must
be validated by practical experience with both approaches.

11.2 Future Work

We have shown the correctness of our approach and found it useful in our
practical experiments. We have however not yet formally explored complete-
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ness issues, such as an answer to the question if our technique classifies all
durable correct programs as correct, relative to the classical completeness
results for the used logic. Probably such a result will be difficult to achieve
since it requires to consider, in the definition of observed-state correctness,
reachable states which we would need to characterise completely by expres-
sions of our, or an extended, specification language.

Though we have provided a treatment of assignable clauses, assignable
clauses which refer to abstract fields or data groups are not covered. Ab-
stract fields in assignable clauses allow to specify which set of locations may
be modified also by extensions [Müller et al., 2003, Leino and Nelson, 2002].
Extending classes may associate concrete fields with these abstract fields.
This allows also for better information hiding since fields declared as private
are not necessarily exposed to the outside. We currently treat this issue
by assigning assignable clauses to method declarations. That is, operation
contracts are not inherited and thus, in principal, overriding methods may
declare completely new assignable clauses. Extension contracts may then
restrict allowed overridings in the sense that assignable clauses may only
contain locations newly introduced by the subclass—in addition to the orig-
inal assignable clause. However this approach does not solve issues with
information hiding. This could be tackled by extending our approach to ab-
stract fields. This however would imply to change a number of other artifacts
like updates.

Generic extension contracts have only been elaborated as much as was
needed in our work. It is well possible that there are more useful instantiation
constraints than those we have presented. Here further practical experiences
would be valuable.

Though our examples presented in Sect. 10.3 showed that our approach is
viable, we consider it desirable to apply our approach to larger case studies.

11.3 Summary of This Work

Our work was concerned with the question how specification and verification
can be efficiently applied to object-oriented components which are composed
in an arbitrary manner.

Object-oriented programming languages like Java make it relatively easy
to re-use and adapt parts of a component. Because of this, verification
of components written in these languages is difficult. The main facility to
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adapt behaviour to new contexts, which is overriding methods and exploit-
ing dynamic binding, is one of the problems which we are facing with the
verification of components. The other problem is unrestricted aliasing of
mutable objects. The latter makes objects which depend on a number of
other objects prone to be transferred into an invalid state.

Unlike other approaches we rely on the abilities of a programmer to master
the occurring problems by means of existing programming languages like
Java. We do not extend the programming language. What we do instead
is to extend the capabilities of specification languages to capture formally
what a programmer has in mind in order to make the component correct.

There are two principal ways to go to make a component correct from a de-
veloper’s point of view, which can be combined in many ways. A component
can be constructed either (a) ‘strong enough’ to ensure a certain behaviour
in every possible context or (b) the allowed context is constrained such that
the component can ensure this behaviour. In its pure form, a decision for (a)
requires (i) data encapsulation and (ii) absence of dynamic binding by using
restrictive programming language accessibility modifiers. This—and espe-
cially the second item—makes systems, often undesirably, inextensible. The
application domain will determine whether this is acceptable or not, for in-
stance in safety critical domains it will likely be acceptable. If it is not,
then it may be better to impose obligations on the context, for instance by
requiring that subclasses must be behavioural subtypes.

We have provided formal techniques to capture both, encapsulation and
restrictions on the context. Encapsulation predicates aim at the former,
generic extension contracts at the latter. Both appear to the developer as
natural extensions of existing specification languages.

With these two techniques, deductive verification can be applied to com-
ponents. We first needed to clarify what the goal of verification, namely the
correctness of components should be. We have defined several notions of
correctness:
(1) naive correctness,
(2) observed-state call correctness,
(3) observed-state durable correctness, and
(4) observed-state relative-durable correctness.
Items (1) and (2) were rather easily establishable and left assumptions to the
client of a component, as for instance to establish invariants. With (3) most
tasks, such as the maintenance of invariants, were adopted by the component
itself. (4) liberalised this again by allowing to impose extension contracts on
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the context. Only the two latter turned out to be useful for components.
Deductive verification includes two major parts: (a) a calculus which al-

lows to discharge statements about programs, (b) the generation of proof
obligations which are the input statements to be deduced by the calculus.
Both parts needed to be addressed when dealing with components.

For (a) we have investigated the non-modular JavaDL calculus for Java
and adapted it such that relative validity of formulae can be achieved. Mainly
the rule to resolve dynamic method dispatching was affected.

For (b) we have defined proof obligations which served to establish sin-
gle properties of operations including the correctness of assignable clauses,
call correctness, durable correctness, and relative durable correctness. The
main problem to adequately establish (relative) durable correctness is unre-
stricted aliasing of mutable objects which class invariants depend on. Our
technique first extracts relevant locations of class invariants resulting in de-
pends clauses. This makes only the really necessary data being encapsulated.
Then guard or self-guard classes are identified which are in full control over
modifications to objects relevant to these locations. Guardedness is a prop-
erty which can be expressed by means of encapsulation predicates and which
can be proven. Finally only these classes need to be verified with respect to
the considered invariant. This makes verification modular.

Applying formal specification and verification to components considerably
increases trust in the work of components. In fact, the made guarantees are
the most rigid we can imagine. We have shown that, with our technique,
there is no obstacle to specify and verify object-oriented components written
in Java-like languages such that they work as promised wherever they are
employed.
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and B. Jacobs, editors, Proceedings, IJCAR Workshop on Precise Mod-
elling and Deduction for Object-oriented Software Development, Siena,
Italy, pages 5–14. Technical Report DII 07/01, Dipartimento di Ingegneria
dell’Informazione, Università degli Studi di Siena, 2001.
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Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa
tool for certification of Java/JavaCard programs annotated in JML. J. Log.
Algebr. Program., 58(1-2):89–106, 2004.

Bertrand Meyer. Applying Design by Contract. IEEE Computer, 25(10):
40–51, October 1992. ISSN 0018-9162.

Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1997. ISBN 0-13-629155-4.

245

http://www.jmlspecs.org
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf


Bibliography

J. Meyer, P. Müller, and A. Poetzsch-Heffter. The jive system — imple-
mentation description. Available from sct.inf.ethz.ch, 2000.

Wojciech Mostowski. Formal Development of Safe and Secure Java Card
Applets. PhD thesis, Chalmers University of Technology, Department of
Computer Science and Engineering, Göteborg, Sweden, February 2005.
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