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Abstract

We prove a Hopf bifurcation theorem for the vorticity formulation of the Navier-
Stokes equations in R? in case of spatially localized external forcing. The diffi-
culties are due to essential spectrum up to the imaginary axis for all values of
the bifurcation parameter which a priori no longer allows to reduce the problem
to a finite dimensional one.

Moreover, we discuss the nonlinear stability of the trivial solution and the ex-
change of spectral stability of the bifurcating time-periodic solutions with respect

to spatially localized perturbations.
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1 Introduction

The flow around some obstacle is a paradigm for bifurcation theory. For increas-
ing velocities of the fluid the laminar flow becomes unstable and bifurcates into
a time-periodic flow. The next bifurcation gives the von Karman vortex street,
and finally turbulent flow can be observed.

Although a number of analytic results are known for the steady flow very few is
known analytically about the bifurcation theory. The reason for this is the contin-
uous spectrum up to the imaginary axis for all values of the bifurcation parameter.
Hence classical methods as the center manifold theorem or the Lyapunov-Schmidt
method fail a priori to reduce the bifurcation problem to a finite dimensional
one. However, in [20] under the assumption that a family of steady solutions
with certain spectral properties exist, the occurrence of a Hopf bifurcation has
been shown. The proof is based on a Lyapunov-Schmidt reduction and on the
invertibility of the Oseen operator from L” to LY with p < ¢ suitably chosen.
Motivated by the paper [21] in which the spatial structure of the bifurcating time-
periodic solutions in reaction-diffusion convection problems with similar proper-
ties has been analyzed, it has been the purpose of this work to analyze the
question if the nontrivial time-periodic part decays with some exponential rate
in space. Due to the non smoothness of the symbol of the projection operator on
the divergence-free vector fields this cannot be expected to be true for the veloc-
ity. Therefore, our aim is to prove a Hopf bifurcation theorem for the vorticity
formulation of the Navier-Stokes equations. However, it turned out that even for
the vorticity formulation the spatial localization cannot be proved with method
of [21]. Instead of the obstacle problem we consider the Navier-Stokes equations
in R? with localized external, time-independent forcing.

In the rest of this introduction, we introduce the obstacle problem, explain the
principle of a Hopf bifurcation, explain the underlying scheme of our Hopf bifur-
cation theorem and present our other results, as stability of the trivial solution

and exchange of spectral stability.
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1.1 The obstacle problem

The following figures 1.11.2[28] ! show a von Karman vortex street.

Figure 1.1: Von Karman vortex street over the Aleutian Islands

I The first picture was shot by the satellite Landsat 7 on 4th July 2002 over the pacific in
the area of the Aleutian Islands, the second on 15th September 1999 on the Selkirk Island also
in the pacific by Landsat 7.
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Figure 1.2: Von Karman vortex street over the Selkirk Island

The mathematical model for the flow around an obstacle (for instance see [2]) are
the Navier-Stokes equations, which describe the flow of a viscous, incompressible
fluid

p %ﬂ(z’, t)+ (u(z,t) - V)a(z,t) | = pAu(z,t) — Vp(x,t)+ f(z,t)
V-a(x,t) = 0, (1.1)
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with the velocity field @(x,t) € R? and the pressure field p(x,t) € R at time
t in the point x € RY. p and p denote the constant density and viscosity of
the fluid and f is the external force, which is zero for this problem. The scalar
product of two vectors in R? is denoted by -. The V-operator is the vector
V= (8%1, e a%d)T and A = Z?Zl 38725 denotes the Laplacian. Furthermore we
have (ii(z,t) - V)i(z,t) = 30, aj(x,t)52-a(z,t) and d = 2,3 is the space di-
mension.

Further some initial and boundary values are needed to describe the problem

completely

a(z,t 0, for allz € ¥ and all ¢ € [0, T
‘ l‘im u(z,t) = 1o, forallt € [0,7]
a(z,0) = @°(x), forallx € &, (1.2)

where ¥ = 99 denotes the surface of the body  and 4° is the initial velocity
at time t = 0. £ := RI\(QUYX), d = 2,3 is the area taken by the fluid and i,
denotes the velocity of the fluid at infinity. For a detailed mathematical theory
we refer to the papers of Finn [5, 6], Shibata [22, 23, 24, 25|, Bemelmans [2]| or
the book of Galdi [7, 8] and the work of Meister [16].

Due to the reasons explained above (1.1) is considered as an equation for the

vorticity u = V X u, namely

p<—u(aj, )+ (alat) Vu(z,t) — (u(z,t) - V)ﬂ(:c,t))
= pAu(z,t) + 'V x f(z,1)
V-u(x,t) = 0, (1.3)

where @(x,t) is given by the Biot-Savart law

1 _
1 ey, ",
47 |z —y|?
R3

u(x,t) =

Note that the Biot-Savart law represents an integral relation with a singular
kernel. Since the search of suitable boundary conditions for (1.3) is still a subject

of the scientific discussion we circumvent this problem, by considerung (1.3) in R?



1 INTRODUCTION 13

Figure 1.3: Flow around a body

but now with localized external forcing f representing the obstacle. We assume
that the external force f is chosen such a way there exists a stationary flow wu,
with certain properties, see the sections 5 and 6. The deviation from u, satisfies

%u = Au-— ca%u +2V - Que, u) + V- Q(u, u),
1
(@, 0) = u'(x), (1.5)

where u(x,t) € R? is the vorticity and 2Q(u,v) = v + ud — 9u — v the nonlin-
earity.

In order to analyze the linear operator into an optimal way we transform (1.5)

into Fourier space.
20 = (| +icg)a + 2 - QA @) + i€ - Q(@, ),

a(E,0) = ). (L.6)
with @(¢,t) € R3 and 2Q(@,0) = 0 * @ + U

<)
|
)
*
)
|
)
*
<)

1.2 Finite-dimensional Hopf bifurcation theory

Bifurcation theory is a widely used tool in the theory of dynamical systems,

to describe the behavior of solutions associated to a dynamical system, which
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depends on some parameter. Several types of bifurcations can occur. In the
sequel we are interested in the theory of a Hopf bifurcation.

In general a bifurcation occurs if a stationary solution of a dynamical system
loses its stability for some parameter value. This happens, when one or more
eigenvalues of the linearization cross the imaginary axis.

Roughly speaking, a Hopf bifurcation occurs when a pair of complex conjugate
eigenvalues of the linearization around a stationary solution cross the imaginary
axis. Then the new bifurcating solutions are time-periodic.

We will now explain the principles of a Hopf bifurcation in a system of two

ordinary differential equations

i = pr+y—az(2®+y°)
) = —x+py—y@®+ 7). (1.7)

The linearized system around the trivial solution (x,y) = (0,0) has the form

£ = pé+n
1= =&+, (1.8)

with the complex conjugate eigenvalues \; o = p=i. For oo < 0, the trivial solution
is asymptotically stable and for p > 0, the trivial solution becomes unstable.

If we introduce polar coordinates x = rcos(¢), y = rsin(¢) with r > 0,¢ €
R\ (27Z) then equation (1.7) becomes

ro= ur—r
possessing the solution

z(t) = /usin(t+ o)
y(t) = Jmcos(t+ do). (1.10)

We see that for © = 0 a family of periodic solutions bifurcates from the trivial
solution. This behavior is called a supercritical Hopf bifurcation. This two di-
mensional example can be generalized to the R?, and the general result has been
proven by Hopf [13] in the year 1942.
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Figure 1.4: Scenario of a Hopf bifurcation

Theorem 1.1 Consider the system

&= f(z,p), v € RY peR. (1.11)

Assume that this system has a stationary solution in (xo, po) i.e. f(zo, o) = 0

and the Jacobian f,(xq, o) has a single pair of purely imaginary eigenvalues

Apo) = i3, no other eigenvalues with vanishing real part which are resonant,
i.e. £inf is not an eigenvalue of f.(xg, No) for n € Z\{—1,1} and %’;@) £ 0.

Then at (o, j1o) periodic solutions will bifurcate.

For detailed theory of this subject we refer the books of Guckenheimer, Holmes

[9] and Wiggins [27].

An abstract setup for Hopf bifurcations in the infinite-dimensional case with ap-
plications to PDEs can be found in the book of Kielhofer [15].
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Discrete spectrum of an ODE

Figure 1.5: Spectrum in the ODE-Case: A pair of conjugate complex eigenvalues

cross the imaginary axis

The proof is based on a Lyapunov-Schmidt reduction or a reduction to the center
manifold under the assumption that the spectrum possesses a non-vanishing gap
to the imaginary axis.

The application of this theory to the problem of the flow around an obstacle leads
to some problems due to the fact that the associated spectrum has no gap to the
imaginary axis, and so the traditional theory is no longer applicable.

Therefore due to the additional reason from page 9 our intention is to prove a Hopf
bifurcation result for the vorticity formulation of the Navier-Stokes equations.
Such a result has been shown for the velocity formulation in [20]. However our
results covers a larger class of solutions.
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continuous spectrum

x discrete spectrum

Figure 1.6: Spectrum in the PDE-case: Conjugate complex eigenvalues cross the

imaginary axis with spectral gap

1.3 The Hopf bifurcation theorem

Let U, = u.(§, a) be a family of stationary solutions of the vorticity formulation
depending on some parameter « in Fourier space. The vorticity formulation of

the Navier-Stokes equations with u, as origin is then given by

0. ~. S
5 = Lu+ N(u), (1.12)

where

Li = Bu-2i¢- Q(u.,7),
Bu = —[¢*u—ic&a,
2Q(Ue, W) = Up* U+ Ul — e % U — U * U,
N@) = —i¢-(axt—u*a) (1.13)
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continuous Spectrum

x discrete Spectrum

Figure 1.7: Spectrum in the PDE-Case: Conjugate complex eigenvalues cross the

imaginary axis without spectral gap.

and where 7 is the velocity field reconstructed from the vorticity field u via the

Biot-Savart Law in Fourier space. We note that 7*% is an abbreviation for wxu’ 2.

At the bifurcation point a = a, the spectrum of L consists of continuous spectrum
up to the imaginary axis, two eigenvalues +iwy and a number of other discrete
eigenvalues lying strictly in the left half plane. There exist projections P, 1, onto
the eigenspaces associated to the eigenvalues +iwy,. We define P, = I—FP, 1 —F, _;
and make the ansatz

U(Et) =Y Ty () exp(inwt) (1.14)

nel

for the bifurcating time-periodic solutions. With P, defined by

2For details we refer to section 2
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w

Pi= QK / exp(—inwt)A(€, t)dt (1.15)
m
0
we obtain the system
inwit, = L, + P,N (@) (1.16)

for n € Z. The idea of the Lyapunov-Schmidt reduction method is to invert the
linear operator (inwl — Z)nez in the biggest possible subspace in order to reduce
the bifurcation problem to a finite dimensional one on the kernel of this operator.
Due to the spectral assumptions on E, we have the invertibility of inwl — L
for n = +£2,43,... and of (inwl — E)PS for n = £1. Moreover, we have the
invertibility of E, i.e. for n = 0, as operator, if L1t is applied to £. In Fourier

space Z*lgj is a bounded operator from LP N L= to LP if

pe(l,4), (1.17)

cf. theorem 4.1.
By Young’s inequality we have @4 € L” for 4 € L? and @ € L9 if

1+-=-+-, (1.18)
q

especially axue L™ ifl= % + %.
The Biot-Savart law in Fourier space allows to construct the velocity w e L
from the vorticity u € L? if
1 1
=—-4+— 1.19
s (1.19)
for 1 < g < p<ooandr* € [l,3). Thus by choosing p = 4 — ¢ we find from
(1.19) ¢ = 4/3 + O(9) which gives * = 2 in (1.19), which is allowed. In fact we
can chose p € (3,4).

As a consequence the first three equations of

|

~—

U, = (inwl — L) 'P,N@), n==+2,43...,
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Uns = (inwl — L) 'P,P,N(@), n = =1,
G = L'PN(3),
(inwl — L)"'P,P.N (@), n = +1 (1.20)

can be solved for U, U, s = Psl,, Up in terms of 4y . = P.juy and Uy . = P. _ju_

in the space

vp
S

{@= (@)nez : [Tl gy = Y ldnll sz < o0} (1.21)

nezZ

for every p € (3,4) and with s > 1 which is necessary also to have Hﬁ * | <

Cl[al|7, in the case n # 0.

Thus, the bifurcation problem can be reduced to a problem for u; . and u_; .
alone. Introducing coordinates A;, where u; = A;p; with ¢; € L the eigenfunc-

tions associated to the eigenvalues +iwy, we find the reduced problem

gl(a_aww_wOaAl)A—l) == 07
g-1(a —ag,w —wy, A1, A1) = 0 (1.22)

where g; : R* x C* — R for j = £1.
Since we have an autonomous problem, the reduced problem has to be invari-

ant under A; — A;exp(i¢) and A_; — A_j exp(i¢) and so we have that g; and
g—1 are of the form

A1 (@ — o, w — wy, ‘A1‘2) =
Aflgfl(Oé — O, W — Wo, ‘Al‘Q) = 0. (123)

=

Introducing polar coordinates A; = rexp(i¢) yields

(a_ac)+’yrz+(9(|a_a/c|2+|w_w0|2+r4) 07
w—wy+O(rP+]a—af +|lw—wl?) = 0, (1.24)

i.e. the well known reduced system in case of a Hopf bifurcation. This system

possesses nontrivial solutions with 7 = O(|Jar — a|2) and w = O(Jor — av.|) which
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correspond to time-periodic solutions of the original system.

Thus we will prove

Theorem 1.2 If v in (1.24) is non-vanishing and the assumptions (A0)-(A4)
stated in section 4.1 are valid, then equation (1.12) has a one-dimensional family

of small time-periodic solutions Uy, i.e. there exists an ey > 0 such that for
€ E (O, 60)

~ ~ 2
uper(gv t) = Uper (57 t+ g) (1.25)
solves (1.6) for a = a. — sgn(vy)e. Furthermore we have w = wy + O(€) and

[terll e 22]) = O(VO)

We note that if the vorticity is time-periodic then the velocity is time-periodic

too.

1.4 Other results

In section 6 we consider the stability of the trivial solution @ = 0 of

0~ oA

i Lu+ i€ - Q(u,u) (1.26)
for parameter values a < o, with L = B + 2i¢ - @(ﬁc, -). We make extensive use
of semigroup theory since L generates an analytic semigroup [18]. Our main tool

is the Duhamel formula

t

a(t) = exp(Lt)a° + / exp(t — 7)i¢ - Q(@,4)(7)dr, (1.27)

0
since any mild solution of (1.26) can be expressed with this formula. With this
tool and the assumptions (ASS1) stated in section 6 we can show the nonlinear

stability of the trivial solution © =0 .

Theorem 1.3 Let p,q € [1,00], ¢ < p, 1 = l—%, r<d=3, s> 3ij1

and assume that (ASS1) holds. For all Cy there exists a Cy > 0 such that for
u(0) € L2 N LT with [|u(0)| prqre < Cr we have solutions u(t) satisfying

@) 12z + (1 + O)F [l < Cs (1.28)
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for all t > 0.

We prove the validity of (ASS1) for the semigroup generated by E, if the sta-
tionary solution u.(§) is small. To do this, initially we show the estimates of
assumption (ASS1) for the operator B = —|¢|2 —ic&;. The result for L follows by
some perturbation argument for small u.. Finally, we state resolvent estimates
for L which also imply (ASS1).

In section 7 we show the exchange of spectral stability via the principle of re-
duced stability. Therefore we linearize about periodic solutions u, and consider
the eigenvalue problem

a N

o (L — A + 2i¢ - Q(q,, ). (1.29)

Via a Fourier series ansatz and the Lyapunov-Schmidt procedure from above we
reduce this problem to a two-dimensional one, for which we can deduce that we

have a zero eigenvalue and a negative eigenvalue. So we can show

Theorem 1.4 For a — a. > 0 sufficiently small, the bifurcating time-periodic
solutions of (1.6) are spectrally stable.

At the end we discuss the validity of our results for the vorticity equation in
R2. In two space dimensions the vorticity is a scalar in contrast to the three

dimensional case where the vorticity is a vector.
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2 The vorticity formulation

We consider the Navier-Stokes equations

%ﬂ(az, t)+ (u(x,t) - V)u(z, t) = Au(z,t) — Vp(z,t) + f(x)
V-a(x,t) = 0, (2.1)

with spatial variable z € R3, time ¢t € R, velocity field i(z,t) € R?, pressure field
p(x,t) € R, and external force f(z) € R3. We assume that the external force f(x)
is chosen in such a way that there exists a stationary solution (4., p.) = (., p.)(z),

1.e.

(te(x) - V)te(r) = Atc(x) — Vpe(z) + f(z)
V-il(z) = 0. (2.2)

Further, we assume that @.(z) = v°+v.(z) with v¢ = ¢(1,0,0)7, lim;)—o0 v(2) =
0. The deviations v(z,t) = @(z,t) — G.(z) and ¢(x,t) = p(x,t) — p.(z) from the

stationary solution (u., p.) satisfy

0 0
av(w t) = Av(x,t) — ca—xlv(x, t) — (ve(z) - V)v(x,t) — (v(z,t) - V)v()

—Vq(z,t) — (v(x,t) - V)v(x,t)
V-v(z,t) = 0. (2.3)

These equations can be rewritten as

gv(x,t) = Av(x,t)—c—v(:c,t)

ot
=V - (ve(@)v ( ,1)) = V- (v(@, t)ve(2))
—Vq(z,t) — V- (v(z, t)v(z,t))
V-v(z,t) = 0. (2.4)

This is justified as follows (see [26]). For v.,v € R we define

Ve,1 Veal1 ... Ucdli

Ve,d Ve, 1Ud e Ve,dVd
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Hence

VU = (Ve 1V - .. Ve gV).

V - v, = 0 and the standard rules for the nabla operator yield

8_901 Uc,lv
i)
V- (vw) = V(veav ...veqv) =1 + |- : = ; ar, (Ve,j0)
% Ve,dV
d d
0 0
= <; 8—%vc’j> v+ ; vc,ja—xjv = (ve - V).

=V-v.=0

Notation: From now on we denote with @ the velocity field of the fluid and with

u the associated vorticity defined by

9
8$2u3 8:)33“2
u=Vxu=| 05 _ 05 . 2.5
Bxgul o1 us ( )
0 5 0
o1 U2 Bxgul

To reconstruct the velocity field @ from the vorticity u we use the Biot-Savart

law

1 [ (z—y) xu(y,t)
A lz =yl
R3

iz, t) = dy, v € R®. (2.6)

In order to derive the vorticity formulation for the Navier-Stokes equations we

V x V- (au) =V - (ut — au) (2.7)

which implies

V X V- (@ + Ghe) = V - (Uell + ulle — Gett — Q). (2.8)

Therefore, we find
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%u -V - (ua — au) + caixlu =Au+ V- (.l + ull, — Gou — tu,), (2.9)

where the space of divergence-free vector fields is invariant under the evolution
of (2.9), i.e. additionally we assume V - u = 0.

Introducing

Bu = Au-—c—u,
81‘1
2Q(u,v) = v+ ud —du — av, (2.10)

the vorticity formulation (2.9) can be written as

%u: Bu 42V - Q(ue,u) + V- Q(u, u). (2.11)

Note 2.1 The operator B = A — ca%1 is often called Oseen operator [17].
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3 Preliminary estimates

3.1 Function spaces and Fourier transform
As in [26] we define

Definition 3.1 We denote with L*(Q2), p € [1,00] the Banach space of all
Lebesgue measurable complex-valued functions f : @ C R — R, d € N, Q

an arbitrary domain, which have a finite norm given by

[fller = </|f(x)|pdfc> , L<p<oo,
Q
[fllze = ess supgeal f(x)]. (3.1)

If a function f is vector-valued, then the norm in L” is the norm of the absolute
value |f| = ,/Z;l:l f7, which is the Euclidean norm in R?. Furthermore, we
mention that the LP-spaces are Banach spaces and for p = 2 the space L? is
a Hilbert space. L?,(R%), p € [1,00] is the spatially weighted Lebesgue space
equipped with the norm || f| 2 = || fp™| 1, where p(z) = /1 + |2]2 .

For the introduction of Sobolev spaces we introduce a multi-index o with a =
(aq,...,aq),0; >0, 7=1,...,d and |a| = Z;l:l «;. Furthermore we define for
r ¢ R4

=y (3.2)
and with D* we denote the partial derivative
aa B 804
Oz dxft - ... - 0xgt

With this we can introduce Sobolev spaces [19].

D =

(3.3)

Definition 3.2 Let Q C R?, d > 1 be an arbitrary domain and k € N and let
1 < p < oo. Then the Sobolev space W¥P(Q) is the set of all distributions
u € LP(QY) such that D*u € LP(Q) for all || < k. In WkP(Q) the norm is
defined by

1
(SpeeIDul)” i 1<p <o

max|q|<t || Dz if p=o0.

(3.4)

||U||Wk7p(sz) =
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We remark that if p = 2 we can define an inner product by

(u,v)g := Z D*uD*vdx (3.5)

lo| <k ¢

and denote W*2(Q) by H*(Q2). H*() is a Hilbert space. In all other cases the

Sobolev spaces are only Banach spaces.

Definition 3.3 Let f € L*(RY), then its Fourier transform is defined by

fie) = [ rta)expl-ia- (36)
R4
the tnverse Fourier transform is defined by
1 ~
@) = oz [ Fi@ explio - pte (37
Rd

We mention that Fourier transform is continuous from L p € [1,2] to L%, ¢ €
2, 00| with % + % = 1. If p = 2 Fourier transform is an isomorphism, i.e. we have
£z = (27)%|| f|lz2 (Plancherel)[4]. As a consequence, the Fourier transform is
a continuous map from the Sobolev space W#? into the weighted Lebesgue space
L{ with 1/p+1/q = 1 if p € [1,2]. Similarly, Fourier transform is a continuous
mapping from the weighted Lebesgue space L{ into the Sobolev space WHhP with
1/p+1/q = 1if ¢ € [1,2]. For p = 2, Fourier transform is an isomorphism
between H* and L3.

Lemma 3.4 Forp > r and s > d*== we have the embedding LP(RY) C L"(RY).

Proof. We have with p(z) = \/1 + |z|? and the Hélder inequality

s —s s s 1 1 1
1l = o™l < Wfollaello™ea, = ==+ =
s rop q

= Izl

For ¢ = oo it is obvious that ||p~*||,~ < 1 and we have with r = p that ||u||z» <
|u||» for p € [1,00]. If g # oo, we have

sl dx dx dx
™% = | 75 = PRI T
(1+[zf?)2 (1+[z]?)> (1+[z?)>

R3 |lz|<1 |z|>1
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Since the first integral is bounded we have

/dixwﬁcfrizsqd"’ﬁ(?/sdfim
(1+ |z|?)= (14172)> red
lz|>1 1 1

The second integral is bounded for s¢ —d + 1 > 1 or sq > d. 'This yields
1£ller < CllSllaz for s > dr. "

3.2 The vorticity equation in Fourier space

After the definition of Fourier transform, we are able to formulate the vorticity
equation in Fourier space. Applying standard rules of Fourier transform, equation
(2.10) resp. (2.11) yields

O« S e A e A
prih Bu + 2i€ - Q(ue,u) + i€ - Q(u, u), (3.8)
with
Bu = —|¢|* —ict,
2Q(U,0) = UV*kU-+U*0—0*U— U*D, (3.9)

where * denotes the convolution, i.e. w0 = [, u(§ —n)o(n)dn.

3.3 Reconstruction of the velocity from the vorticity

In the basic equation (2.9) for the evolution of the vorticity u the velocity @ can be
reconstructed via the Biot-Savart law (2.6) from the vorticity u. The following
lemma allows to estimate the velocity @ in terms of the vorticity w in Fourier

space. For estimates in physical space see [11].

Lemma 3.5 Assume that % = i+% with r € [1,3) and p,q € [1,00]. Ifu €
LP(R3)3 N LY(R3)3 then u € LI(R3)® and there ezists a C > 0 such that

@]l e < Clullzr + ([l o). (3.10)

Moreover

li€;al|a < Cllla. (3.11)
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Proof. The velocity u is defined in terms of the vorticity u by solving the
equations

VXu=u and V-u=0

for u satisfying V - u = 0. This leads, in Fourier space, to

0 —i&s & R uy
Uy
i&3 0 —i& R Us
W | =
—i§ & 0 R Us
us
1§ € 163 0

Multiplication from the left with the transposed matrix yields

100\ (% 0 iy —i& i&
12 = _ . . . aQ
‘g‘ 010 U9 - —’lfg 0 Zél ’l§2 )
. us
00 1) \as & —i& 0 &
0

which is solved by

Uy 0 €3 —i&y 16y N
i~ ]' . . . U2
Uz | = T2 —i€3 0 ISTIS
€ .
i i& —i& 0 &
0

With Hélder’s inequality we obtain



3 PRELIMINARY ESTIMATES

8 0 &
> ]‘ .
Us < X< jgp [ i€ 0
i3 i&  —i&
L4
0 &
1 .
+ X{|§|>1}@ —i& 0
& —i&

—i&y
i&1

&
i€
i3

—i§y 11

0

i3

LT

oo

with % = % + % Hence it remains to estimate terms of the form

KX(§) = X{g>1}%

in the space L>(R?) and

Kj(f) = X{ggl}%

in the space L"(R?). The estimate for K3* is obvious. For K; we have

5Nz =

/ '|€|2

l€]<1 Polar coordlnates

which is bounded for r < 3.

Equation (3.11) follows from

C

0

1 ld
pT
%fWI/
p J P

P

Lp

r—2"

30
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and

. Uy
U1 0 ng —252 Z§1 R
. i~ ij . . . w2
Zéj U9 < @ —ng 0 Z£1 Z§2 N
~ Uus
U3 W& —i& 0 i€
La [, 0
La

[
As a direct consequence of the last lemma 3.5 we get an analogous result in
weighted Lebesgue spaces.

Lemma 3.6 Assume that % = %+% with r € [1,3) and p,q € [1,00]. If u €
LP(R3)3 N LY(R3)3 then u € LI(R3)® and there ezists a C > 0 such that

|

g < C(lfuller + [u

). (3.12)
Moreover

i€l

w2 < Clll

e (3.13)

3.4 Estimates for the bilinear term @(@, V)

Lemma 3.7 Forp € (3/2, 00| and every s > 3’%1 there exists a C' > 0 such that
for every u € L?

@ all < CllalZ,. (3.14)

Proof. By Young’s inequality, the Biot-Savart law lemma 3.5 with 1 = % + %,
where r € [1, 3) which yields ¢ € (3/2, 0|, and Sobolev’s embedding L? C LN L4
for s > 3”771 and p > ¢ we have

Cl[ullzrllallr + €l e lall o + l[ull 1€l 2»)
Clfullzr (ull e + Nl o) + ll€*ul o (ull o + llul] 2a)
+([llze + [[allzo) 1€l )

Cllalze-

I %] 1y

IN

IA

IA
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Lemma 3.8 Let ¢ < p with p € (3/2,00] and s > 3’%1. Then there exists a
C > 0 such that for every u € L1

@+ @lz < Cllalallal. (3.15)

Proof. With Young’s inequality, lemma 3.5 and lemma 3.4 the proof is similar
to the proof of the last lemma. [ |

Lemma 3.9 Let p € (3/2,00]. For every s > 3”771 there exists a C' > 0 such
that for every u,v € LP

~

v

1Q(@, ) 18- (3.16)

z < Cllal

LE
Proof. This is a direct consequence of lemma 3.7. |

Lemma 3.10 Let ¢ < p with p € (3/2,00] and s > 3’%1. Then there exists a
C' > 0 such that for every u € L4, v € LP

1Q(@, V)|l < Cllullrellvll e (3.17)
Proof. This is a direct consequence of lemma 3.8. [ |

Lemma 3.11 Let p,q,p € [1, 00| satisfy

1 1 q—q .

1 1
1=2= , = =———, 1" €[l,3),s>3—,7>¢q (3.18)
v q9 q g T
Then there ezists a C > 0 such that for every u € L2
[ @ 1 < Cfal|2,- (3.19)
Proof. By Young’s inequality with
1 1 1
1+-==4-, r = 00, (3.20)
r p g
the Biot-Savart law lemma 3.5 for % = % — L, 1<g<p<oo, r* €[l1,3), and
Sobolev’s embedding L? C L9, LI C L9 for s > 324, s > B%q and p > q>gq

pq
we have

[ *allpe < ullzel|@]| e < ||ul|ze|l@]

1 < llallze(allze + ol o)
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p + [lall ) < Clla)7,.

2l

Lemma 3.12 Let p,q,p € [1,00] and s > 0 satisfy (3.18). Then there exists a
C > 0 such that for every u,v € L?

1Q(w, ) [z < Clul| e[|Vl - (3.21)

Proof. This is a direct consequence of lemma 3.11. [ |

3.5 Estimates for the Oseen operator

In this section we show the invertibility of the linear operator B defined (2.10).

Lemma 3.13 For p < 4 we have §_1i§j cLP N L™ LP.

Proof: We consider the equation Bu = Au — ca%u = = f . In Fourier space we
Zj
have u = - 5‘2 +w£ f For the LP-norm we get
N = i& P i&;
S P T e T
T e R L 1 e

l€1<1

Hm;%c&x‘gm“ is bounded for all p € [1,00), so we have to consider the first
21| o

integral and we must distinguish between 7 =1 and j = 2, 3. For j = 1 we have

[ el = |
€12 + ic&, (1 —ic)&,
1€1<1
and the integral is bounded independent from p. For j = 2,3 we get
» 11 1 . )
&
i
: €] + ic&:
1
< d& déqd
: ///|§|2p+|€|p s

d§< /d§<C

lg1<1

STESTS

‘|§|2 +1icéy
<1
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1 1

1
< C &7 1 d&,de,de
~—~ ‘§*|2pl_‘_\051\p 1852853
0 0 O

‘§*|2:§§+§§ ‘5*‘217
[l 7
P 1
< C I déqd —d
N //\f*IQH @ £‘°’/1+yp Y
y:\CEﬂ 0 0 0
&2
\/5 27
(S Pt
< C €[22 g < C o drde
|€*1<V2 0 0
V2
1
< C’/ dr < oo
rp—3
0
for p < 4. |

Remark 3.1 Since \g\ﬁilzcgl s uniformly bounded,we additionally have §_1i§1 :

LP — LP for every p € [1, 00].

Remark 3.2 Later on we will use the following numerical values. From lemma
3.13 we have p =4 — ¢ and lemma 3.5 gives r € [1,3) and ¢ = 12/7 4+ O(9) for
a 0 > 0 small. Hélders inequality gives ¢ = 4/3 + O(0), which is allowed by the
Biot-Savart law with r € [1,3).
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4 The linearized problem

It is the purpose of this section to analyze the spectral properties of the linear

operator

L-=B-+2V - Q(u., ), (4.1)

with B and @ from equation (2.10). More precisely, we analyse the operator

L-= B-+2i¢ - Q(a., ") (4.2)
in the space L? with p € [1,00] and s > 0. The domain of definition is given by

p
L8+2'

By the theorem of Frechet-Kolmogorov [1, Theorem 2.26] and lemma 3.9 the
operator 2i§ - @(ﬂc, -) is a relatively compact perturbation of the operator B- if
U, € L? with p < p. Then by [12, p.136| the essential spectrum of the operator

L equals the essential spectrum

ess spec(B) = {\ € C: A = —|k|> —ick;, k € R*} (4.3)

of the operator é, i.e. the spectra of the two operators differ only by isolated

eigenvalues.

4.1 Assumptions on the stationary solutions u,.

We assume that there is whole family of stationary solutions @, € L?, p € [1,4)

for all @ € [a. — dg, e + &) , which satisfies
(A0) A =0 is not an eigenvalue of L for all o € [ — do, e + o).

(A1) For a = a the operator L possesses two eigenvalues AT (), which satisfy

M) = Fiwg # 0, wp > 0 (4.4)
and
iRe(Ai(a)) >0 (4.5)
- : . :
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(A2) The points +inwgy, n =2,3,... are not contained in the spectrum of L.

(A3) All the other eigenvalues of L lie strictly bounded away from the imaginary
axis in the left half plane for all « € [, — dg, e + o).

~

4.2 Estimates for the operator L

We reformulate the estimates for the operator B from lemma 3.13 and remark

3.1 in the following theorem.

Theorem 4.1 For all s > 0 the following holds. For p < 4 and j = 2,3 we have

B7lig; : PN LS — L2 (4.6)
and for every p € [1, 00| we have
B7li& s LP v LP. (4.7)

Combining theorem 4.1 with the assumptions (A1)-(A3) allows us to prove a

similar result for the operator L.

Theorem 4.2 Under the assumptions (A1)-(A8) for all s > 0 the following
holds. For p < 4 and j = 2,3 we have

L7N&  LP N LY — L (4.8)

and for every p € [1, 00| we have

L7Yigy : LP — L. (4.9)

Proof. We introduce

A =1L, Ay=B- and A =2i¢-Q(u.,-), (4.10)
such that A = Ay + A;. From

it follows

Ao(I + Ay AN w = i&f resp. w = (I + Ayt A) T AGYE f. (4.12)
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The existence of (I + A;'A;)~! is established as follows. By the assumptions on
i, the operator Ay'A; : LP — L? is compact. Hence I + A;'A, is a Fredholm
operator with index 0. Using assumption (A1), i.e. that the operator A has no
zero eigenvalue, shows that Aw = 0 possesses only the trivial solution w = 0,
So Ay'Aw = 0 has also only the trivial solution, as well as (I + Ay'A;)w = 0.
Therefore, from the Fredholm property, the existence of (I+ Ay A;)~' : LP — L?
follows. Using the boundedness of this expression and the estimates for Ag yields
directly the estimates for A, in detail

lwllez < 17+ Ag A1)~ Agti&;f

L2—I1?
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5 Occurrence of a Hopf bifurcation

In this section we prove theorem 1.2, i.e. the bifurcation of time-periodic solutions

from the trivial solution @ = 0 for o = ..

Theorem 5.1 If v # 0 and if the assumptions (A0)-(A3) stated in section 4.1

are valid, then equation

Ot = (el + ic )i + 21¢ - Qi ) + i€ - Q1. ) (5.1)

has a one-dimensional family of small time-periodic solutions Uy, i.e. there
exists an €y > 0 such that for € € (0, ¢)

Uper(€,1) = Uper (£7t+ 2%) (5.2)

solves (5.1) for a = a. — sgn(vy)e. Furthermore we have w = wy + O(€) and

uperll o (gsx 0,227y = O(Ve)-

Proof. The proof is given in the next subsections. |

We look for 2U’T—time—periodic solutions, with w > 0 close to wy of

O~ Tavic- Q) (5.3)

In order to simplify notation, we introduce (¢, 7) = 4 (£,t) with 7 = L and look

for 27-time-periodic solutions of

w%ﬂ = Li+i - Q(u, ), (5.4)

where we write again u for & and ¢ instead of 7.

To prove the occurrence of a Hopf bifurcation we make the ansatz

W& t) = ) (&) exp(ikt) (5.5)

keZ

for the vorticity.
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Remark 5.2 With the vorticity in the form u(§,t) = >, o, Un(§) exp(int) we

can reconstruct the velocity @(E ,t) via the Biot-Savart law such that

Zuk &) exp(ikt). (5.6)

kEZ

From equation (5.4) we obtain the infinite-dimensional system

(ikwl — L), = i€-Q(a@, ), (5.7)
where
Q@) 1] = Q@ 1) €] exp(ikt), (5.8)
kEZ
i.e.

=" Qlk-m, ) [€]. (5.9)

meZ

5.1 Functional analytic set-up

In order to solve (5.7), we introduce the space
XP = {0 = (@n)nez : [0l g < 00} (5.10)
equipped with the norm

||a||;?g = Z [Wnlle-

nezZ
The counterpart in physical space is given by

A= {u = (up)nez : ||ul

equipped with the norm

e < 00} (5.11)

wor =3 il

nez

[l

Remark 5.3 From the analytic properties of Fourier transform, i.e. u, € LP
implies u, € W9, if 1/p+1/q =1 and q € [1,2]. It follows that T € XP yields
ue X if 1/p+1/g=1 and q € [1,2].



5 OCCURRENCE OF A HOPF BIFURCATION 40

Moreover, we have

Lemma 5.1 The linear operator J defined by

(Ju)(z,t) = u(x,t) Zul x) exp(ilt), (5.12)

where U = (1))1cz € X*P is a smooth map from X*P into Cy(R? x [0, 27], CY), if
sp > d.

Proof: Sobolev’s embedding theorem gives the continuous embedding W*?(R%) C
Cy(RY) for sp > d with ||u||p~ < Cl|ul|ws» and so

u(e, )] < > fig(z)] < sup |y

17 1c7, YER?
= Y tullz~ < C> liallwer = C|lti]| xer.
€Z leZ

The linear operator L and the bilinear operator @ act in the ??sp—space as follows.

Lemma 5.2 Let L be a linear operator L defined componentwise as (Eﬁ)l = LAﬁl

for w = (w)iez. Then we have

(5.13)

L@l g» < sup || Lyl 2
LEZ

Proof: We have

1Zile = > WEdule <3 1Rl col@l e

lEZ LEZ
< SUP ||Ll||Lp»—>Lp Z | 22
lEZ
< SUpIILz PP
leZ
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Lemma 5.3 Let s > 1, p=4— 96 with 6 > 0 small. Then there exists a C' > 0
such that for all u,v € .j?\f

1Q@, V)| % (5.14)
Proof: Let u = (U;)iez, UV = (0))1ez € /'?Sp. Using lemma 3.9 we find
1R@ Dl = D NQ@D)iley =D 11> Q@ 9)llr
leZ leZ  jeZ
<
I€Z jEL I€Z ]EZ
= Clfuf| g [[o] 5
[ |

5.2 The Reduction step

To prove the occurrence of a Hopf bifurcation we apply the Lyapunov-Schmidt
method to equation (5.7).

From assumption (A1) we know that the operator L possesses two purely imagi-
which

are L-invariant, onto a ("center") subspace, spanned by the associated eigenfunc-

nary eigenvalues )\Oi(a). As a consequence there exist two projections Paic,

tion ¢, given by

P = (657, 0)120%. (5.15)
Here (-,-)z2 denotes the inner product in L? and the q@f* are the associated
normalized eigenfunctions of the adjoint operator L*. The projection on the
bounded "stable" part is Py, = I — P;, and we have by construction that
the operators ﬁfc and ﬁais commutate with L. With this knowledge we can

decompose the system 5.7 in the following sense

U = —(L—zk:w]) Lpi¢ - Q(u, 1), k:7é{ 0, 1}
Ues = —(LFiwl)'BPEGE Q1) k=
Gy = —L7'Pyi¢- Qa,0),
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tiwlir, = Lisie+ PBPEie- Q@,0), k= 1, (5.16)

where

- 1
= 2—/ —tkt)u (&, t)dt (5.17)
0
is the projection on the k-th element of w.

With the help of the projections we have split 44, in the last equation as uy; =
Usie + Usrys With Uy, = ﬁjﬁl and Uy, = ﬁjﬁl. As next step we must find
bounds for the operators —(L — ikwl) ™, —(L — ikwl)i&;, (L T iw])’lﬁjfs and
(E Fiwl )_1ﬁ;si§j in the Lebesgue space L® for a special selection for the values
s and p.

For the operators mentioned above we have the following lemma.

Lemma 5.4 Lets > d/p. Then there exists a C > 0 such that for w close enough
to wy the following holds

(L —ikwD)Mpery < O ke Z\{~1,0,1},
H(E—ikw[)’ligj‘ < 0 keZ\[-1,0,1}, j=1,2,3,
L2172
I(L Fiwl) " Pasllpperr < C,
H(Lq:z’wl)’lesi&j ‘Lp LS Ci=123 (5.18)

Proof: Since B is a sectorial operator in W*?, also L = B+ 2V - (@ is a sectorial
operator in W*? due to Henry [12] Theorem A.1. So Band L = B + 21§ - @
are sectorial operators in L?. Therefore for the invertibility of L — tkwl and
IL— ikwl, k € Z\{—1,0,1}, with the proposed estimates, it is sufficient that the
spectrum has to be strictly bounded away from zero, and so the first estimate

follows. The same arguments hold for the other three operators. |

Next we have to consider the case k = 0. From (5.16) it is not clear that the

equation

Uy = —L ' PRyi¢ - Q(u, 1) (5.19)
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is well defined for %y due to the continuous spectrum of B up to the imaginary
axis. Using the previous theorems 4.1, 4.2 shows the result.

Now redefine the first three equations of (5.16) as F' = F(u,, us) by

F, = —u,— (L—zk:w[) 'Pi¢ - Q(u, 1), k # {—1,0,1},
Fiy = —Ta1,— (LFiwl) ' PPLE - Q(@,0), k = +1,
Fy = —tiy— L 'Pyi¢-Q(a,q), (5.20)
where /TIC = ( Cey 0, ﬁ,lc, O, ﬂlc, O, .. .), ﬁs = ( .. ,ﬂ,Q, ﬂ,ls, a(), ﬂls, ag, .. ) and

U = U + Us.

In order to apply the implicit function theorem and to resolve F'(u.,us) = 0
with F' : )?f X /'Ef’ — ??Sp with respect to u, we have to prove F(0,0) = 0 and
the invertibility of D, F(0,0) : X — XP. The first condition is trivial. We find
D, F(0,0) = —I since all other terms are quadratic. This can be seen as follows.
In L? we have with the triangle inequality and lemma 5.4 for & = £1

H(E T iw])_lﬁofsif . @(ﬁ, U)41 ||Q\(a7 a)”)?f

3
< Y H(Z +iwl) " PEig
i—1

LE = LE—I?
< Clal
For k = 0 we find
—~ ~ 3 A~
IL7YE - Q(@, @o| 2 1Q@, W) 2 < Clll%
Jj=1 LE—I?
For k # +1 we have
I(L — ikwl)™ig - Q@ Wreny otz < Z |@-iwwn g,
kEZ\{il 0} % LE—Ik
x| Q(@, )| 5
< Clall

Thus there exists a unique solution us = us(u.) of F(u,,us) = 0 with u; : é?f —

AP satisfying ||us(de) || pr < CHiL\cH}p
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5.3 The Hopf Bifurcation

In this section we analyze the last equation of system (5.16), namely

tiwliy, = Ll + PPEiE - Q@,0), k = +1, (5.21)

or equivalently

iwl, = L.+ PPLic Qu,u),
—iwli_1. = Li_1.+ PP, i& Q(U,u), (5.22)

with @ = U, + U, and U, = U,(U.). Since we have P u = (¢, U)120% we can

write Uy, = Aﬂgﬁ, where A_; = A,. Using E(Ef =\F (a)<$§ gives

C(@)Adf + f1(Ar, Ay),

iwAlgg: = 0
0 o ()A10; + f1(A, Ay, (5.23)

A
—iwA_ng); = A
with

far(A, ALy) = PoPEic - QAL ALY, (5.24)
where U, = u.(A1, A_1) and u,(u.) = Us(Ar, A_q).

System (5.23) can be rewritten as
gl(a_a07w_w07A17A71) = O?
g-1(a—ag,w—wy, A, A1) = 0, (5.25)
with

g1 —ae,w—wy, A1, A_y) = :FiWAilégf +)\6t(a)14j:1$: + f+1(A1, A-y). (5.26)

Since the original problem is invariant under ¢ — ¢ 4 ¢, the reduced system is

invariant under Ay — Ay exp(ip). So g+1 must have the form

Algl(a_acaw_w07|A1|2) = 07
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A_lg_l(O[ — O, W — Wy, |A1|2) =0 (527)

with g+, a smooth function in its arguments.

Introducing polar coordinates Ay, = rexp(Lip) yields

(@ = ae) +97° + O — e’ + [w —wol* +7%) = 0
(W—wy) +Or* +|a—ad? + |w—w?) = 0, (5.28)

the well known equations for the occurrence of a Hopf bifurcation, so the proof
of theorem 5.1 is complete.
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6 Stability of the trivial solution

In this section we prove the nonlinear stability of the trivial solution u = 0 of
equation (2.9), resp. (3.8) in Fourier space, with respect to spatially localized
perturbations, for parameter values a < a.

In the following let 1 < ¢ < p < o0, % = % — i and d = 2,3. Then assume that

(ASS1) the analytic semigroup elt generated by L satisfies

le"llzns < Ctor,
lebeillpre < Ot 2,
le®lprr < C,
leM&lle—ry < Ct3.

In Section 6.2 we discuss the validity of this assumption.

6.1 The nonlinear stability

We prove

Theorem 6.1 Let 1 < q < p < o0, %:%—%, T<dands>d’%l. Assume
that (ASS1) is true. For all Cy > 0 there exists a Cy > 0 such that the following
holds. Let w(0) € L2 N L2 with ||u(0)||pnre < Ci. Then for all t > 0 we have

solutions u of (3.8) satisfying

@)z + (1 + )3 (1) s < Co. (6.1)
Proof. Any mild solution of
0 . ~ oA
5l = Lutig-Quu) (6.2)

can be represented via the Duhamel formula

t

a(t) = exp(Lt)a° + / exp(L(t — 7))icQ (@, 0)(7)dr. (6.3)
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Then define
~ a4 .~
at) = sup (1) fa(r)lse)
R T€[0,t]
bt) = sup [a(r) (6.4)
T€[0,t]

Using (ASS1) and lemma 3.9 we have for the LP-norm,

[ully < H@®UﬁmewWLhw+§:/wem> (t = )& o2 | Q@ )| ydr
.710
t

c [ 12, +/<t—7>1 a

0

IN

t

B0) + (1) / (t — ) @] pydr

0

IN
Q

t

< C | b(0) + b(t)a(t) / (t—1)"

< ¢ (5(0) + Bwya())

N[

(1+7’)_2%d7'

where fot(t —7)2(1+7) % dr < C for 4> 1ie r<d

With the lemmas 3.7, 3.9 and (ASS1), we obtain for the L?-norm that

a d . ~ ~
(+0Faly < (1 +0F min {H xp (L0l ngrs 70z, Il xp(T8) L2 }

(u, w)

+(1+1) 5 /mm || exp(L t—T)fj
| exp(Z(t = 7)¢lluzvne Q@ )1 par
< C<(1+t)2dr min{t_% u’ S}
t

L+ 1) / min{(t—r>—%<%“>|m|ug|m|ug,<t—T>%Hauig}dr>

0

< C ((a(o> +b(0))
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+(1+ )7t / min { (¢ = 1) il g, (¢ = 7)” 2|runm}|runm>

< C ((@(m +5(0)) + (@(t) + b(t))a(t))x

(1 +t)2ir /min{(t—T)

N

()t — )

N

< C (a(O) +5(0)) + (a(t) +3(t))a(t)) :

where

min {(1 + t)% /(t — T>_%<%+1)(1 + T)fidﬂ

for r < d.

Altogether we have shown

i) < ¢ (@) +50) + @) + Be)a)

b < (00 +Bwa). (6.5)
This implies [21] that for given C5 > 0 we may choose C; > 0 such that @(0) +
b()gC’lleadstoa()+b()<02forallt€[0oo) [ |

6.2 Estimates for the linear semigroup ¢!

In this section we look for assumptions on 7, which validates the assumption
(ASS1) for the linear semigroup e™. In order to do so we first prove the validity

of assumption (ASS1) for the linear semigroup eét, i.e. we prove

Lemma 6.1 Let 1 < g <p < oo,% =1_ i and d = 2,3. Then the analytic
semigroup Bt generated by §(£) = —|€]? — ic&, satisfies

s}

(1+T)—%}(1+T)—%d7>
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; _d
ey rg < O3,

A _1(d
lePteillpe < Ctma(EHD),
lePNmre < C,

; _1
le&llprp < Ct72.

Proof. In the sequel we use ([3]).

oo

r'(z) 1
/exp(—amz)dx = () = z,
2va 2V a

0

7x"exp(—am2)dx = L) a>0,n>-1 (6.6)
/ 2v/ar+T’ ’ | '
Then we have
lexp(Bt) fllrs < HeXp(Bt)HmeHLPZHeXp(—!ﬂQt)HLerHLP
= (R/GXP —|¢Ptryde | (1 Flle < CE | flle
— ot G3)s
since
d d % d
[ewtlgrade = T [ ew-aig =2 T[ [exvi-agiag, - (%)
Rd .7:1,oo j:lo

with a = tr and % = . For the second estimate let w.l.o.g j = 1. Then we

1_1
g P

have

< [l exp(Bt)él|-| /]

= eXp( €&l

) <m/exp (—1€%tr) &) dg

[l exp(B)&1 f]| g
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since
o0 d o0
[ewlgalara = [ eo-galaria ] [ en-gad
R3 —0 7=2"
7 r+1
= %T /exp(—ffa)ﬁ{dfl = %, a>0,r>-—1

0

with ¢ = ¢tr and % =

1_1
q p’

The third estimate follows from

~ ~ ~

lexp(Bt)flle < [lexp(B)l|esl|fllzz = Il exp(=|&*) <l f

~ ~

= sup |exp(—[¢[*D)|[| fllz < CIIS

£€Rd

Lg

e

For the fourth estimate we remark that the function g(z,t) = zexp(—z*t) pos-

sesses extrema in xr = i—ﬁ and so we have

1 1 1
g(j:ﬁ,t)‘ = Et 2, (6.7)

W.l.o.g. consider j = 1. Then we find

lexp(Bt)éfllzz < Helxp(Bt)&HLoonHLzzHeXp(—!£!2t)§1!\Loo|!f|!L€
< =t fllee < Clifllze-

V2e

6.3 Estimates for the linear semigroup el for small Ue

Next we prove that the same estimates hold for L if U, is sufficient small.
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Theorem 6.2 Let 1 < g < p < oo, %Z%—%,T<d,d:2,3ands>d%l.

Then there exists a C' > 0 such that the analytic semigroup generated by

L-= B-+2i¢-Q,, ") (6.8)
satisfies
le™|lpprs < CtF, (6.9)
lebeillpre < Ct3(), (6.10)
le® iz < C, (6.11)
le"&llz—ry < Ct2 (6.12)

if [[tol Leare < Co.

Proof. We follow the scheme described in [21, p.293/294]. We consider the linear

equation

%@ = Lu = B + 2i¢ - Q(a., u).

Applying the variation of constant formula yields

t

a(t) = exp(B)a° + / exp(B(t — 7))2i¢ - Q(4., ) (7)d.

For the LP-norm we get with lemma 6.1, lemma 3.10 and equation (6.4) that

[y < HeXp(Bt>||LPHLp”U Iz

+2Z / lexp(B(t — )&l o2 | Q (e, @) | o

]10

t

< 1@+ / (t— 1) [l o

~

< C 3( 0) + ||| ra(t /t—T % T)_%dT
0

~

< O(0) + [Tl ra(t))
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for r < d and with a(t) from (6.4).

For the Li-norm we get with a(t), /b\(t) from (6.4)

d d . ~
(U OFhlzy < (10 i { exp(Bpeanli, | exp(BO) -7
d

d N
)2 Z/mm || exp( ( — 7)&l| o £ | Q (T, W) || o

Jj=17

3

exp(B(t = )&l mra Qe @) s bar

< C<(1+t)2irmin{t_%||ao||L€a||UAO||L§},
(14 0F [min{(e- 02 ED @)
(t — )72 || e |@ Lgf}d7>
<

C<a(0) +5(0) + (1l ez + 18l rg)a(t)

X (1+t)2ir/min{(t—7')5(g+1),(t—7') %}(lJr T)” %d7'>

0
C(a(0) +b(0) + [[tel znrgal?)),

IN

where

t

0
for r < d.

Thus we have the estimates

< O(@(0) +b(0) + |l zraa(®)),
<

Cb(0) + |t rznrgalt)). (6.13)

t)
t)

=

Therefore, if ||| z~z2 > 0 is sufficiently small, we can conclude
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a(t) < 20Ca(0),
b(t) < 2CH(0) (6.14)
for all t > 0. [ |

Remark 6.3 Since L% can be embedded in L7 if 5 — s >

on U, can be relazed to ||u.||» > 0 is sufficiently small.

SIS

— % the assumption

6.4 Estimates for the resolvent (B — \I)™!

Next we want to discuss the situation for non small u.. We conclude the assump-
tion (ASS1) from resolvent estimates for L. These resolvent estimates will allow
in a subsequent section to prove the exchange of spectral stability in case of a
Hopf bifurcation. In order to figure out the resolvent estimates for E, we discuss

these estimates for B.

Since the operator B is sectorial in every L? for ¢ € [1,00] and s > 0 we have a
C > 0 such that

~ _ C
1B = A1) Hlpars < o (6.15)

for every A outside a sector containing the spectrum
o(B)={\=—|¢]?—ict, e C | £€R?, d=2,3)} (6.16)

of B. The polynomial decay rates of the associated semigroup egt, see lemma

6.1, are determined by the spectral properties near the imaginary axis. We have

Theorem 6.4 Let 1 < q < p < o0, % = % — i and r > %. Then there exists a
C > 0 such that for all A € iR we have
~ » C
||(B - /\]) LENLi—L1 < w@- (6-17)

Proof. Due to (3.9) we have that (B — AI)~! is a multiplication operator given
by

~ 1
(B— X)) =

P =ik - X (6-18)
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With Hoélder’s inequality we obtain

I(B=AD) "l < II(B-AD™ 1B =AD) X flle
< (B =AD" xg<aller I fllze + 1B = M) ™ xgzll oo 1 f1] g
sip 1 1,1
with =t
We first find
~ 1
B— )\t o = SU ( - )SC 14X 6.19
I )" Xigiz1llz S0 \ TP + it + /(L4 [A]) (6.19)

for all A € iR. With polar coordinates and p = o/|A| we find

. dg
B— )™ = / :
If e HE 1€]2 + ic& + A"

l€1<1
1

d—1
p
——d
/ AT

[€1<1
T
< C A do
<o [ oYW
0
C

VAN
Q
N~
5@
s
z

d-1
= y / (27 do
) e
0
C d—1
< d/ Z do
) o
0
< C
R
since [;° 2T+1da<ooforr>d;21. [

Under the assumptions of the last theorem we have

Lemma 6.2 Forr > d—1 there exists a C' > 0 such that for all A € :R we have

C
SOLZ'—»LQ < d 5 j - 1,273 (6.20)

‘ |2 2r

I(B=AD)™'g
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Proof. Similar to the proof of the last lemma we get

1

I(B = M) 'gxgllir = / &n 5<C/prp7dldp
s €[> + ek + AT T
0
1
VX
‘)\|20.d 1‘)\|— C / O.r+d—1
< C v |[Ado = d
= / o2 | A"+ [ A" |Aldo |)\‘r5d o2 11 o
0
C \/Tngrdfl C w r+d 1
e | s e |
0 0
< C
T
since 0 27ﬂ+1da<ooforr>d—1 [ |

Remark 6.5 Using the representation

~

1 ~
exp(Bl) = / exp(M)(B — AT)"d) (6.21)
iy

r
where I" is sketched in Figure 6.1, with the resolvent estimates from theorem 6.4

and lemma 6.2 gives the estimates for the linear semigroup from lemma 6.1.

Remark 6.6 Due to the structure of the sectorial operator LA?, the contour I' can

be chosen as follows

I'="I,+Ty+7T5 (6.22)

with

I = {AeC:A=at—i, ;t € (—00,0]},
T, = {AeC:A=it te|-11]}
I's; = {AeC: x=at+1, tel0,00]}

with a € C suitable chosen.
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continuous spectrum

Figure 6.1: The contour I" for the Dunford integral (6.21)

6.5 Resolvent estimates for L

In this section we discuss assumptions for the resolvent which imply the validity
of (ASS1).

For all values of a we assume that we have the resolvent estimate

. Then there exists a C' > 0 such that

(ASS2) Let 1 <g<p<ooand i =
for all A € C we have

1_1
g p

(L — A" ¢ _ (6.23)

2 —_
w%r

LPALd-Ll <

along the curve I' drawn in Figure 6.1.

Furthermore, we assume that except of two eigenvalues A3 (a.) the spectrum
is located left of . For a < a. the eigenvalues \o(a.)® are located left of
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the imaginary axis as shown in Figure 6.2 (a). For a = a, the eigenvalues
Mo(ae)® = Fiwg # 0 are on the imaginary axis (see Figure 6.2 (b)) and for
a > a, the eigenvalues \o(a..) are right of the imaginary axis, see Figure 6.2 (c).
Then for o < a.. (ASS2) implies the validity of (ASS1).
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Figure 6.2: Localization of the discrete eigenvalues
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7 The exchange of spectral stability

In this section, similar to classical Hopf bifurcation, we prove the exchange of
spectral stability under the assumption (ASS2). In the previous section we have
established the dynamic stability of the trivial solution for o < «a. and the oc-
currence of a Hopf bifurcation at @ = a.. Now we consider the spectral stability
of the small bifurcating time-periodic solutions for a > «a, i.e. we compute the
Floquet exponents of the linearization around a bifurcating solution. In order to

do so we use the so called principle of reduced stability [14].

We start again with equation (3.8)

0 . ~ . oA
prih Lu+ i€ - Q(u,u). (7.1)
The linearization around the time-periodic solution (¢, t) is given by
0 . ~ oA
50 = Lv + 2i€ - Q(uy, ). (7.2)

The solutions are given by the Floquet ansatz

V(& t) = w(E, t) exp M, (7.3)

where

w(,t)=w( t+7T) (7.4)

is T' = 2m /w-periodic. This yields

%A:E@—)\@+2i§-@(ﬁp,@). (7.5)

We have to show that Re\ < 0 in case of nontrivial solutions @w. Due to the
27 Jw-periodicity we can use Fourier series. Analogous to section 5 about the
Hopf bifurcation we consider equivalently 27 periodic solutions of

a O

W (L — A + 2i¢ - Q(a,, ). (7.6)

Introducing the Fourier series

B(Et) = Y @u(S)exp(ikt),

kEZ
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Z Uy p(&) exp(ikt) (7.7)

kEZ

for the solution @ of equation (7.6) and for the time-periodic solution %, (&, t) of
equation (7.1) yields the infinite dimensional system

D = —(L— M —ikwl)""P2i¢ - Q(U,, ©), k # {—1,0,1},
Was = —(L—MN Fiwl) 'PPE2i6 - Q(1,, @), k = %1,
@y = —(L—A)""Ry2i¢ - Q(ay, ),
tiwhpr, = (L— M)W, + PPE2iE - Q(T,, @), k = 1, (7.8)

5 1
= o / ikt B(E, )t (7.9)
0
is the projection on the k-th component of .

Remark 7.1 Note that equation (7.8) is linear w.r.t. W.

Equation (7.8) can be rewritten as

(L — ikw) @y — 2i€ - Q(U,, i) — Ay 0, k#{—1,0,1},
(L F iw)Wars — 20PEE - QU War) — Misrs = 0, k= =1,
L, — 2i€ - @(apa o) — Ay 0,
(L F iw)iare — 20PE 6 - Q(Ty, W) — Mlar1e 0, k= =+1. (7.10)

Since the continuous spectrum of L — M lies in the left half-plane for ReA > 0,
we have that lemma 5.4 holds for L — AI instead of L too, and so the operator
L — A is also invertible for ReA > 0. Using the projections defined in section 5

we can rewrite the first three equation (7.8) as F' = F(u,, us) = 0, where

F, = —— (L — X —ikwI)""P2i¢ - Q(@,, @) = 0, k # {—1,0,1},
Fong = —ars — (L — M Fiwl) " Py PE2i¢ - Q(Ty, @) = 0, k = £1,
Fy = —ig— (L —\)""Py2i¢ - Q(ti,, @) = 0 (7.11)

with
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~ ~ A~ ~

We = (...,0,W_1,,0,W1,0,...), Wy = (..., W_9,W_1s, Wp, Wys, Wa, ...) and W =
W, + Ws.
With the same arguments as in section 5 by lemma 3.9 we can conclude by

the implicit function theorem and remark 7.1 that there exist a unique solution

Ws = Ws(W,.) which is linear w.r.t. w, satisfying ||@W,||x» < Cl|wy|| || We]| 22 -
Hence equation(7.10) can be reduced to
Wiy, L — \)ir,. + P Py2i€ - Q(y, ©),
—iwl e = (L —N)@_1,+ PEP2i - Q(Ty, D), (7.12)

with @ = @, + @, and @, = W,(W,). Since we know that P i = (¢=*, @)pE we

introduce ¢4 by Wi, = cﬂgj Using the fact that Z(Eai = Ao(a)$§ gives

(Mo(a) —iwe_y — N)ey + hi(A\, a,w, c1,c21) = 0,
(Mo(@) + iwey — N)eoy + hoy (N, ayw,eq,c29) = 0, (7.13)

which is linear in ¢y, c_; and nonlinear in the parameter o, w and A\ and where

hl()‘v &, W, Cy, C—l) = ﬁ;cP12ZS ’ @(apv ﬁ;)a
h71<)\7 a, W, Cq, C*l) = ﬁ;cP*12Z£ ’ @(alh {D)

In order to analyze this two-dimensional system we remark that for A = 0
it coincides with the linearization of the reduced bifurcation equation (5.25),
g1(A1, A1, a,w) = 0 around the bifurcating time-periodic solution. Thus (7.13)
is of the form
9 2 2 2

et + 8—141‘(]1(141’ A_q,a,w)er + O(JA% |a — acl, |w — wol”) = 0. (7.14)
Thus for « close to a. (7.14) can be resolved with respect to \. We have two
solutions, namely A = 0 due to the fact that we have a whole family of time-
periodic solutions and a negative eigenvalue, as usual in case of a supercritical
Hopf bifurcation.

Theorem 7.2 For a — a. > 0 sufficiently small, the bifurcating time-periodic

solutions u,(t) of equation (7.1) are spectrally stable.



8 REMARKS ABOUT THE TWO-DIMENSIONAL CASE 62

8 Remarks about the two-dimensional case

In this section we consider the problems from above for the vorticity formulation
of the Navier-Stokes equation in R?, i.e. we want to find out if a Hopf bifurcation
theorem can be shown, if the trivial solution can be shown to be nonlinear stable

and finally if an exchange of spectral stability holds in this case too.

8.1 The equations

We start with the equations from section 2 and use the notation therein, i.e. @

is the velocity and u the vorticity. We consider equation (2.3)

aﬁ(w,t) = Ad(x,t) — caixlﬁ(:c,t) — (to(z) - V)u(z,t) — (a(z,t) - V)i(z)
—Vyq(x,t) — (a(z,t) - V)u(x,t)
V-a(z,t) = 0. (8.1)
Defining the vorticity in R? [10] as

0 0

yields the vorticity formulation
0 0 . N -
—u=Au—c—u— (i V)u— (.- V)u—(a-V)u, (8.3)

875 81‘1
where V-u =V -(V xa)=0.

We note that the vorticity in two space dimensions is a scalar, while in R? it
is a vector. Furthermore, the velocity % can be reconstructed from the vorticity

via the Biot-Savart law

SRS U el )
() = 5 / )y, (8.4

where 21 = (—z5,71)”. Some connections between @ and u in terms of Lebesgue
spaces are given in [10]. Using the fact that V-u = V-u, =0and V-4 = V-4, =0

we can rewrite equation (8.3) as

0 0 N _ _
= Au — Cﬁ—xlu =V (au) = V- (Gu) =V - (tu). (8.5)
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Introducing the operators

Bu = Au-—c—u,
X1
2Q(u,v) = —(uw) — (vu), (8.6)
we can rewrite (8.5) as
0
prih Bu — 2V - Q(uc,u) — V- Q(u, u). (8.7)
As next step we transfer the last equation in Fourier space
O o S oo A o A
£ = B - i€ Q(@.,7) — i€ - Q(@, ), (8.9)
with
Bi = (¢ +ic&)u,
20(1,0) = —(ax?)— (0x07), (8.9)

where * denotes again the convolution.

8.2 The connection between the velocity and vorticity in

Fourier space

The velocity in terms of the vorticity is given by solving the system

. 0 . 0
Vxu = @UQ—@Ul—U,
U = —u —1uy = 0. 8.10
V- B 1 T 5o (8.10)
In Fourier space we have
—i& i\ [ u
= , (8.11)

which is solved by
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a1 1 —1&y 16y u
= . (8.12)
W) P e i) o
Applying the Hoélder inequality yields
iy 1 [ -6 i& u
R < Xlel<t g
Uy SIS 0
La Lr p
1 —1&y 1§ u
+ Xlel=1yg s , (8.13)
SRS 0
L= La

+ L. From equation (8.13) we need estimates for

o i
K*(§) = X|£|21ﬁ7 j=12

in the space L>°(R?) and

K;(§) = ng%, j=1,2

in the space L"(R?). Analogous to three-dimensional case, the estimate for K73°(¢)
is obvious. For K(&) we have with polar coordinates

0 = [ |

€< Polar coordinates 0

1 1
' P dp
d < C | —=pdp= ,
g ~— p2rp P !pr—l

which is bounded for r < 2. Furthermore if we multiply equation (8.12) with &,
we find

) Uy 1E; —1&y 1§y u
i& | < GE éjz (8.14)
Us SRS 0
La L= La

With these computations above we have the validity of a modified version of

lemma 3.5 in two space dimensions.



8 REMARKS ABOUT THE TWO-DIMENSIONAL CASE 65

Lemma 8.1 Assume that % = %+% with r € [1,2) and p,q € [1,00]. Ifu €
LP(R2) N LY(R?) then @ € LY(R%)? and there exists a C' > 0 such that
lally < C(lfullp + ullg)- (8.15)

Moreover
151l < Cllullq- (8.16)

8.3 Estimates for the bilinear form CAQ(@, v) and the Oseen

Operator

The embedding lemma 3.4 is formulated in R?, i.e. also holds for d = 2. Then we
have with lemma 8.1 that the results given in the lemmas 3.7-3.11 are all valid in
two space dimensions too, if we keep in mind that we have to choose p € (2, 00)

-1 .
and s > 2”7. So we summarize

Lemma 8.2
o Let p € (2,00]and s > 2’%1. Then there exists a C > 0 such that for every
ue LP
@@l < CllalZ,. (8.17)
o Let q < p, p€ (2,00 and s > 2ij1. Then there exists a C > 0 such that

for every u € LY

G * @ m

r < Clu

wellull - (8.18)

o Letp € (2,00] and s > 2’%1. Then there exists a C' > 0 such that for every

1@, )|z < Cllal e[l 2 (8.19)
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o Let q < p, p€(2,00] and s > 2%1. Then there exists a C' > 0 such that

for everyu € L4, v € LP

1Q(@, V)| < Cllall pa||V]] z2- (8.20)

o Let p,q,q € [1,00] and s > 0 satisfying

11
1 = ~+-,
P q
I T
q q
s > 911 (8.21)
qq

with p > ¢, p > q and r* € [1,2]. Then there exists a C > 0 such that for

every u € L2
@ % al| = < C|Jal%. (8.22)
o Let p,q,p € [1,00] and s > 0 satisfying (8.21). Then there exists a C' > 0

such that for every u,v € LP

1Q(@, 7)1 < Cllall 2[5 . (8.23)

Lg

In the next step we consider the invertibility of the operator B in Fourier space.

We get an analogous result as in lemma 3.13 and 3.1 for p < 3.

Lemma 8.3 If d=2 we have for p < 3 that §_1i§2 PN L*® — LP and for
p € [1, 00| we have §_1i§1 LR [P

Remark 8.1 With the lemmas above we get the following values. We have p =
3—0, rel,2) and ¢ =6/5+ O(5). By Hélder we find ¢ = 3/2+ O(6), which
contradicts the Biot-Savart law, where

=4z (8.24)
leads to r = 3.

Thus a Hopf bifurcation theorem with method described above cannot be estab-

lished in R2. As a consequence the exchange of spectral stability is obsolete.
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8.4 The nonlinear stability of the trivial solution in R?

The nonlinear stability of the trivial solution u = 0 of equation (8.8) in R? with
respect to spatially localized perturbations can be proved in the same way as in
the section 6. Only the values of some parameters will differ, since they depend on
the space dimension. In section 6 theorem 6.1, 6.2 and 6.4 as well as the lemmas
6.1 and 6.2 are formulated for all d > 2. Therefore all results and assumptions

from section 6 hold also in R2.
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