Heike Fliegl

Coupled-Cluster-R12-Methoden mit Auxiliarbasisfunktionen

Heike Fliegl

Coupled-Cluster-R12-Methoden mit Auxiliarbasisfunktionen

Coupled-Cluster-R12-Methoden mit Auxiliarbasisfunktionen

von Heike Fliegl

universitätsverlag karlsruhe

Dissertation, Universität Karlsruhe (TH) Fakultät für Chemie und Biowissenschaften, 2006

Impressum

Universitätsverlag Karlsruhe c/o Universitätsbibliothek Straße am Forum 2 D-76131 Karlsruhe www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Universitätsverlag Karlsruhe 2006 Print on Demand

ISBN-13: 978-3-86644-061-6 ISBN-10: 3-86644-061-8

Coupled-Cluster-R12–Methoden mit Auxiliarbasisfunktionen

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) angenommene

Dissertation

von Diplom-Chemikerin

Heike Fliegl

aus Temeschburg

Dekan:Prof. Dr. H. Puchta1. Gutachter:Prof. Dr. W. Klopper2. Gutachter:Prof. Dr. R. AhlrichsTag der mündlichen Prüfung:20. Juli 2006

Für meine Eltern.

Danksagung

Herrn Prof. Dr. W. M. Klopper als meinem Doktorvater danke ich für die interessante Themenstellung und die ausgezeichnete Betreuung dieser Arbeit. Seine stete Diskussionsund Hilfsbereitschaft werden mir immer in guter Erinnerung bleiben.

Mein besonderer Dank gilt Prof. Dr. C. Hättig, der mich während seiner Habilitationszeit in Karlsruhe die vergangenen drei Jahre engagiert betreut hat. Er hat mir viele wertvolle Hinweise sowohl beim seitenlangen Herleiten der Coupled–Cluster–R12– und – Antwort–Gleichungen als auch bei deren Computer–Implementierung gegeben. Seine stete Diskussions– und Hilfsbereitschaft werden mir immer in guter Erinnerung bleiben.

Herzlich danke ich auch Prof. Dr. R. Ahlrichs für seine Betreuung während der ersten drei Monate meiner Arbeit bevor Prof. Dr. W. M. Klopper diese nach seinem Umzug nach Karlsruhe persönlich übernehmen konnte.

Herrn Prof. Dr. J. Noga danke ich dafür, dass er für meine Arbeit eine lokale CCSD(R12)-Testversion zur Verfügung gestellt hat. Herrn Prof. Dr. H.-J. Werner danke ich dafür, dass er für meine Arbeit verschiedene Geometriedaten zur Verfügung gestellt hat. Herrn Prof. Dr. M. Olzmann danke ich für den Anstoß zur Berechnung der elektronischen Bindungsenergie des SO₃·H₂O Komplexes und für die gute Zusammenarbeit.

Mein Dank für das Korrekturlesen der Arbeit geht an Dr. Olaf Hübner, Markus Armbruster, Angela Bihlmeier, Dmitrij Rappoport, Andreas Glöß und Dr. Claudia Schrodt. Des Weiteren möchte ich mich bei Dr. Andreas Köhn, Dr. David Tew, Oliver Welz, Dr. Florian Weigend, Dr. Filipp Furche, Dr. Daniel Boese und Dmitrij Rappoport für viele interessante und zum Teil sehr lebhaft geführte Diskussionen bedanken.

Zu besonderem Dank bin ich den Systemadministratoren Marco Kattannek, Andreas Glöß und Frank Imhoff verpflichtet, auf deren Unterstützung ich bei Rechnerproblemen immer zählen durfte. Des Weiteren möchte ich meinen gegenwärtigen und ehemaligen Zimmerkolleginnen und -kollegen Dr. Paola Nava, Dr. Claire Samson, Angela Bihlmeier, Dr. Yannick Carissan, Florian Bischoff und Sebastian Höfener für das gute Miteinander danken. In diesem Zusammenhang danke ich auch Prof. Dr. Hans Wondratschek sehr herzlich für seine freundliche Anteilnahme. Mein Dank für die gute Arbeitsatmosphäre gilt allen gegenwärtigen und ehemaligen Mitgliedern der Arbeitsgruppen Klopper und Ahlrichs, Dr. Peter Deglmann, Dr. Uwe Huniar, Dr. Klaus May, Dr. Barbara Unterreiner, Dr. Nathaniel Crawford, Dr. Cristian Villani, Dr. Marek Sierka, Dr. Arnim Hellweg, Dr. Christian Neiss, Elena Kordel, Tobias Pankewitz, Jorge Aguilera, Rafal Bachorz, Priv. Doz. Dr. Karin Fink, Ursula Legeland und Manuela Kühn.

Für die finanzielle Unterstützung danke ich dem Zentrum für funktionelle Nanostrukturen (CFN), der Deutschen Forschungsgemeinschaft (DFG) und der Universität Karlsruhe.

Inhaltsverzeichnis

1.	Einleitung					
2.	Einf 2.1. 2.2.	ührung in die Coupled-Cluster-AntworttheorieCoupled-Cluster Wellenfunktion und GrundzustandsenergieCoupled-Cluster-Antworttheorie für Anregungsenergien2.2.1. Zeitabhängige Coupled-Cluster-Wellenfunktion und Quasienergie2.2.2. Coupled-Cluster-Lagrange- und Antwortfunktion2.2.3. Coupled-Cluster-Antwortgleichungen und Anregungsenergien	5 7 7 8 10			
3.	Einführung in die R12-Theorie					
	3.1.	Elektronenkorrelation	13			
		3.1.1. Fermi–Korrelation und Coulomb–Korrelation	14			
	3.2.	Das Coulomb–Loch und die "Cusp"–Bedingung	15			
		3.2.1. Die Problematik der Basissatzkonvergenz	16			
	3.3.	Explizit korrelierte Wellenfunktionen	19			
		3.3.1. Der klassische lineare R12–Ansatz	19			
		3.3.2. Der moderne lineare R12–Ansatz	20			
		3.3.3. Effizienz des linearen R12–Ansatzes	22			
		3.3.4. Der exponentielle R12–Ansatz	24			
4.	Coupled–Cluster–R12–Theorie 27					
	4.1.	Der Coupled–Cluster–R12–Ansatz	27			
	4.2.	Der CCSD-R12–Ansatz	28			
	4.3.	CCSD-R12- und CC2-R12-Grundzustandsenergie	29			
	4.4.	CC2-R12–Anregungsenergien	31			
	4.5.	Formulierung der R12–Beiträge zur CC2-R12–Grundzustandsenergie	33			
		4.5.1. Einführung der Auxiliarbasis	35			
		4.5.2. Formulierung der Matrizen B und C	39			
		4.5.3. Die Standardnäherungen	43			
	4.6.	Formulierung der R12–Beiträge zu den CC2-R12–Anregungsenergien	44			
5.	Die	CCSD(R12)–Näherung	47			
	5.1.	Die CCSD(R12)-Coupled-Cluster-Gleichungen	47			
		5.1.1. Formulierung der R12–Beiträge für das CCSD(R12)–Modell	49			
	5.2.	Erweiterung des $CCSD(R12)$ auf das $CCSD(T)(R12)$ -Modell	51			

6.	Implementierung des CC2-R12-Modells				
	6.1.	Allgemeine Vorbemerkung	53		
	6.2.	R12–Beiträge im Rahmen von Ansatz 1	56		
	6.3.	R12–Beiträge im Rahmen von Ansatz 2	58		
7.	lmp	lementierung der CCSD(R12)–Näherung	61		
	7.1.	Generelle Strategie	61		
	7.2.	Implementierung der R12-Beiträge	62		
8.	Anv	vendungen des CC2-R12-Modells	67		
	8.1.	Vorgehensweise	67		
	8.2.	Atome	68		
	8.3.	Moleküle	72		
	8.4.	Analyse der R12–Beiträge zu den berechneten Anregungsenergien	78		
	8.5.	Zusammenfassung	83		
9.	Anv	vendungen der CCSD(R12)–Näherung	87		
	9.1.	Berechnung von CCSD(R12)–Grundzustandsenergien	87		
		9.1.1. Vorgehensweise	87		
		9.1.2. Ergebnisse	88		
		9.1.3. Zusammenfassung	95		
	9.2.	Berechnung von CCSD(T)(R12)-Reaktionsenergien	97		
		9.2.1. Vorgehensweise	98		
		9.2.2. Ergebnisse	104		
	0.3	9.2.5. Zusammemassung	104		
	9.5.	betechnung der elektronischen bindungsenergie des $50_3 \cdot n_20$ Dimers 0.3.1 Motivation	107		
		032 Vorgehensweise	100		
		9.3.3 Ergebnisse	112		
		9.3.4. Zusammenfassung	114		
10	.Zus	ammenfassung und Ausblick	115		
Α.	Abk	ürzungen	117		
	-		110		
В.	Exp	nizite Ausdrücke für das CC2-R12-Modell	119		
C.	Abb	oildungen zu Kapitel 6	127		
D.	Tab	ellen und Abbildungen zu Kapitel 8	137		
Ε.	Tab	ellen und Abbildungen zu Kapitel 9	169		

F.	Kons	struktion der Basen aus Abschnitt 9.3.	199
	F.1.	Orbitalbasis für Schwefel	200
	F.2.	Orbitalbasis für Sauerstoff	200
	F.3.	Orbitalbasis für Wasserstoff	200
	F.4.	Auxiliarbasen	201

1. Einleitung

Coupled-Cluster-(CC)-Modelle [1-3] eignen sich sehr gut, um genaue Grundzustandsenergien zu berechnen. Sie gehören zu den Post-Hartree-Fock-Methoden [4] und sind im Gegensatz zum klassischen Hartree-Fock-Verfahren [5-7] in der Lage, die Elektronenkorrelationsenergie [8] zu erfassen. Diese ist als Differenz zwischen der exakten und der Hartree–Fock–Energie definiert. Im Gegensatz zu Konfigurationswechselwirkungsverfahren (CI) sind CC-Modelle größenkonsistent und führen bei gleicher Anregungsklasse zu genaueren Ergebnissen. Ein weiterer Vorteil von Coupled-Cluster-Methoden ist, dass eine Klassifizierung in verschiedene Anregungsklassen vorgenommen werden kann, um diese Modelle in einer Hierarchie systematisch zusammenzufassen [9, 10]. Dies ist bei Dichtefunktionalmethoden (DFT) [11], die in Bezug auf den Rechenaufwand billiger als CC-Methoden sind, nicht der Fall. Mit steigender Hierarchiestufe steigen der nötige Rechenaufwand und die Genauigkeit der Ergebnisse an. Eine Abschätzung des Rechenaufwands kann über das formale Skalierungsverhalten erhalten werden. Definiert man die Systemgröße N als Anzahl der verwendeten Basisfunktionen, so kann die CC-Hierarchie der verschiedenen CC-Modelle gemäß CCS ($\mathcal{O}(N^4)$), CC2 [2] ($\mathcal{O}(N^5)$), CCSD [3,12,13] ($\mathcal{O}(N^6)$), CC3 [14, 15] $(\mathcal{O}(N^7))$, CCSDT $(\mathcal{O}(N^8))$ [9, 10] und so weiter formuliert werden. Das jeweilige Skalierungsverhalten ist in Klammern angegeben. Diese Hierarchie führt systematisch zu Full-CI-Ergebnissen [4, 16] und damit zu einer exakten Lösung der Schrödinger-Gleichung [17,18] im Rahmen der Born-Oppenheimer-Näherung [19] und der verwendeten Einelektronenbasis [20]. Durch Kombination von Coupled-Cluster- und Antwort-Theorie sind auch frequenzabhängige molekulare Eigenschaften wie Anregungsenergien, Polarisierbarkeiten und Hyperpolarisierbarkeiten im Rahmen von Coupled-Cluster-Verfahren zugänglich [1, 21–24]. Dabei ändert sich die oben beschriebene Hierarchie der Coupled-Cluster-Modelle nicht [9, 10].

Einer der großen Nachteile von CC-Methoden liegt in der langsamen Konvergenz der berechneten Grundzustandsenergien mit der verwendeten Einelektronenbasis zum Basissatzlimit und dem damit verbundenen hohen Rechenaufwand. Dieses langsame Konvergenzverhalten gilt nicht nur für CC-Modelle, sondern für alle Korrelationsmethoden, deren Wellenfunktionen aus Slater-Determinanten aufgebaut werden, wie beispielsweise CI-Verfahren. Allgemein wurde das langsame Konvergenzverhalten zu $(\ell + 1)^{-3}$ bestimmt, wobei mit ℓ die maximale Drehimpulsquantenzahl des Basissatzes bezeichnet wird [25–28]. In diesem Zusammenhang wird auch vom sogenannten "Basissatzkonvergenzproblem" gesprochen. Ein möglicher Ausweg aus dieser Problematik liegt in der Verwendung von explizit korrelierten Wellenfunktionen. Bereits 1929 konnte Hylleraas [29] für das He-Atom

zeigen, dass die Verwendung eines Korrelationsfaktors innerhalb der Wellenfunktion, der vom interelektronischen Abstand r_{12} abhängt, eine außerordentlich gute Beschreibung der kurzreichweitigen Elektronenkorrelation ermöglicht. Heute hat sich dieses Forschungsgebiet fest in der Quantenchemie etabliert. 1985 wurde von Kutzelnigg der lineare R12-Ansatz [30] eingeführt, der bis heute oftmals als Grundlage zur Entwicklung von explizit korrelierten Wellenfunktionsmodellen gebraucht wird. Durch Verwendung des linearen R12-Ansatzes konnte bereits 1987 das auf der Møller-Plesset-Störungstheorie zweiter Ordnung [31] basierende explizit korrelierte MP2-R12-Modell [32] entwickelt werden. In den folgenden Jahren wurden neue Ansätze und verschiedenste Näherungen entwickelt sowie effizientere Algorithmen und Implementierungen vorgestellt [33-53]. Angesichts der Erfolge auf MP2-Niveau, die durch Verwendung von explizit korrelierten Wellenfunktionen erzielt wurden, lag es nahe, dieses Verfahren auch auf Coupled-Cluster-Modelle anzuwenden. Noga et al. [38-40] kombinierten 1992 den linearen R12-Ansatz mit der CC-Theorie und entwickelten explizit korrelierte CC-R12-Methoden wie CCSD-R12 und CCSD(T)-R12, die die Berechnung von hochgenauen Grundzustandsenergien ermöglichten [41, 42, 54–56]. In diesem Zusammenhang kann davon ausgegangen werden, dass sowohl auf dem linearen R12-Ansatz als auch auf anderen Korrelationsfaktoren basierende explizit korrelierte Wellenfunktionsmodelle [50-52] gute Ansätze zur Überwindung des Basissatzkonvergenzproblems von Grundzustandsenergien sind. Allerdings blieb die Anwendbarkeit dieser CC-R12-Methoden aufgrund ihrer Komplexität und der Notwendigkeit der Verwendung großer Basissätze und des damit verbundenen Rechenaufwands bisher auf kleine Systeme (bis zu 5 Atomen) beschränkt [32, 55].

Die Weiterentwicklung der CC-R12-Verfahren sollte deshalb die Erweiterung der Anwendbarkeit auf größere Systeme (bis zu 20 Atome) unter Beibehaltung der bisherigen Genauigkeit zum Ziel haben. Es ist zu erwarten, dass Verfahren wie die "resolution of the identity"-(RI)-Näherung [47], die Verwendung von Auxiliarbasen [47] und "density fitting" Techniken [45], die sich bereits beim MP2-R12-Modell bewährt haben, für die Entwicklung einer robusten Näherung auf CCSD-R12-Niveau hilfreich sind. Weiterhin ist bekannt, dass die R12-Beiträge zur Grundzustandsenergie am Basissatzlimit verschwinden. Mit zunehmender Basissatzgröße werden also die R12-Beiträge immer kleiner. Dieses Verhalten sollte bei der Entwicklung eines Näherungsverfahrens ebenfalls berücksichtigt werden.

Ein Ziel der vorliegenden Arbeit ist, diese R12–Beiträge auf CCSD-R12–Niveau in Abhängigkeit der verwendeten Basis theoretisch näher zu untersuchen und zu identifizieren, welche dieser Beiträge ohne signifikante Einbußen an Genauigkeit vernachlässigbar sind. Auf dieser Grundlage soll ein Näherungsmodell entwickelt, implementiert und angewendet werden, das die Berechnung größerer Systeme auf CCSD-R12–Niveau unter Verwendung von Auxiliarbasisfunktionen ermöglicht.

Des Weiteren gibt es bisher keine Erkenntnisse darüber, inwieweit die Verwendung von explizit korrelierten Wellenfunktionen sich zur Berechnung molekularer frequenzabhängiger Eigenschaften eignet. Die Berechnung molekularer Eigenschaften ist in Bezug auf die Komplexität der Theorie und den notwendigen Rechenaufwand oft deutlich anspruchsvoller als die Berechnung von Grundzustandsenergien. Im Rahmen einer Antworttheorie eignen sich beispielsweise Møller-Plesset-Störungstheorie [31] und CI-Verfahren, abgesehen von der Full-CI-Methode, nicht zur Berechnung von optischen Eigenschaften und Anregungsenergien [57-60]. Eine Methode, die zu genauen Grundzustandsenergien führt, muss dies nicht zwangsläufig auch für Anregungsenergien und frequenzabhängige Eigenschaften tun, wie beispielsweise Studien von Werner et al. für lokale explizit korrelierte Methoden belegen [61, 62]. Trotzdem sollte prinzipiell untersucht werden, inwieweit die Verwendung von explizit korrelierten Wellenfunktionsmodellen zu einer Verbesserung der Basissatzkonvergenz bei Anwendungen in Coupled-Cluster-Antwortrechnungen führt und welche Probleme eventuell auftreten. Eine systematische Untersuchung sollte mit dem in der CC-Hierarchie am niedrigsten stehenden CC-Modell und den mit dem geringsten theoretischen und rechnerischen Aufwand zugänglichen molekularen Eigenschaften, also Anregungsenergien, beginnen. Da im Bereich der MP2-R12-Theorie bereits viele Arbeiten vorliegen, auf welche zurückgegriffen werden kann, ist die erstmalige Untersuchung von Anregungsenergien im Rahmen der CC2-R12-Methode, die auf dem MP2-Modell aufbaut, sinnvoll.

Die vorliegende Arbeit gliedert sich in drei Teile, die mit Theorie, Implementierung und Anwendung überschrieben werden können. In Kapitel 2 wird eine kurze Einführung in die Coupled-Cluster- und Antwort-Theorie gegeben. Danach wird in Kapitel 3 das Basissatzkonvergenzproblem näher erläutert und eine Einführung in die R12-Theorie gegeben. Kapitel 4 beschäftigt sich ausführlich mit der Herleitung der Formeln zur Berechnung von CC2-R12-Anregungsenergien im Rahmen der Ansätze 1 und 2 [44, 47]. Die theoretischen Grundlagen für das genäherte CCSD-R12-Modell werden in Kapitel 5 gelegt. Die Implementierung des CC2-R12-Modells im Rahmen der verschiedenen Ansätze wird in Kapitel 6 vorgestellt, während die Implementierung der CCSD(R12)-Näherung in Kapitel 7 behandelt wird. Danach werden Anwendungen des CC2-R12-Modells und der CCSD(R12)-Näherung in Kapitel 8 und 9 vorgestellt und diskutiert. Die vorliegende Arbeit wird anschließend in Kapitel 10 zusammengefasst.

2. Einführung in die Coupled-Cluster-Antworttheorie

In diesem Kapitel werden zunächst die Grundprinzipien der zeitunabhängigen Coupled-Cluster-Theorie beschrieben. Danach wird erläutert, wie vertikale Anregungsenergien im Rahmen der zeitabhängigen Coupled-Cluster-Antworttheorie zugänglich gemacht werden können. Es wird dabei kein Anspruch auf Vollständigkeit erhoben. Ziel ist es, die wichtigsten Zusammenhänge zwischen beiden Theorien, die zum Verständnis dieser Arbeit notwendig sind, aufzuzeigen. Ein guter Überblick über die Coupled-Cluster- und Antworttheorie findet sich in Ref. [1, 4, 21–24, 57, 58, 63, 64].

2.1. Coupled-Cluster Wellenfunktion und Grundzustandsenergie

Die in dieser Arbeit beschriebene Coupled–Cluster–Theorie ist ein nicht-variationelles Verfahren. Die Coupled–Cluster–Wellenfunktion

$$|CC\rangle = e^{\hat{T}}|HF\rangle$$
 (2.1)

wird durch einen exponentiellen Ansatz definiert. Die Referenz–Funktion $|\text{HF}\rangle$ kann prinzipiell beliebig gewählt werden, meist ist sie jedoch ein Hartree–Fock–Grundzustand. Der Cluster–Operator für ein N–Elektronensystem

$$\hat{T} = \sum_{i=1}^{N} \hat{T}_i = \sum_{i=1}^{N} \sum_{\mu_i} t_{\mu_i} \hat{\tau}_{\mu_i}$$
(2.2)

wird als Summe über ein Produkt aus den Cluster–Amplituden t_{μ_i} und den Anregungsoperatoren $\hat{\tau}_{\mu_i}$ dargestellt. Diese wirken gemäß

$$\hat{\tau}_{\mu_i} | \mathrm{HF} \rangle = | \mu_i \rangle$$
 (2.3)

auf die Referenzfunktion und erzeugen aus dieser *i*-fach angeregte Determinanten, die mit μ durchnummeriert werden. Die Beschränkung des Cluster-Operators \hat{T} durch Abbruch

der Entwicklung von \hat{T} nach beispielsweise \hat{T}_2 oder \hat{T}_3 definiert die "truncated" Coupled–Cluster–Modelle CCSD und CCSDT. Die Anwendbarkeit dieser Art von Coupled–Cluster–Modellen ist aufgrund der Restriktion von \hat{T} auf solche Systeme beschränkt, die durch eine gute Referenzfunktion beschrieben werden können. Eine Lösung der zeitunabhängigen Schrödinger–Gleichung

$$\hat{H}|\mathrm{CC}\rangle = \mathrm{E}|\mathrm{CC}\rangle$$
 (2.4)

unter Verwendung des Variationstheorems gestaltet sich als äußerst schwierig. \hat{H} steht hier für den Hamilton–Operator und E für die Gesamtenergie des Systems. Durch den Ansatz der Coupled–Cluster–Wellenfunktion resultieren beim Variationsverfahren Terme, deren Lösung kompliziert und deren Berechnung sehr aufwändig und teuer ist. Üblicherweise umgeht man dieses Problem durch Anwenden einer Projektionstechnik, bei der Gleichung (2.4) auf die Zustände (HF| und { $\langle HF| \hat{\tau}_{\mu_i}^{\mu} e^{-\hat{T}} \rangle$ projiziert wird. Dies hat den Vorteil, dass die Baker-Campbell-Hausdorf–Entwicklung von $e^{-\hat{T}\hat{H}e^T}$ bereits nach dem Vierfach–Kommutator abbricht, da der Hamilton–Operator nur Terme, die sich nicht mehr als durch eine Doppelanregung voneinander unterscheiden, miteinander koppeln kann. Des Weiteren kann bei diesem Verfahren im Gegensatz zum variationellen Ansatz auf die Berechnung der Ableitung des Energieerwartungswerts und damit der Coupled–Cluster– Wellenfunktion nach den Cluster–Amplituden verzichtet werden. Unter Verwendung der Projektionstechnik ergibt sich die Coupled–Cluster–Energie zu

$$E_{\rm CC} = \langle \rm HF | \hat{\rm He}^T | \rm HF \rangle \tag{2.5}$$

und die Coupled-Cluster-Gleichungen zu

$$\langle \mu_i | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \mathrm{HF} \rangle = 0, \qquad (2.6)$$

welche iterativ gelöst werden können und zu den Cluster-Amplituden führen. Geht man von einem nicht beschränkten Clusteroperator und vollständig optimierten Cluster-Amplituden aus, so entspricht die Lösung der zeitunabhängigen Schrödinger-Gleichung innerhalb der gewählten Einelektronenorbitalbasis genau der Lösung des vollen Konfigurationswechselwirkungsverfahrens (Full-CI) und damit der exakten Lösung der zeitunabhängigen Schrödinger-Gleichung. Normalerweise wird allerdings nicht der volle Clusteroperator, sondern ein auf beispielsweise Zweifach- oder Dreifachanregungen beschänkter Operator verwendet. Dies hat zur Konsequenz, dass das Ergebnis aufgrund der genäherten Wellenfunktion nicht mehr der exakten Lösung entspricht. Dennoch ergeben sich aus dem exponentiellen Ansatz der Coupled-Cluster-Wellenfunktion mehrere Vorteile. Zum einen bleibt die Eigenschaft der Größenkonsistenz trotz der Beschränkung des Clusteroperators erhalten. Das bedeutet, dass die Coupled-Cluster-Energie eine extensive Größe ist, sie verhält sich additivseparabel und alle aus ihr abgeleiteten physikalischen Größen zeigen das richtige Verhalten in Abhängigkeit von der Systemgröße. Dies ist beispielsweise für einen linearen Ansatz der Wellenfunktion, wie er bei Konfigurationswechselwirkungsverfahren (CI) verwendet wird, nicht der Fall. Ist die Voraussetzung der Größenkonsistenz nicht gegeben, so wird die Beschreibung größerer Systeme zunehmend schwierig bis unmöglich. Zum anderen beinhaltet die Coupled-Cluster-Wellenfunktion trotz der Beschränkung des Cluster-Operators Beiträge aus allen Determinanten der Full-CI-Wellenfunktion. Das

hat zur Konsequenz, dass Coupled-Cluster-Modelle im Vergleich zu CI-Verfahren ein deutlich beschleunigtes Konvergenzverhalten zum Full-CI-Limit aufweisen. Deshalb sind beispielsweise CCSD-Ergebnisse genauer als CISD-Resultate.

Die Residuen der Coupled–Cluster–Gleichungen (2.6) werden auch als Coupled–Cluster– Vektorfunktion Ω_i bezeichnet. Im folgenden Abschnitt wird erklärt, wie vertikale Anregungsenergien in der Coupled–Cluster–Theorie mit Hilfe der Antworttheorie zugänglich gemacht werden können.

2.2. Coupled-Cluster-Antworttheorie für Anregungsenergien

2.2.1. Zeitabhängige Coupled-Cluster-Wellenfunktion und Quasienergie

Ziel der Antworttheorie ist es, die Veränderung eines Systems als Antwort auf eine zeitabhängige Störung $\hat{\mathcal{V}}(t,\epsilon)$ zu beschreiben. Ausgangspunkt dafür ist ein zeitabhängiger Hamilton–Operator

$$\hat{H}(t,\epsilon) = \hat{H}^{(0)} + \hat{\mathcal{V}}(t,\epsilon), \qquad (2.7)$$

der in einen ungestörten zeitunabhängigen Hamilton–Operator $\hat{H}^{(0)}$ und in eine zeitabhängige Störung

$$\hat{\mathcal{V}}(t,\epsilon) = \sum_{i} \hat{X}_{i} \epsilon_{i}(\omega_{i}) e^{-i\omega_{i}t}$$
(2.8)

zerlegt wird. Diese Störung kann als eine Summe von Fourier–Komponenten [57,58] angesetzt werden, die sich aus \hat{X}_i hermiteschen zeitunabhängigen Operatoren und den von den Frequenzen ω_i abhängigen Feldstärkeparametern $\epsilon_i(\omega_i)$ zusammen setzt. Die zusätzliche Forderung, dass diese Summe stets aus Paaren von Störparametern mit $\epsilon_i(-\omega_i) = \epsilon_i(\omega_i)^*$ gebildet wird, stellt die Hermitezität von $\hat{\mathcal{V}}(t, \epsilon)$ sicher. Zu jedem Summationsbeitrag ist also auch der komplex konjugierte Term enthalten. Weiterhin gilt die Forderung, dass die Störung $\hat{\mathcal{V}}(t, \epsilon)$ adiabatisch langsam eingeschaltet wurde und im zeitunabhängigen Limit verschwindet [23].

Die zeitabhängige Coupled-Cluster-Wellenfunktion

$$|\widetilde{\mathrm{CC}}(t,\epsilon)\rangle = \exp\left(-i\int_{t_0}^t \mathscr{W}(t',\epsilon) \, dt'\right) \, |\mathrm{CC}(t,\epsilon)\rangle \tag{2.9}$$

setzt sich aus der zeitabhängigen Quasienergie $\mathscr{W}(t,\epsilon)$ [58,65,66] und der vom Aufbau her Gl. (2.1) sehr ähnlichen, zeitabhängigen phasenisolierten Coupled–Cluster–Wellenfunktion

$$|\mathrm{CC}(t,\epsilon)\rangle = e^{T(t,\epsilon)}|\mathrm{HF}\rangle$$
(2.10)

zusammen. Der Referenzzustand $|\text{HF}\rangle$ steht dabei für die zeitunabhängige Hartree–Fock– Wellenfunktion des ungestörten Moleküls. Die phasenisolierte Wellenfunktion $|\text{CC}(t,\epsilon)\rangle$ geht im zeitunabhängigen Limit, wenn $\hat{\mathcal{V}}(t,\epsilon) = 0$, in die zeitunabhängige Coupled– Cluster–Wellenfunktion aus Gleichung (2.1) über. In Analogie zu Gl. (2.2) wird der zeitabhängige Clusteroperator $\hat{T}(t,\epsilon)$ als

$$\hat{T}(t,\epsilon) = \sum_{i=1}^{N} \sum_{\mu_i} t_{\mu_i}(t,\epsilon) \hat{\tau}_{\mu_i}$$
(2.11)

definiert, mit nun ebenfalls zeitabhängigen Coupled–Cluster–Amplituden $t_{\mu_i}(t, \epsilon)$. Nach Einsetzen der Wellenfunktion $|CC(t, \epsilon)\rangle$ in die zeitabhängige Schrödinger–Gleichung

$$(\hat{H}(t,\epsilon) - i\frac{\partial}{\partial t})|\widetilde{\mathrm{CC}}(t,\epsilon)\rangle = 0$$
(2.12)

und Projektion auf den Referenzzustand |HF> kann die zeitabhängige Quasienergie

$$\mathscr{W}(t,\epsilon) = \langle \mathrm{HF}|\hat{H}(t,\epsilon)|\mathrm{CC}(t,\epsilon)\rangle$$
(2.13)

ähnlich wie die Coupled-Cluster-Energie für den stationären Fall in Gl. (2.5) dargestellt werden. Unter Verwendung der Orthonormierungsbedingung

$$\langle \mu_i | \hat{\tau}_{\nu_j} | \mathrm{HF} \rangle = \delta_{\mu_i, \nu_j} \tag{2.14}$$

und Projektion auf die Zustände $\{\langle \mu_i|e^{-\hat{T}(t,\epsilon)}\}$ erhält man die zeitabhängigen Coupled–Cluster–Amplitudengleichungen

$$\Omega_{\mu_i}(t,\epsilon) - i\frac{\partial}{\partial t}t_{\mu_i}(t,\epsilon) = 0$$
(2.15)

mit der nun ebenfalls zeitabhängigen Coupled-Cluster-Vektorfunktion

$$\Omega_{\mu_i}(t,\epsilon) = \langle \mu_i | e^{-\hat{T}(t,\epsilon)} \hat{H}(t,\epsilon) | \text{CC}(t,\epsilon) \rangle .$$
(2.16)

2.2.2. Coupled-Cluster-Lagrange- und Antwortfunktion

Aus Gl. (2.15) für die Coupled-Cluster-Amplituden und dem Ausdruck für die Quasienergie Gl. (2.13) lässt sich ein Lagrange-Funktional

$$\widetilde{\mathscr{L}}(t,\epsilon) = \mathscr{W}(t,\epsilon) + \sum_{\mu_i} \bar{t}_{\mu_i} \left(\Omega_{\mu_i}(t,\epsilon) - i \frac{\partial}{\partial t} t_{\mu_i}(t,\epsilon) \right), \qquad (2.17)$$

mit den Lagrange–Multiplikatoren \bar{t}_{μ_i} , im Sinne der Lagrange–Methode zur Bestimmung von Ableitungen unter Randbedingungen, konstruieren. Die in Gl. (2.17) enthaltene Zeitableitung kann durch Zeitmittelung

$$\mathscr{L}(\epsilon) = \left\{ \widetilde{\mathscr{L}}(t,\epsilon) \right\}_T = \lim_{t_0 \to \infty} \frac{1}{\tau} \int_{t_0}^{t_0 + \tau} \widetilde{\mathscr{L}}(t,\epsilon) dt$$
(2.18)

über eine Periode τ eliminiert werden, da für periodische Funktionen das Integral einer Ableitung nach der Zeit über eine Periode verschwindet [57,58]. Für das auf diese Weise erzeugte Lagrange-Funktional $\mathscr{L}(\epsilon)$ gilt die Stationäritätsbedingung

$$\delta \mathscr{L}(\epsilon) = 0 \tag{2.19}$$

bezüglich der Coupled–Cluster–Amplituden t_{μ} und der Lagrange–Multiplikatoren \bar{t}_{μ} als Variationsparameter. Aus den Ableitungen des Lagrange–Funktionals $\mathscr{L}(\epsilon)$ nach den zugehörigen Feldstärken $\epsilon_i(\omega_i)$ lassen sich die Coupled–Cluster–Antwortfunktionen

$$\langle\langle \hat{X}_1; \hat{X}_2, ..., \hat{X}_n \rangle\rangle_{\omega_2, ..., \omega_n} = \frac{1}{2} \hat{\mathcal{C}}^{\pm \omega} \frac{d^n \mathscr{L}(\epsilon)}{d\epsilon_1(\omega_1) d\epsilon_2(\omega_2) ... d\epsilon_n(\omega_n)} \bigg|_{\epsilon=0},$$
(2.20)

unter ausschließlicher Berücksichtigung des Realteils von $\mathscr{L}(\epsilon)$, bestimmen. Diese Einschränkung muss vorgenommen werden, damit unphysikalische imaginäre Beiträge vermieden werden [24, 57, 58]. Der Operator $\hat{\mathcal{C}}^{\pm \omega}$ nimmt eine Symmetrisierung der Funktion f bezüglich der Frequenzen ω_i gemäß

$$\hat{\mathcal{C}}^{\pm\omega}f(\omega_1,...,\omega_n) = f(\omega_1,...,\omega_n) + f(-\omega_1,...,-\omega_n)^*$$
(2.21)

vor. Mit Hilfe der Antwortfunktionen lässt sich der zeitabhängige Erwartungswert eines Operators \hat{A} bezüglich des gestörten Systems in Potenzen der Störparameter entwickeln und als

$$\langle \hat{A} \rangle(t) = \langle 0 | \hat{A} | 0 \rangle + \sum_{j} \langle \langle \hat{A}; \hat{X}_{j} \rangle \rangle_{\omega_{j}} \epsilon_{j}(\omega_{j}) e^{-i\omega_{j}t}$$

$$+ \frac{1}{2} \sum_{jk} \langle \langle \hat{A}; \hat{X}_{j}, \hat{X}_{k} \rangle \rangle_{\omega_{j},\omega_{k}} \epsilon_{j}(\omega_{j}) \epsilon_{k}(\omega_{k}) e^{-i(\omega_{j}+\omega_{k})t} + \dots$$

$$(2.22)$$

darstellen [64]. Dabei geht man davon aus, dass der Zustand $|0(t)\rangle$ eine Lösung der zeitabhängigen Schrödinger–Gleichung

$$\hat{H}(t,\epsilon)|0(t)\rangle = i\frac{\partial}{\partial t}|0(t)\rangle$$
(2.23)

ist und im zeitunabhängigen Limit in den Eigenzustand $|0\rangle$ des ungestörten zeitunabhängigen Hamilton–Operators $\hat{H}^{(0)}$ übergeht. Die Beiträge aus Gl. (2.22) werden als lineare $\langle\langle \hat{A}; \hat{X}_j \rangle\rangle_{\omega_j}$, quadratische Antwortfunktionen $\langle\langle \hat{A}; \hat{X}_j, \hat{X}_k \rangle\rangle_{\omega_j,\omega_k}$, usw. bezeichnet. Für diese Arbeit sind besonders die linearen Antwortfunktionen, hier in ihrer Spektralform

$$\langle\langle \hat{A}; \hat{X} \rangle\rangle_{\omega} = \sum_{n \neq 0} \frac{\langle 0|\hat{A}|n\rangle \langle n|\hat{X}|0\rangle}{\omega - (E_n - E_0)} - \sum_{n \neq 0} \frac{\langle 0|\hat{X}|n\rangle \langle n|\hat{A}|0\rangle}{\omega + (E_n - E_0)}$$
(2.24)

dargestellt [64, 67], von Interesse, da aus ihren Polstellen erster Ordnung $\omega=\pm(E_n-E_0)$ Informationen über Anregungsenergien des ungestörten Systems zugänglich gemacht werden können. Die Zustände $|0\rangle$ und $|n\rangle$ sind dabei Eigenfunktionen des ungestörten Hamilton–Operators $\hat{H}^{(0)}$ mit den Eigenwerten E_0 und E_n . Die Residuen der linearen Antwortfunktionen sind mit Übergangsmomenten verknüpft und mittels der quadratischen Antwortfunktionen lassen sich beispielsweise Hyperpolarisierbarkeiten bestimmen.

2.2.3. Coupled-Cluster-Antwortgleichungen und Anregungsenergien

Sowohl die Cluster–Amplituden $t_{\mu}(t,\epsilon)$ als auch die Lagrange–Multiplikatoren $\bar{t}_{\mu}(t,\epsilon)$ können in den Fourier–Komponenten des Störfeldes gemäß

$$t_{\mu}(t,\epsilon) = t_{\mu}^{0} + \sum_{j} t_{\mu}^{X_{j}}(\omega_{j})\epsilon_{j}(\omega_{j})e^{-i\omega_{j}t} + \frac{1}{2}\sum_{jk} t_{\mu}^{X_{j}X_{k}}(\omega_{j},\omega_{k})\epsilon_{j}(\omega_{j})\epsilon_{k}(\omega_{k})e^{-i(\omega_{j}+\omega_{k})t} + \dots$$

$$(2.25)$$

entwickelt werden. Die Fourierkomponenten der Cluster-Amplituden sowie der Lagrange-Multiplikatoren können aus der Stationaritätsbedingung Gl. (2.19) für das Lagrange-Funktional \mathscr{L} bestimmt werden. Es resultieren die Antwortgleichungen für die Cluster-Amplituden

$$[\mathbf{A} - \omega_{\sigma} \mathbf{S}] t^{X_1 \dots X_n}(\omega_1, \dots, \omega_n) = -\zeta^{X_1 \dots X_n}(\omega_1, \dots, \omega_n)$$
(2.26)

durch Ableitung von \mathscr{L} nach den Lagrange–Multiplikatoren \bar{t} und die Antwortgleichungen für die Lagrange–Multiplikatoren

$$\bar{t}^{X_1...X_n}(\omega_1,...,\omega_n)[\mathbf{A}+\omega_\sigma \mathbf{S}] = -\bar{\zeta}^{X_1...X_n}(\omega_1,...,\omega_n)$$
(2.27)

durch Ableitung von \mathscr{L} nach den Cluster-Amplituden t, wobei $\omega_{\sigma} = \sum_{i=1}^{n} \omega_i$ ist. Die Überlappungsmatrix **S** ist definiert als

$$S_{\mu_i\nu_j} = \langle \mathrm{HF} | \hat{\tau}^{\dagger}_{\mu_i} \hat{\tau}_{\nu_j} | \mathrm{HF} \rangle \,. \tag{2.28}$$

 $\zeta^{X_1...X_n}$ und $\overline{\zeta}^{X_1...X_n}$ sind die zu den Antwortgleichungen für die Cluster-Amplituden und Lagrange-Multiplikatoren *n*-ter Ordnung zugehörigen rechten Seiten beziehungsweise Inhomogenitäten der Antwortgleichungen, deren allgemeine Definition in Ref. [68] zu finden ist. Für den Fall erster Ordnung sind ζ^{X_1} und $\overline{\zeta}^{X_1}$ beispielsweise

$$\zeta_{\mu}^{X_1}(\omega_1) = \frac{\partial^2 \mathscr{L}}{\partial \epsilon_1(\omega_1) \partial \bar{t}_{\mu}} \bigg|_{\epsilon=0}$$
(2.29)

und

$$\bar{\zeta}^{X_1}_{\mu}(\omega_1) = \frac{\partial^2 \mathscr{L}}{\partial \epsilon_1(\omega_1) \partial t_{\mu}} \bigg|_{\epsilon=0} + \sum_{\nu} \frac{\partial^2 \mathscr{L}}{\partial t_{\mu} \partial t_{\nu}} \bigg|_{\epsilon=0} t_{\nu}^{X_1}(\omega_1) \,. \tag{2.30}$$

Die Antwortgleichungen nullter Ordnung für die Cluster-Amplituden sind identisch mit den bereits aus Gl. (2.6) bekannten Coupled-Cluster-Gleichungen. Die Coupled-Cluster-Jacobi-Matrix **A** für das ungestörte System wird als

$$A_{\mu\nu} = \frac{\partial \Omega_{\mu}}{\partial t_{\nu}} \bigg|_{\epsilon=0} = \frac{\partial^2 \mathscr{L}}{\partial \bar{t}_{\mu} \partial t_{\nu}} \bigg|_{\epsilon=0}$$
(2.31)

definiert und ist im Allgemeinen nicht symmetrisch. Es existieren also verschiedene rechtsund linksseitige Eigenvektoren zu **A** mit identischen Eigenwerten. Die linearen Antwortfunktionen aus Gl. (2.24) und die Jacobi–Matrix **A** stehen in direktem Bezug zueinander. Sie verbindet, dass die Polstellen der linearen Antwortfunktion genau dann auftreten, wenn die Anregungsenergie ω einem Eigenwert der Jacobi–Matrix **A** entspricht. Demnach können die Anregungsenergien eines ungestörten Systems durch lösen des Eigenwertproblems

$$(\mathbf{A} - \omega \mathbf{S})\vec{R} = 0 \tag{2.32}$$

bestimmt werden. \vec{R} symbolisiert hier den rechtsseitigen Eigenvektor der Jacobi–Matrix. Mit Hilfe des Formalismus der Antworttheorie können also Anregungsenergien und weitere Moleküleigenschaften auf eine elegante Art und Weise zugänglich gemacht werden. Da sich diese Arbeit im Wesentlichen mit Grundzustands– und Anregungsenergien beschäftigt, wird auf die Beschreibung der Berechnung weiterer Moleküleigenschaften mittels der Antworttheorie verzichtet.

3. Einführung in die R12-Theorie

In diesem Kapitel wird eine Einführung in die R12-Theorie gegeben. Es wird kein Anspruch auf Vollständigkeit erhoben. Ziel ist es, ausgehend vom Begriff der Elektronenkorrelation und der Problematik der genauen Beschreibung des Coulomb-Lochs mit den zur Verfügung stehenden Basissätzen den R12-Ansatz als potentiellen Lösungsweg zu motivieren. Anschließend werden kurz verschiedene R12-Ansätze vorgestellt. Eine gute Einführung zur Elektronenkorrelation findet sich in Ref. [69], während eine gute Übersicht über die R12-Theorie in Ref. [70-75] steht.

3.1. Elektronenkorrelation

Um die Zielsetzung der R12-Theorie zu verstehen, muss man sich zunächst mit dem Begriff der Elektronenkorrelation auseinandersetzen.

Korrelation ist ein abstraktes Konzept aus der Wahrscheinlichkeitstheorie [76]. Auf elektronische Systeme angewendet, bedient man sich der Elektronendichte, um eine Aussage über das Korrelationsverhalten eines Systems zu treffen. Allgemein gilt, dass die N-Teilchendichten bis auf eine unterschiedliche Normierung identisch mit den Wahrscheinlichkeitsdichten sind. Die Elektronendichte $\rho(\vec{r_1})$ gibt die Wahrscheinlichkeitsdichte an eines der Elektronen am Ort $\vec{r_1}$ anzutreffen. Die Zweiteilchendichte $\rho(\vec{r_1}, \vec{r_2})$ gibt die Wahrscheinlichkeit an, mit der ein Elektron am Ort $\vec{r_1}$ und ein anderes Elektron am Ort $\vec{r_2}$ anzutreffen sind. Um die Dinge nicht unnötig zu komplizieren, geht man davon aus, dass Ein- und Zweiteilchendichten normiert sind [70]. Erfüllt die Zweiteilchendichte $\rho(\vec{r_1}, \vec{r_2})$ die Bedingung

$$\rho(\vec{r}_1, \vec{r}_2) = \rho(\vec{r}_1)\rho(\vec{r}_2), \qquad (3.1)$$

so sind die beiden Teilchen unabhängig voneinander oder *unkorreliert*. Für alle anderen Fälle

$$\rho(\vec{r}_1, \vec{r}_2) \neq \rho(\vec{r}_1)\rho(\vec{r}_2), \qquad (3.2)$$

spricht man davon, dass die beiden Teilchen miteinander *korreliert* sind. Das bedeutet, dass der Aufenthaltsort von Teilchen 1 vom Aufenthaltsort von Teilchen 2 abhängig ist. Da die betrachteten Teilchen Elektronen sind, verwendet man in diesem Zusammenhang den Begriff der *Elektronenkorrelation*.

3.1.1. Fermi-Korrelation und Coulomb-Korrelation

Die Elektronenkorrelation hat im Wesentlichen zwei Ursprünge und kann in Fermi–Korrelation und Coulomb–Korrelation eingeteilt werden. Elektronen sind Fermionen, also Teilchen mit Spin $\frac{1}{2}$, und folgen der Fermi–Dirac–Statistik. Das bedeutet, dass sie das Pauli–Prinzip erfüllen, demgemäß sich keine zwei Teilchen mit dem selben Spin am gleichen Ort aufhalten dürfen. Die zugehörige N–Elektronenwellenfunktion muss deshalb antisymmetrisch bezüglich der simultanen Vertauschung von Orts– und Spinkoordinaten zweier Teilchen sein. Das bedeutet auch, dass die Zweiteilchendichte $\rho(\vec{r_1}, \vec{r_2})$ für den Fall, dass der Abstand zweier Elektronen mit gleichem Spin gegen null geht ebenfalls null werden muss

$$\rho(\vec{r}_1, \vec{r}_1)_{\alpha\alpha} = \rho(\vec{r}_1, \vec{r}_1)_{\beta\beta} = 0.$$
(3.3)

Dieses Verhalten der Zweiteilchendichte wird als Fermi-Loch bezeichnet [16, 70].

Bei der Hartree–Fock–Näherung wird die N–Elektronenwellenfunktion Ψ zur Lösung der zeitunabhängigen elektronischen Schrödinger–Gleichung als Slater–Determinante aus Einelektronen–Spinorbitalfunktionen angesetzt und erfüllt damit das Pauli–Prinzip. Die Elektronen werden dabei als voneinander unabhängige Teilchen in einem gemittelten Feld behandelt. Ein Elektron wird also im gemittelten Feld aller anderen Elektronen betrachtet. Diese Näherung ist natürlich nicht ausreichend, um die Elektronenkorrelation vollständig zu beschreiben, sie reicht jedoch aus, um die *Fermi–Korrelation* im Wesentlichen zu erfassen. Der verbleibende Fehler in der Grundzustandsenergie

$$E_{\text{Korrelation}} = E_{\text{exakt}} - E_{\text{Hartree-Fock}} \tag{3.4}$$

wird nach Löwdin [8] als *Elektronenkorrelationsenergie* bezeichnet und kann mit dem Begriff der *Coulomb-Korrelation* gleichgesetzt werden.

Unter Coulomb-Korrelation versteht man die Korrelation durch die Coulomb-Abstoßung zweier gleich geladener Teilchen. Genau wie bei der Fermi-Korrelation, gibt es auch bei der Coulomb-Korrelation ein *Coulomb-Loch* mit dem sich der nächste Abschnitt ausführlicher beschäftigt, da es eine wichtige Rolle spielt. Die Coulomb-Korrelation kann in statische (langreichweitig) und dynamische Korrelation (kurzreichweitig) eingeteilt werden. Bei Beschreibung der *Coulomb-Korrelation* ist man nicht mehr auf eine Hartree-Fock-Determinante beschränkt, sondern fügt beispielsweise noch andere Determinanten durch verschiedene Anregungen aus den besetzten Hartree-Fock-Orbitalen in virtuelle Orbitale der Wellenfunktion hinzu. Reicht der Ansatz einer Slater-Determinante als Referenz-Wellenfunktion nicht mehr aus, um das System qualitativ richtig zu beschreiben, so spricht man von statischer Korrelation. Dies kann beispielsweise bei einem Bindungsbruch der Fall sein, wenn mehrere Zustände energetisch sehr nah beieinander liegen und fast entartet sind [69]. Tritt ein solcher Fall auf, so muss auf Multireferenz-Wellenfunktionen, wie beispielsweise Multikonfigurationszustandsfunktionen (MCSCF) [77-79], zurückgegriffen werden, um die Coulomb-Korrelation richtig zu erfassen. Versagt die Hartree-Fock-Näherung nicht, so spricht man von dynamischer Korrelation und kann durch Hinzufügen

von vielen weiteren Determinanten zur Wellenfunktion eine quantitative Beschreibung des Systems erreichen, wie es beispielsweise bei Coupled-Cluster-Methoden der Fall ist. Ein Beispiel für *dynamische Korrelation* ist die Van-der-Waals-Wechselwirkung.

3.2. Das Coulomb-Loch und die "Cusp"-Bedingung

Der Begriff des *Coulomb–Lochs* kann auf eine einfache Art und Weise bildhaft dargestellt werden, indem man die Differenz zwischen der Hartree–Fock–Wellenfunktion, bei der keine Coulomb–Korrelation vorliegt, und der exakten Wellenfunktion für das Beispiel He (¹S) aufträgt [4]. Dabei werden jeweils die Ortskoordinaten für den He Kern und ein Elektron fixiert. Der feste Kern–Elektron–Abstand beträgt $\frac{1}{2}a_0$, wobei a_0 der Bohrsche Radius ($\approx 5.291772 \cdot 10^{-11}$ m) ist. Das andere Elektron hingegen kann sich frei im Raum bewegen. Die so entstandene Differenzfläche ist in Abbildung (3.1) dargestellt. Die fixierten Positionen von Kern und Elektron sind mit einem Pfeil markiert.

Abbildung 3.1.: Coulomb-Loch für den He (¹S) Grundzustand.

Deutlich ist zu erkennen, dass die Fläche an der Position des fixierten Elektrons ein Minimum (0.5,0,-0.068) hat. Der Bereich um dieses Minimum herum wird als *Coulomb-Loch* bezeichnet. Es bedeutet, dass in der exakten Wellenfunktion das freie Elektron von dem fixierten Elektron abgestoßen wird. Da dieser Effekt gegenüber der Gesamtwellenfunktion sehr klein ist, würde er nur bei sehr genauer Betrachtung des Konturliniendiagramms der exakten Wellenfunktion auffallen. An der Stelle des fixierten Elektrons treten dort im Gegensatz zur Hartree-Fock-Wellenfunktion kleine Störungen der konzentrischen Kreise rund um den Kernort auf.

An der Stelle des Minimums in Abbildung (3.1) hat die exakte Wellenfunktion einen Scheitelpunkt, der auch als Coulomb-Scheitelpunkt oder "coulomb cusp" bezeichnet wird. Seine Existenz konnte bereits 1957 von Kato [80] bewiesen werden. Für zwei Elektronen mit entgegengesetztem Spin ist demnach die erste Ableitung der elektronischen Wellenfunktion $\Psi(\vec{r}_1, \vec{r}_2)$ nach dem Elektron-Elektron-Abstand r_{12} gleich der Hälfte der Wellenfunktion am Koaleszenzpunkt, wo r_{12} gleich null ist:

$$\lim_{r_{12}\to0} \left(\frac{\partial\Psi(\vec{r}_1,\vec{r}_2)}{\partial r_{12}}\right)_{\rm rm} = \frac{1}{2}\Psi(\vec{r}_1,\vec{r}_2)\bigg|_{r_{12}=0},\tag{3.5}$$

wobei über den Raum gemittelt wird. In der Praxis gestaltet sich die genaue quantenmechanische Beschreibung dieses Verhaltens der exakten Wellenfunktion mit den zur Verfügung stehenden Mitteln als äußerst schwierig.

3.2.1. Die Problematik der Basissatzkonvergenz

Führt man eine quantenchemische Rechnung durch, so wird im Normalfall eine Atomorbitalbasis aus Gauß-Funktionen zum Aufbau der Wellenfunktion Ψ verwendet. Je nach angewendetem quantenchemischen Modell wird in dieser Basis die elektronische Schrödinger-Gleichung gelöst und die Wellenfunktion optimiert. Da die verwendete Basis im Allgemeinen nicht vollständig ist, muss neben dem Fehler der Methode auch der Basissatzfehler berücksichtigt werden [4]. Ziel ist es, diesen Fehler einerseits möglichst klein zu halten und andererseits durch das Hinzufügen von weiteren Basisfunktionen systematisch zu verringern, bis dieser im Idealfall einer vollständigen Basis gegen null geht.

Die Entwicklung und Optimierung von Basisfunktionen ist oft sehr aufwendig, da Koeffizienten und Exponenten der Gauß-Funktionen unabhängig voneinander optimiert werden müssen. Es gibt eine Vielzahl von verschiedenen Basissätzen [20]. Für die Berechnung von Elektronenkorrelationsenergien erfreuen sich jedoch Dunnings korrelationskonsistente Basissätze aug-cc-pVXZ [81,82] großer Beliebtheit. Sie werden durch die Kardinalzahl X charakterisiert mit X = 2, 3, 4, 5, 6. In diesem Zusammenhang spricht man auch von "double–, triple–, quadruple– ζ^{μ} usw. Basissätzen, wobei mit ζ der Exponent der durch mehrere kontrahierte primitive Gauß–Funktionen genäherten jeweiligen Slater–Funktion gemeint ist. Der Vorteil dieser Basen liegt in der systematischen Verbesserung der berechneten Elektronenkorrelationsenergie mit steigender Kardinalzahl.

Hauptziel ist es, das Verhalten der Wellenfunktion rund um das Coulomb-Loch und am Scheitelpunkt richtig zu erfassen. Leider ist dies mit den derzeit zur Verfügung stehenden Basissätzen [20] und Ansätzen für die Wellenfunktion Ψ , wie beispielsweise MP2, Coupled-Cluster oder CI, nur bedingt möglich. Dies kann erneut am Beispiel He (¹S) demonstriert werden. Betrachtet wird die Basissatzkonvergenz von konventionellen CI-Wellenfunktionen im Vergleich zur exakten Wellenfunktion, die formal dem Basissatzlimit der CI-Rechnung entspricht. Dies erfolgt in einer Basis aus assoziierten Laguerre-Funktionen [4], die mit einem festen Exponenten $\zeta = 2$, der der Kernladungszahl des Heliums entspricht, versehen sind [83]. Die Entwicklung der Basis erfolgt gemäß der Kardinalentwicklung (engl. principal expansion) [4] in Abhängigkeit der Hauptquantenzahl n. Dies impliziert pro Entwicklungsschritt eine maximale Drehimpulsquantenzahl $\ell = n - 1$. In Abbildung (3.2) sind die Werte dieser CI-Wellenfunktionen in Abhängigkeit des Winkels θ_{12} zwischen Elektron 1 und 2 für steigende Hauptquantenzahlen n = 1, ..., 7 im Vergleich zur exakten Wellenfunktion aufgetragen. Dabei wird der Fall betrachtet, dass sich die beiden Elektronen auf einer Kreisbahn um den He-Kern mit dem Radius $0.5 a_0$ bewegen. Die horizontale durchgezogene Linie entspricht in Abbildung (3.2) dem konvergierten Hartree-Fock-Zustand, während die unterste, spitz zulaufende Linie die exakte Wellenfunktion darstellt. Es wird deutlich, dass die Basissatzkonvergenz der CI-Wellenfunktionen sehr langsam mit $(\ell + 1)^{-3}$ verläuft. Dies konnte 1979 von Carroll empirisch für He gefunden werden [27] und wurde 1985 von Hill [28], der ein allgemeines Verfahren zur theoretischen Bestimmung von Konvergenzraten für Atome und Moleküle entwickelte, bestätigt. Sehr ähnliche Ergebnisse erhielt Schwarz im Rahmen störungstheoretischer Studien bereits 1962 [25,26]. Selbst bei $\ell = 6$ kann das Coulomb–Loch von der CI–Wellenfunktion nicht richtig erfasst werden. Keine der konventionellen CI-Wellenfunktionen zeigt außerdem das richtige Verhalten am Scheitelpunkt, da ihre Ableitungen an dieser Stelle null und nicht Katos $\frac{1}{2}\Psi$ aus Gleichung (3.5) sind. Die gefundene schlechte Basissatzkonvergenz (ℓ $(+1)^{-3}$, oder mit Dunnings Kardinalzahl als X⁻³ ausgedrückt, gilt leider nicht nur für CI-Wellenfunktionen sondern auch für andere Post-Hartree-Fock-Wellenfunktionsmodelle wie beispielsweise CCSD, CCSD(T) [84] und MP2 [85].

Für eine genaue Beschreibung des Verhaltens der Wellenfunktion am Coulomb-Loch ist eine vollständige Basis notwendig. Die Verwendung immer größerer Basissätze mit mehr Basisfunktionen und höheren ℓ -Quantenzahlen ist nicht der richtige Weg, um eine akkurate Beschreibung des Coulomb-Lochs zu erhalten, da das Konvergenzverhalten wie bereits gezeigt sehr langsam ist und ein hoher Aufwand betrieben werden muss, um solche Rechnungen durchzuführen, der letztlich nur zu einer minimalen Verbesserung führt. Vielmehr ist die Ursache der langsamen Basissatzkonvergenz bei dem Ansatz der verwendeten Wellenfunktion zu finden, die wie Abbildung (3.2) zeigt, nicht das richtige Verhalten am Scheitelpunkt aufweist. Demnach liegt die Lösung dieser Problematik in der Entwicklung neuer Ansätze für die Wellenfunktion, die die "Cusp"-Bedingung erfüllen.

Abbildung 3.2.: Coulomb-Loch für den He (¹S) Grundzustand. Basissatzkonvergenz von Standard-CI-Wellenfunktionen mit n = 1, ..., 7 (von oben nach unten) im Vergleich zur exakten Wellenfunktion (spitz zulaufende Funktion). Verwendet wurden folgende Basissätze: (1s), (2s1p), (3s2p1d), (4s3p2d1f), (5s4p3d2f1g), (6s5p4d3f2g1h) und (7s6p5d4f3g2h1i). Die durchgezogene waagrechte Linie entspricht dem konvergierten Hartree-Fock-Grundzustand bei 0.271833 $a_0^{-\frac{3}{2}}$.
3.3. Explizit korrelierte Wellenfunktionen

Das Wissen um die Notwendigkeit der Verwendung des interelektronischen Abstands r_{12} in der Wellenfunktion, um hochgenaue Resultate zu erhalten, geht bereits auf die Anfänge der Quantenmechanik zurück [86]. Schon 1929 konnte Hylleraas [29] am Beispiel He demonstrieren, dass die Verwendung eines *Korrelationsfaktors* in der Wellenfunktion, der vom interelektronischen Abstand r_{12} abhängig ist, in der Tat zu einer außerordentlich guten Beschreibung des Korrelationsverhaltens rund um das Coulomb–Loch führt. Er entwickelte die Zweielektronenwellenfunktion für den Helium–Grundzustand gemäß

$$\Psi = \exp(-\zeta s) \sum_{i=1}^{N_t} c_i s^{l_i} t^{2m_i} u^{n_i}$$
(3.6)

in N_t Terme mit den Hylleraas–Koordinaten $s = r_1 + r_2$, $t = r_1 - r_2$ und $u = r_{12}$, wobei die Koeffizienten c_i und der Exponent ζ jeweils variationell optimiert wurden. Unglücklicherweise eignet sich dieser Ansatz nur gut für atomare Zwei– bis Vierelektronensysteme [87–91]. Dies zeigen beispielsweise auch neuere Studien von Lüchow *et. al.* [92–95]. Betrachtet man Moleküle und Vielelektronenprobleme, so scheitert man grundsätzlich an der Kompliziertheit der entstehenden Integrale, deren effiziente Berechnung in der Praxis nur schwer möglich ist. Eine Ausnahme stellen Quanten–Monte–Carlo–Modelle dar [96–99], bei denen Vielteilchenprobleme und die damit verbundenen komplizierten Integrale direkt durch "Quantensimulation" gelöst werden können. Wie bei allen statistischen Verfahren sind die Ergebnisse jedoch immer mit einem statistischen Fehler (Standardabweichung) behaftet.

3.3.1. Der klassische lineare R12-Ansatz

Erst 1985 wurde dieses Thema erneut von Kutzelnigg aufgegriffen und der *lineare R12–Ansatz* für CI-Wellenfunktionen und die Møller–Plesset Störungstheorie zweiter Ordnung (MP2) eingeführt [30]. Geht man von einer CI–Entwicklung unter Verwendung der Hartree–Fock–Wellenfunktion als Referenz–Wellenfunktion Φ_0 aus, so lässt sich die CI– R12–Wellenfunktion als

$$\Psi^{\text{CI-R12}} = (1 + c_0 r_{12}) \Phi_0 + \sum_{\mu > 0} c_\mu \Phi_\mu$$
(3.7)

darstellen, wobei die Φ_{μ} für μ -fach angeregte Determinanten stehen mit den zugehörigen Koeffizienten c_{μ} . Mit c_0 wird der zu $r_{12}\Phi_0$ gehörige Koeffizient bezeichnet. Durch den linearen R12-Ansatz muss neben der ohnehin notwendigen Optimierung der konventionellen CI-Koeffizienten nur noch ein Koeffizient, nämlich c_0 optimiert werden. Dies ist eindeutig ein Vorteil im Vergleich zu Verfahren, in denen höhere Potenzen in r_{12} eingehen [100, 101], da es die Behandlung der Korrelation neben der konventionellen Methode isoliert und damit wesentlich einfacher zugänglich macht [30].

3.3.2. Der moderne lineare R12–Ansatz

Die moderne CI–R12–Wellenfunktion kann unter Verwendung der konventionellen t–Amplituden für die jeweiligen Anregungsklassen und den R12–Amplituden c_{kl}^{ij} ausführlich als

$$\Psi^{\text{CI-R12}} = \Phi_0 + \sum_{ia} t^i_a \Phi^a_i + \frac{1}{2} \sum_{iajb} t^{ij}_{ab} \Phi^{ab}_{ij} + \dots + \frac{1}{2} \sum_{ikjl} c^{ij}_{kl} \Phi^{kl}_{ij}$$
(3.8)

formuliert werden. Allgemein kann der R12–Ansatz als Hinzufügen von weiteren "R12– Doubles"–Basisfunktionen zu den konventionellen, aus Zweifachanregungen resultierenden Beiträgen zur Wellenfunktion des jeweils zu betrachtenden Modells, verstanden werden. Die neuen R12–Basisfunktionen können als spezielle R12–Zweifachanregungen $\Phi_{ij}^{\alpha\beta}$ in einen Komplementärraum aus virtuellen Orbitalen { φ_{α} } interpretiert werden. Formal können sie als

$$\Phi_{ij}^{kl} = \sum_{\alpha\beta} w_{\alpha\beta}^{kl} \Phi_{ij}^{\alpha\beta} \tag{3.9}$$

durch Kontraktion über die Integrale

$$w_{\alpha\beta}^{kl} = \langle \varphi_{\alpha}(1)\varphi_{\beta}(2)|\hat{\mathbf{w}}_{12}|\varphi_{k}(1)\varphi_{l}(2)\rangle$$
(3.10)

dargestellt werden. Im Gegensatz zur Orbitalbasis $\{\varphi_p\}$ der besetzten und virtuellen Hartree–Fock–Orbitale ist der Komplementärraum $\{\varphi_{\alpha}\}$ jedoch nur indirekt zugänglich. Dazu muss formal von einer insgesamt vollständigen Basis $\{\varphi_{\kappa}\}$ ausgegangen werden, die beispielsweise bei Ansatz 1 durch Vereinigung von Einelektronenorbital– $\{\varphi_p\}$ und Komplementärbasis $\{\varphi_{\alpha}\}$ erzeugt wird, da diese aufgrund der Vollständigkeitsrelation gleich eins ist. Somit wird ein indirekter Zugang zu $\{\varphi_{\alpha}\}$ gemäß

$$\sum_{\alpha} |\varphi_{\alpha}(1)\rangle\langle\varphi_{\alpha}(1)| = \sum_{\kappa} |\varphi_{\kappa}(1)\rangle\langle\varphi_{\kappa}(1)| - \sum_{p} |\varphi_{p}(1)\rangle\langle\varphi_{p}(1)| = 1 - \hat{P}_{1}$$
(3.11)

unter Verwendung des Projektionsoperators

$$\hat{P}_1 = \sum_p |\varphi_p(1)\rangle \langle \varphi_p(1)| \tag{3.12}$$

möglich. Prinzipiell kann die R12–Basis Φ^{kl}_{ij} auch als "Anregung" des Elektronenpaaresi,jaus der Referenz-Wellenfunktion

$$\Phi_0 = \hat{A}\varphi_1(1)\varphi_2(2)...\varphi_i(i)\varphi_j(j)...\varphi_k(k)\varphi_l(l)...\varphi_N(N)$$
(3.13)

in die besetzten Spinorbitalfunktionen φ_k, φ_l interpretiert werden und unter Verwendung des Antisymmetrisierungsoperators \hat{A} und des Zweiteilchenoperators \hat{w}_{ij} gemäß

$$\Phi_{ij}^{kl} = \hat{A}\{\hat{\mathbf{w}}_{ij}\varphi_1(1)\varphi_2(2)...\varphi_k(i)\varphi_l(j)....\varphi_k(k)\varphi_l(l)...\varphi_N(N)\}$$
(3.14)

$$= \hat{A}\{u_{kl}(i,j)\varphi_1(1)\varphi_2(2)...\varphi_k(k)\varphi_l(l)....\varphi_N(N)\}$$
(3.15)

dargestellt werden. Für ein Vierelektronensystem ist beispielsweise die R12–Basisfunktion für die Anregung Φ_{12}^{34} gleich

$$\Phi_{12}^{34} = \hat{A}\{\hat{w}_{12}\varphi_3(1)\varphi_4(2)\varphi_3(3)\varphi_4(4)\}.$$
(3.16)

Auf den ersten Blick scheint Gleichung (3.14) im Widerspruch zum Pauli–Verbot zu stehen. Dies ist jedoch nicht der Fall, da zunächst der Operator \hat{w}_{ij} auf die besetzten Spinorbitalfunktionen $\varphi_k(i)\varphi_l(j)$ wirkt und aus diesen virtuelle Spinorbitalfunktionen, beispielsweise $\varphi_\alpha(i)\varphi_\beta(j)$ generiert [54]. Die R12–Basis Φ_{ij}^{kl} kann gemäß Gleichung (3.15) als ein antisymmetrisiertes Produkt von einem *Geminal*

$$u_{kl}(1,2) = \hat{w}_{12}\varphi_k(1)\varphi_l(2) \tag{3.17}$$

und (N - 2) Spinorbitalfunktionen formuliert werden. Dabei kann $u_{kl}(1, 2)$ auch unter Verwendung von bereits antisymmetrisierten Paarfunktionen $|\varphi_k(1)\varphi_l(2)\rangle$ definiert werden. Ist dies der Fall, so spricht man von korrelierten antisymmetrisierten Paarfunktionen [102].

Je nach Definition des Operators \hat{w}_{12} werden also weitere Paarprodukte aus Einteilchenorbitalfunktionen zusätzlich zu den bereits vorhandenen hinzugefügt. Der Operator \hat{w}_{12} ist für Ansatz 1 als

$$\hat{\mathbf{w}}_{12} = (1 - \hat{P}_1)(1 - \hat{P}_2)f_{12}$$
(3.18)

definiert. Der hierfür notwendige Projektionsoperator \hat{P}_1 ist bereits aus Gleichung (3.12) bekannt und wirkt auf die endliche Einelektronenorbitalbasis { φ_p }. Der Korrelationsfaktor f_{12} entspricht beim linearen R12-Ansatz dem interelektronischen Abstand r_{12} . Prinzipiell kann f_{12} jedoch auch als eine von r_{12} abhängige Funktion gewählt werden. Verschiedene Möglichkeiten hierzu werden in Abschnitt (3.3.4) vorgestellt. Der komplementäre Unterraum { φ_{α} } besteht bei Ansatz 1 aus allen Orbitalen, die zu der Einelektronenorbitalbasis { φ_p } orthogonal sind. Das bedeutet, dass die Vereinigung von { φ_{α} } und { φ_p } eine vollständige Basis für den Einelektronen-Hilbert-Raum erzeugt. Für Ansatz 2 wurde der Operator \hat{w}_{12} ursprünglich als

$$\hat{w}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)f_{12}$$
(3.19)

gewählt [47,52]. Der hierfür notwendige Projektionsoperator \hat{O}_1 ist als

$$\hat{O}_1 = \sum_i |\varphi_i(1)\rangle \langle \varphi_i(1)| \tag{3.20}$$

definiert und wirkt auf den Orbitalraum der besetzten Orbitale { φ_i }. Die Bedeutung der Indices α , β , ... bei Ansatz 2 ist eine andere als bei Ansatz 1 und wird in Abbildung (3.3) illustriert. Die Indices α , β , ... stehen bei Ansatz 2 nicht nur für die virtuellen Orbitale der Komplementärbasis, sondern auch für virtuelle Orbitale aus der Einelektronenorbitalbasis { φ_p }. Das bedeutet, dass für Ansatz 2 die Vereinigung von { φ_α } und { φ_i } eine vollständige Basis { φ_{κ} } erzeugt.

Abbildung 3.3.: Die unterschiedliche Bedeutung der Indices α, β, \dots für die Ansätze 1 und 2. Die Indices i, j, \dots stehen für besetzte Orbitale, a, b, \dots für virtuelle und p, q, \dots für die gesamte Molekülorbitalbasis. Die Notation κ, λ symbolisiert eine vollständige Basis und γ, δ, \dots steht für die Komplementärbasis.

3.3.3. Effizienz des linearen R12-Ansatzes

Die Effizienz des linearen R12-Ansatzes kann erneut am Beispiel He (¹S) demonstriert werden. In Abbildung (3.4) sind die exakte Wellenfunktion und die bestmögliche CI-Wellenfunktion mit n = 7 und der maximalen Drehimpulsquantenzahl $\ell = 6$ im Vergleich zu einer CI-R12-Wellenfunktion mit n = 3 und $\ell = 2$ dargestellt [83]. Die Auftragung der Wellenfunktionen erfolgt wie im letzten Abschnitt beschrieben in Abhängigkeit des Winkels Θ_{12} zwischen Elektron 1 und Elektron 2. Selbst bei einer im Vergleich zur konventionellen CI-Funktion sehr kleinen Drehimpulsguantenzahl beschreibt die CI-R12-Wellenfunktion den Scheitelpunkt bereits deutlich besser als die CI-Wellenfunktion. Das bedeutet, dass schon in einer kleinen Basis relativ schnell gute Ergebnisse erzielt werden können, obwohl die CI-R12-Wellenfunktion an den Stellen $\pm \pi$ das Verhalten der exakten Wellenfunktion noch nicht richtig erfasst. Erhöht man bei der CI-R12-Wellenfunktion nauf 4 und ℓ auf 3, so wird die exakte Wellenfunktion fast genau beschrieben. Dies ist in Abbildung (3.5) dargestellt, wobei für die konventionelle CI-Wellenfunktion zum Vergleich nauf 4 und ℓ ebenfalls auf 3 gesetzt ist. Das bedeutet, dass für die CC-R12-Wellenfunktion sehr große und damit rechenzeitintensive Basissätze mit n = 6, 7 nicht mehr zwingend notwendig sind, um gute Ergebnisse zu erzielen.

Abbildung 3.4.: CI– und CI–R12–Wellenfunktion für den He (¹S) Grundzustand mit n = 7 und n = 3 im Vergleich zur exakten Wellenfunktion. Verwendet wurden eine (7s6p5d4f3g2h1i) Basis für die CI–Wellenfunktion sowie eine (3s2p1d) Basis für die CI–R12–Wellenfunktion.

Abbildung 3.5.: CI– und CI–R12–Wellenfunktion für den He (¹S) Grundzustand mit n = 4 für beide Funktionen im Vergleich zur exakten Wellenfunktion. Verwendet wurde jeweils eine (4s3p2d1f) Basis.

3.3.4. Der exponentielle R12–Ansatz

Trotz der erheblichen Konvergenzbeschleunigung bringt die Verwendung des linearen R12-Korrelationsfaktors einen gravierenden Nachteil mit sich. Beim Lösen der elektronischen Schrödinger-Gleichung für ein Mehrelektronenproblem entstehen sehr komplizierte Dreiund Vierelektronen-Mehrzentrenintegrale, deren aufwendige Berechnung die Anwendbarkeit dieser Methode stark limitiert [30].

Es gibt mehrere Ansätze zur Lösung dieses Problems. Im Wesentlichen kann man zwischen zwei Philosophien unterscheiden: einerseits Vermeidung von Vielelektronen-Mehrzentrenintegralen durch Verwendung einer Vollständigkeitsrelation, auch als "resolution of the identity "-(RI)-Näherung [103] bekannt, unter Beibehaltung des linearen R12-Ansatzes [42,74] oder andererseits die Verwendung neuer Korrelationsfaktoren an Stelle von r_{12} , um die Berechnung der Integrale zu limitieren und zu vereinfachen.

Beispielsweise kann nach Persson und Taylor [104] der lineare R12–Vorfaktor in einer Basis aus Gauß–Funktionen, sogenannter "Gaussian geminals",

$$f_{12} = r_{12} \approx \sum_{i=1}^{N} b_i \left[1 - \exp(-\gamma_i r_{12}^2) \right]$$
(3.21)

entwickelt werden. Dies hat den Vorteil, dass die komplizierten Integrale über r_{12} einfach zugänglich sind, bringt jedoch den Nachteil der unzureichenden Beschreibung des Scheitelpunkts an der Stelle $r_{12} = 0$ mit sich. Trotzdem können hiermit bereits sehr genaue Ergebnisse erzielt werden [104].

Eine andere Möglichkeit stellt die Einführung von explizit korrelierten Gauß-Funktionen nach Cencek und Rychlewski dar [105–110], bei denen nur jeweils eine Gauß-Funktion verwendet wird. Die N–Elektronenwellenfunktion $\Psi = \sum_{i=1}^{K} c_i \phi_i$ wird dabei in einer Basis ϕ_i entwickelt, deren räumlicher Anteil die Form

$$\phi_i = \exp(-\beta_i r_{p_i q_i}^2) \prod_{k=1}^N \exp(-\alpha_{ik} |\mathbf{r}_k - \mathbf{A}_{ik}|^2)$$
(3.22)

hat. K stellt die Länge der Entwicklung dar und N ist die Anzahl der am System beteiligten Elektronen. Die Exponenten β_i und α_{ik} sind nichtlineare Variationsparameter, die sorgfältig optimiert werden müssen, und \mathbf{A}_{ik} steht für das jeweilige Zentrum der Gauß-Funktion, beispielsweise den Kernort. In dieser ursprünglichen Form dargestellt, hängt ϕ_i nur von einem interelektronischen Abstand ab. Später wurden in diesem Ansatz alle interelektronischen Abstände des Systems miteinbezogen [107]. Um sehr genaue Ergebnisse zu erzielen, ist für diese Methode eine Basis von typischerweise mehr als tausend Funktionen ϕ_i notwendig, um beispielsweise die Grundzustandsenergie von Be zu berechnen [107,108]. Die Notwendigkeit der Berechnung von Drei– oder Vierelektronen–Mehrzentrenintegralen ist dabei nach wie vor gegeben. Obwohl diese unter Verwendung von explizit korrelierten Gauß–Funktionen einfacher zu bestimmen sind als beim linearen R12–Ansatz, ist die

Bewältigung der großen Anzahl dieser Integrale schwierig und für große Systeme bisher nicht möglich.

Eine 2005 von Tew und Klopper entwickelte vielversprechende neue Alternative zum linearen R12-Ansatz stellt die Verwendung von Korrelationsfaktoren f_{12} gemäß

$$f_{12} = \exp(-\gamma r_{12}) \approx \sum_{k=1}^{N} c_k \exp(-\alpha_k r_{12}^2)$$
 (3.23)

oder

$$f_{12} = r_{12} \exp(-\gamma r_{12}) \approx \sum_{k=1}^{N} c_k r_{12} \exp(-\alpha_k r_{12}^2)$$
(3.24)

anstatt des linearen Vorfaktors r_{12} dar [111]. Diese Arbeit wurde im Wesentlichen von Ten-no inspiriert, auf den der Korrelationsfaktor in Gleichung (3.23) zurück geht [112]. Dieser Ansatz stellt gewissermaßen eine Kombination aus den "Gaussian geminals" und dem konventionellen linearen R12-Ansatz dar. Beide Korrelationsfaktoren beschreiben das Coulomb-Loch im Vergleich zum linearen R12-Ansatz besser, wobei der Faktor aus Gleichung (3.24) dem aus Gleichung (3.23), wie erste Studien zeigen, vorzuziehen ist [111]. Der Nachteil der problematischen Wahl des Exponenten γ bleibt nach wie vor. Jedoch konnten Tew und Klopper zeigen, dass bei der Optimierung von γ das zugehörige Minimum sehr flach verläuft und zwischen null und eins liegt. Selbst die Wahl von $\gamma = 1$ stellt im Vergleich zum konventionellen linearen R12-Ansatz keinen Nachteil dar.

Wie bereits erwähnt, gibt es neben dem exponentiellen Ansatz auch die Möglichkeit, den linearen R12-Ansatz beizubehalten und komplizierte Vielelektronen-Mehrzentrenintegrale durch die Verwendung der RI-Näherung zu vermeiden. Dies ist im Rahmen von verschiedenen ab-initio Methoden wie beispielsweise MP2, CCSD und CCSDT bereits realisiert worden. In diesem Zusammenhang ist in der Literatur die Rede von *R12-Methoden* [30, 32, 42, 48, 113, 114]. Dabei muss besonders das MP2-R12-Modell hervorgehoben werden, da es innerhalb der RI-Näherung auch die Verwendung von Auxiliarbasissätzen ermöglicht, die nicht identisch mit der Orbitalbasis sein müssen [47]. Dieses Modell ist Ausgangspunkt der vorliegenden Arbeit und wird im nächsten Kapitel im Rahmen der CC2-R12-Theorie behandelt.

4. Coupled-Cluster-R12-Theorie

In diesem Kapitel wird zunächst der Coupled-Cluster-R12-Ansatz vorgestellt. Anschließend wird auf die verschiedenen Ansätze innerhalb der CC-R12-Theorie näher eingegangen und die Coupled-Cluster-Gleichungen für die CCSD-R12- und CC2-R12-Grundzustandsenergie besprochen. Im nächsten Abschnitt werden dann die Ableitungen der CC2-R12-Grundzustandsvektorfunktion nach den Cluster-Amplituden durch die Formulierung der Jacobi-Matrix im Rahmen der verwendeten Ansätze vorgestellt. Das Kapitel endet mit der expliziten Formulierung der R12-Beiträge zur CC2-R12-Grundzustandsvektorfunktion und der daraus resultierenden Beiträge, die zur Berechnung von vertikalen CC2-R12-Anregungsenergien notwendig sind. Ein gesonderter Abschnitt ist dabei der Einführung der Auxiliarbasis-Näherung gewidmet. Auf die konventionellen CC2-Beiträge wird in dieser Arbeit nicht weiter eingegangen, da diese bereits aus der Literatur [2,12,13] bekannt sind. Ein Überblick über die CC2-R12-Theorie findet sich in Ref. [115].

4.1. Der Coupled–Cluster–R12–Ansatz

Die Coupled-Cluster-R12-Wellenfunktion wird, wie bereits in Kapitel 2 für die konventionelle Coupled-Cluster-Wellenfunktion beschrieben, durch einen exponentiellen Ansatz

$$|CC\rangle = \exp(T)|HF\rangle$$
 (4.1)

definiert, wobei der Cluster-Operator

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_{2'},$$
(4.2)

durch einen Operator $\hat{T}_{2'}$ ergänzt wird, mit dessen Hilfe spezielle Anregungen, sogenannte *lineare R12–Doppelanregungen*, beschrieben werden. Wie in Kapitel (3) Abschnitt (3.3.2) besprochen, erfolgen diese *R12–Zweifachanregungen* in korrelierte antisymmetrisierte *Paarfunktionen* [102]

$$u_{kl}(1,2) = \hat{w}_{12} |\varphi_k(1)\varphi_l(2)\rangle, \qquad (4.3)$$

die mittels der Komplementärbasis $\{\varphi_{\alpha}\}$ dargestellt werden. Die Wahl des Operators \hat{w}_{12} definiert die Ansätze 1 und 2 aus Gleichung (3.18) und (3.19). Ein leicht modifizierter Ansatz 2 definiert den Operator \hat{w}_{12} , einem Vorschlag von Wind *et al.* [44] und Valeev [116] folgend, gemäß

$$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)(1 - \hat{V}_1\hat{V}_2)f_{12}$$
(4.4)

unter zusätzlicher Verwendung des Projektionsoperators

$$\hat{V}_1 = \sum_a |\varphi_a(1)\rangle\langle\varphi_a(1)| , \qquad (4.5)$$

der auf die virtuellen Hartree–Fock–Orbitale $\{\varphi_a\}$ der Molekülorbitalbasis projiziert. Der Zusatzterm $(1 - \hat{V}_1 \hat{V}_2)$ in Gleichung (4.4) stellt sicher, dass die *R12–Paarfunktionen* zu allen Orbitalprodukten, die durch konventionelle Doppelanregungen erzeugt werden, orthogonal sind. Die Verwendung der Definition von Ansatz 2 gemäß Gleichung (4.4) hat im Vergleich zur alten Definition aus Gleichung (3.19) zwei Vorteile. Zum einen wird die korrekte Konvergenz der R12–Beiträge zum Basissatzlimit hin sicher gestellt, da diese am Basissatzlimit gegen null konvergieren müssen. Zum anderen werden numerische Probleme bei der Lösung der Coupled–Cluster–Grundzustandsamplituden– und Antwortgleichungen vermieden. Diese können beispielsweise dann auftreten, wenn der Unterraum, der von den R12–Paarfunktionen aufgespannt wird, vom Unterraum der Paarfunktionen der virtuellen Hartree–Fock–Orbitale linear abhängig wird.

Geht man von einem geschlossenschaligen ("closed–shell") Hartree–Fock–Referenz–Zustand aus, so kann der R12–Anregungsoperator gemäß

$$\hat{T}_{2'} = \frac{1}{2} \sum_{ijkl} c_{kl}^{ij} \sum_{\alpha\beta} w_{\alpha\beta}^{kl} E_{\alpha i} E_{\beta j} = \sum_{\mu_{2'}} t_{\mu_{2'}} \hat{\tau}_{\mu_{2'}}$$
(4.6)

formuliert werden. Das Produkt aus den bereits aus Kapitel (3) bekannten linearen R12-Amplituden c_{kl}^{ij} und den Integralen

$$w_{\alpha\beta}^{kl} = \langle \varphi_{\alpha}(1)\varphi_{\beta}(2)|\hat{w}_{12}|\varphi_{k}(1)\varphi_{l}(2)\rangle, \qquad (4.7)$$

ergibt die Amplituden $t_{\mu_{2'}}$. Die Operatoren $E_{\alpha i}$ stehen für spinfreie Einfachanregungen [4] und wirken gemäß

$$E_{\alpha i}|\text{HF}\rangle = \left|_{i}^{\alpha}\right\rangle$$
(4.8)

auf den Referenz–Zustand. Analog zu Kapitel (3) stehen die Indices i, j, ... für besetzte Orbitalfunktionen, während Orbitale, die Element eines komplementären Unterraums sind, mit $\alpha, \beta, ...$ bezeichnet werden.

4.2. Der CCSD-R12-Ansatz

Im Unterschied zu Gleichung (4.2) wird beim R12-Ansatz für das Coupled-Cluster-Singles-and-Doubles- [3, 12, 13] oder CC2-Modell [2] die Entwicklung des Clusteroperators

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_{2'}, \qquad (4.9)$$

nach den Zweifachanregungen abgebrochen. Geht man von einem geschlossenschaligen ("closed-shell") Hartree-Fock-Referenz-Zustand aus, so können die Anregungsoperatoren für die Ein- und Zweifachanregungen gemäß

$$\hat{T}_1 = \sum_{ai} t_a^i E_{ai} = \sum_{\mu_1} t_{\mu_1} \hat{\tau}_{\mu_1} \text{und}$$
(4.10)

$$\hat{T}_2 = \frac{1}{2} \sum_{abij} t_{ab}^{ij} E_{ai} E_{bj} = \sum_{\mu_2} t_{\mu_2} \hat{\tau}_{\mu_2}$$
(4.11)

formuliert werden. Der in Gleichung (4.6) bereits vorgestellte Operator für die speziellen R12–Anregungen $\hat{T}_{2'}$ ändert sich dabei nicht. Die Cluster–Amplituden t_{μ_i} und Anregungsoperatoren $\hat{\tau}_{\mu_i}$ sind bereits in Kapitel 2 vorgestellt worden. Einer ausführlicheren Notation folgend können die Ein– und Zweifachanregungs–Cluster–Amplituden auch als t_a^i und t_{aj}^{ij} geschrieben werden. Die Operatoren E_{ai} stehen für Spin-freie Einfachanregungen [4] und wirken analog zu Gleichung (4.8) auf den Referenz–Zustand. Genau wie in Kapitel (3) symbolisieren die Indices a, b, \ldots unbesetzte (virtuelle) Orbitale.

4.3. CCSD-R12- und CC2-R12-Grundzustandsenergie

Die Vorgehensweise zur Lösung der nichtrelativistischen zeitunabhängigen Schrödinger-Gleichung (2.4) erfolgt für die Coupled-Cluster-R12-Wellenfunktion analog zur konventionellen Coupled-Cluster-Wellenfunktion mittels Projektionstechnik, wie bereits in Kapitel 2 ausgeführt wurde. Die Coupled-Cluster-Grundzustandsenergie ergibt sich nach Einsetzen des Cluster-Operators \hat{T} in Gleichung (2.5) zu

$$E_{\rm CC-R12} = E_{\rm HF} + \langle {\rm HF} | \hat{H} (\frac{1}{2} \hat{T}_1^2 + \hat{T}_2 + \hat{T}_{2'}) | {\rm HF} \rangle, \qquad (4.12)$$

und die Coupled–Cluster–Gleichungen für das abgeschlossenschalige ("closed–shell") CCSD-R12 Modell [40] lassen sich ausführlich gemäß

$$\Omega_{\mu_1} = \langle \mu_1 | [\hat{f}, \hat{T}_1] + \hat{\Phi} + [\hat{\Phi}, \hat{T}_2 + \hat{T}_{2'}] | \text{HF} \rangle = 0, \qquad (4.13)$$

$$\Omega_{\mu_2} = \langle \mu_2 | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \exp(-\hat{T})\hat{\Phi}\exp(\hat{T}) | \text{HF} \rangle = 0, \qquad (4.14)$$

$$\Omega_{\mu_{2'}} = \langle \mu_{2'} | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \exp(-\hat{T})\hat{\Phi}\exp(\hat{T}) | \mathrm{HF} \rangle = 0$$
(4.15)

darstellen. Dabei wird unterstellt, dass die auf Kutzelnigg [113] zurückgehende verallgemeinerte Brillouin–Bedingung $(f_{\alpha}^{i} = f_{i}^{\alpha} = 0)$ erfüllt ist und deshalb bei Gleichung (4.13) das Matrixelement über den Kommutator $[\hat{f}, \hat{T}_{2'}]$ als null approximiert werden kann. Die Matrixelemente $\langle \mu_{2} | [\hat{f}, \hat{T}_{2'}] | \text{HF} \rangle$ und $\langle \mu_{2'} | [\hat{f}, \hat{T}_{2}] | \text{HF} \rangle$ sind für Ansatz 1 null, während sie bei Ansatz 2 zu berücksichtigen sind, da sie die Kopplung zwischen den beiden Gleichungen (4.14) und (4.15) für die verschiedenen Zweifachanregungsbeiträge beschreiben. Der Hamilton–Operator

$$\hat{H} = \hat{f} + \hat{\Phi} + h_{\rm K} \tag{4.16}$$

wird in den Fock–Operator \hat{f} und das Fluktuationspotential der Elektronen $\hat{\Phi}$ partitioniert. Der Kern–Kern–Wechselwirkungsbeitrag $h_{\rm K}$ ist eine additive Konstante und wird

bei der Berechnung der Hartree–Fock–Energie berücksichtigt. Sie trägt jedoch nicht zur Korrelationsenergie bei, weshalb sie im folgenden nicht mehr explizit aufgeführt wird. Die Notation $\tilde{\Phi}$ wird verwendet, um eine \hat{T}_1 –Ähnlichkeitstransformation

$$\tilde{\hat{\Phi}} = \exp(-\hat{T}_1)\hat{\Phi}\exp(\hat{T}_1) \tag{4.17}$$

des Fluktuationspotentials zu symbolisieren und eine kompaktere Notation der Cluster-Gleichungen zu ermöglichen. Das transformierte Fluktuationspotential $\tilde{\Phi}$ ist genau wie $\hat{\Phi}$ ein Zweielektronenoperator. Die Projektionsmannigfaltigkeiten der konventionellen einund zweifach angeregten Determinanten für die Bra-Zustände werden der Notation von Helgaker, Jørgensen und Olsen [4] folgend zu

$$\binom{\overline{ab}}{ij} = \frac{1}{6} \langle \mathrm{HF} | (2E_{ai}^{\dagger} E_{bj}^{\dagger} + E_{aj}^{\dagger} E_{bi}^{\dagger}), \qquad (4.19)$$

definiert. Für die Projektionsmannigfaltigkeit der doppelt angeregten R12–Determinanten $\langle \mu_{2'}|$ wird die Definition

$$\left\langle \overline{kl}^{kl}_{ij} \right| = \sum_{\alpha\beta} (w^{\dagger})_{kl}^{\alpha\beta} \left\langle \overline{kl}^{\alpha\beta}_{ij} \right|$$
(4.20)

verwendet, wobei die Projektionsmannigfaltigkeit des Zustands $\langle {\alpha\beta \atop ij} \rangle$ analog zu Gleichung (4.19) definiert wird. Hierfür werden die Indices *a* und *b* durch α und β ersetzt.

Wendet man die bisherigen Definitionen für die Projektionsmannigfaltigkeiten und Anregungsoperatoren an, so werden folgende Gleichungen erfüllt:

$$\langle {}^{\overline{a}}_{i} | \hat{\tau}^{b}_{j} | \mathrm{HF} \rangle = \delta_{ab} \delta_{ij} \,, \tag{4.21}$$

$$\hat{\gamma}_{ij}^{ab} |\hat{\tau}_{kl}^{cd}| \text{HF} \rangle = \hat{P}_{ij}^{ab} \delta_{ac} \delta_{bd} \delta_{ik} \delta_{jl} ,$$

$$(4.22)$$

$$\hat{l}_{ij} \hat{\tau}_{i'j'}^{k'l'} |\text{HF}\rangle = \hat{P}_{ij}^{kl} \langle \varphi_k(1) \varphi_l(2) | \hat{w}_{12}^{\dagger} \hat{w}_{12} | \varphi_{k'}(1) \varphi_{l'}(2) \rangle \delta_{ii'} \delta_{jj'}$$

$$= \hat{P}_{ij}^{kl} \delta_{ii'} \delta_{jj'} X_{kl,k'l'},$$
(4.23)

$$\left\langle \frac{ab}{ij} \dot{\tau}_{kl}^{i'j'} | \text{HF} \right\rangle = \hat{P}_{ij}^{ab} \delta_{ii'} \delta_{jj'} w_{ab}^{kl} \,. \tag{4.25}$$

Der Operator \hat{P}_{ij}^{kl} dient zur Symmetrisierung der Elektronen
indices und wirkt gemäß

$$\hat{P}_{pq}^{rs} A_{pq}^{rs} = A_{pq}^{rs} + A_{qp}^{sr}$$
(4.26)

auf eine beliebige Vierindexgröße A_{pq}^{rs} . Matrixelemente der Art $\langle {kl \atop ij} | \hat{\tau}_{i'j'}^{ab} | \text{HF} \rangle$ und $\langle {ab \atop ij} | \hat{\tau}_{i'j'}^{kl} | \text{HF} \rangle$ sind für Ansatz 1 und die in Gleichung (4.4) dargestellte modifizierte Form von Ansatz 2 null, während sie in der alten Darstellung von Ansatz 2 gemäß Gleichung (3.19) erhalten bleiben.

Abgesehen von der Einschränkung von \hat{T} auf maximal Zweifachanregungsbeiträge, durch die das CCSD-R12–Coupled–Cluster–Modell definiert ist, und die Verwendung der verallgemeinerten Brillouin–Bedingung sind bisher *keine* Näherungen eingeführt worden. Dies ist nun bei Betrachtung des CC2–Modells [2] nicht mehr der Fall. Bei den CCSD-R12–Coupled–Cluster–Gleichungen (4.14) und (4.15) für die Amplituden t_{μ_2} und $t_{\mu_{2'}}$ der Zweifachanregungsbeiträge wird für das CC2-R12–Modell die Einschränkung vorgenommen, dass die Ähnlichkeitstransformation des Fluktuationspotentials $\hat{\Phi}$ auf \hat{T}_1 beschränkt wird. Das bedeutet, dass die Terme $\exp(-\hat{T})\hat{\Phi}\exp(\hat{T})$ in den Gleichungen (4.14) und (4.15) durch $\hat{\Phi}$, das in Gleichung (4.17) definiert wurde, ersetzt werden. Die CCSD-R12–Gleichungen für die Amplituden t_{μ_1} der Einfachanregungsbeiträge bleiben hingegen unverändert. Damit können die CC2-R12–Coupled–Cluster–Gleichungen [115] als

$$\Omega_{\mu_1}^{\text{CCSD-R12}} = \langle \mu_1 | [\hat{f}, \hat{T}_1] + \hat{\Phi} + [\hat{\Phi}, \hat{T}_2 + \hat{T}_{2'}] | \text{HF} \rangle = 0, \qquad (4.27)$$

$$\Omega_{\mu_2}^{\rm CC2} = \langle \mu_2 | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \hat{\Phi} | \rm HF \rangle = 0 , \qquad (4.28)$$

$$\Omega_{\mu_{2'}}^{\rm CC2} = \langle \mu_{2'} | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \hat{\Phi} | \rm HF \rangle = 0$$
(4.29)

formuliert werden. Analog zum CC2– und MP2–Modell existiert auch zwischen den CC2-R12– und MP2-R12–Modellen folgende Beziehung. Werden die Einfachanregungsamplituden t_{μ_1} gleich null gesetzt, so entsprechen die verbleibenden Beiträge des CC2-R12– Modells genau denen des MP2-R12–Modells. Dies ist in der ersten Iteration zur Lösung der Coupled–Cluster–CC2-R12–Gleichungen der Fall. Für das MP2-R12–Modell fällt demnach Gleichung (4.27) vollständig weg, während die Gleichungen (4.28) und (4.29) bis auf die \hat{T}_1 –Transformation des Fluktuationspotentials $\hat{\Phi}$, die nun überflüsssig ist, da $t_{\mu_1} = 0$ ist, identisch bleiben. Auch beim MP2-R12–Modell gilt, dass die Matrixelemente $\langle \mu_2 | [\hat{f}, \hat{T}_{2'}] | \text{HF} \rangle$ und $\langle \mu_{2'} | [\hat{f}, \hat{T}_2] | \text{HF} \rangle$ für Ansatz 1 null sind, während sie bei Ansatz 2 berücksichtigt werden müssen.

4.4. CC2-R12-Anregungsenergien

Zur Berechnung von Coupled–Cluster–Anregungsenergien ω muss, wie in Kapitel 2 bereits beschrieben, das verallgemeinerte Eigenwertproblem

$$\mathbf{A}\vec{R} = \omega \mathbf{S}\vec{R} \tag{4.30}$$

gelöst werden. Die Jacobi-Matrix **A** ist dabei gemäß Gleichung (2.31) als erste partielle Ableitung der Coupled-Cluster-Grundzustandsvektorfunktion Ω_{μ_i} nach den Cluster-Amplituden t_{ν_i} definiert. Die Metrik **S** ergibt sich allgemein als

$$S_{\mu_i\nu_j} = \langle \mu_i | \hat{\tau}_{\nu_j} | \text{HF} \rangle \,, \tag{4.31}$$

wobei die ausführliche Darstellung der Unterblöcke von S für den für das CC2-R12oder CCSD-R12-Modell notwendigen Indexbereich bereits aus den Gleichungen (4.21)bis (4.25) bekannt ist. Die Metrik kann sowohl für das CC2-R12- als auch für das CCSD-R12-Modell in Matrixform als

$$S_{\mu_{i}\nu_{j}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & S_{\mu_{2}\nu_{2'}} \\ 0 & S_{\mu_{2'}\nu_{2}} & S_{\mu_{2'}\nu_{2'}} \end{pmatrix}, \qquad (4.32)$$

dargestellt werden, wobei die Unterblöcke $S_{\mu_2\nu_{2'}}$ und $S_{\mu_{2'}\nu_{2}}$ für Ansatz 1 und Ansatz 2 nach Gleichung (4.4) null sind. Betrachtet man den ursprünglichen Ansatz 2 nach Gleichung (3.19), so sind diese Beiträge ungleich null und müssen berücksichtigt werden. Um das verallgemeinerte Eigenwertproblem aus Gleichung (4.30) zu lösen, muss das Produkt $\mathbf{S}\vec{R}$ berechnet werden. Der reine R12–Teil kann dabei als

$$\sum_{i'j'mn} S_{ikjl,i'mj'n} R_{mn}^{i'j'} = \sum_{mn} X_{kl,mn} R_{mn}^{ij}$$
(4.33)

unter Verwendung der bereits aus Gleichung (4.23) bekannten Matrix

$$X_{kl,mn} = \langle \varphi_k(1)\varphi_l(2)|\hat{\mathbf{w}}_{12}^{\dagger}\hat{\mathbf{w}}_{12}|\varphi_m(1)\varphi_n(2)\rangle$$
(4.34)

formuliert werden. Die für den ursprünglichen Ansatz 2 zu berücksichtigenden Beiträge der Außerdiagonalblöcke berechnen sich zu

$$\sum_{i'kj'l} S_{iajb,i'kj'l} R_{kl}^{i'j'} = \sum_{kl} w_{ab}^{kl} R_{kl}^{ij} \quad \text{und}$$
(4.35)

$$\sum_{i'aj'b} S_{ijkl,i'aj'b} R_{ab}^{i'j'} = \sum_{ab} (w^{\dagger})_{kl}^{ab} R_{ab}^{ij}.$$
(4.36)

Die zur Berechnung von $\mathbf{S}\vec{R}$ notwendigen Anregungskomponenten eines Versuchsvektors werden für den R12–Teil mit $R_{kl}^{i'j'}$ und für den konventionellen Zweifachanregungsteil als $R_{ab}^{i'j'}$ bezeichnet. Dies erfolgt in Analogie zu den R12–Amplituden c_{kl}^{ij} und den Coupled–Cluster–Amplituden t_{ab}^{ij} .

Für nicht genäherte Coupled-Cluster-Modelle kann die Jacobi-Matrix allgemein als

$$A_{\mu_i\nu_j} = \langle \mu_i | \exp\left(-\hat{T}\right) [\hat{H}, \hat{\tau}_{\nu_j}] \exp(\hat{T}) | \mathrm{HF} \rangle$$
(4.37)

dargestellt werden [4]. In dieser Arbeit wird sie für das CC2-R12–Modell unter Verwendung des \hat{T}_1 -ähnlichkeitstransformierten Hamilton–Operators

$$\hat{H} = \exp\left(-\hat{T}_1\right)\hat{H}\exp(\hat{T}_1) \tag{4.38}$$

und unter Zuhilfenahme der Kurzschreibweise $\bar{H} = [\hat{H}, \hat{\tau}_{\nu_1}]$, die der ersten Ableitung von $\tilde{\hat{H}}$ nach t_{ν_1} entspricht, für die partielle Ableitung von Ω_{μ_1} nach t_{ν_1} gemäß

$$A_{\mu_{i}\nu_{j}} = \begin{pmatrix} \langle \mu_{1} | \bar{H} + [\bar{H}, \hat{T}_{2} + \hat{T}_{2'}] | \mathrm{HF} \rangle & \langle \mu_{1} | [\tilde{\Phi}, \hat{\tau}_{\nu_{2}}] | \mathrm{HF} \rangle & \langle \mu_{2} | [\tilde{\Phi}, \hat{\tau}_{\nu_{1'}}] | \mathrm{HF} \rangle \\ \langle \mu_{2} | [\tilde{\Phi}, \hat{\tau}_{\nu_{1}}] | \mathrm{HF} \rangle & \varepsilon_{\nu_{2}} \delta_{\mu_{2}\nu_{2}} & \langle \mu_{2} | [\hat{f}, \hat{\tau}_{\nu_{2'}}] | \mathrm{HF} \rangle \\ \langle \mu_{2'} | [\tilde{\Phi}, \hat{\tau}_{\nu_{1}}] | \mathrm{HF} \rangle & \langle \mu_{2'} | [\hat{f}, \hat{\tau}_{\nu_{2}}] | \mathrm{HF} \rangle & \langle \mu_{2'} | [\hat{f}, \hat{\tau}_{\nu_{2'}}] | \mathrm{HF} \rangle \end{pmatrix}$$

$$(4.39)$$

formuliert. Mit ε_{ν_2} wird dabei die Energiedifferenz der zu dieser Doppelanregung gehörigen vier Orbitalenergien bezeichnet, wobei für Gleichung (4.39) kanonische Hartree–Fock–Orbitale vorausgesetzt werden. Die Matrixelemente $\langle \mu_2 | [\hat{f}, \hat{\tau}_{\nu_2}] | \text{HF} \rangle$ und $\langle \mu_{2'} | [\hat{f}, \hat{\tau}_{\nu_2}] | \text{HF} \rangle$ sind für Ansatz 1 null, während sie für Ansatz 2 berücksichtigt werden müssen.

4.5. Formulierung der R12-Beiträge zur CC2-R12-Grundzustandsenergie

Die genaue Formulierung der einzelnen Beiträge zu den konventionellen CC2- und CCSD-Coupled-Cluster-Gleichungen für den abgeschlossenschaligen Fall sowie die Darstellung der zugehörigen Jacobi-Matrizen sind in der Literatur [2, 12, 13] zu finden. Die Beiträge zur CC2-Grundzustandsvektorfunktion sind in Tabelle (B.1) kurz zusammengefasst. Zu diesen konventionellen CC2-Beiträgen werden die neuen R12-Terme hinzu addiert. Im Folgenden wird näher auf die allgemeine Darstellung dieser neuen R12-Beiträge eingegangen. Eine Übersicht über die verschiedenen R12-Beiträge zu der CC2-R12-Vektorfunktion im Rahmen der Ansätze 1 und 2 findet sich in Tabelle (B.2).

Die R12–Beiträge zu den Doubles–Coupled–Cluster–Gleichungen, die für die Kopplung zwischen den konventionellen Doubles–Gleichungen Ω_{μ_2} und R12–Doubles–Gleichungen Ω_{μ_2} für die Zweifachanregungsamplituden verantwortlich sind, lassen sich gemäß

$$\frac{\overline{\langle ab}}{\langle ij} | (\hat{f}, \hat{T}_{2'}] | \text{HF} \rangle = \sum_{kl} C^{(ij)}_{ab,kl} c^{ij}_{kl} \quad \text{und}$$

$$\tag{4.40}$$

$$\langle \overline{}_{ij}^{kl} | [\hat{f}, \hat{T}_2] | | \mathrm{HF} \rangle = \sum_{ab} C_{kl,ab}^{(ij)} t_{ab}^{ij}, \qquad (4.41)$$

unter Verwendung der Kopplungsmatrix

$$C_{ab,kl}^{(ij)} = \langle \varphi_a(1)\varphi_b(2) | (\hat{f}_1 + \hat{f}_2 - \varepsilon_i - \varepsilon_j) \hat{w}_{12} | \varphi_k(1)\varphi_l(2) \rangle , \qquad (4.42)$$

formulieren. Die Hartree–Fock–Orbitalenergien der besetzten Orbitale *i*, *j* werden als ε_i und ε_j bezeichnet, während \hat{f}_1 und \hat{f}_2 Einelektronen–Fock–Operatoren symbolisieren. Für Ansatz 1 ist **C** gleich null, es existiert also keine direkte Kopplung zwischen den Coupled–Cluster–Gleichungen für die Zweifachanregungsamplituden Ω_{μ_2} und $\Omega_{\mu_{2'}}$, aber eine indirekte Kopplung über die Singles–Gleichungen (4.27) bleibt hingegen bestehen.

Die noch fehlenden R12–Beiträge zu den Doubles–Coupled–Cluster–Gleichungen werden den R12–Doubles–Gleichungen $\Omega_{\mu_{2'}}$ zugeordnet. Das Matrixelement über den Kommutator $[\hat{f}, \hat{T}_{2'}]$ kann als

$$\frac{\sqrt{kl}}{\sqrt{kl}} |[\hat{f}, \hat{T}_{2'}]| \text{HF} \rangle = \sum_{mn} B_{kl,mn}^{(ij)} c_{mn}^{ij}, \qquad (4.43)$$

33

unter Verwendung der Matrix

$$B_{kl,mn}^{(ij)} = \langle \varphi_k(1)\varphi_l(2)|\hat{\mathbf{w}}_{12}^{\dagger}(\hat{f}_1 + \hat{f}_2 - \varepsilon_i - \varepsilon_j)\hat{\mathbf{w}}_{12}|\varphi_m(1)\varphi_n(2)\rangle$$
(4.44)

dargestellt werden. Die Matrizen **B** und **C** sind bereits aus der MP2-R12–Theorie [47] bekannt und haben je nach verwendetem Ansatz eine andere Form. Die verschiedenen Beiträge zum Aufbau dieser Matrizen definieren beispielsweise die Standardnäherungen A und B. Eine ausführliche Beschreibung der verschiedenen Näherungen im Rahmen des jeweiligen Ansatzes findet sich in Ref. [47]. Eine kurze Beschreibung von **B** und **C** im Rahmen von Ansatz 2 gemäß Gleichung (4.4) kann in Ref. [44, 116] gefunden werden. Beide Intermediate werden ausführlich in Abschnitt (4.5.2) besprochen.

Der letzte bisher noch fehlende Beitrag zu den R12–Doubles–CC2–Gleichungen $\Omega_{\mu_{2'}}$ kann als Matrix

$$\tilde{V}_{kl}^{ij} = \langle \overline{kl} | \tilde{\Phi} | \mathrm{HF} \rangle = \langle \varphi_k(1) \varphi_l(2) | \hat{w}_{12}^{\dagger} \exp(-\hat{T}_1) \frac{1}{r_{12}} \exp(\hat{T}_1) | \varphi_i(1) \varphi_j(2) \rangle$$

$$(4.45)$$

zusammengefasst werden. Im Unterschied zu der V-Matrix, die bereits aus der MP2-R12-Theorie [47] bekannt ist, wird zum Aufbau dieses Intermediates das \hat{T}_1 -ähnlichkeitstransformierte Fluktuationspotential $\tilde{\Phi}$ verwendet. Ohne diese \hat{T}_1 -Ähnlichkeitstransformation ist das V aus Gleichung (4.45) identisch zu dem V-Intermediat aus der MP2-R12-Theorie.

Die R12–Beiträge zu den Singles–Coupled–Cluster–Gleichungen Ω_{μ_1} lassen sich gemäß

$$\begin{split} \langle \tilde{\Phi}, \hat{T}_{2'} | | \mathrm{HF} \rangle &= \sum_{klm} (2c_{kl}^{im} - c_{kl}^{mi}) \langle \varphi_a(1)\varphi_m(2) | (1 - \hat{T}_1) \frac{1}{r_{12}} \hat{w}_{12} | \varphi_k(1)\varphi_l(2) \rangle \\ &- \sum_{mnkl} (2c_{mn}^{lk} - c_{mn}^{kl}) \langle \varphi_m(1)\varphi_n(2)\varphi_a(3) | \frac{1}{r_{12}} (1 + \hat{T}_1) \hat{w}_{23} | \varphi_i(1)\varphi_l(2)\varphi_k(3) \rangle \\ &+ \sum_{kmn} (2c_{mn}^{ik} - c_{mn}^{ki}) \langle \varphi_a(1)\varphi_k(2) | \tilde{f}_2 \hat{w}_{12} | \varphi_m(1)\varphi_n(2) \rangle \end{split}$$
(4.46)

darstellen. Der Operator \hat{f} ist dabei ein Fock–Operator, der aus der modifizierten Dichtematrix $\rho(1,2) = 2\sum_i \varphi_i^*(1)\tilde{\varphi}_i(2)$ berechnet wird. Die ähnlichkeitstransformierte Basis $\tilde{\varphi}_i$ wird gemäß

$$\tilde{\varphi}_i = \varphi_i + \sum_a \varphi_a t_a^i, \qquad (4.47)$$

$$\tilde{\varphi_a} = \varphi_a - \sum_i \varphi_i t_a^i \tag{4.48}$$

eingeführt. Sie ist notwendig, um die \hat{T}_1 -Ähnlichkeitstransformationen für die Intermediate aus Gleichungen (4.45) und (4.46) durchzuführen. Die letzten beiden Terme in Gleichung (4.46) sind null für Ansatz 1. Damit sind alle neuen R12-Beiträge zur Coupled-Cluster-CC2-R12-Grundzustandsvektorfunktion erfasst. Um die Berechnung komplizierter Mehrelektronenvielzentrenintegrale zu vermeiden bedient man sich der "resolution-of-the-identity"-(RI)-Näherung [103,117,118] unter Verwendung sogenannter Auxiliarbasisfunktionen, die nicht notwendigerweise mit den Orbitalbasisfunktionen identisch sein müssen. Die in dieser Arbeit verwendete Einführung der Auxiliarbasis, auch ABS-Näherung genannt, folgt im Wesentlichen dem Vorschlag von Klopper und Samson aus Ref. [47] und wird im folgenden Abschnitt (4.5.1) behandelt.

4.5.1. Einführung der Auxiliarbasis

Zur Vermeidung komplizierter Dreielektronenvierzentrenintegrale ist es notwendig, für die im letzten Abschnitt vorgestellten Beiträge die "auxiliary basis set approximation", auch ABS-Näherung genannt, einzuführen. Dieser Abschnitt stellt die Einführung der ABS-Näherung für die Beiträge aus den Gleichungen (4.45) und (4.46) gemäß dem Vorschlag von Klopper und Samson [47] vor, wobei die Ausführungen zunächst mit der Beschreibung der V-Intermediate [115], die aus den Matrixelementen über das Fluktuationspotential herrühren, beginnen. Wie die Einführung der ABS-Näherung im Detail für die C und B Matrizen aus Gleichungen (4.42) und (4.44) erfolgt, wird in Abschnitt (4.5.2) näher erläutert.

Die Einführung der ABS-Näherung wird zunächst für Ansatz 1 demonstriert. Dafür muss in dem zugehörigen Korrelationsfaktor

$$\hat{\mathbf{w}}_{12} = (1 - \hat{P}_1 - \hat{P}_2 + \hat{P}_1 \hat{P}_2) r_{12} \tag{4.49}$$

der zweite und dritte Term durch

$$\hat{P}_1 \rightarrow \hat{P}_1 \hat{P}_{2'} \text{und} \quad \hat{P}_2 \rightarrow \hat{P}_2 \hat{P}_{1'}$$

$$(4.50)$$

ersetzt werden. Die hierfür notwendigen Projektionsoperatoren $\hat{P}_{1'}$ und $\hat{P}_{2'}$ sind gemäß

$$\hat{P}_{2'} = \sum_{p'} |\phi_{p'}(2)\rangle \langle \phi_{p'}(2)|$$
(4.51)

definiert und entsprechen einer Einheitsdarstellung gemäß der "resolution–of–the–identity"– (RI)–Näherung in einer orthonormalen Auxiliarbasis $\{\phi_{p'}\}$. Damit lässt sich beispielsweise das Produkt $\hat{w}_{12}^{\dagger} \frac{1}{r_{12}}$ als

$$\hat{\mathbf{w}}_{12}^{\dagger} \frac{1}{r_{12}} \stackrel{\text{ABS}}{\approx} 1 - r_{12} \hat{P}_1 \hat{P}_{2'} \frac{1}{r_{12}} - r_{12} \hat{P}_2 \hat{P}_{1'} \frac{1}{r_{12}} + r_{12} \hat{P}_1 \hat{P}_2 \frac{1}{r_{12}}$$
(4.52)

darstellen. In gleicher Weise geht man auch für Ansatz 2 vor. Der einzige Unterschied besteht darin, dass \hat{P}_1 und \hat{P}_2 durch \hat{O}_1 und \hat{O}_2 ersetzt werden. Die Auxiliarbasis wird für Ansatz 2 gemäß Gleichung (3.19) und (4.4) in gleicher Weise eingeführt. Deshalb ist es ausreichend, im Folgenden den Ansatz 2 in seiner modifizierten Form gemäß Gleichung (4.4) zu behandeln, da diese den ursprünglichen Ansatz 2 nach Gleichung (3.19) impliziert. Das Produkt $\hat{w}_{12}^{\dagger}\frac{1}{r_{12}}$ lässt sich demnach unter Verwendung der ABS-Näherung als

$$\hat{\mathbf{w}}_{12}^{\dagger} \frac{1}{r_{12}} \stackrel{\text{ABS}}{\approx} 1 - r_{12} \hat{O}_1 \hat{P}_{2'} \frac{1}{r_{12}} - r_{12} \hat{O}_2 \hat{P}_{1'} \frac{1}{r_{12}} + r_{12} \hat{O}_1 \hat{O}_2 \frac{1}{r_{12}} - r_{12} \hat{V}_1 \hat{V}_2 \frac{1}{r_{12}}$$
(4.53)

formulieren.

Im Gegensatz zur MP2-R12–Theorie hat man es bei der Coupled–Cluster–R12–Theorie oft mit \hat{T} – oder \hat{T}_1 –ähnlichkeitstransformierten Operatoren, wie beispielsweise dem $\tilde{\mathbf{V}}$ – Intermediat aus Gleichung (4.45) zu tun. Letzteres ist als Matrixdarstellung über

$$\hat{\mathbf{w}}_{12}^{\dagger} \exp(-\hat{T}_1) \frac{1}{r_{12}} \exp(\hat{T}_1) = \hat{\mathbf{w}}_{12}^{\dagger} \exp\left(-\hat{T}_1(1) - \hat{T}_1(2)\right) \frac{1}{r_{12}} \exp\left(\hat{T}_1(1) + \hat{T}_1(2)\right) \quad (4.54)$$

definiert. Für diese Formulierung wurde verwendet, dass \hat{T}_1 wie jeder Einelektronenoperator als eine Summe gemäß $\hat{T}_1 = \sum_i \hat{T}_1(i)$ über alle am System beteiligten Elektronen *i* entwickelt werden kann. Der Einteilchenoperator $\hat{T}_1(i)$ entspricht dem Anteil von \hat{T}_1 der auf das Elektron *i* wirkt. Das bedeutet, dass $\hat{T}_1(i)$ das Elektron *i* von einem besetzten in ein virtuelles Orbital anregt. Bei der Berechnung des Matrixelements gemäß Gleichung (4.54) berücksichtigt man den rechts stehenden Beitrag der Operatoren des Exponenten

$$\exp\left(\hat{T}_1(1) + \hat{T}_1(2)\right) |\phi_i(1)\phi_j(2)\rangle = |\tilde{\phi}_i(1)\tilde{\phi}_j(2)\rangle \tag{4.55}$$

in der Weise, dass im zugehörigen Ket–Zustand die \hat{T}_1 –ähnlichkeitstransformierte Basis aus Gleichungen (4.47) und (4.48) verwendet wird. Deshalb muss im Folgenden nicht weiter auf diese Beiträge eingegangen werden.

Betrachtet wird nun die linke Seite von Gleichung (4.54). Da das gleiche Elektron nicht zweimal von einem besetzten in ein virtuelles Orbital angeregt werden kann, sind $(\hat{T}_1(i))^2$ und alle höheren Potenzen von $\hat{T}_1(i)$ gleich null. Damit ergibt sich

$$\hat{\mathbf{w}}_{12}^{\dagger} \exp(-\hat{T}_1(1) - \hat{T}_1(2)) \frac{1}{r_{12}} = \hat{\mathbf{w}}_{12}^{\dagger} (1 - \hat{T}_1(1)) (1 - \hat{T}_1(2)) \frac{1}{r_{12}} .$$
(4.56)

Weiterhin gilt $(1 - \hat{P}_i)\hat{T}_1(i) = 0$, da $(1 - \hat{P}_i)$ alle Beiträge aus der gesamten Basis herausprojiziert, bei denen das Elektron *i* sich entweder in einem besetzten oder virtuellen Hartree–Fock–Orbital befindet. Damit ergibt sich für Ansatz 1 die Identität

$$\hat{\mathbf{w}}_{12}^{\dagger} \exp(-\hat{T}_1(1) - \hat{T}_1(2)) \frac{1}{r_{12}} = \hat{\mathbf{w}}_{12}^{\dagger} \frac{1}{r_{12}} , \qquad (4.57)$$

und die ABS-Näherung kann wie bereits in Gleichung (4.52) beschrieben eingeführt werden.

Bei Ansatz 2 gestalten sich die Dinge aufgrund der in \hat{w}_{12} enthaltenen Projektoren jedoch komplizierter. Berücksichtigt man, dass der Operator \hat{w}_{12} aus Gleichung (4.4) für Ansatz 2 auch als

$$\hat{\mathbf{w}}_{12}^{\dagger} = r_{12} \Big[(1 - \hat{O}_1)(1 - \hat{O}_2) - \hat{V}_1 \hat{V}_2 \Big]$$
(4.58)

umgeformt werden kann, so lässt sich Gleichung (4.56) als

$$\hat{\mathbf{w}}_{12}^{\dagger}(1-\hat{T}_{1}(1))(1-\hat{T}_{1}(2))\frac{1}{r_{12}} = r_{12}\Big[(1-\hat{O}_{1})(1-\hat{O}_{2})-\hat{V}_{1}\hat{V}_{2}\Big](1-\hat{T}_{1}(1))(1-\hat{T}_{1}(2))\frac{1}{r_{12}} \quad (4.59)$$

darstellen. Betrachtet man den rechts stehenden Term, in welchem das Produkt $\hat{V}_1\hat{V}_2$ auftritt, so kann dieser Beitrag als

$$r_{12}\hat{V}_1\hat{V}_2\left(1-\hat{T}_1(1)\right)\left(1-\hat{T}_1(2)\right)\frac{1}{r_{12}} = r_{12}\tilde{\hat{V}}_1\tilde{\hat{V}}_2\frac{1}{r_{12}},\qquad(4.60)$$

unter Verwendung der modifizierten Projektionsoperatoren

$$\tilde{\hat{V}}_1 = \sum_a |\varphi_a(1)\rangle \langle \tilde{\varphi}_a(1)|, \qquad (4.61)$$

formuliert werden. Die Projektionsoperatoren \hat{V}_1 werden dabei unter Zuhilfenahme der transformierten Basisfunktionen $\tilde{\varphi}_a$ aus Gleichung (4.48) definiert. Berücksichtigt man des Weiteren die Beziehungen $\hat{T}_1(i)\hat{O}_i = \hat{T}_1(i)$ und $\hat{O}_i\hat{T}_1(i) = 0$, so lassen sich die verbleibenden Beiträge aus Gleichung (4.59) als

$$r_{12}(1-\hat{O}_1)(1-\hat{O}_2)\left(1-\hat{T}_1(1)\right)\left(1-\hat{T}_1(2)\right)\frac{1}{r_{12}} = r_{12}(1-\tilde{\hat{O}}_1)(1-\tilde{\hat{O}}_2)\frac{1}{r_{12}},\qquad(4.62)$$

unter Verwendung der modifizierten Projektionsoperatoren

$$\tilde{\hat{O}}_1 = \sum_j |\tilde{\varphi}_j(1)\rangle \langle \varphi_j(1)|, \qquad (4.63)$$

darstellen. Dabei werden die Projektionsoperatoren \hat{O}_1 mit Hilfe der ähnlichkeitstransformierten Basisfunktionen $\tilde{\varphi}_j$ aus Gleichung (4.47) definiert. Nun kann die ABS-Näherung fast analog zu Gleichung (4.53) gemäß

$$\hat{\mathbf{w}}_{12}^{\dagger}(1-\hat{T}_{1}(1))(1-\hat{T}_{1}(2))\frac{1}{r_{12}} \stackrel{\text{ABS}}{\approx} r_{12}[1-\tilde{\hat{O}}_{1}\hat{P}_{2'}-\tilde{\hat{O}}_{2}\hat{P}_{1'}+\tilde{\hat{O}}_{1}\tilde{\hat{O}}_{2}-\tilde{\hat{V}}_{1}\tilde{\hat{V}}_{2}]\frac{1}{r_{12}}$$
(4.64)

eingeführt werden.

Der oben beschriebenen Vorgehensweise folgend kann die ABS–Näherung analog in den ersten Term von Gleichung (4.46) eingeführt werden. Dabei muss lediglich die \hat{T}_1 –Transformation der virtuellen Basisfunktion des Bra–Zustandes unter Verwendung der transformierten Basisfunktionen $\tilde{\varphi}_a$ gemäß Gleichung (4.48) berücksichtigt werden. Dies gilt für beide Ansätze.

Auf gleiche Weise wird auch im zweiten Term von Gleichung (4.46) die ABS-Näherung eingeführt. Dabei wird ebenfalls die \hat{T}_1 -Transformation, diesmal der besetzten Orbitalfunktion $\varphi_i(1)$ im Ket-Zustand, durch Verwendung der transformierten Basisfunktionen $\tilde{\varphi}_i$ gemäß Gleichung (4.47) berücksichtigt. Damit kann das Matrixelement des zweiten Terms aus Gleichung (4.46) unter Verwendung des Korrelationsfaktors \hat{w}_{12} für Ansatz 2 nach Gleichung (4.4) als

$$\langle \varphi_m(1)\varphi_n(2)\varphi_a(3)|\frac{1}{r_{12}}[(1-\hat{O}_2)(1-\hat{O}_3)(1-\hat{V}_2\hat{V}_3)]r_{23}|\tilde{\varphi}_i(1)\varphi_l(2)\varphi_k(3)\rangle$$
(4.65)

formuliert werden. Da das Orbital $\varphi_a(3)$ im Bra-Zustand virtuell ist, hat die Projektion $(1 - \hat{O}_3)$ keinerlei Wirkung und kann vernachlässigt werden. Außerdem müssen die Funktionen, die mittels \hat{V}_3 eingeführt werden, identisch mit $\varphi_a(3)$ sein, damit ein Beitrag ungleich null berechnet werden kann. Deshalb kann $\hat{V}_3 = 1$ gesetzt werden, und der verbleibende Teil der Projektoren des Korrelationsfaktors kann gemäß

$$(1 - \hat{O}_2)(1 - \hat{V}_2\hat{V}_3) = 1 - \hat{O}_2 - \hat{V}_2 = 1 - \hat{P}_2$$
(4.66)

umgeformt werden. Die ABS-Näherung wird an dieser Stelle als

$$1 - \hat{P}_2 \stackrel{\text{ABS}}{\approx} \hat{P}_{2'} - \hat{P}_2, \qquad (4.67)$$

formuliert. Das Produkt $\hat{V}_2 \hat{V}_3$ tritt im ursprünglichen Ansatz 2 gemäß Gleichung (3.19) nicht auf. Die ABS-Näherung entspricht in diesem Fall

$$1 - \hat{O}_2 \stackrel{\text{ABS}}{\approx} \hat{P}_{2'} - \hat{O}_2. \tag{4.68}$$

Je nach verwendet em Ansatz 2 gemäß Gleichung (3.19) oder (4.4) wird in der vorliegenden Arbeit mittels einer Schmidt–Orthogonalisierung [119] sicher gestellt, dass die Auxiliarbasis $\{\phi_{p'}\}$ orthogonal zur Basis der besetzten Hartee–Fock–Orbitale $\{\phi_j\}$ beziehungsweise orthogonal zur gesamten Orbitalbasis $\{\phi_p\}$ ist. Damit lässt sich der zweite R12–Term aus den Singles–CC2-R12–Gleichungen als

$$-\langle \varphi_m(1)\varphi_n(2)\varphi_a(3)|\frac{1}{r_{12}}\hat{\mathbf{w}}_{23}|\tilde{\varphi}_i(1)\varphi_l(2)\varphi_k(3)\rangle \stackrel{\text{ABS}}{\approx} -\sum_{p'} r_{p'a}^{lk} \left(g_{mn}^{\tilde{i}p'} - \sum_p g_{mn}^{\tilde{i}p}S_{pp'}\right) \quad (4.69)$$

unter Verwendung der Überlappungsmatrix $S_{pp'} = \langle \varphi_p | \varphi_{p'} \rangle$ formulieren. Dies ist für beide möglichen Formen von Ansatz 2 in Tabelle (B.2) zusammengefasst. Die hier gewählte Einführung der ABS–Näherung $(\hat{P'} - \hat{P})$ unter Verwendung einer Schmidt–Orthogonalisierung stellt einen Kompromiss zwischen einer einfacheren Implementierung und der Verwendung der "complementary basis set "–(CABS)–Näherung [116] dar, bei der explizit eine komplementäre Auxiliarbasis (CABS) eingeführt wird, die orthogonal zur Orbitalbasis ist.

Die ABS–Näherung für den dritten noch fehlenden R12–Term aus Gleichung (4.46) erfolgt nach analogen Überlegungen gemäß Gleichung (4.67). Neben der ABS–Näherung wurde zur Formulierung dieses Terms auch die verallgemeinerte Brillouin–Bedingung (GBC) ($f_{\beta}^{k} = f_{k}^{k} = 0$) verwendet. Auch hier wird durch eine Schmidt–Orthogonalisierung sicher gestellt, dass die Auxiliarbasis orthogonal, je nach verwendetem Ansatz 2, zu den besetzten Orbitalen oder zur Gesamtorbitalbasis ist. Damit lässt sich der letzte R12–Term aus den

Singles-Coupled-Cluster-R12-Gleichungen als

zusammenfassen. Dies ist für beide möglichen Formen von Ansatz 2 in Tabelle (B.2) dargestellt.

4.5.2. Formulierung der Matrizen B und C

Der letzte Abschnitt hat sich ausführlich mit der Einführung der ABS-Näherung zur Formulierung der R12-Beiträge für die Singles- und R12-Doubles-CC2-Gleichungen beschäftigt. In diesem Abschnitt wird besonders auf die Berechnung der **B** und **C** Matrizen eingegangen, die zur Formulierung der noch verbleibenden R12-Beiträge zu den konventionellen Doubles- und R12-Doubles-Coupled-Cluster-Gleichungen notwendig sind. Die explizite Formulierung aller Beiträge zu den Matrizen **C** und **B** im Rahmen der verschiedenen Ansätze findet sich in Tabelle (B.3).

Um eine kompaktere Notation der folgenden Beiträge zu ermöglichen, wird zunächst ein Fock-Operator

$$\hat{f}_{12} = \hat{f}_1 + \hat{f}_2 \,, \tag{4.71}$$

als Summe aus zwei Einteilchen-Fock-Operatoren

$$\hat{f}_1 = \hat{t}_1 + \hat{j}_1 - \hat{k}_1 \,, \tag{4.72}$$

eingeführt, die jeweils aus dem Einteilchenoperator der kinetischen Energie \hat{t}_1 und dem Einteilchenaustauschoperator \hat{k}_1 sowie dem Coulomb-Operator \hat{j}_1 definiert sind. $B_{kl,mn}^{(ij)}$ ist gemäß Gleichung (4.44) als Matrixelement über

$$\hat{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\hat{\mathbf{w}}_{12} = \frac{1}{2}\hat{\mathbf{w}}_{12}^{\dagger}[\hat{f}_{12}, \hat{\mathbf{w}}_{12}] + \frac{1}{2}[\hat{\mathbf{w}}_{12}^{\dagger}, \hat{f}_{12}]\hat{\mathbf{w}}_{12} + \frac{1}{2}\hat{\mathbf{w}}_{12}^{\dagger}\hat{\mathbf{w}}_{12}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j) + \frac{1}{2}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\hat{\mathbf{w}}_{12}^{\dagger}\hat{\mathbf{w}}_{12}$$

$$(4.73)$$

definiert und bleibt in dieser Darstellung symmetrisch. Der in Gleichung (4.73) gewählten Darstellung folgend lassen sich die ersten beiden und die letzten beiden Terme sehr ähnlich berechnen.

Geht man davon aus, dass die besetzten Orbitale Eigenfunktionen des Fock-Operators sind, so dass das verallgemeinerte Brillouin-Theorem (GBC) erfüllt ist, lässt sich beispielsweise das Matrixelement über das Produkt $\hat{w}_{12}^{\dagger}\hat{w}_{12}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)$ gemäß

$$\langle \varphi_k(1)\varphi_l(2)|\hat{\mathbf{w}}_{12}^{\dagger}\hat{\mathbf{w}}_{12}(\hat{f}_{12}-\varepsilon_i-\varepsilon_j)|\varphi_m(1)\varphi_n(2)\rangle \stackrel{\text{GBC}}{\approx} (\varepsilon_m+\varepsilon_n-\varepsilon_i-\varepsilon_j)X_{kl,mn}, \quad (4.74)$$

unter Verwendung der Matrix $X_{kl,mn}$, die bereits aus Gleichung (4.23) bekannt ist, formulieren. $X_{kl,mn}$ nimmt je nach verwendetem Ansatz eine andere Form an. Dies ist in Tabelle (B.3) dargestellt. Die Einführung der Auxiliarbasisnäherung erfolgt für die Matrix X analog zu der im letzten Abschnitt (4.5.1) besprochenen Vorgehensweise. Für Ansatz 1 wird die ABS-Näherung beispielsweise gemäß

$$\hat{\mathbf{w}}_{12}^{\dagger}\hat{\mathbf{w}}_{12} = \hat{\mathbf{w}}_{12}^{\dagger}r_{12} \stackrel{\text{ABS}}{\approx} r_{12}(1 - \hat{P}_1\hat{P}_{2'} - \hat{P}_{1'}\hat{P}_2 + \hat{P}_1\hat{P}_2)r_{12}$$
(4.75)

eingeführt. Zieht man zunächst nur Ansatz 1 in Betracht, so geht man davon aus, dass neben der verallgemeinerten "generalized" Brillouin–Bedingung (GBC) auch die erweiterte "extended" Brillouin–Bedingung (EBC) erfüllt ist. Das bedeutet, dass der Orbitalraum bezüglich des Fock–Operators als abgeschlossen angesehen wird. Damit kann der Kommutator

$$[\hat{f}_{12}, (1-\hat{P}_1)(1-\hat{P}_2)] \stackrel{\text{EBC}}{\approx} 0,$$
 (4.76)

als null approximiert werden und man erhält beispielsweise für den ersten Term aus Gleichung (4.73)

$$\hat{\mathbf{w}}_{12}^{\dagger}[\hat{f}_{12}, \hat{\mathbf{w}}_{12}] \stackrel{\text{EBC}}{\approx} \hat{\mathbf{w}}_{12}^{\dagger}[\hat{f}_{12}, r_{12}] = \hat{\mathbf{w}}_{12}^{\dagger}[\hat{t}_1 + \hat{t}_2, r_{12}] - \hat{\mathbf{w}}_{12}^{\dagger}[\hat{k}_1 + \hat{k}_2, r_{12}], \qquad (4.77)$$

unter Berücksichtigung der Definitionen aus Gleichung (4.71) und (4.72). Erneut kann die ABS-Näherung wie bereits in Abschnitt (4.5.1) besprochen, hier für Ansatz 1 dargestellt

$$\hat{\mathbf{w}}_{12}^{\dagger}[\hat{t}_1 + \hat{t}_2, r_{12}] \stackrel{\text{ABS}}{\approx} r_{12}(1 - \hat{P}_1\hat{P}_{2'} - \hat{P}_{1'}\hat{P}_2 + \hat{P}_1\hat{P}_2)[\hat{t}_1 + \hat{t}_2, r_{12}], \qquad (4.78)$$

$$\hat{\mathbf{w}}_{12}^{\dagger}[\hat{k}_1 + \hat{k}_2, r_{12}] \stackrel{\text{ABS}}{\approx} r_{12}(1 - \hat{P}_1\hat{P}_{2'} - \hat{P}_{1'}\hat{P}_2 + \hat{P}_1\hat{P}_2)[\hat{k}_1 + \hat{k}_2, r_{12}], \qquad (4.79)$$

eingeführt werden. Während die Integrale über den Kommutator $[\hat{t}_1 + \hat{t}_2, r_{12}]$ direkt berechnet werden können, gestaltet sich die Berechnung der Intergrale über die Kommutatoren, in die der Austauschoperator involviert ist, schwieriger. Neben der in Gleichung (4.79) vorgestellten ABS-Näherung werden deshalb nachträglich noch weitere Projektoren eingeführt, um diese Integrale darstellen zu können. Formuliert man das Produkt $\hat{w}_{12}^{\dagger}(\hat{k}_1 + \hat{k}_2, r_{12}]$ aus Gleichung (4.79) aus, so sind im Wesentlichen Matrixelemente über $\hat{w}_{12}^{\dagger}\hat{k}_1r_{12}$ und $\hat{w}_{12}^{\dagger}r_{12}\hat{k}_1$ zu berechnen. Die Beiträge über \hat{k}_2 können auf eine analoge Art und Weise bestimmt werden weshalb sie hier nicht extra aufgeführt werden. Mit den zusätzlichen Projektoren können $\hat{w}_{12}^{\dagger}\hat{k}_1r_{12}$ und $\hat{w}_{12}^{\dagger}r_{12}\hat{k}_1$ als

$$\hat{\mathbf{w}}_{12}^{\dagger} \hat{k}_1 r_{12} \stackrel{\text{ABS}}{\approx} r_{12} (1 - \hat{P}_1 \hat{P}_{2'} - \hat{P}_{1'} \hat{P}_2 + \hat{P}_1 \hat{P}_2) \hat{k}_1 r_{12} , \qquad (4.80)$$

$$\stackrel{\text{ABS}}{\approx} r_{12} \hat{P}_{1'} \hat{P}_{2'} \hat{k}_1 \hat{P}_{1'} r_{12} - r_{12} \hat{P}_1 \hat{P}_2 \hat{k}_1 \hat{P}_{1'} r_{12} - r_{12} \hat{P}_1 \hat{P}_2 \hat{k}_1 \hat{P}_{1'} r_{12} - r_{12} \hat{P}_1 \hat{P}_2 \hat{k}_1 \hat{P}_{1'} r_{12} + r_{12} \hat{P}_1 \hat{P}_2 \hat{k}_1 \hat{P}_{1'} r_{12} \qquad (4.81)$$

$$\hat{\mathbf{w}}_{12}^{\dagger} r_{12} \hat{k}_1 \stackrel{\text{ABS}}{\approx} r_{12} (1 - \hat{P}_1 \hat{P}_{2'} - \hat{P}_{1'} \hat{P}_2 + \hat{P}_1 \hat{P}_2) r_{12} \hat{k}_1, \qquad (4.82)$$

$$\approx r_{12}P_{1'}P_{2'}r_{12}P_{1'}k_1 - r_{12}P_1P_{2'}r_{12}P_{1'}k_1 - r_{12}P_{1'}P_2r_{12}P_{1'}k_1 + r_{12}\hat{P}_1\hat{P}_2r_{12}\hat{P}_{1'}\hat{k}_1$$
(4.83)

approximiert werden. Damit sind alle notwendigen Beiträge zum Aufbau der Matrix **B** im Rahmen von Ansatz 1 erfasst. Die detaillierten Ausdrücke hierfür finden sich in Tabelle (B.3).

Im Gegensatz zu Ansatz 1 wird bei Ansatz 2 nur die GBC–Näherung verwendet. Diese Näherung ist ausreichend, um den Kommutator

$$[\hat{f}_{12}, (1 - \hat{O}_1)(1 - \hat{O}_2)] \stackrel{\text{GBC}}{\approx} 0$$
 (4.84)

als null zu approximieren. Damit lässt sich beispielsweise das Produkt $\hat{w}_{12}^{\dagger}[\hat{f}_{12},\hat{w}_{12}]$ in Analogie zu Gleichung (4.77) gemäß

$$\hat{\mathbf{w}}_{12}^{\dagger}[\hat{f}_{12}, \hat{\mathbf{w}}_{12}] \stackrel{\text{GBC}}{\approx} \hat{\mathbf{w}}_{12}^{\dagger}[\hat{f}_{12}, r_{12}] = \hat{\mathbf{w}}_{12}^{\dagger}[\hat{t}_1 + \hat{t}_2, r_{12}] - \hat{\mathbf{w}}_{12}^{\dagger}[\hat{k}_1 + \hat{k}_2, r_{12}]$$
(4.85)

darstellen. Die ABS-Näherung wird in bekannter Art und Weise für Ansatz 2 gemäß Gleichung (3.19) als

$$\hat{\mathbf{w}}_{12}^{\dagger}[\hat{t}_1 + \hat{t}_2, r_{12}] \stackrel{\text{ABS}}{\approx} r_{12}(1 - \hat{O}_1\hat{P}_{2'} - \hat{P}_{1'}\hat{O}_2 + \hat{O}_1\hat{O}_2)[\hat{t}_1 + \hat{t}_2, r_{12}],$$
 (4.86)

$$\hat{\mathbf{w}}_{12}^{\dagger}[\hat{k}_1 + \hat{k}_2, r_{12}] \stackrel{\text{ABS}}{\approx} r_{12}(1 - \hat{O}_1\hat{P}_{2'} - \hat{P}_{1'}\hat{O}_2 + \hat{O}_1\hat{O}_2)[\hat{k}_1 + \hat{k}_2, r_{12}]$$
(4.87)

eingeführt. Auch hier müssen zur Berechnung der Kommutatoren über den Austauschoperator zusätzliche Projektoren eingeführt werden. In Analogie zur Einführung der ABS-Näherung in Gleichung (4.81) und (4.83) für Ansatz 1 lassen sich die Produkte $\hat{w}_{12}^{\dagger}\hat{k}_1r_{12}$ und $\hat{w}_{12}^{\dagger}r_{12}\hat{k}_1$ für Ansatz 2 als

$$\hat{\mathbf{w}}_{12}^{\dagger} \hat{k}_1 r_{12} \stackrel{\text{ABS}}{\approx} r_{12} (1 - \hat{O}_1 \hat{P}_{2'} - \hat{P}_{1'} \hat{O}_2 + \hat{O}_1 \hat{O}_2) \hat{k}_1 r_{12}$$

$$\stackrel{\text{ABS}}{\approx} r_{12} \hat{P}_{1'} \hat{P}_{2'} \hat{k}_1 \hat{P}_{1'} r_{12} - r_{12} \hat{O}_1 \hat{P}_{2'} \hat{k}_1 \hat{P}_{1'} r_{12} - r_{12} \hat{P}_{1'} \hat{O}_2 \hat{k}_1 \hat{P}_{1'} r_{12}$$

$$+ r_{12} \hat{O}_1 \hat{O}_2 \hat{k}_1 \hat{P}_{1'} r_{12}$$

$$(4.89)$$

und

$$\hat{\mathbf{w}}_{12}^{\dagger} r_{12} \hat{k}_1 \overset{\text{ABS}}{\approx} r_{12} (1 - \hat{O}_1 \hat{P}_{2'} - \hat{P}_{1'} \hat{O}_2 + \hat{O}_1 \hat{O}_2) r_{12} \hat{k}_1, \qquad (4.90)$$

$$\stackrel{\text{ABS}}{\approx} r_{12} P_{1'} P_{2'} r_{12} P_{1'} k_1 - r_{12} O_1 P_{2'} r_{12} P_{1'} k_1 - r_{12} P_{1'} O_2 r_{12} P_{1'} k_1 + r_{12} \hat{O}_1 \hat{O}_2 r_{12} \hat{P}_{1'} \hat{k}_1$$

$$(4.91)$$

formulieren. Die verschiedenen Beiträge zum Aufbau von ${\bf B}$ im Rahmen von Ansatz 2 finden sich in Tabelle (B.3).

Um die verschiedenen Beiträge zum Aufbau von **B** im Rahmen des modifizierten Ansatz 2 gemäß Gleichung (4.4) auf eine übersichtliche Art und Weise darzustellen, wird der Korrelationsfaktor zunächst gemäß

$$\hat{\mathbf{w}}_{12} = \tilde{\mathbf{w}}_{12} - \hat{V}_1 \hat{V}_2 r_{12} \,, \tag{4.92}$$

$$\tilde{\mathbf{w}}_{12} = (1 - \tilde{O}_1)(1 - \tilde{O}_2)r_{12},$$
(4.93)

umformuliert. Der Operator \tilde{w}_{12} ist dabei mit dem Korrelationsfaktor für den ursprünglichen Ansatz 2 nach Gleichung (3.19) identisch. Da die Matrizen **B** und **C** für Ansatz 1 und Ansatz 2 in seiner ursprünglichen Form gemäß Gleichung (3.19) bereits aus der MP2-R12–Theorie bekannt und auch implementiert sind, ist es sinnvoll, die neuen Beiträge für den modifizierten Ansatz 2 in Abhängigkeit der "alten" Beiträge zu formulieren. Auf diese Art und Weise ist schnell ersichtlich, welche zusätzlichen Beiträge zu den bereits vorhandenen noch berücksichtigt werden müssen. Unter Verwendung von \tilde{w}_{12} kann das Produkt aus Gleichung (4.73) als

$$\hat{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\hat{\mathbf{w}}_{12} = \tilde{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\tilde{\mathbf{w}}_{12} - \tilde{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\hat{V}_1\hat{V}_2r_{12}$$

$$- r_{12}\hat{V}_1\hat{V}_2(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\tilde{\mathbf{w}}_{12}$$

$$+ r_{12}\hat{V}_1\hat{V}_2(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\hat{V}_1\hat{V}_2r_{12},$$
(4.94)

umgeformt werden. Damit kann die Matrix $B_{kl,mn}^{(ij)}$ unter Verwendung der Matrizen ^[2] $B_{kl,mn}^{(ij)}$ und ^[2] $C_{ab\,kl}^{(ij)}$ für den unmodifizierten Ansatz 2 als

$$B_{kl,mn}^{(ij)} = {}^{[2]}B_{kl,mn}^{(ij)} - \sum_{ab} {}^{[2]}C_{kl,ab}^{(ij)}r_{mn}^{ab} - \sum_{ab} {}^{[2]}C_{ab,mn}^{(ij)}r_{kl}^{ab} + \sum_{ab} r_{kl}^{ab}(\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j)r_{ab}^{mn}$$
(4.95)

dargestellt werden. Die Matrizen ${}^{[2]}B^{(ij)}_{kl,mn}$ und ${}^{[2]}C^{(ij)}_{kl,ab}$ definieren sich analog zu den Gleichungen (4.44) und (4.42) unter Verwendung von \tilde{w}_{12} zu

$${}^{[2]}B_{kl,mn}^{(ij)} = \langle \varphi_k(1)\varphi_l(2)|\tilde{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)\tilde{\mathbf{w}}_{12}|\varphi_m(1)\varphi_n(2)\rangle, \qquad (4.96)$$

$${}^{[2]}C_{kl,ab}^{(ij)} = \langle \varphi_k(1)\varphi_l(2)|\tilde{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)|\varphi_a(1)\varphi_b(2)\rangle.$$

$$(4.97)$$

Damit sind alle notwendigen Intermediate zum Aufbau von **B** im Rahmen von Ansatz 2 vorgestellt. Es fehlt lediglich die ausführliche Formulierung der Matrix **C**. Diese definiert sich allgemein über das Produkt

$$\hat{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j) = [\hat{\mathbf{w}}_{12}^{\dagger}, \hat{f}_{12}] - (\varepsilon_i + \varepsilon_j)\hat{\mathbf{w}}_{12}^{\dagger} + \hat{f}_{12}\hat{\mathbf{w}}_{12}^{\dagger}, \qquad (4.98)$$

dessen erster Beitrag unter Verwendung der GBC–Bedingung gemäß Gleichung (4.84) als Kommutator

$$\left[\hat{\mathbf{w}}_{12}^{\dagger}, \hat{f}_{12}\right] \stackrel{\text{GBC}}{\approx} [r_{12}, \hat{f}_{12}] = [r_{12}, \hat{t}_1 + \hat{t}_2] - [r_{12}, \hat{k}_1 + \hat{k}_2]$$
(4.99)

über den interelektronischen Abstand und den Fock–Operator dargestellt werden kann. Die Einführung der ABS–Näherung zur Berechnung der Integrale über $r_{12}\hat{k}_1$ und \hat{k}_1r_{12} erfolgt analog zu den Termen über \hat{k}_2 , die nicht nochmals explizit aufgelistet werden, gemäß

$$r_{12}\hat{k}_1 \stackrel{\text{ABS}}{\approx} r_{12}\hat{P}_{1'}\hat{k}_1 \text{ und}$$
 (4.100)

$$\hat{k}_1 r_{12} \stackrel{\text{ADS}}{\approx} \hat{k}_1 \hat{P}_{1'} r_{12} \,.$$
 (4.101)

Ersetzt man in den noch verbleibenden letzten beiden Termen von Gleichung (4.98) \hat{w}_{12} durch \tilde{w}_{12} gemäß dem ursprünglichen Ansatz 2 nach Gleichung (3.19), so kann ^[2] $C_{kl,ab}^{(ij)}$ als

$${}^{[2]}C_{kl,ab}^{(ij)} = \langle \varphi_k(1)\varphi_l(2)|[r_{12},\hat{f}_{12}]|\varphi_a(1)\varphi_b(2)\rangle + (\varepsilon_k + \varepsilon_l - \varepsilon_i - \varepsilon_j)r_{kl}^{ab}$$
(4.102)

formuliert werden. Geht man nun unter Verwendung von Gleichung (4.92) zur Formulierung von $C_{kl,ab}^{(ij)}$ im Rahmen des modifizierten Ansatz 2 gemäß Gleichung (4.4) über, so kann das die Matrix $C_{kl,ab}^{(ij)}$ definierende Produkt gemäß

$$\hat{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j) = \tilde{\mathbf{w}}_{12}^{\dagger}(\hat{f}_{12} - \varepsilon_i - \varepsilon_j) - r_{12}\hat{V}_1\hat{V}_2(\hat{f}_{12} - \varepsilon_i - \varepsilon_j)$$
(4.103)

umgeformt werden. In Analogie zu **B** kann damit auch die Matrix **C** unter Verwendung der Intermediate des ursprünglichen Ansatz 2 formuliert werden. $C_{kl,ab}^{(ij)}$ berechnet sich damit zu

$$C_{kl,ab}^{(ij)} = {}^{[2]}C_{kl,ab}^{(ij)} - (\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j)r_{kl}^{ab}.$$

$$(4.104)$$

Die explizite Formulierung der verschiedenen Beiträge zum Aufbau von C finden sich in Tabelle (B.3).

4.5.3. Die Standardnäherungen

Die zum Aufbau der Matrix $B_{kl,mn}^{(ij)}$ verwendeten Beiträge definieren analog zur MP2-R12-Theorie auch für die CC-R12-Theorie die jeweiligen Standardnäherungen. Verwendet man beispielsweise zum Aufbau von $B_{kl,mn}^{(ij)}$ nur Beiträge über den Kommutator der kinetischen Energie und des interelektronischen Abstandes $[\hat{t}_1 + \hat{t}_2, r_{12}]$, so spricht man von Näherung A. Fügt man hierzu noch die Beiträge, die aus den letzten beiden Termen aus Gleichung (4.73) resultieren, hinzu, so spricht man von Näherung A'. Berücksichtigt man hingegen alle vorgestellten Beiträge zum Aufbau von $B_{kl,mn}^{(ij)}$, so spricht man von Näherung B. Diese Näherung kann als die vollständigste Standardnäherung angesehen werden, da je nach verwendetem Ansatz keine weiteren Approximationen neben den bereits vorgestellten GBC-, EBC- und ABS-Näherungen gemacht werden. Eine kürzlich veröffentlichte MP2-R12-Studie [53] bezüglich der Fehler, die durch die GBC-, EBC- und ABS-Näherungen verursacht werden zeigt, dass diese Fehler klein sind und vernachlässigt werden können. Trotzdem gilt es zu bedenken, dass die Matrix B eine positiv definite Matrix sein sollte, da ihre Eigenwerte eine Näherung nullter Ordnung für Anregungsenergien in R12-Paarfunktionen sind, wenn der Hamilton- gleich dem Fock-Operator ist. Positiv definit bedeutet, dass die Eigenwerte von **B** immer größer null sein müssen. Die Bedingung positiv definit zu sein, gilt auch für die Matrix X, da sie die Bedeutung einer Überlappungsmatrix hat. Diese Eigenschaft kann in einer praktischen Rechnung verloren gehen, wenn beispielsweise eine zu kleine Orbital- und/oder Auxiliarbasis verwendet wird. Damit würden die in die R12-Theorie eingeführten Näherungen (GBC, EBC, ABS) nicht mehr genau genug sein. In einem solchen Fall kann es passieren, dass einer oder mehrere Eigenwerte von B negativ werden, obwohl dies nicht erlaubt ist. Neben diesen unphysikalischen Beiträgen zu Grundzustandsenergien ist dies natürlich fatal für die Berechnung von Anregungsenergien, da hierbei dann als Artefakte negative Werte auftreten. Aus diesem Grund ist immer zu prüfen, ob die Matrix **B** tatsächlich positiv definit ist, um sicher zu stellen, dass die berechneten Werte vertrauenswürdig sind.

Genau wie bei der Matrix **B** definieren sich auch bei der Matrix **C** die verschiedenen Standardnäherungen nach den Beiträgen, die zum Aufbau von **C** verwendet werden. Beschränkt man sich beispielsweise nur auf die Beiträge, die aus dem Kommutator $[\hat{t}_1+\hat{t}_2,r_{12}]$ resultieren, so spricht man von Näherung A. Fügt man hierzu die Beiträge, die aus den letzten beiden Termen aus Gleichung (4.98) resultieren hinzu, so spricht man von Näherung A', während die Berücksichtigung aller Beiträge als Näherung B bezeichnet wird.

4.6. Formulierung der R12-Beiträge zu den CC2-R12-Anregungsenergien

Zur Berechnung von Anregungsenergien muss das Eigenwertproblem aus Gleichung (4.30) gelöst werden. Dies erfolgt iterativ unter Verwendung einer sogenannten "direkten Technik", die die explizite Konstruktion der Matrizen **A** und **S** vermeidet [2, 13, 120, 121]. Anstelle dieser Matrizen werden gleich die linearen Transformationen $\mathbf{A}\vec{R}$ und $\mathbf{S}\vec{R}$ implementiert. Aus diesem Grund werden im Folgenden die Beiträge zu $\mathbf{A}\vec{R}$ ausführlich behandelt. Die Beiträge zu $\mathbf{S}\vec{R}$ sind bereits in Abschnitt (4.4) in den Gleichungen (4.33) bis (4.36) vorgestellt worden.

Die R12–Beiträge zu $\mathbf{A}\vec{R}$ können unter Verwendung der Definition von \mathbf{A} aus Gleichung (2.31) durch Ableitung der R12–Beiträge zur Coupled–Cluster–Grundzustandsvektorfunktion nach den Cluster–Amplituden bestimmt werden. Die Beiträge zu $\mathbf{A}\vec{R}$, die aus dem konventionellen CC2–Modell resultieren, sind der Vollständigkeit halber in Tabelle (B.4) aufgelistet, während die explizite Ausführung der R12–Beiträge zu $\mathbf{A}\vec{R}$ im Rahmen der verwendeten Ansätze in Tabelle (B.5) zu finden ist. Vergleicht man die R12–Beiträge zur CC2-R12–Grundzustandsvektorfunktion aus Tabelle (B.2) mit denen für die Transformation $\mathbf{A}\vec{R}$ aus Tabelle (B.5), so wird deutlich, dass alle R12–Beiträge zu $\mathbf{A}\vec{R}$, die von den konventionellen oder R12–Doppelanregunsamplituden abhängen, sehr einfach berechnet werden können, indem man in den zugehörigen Ausdrücken für die CC2-R12–Grundzustandsvektorfunktion die konventionellen t_{ab}^{ij} und R12–Amplituden c_{kl}^{ij} durch die entsprechenden Komponenten des Versuchsvektors R_{ab}^{ij} und R_{kl}^{ij} ersetzt.

Betrachtet man die R12–Beiträge zu $\mathbf{A}\vec{R}$, die von der Einfachanregungskomponente R_a^i des Versuchsvektors abhängen, so ist deren Berechnung nicht mehr ganz so einfach. Wurde bei den Beiträgen zur CC2-R12–Grundzustandsvektorfunktion die \hat{T}_1 –Ähnlichkeitstransformation des Fluktuationspotentials durch die Basis $\tilde{\varphi}_i$ und $\tilde{\varphi}_a$ nach Gleichung (4.47)

und (4.48) berücksichtigt, so muss nun der Ableitung nach den Coupled–Cluster–Einfachanregungsamplituden t_a^i Rechnung getragen werden. Dies erfolgt durch Einführung einer durch die Einfachanregungskomponente des Versuchsvektors R_a^i transformierten Orbitalbasis

$$\bar{\varphi}_i = \sum_{a} \varphi_a R_a^i \tag{4.105}$$

$$\bar{\varphi}_a = -\sum_i \varphi_i R_a^i \,. \tag{4.106}$$

Die ausführliche Darstellung der R_a^i -transformierten Terme findet sich in Tabelle (B.5). Ist dabei nur ein Index R_a^i transformiert, so wird das betreffende Intermediat beispielsweise $(V^{\dagger})_{\bar{a}m}^{kl}$ oder $\hat{g}_{lk}^{\bar{i}p'}$ analog zu den t_a^i -transformierten Intermediaten der Grundzustandsvektorfunktion $(V^{\dagger})_{\bar{a}m}^{kl}$ oder $\hat{g}_{lk}^{\bar{i}p'}$ aufgebaut. Der einzige Unterschied ist dabei die Wahl der Basis $\tilde{\varphi}_i$, $\tilde{\varphi}_a$ oder $\bar{\varphi}_i$ und $\bar{\varphi}_a$.

Die Ähnlichkeit der beschriebenen neuen R12-Beiträge zur Berechnung von Anregungsenergien zur CC2-R12-Grundzustandsvektorfunktion zeigt deutlich, dass die Berechnung von R12-Anregungsenergien nach erfolgreichem Aufbau der R12-Beiträge zur Coupled-Cluster-Grundzustandsvektorfunktion, analog zu den konventionellen CC2- und CCSD-Modellen, in Bezug auf die Implementierung nicht mehr mit einem großen Aufwand verbunden ist.

5. Die CCSD(R12)–Näherung

In diesem Kapitel wird basierend auf den gewonnenen Erkenntnissen aus Kapitel 4 zunächst das CCSD(R12)-Modell [122] allgemein vorgestellt. Anschließend werden die neuen R12-Beiträge unter Verwendung der Auxiliarbasissatznäherung explizit formuliert. Das Kapitel endet mit der Beschreibung der Erweiterung des CCSD(R12)-Modells auf das CCSD(T)(R12)-Modell [123] durch Einbeziehung genäherter Triples-Korrekturen in Analogie zum konventionellen CCSD(T)-Modell [124].

5.1. Die CCSD(R12)-Coupled-Cluster-Gleichungen

Ausgangspunkt für die Herleitung der CCSD(R12)-Gleichungen ist, ähnlich wie beim CC2-R12-Modell, das abgeschlossenschalige ("closed-shell") CCSD-R12-Modell. Die zugehörigen CCSD-R12-Coupled-Cluster-Gleichungen wurden bereits in Kapitel 4 in den Gleichungen (4.13) bis (4.15) vorgestellt. Grundvoraussetzung für die CCSD(R12)-Näherung ist die starke Orthogonalität der R12-Doubles- zu den konventionellen Doubles-Amplituden wie es beispielsweise bei Ansatz 1 und dem modifizierten Ansatz 2 nach Gleichung (4.4) der Fall ist. Eine weitere wichtige Voraussetzung ist, dass der Beitrag der R12-Zweifachanregungen im Basissatzlimit verschwindet. Das bedeutet, dass dieser in einer guten endlichen Basis auch klein sein sollte. Weiterhin werden die für die CCSD(R12)-Näherung verwendeten Operatoren in "Ordnungen" eingeteilt, die allerdings nichts mit einer störungstheoretischen Herleitung zu tun haben. Diese Einteilung ist in Tabelle (5.1) dargestellt. Die Operatoren $\hat{\Phi}$ und $\hat{T}_{2'}$, durch die ein kleiner Beitrag zur Grundzustandsenergie resultiert, werden als erster "Ordnung" gewertet, während den anderen Operatoren, von denen ausgegangen wird, dass aus ihnen ein großer Beitrag resultiert, die "Ordnung" null zugeteilt wird. In den CCSD-R12-Gleichungen treten aufgrund der Verwendung des linearen R12-Ansatzes Terme auf, die demnach linear oder quadratisch in den R12-Amplituden sind, die durch den Operator $T_{2'}$ eingeführt werden. Die Berechnung dieser Beiträge ist sehr aufwendig [40] und zum Teil sogar unnötig, wenn man bedenkt, dass einige von ihnen bereits in einer quadruple- ζ Basis vernachlässigbar klein sind. Dieser Umstand motivierte die Idee zum CCSD(R12)-Modell, die ursprünglich auf Klopper zurück geht [125]. Ziel ist es dabei, alle Terme, die nicht linear in den R12-Amplituden und sehr klein sind, zu vernachlässigen, ohne jedoch an der Genauigkeit der Ergebnisse große Einbußen hinnehmen zu müssen.

	$\hat{H} =$	\hat{f}	+	$\hat{\Phi}$	$\hat{T} = \hat{T}_1 + \hat{T}_2 + \dots +$	$\hat{T}_{2'}$
Beitrag						
zur Grundzustandsenergie		groß		klein	groß	klein
"Ordnung"		0		1	0	1

Tabelle 5.1.: Verwendete Operatoren und deren zugewiesene "Ordnung".

Um die CCSD(R12)-Coupled-Cluster-Gleichungen einzuführen, werden zunächst die CCSD-R12-Gleichungen für die Zweifachanregungsamplituden

$$\begin{split} \Omega_{\mu_2} &= \langle \mu_2 | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \tilde{\Phi} + [\tilde{\Phi}, \hat{T}_2 + \hat{T}_{2'}] \\ &+ \frac{1}{2} \{ [[\tilde{\Phi}, \hat{T}_2], \hat{T}_2] + [[\tilde{\Phi}, \hat{T}_{2'}], \hat{T}_2] + [[\tilde{\Phi}, \hat{T}_2], \hat{T}_{2'}] + [[\tilde{\Phi}, \hat{T}_{2'}], \hat{T}_{2'}] \} | \mathrm{HF} \rangle = 0 , \\ \Omega_{\mu_{2'}} &= \langle \mu_{2'} | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \tilde{\Phi} + [\tilde{\Phi}, \hat{T}_2 + \hat{T}_{2'}] \\ &+ \frac{1}{2} \{ [[\tilde{\Phi}, \hat{T}_2], \hat{T}_2] + [[\tilde{\Phi}, \hat{T}_{2'}], \hat{T}_2] + [[\tilde{\Phi}, \hat{T}_2], \hat{T}_{2'}] + [[\tilde{\Phi}, \hat{T}_{2'}], \hat{T}_{2'}] \} | \mathrm{HF} \rangle = 0 \end{split}$$

$$(5.1)$$

ausführlich formuliert. Das \hat{T}_1 -ähnlichkeitstransformierte Fluktuationspotential $\hat{\Phi}$ ist bereits aus Gleichung (4.17) bekannt und hat genau wie $\hat{\Phi}$ die "Ordnung" eins. Analog zum CC2-R12-Modell werden auch beim CCSD(R12)-Modell keine Näherungen bei den Singles-CCSD-R12-Gleichungen eingeführt. Im Rahmen der CCSD(R12)-Näherung werden in den Gleichungen für die konventionellen Doubles-Amplituden nur Beiträge berücksichtigt, die maximal linear von $\hat{T}_{2'}$ abhängen. Diese Bedingung ist automatisch für Ansatz 1 erfüllt, da das Matrixelement $\langle \mu_2 | [[\tilde{\Phi}, \hat{T}_{2'}], \hat{T}_{2'}] | \text{HF} \rangle$ gleich null ist, da die Komplementärbasis $\{\varphi_{\alpha}\}$ orthogonal zur Orbitalbasis $\{\varphi_p\}$ ist. Für Ansatz 2 ist dies nicht mehr der Fall und man geht davon aus, dass der aus diesem Matrixelement resultierende Beitrag sehr klein und damit vernachlässigbar ist.

Die R12–Doubles–Gleichungen Ω_{μ_2} , werden in niedrigster, also erster Ordnung angenähert. Das bedeutet, es werden alle Kommutatoren, deren Beitrag nach obiger Aufteilung nicht erster Ordnung ist, in den R12–Doubles–Gleichungen vernachlässigt. Damit ergeben sich die R12–Doubles–Gleichungen in der CCSD(R12)–Näherung gemäß

$$\Omega_{\mu_{2'}} = \langle \mu_{2'} | [\hat{f}, \hat{T}_2 + \hat{T}_{2'}] + \tilde{\Phi} + [\tilde{\Phi}, \hat{T}_2] + \frac{1}{2} [[\tilde{\Phi}, \hat{T}_2], \hat{T}_2] | \text{HF} \rangle = 0, \qquad (5.3)$$

wobei Terme wie $[\hat{\Phi}, \hat{T}_{2'}]$ oder $[[\hat{\Phi}, \hat{T}_{2'}], \hat{T}_{2'}]$ als Terme zweiter $\mathcal{O}(\hat{T}_{2'}^2)$ oder dritter $\mathcal{O}(\hat{T}_{2'}^3)$ Ordnung in $\hat{T}_{2'}$ bezeichnet werden. Durch die Vernachlässigung vollständiger Kommutatoren bleibt die Eigenschaft der Größenkonsistenz erhalten. Für Ansatz 1 ist das Matrixelement $\langle \mu_{2'} | [[\hat{\Phi}, \hat{T}_2], \hat{T}_2] | \text{HF} \rangle$ gleich null, da die Komplementärbasis { φ_{α} } orthogonal zur Orbitalbasis { φ_p } ist. Dies gilt auch für Ansatz 2 nach Gleichung (4.4), da strenge Orthogonalität zwischen den konventionellen und R12–Doubles vorausgesetzt wird. Generell gilt, dass alle bei der CCSD(R12)-Näherung vernachlässigten Terme nur unter mehrfacher Verwendung der RI-Näherung (Zerlegung der Einheit) berechnet werden können. Dadurch können jedoch Fehler auftreten, die die hohe Genauigkeit des CCSD-R12-Modells wieder zunichte machen. Das CCSD(R12)-Modell stellt in dieser Hinsicht eine "robuste" Näherung dar, da hierfür nur die wichtigsten Beiträge des CCSD-R12-Modells berücksichtigt werden, für die keine "doppelte" RI-Näherung notwendig ist. Außerdem konvergieren das CCSD- und CCSD(R12)- sowie das CCSD-R12-Modell alle zum selben Basissatzlimit.

Alternativ dazu könnten nach einem Vorschlag von Noga und Valiron [40] in den R12– Doubles–Amplitudengleichungen auch alle quadratischen Terme vernachlässigt werden, die von \hat{T}_1 und $\hat{T}_{2'}$ abhängen. Dies wurde in Ref. [40] als Näherung B' bezeichnet. Die Vernachlässigung der \hat{T}_1 -abhängigen Beiträge könnte allerdings später bei der Berechnung von Eigenschaften mittels der Antworttheorie Probleme bereiten, während beim CCSD(R12)–Modell formal die Anregungsenergien und Antworteigenschaften bis erster Ordnung in $\hat{T}_{2'}$ richtig erfasst sind.

5.1.1. Formulierung der R12-Beiträge für das CCSD(R12)-Modell

Im Rahmen dieser Arbeit wurde das CCSD(R12)–Modell für Ansatz 1 behandelt. Deshalb beschränken sich im Folgenden sämtliche Ausführungen auf Ansatz 1.

Auf die explizite Formulierung der Beiträge, die bereits aus dem konventionellen CCSD-Modell bekannt sind [4, 12], wird an dieser Stelle verzichtet. Im Folgenden werden die neuen R12-Beiträge zum CCSD(R12)-Modell im Rahmen von Ansatz 1 formuliert. Ein Vergleich mit dem bereits aus Kapitel 4 bekannten CC2-R12-Modell zeigt, dass lediglich drei R12-Beiträge zu den Doubles- und R12-Doubles-Coupled-Cluster-Gleichungen neu zu berechnen sind.

Die fehlenden Matrixelemente über die Kommutatoren $[\tilde{\Phi}, \hat{T}_{2'}]$ und $[\tilde{\Phi}, \hat{T}_2]$ zu den Doublesund R12-Doubles-Gleichungen lassen sich gemäß

$$\langle \overline{}_{ij}^{ab} | [\tilde{\Phi}, \hat{T}_{2'}] | \text{HF} \rangle = \sum_{kl} c_{kl}^{ij} (\tilde{V}^{\dagger})_{ab}^{kl} ,$$
 (5.4)

$$\langle {}^{\overline{kl}}_{ij} | [\hat{\tilde{\Phi}}, \hat{T}_2] | \mathrm{HF} \rangle = \sum_{ab} t^{ij}_{ab} \tilde{V}^{ab}_{kl}$$
 (5.5)

unter Verwendung des Intermediats

$$(\tilde{V}^{\dagger})_{ab}^{kl} = \langle \varphi_a(1)\varphi_b(2) | \exp(-\hat{T}_1) \frac{1}{r_{12}} \exp(\hat{T}_1) \hat{w}_{12} | \varphi_k(1)\varphi_l(2) \rangle$$
(5.6)

49

darstellen. Bei $(\tilde{V}^\dagger)^{kl}_{ab}$ beschränkt sich die \hat{T}_1- Ähnlichkeitstransformation nur auf die virtuellen Indices, da

$$\exp(\hat{T}_1)\hat{\mathbf{w}}_{12}|\varphi_k(1)\varphi_l(2)\rangle = \hat{\mathbf{w}}_{12}|\varphi_k(1)\varphi_l(2)\rangle \tag{5.7}$$

gilt. Nach Wirkung von \hat{w}_{12} auf $|\varphi_k(1)\varphi_l(2)\rangle$ ist dieses in die Komplementärbasis überführt, in der eine \hat{T}_1 -Ähnlichkeitstransformation nicht vorgenommen werden kann.

Die Beiträge zu den konventionellen Doubles–CCSD–Gleichungen über die Kommutatoren $[[\hat{\Phi}, \hat{T}_{2'}], \hat{T}_2]$ und $[[\hat{\Phi}, \hat{T}_2], \hat{T}_{2'}]$ sind gleich. Deshalb ist es ausreichend, nur ein Matrixelement über einen der beiden Doppelkommutatoren zu berechnen. Dieses kann gemäß

$$\langle \overline{\hat{\Phi}}_{ij}^{ab} | [[\tilde{\hat{\Phi}}, \hat{T}_2], \hat{T}_{2'}] | \mathrm{HF} \rangle = -\hat{P}_{ij}^{ab} \sum_{klmn} t_{ab}^{il} (2c_{mn}^{kj} - c_{mn}^{jk}) (\tilde{V}^{\dagger})_{kl}^{mn} + \sum_{klmn} t_{ab}^{kl} (\tilde{V}^{\dagger})_{kl}^{mn} c_{mn}^{ij}$$
(5.8)

unter Verwendung des Intermediates

$$(\tilde{V}^{\dagger})_{kl}^{mn} = \langle \varphi_k(1)\varphi_l(2) | \exp(-\hat{T}_1) \frac{1}{r_{12}} \exp(\hat{T}_1) \hat{w}_{12} | \varphi_m(1)\varphi_n(2) \rangle , \qquad (5.9)$$

dargestellt werden. Erneut gilt aufgrund von Gleichung (5.7), dass bei $(\tilde{V}^{\dagger})_{kl}^{mn}$ nur die Indices k und $l \hat{T}_1$ -ähnlichkeitstransformiert sind.

Analog zum CC2-R12–Modell wird auch hier die \hat{T}_1 –Transformation der $\tilde{\mathbf{V}}$ Intermediate durch Verwendung der entsprechenden Basen $\tilde{\varphi}_a$ und $\tilde{\varphi}_i$, die in den Gleichungen (4.47) und (4.48) definiert sind, berücksichtigt. Nach Einführung der Auxiliarbasissatznäherung, die bereits ausführlich in Abschnitt 4.5.1 besprochen wurde, können die $\tilde{\mathbf{V}}$ Intermediate gemäß

$$(\tilde{V}^{\dagger})^{kl}_{ab} = S_{\tilde{a}k}S_{\tilde{b}l} - \hat{P}^{ab}_{kl} \sum_{pq'} r^{kl}_{pq'} g^{pq'}_{\tilde{a}\tilde{b}} + \sum_{pq} r^{kl}_{pq} g^{pq}_{\tilde{a}\tilde{b}}, \qquad (5.10)$$

$$\tilde{V}_{kl}^{ab} = S_{ak}S_{bl} - \hat{P}_{kl}^{ab}\sum_{pq'} r_{kl}^{pq'}g_{pq'}^{ab} + \sum_{pq} r_{kl}^{pq}g_{pq}^{ab}, \qquad (5.11)$$

$$(\tilde{V}^{\dagger})_{kl}^{mn} = \delta_{km} \delta_{ln} - \hat{P}_{kl}^{mn} \sum_{pq'} r_{pq'}^{mn} g_{\bar{k}\bar{l}}^{pq'} + \sum_{pq} r_{pq}^{mn} g_{\bar{k}\bar{l}}^{pq}$$
(5.12)

formuliert werden. Wichtig ist bei Gleichung (5.11), dass letztlich keiner der Beiträge zu \hat{V}_{kl}^{ab} , trotz der \hat{T}_1 -Ähnlichkeitstransformation des Operators $\frac{1}{\tau_{12}}$ \hat{T}_1 -abhängig ist.

Damit sind alle neuen R12–Beiträge zur Berechnung der Coupled–Cluster–CCSD(R12)–Gleichungen im Rahmen von Ansatz 1 erfasst.

5.2. Erweiterung des CCSD(R12) auf das CCSD(T)(R12)-Modell

In Analogie zum konventionellen CCSD-Modell sollte die näherungsweise Einführung von nicht-iterativen Triples-Korrekturen, wie beispielsweise denen des CCSD(T)-Modells [124], auch beim CCSD(R12)-Modell eine sinnvolle Erweiterung sein.

Betrachtet man die Coupled–Cluster–Gleichungen für die Dreifachan
regungsamplituden des ${\rm CCSD}({\rm T}){\rm -R12}{\rm -Modells}$

$$\langle \mu_3 | [\hat{f}, \hat{T}_3] + [\hat{\Phi}, \hat{T}_2] + [\hat{\Phi}, \hat{T}_{2'}] | \text{HF} \rangle = 0,$$
 (5.13)

so ist der Beitrag über den Kommutator $[\hat{\Phi}, \hat{T}_{2'}]$ für Ansatz 1 aufgrund der strengen Orthogonalität der Komplementärbasis $\{\varphi_{\alpha}\}$ zur Orbitalbasis gleich null. Das bedeutet, dass die für das CCSD(T)(R12)–Modell verwendete Näherung für die Dreifachanregungsamplituden t_{abc}^{ijk} formal mit denjenigen des konventionellen CCSD(T)–Modells für Ansatz 1 identisch ist. Damit kann die CCSD(T)(R12)–Grundzustandsenergie gemäß

$$E_{\text{CCSD}(T)(R12)} = E_{\text{CCSD}(R12)} + \Delta E_{\text{CCSD}(T)}$$
(5.14)

formuliert werden. Die Energiekorrektur für die genäherten Dreifachanregungsamplituden berechnet sich sowohl für die CCSD(T)(R12)-Näherung als auch für das vollständige CCSD(T)-R12-Modell analog zum konventionellen CCSD(T)-Modell [15,124] als

$$\Delta E_{\text{CCSD}(\text{T})} = \sum_{ai} 2t_a^i \langle \bar{a} | [\hat{\Phi}, \hat{T}_3] | \text{HF} \rangle + \sum_{abij} (2t_{ab}^{ij} - t_{ab}^{ji}) \langle \bar{a} | [\hat{\Phi}, \hat{T}_3] | \text{HF} \rangle .$$
(5.15)

Der einzige wichtige Unterschied zum konventionellen CCSD(T)–Modell ist, dass für die Triples–Korrekturen zum CCSD(T)(R12)– oder CCSD(T)-R12–Modell die bereits konvergierten CCSD(R12)– oder CCSD-R12–Einfach– und Zweifachanregungsamplituden t_a^i und t_{ab}^{ij} verwendet werden, die nicht mehr mit den konventionellen Amplituden des CCSD–Modells identisch sind.

6. Implementierung des CC2-R12-Modells

Dieses Kapitel beschreibt die Implementierung der R12-Beiträge aus Tabelle (B.2) und (B.4) im Rahmen der Ansätze 1 und 2 für das CC2-R12-Modell in den bereits zur Verfügung stehenden Coupled-Cluster-Code [2, 12, 13] des Programmpakets DALTON [126].

6.1. Allgemeine Vorbemerkung

Bei Betrachtungen zu Skalierungen wird im Folgenden die Anzahl der besetzten Molekülorbitale mit dem Buchstaben n und die virtuellen unbesetzten Molekülorbitale mit Vbezeichnet. Als Kenngrößen für die Anzahl der Atomorbital- und Auxiliarbasisfunktionen werden N und N' verwendet. Das Gesamtskalierungsverhalten wird mit \mathcal{N} bezeichnet.

Die prinzipielle Struktur des bereits vorhandenen Coupled–Cluster–Programms zur iterativen Lösung der Coupled–Cluster–Gleichungen unter Verwendung eines DIIS–("direct inversion of iterative subspace")–Algorithmus, welcher ursprünglich auf Pulay [127, 128] zurück geht, bleibt unverändert. Die Grundzustandsvektorfunktionen Ω_{ai} und Ω_{aibj} für die konventionellen Singles– und Doubles–Gleichungen werden an wenigen Stellen um die R12–Beiträge erweitert, während die R12–Doubles–Vektorfunktion Ω_{kilj} neu hinzugefügt wird. Alle Beiträge zur CC2-R12–Grundzustandsvektorfunktion werden in jeder Iteration neu berechnet und für die Aktualisierung der Einfach– Zweifach– und R12– Anregungsamplituden t_a^i, t_{ab}^{ij} und c_{kl}^{ij} verwendet. Dies erfolgt solange, bis das vorgegebene Konvergenzkriterium $\Omega_{\mu_i} = 0$ erfüllt ist. Unabhängig vom verwendeten Ansatz wird in einer Coupled–Cluster–R12–Rechnung zunächst eine MP2-R12–Rechnung durchgeführt. Aus dieser erhält man alle Integrale über den Korrelationsfaktor \hat{w}_{12} , die R12– Startamplituden t_{kl}^{ij} als auch alle Dreielektronenintegrale, die zum Aufbau der Matrix **B** und bei Ansatz 2 zum Aufbau der Matrix **C** notwendig sind.

Mit Ausnahme der Triples-Modelle folgt das Coupled-Cluster-Programm in DALTON der generellen Strategie, dass Beiträge, die auf Festplatte gespeichert werden, maximal mit der Größe $\mathcal{O}(n^2N^2)$ skalieren [12]. Für den R12-Teil wird diese Strategie beibehalten, allerdings müssen hier auch Auxiliarbasisfunktionen berücksichtigt werden, weshalb die maximale Größe für CC-R12 bei $\mathcal{O}(n^2N(N+N'))$ liegt. Durch das Abspeichern von

Intermediaten auf Festplatte, welche zwei Indices aus der Molekülorbitalbasis und zwei Indices aus der Atomorbitalbasis aufweisen, wie beispielsweise $R_{\alpha k,l}^{\delta}$ kann die erneute Berechnung von R12–Integralen $r_{\beta\gamma}^{\delta\alpha}$ in der Atomorbitalbasis während der iterativen Lösung der Coupled–Cluster–Gleichungen oder des Eigenwertproblems für die Anregungsenergien vermieden werden. Diese Beiträge können an entsprechender Stelle bei Bedarf für einen festen Index δ immer wieder eingelesen werden. An dieser Stelle wird darauf hingewiesen, dass bei der Implementierung der R12–Beiträge in das Coupled–Cluster–Programm alle Matrix–Matrix–Multiplikationen mit hierfür speziell optimierten Fortran "basic linear algebra subprograms"–(BLAS)–Routinen durchgeführt wurden. Dies ist nicht für alle Programmteile des DALTON–Pakets der Fall.

Von zentraler Bedeutung zur Berechnung der CC2-R12–Grundzustandsvektorfunktion sind für beide Ansätze die Intermediate \tilde{V}_{kl}^{ij} und $(V^{\dagger})_{am}^{kl}$. Während \tilde{V}_{kl}^{ij} in jeder Coupled–Cluster–Iteration neu berechnet wird, kann $(V^{\dagger})_{am}^{kl}$ über ein im MP2-R12–Schritt vorab berechnetes Intermediat $(V^{\dagger})_{am}^{kl}$ gemäß

$$(V^{\dagger})^{kl}_{\tilde{a}m} = (V^{\dagger})^{kl}_{am} - \sum_{i} t^i_a (V^{\dagger})^{kl}_{im} = \sum_{\alpha} \Lambda^p_{\alpha a} (V^{\dagger})^{kl}_{\alpha m} , \qquad (6.1)$$

unter Verwendung der Transformationsmatrix $\Lambda^{\mathbf{p}}$ bestimmt werden. Der Index α symbolisiert hier die Atomorbitalbasis. Prinzipiell gilt, dass das Intermediat \tilde{V}_{kl}^{ij} nicht in jeder Iteration neu berechnet werden muss. Eine alternative Vorgehensweise wäre vor den Coupled–Cluster–Iterationen die Berechnung eines Intermediats der Form $\tilde{V}_{kl}^{\alpha\beta}$ vorzunehmen und anschließend, also während der Coupled–Cluster–Iterationen, die Atomorbitalindices α und β mit der Transformationsmatrix $\Lambda^{\mathbf{h}}$ in den Orbitalraum der besetzten Molekülorbitale zu transformieren. Wenn jedoch davon ausgegangen werden kann, dass die Anzahl der Atomorbitalbasisfunktionen viel größer als das Produkt aus der Anzahl der besetzten Molekülorbitale und der Anzahl der durchzuführenden Iterationen ist, also die Beziehung $N^2 >> n^2 * n_{Iter}$ gilt, dann ist es in Bezug auf den Rechenaufwand kostengünstiger, \tilde{V}_{kl}^{ij} während jeder Iteration neu zu berechnen. Deshalb wurde in der vorliegenden Implementierung diese Strategie verfolgt. Prinzipiell können Integrale oder andere Intermediate wie $(V^{\dagger})_{\alpha m}^{kl}$ auch direkt ausgehend von der Atomorbitalbasis \hat{T}_1 transformiert werden. Dafür wird die konventionelle Molekülorbitalkoeffizientenmatrix \mathbf{C} durch Verwendung einer speziellen Transformationsmatrix

$$\mathbf{t_1} = \begin{pmatrix} 0 & 0\\ t_a^i & 0 \end{pmatrix}, \tag{6.2}$$

in der nur der "virtuell–besetzt"–Block mit den \hat{T}_1 –Amplituden t_a^i besetzt ist, in die sogenannte Λ^h , Λ^p Basis

$$\mathbf{\Lambda}^{\mathbf{p}} = \mathbf{C}(\mathbf{1} - \mathbf{t_1}^T), \qquad (6.3)$$

$$\Lambda^{\mathbf{h}} = \mathbf{C}(\mathbf{1} + \mathbf{t}_{\mathbf{1}}), \qquad (6.4)$$

überführt. Auf diese Art und Weise können die \hat{T}_1 -Transformationen in die Basis $\tilde{\varphi}_i$ oder $\tilde{\varphi}_a$ nach Gleichung (4.47) und (4.48) bereits aus der Atomorbitalbasis bequem durchgeführt werden [129]. Durch veränderte Transformationsmatrizen $\bar{\Lambda}^{\mathbf{p}}$ und $\bar{\Lambda}^{\mathbf{h}}$ kann auch die
Transformation in die Basis $\bar{\varphi}_a$ und $\bar{\varphi}_i$ nach Gleichung (4.106) und (4.105) ausgehend von der Atomorbitalbasis durchgeführt werden. Dies ist für die Berechnung der R12– Beiträge zur Transformation $\mathbf{A}\vec{R}$ wichtig. Eine ausführliche Darstellung der verschiedenen $\mathbf{\Lambda}$ -Matrizen findet sich in Tabelle (B.6).

Prinzipielles Ziel ist es das maximale Skalierungsverhalten der neu zu implementierenden Beiträge möglichst gering zu halten, damit die Berechnung der zusätzlichen R12-Terme nicht wesentlich teurer als die der konventionellen CC2-Beiträge wird. Durch vorab Berechnung von $(V^{\dagger})^{kl}_{\alpha m}$ kann beispielsweise ein teurer \mathcal{N}^6 Schritt in den Coupled–Cluster– Iterationen vermieden werden. Für Ansatz 1 setzt sich dieser gemäß $\mathcal{O}(n^3N^2(N'+N))$ und für Ansatz 2 wie $\mathcal{O}(n^3N(N^2+nN'))$ zusammen. Prinzipiell wird beim Aufbau der neuen R12-Beiträge die in Ref. [12] beschriebene "Integral-direkte" Strategie soweit möglich angewendet. Das bedeutet, die Abspeicherung von reinen AO-Integralen wird vermieden, um Speicherplatz zu sparen. Aus gleichem Grund wird soweit möglich auf die Abspeicherung von teiltransformierten Coulomb-Integralen, die beispielsweise zum Aufbau von \tilde{V}_{kl}^{ij} nötig sind, verzichtet. Dies erfolgt durch Generierung von Intermediaten der Form $R_{\alpha k,l}^{\delta'}$ und $R_{\alpha k,l}^{\delta}$ sowohl für die R12- als auch für die Coulomb-Integrale, die im Hauptspeicher gehalten werden, während die R12-Integrale auf Festplatte geschrieben werden. Der besondere Vorteil dabei ist, dass es zum Aufbau von \tilde{V}_{kl}^{ij} nicht nötig ist, die beiden verbleibenden Atomorbitalindices der beteiligten Integrale in die Molekülorbitalbasis zu transformieren. Dadurch kann ein Skalierungsverhalten für \tilde{V}_{kl}^{ij} von $\mathcal{O}(n^4N(N+N'))$ für Ansatz 1 und $\mathcal{O}(n^4(N^2 + nN'))$ für Ansatz 2 erzielt werden.

Im konventionellen Coupled–Cluster–Programm ist die Überlappungsmatrix **S** eine Einheitsmatrix. Zu der Transformation $\mathbf{S}\vec{R}$ werden die noch fehlenden R12–Beiträge je nach verwendetem Ansatz generiert und auf Platte gespeichert. Auch bei der Transformation $\rho = \mathbf{A}\vec{R}$ wird die bereits vorhandene Struktur des Programms beibehalten und die neuen R12–Beiträge auf den Singles– oder Doubles–Ergebnisvektor ρ_{ai} und ρ_{aibj} aufaddiert, während ein neuer R12–Doubles–Ergebnisvektor ρ_{kilj} hinzugefügt wird. Die Lösung des Eigenwertproblems $\mathbf{A}\vec{R} = \omega \mathbf{S}\vec{R}$ erfolgt iterativ unter Verwendung eines verallgemeinerten Davidson–Algorithmus [120,121], bei dem solange neue Versuchsvektoren erzeugt werden, bis das Konvergenzkriterium ($\mathbf{A} - \omega \mathbf{S})\vec{R} = 0$ erfüllt ist. Zur Überprüfung der berechneten Anregungsenergien wurde für beide Ansätze selbige nochmals auf nummerischem Weg berechnet. Das bedeutet, dass die Jacobi–Matrix durch nummerische Ableitung der Coupled–Cluster–Vektorfunktion nach den Cluster–Amplituden durch Bildung des Differenzenquotienten nach der allgemeinen Formel

$$\frac{df(x)}{dx} \approx \frac{f(x+h) - f(x-h)}{2h} \tag{6.5}$$

bestimmt wird. Anschließend wird das Eigenwertproblem $\mathbf{A}\vec{R} = \omega \mathbf{S}\vec{R}$ gelöst und damit die Anregungsenergien ω erhalten.

In der zur Verfügung stehenden Implementierung des CC2-R12 wurden Skalierungen, die in Bezug auf den Rechenaufwand mehr als $O(n^3 N^3)$ kosten vermieden. In den Iterationen belaufen sich die maximalen Kosten auf $\mathcal{O}(n^4N(N+N'))$, während die Beiträge, in welche die Matrizen **B** und **C** involviert sind, wie $\mathcal{O}(n^6)$ und $\mathcal{O}(n^4N^2)$ skalieren. Aufgrund der teuren Dreielektronenintegrale ist der Rechenaufwand einer CC2-R12–Rechnung deutlich höher als der einer konventionellen CC2–Rechnung, die ein Skalierungsverhalten von $\mathcal{O}(nN^4)$ aufweist. Dieses ungünstige Kosten–Nutzen–Verhalten kann jedoch eingeschränkt als eine Problematik von Methoden zweiter Ordnung wie MP2 und CC2 angesehen werden, da davon ausgegangen werden kann, dass eine CC-R12–Rechnung für Coupled–Cluster–Modelle höherer Ordnung, wie beispielsweise CCSD oder CC3 aufgrund deren Skalierungsverhalten (\mathcal{N}^6 und \mathcal{N}^7) nicht wesentlich teurer wird. Das Hauptaugenmerk zukünftiger Projekte muss folglich auf der Erweiterung des CC2-R12 auf Coupled–Cluster–Modelle höherer Ordnung liegen, damit ein akzeptables Kosten–Nutzen–Verhältnis erreicht werden kann.

6.2. R12-Beiträge im Rahmen von Ansatz 1

Im Rahmen von Ansatz 1 werden vor den Coupled–Cluster–Iterationen Intermediate der Form

$$R^{\delta}_{\alpha,kl} = \sum_{pq} C_{\delta q} C_{\alpha p} r^{pq}_{kl} , \qquad (6.6)$$

$$R^{\delta'}_{\alpha,kl} = \sum_{pq'} C_{\delta'q'} C_{\alpha p} r^{pq'}_{kl} \tag{6.7}$$

erzeugt, indem zwei Molekülorbital–Indices p und q der Integrale über den interelektronischen Abstand r_{kl}^{pq} und r_{kl}^{pq} bereits im MP2-R12–Schritt in die Atomorbitalbasis zurück transformiert und auf Festplatte gespeichert werden. Die weiterhin benötigten Coulomb–Integrale in der Atomorbitalbasis $g^{A\gamma}_{\alpha\gamma}$ werden hingegen im konventionellen Coupled–Cluster–Code generiert und sind an den Stellen, an denen sie für den CC-R12–Teil benötigt werden, im Hauptspeicher verfügbar.

Unter Verwendung der rücktransformierten R12–Integrale kann $(V^{\dagger})_{am}^{kl}$ gemäß dem in Abbildung (C.1) illustrierten Schema aufgebaut werden. Damit sind im Rahmen von Ansatz 1 alle Intermediate generiert, die zur Berechnung der CC2-R12–Grundzustandsvektorfunktion vorab berechnet werden müssen, und es kann mit der iterativen Lösung der Coupled–Cluster–Gleichungen fortgefahren werden. In Abbildung (C.2) wird die Berechnung der R12–Beiträge zur CC2-R12–Grundzustandsvektorfunktion schematisch dargestellt. Die genaue Formulierung der konventionellen CC2–Beiträge findet sich in Tabelle (B.1).

Ähnlich wie bei der Berechnung der CC2–Gleichungen für den Grundzustand ist auch bei der Berechnung der Transformation $\mathbf{A}\vec{R}$ der Aufbau einiger Intermediate, die vor der iterativen Lösung des Eigenwertproblems berechnet werden, sinnvoll. Für Ansatz 1 lässt sich beispielsweise das für die Transformation mit der Jacobi–Matrix benötigte Intermediat \bar{V}_{kl}^{ij} als

$$\bar{V}_{kl}^{ij} = \hat{P}_{kl}^{ij} \sum_{\mu} \bar{\Lambda}_{\mu i}^{h} V_{kl}^{\mu j} , \qquad (6.8)$$

unter Verwendung der Transformationsmatrix $\bar{\Lambda}^{h}$ schreiben, die in Tabelle (B.6) definiert ist. Zum Aufbau von \bar{V}_{kl}^{ij} ist demnach die Generierung des Intermediates $V_{kl}^{\mu j}$ notwendig. Dieses wird nach Lösung der Coupled–Cluster–Gleichungen auf eine analoge Art und Weise wie $(V^{\dagger})_{\alpha m}^{kl}$ erzeugt und auf Festplatte geschrieben. Dabei ist lediglich der Austausch der Molekülorbitalkoeffizientenmatrix (vergleiche Abbildung (C.1)) durch die entsprechende Λ –Transformationsmatrix gemäß der Reihenfolge

$$(\tilde{a}\tilde{i}|\tilde{b}\tilde{j}) = \sum_{\alpha\beta\gamma\delta} \Lambda^{p}_{\alpha a} \Lambda^{h}_{\beta i} \Lambda^{p}_{\gamma b} \Lambda^{h}_{\delta j} (\alpha\beta|\gamma\delta)$$
(6.9)

notwendig. Dadurch, dass die Berechnung von $V_{kl}^{\mu j}$ vor den Iterationen zur Lösung von $\mathbf{A}\vec{R}$ erfolgt, kann der zum Aufbau dieses Intermediats notwendige $\mathcal{O}(n^4N^2)$ Schritt in diesen vermieden werden. Des Weiteren kann das für die Transformation $\mathbf{A}\vec{R}$ benötigte Intermediat $(V^{\dagger})_{\bar{a}m}^{kl}$ unter Verwendung der Transformationsmatrix $\bar{\mathbf{A}}^{\mathbf{P}}$ als

$$(V^{\dagger})^{kl}_{\bar{a}m} = \sum_{\alpha} \bar{\Lambda}^{p}_{\alpha a} (V^{\dagger})^{kl}_{\alpha m} \,, \tag{6.10}$$

formuliert werden. Dies erfolgt unter Verwendung des für die Grundzustandsvektorfunktion bereits vorab berechneten $(V^{\dagger})^{kl}_{\alpha m}$. Durch Umformung kann Gleichung (6.10) jedoch auch gemäß

$$(V^{\dagger})^{kl}_{\bar{a}m} = -\sum_{j} R^j_a \Lambda^p_{\alpha j} (V^{\dagger})^{kl}_{\alpha m} = -\sum_{j} R^j_a (V^{\dagger})^{kl}_{jm}$$
(6.11)

dargestellt werden. Durch Berechnung von $(V^{\dagger})_{jm}^{kl}$ vor den Iterationen zur Lösung von $\mathbf{A}\vec{R}$ kann ein $\mathcal{O}(n^3 V N)$ Schritt, der nach Gleichung (6.10) in jeder der Iteration notwendig wäre, vermieden und durch einen $\mathcal{O}(n^4 V)$ Schritt ersetzt werden.

Damit sind im Rahmen von Ansatz 1 alle vorbereitenden Maßnahmen zur Berechnung der neuen R12–Beiträge zur Transformation $\mathbf{A}\vec{R}$ vorgestellt. Diese ist in Abbildung (C.3) schematisch dargestellt, wobei auf die explizite Formulierung aller Beiträge verzichtet wird, da diese bereits in Tabelle (B.4) und (B.5) aufgelistet sind. Es wird dabei lediglich auf den Aufbau der verschiedenen **V**–Intermediate näher eingegangen, da die Berechnung der anderen Beiträge durch Aufruf der entsprechenden Unterprogramme analog zur Berechnung der Grundzustandsvektorfunktion erfolgt. Generell ist im Rahmen von Ansatz 1 keine weitere Berechnung von Integralen über den Atomorbitalauxiliarbasisindex δ' zur Lösung von $\mathbf{A}\vec{R}$ notwendig. Dies hat den Vorteil, dass sobald die Coupled–Cluster–Gleichungen für den Grundzustand gelöst sind, der weitere Rechenaufwand für den R12–Teil zur Lösung von $\mathbf{A}\vec{R}$ maximal mit $\mathcal{O}(n^6)$ skaliert und die Zusatzkosten für den R12–Teil damit sehr gering sind.

6.3. R12-Beiträge im Rahmen von Ansatz 2

Das prinzipielle Vorgehen beim Aufbau der verschiedenen R12-Beiträge im Rahmen von Ansatz 2 ähnelt dem von Ansatz 1, damit die bereits vorhandene Programmstruktur beibehalten werden kann. Im Folgenden wird Ansatz 2 gemäß Gleichung (4.4) behandelt, da bei diesem Ansatz nur noch ein paar Zusatzbeiträge zum ursrpünglichen Ansatz 2 nach Gleichung (3.19) hinzugefügt werden.

Analog zu Ansatz 1 ist auch bei Ansatz 2 die Generierung verschiedener Intermediate vor den Coupled–Cluster–Iterationen notwendig. Bereits im MP2-R12–Schritt werden halbtransformierte Integrale über den interelektronischen Abstand $r_{kl}^{\alpha\beta}$, $r_{kl}^{\beta\prime}$ sowie Coulomb–Integrale $g_{mn}^{\alpha\beta}$, $g_{mn}^{\alpha\beta\prime}$ auf Festplatte geschrieben, um später je nach Bedarf weiter verwendet zu werden. Damit ist die Rücktransformation der R12–Integrale, wie sie bei Ansatz 1 verwendet wurde, bis auf die Erzeugung von

$$R^{\delta}_{\alpha,kl} = \sum_{ab} C_{\alpha a} C_{\delta b} r^{ab}_{kl} , \qquad (6.12)$$

das nur für die modifizierte Form von Ansatz 2 gebraucht wird, obsolet. Um die generelle Struktur des Programms beim Aufbau der $\tilde{\mathbf{V}}$ -Intermediate beizubehalten, werden die halbtransformierten R12-Integrale in Analogie zu Gleichung (6.6) sortiert, wobei zu beachten ist, dass die Integrale, bei denen ein Index über die Atomorbitalauxiliarbasis läuft, gemäß

$$R^{\delta'}_{\alpha,kl} = \sum_{p'} C_{p'\delta'} r^{\alpha p'}_{kl} = \sum_{p'\beta'} C_{p'\delta'} C_{p'\beta'} r^{\alpha\beta'}_{kl}$$
(6.13)

zu behandeln sind. Mit diesen Beiträgen lässt sich das globale Intermediat $(V^{\dagger})_{\alpha m}^{kl}$ nach dem Schema in Abbildung (C.4) aufbauen, wobei der Beitrag über die Doppelsumme der virtuellen Molekülorbitale (vergleiche Tabelle (B.2)) unter Verwendung der rücktransformierten Integrale aus Gleichung (6.12) erfolgt.

Des Weiteren wird vor den Coupled-Cluster-Iterationen noch ein Coulomb-Intermediat berechnet, das zum Aufbau der Beiträge aus der Fock-Matrix notwendig ist und auf Festplatte geschrieben. Dieses Intermediat ist zur Berechnung der H'- und I'-Terme aus Tabelle (B.2) und (B.5) notwendig und berechnet sich gemäß

$$I_{\alpha,kl}^{\delta'} = g_{kl}^{\alpha\delta'} - \sum_{\delta} g_{kl}^{\alpha\delta} S_{\delta\delta'} , \qquad (6.14)$$

$$S_{\delta\delta'} = \sum_{p} C_{\delta p} S_{p\delta'} , \qquad (6.15)$$

wobei anzumerken ist, dass die Summation zur Berechnung von $S_{\delta\delta'}$ bei dem ursprünglichen Ansatz 2 nur über die besetzten Molekülorbitale läuft.

Damit sind alle vorab zu erzeugenden Intermediate zur Berechnung der CC2-R12–Grundzustandsvektorfunktion eingeführt. Der Ablauf zur Berechnung von Ω_{μ_i} ist in Abbildung (C.5) bis (C.7) skizziert. Im Rahmen von Ansatz 2 wird neben der Matrix $B_{kl,mn}^{(ij)}$, die im MP2-R12–Schritt auf Festplatte geschrieben und bei Bedarf eingelesen wird, auch die Kopplungsmatrix $C_{kl,ab}^{(ij)}$ benötigt. Da diese über zwei virtuelle Indices verfügt, wird für sie im Vergleich zur Matrix $B_{kl,mn}^{(ij)}$ deutlich mehr Speicherplatz (IO n^6 : IO n^4V^2) benötigt, weshalb sie im MP2-R12–Schritt nicht abgespeichert wird. Die Matrix $C_{kl,ab}^{(ij)}$ wird bei Bedarf in jeder Coupled–Cluster–Iteration neu ("on the fly") berechnet und sofort in einem $\mathcal{O}(n^4V^2)$ Schritt (CPU) mit den R12– oder konventionellen Doubles–Amplituden multipliziert. Diese Vorgehensweise ist in Abhängigkeit der jeweiligen Näherung für $C_{kl,ab}^{(ij)}$ ausführlich in Abbildung (C.6) dargestellt.

Genau wie bei Ansatz 1 kann auch bei Ansatz 2 das Intermediat \bar{V}_{kl}^{ij} unter Verwendung von $V_{kl}^{\mu\bar{j}}$ aufgebaut werden. Allerdings formuliert sich \bar{V}_{kl}^{ij} bei Ansatz 2 im Unterschied zu Ansatz 1 gemäß

$$\bar{V}_{kl}^{ij} = \hat{P}_{kl}^{ij} \sum_{\mu} \bar{\Lambda}_{\mu i}^{h} V_{kl}^{\mu \bar{j}} - \hat{P}_{kl}^{ij} \sum_{mq'} r_{kl}^{\bar{m}q'} g_{\bar{m}q'}^{\bar{i}\bar{j}} + \hat{P}_{kl}^{ij} \sum_{mn} r_{kl}^{\bar{m}\bar{n}} g_{\bar{m}n}^{\bar{i}\bar{j}} - \sum_{ab} r_{kl}^{ab} \bar{g}_{ab}^{ij} , \qquad (6.16)$$

wobei die Coulomb–Integrale \bar{g}_{ab}^{ij}

$$\bar{g}_{ab}^{ij} = \hat{P}_{ab}^{ij} (g_{\bar{a}\bar{b}}^{\bar{i}\bar{j}} + g_{\bar{a}\bar{b}}^{\bar{i}\bar{j}}), \qquad (6.17)$$

auch im konventionellen CC2–Programm zur Berechnung der Doubles–Beiträge zu ρ benötigt werden $({}^{1}\rho_{aibj}^{F})$ und deshalb bereits zur Verfügung stehen. Analog zu Ansatz 1 wird auch bei Ansatz 2 das Intermediat $V_{kl}^{\mu \bar{j}}$

$$V_{kl}^{\mu\tilde{j}} = S_{\mu k} S_{\tilde{j}l} - \sum_{mq'} r_{kl}^{mq'} g_{mq'}^{\mu\tilde{j}} - \sum_{mq'} r_{lk}^{mq'} g_{mq'}^{\tilde{j}\mu} + \sum_{mn} r_{kl}^{mn} g_{mn}^{\mu\tilde{j}} - \sum_{ab} r_{kl}^{ab} g_{ab}^{\mu\tilde{j}} , \qquad (6.18)$$

nach Lösung der Coupled–Cluster–Gleichungen generiert und auf Festplatte geschrieben. Der Aufbau erfolgt analog zu dem des Intermediats $(V^{\dagger})^{kl}_{\alpha m}$ in Abbildung (C.4) nur mit dem Unterschied, dass an entsprechender Stelle die Molekülkoeffizientenmatrix durch die Transformationsmatrix $\Lambda^{\mathbf{h}}$ ersetzt wird.

Für die Berechnung von $(V^{\dagger})_{am}^{kl}$ wird analog zu Gleichung (6.10) und (6.11) auch bei Ansatz 2 das Intermediat $(V^{\dagger})_{im}^{kl}$ benötigt, das unter Verwendung von $(V^{\dagger})_{\alpha m}^{kl}$ durch Transformation des Atomorbitalindex α in die Basis der besetzten Molekülorbitale generiert werden kann. Es ist nicht notwendig, die bereits bei Ansatz 1 vorgestellte Struktur des Programms zu ändern, da bei Ansatz 2 lediglich ein anderes $(V^{\dagger})_{\alpha m}^{kl}$ Intermediat verwendet wird als bei Ansatz 1.

Damit sind alle notwendigen, vorab zu generierenden Beiträge zur Berechnung der Transformation $\mathbf{A}\vec{R}$ eingeführt, deren Ablauf schematisch in Abbildung (C.8) illustriert ist. Auch für Ansatz 2 müssen in den Iterationen zur Lösung von $\mathbf{A}\vec{R}$ keine neuen R12–Integrale über den Atomorbitalauxiliarbasisindex δ' berechnet werden. Im Gegensatz zu Ansatz 1 liegen die maximalen Kosten in Bezug auf den Rechenaufwand für die R12–Beiträge jedoch nicht bei $\mathcal{O}(n^6)$, sondern bei $\mathcal{O}(n^4V^2)$. Das bedeutet, dass nach Lösung der CC2-R12–Grundzustandsgleichungen die Berechnung des R12–Teils von $\mathbf{A}\vec{R}$ wesentlich teurer, als bei Ansatz 1 ist.

7. Implementierung der CCSD(R12)-Näherung

Dieses Kapitel beschäftigt sich mit der Beschreibung der Implementierung der R12– Beiträge aus Kapitel 5 im Rahmen von Ansatz 1 für das CCSD(R12)–Modell in den bereits zur Verfügung stehenden Coupled–Cluster–Code [2, 12, 13] des Programmpakets DALTON [126]. Grundlage für die Implementierung der Triples–Beiträge [124] für die Erweiterung des CCSD(R12) auf das CCSD(T)(R12)–Modell war der CC3–Code [14,15,130] des Programmpakets DALTON.

7.1. Generelle Strategie

Da die Beiträge zum Aufbau der CCSD(R12)–Singles–Grundzustandsvektorfunktion Ω_{ai} identisch mit denen des CC2-R12–Modells sind, wird auf selbige an dieser Stelle nicht weiter eingegangen, sondern auf Kapitel 6 verwiesen. Genau wie bei dem CC2-R12–Modell wird auch hier die Grundstruktur des Coupled–Cluster–Programms nicht verändert. Die fehlenden R12–Beiträge werden lediglich zu den Beiträgen der CCSD–Doubles–Grundzustandsvektorfunktion Ω_{aibj} , die in Ref. [12] beschrieben ist, addiert, während die R12– Doubles–Grundzustandsvektorfunktion Ω_{kilj} des CC2-R12 übernommen wird, und der noch fehlende Beitrag für das CCSD(R12)–Modell aus Gleichung (5.5) hinzu addiert wird.

Bei der Betrachtung der neuen R12–Beiträge für das CCSD(R12)–Modell aus Gleichungen (5.4 – 5.10) wird deutlich, dass diese immer wieder aus einem V–Intermediat aufgebaut werden. Im Gegensatz zum CC2-R12–Modell werden hier aber nicht nur V–Intermediate mit vier besetzten Molekülorbitalindices, sondern auch solche mit zwei virtuellen Indices, wie beispielsweise $(V^{\dagger})_{ab}^{kl}$ benötigt. Aus diesem Grund wird vor den Coupled–Cluster–Iterationen ein Intermediat der Form

$$(V^{\dagger})^{kl}_{\alpha\beta} = S_{\alpha k} S_{\beta l} - \hat{P}^{kl}_{\alpha\beta} \sum_{\gamma\delta'} r^{kl}_{\gamma\delta'} g^{\gamma\delta'}_{\alpha\beta} + \sum_{\gamma\delta} r^{kl}_{\gamma\delta} g^{\gamma\delta}_{\alpha\beta}$$
(7.1)

generiert und auf Festplatte geschrieben, dessen beide Atomorbitalindices α , β je nach Bedarf in die Orbitalbasis der besetzten oder virtuellen Molekülorbitale transformiert werden können. Der Rechenaufwand zum Aufbau von $(V^{\dagger})_{\alpha\beta}^{kl}$ skaliert dabei maximal mit $\mathcal{O}(n^2N^3(N+N'))$, wobei *n* für die Anzahl der besetzten Molekülorbitale und *N* für die Größe der Atomorbital– und/oder Auxiliarbasis steht. Auf diese Art und Weise können $\mathcal{O}(n^2 V^2 N(N+N'))$ Operationen in den Coupled–Cluster–Iterationen vermieden werden. Des Weiteren bietet es sich an, ausgehend von $(V^{\dagger})_{\alpha\beta}^{kl}$ ebenfalls vor den Coupled–Cluster–Iterationen noch zwei weitere Intermediate $(V^{\dagger})_{\alpha\beta}^{kl}$, das zum Aufbau der Beiträge aus dem CC2-R12–Teil benötigt wird, und V_{kb}^{ab} , das nach Gleichung (5.11) identisch mit \tilde{V}_{kl}^{ab} ist, zu berechnen und auf Festplatte zu schreiben. Die Rechenkosten zum Aufbau dieser Intermediate skalieren mit $\mathcal{O}(n^3 N^2)$ und $\mathcal{O}(n^2 V N(N+V))$, wobei V für die Anzahl der virtuellen Molekülorbitale verwendet wird. Vorteilhaft ist, dass dadurch zusätzliche teure Operationen in V^2 während der Coupled–Cluster–Iterationen vermieden werden können.

Durch die Berechnung dieser Intermediate vor den Cluster–Iterationen gestaltet sich die Berechnung der R12–Beiträge zu den Coupled–Cluster–Grundzustandsgleichungen Ω_{ai} etwas anders als beim CC2-R12–Modell. Beispielsweise wird \tilde{V}_{kl}^{ij} direkt durch Transformation von $V_{kl}^{\alpha\beta}$ in die Basis $\tilde{\varphi}_i$ gemäß

$$\tilde{V}_{kl}^{ij} = \sum_{\alpha\beta} \Lambda^h_{\alpha i} \Lambda^h_{\beta j} V_{kl}^{\alpha\beta} \tag{7.2}$$

in einer $\mathcal{O}(n^3N(N+n))$ Operation erzeugt. Auch auf die Berechnung von $(V^\dagger)_{\alpha m}^{kl}$ im MP2-R12–Schritt wird bei der CCSD(R12)–Variante verzichtet, da das Intermediat bereits vorab durch geeignete Transformation ausgehend von $(V^\dagger)_{\alpha \beta}^{kl}$ erzeugt und abgespeichert wurde. An dieser Stelle wird darauf hingewiesen, dass ein ähnlicher Aufbau mit einem zentralen $V_{kl}^{\alpha\beta}$ –Intermediat auch beim CC2-R12–Modell für Ansatz 1 möglich ist. Diese Strategie wurde jedoch im Hinblick auf die höheren Rechenkosten für größere Systeme, wenn $N^2 >> n^2 * n_{Iter}$ ist, nicht weiter verfolgt.

7.2. Implementierung der R12-Beiträge

In Abbildung (7.1) und (7.2) wird der Ablauf zur Berechnung der CCSD(R12)–Grundzustandsvektorfunktion grob skizziert. Die dabei auftretenden Beiträge zu Ω_{μ_i} finden sich entweder in Ref. [12,13] oder sind bereits in Kapitel 6 im Rahmen des CC2-R12–Modells besprochen worden. Der R12–Beitrag aus Gleichung (5.4) wird in diesem Schema mit

$$\Omega^{B'}_{\alpha i\beta j} = \sum_{kl} c^{ij}_{kl} (V^{\dagger})^{kl}_{\alpha\beta}$$
(7.3)

bezeichnet und zunächst nur mit zwei Atomorbitalbasis
indices berechnet. Anschließend wird $\Omega^{B'}_{\alpha i \beta j}$ analog zum konventionellen CCSD–Beitrag
 $\Omega^{B}_{\alpha i \beta j}$

$$\Omega^{BF}_{\alpha i \beta j} = \Omega^{BF+}_{\alpha \beta, ij} + \Omega^{BF-}_{\alpha \beta, ij}, \qquad (7.4)$$

$$\Omega^{BF\pm}_{\alpha\beta,ij} = \frac{1}{2} \sum_{\gamma \ge \delta} (\Lambda^h_{\gamma i} \Lambda^h_{\delta j} + M^{\delta\pm}_{\gamma,ij}) J^{\delta\pm}_{\alpha\beta,\gamma}$$
(7.5)

aus Ref. [12] gepackt, um unproblematisch zu diesem hinzu addiert werden zu können. Für die genaue Definition der Intermediate aus den konventionellen Doubles–Amplituden $M_{\gamma,ij}^{\delta\pm}$ und der Coulomb–Integrale $J_{\alpha\beta,\gamma}^{\delta\pm}$ wird auf Ref. [12] verwiesen. Wichtig ist hier nur, dass für die verschiedenen Indices aus der Atomorbitalbasis die Beziehung $\alpha \geq \beta$ und $\gamma \geq \delta$ sowie für die besetzten Molekülorbitalindices $i \geq j$ gilt. Im konventionellen Programmteil wird der Beitrag $\Omega_{\alpha i \beta j}^{BF}$ später gemäß

$$\Omega^{BF}_{aibj} = \sum_{\alpha\beta} (\Omega^{BF+}_{\alpha\beta,ij} + \Omega^{BF-}_{\alpha\beta,ij}) \Lambda^p_{\alpha a} \Lambda^p_{\beta b}$$
(7.6)

automatisch in die Basis der virtuellen Molekülorbitale transformiert. Deshalb muss für diesen Beitrag nicht weiter in das bereits bestehende Coupled–Cluster–Programm eingegriffen werden. Weiterhin kann ausgenutzt werden, dass der Beitrag Ω^A_{aibj} aus dem konventionellen CCSD–Modell [12] sich gemäß

$$\Omega^{A}_{aibj} = \sum_{kl} t^{kl}_{ab} \Big(\sum_{\alpha\beta} \Lambda^{p}_{\alpha k} \Lambda^{p}_{\beta l} \Omega^{BF}_{\alpha i\beta j} \Big)$$
(7.7)

darstellen lässt. Dadurch kann auf die explizite Behandlung des letzten Beitrags aus Gleichung (5.8) verzichtet werden, da dieser durch die obige Beziehung automatisch im Programm erzeugt wird. Der erste Term aus Gleichung (5.8) muss hingegen gesondert berechnet werden und wird in Analogie zu dem Beitrag aus dem konventionellen CCSD [13] mit $E_{lj}^{2'}$ bezeichnet. Dieser wird zu dem CCSD–Intermediat E_{lj}^{2} addiert und anschließend im bereits bestehenden Programmteil automatisch weiter verarbeitet.

Durch die oben beschriebene Programmstruktur werden in den CCSD(R12)-Iterationen für den R12-Teil entweder Intermediate berechnet, die nur von besetzten Molekülorbitalen abhängen und mit maximal $\mathcal{O}(n^6)$ skalieren, oder deren maximaler Rechenaufwand nicht teurer als $\mathcal{O}(n^4 N^2)$ ist. Für eine typische Coupled-Cluster-R12-Rechnung kann man davon ausgehen, dass die Anzahl der Auxiliar- und/oder Orbitalbasisfunktionen wesentlich größer als die der besetzten Molekülorbitale ist N >> n. Bedenkt man dies und vergleicht das Skalierungsverhalten in jeder CCSD(R12)-Iteration mit dem des konventionellen CCSD, dessen Kosten sich pro Iteration auf $\mathcal{O}(n^2 N^4)$ und $\mathcal{O}(n^3 N^3)$ belaufen, so wird klar, dass die zusätzlichen Kosten für die R12-Beiträge vernachlässigbar sind. Eine ähnliche Argumentation ist auch für das vollständige CCSD-R12-Modell [40] möglich, das prinzipiell mehr an Rechenaufwand kostet, als das CCSD(R12)-Modell. Beispielsweise wird in der Implementierung des DIRCCR12-OS Programms [131] vor den CCSD-R12-Iterationen ein Intermediat berechnet, das mit $\mathcal{O}(n^3 N^4)$ skaliert. Noga und Valiron schlugen vor, die Berechnung dieses Intermediats in die CCSD-R12-Iterationen zu integrieren, um das Skalenverhalten auf $\mathcal{O}(n^3 N^3)$ zu erniedrigen. Damit liegen die Kosten für das CCSD-R12-Modell in der gleichen Größenordnung wie für das konventionelle CCSD-Modell.

Der Vorteil der CCSD(R12)–Näherung im Vergleich zum vollständigen CCSD-R12–Modell liegt einerseits in der Kostenersparnis an Rechenzeit und andererseits in der Tatsache, dass weniger problematische Näherungen im Rahmen der Zerlegung der Einheit (RI) unter Einführung der Auxiliarbasis vorgenommen werden, als beim CCSD-R12-Modell für das mehrfache RI-Näherungen zur Beschreibung eines Beitrags notwendig sind. Damit ist das CCSD(R12) weniger fehleranfällig.

Prinzipiell gilt sowohl für das CCSD(R12)- als auch für das CCSD-R12-Modell, dass die Verwendung einer Auxiliarbasis, die zum einen nicht mit der Orbitalbasis identisch und zum anderen kleiner als die Orbitalbasis gewählt werden kann, in der Lage sein sollte, signifikante Zeiteinsparungen zu ermöglichen. Dafür sind allerdings speziell optimierte Auxiliarbasissätze, wie es sie beispielsweise im Rahmen der RI-Näherung [103, 117, 118] für die Coulomb-Integrale im Programmpaket TURBOMOLE [132–136] gibt, notwendig, die derzeit nicht zur Verfügung stehen.

Zur Berechnung der Triples–Beiträge $\langle \mu_1 | [\hat{\Phi}, \hat{T}_3] | \text{HF} \rangle$ und $\langle \mu_2 | [\hat{\Phi}, \hat{T}_3] | \text{HF} \rangle$ aus Gleichung (5.15) für das CCSD(T)(R12)–Modell müssen keine neuen R12–Beiträge berechnet werden. Im Anschluss an eine CCSD(R12)–Rechnung wird mit den daraus optimierten Amplituden noch eine Iteration (T) durchgeführt, in der die Triples–Korrekturen berechnet werden. In dieser letzten Iteration wird die Berechnung der zusätzlichen Beiträge $\langle \mu_1 | [\hat{H}, \hat{T}_3] | \text{HF} \rangle$ und $\langle \mu_2 | [\hat{H}, \hat{T}_3] | \text{HF} \rangle$ zu den CC3–Singles– und Doubles–Gleichungen Ω_{μ_1} und Ω_{μ_2} eingebunden [14,15,130], wobei Ω_{μ_3} gleich null ist. Da in der ersten CC3–Iteration die \hat{T}_1 –Amplituden gleich null sind, entsprechen die an dieser Stelle berechneten Beiträge gerade den benötigten (T)–Korrekturen $\langle \mu_1 | [\hat{\Phi}, \hat{T}_3] | \text{HF} \rangle$ und $\langle \mu_2 | [\hat{\Phi}, \hat{T}_3] | \text{HF} \rangle$. Diese können dann gemäß Gleichung (5.15) weiter verarbeitet werden. Im Prinzip muss zur Berechnung der (T)–Korrekturen zum CCSD(R12)–Modell nur der bereits vorhandene CCSD(T)/CC3–Programmteil [14, 15, 130] ausgehend von einer konvergierten CCSD(R12)–Rechnung entsprechend eingebunden werden.

Abbildung 7.1.: Schematische Darstellung der Abfolge der Berechnung der verschiedenen R12–Beiträge zur CCSD(R12)–Grundzustandsvektorfunktion Ω_{μ_i} im Rahmen von Ansatz 1.

Abbildung 7.2.: Fortsetzung von Abbildung (7.1): Schematische Darstellung der Abfolge der Berechnung der verschiedenen R12-Beiträge zur CCSD(R12)-Grundzustandsvektorfunktion Ω_{μ_i} im Rahmen von Ansatz 1.

8. Anwendungen des CC2-R12-Modells

In diesem Kapitel werden erste Anwendungen des CC2-R12-Modells vorgestellt und bewertet. Als Testsatz wurden die Atome Be und Ne sowie die Moleküle BH, N_2 , CO und BF verwendet.

8.1. Vorgehensweise

Alle CC2-R12–Rechnungen wurden in der in Abschnitt 4.5.3 beschriebenen Standardnäherung B durchgeführt, in der alle Integrale für die Matrizen **B** und **C** berechnet werden. Verwendet wurden das Programmpaket DALTON [126] sowie die aug-cc-pVXZ Basissätze von Dunning *et al.* [20, 81, 82] für die jeweilige Orbitalbasis. Da Teststudien gezeigt haben, dass CC2-R12–Rechnungen mit Ansatz 2 gemäß Gleichung (4.4) schneller konvergieren als mit dem ursprünglichen Ansatz 2 nach Gleichung (3.19), wurde für alle CC2-R12–Rechnungen Ansatz 2 gemäß Gleichung (4.4) verwendet. Die Ergebnisse aus beiden Varianten für Ansatz 2 sind dabei identisch. Alle CC2-R12–Rechnungen wurden unter Verwendung der ABS–Näherung durchgeführt. Als Auxiliarbasis wurde die 19s14p8d6f4g3h2i Basis (9s6p4d3f2g für H) aus Ref. [47] verwendet. Des Weiteren wurde für die 1s–Orbitale der untersuchten Moleküle die "frozen core "–Näherung verwendet, während für die Atome Be und Ne die Beiträge aus den Rumpforbitalen voll mitberücksichtigt wurden. An den betrachteten Molekülen wurde keine Strukturoptimierung vorgenommen. Die Rechnungen wurden basierend auf experimentell bestimmten Bindungslängen (r_e Werte) für BH, CO, N₂ und BF aus Ref. [137] durchgeführt.

Für die Rechnungen am Be Atom wurde eine 20s17p14d11f8g5h Basis sowohl als Orbitalals auch als Auxiliarbasis verwendet. Ausgangspunkt zur Konstruktion dieser Basis war eine unkontrahierte, um zwei diffuse s–Funktionen erweiterte 18s Partridge3 Basis [20], die anschließend durch Hinzufügen von weiteren Polarisationsfunktionen, deren Exponenten η_l über die Formel

$$\eta_l = \eta_s \frac{2l+3}{5} \tag{8.1}$$

generiert wurden, auf eine 20s
17p14d11f8g5h Basis erweitert wurde. Der Index l steht für die Dreh
impulsquantenzahl und η_s wird für die Exponenten des zugehörigen Satzes an

diffusesten s-Funktionen verwendet. Für Ne wurden eine 20s14p11d9f7g5h3i Orbital- und eine 32s24p18d15f12g9h6i Auxiliarbasis verwendet, die bereits aus Ref. [44, 47] bekannt sind.

Zur Abschätzung des Basissatzlimits wurde eine Extrapolationstechnik verwendet, die auf der Formel [84]

$$E_{\infty} = \frac{(X^3 E_X - Y^3 E_Y)}{(X^3 - Y^3)} \tag{8.2}$$

basiert. E_X und E_Y sind dabei die Anregungs- oder Grundzustandskorrelationsenergien, die mit den Basissätzen der Kardinalzahl X und Y berechnet wurden. Die maximale Drehimpulsquantenzahl $L_{\max} + 1$ wurde für die Basissätze der Atome Be und Ne als Kardinalzahl verwendet. Gleichung (8.2) hat sich für Grundzustandskorrelationsenergien bewährt [84, 138]. Zur Abschätzung des Basissatzlimits von Anregungsenergien wurde sie bisher noch nicht angewendet. Berücksichtigt man jedoch, dass obige Formel nur dann angewendet werden kann, wenn der Gesamtfehler der Rechnung durch dynamische Korrelation, also Beiträge aus den Doubles-Amplituden dominiert wird, so spricht nichts dagegen, warum sie nicht auch für Einfachanregungsenergien anwendbar sein sollte. Die Formel aus Gleichung (8.2) wird hier eingesetzt, um soweit möglich eine ungefähre Abschätzung des Basissatzlimits für die zu untersuchende CC2-Anregungsenergie zu erhalten. Die Extrapolation wurde mit den Kardinalzahlen X = 5 und Y = 6 durchgeführt, wobei davon ausgegangen wird, dass der Hartree-Fock-Beitrag zur jeweiligen Anregungsenergie in den verwendeten großen Basissätzen bereits konvergiert ist.

8.2. Atome

In diesem Abschnitt werden die CC2-R12-Ergebnisse zu Be und Ne vorgestellt und diskutiert. Bei Be wurde der ¹P (2p \leftarrow 2s) und bei Ne der ¹P (3s \leftarrow 2p) Übergang untersucht. Alle Ergebnisse, die hier nicht explizit aufgelistet sind, finden sich in Anhang D in den Tabellen (D.1) bis (D.4). Zunächst wird das Basissatzkonvergenzverhalten der CC2-R12-Totalenergien des Grund- und des angeregten Zustandes überprüft. Anschließend wird das Konvergenzverhalten der Anregungsenergien näher untersucht.

Basissatzkonvergenz der Totalenergien der Grund- und der angeregten ¹P Zustände von Be und Ne. Die berechneten CC2-R12-Grundzustands- sowie die Totalenergien der jeweiligen untersuchten angeregten ¹P Zustände für Be und Ne für Ansatz 1 und 2 im Vergleich zum konventionellen CC2-Modell finden sich in Tabelle (D.1) – (D.4). Das Konvergenzverhalten des Grund- und angeregten Zustands für Be und Ne ist in Abbildung (8.1) und (8.2) im Vergleich zum konventionellen CC2 sowie zum abgeschätzten Basissatzlimit, das bis auf Ausnahme des Grundzustands von Be nach Gleichung (8.2) extrapoliert wurde, dargestellt. Die Abschätzung des Basissatzlimits der Grundzustandsenergie für Be nach Formel (8.2) ergab keinen vernünftigen Wert, da selbiges über den berechneten R12–Grundzustandsenergien lag. Dies war bei keinem der anderen untersuchten Atome und Moleküle der Fall. Grund hierfür könnte beispielsweise sein, dass bei den Rechnungen keine speziell optimierte Basis verwendet wurde, und die h–Funktionen keinen wichtigen Effekt auf die Erfassung der Korrelationsenergie ausüben. Deshalb wurde das Basissatzlimit mit Hilfe der Differenz zwischen der MP2-R12– und CC2-R12–Grundzustandsenergie in der größten verwendeten Basis bestimmt, die zu dem aus der Literatur bekannten MP2–Limit für Be addiert wurde. Da auch in der Literatur die Werte für das MP2–Limit schwanken [139–143], wurde der Wert (-76.358 mE_h) aus Ref. [144] von Bukowski *et al.* verwendet, der gemäß einer Studie von Dahle *et al.* [145] als der genaueste Wert angesehen werden kann.

Da die CC2-R12-Ergebnisse im Rahmen der Ansätze 1 und 2 für den Grund- und angeregten Zustand von Be fast identisch sind, wird auf die Darstellung der Beiträge von Ansatz 1 in Abbildung (8.1) verzichtet. Die Operatoren \hat{w}_{12} aus Gleichung (4.4) und (3.18) können, wenn die Orbital- identisch mit der Auxiliarbasis ($\hat{P}_1 = \hat{P}_{1'}$) ist, gemäß

$$1 - \hat{P}_1 \hat{P}_{2'} - \hat{P}_{1'} \hat{P}_2 + \hat{P}_1 \hat{P}_2 = 1 - \hat{P}_1 \hat{P}_2 = 1 - \hat{O}_1 \hat{P}_{2'} - \hat{P}_{1'} \hat{O}_2 + \hat{O}_1 \hat{O}_2 - \hat{V}_1 \hat{V}_2$$
(8.3)

ineinander überführt werden. Deshalb sind beim Beispiel Be prinzipiell die gleichen Ergebnisse von Ansatz 1 und 2 zu erwarten. Dass diese, wie Tabelle (D.1 - D.2) zeigt, nicht völlig identisch sind, liegt an der unterschiedlichen Implementierung der Standardnäherungen für Ansatz 1 und 2.

Für beide Atome konvergieren die CC2-R12-Grundzustandsenergien zum Basissatzlimit. Während die CC2-R12-Grundzustandsenergie des Be sehr schnell konvergiert, wird für den angeregten Zustand eine verlangsamte Konvergenz im Vergleich zum Grundzustand beobachtet. Des Weiteren fällt auf, dass mit den R12-Beiträgen im Vergleich zum konventionellen CC2 für den angeregten Zustand kein deutlich beschleunigtes Konvergenzverhalten zu beobachten ist. Dennoch sind die berechneten CC2-R12-Totalenergien für den angeregten Zustand etwas besser als diejenigen ohne R12-Beiträge. Beim Beispiel Ne hingegen wird eine deutlich beschleunigte Konvergenz der CC2-R12-Energien sowohl für den Grund- als auch für den angeregten Zustand beobachtet. Dabei zeigt Ansatz 2, ähnlich wie bei MP2-R12-Grundzustandsenergien [47], ein besseres Konvergenzverhalten als Ansatz 1.

Basissatzkonvergenz des ¹P ($2p \leftarrow 2s$) Übergangs von Be. Die berechneten CC2-R12-Anregungsenergien des ¹P ($2p \leftarrow 2s$) Übergangs von Be sowie CC2-Vergleichswerte finden sich in Tabelle (8.1). Da die CC2-R12-Ergebnisse von Ansatz 1 und Ansatz 2 für dieses Beispiel nahezu identisch sind, wird auf die Angabe der Ergebnisse von Ansatz 1 in dieser Tabelle verzichtet. Für alle untersuchten Basissätze sind die berechneten R12-Anregungsenergien etwas größer als die des konventionellen CC2. Nichtsdestotrotz beobachtet man eine klare Konvergenz der R12-Ergebnisse zum Basissatzlimit. Allerdings ist diese langsamer als beim konventionellen CC2. Dies äußert sich beispielsweise darin, dass die Differenz zwischen dem abgeschätzten Basissatzlimit und dem CC2-R12 in der größten Basis bei 0.021 eV liegt, während selbige Differenz ohne den R12-Ansatz mit 0.01 eV deutlich näher am Limit ist.

Abbildung 8.1.: Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten ¹P Zustand von Be.

Abbildung 8.2.: Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten $^{1}\mathrm{P}$ Zustand von Ne.

Basissatzkonvergenz des ¹P ($3s \leftarrow 2p$) Übergangs von Ne. Die berechneten CC2-R12-Anregungsenergien des ¹P ($3s \leftarrow 2p$) Übergangs von Ne sind in Tabelle (8.2) aufgelistet. In diesem Fall wurde eine sehr große Auxiliarbasis verwendet, um sicherzustellen, dass Fehler, die auf die Einführung der ABS-Näherung zurück gehen, möglichst klein und damit vernachlässigbar sind. Ähnlich wie beim Beispiel Be sind auch hier alle R12– Anregungsenergien größer als die des konventionellen CC2. Außerdem ist zu beobachten, dass die Anregungsenergien, die mit Ansatz 2 erhalten wurden, immer größer als die von Ansatz 1 sind. Beide Ansätze konvergieren zum gleichen Basissatzlimit, wobei für Ansatz 2 ein schnelleres Konvergenzverhalten als für Ansatz 1 zu beobachten ist. Beispielsweise liegt in der größten Basis die Differenz zwischen der CC2-R12-Anregungsenergie für Ansatz 1 und 2 und des Basissatzlimits bei 0.004 und 0.006 eV, während selbige für das konventionelle CC2-Modell bei 0.022 eV liegt. Dies zeigt zum einen, dass das Basissatzlimit unter Verwendung von R12-Beiträgen für dieses Beispiel so gut wie erreicht ist, und zum anderen, dass der verbleibende Basissatzfehler des konventionellen CC2 in etwa dreimal so groß wie mit R12-Beiträgen ist.

Tabelle 8.1.: Berechnete ¹P (2p ← 2s) Anregungsenergien von Be in eV mit Ansatz 2 in Näherung B. Es wurde eine 20s17p14d11f8g5h Basis als Orbital- und Auxiliarbasis verwendet. Für Ansatz 1 wurden fast identische Ergebnisse erhalten, deshalb ist dieser nicht gesondert aufgelistet.

Basis	CC2	CC2-R12
sp	5.541	5.696
spd	5.207	5.267
spdf	5.145	5.174
spdfg	5.126	5.143
spdfgh	5.119	5.130
abgeschätztes Limit	5.109	

Tabelle 8.2.: Berechnete ¹P (3s ← 2p) Anregungsenergien von Ne mit den Ansätzen 1 und 2 in Näherung B in eV. Verwendet wurden eine 20s14p11d9f7g5h3i Orbitalund eine 32s24p18d15f12g9h6i Auxiliarbasis.

Basis	CC2	A1	A2
sp	15.808	16.683	16.673
spd	16.030	16.232	16.351
spdf	16.137	16.219	16.292
spdfg	16.215	16.258	16.288
spdfgh	16.244	16.275	16.286
spdfghi	16.257	16.283	16.285
abgeschätztes Limit	16.279		

8.3. Moleküle

In diesem Abschnitt werden die CC2-R12-Rechnungen an den Molekülen BH, BF, CO und N_2 vorgestellt und diskutiert. Alle Ergebnisse, die hier nicht explizit aufgelistet sind, finden sich in Anhang D.

Basissatzkonvergenz der B ${}^{1}\Sigma^{+}$ und A ${}^{1}\Pi$ -Übergänge von BH. Bei BH wurde die Basissatzkonvergenz der vertikalen Anregungsenergien der B $^{1}\Sigma^{+}$ - und A $^{1}\Pi$ -Übergänge untersucht. Im Gegensatz zu beiden Ansätzen des CC2-R12–Modells beobachtet man für den ${}^{1\Sigma+}$ -Zustand einen Anstieg der konventionellen CC2-Anregungsenergien mit zunehmender Kardinalzahl der Basis. Wie bereits bei den Atomen beobachtet, sind auch hier die CC2-R12-Werte größer als die des konventionellen CC2. Für den $^{1}\Pi$ -Übergang hingegen sinken in allen betrachteten Modellen die berechneten Anregungsenergien mit steigender Kardinalzahl der Basis. Betrachtet man das Basissatzkonvergenzverhalten beider untersuchter Übergänge, so fällt auf, dass die CC2-R12-Anregungsenergien des ${}^{1}\Sigma^{+}$ -Zustands im Vergleich zum konventionellen CC2 schneller zum Basissatzlimit konvergieren, während die Situation beim ${}^{1}\Pi$ -Übergang gerade umgekehrt ist. Dies wird auch bei Betrachtung der Totalenergien der beiden angeregten Zustände im Vergleich zum Grundzustand, in Abbildung (8.3) und (8.4) dargestellt, beobachtet. Des Weiteren beträgt beim ${}^{1}\Sigma^{+}$ -Zustand die Differenz des CC2-R12 zum abgeschätzten Basissatzlimit in der größten Basis 0.01 eV. Das erscheint im Vergleich zum Ne, bei dem die Differenz um zwei Größenordnungen kleiner war, recht hoch. Es gilt jedoch zu bedenken, dass das abgeschätzte Limit durchaus inakkurat sein kann. Generell ist bei beiden Übergängen für jede betrachtete Hierarchiestufe der Basis zu beobachten, dass die CC2-R12-Ergebnisse durchgängig größer als die des konventionellen CC2 sind.

	B $^{1}\Sigma^{+}$			Α ¹ Π		
Basis	CC2	A1	A2	CC2	A1	A2
aug-cc-pVDZ	6.393	6.494	6.505	2.866	2.985	3.033
aug-cc-pVTZ	6.444	6.491	6.490	2.834	2.888	2.899
aug-cc-pVQZ	6.465	6.491	6.492	2.823	2.852	2.856
aug-cc-pV5Z	6.469	6.486	6.486	2.819	2.838	2.839
aug-cc-pV6Z	6.472	6.486	6.483	2.817	2.834	2.831
abgeschätztes Limit	6.476			2.814		

Tabelle 8.3.: Berechnete vertikale Anregungsenergien von BH in eV mit den Ansätzen 1 und 2 in Näherung B. Als Auxiliarbasis wurde eine spdfghi Basis verwendet.

Abbildung 8.3.: Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten B $^1\Sigma^+$ –Zustand von BH.

Abbildung 8.4.: Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten A $^1\Pi-\rm Zustand$ von BH.

Basissatzkonvergenz der B ${}^{1}\Sigma^{+}$, C ${}^{1}\Sigma^{+}$ und A ${}^{1}\Pi$ -Übergänge von BF. Die Ergebnisse der CC2-R12-Studie der Anregungsenergien der Übergänge B $^{1}\Sigma^{+}$, C $^{1}\Sigma^{+}$ und A ${}^{1}\Pi$ von BF finden sich in Tabelle (D.20), während die Totalenergien in Tabelle (D.8) bis (D.11) aufgelistet und in Abbildung (D.1) bis (D.3) illustriert sind. Ähnlich wie bei BH liegen auch bei BF die CC2-R12-Anregungsenergien der Ansätze 1 und 2 sehr nah beieinander, wobei die Ergebnisse von Ansatz 2 wieder etwas größer als die von Ansatz 1 sind. Während beim ${}^{1}\Pi$ -Übergang die Ergebnisse des konventionellen CC2-Modells kontinuierlich mit steigender Kardinalzahl der Basis absinken, sieht die Situation bei den beiden ${}^{1}\Sigma^{+}$ -Übergängen etwas anders aus. Hier ist das Konvergenzverhalten des CC2 weniger gleichmäßig, weshalb das jeweils zugehörige Basissatzlimit höchstwahrscheinlich nicht als glaubwürdig angesehen werden kann und deshalb in Tabelle (D.20) auch nicht angegeben wird. Insgesamt konvergieren die berechneten R12-Anregungsenergien langsamer als die des konventionellen CC2. Betrachtet man hingegen das Basissatzkonvergenzverhalten der Grundzustandsenergien im Vergleich zu den Totalenergien des jeweiligen angeregten Zustands, so ist für jeden untersuchten Zustand ein klares Konvergenzverhalten zum abgeschätzten Basissatzlimit zu beobachten, wobei Ansatz 2 etwas schneller als Ansatz 1 konvergiert.

Basissatzkonvergenz der B ${}^{1}\Sigma^{+}$, C ${}^{1}\Sigma^{+}$ und A ${}^{1}\Pi$ -Übergänge von CO. Die CC2-R12-Anregungsenergien zu den Zuständen B $^{1}\Sigma^{+}$, C $^{1}\Sigma^{+}$ und A $^{1}\Pi$ finden sich in Tabelle (D.21). Die Totalenergien der untersuchten Zustände sowie die berechneten Grundzustandsenergien sind in Tabelle (D.12) bis (D.15) aufgelistet und in Abbildung (D.4) bis (D.6) dargestellt. Genau wie bei den bisher betrachteten Molekülen ist auch in diesem Fall bei der Untersuchung der Totalenergien des Grund- im Vergleich zum angeregten Zustand kein neuer Trend zu erkennen. Jeder betrachtete Zustand konvergiert jeweils zum abgeschätzten Basissatzlimit und die Basissatzkonvergenz der angeregten Zustände ist etwas langsamer als die des Grundzustands. Die konventionellen CC2-Anregungsenergien sinken beginnend mit einer triple-Z-Basis für alle untersuchten Übergänge, während die R12-Ergebnisse beginnend mit dem double- ζ -Basissatz monoton fallen. Die Abweichungen der Ergebnisse in der größten Basis im Vergleich zum abgeschätzten Basissatzlimit betragen für die Übergänge B ${}^{1}\Sigma^{+}$, C ${}^{1}\Sigma^{+}$ und A ${}^{1}\Pi$ 0.08 eV, 0.05 eV und 0.01 eV, während selbige für das konventionelle CC2 nur bei 0.06 eV, 0.03 eV und 0.003 eV liegen. Die im Vergleich zu den bereits untersuchten Molekülen recht großen Abweichungen des CC2-R12 für die ${}^{1}\Sigma^{+}$ -Übergänge treten auch beim konventionellen CC2 auf. Deshalb liegt die Vermutung nahe, dass die insgesamt langsamere Konvergenz dieser Zustände auf deren partiellen Rydberg-Charakter zurückzuführen ist.

Basissatzkonvergenz der a' ${}^{1}\Sigma_{u}^{-}$, a ${}^{1}\Pi_{g}^{-}$ und w ${}^{1}\Delta_{u}$ -Übergänge von N₂. Die Ergebnisse der CC2-R12-Basissatzstudie zu den Anregungsenergien von N₂ finden sich in Tabelle (D.22). Die zugehörigen Totalenergien sind in Tabelle (D.16) bis (D.19) aufgelistet und in Abbildung (D.7) bis (D.9) illustriert. In diesem Fall konvergieren die konventionellen CC2-Anregungsenergien für alle untersuchten Übergänge sehr schnell und es treten keine Fluktuationen auf. Die Differenz der CC2-Resultate in der hextuple- ζ -Basis zum abgeschätzten Basissatzlimit ist mit maximal 0.001 eV sehr klein, weshalb das abgeschätzte Basissatzlimit als glaubwürdig angesehen werden kann. Insgesamt werden für die CC2-Ergebnisse mit R12-Beiträgen dieselben Trends wie bei den anderen untersuchten Molekülen beobachtet. Beide Ansätze führen zu sehr ähnlichen Resultaten, wobei die mit Ansatz 2 berechneten Anregungsenergien immer etwas größer als die mit Ansatz 1 erhaltenen sind. In Bezug auf die Konvergenz der CC2-R12-Anregungsenergien zum Basissatzlimit wird auch in diesem Beispiel ein langsameres Konvergenzverhalten als das des konventionellen CC2 beobachtet. In der größten Basis liegen die Abweichungen des CC2-R12 zum abgeschätzten Basissatzlimit noch immer zwischen 0.01 und 0.02 eV. Im Vergleich zu den konventionellen CC2-Ergebnissen bedeutet dies, dass das CC2-R12 in einer hextuple $-\zeta$ -Basis noch nicht konvergiert ist. Betrachtet man hingegen die Totalenergien der angeregten Zustände im Vergleich zum Grundzustand, so beobachtet man analog zu den anderen Molekülen für jeden untersuchten Zustand eine Konvergenz zum Basissatzlimit, wobei das CC2-R12 schneller als das konventionelle CC2 konvergiert. Erneut wird auch in diesem Beispiel eine im Vergleich zum Grundzustand verlangsamte Konvergenz der angeregten Zustände beobachtet, wobei genau wie beim Grundzustand Ansatz 2 etwas schneller als Ansatz 1 konvergiert.

Abbildung 8.5.: Berechnete CC2 und CC2-R12 Anregungsenergien für den a' ${}^{1}\Sigma_{u}^{-}$ -Übergang von N₂ in eV.

Abbildung 8.6.: Berechnete CC2 und CC2-R12 Anregungsenergien für den
a ${}^1\Pi_g-$ Übergang von N $_2$ in eV.

Abbildung 8.7.: Berechnete CC2 und CC2-R12 Anregungsenergien für den w $^{1}\Delta_{u}$ -Übergang von N₂ in eV.

Insgesamt wird bei den untersuchten Atomen und Molekülen mit Ausnahme von Ne wider erwarten ein langsameres Konvergenzverhalten der R12–Anregungsenergien im Vergleich zum konventionellen CC2 beobachtet. Betrachtet man hingegen die Totalenergien sowohl für den Grund– als auch für den jeweiligen angeregten Zustand, so konvergieren die R12– Totalenergien etwas schneller zum abgeschätzten Basissatzlimit als die Energien ohne R12–Beiträge. Dabei gilt, dass die R12–Totalenergien für Ansatz 2 ein schnelleres Konvergenzverhalten als die von Ansatz 1 aufweisen. Im Folgenden Abschnitt wird deshalb mittels einer Analyse versucht, die Ursache des verlangsamten Konvergenzverhaltens der CC2-R12–Anregungsenergien zu finden. Dies ist zum Verständnis dieser Problematik notwendig und sollte hilfreich sein, potentielle Lösungswege zur Konvergenzbeschleunigung von R12–Anregungsenergien aufzuzeigen.

8.4. Analyse der R12-Beiträge zu den berechneten Anregungsenergien

Der R12–Ansatz ist bekannt für seine Verbesserung des Konvergenzverhaltens von Grundzustandsenergien zum Basissatzlimit, wenn die dominante Fehlerquelle auf dynamische Korrelation zurückzuführen ist. Inwieweit sich die Verwendung des R12–Ansatzes auf die Berechnung von Anregungsenergien auswirkt, ist jedoch bisher noch nicht untersucht worden. Ziel dieses Abschnitts ist das unerwartet langsame Konvergenzverhalten des CC2-R12 für Anregungsenergien zu verstehen. Dafür ist eine detaillierte Untersuchung der Korrelationsbeiträge zu letzteren notwendig.

Die Einteilung dieser Korrelationsbeiträge in einen korrelierten und einen unkorrelierten Anteil ist allerdings schwierig, da es im Gegensatz zum Grundzustand für den angeregten Zustand kein unumstrittenes nicht-korreliertes Referenzmodell wie beispielsweise das Hartree–Fock–Modell gibt. Außerdem kann sich aufgrund der Berücksichtigung der dynamischen Korrelation der Charakter der Wellenfunktion, also der wichtigsten Slater– Determinanten, deutlich ändern.

Für die Analyse der Beiträge zu den CC2-R12–Anregungsenergien wird folgende Zerlegung vorgenommen, die sich an der Struktur der Jacobi–Matrix aus Gleichung (4.39) orientiert. Sowohl für das CC2– als auch für das CCSD–Modell kann die Anregungsenergie ω als

$$\omega = \frac{1}{\vec{R}^{\dagger} \mathbf{S} \vec{R}} \left(\vec{R}_{1}^{\dagger} \mathbf{A}_{11} \vec{R}_{1} + \vec{R}_{1}^{\dagger} \mathbf{A}_{12} \vec{R}_{2} + \vec{R}_{2}^{\dagger} \mathbf{A}_{21} \vec{R}_{1} + \vec{R}_{2}^{\dagger} \mathbf{A}_{22} \vec{R}_{2} \right)$$
(8.4)

dargestellt werden. Der Einfachheit halber ist in Gleichung (8.4) keine Unterteilung in konventionelle Doubles– und R12–Doubles–Beiträge vorgenommen worden. Der Nenner $\vec{R}^{\dagger}\mathbf{S}\vec{R}$ ist im Prinzip nur eine Normierungskonstante und kann bei entsprechender Normierung der Versuchsvektoren \vec{R} gleich 1 gesetzt werden. Deshalb wird er im Folgenden auch nicht weiter berücksichtigt. Bei den in dieser Studie untersuchten einfachanregungsdominierten Übergängen gilt für die entsprechenden Singles– und Doubles–Anteile des Versuchsvektors $||\vec{R}_2|| \ll ||\vec{R}_1||$. Dies hat zur Folge, dass sich die letzten beiden Terme aus Gleichung (8.4) nahezu gegenseitig aufheben, da näherungsweise

$$\vec{R}_{2}^{\dagger}(\mathbf{A}_{21}\vec{R}_{1} + \mathbf{A}_{22}\vec{R}_{2}) = \omega \vec{R}_{2}^{\dagger}\mathbf{S}_{22}\vec{R}_{2} = \mathcal{O}(||\vec{R}_{2}||^{2}) \approx 0$$
(8.5)

gilt. Es ist also ausreichend, sich bei der Untersuchung der Beiträge zu den CC2-R12– Anregungsenergien auf die ersten beiden Terme aus Gleichung (8.4) zu beschränken, da diese als die dominanten Beiträge angesehen werden können.

Unter Einführung der Kurzschreibweise $\langle R_i | = \sum_{\mu_i} \langle \mu_i | \text{ (mit } i = 1, 2) \text{ kann der erste Term aus Gleichung (8.4) in zwei Beiträge aufgeteilt werden. Der erste Beitrag ist das Matrix$ $element <math>\langle R_1 | [\hat{\hat{H}}, \hat{R}_1] | \text{HF} \rangle$ und wird im Folgenden als "singles only"–Term bezeichnet, da er nur von Einfachanregungsbeiträgen dominiert ist. Der zweite Beitrag hingegen ist das Matrixelement $\langle R_1 | [[\hat{H}, \hat{T}_2], \hat{R}_1] | \text{HF} \rangle$ und beschreibt den Effekt der dynamischen Korrelation des Grundzustands auf die Anregungsenergie und ist im Allgemeinen positiv. Der zweite Term aus Gleichung (8.4) kann als $\langle R_1 | [\hat{H}, \hat{R}_2] | \text{HF} \rangle$ dargestellt werden und ist im Allgemeinen negativ. Er beschreibt einen Beitrag aus den Differenz–Korrelationseffekten zwischen dem Grund und angeregten Zustand. Dieser Term ist normalerweise von der gleichen Größenordnung wie $\langle R_1 | [[\hat{H}, \hat{T}_2], \hat{R}_1] | \text{HF} \rangle$. Das ist der Grund, weshalb die Endresultate sehr empfindlich auf die Balance zwischen diesen beiden Termen reagieren. Dies kann in dem Sinne interpretiert werden, dass die Ausgewogenheit zwischen den dynamischen Korrelationsbeiträgen zur Wellenfunktion des Grund– und des angeregten Zustands entscheidend für das generelle Zustandekommen von CC2– oder CCSD–Anregungsenergien ist. In der Coupled–Cluster–R12–Theorie kommen zu den oben vorgestellten Beiträgen noch die R12–Beiträge zu den konventionellen Doubles–Beiträgen der Amplituden und Versuchsvektoren gemäß $\langle R_1 | [[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] | \text{HF} \rangle$ und $\langle R_1 | [[\hat{H}, \hat{R}_2 + \hat{R}_{2'}] | \text{HF} \rangle$ hinzu.

Analyse des ¹P ($2s \leftarrow 2p$) Übergangs von Be. Die explizite Aufschlüsselung der CC2-R12-Beiträge zum ${}^{1}P$ (2s \leftarrow 2p) Übergang von Be findet sich im Vergleich zum konventionellen CC2-Modell in Tabelle (D.23) und (D.36). Wie erwartet konvergiert der "singles only"-Term $\langle R_1 | [\hat{H}, \hat{R}_1] | \text{HF} \rangle$ sowohl für das CC2-R12 als auch für das konventionelle CC2 in etwa gleich schnell. Dies ist nicht weiter verwunderlich, da in diesem Beitrag noch keine R12-abhängigen Terme $(\hat{T}_{2'}, \vec{R}_{2'})$ explizit auftreten. Die Beiträge, die aus der dynamischen Korrelation im Grundzustand resultieren, liegen je nach verwendeter Basis zwischen 0.7 eV und 0.9 eV und sind, wie Abbildung (8.8) illustriert, für das CC2-R12-Modell praktisch in der kleinsten Basis (sp) bereits konvergiert, während das Konvergenzverhalten des konventionellen CC2 deutlich langsamer verläuft. Betrachtet man hingegen den Beitrag, der aus dem Doppelanregungsanteil des Eigenvektors resultiert, so fällt auf, dass die R12-Ergebnisse praktisch identisch mit denen des konventionellen CC2 sind und die Konvergenz im Vergleich zu den anderen untersuchten Beiträgen hier am langsamsten verläuft. Nach Untersuchung der in Tabelle (D.36) aufgelisteten R12und konventionellen Beiträge aus dem Matrixelement $\langle R_1 | [\hat{H}, \hat{R}_2 + \hat{R}_{2'}] | \text{HF} \rangle$ wird schnell deutlich, dass die Gesamtbeiträge des CC2 und CC2-R12 deshalb fast identisch sind, weil die entsprechenden R12-Einzelbeiträge gleich null sind. Dies kann für den untersuchten ${}^{1}P$ (2s \leftarrow 2p) Übergang folgendermaßen erklärt werden. Die R12–Paarfunktionen werden so konstruiert, dass alle Paarprodukte besetzter Orbitale mit dem Korrelationsfaktor \hat{w}_{12} multipliziert werden. Für den Grundzustand hat Be allerdings die Konfiguration 1s²2s². Es gibt also für diesen Fall keine Möglichkeit, Paarfunktionen oder R12-Doppelanregungen mit einer entsprechenden Symmetrie zu erzeugen, so dass sie zum Übergang ${}^{1}P$ (2s \leftarrow 2p) beitragen könnten. Das bedeutet, dass die konventionellen CC2-Anregungsenergien aus Tabelle (8.1) nur aufgrund einer zufälligen Fehlerkompensation der Korrelationsbeiträge aus $\langle R_1 | [[\hat{H}, \hat{T}_2], \hat{R}_1] | \text{HF} \rangle$ und $\langle R_1 | [\hat{H}, \hat{R}_2] | \text{HF} \rangle$ schneller zum abgeschätzten Basissatzlimit konvergieren.

Abbildung 8.8.: Berechnete CC2- und CC2-R12 Beiträge aus $\langle R_1 | [[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] | \text{HF} \rangle$ für den ¹P (2s \leftarrow 2p) Übergang von Be.

Analyse des ¹P (3s \leftarrow 2p) Übergangs von Ne. Die Aufschlüsselung der einzelnen Beiträge der untersuchten Anregungsenergien für Ne ist in Tabelle (D.24) und (D.37) aufgelistet. Da die R12–Anregungsenergien für dieses Beispiel wie erwartet konvergieren, sind die Daten der Analyse gewissermaßen eine Überprüfung, ob das beobachtete schnellere Konvergenzverhalten in der Tat auf den R12–Ansatz zurückzuführen ist, oder ob auch hier ähnlich wie für das konventionelle CC2 beim Beispiel Be eine zufällig gute Fehlerkompensation vorliegt. Es wird schnell klar, dass im Fall Ne keine Fehlerkompensation vorliegt, sondern dass die R12–Beiträge aus allen Matrixelementen für beide R12–Ansätze zu den CC2–Ergebnissen in der größten Basis konvergieren. Besonders die Beiträge aus $\langle R_1 | [\hat{H}, \hat{R}_2 + \hat{R}_{2'}] | \text{HF} \rangle$ sind zum Teil identisch mit denen aus dem konventionellen CC2. Dies liegt daran, dass die R12–Beiträge zu diesem Matrixelement schr klein sind und schnell gegen null konvergieren, wie Tabelle (D.37) zeigt. Betrachtet man hingegen die Beiträge aus dem Beitrag der Korrelation aus dem Grundzustand $\langle R_1 | [[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] | \text{HF} \rangle$ in Abbildung (8.9), so wird deutlich, dass Ansatz 2 schneller als Ansatz 1 und Ansatz 1 schneller als das konventionelle CC2 konvergiert. Hier sind also die R12–Effekte groß.

Abbildung 8.9.: Berechnete CC2- und CC2-R12 Beiträge aus $\langle R_1 | [[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] | \text{HF} \rangle$ für den ¹P (3s \leftarrow 2p) Übergang von Ne.

Analyse der B ${}^{1}\Sigma^{+-}$ und A ${}^{1}\Pi$ –Übergänge von BH. Die einzelnen Beiträge für die Analyse der Anregungsenergien von BH sind in Tabelle (D.25) und (D.26) angegeben. Die explizite Aufschlüsselung der R12–Doubles–Beiträge aus den Matrixelementen $\langle R_1|[[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1]|\text{HF} \rangle$ und $\langle R_1|[\hat{H}, \hat{R}_2 + \hat{R}_{2'}]|\text{HF} \rangle$ findet sich in Tabelle (D.38) und (D.39). Betrachtet man den B ${}^{1}\Sigma^{+-}$ Übergang, so fällt auf, dass die Korrelationsbeiträge, die aus dem Doubles–Anteil des Eigenvektors resultieren, mit und ohne R12–Ansatz sehr schnell konvergieren. Die Gesamtkonvergenz der Anregungsenergien wird also durch den Basissatzfehler, der aus dem "singles only"–Beitrag resultiert, sowie den Korrelationsbeitrag aus den Grundzustandsclusteramplituden $\langle R_1|[[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1]|\text{HF} \rangle$ dominiert. Da der Basissatzfehler des konventionellen CC2 im "singles only"–Beitrag in etwa genau so groß wie beim $\langle R_1|[[\hat{H}, \hat{T}_2], \hat{R}_1]|\text{HF} \rangle$ –Term ist, kann das extrapolierte Basissatzlimit nach Formel (8.2) in Frage gestellt werden. Das Basissatzlimit aus Tabelle (8.3) ist vermutlich ungenau. Nichtsdestotrotz wird jeweils für die einzelnen Teilbeiträge der untersuchten Matrixelemente ein verbessertes Konvergenzverhalten der R12–Beiträge im Vergleich zum konventionellen CC2 beobachtet.

Für den A ¹II-Übergang wird hingegen eine ähnliche Situation wie für den ¹P (2s \leftarrow 2p) Übergang von Be beobachtet. Zum einen konvergiert der "singles only"-Term mit und ohne R12-Ansatz sehr schnell und zum anderen sind auch in diesem Fall die R12-Beiträge aus dem Doppelanregungsteil des Eigenvektors $\langle R_1 | [\hat{H}, \hat{R}_{2'}] | \text{HF} \rangle$ gleich null, welches eine nahezu komplette gegenseitige Auslöschung der beiden Korrelationsbeiträge zur Konsequenz hat. Dies kann in Analogie zum Beispiel Be erklärt werden. Beim BH liegt eine

Grundzustandskonfiguration der Art $(1\sigma^2 1\sigma^{*2}\sigma^2)$ vor, bei der nur σ -Molekülorbitale besetzt sind. Ähnlich wie beim Be ist es ausgehend von dieser Grundzustandskonfiguration nicht möglich, solche Paarfunktionen oder R12-Doppelanregungen zu generieren, die die notwendige Symmetrie besitzen, um für den A ¹\Pi Übergang ($\sigma \leftarrow \pi$) einen Beitrag liefern zu können. Dies liegt daran, dass die Bildung von R12-Paarfunktionen und R12-Doppelanregungen aus Paarprodukten von besetzten Molekülorbitalfunktionen erfolgt. Des Weiteren wird erneut nur beim Beitrag aus der dynamischen Korrelation des Grundzustands eine Beschleunigung der Konvergenz durch den R12-Ansatz beobachtet. Das bedeutet, dass dieser positive Beitrag aus den Grundzustandsamplituden mit erheblich größerer Genauigkeit behandelt wird als der negative Beitrag aus den Doubles-Beiträgen des angeregten Zustands, der in diesem Fall sogar komplett wegfällt, da er gleich null ist. Dies hat zur Folge, dass in den kleineren Basissätzen die CC2-R12-Anregungsenergien überschätzt werden.

Analyse der B¹ Σ^+ -, C¹ Σ^+ - und A¹ Π --Übergänge von BF. Die Beiträge zur Analyse der CC2-R12-Anregungsenergien von BF sind in Tabelle (D.27) bis (D.29) und in Tabelle (D.40) bis (D.42) angegeben. Bei beiden ${}^{1}\Sigma^{+}$ --Übergängen wird erneut ein verbessertes Konvergenzverhalten der Beiträge aus den Grundzustandsamplituden durch den R12-Ansatz beobachtet, während die R12-Effekte auf die Korrelationsbeiträge, die aus dem Doppelanregungsanteil des Eigenvektors resultieren, wieder sehr klein sind. Ähnlich wie beim Beispiel BH wird auch bei BF die Gesamtkonvergenz der Anregungsenergien durch den Basissatzfehler, der aus dem "singles only"-Term resultiert, sowie dem Korrelationsbeitrag aus den Grundzustandsamplituden bestimmt. Besonders beim C ${}^{1}\Sigma^{+}$ -Übergang fällt auf, dass der Basissatzfehler des konventionellen CC2 im "singles only"-Term in etwa genau so groß wie beim $\langle R_1 | [[\hat{H}, \hat{T}_2], \hat{R}_1] | \text{HF} \rangle$ -Term ist. Dies bestätigt, dass eine Abschätzung des Basissatzlimits nach Formel (8.2) für die untersuchten ${}^{1}\Sigma^{+}$ -Übergänge, wie bereits in Abschnitt (8.3) angemerkt, nicht sinnvoll ist.

Für den untersuchten A ¹II–Übergang hingegen konvergieren die "singles only"–Beiträge mit und ohne R12–Ansatz sehr schnell. Wieder wird ein deutlich verbessertes Konvergenzverhalten durch den R12–Ansatz bei dem Korrelationsbeitrag beobachtet, der aus den Grundzustandsamplituden resultiert. Keine Verbesserung des Konvergenzverhaltens ist hingegen bei den Beiträgen aus dem Matrixelement $\langle R_1 | [\hat{H}, \hat{R}_2 + \hat{R}_{2'}] | \text{HF} \rangle$ zu finden, obwohl die zugehörigen reinen R12–Beiträge im Gegensatz zu BH nun ungleich null sind. Nichtsdestotrotz sind die Beiträge aus $\langle R_1 | [\hat{H}, \hat{R}_{2'}] | \text{HF} \rangle$ klein, und die Korrelationsbeiträge aus den Grundzustandsamplituden, die sehr gut erfasst werden, sowie aus dem Doppelanregungsanteil des Eigenvektors kompensieren sich für kleine Basissätze nahezu. Deshalb sind die berechneten R12–Anregungsenergien größer als die des konventionellen CC2.

Analyse der B ${}^{1}\Sigma^{+-}$, C ${}^{1}\Sigma^{+-}$ und A ${}^{1}\Pi^{-}$ Übergänge von CO. Die einzelnen Beiträge zur Analyse der hier betrachteten Anregungsenergien von CO sind in Tabelle (D.30) bis (D.32) sowie in Tabelle (D.43) bis (D.45) angegeben. Für die beiden ${}^{1}\Sigma^{+-}$ Übergänge des CO werden ähnliche Trends wie bei den bisher untersuchten Übergängen der anderen Moleküle gefunden. Wieder sind die R12-Beiträge aus dem Matrixelement $\langle R_1 | [\hat{H}, \hat{R}_2 + \hat{R}_{2'}] | \mathrm{HF} \rangle$ klein, und es kann hierfür kein verbessertes Konvergenzverhalten mit dem R12–Ansatz im Vergleich zu den Beiträgen aus dem konventionellen CC2 beobachtet werden. Eine Konvergenzbeschleunigung durch den R12–Ansatz kann nur bei den Korrelationsbeiträgen, die aus den Grundzustandsamplituden resultieren, gefunden werden. Die Gesamtkonvergenz der R12–Anregungsenergien wird erneut aus dem Basissatzfehler, der im wesentlichen aus dem "singles only"–Term resultiert, und dem Korrelationsbeitrag aus dem Grundzustand dominiert. Besonders beim B $^1\Sigma^+$ –Übergang wird deutlich, dass der Basissatzfehler des konventionellen CC2 im "singles only"–Term sehr groß ist, weshalb das abgeschätzte Basissatzlimit aus Tabelle (D.21) vermutlich nicht vertrauenswürdig ist.

Beim A ¹ Π –Übergang liegt erneut die Situation vor, dass die "singles only"–Beiträge mit und ohne R12–Ansatz sehr schnell konvergieren, während kein R12–Konvergenzbeschleunigungseffekt bei den Korrelationsbeiträgen zu finden ist, der aus dem Doppelanregungsanteil des Eigenvektors resultiert. Wieder kann nur bei den Korrelationsbeiträgen aus den Grundzustandsamplituden eine R12–Konvergenzbeschleunigung für beide verwendeten Ansätze beobachtet werden.

Analyse der a' ${}^{1}\Sigma_{u}^{-}$, a ${}^{1}\Pi_{g}^{-}$ und w ${}^{1}\Delta_{u}^{-}$ Übergänge von N₂. Die einzelnen Beiträge zur Analyse der hier betrachteten Übergänge von N₂ sind in Tabelle (D.33) bis (D.35) zu finden. Die explizite Aufschlüsselung der einzelnen Beiträge in ihre R12–Anteile findet sich in Tabelle (D.46) bis (D.48). Für alle betrachteten Übergänge konvergiert der "singles only"–Teil mit und ohne R12–Beiträge sehr schnell. Auch kann bei allen drei Übergängen für die Korrelationsbeiträge aus $\langle R_1 | [\hat{H}, \hat{R}_2 + \hat{R}_{2'}] | \text{HF} \rangle$ keine verbesserte Konvergenz im Rahmen der verwendeten R12–Ansätze beobachtet werden, während selbige wie bei den anderen Molekülen im $\langle R_1 | [[\hat{H}, \hat{T}_2], \hat{R}_1] | \text{HF} \rangle$ –Term zu einer deutlichen Verbesserung führen. Fazit ist, dass auch bei den Übergängen von N₂ im Vergleich zu den anderen untersuchten Molekülen durch die Analyse die bisher beobachteten Trends bestätigt werden können.

8.5. Zusammenfassung

In diesem Kapitel wurden erste Ergebnisse zur Berechnung von CC2-R12–Grundzustandsund Anregungsenergien am Testsatz Be, Ne, BH, BF, CO und N₂ vorgestellt und diskutiert. In allen untersuchten Fällen kann bei den verwendeten linearen R12–Ansätzen im Vergleich zum konventionellen CC2 eine Beschleunigung der Konvergenz zum Basissatzlimit der berechneten Grundzustands- und Totalenergien für die angeregten Zustände beobachtet werden. Wie erwartet ist das Konvergenzverhalten im Rahmen von Ansatz 2 etwas schneller als bei Ansatz 1.

Bei den betrachteten CC2-R12-Anregungsenergien, die sich als Differenz der Totalenergien des Grund- und angeregten Zustands zusammensetzen, kann hingegen bei allen untersuchten Beispielen kein verbessertes Konvergenzverhalten aufgrund des R12–Ansatzes festgestellt werden. Die untersuchten R12–Anregungsenergien weisen im Vergleich zum konventionellen CC2–Modell sogar eine verlangsamte Konvergenz zum Basissatzlimit auf. Eine Ausnahme diesbezüglich bildet nur Ne. Des Weiteren fällt besonders bei kleinen Basissätzen auf, dass die berechneten R12–Anregungsenergien für beide R12–Ansätze größer als die Anregungsenergien sind, die mit dem konventionellen CC2–Modell, also ohne zusätzliche R12–Paarfunktionen und R12–Doppelanregungen, berechnet wurden. Die Ergebnisse, die im Rahmen von Ansatz 2 berechnet wurden, sind dabei meist größer als die von Ansatz 1.

Um dieses unerwartet langsame Konvergenzverhalten der CC2-R12-Anregungsenergien besser verstehen zu können, wurde eine Analyse der verschiedenen Beiträge zu den R12-Anregungsenergien im Vergleich zu denen des konventionellen CC2 durchgeführt. Hierfür wurde eine Zerlegung der Beiträge zu den Anregungsenergien in Analogie zur Struktur der Jacobi-Matrix aus Gleichung (4.39) vorgenommen. Anschließend wurden die am stärksten zu den betreffenden Anregungsenergien beitragenden Terme identifiziert. Danach lassen sich die Anregungsenergien in drei dominierende Beiträge aufteilen. Der erste Term dient zur Beschreibung der Einfachanregungsbeiträge, während die beiden anderen Terme zum einen den Korrelationsbeitrag aus den Grundzustandsamplituden und zum anderen den Korrelationsbeitrag aus dem Doppelanregungsanteil des Eigenvektors beschreiben.

Durch die Analyse der Anregungsenergien konnte zunächst gezeigt werden, dass die Beschreibung der Singles-Beiträge zu den untersuchten Anregungsenergien wie erwartet mit und ohne R12-Ansatz in etwa gleich gut ist. Des Weiteren wurde beobachtet, dass durch den R12-Ansatz zwar die Konvergenz des positiven, dynamischen Korrelationsbeitrags aus den Grundzustandsamplituden deutlich verbessert wird, jedoch der zweite wichtige negative Korrelationsbeitrag aus dem Doppelanregungsanteil des Eigenvektors im Vergleich zum entsprechenden Beitrag des konventionellen CC2 nur minimal beeinflusst wird. Das bedeutet, dass der in dieser Arbeit verwendete lineare R12-Ansatz wie erwartet zur Stabilisierung der Beiträge aus dem Grundzustand führt, jedoch auf die Beiträge, die aus dem angeregten Zustand resultieren, fast keine Auswirkung hat.

Diese unausgewogene, einseitige Behandlung der Korrelationsbeiträge aus dem Grundund angeregten Zustand zu den Anregungsenergien, die mit Ausnahme von Ne für alle im Rahmen von Ansatz 1 und 2 untersuchten Beispiele gefunden wurde, liefert die Erklärung für das verlangsamte Konvergenzverhalten der R12-Anregungsenergien im Vergleich zum konventionellen CC2. Es liefert auch die Erklärung für die Überschätzung der R12-Anregungsenergien im Vergleich zum CC2. Da die Korrelationsbeiträge aus dem Grundzustand im Rahmen von Ansatz 2 besser beschrieben werden als bei Ansatz 1, wird nun auch klar, warum die berechneten R12-Anregungsenergien im Rahmen von Ansatz 2 größer als bei Ansatz 1 sind. Das konventionelle CC2 und eventuell auch andere auf Coupled-Cluster-Antworttheorie basierenden Modelle profitieren offensichtlich von einer relativ guten Fehlerkompensation des Basissatzfehlers in diesen beiden Korrelationsbeiträgen und konvergieren deshalb schneller zum Basissatzlimit. Durch die Analyse der Beiträge zu den R12–Anregungsenergien konnten der ^{1}P (2s \leftarrow 2p) Übergang von Be sowie der A $^{1}\Pi$ –Übergang von BH als zwei Extremfälle identifiziert werden, bei denen der R12–Teil des Korrelationsbeitrags aus dem Zweifachanregungsanteil des Eigenvektors null ist. Dies kann dadurch erklärt werden, dass im vorliegenden R12–Ansatz zum Aufbau der R12–Paarfunktionen nur besetzte Molekülorbitalfunktionen verwendet werden. Für die beiden Beispiele Be und BH, bei deren Grundzustandskonfiguration nur s- oder σ -Funktionen doppelt besetzt sind, bedeutet dies jedoch, dass es mit dem derzeit verwendeten R12–Ansatz keine Möglichkeit gibt, R12–Paarfunktionen mit entsprechender Symmetrie zu erzeugen, so dass diese zu den zu beschreibenden Übergängen einen Beitrag leisten könnten. Beide Übergänge sind Extrembeispiele für die unausgewogene Behandlung der Korrelationsbeiträge zu den Anregungsenergien aus dem Grund– und angeregten Zustand, die zur verlangsamten Konvergenz der CC2-R12–Anregungsenergien führt.

Folglich ist die Konstruktion der R12-Paarfunktionen aus besetzten Molekülorbitalfunktionen zwar eine gute Lösung für Grundzustandsenergien und für die daraus durch analytische Ableitung berechneten Eigenschaften, wie beispielsweise Dipol- oder Quadrupolmomente [49], sie ist jedoch keine ausreichend gute Wahl für die Berechnung von Anregungsenergien, da sie zu einer einseitigen Bevorzugung der Grundzustandsbeiträge führt. Bei der Berechnung von Anregungsenergien ist jedoch eine gute Erfassung der Differenzkorrelationseffekte zwischen dem Grund- und angeregten Zustand, die in der Antworttheorie durch den Doppelanregungsanteil des Eigenvektors zugänglich gemacht werden, unerlässlich. Die untersuchten Beispiele zeigen, dass die Beschreibung dieser Beiträge besonders in kleinen Basissätzen unzureichend ist, welches zu einer Überschätzung der CC2-R12-Anregungsenergien führt.

Ein möglicher Ausweg aus dieser unausgewogenen Beschreibung der beiden dominanten Korrelationsbeiträge zu den R12-Anregungsenergien könnte in der Miteinbeziehung von zusätzlichen virtuellen Orbitalen bei der Konstruktion der R12-Paarfunktionen liegen. Diese könnten beispielsweise gemäß $\hat{w}_{12}|\varphi_i(1)\varphi_a(2)\rangle$ angesetzt werden, wobei in φ_a die wichtigsten am jeweiligen Übergang beteiligten virtuellen Orbitale beteiligt sein sollten. Da die Einführung zweier unabhängiger Indices i und a bei der Implementierung der Konstruktion der neuen R12-Paarfunktionen in das bereits bestehende Programm Schwierigkeiten bereiten könnte, mag zum Aufbau der Paarfunktionen ein leicht verändertes Schema sinnvoll sein. Dabei werden Paarfunktionen der Art $\hat{w}_{12}|\varphi_u(1)\varphi_v(2)\rangle$ aufgebaut, wobei φ_u und φ_v jeweils die besetzten und die wichtigsten am zu untersuchenden Übergang beteiligten virtuellen Orbitale beinhalten. Von R12-Paarfunktionen dieser Art könnte eine ausgewogene Behandlung der beiden Korrelationsbeiträge aus dem Grundund angeregten Zustand erwartet werden. Dies würde nicht nur zur korrekten Beschreibung von Anregungsenergien, sondern auch zur Berechnung anderer frequenzabhängiger Eigenschaften wie Polarisierbarkeiten oder Hyperpolarisierbarkeiten mittels der Antworttheorie hilfreich sein. Eine kürzlich angefertigte Studie von Neiss et al. [146] zeigt, dass die Miteinbeziehung von virtuellen Orbitalen bei der Konstruktion der Paarfunktionen in der Tat eine ausgewogene Beschreibung von CC2-R12-Anregungsenergien ermöglicht.

9. Anwendungen der CCSD(R12)-Näherung

Dieses Kapitel ist in drei Abschnitte unterteilt. Im ersten Abschnitt werden zunächst Anwendungen des CCSD(R12)-Modells [122] zur Berechnung von Grundzustandsenergien im Vergleich zum vollständigen CCSD-R12-Modell vorgestellt und bewertet. Anschließend wird im zweiten Abschnitt der Frage nachgegangen, inwieweit das CCSD(R12)-Modell unter Verwendung von Triples-Korrekturen zur Berechnung von sehr genauen Reaktionsenthalpien [123] eingesetzt werden kann. Zum Schluss wird im dritten Abschnitt eine Studie zur Berechnung der elektronischen Bindungsenergie des H_2O -SO₃ Dimers vorgestellt [147].

9.1. Berechnung von CCSD(R12)–Grundzustandsenergien

In diesem Abschnitt werden erste Ergebnisse zur Berechnung von CCSD(R12)-Grundzustandsenergien im Vergleich zum vollständigen CCSD-R12-Modell vorgestellt und diskutiert. Das Basissatzkonvergenzverhalten wurde anhand des Testsatzes, der das Atom Ne und das Fluoridion F⁻ sowie die Moleküle N₂, BH, HF, CO, H₂O, NH₃ und CH₄ beinhaltet, untersucht. Alle Tabellen zu diesem Abschnitt finden sich in Anhang (E).

9.1.1. Vorgehensweise

Alle Coupled-Cluster-R12-Rechnungen wurden mit Ansatz 1 und Näherung B, die in Abschnitt (4.5.3) vorgestellt wurde, durchgeführt. Die CCSD(R12)-Grundzustandsenergien aus Tabelle (E.1) bis (E.3) wurden entweder mit dem Coupled-Cluster-Programm des DALTON [126] oder des DIRCCR12-OS [131] Programmpakets berechnet. Die vollständigen CCSD-R12-Grundzustandsenergien wurden hingegen nur mit dem DIRCCR12-OS [131] Programmpaket berechnet, da das CCSD-R12-Modell im DALTON-Programm bisher noch nicht verfügbar ist. Als Basen wurden die aug-cc-pVXZ Basissätze von Dunning *et al.* [20, 81, 82] verwendet. Um die CCSD(R12)- und die vollständigen CCSD- R12–Grundzustandsenergien miteinander vergleichen zu können, musste die Orbitalbasis identisch mit der Auxiliarbasis gewählt werden, da dies im DIRCCR12–OS–Programm nicht anders möglich ist. Die Rechnungen wurden basierend auf experimentell bestimmten Bindungslängen (r_e Werte) für BH, CO, N₂ und HF aus Ref. [137] sowie für H₂O aus Ref. [148], für NH₃ aus Ref. [149] und für CH₄ aus Ref. [150] durchgeführt. Dabei wurden nur die Valenzelektronen korreliert und die Elektronen der Rumpforbitale (1s) von C, B, O, F und N als "eingefroren" behandelt. Die berechneten Beiträge aus den Singles–Doubles– und R12–Doubles–Coupled–Cluster–Amplituden werden im Folgenden als $E(\hat{T}_1, \hat{T}_2)$ und $E(\hat{T}_{2'})$ bezeichnet und sind in Tabelle (E.4) bis (E.6) aufgelistet.

Die verschiedenen Grundzustandsenergien aus Tabelle (E.7) und (E.8) hingegen wurden basierend auf von Heckert *et al.* [151] geometrieoptimierten CCSD(T)-R12–Bindungslängen und Winkeln berechnet, wobei erneut nur die Valenzelektronen korreliert wurden. Alle Beiträge aus Tabelle (E.7) und (E.8) wurden komplett mit dem DIRCCR12-OS– Programm [131] unter Verwendung der 19s14p8d6f4g3h2i Basis (9s6p4d3f2g für H) aus Ref. [47] berechnet [152]. Die verwendeten hochgenauen Geometrien wurden ausgehend von den auf analytischem Weg optimierten CCSD(T)/cc-pV6Z Gleichgewichtsgeometrien aus Ref. [153] durch numerische Ableitung auf CCSD(T)-R12–Niveau anhand von Gitterpunkten (5 pro Freiheitsgrad) erhalten. Die CCSD(R12)–Grundzustandsenergien aus Tabelle (E.9) und (E.10) basieren auf den selben Geometrien. Zur Berechnung dieser Grundzustandsenergien wurde eine mit der aug-cc-pVXZ Orbitalbasis von Dunning *et al.* [20, 81, 82] nicht identische 19s14p8d6f4g3h2i (9s6p4d3f2g für H) Auxiliarbasis aus Ref. [47] verwendet. Diese Rechnungen wurden mit dem DALTON–Programm [126] durchgeführt [122].

9.1.2. Ergebnisse

Die Ergebnisse zur angefertigten Basissatzstudie zum Vergleich des CCSD(R12)– und des vollständigen CCSD-R12–Modells finden sich in Tabelle (E.1) bis (E.3). Im Vergleich zum konventionellen CCSD–Modell ist für alle untersuchten Atome und Moleküle das verbesserte Konvergenzverhalten mit dem R12–Ansatz klar erkennbar. Dieses ist für das Beispiel Ne in Abbildung (9.1) illustriert. Allgemein fällt auf, dass die CCSD(R12)–Grundzustandsenergien sich für kleinere, also double– oder triple– ζ –Basissätze deutlich von den CCSD-R12–Grundzustandsenergien unterscheiden, während sie in größeren Basissätzen, ab quadruple– ζ , eine sehr gute Übereinstimmung mit den CCSD-R12–Resultaten zeigen. Das bedeutet, dass die in den CCSD(R12)–Doubles–Gleichungen vernachlässigten Beiträge $[\tilde{\Phi}, \hat{T}_{2'}]$ und $[[\tilde{\Phi}, \hat{T}_{2'}], \hat{T}_{2'}]$ in kleineren Basissätzen, wie erwartet, eine größere Rolle spielen und nicht vernachlässigt werden dürfen. Nichtsdestotrotz sind die mit der CCSD(R12)–Näherung berechneten Korrelationsenergien durchweg kleiner als die des konventionellen CCSD, weshalb das CCSD(R12) diesem prinzipiell vorzuziehen ist. In größeren als triple– ζ -Basissätzen werden die Differenzen zwischen dem CCSD(R12)– und dem vollständigen CCSD-R12–Modell wie erwartet immer kleiner. Für die untersuchten

Abbildung 9.1.: Berechnete Grundzustandsenergien für Ne.

Atome und Moleküle können demnach die Kommutatoren $[\hat{\Phi}, \hat{T}_{2'}]$ und $[[\hat{\Phi}, \hat{T}_{2'}], \hat{T}_{2'}]$ in entsprechenden Basissätzen durchaus vernachlässigt werden, ohne die Qualität der berechneten Grundzustandsenergien zu beeinträchtigen. Zum Vergleich der verschiedenen Modelle sind in Tabelle (E.1) bis (E.3) auch die Δ R12–Beiträge aufgelistet. Dies sind die jeweiligen Differenzen zwischen beispielsweise dem konventionellen CCSD– und den entsprechenden CCSD(R12)– oder CCSD-R12–Varianten. Beim Vergleich der beiden Δ R12–Beiträge des CCSD–Modells wird deutlich, dass im Betrag die vollständigen Δ R12(CCSD-R12)–Beiträge prinzipiell etwas größer als die Δ R12(CCSD(R12))–Beiträge sind, wobei dieser Trend sich lediglich bei der aug-cc-pV6Z Basis umdreht. Das CCSD(R12)–Modell scheint demnach in großen Basissätzen, also nahe am Basissatzlimit, das Ausmaß der R12–Beiträge etwas zu überschätzen.

Prinzipiell wäre anstelle des CCSD (R12)–Modells auch eine Abschätzung der CCSD-R12–Grundzustandsenergie gemäß

$$E_{\text{CCSD}-\text{R12}} \approx E_{\text{CCSD}} + \Delta \text{R12}(\text{MP2})$$
(9.1)

denkbar, bei der zur konventionellen CCSD–Grundzustandsenergie der Δ R12–Beitrag aus einer MP2-R12–Rechnung hinzuaddiert wird. Diese Vorgehensweise ist auch als MP2– Limit–Korrektur [154] bekannt. Deshalb ist es sinnvoll zu untersuchen inwieweit eine Abschätzung der CCSD-R12–Grundzustandsenergie gemäß Gleichung (9.1) gegenüber der CCSD(R12)–Näherung einzuordnen ist. Zu diesem Zweck werden die R12–Korrekturen auf CCSD(R12)- mit denen auf MP2-R12-Niveau verglichen. Die verschiedenen R12-Korrekturen sind repräsentativ für alle untersuchten Atome und Moleküle am Beispiel Ne, HF und N₂ in Abbildung (9.2) bis (9.4) auf einer doppelt-logarithmischen Skala dargestellt. Die Abbildungen zu den anderen untersuchten Atomen und Molekülen sind der Vollständigkeit halber im Anhang (E) aufgelistet.

Abbildung 9.2.: Berechnete $\Delta R12$ -Beiträge für Ne in m E_h , dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung 9.3.: Berechnete $\Delta R12$ -Beiträge für HF in m E_h , dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung 9.4.: Berechnet
e $\Delta \rm R12-Beiträge für N_2$ in m $E_{\rm h},$ dargestellt auf einer doppeltlogarithmischen Skala.

Bei Betrachtung der R12–Korrekturen in Tabelle (E.1) bis (E.3) wird deutlich, dass die MP2-Limit-Korrektur zwar in kleinen Basissätzen eine durchaus geeignete Vorgehensweise zur Abschätzung der CCSD-R12-Grundzustandsenergie ist, jedoch beim Übergang zu großen Basissätzen versagt. Offensichtlich wird für die in dieser Studie untersuchten Atome und Moleküle in großen Basissätzen auf MP2-Niveau die Größenordnung der R12-Korrektur, die zum Ziel hat, die verwendete unvollständige Basis möglichst bis zum Basissatzlimit hin zu korrigieren, deutlich überschätzt. Besonders die Untersuchung der R12-Korrekturen, die mit den hochgenauen aug-cc-pV5Z und aug-cc-pV6Z Basissätzen berechnet wurden, zeigt, dass die $\Delta R12(MP2-R12)$ -Korrektur oft mehr als zwei mal so groß wie die entsprechenden Korrekturen auf CCSD(R12)- und CCSD-R12-Niveau sind. Da die R12-Korrektur ein Maß für den Basissatzfehler innerhalb der betrachteten Coupled-Cluster-Rechnung ist, implizieren diese Resultate, dass der Basissatzfehler für hochkorrelierte Methoden wie CCSD oder CCSD(T) nur für kleine Basissätze bis zu triple- ζ -Qualität durch eine MP2-Korrektur angenähert werden kann, während diese Art der Abschätzung jedoch, wenn größere Basissätze verwendet werden, völlig versagt. Dieses Ergebnis unterstützt die Vermutung, dass es bei Extrapolationen des Basissatzlimits via MP2- oder Coupled-Cluster-Methoden sinnvoll ist, je nach verwendeter Methode. verschiedene Formeln zur Extrapolation zu verwenden [155–157].

Ein Vergleich zwischen den einzelnen Beiträgen aus den Singles- und Doubles- $E(T_1, T_2)$ sowie den R12-Doubles-Coupled-Cluster-Amplituden $E(\hat{T}_{2'})$ und den $\Delta R12$ -Beiträgen aus den CCSD(R12)- und CCSD-R12-Rechnungen ist in Tabelle (E.4) bis (E.6) gegeben. Es fällt auf, dass die Beiträge aus den Singles- und Doubles-Amplituden $E(T_1, T_2)$ mit denen der konventionellen CCSD-Korrelationsenergien, die als Differenz zwischen der CCSD- und der SCF-Grundzustandsenergie gemäß $E_{\rm CCSD} - E_{\rm SCF}$ berechnet werden, nicht identisch, sondern kleiner als diese sind. Dies ist auf die Kopplung der Singles- und Doubles-Beiträge mit dem Operator $T_{2'}$ zurückzuführen. Je größer die verwendete Basis ist, desto kleiner sind auch die Differenzen zwischen $E(T_1, T_2)$ und der konventionellen CCSD-Korrelationsenergie. Die Beiträge aus den R12-Doubles-Amplituden $E(T_{2'})$ sind hingegen größer als die $\Delta R12$ -Beiträge sowohl des CCSD(R12)- als auch des CCSD-R12-Modells. Allerdings ist bei den Abweichungen zwischen $E(T_{2'})$ und den $\Delta R12$ -Beiträgen keine Systematik erkennbar. Vergleicht man hingegen die Beiträge aus $E(T_1, T_2)$ für das CCSD(R12)- mit denen des CCSD-R12-Modells, so wird deutlich, dass diese beginnend mit einer quadruple– ζ –Basis für die größeren Basissätze fast identisch sind, während die Beiträge aus $E(T_{2'})$ für größere Basissätze bei allen untersuchten Atomen und Molekülen wie erwartet sehr schnell absinken. Bereits in einer quadruple- ζ -Basis liegen die Differenzen zwischen den berechneten CCSD(R12)- und CCSD-R12-Grundzustandsenergien unter einem Millihartree und sinken weiter mit steigender Qualität der Orbitalbasis ab. Für die in dieser Studie untersuchten Atome und Moleküle stellt somit die CCSD(R12)-Näherung in der Tat eine gute Alternative zu einer CCSD-R12-Rechnung dar, sofern mindestens eine Basis von quadruple– ζ –Qualität gewählt wird.

In Tabelle (E.7) und (E.8) sind für verschiedene Moleküle hochgenaue CCSD-, CCSD[T]und CCSD(T)-Grundzustandsenergien [3, 124, 158] nahe am Basissatzlimit aufgelistet. Analog zu den bisher durchgeführten Studien zeigt die CCSD(R12)-Näherung auch nahe am Basissatzlimit im Vergleich zum vollständigen CCSD-R12-Modell kein verändertes Verhalten. Für beide Modelle liegen $\Delta R12$ -Werte sehr nahe zusammen, wobei die $\Delta R12(CCSD(R12))$ – im Betrag immer etwas oberhalb der $\Delta R12(CCSD-R12)$ – Differenzen liegen. Weiterhin wird untersucht ob die näherungsweise Behandlung der R12-Doubles-Coupled-Cluster-Amplituden im Rahmen der (R12)-Näherung Konsequenzen auf die näherungsweise Behandlung der triples-Beiträge im Rahmen der CCSD[T]- und CCSD(T)-Modelle hat, die störungstheoretisch erfolgt. Unabhängig von der jeweils verwendeten störungstheoretischen Näherung für die Triples-Beiträge zeigt die (R12)-Näherung dasselbe bisher beobachtete Verhalten im Vergleich zu der auf R12-Niveau jeweiligen vollständigen CCSD[T]-R12- oder CCSD(T)-R12-Näherung. Erneut liegen die $\Delta R12$ -Werte sehr nahe beieinander, und die jeweiligen Differenzen bewegen sich in der Größenordnung von einem Millihartree und sind damit vernachlässigbar. Das bedeutet, dass die in dieser Studie untersuchte (R12)-Näherung problemlos auch im Rahmen von anderen Modellen, die ihrerseits eine störungstheoretische Behandlung der "connected"-Triples-Beiträge verwenden, angewendet werden kann. Dies gilt im Rahmen von Ansatz 1 und sollte im Fall einer Erweiterung der CCSD(R12)-Näherung auf Ansatz 2 erneut überprüft werden.

Des Weiteren wurde für den bereits in Tabelle (E.1) bis (E.3) untersuchten Testsatz Ne, F⁻, BH, HF, N₂, CO, H₂O, NH₃ und CH₄ eine Basissatzstudie durchgeführt bei der jedoch die aug-cc-pVXZ Orbital- nicht mehr identisch mit der 19s14p8d6f4g3h2i (9s6p4d3f2g für H) Auxiliarbasis ist. Die auf diesem Weg berechneten Ergebnisse sind in Tabelle (E.9) und (E.10) aufgelistet. Da es nicht möglich ist mit den gleichen Orbital- und Auxiliarbasen, die für diese Studie verwendet wurden, mit dem DIRCCR12-OS-Programm [131] CCSD-R12-Rechnungen duchzuführen, können die auf diesem Weg berechneten CCSD(R12)-Grundzustandsenergien nicht mit dem vollständigen CCSD-R12-Ergebnissen verglichen werden. Deshalb wird ein Vergleich mit den Ergebnissen aus Tabelle (E.1) bis (E.3) vorgenommen. Die mit und ohne den Orbitalbasen identischen Auxiliarbasen berechneten $\Delta R12$ -Beiträge sind im Vergleich für Ne, HF und N₂ in Abbildung (9.5) bis (9.7) dargestellt. Die Abbildungen zu den restlichen in dieser Studie untersuchten Molekülen zeigen keine neuen Trends auf und sind der Vollständigkeit halber in Anhang (E) aufgelistet. Es fällt auf, dass die Δ R12–Beiträge sowohl des MP2-R12– als auch des CCSD(R12)–Modells kleiner als die entsprechenden $\Delta R12$ -Beiträge sind, die mit einer der Orbitalbasis identischen Auxiliarbasis berechnet wurden. Das bedeutet, dass die CCSD(R12)-Näherung aufgrund einer vorteilhaften Fehlerkompensation ohne Auxiliarbasen zu niedrigeren Korrelationsenergien führt als mit Auxiliarbasen, die nicht identisch mit der Orbitalbasis sind.

Abbildung 9.5.: Berechnete Δ R12–Beiträge für Ne mit und ohne 19s14p8d6f4g3h2i Auxiliarbasis in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

Abbildung 9.6.: Berechnete Δ R12–Beiträge für HF mit und ohne 19s14p8d6f4g3h2i (9s6p4d3f2g für H) Auxiliarbasis in m $E_{\rm h}$, dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung 9.7.: Berechnete Δ R12–Beiträge für N₂ mit und ohne 19s14p8d6f4g3h2i Auxiliarbasis in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

9.1.3. Zusammenfassung

In diesem Abschnitt wurde die CCSD(R12)–Näherung im Vergleich zum vollständigen CCSD-R12–Modell anhand von Δ R12–Beiträgen, die sich als Differenz zwischen dem konventionellen CCSD– und den jeweiligen CCSD(R12)– oder CCSD-R12–Modellen definieren, untersucht. Dabei konnte gezeigt werden, dass die Δ R12(CCSD(R12))– und die Δ R12(CCSD-R12)–Beiträge beginnend mit Basissätzen von quadruple– ζ –Qualität und höher so nahe beieinander liegen, dass die Unterschiede zwischen beiden vernachlässigbar klein sind.

Dieser Umstand ist jedoch bei Verwendung von kleineren Basissätzen von bis zu triple- ζ -Qualität nicht mehr gegeben. Trotzdem sollte auch in diesen kleinen Basissätzen die CCSD(R12)–Näherung bevorzugt angewendet werden, da bei dieser weniger problematische "Zerlegung der Einheit"–(RI)–Näherungen im Vergleich zum vollständigen CCSD-R12–Modell, bei dem teilweise Doppel–RI–Näherungen notwendig sind, gemacht werden. In einer kleinen Basis können diese RI–Nährungen ungenau sein und sollten prinzipiell soweit möglich vermieden werden. Untersuchungen nahe am Basissatzlimit haben gezeigt, dass die mit der CCSD(R12)–Näherung berechneten Grundzustandsenergien durchwegs etwas kleiner als die des vollständigen CCSD-R12–Modells sind.

Des Weiteren wurde der Frage nachgegangen, inwieweit Abschätzungen der CCSD-R12-

Grundzustandsenergie als Summe aus der konventionellen CCSD–Grundzustandsenergie und der $\Delta R12(MP2\text{-}R12)$ –Korrektur aus einer MP2-R12–Rechnung, in der Literatur auch als MP2–Limit–Korrektur [154] bekannt, sinnvoll sind. Dabei konnte für den untersuchten Testsatz an Atomen und Molekülen gezeigt werden, dass diese Art der Korrektur zwar in kleineren Basissätzen prinzipiell anwendbar ist, jedoch in größeren Basissätzen, beginnend mit quadruple– ζ –Niveau, zu einer Überschätzung der $\Delta R12$ –Korrektur führt. Deshalb kann eine Abschätzung der CCSD-R12–Grundzustandsenergie durch Hinzufügen der MP2–Basissatzlimitkorrektur zur konventionellen CCSD–Grundzustandsenergie zu völlig unzuverlässigen Ergebnissen führen. Besser ist es, dieses Risiko zu vermeiden, und gleich eine CCSD(R12)–Rechnung durchzuführen.

Es konnte gezeigt werden, dass für die in dieser Studie untersuchte (R12)–Näherung zumindest im Rahmen des hier verwendeten Ansatzes 1, die Erweiterung des CCSD(R12) auf Triples–Korrekturen in Analogie zum CCSD[T]– oder CCSD(T)–Modell, bei denen die Triples–Beiträge störungstheoretisch behandelt werden, kein Problem darstellt. Wie bei den konventionellen CCSD[T]– und CCSD(T)–Modellen können auch hier die Triples–Korrekturen aus den Singles– und Doubles–Amplituden aufgebaut werden. Demnach können CCSD[T](R12)– oder CCSD(T)(R12)–Rechnungen in der gleichen Art und Weise wie die bei den auf R12–Niveau vollständigen CCSD[T]-R12– und CCSD(T)–R12–Modellen durchgeführt werden.

Weiterhin wurde für die CCSD(R12)–Näherung beobachtet, dass, wenn die Orbitalbasis nicht mehr identisch mit der Auxiliarbasis ist, die entsprechenden Δ R12(CCSD(R12))–Beiträge im Betrag meist kleiner sind als selbige, die mit einer der Orbitalbasis identischen Auxiliarbasis berechnet wurden. Das gleiche Verhalten wurde auch bei dem MP2-R12–Modell beobachtet. Die CCSD(R12)–Näherung führt demnach bei Verwendung einer der Orbitalbasis identischen Auxiliarbasis aufgrund einer vorteilhaften Fehlerkompensation zu niedrigeren Korrelationsenergien.

9.2. Berechnung von CCSD(T)(R12)-Reaktionsenergien

Im letzten Abschnitt konnte gezeigt werden, dass die CCSD(R12)-Näherung [122] im Vergleich zum vollständigen CCSD-R12-Modell [40], sofern ausreichend große Basissätze verwendet werden, zu sehr genauen Grundzustandsenergien von nahezu identischer Qualität wie beim CCSD-R12-Modell führt. Außerdem wurde erkannt, dass die zusätzliche auf störungstheoretischer Basis näherungsweise Einführung von Triples-Korrekturen in Analogie zum CCSD(T)-Modell [124] für den hier verwendeten Ansatz 1 kein Problem darstellt und zu Grundzustandsenergien von sehr ähnlicher Genauigkeit wie beim entsprechenden auf R12-Singles- und Doubles-Basis vollständigen CCSD(T)-R12-Modell führt. Dieser Abschnitt beschäftigt sich ausführlicher mit Anwendungen der CCSD(T)(R12)-Näherung [123] im Rahmen einer Untersuchung von Reaktionsenergien von 15 chemischen Reaktionen, an denen 23 kleinere Moleküle beteiligt sind. Ziel dieser Studie ist es, eine Aussage darüber treffen zu können, inwieweit sich die zu sehr genauen Grundzustandsenergien eignet.

Nummer	Reaktion	Exp. ^a
1	$\mathrm{CS}_2 + 2 \ \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{CO}_2 + 2 \ \mathrm{H}_2\mathrm{S}$	-46.6
2	$\rm CO + Cl_2 \rightarrow \rm COCl_2$	-115.4
3	$\mathrm{NH}_3 + 4 \mathrm{~H}_2\mathrm{O}_2 \rightarrow \mathrm{HNO}_3 + 5 \mathrm{~H}_2\mathrm{O}$	-741.2
4	$C_2H_2 + H_2 \rightarrow C_2H_4$	-202.7
5	$\rm CO+H_2 \rightarrow H_2 \rm CO$	-20.8
6	$H_2O_2 + H_2 \rightarrow 2 H_2O$	-363.5
7	$\rm H_2CO + \rm H_2 \rightarrow CH_3OH$	-122.7
8	$C_2H_6 + H_2 \rightarrow 2 \ CH_4$	-78.0
9	$C_2H_4 + H_2 \rightarrow C_2H_6$	-164.1
10	$\mathrm{CH}_4 + 4 \ \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{CO}_2 + 6 \ \mathrm{H}_2\mathrm{O}$	-1211.3
11	$\mathrm{SO}_2 + \mathrm{H}_2\mathrm{O}_2 ightarrow \mathrm{SO}_3 + \mathrm{H}_2\mathrm{O}$	-204.4
12	$\rm CO+H_2O_2 ightarrowCO_2+H_2O$	-392.4
13	$\rm CH_2CO + H_2CO \rightarrow C_2H_4O + CO$	-14.8
14	$\rm CO$ + $\rm NH_3 \rightarrow \rm HCONH_2$	-39.0
15	$\rm C_2H_2 + H_2O \rightarrow CH_3CHO$	-160.8

Tabelle 9.1.: Experimentelle Reaktionsenergien in kJ/mol.

 $^{\rm a}$ Für alle hier vorgestellten experimentellen Reaktionsenergien wurden auf DFT/B3LYP/TZVP-Basis Nullpunktschwingungs- und Temperaturkorrekturen durchgeführt. Die experimentelle Genauigkeit liegt bei \pm 4 kJ/mol.

9.2.1. Vorgehensweise

Alle CCSD(T)(R12)-Rechnungen wurden im Rahmen von Ansatz 1 und unter Verwendung von Näherung B, die in Abschnitt (4.5.3) eingeführt wurde, mit dem DALTON-Programm [126] duchgeführt. Als Orbitalbasis wurde entweder eine aug-cc-pV(T+d)Z oder aug-cc-pV(Q+d)Z Basis von Dunning *et al.* [20,159] verwendet. Neben beiden Orbitalbasen wurde eine vollständig dekontrahierte aug-cc-pV(5+d)Z Basis von Dunning *et al.* [20,159] als Auxiliarbasis verwendet. Auch die konventionellen CCSD(T)-Rechnungen wurden mit dem DALTON-Programm unter Verwendung von aug-cc-pV(X+d)Z Basen durchgeführt, wobei für die Kardinalzahl X = T, Q oder 5 eingesetzt wurde.

Alle Rechnungen an den verschiedenen Molekülen wurden basierend auf MP2(FC)/aug-ccpVTZ geometrieoptimierten Strukturen, die von Werner *et al.* [160] zur Verfügung gestellt wurden, durchgeführt. Für die Geometrieoptimierung sowie für alle anderen Rechnungen wurde die "frozen core"–Näherung verwendet. Das bedeutet, dass die 1s–Orbitale für C, N und O, sowie die 1s–, 2s– und 2p–Orbitale für S und Cl als "eingefroren" behandelt wurden.

Des Weiteren wurde für alle verwendeten experimentellen Reaktionsenthalpien [161–168] Nullpunktschwingungsenergie- sowie Temperaturkorrekturen durchgeführt. Die Korrekturterme wurden mittels Dichtefunktionaltheorie (DFT) [11] unter Verwendung des von Lee *et al.* entwickelten B3LYP–Dichtefunktionals [169] und einer TZVP-Basis [170, 171] mit dem TURBOMOLE–Programm [132,172–174] aus unskalierten harmonischen Schwingungsfrequenzen berechnet.

Diese Korrektur ist notwendig, damit die experimentellen Reaktionsenthalpien ΔH , die bei Standardbedingungen (298.15 K, 1 bar) bestimmt werden mit den berechneten elektronischen Reaktionsenergien $\Delta E(0 \text{ K})$, die bei 0 K bestimmt werden, verglichen werden können. Unter Verwendung der Beziehung

$$\Delta H = \Delta U + p \Delta V \,, \tag{9.2}$$

wurden die experimentellen Reaktionsenthalpien $\Delta H(298.15K)$ unter Berücksichtigung der Änderung der inneren Energien ΔU gemäß

$$\Delta H(0\mathbf{K}) = \Delta H(298.15\mathbf{K}) - \Delta \Delta U(298.15\mathbf{K} \to 0\mathbf{K}) - p\Delta V, \qquad (9.3)$$

$$\Delta E(0\mathbf{K}) = \Delta H(298.15\mathbf{K}) - \Delta \Delta U(298.15\mathbf{K} \to 0\mathbf{K}) - \Delta ZPVE - p\Delta V, \qquad (9.4)$$

auf die entsprechende elektronische Reaktionsenergie bei null Kelvin $\Delta E(0\mathrm{K})$ unter Berücksichtigung der Nullpunktschwingungsenergiekorrektur $\Delta \mathrm{ZPVE}$ sowie der Volumenänderung ΔV bei konstantem Druck pumgerechnet. Bei näherungsweiser Voraussetzung eines idealen Gases kann der Beitrag $p\Delta V$ gemäß $p\Delta V=\Delta nRT$ dargestellt werden. Dabei steht Δn für die Molzahl, T für die Temperatur und $R=8.314472\frac{\mathrm{J}}{\mathrm{molK}}$ für die ideale Gaskonstante. Der Term, der für die Temperaturkorrekturen verantwortlich ist, wird mit $\Delta\Delta U(298.15\mathrm{K}\to0\mathrm{K})$ symbolisiert und berechnet sich als

$$\Delta\Delta U(298.15\mathrm{K} \to 0\mathrm{K}) = \Delta U(298.15\mathrm{K}) - \Delta U(0\mathrm{K}), \qquad (9.5)$$

wobei die Molekülenergien

$$U(T) = U_{\rm rot} + U_{\rm trans} + U_{\rm vib} + U_{\rm el}, \qquad (9.6)$$

$$= E(0\mathbf{K}) + \mathbf{ZPVE} + X(T), \qquad (9.7)$$

$$X(T) = U_{\rm rot} + U_{\rm trans} + U_{\rm vib} \tag{9.8}$$

zur Berechnung von $\Delta U(298.15 \text{K})$ sich jeweils unter Zuhilfenahme der Zustandssummen Z aus der statistischen Thermodynamik [175] aus der Summe der Molekülenergien der Translation, Rotation und Vibration sowie der elektronischen Molekülenergie U_{el} berechnen lassen. Die Summe aus der Temperaturkorrektur X(T) und der Nullpunktschwingungsenergie muss dabei für jedes einzelne an der zu untersuchenden Reaktion beteiligten Moleküle berechnet werden.

Zur Abschätzung des Basissatzlimits wurde die Extrapolationsformel [84] aus Gleichung (8.2) verwendet. Diese Technik wurde bereits in Abschnitt (8.1) erläutert und wird deshalb an dieser Stelle nicht weiter ausgeführt. Die in dieser Studie zur Abschätzung verwendeten Korrelationsenergien E_X und E_Y wurden unter Verwendung der entsprechenden aug-cc-pV(X+d)Z und aug-cc-pV(Y+d)Z Basissätze berechnet. Es wurden zwei verschiedene Extrapolationen durchgeführt. Einmal auf triple- und quadruple- ζ -Niveau (TZ/QZ) mit den Kardinalzahlen X = 3 und Y = 4 und das andere mal auf quadruple- und quintuple- ζ -Niveau (QZ/5Z) mit den Kardinalzahlen X = 4 und Y = 5. Dabei wurden die extrapolierten (TZ/QZ)- oder (QZ/5Z)-Korrelationsenergien jeweils zur Hartree-Fock-Energie der größeren der beiden verwendeten Basen, also bei der (TZ/QZ)- zur quadruple- und bei der (QZ/5Z)-Extrapolation zur quintuple- ζ -Basis hinzuaddiert.

9.2.2. Ergebnisse

Die in dieser Studie untersuchten 15 Reaktionen sind in Tabelle (9.1) bereits vorgestellt worden. In den Tabellen (E.11) und (E.12) sowie (E.13) und (E.14) sind die verschiedenen MP2-, MP2-R12-, CCSD-, CCSD(R12)-, CCSD(T)- und CCSD(T)(R12)-Grund-zustandsenergien für die an den Reaktionen beteiligten Moleküle angegeben, die in den aug-cc-pV(T+d)Z und aug-cc-pV(Q+d)Z Basissätzen berechnet wurden. Die aus diesen Grundzustandsenergien auf triple- ζ - und quadruple- ζ -Niveau berechneten Reaktionsenergien werden zunächst mit experimentellen Daten verglichen. Hierfür ist die Differenz ($\Delta E_{\text{Calc}} - \Delta E_{\text{Exp}}$) der auf theoretischem Weg berechneten und den experimentellen Reaktionsenergien in Tabelle (E.16) und (E.18) aufgelistet. Die Ergebnisse auf triple- und quadruple- ζ -Niveau sind sowohl für die konventionellen als auch für die entsprechenden R12-Modelle in Abbildung (E.11) und (9.8) graphisch dargestellt. Die MP2-, CCSD- und CCSD(T)-Grundzustandsenergien, die in einer aug-cc-pV(5+d)Z Basis berechnet wurden finden sich in Tabelle (E.15).

Abbildung 9.8.: Auftragung der Reaktionsenergiedifferenzen ($\Delta E_{\text{Calc}} - \Delta E_{\text{Exp}}$) auf aug-ccpV(Q+d)Z Niveau zwischen theoretisch berechneten und experimentellen Reaktionsenergien in kJ/mol.

Zunächst fällt auf, dass auf MP2-R12–Niveau für Reaktion 3 und 10 sehr ungenaue Resultate mit Fehlern von bis zu 81 kJ/mol (triple– ζ –Basis) beziehungsweise 88 kJ/mol (quadruple– ζ –Basis) erhalten werden. Für die Reaktionen 1, 2, 6, 11 und 12 sinken die Abweichungen auf bis zu 24 kJ/mol (triple– ζ –Basis) und 28 kJ/mol (quadruple– ζ –Basis) ab. Nichtsdestotrotz sind diese Abweichungen nach wie vor viel zu groß, da sie etwa sieben mal größer als die experimentelle Ungenauigkeit von näherungsweise ±4 kJ/mol sind. Geht man zum konventionellen MP2–Modell über, so sieht die Situation sehr ähnlich aus, da die MP2–Abweichungen vom Experiment sich in der gleichen Größenordnung wie beim MP2–R12–Modell bewegen. Die Abweichungen beider Modelle sind zufälligerweise in der triple– ζ –Basis etwas kleiner als die in der quadruple– ζ –Basis. Das bedeutet, dass für eine genaue Beschreibung der hier untersuchten Reaktionsenergien sowohl das MP2– als auch das MP2–R12–Modell nicht geeignet sind.

Das in der Hierarchie nächst höhere CCSD(R12)–Modell führt hingegen zu wesentlich genaueren Reaktionsenergien als das MP2-R12–Modell. Hier wird für Reaktion 1 eine maximale Abweichung zum Experiment von 21 kJ/mol (triple– ζ -Basis) und 20 kJ/mol (quadruple– ζ -Basis) beobachtet. Erneut werden sehr ähnliche Ergebnisse auch für das konventionelle CCSD–Modell erhalten. Der methodische Fehler ist also größer als der Basissatzfehler. Das bedeutet, dass der Fehler, der durch die Beschränkung des *n*-Elektronenraums durch den Abbruch der Reihenentwicklung des Cluster–Operators \hat{T} nach den Zweifachanregungsoperatoren eingeführt wird, größer als der Fehler, der durch die Beschränkung der Einelektronenbasis resultiert, ist. Eine Ausnahme bildet Reaktion 10. Hier ist der aug-cc-pV(T+d)Z/CCSD–Fehler mit 0.8 kJ/mol sehr klein im Vergleich zum CCSD(R12)–Fehler, der 9.2 kJ/mol beträgt. Geht man jedoch zur quadruple– ζ -Basis über, so ändert sich der konventionelle CCSD–Fehler auf 16.0 kJ/mol und wird damit im Vergleich zur triple– ζ -Basis auch sehr groß. Dieses Verhalten zeigt, dass der relativ kleine aug-cc-pV(T+d)Z/CCSD–Fehler durch eine Fehlerkompensation zu erkären ist.

Nach Hinzufügung der Triples-Korrekturen wird ein erneutes Absinken des maximalen Fehlers für das CCSD(T)(R12)-Modell auf triple- ζ -Niveau bei 5.1 kJ/mol, hier für Reaktion 11, beobachtet. Des Weiteren treten für die Reaktionen 1, 4, 9 und 10 Abweichungen von mehr als 4 kJ/mol auf. Geht man zu den Abweichungen über, die in dem aug-ccpV(Q+d)Z Basissatz berechnet wurden, so liegt der maximale Fehler mit 5.3 kJ/mol für Reaktion 3. Abweichungen von mehr als 3 kJ/mol werden hingegen nur bei Reaktion 4 und 10 beobachtet. Vergleicht man die CCSD(T)(R12) Abweichungen zum Experiment, die in der aug-cc-pV(T+d)Z Basis berechnet wurden, mit denen des konventionellen CCSD(T)-Modells in der gleichen Basis, so fällt auf, dass die Werte des R12-Modells mit Schwankungen von bis zu 1.5 kJ/mol im Bereich des konventionellen CCSD(T)-Modells oder sogar näher als dieses am Experiment liegen. Geht man zu der quadruple- ζ -Basis über, so liegen die CCSD(T)(R12)- und CCSD(T)-Abweichungen zum Experiment erneut, mit Schwankungen von bis zu 2.5 kJ/mol, sehr nahe beieinander. Da der Fehler des Experiments jedoch bei $\pm 4 \text{ kJ/mol}$ liegt, kann an dieser Stelle keine Aussage mehr darüber getroffen werden, inwieweit welches Modell sich zur Beschreibung der Reaktionsenergien besser eignen könnte, da beide innerhalb der experimentellen Fehlertoleranz liegen.

Die Ergebnisse der durchgeführten Fehleranalyse für beide Basissätze und alle untersuchten ab-initio-Modelle finden sich in Tabelle (E.17) und (E.19). Zunächst fällt auf, dass sich alle Fehler und Standardabweichungen der konventionellen MP2-, CCSD- und CCSD(T)-Modelle in der gleichen Größenordnung wie die ihrer entsprechenden R12-Varianten MP2-R12, CCSD(R12) und CCSD(T)(R12) befinden. Beispielsweise sinken für die aug-cc-pV(Q+d)Z Basis die mittleren absoluten Fehler und die Standardabweichungen von 22.5 und 30.7 kJ/mol für das MP2-R12- über 6.7 und 7.8 kJ/mol für das CCSD(R12)zu 2.3 und 2.0 kJ/mol für das CCSD(T)(R12)-Modell ab. Das entspricht einer schrittweisen Erniedrigung des mittleren absoluten Fehlers von einem Faktor von 3 sowie im Fall der Standardabweichung einem Faktor von 4. Auf CCSD(T)(R12)-Niveau liegt der absolute mittlere Fehler in beiden untersuchten Basissätzen im Bereich der experimentellen Ungenauigkeit. Das bedeutet, dass das CCSD(T)(R12)-Modell im Rahmen der in dieser Studie untersuchten Reaktionen zu sehr genauen Reaktionsenergien führt.

Für einen ausführlichen Vergleich der verschiedenen CCSD(T)- und CCSD(T)(R12)-Ergebnisse sind diese für sämtliche der verwendeten Basissätze in Tabelle (E.20) im Vergleich zum Experiment aufgelistet. In den Vergleich wurden auch extrapolierte Reaktionsenergien auf aug-cc-pV(T+d)Z/aug-cc-pV(Q+d)Z sowie auf aug-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/aUg-cc-pV(Q+d)Z/cc-pV(5+d)Z Niveau miteinbezogen. Die zugehörigen Ergebnisse der Fehleranalyse finden sich in Tabelle (E.21). Wie erwartet liefern die CCSD(T)-Reaktionsenergien, die mit der quintuple- ζ -Basis berechnet wurden, die besten Resultate. Auch die Reaktionsenergien, die über eine aug-cc-pV(Q+d)Z/aug-cc-pV(5+d)Z Extrapolation berechnet wurden, liegen, bis auf Reaktion 11, bei der eine Abweichung von 6.3 kJ/mol beobachtet wird, sehr gut am Experiment. Nichtsdestotrot z liefern die CCSD(T)-Reaktionsenergien, die in einer aug-cc-pV(Q+d)Z Basis berechnet wurden, durchgängig die beste Beschreibung des Experiments für die untersuchten 15 Reaktionen und sind auch bei der Fehleranalyse nahezu mit den entsprechenden Fehlern aus der Analyse der aug-cc-pV(5+d)Z Reaktionsenergiedifferenzen identisch. Die aug-cc-pV(T+d)Z/CCSD(T)-Reaktionsenergien hingegen liefern im Vergleich zu den Ergebnissen in den anderen Basissätzen die schlechteste Beschreibung des Experiments. Das bedeutet, dass im Rahmen der in dieser Studie untersuchten Reaktionen auf triple- ζ -Niveau an Stelle von CCSD(T)- besser gleich CCSD(T)(R12)-Rechnungen durchgeführt werden sollten. Der Vergleich der aug-cc-pV(T+d)Z/aug-ccpV(Q+d)Z extrapolierten CCSD(T)-Reaktionsenergiedifferenzen mit den aug-cc-pV(T+dZ/CCSD(T)(R12)-Daten zeigt, dass hier einmal das eine und dann das andere Verfahren zu Reaktionsenergien führt, die näher am Experiment liegen. Die Fehleranalyse zeigt, dass für beide Verfahren der absolute mittlere Fehler und die Standardabweichung sehr nahe beieinander liegen, während der mittlere (-2.4 kJ/mol und -0.5 kJ/mol) und maximale absolute Fehler (7.3 kJ/mol und 5.1 kJ/mol) sich deutlich voneinander unterscheiden.

Insgesamt kann auch bei genauerer Betrachtung der CCSD(T)– und CCSD(T)(R12)– Ergebnisse in den verschiedenen Basissätzen für die untersuchten Reaktionsenergien unter Berücksichtigung der experimentellen Ungenauigkeit von ±4 kJ/mol keine Aussage darüber getroffen werden, welches Modell sich besser zur genauen Beschreibung des Experiments eignet, da im Rahmen der experimentellen Ungenauigkeit beide untersuchten Modelle innerhalb der Toleranzgrenze liegen. Generell kann man davon ausgehen, dass die extrapolierten aug-cc-pV(Q+d)Z/aug-cc-pV(5+d)Z Reaktionsenergien am nächsten am CCSD(T)-Basissatzlimit liegen. Ein Vergleich mit diesen Reaktionsenergien als Referenz sollte also eine bessere Aussage als bisher über die Qualität der verschiedenen CCSD(T)-und CCSD(T)(R12)-Rechnungen ermöglichen. Die entsprechenden Vergleichsdaten inklusive Fehleranalyse finden sich in Tabelle (E.22) und (E.23).

Es wird schnell deutlich, dass analog zum Vergleich mit den experimentellen Reaktionsenergien, auch hier die CCSD(T)-Ergebnisse, die in einer aug-cc-pV(T+d)Z Basis berechnet wurden, nicht ausreichend sind, um zu genauen Reaktionsenergien zu gelangen. In der gleichen Basis werden alle Fehler des konventionellen CCSD(T)- beim Übergang zum CCSD(T)(R12)-Modell reduziert, weshalb in dieser Basis die R12-Variante dem konventionellen Modell vorzuziehen ist. Dennoch ist die Beschreibung der Reaktionsenergien in einer triple- ζ -Basis, auch unter Zuhilfenahme von R12-Beiträgen, nicht ausreichend. Dies liegt zum Teil an der unzureichenden Beschreibung des Hartree-Fock-Zustands der an der jeweiligen Reaktion beteiligten Moleküle, da dieser in einer triple- ζ -Basis noch nicht konvergiert ist. Beispielsweise kann der relativ große aug-cc-pV(T+d)Z/CCSD(T)(R12)-Fehler von 9.9 kJ/mol (Reaktion 10) auf nur 3.5 kJ/mol reduziert werden, wenn anstelle der triple- ζ — die entsprechenden aug-cc-pV(5+d)Z Hartree-Fock-Grundzustandsenergien, von denen man annehmen kann, dass diese bereits konvergiert sind, verwendet werden. Gleiches gilt auch für Reaktion 11, hier kann unter Verwendung der quintuple- ζ -Hartree-Fock-Grundzustandsenergien der für die untersuchten Reaktionen größte aug-ccpV(T+d)Z/CCSD(T)(R12)-Fehler von 11.4 kJ/mol um fast die Hälfte auf 6.2 kJ/mol gesenkt werden. Ein Vergleich zwischen den Reaktionsenergiedifferenzen aus Tabelle (E.22) und (E.24) zeigt, dass alle aug-cc-pV(T+d)Z/CCSD(T)(R12)-Fehler der untersuchten Reaktionen sich durch die Verwendung der quintuple-ζ-Hartree-Fock-Energien, bis auf Reaktion 14 verbessern lassen.

In Abbildung (9.9) sind die Differenzen zwischen den berechneten Reaktionsenergien in einer quadruple- und quintuple- ζ -Basis und den extrapolierten Referenzdaten abgebildet. Erneut führen die aug-cc-pV(5+d)Z/CCSD(T)-Rechnungen zu den genauesten Reaktionsenergien. Diese Art von Rechnungen sind jedoch aus technischen Gründen für größere Moleküle nicht mehr praktikabel, weshalb man oft gezwungen ist auf kleinere Basissätze auszuweichen. Im Vergleich zu den aug-cc-pV(Q+d)Z/CCSD(T)-Ergebnissen fällt auf, dass die aug-cc-pV(T+d)Z/aug-cc-pV(Q+d)Z extrapolierten Reaktionsenergien in den meisten Fällen zu einer Verbesserung der Reaktionsenergie führen. Eine Ausnahme sind dabei Reaktion 2, 5, 6, 7, 13 und 15, wobei die Abweichung im Vergleich zum aug-cc-pV(Q+d)Z/CCSD(T) isch im Bereich von 1 bis 2 kJ/mol bewegen. Betrachtet man hingegen die aug-cc-pV(Q+d)Z/CCSD(T)(R12)-Ergebnisse im Vergleich zum extrapolierten aug-cc-pV(Q+d)Z/aug-cc-pV(5+d)Z Basissatzlimit, so fällt auf, dass diese bereits nahezu zum Basissatzlimit konvergiert sind. Größere Abweichungen treten lediglich bei Reaktion 1 und 11 auf, für die jedoch auch auf quintuple- ζ -Niveau Abweichungen in der gleichen Größenordnung beobachtet werden.

Abbildung 9.9.: Auftragung der Reaktionsenergiedifferenzen ($\Delta E_{\text{Calc}} - \Delta E_{\text{Ref}}$) auf aug-ccpV(Q+d)Z und aug-cc-pV(5+d)Z Niveau zwischen theoretisch berechneten und aug-pV(Q+d)Z/aug-cc-pV(5+d)Z extrapolierten Reaktionsenergien in kJ/mol.

9.2.3. Zusammenfassung

In diesem Abschnitt wurde anhand von 15 chemischen Reaktionen untersucht, inwieweit das CCSD(T)(R12)–Modell sich zur Vorhersage genauer Reaktionsenergien eignet. Dazu wurden sowohl MP2– als auch CCSD–, CCSD(T)– und MP2-R12– und CCSD(R12)–Reaktionsenergien in triple– und quadruple– ζ –Basissätzen berechnet und mit experimentellen Daten verglichen. Für die experimentellen Reaktionsenthalpien wurden Temperaturund Nullpunktschwingungskorrekturen durchgeführt und diese auf Reaktionsenergien bei null Kelvin umgerechnet. Hierdurch wird eine Vergleich mit den auf ab–initio–Weg berechneten Daten ermöglicht.

Dabei konnte gezeigt werden, dass sowohl die konventionellen MP2- und CCSD-Modelle als auch ihre entsprechenden R12-Varianten MP2-R12 und CCSD(R12) sich nicht zur genauen Beschreibung der untersuchten Reaktionsenergien eignen, da die gefundenen Abweichungen zum Experiment sehr groß sind. Besonders auf CCSD-Niveau fällt auf, dass der dominierende Fehler nicht durch die Beschränkung der Einelektronenbasis verursacht wird, sondern durch die Beschränkung der berücksichtigten Anregungen. Aus einer Fehleranalyse der ermittelten aug-cc-pV(T+d)Z und aug-cc-pV(Q+d)Z Reaktionsenergiedifferenzen konnte ermittelt werden, dass sowohl auf aug-cc-pV(Q+d)Z/CCSD(T)– als auch auf CCSD(T)(R12)–Niveau die genauesten Reaktionsenergien im Vergleich zum Experiment berechnet wurden. Da die experimentelle Ungenauigkeit im Bereich von ± 4 kJ/mol liegt, konnte allerdings keine Aussage darüber getroffen werden, welches der beiden Modelle sich besser zur Vorhersage von Reaktionsenergien im Rahmen der hier untersuchten Reaktionen eignet. Nichtsdestotrotz konnte gezeigt werden, das besonders auf triple– ζ –Niveau eine CCSD(T)(R12)– einer CCSD(T)–Rechnung vorzuziehen ist.

Da bisher die verbesserte Basissatzkonvergenz der CCSD(T)(R12)–Näherung im Vergleich zum konventionellen CCSD(T)–Modell nicht nachgewiesen werden konnte, wurden aug-cc-pV(5+d)Z/CCSD(T)–Rechnungen durchgeführt und das CCSD(T)–Basissatzlimit durch aug-cc-pV(Q+d)Z/aug-cc-pV(5+d)Z Extrapolationen abgeschätzt. Diese Reaktionsenergien wurden mit den bisher berechneten CCSD(T)– und CCSD(T)(R12)–Reaktionsenergien verglichen. Zusätzlich wurden in diesen Vergleich auch aug-cc-pV(T+d)Z/aug-cc-pV(Q+d)Z extrapolierte CCSD(T)–Reaktionsenergien miteinbezogen, die oft zu genauen Ergebnissen, nahe am Basissatzlimit, führten. Der Vergleich dieser extrapolierten Reaktionsenergien mit direkt berechneten aug-cc-pV(Q+d)Z/CCSD(T)–Reaktionsenergien zeigt jedoch, dass die (TZ/QZ) Extrapolation nicht immer zu einer Verbesserung der Ergebnisse führt.

Es konnte gezeigt werden, dass die berechneten aug-cc-pV(Q+d)Z/CCSD(T)(R12)–Reaktionsenergien bereits nahezu zum Basissatzlimit konvergiert sind, während die entsprechenden aug-cc-pV(Q+d)Z/CCSD(T)–Resultate mehrere recht große Abweichungen aufweisen. Die aug-cc-pV(Q+d)Z/CCSD(T)(R12)–Rechnungen kosten nicht erheblich mehr an Rechenzeit wie die des konventionellen CCSD(T) in der selben Basis. Sie führen jedoch zu einer Genauigkeit der Ergebnisse, die nahezu der einer aug-cc-pV(5+d)Z/CCSD(T)– Rechnung, die deutlich zeitaufwendiger ist, entspricht. Damit ist die CCSD(T)(R12)–Näherung einer konventionellen aug-cc-pV(Q+d)Z/CCSD(T)–Rechnung prinzipiell vorzuziehen.

Es wird darauf hingewiesen, dass die aug-cc-pV(Q+d)Z/CCSD(T)(R12)–Reaktionsenergien in direkter Konkurrenz zu extrapolierten (TZ/QZ) CCSD(T)–Reaktionsenergien stehen, die im Rahmen der in dieser Studie untersuchten Reaktionen, von ähnlicher Genauigkeit sind. In diesem Zusammenhang besteht jedoch Hoffnung, dass die Verwendung von anderen Korrelationsfaktoren als dem interelektronische Abstand r_{12} , bereits in einer triple– ζ –Basis mit der CCSD(T)(R12)–Näherung Grundzustandsenergien berechnet werden können, die in Bezug auf die Genauigkeit einer CCSD(T)–Rechnung in einer quintuple– ζ –Basis gleich kommen. An Stelle des interelektronischen Abstands kann beispielsweise eine Slater–Funktion gemäß Gleichung (3.23) verwendet werden [112]. Auf MP2–Niveau ist bereits bekannt, dass die Verwendung von Korrelationsfaktoren gemäß Gleichung (3.23) und (3.24), zu sehr guten Grundzustandsenergien führt [111]. Des Weiteren sollten Rechnungen unter Verwendung dieser neuen Korrelationsfaktoren zu wesentlich genaueren Ergebnissen als bisher führen, wenn die verwendeten Basen entsprechend nachoptimiert werden, da diese bisher nur für konventionelle Berechnungen von Korrelationsenergien oder auf diesen basierende Extrapolationen optimiert wurden [111].

Im Rahmen dieser Studie wurde gezeigt, dass die relativ großen CCSD(T)(R12)–Fehler in aug-cc-pV(T+d)Z Basissätzen zum Teil auf in dieser Basis noch nicht konvergierte Hartree–Fock–Grundzustandsenergien zurückzuführen sind. Deshalb sollte zukünftig die getrennte Berechnung von Hartree–Fock– und CCSD(T)(R12)–Grundzustandsenergien unter Verwendung der neuen Korrelationsfaktoren in verschiedenen Basissätzen die beste Strategie zur Berechnung hochgenauer Reaktionsenergien sein. Beispielsweise könnten aug-cc-pV(Q+d)Z Hartree–Fock–Grundzustandsenergien als Grundlage für aug-ccpV(T+d)Z/CCSD(T)(R12)–Reaktionsenergien unter Verwendung der neuen Korrelationsfaktoren dienen.

9.3. Berechnung der elektronischen Bindungsenergie des SO₃·H₂O Dimers

In diesem Abschnitt wird die Berechnung der elektronischen Bindungsenergie des $SO_3 \cdot H_2O$ van der Waals Komplexes beschrieben, von welchem vermutet wird, dass er eine wichtige Rolle bei der Bildung von Schwefelsäure in der Atmosphäre spielt. Neben konventionellen MP2- und Coupled-Cluster-Verfahren wurden zur genauen Erfassung der elektronischen Bindungsenergie auch die um den R12-Ansatz erweiterten MP2-R12- und CCSD(T)(R12)-Methoden eingesetzt [147].

9.3.1. Motivation

Generell ist die Aufklärung möglicher Reaktionsmechanismen von chemischen Reaktionen keine triviale Aufgabe. Beispielsweise verläuft die Bildung von Schwefelsäure in der Atmosphäre höchstwahrscheinlich über den Mechanismus [176–179]

 $SO_3 + H_2O \leftrightarrows SO_3 \cdot H_2O$ (1a)

$$SO_3 \cdot H_2O + H_2O \leftrightarrows SO_3 \cdot (H_2O)_2$$
 (1b)

$$SO_3 \cdot (H_2O)_2 \leftrightarrows H_2SO_4 \cdot H_2O$$
 (1c)

$$H_2SO_4 \cdot H_2O \leftrightarrows H_2SO_4 + H_2O$$
. (1d)

Ziel dieser Studie ist es, die Untersuchungen von Olzmann *et al.* [180] bezüglich der Fragestellung, ob dieser Mechanismus in der Tat als realistisch angesehen werden kann, durch theoretische Untersuchungen zu unterstützen. Dabei wird davon ausgegangen, dass bei der Bildung von H_2SO_4 der van der Waals Komplex SO_3 · H_2O eine wichtige Rolle spielen kann.

In kinetischen Experimenten [176,178,179] konnte gezeigt werden, dass das Geschwindigkeitsgesetz zur Bildung von H₂SO₄ erster Ordnung in SO₃ und zweiter Ordnung in H₂O verläuft. Die beobachtete Geschwindigkeitskonstante k_{obs} zeigt eine negative Temperaturabhängigkeit und die aus k_{obs} bestimmte Aktivierungsenergie $E_{a(obs)}$ liegt bei ≈ -52 kJ/mol ≈ -13 kcal/mol [178,179].

Quantenchemische Studien [177,181] deuten bei der Untersuchung des Energie-Reaktionsprofils der Reaktionen (1a) bis (1d) darauf hin, dass die Reaktion (1c) der geschwindigkeitsbestimmende Schritt ist, und dass Reaktion (1d) sehr viel schneller als die Rückreaktion (-1c) verläuft. Zu diesem Schluss kamen auch Experimentatoren wie Jayne *et al.* [179]. Genähert können die Reaktionen (1c) und (1d) demnach als

$$SO_3 \cdot (H_2O)_2 \rightarrow H_2SO_4 + H_2O$$
 (9.9)

behandelt werden und das Geschwindigkeitsgesetz für die Bildung von Schwefelsäure gemäß

$$\frac{d[H_2SO_4]}{dt} = k_{1c}^*[SO_3 \cdot (H_2O)_2]$$
(9.10)

formuliert werden. Setzt man des Weiteren für den $SO_3 \cdot (H_2O)_2$ Komplex Quasistationarität [182] voraus, so gilt

$$\frac{\mathrm{d}[\mathrm{SO}_3 \cdot (\mathrm{H}_2\mathrm{O})_2]}{\mathrm{d}t} \approx 0.$$
(9.11)

Das bedeutet, $SO_3 \cdot (H_2O)_2$ wird als reaktives Zwischenprodukt behandelt, dessen Konzentration im Vergleich zu den anderen Reaktanden gering ist. Geht man weiterhin davon aus, dass das Gleichgewicht (1a) nicht vom Gleichgewicht (1b) beeinflusst wird, so kann die Konzentration des $SO_3 \cdot (H_2O)_2$ Komplexes zu

$$[SO_3 \cdot (H_2O)_2] = \frac{K_{1a}k_{1b}^*}{k_{-1b}^* + k_{1c}^*} [SO_3] [H_2O]^2$$
(9.12)

berechnet werden, wobei mit K_{1a} die Gleichgewichtskonstante von Reaktion (1a) bezeichnet wird. Setzt man unter der Annahme, dass $k_{-1b}^* >> k_{1c}^*$ ist, das Ergebnis aus Gleichung (9.12) in Gleichung (9.10) ein, so kann das Geschwindigkeitsgesetz zur Bildung von Schwefelsäure gemäß

$$\frac{d[H_2SO_4]}{dt} = K_{1a} \frac{k_{1b}^*}{k_{-1b}^*} k_{1c}^* [H_2O]^2 [SO_3] = k_{obs} [H_2O]^2 [SO_3]$$
(9.13)

formuliert werden. Aufgrund des exothermen Charakters von Reaktion (1b) und (1c) wird davon ausgegangen, dass für diese Reaktionsgeschwindigkeitskonstanten chemische Aktivierungsbedingungen herrschen. Deshalb wurden die zugehörigen Geschwindigkeitskonstanten mit einem (*) gekennzeichnet.

Gleichung (9.13) liefert einen theoretischen Ausdruck für die experimentell bestimmte Reaktionsgeschwindigkeitskonstante k_{obs} . Daraus kann ein theoretischer Ausdruck für die gemessene Aktivierungsenergie $E_{a(obs)}$ gemäß

$$E_{a(obs)} \equiv RT^2 \frac{d \ln k_{obs}}{dT} = \Delta H_{1a}^0 + E_{a(1b)}^* - E_{a(-1b)}^* + E_{a(-1c)}^*$$
(9.14)

erhalten werden. ΔH_{1a}^0 ist die Standardreaktionsenthalpie von Reaktion (1a) und mit $E_{a(i)}^*$ werden die Aktivierungsenergien für die entsprechenden Reaktionen i bezeichnet. Es ist bekannt, dass chemische Reaktionen, die unter Aktivierungsbedingungen verlaufen, oft sehr kleine Aktivierungsenergien $E_{a(i)}^*$ aufweisen [183]. Unter dieser Voraussetzung wird die experimentelle Aktivierungsenergie $E_{a(obs)}$ von dem Beitrag ΔH_{1a}^0 dominiert, welcher seinerseits von der elektronischen Bindungsenergie $D_e = -\Delta E(0K)$ gemäß

$$-\Delta H_{1a}^{0}(T) = D_{e} + \Delta \Delta U(0K \to T) + \Delta ZPVE + RT$$
(9.15)

dominiert wird. Die Temperatur- und Nullpunktschwingungskorrekturen hierzu sind in Analogie zu Abschnitt (9.2) mit $\Delta\Delta U$ und $\Delta ZPVE$ bezeichnet worden.

Durch die sehr genaue Berechnung der elektronischen Bindungsenergie des SO₃·H₂O Dimers kann nach Gleichung (9.15) eine Abschätzung der Reaktionsenthalpie ΔH_{1a}^0 vorgenommen werden. Dies ermöglicht eine Teilanalyse der Aktivierungsenergien aus Gleichung (9.14) und eine genauere Vorhersage von k_{obs}. Eine zuverlässige Vorhersage von ΔH_{1a}^0 trägt deshalb zum Verständnis der negativen Temperaturabhängigkeit von k_{obs} und zur Verifizierung des angenommenen Reaktionsmechanismus bei.

9.3.2. Vorgehensweise

Die in dieser Studie verwendete Vorgehensweise zur Abschätzung einer sehr genauen Bindungsenergie des $SO_3 \cdot H_2O$ Dimers orientiert sich an der Arbeit von Klopper *et al.* [184] für das Wasser-Dimer.

Es wird eine spezielle Notation für die verschiedenen Geometrien der Monomere und des Dimers verwendet, die in den verschiedenen Tabellen jeweils in Klammern angegeben ist. Mit "A" und "B" wird die optimierte Geometrie des SO₃ und des H₂O Monomers abgekürzt. Für die optimierte Geometrie des SO₃·H₂O Komplexes wird die Abkürzung "AB" verwendet. Des Weiteren wird die Kennzeichnung "Fix" verwendet, wenn die Geometrie des SO₃·H₂O Komplexes durch eine Geometrieoptimierung mit der Einschränkung, dass die Minimumstrukturen der Monomere beibehalten werden, erhalten wurde.

Die Durchführung einer "counterpoise"–(CP)–Korrektur [185–188] ist notwendig, um den "Basissatzsuperpositionsfehler"–(BSSE)–Fehler [185–188] möglichst klein zu halten, der als Differenz zwischen den Ergebnissen mit und ohne CP–Korrektur definiert ist. Der Buchstabe "G" kennzeichnet, dass eines der beiden das Dimer aufbauenden Fragmente als "Geisterfragment" im Rahmen einer CP–Korrektur behandelt wurde. Das bedeutet beispielsweise, dass bei der Notation "GB" basierend auf der optimierten Geometrie "AB" das SO₃ im Dimer als "Geisterfragment", also ohne Ladung aber mit den gleichen Basisfunktionen wie "A" hinzugefügt wurde.

Unter Verwendung der oben beschriebenen Notation kann die Bildung des SO $_3$ ·H $_2$ O Komplexes in zwei Teilschritte gemäß

$$A_{(A)}^{[a]} + B_{(B)}^{[b]} \to \{A_{(AB)}^{[a]} + B_{(AB)}^{[b]}\}$$
(2a)

$$\{A_{(AB)}^{[ag]} + B_{(AB)}^{[gb]}\} \to AB_{(AB)}^{[ab]}$$
(2b)

unterteilt werden. Die Basis wird dabei mit kleinen Buchstaben im oberen Index- und die Geometrie im unteren Indexfeld angegeben. Die Energiedifferenzen aus Reaktion (2a) und (2b)

$$\Delta E_1 = E(A_{(AB)}^{[a]}) + E(B_{(AB)}^{[b]}) - E(A_{(A)}^{[a]}) - E(B_{(B)}^{[b]})$$
(9.16)

$$\Delta E_2 = E(AB_{(AB)}^{[ab]}) - E(A_{(AB)}^{[ag]}) - E(B_{(AB)}^{[gb]})$$
(9.17)

$$D_e = -\Delta E_1 - \Delta E_2 \tag{9.18}$$

109

addieren sich zur CP-korrigierten Gesamtbindungsenergie D_e des SO₃·H₂O Komplexes auf. ΔE_1 beschreibt dabei die Energie, die aufgewendet werden muss, um die H₂O und SO₃ Fragmente aus der Minimumstruktur in die Geometrie des Dimers zu deformieren und wird deshalb als Gesamtdeformationsenergie bezeichnet. ΔE_2 wird hingegen als "vertikale" Wechselwirkungsenergie bezeichnet. Sie erfasst die Energiedifferenz zwischen dem Komplex und seinen Fragmenten, wobei diese exakt die gleiche Geometrie wie der Komplex haben.

Die Strukturoptimierung der Monomere H_2O und SO_3 sowie des Dimers SO_3 · H_2O wurden auf RI-MP2-Niveau [133, 134] unter Verwendung der def2-QZVPP Basis von Weigend *et al.* [189] mit dem Programmpaket TURBOMOLE [132] durchgeführt. Dabei wurden nur die Valenzelektronen korreliert und die Elektronen der Rumpforbitale (1s für O und 1s2s2p für S) als "eingefroren" behandelt. Für fast alle der im Folgenden beschriebenen Methoden wurde die "frozen core"-Näherung verwendet. Ist dies nicht der Fall, so wird darauf im Text explizit hingewiesen. Die Geometriedaten der Monomere und des $SO_3 \cdot H_2O$ Komplexes finden sich in Tabelle (E.26), das Dimer ist in Abbildung (9.10) dargestellt.

Abbildung 9.10.: Das $\rm SO_3 \cdot H_2O$ Dimer. Die zugehörigen Strukturdaten finden sich in Tabelle (E.26)

Eine lokale TURBOMOLE-Version wurde zur Berechnung von RI-MP2-R12-Grundzustandsenergien [190] im Rahmen von Ansatz 1 und Näherung A verwendet. Hierfür wurden spezielle Orbital- und Auxiliarbasen eingesetzt, deren Konstruktion in Anhang (F) ausführlich beschrieben wird. Die berechneten Grundzustandsenergien finden sich in Tabelle (E.27).

Im RI-MP2-R12-Modul werden verschiedene Typen der RI-Näherung verwendet. Die Implementierung basiert auf dem MP2-R12-Modell, welches von Klopper und Samson [47] im DALTON-Programmpaket verfügbar gemacht wurde, und die Verwendung von Auxiliarbasen ermöglicht. Dies beinhaltet zur Berechnung der Mehrelektronenvielzentrenintegrale bereits eine klassische RI-Näherung. Im RI-MP2-R12-Modul wird an dieser Stelle die Orbitalbasis gleich der Auxiliarbasis gesetzt. Diese RI-Näherung wird im Folgenden als "R12-spezifische" RI-Näherung bezeichnet. Im RI-MP2-R12-Modul werden zusätzliche RI-Näherungen zur Berechnung von Zweielektronenvierzentrenintegralen über die Operatoren $\frac{1}{r_{12}}$, r_{12} und den Kommutator $[r_{12}, t_1]$ eingeführt [103, 133, 134, 190]. Die RI-Näherung für die Coulomb-Integrale ist bereits im konventionellen MP2-Teil des Programms [103,133,134] verfügbar. Dafür gibt es speziell optimierte Auxiliarbasissätze [191]. Um die "R12-spezifische" RI-Näherung, für die es keine speziell optimierten Auxiliarbasissätze gibt, von den hier verwendeten RI-Näherungen zu unterscheiden, wurde von Manby et al. [45, 192] die Verwendung des Begriffs "density fitting"-(DF) vorgeschlagen. Der RI-Fehler des RI-MP2-R12 wurde am Beispiel der Monomere H_2O und SO_3 mittels MP2-R12-Vergleichsrechnungen [47], welche mit dem DALTON-Programmpaket [126] durchgeführt wurden, überprüft und sind in Tabelle (E.27) aufgelistet. Dabei wurde die gleiche Orbitalbasis wie für die RI-MP2-R12-Rechnungen verwendet.

Die Berechnung der CCSD(T)(R12)–Grundzustandsenergien [122,123] wurden im Rahmen von Ansatz 1 und Näherung B [47] mit dem DALTON–Programmpaket [126] für das SO₃ Monomer durchgeführt, um dessen Deformationsenergie zu bestimmen. Verwendet wurde eine aug-cc-pV(Q+d)Z Orbitalbasis von Dunning *et al.* [20, 159] und eine vollständig dekontrahierte aug-cc-pV(5+d)Z Basis als Auxiliarbasis [47]. Zur Bestimmung der Deformationsenergie des H₂O Moleküls wurde die Potentialfläche von Polyansky *et al.* [193] verwendet.

Des Weiteren wurden für alle Moleküle konventionelle CCSD(T)-Grundzustandsenergien [124] mit dem MOLPRO-Programmpaket [194–198] berechnet. Verwendet wurden hierfür sowohl der aug-cc-pV(Q+d)Z als auch der aug-cc-pCVTZ Basissatz von Dunning *et al.* [20, 159, 199]. Die CCSD(T)-Rechnungen bei denen die aug-cc-pCVTZ Basis verwendet wurde, wurden sowohl mit als auch ohne die "frozen core"-Näherung durchgeführt, um eine Abschätzung der Effekte, die durch die Berücksichtigung der Rumpfelektronen bei der Berechnung der Elektronenkorrelationsenergie erzeugt werden, zu erhalten. Diese Ergebnisse finden sich in Tabelle (E.29) und (E.30). Zusätzlich wurden zur Abschätzung relativistischer Effekte sowohl der Darwin- als auch der Massengeschwindigkeitsterm [4] auf Hartree-Fock-Niveau berechnet.

9.3.3. Ergebnisse

Die Deformationsenergie der Monomere H_2O und SO_3 wurde zu 0.24 und 4.72 kJ/mol auf RI-MP2(FC)/def2-QZVPP Niveau bestimmt. Ausgehend von der optimierten RI-MP2-Minimumstruktur kann die Deformationsenergie beider Monomere auch auf einem experimentellen oder höheren ab-initio Niveau unter Vermeidung von weiteren aufwendigen Geometrieoptimierungen bestimmt werden. Hierfür wird näherungsweise davon ausgegangen, dass die Deformation beider Monomere der auf RI-MP2-Niveau berechneten Deformation entspricht.

Durch Addition der mittels RI-MP2 berechneten Deformation zur Minimumstruktur konnte für H₂O, unter Verwendung der analytischen PTJ2–Potentialfläche von Polyansky *et al.* [193] eine Deformationsenergie von 0.24 kJ/mol berechnet werden, die mit der RI-MP2–Deformationsenergie identisch ist. Da es für das SO₃ Molekül keine analytische Potentialfläche gibt, muss die zugehörige Deformationsenergie auf eine andere Weise bestimmt werden. Zunächst wurde die Minimumstruktur auf CCSD(T)(R12)–Niveau zu R_{SO} = 142.20 pm bestimmt. Dazu wurden, unter Verwendung von drei verschiedenen SO–Abständen, die entsprechenden Grundzustandsenergien berechnet, die sich in Tabelle (E.28) finden, und durch eine Parabel angefittet. Das Minimum dieser Parabel entspricht dem optimalen SO–Abstand. Danach wurde zu dieser Minimumstruktur die auf RI-MP2–Niveau berechnete Deformation hinzuaddiert und basierend auf dieser veränderten Geometrie eine erneute CCSD(T)(R12)–Rechnung durchgeführt. Aus der Differenz der CCSD(T)(R12)–Energien zwischen der Minimumstruktur (-623.208 666 $E_{\rm h}$) und der deformierten Struktur (-623.206 852 $E_{\rm h}$) ergibt sich eine Deformationsenergie von 4.76 kJ/mol.

Aus den CCSD(T)–Ergebnissen, die in einer aug-cc-pCVTZ Basis mit und ohne Hinzunahme der Rumpforbitale durchgeführt wurden und in Tabelle (E.30) aufgelistet sind, wurde der Beitrag der Rumpfkorrelation sowie relativistischer Effekte auf eine Absenkung der Deformationsenergie um etwa 0.07 kJ/mol abgeschätzt. Damit ergibt sich für SO₃ eine Deformationsenergie von 4.69 kJ/mol und eine Gesamtdeformationsenergie $\Delta E_1 = 4.93$ kJ/mol.

Im Gegensatz zur Deformationsenergie ΔE_1 kann bei der Berechnung der "vertikalen" Wechselwirkungsenergie ΔE_2 auch eine Wechselwirkungsenergie ΔE_2^{Fix} berechnet werden, die ungleich null ist. ΔE_2^{Fix} ist analog zu ΔE_2 aus Gleichung (9.18) definiert. Der Unterschied zu ΔE_2 liegt darin, dass man zur Berechnung von ΔE_2^{Fix} von einer Fixierung der Minimumstrukturen der Monomerfragmente im SO₃·H₂O Komplex ausgeht. Die einzelnen Beiträge zur Berechnung von ΔE_2 und ΔE_2^{Fix} sind in Tabelle (9.2) aufgelistet. Der größte Beitrag resultiert dabei aus CCSD(T)/aug-cc-pV(Q+d)Z Rechnungen aus Tabelle (E.29) am Komplex und den Fragmenten, wobei nur die Valenzelektronen korreliert wurden. Die Basissatzkorrektur wurde als Differenz zwischen MP2/aug-cc-pV(Q+d)Z und RI-MP2-R12-Ergebnissen, die beide unter Verwendung der "frozen core"-Näherung berechnet wurden, abgeschätzt. Diese Art der Abschätzung wird in der Literatur auch als MP2-Limit-Korrektur [154] bezeichnet. Die Rumpfkorrelationskorrekturen wurden als Differenz zwischen CCSD(T)/aug-cc-pCVTZ Grundzustandsenergien, die mit und ohne die "frozen core"–Näherung berechnet wurden, erhalten. Die zugehörigen Daten finden sich inklusive der relativistischen Beiträge auf Hartree–Fock–Niveau in Tabelle (E.30). Die relativistischen Korrekturen wurden als Differenz zwischen dem Darwin– und Massengeschwindigkeitsterm berechnet. Damit können die "vertikalen" Wechselwirkungsenergien ΔE_2 und $\Delta E_2^{\rm Fix}$ zu $-45.74~\rm kJ/mol$ und $-37.08~\rm kJ/mol$ bestimmt werden.

Tabelle 9.2.: Einzelne Beiträge zur Bindungsenergie des SO_3 ·H ₂ O Komplexes in kJ/mol
ΔE_2 entspricht der Gesamtwechselwirkungsenergie der vollständig relaxier
ten Struktur und $\Delta E_2^{ m Fix}$ entspricht der Wechselwirkungsenergie der opti
mierten Struktur, welche unter erzwungener Fixierung der Geometrien de
Monomere erhalten wurde.

Beitrag	Methode	Basis	ΔE_2^{Fix}	ΔE_2
Valenzkorrelationsenergie	CCSD(T)(FC)	aug-cc-pV(Q+d)Z	-35.82	-44.07
$\operatorname{Basissatzkorrektur}$	RI-MP2-R12(FC)	speziell (siehe F)	-1.51	-2.06
${\it Rumpfkorrelationskorrektur}$	CCSD(T)(Full)	aug-cc-pCVTZ	-0.03	-0.01
relativistische Korrektur	Hartree–Fock	aug-cc-pCVTZ	+0.28	+0.40
$\operatorname{Gesamtbeit}$ rag			-37.08	-45.74

Auffallend ist, dass die CP–Korrektur auf MP2/aug-cc-pV(Q+d)Z Niveau zu 2.2 kJ/mol berechnet wurde, während sie auf RI-MP2-R12–Niveau nur noch zu 0.22 kJ/mol bestimmt werden konnte. Das bedeutet, dass der "Basissatzsuperpositionsfehler"–(BSSE)–Fehler durch Verwendung von explizit korrelierten Wellenfunktionen um eine Größenordnung reduziert wurde.

Zur Berechnung von ΔE_1 und ΔE_2 wurden verschiedene ab-initio-Methoden und eine analytische Potentialfläche für H₂O verwendet. Außerdem wurde für die Berechnung von ΔE_1 angenommen, dass die Deformation der Fragmente H₂O und SO₃ der mittels RI-MP2/def2-QZVPP berechneten Deformation entspricht. Das bedeutet, dass die Summe aus ΔE_1 und ΔE_2 nicht zwingend als die "optimale" Bindungsenergie D_e = $-\Delta E$ angesehen werden kann. Der Vorgehensweise aus Ref. [184] folgend wird deshalb die elektronische Energiedifferenz ΔE

$$\Delta E(\mathbf{x}) = \Delta E_2^{\text{Fix}} + \left(\Delta E_2 - \Delta E_2^{\text{Fix}}\right)\mathbf{x} + \Delta E_1 \mathbf{x}^2 \tag{9.19}$$

als Funktion der Deformationskoordinate x dargestellt. Dabei wird angenommen, dass zwischen den beiden Extremfällen x = 0, und x = 1 das optimale x_{opt} liegt, das durch Minimierung von $\Delta E(x)$ erhalten wird und der besten Abschätzung von ΔE entspricht. Für den Fall x = 0 gilt, dass die optimale Geometrie der Monomere festgehalten wird. Damit wird $\Delta E(x) = \Delta E_2^{Fix}$. Für den Fall x = 1 ist die Geometrie des H₂O·SO₃ Komplexes vollständig relaxiert und es gilt $\Delta E(x) = \Delta E_1 + \Delta E_2$. Unter Verwendung von $\Delta E_1 = 4.93$ kJ/mol, $\Delta E_2^{Fix} = -37.08$ kJ/mol und $\Delta E_2 = -45.74$ kJ/mol, konnte ein $x_{opt} = 0.88$

berechnet werden. Daraus ergab sich $\Delta E = -40.88$ kJ/mol. Zum Vergleich wurde ΔE auch für den Extremfall x = 1 zu-40.81 kJ/mol berechnet. Dies zeigt, das im Fall des SO₃·H₂O Komplexes die Optimierung der Deformationskoordinate x keinen großen Effekt ausübt. Damit ergibt sich insgesamt eine elektronische Bindungsenergie D_e von 40.88 kJ/mol.

Prinzipiell ist es schwierig der berechneten elektronischen Bindungsenergie einen Fehlerbalken zuzuordnen. Beispielsweise sind Geometrie–Relaxationseffekte jenseits des RI-MP2/def2-QZVPP nur schwer zugänglich. Selbiges gilt auch für Korrelationsenergien jenseits des CCSD(T)/aug-cc-pV(Q+d)Z. Außerdem wurden bei der Bestimmung von ΔE_2 und ΔE_2^{Fix} die verschiedenen Beiträge aus Tabelle (9.2) aufaddiert. Dieses Verfahren beinhaltet auch eine Fehlerquelle, da nicht klar ist, ob diese Beiträge tatsächlich additiv behandelt werden dürfen. In Bezug auf ΔE_2 liegt der Beitrag, der aus den Triples–Korrekturen resultiert bei 0.7 kJ/mol und der Beitrag der Basissatzkorrektur bei 2 k/mol, während die relativistischen Korrekturen zu 0.4 kJ/mol berechnet wurden. Der Mittelwert dieser Beiträge ist 1 kJ/mol und wird als Fehlerbalken für die elektronische Bindungsenergie verwendet.

Die elektronische Bindungsenergie des SO_3·H2O Komplexes ist damit zu $D_e=(40.9\pm1)$ kJ/mol bestimmt worden.

9.3.4. Zusammenfassung

In der vorliegenden Studie wurde die elektronische Bindungsenergie des SO₃·H₂O van der Waals Komplexes unter Verwendung von MP2–, RI-MP2–, RI-MP2-RI2–, CCSD(T)– und CCSD(T)(R12)–Verfahren zu D_e = (40.9 ± 1) kJ/mol berechnet. Ausgehend von dieser Bindungsenergie führten Olzmann und Welz Temperatur– und Nullpunktschwingungskorrekturen durch und bestimmten die gesuchte Reaktionsenthalpie $\Delta H_{1a}^0(298K)$ zu $-34.7 \pm 4 \text{ kJ/mol} (-8.3 \pm 1 \text{ kcal/mol})$ [147].

Dieses Ergebnis bestätigt die Vermutung, dass die Gleichgewichtsreaktion (1a) maßgeblich an der Bildung von Schwefelsäure in der Atmosphäre beteiligt ist. Durch die möglichst genaue Bestimmung von ΔH_{1a}^0 konnte erschlossen werden, dass dieses den größten Beitrag zur gemessenen Aktivierungsenergie $E_{a(obs)}$ liefert, die bei ≈ -13 kcal/mol liegt und gemäß Gleichung (9.14) berechnet werden kann. Damit bleiben etwa 5 kcal/mol für die restlichen Aktivierungsenergien der Reaktionen (1b) und (1c) übrig. Basierend auf diesem Ergebnis können zukünftige Studien zur Analyse dieser Aktivierungsenergien durchgeführt werden.

10. Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde ein Näherungsmodell zur Berechnung von CCSD-R12– Grundzustandsenergien unter Verwendung von Auxiliarbasisfunktionen im Rahmen von Ansatz 1 erfolgreich entwickelt [122]. Beginnend mit Basissätzen von quadruple– ζ –Qualität liefert die sogenannte CCSD(R12)–Näherung Grundzustandsenergien von nahezu identischer Qualität wie das vollständige CCSD-R12–Modell. Nach Miteinbeziehung von Triples– Korrekturen in Analogie zum CCSD(T)–Modell konnte durch Untersuchung von Reaktionsenergien gezeigt werden, dass sich die CCSD(T)(R12)–Näherung zur Berechnung von sehr genauen Reaktionsenergien nahe am Basissatzlimit eignet [123]. Angesichts der Arbeiten von Ten–no [112] und Tew *et al.* [111,200] ist zu erwarten, dass auch bei CC-R12– Modellen die Verwendung neuer Korrelationsfaktoren, wie beispielsweise $r_{12} \exp(-\gamma r_{12})$ anstelle des linearen R12–Ansatzes, zu einer erheblichen Verbesserung des Konvergenzverhaltens führt.

Durch die vorliegende Arbeit wurde erst mals die Berechnung von CC2-Anregungsenergien unter Verwendung von explizit korrelierten Wellenfunktionen im Rahmen der Ansätze 1 und 2 mit Auxiliarbasisfunktionen möglich [115]. Anhand von Teststudien konnte gezeigt werden, dass die Verwendung des linearen R12-Ansatzes zur Berechnung von CC2-R12-Anregungsenergien nicht wie vermutet zu einem beschleunigten Basissatzkonvergenzverhalten führt. Durch eine Analyse der einzelnen Beiträge zu den CC2-R12-Anregungsenergien konnte gezeigt werden, dass deren Konvergenzverhalten im Vergleich zum konventionellen CC2-Modell auf eine unausgewogene Beschreibung der Doubles-Beiträge zum Grund- und angeregten Zustand zurückzuführen ist. Die Stabilisierung des angeregten Zustands durch die R12-Beiträge ist deutlich geringer als die des Grundzustands. Es konnte gezeigt werden, dass dies besonders für $\pi \leftarrow \sigma$ -Übergänge von Molekülen wie beispielsweise BH der Fall ist, da in deren Grundzustandskonfiguration nur σ -Orbitale besetzt sind, die zum Aufbau der R12-Paarfunktionen verwendet werden. Aus Symmetriegründen können diese R12–Paarfunktionen nicht zu den untersuchten Übergängen beitragen. Die aus diesen Erkenntnissen gezogene Schlussfolgerung, dass die Implementierung neuer R12-Paarfunktionen, die sowohl besetzte als auch virtuelle Orbitale berücksichtigen, zu einer deutlichen Verbesserung des Konvergenzverhaltens von Anregungsenergien führen sollte, konnte bereits bestätigt werden [146]. Damit dient die in der vorliegenden Studie geleistete Vorarbeit als wichtige Grundlage zur systematischen Erweiterung des CC2-R12-Modells zur Berechnung von höheren molekularen Eigenschaften sowie als Grundlage zur systematischen Erschließung der in der CC-Hierarchie höher stehenden CC-Modelle im Rahmen der CC-R12- und CC-R12-Antwort-Theorie. Es existieren bereits erste Ergebnisse für CCSD(R12)-Anregungsenergien [201].

A. Abkürzungen

AO	Atomorbital
BSSE	Basissatzsuperpositionsfehler
CC	Coupled-Cluster
CCS, CCSD, CCSDT	Coupled-Cluster-Modell mit bis zu Einfach- (Singles),
, ,	Zweifach- (Doubles) bzw. Dreifachanregungen (Triples)
	im Clusteroperator
CCSD-R12 CCSDT-R12	CCSD- und CCSDT-Modell mit explizit korrelierten
	Wellenfunktionen
CCSD(B12)	Näherungsmodell zu CCSD-B12
CCSD(T)	CCSD-Modell mit störungstheoretischer Behandlung
0000(1)	der Triples-Amplituden wobei die konvergierten CCSD-
	Singles- und -Doubles-Amplituden zum Aufhau der
	Triples-Amplituden verwendet werden
CCSD(T)-B12	CCSD-B12-Modell mit störungstheoretischer Behandlung
005D(1)-1012	der Triples-Amplituden gemäß der CCSD(T)-Näherung
CCSD(T)(B12)	Näherungsmodell zu CCSD(T)-B12
CCSD(T)(R12)	CCSD-Modell mit störungsthoorotischer Behandlung
0050[1]	der Triples Amplituden webei die konvergierten
	CCSD Doubles Amplituden, wober die Konvergierten
	Triples Amplituden verwendet werden
CCCDT D19	CCCD D12 Medall with string asthernstischen Deben dung
003D[1]-R12	den Teinles Angelituden nur if den OCSDIT Nähenung
CCCD[T](D19)	Näherung - Näherung dellem CCSD[1]-Naherung
CCD[I](R12)	Stämmartheonetisch metinigete Nähemungen zu CCSD
002,003	und CCSDT
CC2-R12	CC2–Modell mit explizit korrelierten Wellenfunktionen
CI	Configuration interaction (Konfigurationswechselwirkung)
CIS, CISD	Konfigurationswechselwirkung im Raum der
	bezüglich Hartree-Fock einfach bzw. zweifachangeregten
	Slaterdeterminanten
FCI	Full-CI
CI-R12	CI–Modell mit explizit korrelierten Wellenfunktionen
CP	counterpoise
DFT	${ m Dichtefunktionaltheorie}$
GTO	Gauß type orbital
HF	Hartree-Fock
MO	Molekülorbital
MP2	Møller–Plesset Störungstheorie zweiter Ordnung
MP2-R12	MP2–Modell mit explizit korrelierten Wellenfunktionen
RI	resolution of the identity
RI-MP2-R12	MP2-R12–Modell mit RI–Näherung
SCF	self consistent field

B. Explizite Ausdrücke für das CC2-R12-Modell

Tabelle B.1.: Explizite Ausdrücke für die CC2–Grundzustandsvektorfunktionen $\Omega_{ai} = \Omega_{ai}^{G} + \Omega_{ai}^{H} + \Omega_{ai}^{I} + \Omega_{ai}^{J}$ und $\Omega_{aijb} = \Omega_{aijb}^{E} + \Omega_{aijb}^{F}$. Die Indices α, β, \ldots stehen hier für Atomorbitalbasisfunktionen. Coulomb–Integrale werden mit g_{rs}^{rg} bezeichnet und sind als $g_{rs}^{rg} = \langle \phi_r(1)\phi_s(2)|\frac{1}{r_{12}}|\phi_p(1)\phi_q(2)\rangle$ definiert. Die \hat{T}_1 ähnlichkeitstransformierten Basisfunktionen $\tilde{\phi}_i$ und $\tilde{\phi}_a$ sind in Gleichungen (4.47) und (4.48) definiert.

Ω_{ai}		Ω_{aijb}	
Ω_{ai}^G	$=\sum_{cdk}(2t_{cd}^{ik}-t_{cd}^{ki})g_{k\tilde{a}}^{dc}$	Ω^E_{aijb}	$= (\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j) t_{ab}^{ij}$
Ω^H_{ai}	$= -\sum_{dkl} (2t^{kl}_{ad} - t^{lk}_{ad})g^{d\tilde{i}}_{lk}$	Ω^F_{aijb}	$=g^{ij}_{\tilde{a}\tilde{b}}$
Ω^{I}_{ai}	$= \sum_{ck} (2t_{ac}^{ik} - t_{ac}^{ki}) \hat{f}_{kc}$		
Ω^J_{ai}	$=\hat{f}_{ai}$		
\hat{f}_{kc} \hat{f}_{ai}	$= f_{kc} + \sum_{bj} (2g_{kj}^{cb} - g_{jk}^{cb}) t_b^j$ = $f_{ai} + (\epsilon_a - \epsilon_i) t_a^i + \sum_{kc} (2$	$2g_{\tilde{a}k}^{\tilde{i}c}-g$	$a_{\tilde{a}k}^{c ilde{i}})t_c^k$

Tabelle B.2.: Explizite Ausdrücke der R12–Beiträge der CC2-R12–Grundzustandsvektorfunktionen $\Omega_{ai} = \Omega_{ai}^{CC2} + \Omega_{ai}^{C'} + \Omega_{ai}^{H'} + \Omega_{ai}^{F'}$ und $\Omega_{aibj} = \Omega_{aibj}^{CC2} + \Omega_{aibj}^{E''}$ und $\Omega_{kilj} = \Omega_{kilj}^{E'} + \Omega_{kilj}^{E''} + \Omega_{kilj}^{E''}$ für die verschiedenen Ansätze. Integrale über den interelektronischen Abstand werden mit r_{rs}^{pq} bezeichnet und sind als $r_{rs}^{pq} = \langle \phi_r(1)\phi_s(2)|r_{12}|\phi_p(1)\phi_q(2)\rangle$ definiert. Für die Definition der Coulomb-Integrale g_{rq}^{pq} siehe Tabelle (B.1). Überlappungsintegrale werden mit S_{pq} bezeichnet. Die \hat{T}_1 ähnlichkeitstransformierten Basisfunktionen $\tilde{\phi}_i$ und $\tilde{\phi}_a$ sind in Gleichungen (4.47) und (4.48) definiert. Die Matrizen **B** und **C** sind in Gleichungen (4.44) und (4.42) definiert und sind für Ansatz 1 und 2 verschieden. Ihre expliziten Ausdrücke finden sich in Tabelle (B.3).

Ansatz 1:	$\hat{\mathbf{w}}_{12} = (1 - \hat{P}_1)(1 - \hat{P}_2)r_{12}$			
Ω_{ai}		Ω_{aibj}	Ω_{kilj}	
$ \begin{array}{c} \Omega^{G'}_{ai} \\ \Omega^{H'}_{ai} \\ \Omega^{I'}_{ai} \end{array} $	$= \sum_{klm} y_{kl}^{im} (V^{\dagger})_{\tilde{a}m}^{kl}$ $= 0$ $= 0$	$\Omega^{E'''}_{aibj} = 0$	$\Omega_{kilj}^{E'} \\ \Omega_{kilj}^{E''} \\ \Omega_{kilj}^{F'} \\ \Omega_{kilj}^{F'}$	$= \sum_{mn} B_{kl,mn}^{(ij)} c_{mn}^{ij}$ $= 0$ $= \tilde{V}_{kl}^{ij}$
$ \begin{array}{l} y_{kl}^{im} \\ \tilde{V}_{kl}^{ij} \\ (V^{\dagger})_{\tilde{a}m}^{kl} \end{array} $	$= 2c_{kl}^{im} - c_{kl}^{mi}$ = $\delta_{ik}\delta_{jl} - \hat{P}_{kl}^{ij}\sum_{pq'}r_{pq'}^{pq'}g_{pq'}^{\bar{i}\bar{j}} +$ = $S_{\bar{a}k}\delta_{lm} - \sum_{pq'}r_{pq'}^{kl}g_{\bar{a}m'}^{\bar{a}m'} - \Sigma_{pq'}^{\bar{j}}$	$ + \sum_{pq} r_{kl}^{pq} g_{pq}^{\tilde{i}\tilde{j}} \\ \sum_{pq'} r_{pq'}^{lk} g_{m\tilde{a}}^{pq'} + \sum_{pq} r_{pq}^{kl} g_{\tilde{a}n}^{pq} $	1	
Ansatz 2:	$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)r_{12}$			
Ω_{ai}		Ω_{aibj}	Ω_{kilj}	
$ \begin{array}{l} \Omega^{G'}_{ai} \\ \Omega^{H'}_{ai} \\ \Omega^{I'}_{ai} \end{array} $	$\begin{split} &= \sum_{klm} y_{kl}^{im} (V^{\dagger})_{\bar{a}m}^{kl} \\ &= -\sum_{mnkl} y_{mn}^{lk} \sum_{p'} r_{ap'}^{mn} \hat{g}_{lk}^{\bar{i}p'} \\ &= \sum_{kmn} y_{mn}^{ik} \sum_{p'} r_{ap'}^{mn} \hat{g}_{p'k} \end{split}$	$\Omega_{aibj}^{E'''} = \sum_{kl} C_{ab,kl}^{(ij)} c_{kl}^{ij}$	$\Omega^{E'}_{kilj}$ $\Omega^{E''}_{kilj}$ $\Omega^{F'}_{kilj}$	$= \sum_{mn} B_{kl,mn}^{(ij)} c_{mn}^{ij}$ $= \sum_{ab} C_{kl,ab}^{(ij)} t_{ab}^{ij}$ $= \tilde{V}_{kl}^{ij}$
$ \begin{array}{l} \hat{g}_{lk}^{\tilde{i}p'} \\ \hat{g}_{lk} \\ \hat{g}_{p'k} \\ \tilde{V}_{kl}^{ij} \\ (V^{\dagger})_{\tilde{a}m}^{kl} \end{array} $	$= g_{lk}^{\tilde{i}p'} - \sum_{j} g_{lk}^{\tilde{i}j} S_{jp'} \\= \sum_{cl} (2g_{kl}^{p'c} - g_{lk}^{p'c}) t_c^l - \sum_{j} \\= \delta_{ik} \delta_{jl} - \hat{P}_{kl}^{ij} \sum_{mq'} r_{kl}^{\tilde{m}q'} g_{mq}^{\tilde{i}j} \\= S_{\tilde{a}k} \delta_{lm} - \sum_{mq'} r_{mq'}^{kl} g_{\tilde{a}m}^{mq'} -$	$\sum_{cl} (2g_{kl}^{jc} - g_{lk}^{jc}) t_c^l S_{jp'}$ $ + \sum_{mn} r_{kl}^{\tilde{m}\tilde{n}} g_{mn}^{\tilde{i}j}$ $ - \sum_{mq'} r_{mq'}^{lk} g_{m\tilde{a}}^{mq'} + \sum_{mn} r_{mn}$	kl g ^{mn} mngām	
	$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)(1 - \hat{O}_2)($	$-\hat{V}_1\hat{V}_2)r_{12}$		
$ \begin{array}{c} \hat{g}_{lk}^{\tilde{i}p'} \\ \hat{g}_{lk} \\ \hat{g}_{p'k} \\ \tilde{V}_{kl}^{ij} \\ (V^{\dagger})_{\tilde{a}m}^{kl} \end{array} $	$= g_{lk}^{\tilde{i}p'} - \sum_{p} g_{lk}^{\tilde{i}p} S_{pp'} \\= \sum_{cl} (2g_{kl}^{p'c} - g_{lk}^{p'c}) t_{c}^{l} - \sum_{p} \\= \delta_{ik} \delta_{jl} - \hat{P}_{kl}^{ij} \sum_{mq'} r_{kl}^{\tilde{m}q'} g_{ij}^{jj} \\= S_{\tilde{a}k} \delta_{lm} - \sum_{mq'} r_{mq'}^{kl} g_{\tilde{a}m'}^{mq'} - $	$ \sum_{cl} (2g_{kl}^{pc} - g_{lk}^{pc}) t_c^l S_{pp'} + \sum_{mn} r_{kl}^{\bar{m}\bar{n}} g_{mn}^{\bar{m}} - \sum_{ab} r - \sum_{mq'} r_{mq'}^{lk} g_{m\bar{a}}^{mq'} + \sum_{mn} r $	${}^{ab}_{kl}g^{\tilde{i}\tilde{j}}_{\tilde{a}\tilde{b}}$ ${}^{kl}_{mn}g^{mn}_{\tilde{a}m}$	$-\sum_{cd} r^{kl}_{cd} g^{cd}_{am}$

Ansatz 1:	$\hat{\mathbf{w}}_{12} = (1 - \hat{P}_1)(1 - \hat{P}_2)r_{12}$
$\begin{array}{c} X_{kl,mn} \\ C^{(ij)}_{kl,ab} \\ B^{(ij)}_{kl,mn} \end{array}$	$= s_{kl}^{mn} - \sum_{pq'} (r_{kl}^{pq'} r_{pq'}^{mn} + r_{lk}^{pq'} r_{pq'}^{mn}) + \sum_{pq} r_{kl}^{pq} r_{pq}^{mn}$ = 0 $= \frac{1}{2} (T_{kl,mn} + T_{mn,kl}) + \frac{1}{2} (\varepsilon_k + \varepsilon_l + \varepsilon_m + \varepsilon_n - 2\varepsilon_i - 2\varepsilon_j) X_{kl,mn}$ $+ \frac{1}{2} (Q_{kl,mn} + Q_{mn,kl}) - \frac{1}{2} (P_{kl,mn} + P_{mn,kl})$
s_{kl}^{mn} t_{pq}^{rs} K_q^p p_{pq}^{mn}	$= \langle \varphi_k(1)\varphi_l(2) r_{12}^2 \varphi_m(1)\varphi_n(2)\rangle = \langle \varphi_p(1)\varphi_q(2) [\hat{t}_1 + \hat{t}_2, r_{12}]]\varphi_r(1)\varphi_s(2)\rangle = \langle \varphi_q(1) \hat{k}_1 \varphi_p(1)\rangle = \sum_{r'} (K_p^{r'}r_{r'q}^{mn} + K_q^{r'}r_{pr'}^{mn})$
$T_{kl,mn} \\ Q_{kl,mn} \\ P_{kl,mn}$	$ = \delta_{km} \delta_{nl} - \sum_{pq'} (r_{kl}^{pq'} t_{pq'}^{mn} + r_{lk}^{pq'} t_{pq'}^{mn}) + \sum_{pq} r_{kl}^{pq} t_{pq}^{mn} $ $ = \sum_{r'} (X_{kl,r'n} K_{r'}^m + X_{kl,mr'} K_{r'}^n) $ $ = \sum_{p'q'} r_{kl}^{p'q'} p_{p'q'}^{mn} - \sum_{pq'} r_{kl}^{pq'} p_{pq'}^{mn} - \sum_{p'q} r_{kl}^{p'q} p_{p'q}^{mn} + \sum_{pq} r_{kl}^{pq} p_{pq}^{mn} $
Ansatz 2:	$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)r_{12}$
${}^{[2]}X_{kl,mn}$ ${}^{[2]}C^{(ij)}_{kl,ab}$ ${}^{[2]}B^{(ij)}_{kl,mn}$	$\begin{split} &= s_{kl}^{mn} - \sum_{iq'} (r_{kl}^{iq'} r_{iq'}^{mn} + r_{lk}^{iq'} r_{iq'}^{mn}) + \sum_{ij} r_{kl}^{ij} r_{ij}^{mn} \\ &= -t_{kl}^{ab} + (\varepsilon_k + \varepsilon_l - \varepsilon_i - \varepsilon_j) r_{kl}^{ab} + \sum_{p'} (K_k^{p'} r_{p'l}^{ab} - r_{kl}^{p'b} K_{p'}^{a}) \\ &+ \sum_{q'} (K_l^{q'} r_{kq'}^{ab} - r_{kl}^{aq'} K_{q'}^{b}) \\ &= \frac{1}{2} (T_{kl,mn} + T_{mn,kl}) + \frac{1}{2} (\varepsilon_k + \varepsilon_l + \varepsilon_m + \varepsilon_n - 2\varepsilon_i - 2\varepsilon_j) X_{kl,mn} \\ &+ \frac{1}{2} (Q_{kl,mn} + Q_{mn,kl}) - \frac{1}{2} (P_{kl,mn} + P_{mn,kl}) \end{split}$
$T_{kl,mn} \\ Q_{kl,mn} \\ P_{kl,mn}$	$ \begin{split} &= \delta_{km} \delta_{nl} - \sum_{iq'} (r_{kl}^{iq'} t_{iq'}^{mn} + r_{lk}^{iq'} t_{iq'}^{nm}) + \sum_{ij} r_{kl}^{ij} t_{ij}^{mn} \\ &= \sum_{r'} (X_{kl,r'n} K_{r'}^m + X_{kl,mr'} K_{r'}^n) \\ &= \sum_{p'q'} r_{kl}^{p'q'} p_{p'q'}^{mn} - \sum_{iq'} r_{kl}^{iq'} p_{iq'}^{mn} - \sum_{p'j} r_{kl}^{p'j} p_{p'j}^{mn} + \sum_{ij} r_{kl}^{ij} p_{ij}^{mn} \end{split} $
	$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)(1 - \hat{V}_1\hat{V}_2)r_{12}$
$\begin{array}{c} X_{kl,mn} \\ C^{(ij)}_{kl,ab} \\ B^{(ij)}_{kl,mn} \end{array}$	$= {}^{[2]}X_{kl,mn} - \sum_{ab} r_{kl}^{ab}r_{ab}^{mn}$ $= {}^{[2]}C_{kl,ab}^{(ij)} - (\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j)r_{kl}^{ab}$ $= {}^{[2]}B_{kl,mn}^{(ij)} - \sum_{ab} {}^{[2]}C_{kl,ab}^{(ij)}r_{mn}^{ab} - \sum_{ab} {}^{[2]}C_{ab,mn}^{(ij)}r_{kl}^{ab}$ $+ \sum_{ab} r_{kl}^{ab}(\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j)r_{ab}^{mn}$

Tabelle B.3.: Explizite Ausdrücke der Matrizen ${\bf X}, {\bf C}$ und ${\bf B}$ im Rahmen der verschiedenen Ansätze.

Tabelle B.4.: Explizite Ausdrücke der Transformation $\rho = \mathbf{A}\vec{R}$ für das CC2–Modell. Dabei wird der Transformationsvektor ρ in die Komponenten $\rho_{ai} = {}^{1}\rho_{ai}^{G} + {}^{1}\rho_{ai}^{H} + {}^{1}\rho_{ai}^{I} + {}^{1}\rho_{ai}^{G} + {}^{2}\rho_{ai}^{G} + {}^{2}\rho_{ai}^{H} + {}^{2}\rho_{ai}^{I}$ und $\rho_{aibj} = {}^{1}\rho_{aibj}^{F} + {}^{2}\rho_{aibj}^{E}$ aufgeteilt. Ableitungen der \hat{T}_{1} transformierten Basisfunktionen $\tilde{\varphi}_{i}$ und $\tilde{\varphi}_{a}$ nach den Coupled–Cluster–Einfachanregungsamplituden $t_{\mu_{1}}$ werden durch die Basisfunktionen $\bar{\varphi}_{i}$ und $\bar{\varphi}_{a}$, die in Gleichungen (4.105) und (4.106) definiert sind berücksichtigt.

$$\begin{array}{ll} f_{kc} & = \sum_{jb} \left(2g_{kj}^{cb} - g_{jk}^{cb} \right) R_{b}^{j} \\ \bar{f}_{ai} & = \sum_{b} \hat{f}_{ab} R_{b}^{i} - \sum_{j} \hat{f}_{ji} R_{a}^{i} + \sum_{kc} (2g_{\bar{a}k}^{\bar{i}c} - g_{\bar{a}k}^{c\bar{i}}) R_{c}^{k} \\ \bar{f}_{ab} & = \varepsilon_{a} \delta_{ab} + \sum_{kc} (2g_{\bar{a}k}^{bc} - g_{k\bar{a}}^{bc}) t_{c}^{k} \\ \bar{f}_{ji} & = \varepsilon_{i} \delta_{ji} + \sum_{kb} (2g_{jk}^{\bar{j}b} - g_{kj}^{\bar{j}b}) t_{b}^{k} \end{array}$$

Tabelle B.5.: Explizite Ausdrücke der R12–Beiträge der Transformation $\rho = \mathbf{A}\vec{R}$ für das CC2-R12–Modell. Dabei wird der Transformationsvektor ρ in die Komponenten $\rho_{ai} = \rho_{ai}^{CC2} + 1\rho_{ai}^{C'} + 1\rho_{ai}^{H'} + 1\rho_{ai}^{H'} + 2'\rho_{ai}^{C'} + 2'\rho_{ai}^{H'} + 2'\rho_{ai}^{L'}$ und $\rho_{aibj} = \rho_{aibj}^{CC2} + 2'\rho_{aibj}^{E''}$ und $\rho_{kilj} = 1\rho_{kilj}^{F'} + 2\rho_{kilj}^{E''} + 2'\rho_{kilj}^{E''} + 2'\rho_{ai}^{L'}$ und gen der \hat{T}_1 transformierten Basisfunktionen $\tilde{\varphi}_i$ und $\tilde{\varphi}_a$ nach den Coupled–Cluster–Einfachanregungsamplituden t_{μ_1} werden durch die Basisfunktionen $\bar{\varphi}_i$ und $\bar{\varphi}_a$, die in Gleichungen (4.105) und (4.106) definiert sind berücksichtigt. Die Definition der Intermediate $(V^{\dagger})_{\bar{k}m}^{kl}, \hat{g}_{lk}^{\bar{i}p'}$ und $\hat{g}_{p'k}$ findet sich in Tabelle (B.2).

Ansatz 1:	$\hat{\mathbf{w}}_{12} = (1 - \hat{P}_1)(1 - \hat{P}_2)r_{12}$	
${}^{1}\rho_{ai}^{G'}$ ${}^{1}\rho_{kilj}^{F'}$	$ = \sum_{\substack{klm}{c}} \tilde{c}_{kl}^{im} (V^{\dagger})_{\bar{a}m}^{kl} \qquad 2' \rho_{d}^{\prime} \\ = \bar{V}_{kl}^{ij} \qquad 2' \rho_{l}^{\prime} $	$ \begin{array}{ll} \rho_{ai}^{G'} &= \sum_{klm} \tilde{R}_{kl}^{im} (V^{\dagger})_{\bar{a}m}^{kl} \\ \rho_{kilj}^{E'} &= \sum_{mn} B_{kl,mn}^{(ij)} R_{mn}^{ij} \end{array} $
$\begin{array}{c} \tilde{c}_{kl}^{im} \\ \bar{V}_{kl}^{ij} \end{array}$	$= 2c_{kl}^{im} - c_{kl}^{mi} \qquad \tilde{R}_{kl}^{im} \\ = -\hat{P}_{kl}^{ij} \sum_{pq'} r_{kl}^{pq'} (g_{pq'}^{\tilde{ij}} + g_{pq'}^{\tilde{ij}}) + \sum_{kl} \hat{R}_{kl}^{im} $	$\sum_{kl}^{m} = 2R_{kl}^{im} - R_{kl}^{mi}$ $\sum_{pq} r_{kl}^{pq} (g_{pq}^{\bar{i}j} + g_{pq}^{\bar{i}j})$
Ansatz 2:	$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)r_{12}$	
$ \begin{array}{c} {}^1\rho^{G'}_{ai} \\ {}^1\rho^{H'}_{ai} \\ {}^1\rho^{I'}_{ai} \\ {}^1\rho^{F'}_{kilj} \end{array} $	$ = \sum_{klm} \tilde{c}_{kl}^{im} (V^{\dagger})_{am}^{kl} \qquad 2' \rho_{d}^{i} \\ = -\sum_{mnkl} \tilde{c}_{mn}^{kl} \sum_{p'} r_{ap'}^{mn} \tilde{g}_{lk}^{\bar{p}'} \qquad 2' \rho_{d}^{i} \\ = \sum_{kmn} \tilde{c}_{mn}^{ik} \sum_{p'} r_{ap'}^{mn} \bar{g}_{p'k} \qquad 2' \rho_{d}^{i} \\ = \bar{V}_{kl}^{ij} \qquad 2' \rho_{d}^{i} \\ 2\rho_{k}^{E} \end{cases} $	$ \begin{split} \rho_{ai}^{G'} &= \sum_{klm} \tilde{R}_{kl}^{im} (V^{\dagger})_{\tilde{a}m}^{kl} \\ \rho_{ai}^{H'} &= -\sum_{mnkl} \tilde{R}_{mn}^{lk} \sum_{p'} r_{ap'}^{mn} \tilde{g}_{lk}^{\tilde{i}p'} \\ \rho_{ai}^{l'} &= \sum_{kmn} \tilde{R}_{mn}^{ik} \sum_{p'} r_{ap'}^{mn'} \tilde{g}_{p'k} \\ \rho_{aibj}^{E'''} &= \sum_{kl} C_{ab,kl}^{(i)} R_{kl}^{kl} \\ P_{klj}^{kl'} &= \sum_{ab} C_{kl,ab}^{(ij)} R_{ab}^{ij} \\ \rho_{klj}^{E'} &= \sum_{mn} B_{kl,mn}^{(ij)} R_{mn}^{ij} \end{split} $
$ar{V}^{ij}_{kl} \ ar{g}_{p'k}$	$ = -\hat{P}_{ij}^{kl} \sum_{mq'} [r_{kl}^{\bar{m}q'} g_{mq'}^{\bar{i}j} + r_{kl}^{\bar{m}q'} (g_m^{\bar{i}j}) \\ = \sum_{cl} (2g_{kl}^{p'c} - g_{lk}^{p'c}) R_c^l - \sum_j \sum_{cl} (g_m^{p'c}) R_c^{-1} - \sum_$	$ \begin{split} & \tilde{i}_{mq'}^{j} + g_{mq'}^{\tilde{i}j})] + \hat{P}_{ij}^{kl} \sum_{mn} (r_{kl}^{\tilde{m}\tilde{n}} g_{mn}^{\tilde{i}j} + r_{kl}^{\tilde{m}\tilde{n}} g_{mn}^{\tilde{i}j}) \\ & c_{l}(2g_{kl}^{jc} - g_{lk}^{jc}) R_{c}^{l} S_{jp'} \end{split} $
	$\hat{\mathbf{w}}_{12} = (1 - \hat{O}_1)(1 - \hat{O}_2)(1 - \hat{V}_1\hat{V}_2)$	$\hat{V}_2)r_{12}$
$ar{V}^{ij}_{kl}$ $ar{g}_{p'k}$	$\begin{split} &= -\hat{P}_{ij}^{kl} \sum_{mq'} [r_{kl}^{\bar{m}q'} g_{\bar{l}\bar{b}}^{\bar{l}\bar{j}} + r_{kl}^{\bar{m}q'} (g_{m}^{\bar{l}\bar{j}} \\ &- \hat{P}_{ij}^{kl} \sum_{ab} r_{kl}^{ab} (g_{\bar{a}\bar{b}}^{\bar{l}\bar{j}} + g_{\bar{a}\bar{b}}^{\bar{i}\bar{j}}) \\ &= \sum_{cl} (2g_{kl}^{p'c} - g_{lk}^{p'c}) R_c^l - \sum_p \sum_{cl'} (g_{kl}^{p'c} - g_{lk}^{p'c}) R_c^{-1} - \sum_p \sum_{cl'} (g_{kl}^{p'c} - g_{lk}^{p'c}) R_c^{-1}) \\ &= \sum_{cl'} (g_{kl}^{p'c} - g_{lk}^{p'c}) R_c^{-1} - \sum_p \sum_{cl'} (g_{kl}^{p'c} - g_{lk}^{p'c}) R_c^{-1} \\ &= \sum_{cl'} (g_{kl}^{p'c} - g_{kl}^{p'c}) R_c^{-1} \\ &= \sum_{cl'} (g_{kl}^{p'c}$	$\frac{1}{\hat{i}_{mq'}^{j}} + g_{mq'}^{\tilde{i}j})] + \hat{P}_{ij}^{kl} \sum_{mn} (r_{kl}^{\bar{m}\bar{n}} g_{mn}^{\tilde{i}\bar{j}} + r_{kl}^{\bar{m}\bar{n}} g_{mn}^{\tilde{i}\bar{j}})$ $_{cl} (2g_{kl}^{pc} - g_{lk}^{pc}) R_{c}^{l} S_{pp'}$

Tabelle B.6.: Definition der \hat{T}_1 Transformationsmatrizen. C bezeichnet die Matrix der Molekülorbitalkoeffizienten. Die Matrizen \mathbf{t}_1 und \mathbf{R}_1 sind durch Erweiterung der entsprechenden Amplituden auf die volle Dimension der Orbitalbasis definiert. Der Index α wird hier für Atomorbitalfunktionen verwendet.

Λ^p	$= \mathbf{C}(1 - \mathbf{t}_1^T)$	Λ^h	$= \mathbf{C}(1 + \mathbf{t}_1)$
$\Lambda^p_{\alpha i}$	$= C_{\alpha i}$	$\Lambda^{h}_{\alpha i}$	$= C_{\alpha i} + \sum_{b} C_{\alpha b} t_{b}^{i}$
$\Lambda^p_{\alpha a}$	$=C_{\alpha a}-\sum_{j}C_{\alpha j}t_{a}^{j}$	$\Lambda^{h}_{\alpha a}$	$= C_{\alpha a}$
$\bar{\Lambda}^p$	$=-\mathbf{C}R_{1}^{T}$	$\bar{\Lambda}^h$	$= \mathbf{C}R_1$
$\bar{\Lambda}^{p}_{\alpha i}$	= 0	$\bar{\Lambda}^{h}_{\alpha i}$	$=\sum_{b}C_{\alpha b}R_{b}^{i}=\sum_{b}\Lambda_{\alpha b}^{h}R_{b}^{i}$
$\bar{\Lambda}^{p}_{\alpha a}$	$= -\sum_{j} C_{\alpha j} R_a^j = -\sum_{j} \Lambda_{\alpha j}^p R_a^j$	$\bar{\Lambda}^{h}_{\alpha a}$	= 0
C. Abbildungen zu Kapitel 6

Abbildung C.1.: Schematische Darstellung des Algorithmus zur Berechnung von $(V^{\dagger})^{kl}_{\alpha m}$ im Rahmen von Ansatz 1.

Abbildung C.2.: Schematische Darstellung der Abfolge der Berechnung der verschiedenen R12–Beiträge zur CC2-R12–Grundzustandsvektorfunktion Ω_{μ_i} im Rahmen von Ansatz 1. Alle Beiträge zu Ω_{μ_i} finden sich in Tabelle (B.1) und (B.2).

Abbildung C.3.: Schematische Darstellung der Abfolge der Berechnung der verschiedenen R12–Beiträge zur Transformation $\rho = \mathbf{A}\vec{R}$ im Rahmen von Ansatz 1. Alle CC2-R12–Beiträge zu ρ finden sich in Tabelle (B.4) und (B.5).

Abbildung C.4.: Schematische Darstellung des Algorithmus zur Berechnung von $(V^{\dagger})^{kl}_{\alpha m}$ im Rahmen von Ansatz 2.

- Initialisierung von $\Omega_{ai} = 0$, $\Omega_{aibj} = 0$ und $\Omega_{kilj} = \tilde{V}_{kl}^{ij} = \delta_{ik}\delta_{lj}$
- Schleife über δ
 - Berechne Coulomb-Integrale $g^{\beta\gamma}_{\alpha\delta}$
 - Transformation $I^{\delta}_{\alpha,\tilde{i}\tilde{j}}=\sum_{\beta\gamma}\Lambda^h_{\beta i}\Lambda^h_{\gamma j}g^{\beta\gamma}_{\alpha\delta}$
 - Berechne $\Omega^F_{aibj} = \Lambda^p_{\delta b} \sum_{\alpha} \Lambda^p_{\alpha a} I^{\delta}_{\alpha, \tilde{i}\tilde{j}}$ und aktualisiere $\Omega_{aibj} = \Omega_{aibj} + \Omega^F_{aibj}$
 - Berechne Ω_{ai}^{G} und Ω_{ai}^{H} und aktualisiere $\Omega_{ai} = \Omega_{ai} + \Omega_{ai}^{G} + \Omega_{ai}^{H}$
- Ende Schleife über δ
- Lese r_{kl}^{ab} und aktualisiere $\Omega_{kilj} = \Omega_{kilj} \sum_{ab} r_{kl}^{ab} q_{\bar{a}\bar{b}}^{\bar{i}\bar{j}} \longrightarrow \mathcal{O}(n^4 V^2)$
- Lese $r_{kl}^{\alpha\beta}$ und transformiere $r_{kl}^{\tilde{m}\tilde{n}} = \sum_{\alpha\beta} \Lambda_{\alpha m}^h \Lambda_{\beta n}^h r_{kl}^{\alpha\beta} \to \mathcal{O}(n^3 N(N+n))$
- Lese $g_{mn}^{\alpha\beta}$ und transformiere $g_{mn}^{\tilde{i}\tilde{j}} = \sum_{\alpha\beta} \Lambda_{\alpha i}^{h} \Lambda_{\beta j}^{h} g_{mn}^{\alpha\beta} \to \mathcal{O}(n^{3}N(N+n))$
- Aktualisiere $\Omega_{kilj} = \Omega_{kilj} + \sum_{mn} r_{kl}^{\tilde{m}\tilde{n}} g_{mn}^{\tilde{i}\tilde{j}} \to \mathcal{O}(n^6)$
- Schleife über δ'
 - Berechne Coulomb–Integrale $g^{\beta\gamma}_{\alpha\delta'}$
 - $\text{ Transformation } I^{\delta'}_{\alpha, \bar{i}\bar{j}} = \sum_{\beta\gamma} \Lambda^h_{\beta i} \Lambda^h_{\gamma j} g^{\beta\gamma}_{\alpha\delta'} \rightarrow \mathcal{O}(nN^2N'(N+n))$
 - Transformation $I_{m,\tilde{i}\tilde{j}}^{\delta'} = \sum_{\alpha} C_{\alpha m} I_{\alpha,\tilde{i}\tilde{j}}^{\delta'} \rightarrow \mathcal{O}(n^3 N N')$
 - Lese $R_{\alpha,kl}^{\delta'}$ und transformiere $R_{\tilde{m},kl}^{\delta'} = \sum_{\alpha} \Lambda_{\alpha m}^{h} R_{\alpha,kl}^{\delta'} \to \mathcal{O}(n^3 N N')$
 - Aktualisiere $\Omega_{kilj} = \Omega_{kilj} 2\sum_m R^{\delta'}_{\tilde{m},kl} I^{\delta'}_{m,\tilde{i}\tilde{j}} \longrightarrow \mathcal{O}(n^5N')$
- Ende Schleife über δ'
- Berechne Ω_{ai}^J und Ω_{ai}^I und aktualisiere $\Omega_{ai} = \Omega_{ai} + \Omega_{ai}^J + \Omega_{ai}^I$
- Berechne Ω^{E}_{aibj} und aktualisiere $\Omega_{aibj} = \Omega_{aibj} + \Omega^{E}_{aibj}$
- Abbildung C.5.: Schematische Darstellung der Berechnung der CC2-R12–Grundzustandsvektorfunktion im Rahmen von Ansatz 2. Alle Beiträge zu Ω_{μ_i} finden sich in Tabelle (B.1) und (B.2).

• Berechne $\Omega_{kili}^{E''}$ in Abhängigkeit der jeweiligen Näherung für C - Wenn Näherung A dann: * Lese Integrale k_{kl}^{ab} * Berechne $\Omega_{kilj}^{E''}(A) = -\sum_{ab} k_k^{ab} t_{ab}^{ij} \to \mathcal{O}(n^4 V^2)$ - Wenn Näherung A' dann: * Lese Integrale k_{μ}^{ab} * Lese Orbitalenergien ε_{μ_i} und Integrale r_{kl}^{ab} * Berechne $X_{kl}^{ab} = (\varepsilon_a + \varepsilon_b - \varepsilon_k - \varepsilon_l)r_{kl}^{ab} + k_{kl}^{ab}$ * $\Omega_{kili}^{E''}(A') = -\sum_{ab} X_{kl}^{ab} t_{ab}^{ij} \to \mathcal{O}(n^4 V^2)$ - Wenn Näherung B dann: * Lese Integrale k_{kl}^{ab} und K_{kl}^{ab} und berechne $M_{kl}^{ab} = K_{kl}^{ab} - k_{kl}^{ab}$ * Lese Orbitalenergien ε_{μ_i} und Integrale r_{kl}^{ab} * Berechne $X_{kl}^{ab} = (\varepsilon_a + \varepsilon_b - \varepsilon_k - \varepsilon_l)r_{kl}^{ab} + M_{kl}^{ab}$ * Berechne $\Omega_{kili}^{E''}(B) = -\sum_{ab} X_{kl}^{ab} t_{ab}^{ij} \to \mathcal{O}(n^4 V^2)$ • Aktualisiere $\Omega_{kilj} = \Omega_{kilj} + \Omega_{kilj}^{E''}$ - Berechne $\Omega^{E^{\prime\prime\prime}}_{aibj}$ in Abhängigkeit der jeweiligen Näherung für C - Wenn Näherung A dann: * Lese Integrale k_{kl}^{ab} und R12–Amplituden c_{ii}^{kl} * Berechne $\Omega_{aibi}^{E'''}(A) = -\sum_{kl} k_{kl}^{ab} c_{kl}^{kl} \rightarrow \mathcal{O}(n^4 V^2)$ - Wenn Näherung A' dann: * Lese k_{kl}^{ab} , r_{kl}^{ab} , die R12–Amplituden c_{ij}^{kl} und Orbitalenergien ε_{μ_i} * Berechne $X_{kl}^{ab} = (\varepsilon_a + \varepsilon_b - \varepsilon_k - \varepsilon_l)r_{kl}^{ab} + k_{kl}^{ab}$ * Berechne $\Omega_{aibj}^{E'''}(A') = -\sum_{kl} X_{kl}^{ab} c_{ij}^{kl} \longrightarrow \mathcal{O}(n^4 V^2)$ - Wenn Näherung B dann: * Lese Integrale k^{ab}_{kl} und K^{ab}_{kl} und berechne $M^{ab}_{kl} = K^{ab}_{kl} - k^{ab}_{kl}$ * Lese Orbitalenergien ε_{μ_i} , r_{kl}^{ab} und R12–Amplituden c_{ij}^{kl} * Berechne $X_{kl}^{ab} = (\varepsilon_a + \varepsilon_b - \varepsilon_k - \varepsilon_l)r_{kl}^{ab} + M_{kl}^{ab}$ * Berechne $\Omega_{aibi}^{E'''}(B) = -\sum_{kl} X_{kl}^{ab} c_{ij}^{kl} \to \mathcal{O}(n^4 V^2)$ • Aktualisiere $\Omega_{aibj} = \Omega_{aibj} + \Omega_{aibj}^{E'''}$

Abbildung C.6.: Fortsetzung von Abbildung (C.5): Die Integrale k_{kl}^{ab} und K_{kl}^{ab} sind als $k_{kl}^{ab} = \langle \varphi_k(1)\varphi_l(2)|[\hat{t}_1 + \hat{t}_2, r_{12}]|\varphi_a(1)\varphi_b(2)\rangle$ und $K_{kl}^{ab} = \sum_{p'} (K_k^{p'}r_{p'l}^{ab} - r_{kl}^{p'b}K_{p'}^{ab}) + \sum_{q'} (K_l^{q'}r_{kq'}^{ab} - r_{kl}^{aq'}K_{q'}^{b})$ definiert. Die Definition der weiteren Integrale zum Aufbau der Matrix **C** findet sich in Tabelle (B.3).

Abbildung C.7.: Fortsetzung von Abbildung (C.5) und (C.6): Schematische Darstellung der Berechnung der CC2-R12-Grundzustandsvektorfunktion im Rahmen von Ansatz 2.

• Schleife über die Anzahl der Versuchsvektoren
– Berechne ${}^{1}\rho_{aibj}^{F} = \bar{g}_{ab}^{ij}$ und aktualisiere $\rho_{aibj} = \rho_{aibj} + {}^{1}\rho_{aibj}^{F}$ – Berechne ${}^{2}\rho_{ai}^{G}$ und ${}^{2}\rho_{ai}^{H}$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^{2}\rho_{ai}^{G} + {}^{2}\rho_{ai}^{H}$
– Lese r_{kl}^{ab} und berechne $\rho_{kilj} = -\sum_{ab} r_{kl}^{ab} \bar{g}_{ab}^{ij} \to \mathcal{O}(n^4 V^2)$
– Berechne ${}^{2}\rho^{E}_{aibj}$ und aktualisiere $\rho_{aibj} = \rho_{aibj} + {}^{2}\rho^{E}_{aibj}$
- Lese $(V^{\dagger})_{im}^{kl}$ und berechne ${}^{1}\rho_{ai}^{G'} = -\sum_{i} R_{i}^{a} (V^{\dagger})_{im}^{kl} \rightarrow \mathcal{O}(n^{4}V)$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^{1}\rho_{ai}^{G'}$
– Berechne ${}^1\rho^H_{ai}$ und ${}^2\rho^I_{ai}$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^1\rho^H_{ai} + {}^2\rho^I_{ai}$
- Berechne $\rho_{kilj} = \rho_{kilj} + \sum_{mn} r_{kl}^{\bar{m}\bar{n}} g_{\bar{m}n}^{\bar{l}\bar{j}} \to \mathcal{O}(n^6)$
- Berechne $\rho_{kilj} = \rho_{kilj} - \hat{P}^{ij}_{kl} \sum_{m\delta'} r^{\bar{m}\delta'}_{kl} g^{\bar{i}\bar{j}}_{m\delta'} \to \mathcal{O}(n^5 N')$
- Lese $V_{kl}^{\mu\bar{j}}$ und berechne $\rho_{kilj} = \rho_{kilj} + \hat{P}_{kl}^{ij} \sum_{\mu} \bar{\Lambda}_{\mu i}^{h} V_{kl}^{\mu\bar{j}} \longrightarrow \mathcal{O}(n^4N)$ nun gilt $\rho_{kilj} = {}^1\rho_{kilj}^{F'} = \bar{V}_{kl}^{ij}$
$\begin{array}{l} - \text{ Berechne } ^{2}\rho_{kilj}^{E^{\prime\prime}} = \sum_{ab} C_{kl,ab}^{\prime ij} R_{ab}^{ij} \rightarrow \mathcal{O}(n^{4}V^{2}) \\ \text{ und aktualisiere } \rho_{kilj} = \rho_{kilj} + ^{2^{\prime}}\rho_{kilj}^{E^{\prime\prime}} \end{array}$
- Berechne ${}^{2'}\rho_{aibj}^{E'''} = \sum_{kl} C_{kl,ab}^{ij} R_{kl}^{ij} \longrightarrow \mathcal{O}(n^4V^2)$ und aktualisiere $\rho_{aibj} = \rho_{aibj} + {}^{2'}\rho_{aibj}^{E'''}$
- Berechne ${}^{2'}\rho_{kilj}^{E'} = \sum_{mn} B_{kl,mn}^{(ij)} R_{mn}^{ij} \rightarrow \mathcal{O}(n^6)$ und aktualisiere $\rho_{kilj} = \rho_{kilj} + {}^{2'}\rho_{kilj}^{E'}$
- Berechne ${}^{2'}\rho_{ai}^{G'} = \sum_{klm} \tilde{R}_{kl}^{im} (V^{\dagger})_{\tilde{a}m}^{kl} \to \mathcal{O}(n^4 V)$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^{2'}\rho_{ri}^{G'}$
- Berechne ${}^{2'}\rho_{ai}^{H'} = -\sum_{mnkl} \tilde{R}_{mn}^{lk} \sum_{p'} r_{ap'}^{mn} \hat{g}_{lk}^{\tilde{l}p'} \longrightarrow \mathcal{O}(n^3NN' + n^5N')$
- Berechne ${}^{2'}\rho_{ai}^{r'} = \sum_{kmn} \tilde{R}_{mn}^{ik} \sum_{p'} r_{ap'}^{mn} \hat{g}_{p'k} \longrightarrow \mathcal{O}(n^3 NV)$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^{2'}\rho_{ai}^{l'}$
- Berechne ${}^{1}\rho_{ai}^{H'} = -\sum_{mnkl} \tilde{c}_{mn}^{lk} \sum_{p'} r_{ap'}^{mn} \hat{g}_{lk}^{\bar{i}p'} \to \mathcal{O}(n^3NN' + n^5N')$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^{1}\rho_{ai}^{H'}$
- Berechne ${}^{1}\rho_{ai}^{I'} = \sum_{kmn} \tilde{c}_{mn}^{ik} \sum_{p'} r_{ap'}^{mn} \bar{g}_{p'k} \to \mathcal{O}(n^3 N V)$ und aktualisiere $\rho_{i} = \rho_{i} + \frac{1}{2} \rho_{i}^{I'}$
- Berechne ${}^{1}\rho_{ai}^{I}$ und aktualisiere $\rho_{ai} = \rho_{ai} + {}^{1}\rho_{ai}^{I}$
• Ende Schleife über die Anzahl der Versuchsvektoren

Abbildung C.8.: Schematische Darstellung der Abfolge der Berechnung der verschiedenen R12–Beiträge zur Transformation $\rho = \mathbf{A}\vec{R}$ im Rahmen von Ansatz 2. Alle CC2-R12–Beiträge zu ρ finden sich in Tabelle (B.4) und (B.5).

D. Tabellen und Abbildungen zu Kapitel 8

Tabelle D.1.: Berechnete CC2-R12–Grundzustandsenergien von Be in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine 20s17p14d11f8g5h Basis als Orbital– und Auxiliarbasis verwendet.

Basis	CC2	A1	A2
sp	-14.637639	-14.648860	-14.648866
spd	-14.645492	-14.649653	-14.649664
spdf	-14.647767	-14.649749	-14.649761
spdfg	-14.648404	-14.649772	-14.649779
spdfgh	-14.648606	-14.649775	-14.649782
abgeschätztes Limit	-14.6498		

Tabelle D.2.: Berechnete CC2-R12–Gesamtenergien des angeregten Zustands ¹P (2p \leftarrow 2s) von Be in Hartree mit Ansatz 1 und 2 in Näherung B. Es wurde eine 20s17p14d11f8g5h Basis als Orbital– und Auxiliarbasis verwendet.

Basis	CC2	A1	A2
sp	-14.433998	-14.439547	-14.439550
spd	-14.454125	-14.456089	-14.456093
spdf	-14.458681	-14.459599	-14.459603
spdfg	-14.460020	-14.460781	-14.460778
spdfgh	-14.460488	-14.461242	-14.461239
abgeschätztes Limit	-14.4611		

Tabelle D.3.: Berechnete CC2-R12–Grundzustandsenergien von Ne in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine 20s14p11d9f7g5h3i Orbitalund eine 32s24p18d15f12g9h6i Auxiliarbasis verwendet.

Basis	CC2	A1	A2
sp	-128.741799	-128.878875	-128.880227
spd	-128.871487	-128.907045	-128.931287
spdf	-128.908788	-128.924098	-128.936171
spdfg	-128.922920	-128.931682	-128.936663
spdfgh	-128.928201	-128.934667	-128.936751
spdfghi	-128.930371	-128.936238	-128.936771
abgeschätztes Limit	-128.9341		

Tabelle D.4.: Berechnete CC2-R12-Gesamtenergien des angeregten Zustands ¹P (3s ← 2p) von Ne in Hartree mit Ansatz 1 und 2 in Näherung B. Es wurde eine 20s14p11d9f7g5h3i Orbital- und eine 32s24p18d15f12g9h6i Auxiliarbasis verwendet.

Basis	CC2	A1	A2
sp	-128.160878	-128.265788	-128.267521
spd	-128.282398	-128.310548	-128.330400
spdf	-128.315748	-128.328059	-128.337445
spdfg	-128.327030	-128.334205	-128.338103
spdfgh	-128.331233	-128.336584	-128.338262
spdfghi	-128.332937	-128.337834	-128.338299
abgeschätztes Limit	-128.3358		

Tabelle D.5.: Berechnete CC2-R12–Grundzustandsenergien von BH in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-25.189060	-25.198190	-25.201675
aug-cc-pVTZ	-25.204926	-25.209012	-25.209911
aug-cc-pVQZ	-25.210394	-25.212586	-25.212836
aug-cc-pV5Z	-25.212218	-25.213609	-25.213676
aug-cc-pV6Z	-25.212973	-25.214253	-25.213942
abgeschätztes Limit	-25.2140		

Tabelle D.6.: Berechnete CC2-R12–Totalenergien des angeregten B $^{1}\Sigma^{+}$ –Zustands von BH in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-24.954131	-24.959538	-24.962293
aug-cc-pVTZ	-24.968120	-24.970476	-24.971411
aug-cc-pVQZ	-24.972794	-24.974043	-24.974267
aug-cc-pV5Z	-24.974485	-24.975268	-24.975309
aug-cc-pV6Z	-24.975148	-24.975893	-24.975681
abgeschätztes Limit	-24.9761		

Tabelle D.7.: Berechnete CC2-R12–Totalenergien des angeregten A $^1\Pi$ –Zustands von BH in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-25.083747	-25.088507	-25.090144
aug-cc-pVTZ	-25.100783	-25.102878	-25.103386
aug-cc-pVQZ	-25.106649	-25.107771	-25.107896
aug-cc-pV5Z	-25.108624	-25.109326	-25.109341
aug-cc-pV6Z	-25.109445	-25.110116	-25.109915
abgeschätztesLimit	-25.1106		

Tabelle D.8.: Berechnete CC2-R12–Grundzustandsenergien von BF in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-nVDZ	-124 384625	-124 429368	-124 454611
aug cc pVTZ	124.401645	124511510	124 522730
aug-cc-pv 1Z	124.491040	-124.511510	104 541100
aug-cc-pvQZ	-124.525220	-124.00070	-124.041101
aug-cc-pV5Z	-124.537577	-124.544824	-124.546840
aug-cc-pV6Z	-124.542389	-124.548511	
abgeschätztes Limit	-124.549		

Tabelle D.9.: Berechnete CC2-R12–Totalenergien des B $^1\Sigma^+$ –Zustands von BF in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-124.082829	-124.124036	-124.148042
aug-cc-pVTZ	-124.187789	-124.205996	-124.217129
aug-cc-pVQZ	-124.221149	-124.230570	-124.236136
aug-cc-pV5Z	-124.233630	-124.240264	-124.242281
aug-cc-pV6Z	-124.239303	-124.244942	
abgeschätztes Limit	-124.247		

Basis	CC2	A1	A2
aug-cc-pVDZ	-124.067917	-124.109317	-124.133545
aug-cc-pVTZ	-124.173570	-124.191767	-124.202974
aug-cc-pVQZ	-124.207643	-124.217045	-124.222600
aug-cc-pV5Z	-124.220397	-124.227018	-124.229018
aug-cc-pV6Z	-124.226219	-124.231837	
abgeschätztes Limit	-124.234		

Tabelle D.10.: Berechnete CC2-R12–Totalenergien des C $^{1}\Sigma^{+}$ –Zustands von BF in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Tabelle D.11.: Berechnete CC2-R12–Totalenergien des A $^1\Pi-Z$ ustands von BF in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-124.144986	-124.187040	-124.209891
aug-cc-pVTZ	-124.254343	-124.273210	-124.283783
aug-cc-pVQZ	-124.288661	-124.298432	-124.303883
aug-cc-pV5Z	-124.301370	-124.308262	-124.310235
aug-cc-pV6Z	-124.306326	-124.312232	
abgeschätztes Limit	-124.313		

Tabelle D.12.: Berechnete CC2-R12–Grundzustandsenergien von CO in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-113.060991	-113.100817	-113.124971
aug-cc-pVTZ	-113.150084	-113.168554	-113.178238
aug-cc-pVQZ	-113.180764	-113.190327	-113.195315
aug-cc-pV5Z	-113.191835	-113.198589	-113.200349
aug-cc-pV6Z	-113.196248	-113.201909	
abgeschätztes Limit	-113.202		

Tabelle D.13.: Berechnete CC2-R12–Totalenergien des B $^1\Sigma^+$ –Zustands von CO in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-112.653598	-112.688752	-112.710863
aug-cc-pVTZ	-112.742059	-112.758314	-112.767443
aug-cc-pVQZ	-112.774052	-112.782423	-112.787102
aug-cc-pV5Z	-112.787325	-112.793243	-112.794891
aug-cc-pV6Z	-112.793283	-112.798259	
abgeschätztes Limit	-112.801		

Tabelle D.14.: Berechnete CC2-R12–Totalenergien des C $^1\Sigma^+$ –Zustands von CO in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-112.633800	-112.668838	-112.691085
aug-cc-pVTZ	-112.722989	-112.739125	-112.748291
aug-cc-pVQZ	-112.754668	-112.762967	-112.767641
aug-cc-pV5Z	-112.767587	-112.773467	-112.775107
aug-cc-pV6Z	-112.772931	-112.777877	
abgeschätztes Limit	-112.780		

Tabelle D.15.: Berechnete CC2-R12–Totalenergien des A $^1\Pi-Z$ ustands von CO in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-112.738634	-112.774964	-112.795345
aug-cc-pVTZ	-112.830844	-112.847911	-112.856264
aug-cc-pVQZ	-112.862207	-112.871078	-112.875643
aug-cc-pV5Z	-112.873497	-112.879798	-112.881401
aug-cc-pV6Z	-112.877993	-112.883326	
abgeschätztes Limit	-112.884		

Basis	CC2	A1	A2
aug-cc-pVDZ	-109.283119	-109.321165	-109.345466
aug-cc-pVTZ	-109.370766	-109.388340	-109.397569
aug-cc-pVQZ	-109.400123	-109.409001	-109.413927
aug-cc-pV5Z	-109.410667	-109.417070	-109.418801
aug-cc-pV6Z	-109.414869	-109.420321	-109.420162
abgeschätztes Limit	-109.420		

Tabelle D.16.: Berechnete CC2-R12-Grundzustandsenergien von N_2 in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Tabelle D.17.: Berechnete CC2-R12–Totalenergien des
a ${}^1\Pi_g$ –Zustands von N₂ in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfg
hi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-108.931447	-108.965069	-108.984501
aug-cc-pVTZ	-109.022337	-109.038159	-109.045614
aug-cc-pVQZ	-109.052226	-109.060285	-109.064560
aug-cc-pV5Z	-109.062822	-109.068654	-109.070132
aug-cc-pV6Z	-109.067052	-109.072049	-109.071838
abgeschätztes Limit	-109.073		

Tabelle D.18.: Berechnete CC2-R12–Totalenergien des a' $^{1}\Sigma_{u}^{-}$ Zustands von N₂ in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-108.897783	-108.930467	-108.950085
aug-cc-pVTZ	-108.989424	-109.004840	-109.012208
aug-cc-pVQZ	-109.018982	-109.026777	-109.031019
aug-cc-pV5Z	-109.029476	-109.035070	-109.036561
aug-cc-pV6Z	-109.033645	-109.038452	-109.038286
abgeschätztes Limit	-109.039		

Tabelle D.19.: Berechnete CC2-R12–Totalenergien des w ${}^{1}\Delta_{u}$ –Zustands von N₂ in Hartree mit den Ansätzen 1 und 2 in Näherung B. Es wurde eine spdfghi Auxiliarbasis verwendet.

Basis	CC2	A1	A2
aug-cc-pVDZ	-108.878302	-108.912795	-108.930997
aug-cc-pVTZ	-108.969526	-108.985828	-108.992694
aug-cc-pVQZ	-108.999238	-109.007639	-109.011554
aug-cc-pV5Z	-109.009824	-109.015754	-109.017108
aug-cc-pV6Z	-109.014049	-109.019088	-109.018840
abgeschätztes Limit	-109.020		

Abbildung D.1.: Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten B $^1\Sigma^+\text{-}Zustand$ von BF.

Abbildung D.2.: Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C $^{1}\Sigma^{+}$ -Zustand von BF.

Abbildung D.3.: Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten A $^1\Pi-$ Zustand von BF.

Abbildung D.4.: Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten B $^{1}\Sigma^{+}$ -Zustand von CO.

Abbildung D.5.: Berechnete CC2- und CC2-R12–Energien für den Grund– und angeregten C $^{1}\Sigma^{+}$ –Zustand von CO.

Abbildung D.6.: Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A $^1\Pi$ -Zustand von CO.

Abbildung D.7.: Berechnete CC2- und CC2-R12–Energien für den Grund- und angeregten a $^{1}\Pi_{q}$ –Zustand von N₂.

Abbildung D.8.: Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten a' $^1\Sigma_u^-$ –Zustand von N $_2.$

Abbildung D.9.: Berechnete CC2- und CC2-R12–Energien für den Grund– und angeregten w $^1\Delta_u$ –Zustand von N2.

wurde ei	ie spdfghi B	asis verwen	idet.						
		${\rm B}~^1\Sigma^+$			$C^{1}\Sigma^{+}$			$\mathrm{H}^{1}\mathrm{H}$	
Basis	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2
aug-cc-pVDZ	8.212	8.309	8.342	8.618	8.709	8.737	6.521	6.594	6.659
aug-cc-pVTZ	8.268	8.313	8.316	8.655	8.701	8.701	6.457	6.484	6.502
aug-cc-pVQZ	8.274	8.299	8.299	8.642	8.668	8.668	6.437	6.453	6.456
aug-cc-pV5Z	8.271	8.288	8.287	8.631	8.648	8.648	6.428	6.437	6.438
aug-cc-pV6Z	8.247	8.261		8.603	8.617		6.424	6.429	
abgeschätztes I	limit						6.419		
Tabelle D.21.: Berechne	te vertikale A	Anregungse	nergien von	CO in eV m	iit den Ans	ätzen 1 uno	l 2 in Nähe	rung B. Al	ls Auxiliarba
wurde ei	ıe spdfghi B	asis verwen	idet.						
		${ m B}~^{1}\Sigma^{+}$			$C^{1}\Sigma^{+}$			$\mathrm{II}^{1}\mathrm{II}$	
Basis	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2
aug-cc-pVDZ	11.086	11.213	11.268	11.624	11.755	11.807	8.772	8.867	8.970
aug-cc-pVTZ	11.103	11.163	11.178	11.622	11.685	11.699	8.687	8.725	8.761
aug-cc-pVQZ	11.067	11.100	11.108	11.595	11.629	11.638	8.668	8.687	8.699

Tabelle D.20.: Berechnete vertikale Amegungsenergien von BF in eV mit den Ansätzen 1 und 2 in Näherung B. Als Auxiliarbasis

8.6998.679

8.687 8.675 8.669

11.63811.571

 $\frac{11.629}{11.568}$ $\frac{11.539}{11.539}$

11.59511.54411.51911.485

11.10811.033

 $\frac{11.100}{11.030}$ $\frac{11.030}{10.984}$

11.06711.00710.96510.907

abgeschätztes Limit

aug-cc-pV6Z aug-cc-pV5Z

8.668 8.662 8.660 8.657

wurde eine	spdfghi E	asis verwei	idet.						
		a' $^{1}\Sigma_{u}^{-}$			a $^{1}\Pi_{g}$			$^{\rm W}$ $^1\Delta_u$	
Basis	CC2	A1	A2	CC2	A1	Α2	CC2	A1	Α2
aug-cc-pVDZ	10.486	10.630	10.759	9.569	069.6	9.822	11.016	11.108	11.278
aug-cc-pVTZ	10.377	10.437	10.486	9.481	9.529	9.577	10.918	10.955	11.017
aug-cc-pVQZ	10.371	10.399	10.419	9.467	9.489	9.507	10.909	10.922	10.949
aug-cc-pV5Z	10.373	10.395	10.401	9.465	9.481	9.488	10.907	10.920	10.931
aug-cc-pV6Z	10.374	10.391	10.391	9.465	9.477	9.478	10.907	10.918	10.921
abgeschätztes Limit	10.375			9.465			10.907		

wurde eine spdfghi Basis verwendet.	Tabelle D.22.: Berechnete vertikale Amegungsenergien von N_2 in eV
	⁷ mit den Ansätzen 1 und 2 in Näherung B. Als Auxiliarbasis

Abbildung D.10.: Berechnete CC2 und CC2-R12 Anregungsenergien für Be in eV.

Abbildung D.11.: Berechnete CC2 und CC2-R12 Anregungsenergien für Ne in eV.

Abbildung D.12.: Berechnete CC2 und CC2-R12 Anregungsenergien für den B $^1\Sigma^+-$ Übergang von BH in eV.

Abbildung D.13.: Berechnete CC2 und CC2-R12 Anregungsenergien für den A $^1\Pi-$ Übergang von BH in eV.

Abbildung D.14.: Berechnete CC2 und CC2-R12 Anregungsenergien für den B $^1\Sigma^+-$ Übergang von BF in eV.

Abbildung D.15.: Berechnete CC2 und CC2-R12 Anregungsenergien für den C $^1\Sigma^+-$ Übergang von BF in eV.

Abbildung D.16.: Berechnete CC2 und CC2-R12 Anregungsenergien für den A $^1\Pi-$ Übergang von BF in eV.

Abbildung D.17.: Berechnete CC2 und CC2-R12 Anregungsenergien für den B $^1\Sigma^+-$ Übergang von CO in eV.

Abbildung D.18.: Berechnete CC2 und CC2-R12 Anregungsenergien für den C $^1\Sigma^+-$ Übergang von CO in eV.

Abbildung D.19.: Berechnete CC2 und CC2-R12 Anregungsenergien für den A $^1\Pi-$ Übergang von CO in eV.

	$\langle R_1 [I$	$\tilde{\hat{H}}, \hat{R}_1$] HF>	$\langle R_1 [[\hat{H}, \hat{T}]$	$\hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}, \hat{I}]$	$\hat{R}_2 + \hat{R}_{2'}] \mathrm{HF}\rangle$
Basis	CC2	CC2-R12	CC2	CC2-R12	CC2	CC2-R12
sp	4981	4978	735	892	-224	-225
spd	4923	4921	834	894	-671	-672
spdf	4923	4922	865	895	-773	-773
$\operatorname{spd} \operatorname{fg}$	4924	4924	878	895	-807	-807
$\operatorname{spd} \operatorname{fgh}$	4925	4925	883	895	-821	-821

Tabelle D.23.: Analyse der verschiedenen CC2-R12–Beiträge in meV zu den untersuchten Anregunsenergien von Be im Vergleich zum konventionellen CC2.

Tabelle D.36.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.23) für die Analyse der CC2-R12–Anregungsenergien von Be.

Basis	$\langle R_1 [[\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF} \rangle$	$\langle R_1 [\hat{\hat{H}}, \hat{R}_2] \mathrm{HF} \rangle$
$^{\mathrm{sp}}$	736	-225
spd	834	-672
spdf	866	-773
$\operatorname{spd} \operatorname{fg}$	878	-807
$\operatorname{spd} \operatorname{fgh}$	883	-821
Basis	$\langle R_1 [[\hat{H}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF} \rangle$	$\langle R_1 [\hat{\hat{H}}, \hat{R}_{2'}] \mathrm{HF} \rangle$
$^{\mathrm{sp}}$	156	0
spd	60	0
spdf	29	0
$\operatorname{spd} \operatorname{fg}$	16	0
$\operatorname{spd} \operatorname{fgh}$	11	0

	11							
	$ HF\rangle$	A2	-3992	-4535	-4613	-4617	-4619	-4618
)	$\hat{\hat{r}}_2 + \hat{R}_{2'}$	A1	-3970	-4533	-4612	-4617	-4619	-4618
D	$\langle R_1 [\tilde{\hat{H}}, I$	CC2	-3962	-4532	-4612	-4616	-4618	-4619
	$ HF\rangle$	A2	2076	2410	2445	2448	2449	2450
	$+ \hat{T}_{2'}], \hat{R}$	A1	2089	2277	2365	2416	2437	2447
D	$\langle R_1 [[\hat{H}, \hat{T}_2]$	CC2	1137	2054	2274	2368	2402	2417
	$F\rangle$	A2	17861	17723	17704	17700	17699	17698
CC2.	$\tilde{\tilde{H}}, \hat{R}_1$] H	A1	17841	17740	17714	17704	17700	17699
tionellen	$\langle R_1 [$	CC2	17954	17771	17727	17711	17706	17705
zum konven		Basis	$^{\mathrm{sp}}$	spd	$_{\mathrm{spdf}}$	spdfg	$_{ m spdfgh}$	$_{ m spdfghi}$

Ч	
eic	
rgl	
Ve	
in	
Ne	
] II	
I VC	
ier	
erg	
sen	
nn	
leg B	
An	
n.	
the	
suc	
ter	
un	
en	
n d	
V Z	
me	
і.	
ige	
iträ	
Be	
2-	
Ŀ.	
Ġ	
ŏ	
nen	£
deı	C
hie	llar
\mathbf{ISC}	au
ve	tio
der	VPY
Se	
aly	ų L
An	THT
÷	
).24	
еΓ	
ell	
Lab	
L 1	

	$ \text{HF}\rangle$ A2	$\frac{\hat{b}_2 + \hat{R}_{2'}}{A1}$	$\frac{\langle R_1 [\hat{H}, \hat{K}]}{CC2}$	$\frac{ HF\rangle}{A2}$	$\frac{+\hat{T}_{2'}],\hat{R}_1}{A1}$	$\frac{\langle R_1 [[\hat{H}, \hat{T}_2]]}{\text{CC2}}$	$F\rangle$ A2	$\frac{\hat{H}, \hat{R}_1] \text{H}}{\text{A1}}$	$\langle R_1 [J CC2]$	Basis	
			ā)C2.	onellen (konventi	Vergleich zum	
von BH im	energien	nregunse	en A ¹ П–Аı	Intersucht	zu den u	träge in meV	R12–Bei	ıen CC2-	erschieder	.26.: Analyse der v	Tabelle D
	-1016	-1016	-1015	1144	1146	1130	6162	6162	6164	aug-cc-pV6Z	
	-1016	-1016	-1015	1140	1139	1120	6168	6169	6171	aug-cc-pV5Z	
	-1016	-1015	-1014	1132	1129	1099	6182	6184	6188	aug-cc-pVQZ	
	-1009	-1006	-1004	1107	1099	1044	6201	6207	6214	aug-cc-pVTZ	
	-983	-976	-970	1040	1001	884	6268	6281	6295	aug-cc-pVDZ	
	A2	Α1	CC2	A2	A1	CC2	A2	A1	CC2	Basis	
	$ HF\rangle$	$\hat{b}_2 + \hat{R}_{2'}$	$\langle R_1 [\hat{\hat{H}}, \hat{\hat{H}}]$	$_{1}] \mathrm{HF}\rangle$	$(+\hat{T}_{2'}], \hat{R}$	$\langle R_1 [[\hat{H}, \hat{T}_2]$	F>	$\hat{\hat{H}}, \hat{R}_1$] HI	$\langle R_1 [i$	I	
von BH im	energien	nreguns	m B ¹ Σ+-A	ntersuchte	zu den u	träge in meV	R12–Beit)C2.	ıen CC2 . onellen C	erschieden konventi	.25.: Analyse der ve Vergleich zum	Tabelle D

ang-cc-nVDZ 6205 6	Basis CC2	(JI+)
1 186	A1	- IL-
8968	A2	
884	CC2	
1001	A1	- 2/ -
1040	A2	1 /
-070	CC2	1 1 1 -
-076	A1	
-083	A2	1

	Γ_{a}
	bel
	le
	D
	26.
<	~
erg	'na
glei	lys
ich	ë
ΩZ	ler
m	ve
ko	ISC
ΠV	hi
ent	ede
ioi	me
lell	n (
len	a
Q	2-E
3	312
•	Ĩ
	ei.
	trä
	00 O
	in
	m∈
	2
	лz
	de
	ηu
	Int
	ers
	uc
	hte
	n
	H
	A
	nre
	ng
	nse
	me
	Ig.
	ien
	VO
	'n
	BH
	Πi
	Ц

aug-cc-pV6	aug-cc-pV5	aug-cc-pV(aug-cc-pV	aug-cc-pVI	Basis	
)Z 2802	5Z 2802	QZ 2803	FZ 2803	DZ 2800	CC2	$\langle R_1$
2802	2802	2802	2802	2798	A1	$[[\hat{\hat{H}}, \hat{R}_1]]$
2802	2801	2802	2802	2799	A2	HFγ
1271	1261	1239	1181	1012	CC2	$\langle R_1 [[\hat{H}, \dot{I}]]$
1287	1280	1268	1237	1133	A1	$\hat{\gamma}_{2} + \hat{T}_{2'}],$
1285	1282	1272	1247	1181	A2	$\hat{R}_1] \mathrm{HF} angle$
-1322	-1310	-1284	-1216	-970	CC2	$\langle R_1 [\hat{\hat{H}},$
-1322	-1310	-1285	-1217	-1009	A1	$\hat{R}_2 + \hat{R}_2$
-1322	-1310	-1285	-1217	-1009	A2	$ HF\rangle$

Tabelle D.	27.: Analyse der ve Vergleich zum	erschieden konventic	en CC2- onellen C	R12-Beit)C2.	räge in meV 2	su den ur	itersuchte	n B $^{1}\Sigma^{+}-A$	Anreguns	senergien	von BF im
		$\langle R_1 [I]$	$\hat{I}, \hat{R}_1] \text{HI}$	(L)	$\langle R_1 [[\hat{H}, \hat{T}_2]$	$+ \hat{T}_{2'}$], \hat{R}	$ HF\rangle$	$\langle R_1 [\tilde{\hat{H}},I]$	$\hat{R}_2 + \hat{R}_{2'}$	$ HF\rangle$	
	Basis –	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2	
	aug-cc-pVDZ	8236	8229	8214	1020	1127	1173	-1307	-1314	-1314	
	aug-cc-pVTZ	8170	8166	8161	1183	1235	1241	-1358	-1363	-1360	
	aug-cc-pVQZ	8122	8120	8118	1239	1268	1269	-1361	-1364	-1363	
	aug-cc-pV5Z	8098	8096	8096	1261	1279	1280	-1358	-1361	-1360	
	aug-cc-pV6Z	8048	8047		1267	1281		-1340	-1342		
								,			
Tabelle D.	28.: Analyse der ve	erschieden	en CC2-	R12-Beit	räge in meV 2	su den ur	ntersuchte	n C ¹ $\Sigma^{+}-h$	Amreguns	senergien	von BF im
	Vergleich zum	konventio	onellen C)C2.							
		$\langle R_1 [I]$	$\tilde{I}, \hat{R}_1] \text{HI}$	(T	$\langle R_1 [[\hat{H}, \hat{T}_2]$	$+ \hat{T}_{2'}$], \hat{R}	$ HF\rangle$	$\langle R_1 [\tilde{\hat{H}},]$	$\hat{R}_2 + \hat{R}_{2'}$	$ HF\rangle$	
	Basis –	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2	
	aug-cc-pVDZ	8460	8445	8428	066	1096	1143	-1044	-1046	-1052	
	aug-cc-pVTZ	8352	8345	8340	1151	1203	1209	-1076	-1077	-1077	
	aug-cc-pVQZ	8276	8273	8271	1207	1236	1237	-1078	-1079	-1078	
	aug-cc-pV5Z	8235	8233	8232	1229	1248	1248	-1078	-1079	-1079	
	aug-cc-pV6Z	8197	8196		1267	1255		-1085	-1084		
Tabelle D.2	29.: Analyse der ve	erschieden	en CC2-	R12-Beit	räge in meV	zu den u	ntersucht	en A $^{1}\Pi$ –A	Inreguns	energien	von BF im
	Vergleich zum	konventio	onellen C	JC2.							
		$\langle R_1 [$	$\tilde{\tilde{H}}, \hat{R}_1] H$	F)	$\langle R_1 [[\hat{H}, \hat{T}_2]$	$+ \hat{T}_{2'}], \hat{R}$	$_{\rm HF}$	$\langle R_1 [\tilde{\hat{H}},$	$\hat{R}_{2} + \hat{R}_{2'}$	$ HF\rangle$	
	Basis	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2	
	aug-cc-pVDZ	6383	6377	6379	1382	1490	1547	-1424	-1459	-1452	
	aug-cc-pVTZ	6374	6370	6372	1558	1611	1620	-1665	-1689	-1680	
	aug-cc-pVQZ	6368	6366	6367	1620	1650	1652	-1742	-1755	-1754	
	aug-cc-pV5Z	6365	6363	6365	1645	1663	1665	-1774	-1783	-1783	
	aug-cc-pV6Z	6365	6364		1656	1671		-1788	-1798		

ی Bas عالو مالو	Bas aug aug aug aug aug Tabelle D.32.: A	Bas aug aug aug aug aug aug U	Tabelle D.3U.: A V
sis sis s-cc-pVDZ s-cc-pVDZ s-cc-pVQZ s-cc-pV6Z s-cc-pV6Z	sts -cc-pVDZ -cc-pVTZ -cc-pVQZ -cc-pV5Z -cc-pV6Z -cc-pV6Z nalyse der ve	iis ;-cc-pVDZ ;-cc-pVQZ ;-cc-pV6Z ;-cc-pV6Z malyse der vei ergleich zum	nalyse der vei ergleich zum
$\frac{\langle R_1 I}{CC2} \\ \frac{\langle CC2}{8713} \\ 8683 \\ 8673 \\ 8670 \\ 8669$	CC2 11985 11819 11734 11669 11669 11643 11643	$\begin{array}{c} \text{CC2} \\ 11732 \\ 111545 \\ 111419 \\ 11306 \\ 111236 \\ 111236 \\ \text{konventio} \\ \text{konventio} \\ \hline \left(R_1 \vec{L} \right) \\ \hline \left(R_1 $	rschiedene konventio $\langle R_1 [\hat{H}]$
$\frac{\hat{\hat{H}}_{i}}{A_{1}} \frac{\hat{\hat{H}}_{i}}{A_{1}} \frac{ HF}{A_{1}} \frac{\hat{\hat{H}}_{i}}{B_{1}} \frac{ HF}{B_{1}} \frac{\hat{\hat{H}}_{i}}{B_{1}} \frac{\hat{\hat{H}}_{i}}}{B_{1}} \frac{\hat{\hat{H}}_{i}}} \frac{\hat{\hat{H}}_{i}}{B_{1}} \frac{\hat{\hat{H}}_{i}}{B_{1}} \frac{\hat{\hat{H}}_{i}}} \frac{\hat{\hat{H}}_{i}}{B_{1}} \frac{\hat{\hat{H}}_{i}}}{B_{1}} \frac{\hat{\hat{H}}_{i}}}{B_{1}} \frac$	A1 11961 : 11809 : 11730 : 11666 : 11666 : 11640 : 116	A1 11710 : 11535 : 11414 : 11414 : 11303 : 11234 : 11234 : nellen CC2-F nellen C	n CC2-F nellen C \hat{I}, \hat{R}_1] HF
\ <u>\</u> <u>A2</u> 8681 8669 8669	A2 11933 11797 11725 11665 11665 11665 11665	A2 A2 11684 11524 11410 11302 11302 12-Beitr $C2$. C2. C2. C2. C2. C2. C2. C2. C2. C2. C2. C2. C2. C3.	812−Beitr C2.
$\begin{array}{c} \langle R_1 [\hat{H}, \hat{T_2} \\ \hline CC2 \\ 2354 \\ 2656 \\ 2756 \\ 2794 \\ 2811 \end{array}$	CC2 1276 1515 1592 1619 1632 1632	$\begin{array}{c} \text{CC2} \\ 1341 \\ 1589 \\ 1665 \\ 1688 \\ 1695 \\ \hline \\ R_1 \ [[\hat{H}, \hat{T}_2 - (R_1, R_2)]] \ \\ \end{array}$	äge in meV z $\langle R_1 [[\hat{H}, \hat{T}_2 -$
$\begin{array}{c} + \hat{T}_{2'}], \hat{R}_1 \\ \hline A1 \\ 2519 \\ 2734 \\ 2796 \\ 2822 \\ 2834 \end{array}$	A1 1427 1587 1630 1646 1653 1653	A1 1495 1662 1703 1714 1714 1716 1716 $\downarrow \hat{T}_{2'}, \hat{R}_1$	u den unt $+\hat{T}_{2'}],\hat{R}_1$
<u>] HF⟩</u> <u>A2</u> 2622 2765 2810 2827	A2 1503 1609 1641 1649 1649 1649	A2 1571 1684 1715 1718 1718 	cersuchter] HF⟩
$\begin{array}{c} \langle R_1 [\tilde{H},\\ CC2\\ -2636\\ -3001\\ -3110\\ -3151\\ -3151\end{array}$	-2083 -2192 -2232 -2262 -2262 -2281 -2281 -2281	$\begin{array}{c} \text{CC2} \\ -2516 \\ -2572 \\ -2556 \\ -2521 \\ -2521 \\ -2499 \\ -2499 \\ \text{C}_{1} [\hat{H}], \\ \langle R_{1} [\hat{H}] \\ \hat{H}] \end{array}$	n B $^{1}\Sigma^{+}-P$ $\langle R_{1} [\hat{\hat{H}},$
$\begin{array}{c} \hat{R}_2 + \hat{R}_2 \\ \hline A1 \\ -2708 \\ -3041 \\ -3131 \\ -3167 \\ -3183 \end{array}$	A1 -2086 -2193 -2233 -2263 -2281 -2281	A1 -2527 -2578 -2560 -2523 -2500 -2500 Anreguns	Anreguns $\hat{R}_2 + \hat{R}_{2'}$
]] HF⟩ A2 -2711 -3037 -3135 -3167	A2 -2084 -2189 -2231 -2262 -2262 -nergien ,	A2 -2526 -2574 -2559 -2522 energien HF λ	energien HF⟩
	von CO im	von CO im	von CO im

160

labelle D.5	33.: Analyse der v Vergleich zum	erschieder konventie	nen CC2- onellen C	-R12–Beit JC2.	räge in meV	zu den u	Intersucht	en a $^{1}\Pi_{g-I}$	Anreguns	senergien	von N_2 im
		$\langle R_1 [j$	$\hat{H}, \hat{R}_1] H $	F)	$\langle R_1 [[\hat{H}, \hat{T}_2$	$+ \hat{T}_{2'}$], \hat{R}	$_{1}] HF\rangle$	$\langle R_1 [\tilde{\hat{H}}, .$	$\hat{R}_{2} + \hat{R}_{2'}$	$ HF\rangle$	
	Basis –	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2	
	aug-cc-pVDZ	9669	9000	9666	2862	3067	3206	-3405	-3498	-3515	
	aug-cc-pVTZ	9624	9623	9624	3240	3332	3382	-3836	-3884	-3891	
	aug-cc-pVQZ	9613	9611	9612	3361	3408	3431	-3963	-3989	-3997	
	aug-cc-pV5Z	9611	9610	9611	3410	3442	3451	-4012	-4030	-4033	
	aug-cc-pV6Z	9610	9610	9611	3430	3458	3457	-4033	-4049	-4048	
Tabelle D.3	34.: Analyse der ve	erschieder	ien CC2-	R12-Beit	räge in meV 3	su den ui	ntersuchte	n a' $^{1}\Sigma_{u}^{-}$	Anregun	senergien	$1 \text{ von } N_2 \text{ im}$
	Vergleich zum	konventi	onellen (0C2.							
		$\langle R_1 [j]$	$\tilde{\hat{H}}, \hat{R}_1$][H]	F	$\langle R_1 [\hat{H}, \hat{T}_2$	$+ \hat{T}_{2'}], \hat{R}$	$_{1}] HF\rangle$	$\langle R_1 [\tilde{\hat{H}}, .$	$\hat{R}_2 + \hat{R}_{2'}$	$ HF\rangle$	
	Basis -	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2	
	aug-cc-pVDZ	8333	8323	8314	3827	4033	4207	-1857	-1913	-1956	
	aug-cc-pVTZ	8279	8275	8272	4217	4309	4372	-2322	-2354	-2364	
	aug-cc-pVQZ	8265	8263	8262	4348	4391	4421	-2447	-2461	-2471	
	aug-cc-pV5Z	8261	8259	8259	4399	4433	4443	-2494	-2505	-2509	
	aug-cc-pV6Z	8260	8258	8259	4422	4450	4449	-2515	-2525	-2525	
Tabelle D.3	35.: Analyse der ve	erschieder	ten CC2-	R12-Beit	räge in meV	zu den u	ntersuchte	$(n \le 1 \Delta_n - 1)$	Anregun	senergien	$von N_2 im$
	Vergleich zum	konventi	onellen (CC2.							
		$\langle R_1 [$	$\tilde{\hat{H}}, \hat{R}_1$] H	F〉	$\langle R_1 [[\hat{H}, \hat{T}_2]$	$+ \hat{T}_{2'}], \hat{R}$	$_{1} \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}},$	$\hat{R}_2 + \hat{R}_2$	$ HF\rangle$	
	Basis -	CC2	A1	A2	CC2	A1	A2	CC2	A1	A2	
	aug-cc-pVDZ	8868	8854	8846	3868	4076	4243	-1955	-2059	-2057	
	aug-cc-pVTZ	8806	8801	8797	4251	4344	4405	-2390	-2445	-2440	
	aug-cc-pVQZ	8790	8788	8787	4381	4425	4454	-2517	-2546	-2548	
	aug-cc-pV5Z	8786	8783	8784	4433	4466	4477	-2566	-2586	-2586	
	aug-cc-pV6Z	8784	8783	8783	4455	4483	4483	-2588	-2605	-2602	

161

	$\langle R_1 [[.$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_2] \mathrm{HF} \rangle$
Basis	A1	A2	A1	A2
sp	1130	1132	- 3965	-3977
spd	2052	2052	-4531	-4532
spdf	2273	2273	- 4611	-4611
$\operatorname{spd} \operatorname{fg}$	2367	2367	-4616	-4616
$\operatorname{spd} \operatorname{fgh}$	2402	2402	-4618	-4618
$\operatorname{spd} \operatorname{fghi}$	2416	2417	-4618	-4618
	$\langle R_1 [[I]$	$(\hat{H}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_{2'}] \mathrm{HF}\rangle$
Basis	A1	A2	A1	A2
$^{\mathrm{sp}}$	959	944	-5	-15
spd	225	358	-2	-3
spdf	92	172	-1	-2
spdfg	49	81	-1	-1
spdfgh	35	47	-1	-1
$\operatorname{spdfghi}$	31	33	0	0

Tabelle D.37.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.24) für die Analyse der CC2-R12–Anregungsenergien von Ne.

Tabelle D.38.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.25) für die Analyse der B $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von BH.

	$\langle R_1 [[I]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[\hat{R}_2] \mathrm{HF}\rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	884	891	-971	-972		
aug-cc-pVTZ	1044	1046	-1004	-1004		
aug-cc-pVQZ	1099	1100	-1014	-1014		
aug-cc-pV5Z	1120	1120	-1015	-1015		
aug-cc-pV6Z	1130	1130	-1016	-1015		
	$\langle R_1 [[\hat{H}]$	$[\hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_{2'}] \mathrm{HF}\rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	118	149	-4	11		
aug-cc-pVTZ	55	61	-2	-5		
aug-cc-pVQZ	30	32	-1	-1		
aug-cc-pV5Z	19	20	-1	-1		
aug-cc-pV6Z	16	14	0	0		
	$\langle R_1 [[1]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[, \hat{R}_2] \mathrm{HF} \rangle$		
-------------	------------------------------------	---	-----------------------------------	---	--	--
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	1011	1021	-1009	-1009		
aug-cc-pVTZ	1181	1183	-1217	-1217		
aug-cc-pVQZ	1239	1239	-1285	-1285		
aug-cc-pV5Z	1261	1261	-1310	-1310		
aug-cc-pV6Z	1271	1271	-1322	-1322		
	$\langle R_1 [[\hat{H}] \rangle$	$\hat{H}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$\langle R_1 [\tilde{\hat{H}}, \hat{R}_{2'}] \mathrm{HF} \rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	121	161	0	0		
aug-cc-pVTZ	55	64	0	0		
aug-cc-pVQZ	30	33	0	0		
aug-cc-pV5Z	19	21	0	0		
aug-cc-pV6Z	17	14	0	0		

Tabelle D.39.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.26) für die Analyse der A $^1\Pi-CC2$ -R12–Anregungsenergien von BH.

Tabelle D.40.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.27) für die Analyse der B $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von BF.

	$\langle R_1 [[H]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[\hat{R}_2] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	1017	1027	-1306	-1304			
aug-cc-pVTZ	1182	1181	-1358	-1355			
aug-cc-pVQZ	1238	1237	-1361	-1360			
aug-cc-pV5Z	1260	1260	-1359	-1358			
aug-cc-pV6Z	1266		-1340				
	$\langle R_1 [[\hat{H}$	$[\hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}$	$[\hat{R}_{2'}] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	110	146	-8	-10			
aug-cc-pVTZ	53	60	-5	- 5			
aug-cc-pVQZ	30	32	-3	-3			
aug-cc-pV5Z	19	20	-2	-2			
aug-cc-pV6Z	15		-2				

	$\langle R_1 [[]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[,\hat{R}_2] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	987	998	-1039	-1038			
aug-cc-pVTZ	1150	1150	-1075	-1073			
aug-cc-pVQZ	1207	1206	-1078	-1077			
aug-cc-pV5Z	1229	1228	-1078	-1078			
aug-cc-pV6Z	1240		-1083				
	$\langle R_1 [[I]$	$\hat{H}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$\tilde{\hat{H}}, \hat{R}_{2'}] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	109	145	-7	-14			
aug-cc-pVTZ	53	59	-2 -4				
aug-cc-pVQZ	29	31	-1	-1			
aug-cc-pV5Z	19	20	-1	-1			
aug -cc-pV6Z	15		-1				

Tabelle D.41.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.28) für die Analyse der C $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von BF.

Tabelle D.42.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.29) für die Analyse der A $^1\Pi$ –CC2-R12–Anregungsenergien von BF.

	$\langle R_1 [[l$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_2] \mathrm{HF} \rangle$	
Basis	A1	A2	A1	A2	
aug-cc-pVDZ	1374	1386	-1418	-1415	
aug-cc-pVTZ	1555	1554	-1662	-1660	
aug-cc-pVQZ	1619	1618	-1741	-1740	
aug-cc-pV5Z	1643	1643	-1773	-1773	
aug-cc-pV6Z	1655		-1788		
	$\langle R_1 [[\hat{E}$	$[\hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$\hat{R}_{2'}] \mathrm{HF}\rangle$	
Basis	A1	A2	A1	A2	
aug-cc-pVDZ	116	161	-41	-37	
aug-cc-pVTZ	56	66	-27	-20	
aug-cc-pVQZ	31	34	-14	-14	
aug-cc-pV5Z	20	22	-10	-10	
$\mathrm{aug} ext{-}\mathrm{cc} ext{-}\mathrm{pV6Z}$	16		-10		

	$\langle R_1 [[\hat{H}]$	$[I, \hat{T}_2], \hat{R}_1] \mathrm{HF} \rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_2] \mathrm{HF} \rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	1338	1346	-2515	-2509		
aug-cc-pVTZ	1588	1588	-2572	-2567		
aug-cc-pVQZ	1664	1664	-2557	-2555		
aug-cc-pV5Z	1687	1687	-2521	-2520		
aug-cc-pV6Z	1694		-2499			
	$\langle R_1 [[\hat{H}$	$(\hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\hat{\hat{H}}, \hat{R}_{2'}] \mathrm{HI}$			
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	157	225	-12	-17		
aug-cc-pVTZ	74	96	-6	-7		
aug-cc-pVQZ	39	51	-3	-4		
aug-cc-pV5Z	27	31	-2	-2		
aug-cc-pV6Z	22		-1			

Tabelle D.43.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.30) für die Analyse der B $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von CO.

Tabelle D.44.: R12–Beiträge in me
V der Matrixelemente aus Tabelle (D.31) für die Analyse der C $^1\Sigma^+\text{-}\text{CC2-R12}\text{-}\text{Anregungsenergien von CO.}$

	$\langle R_1 [[I]$	$(\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF} \rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[\hat{R}_2] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	1271	1279	-2081	-2073			
aug-cc-pVTZ	1513	1514	-2191	-2186			
aug-cc-pVQZ	1591	1591	-2232	-2230			
aug-cc-pV5Z	1619	1618	-2262	-2261			
aug-cc-pV6Z	1631		-2281				
	$\langle R_1 [[\hat{H}]$	$[1, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[\hat{R}_{2'}] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	156	224	-5	-11			
aug-cc-pVTZ	74	95	-2	-3			
aug-cc-pVQZ	39	50	-1	-1			
aug-cc-pV5Z	27	31	-1	-1			
aug-cc-pV6Z	22		0				

	$\langle R_1 [[\hat{H}]]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$\hat{R}_{2}] \mathrm{HF}\rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	2346	2361	-2630	-2629		
aug-cc-pVTZ	2653	2653	-2998	-2995		
aug-cc-pVQZ	2754	2753	-3108	-3107		
aug-cc-pV5Z	2793	2792	-3150	-3149		
aug-cc-pV6Z	2810		-3168			
	$\langle R_1 [[\hat{H}]$	$[\hat{T}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_{2'}] \mathrm{HF}\rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	173	261	-78	-82		
aug-cc-pVTZ	81	112	-43	-42		
aug-cc-pVQZ	42	57	-23	-28		
aug-cc-pV5Z	29	35	-17	-18		
aug-cc-pV6Z	24		-15			

Tabelle D.45.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.32) für die Analyse der A $^1\Pi-CC2$ -R12–Anregungsenergien von CO.

Tabelle D.46.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.33) für die Analyse der a ${}^1\Pi_g$ –CC2-R12–Anregungsenergien von N₂.

	$\langle R_1 [[\hat{H}]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\hat{\hat{H}}]$	$[\hat{R}_2] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	2860	2880	-3417	-3427			
aug-cc-pVTZ	3239	3245	-3841	-3846			
aug-cc-pVQZ	3361	3362	-3965	-3968			
aug-cc-pV5Z	3409	3409	-4013	-4014			
aug-cc-pV6Z	3430	3430	-4034	-4035			
	$\langle R_1 [[\hat{H}$	$(\hat{T}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\hat{\hat{H}}, \hat{R}_{2'}] \mathrm{HF} \rangle$				
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	207	326	-81	-88			
aug-cc-pVTZ	93	137	-43	-45			
aug-cc-pVQZ	47	69	-24	-29			
	99	42	-17	-19			
aug-cc-pvəz	- 2-2-	44	±.	10			

	$\langle R_1 [[\hat{H}$	$[\hat{T}_{2}], \hat{R}_{1}] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[\hat{R}_2] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	3828	3864	-1857	-1859			
aug-cc-pVTZ	4218	4229	-2323	-2324			
aug-cc-pVQZ	4348	4351	-2448	-2448			
aug-cc-pV5Z	4399	4401	-2494	-2495			
aug-cc-pV6Z	4421	4422	-2515	-2515			
	$\langle R_1 [[\hat{H}$	$, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$[\hat{R}_{2'}] \mathrm{HF}\rangle$			
Basis	A1	A2	A1	A2			
aug-cc-pVDZ	205	343	-56	-97			
aug-cc-pVTZ	91	143	-31	-40 -23			
aug-cc-pVQZ	43	70	-13				
aug-cc-pV5Z	34	42	-11	-14			
aug-cc-pV6Z	29	27	-10	-10			

Tabelle D.47.: R12–Beiträge in meV der Matrixelemente aus Tabelle (D.34) für die Analyse der a' ${}^{1}\Sigma_{u}^{-}$ -CC2-R12–Anregungsenergien von N₂.

Tabelle D.48.: R12–Beiträge in me
V der Matrixelemente aus Tabelle (D.35) für die Analyse der
w $^1\Delta_u-\rm CC2-R12–Anregungsenergien von N_2.$

	$\langle R_1 [[]$	$\hat{H}, \hat{T}_2], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_2] \mathrm{HF}\rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	3872	3906	-1955	-1959		
aug-cc-pVTZ	4253	4263	-2390	-2391		
aug-cc-pVQZ	4382	4385	-2517	-2517		
aug-cc-pV5Z	4433	4435	-2566	-2566		
aug-cc-pV6Z	4455	4456	-2588	-2588		
	$\langle R_1 [[\hat{H}$	$\hat{H}, \hat{T}_{2'}], \hat{R}_1] \mathrm{HF}\rangle$	$\langle R_1 [\tilde{\hat{H}}]$	$, \hat{R}_{2'}] \mathrm{HF}\rangle$		
Basis	A1	A2	A1	A2		
aug-cc-pVDZ	204	337	-104	-98		
aug-cc-pVTZ	91	142	-55	-49		
aug-cc-pVQZ	43	69	-29	-31		
aug-cc-pV5Z	33	42	-20	-20		
aug-cc-pV6Z	28	27	-17	-14		

E. Tabellen und Abbildungen zu Kapitel 9

	Tabelle E.1.: Be	rechnete Grundzı	ıstandsenergien i	in $E_{\rm h}$ und E	nergiedifferenzen	$\Delta R12$ in mE	'n.
		SCF	MP2	$\Delta R12^{a}$	CCSD	$\Delta(R12)^{b}$	$\Delta \mathrm{R12^c}$
Ne	aug-cc-pVDZ	-128.496350	-128.703223	-94.714	-128.706504	-84.974	-110.250
	aug-cc-pVTZ	-128.533273	-128.805792	-32.934	-128.807368	-27.147	-33.741
	aug-cc-pVQZ	-128.543756	-128.840999	-15.273	-128.841514	-11.557	-12.675
	aug-cc-pV5Z	-128.546786	-128.854755	-8.657	-128.853584	-6.191	-6.417
	aug-cc-pV6Z	-128.547062	-128.859935	-5.665	-128.857669	-3.914	-3.886
۲	aug-cc-pVDZ	-99.428282	-99.665948	-70.608	-99.662690	-61.350	-77.673
	aug-cc-pVTZ	-99.450807	-99.745879	-23.500	-99.739301	-18.437	-21.998
	aug-cc-pVQZ	-99.457462	-99.774407	-10.427	-99.765819	-7.296	-8.666
	aug-cc-pV5Z	-99.459261	-99.785557	-6.290	-99.774889	-4.082	-4.455
	aug-cc-pV6Z	-99.459430	-99.789971	-3.798	-99.778066	-2.363	-2.543
a 🗅	$\Lambda R12 = \Delta R12 (MP)$	2) = MP2-R12 -	MP2				
о Ч	$\Delta(\mathrm{R12}) = \Delta\mathrm{R12}(\mathrm{C0})$	CSD(R12)) = CC	SD(R12) - CCS	Ð			
。 〉	R19 = AR19/CC9	$RT_R = 12 - CCRT$	$\Gamma = C = C = C = C = C = C = C = C = C = $				

 $\Delta R_{12} \equiv \Delta R_{12}(\cup \Box \upsilon \cdot R_{12}) \equiv \cup \Box \upsilon \cdot R_{12}$

$E_{ m h}.$	$\Delta R12^{c}$	-10.130	-2.592	-0.825	-0.423	-0.258	-86.390	-25.315	-9.480	-4.754	-2.880	-82.316	-22.644	-7.682	-3.801	-2.390	-81.893	-23.372	-8.361	-4.207	-2.580	
n $\Delta R12$ in m	$\Delta({ m R12})^{ m b}$	-7.809	-2.143	-0.788	-0.426	-0.265	-66.485	-20.966	-8.676	-4.644	-2.907	-60.882	-17.306	-6.950	-3.741	-2.421	-62.301	-19.169	-7.772	-4.176	-2.614	
Energiedifferenze	CCSD	-25.216240	-25.229381	-25.233103	-25.234054	-25.234365	-100.259446	-100.342043	-100.369101	-100.378040	-100.381087	-109.280460	-109.361574	-109.386793	-109.394586	-109.397297	-113.060979	-113.144520	-113.171610	-113.180060	-113.183008	
in $E_{\rm h}$ und I	$\Delta R12^{a}$	-11.882	-4.165	-2.004	-1.224	-0.815	-76.612	-26.893	-12.308	-7.004	-4.550	-136.280	-24.017	-11.244	-6.524	-4.432	-74.152	-26.125	-12.177	-7.059	-4.630	
ıstandsenergien	MP2	-25.188800	-25.204590	-25.210004	-25.211809	-25.212557	-100.255737	-100.340865	-100.369758	-100.380557	-100.384701	-109.214291	-109.364163	-109.393288	-109.403739	-109.407910	-113.053968	-113.142172	-113.172824	-113.183877	-113.188297	MD9
schnete Grundzu	SCF	-25.126427	-25.130201	-25.131371	-25.131597	-25.131630	-100.033466	-100.061069	-100.068559	-100.070573	-100.070770	-108.960650	-108.984698	-108.991558	-108.992959	-108.993135	-112.754691	-112.781433	-112.789036	-112.790658	-112.790848	9) — MD3 D13
labelle E.2.: Bere		aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z	aug-cc-pV6Z	19 - AD19/MD
_		BH					ΗF					N_2					00					a AD

 $\label{eq:alpha} \begin{tabular}{l} \label{eq:alpha} \end{tabular} \en$

. 7	Tabelle E.3.: Berec	hnete Grundzus	tandsenergien i	n $E_{\rm h}$ und E	nergiedifferenzen	$\Delta R12$ in m/	E _h .
		SCF	MP2	$\Delta R12^{a}$	CCSD	$\Delta(R12)^{b}$	$\Delta \mathrm{R}12^{\mathrm{c}}$
H_2O	aug-cc-pVDZ	-76.041428	-76.260765	-60.493	-76.268534	-50.559	-65.058
	aug-cc-pVTZ	-76.060613	-76.328958	-20.991	-76.333665	-15.362	-17.877
	aug-cc-pVQZ	-76.066001	-76.351913	-9.651	-76.354214	-6.278	-6.670
	aug-cc-pV5Z	-76.067321	-76.360225	-5.412	-76.360648	-3.295	-3.318
	aug-cc-pV6Z	-76.067462	-76.363417	-3.514	-76.362813	-2.058	-2.032
NH_3	aug-cc-pVDZ	-56.205440	-56.404695	-46.418	-56.419711	-37.357	-48.294
	aug-cc-pVTZ	-56.220384	-56.460537	-15.367	-56.472206	-10.444	-11.864
	aug-cc-pVQZ	-56.224035	-56.477772	-7.156	-56.486781	-4.246	-4.405
	aug-cc-pV5Z	-56.224917	-56.483825	-4.020	-56.490314	-3.042	-3.032
	aug-cc-pV6Z	-56.225022	-56.486175	-2.644	-56.492044	-1.950	-1.922
CH_4	aug-cc-pVDZ	-40.199598	-40.367327	-35.547	-40.390626	-27.477	-35.980
	aug-cc-pVTZ	-40.213666	-40.414459	-11.206	-40.434357	-7.051	-8.119
	aug-cc-pVQZ	-40.216298	-40.427402	-5.145	-40.444722	-2.787	-2.908
	aug-cc-pV5Z	-40.217005	-40.431896	-2.956	-40.447765	-1.489	-1.474
a,b,c /	Analog zu Tabelle	E.1.					

()
Analog
zu
l Tabelle
E.1.

	Ta	belle E.4.: Ber	echnete Beitr	äge zur Grun	dzustandsenerg	ie aus \hat{T}_1,\hat{T}_2 u	ind $\hat{T}_{2'}$ in mE	- <u>u</u>
		Ō	CSD(R12)			CCSD-R12		
	I	$E(\hat{T}_1,\hat{T}_2)$	$E(\hat{T}_{2'})$	$\Delta R12$	$E(\hat{T}_1,\hat{T}_2)$	$E(\hat{T}_{2'})$	$\Delta R12$	$E_{\rm CCSD} - E_{\rm SCF}$
Ne	aug-cc-pVDZ	-204.693	-90.435	-84.974	-202.910	-117.494	-110.250	-210.154
	aug-cc-pVTZ	-271.103	-30.138	-27.147	-270.346	-37.489	-33.741	-274.095
	aug-cc-pVQZ	-295.924	-13.391	-11.557	-295.752	-14.681	-12.675	-297.758
	aug-cc-pV5Z	-305.614	-7.376	-6.191	-305.573	-7.644	-6.417	-306.799
	aug-cc-pV6Z	-309.777	-4.744	-3.914	-309.784	-4.709	-3.886	-310.607
 [T-	aug-cc-pVDZ	-229.019	-66.739	-61.350	-227.444	-84.636	-77.673	-234.408
	aug-cc-pVTZ	-285.832	-21.099	-18.437	-285.284	-25.209	-21.998	-288.494
	aug-cc-pVQZ	-306.817	-8.836	-7.296	-306.534	-10.490	-8.666	-308.357
	aug-cc-pV5Z	-314.575	-5.134	-4.082	-314.481	-5.602	-4.455	-315.628
	aug-cc-pV6Z	-317.966	-3.032	-2.363	-317.915	-3.264	-2.543	-318.636

л.
$\hat{T}_{2'}$
pun
\hat{T}_2
$\hat{T}_1,$
aus
nergie
andse
ndzust
Gru
zur
Beiträge
Berechnete
1 E
E.4
abelle
Г

				N_2					CO					ΗF					BH			
aug-cc-pV6Z	aug-or-nV5Z	2007u-mv-nVDZ	aug-cc-pVTZ	aug-cc-pVDZ	aug-cc-pV6Z	aug-cc-pV5Z	aug-cc-pVQZ	aug-cc-pVTZ	aug-cc-pVDZ	aug-cc-pV6Z	aug-cc-pV5Z	aug-cc-pVQZ	aug-cc-pVTZ	aug-cc-pVDZ	aug-cc-pV6Z	aug-cc-pV5Z	aug-cc-pVQZ	aug-cc-pVTZ	aug-cc-pVDZ			Tab
-403.243	-700 331	-303 165	-373.360	-312.546	-391.244	-388.068	-380.465	-359.487	-299.236	-309.549	-306.348	-298.773	-277.929	-220.264	-102.258	-102.146	-101.236	-98.262	-87.678	$E(\hat{T}_1, \hat{T}_2)$	CC	elle E.5.: Ber
-3.339	-5.027	-0 020	-20.822	-68.146	-3.529	-5.510	-9.881	-22.769	-69.353	-3.674	-5.763	-10.446	-24.012	-72.201	-0.474	-0.737	-1.284	-3.060	-9.944	$E(\hat{T}_{2'})$	CSD(R12)	echnete Be
-2.421	-2 7/1	<u>-6 050</u>	-17.306	-60.882	-2.614	-4.176	-7.772	-19.169	-62.301	-2.907	-4.644	-8.676	-20.966	-66.485	-0.265	-0.426	-0.788	-2.143	-7.809	$\Delta R12$		iträge zur Gi
-403.257	-700-215	-302 052	-372.286	-310.007	-391.259	-388.062	-380.317	-358.724	-297.011	-309.557	-306.324	-298.614	-277.276	-218.383	-102.532	-102.148	-101.216	-98.076	-87.107	$E(\hat{T}_1, \hat{T}_2)$	0	undzustandsei
-3.294	-7-117	-0 065	-27.234	-92.119	-3.480	-5.547	-10.618	-27.735	-91.170	-3.639	-5.897	-11.408	-29.013	-93.987	-0.461	-0.732	-1.341	-3.696	-12.836	$E(\hat{T}_{2'})$	CCSD-R12	nergie aus \hat{T}_1
-2.390	-3 201	-7 682	-22.644	-82.316	-2.580	-4.207	-8.361	-23.372	-81.893	-2.880	-4.754	-9.480	-25.315	-86.390	-0.258	-0.423	-0.825	-2.592	-10.130	$\Delta R12$, \hat{T}_2 und $\hat{T}_{2'}$
-404.161	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	-305 235	-376.876	-319.810	-392.159	-389.402	-382.573	-363.087	-306.288	-310.316	-307.467	-300.542	-280.974	-225.980	-102.735	-102.457	-101.733	-99.180	-89.813	$E_{\rm CCSD} - E_{\rm SCF}$		$\operatorname{in} \mathbf{m} E_{\mathbf{h}}.$

		CC	CSD(R12)			CSD-R12		
	I	$E(\hat{T}_1,\hat{T}_2)$	$E(\tilde{T}_{2'})$	$\Delta R12$	$E(\vec{T}_1,\vec{T}_2)$	$E(\hat{T}_{2'})$	$\Delta R12$	$E_{\rm CCSD} - E_{\rm SCF}$
H_2O	aug-cc-pVDZ	-221.481	-56.184	-50.559	-219.735	-72.430	-65.058	-227.106
	aug-cc-pVTZ	-270.192	-18.222	-15.362	-269.714	-21.215	-17.877	-273.052
	aug-cc-pVQZ	-286.597	-7.895	-6.278	-286.500	-8.383	-6.670	-288.213
	aug-cc-pV5Z	-292.341	-4.281	-3.295	-292.336	-4.309	-3.318	-293.328
	aug-cc-pV6Z	-294.683	-2.726	-2.058	-294.692	-2.691	-2.032	-295.350
CH_4	aug-cc-pVDZ	-186.548	-31.957	-27.477	-185.122	-41.886	-35.980	-191.028
	aug-cc-pVTZ	-218.684	-9.057	-7.051	-218.375	-10.435	-8.119	-220.691
	aug-cc-pVQZ	-227.358	-3.853	-2.787	-227.315	-4.018	-2.908	-228.425
	aug-cc-pV5Z	-230.114	-2.134	-1.489	-230.122	-2.112	-1.474	-230.760
NH_3	aug-cc-pVDZ	-209.154	-42.474	-37.357	-207.565	-54.999	-48.294	-214.271
	aug-cc-pVTZ	-249.370	-12.895	-10.444	-249.036	-14.650	-11.864	-251.822
	aug-cc-pVQZ	-261.386	-5.607	-4.246	-261.339	-5.813	-4.405	-262.746
	aug-cc-pV5Z	-265.397	-3.042	-3.042	-265.402	-3.026	-3.032	-265.397
	aug-cc-pV6Z	-267.011	-1.961	-1.950	-267.022	-1.922	-1.922	-267.022

$\operatorname{n}\operatorname{m} E_{\operatorname{h}}.$
und $\hat{T}_{2'}$ į
\hat{T}_2
$\hat{T}_1,$
e aus
energie
ands
dzust
Grund
zur
Beiträge
rechnete
: Bei
E.6.
Tabelle

175

Tabelle E.7.: Berechnete Grundzustandsenergien in E_h und Energiedifferenzen in mE_h. Es wurde eine 19s14p8d6f4g3h2i Basis (9s6p4d3f2g für H) als Orbital- und Auxiliarbasis verwendet.

	SCF	MP2	$\Delta R12^{a}$	CCSD	$\Delta(R12)^{b}$	$\Delta R12^{c}$
$_{\rm HF}$	-100.070779	-100.385261	-5.208	-100.381539	-3.291	-3.226
H_2O	-76.067391	-76.363531	-4.330	-76.362936	-2.515	-2.457
CH_2	-100.070779	-39.049673	-2.177	-39.070636	-0.968	-0.939
F_2	-198.773806	-199.375405	-9.617	-199.368727	-6.076	-5.968
N_2	-108.992934	-109.408683	-5.279	-109.397732	-2.875	-2.804
CH_4	-198.773806	-40.433215	-2.802	-40.448575	-1.365	-1.323
HCN	-92.915579	-93.297521	-4.794	-93.292702	-2.484	-2.412
HNC	-92.900156	-93.269223	-4.770	-93.269609	-2.475	-2.404
ΝH	-92.915579	-56.485916	-3.480	-56.492476	-1.849	-1.802
CO	-112.790636	-113.189124	-5.515	-113.183500	-3.092	-3.017
CO_2	-187.725049	-188.401612	-9.537	-188.378721	-5.557	-5.429
C_2H_2	-112.790636	-77.196391	-4.250	-77.200098	-2.074	-2.008

^a $\Delta R12 = \Delta R12(MP2) = MP2-R12 - MP2$

^b $\Delta(R12) = \Delta R12(CCSD(R12)) = CCSD(R12) - CCSD$

 $^{c}\Delta R12 = \Delta R12(CCSD-R12) = CCSD-R12 - CCSD$

Tabelle E.8.: Berechnete Grundzustandsenergien in E_h und Energiedifferenzen in mE_h . Es wurde eine 19s14p8d6f4g3h2i Basis (9s6p4d3f2g für H) als Orbital- und Auxiliarbasis verwendet.

	CCSD[T]	$\Delta(R12)^{a}$	$\Delta R12^{b}$	CCSD(T)	$\Delta(R12)^{c}$	$\Delta R12^{d}$
HF	-100.390605	-3.253	-3.189	-100.390267	-3.259	- 3.194
H_2O	-76.372998	-2.477	-2.421	-76.372703	-2.480	-2.424
CH_2	-39.076365	-0.947	-0.919	-39.076255	-0.947	-0.919
F_2	-199.392197	-5.990	-5.884	-199.391333	-5.996	-5.890
N_2	-109.419799	-2.810	-2.741	-109.418895	-2.809	-2.740
CH_4	-40.456007	-1.344	-1.304	-40.455763	-1.342	-1.302
HCN	-93.313789	-2.420	-2.351	-93.312928	-2.420	-2.351
HNC	-93.290147	-2.412	-2.343	-93.289213	-2.414	-2.345
NH	-56.501961	-1.819	-1.773	-56.501712	-1.818	-1.772
CO	-113.204364	-3.022	-2.949	-113.202965	-3.031	-2.958
CO_2	-188.413821	-5.440	-5.316	-188.411613	-5.453	-5.328
C_2H_2	-77.219171	-2.018	-1.954	-77.218507	-2.017	-1.953

^a $\Delta(R12) = \Delta R12(CCSD[T](R12)) = CCSD[T](R12) - CCSD[T]$

^b $\Delta \hat{R}12 = \Delta R12(\hat{C}CSD[T]-\hat{R}12) = \hat{C}CSD[T]-\hat{R}12 - \hat{C}CSD[T]$

^c $\Delta(R12) = \Delta R12(CCSD(T)(R12)) = CCSD(T)(R12) - CCSD(T)$

^d $\Delta R12 = \Delta R12(CCSD(T)-R12) = CCSD(T)-R12 - CCSD(T)$

		$\Delta R12(MP2)^{a}$	$\Delta R12(CCSD(R12))^{b}$
Ne	aug-cc-pVDZ	-45.753	-38.618
	aug-cc-pVTZ	-20.423	-15.784
	aug-cc-pVQZ	-10.051	-7.326
	aug-cc-pV5Z	-7.551	-5.305
	aug-cc-pV6Z	-6.363	-4.376
\mathbf{F}^{-}	aug-cc-pVDZ	-35.008	-27.324
	aug-cc-pVTZ	-14.665	-10.291
	aug-cc-pVQZ	-8.223	-5.416
	aug-cc-pV5Z	-5.591	-3.538
	aug-cc-pV6Z	-4.411	-2.724

^{a,b} Analog zu Tabelle E.1.

	Babib ai	e franmar sasisi	
		$\Delta R12(MP2)^{a}$	$\Delta R12(CCSD(R12))^{b}$
BH	aug-cc-pVDZ	-9.141	-4.251
	aug-cc-pVTZ	-4.077	-1.563
	aug-cc-pVQZ	-2.183	-0.748
	aug-cc-pV5Z	-1.385	-0.453
	aug-cc-pV6Z	-1.279	-0.416
$_{\rm HF}$	aug-cc-pVDZ	-38.409	-30.815
	aug-cc-pVTZ	-17.229	-12.503
	aug-cc-pVQZ	-8.630	-5.853
	aug-cc-pV5Z	-6.249	-4.066
	aug-cc-pV6Z	-5.446	-3.436
N_2	aug-cc-pVDZ	-101.520	-27.809
	aug-cc-pVTZ	-17.527	-11.244
	aug-cc-pVQZ	-8.875	-5.207
	aug-cc-pV5Z	-6.400	-3.596
	aug-cc-pV6Z	-5.455	-2.991
CO	aug-cc-pVDZ	-40.264	-29.795
	aug-cc-pVTZ	-18.627	-12.223
	aug-cc-pVQZ	-9.657	-5.833
	aug-cc-pV5Z	-6.820	-3.947
	aug-cc-pV6Z	-5.746	-3.248
H_2O	aug-cc-pVDZ	-31.688	-23.968
	aug-cc-pVTZ	-14.175	-9.551
	aug-cc-pVQZ	-7.237	-4.521
	aug-cc-pV5Z	-5.000	-2.988
	aug-cc-pV6Z	-4.550	-2.608
NH_3	aug-cc-pVDZ	-26.459	-18.747
	aug-cc-pVTZ	-11.464	-7.085
	aug-cc-pVQZ	-5.854	-3.331
CH_4	aug-cc-pVDZ	-23.057	-15.248
	aug-cc-pVTZ	-9.308	-5.241
	aug-cc-pVQZ	-4.751	-2.460

Tabelle E.10.: Berechnete Δ R12–Beiträge in m $E_{\rm h}$. Verwendet wurde eine 19s14p8d6f4g3h2i (9s6p4d3f2g für H) Basis als Auxiliarbasis.

^{a,b} Analog zu Tabelle E.1.

Abbildung E.1.: Berechnete Δ R12–Beiträge für F⁻ in m E_h , dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung E.2.: Berechnet
e $\Delta R12-Beiträge für BH in m<math display="inline">E_{\rm h},$ dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung E.3.: Berechnet
e $\Delta {\rm R12-Beiträge}$ für CO in m $E_{\rm h},$ dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung E.4.: Berechnete $\Delta R12$ –Beiträge für NH₃ in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

Abbildung E.5.: Berechnete $\Delta R12$ -Beiträge für CH₄ in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

Abbildung E.6.: Berechnete $\Delta R12$ –Beiträge für H₂O in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

Abbildung E.7.: Berechnete Δ R12–Beiträge für F⁻ mit und ohne 19s14p8d6f4g3h2i Auxiliarbasis in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

Abbildung E.8.: Berechnete Δ R12–Beiträge für CO mit und ohne 19s14p8d6f4g3h2i Auxiliarbasis in m E_h , dargestellt auf einer doppelt-logarithmischen Skala.

Abbildung E.9.: Berechnete $\Delta R12$ -Beiträge für BH mit und ohne 19s14p8d6f4g3h2i (9s6p4d3f2g für H) Auxiliarbasis in m E_h , dargestellt auf einer doppeltlogarithmischen Skala.

Abbildung E.10.: Berechnete $\Delta R12$ -Beiträge für H₂O mit und ohne 19s14p8d6f4g3h2i (9s6p4d3f2g für H) Auxiliarbasis in m $E_{\rm h}$, dargestellt auf einer doppeltlogarithmischen Skala.

-	verwendet.	(, ,			((
Molekül	SCF	MP2	MP2-R12	CCSD	CCSD(R12)	CCSD(T)	CCSD(T)(R12)
H_2	-1.133049	-1.165023	-1.166677	-1.172615	-1.173360	-1.172615	-1.173360
H_2O	-76.060282	-76.328992	-76.341823	-76.333657	-76.342266	-76.342326	-76.350836
CO	-112.779889	-113.142411	-113.158916	-113.144289	-113.155040	-113.162175	-113.172729
CH_4	-40.213658	-40.414459	-40.423407	-40.434361	-40.439388	-40.440895	-40.445847
$\rm CO_2$	-187.706875	-188.321641	-188.350497	-188.310245	-188.329801	-188.340554	-188.359767
SO_2	-547.302286	-547.979803	-548.011338	-547.969333	-547.990137	-548.006119	-548.026481
H_2O_2	-150.838805	-151.347987	-151.371413	-151.354041	-151.369787	-151.374261	-151.389782
SO_3	-622.166862	-623.083228	-623.127194	-623.065402	-623.095163	-623.112128	-623.141329
$HCONH_2$	-169.004547	-169.620770	-169.649129	-169.629481	-169.647957	-169.657002	-169.675166
CH_2CO	-151.785470	-152.334603	-152.358938	-152.341535	-152.357084	-152.369087	-152.384336
C_2H_4O	-152.928164	-153.514045	-153.540288	-153.531102	-153.547656	-153.556582	-153.572863
CH_3OH	-115.092039	-115.529008	-115.549591	-115.546487	-115.559654	-115.562357	-115.575347

-1 1733GD	21 179615	1 173360	21 179615	-1 166677	21 165033	0/0221 1-	H,
CCSD(T)(R12)	CCSD(T)	CCSD(R12)	CCSD	MP2-R12	MP2	SCF	Molekül
						verwendet.	
\log -cc-pV(5+d)Z Basis	ontrahierte au	eine völlig deko	s Auxiliarbasis	Basis und al	;-cc-pV(T+d)Z	wurde eine aug	
ıgen. Als Orbitalbasis	D(T)–Rechnun	CSD- und CCSI	ellen MP2–, Co	zu konvention	, im Vergleich	herung B in E_1	
mit Ansatz 1 und Nä-	andsenergien	R12)–Grundzust	und CCSD(T)(CCSD(R12)-	~–, MP2-R12–,	Berechnete SCI	Tabelle E.11.:

e aug-cc-pV(5+d)Z	CCSD(T)(R12)	-398.949085	-56.487197	-114.354665	-833.536636	-280.573207	-77.199483	-78.451637	-79.689073	-1032.675566	-919.458393	-153.612936
g dekontrahierte	CCSD(T)	-398.943591	-56.480543	-114.342922	-833.523291	-280.545011	-77.192183	-78.443714	-79.679886	-1032.648634	-919.442727	-153.596596
rbasis eine völlig	CCSD(R12)	-398.940526	-56.478963	-114.337294	-833.500464	-280.525555	-77.182581	-78.436299	-79.675291	-1032.634851	-919.439204	-153.587855
und als Auxilia	CCSD	-398.934920	-56.472209	-114.325357	-833.486658	-280.496843	-77.175090	-78.428217	-79.665951	-1032.607359	-919.423204	-153.571232
V(T+d)Z Basis	MP2-R12	-398.921152	-56.471485	-114.334927	-833.499278	-280.556591	-77.176963	-78.418577	-79.651677	-1032.628427	-919.416517	-153.578813
e eine aug-cc-p [*] let.	MP2	-398.911014	-56.460541	-114.316410	-833.475430	-280.514329	-77.164057	-78.404529	-79.635368	-1032.585458	-919.390544	-153.552446
talbasis wurd Basis verwend	SCF	-398.715993	-56.220324	-113.913144	-832.971927	-279.561077	-76.849103	-78.064694	-79.260379	-1031.804169	-919.002357	-152.974287
	Molekül	H_2S	$\rm NH_3$	H_2CO	CS_2	HNO_3	C_2H_2	C_2H_4	C_2H_6	$COCl_2$	Cl_2	CH_3CHO

Tabelle E.12.: Berechnete SCF-, MP2-R12-, CCSD(R12)- und CCSD(T)(R12)-Grundzustandsenergien mit Ansatz 1 und Näherung B in in $E_{\rm h}$ im Vergleich zu konventionellen MP2-, CCSD- und CCSD(T)–Rechnungen. Als Orbi-

	talbasis wurde Basis verwend	eine aug-cc-p [¬] et.	V(Q+d)Z Basi	s und als Auxil	iarbasis eine völ	lig dekontrahie	rte aug-cc-pV(5+c
Molekül	SCF	MP2	MP2-R12	CCSD	CCSD(R12)	CCSD(T)	CCSD(T)(R12)
H_2	-1.133499	-1.166739	-1.167521	-1.173854	-1.174175	-1.173854	-1.174175
H_2O	-76.065649	-76.351907	-76.359404	-76.354162	-76.358869	-76.363576	-76.368223
CO	-112.787390	-113.172893	-113.182859	-113.171183	-113.177217	-113.190262	-113.196179
CH_4	-40.216289	-40.427399	-40.432036	-40.444724	-40.447132	-40.451718	-40.454088
CO_2	-187.719442	-188.373789	-188.390969	-188.357091	-188.367922	-188.389399	-188.400028
SO_2	-547.316925	-548.039627	-548.059340	-548.023161	-548.035233	-548.062663	-548.074456
H_2O_2	-150.848728	-151.391022	-151.405089	-151.392474	-151.401312	-151.414289	-151.422991
SO_3	-622.187562	-623.166383	-623.193694	-623.141078	-623.158230	-623.191338	-623.208138
$HCONH_2$	-169.015402	-169.669316	-169.685621	-169.671923	-169.681784	-169.701352	-169.711034
CH_2CO	-151.795017	-152.377023	-152.391138	-152.378274	-152.386651	-152.407591	-152.415796
C_2H_4O	-152.937493	-153.557910	-153.572843	-153.568710	-153.577498	-153.596009	-153.604641
CH_3OH	-115.099534	-115.563094	-115.574704	-115.576062	-115.583007	-115.593170	-115.600014

Tabelle E.13.: Molekül H ₂ O CO	Berechnete SC Näherung B ir talbasis wurde Basis verwende SCF -1.133499 -76.065649 -112.787390	$\begin{array}{c} \mbox{y}{\rm F}_{-}, \ \mbox{MP2-R12}\\ \mbox{a} \mbox{in} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$, CCSD(R12) rgleich zu kom V(Q+d)Z Basi V(Q+d)Z Basi -1.167521 -76.359404 -113.182859)- und CCSD(ventionellen M] s und als Auxil <u>CCSD</u> -1.173854 -76.354162 -113.171183	T)(R12)-Grundz P2-, CCSD- un iarbasis eine völ .1.174175 -76.358869 -1.13.177217	ustandsenergie d CCSD(T)-Re lig dekontrahie <u>CCSD(T)</u> -1.173854 -76.363576 -113.190262	n mit Ansatz 1 u echnungen. Als Orl rte aug-cc-pV(5+d <u>CCSD(T)(R12)</u> -1.174175 -76.368223 -113.196179
H_2O	-76.065649	-76.351907	-76.359404	-76.354162	-76.358869	-76.363576	-76.368223
CO	-112.787390	-113.172893	-113.182859	-113.171183	-113.177217	-113.190262	-113.196179
CH_4	-40.216289	-40.427399	-40.432036	-40.444724	-40.447132	-40.451718	-40.454088
$\rm CO_2$	-187.719442	-188.373789	-188.390969	-188.357091	-188.367922	-188.389399	-188.400028
SO_2	-547.316925	-548.039627	-548.059340	-548.023161	-548.035233	-548.062663	-548.074456
H_2O_2	-150.848728	-151.391022	-151.405089	-151.392474	-151.401312	-151.414289	-151.422991
SO_3	-622.187562	-623.166383	-623.193694	-623.141078	-623.158230	-623.191338	-623.208138

, e aug-cc-pV $(5+d)Z$	CCSD(T)(R12)	-398.961804	-56.499053	-114.378742	-833.568510	-280.634232	-77.214740	-78.467618	-79.705036	-1032.732570	-919.492071	-153.644564
g dekontrahiert	CCSD(T)	-398.958971	-56.495730	-114.372338	-833.561389	-280.618440	-77.210940	-78.463579	-79.700523	-1032.717768	-919.483312	-153.635922
arbasis eine völli	CCSD(R12)	-398.952267	-56.490152	-114.360044	-833.529550	-280.583240	-77.196744	-78.451223	-79.690227	-1032.687764	-919.470130	-153.617610
s und als Auxilia	CCSD	-398.949371	-56.486775	-114.353525	-833.522171	-280.567141	-77.192837	-78.447094	-79.685633	-1032.672632	-919.461168	-153.608807
V(Q+d)Z Basis	MP2-R12	-398.933604	-56.483660	-114.359480	-833.530956	-280.618256	-77.193077	-78.435454	-79.668387	-1032.683039	-919.447480	-153.611149
e eine aug-cc-p let.	MP2	-398.927952	-56.477766	-114.348647	-833.517090	-280.592867	-77.185720	-78.427679	-79.659733	-1032.657463	-919.431713	-153.596179
talbasis wurd Basis verwend	SCF	-398.719393	-56.223971	-113.920514	-832.980361	-279.579953	-76.853475	-78.069387	-79.265305	-1031.818254	-919.009096	-152.983904
	Molekül	H_2S	$\rm NH_3$	H_2CO	CS_2	HNO_3	C_2H_2	C_2H_4	C_2H_6	$COCl_2$	Cl_2	CH ₃ CHO

Tabelle E.14.: Berechnete SCF-, MP2-R12-, CCSD(R12)- und CCSD(T)(R12)-Grundzustandsenergien mit Ansatz 1 und Näherung B in in $E_{\rm h}$ im Vergleich zu konventionellen MP2-, CCSD- und CCSD(T)–Rechnungen. Als Orbi-

Molekül	SCF	MP2	CCSD	CCSD(T)
H_2	-1.133637	-1.167366	-1.174241	-1.174241
H_2O	-76.066965	-76.360211	-76.360587	-76.370281
CO	-112.789001	-113.183909	-113.179589	-113.199138
CH_4	-40.216996	-40.431893	-40.447765	-40.454897
CO_2	-187.722229	-188.392734	-188.371839	-188.404923
SO_2	-547.320762	-548.062805	-548.041211	-548.081757
H_2O_2	-150.851223	-151.406905	-151.404812	-151.427239
SO_3	-622.193063	-623.198320	-623.166405	-623.218034
HCONH_2	-169.017847	-169.686647	-169.684933	-169.715051
CH_2CO	-151.797166	-152.392105	-152.389476	-152.419427
C_2H_4O	-152.939741	-153.573642	-153.580322	-153.608257
CH_3OH	-115.101404	-115.575327	-115.585209	-115.602751
H_2S	-398.720057	-398.934533	-398.953753	-398.963687
NH_3	-56.224852	-56.483816	-56.491120	-56.500282
H_2CO	-113.922239	-114.360286	-114.362299	-114.381574
CS_2	-832.981847	-833.533400	-833.533309	-833.573505
HNO_3	-279.584155	-280.621247	-280.589243	-280.641734
C_2H_2	-76.854438	-77.193201	-77.197955	-77.216398
C_2H_4	-78.070486	-78.435578	-78.452501	-78.469301
C_2H_6	-79.266545	-79.668200	-79.691414	-79.706596
$COCl_2$	-1031.820947	-1032.684673	-1032.692657	-1032.739238
Cl_2	-919.010376	-919.448117	-919.472969	-919.496110
$\rm CH_3 CHO$	-152.986149	-153.611786	-153.620326	-153.648056

Tabelle E.15.: Berechnete SCF–, MP2–, CCSD– und CCSD(T)–Grundzustandsenergien in einer aug-cc-pV(5+d)Z Basis in in $E_{\rm h}.$

pun	
(Z(p))	
T^{+}	
-cc-p	
(aug-	
)aten	
ten L	
schne	
n bere	
etiscl	
theor	
schen	
) zwis	
$E_{\rm Exp}$	
$ c - \Delta $	
ΔE_{Cal}	
gen (2	lol.
chung	kJ/n
Abwei	nt in
$\det P$	erime
sleich	Expe
Verg	dem
E.16.:	
elle l	
Tal	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nr.	$\Delta MP2 = 2$	MP2-R12	ACCSD	ACCSD(J	R12) ACC	SD(T)	$\Delta CCSD(T)(R)$	$\overline{2)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19.7	20.7	-22.0		21.3	-5.4	7	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-22.4	-23.7	10.7		8.8	0.6	1	c;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	က	-64.3	-69.0	14.6		9.3	8.5		<u></u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4.6	6.0	-8.7		-8.3	-4.5	-	.2
	5	-2.8	-3.7	-1.4		-2.6	-0.6	I	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	-17.1	-18.7	-5.8		-7.7	1.8	Ť	.2
	7	-2.2	-3.5	-4.7		-6.0	-0.2	1	.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×	3.1	0.0 0	-1.2		-1.1	1.1		-2
	6	-8.7	-10.3	-6.9		-8.2	-2.8	-	1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	-73.1	-81.4	-0.8		-9.2	12.6	7	1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	-17.3	-22.1	5.7		0.0	6.9		6.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	-28.3	-32.9	10.2		5.8	7.9		9.6
$ \begin{array}{cccccccc} 14 & -7.8 & -10.2 & 4.9 & 2.4 & 1.5 & -1.0 \\ \hline 15 & 4.9 & 3.2 & -3.3 & -4.6 & -2.2 & -3.6 \\ Tabelle E.17.: Fehleranalyse auf aug-cc-pV (T+d)Z Niveau. Alle Daten sind in kJ/mol angegeben. \\ \hline \\ \hline \\ Mittlerer Fehler & -14.1 & -1.1 & 1.7 & -16.1 & -3.3 & -0 \\ Mittlerer absoluter Fehler & 26.1 & 7.2 & 4.2 & 20.6 & 6.9 & 2 \\ \hline \\ Standardabweichung & 25.3 & 9.3 & 5.5 & 27.7 & 8.0 & 3 \\ Maximaler absoluter Fehler & 73.1 & 22.0 & 12.6 & 81.4 & 21.3 & 5 \\ \hline \end{array} $	13	0.5	0.8	-7.5		-7.0	-2.9	1	2.5
$\begin{array}{cccccc} 15 & 4.9 & 3.2 & -3.3 & -4.6 & -2.2 & -3.6 \\ Tabelle E.17.: Fehleranalyse auf aug-cc-pV(T+d)Z Niveau. Alle Daten sind in kJ/mol angegeben.\\ \hline Mittlerer Fehler & MP2 & CCSD & CCSD(T) & MP2-R12 & CCSD(R12) & CCSD(T)(R1: \\ Mittlerer absoluter Fehler & 26.1 & 7.2 & 4.2 & 20.6 & 6.9 & 2 \\ Standardabweichung & 25.3 & 9.3 & 5.5 & 27.7 & 8.0 & 3 \\ Maximaler absoluter Fehler & 73.1 & 22.0 & 12.6 & 81.4 & 21.3 & 5 \\ \end{array}$	14	-7.8	-10.2	4.9		2.4	1.5	ī	0
Tabelle E.17.: Fehleranalyse auf aug-cc-pV (T+d)Z Niveau. Alle Daten sind in kJ/mol angegeben.Mittlerer FehlerMittlerer Fehler -14.1 -1.1 1.7 -16.1 -3.3 -0 Mittlerer absoluter Fehler 26.1 7.2 4.2 20.6 6.9 2 Standardabweichung 25.3 9.3 5.5 27.7 8.0 3 Maximaler absoluter Fehler 73.1 22.0 12.6 81.4 21.3 5	15	4.9	3.2	-3.3		-4.6	-2.2		9.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tab	elle E.17.: Fehle	ranalyse auf	aug-cc-pV(T+d)Z Nivea	u. Alle Daten	sind in kJ/	mol angegeben	
Mittlerer Fehler -14.1 -1.1 1.7 -16.1 -3.3 -0 Mittlerer absoluter Fehler 26.1 7.2 4.2 20.6 6.9 2 Standardabweichung 25.3 9.3 5.5 27.7 8.0 3 Maximaler absoluter Fehler 73.1 22.0 12.6 81.4 21.3 5			MP2	CCSD	CCSD(T)	MP2-R12	CCSD(R	(12) $CCSD($	$\Gamma)(R12)$
Mittlerer absoluter Fehler 26.1 7.2 4.2 20.6 6.9 2 Standardabweichung 25.3 9.3 5.5 27.7 8.0 3 Maximaler absoluter Fehler 73.1 22.0 12.6 81.4 21.3 5	Mittlerer Fe	hler	-14.1	-1.1	1.7	-16.1	•	3.3	-0.5
Standardabweichung 25.3 9.3 5.5 27.7 8.0 3 Maximaler absoluter Fehler 73.1 22.0 12.6 81.4 21.3 5	Mittlerer ab	soluter Fehler	26.1	7.2	4.2	20.6		6.9	2.8
Maximaler absoluter Fehler 73.1 22.0 12.6 81.4 21.3 5	Standardab	weichung	25.3	9.3	5.5	27.7		8.0	3.3
	Maximaler ;	absoluter Fehler	. 73.1	22.0	12.6	81.4	64	21.3	5.1

Maxir	Stand	Mittle	Mittle			11									_					I	I	
naler ab	ardabwe	erer abso	er Fehl		Tabell	15	14	13	12	11	10	9	00	7	6	C7	4	ŝ	2	1	Nr.	dem I
soluter Fehl	ichung	luter Fehler	er		e E.19.: Feh	7.1	-10.0	1.3	-32.4	-25.7	-85.0	-7.4	3.6	-2.6	-20.0	-2.9	5.2	-74.1	-23.4	23.5	$\Delta MP2$	Experiment
er 85.0	29.6	21.6	-16.2	MP2	ileranalyse auf	6.8	-11.2	1.5	-34.0	-28.4	-88.3	-7.6	4.1	-2.5	-20.3	-3.1	6.2	-76.0	-23.0	24.5	Δ MP2-R12	in kJ/mol.
19.9	7.7	6.6	-4.0	CCSD	aug-cc-pV(-1.5	2.3	-6.5	4.9	-4.6	-16.0	-5.7	-0.7	-5.1	-9.3	-1.5	-8.4	2.7	9.6	-19.9	$\Delta CCSD$	
4.1	1.7	1.7	-1.1	CCSD(T)	⊋+d)Z Nivea						1				1					-	$\Delta CCSD(H$	vh/
88	30.7	22.1	-16.8	MP2-R1:	ı. Alle Dat	-2.0	1.2	-6.3	3.1	-7.1	19.4	-6.1	-0.4	-5.4	10.0	-1.9	-8.1	0.3	9.3	19.5	$R12) \Delta$	
	7	01	œ	2 CCSD	en sind in k	-0.4	-1.3	-1.9	2.7	-0.3	-1.6	-1.5	1.7	-0.6	-1.5	-0.8	-4.1	-3.0	-0.6	-2.8	CCSD(T)	
19.5	7.7	6.7	-4.8	(R12)	:J/mol an																ΔCCS	((
57	2	2	-1	CCSD(T)(R1:	gegeben.	-0.9	-2.5	-1.7	1.0	-2.8	-5.1	-1.9	2.0	-1.0	-2.2	-1.2	-3.9	-5.3	-1.0	-2.4	D(T)(R12)	0 F . (
ಲು	Ö	čن	Ö																			, , , , , , , , , , , , , , , , , , , ,

Tabelle E.18.: Vergleich der Abweichungen ($\Delta E_{Calc} - \Delta E_{Exp}$) zwischen theoretisch berechneten Daten (aug-cc-pV(Q+d)Z) und

Nr.	ΤZ	QZ	TZ/QZ	$5\mathrm{Z}$	QZ/5Z	TZ(R12)	QZ(R12)
1	-5.4	-2.8	-0.5	-1.3	0.3	-4.9	-2.4
2	0.6	-0.6	-1.8	-0.1	-0.1	-1.3	-1.0
3	8.5	-3.0	-6.8	-4.2	-5.7	3.3	-5.3
4	-4.5	-4.1	-4.1	-3.8	-3.5	-4.2	-3.9
5	-0.6	-0.8	-2.1	-0.7	-0.7	-1.7	-1.2
6	1.8	-1.5	-3.1	-1.7	-1.9	-0.2	-2.2
7	-0.2	-0.6	-1.6	-0.5	-0.4	-1.5	-1.0
8	1.1	1.7	1.9	2.0	2.3	1.2	2.0
9	-2.8	-1.5	-1.1	-1.4	-1.3	-4.1	-1.9
10	12.6	-1.6	-7.3	-3.7	-5.8	4.1	-5.1
11	9.9	-0.3	-4.9	-3.9	-6.3	5.1	-2.8
12	7.9	2.7	-0.1	1.7	0.5	3.6	1.0
13	-2.9	-1.9	-1.2	-2.0	-2.2	-2.5	-1.7
14	1.5	-1.3	-3.9	-2.0	-2.9	-1.0	-2.5
15	-2.2	-0.4	0.7	-0.3	-0.4	-3.6	-0.9

Tabelle E.20.: Vergleich der Abweichungen ($\Delta E_{\text{Calc}} - \Delta E_{\text{Exp}}$) zwischen CCSD(T)–Daten, die in verschiedenen aug-cc-pV(X+d)Z Basissätzen ermittelt wurden und dem Experiment in kJ/mol.

Tabelle E.21.: Fehleranalyse mit und ohne (R12)–Beiträge auf CCSD(T)–Niveau in verschiedenen Basissätzen in kJ/mol. Dabei wurden experimentelle Daten als Referenzwerte verwendet. $\bar{\Delta}$ = Mittlerer Fehler, $\bar{\Delta}_{abs}$ Mittlerer absoluter Fehler, Δ_{std} = Standardabweichung, Δ_{max} = maximaler absoluter Fehler.

CCSD(T)	$\bar{\Delta}$	$\bar{\Delta}_{\rm abs}$	$\Delta_{\rm std}$	Δ_{\max}
aug-cc- $pV(T+d)Z$	1.7	4.2	5.5	12.6
aug-cc- $pV(Q+d)Z$	-1.1	1.7	1.7	4.1
Extrapolated (TZ/QZ)	-2.4	2.7	2.6	7.3
aug-cc- $pV(5+d)Z$	-1.5	1.9	1.9	4.2
Extrapolated $(QZ/5Z)$	-1.9	2.3	2.5	6.3
aug-cc- $pV(T+d)Z$ (R12)	-0.5	2.8	3.3	5.1
aug-cc-pV(Q+d)Z (R12)	-1.9	2.3	2.0	5.3

Nr	TZ	OZ	TZ/0Z	57	TZ(B12)	OZ(B12)
1	57	ूट २.1	12/02	1.6	5.0	0.7
1	-0.7	-0.1	-0.8	-1.0	-0.2	- 4.1
2	0.7	-0.5	-1.7	0.0	-1.2	-0.9
3	14.2	2.7	-1.1	1.5	9.0	0.4
4	-1.0	-0.6	-0.6	-0.3	-0.7	-0.4
5	0.1	-0.1	-1.4	0.0	-1.0	-0.5
6	3.7	0.4	-1.2	0.2	1.7	-0.3
7	0.2	-0.2	-1.2	-0.1	-1.1	-0.6
8	-1.2	-0.6	-0.4	-0.3	-1.1	-0.3
9	-1.5	-0.2	0.2	-0.1	-2.8	-0.6
10	18.4	4.2	-1.5	2.1	9.9	0.7
11	16.2	6.0	1.4	2.4	11.4	3.5
12	7.4	2.2	-0.6	1.2	3.1	0.5
13	-0.7	0.3	1.0	0.2	-0.3	0.5
14	4.4	1.6	-1.0	0.9	1.9	0.4
15	-1.8	0.0	1.1	0.1	-3.2	-0.5

Tabelle E.22.: Vergleich der Abweichungen ($\Delta E_{\text{Calc}} - \Delta E_{\text{Ref}}$) zwischen CCSD(T)–Daten in verschiedenen aug-cc-pV(X+d)Z Basissätzen mit und ohne (R12)–Beiträge und extrapolierten (QZ/5Z) Daten in kJ/mol.

Tabelle E.23.: Fehleranalyse mit und ohne (R12)–Beiträge auf CCSD(T)–Niveau in verschiedenen Basissätzen in kJ/mol. Dabei wurden extrapolierte (QZ/5Z) Daten als Referenzwerte verwendet. $\bar{\Delta}$ = Mittlerer Fehler, $\bar{\Delta}_{\rm abs}$ Mittlerer absoluter Fehler, $\Delta_{\rm std}$ = Standardabweichung, $\Delta_{\rm max}$ = maximaler absoluter Fehler.

CCSD(T)	$\bar{\Delta}$	$\bar{\Delta}_{\rm abs}$	$\Delta_{\rm std}$	Δ_{\max}
aug-cc- $pV(T+d)Z$	3.6	5.1	7.3	18.4
aug-cc- $pV(Q+d)Z$	0.8	1.5	2.2	6.0
$\operatorname{Extrapolated}\left(\mathrm{TZ}/\mathrm{QZ} ight)$	-0.5	1.0	1.0	1.7
aug-cc- $pV(5+d)Z$	0.4	0.7	1.0	2.4
aug-cc-pV(T+d)Z (R12)	1.3	3.6	5.0	11.4
aug-cc-pV(Q+d)Z (R12)	-0.1	0.9	1.3	3.5

	Grundzu	stanus ui	iu extrapone		Datch h	1 K5/ 1101.
Nr.	ΤZ	QZ	TZ/QZ	$5\mathrm{Z}$	TZ(R12)	QZ(R12)
1	-6.2	-3.0	-0.8	-1.6	-5.7	-2.7
2	1.6	0.0	-1.2	0.0	-0.3	-0.3
3	8.2	3.0	-0.9	1.5	2.9	0.6
4	-0.7	-0.6	-0.6	-0.3	-0.3	-0.4
5	1.7	0.0	-1.3	0.0	0.6	-0.5
6	2.7	0.4	-1.2	0.2	0.7	-0.3
7	1.0	-0.3	-1.2	-0.1	-0.3	-0.6
8	-1.0	-0.7	-0.5	-0.3	-0.9	-0.4
9	-0.9	-0.2	0.2	-0.1	-2.3	-0.7
10	12.0	4.2	-1.5	2.1	3.5	0.7
11	11.0	4.7	0.2	2.4	6.2	2.2
12	6.1	2.2	-0.6	1.2	1.8	0.5
13	-0.4	0.4	1.0	0.2	0.0	0.5
14	5.3	1.7	-0.9	0.9	2.8	0.5
15	-1.4	0.1	1.1	0.1	-2.8	-0.4

Tabelle E.24.: Vergleich der Abweichungen ($\Delta E_{\text{Calc}} - \Delta E_{\text{Ref}}$) zwischen CCSD(T)–Daten in verschiedenen aug-cc-pV(X+d)Z Basissätzen mit und ohne (R12)– Beiträge jeweils unter Verwendung eines aug-cc-pV(5+d)Z Hartree–Fock– Grundzustands und extrapolierten (OZ/5Z) Daten in kJ/mol.

Tabelle E.25.: Fehleranalyse mit und ohne (R12)–Beiträge auf CCSD(T)–Niveau in verschiedenen Basissätzen jeweils unter Verwendung eines aug-cc-pV(5+d)Z Hartree–Fock–Grundzustands in kJ/mol. Dabei wurden extrapolierte (QZ/5Z) Daten als Referenzwerte verwendet. $\bar{\Delta}$ = Mittlerer Fehler, $\bar{\Delta}_{abs}$ Mittlerer absoluter Fehler, Δ_{std} = Standardabweichung, Δ_{max} = maximaler absoluter Fehler.

CCSD(T)	$\bar{\Delta}$	$\bar{\Delta}_{abs}$	$\Delta_{\rm std}$	Δ_{\max}
aug-cc- $pV(T+d)Z$	2.6	4.0	5.0	12.0
aug-cc- $pV(Q+d)Z$	0.8	1.4	2.0	4.7
Extrapolated (TZ/QZ)	-0.5	0.9	0.8	1.5
aug-cc- $pV(5+d)Z$	0.4	0.7	1.0	2.4
aug-cc-pV(T+d)Z (R12)	0.4	2.1	2.9	6.2
aug-cc-pV(Q+d)Z (R12)	-0.1	0.8	1.1	2.7

Abbildung E.11.: Auftragung der Abweichungen ($\Delta E_{\text{Calc}} - \Delta E_{\text{Exp}}$) auf aug-cc-pV(T+d)Z Niveau zwischen theoretisch berechneten und experimentellen Reaktionsenergien in kJ/mol.

Tabelle E.26.: RI-MP2(FC)/def2-QZVPP optimierte Geometrien des SO₃·H₂O Dimers. Die Notation (AB) entspricht der vollständig relaxierten Geometrie des Dimers, während für (AB Fix) die optimierten Geometrien der Monomere beibehalten wurden. Die Zuordnung der Numerierung der einzelnen Atome findet sich in Abbildung (9.10). Die Bindungslängen und –winkel des RI-MP2(FC)/def2-QZVPP optimierten H₂O Monomers (in C_{2v} Symmetrie) sind 95.80 pm und 104.22°. Für das RI-MP2(FC)/def2-QZVPP optimierte SO₃ Molekül (in D_{3h} Symmetrie) betragen die Bindungslängen und –winkel 142.76 pm und 120.00°.

	(AB)	(AB Fix)
O5–H7	96.26	95.80
O5–H6	96.26	95.80
H7-O5-H6	105.52	104.22
O5–S1	232.46	245.67
S1-O3	142.75	142.76
S1-O2	142.32	142.76
S1-O4	142.75	142.76
O3–S1–O2	119.88	120.00
O2-S1-O4	119.88	120.00
O4-S1-O3	119.45	120.00
O4-S1-O3-O2	169.79	180.00
H7-O5-S1-O4	115.79	116.09

Tabelle E.27.: RI-MP2-R12–Energien in $E_{\rm h}$. Verwendet wurden Ansatz 1 und Näherung A sowie die "frozen core"–Näherung (FC). Es gilt $E_{\rm RI-MP2-R12} = E_{\rm RI-MP2} + E_{\rm RI-\Delta R12}$. Die RI–Fehler sind für die Monomere in $mE_{\rm h}$ angegeben und werden als $\delta_{\rm RI-MP2} = E_{\rm RI-MP2} - E_{\rm MP2}$ und $\delta_{\rm RI-\Delta R12} = E_{\rm RI-\Delta R12} - E_{\Delta R12}$ definiert.

Molekül	$E_{\mathrm{RI-MP2-R12}}$	$E_{\mathrm{RI}\text{-}\Delta\mathrm{R12}}$	$\delta_{ m RI-MP2}$	$\delta_{\mathrm{RI}-\Delta\mathrm{R12}}$
$H_2O(B)$	-76.367812	-0.010784	0.018	-0.031
H_2O (AB)	-76.367740	-0.010790	0.018	-0.031
H_2O (GB)	-76.367796	-0.010676		
SO_3 (A)	-623.229081	-0.043097	0.018	-0.086
SO_3 (AB)	$-623.227\ 312$	-0.043096	0.019	-0.086
SO_3 (AG)	$-623.227\ 341$	-0.042794		
$SO_3 \cdot H_2O$ (AB)	-699.612653	-0.054114		
$SO_3 \cdot H_2O$ (AB Fix)	-699.611021	-0.054040		
H_2O (GB Fix)	-76.367862	-0.010692		
SO_3 (AG Fix)	-623.229110	-0.042851		

IUI DV	$J_3 \ \text{III} \ E_{\text{h}}$.			
RS-O / pm	SCF	MP2-R12	CCSD(R12)	CCSD(T)(R12)
141	-622.195986	-623.192672	-623.160309	-623.208112
142	-622.192980	-623.193633	-623.159973	-623.208651
143	-622.189193	-623.193817	-623.158851	-623.208417

Tabelle E.28.: Berechnete aug-cc-pV(Q+d)Z/CCSD(T)(R12)-Grundzustandsenergien für SO₂ in E_1

Tabelle E.29.: Berechnete aug-cc-pV(Q+d)Z Energien in $E_{\rm h}.$ Es wurden nur die Valenzelektronen korreliert.

Molekül	SCF	MP2	CCSD	CCSD(T)
$H_2O(B)$	-76.065922	-76.351917	-76.354207	-76.363585
H_2O (AB)	-76.065598	-76.351846	-76.354104	-76.363521
H_2O (GB)	-76.065962	-76.352147	-76.354387	-76.363778
SO_3 (A)	-622.190152	-623.166480	-623.141976	-623.191681
SO_3 (AB)	-622.188696	-623.164674	-623.140317	-623.189953
SO_3 (AG)	-622.188883	-623.165222	-623.140780	-623.190447
$SO_3 \cdot H_2O$ (AB)	-698.268410	-699.534099	-699.511659	-699.571010
SO ₃ ·H ₂ O (AB Fix)	-698.266412	-699.532571	-699.509951	-699.569528
H_2O (GB Fix)	-76.065962	-76.352147	-76.354387	-76.363778
SO_3 (AG Fix)	-622.190322	-623.166951	-623.142377	-623.192108

/aug-c	c-pCVTZ Ńive	eau berech	inet.		
01	SCF	D1	MV	CCSD(T)(FC)	CCSD(T)(Full)
-76.060	763 (0.199884	-0.251485	-76.345487	-76.399644
-76.060	ŧ60 (0.199878	-0.251475	-76.345458	-76.399607
-76.060 5	84 (0.199874	-0.251469	-76.346000	-76.400171
622.168 5	66	4.116708	-5.346725	-623.121992	-623.615768
622.16708	31	4.116705	-5.346730	-623.120174	-623.613982
-622.16735	5	4.116702	-5.346723	-623.121203	-623.615171
-698.24158	22	4.316339	-5.597801	-699.482834	-700.030976
-698.23966		4.316410	-5.597917	-699.481611	-700.029701
-76.06087	22	0.199881	-0.251480	-76.345958	-76.400135
-622.16885	51	4.116706	-5.346719	-623.122892	-623.616795

Tabelle E.30.: Berechnete CCSD(T)(FC)/aug-cc-pCVTZ (nur Valenzelektronen wurden korreliert) und CCSD(T)(Full)/augcc-pCVTZ (alle Elektronen wurden korreliert) Energien in $E_{\rm h}$. Die relativistischen Korrekturen aus dem Einelektronen–Darwin–Term (D1) und dem Masse–Geschwindigkeitsbeitrag (MV) sind in $E_{\rm h}$ angegeben und
F. Konstruktion der Basen für die RI-MP2-R12–Rechnungen aus Abschnitt 9.3

F.1. Orbitalbasis für Schwefel

Ausgangspunkt für die Konstruktion der Orbitalbasis für Schwefel war eine def2-QZVPP Basis [189], die aus der TURBOMOLE-Baissatzbibliothek [191] entnommen wurde. Zunächst wurde die zweite *s*-Funktion, die in der Originalbasis aus drei primitiven Funktionen bestand, vollständig dekontrahiert. Danach wurde der erste *p*-Satz, der in der Originalbasis aus acht primitiven Funktionen bestand, zum Teil dekontrahiert, wobei die drei steilsten Funktionen in einer kontrahierten Gauß-Funktion (GTO "Gauß type orbital ") zusammengefasst wurden. Anschließend wurden zu dieser Basis verschiedene diffuse Funktionen mit den Exponenten 0.0428 (*s*), 0.0317 (*p*), 0.0722 (*d*), 0.14 (*f*), und 0.297 (*g*), sowie mehrere steile Funktionen mit den Exponenten 1280.0 (*s*), 70.0, 17.0 (*d*), 2.25 (*f*), und 1.84 (*g*), die der aug-cc-pV(Q+d)Z Basis von Dunning *et al.* [20,159] entnommen wurden, hinzugefügt. Letztendlich ergibt sich für S eine 13s12*p*7*d*4*f*3*g* kontrahierte Basis, die aus 22s15p7d4f3g primitiven Funktionen zusammengesetzt ist.

F.2. Orbitalbasis für Sauerstoff

Die Vorgehensweise zum Aufbau der Orbitalbasis für Sauerstoff ist der Vorgehensweise zur Konstruktion der Basis für Schwefel sehr ähnlich. Auch hier wird die def2-QZVPP Basis als Ausgangspunkt gewählt. Anschließend wird die zweite *s*-Funktion, die ursprünglich aus zwei primitiven Funktionen bestand, vollständig dekontrahiert. In gleicher Weise wird mit dem ersten Satz an *p*-Funktionen, der ursprünglich aus fünf primitiven Funktionen bestand, verfahren. Anschließend wird die so entstandene Basis um verschiedene diffuse und steile Funktionen ergänzt, die der aug-cc-pVQZ Basis von Dunning *et al.* [20, 81] entnommen wurden. Die zugehörigen Exponenten für die flachen Funktionen sind 0.06959 (*s*), 0.05348 (*p*), 0.154 (*d*), 0.324 (*f*), 0.714 (*g*) und für die steilen Funktionen 300.0 (*s*), 32.0 und 11.0 (*d*), 8.27 (*f*), und 6.0 (*g*). Damit entsteht letztendlich für Sauerstoff eine 10*s*9*p*6*d*4*f*3*g* kontrahierte Basis, die sich aus 17*s*9*p*6*d*4*f*3*g* primitiven Funktionen zusammensetzt.

F.3. Orbitalbasis für Wasserstoff

Auch bei der Konstruktion der Orbitalbasis für Wasserstoff dient die def2-QZVPP Basis als Ausgangspunkt. Anschließend wurde die erste *s*-Funktion, die ursprünglich aus sieben primitiven Funktionen bestand, vollständig dekontrahiert. Danach wurde die Basis um diffuse Funktionen mit den Exponenten 0.02363 (*s*), 0.0848 (*p*), 0.19 (*d*), und 0.36 (*f*) sowie um eine steile Funktion mit dem Exponenten 6.3 (*p*) ergänzt. Dadurch entstand eine 8s5p3d2f Basis aus primitiven Gauß-Funktionen.

F.4. Auxiliarbasen

Als Ausgangspunkt für die Konstruktion der Auxiliarbasen für Schwefel, Sauerstoff und Wasserstoff wurde die def2-QZVPP Auxiliarbasis von Hättig *et al.* [202] verwendet. Diese wurde anschließend um verschiedene diffuse und steile Funktionen ergänzt.

Für Schwefel wurden Funktionen mit den Exponenten 12700.0 (s) und 0.0558 (s), 0.131 (p), 973.455 (d), 296.64 (d),0.08177 (d), 29.99 (f), 0.1781 (f), 10.108 (g), 0.28011 (g), und 2.036 (h), 0.509 (h) hinzugefügt. Dies ergab eine 14s11p12d8f5g3h Auxiliarbasis.

Beim Sauerstoff wurden Funktionen mit den Exponenten 2208.0 (s), 0.115 (s), 0.2262 (p), 180.53 (d), 68.05 (d), 0.116 (d), 24.79 (f), 0.4132 (f), 9.6367 (g), 0.6245 (g), 5.531 (h) und 1.3828 (h) hinzugefügt, welches in diesem Fall zu einer 11s9p10d7f5g3h Auxiliarbasis führte.

Für Wasserstoff wurden noch folgende Funktionen mit den Exponenten 0.1085 (s), 8.4848 (p), 0.0976 (p), 0.2735 (d), 0.2381 (f), und 1.0 (g), hinzugefügt. Dies ergab eine 7s6p4d3f2g Auxiliarbasis.

Tabellenverzeichnis

5.1.	Verwendete Operatoren und deren zugewiesene "Ordnung" 48
8.1.	Berechnete ¹ P (2p \leftarrow 2s) CC2-R12–Anregungsenergien von Be 71
8.2.	Berechnete ¹ P (3s \leftarrow 2p) CC2-R12–Anregungsenergien von Ne 71
8.3.	Berechnete vertikale Anregungsenergien von BH
9.1.	Experimentelle Reaktionsenergien in $kJ/mol.$
9.2.	Einzelne Beiträge zur Bindungsenergie des $\mathrm{SO}_3{\cdot}\mathrm{H_2O}$ Komplexes in $\mathrm{kJ/mol.}$ 113
B.1.	Explizite Ausdrücke für die CC2-Grundzustandsvektorfunktion
B.2.	Explizite Ausdrücke der R12–Beiträge der CC2-R12–Grundzustandsvektor-
	funktion
В.З.	Explizite Ausdrücke der Matrizen X, C und B im Rahmen der verschiede-
	nen Ansätze
B.4.	Explizite Ausdrücke der Transformation $\rho = \mathbf{A}\vec{R}$ für das CC2–Modell 123
B.5.	Explizite Ausdrücke der R12–Beiträge der Transformation $ ho = \mathbf{A} \vec{R}$ für das
	CC2-R12–Modell
B.6.	Definition der \hat{T}_1 Transformationsmatrizen
D.1.	Berechnete CC2-R12–Grundzustandsenergien von Be
D.2.	Berechnete CC2-R12–Gesamtenergien des angeregten Zustands ¹ P (2p \leftarrow
	2s) von Be
D.3.	Berechnete CC2-R12–Grundzustandsenergien von Ne
D.4.	Berechnete CC2-R12–Gesamtenergien des angeregten Zustands $^{1}\mathrm{P}$ (3s \leftarrow
	2p) von Ne
D.5.	Berechnete CC2-R12–Grundzustandsenergien von BH
D.6.	Berechnete CC2-R12–Total energien des angeregten B $^1\Sigma^+$ –Zustands von BH.139
D.7.	Berechnete CC2-R12–Total energien des angeregten A $^1\Pi$ –Zustands von BH.140
D.8.	Berechnete CC2-R12–Grundzustandsenergien von BF
D.9.	Berechnete CC2-R12–Total energien des B $^1\Sigma^+ – Zustands von BF 140$
D.10	Berechnete CC2-R12–Total energien des C $^1\Sigma^+$ –Zustands von BF 141
D.11	Berechnete CC2-R12–Total energien des A $^1\Pi–$ Zustands von BF 141
D.12	.Berechnete CC2-R12–Grundzustandsenergien von CO
D.13	Berechnete CC2-R12–Total energien des B $^1\Sigma^+$ –Zustands von CO 142
D.14	.Berechnete CC2-R12–Totalenergien des C ${}^{1}\Sigma^{+}$ –Zustands von CO 142

D.15. Berechnete CC2-R12–Total energien des A $^1\Pi$ –Zustands von CO	142
D.16.Berechnete CC2-R12–Grundzustandsenergien von N_2	143
D.17.Berechnete CC2-R12-Totalenergien des a ${}^{1}\Pi_{a}$ -Zustands von N ₂	143
D.18.Berechnete CC2-R12-Totalenergien des a' ${}^{1}\Sigma_{u}^{-}$ -Zustands von N ₂	143
D.19.Berechnete CC2-R12-Totalenergien des w ${}^{1}\Delta_{u}$ -Zustands von N ₂	144
D.20.Berechnete vertikale Anregungsenergien von BF	149
D.21.Berechnete vertikale Anregungsenergien von CO	149
D.22.Berechnete vertikale Anregungsenergien von N_2	150
D.23.Analyse der CC2-R12-Anregungsenergien von Be.	156
D.36.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.23) für die Ana-	
lyse der CC2-R12–Anregungsenergien von Be.	156
D.24.Analyse der CC2-R12-Anregungsenergien von Ne.	157
D.25. Analyse des B $^{1}\Sigma^{+}$ -Übergangs von BH	158
D.26. Analyse des A $^1\Pi$ –Übergangs von BH	158
D.27. Analyse des B $^{1}\Sigma^{+}$ -Übergangs von BF	159
D.28.Analyse des C $^{1}\Sigma^{+}$ -Übergangs von BF	159
D.29. Analyse des A $^{1}\Pi$ -Übergangs von BF.	159
D.30. Analyse des B $^1\Sigma^+-$ Übergangs von CO	160
D.31. Analyse des C $^1\Sigma^+-$ Übergangs von CO	160
D.32. Analyse des A $^1\Pi$ –Übergangs von CO.	160
D.33.Analyse des a ${}^{1}\Pi_{q}$ -Übergangs von N ₂	161
D.34.Analyse des a' ${}^{1}\Sigma_{u}^{-}$ -Übergangs von N ₂	161
D.35.Analyse des w ${}^{1}\Delta_{u}$ -Übergangs von N ₂	161
D.37.R12-Beiträge in meV der Matrixelemente aus Tabelle (D.24) für die Ana-	
lyse der CC2-R12–Anregungsenergien von Ne.	162
D.38.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.25) für die Ana-	
lyse der B $^1\Sigma^+\text{-}\text{CC2-R12-Anregungsenergien von BH.}$	162
D.39.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.26) für die Ana-	
lyse der A ¹ Π –CC2-R12–Anregungsenergien von BH	163
D.40.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.27) für die Ana-	
lyse der B $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von BF	163
D.41.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.28) für die Ana-	
lyse der C $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von BF	164
D.42.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.29) für die Ana-	
lyse der A ¹ II–CC2-R12–Anregungsenergien von BF.	164
D.43.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.30) für die Ana-	
lyse der B $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von CO	165
D.44.R12-Beiträge in meV der Matrixelemente aus Tabelle (D.31) für die Ana-	
lyse der C $^{1}\Sigma^{+}$ –CC2-R12–Anregungsenergien von CO	165
D.45.R12-Beitrage in meV der Matrixelemente aus Tabelle (D.32) für die Ana-	1.00
Iyse der A '11–CC2-R12–Anregungsenergten von CO.	166
D.46.R12-Beitrage in meV der Matrixelemente aus Tabelle (D.33) für die Ana-	100
lyse der a ' Π_g -CC2-R12-Anregungsenergien von N ₂	166

D.47.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.34) für die Ana-	
lyse der a' ${}^{1}\Sigma_{n}^{-}$ -CC2-R12-Anregungsenergien von N ₂	7
D.48.R12–Beiträge in meV der Matrixelemente aus Tabelle (D.35) für die Ana-	
lyse der w ${}^{1}\Delta_{u}$ -CC2-R12-Anregungsenergien von N ₂	7
E.1. Berechnete Grundzustandsenergien in $E_{\rm h}$ und Energiedifferenzen $\Delta R12$ in	
$mE_{\rm h}$	0
E.2. Berechnete Grundzustandsenergien in $E_{\rm h}$ und Energiedifferenzen $\Delta R12$ in	
mE_{h}	1
E.3. Berechnete Grundzustandsenergien in $E_{\rm h}$ und Energiedifferenzen $\Delta R12$ in	
mE_{h}	2
E.4. Berechnete Beiträge zur Grundzustandsenergie aus \hat{T}_1 , \hat{T}_2 und $\hat{T}_{2'}$ in m E_h . 17	3
E.5. Berechnete Beiträge zur Grundzustandsenergie aus \hat{T}_1 , \hat{T}_2 und $\hat{T}_{2'}$ in m E_h . 17	4
E.6. Berechnete Beiträge zur Grundzustandsenergie aus \hat{T}_1 , \hat{T}_2 und $\hat{T}_{2'}$ in m E_h . 17	5
E.7. Berechnete Grundzustandsenergien in E_h und Energiedifferenzen in mE_h .	
Es wurde eine 19s14p8d6f4g3h2i Basis (9s6p4d3f2g für H) als Orbital– und	
Auxiliarbasis verwendet	6
E.8. Berechnete Grundzustandsenergien in E_h und Energiedifferenzen in mE_h .	
Es wurde eine 19s14p8d6f4g3h2i Basis (9s6p4d3f2g für H) als Orbital– und	
Auxiliarbasis verwendet	6
E.9. Berechnete $\Delta R12$ -Beiträge in m $E_{\rm h}$. Verwendet wurde eine 19s14p8d6f4g3h2i	
(9s6p4d3f2g für H) Basis als Auxiliarbasis	7
E.10. Berechnete $\Delta R12$ –Beiträge in m $E_{\rm h}$. Verwendet wurde eine 19s14p8d6f4g3h2i	
(9s6p4d3f2g für H) Basis als Auxiliarbasis	8
E.11. Vergleich zwischen CCSD(T)(R12)-und CCSD(T)-Grundzustandsenergien	
in einer aug-cc-pV(T+d)Z Basis	4
E.12. Vergleich zwischen CCSD(T)(R12)-und CCSD(T)-Grundzustandsenergien	
in einer aug-cc-pV(T+d)Z Basis	5
E.13. Vergleich zwischen CCSD(T)(R12)-und CCSD(T)-Grundzustandsenergien	
in einer aug-cc-pV(Q+d)Z Basis. $\dots \dots \dots$	6
E.14. Vergleich zwischen CCSD(T)(R12)-und CCSD(T)-Grundzustandsenergien	
in einer aug-cc-pV(Q+d)Z Basis	7
E.15. Berechnete SCF-, MP2-, CCSD- und CCSD(T)-Grundzustandsenergien	
in einer aug-cc-pV(5+d)Z Basis in in $E_{\rm h}$	8
E.16. Vergleich der Abweichungen auf aug-cc-pV(T+d)Z Niveau und dem Expe-	
riment	9
E.17. Fehleranalyse auf aug-cc-pV(T+d)Z Niveau	9
E.18. Vergleich der Abweichungen zwischen Theorie und Experiment auf aug-cc-	
pV(Q+d)Z Niveau	0
E 19. Fehleranalyse auf aug-cc-pV(Ω +d)Z Niveau.	0
E.20. Vergleich der Abweichungen auf $CCSD(T)$ -Niveau und dem Experiment. 19	1
E.21. Fehleranalyse auf CCSD(T)-Niveau mit experimentellen Referenzwerten. 19	1
E.22. Vergleich der Abweichungen auf CCSD(T)–Niveau.	2
E.23. Fehleranalyse auf CCSD(T)-Niveau mit extrapolierten (QZ/5Z) Referenz-	
werten.	2
	-

E.24.Vergleich der Abweichungen auf CCSD(T)-Niveau.
E.25.Fehleranalyse auf $CCSD(T)$ -Niveau mit extrapolierten $(QZ/5Z)$ Referenz-
werten
$E.26.RI-MP2(FC)/def2-QZVPP$ optimierte Geometrien des $SO_3 \cdot H_2O$ Dimers. 195
E.27. RI-MP2-R12–Energien in $E_{\rm h}$
E.28.Berechnete aug-cc-pV(Q+d)Z/CCSD(T)(R12)-Grundzustandsenergien für
SO_3 in E_h
E.29. Berechnete aug-cc-pV(Q+d)Z Energien in E_h
E.30.Berechnete CCSD(T)(FC)/aug-cc-pCVTZ Energien in E _h

Abbildungsverzeichnis

3.1. 3.2. 3.3. 3.4.	Coulomb-Loch für den He (¹ S) Grundzustand	15 18 22 23
3.5.	CI- und CI-R12-Wellenfunktion für den He (¹ S) Grundzustand mit $n = 4$ für beide Funktionen im Vergleich zur exakten Wellenfunktion.	23
7.1. 7.2.	Schematische Darstellung der Berechnung der verschiedenen R12-Beiträge zur CCSD(R12)-Grundzustandsvektorfunktion	65 66
8.1.	Berechnete CC2-R12–Totalenergien für den Grund– und angeregten ¹ P Zu- stand von Be	70
8.2.	Berechnete CC2-R12–Totalenergien für den Grund– und angeregten ¹ P Zu- stand von Ne.	70
8.3.	Berechnete CC2– und CC2-R12–Energien für den Grund– und angeregten B $^{1}\Sigma^{+}$ -Zustand von BH.	73
8.4.	Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ II-Zustand von BH	73
8.5.	Berechnete CC2 und CC2-R12 Anregungsenergien für den a' $^1\Sigma_u^-$ –Übergang von Na in eV	75
8.6.	Berechnete CC2 und CC2-R12 Anregungsenergien für den a ${}^1\Pi_g$ –Übergang von Na in eV	76
8.7.	Berechnete CC2 und CC2-R12 Anregungsenergien für den w $^{1}\Delta_{u}$ -Übergang	76
8.8.	Berechnete CC2- und CC2-R12 Beiträge aus $\langle R_1 [[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] \text{HF} \rangle$ für	0
8.9.	den $P(2s \leftarrow 2p)$ Obergang von Be. Berechnete CC2- und CC2-R12 Beiträge aus $\langle R_1 [[\hat{H}, \hat{T}_2 + \hat{T}_{2'}], \hat{R}_1] \text{HF} \rangle$ für den ${}^1P(3s \leftarrow 2p)$ Übergang von Ne.	81
9.1.	Berechnete Grundzustandsenergien für Ne.	89
9.2.	Berechnete ΔK_{12} -Beiträge für Ne in m E_h .	90 01
9.3. 9.4.	Berechnete $\Delta R12$ -Beiträge für N_2 in mE_h .	91 91

9.5.	Berechnete $\Delta R12$ -Beiträge für Ne mit und ohne Auxiliarbasis	. 94
9.6.	Berechnete $\Delta R12$ –Beiträge für HF mit und ohne Auxiliarbasis	. 94
9.7.	Berechnete $\Delta R12$ -Beiträge für N ₂ mit und ohne Auxiliarbasis	. 95
9.8.	Auftragung der Reaktionsenergie differenzen auf aug-cc- $\rm pV(Q+d)Z$ Niveau.	100
9.9.	Auftragung der Reaktionsenergie differenzen auf aug $\operatorname{cc}\operatorname{pV}(Q+d)Z$ und aug-	
	cc-pV(5+d)Z Niveau	. 104
9.10.	Das $SO_3 \cdot H_2O$ Dimer.	. 110
C_{1}	Schematische Darstellung des Algorithmus zur Berechnung von $(V^{\dagger})^{kl}$ im	
0.1.	Rahmen von Ansatz 1	128
C_2	Schematische Darstellung der Abfolge der Berechnung der verschiedenen	
0.2.	R12–Beiträge zur CC2-R12–Grundzustandsvektorfunktion.	. 129
С.З.	Schematische Darstellung der Abfolge der Berechnung der verschiedenen	
	R12-Beiträge zur Transformation $\rho = \mathbf{A}\vec{R}$ im Rahmen von Ansatz 1	. 130
C.4.	Schematische Darstellung des Algorithmus zur Berechnung von $(V^{\dagger})_{cm}^{kl}$ im	
	Rahmen von Ansatz 2	. 131
C.5.	Schematische Darstellung der Berechnung der CC2-R12-Grundzustands-	
	vektorfunktion im Rahmen von Ansatz 2	. 132
C.6.	Fortsetzung von Abbildung (C.5).	. 133
C.7.	Fortsetzung von Abbildung (C.5) und (C.6).	. 134
C.8.	Schematische Darstellung der Abfolge der Berechnung der verschiedenen	
	R12–Beiträge zur Transformation $\rho = \mathbf{A}\vec{R}$ im Rahmen von Ansatz 2	. 135
D 1	Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten	
D.1.	Derechnete 662 and 662-1112 Energien für den Orand angeregten	
	$B^{1}\Sigma^{+}$ -Zustand von BF	144
D.2.	$B^{1}\Sigma^{+}$ -Zustand von BF	. 144
D.2.	B ${}^{1}\Sigma^{+}$ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ${}^{1}\Sigma^{+}$ -Zustand von BF.	. 144 . 145
D.2. D.3.	B ${}^{1}\Sigma^{+}$ -Zustand von BF	. 144 . 145
D.2. D.3.	$\begin{array}{l} B \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A \ ^1\Pi-Z \ ustand \ von \ BF. \\ \end{array}$. 144 . 145 . 145
D.2. D.3. D.4.	B ${}^{1}\Sigma^{+}$ -Zustand von BF	. 144 . 145 . 145
D.2. D.3. D.4.	$\begin{array}{l} B \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A \ ^1\Pi-Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B \ ^1\Sigma^+ - Z \ ustand \ von \ CO. \\ \end{array}$. 144 . 145 . 145 . 146
D.2. D.3. D.4. D.5.	B ${}^{1}\Sigma^{+}$ -Zustand von BF	. 144 . 145 . 145 . 145
D.2. D.3. D.4. D.5.	$\begin{array}{l} B \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C \ ^1\Sigma^+ - Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A \ ^1\Pi-Z \ ustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B \ ^1\Sigma^+ - Z \ ustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B \ ^1\Sigma^+ - Z \ ustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C \ ^1\Sigma^+ - Z \ ustand \ von \ CO. \\ \end{array}$. 144 . 145 . 145 . 146 . 146
D.2.D.3.D.4.D.5.D.6.	B ¹ Σ^+ -Zustand von BF	. 144 . 145 . 145 . 146 . 146
D.2.D.3.D.4.D.5.D.6.	$\begin{array}{l} B^{-1}\Sigma^{+}-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ \end{array}$. 144 . 145 . 145 . 146 . 146 . 147
 D.2. D.3. D.4. D.5. D.6. D.7. 	$\begin{array}{l} B^{-1}\Sigma^{+}-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ \\ C^{-1}D$. 144 . 145 . 145 . 146 . 146 . 147
 D.2. D.3. D.4. D.5. D.6. D.7. 	$\begin{array}{l} B^{-1}\Sigma^{+}-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ BF. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ B^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ C^{-1}\Sigma^{+}-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi-Zustand \ von \ CO. \\ Berechnete \ CC2- \ und \ CC2-R12-Energien \ für \ den \ Grund- \ und \ angeregten \\ A^{-1}\Pi_{-2}Zustand \ von \ CO. \\ \ den \ $. 144 . 145 . 145 . 146 . 146 . 147 . 147
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. 	B ¹ Σ^+ -Zustand von BF	. 144 . 145 . 145 . 146 . 146 . 146 . 147 . 147
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. 	$\begin{array}{l} B^{-1}\Sigma^{+}-\text{Zustand von BF.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ C^{-1}\Sigma^{+}-\text{Zustand von BF.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Pi-\text{Zustand von BF.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{B}^{-1}\Sigma^{+}-\text{Zustand von CO.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{B}^{-1}\Sigma^{+}-\text{Zustand von CO.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{C}^{-1}\Sigma^{+}-\text{Zustand von CO.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Pi-\text{Zustand von CO.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Pi-\text{Zustand von CO.}\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{a}^{-1}\Pi_g-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{a}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Pi_g-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{Zustand von N}_2.\\ \text{Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten}\\ \text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-}-\text{A}^{-1}\Sigma_u^{-$. 144 . 145 . 145 . 146 . 146 . 147 . 147 . 148
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. D.9. 	B ¹ Σ^+ -Zustand von BF	 . 144 . 145 . 145 . 146 . 146 . 147 . 147 . 148
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. D.9. 	B ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten B ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Σ_u^- -Zustand von N ₂ .	 . 144 . 145 . 145 . 146 . 146 . 147 . 147 . 148 . 148
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. D.9. D.100 	B ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten B ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Σ_u^- -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Ω_u^- -Zustand von N ₂ .	. 144 . 145 . 145 . 146 . 146 . 146 . 147 . 147 . 148 . 148 . 151
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. D.9. D.100 D.11 	B ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten B ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Σ_u^- -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Ω_u^- -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Ω_u^- -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten w ¹ Δ_u -Zustand von N ₂ .	. 144 . 145 . 145 . 146 . 146 . 146 . 146 . 147 . 147 . 148 . 148 . 151 . 151
 D.2. D.3. D.4. D.5. D.6. D.7. D.8. D.9. D.10 D.11 D.12 	B ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von BF. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten B ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten C ¹ Σ^+ -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten A ¹ Π -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von CO. Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a ¹ Π_g -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten a' ¹ Σ_u^- -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten w' Δ_u -Zustand von N ₂ . Berechnete CC2- und CC2-R12-Energien für den Grund- und angeregten w' Δ_u -Zustand von N ₂ . Berechnete CC2 und CC2-R12 Anregungsenergien für Be in eV. Berechnete CC2 und CC2-R12 Anregungsenergien für Me in eV. Berechnete CC2 und CC2-R12 Anregungsenergien für Me in eV.	. 144 . 145 . 145 . 146 . 146 . 146 . 146 . 147 . 147 . 148 . 148 . 151 . 151

D.13. Berechnete CC2 und CC2-R12 An regungsenergien für den A $^1\Pi-\ddot{\mathrm{U}}\mathrm{bergang}$	
von BH in eV.	152
D.14.Berechnet e CC2 und CC2-R12 Anregungsenergien für den B $^{1}\Sigma^{+}$ -Übergang	
von BF in eV.	153
D.15.Berechnet e CC2 und CC2-R12 Anregungsenergien für den C $^{1}\Sigma^{+}$ -Ubergang	
von BF in eV.	153
D.16.Berechnete CC2 und CC2-R12 Anregungsenergien für den A ¹ II–Ubergang	
von BF in eV.	154
D.17.Berechnete CC2 und CC2-R12 Anregungsenergien für den B ${}^{1}\Sigma^{+}$ –Ubergang	
von CO in eV.	154
D.18.Berechnet e CC2 und CC2-R12 Anregungsenergien für den C $^{1}\Sigma^{+}$ –Ubergang	
von CO in eV.	155
D.19.Berechnete CC2 und CC2-R12 Anregungsenergien für den A '11–Ubergang	
von CO in eV.	155
E.1. Berechnete $\Delta R12$ -Beiträge für F ⁻ in m E_h	179
E.2. Berechnete $\Delta R12$ -Beiträge für BH in m E_h	179
E.3. Berechnete $\Delta R12$ -Beiträge für CO in m E_h	180
E.4. Berechnete $\Delta R12$ -Beiträge für NH ₃ in m E_h	180
E.5. Berechnete $\Delta R12$ -Beiträge für CH_4 in mE_h .	181
E.6. Berechnete $\Delta R12$ -Beiträge für H_2O in mE_h .	181
E.7. Berechnete $\Delta R12$ –Beiträge für F ⁻ mit und ohne Auxiliarbasis	182
E.8. Berechnete $\Delta R12$ -Beiträge für CO mit und ohne Auxiliarbasis	182
E.9. Berechnete $\Delta R12$ -Beiträge für BH mit und ohne Auxiliarbasis	183
E.10.Berechnete $\Delta R12$ -Beiträge für H ₂ O mit und ohne Auxiliarbasis	183
E.11. Auftragung der Abweichungen auf aug-cc-pV(T+d)Z Niveau	194

Literaturverzeichnis

- R. J. Bartlett, Coupled-cluster theory: An overview of recent developments, in Modern Electronic Structure Theory, S. 1047, (Herausgeber: D. R. Yarkony), World Scientific Singapore (1995).
- [2] O. Christiansen, H. Koch und P. Jørgensen, Chem. Phys. Lett., 243, 409 (1995).
- [3] G. D. Purvis und R. J. Bartlett, J. Chem. Phys., 76, 1910 (1982).
- [4] T. Helgaker, P. Jørgensen und J. Olsen, Molecular Electronic-Structure Theory, Wiley Chichester (2000).
- [5] D. R. Hartree, Proc. Cambridge Phil. Soc., 24, 89 (1928).
- [6] V. Fock, Z. Phys., 61, 126 (1930).
- [7] V. Fock, Z. Phys., 62, 795 (1930).
- [8] P. O. Löwdin, Adv. Chem. Phys., 22, 207 (1959).
- [9] H. Koch, O. Christiansen, P. Jørgensen und J. Olsen, Chem. Phys. Lett., 244, 75 (1995).
- [10] O. Christiansen, H. Koch, P. Jørgensen und J. Olsen, Chem. Phys. Lett., 256, 185 (1996).
- [11] R. G. Parr und W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
- [12] H. Koch, A. S. de Méras, T. Helgaker und O. Christiansen, J. Chem. Phys., 104, 4157 (1995).
- [13] O. Christiansen, H. Koch, A. Halkier, P. Jørgensen, T. Helgaker und A. S. de Méras, J. Chem. Phys., 105, 6921 (1996).
- [14] O. Christiansen, H. Koch und P. Jørgensen, J. Chem. Phys., **103**, 7429 (1995).
- [15] H. Koch, O. Christiansen, P. Jørgensen, A. S. de Merás und T. Helgaker, J. Chem. Phys., 106, 1808 (1997).

- [16] A. Szabo und N. S. Ostlund, Modern Quantum Chemistry, DOVER, New York (1996).
- [17] E. Schrödinger, Ann. Physik, 79, 361 (1929).
- [18] E. Schrödinger, Ann. Physik, **79**, 489 (1929).
- [19] M. Born und R. Oppenheimer, Ann. Phys., 84, 457 (1927).
- [20] Basissatzbibliothek der Extensible Computational Chemistry Environment Basis Set Database, Version 10/21/03. http://www.emsl.pnl.gov/forms/basisform.html.
- [21] T. B. Pedersen und H. Koch, J. Chem. Phys., 108, 5194 (1998).
- [22] O. Christiansen, H. Koch und P. Jørgensen, J. Chem. Phys., 103, 7429 (1995).
- [23] H. Koch und P. Jørgensen, J. Chem. Phys., 93, 3333 (1990).
- [24] T. B. Pedersen und H. Koch, J. Chem. Phys., 106, 8059 (1997).
- [25] C. Schwartz, Phys. Rev., 126, 1015 (1962).
- [26] C. Schwartz, Meth. Comput. Phys., 2, 241 (1963).
- [27] D. P. Carroll, H. J. Silverstone und R. M. Metzger, J. Chem. Phys, 71, 4142 (1979).
- [28] R. N. Hill, J. Chem. Phys, 83, 1173 (1985).
- [29] E. A. Hylleraas, Z. Phys., 54, 347 (1929).
- [30] W. Kutzelnigg, Theor. Chim. Acta, 68, 445 (1985).
- [31] L. Møller und M. S. Plesset, Phys. Rev., 46, 618 (1934).
- [32] W. Klopper und W. Kutzelnigg, Chem. Phys. Lett., 134, 17 (1987).
- [33] M. J. Bearpark, N. C. Handy, R. D. Amos und P. E. Maslen, Theor. Chim. Acta, 79, 361 (1991).
- [34] W. Klopper, Chem. Phys. Lett., 186, 583 (1991).
- [35] E. F. Valeev und H. F. Schaefer III, J. Chem. Phys., **113**, 3990 (2000).
- [36] E. F. Valeev, W. D. Allen, H. F. Schaefer III und A. G. Csàszàr, J. Chem. Phys., 114, 2875 (2001).
- [37] E. F. Valeev, W. D. Allen, R. Hernandez, C. D. Sherrill und H. F. Schaefer III, J. Chem. Phys., 118, 8594 (2003).
- [38] J. Noga, W. Klopper und W. Kutzelnigg, Chem. Phys. Lett., 199, 497 (1992).

- [39] J. Noga und W. Kutzelnigg, J. Chem. Phys., **101**, 7738 (1994).
- [40] J. Noga und P. Valiron, Chem. Phys. Lett., **324**, 166 (2000).
- [41] J. Noga und P. Valiron, Explicitly Correlated Coupled Cluster R12 Calculations, in Computational Chemistry: Reviews of Current Trends, Band 7, S. 131, (Herausgeber: J. Leszcynski), World Scientific, Singapore (2002).
- [42] J. Noga, W. Klopper und W. Kutzelnigg, CC-R12: An explicitly correlated Coupled-Cluster Theory, in Recent Advances in Computational Chemistry, Band 3, S. 1, (Herausgeber: R. J. Bartlett), World Scientific, Singapore (1997).
- [43] W. Klopper, J. Chem. Phys., 120, 10890 (2004).
- [44] P. Wind, W. Klopper und T. Helgaker, Theor Chem Acc, 107, 173 (2002).
- [45] F. R. Manby, J. Chem. Phys., 119, 4607 (2003).
- [46] S. Ten-no und F. R. Manby, J. Chem. Phys., **119**, 5358 (2003).
- [47] W. Klopper und C. C. M. Samson, J. Chem. Phys, 116, 6397 (2002).
- [48] S. Kedžuch, M. Milko und J. Noga, Int. J. Quantum Chem., 105, 929 (2005).
- [49] E. Kordel, C. Villani und W. Klopper, J. Chem. Phys., 122, 214306 (2005).
- [50] S. Ten-no, J. Chem. Phys., 121, 117 (2004).
- [51] A. J. May und F. R. Manby, J. Chem. Phys., **121**, 4479 (2004).
- [52] C. C. M. Samson, W. Klopper und T. Helgaker, Comput. Phys. Commun., 149, 1 (2002).
- [53] A. J. May, E. Valeev, R. Polly und F. R. Manby, Phys. Chem. Chem. Phys., 7, 2710 (2005).
- [54] W. Klopper und J. Noga, Linear R12 terms in coupled cluster theory, in Explicitly Correlated Functions in Chemistry and Physics, S. 149, (Herausgeber: J. Rychlewski), Kluwer Academic Publishers, Dordrecht (2003).
- [55] J. Noga, P. Valiron und W. Klopper, J. Chem. Phys., 115, 2022 (2001).
- [56] W. Klopper und J. Noga, Chem. Phys. Chem., 4, 32 (2003).
- [57] O. Christiansen, P. Jørgensen und C. Hättig, Int. J. Quant. Chem., 68, 1 (1998).
- [58] C. Hättig, Coupled-Cluster-Methoden zur Berechnung nichtlinearer optischer Eigenschaften und angeregter Zustände von Molekülen, Habilitationsschrift, Universität Karlsruhe (TH) (2005).
- [59] F. Visser, P. E. S. Wormer und W. P. J. H. Jacobs, J. Chem. Phys., 82, 3753 (1985).

- [60] P. E. S. Wormer und W. Rijks, Phys. Rev. A, 33, 2928 (1986).
- [61] T. Korona und H. J. Werner, J. Chem. Phys., 118, 3006 (2002).
- [62] T. Korona, K. Pflüger und H. J. Werner, Phys. Chem. Chem. Phys., 6, 2059 (2004).
- [63] A. Köhn, Analytische Gradienten elektronisch angeregter Zustände und Behandlung offenschaliger Systeme im Rahmen der Coupled-Cluster-Methode RI-CC2, Dissertation, Universität Karlsruhe (TH) (2003).
- [64] J. Olsen und P. Jørgensen, Time-Dependent Response Theory with Applications to Self-Consistent Field and Multiconfigurational Self-Consistent Field Wave Functions., in Modern Electronic Structure Theory, S. 857, (Herausgeber: D. R. Yarkony), World Scientific, Singapore (1995).
- [65] W. Kutzelnigg, Theor. Chim. Acta, 83, 263 (1992).
- [66] K. Sasagne, F. Aiga und R. Itoh, J. Chem. Phys., 99, 3738 (1993).
- [67] J. Olsen und P. Jørgensen, J. Chem. Phys., 82, 3235 (1985).
- [68] C. Hättig, O. Christiansen und P. Jørgensen, J. Chem. Phys., 108, 8331 (1998).
- [69] D. P. Tew, W. Klopper und T. Helgaker, J. Chem. Educ., Manuskript zur Veröffentlichung eingereicht (2006).
- [70] W. Kutzelnigg, Theory of Electron Correlation, in Explicitly Correlated Wave Functions in Chemistry and Physics, S. 3, (Herausgeber: J. Rychlewski), Kluwer Academic Publishers (2003).
- [71] W. Klopper, R12 Methods, Gaussian Geminals, in Modern Methods and Algorithms of Quantum Chemistry, S. 181, (Herausgeber: J. Grotendorst), Central Institute for Applied Mathematics (2000).
- [72] W. Klopper, r₁₂-Dependent Wave Functions, Habilitationsschrift, Eidgenössische Technische Hochschule Zürich (1996).
- [73] C. C. M. Samson, Highly accurate treatment of dynamical electron correlation through R12 methods and extrapollation techniques, Dissertation, Universität Utrecht (2004).
- [74] W. Klopper, r₁₂-Dependent Wavefunctions, in Encyclopedia of Computational Chemistry, S. 2351, (Herausgeber: P. V. R. Schleyer et al.), Wiley, Chichester (1998).
- [75] W. Klopper, F. R. Manby, S. Ten-no und E. F. Valeev, Int. Rev. Phys. Chem., Manuskript eingereicht (2006).
- [76] E. Parzen, Modern Probability Theory and its Applications, Wiley, New York (1960).
- [77] H. J. Silverstone und O. Sinanoğlu, J. Chem. Phys., 44, 1899 (1966).

- [78] H. J. Silverstone und O. Sinanoğlu, J. Chem. Phys., 44, 3608 (1966).
- [79] H. J. Silverstone und O. Sinanoğlu, J. Chem. Phys., 46, 854 (1967).
- [80] T. Kato, Commun. Pure Appl. Math., 10, 151 (1957).
- [81] R. A. Kendall, T. H. Dunning und R. J. Harrison, J. Chem. Phys., 96, 6796 (1992).
- [82] A. K. Wilson, T. v. Mourik und T. H. Dunning Jr., Theochem, 388, 339 (1997).
- [83] Die Daten für die Auftragung der CI- und CI-R12-Wellenfunktionen wurden freundlicherweise von Dr. D. P. Tew zur Verfügung gestellt. Persönliche Mitteilung. (2005).
- [84] T. Helgaker, W. Klopper, H. Koch und J. Noga, J. Chem. Phys, **106**, 9639 (1997).
- [85] W. Kutzelnigg und J. D. Morgan III, J. Chem. Phys, 96, 4484 (1991).
- [86] J. C. Slater, Phys. Rev., 31, 333 (1928).
- [87] E. A. Hylleraas, Z. Phys., 65, 14 (1930).
- [88] C. L. Pekeris, Phys. Rev., 112, 1649 (1958).
- [89] C. L. Pekeris, Phys. Rev., 115, 1216 (1959).
- [90] C. L. Pekeris, Phys. Rev., 126, 1470 (1962).
- [91] G. Büsse und H. Kleindienst, Phys. Rev. A, 51, 5019 (1995).
- [92] A. Lüchow und H. Kleindienst, Int. J. Quantum Chem., 41, 719 (1992).
- [93] A. Lüchow und H. Kleindienst, Int. J. Quantum Chem., 45, 445 (1993).
- [94] H. Kleindienst und A. Lüchow, Int. J. Quantum Chem., 45, 87 (1993).
- [95] H. Kleindienst, G. Büsse und A. Lüchow, Int. J. Quantum Chem., 53, 575 (1995).
- [96] W. A. Lester Jr. und R. N. Barnett, Monte Carlo Quantum Methods for Electronic Structure, in Encyclopedia of Computational Chemistry, S. 1735, (Herausgeber: P. V. R. Schleyer et al.), Wiley, Chichester (1998).
- [97] A. Lüchow und J. B. Anderson, J. Chem. Phys., 105, 4636 (1996).
- [98] S. Manten und A. Lüchow, J. Chem. Phys., 115, 5362 (2001).
- [99] A. Lüchow und J. B. Anderson, Annu. Rev. Phys. Chem., 51, 501 (2000).
- [100] J. S. Sims und S. Hagstrom, Phys. Rev. A, 4, 908 (1971).
- [101] J. S. Sims und S. A. Hagstrom, Phys. Rev. A, 11, 418 (1974).

- [102] W. Klopper, W. Kutzelnigg, H. Müller, J. Noga und S. Vogtner, Extremal electron pairs - Application to electron correlation, especially the R12 method, in Correlation and Localization, Topics in Current Chemistry, Band 203, S. 21, (Herausgeber: P. R. Surján), Springer, Berlin/Heidelberg (1999).
- [103] O. Vahtras, J. Almlöf und M. W. Feyereisen, Chem. Phys. Lett., 213, 514 (1993).
- [104] B. J. Persson und P. R. Taylor, J. Chem. Phys., 105, 5915 (1996).
- [105] W. Cencek und J. Rychlewski, J. Chem. Phys., 98, 1252 (1993).
- [106] W. Cencek und J. Rychlewski, J. Chem. Phys., 102, 2533 (1995).
- [107] J. Komasa, W. Cencek und J. Rychlewski, Phys. Rev. A, 52, 4500 (1995).
- [108] J. Rychlewski und J. Komasa, Explicitly Correlated Functions in Variational Calulations, in Explicitly Correlated Wave Functions in Chemistry and Physics, S. 91 (2003).
- [109] J. Komasa und J. Rychlewski, Chem. Phys. Lett., 249, 253 (1996).
- [110] W. Cencek, J. Komasa und J. Rychlewski, Chem. Phys. Lett., 246, 417 (1995).
- [111] D. P. Tew und W. Klopper, J. Chem. Phys., 123, 074101 (2005).
- [112] S. Ten-no, Chem. Phys. Lett., **398**, 56 (2004).
- [113] W. Kutzelnigg und W. Klopper, J. Chem. Phys., 94, 1985 (1991).
- [114] J. Noga und W. Kutzelnigg, J. Chem. Phys., 101, 7738 (1994).
- [115] H. Fliegl, C. Hättig und W. Klopper, J. Chem. Phys., 124, 044112 (2006).
- [116] E. F. Valeev, Chem. Phys. Lett., 395, 190 (2004).
- [117] J. L. Whitten, J. Chem. Phys., 58, 4496 (1973).
- [118] B. I. Dunlap, J. W. D. Conolly und R. Sabin, J. Chem. Phys., 71, 3396 (1979).
- [119] G. Merziger und T. Wirth, Repetitorium der Höheren Mathematik, Binomi Verlag (1995).
- [120] E. R. Davidson, J. Comput. Phys., 17, 87 (1975).
- [121] E. R. Davidson, J. Phys. A, 13, L179 (1980).
- [122] H. Fliegl, W. Klopper und C. Hättig, J. Chem. Phys., 122, 84107 (2005).
- [123] H. Fliegl, C. Hättig und W. Klopper, Int. J. Quantum Chem., 106, 2306 (2006).
- [124] K. Raghavachari, G. W. Trucks, J. A. Pople und M. Head-Gordon, Chem. Phys. Lett., 157, 479 (1989).

- [125] W. Klopper, The explicitly correlated coupled-cluster models CC2-R12 and CCSD(R12), in High Accuracy Potentials for Quantum Dynamics, S. 8, (Herausgeber: A. Miani, J. Tennyson, T. van Mourik), Collaborative Computational Project on Molecular Quantum Dynamics (CCP6), Daresbury Laboratory (2003).
- [126] T. Helgaker, H. J. Å. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H. Ågren, A. A. Auer, K. L. Bak, V. Bakken, O. Christiansen, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hättig, K. Hald, A. Halkier, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. B. Pedersen, T. A. Ruden, A. Sanchez, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. O. Sylvester-Hvid, P. R.Taylor und O.Vahtras, *DALTON*, a molecular electronic structure program (2005).
- [127] P. Pulay, J. Chem. Phys., 73, 393 (1980).
- [128] P. Pulay, J. Comp. Chem., 4, 556 (1982).
- [129] H. Koch, O. Christiansen, R. Kobayashi, P. Jørgensen und T. Helgaker, Chem. Phys. Lett., 228, 233 (1994).
- [130] K. Hald, P. J. rgensen, O. Christiansen und H. Koch, J. Chem. Phys., 116, 5963 (2002).
- [131] J. Noga, W. Klopper, T. Helgaker und P. Valiron, DIRCCR12-OS Release pre-v1.2a (2004).
- [132] R. Ahlrichs, M. Bär, H. Horn und C. Kölmel, Chem. Phys. Lett., 162, 165 (1989).
- [133] C. Hättig und F. Weigend, J. Chem. Phys., **113**, 5154 (2000).
- [134] F. Weigend und M. Häser, Theor. Chem. Acc, 97, 331 (1997).
- [135] F. Weigend, M. Häser, H. Patzelt und R. Ahlrichs, Chem. Phys. Lett., 116, 3175 (2002).
- [136] F. Weigend, RI-Methoden in der MP2 Störungsrechnung: Theorie, Implementierung und Anwendung, Dissertation, Universität Karlsruhe (1999).
- [137] K. P. Huber und G. H. Herzberg, Constants of Diatomic Molecules, Van Nostrand-Reinhold, New York (1979).
- [138] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen und A. K. Wilson, Chem. Phys. Lett., 286, 243 (1998).
- [139] W. Klopper und J. Almlöf, J. Chem. Phys., 99, 5167 (1993).
- [140] V. Termath, W. Klopper und W. Kutzelnigg, J. Chem. Phys., 94, 2002 (1991).
- [141] S. A. Alexander, H. J. Monkhorst und K. Szalewicz, J. Chem. Phys., 89, 355 (1988).

- [142] P. Malinowski, M. Polasik und K. Jankowski, J. Phys. B, **12**, 2965 (1979).
- [143] S. Salomonson und P. Öster, Phys. Rev. A, 41, 4670 (1990).
- [144] R. Bukowski, B. Jeziorski und K. Szalewicz, J. Chem. Phys., 110, 4165 (1999).
- [145] P. Dahle, Accurate calculations using explicitly correlated wave functions, Dissertation, Universität Oslo (2004).
- [146] C. Neiss, C. Hättig und W. Klopper, J. Chem. Phys., Manuskript eingereicht (2006).
- [147] H. Fliegl, A. Glöß, O. Welz, M. Olzmann und W. Klopper, J. Chem. Phys., Manuskript zur Veröffentlichung angenommen (2006).
- [148] A. R. Hoy, I. M. Mills und G. Strey, Mol. Phys., 24, 1265 (1972).
- [149] J. L. Duncan und I. M. Mills, Spectrochim. Acta, 20, 523 (1964).
- [150] D. L. Gray und A. G. Robiette, Mol. Phys., 37, 1901 (1979).
- [151] M. Heckert, M. Kállay, D. P. Tew, W. Klopper und J. Gauss, J. Chem. Phys., Manuskript eingereicht (2006).
- [152] W. Klopper, Persönliche Mitteilung (2004).
- [153] M. Heckert, M. Kállay und J. Gauss, Mol. Phys., 103, 2109 (2005).
- [154] W. Klopper und H. P. Lüthi, Mol. Phys., 96, 559 (1999).
- [155] J. S. Lee und S. Y. Park, J. Chem. Phys., 112, 10746 (2000).
- [156] G. A. Petersson, K. Arnold und A. Bennett, J. Chem. Phys., 83, 5105 (1985).
- [157] W. Klopper, K. L. Bak, P. Jørgensen, J. Olsen und T. Helgaker, J. Phys. B, 32, R103 (1999).
- [158] M. Urban, J. Noga, S. J. Cole und R. J. Bartlett, J. Chem. Phys., 83, 4041 (1985).
- [159] T. H. Dunning Jr., K. A. Peterson und A. K. Wilson, J. Chem. Phys., 114, 9244 (2001).
- [160] H.-J. Werner, Persönliche Mitteilung (2005).
- [161] Alle experimentellen Standardbildungsenthalpien wurden von der NIST-Datenbank http://webbook.nist.gov/chemistry/ und den darin enthaltenen Literaturreferenzen entnommen. (2005).
- [162] Die Standardbildungsenthalpien für die Moleküle CS₂, H₂O, CO₂, H₂S, CO, COCl₂, NH₃, H₂O₂, HNO₃, C₂H₂, C₂H₄, CH₄, SO₂, SO₃ und C₂H₄O stammen aus M. W. Chase, Jr., NIST-JANAF Themochemical Tables, vierte Auflage, J. Phys. Chem. Ref. Data, Monograph 9, ACS und AIP (1998).

- [163] Die Standardbildungsenthalpie für H_2CO stammt aus A. Fletcher und G. Pilcher, Trans. Faraday Soc. **66**, 794 (1970).
- [164] Die Standardbildungsenthalpie für CH_3OH stammt aus J. Hine und K. Arata, Bull. Chem. Soc. Jpn. **49**, 3089 (1976).
- [165] Die Standardbildungsenthalpie für C_2H_6 stammt aus D. A. Pittam und G. Pilcher, J. Chem. Soc. Faraday Trans. 1 **68**, 2224 (1972).
- [166] Die Standardbildungsenthalpie für CH₂CO stammt aus R. L. Nuttall, A. H. Laufer und M. V. Kilday, J. Chem. Thermodyn. 3, 167 (1971).
- [167] Die Standardbildungsenthalpie für HCONH₂ stammt aus A. Bauder und Hs. H. Gunthard, Helv. Chim. Acta 41, 670 (1958).
- [168] Die Standardbildungsenthalpie für CH₃CHO stammt aus K. B. Wiberg, L. S. Crocker und K. M. Morgan, J. Am. Chem. Soc. **113**, 3447 (1991).
- [169] C. Lee, W. Yang und R. G. Parr, Phys. Rev. B, 37, 785 (1988).
- [170] A. Schäfer, C. Huber und R. Ahlrichs, J. Chem. Phys., 100, 5829 (1994).
- [171] Die Turbomole Basissatzbibliothek ist via ftp von ftp://ftp.chemie.uni-karlsruhe.de/pub/basen erhältlich.
- [172] M. Häser und R. Ahlrichs, J. Comp. Chem., 10, 104 (1989).
- [173] M. von Arnim und R. Ahlrichs, J. Comp. Chem., **19**, 1746 (1998).
- [174] P. Deglmann, F. Furche und R. Ahlrichs, Chem. Phys. Lett., 362, 511 (2002).
- [175] K. K. Irikura, Appendix B, Essential Statistical Thermodynamics, in Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics, ACS Symposium Series,, (Herausgeber: K. K. Irikura und D. J. Frurip), American Chemical Society (1998).
- [176] C. E. Kolb, J. T. Jayne, D. R. Worsnop, M. J. Molina, R. F. Meads und A. A. Viggiano, J. Am. Chem. Soc., 116, 10314 (1994).
- [177] K. Morokuma und C. Muguruma, J. Am. Chem. Soc., 116, 10316 (1994).
- [178] E. R. Lovejoy, D. R. Hanson und L. G. Huey, J. Phys. Chem., 100, 19911 (1996).
- [179] J. T. Jayne, U. Pöschl und Y. Chen, J. Phys. Chem. A, 101, 10000 (1997).
- [180] M. Olzmann, On the Homogeneous Kinetics of the $SO_3 \cdot H_2O$ System (2000).
- [181] L. J. Larson, M. Kuno und F. Tao, J. Chem. Phys., 112, 8830 (2000).
- [182] G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley VCH (1997).

- [183] W. Forst, Theory of Unimolecular Reactions, Academic Press, New York (1973).
- [184] W. Klopper, J. G. C. M. van Duijneveldt-van de Rijdt und F. B. van Duijneveldt, Phys. Chem. Chem. Phys., 2, 2227 (2000).
- [185] B. Liu und A. D. McLean, J. Chem. Phys., 59, 4557 (1973).
- [186] B. Liu und A. D. McLean, J. Chem. Phys., 91, 2348 (1989).
- [187] S. F. Boys und F. Bernardi, Mol. Phys., 19, 553 (1970).
- [188] F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt und J. H. van Lenthe, Chem. Rev., 94, 1873 (1994).
- [189] F. Weigend und R. Ahlrichs, Phys. Chem. Chem. Phys., 7, 3297 (2005).
- [190] A. Glöß, C. Villani und W. Klopper, J. Comput. Chem., Manuskript in Vorbereitung (2006).
- [191] Die Turbomole Basissatzbibliothek ist via ftp von ftp://ftp.chemie.uni-karlsruhe.de/pub/basen (Orbitalbasissätze) ftp://ftp.chemie.uni-karlsruhe.de/pub/cbasen (Auxiliarbasissätze) erhältlich.
- [192] H.-J. Werner und F. R. Manby, J. Chem. Phys., 124, 054114 (2006).
- [193] O. L. Polyansky, P. Jensen und J. Tennyson, J. Chem. Phys., 105, 6490 (1996).
- [194] H.-J. Werner, P. J. Knowles, R. Lindh, M. Schütz, P. Celani, T. Korona, F. R. Manby, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Bobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni und T. Thorsteinsson, *MOLPRO*, a package of ab-initio programs.
- [195] R. Lindh, U. Ryu und B. Liu, J. Chem. Phys., 95, 5889 (1991).
- [196] C. Hampel, K. Peterson und H.-J. Werner, Chem. Phys. Lett., 190, 1 (1992).
- [197] M. J. O. Deegan und P. J. Knowles, Chem. Phys. Lett., 227, 321 (1994).
- [198] M. Schütz, R. Lindh und H.-J. Werner, Mol. Phys., 96, 719 (1999).
- [199] K. A. Peterson und T. H. Dunning, Jr., J. Chem. Phys., 117, 10548 (2002).
- [200] D. P. Tew und W. Klopper, J. Chem. Phys., Zur Veröffentlichung eingereicht. (2006).
- [201] C. Neiss, Persönliche Mitteilung (2006).
- [202] C. Hättig, Phys. Chem. Chem. Phys., 7, 59 (2005).

Publikationsliste

- H. Fliegl, A. Köhn, C. Hättig und R. Ahlrichs, Ab Initio Calculation on the Vibrational and Electronic Spectra of trans- and cis-Azobenzene, J. Am. Chem. Soc., 125, 9821, (2003).
- H. Fliegl, W. Klopper und C. Hättig, Coupled-cluster theory with simplified linearr₁₂ corrections: The CCSD(R12) model, J. Chem. Phys., **122**, 84107, (2005).
- H. Fliegl, C. Hättig und W. Klopper, Coupled-cluster response theory with linearr₁₂ corrections: The CC2-R12 model for excitation energies, J. Chem. Phys., 124, 044112, (2006).
- H. Fliegl, C. Hättig und W. Klopper, Inclusion of the (T) Triples Correction into the Linear-r₁₂ Corrected Coupled-cluster Model CCSD(R12), Int. J. Quantum Chem., 106, 2306, (2006).
- H. Fliegl, A. Glöß, O. Welz, M. Olzmann und W. Klopper, Accurate computational determination of the electronic binding energy of the SO₃·H₂O complex, J. Chem. Phys., Manuskript zur Veröffentlichung angenommen, (2006).

ISBN-13: 978-3-86644-061-6 ISBN-10: 3-86644-061-8

www.uvka.de

Gedruckt auf FSC-zertifiziertem Papier