Curcuminoide: Metabolismus, Stabilität und reaktive Glucuronide

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

(Dr. rer. nat.)

der Fakultät für Chemie und Biowissenschaften der
Universität Karlsruhe (TH)

vorgelegte

DISSertation

von

Diplom-Lebensmittelchemikerin

Simone Höhle

aus Geislingen an der Steige

Dekan: Prof. Dr. Holger Puchta
Referent: Prof. Dr. Dr. Manfred Metzler
Korreferent: Prof. Dr. Doris Marko
Tag der mündlichen Prüfung: 26.04.2006
Für meine Eltern
Inhaltsverzeichnis

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>Curcuminoid</td>
</tr>
<tr>
<td>UDP</td>
<td>UDP-Glucuronyltransferase</td>
</tr>
<tr>
<td>FKS</td>
<td>FKS (Fatty Acid Synthase)</td>
</tr>
</tbody>
</table>

1 Einleitung und theoretische Grundlagen

1.1 Curcuminoide 1
 1.1.1 Chemische Struktur 1
 1.1.2 Chemische und physikalische Eigenschaften 2
 1.1.3 Vorkommen und Verwendung 5
 1.1.4 Biologische Wirkungen 5
 1.1.5 Bisherige Erkenntnisse zur Pharmakokinetik 9
 1.1.5.1 Pharmakokinetische Untersuchungen im Tiermodell 9
 1.1.5.2 Untersuchungen zum Metabolismus 9
 1.1.5.3 Klinische Humanstudien 11

1.2 UDP-Glucuronyltransferasen 12
 1.2.1 Konjugationsreaktion und allgemeine Merkmale 12
 1.2.2 UGT-Gen-Superfamilie 14
 1.2.3 Gewebeverteilung 15
 1.2.4 Substratspezifitäten 16
 1.2.5 Wichtige Eigenschaften 17
 1.2.6 Biologisch aktive und toxische Glucuronide 20

2 Problemstellung

3 Ergebnisse

3.1 Charakterisierung von Curcuminoide-Derivaten 26

3.2 Untersuchungen zur Stabilität von Curcuminoide in physiologischen Flüssigkeiten 28
 3.2.1 Zerfallsprodukte 29
 3.2.2 Einfluß von FKS und Zellen 30

3.3 Metabolismustests in Präzisions-Leberschnitten 31
 3.3.1 Optimierung der Versuchsbedingungen 31
 3.3.2 Phase I-Metabolismus von CUR 33
 3.3.3 Phase I-Metabolismus von Demethoxy-CUR und Bisdemethoxy-CUR 36
 3.3.4 Aufklärung der Phase I-Metaboliten mittels GC/MS-Analyse ... 36
 3.3.5 Phase I- und Phase II-Metaboliten der Curcuminoide 38
 3.3.6 Detaillierte Untersuchung des CUR-Metabolismus 40
 3.3.7 Metabolisierung synthetischer CUR-Derivate 42

3.4 Metabolismustests mit Zellfraktionen und Zellen 44
 3.4.1 Oxidativer Metabolismus 44
 3.4.2 Reduktiver Metabolismus 46
 3.4.3 Sulfatierung 46
 3.4.4 Intestinaler Phase I-Metabolismus 47
 3.4.5 Untersuchungen in Zellkultur 47

3.5 Mikrosomale Glucuronidierung 48
 3.5.1 Umsetzung von CUR mit Rattenlebermikrosomen 48
 3.5.2 Umsetzung von CUR mit humanen Lebermikrosomen 49
 3.5.3 Glucuronidierung reaktiver CUR-Metaboliten 50
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.4</td>
<td>Intestinale Glucuronidierung</td>
<td>51</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Etablierung geeigneter Bedingungen für CUR und CUR-Glucuronide</td>
<td>52</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Spezies- und gewebespezifische CUR-Glucuronidierung</td>
<td>53</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Umsetzungen mit Curcuminoid-Derivaten</td>
<td>54</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Strukturaufklärung der Glucuronide mittels LC/MS/MS-Analyse</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Glucuronidierung mit humanen rekombinanten UGTs</td>
<td>59</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Phenolisches Curcuminoid-Glucuronid</td>
<td>63</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Vergleichende Untersuchungen mit hepatischen und intestinalen Mikrosomen verschiedener Spezies</td>
<td>65</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Einfluß der Curcuminoid-Struktur</td>
<td>68</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Stabilität</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Kinetik der Glucuronidierung von CUR</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>Interaktion von Curcuminoid-Glucuroniden mit Mikrotubuli-Proteinen</td>
<td>71</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Stabilität von Curcuminoid-Glucuroniden</td>
<td>71</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Hemmung der Mikrotubuli-Polymerisation durch Glucuronide von Curcuminoiden</td>
<td>73</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Beeinflussung der CUR-Stabilität durch Bestandteile des Polymerisationsansatzes</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Diskussion</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Stabilität von Curcuminoiden</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Metabolismus von Curcuminoiden in Präzisions-Leberschnitten und Zellfraktionen</td>
<td>80</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Phase I-Metabolismus von CUR</td>
<td>80</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Phase II-Metabolismus von CUR</td>
<td>81</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Metabolismus von Demethoxy-CUR und Bisdemethoxy-CUR</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Glucuronidierung von Curcuminoiden</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Allgemeine Merkmale</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Einsatz von humanen rekombinanten UGTs</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Kinetische Untersuchungen mit CUR</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Hepatischer Curcuminoid-Metabolismus bei Ratte und Mensch</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Intestinaler Curcuminoid-Metabolismus und Bioverfügbarkeit</td>
<td>87</td>
</tr>
<tr>
<td>4.6</td>
<td>Biologische Wirkungen der Metabolite und Zerfallsprodukte von CUR</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>Untersuchungen mit synthetischem Iso-CUR</td>
<td>91</td>
</tr>
<tr>
<td>4.8</td>
<td>Toxikologische Relevanz von Curcuminoid-Glucuroniden</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>Zusammenfassung</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>Experimenteller Teil</td>
<td>98</td>
</tr>
<tr>
<td>6.1</td>
<td>Geräte, Chemikalien und Lösungen</td>
<td>98</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Geräte und Hilfsmittel</td>
<td>98</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Verbrauchsmaterial</td>
<td>99</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Chemikalien</td>
<td>100</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Versuchstiere und biologisches Material</td>
<td>101</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Pufferlösungen und Kulturmedien</td>
<td>102</td>
</tr>
<tr>
<td>6.1.5.1</td>
<td>Allgemeine Pufferlösungen</td>
<td>102</td>
</tr>
<tr>
<td>6.1.5.2</td>
<td>Puffer für Präparation von Zellfraktionen</td>
<td>102</td>
</tr>
<tr>
<td>6.1.5.3</td>
<td>Puffer und Kulturmedium für Präzisions-Gewebeschnitte</td>
<td>103</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

6.1.5.4 Kulturmedium für Ishikawa-Zellen .. 104
6.1.5.5 Puffer für MTP-Präparation und Polymerisationsassay 104

6.2 Methoden ... 105
6.2.1 Analytik ... 105
 6.2.1.1 GC/MS ... 105
 6.2.1.2 HPLC/DAD ... 107
 6.2.1.3 HPLC/ESI/MS/MS .. 109
 6.2.1.4 NMR .. 110

6.2.2 Darstellung von Curcuminoid-Derivaten 110
 6.2.2.1 Chemische Synthese ... 110
 6.2.2.2 Katalytische Hydrierung .. 111
 6.2.2.3 Enzymatische Reduktion .. 112
 6.2.2.4 Chemische Reduktion ... 112
 6.2.2.5 Charakterisierung der Syntheseprodukte 113

6.2.3 Präparation und Charakterisierung von Zellfraktionen 113
 6.2.3.1 Präparation aus Lebergewebe .. 113
 6.2.3.2 Präparation aus Darmgewebe .. 114
 6.2.3.3 Präparation aus Niere ... 114
 6.2.3.4 Bestimmung des Proteingehalts 115

6.2.4 Stabilitätsuntersuchungen .. 116
 6.2.4.1 Untersuchungen in Kalium-Phosphat-Puffer 116
 6.2.4.2 Untersuchungen in Kulturmedium 116
 6.2.4.3 Einfluß von Mikrosomen .. 117
 6.2.4.4 Einfluß von pH-Wert und Pufferzusätzen 118

6.2.5 In vitro-Studien mit Präzisions-Gewebeschnitten 119
 6.2.5.1 Präparation von Leberschnitten 119
 6.2.5.2 Inkubation von Leberschnitten .. 120
 6.2.5.3 Enzymatische Hydrolyse und Extraktion 120

6.2.6 In vitro-Assays mit Zellfraktionen: Phase I-Reaktionen 122
 6.2.6.1 Oxidative Umsetzungen ... 122
 6.2.6.2 Reduktive Umsetzungen .. 123
 6.2.6.3 Umsetzungen mit intestinaler S9-Fraktion 123

6.2.7 In vitro-Assays mit Zellfraktionen: Phase II-Reaktionen 124
 6.2.7.1 Konventioneller Glucuronidierungsassay 124
 6.2.7.2 Kombinierter Reduktions- und Glucuronidierungsassay 124
 6.2.7.3 Glucuronidierungen mit intestinaler S9-Fraktion 125
 6.2.7.4 Modifizierter Glucuronidierungsassay 125
 6.2.7.5 Umsetzungen mit rekombinanten humanen UGTs 126
 6.2.7.6 Umsetzungen mit gewebe- und speziesspezifischen Mikro-
 somaen ... 128
 6.2.7.7 Inhibitionsassay .. 128
 6.2.7.8 Kinetische Untersuchungen ... 128
 6.2.7.9 Sulfatierungsassay ... 129

6.2.8 Allgemeine Methoden für Glucuronide 130
 6.2.8.1 Extraktion von Glucuroniden .. 130
 6.2.8.2 Anreichung von Glucuroniden .. 130

6.2.9 Präparation von mikrotubulären Proteinen aus Rinderhirn 131
Inhaltsverzeichnis

6.2.10 Mikrotubuli-Polymerisationsassay 131

7 Literatur ... 134

A Anhang .. 155
 A.1 Analytische Daten zu Produkten des Curcumino-Ferfalls 155
 A.1.1 HPLC/DAD ... 155
 A.1.2 GC/MS .. 156
 A.2 Curcuminoide und Curcumino-Glucuronide 156
 A.2.1 UV/Vis-Spektren .. 156
 A.2.2 Externe Kalibrierungen 157
 A.2.3 Kinetik UGT1A8 .. 157
 A.3 GC/MS: Fragmentierungs muster 158
 A.3.1 Metaboliten natürlicher Curcuminoide 158
 A.3.2 Metaboliten synthetischer Curcuminoide 159
 A.4 HPLC/ESI/MS/MS: Fragmentierungs muster 159
 A.5 NMR-Spektren .. 160
 A.5.1 CUR .. 160
 A.5.2 Iso-CUR .. 160
 A.6 Polymerisationskurven .. 161
 A.6.1 Ketoprofen und Ketoprofen-Acyglucuronide 161
 A.6.2 CUR und CUR-Glucuronid 161
 A.6.3 Demethoxy-CUR und Demethoxy-CUR-Glucuronid 162
 A.6.4 Bisdemethoxy-CUR und Bisdemethoxy-CUR-Glucuronid 162
 A.6.5 Dimethyl-CUR und Dimethyl-CUR-Glucuronid 163
 A.6.6 Hexahydro-CUR und Hexahydro-CUR-Glucuronid 163

B Publikationen .. 165

C Danksagung .. 167
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>BDMC</td>
<td>Bisdemethoxycurcumin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin (Rinderserumalbumin)</td>
</tr>
<tr>
<td>BSTFA</td>
<td>N,O-Bis(Trimethylsilyl)-trifluoracetamid</td>
</tr>
<tr>
<td>cDNA</td>
<td>complemenatary deoxyribonucleic acid (komplementäre Desoxyribonukleinsäure)</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation Spectroscopy</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CUR</td>
<td>Curcumin</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrom P450</td>
</tr>
<tr>
<td>DAD</td>
<td>Dioden-Array-Detektor</td>
</tr>
<tr>
<td>DiMeCUR</td>
<td>Dimethylcurcumin</td>
</tr>
<tr>
<td>DMC</td>
<td>Demethoxycurcumin</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DOC</td>
<td>Dynamic Organ Culture</td>
</tr>
<tr>
<td>E2</td>
<td>17β-Estradiol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen-diamin-tetraessigsäure</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylen-glykol-bis-(β-aminsylether)-tetraessigsäure</td>
</tr>
<tr>
<td>EI</td>
<td>Electron Impact (Elektronenstoß)</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray Ionisation</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>F12</td>
<td>Nutrient Mixture F-12 Ham</td>
</tr>
<tr>
<td>FKS</td>
<td>Fötals Kälberserum</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatographie</td>
</tr>
<tr>
<td>GC/MS</td>
<td>Gekoppelte Gaschromatographie/Massenspektrometrie</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion-S-Transferase</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

GTP Guanosintriphosphat
h Stunde(n)
HEPES 4-(2-Hydroxyethyl)-piperazin-1-ethansulfonsäure
HHCUR Hexahydrocurcumin
HLC Humanes Lebercytosol
HLM Humane Lebermikrosomen
HPLC High Performance Liquid Chromatography (Hochleistungsflüssigchromatographie)
IL Interleukin
iNOS inducible Nitric Oxide Synthase (induzierbare Stickoxid-Synthase)
ISTD Interner Standard
Kap. Kapitel
LC Liquid Chromatography (Flüssigchromatographie)
LC/MS Gekoppelte Flüssigchromatographie/Massenspektrometrie
LOX Lipoxygenase
MAP Mikrotubuli-assoziierte Proteine
mAU milli Absorption Units (Milliabsorptionseinheiten)
MeOH Methanol
MES Morpholinethansulfonsäure
min Minute(n)
mRNA messenger ribonucleic acid (Boten-Ribonukleinsäure)
MTP mikrotubuläre Proteine
MS Massenspektrometrie
m/z Masse/Ladungs-Verhältnis
NADH reduziertes Nicotinamid-Adenin-Dinukleotid
NADP Nicotinamid-Adenin-Dinukleotid-Phosphat
NADPH reduziertes Nicotinamid-Adenin-Dinukleotid-Phosphat
NF-κB Nuklearer Faktor κB
NMR Nuclear Magnetic Resonance (Magnetische Kernresonanz)
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAID(s)</td>
<td>Nonsteroidal anti-inflammatory drug(s) (Nicht-steroidale antiinflammatorische Substanz(en))</td>
</tr>
<tr>
<td>PAPS</td>
<td>3’-Phosphoadenosin-5’-phosphosulfat</td>
</tr>
<tr>
<td>R²</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>RI-S9</td>
<td>S9-Fraktion aus Rattendarm</td>
</tr>
<tr>
<td>RLC</td>
<td>Rattenlebercytosol</td>
</tr>
<tr>
<td>RLM</td>
<td>Rattenlebermikrosomen</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species (Reaktive Sauerstoffspezies)</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>S.D.</td>
<td>Standard Deviation (Standardabweichung)</td>
</tr>
<tr>
<td>Smp.</td>
<td>Schmelzpunkt</td>
</tr>
<tr>
<td>SULT</td>
<td>Sulfotransferase</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid (Trichloressigsäure)</td>
</tr>
<tr>
<td>TCDD</td>
<td>2,3,7,8-Tetrachlordibenzo-p-dioxin</td>
</tr>
<tr>
<td>TFMU</td>
<td>4-(Trifluormethyl)umbelliferon</td>
</tr>
<tr>
<td>TMBPA</td>
<td>3,5,3′,5′-Tetramethyl-bisphenol A</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor-α</td>
</tr>
<tr>
<td>TPA</td>
<td>12-O-Tetradecanoylphorbol-13-acetat</td>
</tr>
<tr>
<td>t<sub>R</sub></td>
<td>Retentionszeit</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(Hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>U</td>
<td>Units (Enzymeinheiten)</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridindiphosphat</td>
</tr>
<tr>
<td>UDPGA</td>
<td>Uridin-5′-diphosphoglucuronsäure</td>
</tr>
<tr>
<td>UGT(s)</td>
<td>Uridin-5′-diphospho-Glucuronsäuretransferase(n)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>Vis</td>
<td>Visible</td>
</tr>
</tbody>
</table>
1 Einleitung und theoretische Grundlagen

1.1 Curcuminoide

Curcuminoide sind sekundäre Pflanzeninhaltsstoffe, die in den Rhizomen verschiedener Curcuma-Gewächse wie z.B. Curcuma longa vorkommen. Unter dem Begriff Curcuminoide werden die drei Substanzen Curcumin (CUR), Demethoxycurcumin (Demethoxy-CUR) und Bisdemethoxycurcumin (Bisdemethoxy-CUR) zusammengefasst.

1.1.1 Chemische Struktur

Chemisch betrachtet handelt es sich bei den Curcuminoiden um konjugierte Diarylheptanoide. Die drei Curcuminoide unterscheiden sich lediglich in der Anzahl ihrer Methoxygruppen (Abb. 1).

![Chemische Struktur der Curcuminoide.](image)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>OCH₃</td>
<td>OCH₃</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>H</td>
<td>OCH₃</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Abbildung 1: Chemische Struktur der Curcuminoide.

1.1.2 Chemische und physikalische Eigenschaften

Einen Überblick über die physikalischen und chemischen Eigenschaften der Curcuminoide gibt Tabelle 1.

Tabelle 1: Physikalische und chemische Eigenschaften von Curcuminoiden [Govindarajan, 1980; Pedersen et al., 1985; Tønnesen et al., 1995].

<table>
<thead>
<tr>
<th>Trivialname</th>
<th>CUR</th>
<th>Demethoxy-CUR</th>
<th>Bisdemethoxy-CUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemischer Name</td>
<td>Diferuloyl methane</td>
<td>4-Hydroxy cinnamoyl feruloyl methane</td>
<td>Bis-4-Hydroxy cinnamoyl methane</td>
</tr>
<tr>
<td>Summenformel</td>
<td>C_{21}H_{20}O_{6}</td>
<td>C_{20}H_{18}O_{5}</td>
<td>C_{19}H_{16}O_{4}</td>
</tr>
<tr>
<td>Molekulargewicht (g/mol)</td>
<td>368,39</td>
<td>338,36</td>
<td>308,33</td>
</tr>
<tr>
<td>Aussehen</td>
<td>gelbes, kristallines Pulver</td>
<td>orange-gelbes, amorphes Produkt</td>
<td>gelbe Platten</td>
</tr>
<tr>
<td>Schmelzpunkt (°C)</td>
<td>182-183</td>
<td>172-174</td>
<td>223-224</td>
</tr>
<tr>
<td>Absorptionsmax. (EtOH)</td>
<td>427</td>
<td>424</td>
<td>418</td>
</tr>
<tr>
<td>Löslichkeit</td>
<td>unlöslich in Wasser, Hexan, Ether; löslich in Alkohol, Aceton, Eisessig, organischen Lösungsmitteln</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CUR-Komplexe

![Abbildung 2: Postulierte chemische Struktur des CUR-Bor-Komplexes bei der CUR-Synthese nach Pabon [1964].](image)

Von vielen anderen Metallen (Fe, Cu, Ni, Zn, Sn, K, Al) ist bekannt, dass sie mit Curcuminoïden Chelate bilden können [Sorenson, 2002; Tønnesen, 1992]. Schwächere Komplexe bildet Curcumin mit Magnesium und Calcium. Chelatbildner sind in vivo als Katalysatoren sowie als Inhibitoren biochemischer Prozesse von Bedeutung [Cooper et al., 1994; Tønnesen, 1992].
Chemische Stabilität

Die Keto-Enol-Struktur stellt zudem die instabile Stelle des CUR-Moleküls dar. Die chemische Stabilität von CUR in wässrigen Lösungen ist pH- und zeitabhängig. Unter neutralen bis basischen Bedingungen ist CUR in wässriger Lösung nicht stabil. In alkalischer Lösung erfolgt zuerst die Dissoziation des Enols (pK_a 7,8), wodurch die negative Ladung über den Aromaten stabilisiert und die konjugierte Dien-Struktur zerstört wird. Im Alkalischen folgt weiterhin die sukzessive Dissoziation der Phenole (pK_a 8,5 und 9,0) [Tønnesen und Karlsen, 1985b]. Da die Hydroxylgruppen bei saurem pH-Wert in undissoziiertener Form vorliegen, weisen die Curcuminoide in diesem Milieu eine höhere Stabilität auf. Produkte des CUR-Zerfalls bei pH>7 sind Ferulasäure, Feruloylmethan, Vanillin und Aceton (Abb. 3) [Price und Buescher, 1997; Tønnesen und Karlsen, 1985a; Wang et al., 1997]. Der Zerfall von CUR in alkalischem Milieu ist sehr komplex, mitunter ist die Bildung gelber bis gelb-brauner Kondensationsprodukte von Feruloylmethan beschrieben [Tønnesen und Karlsen, 1985a]. Als weiteres Abbauprodukt von CUR wird $trans$-6-(4'-Hydroxy-3'-methoxyphenyl)-2,4-dioxo-5-hexenal genannt (Abb. 3). Die Anwesenheit von fütalem Kälberserum (FKS) oder Humanblut reduziert diesen Zerfall von CUR bei pH>7 in Kulturmedium oder Phosphat-Puffer. In Anwesenheit von 10% FKS oder Humanblut waren weniger als 20% des CUR in 1 h zerfallen, im Vergleich zu 90% nach 30 min in serumfreiem Medium (pH 7,2, 37°C) [Wang et al., 1997].

Abbildung 3: Zerfallsprodukte von CUR in wässrigen Systemen [Tønnesen und Karlsen, 1985a; Wang et al., 1997].

Da CUR eine lipophile und polyphenolische Verbindung darstellt, ist es zur Interaktion mit Makromolekülen imstande. Zur Bindung zwischen CUR und Serumalbumin liegen einige Studien vor [Barik et al., 2003; Pulla Reddy et al., 1999; Zsila et al., 2003a,b]. CUR wird in einer
1 Einleitung und theoretische Grundlagen

tiefen hydrophoben Tasche des Proteins komplexiert, wodurch der hydrolytische Zerfall von CUR in biologischen Systemen reduziert wird, z.T. vermutlich dadurch, dass die Zugänglichkeit von Wassermolekülen behindert wird.

1.1.3 Vorkommen und Verwendung

1.1.4 Biologische Wirkungen

Der Curcuma-Pflanze und ihren Inhaltsstoffen werden nach traditionellen und neueren Erkenntnissen arzneiliche Wirkungen nachgesagt. In der traditionellen indischen (Ayurveda) und chinesischen Medizin wurde die Curcuma-Pflanze bereits vor Tausenden von Jahren zur
Heilung verschiedener Krankheiten eingesetzt [Scartezzini und Speroni, 2000]. Das Curcuma-Pulver wird z.B. topisch zur Behandlung von Wunden, Entzündungen, Schwellungen, Verstau-
chungen und Verrenkungen sowie zur Heilung von Rheuma, Husten, Ikterus etc. angewendet
[Ammon und Wahl, 1991; Sharma et al., 2005]. Die Wirkung als Choleretikum (erhöhte Galle-
produktion) und Cholekinetikum (verstärkter Galleabfluß), die zu einer verbesserten Fettver-
dauung führt, ist ebenfalls seit langem bekannt [Ammon und Wahl, 1991; Deters et al., 1999;
Platel und Srinivasan, 1996]. Obwohl neben den Curcuminoïden z.B. ätherische Öle (15-20%)
weitere Inhaltsstoffe des Curcuma-Rhizoms darstellen [Govindarajan, 1980], werden haupt-
sächlich die Curcuminoïde als die biologisch aktiven Substanzen angesehen.

Aufgrund des enormen Spektrums an biologischen Aktivitäten ist CUR in den letzten Jahr-
zehnten Gegenstand hunderter Publikationen, die sich mit seinen antioxidativen, antinflam-
matorischen und antikanzerogenen Eigenschaften beschäftigen. In den letzten Jahren sind ins-
besondere die Pharmakologie und die potentielle chemotherapeutische Wirkung von CUR in
den Mittelpunkt des wissenschaftlichen Interesses gerückt. Der heutige Kenntnisstand basiert
auf in vitro-Studien, Tiermodellen und Humanstudien [Aggarwal et al., 2003; Ammon und
Wahl, 1991; Araujo und Leon, 2001; Conney et al., 1997; Joe et al., 2004; Lin et al., 2000;
Lin und Lin-Shiau, 2001; Miquel et al., 2002; Nakatani, 2000; Sharma et al., 2005].

Als Pflanzenpolyphenol besitzt CUR antioxidative Eigenschaften, die neben den phenolischen
Hydroxygruppen zusätzlich durch die β-Diketo-Struktur und die Bildung relativ stabiler freier
Radikale aufgrund der konjugierten Doppelbindungsstruktur vermittelt werden [Jovanovic
et al., 1999, 2001; Naidu und Thippeswamy, 2002; Patro et al., 2002; Wright, 2002]. CUR
fungiert als Radikalfänger für reaktive Sauerstoffspezies (ROS) wie z.B. Superoxidanionen-
radikale und Hydroxylradikale [Chen et al., 2005b; Kunchandy und Rao, 1990] und interagiert
mit der Lipidperoxidation [Donatus et al., 1990; Masuda et al., 2001; Naidu und Thippes-
wamy, 2002; Okada et al., 2001; Patro et al., 2002; Reddy und Lokesh, 1992; Sharma, 1976;
Sharma et al., 2001a; Sreejayan und Rao, 1994] und kann so Lipide und DNA vor oxidativen
Schäden schützen. Außerdem inhibiert CUR die Stickoxid-Synthase (iNOS), die bei Entzün-
dungsprozessen induziert wird [Brouet und Ohshima, 1995; Chan et al., 1998; Rao et al.,
Beeinflussung der am Entzündungsprozess beteiligten Enzyme der Prostaglandin-Biosyntese
(Cyclooxygenase (COX), Lipoxigenase (LOX)) hervorgerufen [Began et al., 1998; Huang
et al., 1991a; Lin und Lin-Shiau, 2001; Skrzypczak-Jankun et al., 2003, 2000]. Beispielsweise
inhibiert CUR die COX-2-Expression und hemmt damit nicht die Enzymaktivität, sondern
bereits auf der Ebene der Transkription [Ireson et al., 2001; Zhang et al., 1999]. Im Folgenden
sind weitere Effekte von CUR beispielhaft aufgelistet:

- Cholesterol-senkende Wirkung [Asai und Miyazawa, 2001; Hussain und Chandrasekha-
ra, 1992; Rao et al., 1970; Soni und Kuttan, 1992; Soudamini et al., 1992; Yasni et al.,
1993]
Einleitung und theoretische Grundlagen

- Antibakterieller und antiviraler Effekt [Dahl et al., 1989; Lutomski et al., 1974; Sharma et al., 2000]

- Antiproliferative Effekte in Zellkulturen [Aggarwal et al., 2003; Chen und Huang, 1998; Chen et al., 1999; Mori et al., 2001; Shao et al., 2002; Verma et al., 1997], z.B. durch Zellzyklus-Arrest [van Erk et al., 2004; Hanif et al., 1997; Holy, 2002; Shishodia et al., 2005] oder Induktion von Apoptose [Anto et al., 2002; Bush et al., 2001; Dorai et al., 2001; Jana et al., 2004; Jiang et al., 1996b; Kuo et al., 1996; Pan et al., 2001; Yan et al., 2005]

- Inhibitor der Mutagenese und chemisch induzierten Kanzerogenese nach topischer Anwendung [Huang et al., 1995, 1997; Li et al., 2002] sowie nach Aufnahme über den Gastrointestinaltrakt [Inano et al., 1999, 2000; Kawamori et al., 1999; Rao et al., 1995; Shukla et al., 2002] im Tiermodell; CUR kann dabei Einfluß auf die Tumor-Initiation, Promotion und Progression haben.

- Effekte auf Phase I- und Phase II-metabolisierende Enzyme [Dinkova-Kostova und Talalay, 1999; Iqbal et al., 2003; van der Logt et al., 2003; Thapliyal et al., 2002], z.B. Inhibition von Cytochrom P450 (CYP)-Isoenzymen (Schutz vor Kanzerogenen) [Cioliño et al., 1998; Firozi et al., 1996; Oetari et al., 1996; Thapliyal und Maru, 2001] oder Induktion von Glutathion-S-Transferase (GST) [Nijhoff et al., 1993; Piper et al., 1998; Sharma et al., 2001a; Singh et al., 1998; Susan und Rao, 1992] sowie Inhibition von Sulfoxtransferase (SULT) [Vietri et al., 2003]

- Inhibition der Angiogenese [Arbiser et al., 1998; Robinson et al., 2003; Thaloor et al., 1998]

- Inhibition von DNA-Topoisomerase II [Martin-Cordero et al., 2003]

Einleitung und theoretische Grundlagen

Nuclear Factor κB (NF-κB), der bei Entzündungsprozessen, der Regulation der Immunantwort, sowie bei der Zell-Proliferation und Differenzierung eine wichtige Rolle spielt, eingreifen [Belakavadi und Salimath, 2005; Shishodia et al., 2005; Singh und Aggarwal, 1995]. Die Aktivierung von NF-κB kann beispielsweise durch den Tumornekrosefaktor-α (TNF-α) ausgelöst werden. NF-κB liegt in inaktiver Form als cytosolischer Komplex mit IkB vor. Durch Phosphorylierung von IkB durch die aktivierte IkB-Kinase und anschließende Ubiquitinierung wird IkB abgespalten und damit NF-κB aktiviert. Nach Translokation von NF-κB in den Zellkern reguliert dieser letztendlich die Freisetzung von z.B. Zytokinen, wie beispielsweise Interleukin-1α (IL-1α), sowie iNOS oder COX-2. CUR greift in diese Signalkaskade an diversen Stellen ein und bewirkt eine Suppression der Aktivierung von NF-κB. Im Folgenden sind einige der bisher bekannten Angriffsorte von CUR genannt:

- Inhibition von TNF-α [Abe et al., 1999; Chan, 1995]
- Inhibition der von NF-κB regulierten Gene wie z.B. IL-1α [Abe et al., 1999; Kang et al., 1999, 2004]
- direkte Interaktion mit der p50-Untereinheit von NF-κB, wodurch die Abspaltung von IkB verhindert wird [Brennan und O'Neill, 1998]
- Hemmung der aktivierten IkB-Kinase, wodurch die Phosphorylierung von IkB verhindert wird [Jobin et al., 1999; Plummer et al., 1999]
- Verhinderung der Aktivierung (Phosphorylierung) der IkB-Kinase [Jobin et al., 1999]

Da die über NF-κB regulierten Gene bei der Entzündungsreaktion sowie der Steuerung des Zellzyklusses eine wichtige Rolle spielen, kann die Suppression der NF-κB-Aktivierung die antiinflammatorischen Eigenschaften sowie antiproliferative und Apoptose-induzierende Effekte von CUR teilweise erklären.

Außer zur Krebstherapie ist der positive Einfluß von CUR für diverse andere Krankheiten beschrieben. Beispielsweise supprimiert CUR die Symptome von Typ II-Diabetes [Babu und Srinivasan, 1995, 1997; Srinivasan, 1972], rheumatischer Arthritis [Deodhar et al., 1980], Multipler Sklerose [Natarajan und Bright, 2002], Alzheimer [Frautschy et al., 2001; Lim et al., 2001; Park und Kim, 2002] und inhibiert die HIV-Replikation [Barthelemy et al., 1998; Jiang et al., 1996a; Jordan und Drew, 1996; Li et al., 1993; Mazumder et al., 1997; Sui et al., 1993].

1.1.5 Bisherige Erkenntnisse zur Pharmakokinetik

Die Resorption, Distribution, Eliminierung und der Metabolismus von CUR war in den letzten Jahrzehnten bereits Gegenstand einiger Studien, allerdings ist das Schicksal von CUR im Säugetierorganismus bisher nicht vollständig geklärt.

1.1.5.1 Pharmakokinetische Untersuchungen im Tiermodell

In vivo-Studien mit Ratten zeigten, dass CUR nach oraler Aufnahme im Darm nur schlecht resorbiert wird. Nach Verabreichung einer einmaligen hohen Dosis von 1 g/kg CUR wurden durchschnittlich 75% des CUR unverändert über die Fäces ausgeschieden [Wahlström und Blennow, 1978], während nach Einmal-Dosen bis zu 400 mg CUR 60-66% resorbiert wurden. Da die Resorptionsrate unabhängig von der Dosis war, lässt dies auf einen passiven Diffusionsprozess schließen [Ravindranath und Chandrasekhara, 1980, 1982].

CUR wird hauptsächlich biliär eliminiert. Im Urin dagegen konnten höchstens Spuren der Substanz nachgewiesen werden [Ravindranath und Chandrasekhara, 1980, 1982; Wahlström und Blennow, 1978].

Die geringe Resorptionsquote und der hohe Grad der Metabolisierung deuten auf eine geringe orale Bioverfügbarkeit und schnelle Ausscheidung von CUR über die Galle in Form von Konjugaten in Nagern hin.

1.1.5.2 Untersuchungen zum Metabolismus

Der Phase I- und Phase II-Metabolismus von CUR wurde hauptsächlich in Nagern *in vivo* und *in vitro* untersucht [Asai und Miyazawa, 2000; Holder et al., 1978; Ireson et al., 2001,
Einleitung und theoretische Grundlagen

In neuerer Zeit wurde der CUR-Metabolismus auch im Menschen in vitro mit hepatischen und intestinalen Zellen und Zellfraktionen untersucht [Ireson et al., 2001, 2002]. Der gegenwärtige Kenntnisstand kann wie folgt zusammengefasst werden:

biliären Hauptausscheidungsprodukte dar [Holder et al., 1978].

Obwohl teilweise Massenspektren der Phase II-Metabolite von CUR publiziert wurden, ist die genaue chemische Struktur dieser Glucuronide noch nicht aufgeklärt [Ireson et al., 2001, 2002; Pan et al., 1999]. Bisher werden die Monoglucuronide und Monosulfate als phenolische Konjugate betrachtet [Pan et al., 1999; Sharma et al., 2005].

Zum Metabolismus von Demethoxy-CUR und Bisdemethoxy-CUR liegen bis dato keine Untersuchungen vor. Im Gegensatz zu CUR (Kap. 1.1.4) wurde die biologische Aktivität der Metaboliten bisher nur unzureichend untersucht. Das bioaktive Potential der reduktiven CUR-Metaboliten wird bislang kontrovers betrachtet [Huang et al., 1995; Ireson et al., 2001; Okada et al., 2001; Osawa et al., 1995; Pan et al., 2000; Sugiyama et al., 1996].

1.1.5.3 Klinische Humanstudien

Die Pharmakokinetik von CUR wurde in einigen neueren Studien mit Probanden, bei denen es sich aufgrund der potentiellen chemopräventiven Wirkung von CUR hauptsächlich um
1 Einleitung und theoretische Grundlagen

1.2 UDP-Glucuronyltransferasen

1.2.1 Konjugationsreaktion und allgemeine Merkmale

Die Carboxylfunktion der Glucuronsäure spielt bei der Elimination eine wichtige Rolle, da sie bei physiologischem pH-Wert deprotoniert vorliegt und somit eine zusätzliche, verbesserte

Abbildung 6: Enzymatische Bildung eines β-D-Glucuronids.

1 Einleitung und theoretische Grundlagen

1.2.2 UGT-Gen-Superfamilie

Der Genlocus der UGT1A-Subfamilie ist auf Chromosom 2q37 lokalisiert. Alle Mitglieder der UGT1A-Subfamilie werden von einem einzigen Gen kodiert, das aus einem variablen Exon 1 am 5’-Ende und vier identischen Exons (Exons 2-5) am 3’-Ende besteht (Exon sharing). Die Isoenzyme der UGT1A-Subfamilie unterscheiden sich am N-terminalen Ende des Proteins, welches von Exon 1 kodiert wird. Das C-terminale Ende ist für alle Isoenzyme dieser Familie identisch und wird von den Exons 2-5 kodiert. Zur humanen UGT1A-Subfamilie gehören neun funktionsfähige Isoenzyme (UGT1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10) und vier Pseudogene (UGT1A2P, 1A11P, 1A12P, 1A13P).

Die UGT-Isoenzyme haben eine Größe von 50-55 kD und bestehen aus 529-534 Aminosäuren. Das N-terminalale Ende repräsentiert die luminaire Domäne, besteht aus ca. 280 Aminosäuren und enthält die Substrat-Bindungsstelle. Das C-terminale Ende stellt die restliche luminaire Domäne, die Transmembran-Domäne und den cytosolischen Rest des Proteins dar, besteht aus rund 250 Aminosäuren und beinhaltet die UDPGA-Bindungsstelle. Die Aminosäuresequenzen der C-terminalen Domänen der UGT1- und UGT2-Proteine weisen eine hohe Identität auf, was auf eine konservierte Funktion schließen lässt [Radominska-Pandya et al., 1999; Tukey und Strassburg, 2000].

1.2.3 Gewebeverteilung

Abbildung 7: Gewebeverteilung humaner UGT-Isoenzyme [Tukey und Strassburg, 2000].

Interessanterweise besitzt UGT1A1 im Gastrointestinaltrakt ähnliche Expressionslevel und Aktivitäten wie in der Leber [Fisher et al., 2000b; Strassburg et al., 1999]. Die drei spezifischen extrahepatischen Isoenzyme der UGT1A-Subfamilie sind UGT1A7, 1A8 und 1A10 [Cheng et al., 1999; Mojarrabi und Mackenzie, 1998; Strassburg et al., 1998a]. Im humanen Darm sind die UGTs ausschließlich in den Epithelzellen lokalisiert. Unter den UGT-Isoenzymen besitzt vor allem das extrahepatische UGT1A10 eine sehr breite Substratspezifität, die von einfachen Phenolen bis hin zu Steroiden reicht und liefert damit Hinweise, dass extrahepatisches Gewebe eine wesentliche Rolle für die Glucuronidierung von endogenen und xenobiotischen Stoffen spielt [Tukey und Strassburg, 2000]. Es lässt sich daher vermuten, dass die Glucuronidierung in extrahepatischen Geweben möglicherweise einen signifikanten Einfluss auf die Pharmakokinetik und Bioverfügbarkeit von UGT-Substraten haben könnte und der Intestinaltrakt einen

1.2.4 Substratspezifitäten

Einleitung und theoretische Grundlagen

Tabelle 2: Endogene und exogene Substratspezifitäten verschiedener UGT-Isoenzyme [Basu et al., 2004c; Cheng et al., 1999; Ebner und Burchell, 1993; Ethell et al., 2001; Kessler et al., 2002; King et al., 2000; Radominska-Pandya et al., 1999; Sakaguchi et al., 2004; Tukey und Strassburg, 2000]. * spezifisches Substrat.

<table>
<thead>
<tr>
<th>Isoenzym</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGT1A1</td>
<td>Bilirubin*, 17β-Estradiol (E2, 3-HO-Position)*, Catecholestrogene, Flavonoide, Cumarine, Anthrachinone</td>
</tr>
<tr>
<td>UGT1A3</td>
<td>Lithocholsäure, Catecholestrogene, Flavonoide, Anthrachinone, primäre Amine, Carbonsäuren</td>
</tr>
<tr>
<td>UGT1A4</td>
<td>Tigogenin*, primäre, sekundäre und tertiäre Amine, Androgene</td>
</tr>
<tr>
<td>UGT1A6</td>
<td>kleine planare phenolische Verbindungen, z.B. Acetaminophen*, Serotonin</td>
</tr>
<tr>
<td>UGT1A7</td>
<td>sperrige aromatische planare Verbindungen, z.B. Benz[a]pyren; Phenole, Cumarine</td>
</tr>
<tr>
<td>UGT1A8</td>
<td>Catecholestrogene, Phenole, Cumarine, Flavonoide, Anthrachinone</td>
</tr>
<tr>
<td>UGT1A9</td>
<td>sperrige, nicht-planare Phenole, z.B. Propofol*; Thyroid-Hormone, Carbonsäuren, Flavonoide, Anthrachinone</td>
</tr>
<tr>
<td>UGT1A10</td>
<td>Epigallocatechin-3-O-gallat*, Catecholestrogene, Cumarine, Flavonoide, Anthrachinone, Phenole</td>
</tr>
<tr>
<td>UGT2B7</td>
<td>Morphin*, Codein*, Estrogene, Catecholestrogene, Androgene, Retinoide, Carbonsäuren</td>
</tr>
</tbody>
</table>

1.2.5 Wichtige Eigenschaften

Kennzeichnend für humane UGT-Isoenzyme ist, dass sie eine hohe interindividuelle Variabilität aufweisen, die durch Unterschiede in den Expressionsleveln und/oder durch die Anwesenheit alleler Varianten eines Enzyms hervorgerufen wird [Fisher et al., 2000b; Little et al., 1999].

Induktion und Inhibition

Ähnlich wie bei den CYPs kann die Aktivität der UGTs durch Induktion und Inhibition moduliert werden. Die Induktion von UGT-Isoenzymen wurde bisher in intestinalen und hepatischen Zelllinien (CaCo-2, HepG2) in vitro beschrieben. Beispielsweise wurden die Isoenzyme UGT1A1, 1A6, 1A9 und 2B7 in der humanen Kolonkarzinom-Zelllinie CaCo-2 mit Chrysin, t-Butylhydrochinon und 2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD) induziert [Galijatovic et al., 2000; Munzel et al., 1999]. Die Induktion von UGT1A1 ist in Primärkulturen menschlicher Hepatocyten mit Phenobarbital, Oltipraz und 3-Methylcholanthen be-
Einleitung und theoretische Grundlagen

Kinnetische Profile und Dimerisierung

Ein interessantes Phänomen der UGTs ist, dass die Glucuronidierungsreaktion nicht ausschließlich nach einer Michaelis-Menten-Kinetik verläuft. Atypische kinetische Profile sind bisher für einige UGT-Substrate in vitro beschrieben. Beispiele sind die Bildung des E2-3-Glucuronids und Acetaminophen-\(O\)-Glucuronids durch UGT1A1 [Court et al., 2001; Fisher et al., 2000a,b; Williams et al., 2002] sowie des Morphin-6- und Morphin-3-Glucuronids durch UGT2B7 [Fisher et al., 2000a; Soars et al., 2003; Stone et al., 2003].

Die Kenntnis kinetischer Parameter aus in vitro-Untersuchungen ist wichtig, um Metabolismuswege in vivo voraussagen zu können. Eine bedeutende Größe stellt die Intrinsische Clearance bzw. katalytische Effizienz dar, welche die tatsächliche metabolische Inaktivierung eines Substrates beschreibt, ohne dass eine Sättigung des Enzmys erreicht wird. Die Clearance wird in \(\mu\)l/min/mg Protein ausgedrückt und kann auf die in vivo-Gegebenheiten hochgerechnet werden [Houston und Kenworthy, 2000; Soars et al., 2002].

dass die atypische Kinetik auf der Bindung von zwei Substratmolekülen beruht. Dabei besteht die Möglichkeit, dass die Bindungsstellen von zwei gleichen Substratmolekülen (Autaktivierung, homotrope Kooperation) oder zwei verschiedenen Substratmolekülen (heterotrope Kooperation) besetzt werden. Die beiden Bindungsstellen können auf demselben Enzym oder auf verschiedenen Untereinheiten eines Dimers oder Oligomers lokalisiert sein, die miteinander kooperieren [Bisswanger, 2002; Neet, 1995; Parkin, 2003; Stone et al., 2003; Weiss, 1997; Williams et al., 2002].

Für UGTs gibt es einige Hinweise, dass diese Isoenzyme in vivo möglicherweise als Dimere oder Oligomere vorliegen. Die Ausbildung funktionsfähiger Homo- und Heterodimere einiger UGTs ist beschrieben [Ikushiro et al., 1997; Kurkela et al., 2003; Meech und Mackenzie, 1997]; für UGT1A1 wird sogar ein Tetra- oder Hexamer vermutet [Bruni und Chang, 1999; Peters et al., 1984].

Polymorphismen und genetische Defekte

Die polymorphe Expression einer UGT-Isoform kann möglicherweise einen signifikanten Einfluß auf die Toleranz und den Metabolismus von Arzneimitteln wie z.B. Acetaminophen haben [Cioetti et al., 1997; Court et al., 2001].

1.2.6 Biologisch aktive und toxische Glucuronide

Acylglucuronide

![Chemische Struktur eines Acylglucuronids.](image)

Beim Menschen wurden einige UGT-Isoenzyme, die die Glucuronidierung der Carboxylsäurefunktion katalysieren, identifiziert. Beispielsweise katalysiert UGT1A1 die Glucuronidierung der Carboxylgruppe von Bilirubin [Ebner und Burchell, 1993; King et al., 1996]. Die humanen Isoenzyme UGT1A3, 1A9 und 2B7 katalysieren die Glucuronidierung vieler NSAIDs [Basu et al., 2004c; Ebner und Burchell, 1993; Green et al., 1998; Jin et al., 1993; Kuehl et al., 2000].
2005; Sakaguchi et al., 2004; Sallustio et al., 2000]. Von diesen drei Isoenzymen katalysiert UGT2B7 die Reaktion i.A. besser als UGT1A3 und 1A9 [Sakaguchi et al., 2004]. Außerdem ist das hepatische UGT2B4 zur Bildung einiger Acylglucuronide fähig [Kuehl et al., 2005]. Interessanterweise können auch die extrahepatischen Isoformen UGT1A7 und 1A10 die Glucuronidierung einiger Carbonsäuren katalysieren [Sakaguchi et al., 2004].

- Spontane Hydrolyse der Esterbindung unter Freisetzung des Zuckers und des Aglykons (Abb. 9) [van Breemen und Fenselau, 1985; Ruelius et al., 1986; Spahn-Langguth und Benet, 1992]

\[
\begin{align*}
1-O-\beta-\text{Acylglucuronid} & \quad \text{OH}^- & \quad \text{HOO}^+R \quad \text{Aglykon} + \quad \text{HO}^-\text{O} \quad \text{Glucuronsäure}
\end{align*}
\]

Abbildung 9: Hydrolysereaktion.

- Intramolekulare Umlagerung zu β-Glucuronidase-resistenten 2-, 3-, und 4-Acyl-Isomeren (Acyl-Migration, Abb. 10) [Sallustio et al., 2000; Spahn-Langguth und Benet, 1992]

\[
\begin{align*}
\text{C2-Isomer} & \quad \text{C3-Isomer} \quad \text{C4-Isomer}
\end{align*}
\]

Abbildung 10: Acyl-Migration.
Einleitung und theoretische Grundlagen

- Transacylierungsreaktionen mit nukleophilen Gruppen (-SH, -OH, -NH$_2$) von endogenen Makromolekülen (z.B. Proteine) unter Bildung von Addukten mit kovalentem Bindungscharakter (Abb. 11) [Fenselau, 1994; Spahn-Langguth und Benet, 1992; Zia-Amirhosseini et al., 1994]

![Diagramm der Transacylierungsreaktion](image)

Abbildung 11: Transacylierungsreaktion.

Durch Acyl-Migration und die damit verbundene Freilegung der Halbacetalgruppe ergeben sich zwei weitere mögliche Reaktionen, die über die openketttige Form (Aldehyd) des Zuckermoleküls verlaufen:

- Anomerisierung (Gleichgewicht von α- und β-Anomer, Abb. 12) [Akira et al., 2002; Spahn-Langguth und Benet, 1992]

![Diagramm der Anomerisierungsreaktion am Beispiel des C3-Isomers](image)

Abbildung 12: Anomerisierungsreaktion am Beispiel des C3-Isomers.

Während beim Glycierungsmechanismus notwendigerweise die Isomere als Substrat involviert sind, wird die Transacylierung von den intakten Acylglucuroniden favorisiert, da die Estergruppe aufgrund der Nähe des Ring-Sauerstoffatoms des Glucuronsäurerestes aktivierter für nukleophile Angriffe ist.

Toxikologische Relevanz von Acylglucuroniden Die Toxizität der Acylglucuronide beruht hauptsächlich auf deren Reaktion mit endogenen Proteinen. Da die kovalente Bindung an ein Protein eine Konformationsänderung und den Verlust der Funktionsfähigkeit des Proteins bedeutet, kann sich die toxische Wirkung je nach Funktion des betroffenen Proteins im Zellstoffwechsel in vielfältiger Weise manifestieren.

Desweiteren wurde Tubulin als intrahepatisches Zielprotein der Acylglucuronoid-vermittelten Bildung von Proteinaddukten identifiziert. Das Protein Tubulin ist Bestandteil des Cytoskeletts und ubiquitär in eukaryotischen Zellen präsent. Tubulin besteht aus dimeren α-/β-Untereinheiten, die durch Polymerisation Mikrotubuli ausbilden. Die Mikrotubuli sind beim Aufbau der Mitosespindel beteiligt und wirken u.a. weiterhin bei intrazellulären Trans-
Einleitung und theoretische Grundlagen

2 Problemstellung

3 Ergebnisse

3.1 Charakterisierung von Curcuminoid-Derivaten

Folgende Substanzen wurden durch chemische Synthese nach Pabon [1964](Kap. 6.2.2.1) dargestellt:

- CUR
- Bisdemethoxy-CUR
- Iso-CUR
- Dimethyl-CUR
- Dimethyl-bisdemethoxy-CUR

Abbildung 14: Chemische Strukturen der synthetischen Curcuminoid-Derivate Iso-CUR, Dimethyl-CUR und Dimethyl-bisdemethoxy-CUR.

Die spektroskopischen und chromatographischen Eigenschaften aller in dieser Arbeit relevanten Curcuminoid-Derivate sind in Tabelle 3 zusammengefasst.
Tabelle 3: Schmelzpunkte, spektroskopische und chromatographische Eigenschaften von Curcuminoid-Derivaten. HPLC-Bedingungen siehe Kapitel 6.2.1.2. a Gradient 1 für alle Substanzen mit Ausnahme der drei Dimethyl-CUR-Derivate, für die Gradient 4 verwendet wurde; b zwei Isomere; c durch chemische Synthese dargestellt; d nach Uehara et al. [1987]; e isoliert aus Curcuma; f nach Pedersen et al. [1985]; g durch enzymatische Reaktion dargestellt; k.A., keine Angabe.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Smp. in °C</th>
<th>UV/Vis-Spektrum</th>
<th>HPLC(^a) in min (Isomenen-Verhältnis)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR(^c)</td>
<td>179-181</td>
<td>428 (58530) in MeOH</td>
<td>25,4</td>
</tr>
<tr>
<td>Dihydro-CUR(^d)</td>
<td>k.A.</td>
<td>376 (32000), 285 (7500) in EtOH(^d)</td>
<td>24,6; 26,0(^b)</td>
</tr>
<tr>
<td>Tetrahydro-CUR(^c)</td>
<td>92-94</td>
<td>281 (15100) in MeOH</td>
<td>23,3</td>
</tr>
<tr>
<td>Hexahydro-CUR(^e)</td>
<td>k.A.</td>
<td>282 (7400) in MeOH</td>
<td>11,4</td>
</tr>
<tr>
<td>Octahydro-CUR(^c)</td>
<td>k.A.</td>
<td>282 (ca. 7400) im HPLC-Eluent</td>
<td>8,8; 9,1 (1 : 2,5)(^b)</td>
</tr>
<tr>
<td>Demethoxy-CUR(^e)</td>
<td>172-173(^f)</td>
<td>424 (54800) in MeOH</td>
<td>24,7</td>
</tr>
<tr>
<td>Hexahydro-demethoxy-CUR(^g)</td>
<td>k.A.</td>
<td>282 (ca. 7100) im HPLC-Eluent</td>
<td>11,1</td>
</tr>
<tr>
<td>Octahydro-demethoxy-CUR(^c)</td>
<td>k.A.</td>
<td>282 (ca. 7100) im HPLC-Eluent</td>
<td>8,6; 8,9 (1 : 2,5)(^b)</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR(^c)</td>
<td>224-225</td>
<td>416 (46400) in MeOH</td>
<td>24,0</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR(^c)</td>
<td>k.A.</td>
<td>280 (6000) in MeOH</td>
<td>10,8</td>
</tr>
<tr>
<td>Octahydro-bisdemethoxy-CUR(^c)</td>
<td>k.A.</td>
<td>280 (ca. 6000) im HPLC-Eluent</td>
<td>8,3; 8,7 (1 : 4)(^b)</td>
</tr>
<tr>
<td>Iso-CUR(^c)</td>
<td>186</td>
<td>419 (59241) in EtOH</td>
<td>25,6</td>
</tr>
<tr>
<td>Hexahydro-iso-CUR(^c)</td>
<td>k.A.</td>
<td>282 (ca. 7400) in MeOH</td>
<td>13,1</td>
</tr>
<tr>
<td>Octahydro-iso-CUR(^c)</td>
<td>k.A.</td>
<td>282 (ca. 7400) im HPLC-Eluent</td>
<td>10,5; 11,0(^b)</td>
</tr>
<tr>
<td>Dimethyl-CUR(^c)</td>
<td>128-130</td>
<td>418 (56188) in EtOH</td>
<td>30,7</td>
</tr>
<tr>
<td>Hexahydro-dimethyl-CUR(^c)</td>
<td>k.A.</td>
<td>280 (5086) in MeOH</td>
<td>17,3</td>
</tr>
<tr>
<td>Octahydro-dimethyl-CUR(^c)</td>
<td>k.A.</td>
<td>280 (ca. 5086) im HPLC-Eluent</td>
<td>14,6</td>
</tr>
<tr>
<td>Dimethyl-bisdemethoxy-CUR(^c)</td>
<td>165</td>
<td>415 im HPLC-Eluent</td>
<td>27,7</td>
</tr>
</tbody>
</table>

Die Hexahydro-Produkte der synthetisierten Verbindungen, mit Ausnahme von Dimethyl-bisdemethoxy-CUR, wurden durch katalytische Hydrierung (Kap. 6.2.2.2) und die Octahydro-Produkte der natürlichen Curcuminoide durch chemische Reduktion (Kap. 6.2.2.4) hergestellt.
Die Charakterisierung der synthetisierten Substanzen erfolgte durch Bestimmung des Schmelzpunktes bei Feststoffen, Aufnahme des UV/Vis-Spektrums und Bestimmung des Extinktionskoeffizienten am Absorptionsmaximum sowie HPLC/DAD-Analyse (Kap. 6.2.1.2 und 6.2.2.5). Die Struktur der thermostabilen Hexahydro- und Octahydro-Verbindungen wurde durch GC/MS-Analyse (Kap. 6.2.1.1) bestätigt, die Struktur von CUR und Iso-CUR zusätzlich mittels NMR (s. Anhang A.5). In einigen wenigen Fällen wurde auf bekannte Literaturwerte zurückgegriffen.

3.2 Untersuchungen zur Stabilität von Curcuminoiden in physiologischen Flüssigkeiten

Die Untersuchungen zur Stabilität wurden wie unter 6.2.4.1 und 6.2.4.2 beschrieben durchgeführt. Abbildung 15 zeigt das Verhalten verschiedener Curcuminoid-Derivate in Kalium-Phosphat-Puffer pH 7,4 (links) und in Kulturmedium ohne FKS (rechts) bei 37°C in einem Zeitfenster bis zu 24 h. Um eine vollständige Löslichkeit der schlecht wasserlöslichen Curcuminoid zu gewährleisten, wurden Substrat-Endkonzentrationen von 20 µM bzw. 30 µM eingesetzt.

In beiden wässrigen Systemen war ein zeitabhängiger Verlust der drei Curcuminoid zu beobachten. Der Zerfall war am deutlichsten bei CUR ausgeprägt: Im Puffer waren nach Langzeit-Inkubation nur noch 3% CUR und im Medium noch 13% CUR präsent. Während Bisdemethoxy-CUR und das synthetische Iso-CUR im Puffer ebenfalls nicht stabil waren, war im Medium nahezu kein Zerfall dieser beiden Derivate zu verzeichnen. Im Gegensatz zu den instabilen Curcuminoiden war Hexahydro-CUR in beiden physiologischen Flüssigkeiten stabil. Erstaunlich war der signifikante Stabilitätsunterschied zwischen CUR und seinem synthetischen Analogon Iso-CUR, die sich in ihrer chemischen Struktur nur durch den Austausch der Methoxy- und Hydroxy-Substituenten an den beiden Aromaten unterscheiden. Die Zerfallsraten waren im Medium ohne FKS trotz niedrigerer Substanzkonzentration im Vergleich zum Puffer geringer.
3 Ergebnisse

![Graph showing the time-dependent substance loss of Curcuminoid Derivatives in 0.1 M Potassium Phosphate Buffer pH 7.4 (left) and in Culture Medium without FKS (right). The substance concentrations were 30 µM in the buffer and 20 µM in the medium. The data represent the average ± range from two independent measurements per substrate and time point.]

Abbildung 15: Zeitabhängiger Substanzverlust von Curcuminoid-Derivaten in 0.1 M Kalium-Phosphat-Puffer pH 7,4 (links) und in Kulturmedium ohne FKS (rechts). Die Substanzkonzentrationen betrugen 30 µM im Puffer und 20 µM im Medium. Die Daten repräsentieren Mittelwerte ± Spannweite aus zwei unabhängigen Bestimmungen pro Substrat und Zeitpunkt.

3.2.1 Zerfallsprodukte

Der starke Zerfall von CUR war vom zeitabhängigen Auftreten mehrerer Abbauprodukte begleitet. Es tauchten insgesamt 10 neue Peaks bei der UV-Detektion bei 280 nm in den HPLC-Chromatogrammen auf (Abb. 16).

Das Spektrum der CUR-Zerfallsprodukte war sowohl in Kalium-Phosphat-Puffer als auch in Kulturmedium reproduzierbar. Vanillin, Ferulasäure und Feruloylmethan wurden als Abbauprodukte von CUR, durch Vergleich von HPLC-Retentionszeiten und UV/Vis-Spektren (s. Anhang A.1.1, Tab. 16) sowie GC-Retentionszeiten und der Fragmentierung in der GC/MS nach Trimethylsilylierung (s. Anhang A.1.2, Tab. 17) mit authentischen Referenzsubstanzen, identifiziert.

Abbildung 16: Repräsentatives HPLC-Profil der Abbauprodukte von CUR nach 21 h-Inkubation bei 37°C in Kulturmedium. Insert: Identifizierte Abbauprodukte von CUR. HPLC-Bedingungen siehe Kapitel 6.2.1.2 (Gradient 1).

3.2.2 Einfluß von FKS und Zellen

Der Effekt von FKS und Zellen auf den zeitabhängigen Zerfall der Curcuminoide im Kulturrmedium wurde, wie in Kapitel 6.2.4.2 beschrieben, untersucht und ist in Abbildung 17 beispielhaft für CUR gezeigt. In Kurzzeit-Inkubationen bis zu 4 h wurde bei Zusatz von 5% FKS bzw. in Anwesenheit von Zellen im Inkubationsmedium ein verlangsamerter Zerfall von CUR im Vergleich zum reinen Medium beobachtet. Dieser „stabilisierende“ Effekt war in Anwesenheit von 5% FKS und Zellen am stärksten ausgeprägt: Es wurden zwei- bis dreimal höhere CUR-Mengen nachgewiesen als im Medium ohne Zusätze. Im Gegensatz dazu war nach Langzeit-Inkubation von CUR für 21 h, unabhängig von den Inkubationsbedingungen,
3 Ergebnisse

die Substanz nahezu vollständig zermalten (≤10%).

3.3 Metabolismusstudien in Präzisions-Leberschnitten

3.3.1 Optimierung der Versuchsbedingungen

In ersten Vorversuchen wurde ein kommerzielles Curcuminoid-Gemisch, bestehend aus 75% CUR, 18% Demethoxy-CUR und 7% Bisdemethoxy-CUR in Endkonzentrationen von 100 µM und 200 µM mit frisch préparierten Leberschnitten männlicher und weiblicher Ratten für 24 h
bei 37°C unter Gasatmosphäre (95% O₂, 5% CO₂) inkubierte und anschließend das Kulturm Bodenkulturen auf Phase I- und Phase II-Metabolite mittels HPLC/DAD analysiert. Die Phase I-Metaboliten wurden direkt aus dem Inkubationsansatz durch Extraktion mit Ethylacetat in unkonjugierter Form erfasst, während Glucuronide und Sulfate vor der Extraktion einer enzymatischen Hydrolyse unterworfen und in freier Form bestimmt wurden (Kap. 6.2.5.3).

Geringere Substratkonzentrationen als 200 µM lieferten nach 24-stündiger Inkubation schlechtere Metabolitausbeuten sowie geringere Wiederfindungen von Muttersubstanzen und Metaboliten relativ zur eingesetzten Substanzmenge.

<table>
<thead>
<tr>
<th>Ausgangsgemisch</th>
<th>mit Leberschnitt</th>
<th>ohne Leberschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>7 18 75</td>
<td>21 27 52</td>
</tr>
</tbody>
</table>

Die Inkubation des Curcuminoid-Gemisches war, insbesondere in Abwesenheit eines Gewebeschnittes, mit der Bildung der charakteristischen CUR-Abbauprodukte Vanillin und z.T. Ferulasäure (Kap. 3.2.1) verbunden.

Aufgrund der chemischen Instabilität der Curcuminoiden (Kap. 3.2) war die Wahl geeigneter Inkubationsbedingungen wichtig, insbesondere hinsichtlich der Inkubationszeit. Deswegen wurden in zusätzlichen Versuchen Leberschnitte einer männlichen Ratte für 2 h, 4 h und 6 h mit 200 µM CUR inkubiert. Es zeigte sich ein ähnliches Metabolitenmuster wie nach 24 h, allerdings waren die Metabolitenausbeuten geringer und der Anteil an unmetabolisiertem CUR höher. Die Wiederfindungen der Muttersubstanz und Metaboliten bezüglich der eingesetzten Substanzmenge waren jedoch bei kürzerer Inkubation höher. Ebenso resultierten bei 6 h-Inkubationen mit 200 µM Demethoxy-CUR bzw. 200 µM Bisdemethoxy-CUR geringe Metabolitenausbeuten (Tab. 4).

<table>
<thead>
<tr>
<th>Curcuminoid</th>
<th>Zeit</th>
<th>Umsatz in %</th>
<th>Wiederfindung in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>2 h</td>
<td>4,3</td>
<td>77,0</td>
</tr>
<tr>
<td></td>
<td>4 h</td>
<td>9,6</td>
<td>77,5</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>16,7</td>
<td>68,5</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>48,0</td>
<td>53,7</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>6 h</td>
<td>11,1</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>43,1</td>
<td>52,7</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>6 h</td>
<td>5,0</td>
<td>n.b.</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>37,5</td>
<td>76,3</td>
</tr>
</tbody>
</table>

3.3.2 Phase I-Metabolismus von CUR

Frisch préparierte Leberschnitte von je zwei männlichen und zwei weiblichen Ratten wurden mit 200 µM CUR für 24 h inkubiert und das Medium mittels HPLC auf Phase I- und Phase II-Metabolite, wie unter 6.2.5.3 beschrieben, untersucht. Repräsentative HPLC-Chromatogramme der Phase I-Metaboliten von CUR in der männlichen und weiblichen Rattenleber sind nach Hydrolyse der Konjugate in Abbildung 19 wiedergegeben. Referenzsubstanzen waren für die reduktiven CUR-Metaboliten Tetrahydro-CUR, Hexahydro-CUR.
3 Ergebnisse

und Octahydro-CUR vorhanden, die sich in ihren HPLC-Retentionszeiten unterscheiden, nicht aber in ihrem Absorptionsmaximum (Tab. 3).

Abbildung 19: HPLC-Profile der Phase I-Metaboliten von CUR nach 24 h-Inkubation von 200 µM CUR mit dem Leberschnitt einer männlichen (oben) und einer weiblichen (unten) Ratte und enzymatischer Hydrolyse der Konjugate. TMBPA (3,5,3',5'-Tetramethyl-bisphenol A), interner Standard. HPLC-Bedingungen siehe Kapitel 6.2.1.2 (Gradient 1).

Ein Ziel dieser Arbeit war die Suche nach oxidativen CUR-Metaboliten wie z.B. aromatischen Hydroxylierungs- oder Demethylierungsprodukten. Es gab keinerlei Hinweise in den HPLC-Chromatogrammen auf solche Produkte deren Detektion bei 420 nm stattfand, da bei oxidativen Veränderungen das gelb-gefärbbte CUR-Chromophor intakt bleibt. Beruhend auf der Nachweisgrenze für CUR bei dieser Wellenlänge, hätten oxidative Metaboliten detektiert werden können, wenn mindestens 0,01% des CUR umgewandelt worden wären.

Weiterhin ist eine zusätzliche oxidative Metabolisierung der reduktiven CUR-Metaboliten vorstellbar. Solche polaren Produkte wurden ebenfalls nicht beobachtet. Ihre Nachweisgrenzen bei 280 nm lagen für Tetrahydro-CUR bei 0,03% und für Hexahydro-CUR und Octahydro-CUR bei 0,05% der eingesetzten Substanzmenge.
3 Ergebnisse

3.3.3 Phase I-Metabolismus von Demethoxy-CUR und Bisdemethoxy-CUR

In Einklang mit den Befunden für CUR wurden auch keine oxidativen Metaboliten der demethoxylierten Curcuminoide gefunden. Ebenso gab es keine Hinweise auf eine oxidative Modifizierung der reduktiven Metaboliten.

3.3.4 Aufklärung der Phase I-Metaboliten mittels GC/MS-Analyse

Für die GC/MS-Analyse wurde das Inkubationsmedium nach Hydrolyse der Konjugate extrahiert und der gesamte oder fraktionierte Extrakt verwendet. Die Metaboliten wurden in Form ihrer Trimethylsilylether erfasst (Kap. 6.2.1.1). Die GC-Retentionszeiten und GC/MS-Spektren befinden sich im Anhang (A.3.1, Tab. 20).

3.3.5 Phase I- und Phase II-Metaboliten der Curcuminoide

Abbildung 21: Zusammensetzung der reduktiven Metaboliten von CUR, Demethoxy-CUR und Bisdemethoxy-CUR im Inkubationsmedium von Leberschnitten männlicher (oben) und weiblicher (unten) Ratten nach 24 h-Inkubation mit den Curcuminoïden (200 µM). Für jeden Metabolit wurde der unkonjugierte (ungemusterter Teil der Säule) und konjugierte (gemusterter Teil der Säule) Anteil durch Hydrolyse mit β-Glucuronidase/Arylsulfatase aus *Helix pomatia* (Kap. 6.2.5.3, Methode I) bestimmt. Die Werte sind in Prozent der Summe aus wiedergefundenen Curcuminoïd plus Metaboliten dargestellt und repräsentieren den Mittelwert ± Spannweite von zwei Ratten pro Geschlecht, sowie drei unabhängig inkubierte Schnitten pro Ratte.
Das Schaubild zeigt, dass die Hexahydro-Produkte aller drei Curcuminoide überwiegend (>90%) als hydrophile Konjugate vorlagen, welche die vorherrschenden Metaboliten in Leberschnitten von männlichen und weiblichen Ratten darstellten. Die beiden Isomere der Dihydro-Verbindungen wurden von beiden Geschlechtern in geringen Mengen gebildet (2-9% aller Metaboliten). Bemerkenswert war, dass ein Isomer vollständig konjugiert wurde (Dihydro-CUR1), während das andere offensichtlich ein schlechtes Substrat für die Konjugation darstellte und ausschließlich in freier Form vorlag (Dihydro-CUR2). Ein interessanter Unterschied zwischen den Geschlechtern trat im Phase I-Metabolismus für die Tetrahydro- und Octahydro-Produkte auf: Männliche Ratten bildeten größere Mengen Octahydro-Metabolite, aber weniger Tetrahydro-Produkte als weibliche Tiere. Die Tetrahydro- und Octahydro-Verbindungen waren fast ausschließlich in Form ihrer Konjugate vorhanden. Anders als für die reduktiven Curcuminoid-Metaboliten, wurden nach 16-stündiger enzymatischer Hydrolyse (Kap. 6.2.5.3, Methode I) keine Konjugate der Curcuminoide selbst gefunden.

Wiederfindungen

Zusätzlich zu den Metaboliten wurde der Gehalt der Muttersubstanzen in den 24 h-Inkubationen mit Gewebeschnitten quantifiziert. Die Ausgangssubstanzen lagen großteils in unkonjugierter Form vor. Der Umsatz zu reduktiven Metaboliten und Konjugaten lag im Bereich von 30-50% (Tab. 5). Der Vergleich zwischen der Summe aus wiedergefundenen Muttersubstanz und gebildeten Metaboliten mit der eingesetzten Menge zeigte, dass ein beträchtlicher Teil der Substanz nicht nachweisbar war. Die Wiederfindungen betragen ca. 50% für CUR und Demethoxy-CUR sowie ungefähr 75% für Bisdemethoxy-CUR in Inkubationen mit Leberschnitten männlicher und weiblicher Ratten, d.h. die Hälfte des eingesetzten CUR und Demethoxy-CUR sowie ein Viertel des eingesetzten Bisdemethoxy-CUR „gingen verloren“ (Tab. 5). Verluste für die einzelnen Curcuminoiden waren auch nach 24-stündiger Inkubation der Substanzen im Medium ohne Gewebeschnitt zu verzeichnen. Hier war die unterschiedliche Stabilität der drei Curcuminoide, die sich bereits in den Vorversuchen mit dem kommerziellen Curcuminoid-Gemisch andeutete (Kap. 3.3.1), insbesondere anhand der sehr geringen Wiederfindung für CUR (ca. 10%), noch ausgeprägter zu erkennen. Diese Beobachtungen stehen im Einklang mit früheren Studien [Pfeiffer et al., 2003; Wang et al., 1997], welche die Instabilität der Curcuminoide in wässrigen Systemen beschreiben, wobei CUR das am wenigsten stabilste und Bisdemethoxy-CUR das stabilste Curcuminoid darstellt.

<table>
<thead>
<tr>
<th>Curcuminoïd</th>
<th>Geschlecht</th>
<th>Muttersubstanz</th>
<th>Reduktive Metaboliten</th>
<th>Wiederfindung</th>
<th>Umsatz*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>männlich</td>
<td>27,9 ± 3,2</td>
<td>25,8 ± 2,9</td>
<td>53,7 ± 6,1</td>
<td>48,0 ± 0,1</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>29,7 ± 11,6</td>
<td>12,1 ± 1,1</td>
<td>41,8 ± 10,5</td>
<td>31,6 ± 10,7</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>männlich</td>
<td>30,5 ± 7,9</td>
<td>22,2 ± 1,3</td>
<td>52,7 ± 9,2</td>
<td>43,1 ± 5,1</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>26,1 ± 6,6</td>
<td>20,1 ± 0,5</td>
<td>46,2 ± 7,1</td>
<td>44,3 ± 5,7</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>männlich</td>
<td>48,8 ± 16,0</td>
<td>27,4 ± 1,1</td>
<td>76,3 ± 17,1</td>
<td>37,5 ± 7,0</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>46,4 ± 9,7</td>
<td>28,2 ± 4,1</td>
<td>74,6 ± 13,8</td>
<td>38,1 ± 1,5</td>
</tr>
</tbody>
</table>

3.3.6 Detaillierte Untersuchung des CUR-Metabolismus

Zur näheren Untersuchung des CUR-Metabolismus wurden zusätzlich zu CUR die beiden reduktiven Metaboliten Tetrahydro-CUR (200 µM) und Hexahydro-CUR (50 µM) für 24 h mit Leberschnitten einer männlichen und einer weiblichen Sprague-Dawley-Ratte inkubiert. Um die Konjugate genauer zu charakterisieren wurde die enzymatische Hydrolyse modifiziert, indem eine separate Spaltung mit β-Glucuronidase und Sulfatase mit einer verkürzten Einwirkzeit von 2 h (Kap. 6.2.5.3, Methode II) durchgeführt wurde. Die Ergebnisse dieser Experimente sind in Abbildung 22 zusammengefasst.

Abbildung 22: Konjugat-Muster von CUR (oben, n=2), Tetrahydro-CUR (Mitte, n=1) und Hexahydro-CUR (unten, n=1) im Medium nach 24 h-Inkubation mit Leberschnitten von männlichen (links) und weiblichen (rechts) Ratten. Die Daten sind in Prozent der gesamten detektierten Substanzen (Muttersubstanz + Metabolite) angegeben und repräsentieren den Mittelwert ± Spannweite einer Doppelbestimmung aus drei unabhängig inkubierten Schnitten pro Ratte. n, Anzahl der Tiere pro Geschlecht.
3 Ergebnisse

Tetrahydro-CUR Nach 24 h-Inkubation von 200 µM Tetrahydro-CUR (Abb. 22, Mitte) waren neben geringfügigen Mengen unveränderter Muttersubstanz, hauptsächlich Hexahydro-CUR (>80%) und geringe Mengen Octahydro-CUR im Kulturmedium nachweisbar. Wiederum bildeten männliche Ratten mehr Octahydro-CUR als weibliche Ratten und als Konjugate wurden bevorzugt Glucuronide gebildet. Oxidative Demethylierungen sowie aromatische und aliphatische Hydroxylierungen von Tetrahydro-CUR konnten nicht beobachtet werden. Im Vergleich zu CUR wies Tetrahydro-CUR eine deutlich höhere Umsatzrate (Tab. 6) und höhere Wiederfindungen (>90%) von Muttersubstanz und Metaboliten auf.

Hexahydro-CUR Die Fähigkeit männlicher Ratten Hexahydro-CUR effizienter zu Octahydro-CUR zu reduzieren als weibliche Ratten, wurde erneut bei Inkubation von 50 µM Hexahydro-CUR mit Leberschnitten männlicher und weiblicher Ratten beobachtet (Abb. 22, unten): Während über 95% von Hexahydro-CUR als Konjugate in der weiblichen Rattenleber vorlagen, waren es beim männlichen Tier nur noch 57%. Hinweise auf oxidative Hexahydro-CUR-Metaboliten gab es nicht. Die Wiederfindungen von Muttersubstanz und Metaboliten betrugen nahezu 100%.

3.3.7 Metabolisierung synthetischer CUR-Derivate

Parallel zu den Experimenten mit CUR wurden die synthetischen CUR-Derivate Dimethyl-CUR (200 µM) und Iso-CUR (200 µM) mit Leberschnitten einer männlichen und einer weiblichen Sprague-Dawley-Ratte für 24 h inkubiert und das Medium mittels HPLC/DAD analysiert. Die enzymatische Hydrolyse erfolgte separat mit β-Glucuronidase und Sulfatase (Kap. 6.2.5.3, Methode II).

Ergebnisse

Tabelle 6: Umsätze von CUR (n=2), Tetrahydro- (n=1), Hexahydro- (n=1), Dimethyl- (n=1) und Iso-CUR (n=1) nach 24 h-Inkubation mit Leberschnitten männlicher und weiblicher Ratten und Konjugathydrolyse mit β-Glucuronidase und Sulfatase (Kap. 6.2.5.3, Methode II). Die Umsätze sind in Prozent der gesamten wiedergefundenen Substanz (Muttersubstanz + Metabolite) angegeben und repräsentieren den Mittelwert ± Spannweite einer Doppelbestimmung aus drei unabhängig inkubierten Schnitten pro Ratte. Die Substratkonzentrationen betrugen 200 µM für CUR, Tetrahydro-, Dimethyl- und Iso-CUR und 50 µM für Hexahydro-CUR. n, Anzahl der Tiere pro Geschlecht; n.n., nicht nachweisbar.

<table>
<thead>
<tr>
<th>Curcuminoid</th>
<th>Umsatz in %</th>
<th>männliche Ratte</th>
<th>weibliche Ratte</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>73,8 ± 5,7</td>
<td>49,3 ± 14,0</td>
<td></td>
</tr>
<tr>
<td>Tetrahydro-CUR</td>
<td>95,6 ± 0,5</td>
<td>94,1 ± 1,4</td>
<td></td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>19,2 ± 6,0</td>
<td>33,5 ± 1,9</td>
<td></td>
</tr>
<tr>
<td>Iso-CUR</td>
<td>n.n.</td>
<td>n.n.</td>
<td></td>
</tr>
</tbody>
</table>

Iso-CUR Iso-CUR unterscheidet sich von CUR dadurch, dass die Hydroxy- und Methoxygruppen an beiden Aromaten vertauscht sind (Abb. 14). Im Unterschied zu CUR, das von der männlichen und weiblichen Rattenleber stark metabolisiert wurde, fand unter gleichen Bedingungen keine Metabolisierung von Iso-CUR statt: Es waren keine reduktiven oder oxidativen Phase I-Metaboliten und keine Glucuronide oder Sulfate von Iso-CUR selbst nachweisbar. Das synthetische Derivat war in den 24 h-Inkubationen mit Gewebeschnitt sowie in den Kontrollen ohne Gewebeschnitt deutlich stabiler als CUR. Die Wiederfindungen für Iso-CUR nach Inkubation in Anwesenheit eines Gewebeschnitts lagen bei ca. 72% im Vergleich zu ca. 50% für CUR. Iso-CUR erwies sich damit als ähnlich stabil wie Bisdemethoxy-CUR (vgl. Tab. 5), welches das Stabilste der drei Curcuminoide darstellt. Bei der Untersuchung
3 Ergebnisse
der HPLC-Chromatogramme auf potentielle Abbauprodukte von Iso-CUR analog zum CUR-Zerfall, waren keine solchen Produkte nachweisbar, vermutlich aufgrund der höheren Stabilität von Iso-CUR.

3.4 Metabolismusstudien mit Zellfraktionen und Zellen

3.4.1 Oxidativer Metabolismus

Ein gängiges Modellsystem für die Untersuchung des oxidativen Metabolismus in vitro, stellen Mikrosomen dar, in denen das für den Fremdstoffmetabolismus wichtige CYP-abhängige Monoxygenase-System lokalisiert ist. Da keine aromatischen Hydroxylierungs- und Demethylierungsprodukte im Curcuminoid-Metabolismus in Leberschnitten beobachtet wurden (Kap. 3.3.2), wurde zusätzlich mit Lebermikrosomen von unbehandelten und Aroclor-behandelten Ratten überprüft, ob die Rattenleber die Fähigkeit besitzt oxidative Curcuminoid-Metaboliten zu bilden. Die Umsetzungen (Tab. 7) wurden mit einem Curcuminoid-Gemisch in Anwesenheit eines NADPH-generierenden Systems, wie unter 6.2.6.1 beschrieben, durchgeführt.

Neben den unveränderten Curcuminoiden wurden nur Spuren der reduktiven Metaboliten, hauptsächlich Hexahydro-Curcuminoid, beim Einsatz nicht-induzierter sowie Aroclor-induzierter Rattenlebermikrosomen im Extrakt mittels HPLC/DAD nachgewiesen. Die Nachweissgrenze für oxidative Curcuminoid-Metaboliten lag bei 0,01% der eingesetzten Curcuminoid.

Tabelle 7: Untersuchungen zum Phase I-Metabolismus mit Mikrosomen und Cytosol aus Lebern männlicher Sprague-Dawley- (SD) und Wistar-Ratten (W), mit Cytosol aus humaner Leber und mit Alkoholdehydrogenase aus Pferdeleber. Experimentelle Details siehe Kapitel 6.2.6.1 und 6.2.6.2.
a CYP-Gehalt 0,84 nmol/mg mikrosomales Protein;
b NADPH-generierendes System;
c bestehend aus 75% CUR, 18% Demethoxy-CUR und 7% Bisdemethoxy-CUR;
d CYP-Gehalt 0,57 nmol/mg mikrosomales Protein;
e CYP-Gehalt 1,63 nmol/mg mikrosomales Protein; nicht-ind., nicht-induziert; ind., Aroclor-induziert.

<table>
<thead>
<tr>
<th>Testsystem</th>
<th>Substrat</th>
<th>Ergebnisse aus HPLC/DAD-Analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrosomen (SD), nicht-ind.(^a)/NADPH(^b)</td>
<td>Curcuminoid-Gemisch(^c)</td>
<td>Curcuminoide, keine oxidativen Metaboliten, Spuren von Hexahydro-Curcuminoiden</td>
</tr>
<tr>
<td></td>
<td>Hexahydro-CUR</td>
<td>Hexahydro-CUR, keine oxidativen und reduktiven Metaboliten</td>
</tr>
<tr>
<td>Mikrosomen (W), nicht-ind.(^d)/NADPH(^b)</td>
<td>Hexahydro-CUR</td>
<td>Hexahydro-CUR, Octahydro-CUR und kleine unbekannte Metabolitenpeaks</td>
</tr>
<tr>
<td>Mikrosomen (W), ind.(^e)/NADPH(^b)</td>
<td>Curcuminoid-Gemisch(^c)</td>
<td>Curcuminoide, keine oxidativen Metaboliten, Spuren von Hexahydro-Curcuminoiden</td>
</tr>
<tr>
<td></td>
<td>Hexahydro-CUR</td>
<td>Hexahydro-CUR, Octahydro-CUR und kleine unbekannte Metabolitenpeaks</td>
</tr>
<tr>
<td>Alkoholdehydrogenase/NADH</td>
<td>Curcuminoid-Gemisch(^c)</td>
<td>Reduktive Curcuminoid-Metaboliten (Hexahydro > Tetrahydro ≡ Octahydro >> Dihydro-1 und Dihydro-2)</td>
</tr>
<tr>
<td>Ratten-Cytosol (SD)/NADH</td>
<td>Curcuminoid-Gemisch(^c)</td>
<td>Reduktive Curcuminoid-Metaboliten (Hexahydro > Tetrahydro ≡ Octahydro >> Dihydro-1 und Dihydro-2)</td>
</tr>
<tr>
<td></td>
<td>CUR</td>
<td>Reduktive CUR-Metaboliten (Hexahydro > Tetrahydro)</td>
</tr>
<tr>
<td></td>
<td>Iso-CUR</td>
<td>Reduktive Iso-CUR-Metaboliten (Hexahydro > Tetrahydro)</td>
</tr>
<tr>
<td>Human-Cytosol/NADH</td>
<td>Curcuminoid-Gemisch(^c)</td>
<td>Reduktive Curcuminoid-Metaboliten (Hexahydro > Tetrahydro ≡ Octahydro >> Dihydro-1 und Dihydro-2)</td>
</tr>
<tr>
<td></td>
<td>Tetrahydro-CUR</td>
<td>Reduktive Metaboliten (Hexahydro > Octahydro)</td>
</tr>
<tr>
<td></td>
<td>Hexahydro-CUR</td>
<td>Reduktiver Metabolit Octahydro-CUR</td>
</tr>
</tbody>
</table>
3 Ergebnisse

3.4.2 Reduktiver Metabolismus

Entsprechende Umsetzungen von reinem CUR und synthetischem Iso-CUR mit Rattenlebercytosol ergaben für Iso-CUR ein analoges Muster an reduktiven Metaboliten wie für CUR. In Inkubationen der reduktiven Metaboliten Tetrahydro-CUR und Hexahydro-CUR mit humanem Cytosol wurden beachtliche Mengen Octahydro-CUR gebildet.

CUR kann durch lösliche Enzyme des Cytosols offensichtlich vollständig bis zum Octahydro-CUR reduziert werden. Da die mikrosomalen Enzyme von Sprague-Dawley-Ratten im Gegensatz zu Wistar-Ratten keine reduktiven Aktivitäten besaßen (Kap. 3.4.1), deutet dies darauf hin, dass der cytosolischen Reduktion eine größere Bedeutung im Curcuminoid-Metabolismus zukommt, als der durch Mikrosomen vermittelt.

3.4.3 Sulfatierung

Die Konjugation mit Sulfat ist neben der Glucuronidierung (s. Kap. 3.5) eine weitere Phase II-Reaktion, die von löslichen Sulfotransferasen katalysiert wird. Da in den Leberschnitten Sulfate von CUR und Hexahydro-CUR beobachtet wurden (Kap. 3.3.6), wurde die Sulfatierung dieser beiden Substrate mit Cytosol aus Rattenleber und aktiviertem Sulfat (PAPS) in vitro verfolgt. Um die starke Dissoziation der Sulfat-Gruppe bei der HPLC/DAD-Analyse zurückzudrängen, enthielt der Eluent zur Erfassung der Sulfate ein Ionenpaar-Reagenz.

Die Sulfattransferase-Aktivität des Cytosols wurde durch Inkubation mit 4-Methylumbelliferon, dessen Sulfat als Referenzsubstanz zur Verfügung stand, nachgewiesen. Zusätzlich wurde mit Hilfe des 4-Methylumbelliferon-Sulfats die Aktivität der Sulfatase sichergestellt. Der reduktive Metabolit Hexahydro-CUR scheint ein besseres Substrat für die Sulfatierung in vitro darzustellen als die Muttersubstanz.
3 Ergebnisse

3.4.4 Intestinaler Phase I-Metabolismus

Obwohl die Leber als wichtigstes metabolisches Organ angesehen wird, ist insbesondere für viele Pflanzeninhaltssstoffe bekannt, dass die Metabolisierung im Gastrointestinaltrakt eine bedeutende Rolle spielt [Chen et al., 2003, 2005a]. Aus diesem Grund wurde der Phase I-Metabolismus von CUR mit S9-Fraktion (enthält cytosolisches und mikrosomales Protein) aus dem Darm männlicher Sprague-Dawley-Ratten im Vergleich zur Leber untersucht.

Nach Inkubation von CUR mit dieser Zellfraktion in Anwesenheit von NADH, wurde das komplette Spektrum an reduktiven CUR-Metaboliten erhalten. Die CUR-reduzierende Fähigkeit intestinaler Enzyme war im Vergleich zur hepatischen Reduktion um Faktor 2,5 geringer. Dieser Effekt wurde zusätzlich anhand des Metabolitspektrums deutlich. Im Darm stellten Tetrahydro-CUR und Hexahydro-CUR die dominanten Metaboliten dar (50% bzw. 38% aller Metaboliten), während in der Leber unter gleichen Bedingungen Hexahydro-CUR eindeutig das Hauptprodukt (69% aller Metaboliten) war.

3.4.5 Untersuchungen in Zellkultur

Humane Zellen waren damit in der Lage die Testsubstanzen aufzunehmen, zu metabolisieren und die reduktiven Metaboliten anschließend aus der Zelle zu schleusen. Die Reduktion erfolgte dabei vermutlich durch zelleigene unspezifische Reduktasen.
3 Ergebnisse

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Tetrahydro-CUR</th>
<th>Hexahydro-CUR</th>
<th>Octahydro-CUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Iso-CUR</td>
<td>−</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Tetrahydro-CUR</td>
<td>entf.</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>entf.</td>
<td>entf.</td>
<td>+</td>
</tr>
</tbody>
</table>

3.5 Mikrosomale Glucuronidierung

Die Metabolismusuntersuchungen mit CUR und seinen reduktiven Metaboliten in Präzisions-Leberschnitten von Sprague-Dawley-Ratten (Kap. 3.3) wiesen darauf hin, dass CUR und insbesondere seine reduktiven Metaboliten offensichtlich gute Substrate für UDP-Glucuronidtransfersen darstellen und damit ihre Glucuronidierung eine zentrale Rolle im Metabolismus spielt. Die in vitro-Glucuronidierung von CUR wurde deshalb mit verschiedenen Mikrosomen, wie unter 6.2.7.1 beschrieben, detaillierter untersucht (Tab. 9).

3.5.1 Umsetzung von CUR mit Rattenlebermikrosomen

Bei der Glucuronidierung von CUR mit hepatischen Rattenmikrosomen in Anwesenheit von UDPGA wurden die Proteine nach der Inkubation mit Trichloressigsäure (TCA) präzipitiert und der Überstand nach Neutralisation ohne Extraktion mittels HPLC/DAD analysiert, um Glucuronid-Verluste zu vermeiden. Im HPLC-Chromatogramm tauchte bei einer Detektionswellenlänge von 420 nm ein neues Produkt (Absorptionsmaximum bei 423 nm) mit kürzerer Retentionszeit (18,8 min) als CUR auf, welches nach Spaltung mit β-Glucuronidase/Arylsulfatase aus Helix pomatia verschwand und vermutlich das CUR-Glucuronid A repräsentierte (Abb. 23). Jedoch war die Fläche des CUR-Peaks nach Hydrolyse kleiner als die Fläche der Summe des CUR-Peaks und des Glucuronid-Peaks vor der Hydrolyse. Diese Beobachtung untermauerte die in den Leberschnitten aufgezeigten Diskrepanzen für die Gehalte an CUR-Konjugaten in Abhängigkeit der verwendeten enzymatischen Hydrolysemethode (Kap. 3.3.5 und 3.3.6) und ist vermutlich der Instabilität des freierwerdenden CUR zuzuschreiben. Eine eindeutige Identifizierung des CUR-Glucuronids wurde mittels LC/MS/MS erreicht (s. Kap. 3.5.8).
3 Ergebnisse

Abbildung 23: Repräsentatives HPLC-Profil des wässrigen Überstandes nach Proteinpräzipitation mit TCA und Neutralisation einer Inkubation von CUR (100 µM) mit Rattenlebermikrosomen/UDPGA. HPLC-Bedingungen siehe Kapitel 6.2.1.2 (Gradient 1).

3.5.2 Umsetzung von CUR mit humanen Lebermikrosomen

Wurde die Glucuronidierung von CUR nicht mit Rattenlebermikrosomen sondern mit humanen Lebermikrosomen und anschließender HPLC/DAD-Analyse des Überstandes nach Proteinfällung mit TCA und Neutralisation durchgeführt, war in den HPLC-Chromatogrammen neben dem in der Rattenleber identifizierten CUR-Glucuronid A-Peak ein weiterer kleinerer Peak B mit kürzerer Retentionszeit (8,8 min) bei 420 nm (Absorptionsmaximum bei 418 nm) sichtbar (Abb. 24).

Durch Hydrolyse mit β-Glucuronidase/Arylsulfatase aus Helix pomatia wurde dieser Peak vorläufig als weiteres CUR-Glucuronid B angesehen. Die Bildung von zwei verschiedenen Monoglucuroniden aus CUR ist aufgrund der chemischen Struktur möglich: Die Konjugation der aromatischen Hydroxygruppen führt jeweils zu einem identischen phenolischen Glucuronid, die der enolischen Hydroxygruppe hingegen zu einem aliphatischen Glucuronid (Abb. 25). Da die kurze Elutionszeit des CUR-Glucuronid B im Vergleich zum CUR-Glucuronid A die hohe Polarität dieses Konjugats charakterisiert, lag die Vermutung nahe, dass es sich um ein Diglucuronid handelte, welches unter den in vitro-Bedingungen entstanden war. Diese Möglichkeit wurde jedoch durch eine spätere LC/MS/MS-Analyse nicht bestätigt (s. Kap. 3.5.8).
3 Ergebnisse

Abbildung 24: Repräsentatives HPLC-Profil des wässrigen Überstandes nach Proteinpräzipitation mit TCA und Neutralisation einer Inkubation von CUR (100 µM) mit humanen Lebermikrosomen/UDPGA. HPLC-Bedingungen siehe Kapitel 6.2.1.2 (Gradient 1).

Abbildung 25: Chemische Struktur der CUR-Glucuronide A (links) und B (rechts).

3.5.3 Glucuronidierung reduktiver CUR-Metaboliten

3 Ergebnisse

In diesem Testsystem zeichnete sich, gleichfalls wie in den Leberschnitten, eine effiziente Glucuronidierung der reduktiven CUR-Metaboliten ab. Umsetzungen mit hepatischen Ratten- und Human-Mikrosomen lieferten hierbei für die reduktiven CUR-Metaboliten qualitativ das gleiche Glucuronidierungsprofil (Tab. 9).

Tabelle 9: Untersuchungen zur Glucuronidierung von CUR mit hepatischen Mikrosomen und Cytosol von Ratte (RLM, RLC) und Mensch (HLM, HLC) sowie mit intestinaler S9-Fraktion der Ratte (RI-S9). Experimentelle Details siehe Kapitel 6.2.7.1-6.2.7.3.

<table>
<thead>
<tr>
<th>Testsystem</th>
<th>Aufarbeitung</th>
<th>Ergebnisse aus HPLC/DAD-Analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLM/UDPGA</td>
<td>Proteinfällung</td>
<td>CUR-Peak und CUR-Glucuronid A-Peak</td>
</tr>
<tr>
<td></td>
<td>Proteinfällung und Konjugathydrolyse</td>
<td>CUR-Peak mit geringerer Fläche als die Summe aus CUR-Peak und CUR-Glucuronid A-Peak</td>
</tr>
<tr>
<td>HLM/UDPGA</td>
<td>Proteinfällung</td>
<td>CUR-Peak und CUR-Glucuronid A- und B-Peak</td>
</tr>
<tr>
<td></td>
<td>Proteinfällung und Konjugathydrolyse</td>
<td>CUR-Peak mit geringerer Fläche als die Summe aus CUR-Peak, CUR-Glucuronid A- und B-Peak</td>
</tr>
<tr>
<td>RLC/NADH +</td>
<td>Proteinfällung</td>
<td>CUR-Peak und CUR-Glucuronid A-Peak; kleiner Peak von unkonjugiertem Hexahydro-CUR</td>
</tr>
<tr>
<td>RLM/UDPGA</td>
<td>Proteinfällung und Konjugathydrolyse</td>
<td>CUR-Peak und Peaks von Hexahydro-, Tetrahydro- und Octahydro-CUR</td>
</tr>
<tr>
<td>HLC/NADH +</td>
<td>Proteinfällung</td>
<td>CUR-Peak und CUR-Glucuronid A- und B-Peak; kleiner Peak von unkonjugiertem Hexahydro-CUR</td>
</tr>
<tr>
<td>HLM/UDPGA</td>
<td>Proteinfällung und Konjugathydrolyse</td>
<td>CUR-Peak und Peaks von Hexahydro-, Tetrahydro- und Octahydro-CUR</td>
</tr>
<tr>
<td>RI-S9/UDPGA</td>
<td>Proteinfällung</td>
<td>CUR-Peak und CUR-Glucuronid A-Peak; Umsatz im Vergleich zur Leber ähnlich</td>
</tr>
<tr>
<td></td>
<td>Proteinfällung und Konjugathydrolyse</td>
<td>CUR-Peak mit geringerer Fläche als die Summe aus CUR-Peak und CUR-Glucuronid A-Peak</td>
</tr>
</tbody>
</table>

3.5.4 Intestinale Glucuronidierung

Neben der hepatischen CUR-Glucuronidierung wurden Inkubationen mit CUR und S9-Fraktion (enthält mikrosomales und cytosolisches Protein) aus dem Dünndarm von Ratten in Gegenwart von UDPGA, wie unter 6.2.7.3 beschrieben, durchgeführt und nach Proteinfällung mit TCA mittels HPLC/DAD analysiert. Um einen Vergleich mit der hepatischen Glucuronidierung zu ermöglichen, wurde die Glucuronidierungsreaktion auf gleiche Weise mit S9-Fraktion aus Rattenleber durchgeführt.

Unter den Versuchsbedingungen wurde im Darm und in der Leber ausschließlich das CUR-Glucuronid A gebildet (Tab. 9). Das Ausmaß der CUR-Glucuronidierung war im Darm ähnlich hoch wie in der Leber. Wurden beispielsweise 100 µM CUR eingesetzt, waren im Darm 54% des detektierten CUR glucuronidiert, in der Leber lagen 58% als CUR-Glucuronid vor.
Da bereits eine intestinale Reduktion von CUR mit Darmgewebe von Ratten festgestellt wurde (Kap. 3.4.4), wurde zusätzlich der reduktive Hauptmetabolit Hexahydro-CUR eingesetzt. Die intestinalen Glucuronyltransferasen zeigten auch gegenüber Hexahydro-CUR Aktivität. Diese Beobachtungen liefern Hinweise, dass oral aufgenommenes CUR bereits im Darm ohne oder nach vorausgehender Reduktion effizient glucuronidiert werden kann.

3.5.5 Etablierung geeigneter Bedingungen für CUR und CUR-Glucuronide

Der Nachweis der CUR-Glucuronide erfolgte aus dem wässrigen Überstand des Inkubationsansatzes vorangehender Proteinpräzipitation mit 20%iger wässriger TCA und anschließender Rückneutralisation (pH 6-7) mit 1 M wässriger NaOH (s. Kap. 6.2.7.1). Diese konventionelle Methode findet häufig Anwendung, um störende Proteine zu entfernen und saure Hydrolyserreaktionen der Glucuronide zu vermeiden.

Die quantitative Betrachtung des Überstandes nach HPLC/DAD-Analyse verdeutlichte jedoch, dass mit der Proteinfällung mit TCA enorme Substanzverluste einhergingen: Nach Proteinfällung wurden nur ca. 20% der eingesetzten Substanz in Form von CUR und CUR-Glucuroniden mittels HPLC/DAD detektiert, d.h. der Hauptteil der Substanz wurde nicht erfasst. Wurde hingegen auf den Einsatz von TCA verzichtet und der Überstand nach Zentrifugation analysiert, war die Wiederfindung von CUR und CUR-Glucuroniden deutlich höher (65-95%).

Wurde der Überstand ohne (pH 7,4) oder nach Zusatz von TCA/NaOH (pH 6-7) mit Ethylacetat extrahiert fiel auf, dass neben CUR außergewöhnliche Mengen CUR-Glucuronid A im Extrakt mittels HPLC/DAD nachgewiesen wurden. Der überwiegende Teil des Konjugats war erwartungsgemäß hydrophil und wurde in der zurückbleibenden gelben wässrigen Lösung detektiert. Der ungewöhnlich „lipophiler“ Charakter des CUR-Glucuronid A und die daraus resultierende Extrahierbarkeit des Glucuronids wurde durch Änderung der Aufarbeitung beeinflusst. Wurde nach Zugabe von TCA auf eine Neutralisation mit NaOH verzichtet und direkt aus saurer Lösung (pH 2-3) extrahiert, zeigte sich, dass der extrahierbare Anteil des...

3.5.6 Spezies- und gewebespezifische CUR-Glucuronidierung

Die in vitro-Glucuronidierung von CUR wurde mit Mikrosomen aus Leber-, Darm- und Nierengewebe von männlichen Ratten sowie mit humanen hepatischen und intestinalen Mikrosomen untersucht (Tab. 10). Um die beiden CUR-Glucuronide A und B simultan zu erfassen, erfolgte die HPLC/DAD-Analyse ohne Extraktion und ohne Ansäuren aus dem Überstand nach Zentrifugation (s. Kap. 6.2.7.4).

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Gewebe</th>
<th>CUR-Glucuronid A</th>
<th>CUR-Glucuronid B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratte</td>
<td>Leber, nicht-induziert</td>
<td>+++</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>Leber, Aroclor-induziert</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Darm</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Mensch</td>
<td>Leber</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>Darm</td>
<td>+++</td>
<td>–</td>
</tr>
</tbody>
</table>

Neben der Leber war auch in der Niere und im Darm eine Glucuronidierung von CUR möglich. Das Hauptprodukt war bei allen getesteten Mikrosomen das „lipophile“ CUR-Glucuronid A.
Die größten Mengen an polarem Glucuronid B wurden mit humanen Lebermikrosomen beobachtet. Im Vergleich dazu waren Rattenmierenmikrosomen unter gleichen Bedingungen nicht fähig dieses Glucuronid zu bilden. Diese Befunde deuten darauf hin, dass CUR ein Substrat verschiedener spezies- und gewebespezifischer UGT-Isoenzyme ist, die möglicherweise bevorzugt die Bildung des einen oder des anderen CUR-Glucuronids katalysieren.

3.5.7 Umsetzungen mit Curcuminoid-Derivaten

Zusätzlich zu CUR wurde die Glucuronidierung weiterer Curcuminoid-Derivate mit Rattenlebermikrosomen untersucht. Die Identifizierung der Glucuronide erfolgte durch Spaltung mit β-Glucuronidase und anhand ihrer UV/Vis-Spektren (s. Anhang A.2.1) und Retentionszeiten in der HPLC (Tab. 3). In manchen Fällen wurde zusätzlich eine LC/MS/MS-Analyse durchgeführt (s. Kap. 3.5.8). Einen Überblick der getesteten Substanzen gibt Tabelle 11.

<table>
<thead>
<tr>
<th>Glucuronide</th>
<th>Anzahl</th>
<th>Strukturelle Merkmale</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>1-(2)</td>
<td>unterschiedliche chemische Struktur A und B</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>1-(2)</td>
<td>unterschiedliche chemische Struktur A und B</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>1-(2)</td>
<td>unterschiedliche chemische Struktur A und B</td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>1</td>
<td>enolische Struktur</td>
</tr>
<tr>
<td>Dimethyl-bisdemethoxy-CUR</td>
<td>n.n.</td>
<td>−</td>
</tr>
<tr>
<td>Iso-CUR</td>
<td>2</td>
<td>unterschiedliche chemische Struktur A und B</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>1</td>
<td>phenolische oder aliphatische Struktur möglich</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR</td>
<td>2</td>
<td>unterschiedliche chemische Struktur oder Isomere eines Glucuronids möglich</td>
</tr>
<tr>
<td>Hexahydro-dimethyl-CUR</td>
<td>2</td>
<td>aliphatische Struktur; Isomere</td>
</tr>
<tr>
<td>Hexahydro-iso-CUR</td>
<td>2</td>
<td>unterschiedliche chemische Struktur oder Isomere eines Glucuronids möglich</td>
</tr>
<tr>
<td>Tetrahydro-CUR</td>
<td>2</td>
<td>unterschiedliche chemische Struktur oder Dissoziationseffekt möglich</td>
</tr>
</tbody>
</table>

handelt es sich vermutlich um zwei Isomere, die durch das asymmetrische C-Atom der alipha-
tischen Kette, welche die OH-Gruppe trägt und einem zusätzlichen Chiralitätszentrum in der
Glucuronsäure zu erklären sind.

Das synthetisch hergestellte Dimethyl-bisdemethoxy-CUR wurde unter den gewählten Be-
dingungen nicht glucuronidiert. Dementsprechend war das synthetische Dimethyl-CUR ein
sehr schlechtes UGT-Substrat. Das Dimethyl-CUR-Glucuronid stellt ein enolisches Glucuro-
nid dar, da die beiden phenolischen Hydroxylgruppen in diesem synthetischen CUR-Derivat
nicht vorhanden sind (Abb. 14). Im Gegensatz dazu wurde das synthetische Iso-CUR nur
in etwas geringerem Umfang wie CUR konjugiert, wobei im Vergleich zu CUR mit Ratten-
lebermikrosomen stets das polarere Glucuronid neben dem dominanten Produkt nachgewiesen
wurde.

Die beiden demethoxylierten Curcuminoide Demethoxy- und Bisdemethoxy-CUR wurden
analog zu CUR umgesetzt, jedoch wies das Ausmaß der Glucuronidierung deutliche Un-
terschiede auf: CUR wurde am effizientesten glucuronidiert, Bisdemethoxy-CUR war das
schlechteste Substrat.

Als sehr gute Substrate der Glucuronyltransferasen mit höheren Glucuronidierungsraten als
CUR erwiesen sich die beiden reduktiven Metaboliten Tetrahydro- und Hexahydro-CUR. Dies
ist mit den Beobachtungen in den Präzisions-Leberschnitten (Kap. 3.3) und im kombiniert-
en Reduktions-Glucuronidierungs-Ansatz (Kap. 3.5.3) konform. Die Glucuronidierung von
Tetrahydro-CUR war problematisch, da Tetrahydro-CUR in der HPLC mit UV-Detektion
als unsymmetrischer Peak mit einer breiten Schulter und zwei Peakmaxima erfasst wurde.
Aufgrund dieses Phänomens, das auch von Ireson et al. [2002] beobachtet wurde, war nicht
auszuschließen, dass es sich bei den beiden Glucuronid-Peaks von Tetrahydro-CUR um das
identische Glucuronid handelte.

Die in Tabelle 11 aufgeführten Curcuminoid-Derivate stellten ebenfalls Substrate humaner
Glucuronyltransferasen dar. Im Unterschied zur Ratte bildeten die beiden Curcuminoide
Demethoxy- und Bisdemethoxy-CUR, wie für CUR beschrieben (Kap. 3.5.2), mit humanen
Lebermikrosomen immer ein zweites polares Glucuronid B. Für Iso-CUR wurde, ebenfalls
analog zu CUR, nach saurer Extraktion ein wasserlösliches und ein extrahierbares Glucu-
onid nachgewiesen. Dimethyl-CUR wurde auch von humanen Glucuronyltransferasen am
schlechtesten umgesetzt.

Das Verhalten einiger Curcuminoid-Glucuronide gegenüber der Extraktion mit Ethylacetat
aus saurer Lösung nach Zugabe von Glycin-HCl-Puffer wurde getestet (Abb. 26). Die Glucu-
ronide wurden dazu, wie in Kapitel 6.2.7.4 beschrieben, im modifizierten Glucuronidierungs-
assay hergestellt und die Extraktionsprozedur erfolgte wie unter 6.2.8.1 dargestellt.

Die Glucuronidierung von synthetischem Dimethyl-CUR zeigte, dass eine Konjugation der enolischen Hydroxylgruppe möglich ist. Da dieses synthetische Derivat sich bei Extraktion aus saurer Lösung wie die lipophilen Glucuronide der drei Curcuminoide verhielt, läßt dies eine ähnliche chemische Struktur dieser Konjugate vermuten.

Die Tatsache, dass die Glucuronide der Hexahydro-Metaboliten in ähnlichem Ausmaß wie die phenolischen Glucuronide der Cumarine extrahiert wurden, sowie die Beobachtung, dass
die Proteinpräzipitation mit TCA nicht, wie für CUR beschrieben (Kap. 3.5.5), zu Verlusten an Hexahydro-CUR und seinem Glucuronid führten, lieferten Anhaltspunkte, dass sich die Glucuronide von CUR und Hexahydro-CUR in ihrer chemischen Struktur unterscheiden.

Entgegen der in der Literatur [Pan et al., 1999] vertretenen Auffassung, dass die Konjugation mit Glucuronsäure an einer der phenolischen Hydroxylgruppen stattfindet, lieferten die genannten Beobachtungen verschiedene Hinweise, dass es sich beim dominanten CUR-Glucuronid A eher um ein aliphatisches CUR-Glucuronid handelt.

3.5.8 Strukturaufklärung der Glucuronide mittels LC/MS/MS-Analyse

Um die oben beschriebenen Hinweise auf die unterschiedliche chemische Struktur der beiden CUR-Glucuronide A und B einerseits, sowie von extrahierbarem CUR-Glucuronid A und polarem Hexahydro-CUR-Glucuronid andererseits zu untermauern, wurden die Glucuronide von CUR, Bisdemethoxy-CUR und Dimethyl-CUR sowie die Glucuronide ihrer entsprechenden Hexahydro-Metaboliten im Glucuronidierungsassay (Kap. 6.2.7.4) hergestellt und die Inkubationslösung einer HPLC/ESI/MS/MS-Analyse, wie unter 6.2.1.3 beschrieben, unterworfen.

Die Tochterionen-Spektren aller Glucuronide (s. Anhang A.4) wiesen [M-H]$^-$-Ionen bei m/z 175 auf, die der Glucuronsäure entsprechen. Die Molekularmasse der Molekülonen zeigte, dass jedes der gebildeten Glucuronide nur eine Glucuronsäure enthielt, d.h. es handelte sich ausschließlich um Monoglucuronide.

Im Gegensatz dazu war nach Fragmentierung der Glucuronide von Hexahydro-CUR (Abb. 27, unten) und Hexahydro-bisdemethoxy-CUR neben dem Verlust der Glucuronsäure eine Was-
serabspaltung (M-18) sichtbar, die auf eine freie aliphatische Hydroxylgruppe hinwies. Da
 dieser Wasserverlust nicht resultiert, wenn die aliphatische OH-Gruppe mit Glucuronsäure
 konjugiert ist, handelt es sich bei den hydrophileren Glucuroniden dieser Hexahydro-Derivate
 um phenolische Glucuronide. Diesen Befund bestätigte das Tochterionen-Spektrum des
 aliphatischen Hexahydro-dimethyl-CUR-Glucuronids, welches diese Wasserabspaltung
 nicht zeigte. Der Verlust von Wasser wurde jedoch nicht nur bei den Glucuroniden der
 Hexahydro-Metaboliten, sondern z.B. auch bei Hexahydro-CUR selbst festgestellt, während
 CUR und seine beiden Glucuronide, die eine ungesättigte aliphatische Kette besitzen, diesen
 nicht aufwiesen. Die LC/MS/MS-Analyse der beiden Curcuminoid-Glucuronide war mit den
 unter 3.5.7 präsentierten Beobachtungen konsistent, die zu der Annahme führten, dass das
 dominante lipophile Curcuminoid-Glucuronid A das enolische Glucuronid darstellt, führte
 aber nicht zu einem eindeutigen Beweis dieser Hypothese. Über die strukturellen Merkmale
 der verschiedenen Curcuminoid-Glucuronide gibt Abbildung 28 zusammenfassend Auskunft.

Abbildung 27: LC/MS- und LC/MS/MS-Spektren des Glucuronids von CUR (oben) und von
Hexahydro-CUR (unten). LC/MS-Bedingungen siehe Kapitel 6.2.1.3.
3 Ergebnisse

<table>
<thead>
<tr>
<th>aliphatische Glucuronide</th>
<th>phenolische Glucuronide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 28: Chemische Strukturen der Monoglucuronide verschiedener Curcuminoid-Derivate. Beim enolischen (A) und phenolischen (B) CUR-Glucuronid handelt es sich um postulierte Strukturen. Links, enolische bzw. aliphatische Glucuronide; rechts, phenolische Glucuronide.

3.6 Glucuronidierung mit humanen rekombinanten UGTs

Die Glucuronidierung verschiedener Curcuminoid-Derivate wurde mit den humanen rekombinanten UGT-Isoenzymen UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10 und 2B7, wie in Kapitel 6.2.7.5 beschrieben, untersucht. Die HPLC/DAD-Analyse erfolgte aus der wässrigen Gesamtlösung, ggf. nach Abtrennung der Proteine, um das aliphatische und phenolische Curcuminoid-Glucuronid nebeneinander zu erfassen. Da die Glucuronidierung von 4-(Trifluormethyl)umbelliferon (TFMU) von vielen humanen UGT-Isoformen katalysiert wird, repräsentiert TFMU eine geeignete Substanz für den Vergleich von Glucuronidierungsaktivitäten von rekombinanten Enzymen sowie von Geweben [Baranczewski et al., 2004; Uchaipichat et al., 2004]. Die Aktivität jeder UGT-Isoform wurde durch Glucuronidierung von TFMU oder E2 und im Falle von UGT1A9 zusätzlich mit Propofol (2,6-Diisopropylphenol) als spezifisches Substrat [King et al., 2000] überprüft. Die 2% DMSO, die notwendig waren um eine vollständige Solvatisierung der Curcuminoide zu gewährleisten, hatten einen ver-
nachlässigbaren Effekt auf die katalytische Aktivität der UGTs. Für jedes Substrat und jedes Isoenzym wurde sichergestellt, dass die Glucuronid-Bildung linear verlief. Die spezifischen Glucuronidierungsaktivitäten der Testsubstanzen und Kontrollen sind in Tabelle 12 wiedergegeben.

Die Glucuronide wurden durch Spaltung mit β-Glucuronidase und anhand ihrer UV/Vis-Spektren (s. Anhang A.2.1) und Retentionszeiten in der HPLC (Tab. 3) identifiziert. Das 3-HO-Glucuronid von E2 war als Referenzsubstanz vorhanden und wurde mittels Cochromatographie zugewiesen. Das Hauptprodukt war für die drei Curcuminoide immer das aliphatische lipophile Glucuronid A. Bei Bildung mehrerer Produkte ist die Aktivität in Tabelle 12 als Summe der Einzel-Aktivitäten angegeben.

Die drei Curcuminoide und der CUR-Hauptmetabolit Hexahydro-CUR waren Substrate der meisten Isoenzyme. Die höchsten Aktivitäten wurden i.A. für CUR und die geringsten für Hexahydro-bisdemethoxy-CUR und Dimethyl-CUR beobachtet. Wichtige UGTs für die Glucuronidierung von CUR und Demethoxy-CUR waren die Isoformen UGT1A1, 1A8 und 1A10. Während UGT1A1 ein wichtiges Isoenzym der humanen Leber darstellt, sind UGT1A8 und 1A10 dort nicht zu finden, sondern werden im Gastrointestinaltrakt exprimiert. Im Vergleich dazu spielte neben hepatischem UGT1A1 für die Glucuronidierung von Bisdemethoxy-CUR UGT1A3 eine bedeutendere Rolle als das extrahepatische UGT1A8.

Der reduktive Metabolit Hexahydro-CUR wurde hauptsächlich von UGT1A8 sowie von UGT1A9 und 2B7 konjugiert, während die Glucuronidierung von Hexahydro-bisdemethoxy-CUR unter den gewählten Bedingungen nur mit UGT1A1, 1A9 und 2B7 nachgewiesen wurde. Die Konjugation der enolischen Hydroxylgruppe von Dimethyl-CUR wurde von UGT1A1 und 1A9 in geringem Ausmaß katalysiert.

UGT1A3, 1A7 und 2B7 wiesen für die meisten Testsubstanzen im Vergleich zu den Positivkontrollen moderate Aktivitäten auf. Dagegen war die Glucuronidierung durch UGT1A6 unbedeutend. UGT1A4 war gegenüber CUR und Hexahydro-CUR inaktiv, die i.A. gute Substrate für UGTs darstellten, weshalb auf eine Glucuronidierung der übrigen Testsubstanzen verzichtet wurde. Die Aktivität von UGT1A4 wurde anhand der Glucuronidierung von E2 [King et al., 2000] sichergestellt, da laut Literatur [Baranczewski et al., 2004; Uchaipichat et al., 2004] TFMU als Positivkontrolle für UGT1A4 nicht geeignet ist. Da UGT1A4 jedoch primär N-Glucuronidierungen durchführt [King et al., 2000], war die fehlende Aktivität gegenüber den Curcuminoiden zu erwarten.

Die detaillierten Glucuronidierungsprofile der wichtigsten UGTs des Curcuminoïd-Metabolismus repräsentiert Abbildung 29. UGT1A1, 1A8 und 1A10 (links und Mitte) zeigten signifikant höhere Enzymaktivitäten für CUR als für die Positivkontrollen. Dagegen lagen die Aktivitäten von UGT1A9 und 2B7 (rechts) für die Curcuminoïd-Derivate deutlich unter denen für die Positivkontrollen TFMU bzw. Propofol. Hexahydro-CUR stellte für diese beiden Isoenzyme das beste Substrat unter den Curcuminoïd-Derivaten dar.
Tabelle 12: Spezifische Glucuronidierungsaktivitäten in pmol/min/mg Protein von humanen rekombinanten UGTs für verschiedene Substrate. Die Aktivitäten sind als Mittelwerte ± S.D. aus drei unabhängigen Bestimmungen für jedes Substrat und jedes Isoenzym angegeben. Die Substratkonzentrationen betrugen jeweils 20 µM. Die Nachweisgrenzen waren 1 pmol/min/mg Protein für CUR, Demethoxy-CUR und Bisdemethoxy-CUR, 4 pmol/min/mg Protein für Hexahydro-CUR, 6 pmol/min/mg Protein für Hexahydro-bisdemethoxy-CUR und 0,5 pmol/min/mg Protein für Dimethyl-CUR. n.n., nicht nachweisbar; n.b., nicht bestimmt; * Es wurden zwei Glucuronide gebildet; die Aktivität ist als Summe der beiden Einzel-Aktivitäten angegeben.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>UGT1A1</th>
<th>UGT1A3</th>
<th>UGT1A4</th>
<th>UGT1A6</th>
<th>UGT1A7</th>
<th>UGT1A8</th>
<th>UGT1A9</th>
<th>UGT1A10</th>
<th>UGT2B7</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFMU</td>
<td>426</td>
<td>422</td>
<td>n.b.</td>
<td>3886</td>
<td>8735</td>
<td>341</td>
<td>5547</td>
<td>421</td>
<td>1537</td>
</tr>
<tr>
<td></td>
<td>± 33</td>
<td>± 49</td>
<td>± 227</td>
<td>± 306</td>
<td>± 24</td>
<td>± 278</td>
<td>± 35</td>
<td>± 108</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>482</td>
<td>36*</td>
<td>10</td>
<td>n.b.</td>
<td>155</td>
<td>n.b.</td>
<td>73</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>± 79</td>
<td>± 5</td>
<td>± 1</td>
<td>n.b.</td>
<td>± 16</td>
<td>n.b.</td>
<td>± 13</td>
<td>± 6</td>
<td></td>
</tr>
<tr>
<td>CUR</td>
<td>1858*</td>
<td>540</td>
<td>n.n.</td>
<td>20</td>
<td>187</td>
<td>1537*</td>
<td>97*</td>
<td>1535*</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>± 77</td>
<td>± 14</td>
<td>± 2</td>
<td>± 4</td>
<td>± 146</td>
<td>± 15</td>
<td>± 92</td>
<td>± 38</td>
<td></td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>1679</td>
<td>440</td>
<td>n.b.</td>
<td>9</td>
<td>107</td>
<td>569</td>
<td>33*</td>
<td>1058</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>± 69</td>
<td>± 45</td>
<td>n.b.</td>
<td>± 1</td>
<td>± 8</td>
<td>± 58</td>
<td>± 5</td>
<td>± 54</td>
<td>± 21</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>885*</td>
<td>151</td>
<td>n.b.</td>
<td>19</td>
<td>25</td>
<td>38*</td>
<td>292</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 30</td>
<td>± 22</td>
<td>n.n.</td>
<td>± 2</td>
<td>± 2</td>
<td>± 1</td>
<td>± 8</td>
<td>± 3</td>
<td></td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>367</td>
<td>66</td>
<td>n.n.</td>
<td>n.n.</td>
<td>211</td>
<td>837</td>
<td>787</td>
<td>332</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>± 7</td>
<td>± 10</td>
<td>± 5</td>
<td>± 5</td>
<td>± 68</td>
<td>± 56</td>
<td>± 25</td>
<td>± 55</td>
<td></td>
</tr>
<tr>
<td>Hexahydro-</td>
<td>36*</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>70*</td>
<td>n.n.</td>
<td>105*</td>
<td></td>
</tr>
<tr>
<td>bisdemethoxy-CUR</td>
<td>± 4</td>
<td>n.b.</td>
<td>n.b.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>± 9</td>
<td>n.n.</td>
<td>± 8</td>
<td></td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>99</td>
<td>5</td>
<td>n.b.</td>
<td>8</td>
<td>± 1</td>
<td>± 1</td>
<td>± 2</td>
<td>± 2</td>
<td>n.n.</td>
</tr>
<tr>
<td></td>
<td>± 8</td>
<td>± 2</td>
<td>n.n.</td>
<td>± 1</td>
<td>± 1</td>
<td>± 2</td>
<td>± 2</td>
<td>n.n.</td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 29: Glucuronidierungsprofile von UGT1A1, 1A8, 1A9, 1A10 und 2B7 für Positivkontrollen und Testsubstrate. Die Aktivitäten repräsentieren Mittelwerte ± S.D. aus drei unabhängigen Bestimmungen pro Substrat und Isoenzym. Die Substratkonzentrationen betrugen jeweils 20 µM. * Propofol; TFMU, 4-(Trifluormethyl)umbelliferon; E2-3G, 3-HO-Glucuronid von E2; DMC, Demethoxy-CUR; BDMC, Bisdemethoxy-CUR; HHCUR, Hexahydro-CUR; HHBDMC, Hexahydro-bisdemethoxy-CUR; DiMeCUR, Dimethyl-CUR.

Die Untersuchungen zeigten, dass die Glucuronidierung der Curcuminoide und Hexahydroprodukte nicht spezifisch von einem bestimmten Isoenzym katalysiert wurde, sondern dass die UGTs für jedes Substrat überlappende Spezifitäten aufwiesen. Neben hepatischen Isoformen
spielen die UGTs des Gastrointestinaltrakts im Curcuminoid-Metabolismus eine bedeutende Rolle.

3.6.1 Phenolisches Curcuminoid-Glucuronid

UGT1A9 war das einzige Isoenzym, welches das phenolische Glucuronid B für jedes der drei Curcuminoide zusätzlich zu den aliphatischen Glucuroniden A in merklichen Anteilen bil-
dete (Tab. 12). Eine detaillierte Betrachtung der spezifischen Glucuronidierungsaktivitäten von UGT1A9 für die Bildung der phenolischen und aliphatischen Curcuminoid-Glucuronide liefert Abbildung 31. Die anteilig größte Menge an polarem phenolischen Glucuronid B im Vergleich zum lipophilen aliphatischen Glucuronid A war für Bisdemethoxy-CUR zu verzeichnen, bei dem ca. drei Viertel der gebildeten Glucuronide phenolisch waren, während die Zusammensetzung bei Demethoxy-CUR ausgeglichen war. Bei CUR verschob sich das Verhältnis wieder zugunsten des aliphatischen Glucuronids, so dass nur noch ca. ein Fünftel der Konjugate das phenolische CUR-Glucuronid repräsentierten. Zusätzlich war bei den aktivsten Isoformen UGT1A1, 1A8 und 1A10 eine geringfügige Nebenaktivität für die Bildung von phenolischem CUR-Glucuronid B zu beobachten, die aber im Vergleich zum aliphatischen Glucuronid A zu vernachlässigen war.

Abbildung 31: Spezifische Aktivitäten von UGT1A9 für das aliphatische (A) und phenolische (B) Glucuronid von CUR, Demethoxy-CUR und Bisdemethoxy-CUR. Die Aktivitäten repräsentieren Mittelwerte ± S.D. aus drei unabhängigen Bestimmungen pro Substrat. Die Substratkonzentrationen betrugen jeweils 20 µM.

Inhibitorischer Effekt von Propofol auf die phenolische CUR-Glucuronidierung

Propofol ist in der Literatur als spezifisches Substrat für UGT1A9 [King et al., 2000] mit einem K_m-Wert von 170 µM [Ebner und Burchell, 1993] und einem IC$_{50}$-Wert von 55 µM [Mano et al., 2004] beschrieben. Die gemessene Glucuronidierungsaktivität von UGT1A9 für Propofol (20 µM) betrug 2263 ± 129 pmol/min/mg Protein. Da sich CUR als deutlich schlechteres Substrat für UGT1A9 (Gesamtaktivität für beide Glucuronide 97 ± 15 pmol/min/mg Protein) als Propofol erwies, führte dies zu der Annahme, dass UGT1A9 für CUR eine geringere Affinität besitzt als für Propofol. Deshalb wurde geprüft,
ob Propofol das Potential besitzt mit der Glucuronidierung von CUR zum phenolischen Glucuronid B zu interagieren. Aufgrund der oben genannten Daten sollte eine Reduktion der phenolischen Glucuronidierung von CUR möglich sein.

Deshalb wurden in Kompetitionsexperimenten CUR und Propofol mit humanen Lebermikrosomen glucuronidiert. Es wurden humane Lebermikrosomen verwendet, da diese ebenso wie UGT1A9 imstande waren das phenolische CUR-Glucuronid B zu bilden (Kap. 3.5.2) und ihre Menge nicht limitiert war. Die Aktivität der humanen Lebermikrosomen für Propofol (20 µM) betrug 182 ± 17 pmol/min/mg Protein.

In den HPLC-Chromatogrammen war bei konstanter CUR-Konzentration (100 µM) mit steigender Propofol-Konzentration (0-200 µM) eine signifikante Abnahme des Peaks des polaren phenolischen CUR-Glucuronids zu sehen. Die Bildung des polaren CUR-Glucuronids wurde mit 50 µM Propofol durchschnittlich um 40%, mit 100 µM um 58% und mit 200 µM um 67% relativ zur Kontroll-Inkubation in Abwesenheit von Propofol inhibiert. Die notwendige Propofol-Konzentration um eine 50%ige Hemmung der phenolischen CUR-Glucuronidierung hervorzurufen, lag damit im Bereich von 50-100 µM. In diesem Konzentrationsbereich liegt auch der von Mano et al. [2004] veröffentlichte IC$_{50}$-Wert. Eine deutlich weniger ausgeprägte und bei höheren Propofol-Konzentrationen stagnierende Inhibierung wurde für das aliphatische CUR-Glucuronid A beobachtet (max. 17% Inhibition).

Unter Berücksichtigung, dass der inhibitorische Effekt in humanen Lebermikrosomen, die neben UGT1A9 diverse andere Isoenzyme enthalten, die CUR glucuronidieren können, festgestellt wurde, und unter der Annahme, dass die geringeren Ausbeuten an phenolischem CUR-Glucuronid auf die spezifische Hemmung von UGT1A9 durch Propofol zurückzuführen waren, bedeutet dies, dass die Entstehung des polaren CUR-Glucuronids B in den humanen Lebermikrosomen auf UGT1A9 zurückzuführen war. Dass die Bildung des polaren CUR-Glucuronids mit Rattenlebermikrosomen nur teilweise stattfand (Kap. 3.5.6), liegt möglicherweise daran, dass das homologe Isoenzym UGT1A9p der Ratte ein Pseudogen und damit inaktiv ist. Die geringfügige Bildung des phenolischen CUR-Glucuronids bei der Ratte wird vermutlich durch andere Isoenzyme hervorderufen.

3.6.2 Vergleichende Untersuchungen mit hepatischen und intestinalen Mikrosomen verschiedener Spezies

Die Glucuronidierung wurde mit Mikrosomen aus hepatischem und intestinalen Gewebe verschiedener Spezies, wie unter 6.2.7.6 dargestellt, durchgeführt. Die spezifischen UGT-Aktivitäten der Gewebe für die Positivkontrollen und Curcuminoïd-Kongenere sind in Tabelle 13 zusammengefasst, wobei bei der Bildung mehrerer Glucuronide aus einem Substrat, die Werte wiederum die Summe der Einzel-Aktivitäten repräsentieren.
Ergebnisse

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Leber Human</th>
<th>Leber Ratte</th>
<th>Darm Human</th>
<th>Darm Ratte</th>
<th>Darm Schwein</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFMU</td>
<td>24079 ± 1361</td>
<td>29654 ± 859</td>
<td>10326 ± 499</td>
<td>13817 ± 640</td>
<td>7096 ± 577</td>
</tr>
<tr>
<td>E2</td>
<td>534* ± 38</td>
<td>1145* ± 102</td>
<td>5029 ± 248</td>
<td>120 ± 14</td>
<td>7402 ± 713</td>
</tr>
<tr>
<td>CUR</td>
<td>4641* ± 126</td>
<td>4589 ± 170</td>
<td>12687 ± 1138</td>
<td>3933 ± 104</td>
<td>4635 ± 449</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>2777 ± 221</td>
<td>3480 ± 59</td>
<td>6917 ± 341</td>
<td>2603 ± 72</td>
<td>3966 ± 191</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>658* ± 29</td>
<td>1637 ± 168</td>
<td>3592 ± 182</td>
<td>843 ± 93</td>
<td>2297 ± 136</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>4036 ± 214</td>
<td>7935 ± 343</td>
<td>5145 ± 238</td>
<td>3863 ± 53</td>
<td>787 ± 61</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR</td>
<td>385 ± 60</td>
<td>1704 ± 187</td>
<td>264 ± 39</td>
<td>956 ± 109</td>
<td>47 ± 8</td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>76 ± 5</td>
<td>100 ± 5</td>
<td>36 ± 6</td>
<td>59 ± 2</td>
<td>12 ± 1</td>
</tr>
</tbody>
</table>

Im Darm dagegen wurden die höchsten Aktivitäten beim Menschen festgestellt. Besonders die drei Curcuminoide stellten gute Substrate dar. Die UGT-Aktivität für das aliphatische CUR-Glucuronid war im humanen Darm 3 Mal höher als in der humanen Leber, sowie in intestinalen Gewebe von Ratte und Schwein und lag im Bereich der Positivkontrolle TFMU. Im Gegensatz dazu wurde die phenolische Glucuronidierung der Hexahydro-Curcuminoide in Darm und Leber vom Mensch in vergleichbarem Ausmaß katalysiert. Obwohl die Mikrosomen aus Schweinedünndarm geringere Aktivitäten als das menschliche Darmgewebe aufwiesen, war das Glucuronidierungsprofil ähnlich. Im Gegensatz zur Ratte war die phenolische Glucuronidierung der Hexahydro-Metaboliten im Schweinedünndarm deutlich reduziert.

Während bei der Ratte die Glucuronidierung in Leber und Darm ähnlich effizient ablief, spielte beim Menschen die intestinale Glucuronidierung eine wichtigere Rolle als die hepatische Metabolisierung.

3 Ergebnisse

3.6.3 Einfluß der Curcuminoid-Struktur

3.6.4 Stabilität

Da die Glucuronidierungen unter physiologischen Bedingungen stattfanden, bei denen die chemische Instabilität der Curcuminoida (Kap. 3.2) zum Tragen kommt, wurden die Wiederfindungen der Curcuminoida in den Glucuronidierungsansätzen mit humanen rekombinanten UGTs bzw. spezies- und gewebespezifischen Mikrosomen quantifiziert. Für die Curcuminoida zeichneten sich, wie bei den Inkubationen mit Leberschnitten (Kap. 3.3.5), deutliche Substanzverluste ab. Die Wiederfindungen betrugen durchschnittlich 50-70% für die drei Cur-
cuminoiden, wobei für Bisdemethoxy-CUR die höchsten Wiederfindungen erhalten wurden (Tab. 14). Die Verluste an synthetischem Dimethyl-CUR waren i.A. etwas geringer (≤30%) und für die stabilen Hexahydro-Curuminoiden wurden, auch nach Abzentrifugieren der Proteine, keine signifikanten Substanzverluste beobachtet. Allgemein war zu bemerken, dass Umsetzungen mit zunehmenden Inkubationszeiten sowie mit abnehmenden Proteinkonzentrationen in geringeren Wiederfindungen der Curuminoiden resultierten, jedoch blieb das Verhältnis von Glucuronid zu Muttersubstanz unverändert.

Zusätzlich wurde das Verhalten der instabilen Curcuminoid-Derivate, wie unter 6.2.4.3 beschrieben, in Tris-Puffer pH 7,5 alleine und in einem Modellansatz, der Mikrosomen enthielt, bestimmt. Es erfolgte keine Inkubation bei 37°C, sondern die HPLC/DAD-Analyse wurde sofort nach dem Pipettieren des Ansatzes durchgeführt. In reinem Puffer wurde für jedes der drei Curuminoiden nur ca. die Hälfte der eingesetzten Menge nachgewiesen. In Anwesenheit von Mikrosomen lagen die Wiederfindungen dagegen bis zu 20% darüber und zeigten eine ähnliche Größenordnung wie in den Glucuronidierungsansätzen (Tab. 14). Dies bedeutet, dass die max. 70% Substanz, die für eine Reaktion zur Verfügung standen, nur geringfügig zusätzlichen, inkubationsbedingten Verlusten unterlagen. Höhere Wiederfindungen als die Curuminoiden lieferte wiederum das synthetische Dimethyl-CUR mit und ohne Mikrosomen. Offensichtlich wurden die Curuminoiden durch die Anwesenheit von Mikrosomen, ähnlich wie für FKS und Zellen (Kap. 3.2.2) beobachtet, „stabilisiert“. Im Gegensatz dazu zeigten die Hexahydro-Metaboliten keine Interaktionen mit den Mikrosomen.

<table>
<thead>
<tr>
<th>Curuminoid</th>
<th>Wiederfindung in %</th>
<th>Tris-Puffer</th>
<th>Tris-Puffer + Mikrosomen</th>
<th>Ansatz mit Mikrosomen</th>
<th>Ansatz mit Supersomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>54,6 ± 0,3</td>
<td>65,4 ± 0,8</td>
<td>62,4 ± 6,0</td>
<td>49,5 ± 16,3</td>
<td></td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>51,3 ± 1,9</td>
<td>71,4 ± 0,1</td>
<td>59,8 ± 3,8</td>
<td>67,3 ± 15,1</td>
<td></td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>53,1 ± 2,3</td>
<td>70,2 ± 0,3</td>
<td>60,8 ± 7,2</td>
<td>71,6 ± 12,0</td>
<td></td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>81,2 ± 3,9</td>
<td>92,8 ± 1,9</td>
<td>73,4 ± 1,6</td>
<td>78,0 ± 5,7</td>
<td></td>
</tr>
</tbody>
</table>
3.7 Kinetik der Glucuronidierung von CUR

Die Berechnung der kinetischen Parameter mit Hilfe der Michaelis-Menten-Gleichung wies UGT1A8 als Enzym mit hoher Affinität und hoher Kapazität für CUR aus. Die gleichen Charakteristika zeigten die humanen Lebermikrosomen in ausgeprägterer Form (Tab. 15). Das Verhältnis V_{max}/K_m gibt die katalytische Effizienz bzw. intrinsische Clearance an. Sie ist ein nützlicher Parameter zur Extrapolation von in vitro-Daten auf die in vivo-Situation.
Erwähnenswert ist die besonders hohe katalytische Effizienz von 5484,8 µl/min/mg Protein der humanen Lebermikrosomen.

<table>
<thead>
<tr>
<th>Mikrosomen/ Supersomen</th>
<th>K_m (µM)</th>
<th>V_{max} (pmol/min/mg Protein)</th>
<th>V_{max}/K_m (µl/min/mg Protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLM</td>
<td>0,9 ± 0,2</td>
<td>5122,5 ± 190,2</td>
<td>5484,8</td>
</tr>
<tr>
<td>UGT1A8</td>
<td>14,5 ± 3,6</td>
<td>2486,3 ± 218,2</td>
<td>171,5</td>
</tr>
</tbody>
</table>

3.8 Interaktion von Curcuminoid-Glucuroniden mit Mikrotubuli-Proteinen

3.8.1 Stabilität von Curcuminoid-Glucuroniden

Die Glucuronidierung der Positivkontrolle Ketoprofen lieferte zwei Produkte, die durch Spaltung mit β-Glucuronidase als Glucuronide identifiziert wurden. Da Ketoprofen als Racemat vorliegt, also ein inhärentes Chiralitätszentrum besitzt, resultierte die Glucuronidierung aufgrund des zusätzlichen asymmetrischen Kohlenstoffatoms der Glucuronsäure in zwei diastereomeren Acylglucuroniden (Abb. 35), die chromatographisch getrennt werden können. In den Untersuchungen wurde zwischen den beiden Glucuroniden des Ketoprofens nicht unterschieden, sondern die Summe beider Produkte berechnet.
3 Ergebnisse

Die Acylglucuronide von Ketoprofen zeigten wie zu erwarten einen zeitabhängigen Substanzverlust, jedoch ohne Rückbildung von Ketoprofen. Im Gegensatz zur glucuronidierten Form war freies Ketoprofen über 3 h stabil und zeigte nach 24 h einen Verlust von 16%, während die Glucuronide zu diesem Zeitpunkt zu 95% abgebaut waren. Die aliphatischen Glucuronide von CUR und Bisdemethoxy-CUR wiesen ebenfalls einen zeitabhängigen

72
Ergebnisse

Abbildung 35: Chemische Struktur der Ketoprofen-Acylglucuronide.

Im Vergleich zu CUR verhielt sich das synthetische Iso-CUR in freier und glucuronidierter Form während des zeitabhängigen Zerfalls nicht unterschiedlich und nach 24 h war noch ca. ein Drittel der Ausgangsmenge präsent. Damit war das Glucuronid von Iso-CUR auch stabiler als die Ketoprofen-Acylglucuronide. Das phenolische Glucuronid des stabilen reduktiven CUR-Metaboliten Hexahydro-CUR zeigte wie das Aglykon über den gesamten Inkubationszeitraum keine merklichen Verluste.

Die erhöhte Instabilität der Ketoprofen-Acylglucuronide und der natürlichen Curcuminoid-Glucuronide stellt einen Aktivierungsschritt dar und bekräftigt frühere Vermutungen (Kap. 3.5.5), dass die enolischen Curcuminoid-Glucuronide zu potentiellen Interaktionen mit Proteinen fähig sind.

3.8.2 Hemmung der Mikrotubuli-Polymerisation durch Glucuronide von Curcuminoiden

Der Effekt verschiedener Curcuminoid-Glucuronide sowie der zugehörigen Muttersubstanzen auf die Polymerisation von MTP zu Mikrotubuli wurde, wie in Kapitel 6.2.10 beschrieben, im zellfreien System mit Tubulin, das wie unter 6.2.9 dargestellt, aus Rinderhirn isoliert wurde, untersucht. Die verwendeten Glucuronide wurden enzymatisch, wie unter 6.2.8.2 beschrieben, hergestellt und angereichert. Die Muttersubstanzen wurden in mindestens der gleichen Konzentration wie die Glucuronide eingesetzt, jedoch waren die Konzentrationen der drei Curcuminoiden sowie des synthetischen Dimethyl-CUR aufgrund ihrer schlechten Wasserlöslichkeit limitiert (max. 100 µM). Als Positivkontrolle wurde das Alkaloid Colchicin (2 µM) aus Colchicum autumnale (Herbstzeitlose), das die Mikrotubuli-Bildung durch nicht-kovalente Bindung hemmt [Andreu und Timasheff, 1982; Little und Luduena, 1985; Saltarelli und Pantaloni, 1982; Wallin et al., 1988], eingesetzt. Weiterhin dienten die Acylglucuronide von Ketoprofen...
als Positivkontrolle, da diese zu Reaktionen mit Proteinen fähig sind [Presle et al., 1996; Terrier et al., 1999].

Teilweise wurde während der Vorinkubation der Testsubstanz mit den MTP eine Zunahme der Trübung beobachtet, die vermutlich auf zu hohe GTP-Restkonzentrationen, welche bei der Tubulin-Präparation nicht entfernt werden, zurückzuführen war. Aus diesem Grund wurde zusätzlich zu den ersten beiden Polymerisationszyklen eine dritte Polymerisation durchgeführt. Die Polymerisation der MTP zu Mikrotubuli wurde nach Vorinkubation für 20 min bei Raumtemperatur durch Zugabe von GTP gestartet.

Beide Polymerisationszyklen zeigen, dass durch Vorinkubation mit 40 µM CUR-Glucuronid die Polymerisation zu Mikrotubuli gehemmt wurde. Relativ zur DMSO-Kontrolle betrug die Hemmung durch das CUR-Glucuronid im Mittel 58% und lag damit im Bereich der Ketoprofen-Acylglucuronide, die bei einer Endkonzentration von 36 µM zu einer Hemmung von 57% relativ zur Kontrolle führten. 40 µM freies CUR hingegen hatte, ebenso wie unkon-
jugierter Ketoprofen, keinen Effekt auf die Polymerisation. Ebenso beeinflusste die doppelte CUR-Konzentration die Mikrotubuli-Bildung nicht (s. Anhang A.6.2).

Die Effekte weiterer Curcuminoid-Muttersubstanzen und ihrer respektiven Glucuronide auf die Mikrotubuli-Polymerisation sind in Abbildung 37 zusammengefasst. Die Messungenauigkeiten bei der Bestimmung der Trübung können bis zu 10% betragen, so dass Inhibitionen <10% nicht signifikant sind und teilweise negative Werte resultieren. Die detaillierten Polymerisationskurven befinden sich im Anhang (s. Kap. A.6).

Abbildung 37: Mittlere Hemmung der Mikrotubuli-Polymerisation durch verschiedene Curcuminoid- und Curcuminoid-Glucuronide relativ zur DMSO-Kontrolle (100% Polymerisation). COL, Colchicin; DMC, Demethoxy-CUR; BDMC, Bisdemethoxy-CUR; DiMeCUR, Dimethyl-CUR; HHCUR, Hexahydro-CUR.
Obwohl Dimethyl-CUR als schlechtes UGT-Substrat nicht vollständig zum enolischen Glucuronid umgesetzt werden konnte (max. 40% Umsatz), war der inhibitorische Effekt dem Glucuronid und nicht dem Aglykon zuzuschreiben, da höhere Konzentrationen von freiem Dimethyl-CUR (80 µM), als sie in der Glucuronid-Lösung vorhanden waren, die Polymerisation nicht beeinflussten (s. Anhang A.6.5).

3.8.3 Beeinflussung der CUR-Stabilität durch Bestandteile des Polymerisationsansatzes

Ergebnisse

Abbildung 38: Zeitabhängige CUR-Verluste in 0,1 M Kalium-Phosphat-Puffer bei pH 7,4 und pH 6,4 in Ab- und Anwesenheit von EGTA. Die CUR-Ausgangskonzentration betrug 30 µM. Methanol repräsentiert ein Medium in dem CUR nicht zerfällt.

Da der pH-Wert von 6,4 und der EGTA-Zusatz den Zerfall von CUR nicht vollständig verhinderten, wurde weiterhin der Effekt der MTP auf die chemische Stabilität von CUR untersucht. Dazu wurde Kalium-Phosphat-Puffer mit MTP (0,2 mg/ml) versetzt und das Absorptionspektrum im Bereich von 350-550 nm über 2 h bei 37°C aufgenommen (Abb. 39).

Die Anwesenheit der MTP führte zu einer deutlichen Stabilisierung von CUR. Im Gegensatz zu reinem Puffer, in dem nach 5 min bereits über 60% des CUR nicht mehr nachweisbar waren, waren in Anwesenheit von MTP nach 2 h noch ca. 65% der Ausgangsmenge vorhanden. Es ist bekannt, dass CUR mit Proteinen wie z.B. Serumalbumin interagieren kann und dies einen stabilisierenden Effekt auf CUR ausübt [Barik et al., 2003; Pulla Reddy et al., 1999; Zsila et al., 2003a]. Analog Untersuchungen mit Rinderserumalbumin (BSA) zeigten, dass eine Reduktion des CUR-Verlustes auch mit 1 mg/ml BSA möglich war, aber nicht in dem Ausmaß wie mit 0,2 mg/ml MTP (Daten nicht dargestellt). Die MTP scheinen damit ein größeres Potential für die Stabilisierung von Curcuminoiden zu besitzen als Serumproteine.
Die chemische Stabilität der Curcuminoide während der Durchführung des Polymerisationsassays beruhte damit auf einer kombinatorischen Wirkung von schwach saurem Milieu und den stabilisierenden Effekten von EGTA und MTP.
4 Diskussion

4.1 Stabilität von Curcuminoiden

Die Kenntnis über die chemische Instabilität der Curcuminoide unter in vitro-Bedingungen ist insbesondere bei der Beurteilung biologischer Effekte relevant. Es ist nicht auszuschließen, dass der hervorgerufene Effekt, der z.B. dem CUR zugeschrieben wird, nicht durch seine Zerfallsprodukte moduliert wird (s. Kap. 4.6).

4.2 Metabolismus von Curcuminoiden in Präzisions-Leberschnitten und Zellfraktionen

4.2.1 Phase I-Metabolismus von CUR

Das metabolische als auch das synthetische Octahydro-CUR setzte sich aus zwei Isomeren mit identischen UV/Vis-Spektren und GC-Massenspektren zusammen, die als Diastereomere angesehen wurden, da diese aufgrund der beiden neu entstandenen Chiralitätszentren in der aliphatischen Kette von CUR möglich sind. Zwei Isomere mit übereinstimmenden UV/Vis-Spektren wurden auch für Dihydro-CUR beobachtet; in diesem Fall ist es wahrscheinlich, dass diese aus der Reduktion verschiedener olefinischer Doppelbindungen resultieren, beispielsweise der allylischen oder der enolischen Doppelbindung von CUR.

4.2.2 Phase II-Metabolismus von CUR

4 Diskussion

Anders als in den Leberschnitten wurde die Sulfatierung von CUR bei Verwendung von Leber-
cytosol männlicher Sprague-Dawley-Ratten nicht beobachtet. Die Bildung von CUR-Sulfat
wurde jedoch in vitro mit hepatischem und intestinalen Cytosol von männlichen F344-Ratten
sowie mit humanem hepatischem und intestinalen Cytosol und mit rekombinanten Phenol-
Sulfotransferasen (SULT1A1, SULT1A3) nachgewiesen [Ireson et al., 2002]. Auch in vivo
wurde beim Menschen nach oraler Verabreichung CUR-Sulfat in geringen Mengen im Blut
und im Urin mittels LC/MS nachgewiesen [Garcea et al., 2004; Sharma et al., 2004]. In der
vorliegenden Arbeit wurde jedoch die Sulfatierung von Hexahydro-CUR mit Rattenleber-
cytosol und in den Leberschnitten nachgewiesen. Die Entstehung von Hexahydro-CUR-Sulfat
ist bisher in der Literatur nicht beschrieben. Allerdings ist beispielsweise bekannt, dass die
Sulfatierung von Ferulasäure, einem Abbauprodukt von CUR, in der Ratte den Hauptaus-
scheidungsweg darstellt [Rondini et al., 2002].

Neben der Bildung von Monokonjugaten wurden im Plasma von Ratten nach oraler Verab-
reichung auch Sulfoglucuronide von CUR gefunden [Asai und Miyazawa, 2000; Ireson et al.,
2001]. Hinweise auf die Bildung solcher gemischten Konjugate gab es in den Leberschnitten
anstatt für CUR, für den reduktiven Hauptmetabolit Hexahydro-CUR. Eine mögliche Erklä-
rung für diesen Befund liefert die geringere chemische Stabilität von CUR im Vergleich zu
Hexahydro-CUR (Abb. 15).

Die Analyse der Kulturmedien auf Konjugate erfolgte zuerst nach enzymatischer Spal-
tung mit einem β-Glucuronidase/Arylsulfatase-Gemisch aus Helix pomatia für 16 h bei
37°C (Kap. 6.2.5.3, Methode I). Mit dieser etablierten Hydrolysemethode wurden ausschließ-
lich Konjugate der reduktiven Curcuminoïd-Metaboliten in hohem Ausmaß nachgewiesen.
Der Nachweis von Curcuminoïd-Konjugaten war nicht möglich, obwohl verschiedene Arbeits-
gruppen über die Bildung von CUR-Glucuroniden und Sulfaten berichten [Asai und Miyai-
zawa, 2000; Ireson et al., 2001, 2002; Pan et al., 1999]. Um eine detaillierte Analyse der
Konjugate vorzunehmen, wurde eine separate Hydrolyse der Glucuronide und Sulfate durch
den Einsatz von β-Glucuronidase und Sulfatase mit einer verkürzten Inkubationszeit von 2 h
(Kap. 6.2.5.3, Methode II) durchgeführt. Signifikante Mengen an Glucuroniden und Sulfaten
der reduktiven Metaboliten sowie CUR-Glucuronide und Sulfate wurden unter diesen Bedin-
gungen nachgewiesen (Abb. 22). Diese Diskrepanz beruht hauptsächlich auf der chemischen
Instabilität von CUR (Kap. 3.2). Offensichtlich war nach 16-stündiger Inkubation das aus den
Glucuronsäure- und Sulfat-Konjugaten freigesetzte CUR bereits wieder vollständig zerfallen,
während dieser Abbau nach 2 h noch nicht stattgefunden hatte. Dieser Befund wird durch
ähnliche Beobachtungen von Asai und Miyazawa [2000] gestützt, die Curcuminoïd-Verluste
von bis zu 30%, während einer maximalen enzymatischen Hydrolysedauer von 4 h, beschrei-
ben. Im Gegensatz zu CUR, wurden von den reduktiven Metaboliten ähnliche Mengen an
Konjugaten nach 16-stündiger und nach 2-stündiger Hydrolyse gefunden, was auf eine höhere
Stabilität der reduktiven Metaboliten hinweist und damit in Einklang mit den Befunden der
separaten Untersuchungen zur Stabilität (Abb. 15) steht. Pan et al. [1999] berichten, dass
4 Diskussion

Tetrahydro-CUR im Vergleich zu CUR in Puffer deutlich stabiler ist. Diese Ergebnisse zeigen, dass sich die weitverbreitete Hydrolyse mit β-Glucuronidase/Arylsulfatase aus Helix pomatia nicht für jedes Substrat eignet.

4.2.3 Metabolismus von Demethoxy-CUR und Bisdemethoxy-CUR

4.3 Glucuronidierung von Curcuminoiden

4.3.1 Allgemeine Merkmale

Bei der Etablierung und Optimierung des Glucuronidierungsassays zeigte sich, dass der Einsatz von Alamethicin zur Reduktion der Latenz der UGTs für die Glucuronidierung der Curcuminioide essentiell war. Ohne Alamethicin war z.T. kein Umsatz nachweisbar und die Anreicherung der Curcuminoid-Glucuronide, die für den Einsatz im Mikrotubuli-Polymerisationsassay notwendig war, wäre nicht möglich gewesen.

Insbesondere CUR erwies sich als gutes Substrat für die Glucuronidierung in vitro. Eine effiziente Glucuronidierung von CUR ist auch in vivo vorstellbar, da durch die hohe Lipidlöslichkeit von CUR möglicherweise die Penetration des Curcuminoids durch die ER-Membran und damit der Zugang zur Substrat-Bindungsstelle, im Vergleich zu weniger lipophilen UGT-Substraten, erleichtert ist.

Die Glucuronidierung ist ein metabolischer Schlüsselprozess, der darauf ausgelegt ist, endogene und exogene Substanzen aus dem Körper zu eliminieren. Die Aufgabe der UGTs ist es, unpolare und lipidlöschliche Substanzen in wasserlösliche Verbindungen umzuwandeln, um eine anschließende Eliminierung über den Urin oder die Galle zu ermöglichen. Bei CUR führt dieser Prozess jedoch hauptsächlich zur Bildung eines Glucuronids mit lipophilem Charakter. Dieses Glucuronid zeichnet sich dadurch aus, dass es unter physiologischen Bedingungen (pH 7,4) teilweise und aus saurem Milieu (pH 1,8) vollständig in den organischen Extrakt überführt wird. Weshalb die Konjugation der Curcuminoiden mit Glucuronsäure nicht zu einer ausreichenden Polaritätssteigerung führt, läßt sich anhand der chemischen Struktur des
4 Diskussion

4.3.2 Einsatz von humanen rekombinanten UGTs

Die detaillierte Untersuchung der Glucuronidierung mit humanen rekombinanten UGT-Isoenzymen zeigte, dass die Konjugation von Curcuminoiden, ihren Hexahydro-Metaboliten sowie des synthetischen Derivats Dimethyl-CUR mit Glucuronsäure von mehreren Isoenzymen katalysiert wird. Curcuminoiden stellen damit keine spezifischen Substrate für eine bestimmte humane Isoform dar. Eine Präferenz der wichtigsten Isoenzyme für die Bildung enolischer Glucuronide durch UGT1A1, 1A8 und 1A10 oder phenolischer Glucuronide durch UGT1A9 und 2B7 war jedoch zu erkennen.

4.3.3 Kinetische Untersuchungen mit CUR

Die Bildung des dominanten CUR-Glucuronids folgte einer typischen Michaelis-Menten-Kinetik. Die katalytischen Parameter der Glucuronidierung mit humanen Lebermikrosomen und extrahepatischem UGT1A8 zeigten, dass hepatische als auch intestinale Glucuronyltransferasen hohe Affinitäten und Glucuronidierungskapazitäten für CUR aufweisen. In Übereinstimmung mit den Befunden dieser Arbeit beschreibt eine Studie [Basu et al., 2004a] mit Homogenaten von COS-1-Zellen, die mit der cDNA von UGT1A1, 1A7, 1A8 und 1A10 transfiziert wurden, für diese Isoenzyme des Gastrointestinaltrakts ebenfalls einen katalytischen Verlauf nach Michaelis-Menten. Jedoch war im Vergleich zur vorliegenden Arbeit (\(K_m \)-Wert, 15 µM; \(V_{max} \), 2486 pmol/min/mg Protein) von deutlich höheren \(K_m \)-Werten (100 µM) und einer signifikant geringeren maximalen Reaktionsgeschwindigkeit von nur 13 pmol/min/mg Protein für UGT1A8 berichtet. Diese Unterschiede beruhen vermutlich darauf, dass die Aktivität der COS-1-Zellen auf den Gesamtproteingehalt und im Falle der in dieser Arbeit verwendeten rekombinanten Isoenzyme auf mikrosomales Protein bezogen wurde und könnten weiterhin das Ergebnis eines höheren Expressionslevels der UGTs in den Sf9-Zellen, als in den COS-1-Zellen, sein. Außerdem waren vermutlich niedrigere Nachweiskonzentrationen (0,5 pmol CUR) bei der verwendeten DAD-Detektion aufgrund des hohen Extinktionskoeffizienten von CUR möglich, als bei Dünnschichtchromatographie mit radioaktiv-markierten Substanzen.

Die CUR-Glucuronidierung mit humanen Lebermikrosomen läßt sich mit Hilfe der \textit{in vitro} ermittelten katalytischen Parameter auf die gesamte Leber hochrechnen und liefert damit eine Einschätzung der Situation \textit{in vivo}. Unter Einbezug der von Soars et al. [2002] publizierten Angaben, dass 45 mg mikrosomales Protein in einem Gramm Leber und 20 g Leber pro kg
Körpergewicht enthalten sind, berechnet sich die katalytische Effizienz der menschlichen Leber für CUR zu dem enormen Wert von 4,9 l/min/kg Körpergewicht. Die Clearance von CUR liegt unter dem in vivo beobachteten hepatischen Blutfluss, der mit 20 l/min/kg Körpergewicht limitiert ist [Fisher et al., 2001].

Diskussion

4.4 Hepatischer Curcuminoid-Metabolismus bei Ratte und Mensch

Außerdem scheint die mikrosomal-vermittelte hepatische Reduktion von Hexahydro-CUR zu Octahydro-CUR der Ratte vom verwendeten Rattenstamm abzuhängen. Sprague-Dawley-Ratten sind nicht in der Lage diese Reduktion vorzunehmen, Wistar-Ratten hingegen sind potent. Ebenso beschreibt eine Studie mit Mikrosomen von F344-Ratten diesen Reaktions-Schritt [Ireson et al., 2002].

4.5 Intestinaler Curcuminoid-Metabolismus und Bioverfügbarkeit

Die detaillierte Untersuchung der Glucuronidierung der Curcuminoides mit humanen rekombinanten Isoenzymen zeigte, dass hauptsächlich die intestinalen Isoformen UGT1A8 und 1A10 verantwortlich sind. Die signifikant höhere Glucuronidierungsaktivität des humanen Darms für die drei Curcuminoides im Vergleich zur humanen Leber ist auf die Expression dieser beiden UGTs zurückzuführen, die vermutlich auch in vivo bedeutend sein könnten. UGT1A8 und 1A10 kommen ausschließlich in extrahepatischen Geweben vor, v.a. im Dünnd- und Dickdarm, werden in geringen Mengen aber z.B. auch im Esophagus exprimiert. Diese beiden Isoenzyme besitzen neben ihrer hohen Aktivität für Curcuminoides, für eine Vielzahl anderer natürlich vorkommender und biologisch aktiver Verbindungen, wie Flavonoide, z.B. das Isoflavon Genistein, Anthrachinone oder Cumarine, wie z.B. Scopoletin, hohe Glucuronidierungseffizienzen [Cheng et al., 1999]. Dagegen ist die Curcuminoid-Glucuronidierung durch UGT1A1, welches das am stärksten exprimierte UGT im humanen Dünn darm mit höheren Aktivitäten als in der Leber darstellt [Fisher et al., 2000b], weniger bedeutend.

4.6 Biologische Wirkungen der Metabolite und Zerfallsprodukte von CUR

Eine endgültige Aussage über die pharmakologische Wirksamkeit von CUR ist aufgrund des unzureichenden Kenntnisstandes über potentielle Effekte der Metabolisierungs- und Zerfallsprodukte von CUR derzeit nicht möglich.

4.7 Untersuchungen mit synthetischem Iso-CUR

4.8 Toxikologische Relevanz von Curcuminoid-Glucuroniden

Die Untersuchungen zur Interaktion von Curcuminoiden und Curcuminoid-Glucuroniden mit der Mikrotubuli-Polymerisation zeigen erstmals, dass die dominanten Glucuronide der drei natürlich vorkommenden Curcuminoidre CUR, Demethoxy-CUR und Bisdemethoxy-CUR reaktive Verbindungen repräsentieren. Sie besitzen das Potential die Mikrotubuli-Bildung aus MTP im zellfreien System konzentrationsabhängig zu hemmen. Im Gegensatz dazu interagieren die Muttersubstanzen und das phenolische Hexahydro-CUR-Glucuronid nicht mit den MTP.
Für die Bildung von reaktiven Glucuroniden scheint das konjugierte Doppelbindungssystem, das durch die Substituenten der beiden Aromaten beeinflusst wird, eine entscheidende Rolle zu spielen. Dies wird auch durch die unterschiedliche Stabilität der Glucuronide dieser Curcuminoid-Kongenere gestützt. Im Fall von Dimethyl-CUR, dem die para-ständigen Hydroxylgruppen der Aromaten fehlen, können diese Elektronenpaare nicht mehr in das konjugierte Doppelbindungssystem miteinbezogen werden. Es wird vermutet, dass sich dadurch insgesamt die Reaktivität der Verbindung verringert.

Bei den dominanten Glucuroniden der Curcuminoide ist die Glucuronsäure an der enolischen Hydroxylgruppe lokalisiert, die eine vinlyerge Carboxylsäurefunktion repräsentiert. Diese enolischen Glucuronide der Curcuminoide, nicht aber das phenolische Glucuronid des Metaboliten Hexahydro-CUR, ähneln damit strukturell den Acylglucuroniden klassischer NSAIDs, wie z.B. Ketoprofen, bei denen es sich um Carbonsäuren handelt. Acylglucuronide sind elektrophile Metabolite und besitzen eine intrinsische Reaktivität, die in spontanen Reaktionen resultieren kann und beispielsweise die Bildung kovalenter Proteinaddukte beinhaltet [Sallustio et al., 2000; Smith et al., 1990].

Der Auf- und Abbauprozess der Mikrotubuli ist für viele zelluläre Funktionen essentiell, wie z.B. den Erhalt der Zell-Konformation und Motilität und ist insbesondere bei der Mitose für die Ausbildung der Mitosespindel wichtig. Ein Eingriff in die Mitose wurde bei der Inkubation von humanen MCF-7-Brustkrebszellen mit CUR in Zellkultur beobachtet, der auf einer gestörten Ausbildung der Mitosespindel beruhte und mit der Induktion von Mikrokernen verbunden war [Holy, 2002]. Aufgrund der nachgewiesenen Reaktivität des CUR-Glucuronids, nicht aber von freiem CUR, gegenüber MTP, besteht die Möglichkeit, dass ein solcher Effekt nicht auf unverändertes CUR, sondern auf den glucuronidierten Metabolit zurückzuführen ist, da MCF-7-Zellen UGTs exprimieren [Adams et al., 1989]. Desweiteren sind die Mikrotubuli

von NSAIDs werden teilweise mit der Modifikation von Proteinen durch ihre Acylglucuronid-Metaboliten in Verbindung gebracht, da die Adduktbildung die Funktionsfähigkeit eines Proteins beeinträchtigen bzw. inaktivieren kann oder sich in einer Immunantwort bzw. in Form anderer toxischer Auswirkungen *in vivo* manifestieren kann [Bougie et al., 1997; Worrall und Dickinson, 1995].

Die durch Curcuminoid-Glucuronide vermittelte Inhibition der Mikrotubuli-Polymerisation liefert erste konkrete Hinweise auf eine toxikologische Relevanz der Curcuminoide nach Aktivierung durch die UGTs, die möglicherweise auch *in vivo* beim Menschen nach oraler Aufnahme eine Rolle spielen könnte. Um mögliche biologische Konsequenzen evaluieren zu können sind weitere Untersuchungen, welche die Identifizierung weiterer Reaktionspartner sowie die Klärung des Bindungscharakters (kovalent oder nicht-kovalent) der Proteinaddukte beinhalten sollten, notwendig. Wenn kovalente Proteinaddukte in intakten Zellen gebildet werden, könnte dies wichtige pharmakologische und toxikologische Auswirkungen für die Curcuminoid-in-vivo haben.
5 Zusammenfassung

Wegen der chemischen Instabilität der Muttersubstanzen eignen sich die stabilen reduktiven Phase I-Metaboliten, v.a. die Hexahydro-Curcuminoide, als Biomarker für die Exposition in klinischen Studien.

Die detaillierte Untersuchung der Glucuronidierung mit humanen rekombinanten UGTs zeigte, dass alle getesteten Isoenzyme – ausgenommen UGT1A4 – Aktivitäten für die Curcuminoïd-Derivate aufwiesen. Während hepatisches UGT1A1 und die intestinalen Isoformen UGT1A8 und 1A10 eine Präferenz für die Glucuronidierung der Curcuminoide zeigten, wurde die Bildung phenolischer Hexahydro-Glucuronide bevorzugt von UGT1A9, 2B7 sowie 1A8 katalysiert. Hexahydro-bisdemethoxy-CUR und Dimethyl-CUR stellten schlechte UGT-Substrate dar. UGT1A9 repräsentierte das einzige Isoenzym, welches beide Curcuminoïd-Glucuronide (phenolisch und aliphatisch) mit ähnlichen Aktivitäten bildete und war damit vermutlich für die Bildung des zweiten Curcuminoïd-Glucuronids beim Menschen verantwortlich. Diese Annahme wurde durch die Inhibition der Bildung dieses CUR-Glucuronids

6 Experimenteller Teil

6.1 Geräte, Chemikalien und Lösungen

6.1.1 Geräte und Hilfsmittel

Synthese
- Exsikator
- Magnetrührer Ika-Mag RCT (IKA Labortechnik)
- Rotationsverdampfer Rotavapor Re 111 mit Wasserbad (Büchi) und Membran-Vakuumpumpe mit Druckregler CVC24 (Vacuubrand)
- Schmelzpunktbestimmungsapparat nach Dr. Tottoli (Büchi); Silikonöl AK 200 (Fa. Wacker)

Zellfraktionierung
- Pinzette
- Potter S, B. Braun (Biotech International)
- Schere
- Stabmischer
- Ultrazentrifuge Centrifugen T-1080 (Kontron Instruments)

Zellkultur
- Autoklav (F. Gösser, Medizin- und Labortechnik)
- Brutschrank Hera Cell (Heraeus)
- Handzählgeräte
- Phasenkontrastmikroskop Axiovert 40 C; Objektive: 5×/0.12 Ph0, 10×/0.25 Ph1 (Zeiss)
- Pipetus (Hirschmann Laborgeräte)
- Sterilbank Hera Safe (Heraeus)

Photometrie
- Präzisions-Küvetten aus Quarzglas Suprasil®; Typ QS 1.000; Schichttiefe 10,00 mm (Hellma)
- UV/Vis Photometer V-550; Software SpectraManager 1.53 M (Jasco); mit Thermostat julabo 5 (Julabo Labortechnik)
- UV/Vis Photometer Uvikon 860; Software: Version 8832 (Kontron Instruments); mit Thermostat colora K3 (Colora Messtechnik)
6 Experimenteller Teil

Tissue Slicer-System
Schneide-Einheit und „Dynamic Organ Culture“ (DOC)-Rotationsinkubator (Vitron Inc., Tucson, AZ, USA)
Edelstahlnetze
Hohlzylinder
Szintillationsgläschen (20 ml) mit Plastikschraubdeckeln mit einem 2 mm-Loch in der Mitte

Biofreezer
(GFL)

Evaporatorzentrifuge
RC 10.10 mit Kühlfalle RCT 90 (Jouan)

Kühlschrank
Premium (Liebherr)

pH-Meter
CG 817 mit pH-Elektrode BlueLine 12 (Schott)

Pipetten
Eppendorf Reference 0,5-10 µl, 10-100 µl, 50-200 µl, 100-1000 µl
Eppendorf Research 2-20 µl, 20-200 µl, 500-5000 µl

Thermomixer
Eppendorf 5436
Eppendorf comfort

Vortex
Genie 2 (Scientific Industries)

Waagen
Analysenwaage Sartorius handy; Typ H51
Präzisionswaage Sartorius excellence; Typ E2000D
Präzisionswaage Sartorius portable; Typ PT 1200

Zentrifugen
Centrifuge 5417R (Eppendorf)
Megafluge 1.0R (Heraeus)
Mikroliter (Hettich)

6.1.2 Verbrauchsmaterial

Cryoröhrchen
2 ml (NeoLab)

Halb-Mikro-Küvetten
Plastik (Sarstedt)

Pipettenspitzen
Plastik 10 µl, 200 µl, 1000 µl (Sarstedt)

Reaktionsgefäße
1,5 ml, 2 ml (Sarstedt)

Rundfilter
595, Ø 55 mm (Schleicher & Schüll)

Zellkulturschalen
Ø 100 mm (Biochrom AG)

Zentrifugenröhrchen
15 ml (Sarstedt), 50 ml (Greiner)
6.1.3 Chemikalien

Nicht näher spezifizierte Chemikalien stammten von VWR/Merck (Darmstadt), Fluka/ Sigma/Aldrich/Serva (Taufkirchen) oder Carl Roth (Karlsruhe) in der Reinheit mind. „zur Analyse“.

Curcuminoid-Standards

kommerzielles „Curcumin“ Zusammensetzung laut HPLC-Analyse: 75% CUR, 18% Demethoxy-CUR, 7% Bisdemethoxy-CUR (Fluka)

CUR aus Curcuma isoliert und säulenchromatographisch aufgereinigt; Reinheit mind. 99% (Arizona Center for Phytomedicine Research, Tucson, AZ, USA) bzw. chemische Synthese (s. Kap. 6.2.2.1)

Demethoxy-CUR aus Curcuma isoliert und säulenchromatographisch aufgereinigt; Reinheit mind. 99% (Arizona Center for Phytomedicine Research, Tucson, AZ, USA)

Bisdemethoxy-CUR aus Curcuma isoliert und säulenchromatographisch aufgereinigt; Reinheit mind. 99% (Arizona Center for Phytomedicine Research, Tucson, AZ, USA) bzw. chemische Synthese (s. Kap. 6.2.2.1)

Iso-CUR chemische Synthese (s. Kap. 6.2.2.1)

Dimethyl-CUR chemische Synthese (s. Kap. 6.2.2.1)

Dimethyl-bisdemethoxy-CUR chemische Synthese (s. Kap. 6.2.2.1)

Tetrahydro-CUR chemische Synthese (Sabinsa Corporation, Payson, UT, USA)

Tetrahydro-demethoxy-CUR enzymatische Reduktion (s. Kap. 6.2.2.3)

Tetrahydro-bisdemethoxy-CUR enzymatische Reduktion (s. Kap. 6.2.2.3)

Hexahydro-CUR katalytische Hydrierung (s. Kap. 6.2.2.2)

Hexahydro-demethoxy-CUR enzymatische Reduktion (s. Kap. 6.2.2.3)

Hexahydro-bisdemethoxy-CUR katalytische Hydrierung (s. Kap. 6.2.2.2)

Hexahydro-iso-CUR katalytische Hydrierung (s. Kap. 6.2.2.2)

Hexahydro-dimethyl-CUR katalytische Hydrierung (s. Kap. 6.2.2.2)

Octahydro-CUR chemische Reduktion (s. Kap. 6.2.2.4)

Octahydro-demethoxy-CUR chemische Reduktion (s. Kap. 6.2.2.4)

Octahydro-bisdemethoxy-CUR chemische Reduktion (s. Kap. 6.2.2.4)
6 Experimenteller Teil

Enzyme

- **β-Glucuronidase/Arylsulfatase** aus *Helix pomatia* (Roche)
- **β-Glucuronidase Typ B-1** aus Rinderleber (Sigma)
- **Sulfatase Typ VI** aus *Acetobacter aerogenes*; gelöst in Glycerin (Sigma)
- **Alkoholdehydrogenase** aus Pferdeleber (Sigma)

Kulturmedien und Zusätze

- **DMEM/F12** mit Phenolrot, L-Glutamin und 15 mM HEPES; ohne Natriumcarbonat (Sigma)
- **Waymouth MB 752/1** (Gibco BRL)
- **FKS** (Gibco BRL)
- **Gentamicin** Lösung; 50 mg/ml (Gibco BRL)
- **Penicillin/Streptomycin** Lösung; 5000 U Penicillin, 5 mg/ml Streptomycin (Sigma)

Gase

- **Helium** 4.6 (Air Liquide)
- **Kohlenmonoxid** 3.7 (Air Liquide)
- **Stickstoff** 5.0 (Air Liquide)
- **Wasserstoff** 5.0 (Air Liquide)

6.1.4 Versuchstiere und biologisches Material

Versuchstiere

Sprague-Dawley-Ratten mit einem Gewicht von 200-300 g wurden für die Präparation von Präzisions-Gewebeschnitten und Zellfraktionen verwendet.

Männliche Wistar-Ratten mit einem Gewicht von 300-350 g wurden zur Präparation von Mikrosomen eingesetzt. Die Ratten wurden zuvor in zwei Gruppen aufgeteilt, von denen eine mit Aroclor 1254 behandelt wurde.
Zellfraktionen

Die verwendeten SupersomenTM (UGT Control, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7) sowie die humanen intestinalen Mikrosomen wurden von der Firma Gentest (Woburn, MA, USA) über NanUtec (Frankfurt/Main) bezogen.

Zelllinie

\textbf{Ishikawa-Zellen} Humane endometriale Adenokarzinom-Zellen; kultiviert in DMEM/F12-Medium mit 10 \% FKS

6.1.5 Pufferlösungen und Kulturmedien

Wenn nicht anders angegeben, wurde entionisiertes Wasser aus der Hausversorgung verwendet.

6.1.5.1 Allgemeine Pufferlösungen

\textbf{0,1 M Kalium-Phosphat-Puffer pH 7,4}

\begin{align*}
17,418 \text{ g/l } &\text{K}_2\text{HPO}_4 \\
13,609 \text{ g/l } &\text{KH}_2\text{PO}_4
\end{align*}

Vorlegen der basischen Komponente und mit der sauren Komponente auf pH 7,4 einstellen und mit entionisiertem Wasser auf 1 l auffüllen.

\textbf{50 mM Tris-Puffer pH 7,5}

6,057 g/l Tris in entionisiertem Wasser lösen; der pH-Wert wird mit 1 M HCl eingestellt.

6.1.5.2 Puffer für Präparation von Zellfraktionen

\textbf{Mic-I-Puffer}

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>g/l</th>
<th>mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>11,18</td>
<td>150</td>
</tr>
<tr>
<td>Tris</td>
<td>6,06</td>
<td>50</td>
</tr>
<tr>
<td>Na\textsubscript{2}EDTA \times 2 H\textsubscript{2}O</td>
<td>0,372</td>
<td>1</td>
</tr>
</tbody>
</table>

Lösen, mit HCl\textsubscript{konz} auf pH 7,4 einstellen und mit entionisiertem Wasser auf 1 l auffüllen.
6 Experimenteller Teil

Mic-II-Puffer

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>g/l</th>
<th>mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEPES</td>
<td>5,96</td>
<td>25</td>
</tr>
<tr>
<td>Na$_2$EDTA \times 2 H$_2$O</td>
<td>0,558</td>
<td>1,5</td>
</tr>
<tr>
<td>1,4-Dithiothreitol</td>
<td>0,154</td>
<td>1</td>
</tr>
<tr>
<td>NaCl</td>
<td>5,84</td>
<td>100</td>
</tr>
</tbody>
</table>

Lösen, mit NaOH auf pH 7,6 einstellen und nach Zugabe von 115 ml Glycerin (87%) mit entionisiertem Wasser auf 1 l auffüllen.

6.1.5.3 **Puffer und Kulturmedium für Präzisions-Gewebeabschnitte**

Krebs-Henseleit-Puffer (auf Natrium-Bicarbonat-Basis)

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>g/l</th>
<th>mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>6,9</td>
<td>118,0</td>
</tr>
<tr>
<td>KCl</td>
<td>0,36</td>
<td>4,8</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>0,13</td>
<td>0,95</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>2,0</td>
<td>23,8</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>4,5</td>
<td>25,0</td>
</tr>
<tr>
<td>MgSO$_4$ \times 7 H$_2$O</td>
<td>0,295</td>
<td>1,2</td>
</tr>
<tr>
<td>CaCl$_2$ \times 6 H$_2$O</td>
<td>0,498</td>
<td>2,89</td>
</tr>
<tr>
<td>Gentamicin (50 mg/ml)</td>
<td>1 ml/l</td>
<td>50 mg/l</td>
</tr>
</tbody>
</table>

Der pH-Wert wird mit NaOH oder HCl auf pH 7,2 eingestellt und sterilfiltriert (pH 7,4).

Kulturmedium nach Waymouth

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>g/l</th>
<th>mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waymouth MB 752/1</td>
<td>13,84</td>
<td>–</td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>2,24</td>
<td>26,67</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>0,35</td>
<td>2,40</td>
</tr>
<tr>
<td>Gentamicin (50 mg/ml)</td>
<td>1 ml/l</td>
<td>50 mg/l</td>
</tr>
</tbody>
</table>

Lösen in bidestilliertem Wasser, Sterilfiltrieren und Zusatz von 10% FKS.
6. Experimenteller Teil

6.1.5.4 Kulturmedium für Ishikawa-Zellen

DMEM/F12-Kulturmedium

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>Endkonz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM/F12</td>
<td>15,6 g/l</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0,1 mg/ml</td>
</tr>
<tr>
<td>Penicillin</td>
<td>100 U</td>
</tr>
</tbody>
</table>

Lösen in bidestilliertem Wasser, Sterilfiltrieren und Zusatz von 10% FKS.

6.1.5.5 Puffer für MTP-Präparation und Polymerisationsassay

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>REA-Puffer</th>
<th>REA-4 M-Puffer</th>
<th>REA-8 M-Puffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/l</td>
<td>mM</td>
<td>g/l</td>
</tr>
<tr>
<td>MES</td>
<td>19,520</td>
<td>100</td>
<td>19,520</td>
</tr>
<tr>
<td>EGTA</td>
<td>0,308</td>
<td>1</td>
<td>0,308</td>
</tr>
<tr>
<td>MgCl$_2 \times$ 6 H$_2$O</td>
<td>0,101</td>
<td>0,5</td>
<td>0,101</td>
</tr>
<tr>
<td>Glycerin</td>
<td>–</td>
<td>–</td>
<td>368,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>g/l</th>
<th>mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>REA-Puffer</td>
<td>368,4</td>
<td>4000</td>
</tr>
<tr>
<td>REA-4 M-Puffer</td>
<td>736,8</td>
<td>8000</td>
</tr>
<tr>
<td>REA-8 M-Puffer</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Der pH-Wert wird mit NaOH auf pH 6,4 eingestellt.
6 Experimenteller Teil

6.2 Methoden

6.2.1 Analytik

6.2.1.1 GC/MS

Kapillargaschromatograph mit Ionenfalle als Massenanalysator der Serie GCQ Finnigan MAT (Thermo Finnigan) und programmierbarem Injektor Optic 2 (AI Qualitek LTD); die Aufnahme, Analyse und Auswertung der Daten erfolgte mit der Software GCQ Analysis, Version 2.31 und GCQ Data Processing, Version 2.3.

Eine Analyse mittels GC/MS war nur von den reduzierten Curcuminoid-Derivaten (Tetrahydro-, Hexahydro- und Octahydro-Produkte) möglich, da diese im Gegensatz zu den Curcuminoiden thermostabil sind.

Derivatisierung

Identifizierung von Syntheseprodukten

Für die synthetisierten reduzierten Curcuminoid-Derivate (s. Kap. 6.2.2.1-6.2.2.4) wurden nach Trimethylsilylierung charakteristische Fragmentionen-Spektren erhalten, die zur eindeutigen Identifizierung der Substanzen herangezogen wurden. Die beiden Isomere der Octahydro-Derivate lieferten hierbei eine identische Fragmentierung, die sich jedoch in den Intensitäten der einzelnen Fragmentionen unterschied. Im Anhang (A.3, Tab. 20) sind die GC/MS-Daten des dominanten Octahydro-Isomers angegeben.

Identifizierung von Curcuminoid-Metaboliten

Die Curcuminoid-Metabolite wurden als Metaboliten-Gemisch aus den Inkubationen mit Leberschnitten (Kap. 3.3) durch Extraktion oder nach Fraktionierung des Gemisches an der HPLC und Extraktion mit Ethylacetat isoliert und anschließend das Lösungsmittel an der Evaporatorzentrifuge entfernt und der Rückstand in Methanol aufgenommen. Die so erhaltenen methanolischen Metaboliten-Lösungen wurden zur Derivatisierung eingesetzt. Die Metaboliten wurden durch den Vergleich ihrer GC-Retentionszeiten und ihrer Massenspektren mit den synthetischen Referenzsubstanzen identifiziert.
Identifizierung von CUR-Zerfallsprodukten

Die bei den Stabilitätsuntersuchungen aus dem CUR-Zerfall (Kap. 3.2.1) resultierenden Peaks wurden an der HPLC fraktioniert, extrahiert, das Ethylacetat an der Evaporatorzentrifuge entfernt und der Rückstand in Methanol gelöst. Nach Derivatisierung mit BSTFA wurden Vanillin, Ferulasäure und Feruloylmethan durch den Vergleich ihrer GC-Retentionszeiten und ihrer Massenspektren mit authentischen Referenzsubstanzen identifiziert.

GC/MS-Bedingungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säule</td>
<td>MDN-5S Fused Silica, 5% Phenylmethyl, 30 × 0,25 mm i.d., 0,25 µM Filmdicke (Supelco)</td>
</tr>
<tr>
<td>Trägergas</td>
<td>Helium (83 kPa)</td>
</tr>
<tr>
<td>Injektorprogramm</td>
<td>Initialtemperatur: 60°C</td>
</tr>
<tr>
<td></td>
<td>Aufheizrate: 5°C/s</td>
</tr>
<tr>
<td></td>
<td>Endtemperatur: 275°C</td>
</tr>
<tr>
<td>Injektionsvolumen</td>
<td>1 µl</td>
</tr>
<tr>
<td>Transferline-Temperatur</td>
<td>275°C</td>
</tr>
<tr>
<td>Transferline-Druck</td>
<td>83 kPa</td>
</tr>
<tr>
<td>Temperatur der Ionenquelle</td>
<td>250°C</td>
</tr>
<tr>
<td>Ionisation</td>
<td>Electron Impact (EI) bei 70 eV</td>
</tr>
<tr>
<td>Massenbereich</td>
<td>m/z 50-650</td>
</tr>
<tr>
<td>Scanrate</td>
<td>0,5 s/Scan</td>
</tr>
<tr>
<td>Operierender Modus</td>
<td>Full Scan</td>
</tr>
</tbody>
</table>

Temperaturprogramm 1: Analyse von Tetrahydro-, Hexahydro- und Octahydro-Curcuminoiiden.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialtemperatur</td>
<td>150°C</td>
</tr>
<tr>
<td>Isotherme 1</td>
<td>1 min</td>
</tr>
<tr>
<td>Aufheizrate</td>
<td>10°C/min</td>
</tr>
<tr>
<td>Endtemperatur</td>
<td>295°C</td>
</tr>
<tr>
<td>Isotherme 2</td>
<td>10 min</td>
</tr>
</tbody>
</table>

Initialtemperatur: 80°C
Isotherme 1: 4 min
Aufheizrate: 8°C/min
Endtemperatur: 240°C
Isotherme 2: 1 min

6.2.1.2 HPLC/DAD

Analytisches Hochdruckgradientensystem der Serie HP 1100 mit Degasser, binärer Pumpe und Dioden-Array-Detektor (DAD); die Aufnahme und Analyse der Daten erfolgte mit der Software HP ChemStation, Version Rev.A.07.01 (Agilent Technologies).

Autosampler: 717plus (Waters)
Manueller Injektor: Injektionsventil Modell 7725i (Rheodyne)
Vorsäule: SecurityGuard C18 (ODS), 4,0 × 3,0 mm i.d. (Phenomenex)
Reversed Phase-Säulen: Prodigy 5ODS(2), 250 × 4,6 mm i.d., 5 µm Partikelgröße; Luna C18(2), 250 × 4,6 mm i.d., 5 µm Partikelgröße (Phenomenex)
Flussrate: 1 ml/min
Eluent A: entionisiertes Wasser pH 3,0, eingestellt mit konz. Ameisensäure
Eluent B: Acetonitril

Für die Detektion von Sulfaten enthielt der Eluent A zusätzlich 5 mM Tetrabutylammoniumdihydrogenphosphat als Ionenpaar-Reagenz.

Gradient 1: Phase I-Metabolite von Curcuminoiden und Iso-CUR; Glucuronidierung von Curcuminoiden, Iso-CUR und Dimethyl-bisdemethoxy-CUR; Sulfatierung von CUR; Glucuronidierung von Ketoprofen.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>Eluent A (%)</th>
<th>Eluent B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Detektion: DAD (260 nm, 280 nm, 420 nm)
Gradient 2: Glucuronidierung von Hexahydro-CUR.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>6</th>
<th>7</th>
<th>17</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>85</td>
<td>85</td>
<td>70</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>35</td>
<td>45</td>
</tr>
</tbody>
</table>

Detektion: DAD (280 nm)

Gradient 3: Glucuronidierung von Hexahydro-bisdemethoxy-CUR.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>5</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>70</td>
<td>70</td>
<td>67</td>
<td>62</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>30</td>
<td>30</td>
<td>33</td>
<td>38</td>
</tr>
</tbody>
</table>

Detektion: DAD (280 nm)

Gradient 4: Phase I-Metabolite von Dimethyl-CUR; Glucuronidierung von Dimethyl-CUR.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>30</td>
<td>80</td>
</tr>
</tbody>
</table>

Detektion: DAD (280 nm, 420 nm)

Gradient 5: Glucuronidierung von Hexahydro-dimethyl-CUR.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>5</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>65</td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>35</td>
<td>35</td>
<td>55</td>
</tr>
</tbody>
</table>

Detektion: DAD (280 nm)

Gradient 6: Glucuronidierung von E2.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>2</th>
<th>9</th>
<th>16</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>83</td>
<td>83</td>
<td>55</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>17</td>
<td>17</td>
<td>45</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Detektion: DAD (280 nm)
Gradient 7: Sulfatierung von 4-Methylumbelliferon; Glucuronidierung von TFMU.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>6</th>
<th>7</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>85</td>
<td>85</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>65</td>
</tr>
</tbody>
</table>

Detektion: DAD (320 nm, 325 nm)

Gradient 8: Sulfatierung von Hexahydro-CUR.

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>0</th>
<th>6</th>
<th>7</th>
<th>17</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluent A (%)</td>
<td>85</td>
<td>85</td>
<td>70</td>
<td>65</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>Eluent B (%)</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>35</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Detektion: DAD (280 nm)

Die Nachweisgrenzen bei der Detektion mittels DAD bei der jeweiligen optimalen Wellenlänge betrugen 1 pmol für die Curcuminoide, 3 pmol für die Tetrahydro-Curcuminoide, 5 pmol für die Hexahydro- und Octahydro-Curcuminoide und 0,5 pmol für Dimethyl-CUR. Als Bestimmungsgrenze wurde die dreifache Nachweisgrenze festgelegt.

6.2.1.3 HPLC/ESI/MS/MS

HPLC-System

Analytisches Hochdruckgradientensystem der Serie HP 1100 mit Degasser, quarternärer Pumpe, Säulenthermostat, Autosampler und DAD; die Aufnahme und Analyse der Daten erfolgte mit der Software HP ChemStation (Agilent Technologies).

Vorsäule: SecurityGuard C18 (ODS), 4,0 × 3,0 mm i.d. (Phenomenex)

Reversed Phase-Säule: Synergy Hydro, 250 × 4,6 mm i.d., 4 μm Partikelgröße (Phenomenex)

Säulenthermostat: 25°C

Flussrate: 1 ml/min

Eluent A: entionisiertes Wasser mit 0,05% Essigsäure

Eluent B: Acetonitril mit 0,05% Essigsäure

Detektion: DAD (250 nm, 280 nm, 370 nm, 420 nm)
Massenspektrometer

Ionenfalle MSD Trap SL als Massenanalysator (Agilent Technologies)

Ionisation: Electrospray-Ionisation (ESI) im negativen Modus
Trocknungsgasfluß: 10 l/min N₂
Versprüherdruck: 60 psi
Trocknungsgastemperatur: 200°C
Kapillarspannung: 4500 V
Kapillarstromstärke: 18,3 nA
Massenbereich: m/z 60-1000

Nach der Trennung der Curcuminoid-Glucuronide und ihrer Muttersubstanzen auf der HPLC-Säule, wurde der Eluent gesplittet und ein Teil nach Ionisierung mittels MS und MS/MS analysiert. MSⁿ-Experimente wurden im AutoMS(n)-Modus durchgeführt. Die erste Aufnahme erfolgte im Full MS Scan-Modus. Danach wurden ein oder zwei Vorläufer-Ionen aus der Messung des Full Scans ausgewählt, isoliert und in der Ionenfalle selektiv fragmentiert.

6.2.1.4 NMR

NMR-Spektrometer DRX 500 (Bruker)

Je 20 mg CUR bzw. Iso-CUR wurden in 1 ml Aceton-d₆ gelöst. Die Aufnahme der ¹H-NMR-Spektren erfolgte bei 500 MHz, die der ¹³C-NMR-Spektren bei 125 MHz. Als interner Standard (ISTD) diente das deuterierte Lösungsmittel. Die Zuordnung der Signale zu den Atomen wurde durch zweidimensionale COSY-Experimente bestätigt.

6.2.2 Darstellung von Curcuminoid-Derivaten

6.2.2.1 Chemische Synthese

Die Synthese der natürlich vorkommenden Curcuminoid CUR und Bisdemethoxy-CUR sowie der artifiiziellen Derivate Iso-CUR (1,7-Bis(3-Hydroxy-4-methoxyphenyl)-1,6-heptadien-3,5-dion), Dimethyl-CUR (1,7-Bis(3,4-Methoxyphenyl)-1,6-heptadien-3,5-dion) und Dimethyl-bisdemethoxy-CUR (1,7-Bis(4-Methoxyphenyl)-1,6-heptadien-3,5-dion), erfolgte nach der Methode von Pabon [1964]. 2,5 ml Acetylaceton (25 mmol) wurden mit 1,25 g Borsäureanhydrid (17 mmol) eine halbe Stunde lang gerührt bis sich eine zähflüssige Paste bildete, zu welcher 10 ml über Na₂SO₄ getrocknetes Ethylacetat zugegeben wurden. Dieses Gemisch wurde zu einer Lösung aus 50 mmol des entsprechend substituierten Benzaldehydes (7,6 g Vanillin für CUR, 6,1 g 4-Hydroxy-Benzaldehyd für Bisdemethoxy-CUR,
8,3 g 3,4-Dimethoxy-Benzaldehyd für Dimethyl-CUR, 7,6 g Isovanillin für Iso-CUR, 6,8 g 4-Dimethoxy-Benzaldehyd für Dimethyl-bisdemethoxy-CUR) und 26,2 ml Tributylborat (100 mmol) in 15 ml trockenem Ethylacetat hinzugefügt. Nach zehnminütigem Rühren wurden 0,5 ml n-Butylamin (5 mmol) über einen Zeitraum von 10 min zugetropft und für weitere 4 h gerührt. Das Reaktionsgemisch wurde ohne Rühren über Nacht stehengelassen. Anschließend wurden 37,5 ml 0,6 N wässrige 60°C heisse HCl zugegeben und 1 h zur Hydrolyse des Reaktionsproduktes gerührt. Die organische Phase wurde abgetrennt und die wässrige Phase dreimal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen wurden mit entionisiertem Wasser säurefrei gewaschen, über NaSO₄ getrocknet und das Lösungsmittel unter Vakuum entfernt. Das Syntheseprodukt wurde aus Methanol bei 4°C rekristallisiert, durch Filtration abgetrennt und mehrmals mit kaltem Methanol und entionisiertem Wasser gewaschen, um Spuren nicht-reagierter Aldehyde zu entfernen. Das Produkt wurde im Exsikkator über Kieselgel getrocknet. Aus den Feststoffen wurden Stammlösungen mit definierter Konzentration hergestellt, die in den Metabolismusuntersuchungen eingesetzt wurden.

6.2.2.2 Katalytische Hydrierung

6.2.2.3 Enzymatische Reduktion

Durch enzymatische Reduktion mit Cytosol wurde Tetrahydro-demethoxy-CUR und Hexahydro-demethoxy-CUR aus Demethoxy-CUR sowie Tetrahydro-bisdemethoxy-CUR aus Bisdemethoxy-CUR dargestellt. Die Inkubationen zur Gewinnung der Tetrahydro-Produkte wurden in einem Endvolumen von 1 ml, die 100 µM Demethoxy-CUR bzw. Bisdemethoxy-CUR in DMSO (Endkonzentration 2%), 10 mg/ml cytosolisches Protein aus Rattenleber und 10 mM NADH in 0,1 M Kalium-Phosphat-Puffer pH 7,4 enthielten, durchgeführt. Die Inkubationen zur Darstellung von Hexahydro-demethoxy-CUR fanden in einem Endvolumen von 0,5 ml statt und enthielten 100 µM Demethoxy-CUR in DMSO (Endkonzentration 1%), 4 mg/ml cytosolisches Protein aus humaner Leber und 10 mM NADH in 0,1 M Kalium-Phosphat-Puffer pH 7,4. Nach einer Vorinkubation für 5 min bei 37°C wurde die Reaktion durch Zugabe von NADH gestartet und das Gemisch für 2 h bei 37°C inkubiert. Die Reaktion wurde durch Extraktion mit 3 × 0,5 ml Ethylacetat abgestoppt. Die vereinigten Extrakte wurden an der Evaporatorzentrifuge bis zur Trockne verdampft, der Rückstand in 50 µl Methanol aufgenommen und mittels HPLC/DAD analysiert. Die mutmaßlichen Produkt-Peaks wurden aufgefangen, mit Ethylacetat extrahiert und nach Derivatisierung die Struktur mittels GC/MS (Kap. 6.2.1.1) bestätigt.

6.2.2.4 Chemische Reduktion

Octahydro-CUR und Octahydro-bisdemethoxy-CUR wurden aus einer 100 µM Hexahydro-CUR- bzw. 50 µM Hexahydro-bisdemethoxy-CUR-Lösung dargestellt, während Octahydro-demethoxy-CUR aus einer durch enzymatische Reduktion gewonnenen methanolischen Hexahydro-demethoxy-CUR-Lösung (Kap. 6.2.2.3) hergestellt wurde. Die Reaktion wurde in 0,2 ml Methanol durchgeführt und durch Zugabe einer ca. zehnfachen äquimolaren Menge Natriumborhydrid gestartet. Der Reaktionsansatz wurde bei Raumtemperatur bis zum Erliegen der Gasentwicklung stehengelassen und anschließend mit wässriger 1 M HCl neutralisiert. Das Produkt wurde mit 3 × 0,5 ml Ethylacetat extrahiert, der Extrakt unter Vakuum zur Trockne eingeengt und in 25 µl Methanol aufgenommen. Die Analyse mittels HPLC bei 280 nm und GC/MS nach Trimethylsilylierung (Kap. 6.2.1.1) wies zwei Produkte mit identischen UV/Vis-Spektren sowie Massenspektren auf, die in Einklang mit der Struktur von Octahydro-CUR bzw. Octahydro-bisdemethoxy-CUR waren. Die beiden Octahydro-Produkte stellen jeweils Diastereomere dar, die auf den zwei chiralen C-Atomen beruhen, welche die beiden aliphatischen OH-Gruppen tragen.

6.2.2.5 Charakterisierung der Syntheseprodukte

Zur Charakterisierung der synthetisierten Substanzen wurden verschiedene physiko-chemische Eigenschaften bestimmt.

UV/Vis-Spektrum. Die Substanz wurde in Alkohol (Methanol oder Ethanol) gelöst und das UV/Vis-Spektrum im Wellenlängenbereich von 200-600 nm gegen Methanol bzw. Ethanol als Blindwert aufgenommen bzw. im HPLC-Eluent mittels DAD erfasst.

6.2.3 Präparierung und Charakterisierung von Zellfraktionen

6.2.3.1 Präparierung aus Lebergewebe

4°C) wurden grobe Zellbestandteile (nicht aufgebrochene Zellen, Zellkerne, Mitochondrien etc.) abgetrennt. Ein Teil des Überstands (sog. S9-Fraktion) wurde ggf. aliquotiert, mit flüssigem Stickstoff schockgefroren und bis zum Gebrauch bei -80°C gelagert. Die S9-Fraktion wurde bei 105000 × g für 60 min bei 4°C zentrifugiert. Das erhaltene Mikrosomen-Pellet wurde vorsichtig unter Zurücklassen eines glasigen Glykogen-Rückstandes aufgeschlammmt. Die Suspension wurde in ein neues Zentrifugenröhrchen überführt und nochmals für 60 min bei 105000 × g und 4°C zentrifugiert, der Überstand (Cytosol) abdekantiert und gemischt. Das Pellet (Mikrosomen) wurde in Mic-II-Puffer (0,1 ml/g Darm) aufgenommen und homogenisiert. Die Zellfraktionen wurden aliquotiert, mit flüssigem Stickstoff schockgefroren und bis zur weiteren Verwendung bei -80°C aufbewahrt.

6.2.3.2 Präparation aus Darmgewebe

Für die Präparation intestinaler Mikrosomen und S9-Fraktion wurde der komplette Dünn darm (Duodenum, Jejunum, Ileum) unbehandelter männlicher Sprague-Dawley-Ratten (200-300 g Körpergewicht) bzw. ein Jejunum-Abschnitt aus Schweinedünn darm verwendet. Die Gewinnung der Darmmukosa erfolgte in Anlehnung an Yang et al. [1992]. Die frisch entnommenen Därme wurden entleert, mit eisgekühlter 0,9%iger Kochsalzlösung gespült, längs mit einer Schere geöffnet und nochmals vorsichtig mit gekühlter Kochsalzlösung gereinigt. Das Gewebe wurde gewogen und die Mukosa vorsichtig mit einem Objektträger auf einer ebener Korkunterlage abgeschabt. Die Mukosa wurde 1:1 (W/V) in eiskaltem Mic-I-Puffer aufgenommen und unter Eiskühlung im BRAUN-Potter bei ca. 500 rpm homogenisiert. Die S9-Fraktion wurde durch Zentrifugation des Homogenats bei 9000 × g für 15 min bei 4°C als Überstand erhalten. Der Überstand wurde aliquotiert, mit flüssigem Stickstoff schockgefroren und bis zum weiteren Gebrauch bei -80°C aufbewahrt. Zur Herstellung der Mikrosomen wurde der S9-Überstand zusätzlich bei 105000 × g für 60 min bei 4°C zentrifugiert. Das Mikrosomen-Pellet wurde in Mic-II-Puffer (0,1 ml/g Darm) aufgenommen und homogenisiert. Die Mikrosomensuspension wurde aliquotiert, mit flüssigem Stickstoff schockgefroren und bis zur weiteren Verwendung bei -80°C gelagert.

6.2.3.3 Präparation aus Niere

Die Mikrosomen-Präparation wurde aus den Nieren unbehandelter männlicher Sprague-Dawley-Ratten (200-300 g Körpergewicht) gemäß der Präparation aus Leber, wie in Kapitel 6.2.3.1 beschrieben, durchgeführt. Aufgrund des niedrigen Glykogengehalts von Nieren entfällt die letzte Ultrazentrifugation.
6.2.3.4 Bestimmung des Proteingehalts

Reagenz: 10 mg Coomassie Brilliant Blue G-250 in 5 ml Ethanol lösen, 10 ml ortho-Phosphorsäure (85%) zugeben und mit entionisiertem Wasser auf 100 ml auffüllen und filtrieren

Eine geeignete Verdünnung der Proteinprobe wurde in 100 µl entionisiertem Wasser hergestellt und mit 1 ml Reagenzlösung durchmischt. Die photometrische Messung erfolgte nach 5 min bei Raumtemperatur bei 595 nm gegen den Reagenzienblindwert. Die externe Kalibrierung erfolgte zwischen 1-150 µg/ml Protein mit BSA als Standard. Die Standardlösungen und die Proben wurden jeweils als Dreifachbestimmung ausgeführt.

6.2.3.5 Bestimmung des Cytochrom P450-Gehalts

100 µl Mikrosomensuspension wurden mit 2,0 ml 0,1 M Kalium-Phosphat-Puffer pH 7,4 verdünnt und jeweils 850 µl dieser Lösung in zwei Halb-Mikro-Küvetten überführt, die für 5 min im Photometer bei Raumtemperatur aquilibriert wurden. Nach Aufnahme der Nulllinie zwischen 400-500 nm wurden beide Lösungen mit einer Spatelspitze Natriumdithionit versetzt und in die Meßküvette zusätzlich 40 s lang Kohlenmonoxid eingeleitet und erneut ein Differenzspektrum zwischen 400-500 nm aufgenommen.

Die Berechnung des Gesamt-Cytochrom-Gehalts erfolgte gemäß des Lambert-Beer’schen Gesetzes mit einem molaren Extinktionskoefizient von $\varepsilon = 91 \, \text{L} \times \text{mol}^{-1} \times \text{cm}^{-1}$.

115
6.2.4 Stabilitätsuntersuchungen

6.2.4.1 Untersuchungen in Kalium-Phosphat-Puffer

Muttersubstanzen

Nach Vorinkubation von 470 µl Phosphat-Puffer bei 37°C im Thermomixer wurden 30 µl einer 0,5 mM Aglykon-Lösung in DMSO zugegeben, gemischt und ein Aliquot (20 µl) sofort oder nach Inkubation bei 37°C für 1 h, 2 h, 3 h und 24 h mittels HPLC/DAD analysiert.

Glucuronide

Es wurden konzentrierte Glucuronid-Stammlösungen in DMSO mit definierter Konzentration verwendet, wie unter 6.2.8.2 beschrieben, hergestellt wurden. Das benötigte Volumen an Glucuronid-Stammlösung für eine Endkonzentration von 30 µM im Puffer und einem Endvolumen von 0,5 ml wurde berechnet. Das komplementäre Volumen Phosphat-Puffer wurde bei 37°C vortemperiert, das berechnete Volumen Glucuronid-Stammlösung in DMSO zugegeben und die Glucuronide ohne oder nach Inkubation für 1 h, 2 h, 3 h und 24 h mittels HPLC/DAD analysiert.

Die Stabilitätsuntersuchungen wurden für jede Muttersubstanz und jedes Glucuronid als Doppelbestimmungen ausgeführt. Die Quantifizierung der Muttersubstanzen und Glucuronide erfolgte über die Peakflächen und wurde relativ zur Substanzmenge ohne Inkubation berechnet.

6.2.4.2 Untersuchungen in Kulturmedium

Die Stabilitätsuntersuchungen wurden in DMEM/F12-Kulturmedium, das (i) kein FKS, (ii) 5% FKS, (iii) kein FKS, aber Ishikawa-Zellen und (iv) 5% FKS und Ishikawa-Zellen enthielt, mit verschiedenen Curcuminoid-Derivaten (CUR, Demethoxy-CUR, Bisdemethoxy-CUR, Iso-CUR, Tetrahydro-CUR, Hexahydro-CUR) durchgeführt.

Inkubationen ohne Zellen

Bei Inkubation der Substanzen (20 µM) in Kulturmedium ohne Zellen, wurde 3,5,3',5'-
Tetramethyl-bisphenol A (TMBPA) (10 μl 5 mM TMBPA in DMSO pro ml Medium) als ISTD vor der Inkubation zugefügt und gemischt (DMSO Endkonzentration 2%). Ein 0,5 ml-Aliquot des Mediums wurde ohne Inkubation mit 1 ml Ethylacetat extrahiert, der Extrak t an der Evaporatorzentrifuge bis zur Trockne eingeengt, der Rückstand in 50 μl Methanol aufgenommen und mittels HPLC/DAD analysiert. Das restliche Medium wurde für 1 h, 2 h, 4 h und 21 h mit der Substanz bei 37°C im Thermomixer inkubiert und zu jedem Zeitpunkt ein 0,5 ml-Aliquot, wie beschrieben, extrahiert und analysiert. Die Quantifizierung erfolgte über das Peakflächen-Verhältnis von Testsubstanz zu ISTD.

Inkubationen mit Zellen

Für die Inkubationen mit Zellen wurden 8 × 10⁵ oder 1 × 10⁶ Ishikawa-Zellen ausgestreut und mit DMEM/F12-Medium mit 10% FKS für 2 Tage kultiviert. Am 3. Tag (ca. 1,9-2,4 × 10⁶ Zellen) wurde das Medium durch DMEM/F12-Medium ohne bzw. mit 5% FKS, das jeweils 20 μM Substanz (DMSO Endkonzentration 1%) enthielt, ersetzt. Ein 0,5 ml-Aliquot dieses Mediums wurde ohne Inkubation oder nach Inkubation für 1 h, 2 h, 4 h und 21 h bei 37°C mit den Zellen, wie oben für die Inkubation ohne Zellen beschrieben, extrahiert und mittels HPLC/DAD analysiert. In Anwesenheit von Zellen war die Zugabe des ISTD erst nach Inkubation separat zu den einzelnen Aliquots möglich und führte aufgrund des sehr geringen Pipettiervolumens (1-2 μl) zu nicht reproduzierbaren Schwankungen, wodurch eine Auswertung über den ISTD nicht geeignet war. Deshalb wurde in den Inkubationen mit Zellen über die Peakflächen quantifiziert.

Die Stabilitätsuntersuchungen wurden für jede Substanz und jede Zusammensetzung des Mediums als Doppelbestimmungen durchgeführt. Die Substanzmenge der inkubierten Ansätze wurde relativ zur Substanzmenge ohne Inkubation berechnet.

6.2.4.3 Einfluß von Mikrosomen

In Anlehnung an die Umsetzungen mit Supersomen (Kap. 6.2.7.5) bzw. gewebe- und speziespezifischen Mikrosomen (Kap. 6.2.7.6) wurden weitere Untersuchungen zur Stabilität der drei Curcuminoider CUR, Demethoxy-CUR und Bisdemethoxy-CUR und des synthetischen Derivats Dimethyl-CUR in 50 mM Tris-Puffer pH 7,5 durchgeführt. Das Testsystem I enthielt ausschließlich die Substanz in Tris-Puffer ohne Zusätze. Im Testsystem II, welches weitgehend die Bedingungen der mikrosomalen Umsetzungen imitierte, waren zusätzlich 0,25 mg/ml mikrosomales Protein aus männlicher Rattenleber und 10 mM Magnesiumchlorid im Tris-Puffer enthalten. Die Substratkonzentrationen betrugen 20 μM (DMSO Endkonzentration 2%). Die Lösungen wurden sofort nach dem Ansetzen mittels HPLC/DAD analysiert. Die Quantifizierung der Substanzen erfolgte über eine externe Kalibrierung (s. Anhang A.2.2,
Tab. 19) und wurde relativ zur eingesetzten Substanzmenge berechnet.

6.2.4.4 Einfluß von pH-Wert und Pufferzusätzen

Effekt von pH-Wert und Komplexbildner EGTA

30 µM CUR wurde in folgenden Lösungen bei 37°C für 60 min im UV/Vis-Photometer inkubiert:

1. 0,1 M Kalium-Phosphat-Puffer pH 7,4
2. 0,1 M Kalium-Phosphat-Puffer pH 6,4
3. 0,1 M Kalium-Phosphat-Puffer pH 7,4 + 1 mM EGTA
4. 0,1 M Kalium-Phosphat-Puffer pH 6,4 + 1 mM EGTA
5. Methanol

Die Extinktion von CUR wurde bei 420 nm gegen Luft über einen Zeitraum von 60 min in Intervallen von 5 min photometrisch bestimmt. Die methanolische CUR-Lösung diente als Vergleich, da CUR in Methanol stabil ist.

Effekt von MTP

Nach Vortemperieren von 0,1 M Kalium-Phosphat-Puffer pH 7,4 in Ab- oder Anwesenheit von 0,2 mg/ml MTP für 15 min im Photometer bei 37°C, wurde CUR zugegeben (Endkonzentration in der Kuvette 30 µM) und gemischt. Das UV/Vis-Spektrum wurde im Bereich von 350-550 nm zu den Zeitpunkten 0 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 60 min und 120 min gegen Luft aufgenommen.
6.2.5 In vitro-Studien mit Präzisions-Gewebeschritten

Die Präparation und Inkubation von Präzisions-Gewebeschritten wurde mit dem VITRON Tissue Slicer-System durchgeführt und ist in Abbildung 40 schematisch zusammengefasst.

6.2.5.1 Präparation von Leberschnitten

6 Experimenteller Teil

6.2.5.2 Inkubation von Leberschnitten

Für das kommerzielle Curcuminoid-Gemisch (75% CUR, 18% Demethoxy-CUR, 7% Bis-demethoxy-CUR) sowie für jedes der drei Curcuminoides wurden mindestens zwei unabhängige Experimente für jedes Geschlecht mit Schnitten verschiedener Tiere durchgeführt. Für die reduktiven Metaboliten Tetrahydro-CUR und Hexahydro-CUR, sowie die synthetischen CUR-Verbindungen Dimethyl-CUR und Iso-CUR, wurden zwei unabhängige Versuche mit Schnitten einer männlichen und einer weiblichen Ratte durchgeführt. In jedem Experiment wurden pro Testsubstanz drei Schnitte separat inkubiert.

Die Inkubation erfolgte nach der Methode von Fisher et al. [1990]. Nach Entnahme der Schnitte mit dem Puffer am Auslasshahn der Scheideeinheit wurde jeweils ein einzeller Schnitt auf einem steril Edelstahl-Netz in einem Hohlzylinder aus Teflon platziert und dieser horizontal in ein steriles 20 ml-Szintillationsgläsern, welches 1,7 ml Waymouth’s Medium supplementiert mit 10% FKS und 50 µg/ml Gentamicin enthielt, eingebracht (Abb. 40, [5]). Die Gläser wurden mit Plastikdeckeln in deren Mitte sich ein 2 mm großes Loch befand verschlossen, um den Gasaustausch mit der Umgebung zu gewährleisten. Die Schnitte wurden in einem Rotationsinkubator (9 rpm) bei 37°C unter einer Atmosphäre von 95% O₂ und 5% CO2 inkubiert. Dieses sog. DOC-System gewährleistet, dass sich die beiden Schnittoberflächen während der gesamten Kultivierung abwechselnd im Medium und in der Gasphase befinden (Abb. 40, [6]). Nach einer zweistündigen Vorinkubation wurden die Hohlzyllnder mit den Schnitten in neue Gläsern, die frisches Kulturmedium und die Testsubstanzen in DMSO (Endkonzentration 1%) gelöst enthielten, überführt. Die Substanz-Endkonzentrationen waren 50 µM, 100 µM bzw. 200 µM. Zwei Arten von Kontroll-Kulturen wurden mitgeführt: Eine mit Substrat aber ohne Leberschnitt (Substanzkontrolle) und die andere mit Leberschnitt und DMSO anstelle der Testsubstanzen (Leerwert). Die Schnitte wurden für 2 h, 4 h, 6 h oder 24 h inkubiert. Nach der Inkubation wurden die Medien von drei Schnitten aus jedem Experiment vereinigt, mit flüssigem Stickstoff schockgefroren und bei -80°C bis zur Analyse gelagert.

6.2.5.3 Enzymatische Hydrolyse und Extraktion

Zu den aufgetauten vereinigten Medien wurden vor der Aufarbeitung 10 µl einer 5 mM TMBPA-Lösung in DMSO als ISTD pro ml Medium gegeben. Zwei verschiedene enzymatische Hydrolysemethoden wurden durchgeführt.

Methode I: Für die Untersuchung auf unkonjugierte Metabolite (Fraktion IA) wurde ein 0,5 ml-Aliquot des Mediums mit jeweils 3 × 0,5 ml Ethylacetat extrahiert. Die vereinigten Extrakte wurden unter Vakuum an der Evaporatorzentrifuge verdampft, der Rückstand in 50 µl Methanol aufgenommen und ein 10-20 µl-Aliquot mittels HPLC/DAD analysiert. Für die Bestimmung der Summe aus unkonjugierten und konjugierten Metaboliten (Fraktion IB)
wurde ein weiteres 0,5 ml-Aliquot des Mediums mit 0,2 ml 0,15 M Acetat-Puffer pH 5,0 gemischt und mit 10 µl eines Gemisches aus β-Glucuronidase/Arylsulfatase aus Helix pomatia im Thermomixer bei 37°C für 16 h inkubierte. Danach erfolgte die Extraktion mit Ethylacetat und die HPLC/DAD-Analyse wie oben beschrieben. Die Menge an Konjugaten wurde als die Differenz zwischen den Fraktionen IB und IA berechnet.

Methode II: Diese Hydrolysemethode ermöglichte es durch separate Behandlung des Mediums mit β-Glucuronidase und Sulfatase die Art der Konjugate aufzuklären. Für die Analyse unkonjugierter Metabolite (Fraktion IIA) wurden 0,2 ml Medium mit 0,2 ml 0,15 M Acetat-Puffer pH 5,0 ohne Enzym vor der Extraktion mit Ethylacetat versetzt. Zur Hydrolyse der Glucuronide wurde ein weiteres 0,2 ml-Aliquot des Mediums mit 0,2 ml 0,15 M Acetat-Puffer pH 5,0 gemischt und mit 5000 Fishman U der β-Glucuronidase Typ B-1 aus Rinderleber vor der Extraktion mit Ethylacetat inkubierte (Fraktion IIB). Zur Untersuchung der Sulfate wurden 0,2 ml Medium mit 0,2 ml 0,1 M Kalium-Phosphat-Puffer pH 7,1 und 0,1 U der Sulfatase Typ VI aus Acetobacter aerogenes inkubierte und extrahiert (Fraktion IIC). Für die Erfassung aller Metabolite (Fraktion IID), wie z.B. unkonjugierten Produkten, Glucuroniden und Sulfaten, wurde ein 0,2 ml-Aliquot des Mediums mit 5000 Fishman U der β-Glucuronidase Typ B-1 und 0,1 U der Sulfatase Typ VI in 0,2 ml 0,15 M Acetat-Puffer pH 5,0 inkubierte. Alle enzymatischen Hydrolysen erfolgten bei 37°C für 2 h, gefolgt von der Extraktion mit Ethylacetat und der HPLC/DAD-Analyse wie oben für Methode I beschrieben. Die Differenz zwischen Fraktion IIB und IIA ergab die Menge an Glucuroniden und die Differenz zwischen Fraktion IIC und IIA die Menge an Sulfaten. Die Summe aus unkonjugierten Metaboliten, Glucuroniden und Sulfaten, die aus diesen Berechnungen erhalten wurden, stimmte gut mit Fraktion IID überein, welche zusätzlich zum Vergleich mit Fraktion IB aus Methode I herangezogen wurde.

Die Wiederfindungen der Substanzen in den Inkubationen mit und ohne Leberschnitt wurden
bezüglich der eingesetzten Substanzmenge ohne Inkubation und nach sofortiger Extraktion des Mediums berechnet. In den Substanzinkubationen mit Leberschnitt repräsentiert die Wiederfindung die Summe aus Muttersubstanz plus Metabolite (unkonjugiert und konjugiert).

6.2.6 In vitro-Assays mit Zellfraktionen: Phase I-Reaktionen

6.2.6.1 Oxidative Umsetzungen

Die mikrosomalen Inkubationen zur Untersuchung des oxidativen in vitro-Metabolismus der Curcuminoide wurden in 0,1 M Kalium-Phosphat-Puffer pH 7,4 in einem Gesamtvolumen von 1 ml mit Lebermikrosomen von männlichen unbehandelten Sprague-Dawley-Ratten oder mit unbehandelten sowie mit Aroclor 1254-behandelten Wistar-Ratten durchgeführt. Die Inkubationen enthielten 0,5-1,0 mg/ml mikrosomales Protein, Substrat (50 µM und 100 µM CurcuminoïdGemisch bestehend aus 75% CUR, 18% Demethoxy-CUR und 7% Bisdemethoxy-CUR, 50 µM Hexahydro-CUR) in DMSO (Endkonzentration 1%) und ein NADPH-generierendes System. Das NADPH-generierende System wurde jeweils unmittelbar vor Versuchsbeginn hergestellt und setzte sich wie folgt zusammen:

<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>Volumen bzw. Einwaage</th>
<th>Endkonz. im Ansatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isocitrat-Dehydrogenase (20 U/ml)</td>
<td>500 µl</td>
<td>0,9 U</td>
</tr>
<tr>
<td>Isocitrat (2,33 M)</td>
<td>90 µl</td>
<td>9,4 mM</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>25 mg</td>
<td>1,21 mM</td>
</tr>
<tr>
<td>Magnesiumchlorid (1 M)</td>
<td>100 µl</td>
<td>4,3 mM</td>
</tr>
<tr>
<td>Kalium-Phosphat-Puffer (0,1 M) pH 7,4</td>
<td>100 µl</td>
<td>–</td>
</tr>
</tbody>
</table>

Nach einer Vorinkubation von 5 min bei 37°C wurden 70 µl NADPH-generierendes System zugegeben und das Gemisch für 40 min bei 37°C inkubiert. Die Inkubation wurde durch Extraktion mit 3 × 0,5 ml Ethylacetat abgestoppt und die vereinigten Extrakte an der Evaporatorzentrifuge zur Trockne eingeengt, der Rückstand in 50 µl Methanol gelöst und ein Aliquot zur HPLC/DAD-Analyse eingesetzt.

6.2.6.2 Reduktive Umsetzungen

Der reductive Curcuminoid-Metabolismus wurde mit Rattenlebercytosol, humanem Lebercytosol und mit cytosolischer Alkoholdehydrogenase aus Pferdeleber und NADH als Kosubstrat untersucht. Die Inkubationen wurden in einem Endvolumen von 0,5 ml durchgeführt und setzten sich aus dem Substrat (100 µM Curcuminoid-Gemisch bestehend aus 75% CUR, 18% Demethoxy-CUR und 7% Bisdemethoxy-CUR, 100 µM Hexahydro-CUR, 100 µM Tetrahydro-CUR, 50 µM CUR, 50 µM Iso-CUR) in DMSO (Endkonzentration 1%), 1 mg/ml cytosolisches Protein oder 5 U Alkoholdehydrogenase und 10 mM NADH in 0,1 M Kalium-Phosphat-Puffer pH 7,4 zusammen. Nach einer Vorinkubation von 5 min bei 37°C wurde die Reaktion durch Zugabe von NADH gestartet und 1 h bzw. 2 h bei 37°C im Thermomixer inkubiert. Die Reaktion wurde durch Extraktion mit 3×0,5 ml Ethylacetat gestoppt, die vereinigten Extrakte unter reduziertem Druck in der Evaporatorzentrifuge verdampft, der Rückstand in 50 µl Methanol aufgenommen und ein Aliquot mittels HPLC/DAD analysiert.

Die Inkubationen wurden als Doppelbestimmungen ausgeführt. In Kontroll-Inkubationen wurde das Substrat mit nativem Cytosol, aber ohne NADH bzw. mit NADH, aber ohne Alkoholdehydrogenase, eingesetzt.

6.2.6.3 Umsetzungen mit intestinaler S9-Fraktion

Der oxidative und reductive CUR-Metabolismus wurde in vitro mit S9-Fraktion (enthält mikrosomales und cytosolisches Protein) untersucht, die wie unter 6.2.3.2 beschrieben, aus dem Dünn darm männlicher Sprague-Dawley-Ratten präpariert wurde. Die Reaktionen fanden in 0,1 M Kalium-Phosphat-Puffer pH 7,4 mit 50 µM bzw. 100 µM CUR in DMSO (Endkonzentration 1%) und 10 mM Magnesiumchlorid in einem Gesamtvolumen von 1 ml statt. Jeder Reaktionsansatz enthielt 1 mg/ml Gesamtprotein und (i) ein NADPH-generierendes System, wie unter 6.2.6.1 beschrieben, für die Monooxygenierung oder (ii) 10 mM NADH für die Reduktion. Nach 5 min Vorinkubation bei 37°C wurde die Reaktion durch Kosubstrat-Zugabe gestartet und die Inkubation 1 h bei 37°C fortgesetzt. Die Reaktion wurde durch Extraktion mit 3×0,5 ml Ethylacetat gestoppt, die vereinigten Extrakte an der Evaporatorzentrifuge zur Trockne eingeengt, der Rückstand in 50 µl Methanol aufgenommen und ein Aliquot zur HPLC/DAD-Analyse verwendet.

6.2.7 In vitro-Assays mit Zellfraktionen: Phase II-Reaktionen

6.2.7.1 Konventioneller Glucuronidierungssassay

Die ersten Glucuronidierungsreaktionen fanden mit hepatischen Mikrosomen von Ratte und Mensch in einem Gesamtvolumen von 0,2 ml 0,1 M Kalium-Phosphat-Puffer pH 7,4 statt. Die Versuchsbedingungen wurden unter dem Gesichtspunkt gewählt eine hohe Produktbildung zu gewährleisten. Die Reaktionsansätze enthielten 100 µM Substrat (CUR, Demethoxy-CUR, Bisdemethoxy-CUR, Hexahydro-CUR, Tetrahydro-CUR) in DMSO (Endkonzentration 1%), 1-3 mg/ml mikrosomales Protein, 4 mM UDPGA und 10 mM Magnesiumchlorid. Nach einer Vorinkubation für 5 min bei 37°C im Thermomixer wurde die Reaktion durch Zugabe von UDPGA gestartet und der Ansatz für 40 min bei 37°C inkubiert. Anschließend wurde das mikrosomale Protein durch Zugabe von 25 µl 20%iger wässriger TCA ausgefellt und die Lösung mit 25 µl 1 M wässriger NaOH neutralisiert. Die Aufarbeitung vor der HPLC/DAD-Analyse wurde auf zwei unterschiedliche Weisen vorgenommen:

(i) Extraktion mit 3 × 0,5 ml Ethylacetat. Die Ethylacetatreste wurden unter einem N2-Strom von der wässrigen Phase entfernt, die ausgefallenen Proteine abzentrifugiert und der Überstand zur HPLC/DAD-Analyse eingesetzt. Die vereinigten Extrakte wurden an der Evaporatorzentrifuge bis zur Trockne eingeengt, der Rückstand in 50 µl Methanol aufgenommen und ebenfalls mittels HPLC/DAD analysiert.

(ii) Abtrennung der Proteine durch Zentrifugation (3 min bei ca. 1000 × g) und HPLC/DAD-Analyse des Überstandes.

Die Identifizierung der Glucuronide fand durch Hydrolyse mit einem β-Glucuronidase/Arylsulfatase-Gemisch aus Helix pomatia statt (Methode I). Dazu wurde der restliche wässrige Glucuronid-Überstand mit 0,2 ml 0,15 M Acetat-Puffer pH 5,0 gemischt und mit 10 µl des β-Glucuronidase/Arylsulfatase-Gemisches im Thermomixer bei 37°C für 16 h inkubiert. Danach erfolgte die Extraktion mit Ethylacetat und die HPLC/DAD-Analyse wie oben beschrieben.

Als Positivkontrolle diente die Glucuronidierung von 4-Methylumbelliferon, da das 4-Methylumbelliferon-Glucuronid als Referenzsubstanz zur Verfügung stand. Negativkontrollen wurden in Abwesenheit von UDPGA durchgeführt.

6.2.7.2 Kombinierter Reduktions- und Glucuronidierungssassay

Zur Erfassung von Glucuroniden der reduktiven CUR-Metaboliten wurde die Reduktion und Glucuronidierung von CUR simultan in einem kombinierten Reaktionsansatz mit Cytosol und Mikrosomen aus Rattenleber bzw. Humanleber untersucht. Dabei wurden die Versuchsbedingungen der Einzelreaktionen (Kap. 6.2.6.2 und 6.2.7.1) modifiziert. Alle Inkubationen
wurden in 0,1 M Kalium-Phosphat-Puffer pH 7,4 in einem Gesamtvolumen von 1 ml durchgeführt. Der kombinierte Ansatz enthielt 100 µM CUR in DMSO (Endkonzentration 1%), 1 mg/ml cytosolisches Protein, 1 mg/ml mikrosomales Protein, 10 mM NADH, 4 mM UDPGA und 10 mM Magnesiumchlorid. Nach Vorinkubation für 5 min bei 37°C wurden die Kofaktoren zugegeben und für 1 h bei 37°C inkubiert. Anschließend wurde durch Zugabe von 25 µl 20%iger TCA die Reaktion abgebrochen, mit 25 µl 1 M wässriger NaOH neutralisiert und die präzipitierten Proteine durch Zentrifugation (3 min bei ca. 1000 × g) entfernt. Der Überstand wurde direkt oder nach enzymatischer Hydrolyse der Konjugate mittels HPLC/DAD analysiert. Für die Hydrolyse wurde ein 0,2 ml-Aliquot des Überstandes eingesetzt. Die Spaltung wurde mit einem β-Glucuronidase/Arylsulfatase-Gemisch aus Helix pomatia in 0,2 ml Acetat-Puffer pH 5,0, wie für Methode I unter 6.2.7.1 beschrieben, durchgeführt.

Es wurden drei verschiedene Kontrollen mit Cytosol und Mikrosomen, aber in Abwesenheit von (i) UDPDA (reduktiver Metabolismus), (ii) NADH (Glucuronidierung) und (iii) beiden Kofaktoren (Leerwert), mitgeführt.

6.2.7.3 Glucuronidierungen mit intestinaler S9-Fraktion

Die in vitro-Glucuronidierung von CUR wurde mit S9-Fraktion (enthält mikrosomales und cytosolisches Protein) aus dem Dünn darm männlicher Sprague-Dawley-Ratten untersucht. Die Inkubationen wurden in 0,1 M Kalium-Phosphat-Puffer pH 7,4 mit 50 µM und 100 µM CUR bzw. 20 µM Hexahydro-CUR in DMSO (Endkonzentration 1%), 2 mg/ml Gesamtprotein, 4 mM UDPGA und 10 mM Magnesiumchlorid in einem Endvolumen von 0,5 ml durchgeführt. Nach Vorinkubation für 5 min bei 37°C wurde UDPGA zugegeben und für 40 min bei 37°C im Thermomixer inkubiert. Anschließend wurde durch Zugabe von 25 µl 20%iger TCA die Reaktion abgebrochen, mit 25 µl 1 M wässriger NaOH neutralisiert und die präzipitierten Proteine durch Zentrifugation (3 min bei ca. 1000 × g) entfernt. Der Überstand wurde direkt und nach enzymatischer Hydrolyse der Glucuronide in einem Aliquot des Überstandes, mit einem β-Glucuronidase/Arylsulfatase-Gemisch aus Helix pomatia in 0,2 ml Acetat-Puffer pH 5,0, wie für Methode I in Kapitel 6.2.7.1 beschrieben, mittels HPLC/DAD analysiert.

Die Negativkontrollen enthielten S9-Fraktion aber kein UDPGA. Vergleichend wurden analoge Umsetzungen mit S9-Fraktion aus männlicher Rattenleber parallel durchgeführt.

6.2.7.4 Modifizierter Glucuronidierungsassay

Da die etablierte Fallung der mikrosomalen Proteine mit TCA den Nachweis der Curcuminoiden und ihrer Glucuronide störte und eine Quantifizierung nicht ermöglichte, war eine Modifizierung und Optimierung des ursprünglichen Glucuronidierungsassays
Experimenteller Teil

Kap. 6.2.7.1) notwendig. Die Inkubationen wurden in 0,1 M Kalium-Phosphat-Puffer, der das Substrat (20-100 µM CUR, Demethoxy-CUR, Bisdemethoxy-CUR, Dimethyl-CUR, Dimethyl-bisdemethoxy-CUR, Iso-CUR, Hexahydro-CUR, Hexahydro-bisdemethoxy-CUR, Hexahydro-dimethyl-CUR, Hexahydro-iso-CUR, Tetrahydro-CUR) in DMSO (Endkonzentration 2%), 0,1-1,0 mg/ml mikrosomales Protein, 20 mM UDPGA, 25 µg/ml Alamethicin, 10 mM Saccharinsäure-1,4-lacton und 10 mM Magnesiumchlorid enthielt, in einem Endvolumen von 0,2 ml durchgeführt. Durch Einsatz des Porenbildners Alamethicin konnten die Proteinkonzentrationen reduziert werden. Saccharinsäure-1,4-lacton wirkt als β-Glucuronidase-Inhibitor. Die Lösungsmittelkonzentration wurde auf 2% erhöht, um eine bessere Löslichkeit der Curcuminoide zu gewährleisten. Es erfolgte eine Vorinkubation der Mikrosomen mit Alamethicin für 15 min auf Eis. Danach wurden die übrigen Komponenten zugegeben, wobei darauf geachtet wurde, dass das Substrat (Instabilität) zuletzt hinzugefügt wurde. Die Inkubationszeiten betrugen bis zu 60 min. Die HPLC/DAD-Analyse erfolgte je nach Fragestellung (i) nach Zentrifugation (3 min bei ca. 1000 × g) des Ansatzes aus dem wässrigen Überstand oder (ii) in Anlehnung an Matern et al. [1994] nach Extraktion der Curcuminoid-Glucuronide aus saurer Lösung. Für die saure Extraktion der Glucuronide wurden 0,2 ml 0,7 M Glycin-HCl-Puffer pH 1,2 zum Inkubationsansatz gegeben und gemischt (pH 1,8) und dann mit 3 × 0,5 ml Ethylacetat extrahiert. Die Glucuronide wurden durch Einengen der vereinigten Extrakte unter Vakuum bis zur Trockne und Aufnahme des Rückstandes in Methanol angereichert.

Die Identifizierung der Glucuronide erfolgte anhand der HPLC-Retentionszeit und des UV/Vis-Spektrums sowie durch Spaltung mit β-Glucuronidase Typ B-1 aus Rinderleber (Methode II). Ein Aliquot des wässrigen Glucuronid-Überstandes wurde mit 0,2 ml 0,15 M Acetat-Puffer pH 5,0 gemischt und mit 5000 Fishman U der β-Glucuronidase vor der Extraktion mit Ethylacetat für 2 h inkubiert und anschließend mittels HPLC/DAD analysiert.

6.2.7.5 Umsetzungen mit rekombinannten humanen UGTs

Der Assay wurde mit kommerziell erhältlichen Supersomen (Gentest) durchgeführt. Supersomen stellen mikrosomale Fraktionen aus SF9-Insektenzellen (Spodoptera frugiperda) dar, die durch Infektion mit einem Baculovirus-Stamm, der die cDNA eines humanen UGT-Isoenzmys trägt, transfiziert wurden. Eingesetzt wurden die humanen Isoenzyme UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10 und UGT2B7. Die einzelnen Isoenzym-Fraktionen wurden vor Verwendung in geeignete Aliquots aufgeteilt, um zu häufige Auftau-Einfrier-Zyklen zu vermeiden und bei -80°C gelagert.

Die Glucuronidierung wurde in 50 mM Tris-Puffer pH 7,5, der 0,05-1,0 mg/ml mikrosomales Protein, 2 mM UDPGA, 20 µM Substrat (CUR, Demethoxy-CUR, Bisdemethoxy-CUR, Hexahydro-CUR, Hexahydro-bisdemethoxy-CUR, Dimethyl-CUR), 25 µg/ml Alamethicin und 10 mM Magnesiumchlorid enthielt, in einem Endvolumen von 0,2 ml durchgeführt. Die

Aufgrund der hohen Nachweisgrenze von E2 bei UV-Detektion erfolgte die HPLC/DAD-Analyse von E2 nach Aufkonzentrierung durch Extraktion mit 3 × 0,5 ml Ethylacetat aus saurer Lösung nach Zugabe von 0,2 ml 0,7 M Glycin-HCl-Puffer pH 1,2. Das Lösungsmittel wurde an der Evaporatorzentrifuge verdampft und der Rückstand in Methanol aufgenommen.

Die Identifizierung der Glucuronide erfolgte anhand der HPLC-Retentionszeit und des UV/Vis-Spektrums sowie durch die Hydrolysemethode II (Kap. 6.2.7.4) mit β-Glucuronidase Typ B-1 in einem Aliquot der wässrigen Glucuronid-Lösung. Das 3-HO-Glucuronid von E2 stand zusätzlich als Referenzsubstanz zur Verfügung.

Die Wiederfindungen der drei Curcuminoide CUR, Demethoxy-CUR und Bisdemethoxy-CUR sowie von synthetischem Dimethyl-CUR wurden über die externe Kalibrierung der Muttersubstanzen (s. Anhang A.2.2, Tab. 19), als Summe aus Muttersubstanz plus Glucuronid(e), bezüglich der eingesetzten Substanzmenge berechnet.
6.2.7.6 Umsetzungen mit gewebe- und speziesspezifischen Mikrosomen

Die Glucuronidierungen wurden mit Mikrosomen aus Lebergewebe von Mensch und Ratte sowie aus Darmgewebe von Mensch, Ratte und Schwein durchgeführt, die wie unter 6.2.3.1 bzw. 6.2.3.2 beschrieben, präpariert wurden. Die verwendeten humanen intestinalen Mikrosomen wurden kommerziell erworben (Gentest). Es handelte sich um einen Mikrosomen-Pool aus dem Duodenum und Jejunum von fünf Spendern (männlich und weiblich, Kaukasier und Afro-Amerikaner). Die Umsetzungen wurden analog zu den Glucuronidierungen mit rekombinanten humanen UGTs in Kapitel 6.2.7.5 durchgeführt und ausgewertet. Abweichend von diesem Assay enthielten die Ansätze zusätzlich 10 mM Saccharinsäure-1,4-lacton als β-Glucuronidase-Inhibitor. Die verwendeten Proteinkonzentrationen lagen im Bereich von 0,05-0,5 mg/ml mikrosomalem Protein. Als Negativkontrollen dienten die vollständigen Ansätze mit nativen Mikrosomen, aber in Abwesenheit von UDPGA.

6.2.7.7 Inhibitionsassay

Da Propofol als spezifisches Substrat für UGT1A9 bekannt ist [King et al., 2000] und der Verdacht bestand, dass dieses Isoenzym für die phenolische CUR-Glucuronidierung verantwortlich ist, wurde der Effekt zunehmender Propofol-Konzentrationen (0 µM, 50 µM, 100 µM und 200 µM) auf die Glucuronidierung von CUR (100 µM) untersucht. Die Inkubationen wurden bei 37°C für 15 min in Anwesenheit von 1 mg/ml mikrosomalem Protein aus humaner Leber, 2 mM UDPGA, 25 µg/ml Alamethicin, 10 mM Saccharinsäure-1,4-lacton und 10 mM Magnesiumchlorid in 50 mM Tris-Puffer pH 7,5 mit einem Endvolumen von 0,2 ml durchgeführt. In den vollständigen Ansätzen waren beide Substrate enthalten, wobei die Propofol-Konzentration variabel war. In den Kontroll-Inkubationen war kein Propofol enthalten. Die DMSO-Endkonzentration im Ansatz betrug 2%. Die Reaktion wurde durch Eiskühlung terminiert, die Proteine abzentrifugiert (3 min bei ca. 1000 × g) und die CUR-Glucuronide in einem Aliquot des Überstandes mittels HPLC/DAD analysiert. Alle Inkubationen wurden als Doppelbestimmungen ausgeführt. Die Berechnung erfolgte für das phenolische und aliphatische CUR-Glucuronid separat. Die Inhibition wurde aus der Menge des in Anwesenheit von Propofol gebildeten CUR-Glucuronids, bezüglich der vorhandenen CUR-Glucuronid-Menge nach Inkubation von CUR ohne Propofol, über die Peakflächen berechnet.

6.2.7.8 Kinetische Untersuchungen

Die Untersuchungen zur Kinetik der aliphatischen CUR-Glucuronidierung wurden mit humanen Lebermikrosomen und mit rekombinantem humanem UGT1A8 (Supersomen) durchgeführt. Die CUR-Konzentrationen lagen im Bereich von 0,1-50 µM bei Verwendung von
humanen Lebermikrosomen und 5-50 µM bei Einsatz von UGT1A8. Die Glucuronidierung und Ermittlung der Reaktionsgeschwindigkeiten (spezifische Glucuronidierungsaktivitäten) fand für jede CUR-Konzentration, wie in Kapitel 6.2.7.5 bzw. 6.2.7.6 beschrieben, statt. Die Kurvenanpassung und Berechnung der kinetischen Parameter erfolgte mit Hilfe des Computerprogramms OriginPro 6.0 (OriginLab Corporation) durch nichtlineare Regressionsanalyse. Es wurde die Michaelis-Menten-Gleichung unter Verwendung der spezifischen Aktivitäten bei 0,1-50 µM bzw. 5-50 µM CUR angewendet:

\[
\frac{V_{\text{max}} \cdot S}{K_m + S}
\]

wobei \(K_m\) die Michaelis-Menten-Konstante, \(V_{\text{max}}\) die maximale Reaktionsgeschwindigkeit und \(S\) die Substratkonzentration darstellt. Die Glucuronidierungsreaktionen wurden für jede CUR-Konzentration und für jede mikrosomale Fraktion mindestens als Doppelbestimmungen ausgeführt.

6.2.7.9 Sulfatierungsassay

Die Sulfatierungen mit Rattenlebercytosol fanden in Anlehnung an Asai und Miyazawa [2000] statt. Die Inkubationen wurden in einem Gesamtvolumen von 0,2 ml in 0,1 M Kalium-Phosphat-Puffer pH 7,4 durchgeführt und enthielten das Substrat (40 µM und 100 µM CUR, 100 µM Hexahydro-CUR) in DMSO (Endkonzentration 2%), 1 mg/ml cytosolisches Protein, 0,4 mM 3′-Phosphoadenosin-5′-phosphosulfat (PAPS) und 10 mM Magnesiumchlorid. Der Reaktionsansatz wurde 3 min bei 37°C vorinkubiert, die Reaktion durch Zugabe von PAPS gestartet und 30 min bei 37°C inkubiert. Die Reaktion wurde durch Eiskühlung abgestoppt und der Ansatz zentrifugiert (3 min bei ca. 1000 × g). Der Überstand wurde direkt und nach enzymatischer Hydrolyse der Sulfate mittels HPLC/DAD analysiert. Für die Hydrolyse wurde ein Aliquot des Überstandes mit 0,1 U Sulfatase Typ IV aus *Acetobacter aerogenes* in 0,2 ml Kalium-Phosphat-Puffer pH 7,1 gemischt, für 2 h bei 37°C inkubiert und anschließend mit 3 × 0,5 ml Ethylacetat extrahiert und analysiert.

Alle Inkubationen wurden als Doppelbestimmungen ausgeführt. Negativkontrollen wurden in Abwesenheit von PAPS durchgeführt. Die Sulfotransferase-Aktivität des Cytosols wurde durch Umsetzung von 100 µM 4-Methylumbelliferon sichergestellt, da das 4-Methylumbelliferon-Sulfat als Referenzsubstanz vorhanden war.
6.2.8 Allgemeine Methoden für Glucuronide

6.2.8.1 Extraktion von Glucuroniden

Zur Untersuchung auf Extrahierbarkeit der Glucuronide von CUR, Demethoxy-CUR, Bisdemethoxy-CUR, Dimethyl-CUR, Iso-CUR, Hexahydro-CUR, Hexahydro-iso-CUR, Tetrahydro-CUR und Ketoprofen aus saurer Lösung wurden die Glucuronide im modifizierten Glucuronidierungsassay (Kap. 6.2.7.4) unter Bedingungen, die möglichst hohe Glucuronidausbeuten lieferten, hergestellt. Die Substrate wurden mit Endkonzentrationen von 100 µM (DMSO Endkonzentration 2%) eingesetzt.

Nach der Reaktion wurde mit 0,2 ml 0,7 M Glycin-HCl-Puffer pH 1,2 angesäuert und mit 2 × 0,4 ml Ethylacetat extrahiert. Vom empfindlicheren wässrigen Extraktionsrückstand wurde das restliche Ethylacetat unter einem N₂-Strom entfernt (ca. 1 min), die Proteine bei 4 °C abzentrifugiert (10 min, 20800 rcf) und anschließend 30 µl des Überstandes mittels HPLC/DAD analysiert. Die Extrakte wurden währenddessen auf Eis gelagert, an der Evaporatorzentrifuge zur Trockne eingeengt, mit Methanol aufgenommen und anschließend ein Aliquot zur HPLC/DAD-Analyse eingesetzt.

Die Glucuronid-Menge im Extrakt und im wässrigen Extraktionsrückstand wurde über die Peakflächen der Glucuronide anhand der externen Kalibrierung für die Muttersubstanzen (s. Anhang A.2.2, Tab. 19), unter der Annahme, dass sich die Extinktionskoeffizienten von Muttersubstanz und Glucuronid nicht unterscheiden, quantifiziert.

6.2.8.2 Anreicherung von Glucuroniden

Zur Anreicherung von Curcuminoid- und Ketoprofen-Glucuroniden wurden die Muttersubstanzen in mehreren 0,2 ml Parallelansätzen im modifizierten Glucuronidierungsassay (Kap. 6.2.7.4), unter Bedingungen, die eine nahezu vollständige Umsetzung lieferten, eingesetzt. Die Konzentration der Muttersubstanzen (CUR, Demethoxy-CUR, Bisdemethoxy-CUR, Dimethyl-CUR, Iso-CUR, Hexahydro-CUR, Hexahydro-iso-CUR, Ketoprofen) betrug jeweils 100 µM (DMSO Endkonzentration 2%). Es wurden hepatische Mikrosomen männlicher Sprague-Dawley-Ratten verwendet. Die Proteininkonzentrationen lagen im Bereich von 2,0-6,5 mg/ml mikrosomalem Protein und die Inkubationszeiten betrugen max. 90 min. Für alle Substrate außer Dimethyl-CUR lagen die Umsätze zwischen 80% und 100%. Der max. Umsatz für Dimethyl-CUR betrug 40%.

Nach der Reaktion wurde mit 0,2 ml 0,7 M Glycin-HCl-Puffer pH 1,2 angesäuert und mit 2 × 0,4 ml Ethylacetat extrahiert. Die Extrakte der Parallelansätze eines Substrates wurden vereinigt, das Ethylacetat an der Evaporatorzentrifuge entfernt und der Glucuronidrückstand in DMSO (25 µl) aufgenommen. Aus den so erhaltenen konzentrierten Glucuronid-
Stammlösungen (mM-Bereich) wurde für die Konzentrationsbestimmung mittels HPLC/DAD eine 1:25-Verdünnung in Methanol hergestellt. Die Ermittlung der Glucuronid-Konzentration erfolgte über die externe Kalibrierung der Muttersubstanzen (s. Anhang A.2.2, Tab. 19), unter der Annahme, dass sich die Extinktionskoeffizienten von Aglykon und Glucuronid nicht unterscheiden.

Die so hergestellten konzentrierten Glucuronid-Lösungen in DMSO wurden im Mikrotubuli-Polymerisationsassay (Kap. 6.2.10) eingesetzt.

6.2.9 Präparation von mikrotubulären Proteinen aus Rinderhirn

Die Präparation der MTP erfolgte aus frischem Rinderhirn durch zwei Polymerisations-Depolymerisationszyklen in Anlehnung an Shelanski et al. [1973]. Das frisch entnommene Rinderhirn wurde auf Eis transportiert, Hirnhäute und Blutgefäße mit einer Pinzette unter Eiskühlung entfernt und das Hirn anschließend mit eiskaltem REA-Puffer gewaschen. Kleinhirn und unbrauchbare Hirnbestandteile wurden entfernt und das Gewebe in eiskaltem REA-Puffer gewogen. Das Hirn wurde mit der Schere in eiskaltem REA-4 M-Puffer (0,75 ml/g Hirn) zerkleinert und anschließend mit einem Stabmixer unter Eiskühlung homogenisiert. Das Homogenat wurde bei 6500 \(\times \) g (4°C, 10 min) zentrifugiert. Das Pellet wurde verworfen und der Überstand bei 100000 \(\times \) g für 60 min bei 4°C zentrifugiert. Der Überstand wurde nach Zugabe einer 50 mM GTP-Lösung in REA-Puffer (Endkonzentration 1 mM) bei 37°C für 30 min im Wasserbad zur Polymerisation gebracht. Die Suspension wurde für 60 min bei 100000 \(\times \) g und 30°C zentrifugiert. Der Überstand wurde verworfen und das Pellet in eiskaltem REA-Puffer (\(\frac{1}{4} \) Volumen des Überstandes der ersten Ultrazentrifugation) suspendiert, durch sanftes Pottern homogenisiert und auf Eis für 30 min zur Depolymerisation gebracht. Dieser Polymerisations-Depolymerisationszyklus wurde ein weiteres Mal wiederholt, wobei der Überstand zur Polymerisation im gleichen Volumen REA-8 M-Puffer suspendiert wurde. Nach Beendigung der zweiten Depolymerisation wurde ein letztes Mal bei 100000 \(\times \) g für 60 min bei 4°C zentrifugiert. Der Überstand wurde aliquotiert, mit flüssigem Stickstoff sock gefroren und bis zur Verwendung in flüssigem Stickstoff gelagert.

Die Konzentrationsbestimmung der präparierten MTP erfolgte photometrisch. 450 µl REA-Puffer wurden in einer Quarzküvette vorgelegt, mit 50 µl MTP-Suspension versetzt und die Extinktion bei 276 nm gegen Luft gemessen. Die Ermittlung der MTP-Konzentration erfolgte über das Lambert-Beer’sche Gesetz mit einem Extinktionskoeffizient von \(\varepsilon = 120 \ l \times \text{mmol}^{-1} \times \text{cm}^{-1} \).

6.2.10 Mikrotubuli-Polymerisationsassay

Der Mikrotubuli-Polymerisationsassay wurde in Anlehnung an Gaskin [1982] unter zellfreien Bedingungen in vitro durchgeführt. Er dient dazu, festzustellen, ob Substanzen die Poly-
merisation von MTP zu Mikrotubuli beeinflussen können. Diese Polymerisation ist mit einer Trübung verbunden, die bei 350 nm photometrisch erfasst werden kann. Die Extinktionszunahme ist der Menge an gebildeten Mikrotubuli direkt proportional.

Die Polymerisation der Mikrotubuli wurde mit frisch aufgetauten MTP aus Rinderhirn durchgeführt, die wie in Kapitel 6.2.9 beschrieben, präpariert wurden. Es wurden MTP-Chargen verschiedener Präparationen verwendet. Die Messung fand in REA-Puffer, der 10 µM MTP enthielt, in einem Endvolumen von 0,5 ml statt. Da sechs Ansätze parallel gemessen wurden, wurden die MTP in einem entsprechend großen Volumen REA-Puffer suspendiert und jeweils 480 µl in den sechs Küvetten vorgelegt. Vor Zugabe der Testsubstanzen wurde die Absorption bei 276 nm bestimmt, um zu gewährleisten, dass sich in jeder Küvette annähernd die gleiche MTP-Menge befand.

Nach Zugabe der Testsubstanzen wurden diese 20 min bei Raumtemperatur mit den MTP inkubiert, um eine Reaktion zu ermöglichen. Nach dieser Vorinkubation wurde die Polymerisation durch Zugabe von in REA-Puffer gelöstem GTP (Endkonzentration 0,5 mM) gestartet und die Trübungszunahme bei 350 nm über 30 min in 5 min-Intervallen bei 35° C gemessen. Anschließend erfolgte die Depolymerisation bei 4° C für 30 min. Es wurde ein zweiter und dritter Polymerisations-Depolymerisationszyklus ohne zusätzliche GTP-Zugabe angeschlossen, um zwischen normaler Mikrotubuli-Bildung und Aggregation zu unterscheiden.

Die Kontroll-Inkubationen enthielten DMSO anstelle der Testsubstanz. Beim Einsatz von Curcmunoid-Derivaten mit intaktem konjugiertem Doppelbindungssystem musste aufgrund der Eigenabsorption eine zusätzliche Kontrolle, welche die Testsubstanz, aber kein GTP enthielt, durchgeführt werden. Als Positivkontrollen für die Hemmung der Polymerisation dienten Colchicin sowie die Acylglucuronide des NSAID Ketoprofen.

Abbildung 41 repräsentiert einen üblichen Polymerisationsverlauf auf dessen Grundlage die Auswertung erfolgte. Die Berechnung wurde anhand des zweiten und dritten Polymerisationszyklus vorgenommen, da teilweise während der Vorinkubation eine Extinktionszunahme beobachtet wurde, wodurch die erste Polymerisation ungeeignet war. Die Auswertung des zweiten und dritten Polymerisationszyklus wurde wie folgt vorgenommen:

II. Polymerisationszyklus: \[\Delta E_{II} = E_4 - E_3 \]

III. Polymerisationszyklus: \[\Delta E_{III} = E_6 - E_5 \]
Die Extinktionswerte \(E_3 \) und \(E_5 \) jeder Testsubstanz wurden auf null normiert und die Hemmung relativ zur DMSO-Kontrolle, die als Referenz diente (100% Polymerisation), berechnet. Die Extinktionswerte der absorbierenden Curcuminoid-Derivate wurden um die Eigenabsorption berichtet. Die Inhibition der Polymerisation wurde aus der Hemmung der zweiten und dritten Polymerisation durch Mittelwertbildung berechnet.

Abbildung 41: Graphische Auftragung des MTP-Polymerisationsverlaufs. Dargestellt sind drei Polymerisationszyklen (30 min, 35°C) und zwei Depolymerisationszyklen (30 min, 4°C). RT, Raumtemperatur.
7 Literatur

Holder, G. M., Plummer, J. L. und Ryan, A. J., 1978. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica, 8(12), 761–768.

Literatur

Wallin, M., Fridén, B. und Billger, M., 1988. Studies of the interaction of chemicals with microtubule assembly in vitro can be used as an assay for detection of cytotoxic chemicals and possible inducers of aneuploidy. Mutat Res, 201, 303–311.

A Anhang

A.1 Analytische Daten zu Produkten des Curcuminoid-Zerfalls

A.1.1 HPLC/DAD

Tabelle 16: Chromatographische und spektroskopische Eigenschaften von potentiellen Curcuminoid-Abbauprodukten. Die UV/Vis-Spektren wurden im HPLC-Eluent aufgenommen. HPLC-Bedingungen siehe Kapitel 6.2.1.2 (Gradient 1). * mittels HPLC/DAD- und GC/MS-Analyse identifiziert; (*) mittels HPLC/DAD-Analyse tendentiell identifiziert.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>HPLC t_R in min</th>
<th>DAD λ_{max} in nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanillinsäure</td>
<td>5,1</td>
<td>296, 262</td>
</tr>
<tr>
<td>p-Cumarsäure</td>
<td>6,4</td>
<td>313</td>
</tr>
<tr>
<td>Ferulasäure*</td>
<td>6,6</td>
<td>325, 299</td>
</tr>
<tr>
<td>Isovanillin(*)</td>
<td>6,9</td>
<td>314, 280</td>
</tr>
<tr>
<td>4-Hydroxy-Benzaldehyd</td>
<td>7,0</td>
<td>286</td>
</tr>
<tr>
<td>Vanillin*</td>
<td>7,2</td>
<td>312, 280</td>
</tr>
<tr>
<td>Ferulaaldehyd</td>
<td>9,0</td>
<td>342, 306</td>
</tr>
<tr>
<td>Feruloylmethan*</td>
<td>9,3</td>
<td>330</td>
</tr>
<tr>
<td>Guajacol</td>
<td>10,2</td>
<td>277</td>
</tr>
<tr>
<td>2-Methoxy-4-Methylphenol</td>
<td>13,7</td>
<td>283</td>
</tr>
<tr>
<td>Eugenol</td>
<td>19,5</td>
<td>283</td>
</tr>
</tbody>
</table>
A.1.2 GC/MS

Tabelle 17: Chromatographische und massenspektrometrische Eigenschaften von CUR-Zerfallsprodukten in Form ihrer Trimethylsilylether bei Analyse mittels GC/MS. GC/MS-Bedingungen siehe Kapitel 6.2.1.1.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>GC (t_R) in min</th>
<th>Fragmentierung nach Trimethylsilylierung m/z (relative Intensität)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanillin</td>
<td>15,4</td>
<td>224 (M⁺, 20), 209 (66), 194 (100), 165 (7), 73 (3)</td>
</tr>
<tr>
<td>Ferulasäure</td>
<td>23,3</td>
<td>338 (M⁺, 63), 323 (100), 308 (75), 293 (78), 279 (36), 264 (14), 249 (79), 219 (25), 192 (16), 179 (27), 145 (16), 73 (31)</td>
</tr>
<tr>
<td>Feruloylmethan</td>
<td>21,2</td>
<td>264 (M⁺, 53), 249 (60), 234 (100), 219 (62), 191 (13), 175 (15), 145 (26), 117 (12), 73 (28)</td>
</tr>
</tbody>
</table>

A.2 Curcuminoide und Curcuminoid-Glucuronide

A.2.1 UV/Vis-Spektren

<table>
<thead>
<tr>
<th>Curcuminoide</th>
<th>Absorptionsmaxima in nm Muttersubstanz</th>
<th>Glucuronid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>428, 266</td>
<td>A: 423, 263; B: 418</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>424, 251</td>
<td>A: 419, 248; B: 410</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>419, 249</td>
<td>A: 415, 248; B: 405</td>
</tr>
<tr>
<td>Iso-CUR</td>
<td>423, 262</td>
<td>A: 420, 257</td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>424, 265</td>
<td>411, 270</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>282</td>
<td>281</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR</td>
<td>279</td>
<td>277</td>
</tr>
<tr>
<td>Hexahydro-dimethyl-CUR</td>
<td>281</td>
<td>281</td>
</tr>
</tbody>
</table>
A.2.2 Externe Kalibrierungen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Wellenlänge in nm</th>
<th>Kalibrierbereich in nmol</th>
<th>Geradengleichung</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR</td>
<td>420</td>
<td>0,0025 - 2,0</td>
<td>A = 2620,264 n - 6,588</td>
<td>0,99984</td>
</tr>
<tr>
<td>Demethoxy-CUR</td>
<td>420</td>
<td>0,1 - 1,5</td>
<td>A = 2756,620 n - 17,161</td>
<td>0,99997</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR</td>
<td>420</td>
<td>0,05 - 1,5</td>
<td>A = 2696,848 n - 11,206</td>
<td>0,99952</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>280</td>
<td>0,1 - 4,0</td>
<td>A = 304,037 n - 1,875</td>
<td>0,99976</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR</td>
<td>280</td>
<td>0,1 - 2,0</td>
<td>A = 217,944 n + 0,291</td>
<td>0,99997</td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>420</td>
<td>0,01 - 0,5</td>
<td>A = 2703,590 n + 3,472</td>
<td>0,99974</td>
</tr>
<tr>
<td>3-HO-Glucuronid von E2*</td>
<td>280</td>
<td>0,1 - 1,0</td>
<td>A = 44,659 n - 0,496</td>
<td>0,99859</td>
</tr>
</tbody>
</table>

A.2.3 Kinetik UGT1A8

Abbildung 43: Kinetisches Profil der Glucuronidierung von CUR mit humanem rekombinantem UGT1A8. Die Kurvenanpassung erfolgte nach der Michaelis-Menten-Gleichung. Jeder Datenpunkt repräsentiert den Mittelwert aus zwei unabhängigen Bestimmungen. Insert: Eadie-Hofstee-Plot. \(V \), Reaktionsgeschwindigkeit in pmol/min/mg Protein; \(S \), Substratkonzentration in \(\mu \)M.
A.3 GC/MS: Fragmentierungsmuster

A.3.1 Metaboliten natürlicher Curcuminoide

Tabelle 20: Chromatographische und massenspektrometrische Eigenschaften von thermostabilen Curcuminoide-Metaboliten in Form ihrer Trimethylsilylether bei Analyse mittels GC/MS. GC/MS-Bedingungen siehe Kapitel 6.2.1.1. n.n., nicht nachweisbar.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>GC t_R in min</th>
<th>Fragmentierung nach Trimethylsilylierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m/z (relative Intensität)</td>
</tr>
<tr>
<td>Tetrahydro-CUR</td>
<td>23,4</td>
<td>588 (M$^+$, 0,4), 573 (10), 365 (15), 323 (5), 223 (5), 209 (100), 193 (8), 179 (13), 73 (19)</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>21,5</td>
<td>590 (M$^+$, 2), 500 (18), 291 (19), 278 (9), 263 (4), 251 (6), 249 (9), 235 (17), 209 (100), 195 (9), 193 (7), 192 (6), 179 (18), 73 (24)</td>
</tr>
<tr>
<td>Octahydro-CUR</td>
<td>20,6; 21,3</td>
<td>664 (M$^+$, 0,1), 574 (15), 484 (23), 324 (19), 275 (18), 262 (98), 247 (23), 235 (29), 232 (11), 222 (10), 209 (100), 205 (8), 195 (11), 193 (7), 192 (13), 179 (27), 73 (53)</td>
</tr>
<tr>
<td>Tetrahydro-demethoxy-CUR</td>
<td>21,3</td>
<td>558 (M$^+$, n.n.), 543 (28), 365 (21), 335 (18), 323 (6), 223 (5), 219 (4), 209 (100), 193 (13), 192 (15), 179 (62), 73 (37)</td>
</tr>
<tr>
<td>Hexahydro-demethoxy-CUR</td>
<td>20,5</td>
<td>560 (M$^+$, 5), 470 (43), 291 (15), 278 (8), 263 (11), 261 (8), 249 (34), 248 (7), 235 (44), 219 (19), 209 (84), 205 (12), 195 (10), 193 (14), 192 (11), 179 (100), 73 (57)</td>
</tr>
<tr>
<td>Octahydro-demethoxy-CUR</td>
<td>20,0; 20,3</td>
<td>634 (M$^+$, 0,1), 544 (10), 454 (23), 386 (5), 324 (14), 294 (5), 275 (11), 262 (100), 258 (8), 247 (17), 235 (15), 232 (27), 222 (16), 209 (44), 205 (15), 192 (10), 179 (60), 73 (44)</td>
</tr>
<tr>
<td>Tetrahydro-bisdemethoxy-CUR</td>
<td>19,5</td>
<td>528 (M$^+$, 0,4), 513 (14), 335 (61), 293 (9), 219 (4), 192 (10), 179 (100), 73 (30)</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR</td>
<td>19,2</td>
<td>530 (M$^+$, 0,01), 440 (19), 261 (18), 249 (9), 248 (43), 219 (13), 205 (11), 193 (4), 192 (15), 179 (100), 73 (51)</td>
</tr>
<tr>
<td>Octahydro-bisdemethoxy-CUR</td>
<td>18,4; 19,0</td>
<td>604 (M$^+$, n.n.), 514 (16), 424 (25), 356 (11), 294 (11), 258 (11), 232 (100), 205 (28), 192 (158), 179 (83), 73 (52)</td>
</tr>
</tbody>
</table>
A.3.2 Metaboliten synthetischer Curcuminoider

Tabelle 21: Chromatographische und massenspektrometrische Eigenschaften von thermosta­bilen Metaboliten synthetischer CUR-Derivate in Form ihrer Trimethylsilylether bei Analyse mittels GC/MS. GC/MS-Bedingungen siehe Kapitel 6.2.1.1. a durch katalytische Hydrierung hergestellt; b Metabolit bei Inkubation mit Zellen; c Nebenprodukt der katalytischen Hydrie­rung; n.n., nicht nachweisbar.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>GC t_R in min</th>
<th>Fragmentierung nach Trimethylsilylierung m/z (relative Intensität)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexahydro-iso-CUR^a</td>
<td>21,3</td>
<td>590 (M^+, 0,6), 500 (13), 291 (13), 278 (6), 263 (2), 251 (8), 249 (6), 235 (18), 209 (100), 195 (9), 193 (8), 192 (10), 179 (26), 73 (11)</td>
</tr>
<tr>
<td>Octahydro-iso-CUR^b</td>
<td>20,5</td>
<td>664 (M^+, n.n.), 574 (9), 484 (20), 324 (10), 275 (14), 262 (53), 247 (15), 235 (17), 232 (6), 222 (8), 209 (100), 205 (6), 195 (13), 193 (8), 192 (10), 179 (31), 73 (24)</td>
</tr>
<tr>
<td>Hexahydro-dimethyl-CUR^a</td>
<td>21,3</td>
<td>474 (M^+, 6), 384 (26), 233 (27), 220 (9), 193 (10), 191 (19), 177 (18), 164 (9), 151 (100), 121 (3), 107 (6), 73 (4)</td>
</tr>
<tr>
<td>Octahydro-dimethyl-CUR^c</td>
<td>19,5</td>
<td>548 (M^+, n.n.), 458 (22), 368 (100), 217 (24), 189 (16), 177 (18), 174 (12), 151 (11), 147 (36), 134 (23), 121 (29), 107 (24), 73 (38)</td>
</tr>
</tbody>
</table>

A.4 HPLC/ESI/MS/MS: Fragmentierungsmuster

<table>
<thead>
<tr>
<th>Glucuronid</th>
<th>HPLC/DAD t_R in min</th>
<th>LC/MS [M-H]^−</th>
<th>LC/MS/MS-Fragmentierung m/z (relative Intensität)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR A</td>
<td>18,8</td>
<td>543</td>
<td>451 (12), 393 (25), 367 (100), 353 (13), 217 (39), 175 (80)</td>
</tr>
<tr>
<td>CUR B</td>
<td>8,8</td>
<td>543</td>
<td>367 (100), 217 (86)</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR A</td>
<td>16,4</td>
<td>483</td>
<td>363 (68), 307 (100), 257 (7), 175 (64)</td>
</tr>
<tr>
<td>Bisdemethoxy-CUR B</td>
<td>8,3</td>
<td>483</td>
<td>363 (33), 307 (77), 215 (21), 175 (100)</td>
</tr>
<tr>
<td>Dimethyl-CUR</td>
<td>15,3</td>
<td>571</td>
<td>571 (7), 395 (100), 175 (6)</td>
</tr>
<tr>
<td>Hexahydro-CUR</td>
<td>16,4</td>
<td>549</td>
<td>549 (19), 531 (100), 513 (12), 373 (13), 359 (23), 175 (29)</td>
</tr>
<tr>
<td>Hexahydro-bisdemethoxy-CUR</td>
<td>8,7; 9,7</td>
<td>489</td>
<td>489 (9), 471 (36), 339 (18), 313 (21), 295 (10), 175 (100)</td>
</tr>
<tr>
<td>Hexahydro-dimethyl-CUR</td>
<td>17,3</td>
<td>577</td>
<td>392 (5), 193 (100), 175 (6)</td>
</tr>
</tbody>
</table>
A Anhang

A.5 NMR-Spektren

\[
\begin{align*}
\text{CUR} & \quad R \quad R' \\
OCH_3 & \quad OH \\
\text{Iso-CUR} & \quad OH \quad \text{OCH}_3
\end{align*}
\]

A.5.1 CUR

<table>
<thead>
<tr>
<th>(^1H)-NMR (500 MHz, Aceton-(d_6))</th>
<th>(^13C)-NMR (125 MHz, Aceton-(d_6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta) (ppm)</td>
<td>J (Hz)</td>
</tr>
<tr>
<td>3.94 (6H, s)</td>
<td>-</td>
</tr>
<tr>
<td>6.00 (1H, s)</td>
<td>-</td>
</tr>
<tr>
<td>6.73 (2H, d)</td>
<td>16</td>
</tr>
<tr>
<td>6.91 (2H, d)</td>
<td>8</td>
</tr>
<tr>
<td>7.21 (2H, dd)</td>
<td>8, 2</td>
</tr>
<tr>
<td>7.36 (2H, d)</td>
<td>2</td>
</tr>
<tr>
<td>7.62 (2H, d)</td>
<td>16</td>
</tr>
<tr>
<td>8.21 (2H, brs)</td>
<td>-</td>
</tr>
</tbody>
</table>

A.5.2 Iso-CUR

<table>
<thead>
<tr>
<th>(^1H)-NMR (500 MHz, Aceton-(d_6))</th>
<th>(^13C)-NMR (125 MHz, Aceton-(d_6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta) (ppm)</td>
<td>J (Hz)</td>
</tr>
<tr>
<td>3.92 (6H, s)</td>
<td>-</td>
</tr>
<tr>
<td>6.05 (1H, s)</td>
<td>-</td>
</tr>
<tr>
<td>6.71 (2H, d)</td>
<td>16</td>
</tr>
<tr>
<td>7.03 (2H, d)</td>
<td>8</td>
</tr>
<tr>
<td>7.17 (2H, dd)</td>
<td>8, 2</td>
</tr>
<tr>
<td>7.23 (2H, d)</td>
<td>2</td>
</tr>
<tr>
<td>7.60 (2H, d)</td>
<td>16</td>
</tr>
<tr>
<td>7.85 (2H, brs)</td>
<td>-</td>
</tr>
</tbody>
</table>

160
A.6 Polymerisationskurven

A.6.1 Ketoprofen und Ketoprofen-Acylglucuronide

A.6.2 CUR und CUR-Glucuronid
A.6.3 Demethoxy-CUR und Demethoxy-CUR-Glucuronid

A.6.4 Bisdemethoxy-CUR und Bisdemethoxy-CUR-Glucuronid
A.6.5 Dimethyl-CUR und Dimethyl-CUR-Glucuronid

A.6.6 Hexahydro-CUR und Hexahydro-CUR-Glucuronid
B Publikationen

Publikationen in Fachzeitschriften

Beiträge auf Kongressen und Fachtagungen

C Danksagung

Danken möchte ich allen, die auf verschiedenste Weise zum Gelingen dieser Arbeit beigetragen haben:

- Herrn Prof. Dr. Dr. M. Metzler für die Überlassung des interessanten Themas, die allzeit freundliche Unterstützung meiner Arbeit sowie seine Diskussionsbereitschaft,

- im Besonderen Erika Pfeiffer für die wohlwollende Unterstützung durch Rat und Tat sowie die zahlreichen Anregungen und die wertvollen Diskussionen (DANKE!),

- Anikó Sólyom für die Bereitstellung der aufgereinigten Curcuminoide sowie die Aufnahme der LC/MS/MS-Spektren,

- Stefan Kranz für die Unterstützung bei der Praparation der Gewebeschnitte sowie für seine Geduld und Hilfe bei Computerproblemen,

- Doris Honig und Dr. Renate Loske für die unermüdliche Instandhaltung des GC/MS und die zahlreichen Einspritzungen,

- dem Arbeitskreis von Herrn Prof. Podlech für die Durchführung der NMR-Messungen,

- Stephan Walch und Alexander Riess für ihre wertvolle und zuverlässige Mitarbeit im Rahmen ihrer Diplomarbeiten,

- Julia Kratschmann für die Arbeiten zur Stabilität und die damit verbundene Betreuung der Zellkulturen im Rahmen ihrer Diplomarbeit sowie ihre Hilfe im Umgang mit \LaTeX,

- Franziska Heuschmid für ihren Beitrag zum oxidativen Metabolismus von Hexahydrocurcumin während ihrer Diplomarbeit,

- Silke Gerstner für das Korrekturlesen dieser Arbeit,

- allen Mitdoktoranden und Mitarbeitern für das überaus angenehme Arbeitsklima, die tolle Zusammenarbeit und die ständige Hilfsbereitschaft.

Mein ganz besonderer Dank gilt

- Tilo insbesondere für die allumfassende und uneingeschränkte Hilfeleistung bei allen computertechnischen Angelegenheiten, sowie für seine Geduld, sein Verständnis und seinen Beistand während jeder Phase dieser Arbeit,

- und vor allem meinen Eltern für ihre Hilfe und Unterstützung in jeder Hinsicht, die ständige Aufmunterung sowie das Lesen dieser Arbeit.
Lebenslauf

Name: Simone Höhle
Geburtsdatum: 08. Mai 1977
Geburtsort: Geislingen an der Steige
Staatsangehörigkeit: deutsch

Schulbildung

08/1983 - 07/1987 Tegelberg-Grundschule Geislingen
08/1987 - 06/1993 Schubart-Realschule Geislingen
Abschluss: Mittlere Reife
08/1993 - 06/1996 Wirtschaftsgymnasium Geislingen
Abschluss: Allgemeine Hochschulreife

Hochschulbildung

10/1996 - 12/2001 Studium der Lebensmittelchemie an der Universität Karlsruhe (TH)
09/1999 Erster Abschnitt der Staatsprüfung für Lebensmittelchemiker
06/2001 - 12/2001 Diplomarbeit im Arbeitskreis von Prof. Dr. Dr. M. Metzler am Institut für Lebensmittelchemie und Toxikologie der Universität Karlsruhe (TH)
Thema: Metabolismus von Curcuminoiden in Mikrosomen und Gewebeschnitten
Abschluss: Diplom-Lebensmittelchemikerin / Zweiter Abschnitt der Staatsprüfung für Lebensmittelchemiker

seit 03/2002 Wissenschaftliche Angestellte an der Universität Karlsruhe (TH), Fakultät für Chemie und Biowissenschaften, Institut für Angewandte Biowissenschaften, Abteilung für Lebensmittelchemie und Toxikologie, Arbeitskreis Prof. Dr. Dr. M. Metzler