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Preface

The GIFT 2006 workshop covers topics related to the Global Integration

of Field Theories. These topics span several domains of science including

Mathematics, Physics and Computer Science. It is indeed an interdisci-

plinary event and this feature is well illustrated by the diversity of papers

presented at the workshop.

Physics is our main target. A simple approach would be to state that

we investigate systems of partial differential equations since it is widely

believed that they provide a fair description of our world. The questions

whether this world is Einsteinian or not, is described by String Theory or

not are not however on our agenda. At this stage we have defined what we

mean by field theories. To assess what global integrability means we surf

on the two other domains of our interest.

Mathematics delivers the main methodologies and tools to achieve our

goal. It is a trivial remark to say that there exist several approaches to

investigate the concept of integrability. Only selected ones are to be found

in these proceedings. We do not try to define precisely what global inte-

grability means. Instead, we only suggest two tracks. The first one is by

analogy with the design of algorithms, in Computer Algebra or Computer

Science, to solve systems of differential equations. The case of ODEs is

rather well understood since a constructive methodology exists. Although

many experts claim that numerous results do exist to solve systems of

PDEs, no constructive decision method exists. This is our first track. The

second track follows directly since the real world is described by systems

of PDEs, which are mainly non-linear ones. To be able to decide in such

a case the existence of solutions would immediately increase the scope of

new technologies applicable to industrial problems.

It is this latter remark that led to the European NEST project with the

same name. The GIFT project aims at making progress in the investigation
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of field theories through the use of very advanced mathematical tools. This

workshop is part of the deliverables. It demonstrates that at least one goal

has been reached: to foster the collaboration of physicists, mathematicians

and computer scientists coming from different schools of thoughts.

We are very grateful to the European Commission for its support to

GIFT and thus to the use of very advanced mathematical methods to

investigate how field theories may generate innovative technologies. Our

project officer in Brussels, Dr. Carlos Saraiva-Martins, deserves special

thanks for his efficiency and his readiness to answer any of our queries.

Special thanks are due to Magdalena Sa lek and Marcus Hausdorf for their

fully efficient management of the project, this workshop organization and

proceedings preparation.

October 2006

Jacques Calmet

Werner M. Seiler

Robin W. Tucker
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Symbolic Computation for
Overdetermined Systems of Nonlinear

Differential Equations

Evelyne Hubert

INRIA Sophia Antipolis
www.inria.fr/cafe/Evelyne.Hubert

The study of differential equations and differential systems has many
facets and requires a large palette of tools, whether of computational or
theoretical nature. Interaction among all of those is essential. Numerical
integration based on analysis has held a prominent place in applications
as approximating the solution of differential system is often the final aim.
Symbolic computation brings some other tools for the qualitative investi-
gation of differential systems. Symbolic algorithms handle algebraic struc-
tures. To study differential systems there is thus a need to algebraicize the
problems, that is establish dictionaries between the analytic and the alge-
braic properties. A second stage in this line of research is then to develop
algorithms for capturing the algebraic information, make them efficient and
accessible through their implementations in symbolic systems.

On one hand symbolic computation can preprocess differential systems
which are not given in a form that fits numerical schemes. But some aca-
demic and engineering problems of smaller size ask for more qualitative
answers: What are the conditions on some parameters for the system to
have a solution? What are the dimension of the solution space? What
are the consistent set of initial condition that determine uniquely a solu-
tion? Can I deduce some unknowns from the knowledge of others? Those
sample of questions on on over and under determined differential systems
are addressed in what I would call differential elimination and completion.
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There has been several algebraic theories developed for addressing those
issues. They are amenable to symbolic computation. Cartan’s introduc-
tion of exterior differential systems and involutivity has probably been the
most celebrated [5] and is suited for geometric problems. The homological
approach to involutivity for differential sytems, initiated by Spencer and
Quillen, has shown its implication in mathematical physics, control theory
and numerical analysis [4, 18, 20, 15]. The algebraic standpoint on differ-
ential equations of Ritt and Kochin [19, 12] started on different grounds.
There the focus was on nonlinearity and the implications on the solution
sets. A motivational question was: how do we define the general solution of
an differential equation and what are its relations to the singular solutions.
The subsequent theory of differential algebra has provided firm grounds
for this question and has developed in an algebraic treatment of nonlinear
differential systems.

My goal is not to expand on the inter-relationships between the alge-
braic theories for differential systems, though there is a real need for that
[14]. Algorithms for systems of nonlinear differential systems based on dif-
ferential algebra [8] have been implemented in widely available symbolic
systems for 10 years now [2] and are still evolving [3, 9, 1, 7]. I want to
promote here their use by introducing the underlying theory and giving a
practical sense of of their applicability on examples. Indeed, symbolic com-
putation software can be very user friendly but it is delusive to think that
they can be used as black boxes. One needs to have basic understanding
of the underlying theories to best use the software available.

Differential problems are sometimes better expressed with non commut-
ing derivations. This is the case of some equivalence and classification
problems [17]. This is also the case of differential systems with symme-
try once they are rewritten in terms of the invariants of the symmetry
group [16]. The computations are then more tractable in those terms. We
shall base the presentation on the recent generalization of differential al-
gebra to derivations with non trivial commuting rules [10]. This extension
furthermore gives theoretical grounds for the investigation of the differ-
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ential algebras formed by the differential invariants of a Lie group action
[13, 6, 11].
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Boris Kruglikov Valentin Lychagin

Inst. of Mathematics and Statistics, University of Tromsø,
Tromsø 90-37, Norway,
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Abstract

We discuss the dimensional characterization of the solutions space of a formally integrable
system of partial differential equations and provide certain formulas for calculations of
these dimensional quantities.

Keywords: Solutions space, Cartan’s test, Cohen-Macaulay module, involutive system,
compatibility, formal integrability.

1 Introduction: what is the solutions space?

Let E be a system of partial differential equations (PDEs1). We would like
to discuss the dimensional characterization of its solutions space.

However it is not agreed upon what should be called a solution. We can
choose between global or local and even formal solutions or jet-solutions to
a certain order. Hyperbolic systems hint us about shock waves as multiple-
valued solutions and elliptic PDEs suggest generalized functions or sections.

A choice of category, i.e. finitely differentiable Ck, smooth C∞ or ana-
lytic Cω together with many others, plays a crucial role. For instance there
are systems of PDEs that have solutions in one category, but lacks them in
another (we can name the famous Lewy’s example of a formally integrable
PDE without smooth or analytic solutions, [L]).
1 MSC numbers: 35N10, 58A20, 58H10; 35A30.
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In this paper we restrict to local or even formal solutions. The reason is

lack of reasonable existence and uniqueness theorems (in the case of global

solutions even for ODEs). In addition this helps to overcome difficulties

with blow-ups and multi-values.

If the category is analytic, then Cartan-Kähler theorem [Ka] guarantees

local solutions of formally integrable equations [Go] and even predicts their

quantity. We then measure it by certain dimension characteristics.

If the category is smooth, formal integrability yields existence of solu-

tions only if coupled with certain additional conditions (see for instance

[Ho]). Thus it is easier in this case to turn to formal solutions, which in

regular situations give the same dimension characteristics. With this vague

idea let us call the space of solutions Sol(E).

With this approach it is easy to impose a topology on the solutions space.

However we shall encounter the situations, when the topological structure

is non-uniform.

To illustrate the above discussion, let’s consider some model ODEs (in

which case we possess existence and uniqueness theorem). The space of

local solutions for the ODE y′ = y2 is clearly one-dimensional, but the

space of global solutions (continuous pieces until the blow-up) has two

disconnected continuous pieces (solutions y = (a − x)−1 for a < 0 or for

a > 0) and a singular point (solution y = 0). Another example is the

equation y′2 + y2 = 1, the solutions on(−ε, ε) of which form S1, but the

space of global solutions is R1 (both united with two singular points in

Sol(E)).

We would like to observe the ”biggest” piece of the space of Sol(E), so

that in our dimensional count we ignore isolated and special solutions or

their families and take those of connected components, that have more

parameters in.

It will be precisely the number of parameters, on which a general solution

depends, that we count as a dimensional characteristic. Let us discuss the

general idea how to count it and then give more specified definitions.

Note that in this paper we consider only (over)determined systems of

6
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PDEs. Most results will work for underdetermined systems, but we are

not concerned with them.

2 Understanding dimension of the solutions space

Let us treat at first the case of linear PDEs systems (the method can be

transferred to non-linear case). We consider formal solutions and thus

assume the system of PDEs E is formally integrable. We also assume the

system E = Ek is of pure order k, which shall be generalized later.

Thus for some vector bundle π : E(π) → M we identify E as a sub-

bundle Ek ⊂ Jk(π) (see [S, Go, KLV]) and let El ⊂ J l(π) be its (l − k)-th

prolongations, l ≥ k. Then the fibres E∞
x ⊂ J

∞
x (π) at points x ∈M can be

viewed as spaces of formal solutions of E at x ∈M. To estimate size of E∞
x

we consider the spaces of linear functions on El,x, i.e. the space E∗
l,x. The

projections πl,l−1 : El,x → El−1,x induce embeddings π∗l,l−1 : E∗
l−1,x →֒ E∗

l,x,

and we have the projective limit

E∗
x = ∪lE

∗
l,x.

Remark that E∗ is the module over all scalar valued differential operators

on π, while the kernel of the natural projection J∞
x (π)∗ → E∗

x can be viewed

as the space of scalar valued differential operators on π vanishing on the

solutions of the PDEs system E at the point x ∈ M . Thus elements of E∗
x

are linear functions on the formal solutions E∞
x .

We would like to choose ”coordinates” among them, which will estimate

dimension of the formal solution space. To do this we consider the graded

module associated with filtred module E∗
x:

g
∗(x) =

⊕

l≥0

g
∗
l (x),

where gl(x) are the symbols of the equation at x ∈M :

gl(x) = El,x/El−1,x ⊂ S
l
T

∗
x ⊗ πx

7



GIFT 2006

(we let El = J l(π) for l < k), and reduce analysis of E∗
x to investigation of

the symbolic module g∗x.

This g∗ is the module over the symmetric algebra STxM = ⊕Si(TxM)

and its support CharC
x (E) ⊂ PC

T
∗
xM is a complex projective variety con-

sisting of complex characteristic vectors. The values Kp of the symbolic

module g∗x at characteristic covectors p ∈ CT ∗
x \ 0 form a family of vector

spaces over CharC
x (E), which we call characteristic sheaf.

By the Noether normalization lemma ([E]) there is a subspace U ⊂ TxM

such that the homogeneous coordinate ring STxM/Ann g∗(x) of CharC
x (E)

is a finitely generated module over SU . It follows that g∗(x) is a finitely

generated module over SU too.

If g∗(x) is a Cohen-Macaulay module (see [E], but we recall the definition

later in a more general situation, then g∗(x) is a free SU -module (we called

the respective PDEs systems E Cohen-Macaulay in [KL2] and discussed

their corresponding reduction).

Let σ be the rank of this module, and p = dimU . By the above discussion

these numbers can be naturally called formal functional rank and formal

functional dimension of the solutions space E∞
x at the point x ∈M , because

they describe on how many functions of how many variables a general jet-

solution formally depends (we shall omit the word ”formally” later), or

how many ”coordinates” from E∗
x should be fixed to get a formal solution.

If the symbolic module is not Cohen-Macaulay, the module g∗(x) over

SU is not free, but finitely generated and supported on PC
U

∗. Let F(U)

be the field of homogeneous functions P/Q, where P,Q ∈ SU , Q 6= 0,

considered as polynomials on U
∗. Thus F(U) is the field of meromorphic

(rational) functions on U ∗.

Consider F(U) ⊗ g
∗(x) as a vector space over F(U). Keeping the same

definition for σ, let us call the dimension of this vector space p formal rank

of E at the point x ∈M .

It is clear that for Cohen-Macaulay systems the two notions coincide.

However since g∗(x) over SU is not free, we would like to give more numbers

to characterize the symbolic module.

8
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Let us choose a base e1, . . . , er of F(U)⊗g∗(x) such that e1, . . . , er are ho-

mogeneous elements of g∗(x) and denote by Γ1 ⊂ g∗(x) the SU -submodule

generated by this base. It is easy to check that Γ1 is a free SU -module.

For the quotient module M1 = g∗(x)/Γ1 we have the following property:

Annh 6= 0 in SU, for any h ∈M1.

Therefore AnnM1 6= 0 and the support Ξ1 of M1 is a proper projective

variety in PCU ∗.

We apply the Noether normalization lemma to Ξ1, we get a subspace

U1 ⊂ U , such that M1 is a finitely generated module over SU1. Its rank

will be the next number p1 and we also get σ1 = dimU1, which we can call

the next formal rank and formal dimension.

Applying this procedure several more times we get a sequence of varieties

Ξi and numbers (pi, σi), which depends, in general, on the choice of the

flag U ⊃ U1 ⊃ U2 ⊃ . . . and the submodules Γi of SUi−1.

Thus we resolve our symbolic module via the exact 3-sequences

0 → Γ1 → g
∗ →M1 → 0 over SU, 0 → Γ2 →M1 →M2 → 0 over SU1, . . .

(with SuppMi = Supp Γi+1 % SuppMi+1) etc.

3 Cartan numbers

In Cartan’s study of PDEs systems E (basically viewed as exterior differ-

ential systems in this approach) he constructed a sequence of numbers si,

which are basic for his involutivity test. These numbers depend on the flag

of subspaces one chooses for investigation of the system and so have no

invariant meaning.

The classical formulation is that a general solution depends on sp func-

tions of p variables, sp−1 functions of (p− 1) variables, . . . , s1 functions of

1 variable and s0 constants (we adopt here the notations from [BCG3]; in

Cartan’s notations [C] we should rather write sp, sp + sp−1, sp + sp−1 + sp−2

etc). However as Cartan notices just after the formulation [C], this state-

ment has only a calculational meaning.
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Nevertheless two numbers are absolute invariants and play an important

role. These are Cartan genre, i.e. the maximal number p such sp 6= 0, but

sp+1 = 0, and Cartan integer σ = sp.

As a result of Cartan’s test a general solution depends on σ functions of p

variables (and some number of functions of lower number of variables, but

this number can vary depending on a way we parametrize the solutions).

Here general solution is a local analytic solution obtained as a result of

application of Cartan-Kähler (or Cauchy-Kovalevskaya) theorem and thus

being parametrized by the Cauchy data.

Hence we can think of p as of functional dimension and of σ as of func-

tional rank of the solutions space Sol(E). In fact, we adopt this terminology

further on in the paper, because as was shown in the previous section it

correctly reflects the situation.

These numbers can be computed via the characteristic variety. If the

characteristic sheaf over CharC(E) has fibers of dimension k, then

p = dim CharC(E) + 1, σ = k · deg CharC(E).

The first formula is a part of Hilbert-Serre theorem ([H]), while the second

is more complicated. Actually Cartan integer σ was calculated in [BCG3]

in general situation and the formula is as follows.

Let CharC(g) = ∪ǫΣǫ be the decomposition of the characteristic variety

into irreducible components and dǫ = dimKx for a generic point x ∈ Σǫ.

Then

σ =
∑

dǫ · deg Σǫ.

It is important that these numbers coincide with the functional dimen-

sion and rank of the previous section. Moreover the sequence of Cartan

numbers si is related to the sequence (pi, σi) of the previous section.

This can be seen from the general approach of the next and following

sections, which treat the case of systems E of PDEs of different orders (we

though make presentation for the symbolic systems, with interpretation for

general systems being well-known [S, KLV, KL2]).
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4 Symbolic systems

Consider a vector space T of dimension n (tangent space to the set of

independent variables, substitute to TxM) and a vector space N of di-

mension m (tangent space to the set of dependent variables, substitute to

πx = π−1(x)).

Spencer δ-complex is de Rham complex of polynomial N -valued differ-

ential forms on T :

0 → S
k
T

∗ ⊗N
δ
→ S

k−1
T

∗ ⊗N ⊗ T
∗ δ
→ · · ·

δ
→ S

k−n
T

∗ ⊗N ⊗ Λn
T

∗ → 0,

where SiT ∗ = 0 for i < 0. Denote by

δv = iv ◦ δ : Sk+1
T

∗ ⊗N → S
k
T

∗ ⊗N

the differentiation along the vector v ∈ T .

The l-th prolongation of a subspace h ⊂ SkT ∗ ⊗N is

h
(l) ={p ∈ S

k+l
T

∗ ⊗N : δv1
. . . δvl

p ∈ h ∀v1, . . . , vl}

=Sl
T

∗ ⊗ h ∩ Sk+l
T

∗ ⊗N.

Definition. A sequence of subspaces gk ⊂ SkT ∗ ⊗N , k ≥ 0, with g0 = N

and gk ⊂ g
(1)
k−1, is called a symbolic system.

If a system of PDEs E is given as F1 = 0, . . . , Fr = 0, where Fi are scalar

PDEs on M , then T = TM,N ≃ Rm and the system g ⊂ ST
∗⊗N is given

as f1 = 0, . . . , fr = 0, where fi = σ(Fi) are symbols of the differential

operators at the considered point (or jet for non-linear PDEs).

With every such a system we associate its Spencer δ-complex of order k:

0 → gk
δ

−→ gk−1 ⊗ T
∗ δ
−→ gk−2 ⊗ Λ2

T
∗ → . . .

→ gi ⊗ Λk−i
T

∗ δ
−→ · · ·

δ
−→ gk−n ⊗ Λn

T
∗ → 0.

Definition. The cohomology group at the term gi ⊗ ΛjT ∗ is denoted by

H i,j(g) and is called the Spencer δ-cohomology of g.

11
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Note that gk = SkT ∗⊗N for 0 ≤ k < r and the first number r = rmin(g),

where the equality is violated is called the minimal order of the system.

Actually the system has several orders:

ord(g) = {k ∈ Z+ | gk 6= g
(1)
k−1}.

Multiplicity of an order r is:

m(r) = dim g
(1)
r−1/gr = dimH

r−1,1(g).

Hilbert basis theorem implies finiteness of the set of orders (counted with

multiplicities):

codim(g) := dimH
∗,1(g) =

∑

m(r) <∞.

Starting from the maximal order of the system k = rmax we have:

gk+l = g
(l)
k .

If we dualize the above construction over R, then Spencer δ-differential

transforms to a homomorphism over the algebra of polynomials ST and

g∗ = ⊕ig
∗
i becomes an ST -module. This module is called a symbolic module

and it plays an important role in understanding PDEs.

In particular, characteristic variety CharC(g) ⊂ PCT ∗ is defined as the

support of this module Supp(g∗) = {[p] : (g∗)p 6= 0} and the characteristic

sheaf K over it is the family of vector spaces, which at the point p ∈
CharC(g) equals the value of the module at this point Kp = g∗/p · g∗. For

more geometric description see [S, KLV, KL2].

5 Commutative algebra approach

We will study only local solutions of a system of PDEs E , which we consider

in such a neighborhood that type of the symbolic system does not change

from point to point (on equation) in the sense that dimensions of gk, of the

characteristic variety CharC(g) and of the fibers of K are the same.

12
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It should be noted that if a system E is not formally integrable and E ′

is obtained from it by the prolongation-projection method [K, M2, KL2],

then the numbers p, σ change in this process, i.e. either the functional

dimension or the functional rank decrease. Thus from now on we suppose

the system E is formally integrable.

The numbers p, σ can be described using the methods of commutative

algebra. Recall ([AM]) that by Hilbert-Serre theorem the sum

f(k) =
∑

i≤k

dim g
∗
i

behaves as a polynomial in k for sufficiently large k. This polynomial is

called the Hilbert polynomial of the symbolic module g∗ corresponding to

E and we denote it by PE(z). If p = degPE(z) and σ = P
(p)
E (z), then the

highest term of this polynomial is

PE(z) = σz
p + . . .

(see [H] for the related statements in algebraic geometry, the interpretation

for PDEs is straightforward).

A powerful method to calculate the Hilbert polynomial is resolution of

a module. In our case a resolution of the symbolic module g∗ exists and

it can be expressed via the Spencer δ-cohomology. Indeed, the Spencer

cohomology of the symbolic system g is R-dual to the Koszul homology of

the module g∗ and for algebraic situation this resolution was found in [Gr].

It has the form:

0 → ⊕qH
q−n,n(g) ⊗ S

[−q] ϕn
−→ ⊕qH

q−n+1,n−1(g) ⊗ S
[−q] ϕn−1

−→ . . .

→ ⊕qH
q−1,1(g) ⊗ S

[−q] ϕ1

−→ ⊕qH
q,0(g) ⊗ S

[−q] ϕ0

−→ g
∗ → 0,

where S [−q] is the polynomial algebra on T
∗
xM with grading shifted by q,

i.e. S
[−q]
i = S

i−q
TxM , and the maps ϕj have degree 0.

Thus denoting hi,j = dimH i,j(g) and τα = dimSαTM =
(
α+n−1

α

)
we

have:

dim gi =
∑

q

(
h

q,0
τi−q − h

q,1
τi−q−1 + h

q,2
τi−q−2 − · · · + (−1)n

h
q,n
τi−q−n

)
.

13
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Let also jβ =
∑

α≤β τα = dimJ
β
vM =

(
β+n

n

)
be the dimension of the fiber

of the vertical jets Jβ
vM , i.e. the fiber of the jet space JβM over M . Thus

we calculate
∑

i≤k

dim gi =
∑

q

(
h

q,0
jk−q − h

q,1
jk−q−1 + h

q,2
jk−q−2 − · · · ± h

q,n
jk−q−n

)
.

Finally we deduce the formula for Hilbert polynomial of the symbolic

module g∗

PE(z) =
∑

q

(

h
q,0

(
z−q+n

n

)
− h

q,1
(
z−q+n−1

n

)
+

+ h
q,2

(
z−q+n−2

n

)
− · · · + (−1)n

h
q,n

(
z−q
n

))

.

Here
(
z+k
k

)
=

1

k!
(z + 1) · (z + 2) · · · (z + k).

Denote Sj(k1, . . . , kn) =
∑

i1<···<ij

ki1 · · · kij the j-th symmetric polynomial

and let also

s
n
i =

(n− i)!

n!
Si(1, . . . , n)

Thus

s
n
0 = 1, s

n
1 =

n+ 1

2
, s

n
2 =

(n+ 1)(3n+ 2)

4 · 3!
, s

n
3 =

n(n+ 1)2

2 · 4!
,

s
n
4 =

(n+ 1)(15n3 + 15n2 − 10n− 8)

48 · 5!
etc.

If we decompose
(
z+n
n

)
=

n∑

i=0

s
n
i

zn−i

(n− i)!
,

then we get the expression for the Hilbert polynomial

PE(z) =
∑

i,j,q

(−1)i
h

q,i
s
n
j

(z − q − i)n−j

(n− j)!
=

n∑

k=0

bk
z

n−k

(n− k)!
,

14
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where

bk =

k∑

j=0

∑

q,i

(−1)i+j+k
h

q,i
s
n
j

(q + i)k−j

(k − j)!
.

6 Calculations for the Solutions space

We are going to compute the dimensional characteristics of two important

classes of PDEs.

Involutive systems. These are such symbolic systems g = {gk} that

all subspaces gk are involutive in the sense of Cartan [C, BCG3] (this defini-

tion for the symbolic systems of different orders was introduced in [KL5]).

Thanks to Serre’s contribution [GS] we can reformulate this via Spencer

cohomology as follows.

Denote by g|k〉 the symbolic system generated by all differential corollar-

ies of the system deduced from the order k:

g
|k〉
i =

{
S

i
T

∗ ⊗N, for i < k;

g
(i−k)
k , for i ≥ k.

Then the system g is involutive iffH i,j(g|k〉) = 0 for all i ≥ k (this condition

has to be checked for k ∈ ord(g) only), see [KL5].

In particular, H i,j(g) = 0 for i /∈ ord(g) − 1, (i, j) 6= (0, 0), and the

resolution for the symbolic module g∗ as well as the formula for the Hilbert

polynomial of E become easier.

Let us restrict for simplicity to the case of systems of PDEs E of pure

first order. Then

PE(z) =h0,0
(
z+n
n

)
− h

0,1
(
z+n+1
n+1

)
+ h

0,2
(
z+n+2
n+2

)
− . . .

=b1
zn−1

(n− 1)!
+ b2

zn−2

(n− 2)!
+ · · · + b0.

Vanishing of the first coefficient b0 = 0 is equivalent to vanishing of Eu-

ler characteristic for the Spencer δ-complex, χ =
∑

i(−1)ih0,i = 0, and

15
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this is equivalent to the claim that not all the covectors from C
T

∗ \ 0 are

characteristic for the system g.

The other numbers bi are given by the general formulas from the previous

section, but they simplify in our case. For instance

b1 = n+1
2 b0 −

∑

(−1)i
h

0,i
i =

∑

(−1)i+1
i · h0,i

.

If codimCharC(E) = n − p > 1, then b1 = 0 and in fact then bi = 0 for

i < n− p, but bn−p = σ.

Theorem. If codimCharC(E) = n − p, then the functional rank of the

system equals

σ =
∑

i

(−1)i
h

0,i (−i)
n−p

(n− p)!
.

Proof. Indeed one successively calculate the coefficients using the for-

mula

bk =
∑

i

k∑

α=0

(−1)i+α
h

0,i
s
n
k−α

iα

α!

and notes that bk equals to the displayed expression plus a linear combi-

nation of bk−1, . . . , b0. The claim follows. �

One can extend the above formula for general involutive system and

thus compute the functional dimension and functional rank of the solutions

space (some interesting calculations can be found in classical works [J, C]).

Cohen-Macaulay systems. A symbolic system g (and the respective

PDEs system E) is called Cohen-Macaulay ([KL2]) if the corresponding

symbolic module g∗ is Cohen-Macaulay, i.e. (see [M1, E] for details)

dim g
∗ = depth g∗.

Consider an important partial case (we formulate the definition only for

symbolic systems; PDEs are treated in [KL4]):

Definition. A symbolic system g ⊂ ST ∗ ⊗N (n = dimT , m = dimN) of

codim(g) = r is called a generalized complete intersection if

16
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• m ≤ r < n+m;

• codimC CharC(g) = r −m+ 1;

• dimKx = 1 ∀x ∈ CharC(g) ⊂ PCT ∗.

Formal integrability of such systems are given by the compatibility con-

ditions expressed via brackets (for scalar systems [KL1, KL3]) or multi-

brackets (for vector systems [KL4]). In this case we can calculate Cartan

genre and integer directly.

Theorem. Let E be a system of generalized complete intersection type and

suppose it is formally integrable. Then the functional dimension of Sol(E)

is

p = m+ n− r − 1

and the functional rank is

σ = Sr−m+1(k1, . . . , kr) =
∑

i1<···<ir−m+1

ki1 · · · kir−m+1
,

the l-th symmetric polynomial of the orders k1, . . . , kr of the system.

Note that if the last requirement in the definition of generalized complete

intersection is changed to dimKx = d everywhere on the characteristic

variety, then the functional rank will be multiplied by d:

σ = d · Sr−m+1(k1, . . . , kr).

However the formal integrability criterion for generalized complete inter-

sections is proved in [KL4] under assumption that d = 1.

Proof. We shall consider the case of a system g of a pure order: k1 =

· · · = kr = k, ki ∈ ord(g). The case of different orders is similar and will

appear elsewhere.

The formula for functional dimension p follows directly from the defini-

tion of generalized complete intersection. Let’s calculate σ.

17
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We can use interpretation of the Cartan integer σ from §3. Recall that

characteristic variety CharC(g) is the locus of the characteristic ideal I(g) =

Ann(g), which the the annihilator of g∗ in ST .

Since the module is represented by the matrix with polynomial entries

(each differential operator ∆i giving a PDEs system E is a column ∆ij,

1 ≤ i ≤ r, 1 ≤ j ≤ m; so that their union is a m × r matrix M(∆)),

its annihilator is given by the zero Fitting ideal (in fact, here we use the

condition on grade of the ideal: depth Ann(g) = r −m + 1, which follows

from the conditions of the above definition).

This ideal Fitt0(g) is generated by all determinants of m × m minors

of the corresponding to M(∆) matrix of symbols M(σ∆). These minors

are determined by a choice of m from r columns, so that there are
(

r
m

)

determinants and each is a polynomial of degree kr−m+1.

However not all the minors are required to determine CharC(g) and

this is manifested by the fact, that we sum
(

r
m−1

)
degrees kr−m+1 to get

the functional rank σ. The easiest way to explain this is via the Hilbert

polynomial of the symbolic module g∗.

This can be calculated since under the assumption of generalized com-

plete intersection g∗ possesses a resolution in the form of Buchsbaum-Rim

complex (see [KL4]):

0 → S
r−m−1

V
⋆ ⊗ Λr

U → S
r−m−2

V
⋆ ⊗ Λr−1

U →

· · · → Λm+1
U → U → V → g

∗ → 0,

where V ≃ ST ⊗ N
∗ (recall that dimN = m and g ⊂ ST

∗ ⊗ N) and

U = ST ⊕ · · · ⊕ ST
︸ ︷︷ ︸

r terms

. Star ⋆ means dualization over ST and the tensor

products are over ST as well.

Now the claim follows from the detailed investigation of degrees of the

homomorphisms in the above exact sequence. To see this we suppose at

first that r = m+ n− 1 and use the following assertion.

18
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Lemma. The following combinatorial formula holds:

m
(
n+k(n+m−1)

n

)
− (n+m− 1)

(
n+k(n+m−2)

n

)

+

n−1∑

j=1

(−1)j−1
(
j+m−2
m−1

)(
n+m−1

j+m

)(
(k+1)n−k(1+j)

n

)
=

(
n+m−1

n

)
k

n
.

We would like to comment and interpret the sum on the left hand side of

this formula. In our case the system is of finite type (g∗ has finite dimension

as a vector space) and σ =
∑

dim gi (the sum is finite).

Stabilization of the symbol occurs at the order i =
∑
ki − 1 = k(n +

m− 1)− 1: gi = 0. So we prolong E to the jets of order k(n+m− 1) and

the first term is just dimJ
k(n+m−1)
v (M,N).

The next term is due to the fact that E ⊂ Jk(M,N) is proper. It is

given by r = n+m− 1 equations of order k, we which we differentiate up

to k(n+m− 2) times along all coordinate directions (prolongation).

There are relations between these derivatives. These are compatibility

conditions (1-syzygy of g∗), which appear in the form of multi-brackets

[KL4], in our case this bracket uses (m+ 1)-tuples of ∆i.

There are in turn relations among relations (2-syzygy of g∗), which are

identities between multi-brackets (these we call generalized Plücker iden-

tities, to appear soon), in our case these latter use (m + 2)-tuples of the

defining operators ∆i etc.

Due to exact form of the relations (higher syzygies) we get factors
(
j+m−2
m−1

)
in the summations formula of the lemma.

In the case r < n + m − 1 we should perform a reduction, which is

possible by Theorem A [KL2]. Then the functional dimension p grows, but

the functional rank remains the same and the previous calculation works.

�
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7 Examples

Here we show some examples demonstrating the above results.

1. Intermediate integral of a system E ⊂ Jkπ is such a system Ẽ ⊂ J k̃π

that k̃ < k and E ⊂ Ẽ (k−k̃) (where E (i) is the i-th prolongation of the

system). Since every solution to the system E is a solution to Ẽ (k−k̃) we

conclude: Whenever the functional dimension p > 0, we have p̃ = p and

σ̃ = σ.

Indeed the solutions of Ẽ (k−k̃) form a finite-dimensional parametric fam-

ily, such that solutions of Ẽ appear for some fixed values of parameters

(because we differentiate with respect to all variables to obtain the pro-

longation). Thus the number of functions of p > 0 variables, on which a

general solution depends, will not be altered.

2. If the PDEs system E is underdetermined, then p = n and σ ≥ 1. In-

deed, σ is precisely the under-determinacy degree, i.e. the minimal number

of unknown functions that should be arbitrarily fixed to get a determined

system. We assume we can do it to get a formally integrable system. If un-

derdetermined system is not formally integrable, compatibility conditions

can turn it into determined or over-determined and then decrease p and

change σ.

A nice illustration is the Hilbert-Cartan system

z
′(x) = (y′′(x))2

.

It has p = 1, σ = 1. But even though a general solution depends on one

function of one variable, it cannot be represented in terms of a function

and its derivatives only (Hilbert’s theorem).

3. As we noticed earlier the similar situation happens to overdeter-

mined system: If E is not formally integrable, and Ẽ is obtained from E

by prolongation-projection technique (sometimes it is said that Ẽ is the

involutive form of E , but this is not true, only a certain prolongation of Ẽ
is), then p̃ < p or [p̃ = p and σ̃ < σ]. Indeed, supplement of additional

equations shrinks the solution space.
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For instance if we consider two second-order scalar differential equations

on the plane

F
(
x, y, u(x, y), Du(x, y), D2

u(x, y)
)

= 0,

G
(
x, y, u(x, y), Du(x, y), D2

u(x, y)
)

= 0,

such that F and G have no common complex characteristics, then the

compatibility condition of this system E can be expressed via the Mayer

bracket ([KL1]): H = [F,G]E . If H = 0, then p = 0, σ = 4. If H 6= 0, then

p = 0 and σ ≤ 3, the equality being given by the Frobenius condition for

the system Ẽ = {F = 0, G = 0, H = 0}.
If the system has one common characteristic and is compatible, we have:

p = 1, σ = 1. Pairs of such systems are basic examples of Darboux

integrability.

4. Evolutionary equations ut = L[u] provide interesting examples, which

usually ”contradict” the theory. Consider for instance the heat equation

ut = uxx.

It is formally integrable and analytic. We can try to specify the initial

condition u|t=0 = ϕ(x) and then solve the Cauchy problem, so that we get

p = 1, σ = 1. On the other hand we can let u|x=0 = ψ0(t), ux|x=0 = ψ1(t)

and then get p = 1, σ = 2.

If we calculate the numbers using our definitions of functional dimension

and functional rank (for instance, via Hilbert polynomial), it turns out

that the second approach is correct. Indeed with the first idea we come

into trouble with certain Cauchy data: Let, for instance, ϕ(x) = (1−x)−1,

which is an analytic function around the origin. Then the analytic solution

should have the series

u(t, x) +
1

1 − x
+

2

1

t

(1 − x)3
+

4!

2!

t2

(1 − x)5
+ · · · +

(2n)!

n!

tn

(1 − x)2n+1
+ . . .

which diverges everywhere outside t = 0. The reason why the second ap-

proach provides no problem is because the line {x = 0} is non-characteristic
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and we can solve our first order PDE by the classical method of Cauchy

characteristics.

Remark however that in the standard courses of mathematical physics

the heat equation is solved with the first approach (by Fourier method).

How is it possible?

Explanation is that we solve the heat equation then only for positive

time t ≥ 0. Doing the same method in negative direction blows up the

solutions immediately (heat goes rapidly to equilibrium, but we cannot

predict even closest past)! We here are interested in the solutions, which

exist in an open neighborhood of the origin (like in Cauchy-Kovalevskaya

theorem), and this contradicts the first approach.

5. Similar problems arise with Cauchy problems in other PDEs sys-

tems: one usually applies reduction or fixes gauge, but this can change

dimensional characteristics.

For instance, consider the Cauchy problem for the Einstein vacuum equa-

tions, which is a system of 10 PDEs of 10 unknown functions. The system is

over-underdetermined (i.e. it has compatibility conditions). In wave gauge

[CB] its solution depends on several functions on a 3-dimensional space,

which are subject to constraint equations, so that p = 2. On the other

hand, the original Einstein system is invariants under diffeomorphisms and

this yields p = 4.

One should also be careful with Cauchy data in higher order, since then

the definition of characteristics becomes more subtle, see [KL5].

6. Consider a system E , which describes automorphisms of a given

geometric structure. The corresponding symbolic system is g ⊂ ST ∗ ⊗

T . The automorphism group has maximal dimension iff the system is

formally integrable. Consider the examples, when the geometric structure

is symplectic, complex or Riemannian (all these structures are of the first

order).

Let at first g be generated by g1 = sp(n) ⊂ T
∗ ⊗ T . Our tangent

space T = TxM is equipped with a symplectic structure ω, and we can

identify T ∗ ω
≃ T and we get g1 = S

2
T

∗ ⊂ T
∗ ⊗ T

∗. The prolongations are
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gi = S
i+1
T

∗ ⊂ S
i
T

∗ ⊗ T .

The system is easily checked to be involutive and the only non-vanishing

Spencer δ-cohomology groups are

H
0,i(g) = Λi+1

T
∗
.

Then one checks that the Euler characteristic is χ = 1 6= 0 and so b0 6= 0.

Thus the functional dimension is p = n. Indeed the characteristic variety

is PCT ∗ because each non-zero covector p is characteristic: p2 ∈ g1 ≃ S2T ∗.

Next by a theorem from §6 one calculates the functional rank

σ =

n−1∑

i=0

(−1)i

(
n

i+ 1

)
(−i)0

0!
= χ = 1.

This result is easy to verify: an infinitesimal symplectic transformation

has a generating function (Hamiltonian) and so it is determined by one

function of n variables.

If we turn to (almost) complex structures J on M , then g1 = gl(n
2 ,C) =

T ∗⊗CT (space of C-linear endomorphisms of T ) and the prolongations are

gi = Si
CT

∗ ⊗C T .

The characteristic variety is proper and one calculates that p = n
2 , σ = n.

The system is again involutive. The second Spencer cohomology is

H
0,2(g) = Λ2

CT
∗ ⊗C̄ T,

which is the space of C-antilinear skew-symmetric (2, 1) tensors (Nijenhuis

tensors).

The last example is the algebra of Riemannian isometries (i.e. T is

equipped with a Riemannian structure) of a Riemannian metric q on M .

The symbol is g1 = o(n) and the prolongations are zero g2 = g3 = · · · = 0.

This system is not involutive. For instance,

H
1,2(g) = Ker

(
S

2Λ2
T

∗ → Λ4
T

∗
)

(the space of Riemannian curvatures) is non-zero (for n = dimT > 1).

Since the system is of finite type, the characteristic variety is empty and

p = 0. The general solution (isometry) depends on σ =
(n+1)n

2
constants.
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We recall, that the above dimensional conclusions are correct if the sys-

tem E is integrable, otherwise the space Sol(E) shrinks. In the above

examples this means: the form ω is closed (with just non-degeneracy we

have almost-symplectic manifold); the structure J is integrable (Nijenhuis

tensor NJ vanishes); the manifold (M, q) has constant sectional curvature

(so it is a spacial form).
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Abstract

In this paper we explain the importance of the notion of A
∞

-Hopf algebra in the Algebraic

Topology framework. In particular, we focus our efforts to show how, given a Hopf algebra,

it is possible to weaken the structure in the computation of the homology. Furthermore,

we will see that this process induces a new sophisticated structure, an A
∞

-Hopf algebra.

Keywords: Homological perturbation theory, reduction, Basic Perturbation Lemma,

Hopf algebras.

1 Introduction

Classification in Algebraic Topology frequently depends on homology groups,

but these groups are most often difficult to reach. Various methods are

available to facilitate and structure the calculation of these groups. In

particular reductions between:

• Chain complexes which are richly structured (algebras, coalgebras,

simplicial, cosimplicial. . . ) but not of finite type;

• Simpler chain complexes poorly structured but of finite type;

play an important role, see [6].

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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In particular the A∞-algebra and A∞-coalgebra structures are defined

in this way. A homology equivalence between a differential algebra A and

a simple chaincomplex C defines an A∞-algebra structure over C [10], the

same for coalgebras. An A∞-algebra is a sort of “weakened” algebra where

the standard requirements for an algebra are satisfied only up to homotopy.

The same for coalgebras.

The right definition for the notion of A∞-Hopf algebra is a challenge for

a long time, see in particular Ron Umble and Samson Saneblidze’s papers

[7, 8, 9]. We propose here an original point of view.

The notion of A∞-algebra (resp. A∞-coalgebra) greatly depends on the

Bar (resp. Cobar) construction. A Hopf algebra is simultaneously an

algebra and a coalgebra, so that it is tempting to define a “Bar-Cobar”

construction for a Hopf algebra. It happens the Hopf relation explaining

how algebra and coalgebra structures fit to each other is the key point

allowing us to define the Bar-Cobar construction.

The Bar construction leads to the notion of A∞-algebra, and the Bar-

Cobar construction gives by an analogous process which seems a natural

notion of A∞-Hopf algebra.

2 Preliminaries and didactic examples

Here we will collect some basic definitions and results of homological alge-

bra, as well as some simple examples.

Take a commutative ground ring with unit, Λ. A differential graded

module or dg-module, (M, d) is a graded module, with a differential d :

M → M (that is, a morphism of degree −1 such that d d = 0). A graded

module M is connected whenever M0 = Λ and simply connected if it is

connected and M1 = 0. In such a case, the graded module M is defined as

Mn = Mn for n > 1 and M 0 = 0.

The homology of a dg-module M is the graded module H∗(M), where

Hn(M) = Ker dn/Im dn+1.
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A dg–algebra, (A, dA, µA), is a dg–module endowed with an associative

product with unit, compatible with the differential. Analogously, a dg–

coalgebra (C, dC, ∆C) is a dg–module provided with a compatible coproduct

and counit.

Furthermore, if (H, dH, µH , ∆H) is a dg-algebra, a dg-coalgebra and

product and coproduct verify the Hopf relation, i.e., ∆µ = µ⊗2(1 ⊗ T ⊗
1)∆⊗2, then it is a dg-Hopf algebra.

As simple examples of dg-Hopf algebras, let us mention

• The polynomial algebra P (v, 2n), generated by v of degree 2n, where

n is a positive integer. The product is the usual one of monomials

i.e., vivj = vi+j. The coproduct is ∆(v) = v⊗1+1⊗ v and extended

thanks to the Hopf relation.

• The truncated polynomial algebra Qp(v, 2n) is the quotient algebra

P (v, 2n)/(vp), where p is a primer number.

• The exterior algebra E(u, 2n+1), n ≥ 0, with algebra generator u of

degree 2n + 1 and trivial product u
2 = 0.

• The divided polynomial algebra Γ(w, 2n), n ≥ 1, generated by γ1(w) =

w with the product given by γk(w)γh(w) =
(k+h)!
k! h! γk+h(w). The co-

product is defined by ∆(γk(w)) =
∑

i+j=k

γi(w) ⊗ γj(w).

A fundamental tool to relate two dg-modules is the next one:

A reduction c : {N, M, f, g, φ}, from a dg–module (N, dN) to another one

(M, dM) is a special type of homology equivalence given by the morphisms

f , g and φ; where f : N∗ → M∗, g : M∗ → N∗ are two morphisms of

degree zero and φ : N∗ → N∗+1 is a homotopy operator. Apart from the

conditions

(c1) fg = 1M , (c2) φdN + dNφ + gf = 1N ,

the following ones must be satisfied

(c3) fφ = 0 , (c4) φg = 0 , (c5) φφ = 0 .
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The most important consequence is that the homology groups of N are

naturally isomorphic to the homology groups of M . But in general, if N

is a dg-algebra, this structure is not transferred to M , which inherits an

A∞-algebra structure (the morphisms f and g are not isomorphisms and

there is no coherent way in general to transfer the algebra structure to M).

More explicitly, an A∞-algebra is a dg-module with a family of operations

µi : A⊗i → A, of degree i− 2, such that for all i ≥ 1 the following relations

are satisfied

i∑

n=1

i−n∑

k=0

(−1)n+k+nk
µi−n+1(1

k ⊗ µn ⊗ 1⊗i−n−k) = 0.

In the same way, we can speak about an A∞-coalgebra as a dg-module that

has to verify the dual properties (in this case the operations are denoted

by ∆i).

Thanks to the perturbation theory, to speak about an A∞-(co)algebra

M is equivalent to give a reduction from a dg-(co)algebra to the dg-module

M . Let us recall how it is possible.

The key in the homological perturbation theory is the Basic Pertur-

bation Lemma (briefly, BPL [2]), which is an algorithm whose input is a

reduction of dg–modules

c : {N, M, f, g, φ} and a perturbation datum δ of dN whose output is a new

reduction cδ. The only requirement is the pointwise nilpotency of the com-

position φδ, that guarantees that the sums involved on the series bellow

are finite for each x ∈ N .

Input: c : (N, dN)

φ


 f

--

(M, dM)
g

nn + perturbation δ of dN

Output: cδ : (N, dN + δ)

φδ


 fδ

..

(M, dM + dδ)
gδ

oo
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where fδ, gδ, φδ, dδ are given by the formulas

dδ = f δ Σδ
c g; fδ = f (1 − δ Σδ

c φ); gδ = Σδ
c g; φδ = Σδ

c φ;

and Σδ
c =

∑

i≥0(−1)i (φδ)i .

In particular, if we have a reduction from A to M , where A is a dg-algebra

and M is a dg-module, through homological techniques, it is possible to

compute the operations of the A∞-algebra structure induced on M in terms

of the product of A. This computation can be done in four steps (described

lightly):

• To construct of a new reduction T (s(c)) : {T (sA), T (sM), T f, Tg, Tφ}

• To use the BPL with perturbation datum a (simplicial) differential

ds depending on the product of A (see [5]).

• To extract the operations induced on M from the new differential in

T (sM).

Where, given a dg-module (M, d), the tensor module of M , T (M), is

T (M) =
⊕

n≥0

M
⊗n

.

The differential structure in T (M) is provided by the tensor differential,

dt. T (M) is endowed with both structures of dg–algebra and dg–coalgebra

respectively, by a product µ((a1⊗· · ·⊗an)⊗(an+1⊗· · ·⊗an+p)) = a1⊗· · ·⊗
an+p; and a coproduct ∆(a1⊗· · ·⊗an) =

∑n
i=0(a1⊗· · ·⊗ai)⊗(ai+1⊗· · ·⊗an).

In particular, if A is a dga-algebra, one can construct the reduced bar

construction of A, B(A), whose underlying module is the tensor module of

the suspension of A, T (sA).

The total differential dB is given by dB = dt + ds, the component dt

being the tensor differential on the tensor module and ds the simplicial

differential, that depends on the product on A.
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This dg–module is endowed with a structure of dg–coalgebra by the

natural coproduct ∆B : B(A) → B(A)⊗B(A) defined in the tensor module.

Analogously, if we have a reduction from C to M , where C is a dga-

coalgebra and M is a dg-module, through homological techniques, it is

possible to compute the operations of the A∞-coalgebra structure induced

in M .

A simple example of this fact is the algebraic structure of the homology

groups of the bar construction of a truncated polynomial algebra with

coefficients in Z (see [1]). Let us recall a little bit this example, in fact, let

us see the scheme of the algebraic structure of the homology groups.

• There is an explicit reduction c : {B(Qp(u, 2n)), E(v, 2n + 1) ⊗

Γ(γ, 2np + 2), f, g, φ}.

• Even though the bar construction has a coalgebra structure, this

reduction does not preserve this structure, because the morphisms are

not compatible with the coproducts; so we obtain an A∞-coalgebra

structure induced on E ⊗ Γ. This structure is extremely simple,

because it only has two operations non-null, ∆2 and ∆p.

• Thanks to the null differential in E ⊗ Γ, the homology groups of

B(Qp(u, 2n)) are isomorphic to E ⊗ Γ.

• So from the algebraic point of view, H∗(B(Qp(u, 2n))) has an A∞-

coalgebra structure defined by ∆2 and ∆p.

In particular, when we are speaking about the categories of algebras or

coalgebras, we have to emphasize here that the category of Hopf algebras

joins the two notions. But, until now, nothing was known about the anal-

ogous appropriate notion of A∞-Hopf algebra. So, let us give a new way

to understand them via perturbation.
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3 The importance of the Hopf relation

Let (H, d, µ, ∆) be a dga-Hopf algebra. Because of the Hopf relation, it is

possible to define a new algebraic object:

Definition 3.1. Let us define a tensor module associated with H, BC(H),

Bar-Cobar of H, as

{BC(H)}(p,q,n) = (H⊗p)⊗q
n = H

p,q
n ,

where an element is described as a matrix

(aij) =





a11 · · · a1q
...

. . .
...

ap1 · · · apq





and the degree is |(aij)| = n + p − q where n =

p,q
∑

i=0,j=0

|aij|.

BC(H) is a differential graded module with three differential structures

induced,

• the tensor differential dt: H
p,q
n → H

p,q
n−1; dt = −

p,q
∑

i=1,j=1

(−1)P (i,j)
di,j,

where

dij = −(−1)P (i,j)










a11 · · · a1q
...

...
...

ai1 · · · d(aij) aiq
...

...
...

ap1 · · · apq










P (i, j) =
∑

k<i∪(k=i,l<j)

|akl| + (i − 1) − (j − 1)
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• the simplicial differential ds: H
p,q
n → H

p−1,q
n ; ds =

p
∑

k=0

(−1)k
δk, de-

pending on the product of H:

δk = (−1)sg(k,k+1)+sgB(k)










a11 · · · a1q
...

...
...

µ(ak1, ak+1,1) · · · µ(akq, ak+1,q)
...

...
...

ap1 · · · apq










where

sg(k, k + 1) = |ak+1,1|(|ak,2| + · · · + |ak,q|)

+ |ak+1,2|(|ak,3| + · · · + |ak,q|) + · · · + |ak+1,q−1||ak,q|

sgB(k) =

k,q
∑

j=1,l=1

|ajl|

• the cosimplicial differential dc: H
p,q
n → H

p,q+1; dc =

q+1
∑

i=0

(−1)k
δ

k, de-

pending on the coproduct of H:

δ
k = (−1)sgC(k)





a11 · · · a1,k−1 ∆(a1,k) a1,k+1 · · · a1q
...

...
...

ap1 · · · ap,k−1 ∆(ap,k) ap,k+1 · · · apq





where

sgC(k) =

p,k−1
∑

j=1,l=1

|ajl|.

Theorem 3.2. With the above definitions, the morphism

dBC = dt + dc + (−1)qds : H
p,q
n → H

p,q
n−1 ⊕ H

p−1,q
n ⊕ H

p,q+1
n

is a differential in the total complex of BC(H).
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Definition 3.3. Given H a connected dga-Hopf algebra, it is possible to

define a new algebraic object B̂CH as a differential graded module

B̂C(H) = Λ ⊕ H
1,1

⊕ (H
2,1

⊕ H
1,2

) ⊕ · · · ⊕
∑

i+j=k

H
i,j

⊕ · · ·

with the differentials dt, ds and dc induced in a natural way from BC(H)

to B̂C(H).

In the rest of the paper, given a dg-module M we will denote by BC(M)

the tensor module {Mp,q
n }p,q,n with the tensor differential induced on it.

Analogously B̂C(M) is the differential graded module

B̂C(M) = Λ ⊕ M
1,1

⊕ (M
2,1

⊕ M
1,2

) ⊕ · · · ⊕
∑

i+j=k

M
i,j

⊕ · · ·

with the tensor differential induced.

4 What about A∞-Hopf algebras?

We can now formulate our main results related with A∞-Hopf algebras. To

start with, we make the following definition.

Definition 4.1. An A∞-Hopf algebra M is a dg-module with a family of

operations

h
i,j : M

⊗i → M
⊗j

with i, j ∈ N, of degree i + j − 3, such that

• The family {hi,1} : M⊗i → M defines an A∞-algebra on M .

• The family {h1,j} : M → M
⊗j defines an A∞-coalgebra on M .

• The extension of {hi,j}i,j∈N to (B̂C(M), dt) defines a differential on

it.

35



GIFT 2006

If we consider a reduction from H to M , where H is a dga-Hopf algebra

and M is a dg-module, then the information about the A∞-algebra struc-

ture induced on M and the information about the A∞-coalgebra structure

can be extracted, as well as the operations defining an A∞-Hopf algebra

structure.

Proposition 4.2. Given H a Hopf algebra and c : H → M a reduction,

this induces a new one of dg-module

bc(c) : {(BC(H), dt), (BC(M), dt), bc(f), bc(g), bc(φ)},

where the morphisms bcf, bcg, bcφ are defined by the formulas

bc(f)|BC(H)n
= f ⊗ · · · ⊗ f

︸ ︷︷ ︸

n times

;

bc(g)|BC(M)n
= g ⊗ · · · ⊗ g

︸ ︷︷ ︸

n times

;

bc(φ)|BC(H)n
=

n−1∑

k=0

1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

k times

⊗φ ⊗ gf ⊗ · · · ⊗ gf
︸ ︷︷ ︸

n−k−1 times

.

Theorem 4.3. Given c : H → M a reduction, where H is a simply con-

nected dga-Hopf algebra and M is a dg-module, if we consider the reduction

defined in proposition 4.2, bc(c) : {(B̂C(H), dt), (B̂C(M), dt), bc(f), bc(g),

bc(φ)} together with the perturbation datum dc + (−1)qds, thanks to the

basic perturbation lemma, it is possible to define a new reduction

bc(c)dc+(−1)qds
:{(B̂C(H), dt + dc + (−1)q

ds), (B̂C(M), dt + d∞),

bc(f)∞, bc(g)∞, bc(φ)∞}

such that M inherits an A∞-Hopf algebra structure, i.e.:

• the projection over the elements of B̂C(M)
1,∗
∗ , gives the A∞-algebra

of M ;

• the projection over the elements of B̂C(M)
∗,1
∗ , gives the A∞-coalgebra

of M ;
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• the homotopy operators of higher order of M are operations h
i,j :

M⊗i → M⊗j of degree i + j − 3, with i > 1, j > 1, defined by the

formulas of the BPL.

Indeed, the explicit formulas of h
i,j are

h
i,j = fδ(−1)i−1

σ((φδ)i−2(φδ
′)j−1

︸ ︷︷ ︸

Permutations

)g + fδ
′(−1)i−1

σ((φδ)i−1(φδ
′)j−2

︸ ︷︷ ︸

Permutations

)g

We obtain automatically the next result

Corollary 4.4. Given H a simply connected dga-Hopf algebra with product

µ, coproduct ∆, M a dga-module and c : {H, M, f, g, φ} a reduction between

them. Then, M inherits an A∞-Hopf algebra structure.

5 Summary

As we have just seen, if we are interested in the algebraic structure of the

homology of a Hopf algebra, in general, we know that this structure will

not be a Hopf algebra, but yes an A∞-Hopf algebra, that we can determine

with simple methods explicitly, thanks to the perturbation theory.
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Abstract

We consider a special case of the Euler–Poisson system of equations, describing motion of

a rigid body around a fixed point. We find 44 sets of stationary solutions near which the

system is locally integrable. 10 of them are real. We study also number of these complex

stationary solutions in 3-dimensional invariant manifolds of the system. We find that the

number is 4, 2, 1 or 0.

Keywords: resonant normal form, Euler–Poisson equations, local integrability.

1 Local integrability

Now all cases of global integrability of classical ODE systems such as Euler–

Poisson equations are known. So we are looking for cases of local integra-

bility. The first such attempt was made by authors in [1], but it was not

successful [2]. In [2] we also proposed new approach to the problem and

found the first case of the local integrability of the Euler–Poisson equations.

Here we develop the approach and find many new sets of such stationary

solutions of the considered system near which the system is locally inte-

grable.
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Denote ˙
def
= d/dt, X = (x1, . . . , xn). Autonomous system

ẋj = ϕj(X), j = 1, . . . , n (1.1)

with polynomials ϕj(X) is locally integrable in domain D ⊂ Cn, if in the

domain it has enough number of independent first integrals of the form

a(X)/b(X), where functions a(X) and b(X) are analytic in the domain

D. Certainly, in a neighborhood of a nonstationary point X
0, where

Φ(X0) 6= 0, Φ
def
= (ϕ1, . . . , ϕn), System (1.1) is integrable. So the ques-

tion on integrability has a sense for domains, containing or adjoining a

singularity: a stationary solution or a periodic solution and so on. Thus,

we must study local integrability and local nonintegrability of a given system

near its singularities. The best tool for that is normal form [3, 4, 5].

The paper is organized as follows. In Section 2 we give a short survey

of the normal form theory. In Section 3 we describe the Euler–Poisson

system of equations and select its special case which we consider here. In

the case the system has two pairs of two-parameter families of stationary

solutions (points). In Section 4 we consider the first pair of the families.

In them we select all such points, near which we can guarantee the local

integrability of the system. They form 12 sets, and 6 of them are real.

In Section 5 we consider the second pair of the families and find 32 sets

with the property of local integrability, 4 of them are real. In Section 6 we

consider stationary points contained in a 3-dimensional invariant manifold

and study a number of them with the property of local integrability. We

used the package MATHEMATICA for most complicated computation.

2 Normal form

Below, vectors are lines, and asterisk ∗ means transposition. Let X0 = 0

be a stationary solution of System (1.1), i.e. Φ(0) = 0:

Ẋ
∗ = AX

∗ + Φ̃∗(X). (2.1)
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Let the linear transformation

X
∗ = BY

∗ (2.2)

bring the matrix A to the Jordan form J = B−1AB and (2.1) to

Ẏ
∗ = JY

∗ +
˜̃
Φ

∗

(Y ). (2.3)

Let the formal change of coordinates

Y = Z + Ξ(Z), (2.4)

where Ξ = (ξ1, . . . , ξn) and ξj(Z) are formal power series, transform (2.3)

in the system

Ż
∗ = JZ

∗ + Ψ∗(Z). (2.5)

We write it in the form

żj = zjgi(Z) = zj

∑

gjQZ
Q over Q ∈ Nj, j = 1, . . . , n, (2.6)

where Q = (q1, . . . , qn), ZQ = z
q1

1 . . . zqn
n ,

Nj = {Q : Q ∈ Zn
, Q + Ej ≥ 0}, j = 1, . . . , n,

Ej means the unit vector. Denote

N = N1 ∪ . . . ∪ Nn. (2.7)

The diagonal Λ = (λ1, . . . , λn) of J consists of eigenvalues of the matrix A.

System (2.5), (2.6) is called the resonant normal form if:

a) J is the Jordan matrix,

b) in writing (2.6), there are only the resonant terms, for which the

scalar product

〈Q, Λ〉
def
= q1λ1 + . . . + qnλn = 0. (2.8)
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Theorem 1. There exists a formal change (2.4) reducing (2.3) to its

normal form (2.5), (2.6).

Let k be the number of linearly independent solutions Q ∈ N to Eq.

(2.8), it is called the multiplicity of resonance. Integration of the normal

form (2.6) is reduced to solving a system of order k respectively k resonant

variables.

Property 1. If System (2.3) has the linear automorphism t̃ = δt, Ỹ ∗ =

SY
∗, then its normal form (2.6) has the same automorphism t̃ = δt, Z̃

∗ =

SZ∗.

In [3] there are conditions on the normal form (2.6), which guarantee

the convergence of the normalizing transformation (2.4).

Condition A. In the normal form (2.6)

gj = λjα(Z) + λ̄jβ(Z), j = 1, . . . , n,

where α(Z) and β(Z) are some power series.

Let

ωk = min |〈Q, Λ〉| over Q ∈ N, 〈Q, Λ〉 6= 0,
n∑

j=1

qj < 2k, k = 1, 2, . . .

Condition ω (on small divisors). The series

∞∑

k=1

2−k log ωk > −∞,

i.e. it converges.

It is fulfilled for almost all vectors Λ.

Theorem 2. If vector Λ satisfies Condition ω and the normal form (2.6)

satisfies Condition A then the normalizing transformation (2.4) converges.
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3 The Euler–Poisson equations

Motions of a rigid body around a fixed point is described by the system of

six Euler–Poisson equations [6]

Aṗ + (C − B)qr = Mg(z0γ2 − y0γ3),

Bq̇ + (A − C)pr = Mg(x0γ3 − z0γ1),

Cṙ + (B − A)pq = Mg(y0γ1 − x0γ2),

(3.1)

γ̇1 = rγ2 − qγ3, γ̇2 = pγ3 − rγ1, γ̇3 = qγ1 − pγ2, (3.2)

where A, B, C, M, g, x0, y0, z0 are real constants and A, B, C are positive

and satisfy the triangle inequalities. System (3.1), (3.2) has 3 first integrals

h
def
= Ap2 + Bq2 + Cr2 + 2Mg(x0γ1 + y0γ2 + z0γ3) = const,

g
def
= Apγ1 + Bqγ2 + Crγ3 = const,

γ2
1 + γ2

2 + γ2
3 = 1.

(3.3)

We consider the Euler–Poisson system (3.1), (3.2) in the case

A = B = 1, C = c, Mgx0 = −1, y0 = z0 = 0.

Then System (3.1) becomes

ṗ = (1 − c)qr, q̇ = (c − 1)pr − γ3, ṙ = γ2/c. (3.4)

System (3.4), (3.2) has the linear automorphism

t, p, q, r, γ1, γ2, γ3 → −t, p,−q, r, γ1,−γ2, γ3. (3.5)

The unique parameter c ∈ (0, 2]. System (3.5), (3.2) has three first integrals

h
def
= p2 + q2 + cr2 − 2γ1 = const,

g
def
= pγ1 + qγ2 + crγ3 = const,

I3
def
= γ2

1 + γ2
2 + γ2

3 = 1

(3.6)
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and it is integrable in quadratures if it has one additional first integral,

which is known in two cases: c = 1 (case of Lagrange) and c = 1/2 (case

of S. Kovalevskaya). System (3.4), (3.2) is not integrable globally for other

values c [7].

Theorem 3. System (3.4), (3.2) has two pairs of two-parameter families

of stationary solutions:

Sσ : p = p0 ∈ C, q = 0, r = 0, γ1 = σ, γ2 = 0, γ3 = 0, σ = ±1; (3.7)

Tτ : p = pt ∈ C, q = 0, rt = τ
√

1 − (c − 1)2p4
t/((c − 1)pt),

γ1t = (c − 1)p2
t , γ2 = 0, γ3t = τ

√

1 − (c − 1)2p4
t , τ = ±1;

(3.8)

and all its stationary solutions belong to these families.

Families Sσ exist for any p0 ∈ C. Families Tτ exist for c 6= 1 and pt 6= 0.

Intersections of the families are

S+ ∩ S− = ∅,

T+ ∩ T− = Sσ ∩ Tτ : p0 = pt, q = 0, r = 0,

γ1 = (c − 1)p2
t = σ = ±1, γ2 = 0, γ3 = 0.

(3.9)

Families Sσ are real if p0 ∈ R. Families Tτ are real if pt ∈ R and

(c − 1)2p4
t ≤ 1.

4 Families Sσ

First we will consider families Sσ. In a neighborhood of each stationary

point (3.7) we introduce local coordinates

P = p − p0, q, r, Γ = γ1 − σ, γ2, γ3. (4.1)

In them System (3.4), (3.2) takes the form

Ṗ = (1 − c)qr,

q̇ = (c − 1)p0r − γ3 + (c − 1)Pr,

ṙ = γ2/c,

Γ̇ = rγ2 − qγ3,

γ̇2 = −σr + p0γ3 + Pγ3 − rΓ,

γ̇3 = σq − p0γ2 + qΓ − Pγ2.

(4.2)
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If coordinates (4.1) are denoted as X = (x1, . . . , x6):

x1 = P, x2 = q, x3 = r, x4 = Γ, x5 = γ2, x6 = γ3, (4.3)

then (4.2) is System (2.1): X∗ = AX∗ + Φ̃∗(X) with n = 6, where

A =











0 0 0 0 0 0

0 0 (c − 1)p0 0 0 −1

0 0 0 0 1/c 0

0 0 0 0 0 0

0 0 −σ 0 0 p0

0 σ 0 0 −p0 0











. (4.4)

Characteristic equation for matrix A is

λ
6 + aλ

4 + bλ
2 = 0, (4.5)

where

a =
(
σp

2
0 + 1 + 1/c

)
σ, b = 1/c + σp

2
0 (1/c − 1) . (4.6)

Eq. (4.5) has two zero roots and twin roots

λ1 = λ2 = 0, λ3 = −λ4, λ5 = −λ6. (4.7)

Let S̃σ be the part of the family Sσ with p2
0 ∈ R. Evidently S̃σ ⊃ ReSσ.

Below we will consider subfamilies S̃σ only. The dependence of eigenvalues

λ3, λ4, λ5, λ6 from two real parameters

c ∈ (0, 2], y
def
= σp

2
0 ∈ R (4.7′)

is represented in Fig. 1. Three curves

C1 = {(cy + c − 1)2 + 4c2
y = 0} = {a2 − 4b = 0},

C2 ∪ C3 = {y(c − 1) = 1} = {b = 0}

divide the strip (4.7′) into five sets D1, D2, D3, D4, D5. Curve C1 touches

the curve C3 in the point

(c0, y0) = ((
√

5 − 1)/2,−(
√

5 + 3)/2) ≈ (0.618,−2.618).
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In the set D1 eigenvalues λ3, λ4, λ5, λ6 are complex: λ4 = −λ3, λ5 = λ̄3,

λ6 = −λ̄3; in sets D2 and D3 two of them are real and another two are

pure imaginary, in D4 they are pure imaginary, in D5 they are real.

y C2G+

G–

C3

C1

c

-5

0

5

10

1 20.5 1.5

D1

D3

D2D4

D5

Figure 1: Sets of Sσ families.

Accordingly (3.5) and (4.1), System (4.2) has the automorphism

t, P, q, r, Γ, γ2, γ3 → −t, P,−q, r, Γ,−γ2, γ3

or accordingly (4.3)

t, x1, x2, x3, x4, x5, x6 → −t, x1,−x2, x3, x4,−x5, x6. (4.8)

Let the linear transformation

X
∗ = BY

∗

brings the matrix (4.4) to the diagonal form in sets D1–D5. Then it brings

the automorphism (4.8) to the form

t, y1, y2, y3, y4, y5, y6 → −t, y1, y2, y4, y3, y6, y5. (4.9)
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Theorem 4. In sets D1, D2, D3 the normalizing transformation of Sys-

tem (4.2) converges.

Indeed, in these sets the ratio λ3/λ5 is not a real number. So the equation

〈Λ, Q〉 = 0

with vector Λ = (0, 0, λ3, λ4, λ5, λ6) has only such real solutions Q =

(q1, . . . , q6), where q1, q2 are arbitrary; q3 = q4, q5 = q6. Hence, in the

normal form

żj = zjgj(Z), j = 1, . . . , 6 (4.10)

series gj(Z) depend only on

z1, z2, ρ1
def
= z3z4, ρ2

def
= z5z6, (4.11)

which here are resonant variables. According to Property 1, the normal

form (4.10) has the automorphism (4.9) where yj are replaced by zj . For

the resonant variables (4.11) it gives the automorphism

t, z1, z2, ρ1, ρ2 → −t, z1, z2, ρ1, ρ2. (4.12)

Hence, in the normal form (4.10)

g1 = g2 ≡ 0, g4 = −g3, g6 = −g5. (4.13)

It is not difficult to show that the normal form (4.10), (4.13) satisfies

Condition A. Here Condition ω is also satisfied, because ratio λ3/λ5 is not

a real number. According to Theorem 2, the normalizing transformation

converges.

For resonant variables z1, z2, ρ1, ρ2, the normal form (4.10), (4.13) gives

equations żj = 0, ρ̇j = 0, j = 1, 2. Hence, the normal form (4.10), (4.13)

has four independent first integrals

z1 = const, z2 = const, ρ1 = const, ρ2 = const. (4.14)

As the normalizing transformation is analytic and invertible, then near

sets D1, D2, D3 System (4.2) has 4 local first integrals. Hence, it is locally

integrable near these sets.
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For fixed value y = σp
2
0, parameters σ and p0 have 4 variants of different

sets of signs. So in two subfamilies S̃σ, sets D1, D2, D3 give 12 different

complex sets of the local integrability. If value p0 = ±
√

yσ is real, then

System (4.2) is real as well, and its normal form is real in appropriate

coordinates, and 4 first integrals (4.14) are real. If σ = +1, value p0 = ±
√

y

is real for y ≥ 0, i.e. the set D2 is real. If σ = −1, value p0 = ±
√
−y is

real for y ≤ 0, i.e. the sets D1 and D3 are real. Alltogether we have 6 real

sets of the local integrability.

5 Families Tτ

Now we will consider families Tτ . In a neighborhood of each stationary

point (3.8) we introduce local coordinates

P = p − pt, q, R = r − rt, Γ = γ1 − γ1t, γ2, ∆ = γ3 − γ3t. (5.1)

In them System (3.4), (3.2) takes the form

Ṗ = (1 − c)rtq + (1 − c)qP,

q̇ = (c − 1)(ptR + rtP ) − ∆ + (c − 1)PR,

Ṙ = γ2/c,

Γ̇ = rtγ2 − qγ3t + Rγ2 − q∆,

γ̇2 = pt∆ + Pγ3t − (rtΓ + Rγ1t) + P∆ − RΓ,

∆̇ = qγ1t − ptγ2 + qΓ − Pγ2.

(5.2)

If coordinates (5.1) are denoted as X = (x1, . . . , x6):

x1 = P, x2 = q, x3 = R, x4 = Γ, x5 = γ2, x6 = ∆, (5.3)

then (5.2) is System (2.1): X
∗ = AX

∗ + Φ̃∗(X) with n = 6, where

A =











0 (1 − c)rt 0 0 0 0

(c − 1)rt 0 (c − 1)pt 0 0 −1

0 0 0 0 1/c 0

0 −γ3t 0 0 rt 0

γ3t 0 −γ1t −rt 0 pt

0 γ1t 0 0 −pt 0











. (5.4)
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Characteristic equation for matrix A is

λ
6 + aλ

4 + bλ
2 = 0, (5.5)

where

c1
def
= c − 1, a =

(

1 +
1

c2
1

)
1

p2
t

−
c1(c

2
1 − 2)p2

t

1 + c1
,

b =
1

c2
1p

4
t

+ 2 −
3

1 + c1
−

3c3
1p

4
t

1 + c1
.

(5.6)

Eq. (5.5) has two zero roots and twin roots

λ1 = λ2 = 0, λ3 = −λ4, λ5 = −λ6. (5.7)

Let T̃τ be the part of the family Tτ with p
2
t ∈ R. Evidently T̃τ ⊃ ReTτ .

Below we will consider subfamilies T̃τ only. The dependence of eigenvalues

λ3, λ4, λ5, λ6 from two real parameters

c1 = c − 1 ∈ (−1, 1], V = c
2
1p

4
t > 0, (5.8)

i.e. p2
t ∈ R \ {0}, is represented in Fig. 2. Four curves

E1 = {V = 1},

E2 = {V = −
c1 + 1

3c1
} ∩ {V > 0},

E3 ∪ E4 = {(c1 − 1)2(c1 + 1)4 − 2c1(c1 − 1)(c1 + 1)(2 + 4c1+

+c2
1 + c3

1)V + c2
1(4 + 12c1 + 8c2

1 + c4
1)V

2 = 0} ∩ {V > 0}
(5.8′)

divide the halfstrip (5.8) into 8 sets F1–F8. Here E1 ∪ E2 = {b = 0} ∩

{V > 0} and E3 ∪ E4 = {a2 − 4b = 0} ∩ {V > 0}. Curves E1–E4

were drown by solid lines because they divide the halfstrip into sets F1–

F8. Their vertical asymptotes are given by point lines; they have c1 =

0,−0.5188 . . . ,−0.8225 . . . which are roots of the polynomial coefficient for

V 2 in (5.8′). Curves E1 and E2 intersect in the point c1 = −1/4, V = 1.
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E3

K

F5

E4

c1

E1
E2

F7

H+ V

H–

5

10

15

F1 F6

F2

F3

F4
-0.5 0.5-1 10

F8

Figure 2: Sets of Tτ families.

Curves E3 and E4 intersect in the point c1 = −0.5, V = 3, because solution

of Equation (5.8′) is

V c1(4 + 12c1 + 8c2
1 + c

4
1) = (c2

1 − 1)(2 + 4c1 + c
2
1 + c

3
1)±

±2(c2
1 − 1)(1 + 2c1)

√
−c1.

Curve F4 touches the straight line E1 = {V = 1} in the point with

c1 = (
√

5 − 3)/2 = −0.3819 . . .. Subfamilies T̃τ intersect subfamilies S̃σ

along the line E1 in Fig. 2 and along curves C2 and C3 in Fig. 1; and

σ = sgn c1 according to (3.9). The point (c − 1, V ) = ((
√

5 − 3)/2, 1)

corresponds to the point (c, y) = (c0, y0) = ((
√

5 − 1)/2, (
√

5 + 3)/2).

In the sets F1 and F2 eigenvalues λ3, λ4, λ5, λ6 are complex: λ4 = −λ3,

λ5 = λ̄3, λ6 = −λ̄3; in sets F3 and F4 two of them are real and another two

are pure imaginary.

Accordingly (3.5) and (5.1), System (5.2) has the automorphism

t, P, q, R, Γ, γ2, ∆ → −t, P,−q, R, Γ,−γ2, ∆. (5.9)

In coordinates (5.3) it is the automorphism (4.8). Let the linear transfor-

mation

X
∗ = BY

∗
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brings the matrix (5.4) to the diagonal form in sets F1–F8. Then it brings

the automorphism (4.8) to the form

t, y1, y2, y3, y4, y5, y6 → −t, y1, y2, y4, y3, y6, y5. (5.10)

Theorem 5. In sets F1–F4 the normalizing transformation of System

(5.2) converges.

Indeed, in these sets the ratio λ3/λ5 is not a real number. So the equation

〈Λ, Q〉 = 0

with vector Λ = (0, 0, λ3, λ4, λ5, λ6) has only such real solutions Q =

(q1, . . . , q6), where q1, q2 are arbitrary; q3 = q4, q5 = q6. Hence, in the

normal form

żj = zjgj(Z), j = 1, . . . , 6 (5.11)

series gj(Z) depend only on

z1, z2, ρ1
def
= z3z4, ρ2

def
= z5z6, (5.12)

which here are resonant variables. According to Property 1, the normal

form (5.11) has the automorphism (5.10) where yj are replaced by zj . For

the resonant variables (5.12) it gives the automorphism

t, z1, z2, ρ1, ρ2 → −t, z1, z2, ρ1, ρ2. (5.13)

Hence, in the normal form (5.11)

g1 ≡ g2 ≡ 0, g4 = −g3, g6 = −g5. (5.14)

It is not difficult to show that the normal form (5.11), (5.14) satisfies

Condition A. Here Condition ω is also satisfied, because ratio λ3/λ5 is not

a real number. According to Theorem 2, the normalizing transformation

converges.

For resonant variables z1, z2, ρ1, ρ2, the normal form (5.11), (5.14) gives

equations żj = 0, ρ̇j = 0, j = 1, 2. Hence, the normal form (5.11), (5.14)

has four independent first integrals

z1 = const, z2 = const, ρ1 = const, ρ2 = const. (5.15)
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As the normalizing transformation is analytic and invertible, then near sets

F1, F2, F3, F4 System (5.2) has 4 local first integrals. Hence, it is locally

integrable near these sets.

For fixed values c1, V from the halfstrip (5.8), parameter τ = ±1 and

parameter pt = 4
√

V/c2
1 and they have alltogether 8 different pairs of values.

So, in two subfamilies T̃τ sets F1–F4 give 32 different complex sets of

the local integrability for τ = ±1 and real V > 0. If the point (3.8) is

real, then V ≤ 1 and System (5.2) is real as well, and its normal form is

real in appropriate coordinates, and 4 first integrals (5.15) are real. Real

parameters τ = ±1 and pt = ±|pt| have 4 variants of different sets of signs.

Alltogether we have 4 real copies of the set F4 of the local integrability.

6 Stationary points in invariant manifolds

Here we consider the question: How many locally integrable stationary

points from subfamilies S̃σ and T̃τ can be in one real invariant manifold

M = {h = const, g = const} (see (3.6))? According to (3.7), on families

Sσ integrals are

h = p
2
0 − 2σ, g = σp0. (6.1)

Hence,

σ = (g2 − h)/2, p0 = σg = g(g2 − h)/2. (6.2)

So, values σ and p0 are uniquely determined by a pair (h, g), i.e. each pair

of values (h, g), connected by h = g
2 − 2σ, corresponds to only one point

from subfamilies S̃σ. Thus, one manifold M contains no more than one

point from S̃σ.

On families Tτ integrals (3.7) are

h =
1 + c1

c2
1p

2
t

− 3c1p
2
t , g =

1 + c1

c1pt

− c
2
1p

3
t . (6.3)

Resolving that system with respect to pt, we obtain

pt =
h

2
gc1 + 12g(1 + c1)

c1[h3c1 + 18g2 − 4h(1 + c1)]
. (6.4)
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Hence, a pair (h, g) with g 6= 0 determines the value pt uniquely. And

τ = ±1 is arbitrary. So, the pair (h, g) corresponds to two points in

subfamilies T̃τ : one in T̃+ and another in T̃−, both with the same pt.

If g = 0, then from (6.3)

V =
1 + c1

c1
= 1 +

1

c1
. (6.5)

As V > 0 then here c1 > 0,

√
V = c1p

2
t =

√
1 + c1

c1
> 0 and h = −2

√
1 + c1

c1
(6.6)

and

pt = ±

√

1

c1

√
1 + c1

c1
. (6.7)

So, the pair (h, g = 0) with h = −2
√

(1 + c1)/c1 corresponds to 4 points

in subfamilies T̃τ :

pt = ±|pt|, τ = ±1.

We denote the curve (6.5) as K. It is shown in Fig. 2. It belongs to the

set F2. Corresponding manifolds M have four locally integrable stationary

points. Accordingly (6.1), on families Sσ we have h = −2σ for g = 0. So if

subfamily of solutions (6.6) intersects families Sσ than
√

(1 + c1)/c1 = σ,

i.e. 1 + c1 = c1. But it is impossible. Hence, the subfamily (6.6) (which is

denoted as K) does not intersect families Sσ and all its stationary points

are from T̃τ and are locally integrable.

Now let us consider possibility that a manifold M has one locally inte-

grable point from subfamilies S̃σ and two such points from subfamilies T̃τ .

For that we consider the system of four equations (6.1), (6.3). Excluding

h and g from it, we obtain a system of two equations

p
2
0 − 2σ =

1 + c1

c2
1p

2
t

− 3c1p
2
t , σp0 =

1 + c1

c1pt

− c
2
1p

3
t . (6.8)

53



GIFT 2006

Excluding p0 from the system, we obtain equation h = g
2 − 2σ:

f
def
= 1 + c1 − 2σu + (1 − 2c1)V + c1V

2 = 0, (6.9)

where u = c1p
2
t =

√
V , i.e. u is real for V > 0. It has the four order with

respect to u and

f = (u − σ)2(c1u
2 + 2σc1u + c1 + 1).

So Equation f = 0 has roots

u = σ (i.e. V = 1), (6.10)

u = −σ ±
1

√
−c1

(

i.e V = 1 −
1

c1
∓

2σ
√
−c1

)

. (6.11)

The line (6.10) does not intersect sets Fj (it belongs to their boundary).

Real solutions (6.11) exist only for c1 < 0. As u = c1p
2
t , then p2

t > 0 for

real pt and u < 0. Hence, real solutions have the sign minus only, i.e. they

are

u = −

(

σ +
1

√
−c1

)

and V = 1 +
2σ

√
−c1

−
1

c1
. (6.12)

In Fig. 2 curves (6.12) are given by dash lines with labels Hσ, i.e. H+ for

σ = +1 and H− for σ = −1. The curve H+ intersects the set F1 in the

interval

c1 ∈ (−0.7304 . . . ,−0.5097 . . .). (6.13)

It intersects also sets F5 and F6. The curve H− intersects the set F2 in the

interval

c1 ∈ (−0.1624 . . . ,−0.04267 . . .). (6.14)

It intersects also sets F8, F7 and F6. Substituting solutions (6.12) into the

first equation (6.8), after some simplifications, we obtain

p
2
0 = 4

(

σ +
1

√
−c1

)

.
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Hence,

y
def
= σp

2
0 = 4

(

1 +
σ

√
−c1

)

. (6.15)

Curves (6.15) are denoted as Gσ and are given at Fig. 1 by dash lines. The

curve G− intersects the set D1 in the interval

c ∈ (0.5327 . . . , 0.6637 . . .). (6.16)

It also intersects sets D4 and D5. It touches the curve C3 in the point

(c, y) = (3/4,−4). Interval (6.16) corresponds to the interval

c1 ∈ (−0.4632 . . . ,−0.3362 . . .). (6.17)

Intervals (6.14) and (6.17) do not intersect. Hence, the invariant manifold

M , containing locally integrable points from both subfamilies S̃σ and T̃τ

is absent. But manifolds M , containing only integrable points exist: they

have either one point from sets D1–D3 that does not belong to the inter-

section G−∩D1; either two points from sets F1–F4 which do not belong to

the subfamily K, to intersections H+ ∩ F1 and H− ∩ F2; or 4 points from

the subfamily K. Real manifolds M contain either 2 real points from F4

either one real point from D1–D3 or no real point with property of local

integrability.

7 Summary

The considered particular case of the Euler–Poisson system of equations

has 44 sets of such complex stationary solutions near which the system

is locally integrable. Among them 10 sets are real. Complex invariant

manifold with fixed values of integrals of energy and momentum can have

4, 2, 1 or 0 stationary solutions near which the system is locally integrable,

but the real manifold can have 2, 1 or 0 real solutions.
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Reducibility and Galois groupoid
1

Extended abstract

Guy Casale

IRMAR, Université de Rennes 1

Campus de Beaulieu 35042 Rennes cedex, France
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In this talk two problems of reducibility/irreduciblitity of ordinary dif-

ferential equations will be presented from a ‘galoisian’ point of view. The

problem is to determine when an ordinary differential equation can be

solved by means of classical functions as defined by H. Umemura in [7].

Definition 0.1 (Painlevé, Umemura [7]) The field of classical functions

over C(x) is a differential field which is the union of all the differential fields

obtained by a tower of strongly normal extensions and algebraic extensions.

Strongly normal extensions are :

• extensions by the entries of a fondamental solution of a linear ODE,

• extensions by an abelian function with classical functions as argu-

ments.

A common belief is that an answer to this kind of question should be given

by a general nonlinear differential Galois theory. In [8, 4], general defini-

tions of what should be a nonlinear Galois group (or groupoid) are given.

Because of its geometric flavour we will focus on the Malgrange’s Galois

groupoid and use it to solve the two following problems.

1 This work was done when the author was invited participant of the PEM program of the Newton
Institute, Cambridge, UK. The author is partially supported by the ANR project no. JC05 41465 and
by GIFT NEST-Adventure Project no. 5006.
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Irreducibility of P1: prove that no solution of the first Painlevé equation

y′′ = 6y2 + x is a classical function.

Reducibility of PP6: explain why the Picard-Painlevé sixth equation

y
′′ =

3y2 − 2y(x − 1) + x

2y(y − 1)(y − x)
(y′)2+

(
1

x − y
+

1

1 − x
−

1

x

)

y
′+

y(y − 1)

2x(x − 1)(y − x)

can be solved by a formula though most of its solutions are non classical.

The formula to solve PP6 looks pretty classical :

y = ℘(aω1(x) + bω2(x); ω1(x), ω2(x))

with a and b two constants and ω1,2 two periods of z
2 = y(y − 1)(y − x).

1 The Galois groupoid of a vector field in C3

Let X be a vector field in C3. In general it is not complete and its flows

are only defined on open sets small enough. All the dynamic of this vector

field is contained in the pseudogroup of transformations of C3 generated

by these local flows. By keeping only the germs of diffeomorphisms from

this pseudogroup one gets a groupoid, TanX, acting on C3.

The Galois groupoid of X is the Zariski closure of TanX for a (nearly)

obvious embedding of TanX in a infinite dimensional algebraic variety.

This variety is the space J
∗ of formal diffeomorphisms of C3 with its

groupoid structure and its projections on the spaces J∗
q of order q jets of dif-

feomorphisms. The ring OJ∗ of this variety is the commutative differential

ring of nonlinear partial differential equations on germs of diffeomorphisms.

The embedding is the Taylor expansion of elements of TanX.

Definition 1.1 (Malgrange [4]) The Galois groupoid of X is defined by the

ideal of OJ∗ of all the PDEs satisfied by the flows of X.

Using Lie-Cartan local classification of pseudogroups acting on C2 [1], one

has the following proposition.
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Proposition 1.2 ([2]) If X is divergence free and γ is the closed 2-form

vanishing on X then one of the following situations occurs:

• Gal(X) is imprimitive: there exists an algebraic 1-form θ s.t. θ∧dθ =

0 and θ(X) = 0,

• Gal(X) is transversally affine: there exists two algebraic 1-forms θ1,

θ2 vanishing on X and a traceless matrix of 1-forms (θ
j
i ), i, j =1 or

2, s.t. dθi = θ
j
i ∧ θj and dθ

j
i = θk

i ∧ θ
j
k,

• the only transversal equations of Gal(X) are those of the invariance

of γ.

2 Irreducibility of P1

The discussion about the irreducibility to classical functions of the solutions

of the first Painlevé equation depends on the transcendance degree of the

differential field generated by these solutions over C(x).

This is a classical result of Painlevé that such a solution cannot be al-

gebraic, and by the Kolchin-Kovacic lemma its transcendance degree must

be two. Such a solution gives an inclusion of the field C(x, y, y
′) in a field

C(x, hi, . . . , kp, . . .). Let’s take C3 and CN as model for these fields and let

π be the dominate projection induced by the inclusion. The differential

structure of the first field is given by the vector field

X1 =
∂

∂x
+ y

′ ∂

∂y
+ (6y2 + x)

∂

∂y′

and because of its special construction the vector field on the second has

the following shape

Xc =
∂

∂x
+

∑

a
j
i (x)hj

∂

∂hi

+
∑

b
q
p(x, h)kq

∂

∂kp

+ . . .

The projection of Xc by π gives X1. The main tool to prove that this

projection cannot exist is the following theorem.
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Theorem 2.1 The only transversal equations of Gal(X1) are those of the

invariance of γ.

Computations on the structural equation of the Galois groupoid of Xc show

that

• a quotient of Gal(Xc) is included in Gal(X1).

• such a quotient must be strictly smaller than Gal(X1).

On an other side, this quotient must contain TanX1, this yields a contra-

diction.

3 Reducibility of PP6

This equation is also divergence free but in this case one has the following

theorem. Let XPP be the vector field of this equation on C3.

Theorem 3.1 Gal(XPP ) is transversally affine.

To prove this we construct two first integrals in a Picard-Vessiot extension

of the differential field
(

C(x, y, y
′); ∂

∂x
,

∂
∂y

,
∂

∂y′

)

following P. Painlevé [5].

If y(x) is a solution of PP6 the integral
∫ y(x)

0
dξ√

ξ(ξ−1)(ξ−x)
is a period of

z2 = y(y − 1)(y − x). By pulling-back linear first integral of the linear
order two equation of the periods (Picard-Fuchs) one gets:

for each solution of v′′ +
(

1
x2 + 1

(x−1)2 −
1

x(x−1)

)

v = 0, the function

y
′

v

√

x(x − 1)

y(y − 1)(y − x)

+

∫
√

x(x − 1)

y(y − 1)(y − x)

{[
v

2

(
1

x
+

1

x − 1
+

1

y − x

)

− v
′

]

dy + v
y(1 − y)

2x(y − x)(x − 1)
dx

}

is a first integral of XPP . The theorem follows easily.

The Galois groupoid shows that this equation is special even if its non

algebraic solutions are non classical. In fact the first integrals are classical

functions of three variables.
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ccostermans@univ-lille2.fr

hoang@univ-lille2.fr

Abstract

In this work, we obtain some results à l’Abel dealing with noncommutative generating

series of polylogarithms and multiple harmonic sums, by using techniques à la Hopf. In

particular, this enables to explicit generalized Euler constants associated to divergent

polyzêtas and to extract the constant part of (commutative and noncommutative) gener-

ating series of all polyzêtas.

Keywords: asymptotic expansion, generating series, multiple harmonic sums, polylog-

arithms, polyzêtas

1 Introduction

Let us consider the alphabet Y = {yi}i∈N+
. To each word w = ys1

. . . ysr

of the monoid Y ∗, we associate the multiple harmonic sum Hw(N) and the

polylogarithm Liw(z)

Hw(N) =
∑

N≥n1>...>nr>0

1

n
s1

1 . . . n
sr
r
, Liw(z) =

∑

n1>...>nr>0

z
n1

n
s1

1 . . . n
sr
r
. (1)

For 0 ≤ N < r,Hw(N) = 0 and for the empty word ǫ, we put Hǫ(N) = 1, for

any N ≥ 0. For w ∈ Y
∗\y1Y

∗, the limits limz→1 Liw(z) and limN→∞ Hw(N)
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exist and, by an Abel theorem, are equal to the convergent polyzêta ζ(w)

ζ(w) =
∑

n1>...>nr>0

1

n
s1

1 . . . n
sr
r
, s1 > 1. (2)

In other cases, i.e. for w = ysw
′, the associated polylogarithm Liw and

polyzêta ζ(w) can be considered respectively as a polylogarithmic gener-

ating series and as Dirichlet series

Liysw′(z) =
∑

N>0

pN

N s
z

N and ζ(ysw
′) =

∑

N>0

pN

N s
(3)

with pN = Hw′(N − 1). Both series can be obtained from the following

generating series

Pw′(z) =

∞∑

N=0

Hw′(N)zN =
∑

N≥0

pN+1z
N
, (4)

respectively by the polylogarithmic transform and by the Mellin trans-

form [1]

Liysw′(z) =

∫ ∞

0

Pw′(ze−u)

Γ(s)

du

u1−s
and ζ(ysw

′) =

∫ ∞

0

Pw′(e−u)

Γ(s)

du

u1−s
. (5)

The generating series Pw′ can also be expressed using the polylogarithm :

Pw′(z) = (1 − z)−1 Liw′(z). (6)

The knowledge of the singular expansion of Pw′ in the scale {(1 −
z)a logb(1 − z)}a∈Z,b∈N enables then to get, on the first hand the asymp-

totic behaviour, as N → ∞, of its Taylor coefficients Hw′(N) in the

scale {Nα logβ
N}α∈Z,β∈N. Then, to deduce the behaviour of Hw(N), since

Hw(N) =
∑N

i=1 Hw′(i− 1)/is. This gives on the other hand, through a

tauberian theorem, the singular expansion of Dirichlet series ζ(ysw
′) con-

sidered then as a function of the complex variable s.
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Both studies lead to apply another Abel theorem dealing with Dirichlet

series [2]. Indeed, let us consider the partial sum SN of coefficients of the

ordinary generating series Pw′(z),

SN =

N∑

i=1

pi+1 =

N∑

i=1

Hw′(i). (7)

If SN admits a singular expansion of the following type

SN =

k∑

j=1

BjN
σj logαj N +O(Nβ), (8)

where, for all j = 1, .., k, Bj is an arbitrary complex number, σj, αj are

arbitrary integers, and β is an integer such that β > σk, then the Dirichlet

series ζ(ysw
′) is convergent for s > 1 and even regular except in σ1, . . . , σk

which are its logarithmic singularities.

In order to adapt automatically these Abel techniques to polylogarithms

{Liw}w∈Y ∗ and to multiple harmonic sums {Hw}w∈Y ∗, we consider the non-

commutative generating series

Λ(z) =
∑

w∈Y ∗

Liw(z) w and H(N) =
∑

w∈Y ∗

Hw(N) w. (9)

Through algebraic combinatoric [3] and elements of topology of formal

series in noncommutative variables [4], we show in Section 2.2 the existence

of formal series over Y , Z1 and Z2 in non commutative variables with

constant coefficients, such that

lim
z→1

exp

[

y1 log
1

1 − z

]

Λ(z) = Z1 and (10)

lim
N→∞

exp

[
∑

k≥1

Hyk
(N)

(−y1)
k

k

]

H(N) = Z2.

Moreover, we have Z1 = Z2, both standing for the noncommutative gener-

ating series of all convergent polyzêtas {ζ(w)}w∈Y ∗\y1Y ∗, (as shown by the
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factorized form). This enables, in particular, to explicit generalized Euler

constants associated to divergent polyzêtas {ζ(w)}w∈y1Y ∗ and to extract

the constant part of generating series (commutative and noncommutative)

of all polyzêtas.

Techniques presented in this paper can be applied to other fields, like

polysystems occuring in physical problems, and enable to make the cal-

culations easier. To illustrate this, we present in appendix some results

to compute, thanks to such techniques, the solution of a linear differential

system, with three singularities, that can be supposed to be {0, 1,∞}, after

an homographic transformation.

2 Polylogarithm and harmonic sum

2.1 Algebraic properties

2.1.1 Symmetric functions and harmonic sums

Let {ti}i∈N+
be an infinite set of variables. The elementary symmetric

functions λk and the sums of powers ψk are defined by

λk(t) =
∑

n1>...>nk>0

tn1
. . . tnk

and ψk(t) =
∑

n>0

t
k
n. (11)

They are respectively coefficients of the following generating functions

λ(t|z) =
∑

k>0

λk(t)z
k =

∏

i≥1

(1 + tiz) and (12)

ψ(t|z) =
∑

k>0

ψk(t)z
k−1 =

∑

i≥1

ti

1 − tiz
.

These generating functions satisfy a Newton identity

d/dz logλ(t|z) = ψ(t| − z). (13)
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The fundamental theorem from symmetric functions theory asserts

that the {λk}k≥0 are linearly independent, and remarkable identities give

(putting λ0 = 1) :

k!λk = (−1)k
∑

s1,...,sk>0

s1+...+ksk=k

(
k

s1, . . . , sk

)(

−
ψ1

1

)s1

. . .

(

−
ψk

k

)sk

(14)

Let w = ys1
. . . ysr

∈ Y ∗. The quasi-symmetric function Fw, of depth

r = |w| and of degree (or weight) s1 + . . .+ sr, is defined by

Fw(t) =
∑

n1>...>nr>0

t
s1

n1
. . . t

sr

nr
. (15)

In particular, Fyk
1

= λk and Fyk
= ψk. As a consequence, the functions

{Fyk
1
}k≥0 are linearly independent and integrating differential equation (13)

shows that functions Fyk
1

and Fyk
are linked by the formula

∑

k≥0

Fyk
1
z

k = exp

[

−
∑

k≥1

Fyk

(−z)k

k

]

. (16)

Remarkable identity (14) can be then seen as :

k!yk
1 = (−1)k

∑

s1,...,sk>0

s1+...+ksk=k

(
k

s1, . . . , sk

)
(−y1)

s1

1s1

. . .
(−yk)

sk

ksk
(17)

Every Hw(N) can be obtained by specializing variables {ti}N≥i≥1 at ti =

1/i and, for i > N, ti = 0 in the quasi-symmetric function Fw [5]. In

the same way, when w ∈ Y ∗ \ y1Y
∗, the convergent polyzêta ζ(w) can

be obtained by specializing variables {ti}i≥1 at ti = 1/i in Fw [5]. The

notation Fw is extended by linearity to all polynomials over Y .

If u (resp. v) is a word in Y ∗, of length r and of weight p (resp. of length

s and of weight q), Fu v is a quasi-symmetric function of depth r+ s and

of weight p+ q, and we have Fu v = Fu Fv.
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In consequence, Hu v = Hu Hv [5]. In the same way, when u, v ∈ Y
∗\y1Y

∗,

we also have ζ(u v) = ζ(u) ζ(v) [5].

Let us consider the noncommutative generating series H(N) of

{Hw(N)}w∈Y ∗ [14],

H(N) =
∑

w∈Y ∗

Hw(N) w =

l=N∏

1

(

1 +
∑

i>0

yi

li

)

. (18)

since it verifies the difference equation

H(N) =

(

1 +
∑

i>0

yi

N i

)

H(N − 1), with H(0) = 1. (19)

2.1.2 Polylogarithms and polyzêtas

Let us denote by C the algebra C[z, 1/z, 1/(1− z)] of polynomial functions

in z, 1/z and 1/(1− z). We define two differential forms ω0(z) = dz/z and

ω1(z) = dz/(1 − z).

Let w = x
s1−1
0 x1 . . . x

sr−1
0 x1 ∈ X∗x1. One can check that the polyloga-

rithm Liw is also the value of the iterated integral over ω0, ω1 and along

the integration path 0 z :

Liw =

∫

0 z

ω
s1−1
0 ω1 . . . ω

sr−1
0 ω1. (20)

This provides an analytic continuation of the Liw over the universal cov-

ering ˜C − {0, 1} of C without points 0 and 1. We extend the definition of

polylogarithms over X∗ putting

Lixk
0
(z) = logk

z/k!, for k ∈ N. (21)

Let LIC = (C{Liw}w∈X∗, .) be the smallest C-algebra containing C and

stable by differentiation and integration over ω0, ω1. It can be identified

with the C-module generated by polylogarithms. Thus, the polylogarithms

are C-linearly independent [6]. Hence, (C{Liw}w∈X∗, .) is identified with the

polynomial algebra (C{Pl}l∈LynX , .) [6].
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The noncommutative generating series L(z) =
∑

w∈X∗
Liw(z) w satisfies

Drinfel’d differential equation [7, 8]

dL = (x0ω0 + x1ω1)L, with the condition (22)

L(ε) = e
x0 log ε +O(

√
ε) for ε→ 0+

.

This enables to prove that L is the exponential of a Lie series [6]. So,

applying a Ree theorem, it verifies Friedrichs criterion [6], i..e Liu ⊔⊔ v =

Liu Liv for u, v ∈ X∗. In particular, when u, v ∈ x0X
∗x1, we also have

ζ(u ⊔⊔

we obtain the factorization of the series L [6] :

L(z) = e
x1 log 1

1−z

[ ց
∏

l∈LynX\{x0,x1}

e
LiSl

(z)[l]

]

e
x0 log z

. (23)

For all l ∈ LynX \ {x0, x1}, we have Sl ∈ x0X
∗x1. So, let us put [6]

Lreg =

ց
∏

l∈LynX\{x0,x1}

e
LiSl

[l] and Z = Lreg(1). (24)

Let σ be the monoid endomorphism verifying σ(x0) = −x1, σ(x1) = −x0,

we also get [9]

L(z) = σ[L(1 − z)]Z = e
x0 log z

σ[Lreg(1 − z)]e−x1 log(1−z)
Z. (25)

In consequence, from (23) and (25), we get respectively

L(z)
z̃→0

exp(x0 log z) and L(z)
z̃→1

exp

(

x1 log
1

1 − z

)

Z. (26)

Let πY : LIC〈〈X〉〉 → LIC〈〈Y 〉〉 a projector s.t., for f ∈ LIC, w ∈
X∗, πY (f wx0) = 0. Then

Λ(z) = πY L(z)
z̃→1

exp

(

y1 log
1

1 − z

)

πYZ. (27)
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Definition 1 ([1]). Let ζ
⊔⊔

: (C〈〈X〉〉, ⊔⊔) → (C, .) be the algebra morphism

(i.e. for u, v ∈ X∗, ζ
⊔⊔

(u ⊔⊔ v) = ζ
⊔⊔

(u)ζ
⊔⊔

(v)) verifying for all convergent

word w ∈ x0X
∗
x1, ζ⊔⊔(w) = ζ(w), and such that ζ

⊔⊔

(x0) = ζ
⊔⊔

(x1) = 0.

Then, the noncommutative generating series Z
⊔⊔

=
∑

w∈X∗
ζ
⊔⊔

(w) w

verifies Z
⊔⊔

= Z [1]. In consequence, Z
⊔⊔

is the unique Lie exponential

verifying 〈Z
⊔⊔

|x0〉 = 〈Z
⊔⊔

|x1〉 = 0 and 〈Z
⊔⊔

|w〉 = ζ(w), for any w ∈ x0X
∗x1.

Its logarithm is given by logZ
⊔⊔

=
∑

w∈X∗
ζ
⊔⊔

(w) π1(w), where π1(w) is the

Lie polynomial [3]

π1(w) =
∑

k≥1

(−1)k−1

k

∑

u1,··· ,uk∈X∗\{ǫ}

〈w|u1 ⊔⊔ · · · ⊔⊔ uk〉 u1 · · · uk. (28)

The series Z shall be understood then as Drinfel’d associator ΦKZ [7, 8]

verifying duality, pentagonal and hexagonal relations. We also can obtain

the expression of this associator given by Lê and Murakami [11] thanks to

the following expansion [10]

Z =
∑

k≥0

∑

l1,··· ,lk≥0

ζ
⊔⊔

(x1x
l1
0 ◦ · · · ◦ x1x

lk
0 )

k∏

i=1

adli
x0
x1, (29)

where adl
x0
x1 stands for the iterated Lie bracket [x0, [. . . , [x0, x1] . . .], for l >

0 and ad0
x0
x1 = x1, the operation ◦ being defined as x1x

l
0 ◦P = x1(x

l
0 ⊔⊔ P ),

for any P ∈ C〈X〉.

2.1.3 Ordinary generating series of harmonic sums

The functions {Liw}w∈X∗ are C-linearly independent. Thus, the func-

tions {Pw}w∈Y ∗ are also C-linearly independent. In consequence, functions

{Hw}w∈Y ∗ are also C-linearly independent [13, 12]. So,

Proposition 1 ([14]). Extended by linearity, the application P : u 7→ Pu is

an isomorphism from polynomial algebra (C〈Y 〉, ) over Hadamard alge-

bra (C{Pw}w∈Y ∗,⊙). Moreover, the application H : u 7→ Hu = {Hu(N)}N≥0

is an isomorphism from (C〈Y 〉, ) over the algebra (C{Hw}w∈Y ∗, .).
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Proof : Indeed, on the first hand, ker P = {0} and ker H = {0}, and on

the other hand, P is a morphism for Hadamard product (it inherits of H

for the harmonic product) :

Pu(z) ⊙ Pv(z) =
∑

N≥0

Hu(N)Hv(N)zN

=
∑

N≥0

Hu v(N)zN

= Pu v(z).

Studying the equivalence between action of {(1 − z)l}l∈Z over

{Pw(z)}w∈Y ∗ and this of {Nk}k∈Z over {Hw(N)}w∈Y ∗ [12], we have

Theorem 1. The Hadamard C-algebra of {Pw}w∈Y ∗ can be identified with

this of {Pl}l∈LynY . Identically, the algebra of harmonic sums {Hw}w∈Y ∗

with polynomial coefficients can be identified with this of {Hl}l∈LynY .

As for polylogarithms, we extend the definition of Pw putting Pw(z) =

(1 − z)
−1

Liw(z), for any w ∈ X
∗. The noncommutative generating series

of {Pw}w∈X∗ is defined by

P(z) =
∑

w∈X∗

Pw(z) w =
L(z)

1 − z
. (30)

In consequence, by (23), we have

P(z) = e
−(x1+1) log(1−z)Lreg(z)e

x0 log z
. (31)

Lemma 1. Let Mono(z) = e
−(x1+1) log(1−z). Then

Mono =
∑

k≥0

Pyk
1
y

k
1 , and Mono−1 =

∑

k≥0

Pyk
1

(−y1)
k
.

Since the coefficient of zN in the Taylor expansion of Pyk
1

is Hyk
1
(N) then

Lemma 2. Let Const =
∑

k≥0 Hyk
1
y

k
1 . Then

Const = exp

[

−
∑

k≥1

Hyk

(−y1)
k

k

]

and Const−1 = exp

[
∑

k≥1

Hyk

(−y1)
k

k

]

.
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Proof : This is a consequence of Formula (16).

Proposition 2. For k > 0,Hyk
1

is polynomial in {Hyr
}1≤r≤k (which are

algebraically independent), and

Hyk
1

=
∑

s1,...,sk>0

s1+...+ksk=k

(−1)k

s1! . . . sk!

(

−
Hy1

1

)s1

. . .

(

−
Hyk

k

)sk

.

Proof : From Identity (17), and applying the isomorphism H on the set

of Lyndon words {yr}1≤r≤k, we get the expected result.

Example 1. Hy2
1
= (H2

y1
− Hy2

)/2, Hy3
1
= (H3

y1
− 3Hy2

Hy1
+ 2Hy3

)/6.

Proposition 3 ([14]). Let σ be the morphism verifying σ(x0) =

−x1, σ(x1) = −x0.

P(z) = e
x0 log z

[ ց
∏

l∈LynX,\{x0,x1}

e
LiSl

(1−z)σ([l])

]

Mono(z)Z,

Proof : On the first hand, from (31) and on the other hand, from (25),

we get P(z) = ex0 log zσ[Lreg(1 − z)]e−(x1+1) log(1−z)Z. Using the expressions

of Lreg(1 − z) and of Mono(z), we get the expected results.

2.2 Asymptotic expansion

2.2.1 Results à l’Abel for generating series

Proposition 4. P(z)
z̃→0

ex0 log z and P(z)
z̃→1

Mono(z)Z.

Proof : From P(z) = e−(x1+1) log(1−z)Lreg(z)e
x0 log z, we can deduce the

behaviour of P(z) around 0. From Formula (25), we get the behaviour of

P(z) around 1.

Corollary 1. Let Π(z) = πY P(z) =
∑

w∈Y ∗
Pw(z) w. Then

Π(z)
z̃→1

Mono(z)πYZ.
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Pw, and we get

Corollary 2. H(N)
Ñ→∞

Const(N)πYZ.

Theorem 2.

lim
z→1

exp

(

y1 log
1

1 − z

)

Λ(z) = lim
N→∞

exp

(
∑

k≥1

Hyk
(N)

(−y1)
k

k

)

H(N) = πYZ.

Proof : This is a consequence of Formula (27), of Lemma 2 and of Corol-

lary 2.

P(z) = e
x0 log z

[ ց
∏

l∈LynX,
l 6=x0,x1

z

(
∑

k≥0

P
S
⊔⊔

k

l

(1 − z)
(σ([l]))k

k!

)]

Mono(z)Z. (32)

Hence, the knowledge of Taylor expansion around 0 of {Pw(1 − z)}w∈X∗

gives

Theorem 3 ([12]). For all g ∈ C{Pw}w∈Y ∗, there exist algorithmically

computable coefficients cj ∈ C, αj ∈ Z and βj ∈ N such that

g(z) ∼

+∞∑

j=0

cj(1 − z)αj logβj(1 − z) for z → 1.

In consequence, there exist algorithmically computable coefficients bi ∈ C,

ηi ∈ Z and κi ∈ N such that

[zn]g(z) ∼

+∞∑

i=0

bin
ηi logκi(n) for n→ ∞.

Corollary 3 ([12]). Let Z the Q-algebra generated by convergent polyzêtas

and Z ′ the Q[γ]-algebra generated by Z. Then there exist algorithmically

computable coefficients cj ∈ Z, αj ∈ Z and βj ∈ N such that

∀w ∈ Y
∗
,Pw(z) ∼

+∞∑

j=0

cj(1 − z)αj logβj(1 − z) for z → 1.
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In consequence, there exist algorithmically computable coefficients bi ∈
Z ′, κi ∈ N and ηi ∈ Z such that

∀w ∈ Y
∗
,Hw(N) ∼

+∞∑

i=0

biN
ηi logκi(N) for N → +∞.

2.2.2 Generalized Euler constants associated to divergent polyzêtas

Definition 2. Let ζ : (C〈Y 〉, ) → (C, .) the algebra morphism (i.e.

for all convergent word u, v ∈ Y ∗, ζ (u v) = ζ (u)ζ (v)) verifying for

w ∈ Y ∗ \ y1Y
∗, ζ (w) = ζ(w) and such that ζ (y1) = γ.

Proposition 5.

ζ (yk
1) =

∑

s1,...,sk>0

s1+...+ksk=k

(−1)k

s1! . . . sk!
(−γ)s1

(

−
ζ(2)

2

)s2

. . .

(

−
ζ(k)

k

)sk

.

Proof : By (17) and applying the (surjective) morphism ζ , we get the

expected result.

In consequence,

Theorem 4. For k > 0, the constant ζ (yk
1) associated to diver-

gent polyzêta ζ(yk
1) is a polynomial of degree k in γ with coefficients in

Q[ζ(2), ζ(2i+ 1)]0<i≤(k−1)/2. Moreover, for l = 0, .., k, the coefficient of γl

is of weight k − l.

Example 2. ζ (y2
1) = [γ2− ζ(2)]/2, ζ (y3

1) = [γ3−3ζ(2)γ+2ζ(3)]/6 and

ζ (y4
1) = [80ζ(3)γ − 60ζ(2)γ2 + 6ζ(2)2 + 10γ4]/240.

Let us consider (exponential) partial Bell polynomials partiels in the

variables {tl}l≥1, bn,k(t1, . . . , tn−k+1), defined by the exponential generating

series :

∞∑

n=0

n∑

k=0

bn,k(t1, . . . , tn−k+1)
v

n
u

k

n!
= exp

(

u

∞∑

l=1

tl
v

l

l!

)

. (33)
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In particular, we have

Lemma 3. Let tm = (−1)m(m− 1)!ζ (m), for m ≥ 1, then

exp

[
∑

k≥1

ζ (k)
(−y1)

k

k

]

= 1 +
∑

n≥1

[ n∑

k=1

bn,k(γ, ζ(2), 2ζ(3), . . .)

]
(−y1)

n

n!
.

Let us build the noncommutative generating series of ζ (w) and let us

take the constant part of the two members of H(N)
Ñ→∞

Const(N)πYZ,

we have

Proposition 6. Let Z be the noncommutative generating series of the

constants ζ (w), i.e. Z =
∑

w∈Y ∗
ζ (w) w. Then

Z =

[

1 +
∑

n≥1

( n∑

k=1

bn,k(γ, ζ(2), 2ζ(3), . . .)

)
(−y1)

n

n!

]

πYZ.

Identifying coefficients of yk
1w in each member leads to

Corollary 4. For all w ∈ Y
∗ \ y1Y

∗ and k ≥ 0, we have

ζ (yk
1w) =

k∑

i=1

ζ (yk−i
1 w)

i!

[

(−1)i

i∑

j=1

bi,j(γ, ζ(2), 2ζ(3), . . .)

]

.

Theorem 5. In consequence, for w ∈ Y
∗ \ y1Y

∗
, k ≥ 0, the constant

ζ (yk
1w) associated to ζ(yk

1w) is a polynomial of de degree k in γ and with

coefficients in Z. Moreover, for l = 0, .., k, the coefficient of γl is of weight

|w| + k − l.

Corollary 5. For s > 1, the constant ζ (1, s) associated to ζ(1, s) is linear

in γ and with coefficients in Q[ζ(2), ζ(2i+ 1)]0<i≤(s−1)/2.

Example 3. γ =
ζ (1, 2) + 2ζ(3)

ζ(2)
=

ζ (1, 3) + 1
2ζ(2)2

ζ(3)
=

ζ (1, 4) + 3ζ(5) − ζ(2)ζ(3)
2
5ζ(2)2

.
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In other words, if we give to γ the weight1 1, then the constant ζ (yk
1w)

associated to ζ(yk
1w) would be an homogeneous polynomial of weight |w|+

k.

Example 4.

ζ (1, 7) = ζ(7)γ + ζ(3)ζ(5)− 54
175
ζ(2)4,

ζ (1, 1, 6) = 4
35ζ(2)3γ2 +

(

ζ(2)ζ(5) + 2
5ζ(3)ζ(2)2 − 4ζ(7)

)

γ

+ζ(6, 2) + 19
35ζ(2)4 + 1

2ζ(2)ζ(3)2 − 4ζ(3)ζ(5),

ζ (1, 1, 1, 5) = 3
4ζ(6, 2) − 14

3 ζ(3)ζ(5) + 3
4ζ(2)ζ(3)2 + 809

1400ζ(2)4

−

(

2ζ(7)− 3
2ζ(2)ζ(5) + 1

10ζ(3)ζ(2)2

)

γ

+

(

1
4ζ(3)2 − 1

5ζ(2)3

)

γ
2 + 1

6ζ(5)γ3
.

2.2.3 Commutative generating series of polyzêtas

In Proposition 6, we explained how to extract the constant part of a non-

commutative generating series of polyzêtas. Let us have a look now at

following commutative generating series and corresponding to Ecalle’s Zig-

moulds [15] :

Z(t1, · · · , tr) =
∑

s1,··· ,sr>0

ζ(s1, · · · , sr) t
s1−1
1 · · · tsr−1

r (34)

=
∑

n1>···>nr>0

1

(n1 − t1) · · · (nr − tr)
.

These commutative generating series can be encoded by series {Sj}j=1,..,r

(or their projection over the alphabet Y ) of the form [1]

1 In the theory of periods, γ is conjectured to be non-period and so would be transcendent.
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Some results à l’Abel obtained by use of techniques à la Hopf

Sj =(tjx0)
∗
x1 . . . (trx0)

∗
x1 (35)

=
∑

sj ,...,sr>0

x
sj−1
0 x1 . . . x

sr−1
0 x1t

sj−1
j . . . t

sr−1
r ,

πY Sj =
∑

sj ,...,sr>0

ysj
. . . ysr

t
sj−1
j . . . t

sr−1
r (36)

=

(
∑

sj≥1

ysj
t
sj−1
j

)

. . .

(
∑

sr≥1

ysr
t
sr−1
r

)

.

Moreover, let Sr+1 = 1. The series Z(t1, · · · , tr) contain divergent terms of

which we are looking for the constant part. We start from the following

identity [1] due to convolution theorem [16]

S1 = x
r
1 +

r∑

j=1

tj

j−1
∑

i=0

x
i
1 ⊔⊔ x0[(−x1)

j−1−i
⊔⊔ Sj], (37)

⇒ πY S1 = y
r
1 +

r∑

j=1

tj

(
∑

sj≥2

y
j−1
1 ysj

t
sj−1
j

)

πY Sj+1. (38)

Proposition 7. In consequence,

ζ
⊔⊔

(S1) =

r∑

j=1

(−1)j−1
tj ζ[x0(x

j−1
1 ⊔⊔ Sj)]. (39)

ζ (πY S1) =(−1)r
∑

s1,...,sr>0

s1+...+rsr=r

(−γ)s1

s1! . . . sr!

r∏

j=2

(

−
ζ(j)

j

)sj

(40)

+

r∑

j=1

∑

sj≥2

tjt
sj−1
j ζ (y

j−1
1 ysj

πY Sj+1).

In the following part, iterated integrals associated with words w ∈ X
∗,

along the path 0  z and over differential forms ω0, ω1, will be denoted,

as in [1], by αz
0(w).
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Example 5. Since (tx0)
∗
x1 = x1 + tx0(tx0)

∗
x1,

α
z
0[(tx0)

∗
x1] = α

z
0(x1) + t

∫ z

0

(
z

s

)t

Li1(s)
ds

s
= α

z
0(x1) + t

∑

n≥1

zn

n(n− t)
.

we get

∑

s≥1

ζ
⊔⊔

(s)ts−1 =
∑

s≥2

ζ(s)ts−1 =
∑

n≥1

[
1

n− t
−

1

n

]

,

∑

s≥1

ζ (s)ts−1 = γ +
∑

s≥2

ζ(s)ts−1 = γ +
∑

n≥1

[
1

n− t
−

1

n

]

.

Example 6. Identity (37) gives

S =x2
1 + t1 x0(t1x0)

∗
x1(t2x0)

∗
x1 + t2 x0 (−x1 ⊔⊔(t2x0)

∗
x1) (41)

+ t2 x1 ⊔⊔ x0(t2x0)
∗
x1.

In the second member of the previous expression,

• we have ζ
⊔⊔

(x2
1) = 0,

• the first noncommutative rational series encodes, by convolution the-

orem [16], the following convergent integral

α
1
0[(t1x0)

∗
x0x1(t2x0)

∗
x1] =

∫ 1

0

(
1

s

)t1
ds

s

∫ s

0

dr

1 − r

∑

n≥1

rn

n− t2

=
∑

n,m≥1

1

(n+m)(n+m− t1)(n− t2)

=
∑

n1>n2≥1

1

n1(n1 − t1)(n2 − t2)
,
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• the following rational series encodes

α
1
0[x0 (−x1 ⊔⊔(t2x0)

∗
x1)] = −

∫ 1

0

ds

s

∑

m≥1

s
m

m

∑

n≥1

s
n

n− t2

= −
∑

n,m≥1

1

(n− t2)(n+m)n

= −
∑

n1>n2≥1

1

n1(n1 − n2)(n2 − t2)
,

• the last noncommutative rational series corresponds to (but it has to

be shuffled with x1 for which ζ
⊔⊔

(x1) = 0)

α
1
0[x0(t2x0)

∗
x1] =

∫ 1

0

ds

s

∑

n≥1

sn

n− t2
=

∑

n≥1

1

n(n− t2)
.

Thus,

∑

s,r≥1

ζ
⊔⊔

(s, r)ts−1
1 t

r−1
2 =

∑

n1>n2≥1

t1

n1(n1 − t1)(n2 − t2)
(42)

−
∑

n1>n2≥1

t2

n1(n1 − n2)(n2 − t2)
.

Projecting S over alphabet Y , we get successively, since

y1ys = y1 ys − ys+1 − ysy1
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πY S =y2
1 +

∑

s,r≥2

ysyrt
s−1
1 t

r−1
2 +

∑

s≥2

y1yst
s−1
2 +

∑

s≥2

ysy1t
s−1
1

=y2
1 +

∑

s,r≥2

ysyrt
s−1
1 t

r−1
2 + y1

∑

s≥2

yst
s−1
2 −

1

t2

[

y1 +
∑

s≥2

yst
s−1
2

]

+
∑

s≥2

ysy1[t
s−1
1 − t

s−1
2 ]

=y2
1 − y1t

−1
2 + (y1 − t

−1
2 )

∑

s≥2

yst
s−1
2 +

∑

s,r≥2

ysyrt
s−1
1 t

r−1
2

+
∑

s≥2

ysy1[t
s−1
1 − t

s−1
2 ].

In consequence,

∑

s,r≥1

ζ (s, r)ts−1
1 t

r−1
2 =

γ
2 − ζ(2)

2
−
γ

t2
+ (γ − t

−1
2 )

∑

n≥1

[
1

n− t2
−

1

n

]

+
∑

n1>n2≥1

[
1

n1 − t1
−

1

n1

][
1

n2 − t2
−

1

n2

]

+
∑

s≥2

ζ(s, 1)[ts−1
1 − t

s−1
2 ].

The last sum can be encoded by x0(t1x0)
∗x2

1 − x0(t2x0)
∗x2

1 and can be ob-

tained from

α
1
0[x0(tix0)

∗
x

2
1] =

∫ 1

0

ds

s

∑

n1>n2≥1

s
n1

(n1 − ti)n2
=

∑

n1>n2≥1

1

n1(n1 − ti)n2
.

Appendix : application to polysystems [14]

Let q1, . . . , qn be commutative indeterminates over C. We denote Q =

{q1, . . . , qn}. The algebra of formal power series (resp. polynomials) over

Q with coefficients in C is denoted by C[[Q]] (resp. C[Q]). An element of

C[[Q]] is an infinite sum f =
∑

i1,...,in≥0 fi1,...,inq
i1
1 . . . q

in
n .
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Definition 3. Let f ∈ C[[Q]]. We set

E(f) = {ρ ∈ Rn
+ : ∃Cfρ ∈ R+ such that for all i1, . . . , in ≥ 0,

|fi1,...,in|ρ
i1
1 . . . ρ

in
n ≤ Cfρ}

Ě(f) : interior of E(f) in Rn
.

CV(f) = convergence domain of f = {q ∈ Cn : (|q1|, . . . , |qn|) ∈ Ě(f)}.

The power series f is to be said convergent if CV(f) 6= ∅. Let U be an

open of Cn and let q ∈ Cn. The power series f is to be said convergent on

q (resp. over U) if q ∈ CV(f) (resp. U ⊂ CV(f)). We set Ccv[[Q]] = {f ∈
C[[Q]] : CV(f) 6= ∅}. Let q ∈ CV(f). There exist some constants Cfρ, ρ

and ρ̌ such that |q1| < ρ̌ < ρ, . . . , |qn| < ρ̌ < ρ and |fi1,...,in|ρ
i1+...+in ≤ Cfρ,

for i1 . . . , in ≥ 0. The convergence module of f at q is (Cfρ, ρ, ρ̌).

Recall D
j1
1 . . .D

jn
n f is the partial derivation of order j1, . . . , jn ≥ 0 of f

and is given by

D
j1
1 . . .D

jn
n f

j1! . . . jn!
=

∑

i1≥j1,...,in≥jn

fi1,...,in

n∏

l=1

(
il

jl

)

q
il−jl

n .

Definition 4. The polysystem {Ai}i=0,..,m is defined by the Lie deriva-

tions Ai =
∑n

j=1A
j
iDj, where A

j
i ∈ Ccv[[Q]]. It is linear if there exist

{Mi}i=0,..,m ∈ Mn,n(C) s.t.

Ai =
(
q1 . . . qn

)
Mi





D1
...

Dn



 .

Let f ∈ Ccv[[Q]] and let {Ai}i=0,1 be a polysystem. Let (ρ, ρ̌, Cf) and

let (ρ, ρ̌, Ci), for i = 0, 1, be convergence modules of f and {Aj
i}j=1,..,n

respectively at q ∈ CV(f) ⋓i=0,1,j=1,..,n CV(A
j
i). We denote by (Aif)|q the

evaluation at q of Aif . Let us consider the system

y(z) = f(q(z)), where dq(z) = A0(q)ω0(z) +A1(q)ω1(z). (43)
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Let us consider then the following generating series, σf|q(z0)
and the Chen

series Sz0 z

σf|q(z0)
=

∑

w∈X∗

Awf|q(z0)
w and Sz0 z =

∑

w∈X∗

α
z
z0

(w)w, (44)

where Aw = Id, αz
z0

(w) = 1 if w = ǫ and Aw = AvAi, α
z
z0

(w) =
∫

z0 z
αt

z0
(v)ωi(t) if w = vxi.

Since Sz0 z and L(z)L(z0)
−1 satisfy (22) taking the same value at z0 then

Sz0 z = L(z)L(z0)
−1. Hence, the asymptotic behaviour of L in (22) gives

[6]

Sε 1−ε ∼ e
−x1 log ε

Ze
−x0 log ε for ε→ 0+

, (45)

and the output y of (43) is given by y(z) = 〈σf|q(z0)
||Sz0 z〉 =

∑

w∈X∗
Awf|q(z0)

αz
z0

(w) [14].

Let η = q(z0) and suppose that f(q) = λq with λ ∈ M1,n(C). If {Ai}i=0,1

is linear, then, by Definition 4, let Mi = µ(xi), for i = 0, 1. Thus, σf|q(z0)
=

∑

w∈X∗
[λµ(w)η]w is a rational power series of representation (λ, µ, η) and

it is a generating series of the differential system of rank n, or equivalently

of the linear differential equation of order n with singularities in {0, 1,∞}.

Example 7 (hypergeometric equation).

z(1 − z)ÿ(z) + [t2 − (t0 + t1 + 1)z]ẏ(z) − t0t1y(z) = 0.

Let q1(z) = y(z) and q2(z) = z(1 − z)ẏ(z). One has
(
dq1

dq2

)

=

[(
0 0

−t0t1 −t2

)

ω0 −

(
0 1

0 t2 − t0 − t1

)

ω1

] (
q1

q2

)

.

Here y =
(
1 0

)
(
q1

q2

)

, M0 = −

(
0 0

t0t1 t2

)

,M1 =

(
0 1

0 t2 − t0 − t1

)

and

η =

(
q1(z0)

q2(z0)

)

.

Thus, the solution of these equations can be obtained by examining the

linear representation of generating series. The Drinfel’d equation allows to

study the asymptotic behaviour, the functional equations and to compute

the mondromy groups, the Galois differential groups.
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Abstract

Lanczos created two problems for systems of partial differential equations in general rel-

ativity, first in 1949 and then later in 1962. In his 1962 paper he presented the Weyl-

Lanczos problem, where the Weyl conformal curvature tensor Cabcd is expressed by means

of a third-order tensor potential L̃abc. This system of PDEs is in involution and L̃abc sat-

isfies a linear wave equation. In the next decade a second problem for systems of PDEs

appeared in the relativity literature which is now called the Riemann-Lanczos problem.

Here, the full Riemann curvature tensor Rabcd is determined from a three-index tensor

potential Labc. This problem is not in involution and requires prolongation to achieve in-

volutivity. We give a review of both problems, the integrability of one and the attainment

of integrability by the other.

Keywords: General Relativity, Curvature tensors, Lanczos Potentials, Integrability,

Prolongation

1 Introduction

Lanczos [10, 11] made two attempts at deriving some or all of the Riemann

curvature tensor Rabcd in general relativity from a three-index potential field
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Labc. His first attempt in 1949 [10] to derive all of the Riemann tensor from

a potential Labc failed. So, in 1962, he modified the problem to deriving

only the conformally invariant part of the curvature tensor, Cabcd, or Weyl

tensor from a potential tensor L̃abc. This problem was a success and is now

called the Weyl-Lanczos problem. In the period from the death of Lanczos

in 1974 to 1983 there appeared in the Italian relativity literature [17] a

Lanczos style curvature tensor problem which was simpler to present than

either of Lanczos’ attempts in 1949 or 1962. This problem is now called

the Riemann-Lanczos problem. In this problem a tensor potential Labc was

proposed from which to derive all the Riemann curvature tensor compo-

nents Rabcd. Lanczos’ motivation in his 1962 paper [11] was a convincing

set of analogies between electromagnetic field theory and gravitation in the

form

Aa −→ L̃abc , (1)

Fab = 2A[a,b] −→ Cabcd = Wabcd(L̃fgh) , (2)

�Aa + · · · −→ �L̃abc + · · · , (3)

where the last line indicates an analogy between the electromagnetic po-

tential wave equation and a ’gravitational’ type wave equation. In 1960,

Penrose [16] discovered a wave equation for the Weyl tensor to give an anal-

ogy with electromagnetism which Lanczos missed due to lack of interest in

the current literature

�Fab + · · · −→ �Cabcd + · · · . (4)

In 1982 Bampi and Caviglia [1], using a combination of Cartan’s exterior

differential systems (EDS) approach [3] and Vessiot’s dual approach of

vector fields, showed that the Weyl-Lanczos problem is a system of PDEs

in involution. But they also showed that the Riemann-Lanczos problem

failed to be in involution. However, in the following year, Bampi and

Caviglia [2] returned to the Riemann-Lanczos problem and showed how to

construct a suitable prolongation for this problem. The introduction of the

methods of Cartan [3] and Vessiot into the relativity literature was a great
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mathematical advance for problems that needed the greatest amount of

generality for their resolution. Any re-examination of the work by Bampi

and Caviglia is therefore best done through the theory of jet bundles over

the spacetime manifold.

In the application of the theory of jet bundles the notion of independent

variables is allowed to be much wider than it is usual in the general rel-

ativity literature and there are standard procedures to further widen this

notion so as to incorporate necessary prolongations needed to make the

system of PDEs reach involutivity.

Up to now the Lanczos curvature tensor problems have given rise to two

dissimilar literatures:

(I) The Weyl-Lanczos literature can be easily related to many standard

mathematical techniques of general relativity. There is a linear wave equa-

tion in every spacetime for the Lanczos potential L̃abc which becomes

�L̃abc = 0 (5)

in vacuo. This contrasts with Penrose’s wave equation for the Weyl tensor

which is always non-linear, even in empty space. In [7] Dolan and Kim

derived Penrose’s wave equation from Lanczos’s wave equation inside mat-

ter in a manner which was completely general. However, the vacuum case

given by (5) is of greater interest at present. References to the literature

can be found in [15] of Dolan and Muratori.

(II) Since the pioneering papers of Bampi and Caviglia [1, 2] there was

no jet bundle presentation of the Riemann-Lanczos problem until recently,

when this subject was taken up again in articles such as [4, 5] or in [9].

This work, using the Lanczos potential tensor Labc and its associated Monge

variables, has shown that the Riemann-Lanczos system of PDEs is linear

and remains linear after prolongation. The recent general theorem of Mal-

grange [12, 13] on prolongations tells us that at all generic points for the

PDE system a finite number of prolongations will make the system attain
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involutivity.

In papers by Massa and Pagani [14] and by Edgar [8], which is based on

[14], there is a different approach which claims that non-linear ’constraints’

arise in the Riemann-Lanczos problem. Their approaches, based on tensor

calculus in local spacetime coordinate or frame methods, find the same

’non-linearities’ which appear to make the Riemann-Lanczos problem in-

solvable in many general spacetimes. In [6] we show that the concept of

’partial derivative’ that is used in such standard general relativity methods

is inadequate for discussing existence problems of solutions for systems of

PDEs, namely, whether the given system of PDEs is involutive or can be

prolongated to involutivity.

2 The Weyl-Lanczos Problem

The Weyl conformal curvature tensor Cabcd has all the index symmetries

of the Riemann tensor Rabcd, namely,

Cabcd = −Cbacd = −Cabdc = Ccdab ,

Ca[bcd] = 0 (6)

as well as the vanishing of all its traces

C
s
asb = 0 . (7)

A consequence of all these properties is the double-dual anti-symmetry

∗
C

∗
abcd = −Cabcd . (8)

In generating the Weyl tensor from a three-index tensor potential L̃abc,

we can get the index symmetries of equations (6) from the combination

L̃[ab][c;d] + L̃[cd][a;b] but to get the symmetries (7) and (8) we need the com-

bination

Cabcd = L̃[ab][c;d] + L̃[cd][a;b] −
∗
L̃
∗
[ab][c;d] −

∗
L̃
∗
[cd][a;b] . (9)
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It has become traditional to add in the index symmetries

L̃abc = L̃[ab]c , (10)

L̃[abc] = 0 , (11)

L̃as
s = 0 . (12)

If we evaluate all the double dual tensors in equation (9) we get

Cabcd = L̃abc;d − L̃abd;c + L̃cda;b − L̃cdb;a + gbcL̃(ad) + gadL̃(bc) (13)

−gbdL̃(ac) − gacL̃(bd) +
2

3
L̃

st
s;t(gacgbd − gadgbc) ,

where L̃ad := L̃asd;
s − L̃as

s
;d. There are 10 independent equations in (14)

but equations (10), (11) and (12) tell us that we could have 16 independent

components of L̃abc.

The 6 differential gauge conditions

L̃abs;
s = 0 (14)

allow us to simplify equations (14) to

Cabcd = L̃abc;d − L̃abd;c + L̃cda;b − L̃cdb;a + gbcL̃sad;
s + gadL̃sbc;

s (15)

−gbdL̃sac;
s − gacL̃sbd;

s

or

Cabcd = Wabcd(x
e
, L̃fgh, L̃ijk,l) (16)

when the RHSs are now rewritten in terms of the partial derivatives L̃ijk,l,

the components of L̃abc and the Christoffel symbols. To this latter form (16)

of the Weyl-Lanczos equations (16) we can apply the Janet-Riquier theory

for systems of PDEs or else rewrite it as an EDS in the Cartan approach.

The latter approach was taken by Bampi and Caviglia [1], where they

showed that equations (16) represent a system in involution.

In [7] Dolan and Kim showed that the Weyl-Lanczos potential tensor

L̃abc satisfies the linear tensor wave equation

Jabc = �L̃abc + 2Rc
s
L̃abs − Ra

s
L̃bcs − Rb

s
L̃cas − gacR

ls
L̃lbs (17)

+gbcR
ls
L̃las −

1

2
RL̃abc ,
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where

Jabc =
1

2
Rc[a;b] −

1

6
gc[aR;b] (18)

and �L̃abc = g
sm

L̃abc;s;m. Penrose’s wave equation for the Weyl tensor [16]

�Cabcd − CabsmCcd
sm − 4Casm[cCd]

sm
b +

1

4
RCabcd

= J[ab][c;d] + J[cd][a;b] −
∗
J
∗
[ab][c;d] −

∗
J
∗
[cd][a;b] (19)

was derived by Dolan and Kim in [7] from the Lanczos wave equation (18)

above thus completing the formal analogy with classical electromagnetism

in equations (1), (2), (3) and (4).

3 The Riemann-Lanczos Problem

The first Lanczos paper of 1949 [10] attempted to find a three-index poten-

tial tensor field for the double dual of the Riemann curvature tensor ∗R∗
abcd

in order to generate a wave equation for the potential. The complexity

of this theory and the strangeness of the tensor ∗R∗
abcd to most relativists

and also the lack of physical motivation for it was to lead to its abandon-

ment. After Lanczos’ death in 1974 Brinis Udeschini [17] introduced what

was essentially an improved version of the 1949 theory by postulating the

Riemann-Lanczos equations

Rabcd = Labc;d − Labd;c + Lcda;b − Lcdb;a (20)

on the spacetime manifold M. We can rewrite this equation in the form

Rabcd(x
e) = Kabcd(x

e
, Lfgh, Lijk,l) , (21)

where all the covariant derivatives have been written out in terms of partial

derivatives Lijk,l and undifferentiated components of Labc. We note that

we can separate Kabcd into two distinct groups of terms as follows

Kabcd(x
e
, Lfgh, Lijk,l) = Eabcd(x

e
, Lfgh) + Fabcd(Lijk,l) , (22)
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where

Eabcd = −Γn
ad(Lnbc + Lncb) + Γn

bd(Lnac + Lnca) + Γn
ac(Lnbd + Lndb)

−Γn
bc(Lnad + Lnda) (23)

and

Fabcd = Labc,d − Labd,c + Lcda,b − Lcdb,a . (24)

The field components Labc = −Lbac give us 24 new independent field vari-

ables and the partial derivatives Lijk,l a further 96 new independent vari-

ables. Add to both of these new variables the 4 local coordinates (xe) to

give a total of 4 + 24 + 96 = 124 independent variables in the jet bun-

dle approach to the analysis of the Riemann-Lanczos problem on a 124-

dimensional jet bundle. Bampi and Caviglia [1] showed that, in general, the

Riemann-Lanczos PDE system cannot be in involution. However, a year

later in 1983 they returned to the problem [2] and showed that, with a

suitable prolongation, it could be made into a system in involution. Their

work was based on Cartan’s exterior differential systems (EDS) method

with suitable Vessiot vector fields.

Using only essentially classical tensor calculus methods or their equiva-

lent in terms of the covariant exterior differential operator Edgar [8] and

Massa and Pagani [14] claimed to find non-linearities in the Riemann-

Lanczos problem which made it inconsistent with general spacetime man-

ifolds. An exhaustive analysis of the Riemann-Lanczos problem was re-

cently made by Dolan and Gerber [6] using a jet bundle approach. Because

of the splitting property of the quantities Kabcd given in equations (22), (23)

and (24), which persist in comparable form into higher-order derivatives,

no place in the calculations could be found in which non-linearities could

appear in the original Riemann-Lanczos problem or in any derivative of its

equations during prolongation. A recent theorem of Malgrange shows that

all prolongations to involutivity [12, 13] will terminate in a finite number

of steps in giving an involutory system at all generic points or else no such

points exist.
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4 Discussion

We gave a historic survey of the two problems called the Weyl-Lanczos

problem and the Riemann-Lanczos problem. Both problems can be recast

as an exterior differential system. The Weyl-Lanczos problem is in invo-

lution and many exact solutions of it exist for various spacetimes, see for

example [15]. By contrast the Riemann-Lanczos problem is not in involu-

tion and needs prolongation. Prolongations are best carried out using the

standard jet bundle approach and Monge variables. The Riemann-Lanczos

system of PDEs is a linear system of PDEs and clearly stays that way dur-

ing prolongation. Classical tensor calculus cannot exceed its 4 independent

local coordinates (xe). We pointed out that the jet bundle approach starts

with 124 independent variables even before prolongation and the number of

independent variables will increase considerably during prolongation. The

alternative classical tensor-calculus-based approaches of the relativity liter-

ature [14, 8] miss (1) the linearity of the Riemann-Lanczos problem, which

persists under all differentiations, and (2) the extra degrees of freedom

which are necessary to locate integrability conditions.
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Abstract

We present two families of exterior differential systems (EDS) for non-isometric embed-

dings of orthonormal frame bundles over Riemannian spaces of dimension q = 2, 3, 4, 5....

into orthonormal frame bundles over flat spaces of sufficiently higher dimension. We have

calculated Cartan characters showing that these EDS satisfy Cartan’s test and are well-

posed dynamical field theories. The first family includes a constant-coefficient (cc) EDS

for classical Einstein vacuum relativity (q = 4). The second family is generated only by cc

2-forms, so these are integrable (but nonlinear) systems of partial differential equations.

These latter field theories apparently are new, although the simplest case q = 2 turns out

to embed a ruled surface of signature (1,1) in flat space of signature (2,1). Cartan forms

are found to give explicit variational principles for all these dynamical theories.

1 Introduction

We discuss two families of geometric field theories. By “geometric” we

mean that these theories are given as exterior differential systems (EDS) for

embedding of q-dimensional submanifolds Rq in flat homogeneous isotropic

metric spaces EN of higher dimension, say N . To formulate these EDS

we in fact embed the orthonormal frame bundles over the submanifolds

into the orthonormal frame bundles over the flat spaces, that is, into the

groups ISO(N), which have dimension N(N + 1)/2. E. g., the q = 4
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dimensional EDS are set using the 55 basis 1-forms of ISO(10). The fibers

of the embedded bundles are subgroups of the O(N) fibers of ISO(N),

thus inducing embedding maps of their q-dimensional bases R
q into the

EN bases of ISO(N).

By “field theories” we mean that each of these various EDS is shown,

by an explicit numerical calculation of its Cartan characteristic integers [1]

to have the property of being well-posed or, with the correct signature, of

being“causal”. This calculation uses a suite of Mathematica programs for

EDS written by H. D. Wahlquist, and evaluates the Cartan characteristic

integers with a Monte Carlo program to compute the ranks of the large

matrices that arise [2]. The successive integers determine the dimension

and well-posedness of the general solutions, and the Wahlquist programs

also confirm the “involutory” property of certain fields in a solution, viz.

those that can be adopted as independent variables.

A properly set EDS in a space with N variables is equivalent to a set of

first order partial differential equations in N-q dependent variables, func-

tions of q independent variables, and Cartan’s technique of EDS is a deep

approach to the Cauchy-Kowalewska analysis of such field theories.

Cartan’s theory considers construction of a sequence of regular integral

manifolds (of successively higher dimensions) of an EDS. His characteristic

integers si, i = 0, 1, .., q − 1, are calculated from the ranks of matrices

that arise, and are diagnostic; they must pass Cartan’s test [1] if the EDS

(or an equivalent set of partial differential equations) is well posed. Then

the final construction of the solution is determined solely from gauge and

boundary data, and, at least in the analytic category, Cauchy existence and

uniqueness are proved. We believe that, with proper attention to signature,

the sets of partial differential equations following from such a well-posed

EDS are those of a canonical field theory. Non-trivial embedding EDS that

are well-posed, or causal, are not common. A key to their existence may

be that for all the EDS we consider here we are also able to find Cartan

q-forms from which the EDS may be derived by arbitrary variation.

There is a large literature, beginning with Lepage and Dedecker, on the
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use of Cartan q-forms and their closure q + 1-forms (“multisymplectic”

forms). These are respectively the multidimensional field-theoretic exten-

sions of classical Hamiltonian theory (the Cartan 1-form Ldt) and symplec-

tic geometry. A short but essential bibliography can be found in Gotay [3];

cf. also Gotay et al [4], Bryant et al [5], Hermann [6] and Estabrook [7] [8].

The differential geometric setting for that work was for the most part (the

structure equations of basis forms on) the first or second jet bundle over a

base of q independent variables. Our use instead of basis forms and struc-

ture equations for embedding geometry, orthonormal frame bundles over

flat metric geometries, is more in the spirit of string theory. It allows ap-

plication of the variational techniques of field theory to the movable frames

of general relativity, and can lead to interesting extensions.

In both these families of EDS we adapt the method usually used in the

mathematical literature for isometric embedding, cf. e.g. [9], [10], in that

we do not begin with a prior framing of the solution and prolong to higher

bundles, but rather only use the bases of the embedding bundle. Such EDS

have also been used in the theory of calibrated subspaces [1]. Perhaps

this generalization of the customary isometric embedding can be called

“dynamic embedding”. The EDS that naturally arise are considerably

more elegant, interpretable as field theories.

The Lie group ISO(N) (or one of its signature siblings ISO(N − 1, 1)

etc.) is the isometry group of N -dimensional flat space EN (or a signature

sibling). The group space is spanned by P = N(N + 1)/2 canonical vector

fields, and by a dual basis of left-invariant 1-forms that we first denote by

θµ, µ = 1...N , corresponding to translations, and ωµ
ν, that will correspond

to rotations. Now the structure equations for general movable frames over

an N -dimensional manifold are usually written covariantly (on the second

frame bundle) as

dθ
µ + ω

µ
ν ∧ θ

ν = 0 (1)

dω
µ
ν + ω

µ
σ ∧ ω

σ
ν + R

µ
ν = 0. (2)

97



GIFT 2006

These become the Cartan-Maurer equations of ISO(N) or one of its

siblings when the curvature 2-forms Rµ
ν are put equal to zero, and up-

per indices are systematically lowered using (for signature) a non-singular

matrix of constants ηµν, after which imposing antisymmetry (orthonormal-

ity) ωµν = −ωνµ . These structure equations then describe N(N − 1)/2-

dimensional rotation groups as fibers over N -dimensional homogeneous

spaces EN . (The ηµν , and other possible signatures in EN , are often con-

veniently ignored in the following, and can be inserted later.)

We will write the two families of EDS using partitions (n, m), n + m =

N , of the basis forms of ISO(N) into classes labeled respectively by the

first n indices i, j, etc. = 1, 2, ...n and the remaining indices A, B, etc.

= n + 1, n + 2, ...N . So the basis forms are θ
i
, θ

A, and, after lowering an

index, ωij = −ωji, ωAB = −ωBA, ωiA = −ωAi. Summation conventions on

repeated indices will be used separately on each partition. The structure

equations (1) (2) before lowering become

dθ
i + ω

i
j ∧ θ

j = −ω
i
A ∧ θ

A (3)

dθ
A + ω

A
B ∧ θ

B = −ω
A

i ∧ θ
i (4)

dω
i
j + ω

i
k ∧ ω

k
j = −ω

i
A ∧ ω

A
j (5)

dω
A

B + ω
A

C ∧ ω
C

B = −ω
A

i ∧ ω
i
B (6)

dω
i
A + ω

i
j ∧ ω

j
A + ω

i
B ∧ ω

B
A = 0. (7)

The terms we have put on the right are interpreted as torsions and curva-

tures induced by an embedding; we will use them to set the EDS.

In Sections 2 and 3 we calculate the Cartan characteristic integers of

the embedding EDS for the two families. We will report the results in a

short tabular form: P{s0, s1, ...sq−1}q +CC. This gives first the dimension

P of the space in which we set the EDS, i.e. the total number of basis

forms with whose structure equations we begin, then the series of Cartan

integers found, {s0, s1, ...sq−1}. q is the dimensionality of the base space

of a general solution. Finally CC is the number of Cartan characteristic

vectors (the number of auxiliary fields allowing us to write a cc system,

fibers corresponding to variables that could in principle be eliminated from
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the EDS). Cartan denotes q + CC by g, the genus. The ultimately simple

Cartan test showing the EDS to be well-posed and causal, calculated from

these, is derived in [1] and the literature cited there. Here the test is

simply that these integers satisfy P −
∑q−1

i=0 si − q − CC := sq ≥ 0. We

will always have sq = 0, which a physicist interprets as absence of a gauge

group, and so according to Cartan solutions will depend on sq−1 functions

of q-1 variables. We denote these theories as causal but that requires also

adjusting the signatures, so that the final integration of solutions from this

boundary data is hyperbolic.

It is a classic result [10] that smooth local embedding of Riemannian

geometries of dimension q = 3, 4, 5... is always possible into flat spaces

of dimension respectively N = q(q + 1)/2 = 6, 10, 15... , which motivates

the partitions of our first family, viz. (n, m) = (3, 3), (4, 6), (5, 10), ... The

causal EDS we give determine submanifolds of ISO(N) which are them-

selves O(n)⊗O(m) bundles fibered over q = n-dimensional base spaces, say

Rq and induce maps of these into EN . The n θi remain independent (“in

involution”) when pulled back to a solution bundle, satisfying the structure

equations of an orthonormal basis in any cross section, and Equations (5)

and (7) express embedding relations that go back to Gauss and Codazzi.

The solution bundle metric is the pullback of θiθi. We will present in Sec-

tion 2 the family of Einstein-Hilbert Cartan forms from which the EDS of

for the θi but not insist on aligning the solutions with these orthonormal

frames (the θA are not included in the EDS so it is not necessarily “iso-

interesting “ghost” metric which is the pullback of θiθi+θAθA. The induced

curvature 2-forms are required by the EDS to satisfy “horizontality” 3-form

conditions and also to have vanishing Ricci n − 1-forms.

The field theories of our second family, of dimension q = 2, 3, 4, 5... also

arise from embeddings into flat spaces E
N of dimension N = 3, 6, 10, 15, ...

but the EDS use different partitions, viz.., (n, m) = (1, 2), (2, 4), (3, 7),

(4, 11), etc. Solutions are (O(n) ⊗ O(m) bundles over) geometries of di-
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mension q = n + 1 and can be called n-branes. They have rulings that are

flat n-spaces. The EDS are generated only by cc sets of 2-forms (for van-

ishing torsion of both partitions) and are so-called “integrable systems”.

Again the embedding is dynamic, the partitioned frames are not required

to be an orthonormal framing of the solution manifolds. In Section 3 we

give the EDS and report the calculated Cartan characters showing them

to be causal. The n θi when pulled back into a solution both determine

a Riemannian submersion and geodesic slicing. This is either a theory of

relativistic rigidity or perhaps of a Kaluza-Klein gravitational field, de-

pending on N and the signature adopted. Cartan forms for those EDS are

easily found.

As a sole illustration of introduction of explicit coordinates into such

a frame bundle EDS, the simplest of these non-isometric geometric field

theories, that based on partition (1, 2), is integrated in Section 4. Its

solutions turn out to be classically known, in the guise of geodesically ruled

surfaces in E3. We have only changed signature to show it as a stringy

field causally evolving in time.

2 Einstein-Hilbert Action

The EDS of our first family arise from Cartan n-forms on ISO(N) express-

ing the Ricci scalars of q = n dimensional submanifolds of EN ,

Λ = Rij ∧ θk ∧ ...θpǫijk...p, (8)

where from the Gauss structure equation, Eq. (5), 2Rij := −ωiA∧ωjA is

the induced Riemann 2-form. The exterior derivative of the n-form field Λ

on ISO(N), using Eq. (3) and (7), is quickly calculated to be the n+1-form

(closed, multisymplectic)

dΛ = θA ∧ ωAi ∧ Rjk ∧ θl ∧ ...θpǫijkl...p. (9)

This n + 1-form is a sum of products of the m 1-forms θA and the m

n-forms ωAi∧Rjk ∧ θl∧...θp ǫijkl...p. A variational isometric embedding EDS
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is generated by the m θA, their exterior derivatives for closure, and the

m n-forms, since any vector field contracted on dΛ yields a form in the

EDS. That is, up to boundary terms, the arbitrary variation of Λ vanishes

on solutions. We previously calculated Cartan’s characteristic integers for

these isometric embedding EDS showing them to be well set and causal

[11] [12]. We denoted them as being “constraint free” geometries. Iso-

metric embedding formulations of the Ricci-flat field equations then are

obtained by adding in the closed n − 1-forms for Ricci-flatness as con-

straints. The augmented EDS are again calculated to be causal. To be

explicit, for partition (4, 6) the constraint-free Cartan character table was

55 {6, 6, 6, 12}q = 4+21 which, with the augumentation with four 3-forms

became 55 {6, 6, 10, 8}q = 4 + 21. We now see that formulation as never-

theless somewhat unsatisfactory as field theory, since the Einstein-Hilbert

action appears to have lead to equations which in fact mostly follow from

the imposed constraints.

We have however noticed that there is another variational EDS belonging

to a different quadratic factoring of the multisymplectic forms dΛ, Eq.

(9). The θi will frame a Riemannian metric on an embedded space of

dimension n so long as the induced torsion 2-forms of Eq.(2), ωiA ∧ θA,

vanish, and these factor Eq.(9) term-by-term, as products with the n n−1-

forms for Ricci-flatness. The exterior derivatives of the torsion terms must

be included; these are sometimes called conditions for horizontality. In

sum, we have considered the following closed EDS (which now do not

include the mathematically customary isometric embedding 1-forms θA)

(ωiA ∧ θA, Rij ∧ θj, Rij ∧ θk ∧ ...θlǫijk...lp) (10)

When n=4 this EDS is an exact parallel to the EDS for a moving frame

formulation of vacuum relativity that used the 44 traditional intrinsic co-

ordinates of tetrad frames and connections over 4-space, and had 10 gauge

freedoms [13]. It had the same Cartan character table but no CC. The

present formulation is set with more variables, viz. 55, but its solutions

have 21 CC fibers (since ωij and ωAB do not enter explicitly) and no gauge

freedom; moreover it has the elegance of a cc EDS (no coordinate functions
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appear in the generating forms) [14] [15] [16].

The calculation shows the EDS Eq.(10) to be well set and causal systems

for embedding of O(n)⊗O(m) bundles over n space, for the partitions (3,

3), (4, 6), (5, 10) etc. as stated in the introduction. The embedding

dimension, the computed Cartan characters, dimensionality and O(n) +

O(m) fiber dimension (CC) of the solutions for these cases are respectively

21{0, 6, 3}3 + 9, 55{0, 4, 12, 14}4 + 21, 120{0, 5, 10, 20, 25}5 + 55, etc. The

base spaces of the fibered solution manifolds are spanned by the 1-forms

θi; evidently a solution is a bundle of orthonormal frames belonging to

the Ricci-flat Riemannian connection ωij. The metric is θiθi. There is

also present in the base space Rn another metric pulled back from the

induced embedding of it in the base space E
N about which we know little:

θiθi + θAθA . It is a ghost tensor field, perhaps with only indirect influence.

The ideals we are writing are set on ISO(N), and their solutions are frame

bundles embedded in ISO(N), and the induced embeddings of the base

spaces seem to be of less interest.

The ideal Eq.(10) is contained in the augmented embedding ideal we

have previously used, so solutions of the latter will be solutions of the for-

mer. This would seem to imply that our new dynamic embedding ideal will

have additional solutions; indeed it implies fewer partial differential equa-

tions than does the isometric embedding ideal augmented with constraints

for Ricci-flat geometry. Perhaps so-called singular solutions of the isomet-

ric embedding ideal–solutions which are not regular, that is, obtained by

Cartan’s sequential integrations–now appear as regular solutions, which

could make this new formulation important for local numerical computa-

3 Torsion-free n-brane Embedding

We have searched whether the torsion 2-forms induced in both the local

partitions can together be taken as an EDS: (ωiA ∧ θA, ωiA ∧ θi). It can

easily be checked that it is closed, and calculation of the characteristic

integers indeed showed that for just the values of (n, m) of the second
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family described in the introduction these EDS are causal, with q = n + 1

and fibers O(n) ⊗ O(m), dim n(n − 1)/2 + m(m − 1)/2. The results for

the first five EDS are: (n, m) = (1, 2), 6{0, 3}2 + 1; (2, 4), 21{0, 6, 5}3 + 7;

(3, 7), 55{0, 10, 9, 8}4 + 24; (4, 11), 120{0, 15, 14, 13, 12}5 + 61; (5, 16),

231{0, 21, 20, 19, 18, 17]6 + 130; and the pattern seems evident.

Now well set EDS for geodesic flat dimension n submanifolds of flat N

spaces are generated, using the partition (n, m), by the closed ideal of 1-

forms (θA, ωAi). For example, if N = 3 and n = 1 and m = 2, geodesic

lines in flat 3-space, the Cartan characteristic integers are 6{4}1 + 1. If

N = 4, for partition (1, 3) we find 10{6}1+3 (in all cases ωij and ωAB give

the Cauchy characteristic fibers). Similarly, the EDS for flat 2-dimensional

submanifolds of flat N spaces are generated by the 1-forms with partitions

(2, N−2). For example if N = 5, (n, m) = (2, 3), and the character table is

15{9, 0}2 + 4. When N = 6, (n, m) = (2, 4) and 21{12, 0}2 + 7. The zeros

can be ascribed to a gauge freedom. These constructions clearly continue.

Our new torsion-free EDS (ωiA ∧ θA, ωAi ∧ θi) are contained in (θA, ωAi),

so we see that the q-dimensional solutions of the torsion-free embedding

theory must contain flat geodesic fibers of dimension n = q − 1. Thus the

solutions are ruled spaces,

In a solution the θi remain independent (are “in involution”) but fall

short by one of being a complete basis. In addition to the slicing, they de-

fine there a vector field, say V, of arbitrary normalization (a congruence),

by the relations V · θi = V · ωij = V · ωAB= 0. Contracting V on the

second torsion 2-form, since the θi remain linearly independent, gives also

V · ωiA = 0. It follows that the Lie derivatives with respect to V of θi, ωij

and Rij vanish on solutions. They live in (and are lifted from) an n dimen-

sional quotient space of the solution, with metric θiθi and Riemann tensor

ωiA ∧ ωAj. Cross sections of this quotient map are the rulings, geodesic

n-dimensional subspaces calibrated by the volume form θi ∧ θj... ∧ θk.

In an earlier time we have discussed the problem of defining a rigid

body in special and general relativity [17]. The kinematic quotient-space

definition of rigidity due originally to Max Born (Riemannian submersion)
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was shown by Herglotz and Noether to have only three degrees of freedom:

the only Born-rigid congruences which were rotating ( had vorticity) in

Minkowski space were isometries of the space-time without time evolution.

We showed this to be the case also for kinematic or “test” rigid bodies

moving in vacuum Einstein spaces. It seemed to be impossible then to

sensibly discuss the so-called “dynamic” rigid bodies envisioned by Pirani,

which were to carry their own 3-dimensional geometry while distorting

space-time. We are charmed by having now arrived at space-times, using

dynamic embedding in the (3, 7) partition, having the greater dynamical

freedom allowed by separation of the rôles of the induced 3-metrics in the

cross sections and quotient space of a solution.

In the (4, 11) partition, the solutions are five dimensional, with a dynam-

ically rigid congruence that projects to a metric quotient 4-space. This may

be a well-posed causal variant of Kaluza-Klein theory, and merits further

investigation.

Closed EDS generated only by cc 2-forms have a special structure, inas-

much as they can be equivalent to dual infinite Lie algebras of Kaĉ-Moody

type and lead to hierarchies of so-called integrable systems. Lie groups

have a duality between 2-form Cartan-Maurer structure equations for ba-

sis 1-forms and Lie commutator products of dual basis vector fields. This

duality persists when the additional cc 2-forms of an EDS are imposed,

but then the vector commutator table is incomplete. New vectors can be

introduced in terms of the unknown commutators, and then more commu-

tators calculated using the Jacobi identities. These allow adding 2-form

structure equations for new dual 1-forms in higher dimensional spaces. If

this expansion terminates, an embedding in a group has been found, the

new 1-forms being potentials that integrate the original EDS. If the ex-

pansion continues, it leads to a Kaĉ-Moody algebra of finite growth. Such

EDS belong to so-called integrable systems of partial differential equations.

The prototype of this is the well-known Korteweg-de Vries equation, which

both leads to [18], and belongs to, the hierarchy of the infinite Lie algebra

A1
(1)derived from SL(2, R). The Kaĉ-Moody algebras dual to our embed-

104



Field Theories from Embeddings

ding EDS remain to be worked out.

Finally, although we did not derive these EDS variationally, Cartan

forms are easily found, at least for even dimensions. In particular, in

the (3, 7) theory either the 2-forms τA = ωAi ∧ θi or σi = ωiA ∧ θA can be

used to write a quadratic Cartan form as in some Yang-Mills theories:

Λ = τA ∧ τA, so dΛ = 2τA ∧ ωAi ∧ σi (11)

Every term of dΛ contains both a τA and a σi so arbitrary variation yields

the EDS. We also note that τA ∧ τA + σi ∧ σi is exact.

4 The Partition (1, 2)

We will set this EDS on the frame bundle ISO(1, 2) over a flat 3-space

with signature (-, +, -), so the structure equations of the bases are

dθ1 + ω12 ∧ θ2 + ω31 ∧ θ3 = 0 (12)

dθ2 + ω12 ∧ θ1 − ω23 ∧ θ3 = 0 (13)

dθ3 − ω31 ∧ θ1 − ω23 ∧ θ2 = 0 (14)

dω12 − ω31 ∧ ω23 = 0 (15)

dω23 − ω12 ∧ ω31 = 0 (16)

dω31 + ω23 ∧ ω12 = 0, (17)

and the EDS to be integrated is generated by the three 2-forms ωiA ∧
θA, ωAi ∧ θi, i = 1, A = 2, 3:

ω12 ∧ θ2 + ω31 ∧ θ3 (18)

ω12 ∧ θ1 (19)

ω31 ∧ θ1. (20)

The characteristic integers are 6{0, 3} q =2 and CC = 1; O(2) fiber

(since ω23 is not present). To introduce coordinates - scalar fields - we will

successively prolong the EDS with potentials or pseudopotentials, checking

at each step that it remains well-set and causal.
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First, it is obvious that there is a conservation law, a closed 2-form that

is zero mod the EDS, viz. dθ1. So we adjoin the 1-form

θ1 + dv, (21)

introducing the scalar potential v. The characters are now 7{1, 3}2 + 1.

Next we specialize to a particular, convenient, fiber cross-section making a

choice of frame: we introduce two new fields ζ and η while prolonging with

three 1-forms taken so that the original 2-forms in the EDS vanish (they

have been “factored”)

ω12 − ζθ1 (22)

ω13 − ηθ1ζ (23)

ζθ2 − ηθ3 + (η + ζ)θ1. (24)

To maintain closure, however, three new 2-forms, exterior derivatives of

these or algebraically equivalent, must also be adjoined:

(dζ − ηω23) ∧ dv (25)

(dη − ζω23) ∧ dv (26)

(ηdζ − ζdη) ∧ (θ2 + θ3) − (η + ζ)ω23 ∧ (ηθ2 − ζθ3). (27)

Now we have 9{4, 3}2 with no CC. ω23 now appears in the EDS, but is

conserved, dω23 = 0 mod EDS. Thus, we can introduce a pseudopotential

variable x , and then further find another conserved 1-form and a final

pseudopotential u. Which is to say we can adjoin

ω23 − dx (28)

θ2 + θ3 − e
x
du, (29)

without adding any 2-forms to the EDS. We have a total of 11 basis 1-forms:

six in θi, θA, ωAB, ωiA, plus dζ, dη, dx, du, dv, and an EDS with 11{6, 3}2.

The pulled-back original six bases are now all solvable in terms of coor-

dinate fields on the solutions, and can be eliminated: 5{0, 3}2. We have
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eliminated the CC. This is equivalent to a set of first order partial differen-

tial equations in 3 dependent variables and 2 independent variables. From

the character table, we expect solutions to involve 3 arbitrary functions of

1 variable.

Taking x and v as independent in the solution, we can solve the first two

2-forms in Eq. (25) and (26) for η and ζ:

η = ae
x + be

−x (30)

ζ = ae
x − be

−x
, (31)

where a and b are arbitrary functions of v. The third 2-form then amounts

to

e
x = 1/2(b/a)

′
∂xu , (32)

which integrates to

e
x = 1/2B′(u − A(v)) . (33)

We have put b/a = B(v) and prime is derivation with respect to v.

The three arbitrary functions of v, a, b and A, give the general solution.

On it the pulled-back bases of E
3 (no longer orthonormal or independent)

are

θ1 = −dv (34)

θ2 = dv +
ae

x + be
−x

2a
du (35)

θ3 = −dv +
ae

x − be
−x

2a
du, (36)

and the induced 2-metric from E3 is

g = −θ1θ1 + θ2θ2 − θ3θ3 (37)

= Bdu
2 + B

′(u − A)dvdu − dv
2

. (38)

This is, up to signature, the metric found classically from the construc-

tion of geodesically ruled surfaces in E3, cf, e.g., Eisenhardt [10]. The

surfaces are intrinsically characterized by a “line of striction”, the locus
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u−A(v) = 0, and a “parameter of distribution” 2B/B
′. The geodesic rul-

ings, on which θ2, θ3, ω12, and ω13 pull back to vanish, are the set of lines

u = const. The rigid congruence is the set of lines on which V contracted

with θ1, ω12 and ω13 vanishes, hence v = const.
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Abstract

We provide a rigorous formulation of Vessiot’s vector field approach to the analysis of

general systems of partial differential equations and prove its equivalence to the formal

theory.

Keywords: Vessiot distribution, integral element, involution

1 Introduction

Vessiot [13] proposed in the 1920s an approach to deal with general sys-

tems of partial differential equations which takes an intermediate position

between the formal theory [8, 10] and the Cartan-Kähler theory of exterior

differential systems [1, 4]: while still formulated in the language of differ-

ential equations (considered as submanifolds of a jet bundle), it represents

essentially a dual, vector field based formulation of the Cartan-Kähler the-

ory replacing exterior derivatives by Lie brackets.

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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The Vessiot theory has not attracted much attention. Presentations in

a more modern language are contained in [2, 11]; applications have mainly

appeared in the context of the Darboux method for solving hyperbolic

equations, see e. g. [12]. While a number of textbooks provide a very rigor-

ous analysis of the Cartan-Kähler theory, the above mentioned references

(and also Vessiot’s original work) are somewhat lacking in this respect. In

particular, the question of what assumptions are needed has been ignored.

The purpose of the present article is to close this gap and simultaneously

to relate the Vessiot theory with the key concepts of the formal theory like

involution and formal integrability. We will show that the Vessiot con-

struction succeeds, if and only if it is applied to an involutive system. This

result is not surprising, given the well-known fact that the formal theory

and the Cartan-Kähler theory are equivalent. However, to our knowledge

an explicit proof has never been given. As a by-product, we will provide

a new definition for integral elements based on the contact map making

also the relations between the formal theory and the Cartan-Kähler theory

more transparent.

2 Formal Theory

We cannot give here a detailed introduction into the formal theory. Our

presentation and notations follow [10]; other general references are [5, 8].

For simplicity, we will mainly work in local coordinates, although the whole

theory can be expressed in an intrinsic way.

Let π : E → X be a (smooth) fibred manifold. We call coordinates

x = (x1, . . . , xn) of X independent variables and fibre coordinates u =

(u1, . . . , um) in E dependent variables. Sections2 σ : X → E correspond

locally to functions u = s(x). Derivatives are written in the form u
α
µ =

∂ |µ|uα/∂x
µ1

1 · · · ∂xµn
n where µ = [µ1, . . . , µn]. Adding the derivatives uα

µ up

to order q (denoted by u
(q)) defines a local coordinate system for the q-th

order jet bundle Jqπ which may be considered as the space of truncated

Taylor expansions.

2 Although we will exclusively consider local sections, we will use throughout a “global” notation in order
to avoid the introduction of many local neighbourhoods.
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The jet bundle Jqπ admits a number of fibrations. For us particularly

important are π
q
q−1 : Jqπ → Jq−1π and πq : Jqπ → X . To each section

σ : X → E locally defined by σ(x) =
(
x, s(x)

)
we may associate its

prolongation jqσ : X → Jqπ, a section of the fibration πq given by jqσ(x) =
(
x, s(x), ∂xs(x), ∂xxs(x), . . .

)
.

The geometry of Jqπ is to a large extent determined by its contact struc-

ture. It can be described in a number of ways. We will use three different

approaches. The contact codistribution C0
q ⊆ T

∗(Jqπ) consists of all one-

forms such that their pull-back by a prolonged section vanishes. Locally,

it is spanned by the contact forms3

ω
α
µ = du

α
µ − u

α
µ+1i

dx
i
, 0 ≤ |µ| < q .

Dually, we may consider the contact distribution Cq ⊆ T (Jqπ) consisting of

all vector fields annihilated by C0
q . One easily verifies that it is generated

by the fields

C
(q)
i = ∂i + u

α
µ+1i

∂uα
µ

, 1 ≤ i ≤ n ,

C
µ
α = ∂uα

µ
, |µ| = q .

Note that the latter fields span the vertical bundle V π
q
q−1 of the fibration

π
q
q−1. Thus the contact distribution can be split as Cq = V π

q
q−1 ⊕H. Here

the complement H is an n-dimensional transversal subbundle of T (Jqπ)

and obviously not uniquely determined (though any local coordinate chart

induces via the span of the vectors C
(q)
i one possible choice). Note that

any such complement H may be considered as the horizontal bundle of

a connection on the fibred manifold πq : Jqπ → X (not for the fibration

π
q
q−1!). Following Fackerell [2], we call any connection on π

q whose hori-

zontal bundle consists of contact fields a Vessiot connection4.

As a third approach to the contact structure we consider, following [7],

the contact map. It is the unique map Γq : Jqπ×XTX → T (Jq−1π) such

that the diagram

3 Throughout the article we use the convention that a summation over repeated indices is understood.
4 In the literature the name Cartan connection [6] is more common.
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Jqπ×XTX
Γq

// T (Jq−1π)

TX
((jqσ)◦τ

X
)×idTX

eeLLLLLLLLLL T (jq−1σ)

99ssssssssss

commutes for any section σ. Because of its linearity over π
q
q−1, we may

also consider it as a map Γq : Jqπ → T ∗X⊗Jq−1πT (Jq−1π) with the local

coordinate form:

Γq : (x,u
(q)) 7→

(
x,u

(q−1); dx
i ⊗ (∂xi + u

α
µ+1i

∂uα
µ
)
)

. (1)

Now one can see that im Γq = Cq−1 and hence Cq = (Tπ
q
q−1)

−1(im Γq).

Proposition 2.1. A section γ : X → Jqπ is of the form γ = jqσ for a

section σ : X → E , if and only if im Γq

(
γ(x)

)
= Tγ(x)π

q
q−1

(
Tγ(x) im γ

)
for

all points x ∈ X where γ is defined.

Thus for any section σ : X → E the equality im Γq+1

(
jq+1σ(x)

)
=

imTx(jqσ) holds and we may say that knowing the (q + 1)-jet jq+1σ(x)

of a section σ at some x ∈ X is equivalent to knowing its q-jet ρ = jqσ(x)

at x plus the tangent space Tρ(im jqσ) at this point. This observation will

later be the key for the Vessiot theory.

A differential equation of order q is a fibred submanifoldRq ⊆ Jqπ locally

described as the zero set of some smooth functions on Jqπ:

Rq :
{

Φ
τ (x,u

(q)) = 0 , τ = 1, . . . , t . (2)

(Note that we do not distinguish between scalar equations and systems.)

We denote by ι : Rq →֒ Jqπ the canonical inclusion map. Differentiating

every equation in (2) yields the prolonged equation Rq+1 ⊆ Jq+1π defined

by the equations Φτ = 0 and DiΦ
τ = 0 with the formal derivative Di, given

by DiΦ
τ (x,u) = ∂Φτ

∂xi (x,u) + ∂Φτ

∂uα
µ
(x,u)uα

µ+1i
. Iteration of this process gives

the higher prolongations Rq+r ⊆ Jq+rπ. A subsequent projection leads to

R
(1)
q = πq+1

q (Rq+1) ⊆ Rq which is a proper submanifold, whenever integra-

bility conditions appear. Rq is formally integrable, if at any prolongation

order r > 0 the equality R
(1)
q+r = Rq+r holds.
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A solution is a section σ : X → E such that its prolongation satisfies

im jqσ ⊆ Rq. In local coordinates, this coincides with the usual notion of

a solution. For formally integrable equations it is straightforward to con-

struct order by order formal power series solutions; otherwise it is very hard

to find solutions. A key insight of Cartan was to introduce infinitesimal

solutions or integral elements at a point ρ ∈ Rq as subspaces Uρ ⊆ TρRq

which are potentially part of the tangent space of a prolonged solution.

Definition 2.2. Let Rq ⊆ Jqπ be a differential equation. A linear subspace

Uρ ⊆ TρRq is an integral element at the point ρ ∈ Rq, if a point ρ̂ ∈ Rq+1

exists such that πq+1
q (ρ̂) = ρ and Tι(Uρ) ⊆ im Γq+1(ρ̂).

The above definition of an integral element is not the standard one.

Usually, one considers the pull-back ι
∗C0

q of the contact codistribution or

more precisely the differential ideal I[Rq] = 〈ι∗C0
q 〉diff generated by it (recall

that algebraically I[Rq] is thus spanned by a basis of ι∗C0
q and the exterior

derivatives of the forms in this basis) and an integral element is a subspace

on which this ideal vanishes.

Proposition 2.3. Let Rq be a differential equation such that R
(1)
q = Rq.

A linear subspace Uρ ⊆ TρRq is an integral element at ρ ∈ Rq, if and only

if Tι(Uρ) lies transversal to the fibration π
q
q−1 and every differential form

ω ∈ I[Rq] vanishes on Uρ.

Proof. Assume first that Uρ is an integral element. Thus there exists a

point ρ̂ ∈ Rq+1 such that πq+1
q (ρ̂) = ρ and Tι(Uρ) ⊆ im Γq+1(ρ̂). This

implies firstly that Tι(Uρ) is transversal to π
q
q−1 and secondly that every

one-form ω ∈ ι
∗C0

q vanishes on Uρ, as im Γq+1(ρ̂) ⊂ (Cq)ρ. Thus there only

remains to show that the same is true for the two-forms dω ∈ ι∗(dC0
q ).

Choose a section γ : Rq → Rq+1 such that γ(ρ) = ρ̂ and define a

distribution D of rank n on Rq by setting Tι(Dρ̃) = im Γq+1

(
γ(ρ̃)

)
for any

point ρ̃ ∈ Rq. Obviously, by construction Uρ ⊆ Dρ. It follows from the

coordinate form (1) of the contact map that locally the distribution D is

spanned by n vector fields Xi such that ι∗Xi = C
(q)
i + γα

µ+1i
Cµ

α where the
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coefficients γ
α
ν are the highest-order components of the section γ. Thus the

commutator of two such vector fields satisfies

ι∗

(
[Xi, Xj]

)
=
(
C

(q)
i (γα

µ+1j
)−C

(q)
j (γα

µ+1i
)
)
C

µ
α+γ

α
µ+1j

[C
(q)
i , C

µ
α]−γ

α
µ+1i

[C
(q)
j , C

µ
α] .

The commutators on the right side vanish whenever µi = 0 or µj = 0,

respectively. Otherwise we obtain −∂uα
µ−1i

and −∂uα
µ−1j

, respectively. But

this implies that the two sums on the right side cancel each other and we

find that ι∗

(
[Xi, Xj]

)
∈ Cq. Thus we find for any contact form ω ∈ C0

q that

ι
∗(dω)(Xi, Xj) = dω(ι∗Xi, ι∗Xj)

= ι∗Xi

(
ω(ι∗Xj)

)
− ι∗Xj

(
ω(ι∗Xi)

)
+ ω

(
ι∗([Xi, Xj])

)
.

Each summand vanishes, as all appearing fields are contact fields. Hence

any form ω ∈ ι∗(dC0
q ) vanishes on D and in particular on Uρ ⊆ Dρ.

For the converse, note that any subspace Uρ ⊆ TρRq satisfying the im-

posed conditions is spanned by linear combinations of vectors vi such that

Tι(vi) = C
(q)
i ρ + γα

µ,iC
µ
α ρ where γα

µ,i are real coefficients. Now consider a

contact form ω
α
ν with |ν| = q − 1. Then dω

α
ν = dx

i ∧ du
α
ν+1i

. Evaluating

the condition ι∗(dωα
ν ) ρ(vi, vj) = dω

(
Tι(vi), T ι(vj)

)
= 0 yields the equation

γ
α
ν+1i,j

= γ
α
ν+1j,i

. Hence the coefficients are of the form γ
α
µ,i = γ

α
µ+1i

and a

section σ exists such that ρ = jqσ(x) and Tρ(im jqσ) is spanned by the

vectors Tι(v1), . . . , T ι(vn). This implies that Uρ is an integral element.

For many purposes the purely geometric notion of formal integrability

is not sufficient and one needs the stronger algebraic concept of involu-

tion. This concerns e. g. the derivation of uniqueness results but also the

numerical integration of overdetermined systems [9]. An intrinsic defini-

tion of involution requires the Spencer cohomology. We give here only a

simplified coordinate version requiring that one works in “good”, so-called

δ-regular, coordinates x (this is not a strong restriction, as generic coordi-

nates are δ-regular and there are possibilities to construct systematically

“good” coordinates – see e. g. [3]).

The (geometric) symbol of a differential equation Rq is Nq = V π
q
q−1|Rq

∩
TRq, i. e. the vertical part of the tangent space to Rq. Locally, Nq is the
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solution space of the following linear system of (algebraic) equations in the

unknowns vα
µ (coordinates on Sq(T

∗X )⊗ V E):

Nq :







∑

α,|µ|=q

(
∂Φτ

∂uα
µ

)

v
α
µ = 0 . (3)

The prolonged symbolsNq+r are simply the symbols of the prolonged equa-

tions Rq+r.

The class of a multi-index µ = [µ1, . . . , µn] is the smallest k for which µk

is different from zero. The columns of the symbol matrix (3) are labelled

by the v
α
µ . After ordering them by class, i. e. a column with a multi-index of

higher class is always left of one with lower class, we compute a row echelon

form. We denote the number of rows where the pivot is of class k by β
(k)
q

and associate with each such row the multiplicative variables x1, . . . , xk.

Prolonging each equation only with respect to its multiplicative variables

yields independent equations of order q + 1, as each has a different leading

term. If prolongation with respect to the non-multiplicative variables does

not lead to additional independent equations of order q + 1, i. e. if

rankNq+1 =

n∑

k=1

kβ
(k)
q , (4)

then the symbol Nq is involutive (Cartan test).

The differential equation Rq is called involutive, if it is formally inte-

grable and its symbol is involutive. Involutive equations possess a number

of pleasant properties; for our purposes the most important one is the

Cartan-Kähler theorem asserting the existence and uniqueness of analytic

solutions for a formally well-posed initial value problem with an analytic

involutive differential equation and analytic initial data.

For notational simplicity, we will consider in our subsequent analysis

mainly first-order equations R1 ⊆ J1π. Furthermore, we will assume

that any present algebraic (i. e. zeroth-order) equation has been explicitly

solved, reducing thus the number of dependent variables. From a theoret-

ical point of view this does not represent a restriction, as any differential
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equation Rq can be transformed into an equivalent first-order one and un-

der some mild regularity assumptions the algebraic equations can always

be solved locally.

For later use, we define a local normal form, the Cartan normal form,

for such a differential equation. It arises by solving each equation for a

derivative uα
j , the principal derivative, and eliminating this derivative from

all other equations. Furthermore, the principal derivatives are chosen in

such a manner that their classes are as great as possible. All the remaining

derivatives are called parametric. Ordering the obtained equations by their

class, we can decompose them into subsystems:

u
α
n = φ

α
n(x,u, u

γ
j )







1 ≤ α ≤ β
(n)
1

1 ≤ j ≤ n

β
(j)
1 < γ ≤ m

(5a)

u
α
n−1 = φ

α
n−1(x,u, u

γ
j )







1 ≤ α ≤ β
(n−1)
1

1 ≤ j ≤ n− 1

β
(j)
1 < γ ≤ m

(5b)

...

u
α
1 = φ

α
1 (x,u, u

γ
j )







1 ≤ α ≤ β
(1)
1

1 = j

β
(j)
1 < γ ≤ m

(5c)

Note that the values β
(k)
1 are exactly those appearing in the Cartan test

(4), as the symbol matrix of a differential equation in Cartan normal form

is automatically triangular with the principal derivatives as pivots. The

Cartan characters of R1 are defined as α
(k)
1 = m− β

(k)
1 and thus equal the

number of parametric derivatives of class k.

For a differential equation R1 in Cartan normal form, it is possible to

perform an involution analysis in closed form. We remark that an effec-

tive test of involution proceeds as follows. Each equation in (5) is pro-

longed with respect to each of its non-multiplicative variables. The arising

second-order equations are simplified modulo the original system and the
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prolongations with respect to the multiplicative variables. The symbol N1

is involutive, if and only if after the simplification none of the equations

is of second-order any more. The equation R1 is involutive, if and only if

all new equations simplify to zero, as any remaining first-order equation

would be an integrability condition.

In order to apply this test, we set B :=
{
(α, i) ∈ Nm × Nn : uα

i is a

principal derivative
}

and for each (α, i) ∈ B we define Φα
i := uα

i − φα
i .

Now a straightforward calculation yields

DjΦ
α
i = u

α
ij − C

(1)
j (φα

i )−

i∑

h=1

m∑

γ=β
(h)

1 +1

u
γ
hjC

h
γ (φα

i ) . (6)

For j > i, the prolongation DjΦ
α
i is non-multiplicative, otherwise it is

multiplicative.

Now let j > i, so that (6) is a non-multiplicative prolongation. Accord-

ing to our test, the symbol N1 is involutive, if and only if it is possible

to eliminate on the right hand side of (6) all second-order derivatives by

adding multiplicative prolongations. As a first step we note the following

result arising after a tedious but fairly straightforward computation.

Lemma 2.4. Expanding the formal derivatives and collecting all second-

order derivatives in the right hand side of (6) yields that the difference

DjΦ
α
i −DiΦ

α
j −

∑i
h=1

∑m

γ=β
(h)

1 +1
Ch

γ (φα
i )DhΦ

γ
j equals

C
(1)
i (φα

j )− C
(1)
j (φα

i )−
i∑

h=1

m∑

γ=β
(h)

1 +1

C
h
γ (φα

i )C
(1)
h (φ

γ
j )

−

i−1∑

h=1

m∑

δ=β
(h)

1 +1

u
δ
hh






β
(j)
1∑

γ=β
(h)

1 +1

C
h
γ (φα

i )Ch
δ (φ

γ
j )






−
∑

1≤h<k<i







β
(k)

1∑

δ=β
(h)

1
+1

u
δ
hk






β
(j)
1∑

γ=β
(k)

1
+1

C
k
γ (φα

i )Ch
δ (φ

γ
j )





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+

m∑

δ=β
(k)

1
+1

u
δ
hk






β
(j)
1∑

γ=β
(h)

1
+1

C
h
γ (φα

i )Ck
δ (φ

γ
j ) +

β
(j)
1∑

γ=β
(k)

1
+1

C
k
γ (φα

i )Ch
δ (φ

γ
j )












−
i−1∑

h=1







β
(i)

1∑

δ=β
(h)

1 +1

u
δ
hi




−C

h
δ (φα

j ) +

β
(j)

1∑

γ=β
(i)
1 +1

C
i
γ(φ

α
i )Ch

δ (φ
γ
j )






+

m∑

δ=β
(i)
1 +1

u
δ
hi




−C

h
δ (φα

j ) +

β
(j)
1∑

γ=β
(i)
1 +1

C
i
γ(φ

α
i )Ch

δ (φ
γ
j ) +

β
(j)
1∑

γ=β
(h)

1 +1

C
h
γ (φα

i )C i
δ(φ

γ
j )












−
i−1∑

h=1
i+1≤k<j

m∑

δ=β
(k)

1
+1

u
δ
hk






β
(j)
1∑

γ=β
(h)

1
+1

C
h
γ (φα

i )Ck
δ (φ

γ
j )






−

j−1
∑

k=i

m∑

δ=β
(k)

1 +1

u
δ
ik




−C

k
δ (φα

j ) +

β
(j)
1∑

γ=β
(i)
1 +1

C
i
γ(φ

α
i )Ck

δ (φ
γ
j )






−
i−1∑

h=1

m∑

δ=β
(j)

1
+1

u
δ
hj




C

h
δ (φα

i ) +

β
(j)
1∑

γ=β
(h)

1
+1

C
h
γ (φα

i )C
j
δ (φ

γ
j )






−
m∑

δ=β
(j)
1 +1

u
δ
ij




C

i
δ(φ

α
i )− C

j
δ (φ

α
j ) +

β
(j)

1∑

γ=β
(i)
1 +1

C
i
γ(φ

α
i )C

j
δ (φ

γ
j )




 .

In the first line we collected all lower-order terms. Furthermore, none

of the appearing second-order derivatives is of a form that it could be

eliminated by adding some multiplicative prolongation. Hence the symbol

N1 is involutive, if and only if all the expressions in square brackets vanish.

The differential equationR1 is involutive, if and only if in addition the first

line vanishes, as it represents an integrability condition. Thus Lemma 2.4

provides us with an explicit form of all obstructions to involution for R1.
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3 The Vessiot distribution

By Proposition 2.1, the tangent spaces Tρ(im jqσ) of prolonged sections

at points ρ ∈ Jqπ are always subspaces of the contact distribution Cq ρ.

If the section σ is a solution of Rq, it furthermore satisfies by definition

im jqσ ⊆ Rq and hence T (im jqσ) ⊆ TRq. These considerations motivate

the following construction.

Definition 3.1. The Vessiot distribution of a differential equation Rq ⊆
Jqπ is the distribution V[Rq] ⊆ TRq defined by

Tι
(
V[Rq]

)
= Tι

(
TRq

)
∩ Cq Rq

.

Again, this is not the usual definition found in the literature. But the

equivalence to the standard approach is an elementary exercise in comput-

ing with pull-backs:

Proposition 3.2. The Vessiot distribution satisfies V[Rq] = (ι∗C0
q )

0.

The Vessiot distribution is not necessarily of constant rank along Rq;

for simplicity, we will assume its rank does not vary over the differential

equation. Note that the symbol Nq as the vertical part of TRq is always

contained in V[Rq]. In general, V[Rq] is not involutive (an exception are

formally integrable equations of finite type), but it may contain involutive

subdistributions; among these, those of dimension n which are transversal

(to the fibration Rq → X ) are of special interest for us.

Lemma 3.3. If the section σ : X → E is a solution of the equation Rq,

then the tangent bundle T (im jqσ) is an n-dimensional transversal invo-

lutive subdistribution of V[Rq]|im jqσ. Conversely, if U ⊆ V[Rq] is an n-

dimensional transversal involutive subdistribution, then any integral man-

ifold of U has locally the form im jqσ for a solution σ of Rq.

This simple observation forms the basis of Vessiot’s approach to the

analysis of Rq: he proposed to search for all n-dimensional, transversal

involutive subdistributions of V[Rq]. Before we do this, we first show how

integral elements appear in this program.
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Proposition 3.4. Let U ⊆ V[Rq] be a transversal subdistribution of the

Vessiot distribution of constant rank k. Then the spaces Uρ are k-dimensional

integral elements for all points ρ ∈ Rq if, and only if, [U ,U ] ⊆ V[Rq].

Proof. Let {ω1, . . . , ωr} be a basis of the codistribution ι
∗C0

q . Then an al-

gebraic basis of the ideal I[Rq] is {ω1, . . . , ωr, dω1, . . . , dωr}. Any vector

field X ∈ U trivially satisfies ωi(X) = 0 by Proposition 3.2. For arbitrary

fields X1, X2 ∈ U , we have dωi(X1, X2) = X1

(
ωi(X2)

)
− X2

(
ωi(X1)

)
+

ωi

(
[X1, X2]

)
. The first two summands on the right hand side vanish triv-

ially and the remaining equation implies our claim.

We call a subdistribution U ⊆ V[Rq] satisfying the conditions of Propo-

sition 3.4 an integral distribution5 for the differential equation Rq. Note

that generally an integral distribution is not integrable; the name only

reflects the fact that it is composed of integral elements.

Since the symbol Nq of the equationRq is contained in the Vessiot distri-

bution, we can split the Vessiot distribution into V[Rq] = Nq⊕H where H

is some complement. By analogy to the above discussed decomposition of

the full contact distribution, this leads naturally to connections: provided

dimH = n, it may be considered as the horizontal bundle of a connec-

tion of the fibred manifold Rq → X and we call any such connection a

Vessiot connection for Rq. The existence of n-dimensional complements is

connected to the absence of integrability conditions.

Proposition 3.5. If the differential equation Rq satisfies R
(1)
q = Rq, then

its Vessiot distribution possesses locally a decomposition V[Rq] = Nq ⊕H

with an n-dimensional complement H.

Proof. The assumption Rq = R
(1)
q implies that to every point ρ ∈ Rq at

least one point ρ̂ ∈ Rq+1 with πq+1
q (ρ̂) = ρ exists. We choose such a ρ̂ and

consider im Γq+1(ρ̂) ⊂ Tρ(Jqπ). By definition of the contact map Γq+1, this

is an n-dimensional transversal subset of Cq ρ. Thus there only remains to

show that it is also tangential to Rq, as then we can define a complement

5 In the literature the terminology “involution” is common for such distributions which, however, is quite
confusing in our opinion.
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by Tι(Hρ) = im Γq+1(ρ̂). But this tangency is a trivial consequence of

ρ̂ ∈ Rq+1; using for example the local coordinates expression (1) for Γq

and a local representation Φ
τ = 0 of Rq, one immediately sees that the

vector vi = Γq+1(ρ̂, ∂xi) ∈ Tρ(Jqπ) satisfies dΦτ
ρ(vi) = DiΦ

τ (ρ̂) = 0 and

thus is tangential to Rq.

Hence we have proven that it is possible to construct for each point

ρ ∈ Rq a complement Hρ such that Vρ[Rq] = (Nq)ρ ⊕ Hρ. Now we must

show that these complements can be chosen in such a way that they form

a distribution (which by definition is smooth). Our assumption Rq = R
(1)
q

implies that the restricted projection π̂
q+1
q : Rq+1 →Rq is a surjective sub-

mersion, i. e. it defines a fibred manifold. Thus if we choose a local section

γ : Rq → Rq+1 and then always take ρ̂ = γ(ρ), it follows immediately

that the corresponding complements Hρ define a smooth distribution as

required.

Any n-dimensional complementH is obviously a transversal subdistribu-

tion of V[Rq], but not necessarily involutive. Conversely, any n-dimensional

subdistribution H of V[Rq] is a possible choice as a complement. Hence we

may reformulate Vessiot’s goal as the construction of all flat Vessiot connec-

tions. Choosing a “reference” complement H0 with a basis (X1, . . . , Xn), a

basis for any other complement H arises by adding some vertical fields to

the vectors Xi. We will follow this approach in the next section. For the

remainder of this section we turn our attention to the choice of a convenient

basis of V[Rq] that will facilitate our computations.

Since the symbol Nq is an involutive distribution, there exists a basis

(Y1, Y2, . . . Yr) for it with r = dimNq whose Lie brackets vanish: [Yk, Yℓ] = 0

for all 1 ≤ k, ℓ ≤ r. Since the vertical bundle V π
q
q−1 is also involutive, we

can decompose V π
q
q−1 = Nq ⊕W where W is again an involutive distribu-

tion. W can be spanned by vector fields W1, . . . , Ws where s =
∑n

k=1 β
(k)
q

equals the number of principal derivatives which are chosen such that we

have [Wa, Wb] = 0 for all 1 ≤ a, b ≤ s. In local coordinates, a par-

ticularly convenient choice for the fields Yk and Wa exists. We choose

for any 1 ≤ k ≤ r a parametric derivative uα
µ, that is (α, µ) /∈ B, and
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Yk := Y
α
µ := ι∗(∂uα

µ
), and for any 1 ≤ a ≤ s a principal derivative u

α
µ such

that (α, µ) ∈ B and Wa := W α
µ := ∂uα

µ
.

The reference complement H0 is chosen as follows. Any basis of it must

consist of n transversal contact fields. Since the fields Cµ
α are vertical, we

can always use a basis (X̃1, . . . , X̃n) of the form X̃i = C
(q)
1 +ξα

iµC
µ
α with some

coefficient functions ξ
α
iµ chosen such that X̃i is tangential to Rq. The fields

Cµ
α also span the vertical bundle V π

q
q−1 and hence we may exploit the above

decomposition for a further simplification of the basis. By subtracting from

each X̃i a suitable linear combination of the fields Yk spanning the symbol

Nq, we arrive at a basis (X1, . . . , Xn) where Xi = C
(q)
i + ξα

i Wa.

As already mentioned above, generally, the Vessiot distribution V[Rq] is

not involutive. Hence it is not surprising that its structure equations are

going to be important later. Since the only non-vanishing Lie brackets of

contact fields in Cq are

[Cν+1i

α , C
(q)
i ] = ∂uα

ν
, |ν| = q − 1 , (7)

we may extend the above chosen basis (Xi, Yk) of V[Rq] to a basis of the

derived Vessiot distribution V ′[Rq] by adding vector fields Zc, 1 ≤ c ≤
t = dimV ′[Rq] − dimV[Rq], where, using (7), for each c we have some

coefficients κ
α
cν such that Zc = κ

α
cν∂uα

ν
with |ν| = q − 1. By construction,

the non-vanishing structure equations of V[Rq] take now the form

[Xi, Xj] = Θ
c
ijZc and [Xi, Yk] = Ξ

c
ikZc (8)

with smooth functions Θc
ij and Ξc

ik.

Remark 3.6. In the next section we will have to analyse certain matrices

which are built out of the coefficients Θ
c
ij, Ξ

c
ik. It will turn out that this

analysis becomes simpler, if we pretend that all fields ∂uα
ν

with |ν| = q − 1

are contained in V ′[Rq]. Restricting to the first-order case q = 1, we write

the right hand sides of (8) as Θα
ij∂uα and Ξα

ik∂uα, respectively. The new and

the old coefficients are then related by

Θ
α
ij = Θ

c
ijκ

α
c , Ξ

α
ik = Ξ

c
ikκ

α
c . (9)
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Knowing the (larger) sets of coefficients Θ
α
ij, Ξ

α
ik, we can reconstruct the

true structure coefficients Θc
ij, Ξc

ik by solving the overdetermined linear

system of equations (9). This is always possible since the fields Zc are

assumed to be linearly independent. Thus there exist some coefficents κc
α

such that

Θ
c
ij = Θ

α
ijκ

c
α , Ξ

c
ik = Ξ

α
ikκ

c
α .

For a first-order equation R1 with Cartan normal form (5) satisfying

the assumptions of Proposition 3.5 it is possible to perform this process

explicitly. We choose as a reference complement H0 the linear span of the

vector fields

Xi = C
(q)
i +

∑

(α,µ)∈B

C
(q)
i (φα

µ)Cµ
α .

One easily verifies in a rather straightforward computation that this is a

valid choice. Using this reference complement, we can explicitly evaluate

the Lie brackets (8) on R1. As we are not able to determine a simple

expression for the derived Vessiot distribution, we follow the approach

taken in Remark 3.6 and obtain for the extended set of structure coefficients

Θα
ij, Ξα

ik the following results: if i < j, then

Θ
α
ij =







0 : (α, i) 6∈ B and (α, j) 6∈ B ,

C
(1)
i (φα

j ) : (α, i) 6∈ B and (α, j) ∈ B ,

C
(1)
i (φα

j )− C
(1)
j (φα

i ) : (α, i) ∈ B and (α, j) ∈ B ,

(10)

and if we assume that Yk = Y
β
j , then

Ξ
α
ik =







0 : (α, i) /∈ B and (α, i) 6= (β, j) ,

−1 : (α, i) /∈ B and (α, i) = (β, j) ,

−C
j
β(φα

i ) : (α, i) ∈ B .

(11)

We collect these coefficients into vectors Θij and matrices Ξi where the

m rows are ordered according to increasing α, and the r = dimN1 columns

are ordered, according to increasing j, into n blocks (empty for those j with

m = β
(j)
1 ) and within each block according to increasing β (with β

(j)
1 <
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β ≤ m). Note that for a differential equation with constant coefficients all

Θij vanish and for a maximally overdetermined equation there are no Ξi.

The matrices Ξi have a special form. For any class i, the matrix Ξi

has α
(i)
1 rows where all entries are zero with only one exception: for each

1 ≤ ℓi < α
(i)
1 we have Ξ

β
(i)

1 +ℓi

i,k = −δℓ k where ℓ :=
∑i−1

h=1 α
(h)
1 +ℓi. The entries

in the remaining β
(i)
1 rows are −C

j
β(φ

α
i ). Some of these vanish, too: all of

the parametric derivatives on the right side of an equation in the Cartan

normal form (5) are of a class lower than that of the equation’s left side as

otherwise we would solve this equation for the derivative of highest class.

This means −C
j
β(φ

α
i ) = 0 whenever j = class(u

β
j ) > class(uα

i ) = i, and it

follows that for each i, 1 ≤ i ≤ n the matrix Ξi looks like

Ξi =

(

−C
1
β1(φ

α
i ) · · · −C

i−1
βi−1(φ

α
i ) −C

i
βi(φ

α
i ) 0 · · · 0

0 · · · 0 −1
α

(i)

1

0 · · · 0

)

. (12)

Here, for 1 ≤ j ≤ i, we have β
(j)
1 + 1 ≤ βj ≤ m. The unit block of α

(i)
1

rows leads immediately to the estimate

α
(i)
1 ≤ rankΞi ≤ min{m,

i∑

j=1

α
(j)
1 } .

Since the matrices Ξi are made up of block matrices and we are going to

calculate with these blocks, we introduce the following notation: let for any

i, 1 ≤ i ≤ n,
b
a[Ξi ]

d
c denote the block in Ξi consisting of the entries from

the ath row to the bth row and from the cth column to the dth column.

4 Flat Vessiot connections

Recall that our goal is the construction of all n-dimensional transversal

involutive subdistributions U within the Vessiot distribution V[R1]. Taking

(Xi, Yk) as a basis for V[R1], we make for the basis (U1, . . . , Un) of such a

distribution U the ansatz Ui = Xi +ζk
i Yk with yet undetermined coefficient

functions ζk
i . This ansatz follows naturally from our considerations above,
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as the fields Xi span a reference complement to N1 and all fields Yk are

vertical. Since the fields Ui are in triangular form, the distribution U is

involutive, if and only if their Lie brackets vanish, and using (8) this means:

[Ui, Uj] = [Xi, Xj] + ζ
k
i [Yk, Xj] + ζ

k
j [Xi, Yk] + (Ui(ζ

k
j )− Uj(ζ

k
i ))Yk

= (Θc
ij − Ξ

c
jkζ

k
i + Ξ

c
ikζ

k
j )Zc + (Ui(ζ

k
j )− Uj(ζ

k
i ))Yk = 0 .

(13)

By definition of the Yk and Za, these fields are linearly independent, so

their coefficients must vanish for U to be involutive. Thus (13) yields two

sets of conditions for the coefficient functions ζ
k
i : a system of algebraic

equations

Θ
c
ij −Ξ

c
jkζ

k
i + Ξ

c
ikζ

k
j = 0 ,

{
1 ≤ c ≤ t ,

1 ≤ i < j ≤ n
(14)

and a system of differential equations

Ui(ζ
k
j )− Uj(ζ

k
i ) = 0 ,

{
1 ≤ k ≤ r ,

1 ≤ i < j ≤ n .
(15)

In (14) the true structure coefficients Θ
c
ij, Ξ

c
jk appear. For our subsequent

analysis we follow Remark 3.6 and replace them by the extended set of

coefficients Θα
ij, Ξα

jk. This corresponds to replacing (14) by an equivalent

but larger linear system of equations which is simpler to analyse.

Remark 4.1. The vector fields Yk lie in the Vessiot distribution V[R1].

Thus, according to Proposition 3.4, U is an integral distribution, if and only

if the coefficients ζ i
k satisfy the algebraic conditions (14). This observation

permits us immediately to reduce the number of unknowns in our ansatz.

Assume that we have values 1 ≤ i, j ≤ n and 1 ≤ α ≤ m such that both

(α, i) and (α, j) are not contained in B, i. e. u
α
i and u

α
j are both parametric

derivatives (and thus obviously the second-order derivative uα
ij, too). Then

there exist two symbol fields Yk = ι∗(∂uα
i
) and Yl = ι∗(∂uα

j
). Now it follows

from the coordinate form (1) of the contact map that U can be an integral

distribution, if and only if ζk
j = ζ l

i .
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As the unknowns ζ
j
k may be understood as labels for the columns of the

matrices Ξh, this identification leads to a contraction of these matrices.

We introduce now contracted matrices Ξ̂h which arise as follows: when-

ever ζ
k
j = ζ

l
i then the corresponding columns of Ξh are added. Similarly,

we introduce reduced vectors ζ̂h where the redundant components are left

out. From now on we always understand that in the equations above this

reduction has been performed.

Now the question arises, when the combined system (14,15) has solu-

tions. We begin by analysing the algebraic part (14). As a system for the

vectors ζ̂i, we seek to build a solution step by step with i increasing. Thus

we begin the construction of the integral distribution U by first choosing

an arbitrary vector field U1 and then aiming for another vector field U2

such that [U1, U2] ∈ V[Rq]. During the construction of U2 we regard the

components of the vector ζ̂1 as given parameters and the components of ζ̂2

as the only unknowns of the system

Ξ̂1ζ̂2 = Ξ̂2ζ̂1 −Θ12 . (16)

Since the components of ζ̂1 are not considered as unknowns, the system

(16) must not lead to any restrictions for the coefficients ζ̂
k
1 . Obviously,

this is the case, if and only if

rank Ξ̂1 = rank (Ξ̂1 Ξ̂2) . (17)

Assuming that (17) holds, the system (16) is solvable, if and only if it

satisfies the augmented rank condition

rank Ξ̂1 = rank (Ξ̂1 Ξ̂2 −Θ12) . (18)

Now we proceed by iteration. Given i − 1 vector fields U1, U2, . . . Ui−1

of the required form spanning an involutive subdistribution of V[R1], we

construct the next vector field Ui by solving the system

Ξ̂1ζ̂i = Ξ̂iζ̂1 −Θ1i

...

Ξ̂i−1ζ̂i = Ξ̂iζ̂i−1 − Θi−1,i .

(19)
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Again we consider only the components of the vector ζ̂i as unknowns and

(19) must not imply any further restrictions on the components of the

vectors ζ̂j for 1 ≤ j < i. The corresponding rank condition is

rank








Ξ̂1

Ξ̂2
...

Ξ̂i−1








= rank








Ξ̂1 Ξ̂i

Ξ̂2 Ξ̂i 0
... 0

. . .

Ξ̂i−1 Ξ̂i








. (20)

Assuming that it holds, (19) is solvable for the components of ζ̂i, if and

only if it satisfies the augmented rank condition

rank








Ξ̂1

Ξ̂2
...

Ξ̂i−1








= rank








Ξ̂1 Ξ̂i −Θ1i

Ξ̂2 Ξ̂i 0 −Θ2i
... 0

. . .
...

Ξ̂i−1 Ξ̂i −Θi−1,i








. (21)

The following theorem relates the satisfaction of these rank conditions

and thus the solvability of the algebraic system (14) by the above described

step by step process to intrinsic properties of the differential equation R1

and its symbol N1.

Theorem 4.2. Assume that δ-regular coordinates have been chosen for

the differential equation R1. The rank condition (20) is satisfied for all

1 ≤ i ≤ n, if and only if the symbol N1 is involutive. The augmented

rank condition (21) holds for all 1 ≤ i ≤ n, if and only if the differential

equation R1 is involutive.

Proof. In order to prove (20), we transform the matrices into row echelon

form. Since each matrix Ξ̂i contains a unit block, there is an obvious way

to do this. We describe the procedure using the above introduced notation

for subblocks. As we shall see, the relevant entries in this row echelon form

are the coefficients of the second-order derivatives uδ
hk in Lemma 2.4 and

therefore their vanishing is equivalent to involution of the symbol N1.
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We start with i = 1, i. e. with (17). Since Ξ̂1 is a negative unity matrix

of α
(1)
1 rows with a β

(1)
1 × α

(1)
1 -matrix stacked upon it and only zeros for

all other entries, we have rank(Ξ̂1) = α1. Next, we transform the matrix

(Ξ̂1 Ξ̂2) into row echelon form using the special structure of the matrices

Ξ̂i as given in (12); the blocks are replaced in this way:

β
(1)

1

1 [Ξ̂1]
α

(1)

1

1 ←
β

(1)

1

1 [Ξ̂1]
α

(1)

1

1 +
β

(1)

1

1 [Ξ̂1]
α

(1)

1

1 · m
β

(1)

1 +1
[Ξ̂1]

α
(1)

1

1 ,

β
(1)

1

1 [Ξ̂2]
α

(1)

1

1 ←
β

(1)

1

1 [Ξ̂2]
α

(1)

1

1 +
β

(1)

1

1 [Ξ̂1]
α

(1)

1

1 · m
β

(1)

1 +1
[Ξ̂2]

α
(1)

1

1 ,

β
(1)

1

1 [Ξ̂2]
α

(1)

1 +α
(2)

1

α
(1)

1 +1
←

β
(1)

1

1 [Ξ̂2]
α

(1)

1 +α
(2)

1

α
(1)

1 +1
+

β
(1)

1

1 [Ξ̂1]
α

(1)

1

1 · m
β

(1)

1 +1
[Ξ̂2]

α
(1)

1 +α
(2)

1

α
(1)

1 +1
.

If, for the sake of simplicity, we use the same names for the changed blocks,

then we have

β
(1)

1

1 [Ξ̂2]
α

(1)

1

1 =




−C

1
δ (φ

α
2 ) +

β
(2)

1∑

γ=β
(1)

1
+1

C
1
γ(φ

α
1 )C1

δ (φ
γ
2)






1≤α≤β
(1)

1

β
(1)

1 +1≤δ≤m

,

β
(1)

1

1 [Ξ̂2]
α

(1)

1 +α
(2)

1

α
(1)

1 +1
=




C

1
δ (φ

α
1 )− C

2
δ (φ

α
2 ) +

β
(2)

1∑

γ=β
(1)

1 +1

C
1
γ(φ

α
1 )C2

δ (φ
γ
2)






1≤α≤β
(1)

1

β
(2)

1
+1≤δ≤m

.

A comparison with the obstructions to involution obtained by applying

Lemma 2.4 for i = 1 and j = 2 shows that all these entries vanish, if and

only if the obstructions vanish. It follows that the first β
(1)
1 rows of the

matrix (Ξ̂1 Ξ̂2) are zero. The last α
(1)
1 rows begin with the block −1

α
(1)

1

and hence rank(Ξ̂1 Ξ̂2) = α
(1)
1 = rank Ξ̂1. Thus we may conclude that the

rank condition (17) holds, if and only if no non-multiplicative prolongation

D2Φ
a
1 leads to an obstruction of involution.

The claim for the augmented condition (18) follows from the explicit

expression (10) for the entries Θα
ij. Performing the same computations as

above described with the augmented system yields as additional relevant
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entries exactly the integrability conditions arising from Lemma 2.4 applied

for i = 1 and j = 2. Hence (18) holds, if and only if no non-multiplicative

prolongation D2Φ
a
1 yields an integrability condition.

As one might expect from the above considerations for i = 1, the anal-

ysis of (20) for a general 1 ≤ i ≤ n will require the non-multiplicative

prolongations DiΦ
α
1 , DiΦ

α
2 , . . .DiΦ

α
i−1. It follows trivially from the block

form (12) of the matrices Ξi that the rank of the matrix on the left hand

side of (20) is
∑i−1

k=1 α
(k)
1 .

For lack of space we skip the details for the general case. We follow

the same steps as in the case i = 1. The transformation of the matrix on

the right hand side of (20) can be described using block matrices, and the

resulting matrix in row echelon form has as its entries in the rows where no

unit block appears the coefficients of the second-order derivatives in Lemma

2.4. Thus we may conclude again that satisfaction of (20) is equivalent

to the fact that in the non-multiplicative prolongations DiΦ
α
1 , . . . , DiΦ

α
i−1

no obstructions to involution arise. In the case of the augmented condi-

tions (21), it follows again from the explicit expression (10) for the entries

Θα
ij that the additional relevant entries are identical with the potential

integrability conditions produced by the non-multiplicative prolongations

DiΦ
α
1 , . . . , DiΦ

α
i−1.

At this point it becomes apparent why we had to introduce the con-

tracted matrices Ξ̂i. As all functions are assumed to be smooth, partial

derivatives commute: uα
ij = uα

ji. In Lemma 2.4 each obstruction to invo-

lution actually consists of two parts: one arises as coefficient of u
α
ij, the

other one as coefficient of uα
ji. While this decomposition does not show in

Lemma 2.4 because both derivatives are collected into one term, the two

parts appear in different columns of the matrices Ξi and in general the rank

condition (20) will not hold, if we replace the contracted matrices Ξ̂i by the

original matrices Ξi (see the example below). The effect of the contraction

is to combine the two parts in order to obtain the right rank.

There remains to analyse the solvability, if we add the differential system

(15). We first note that one can show in a straightforward computation
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that (15) alone is again an involutive system. If the original equation R1 is

analytic, then the quasi-linear system (15) is analytic, too. Thus we may

apply the Cartan-Kähler theorem to it which guarantees the existence of

solutions.

The problem is that the combined system (14,15) is in general not involu-

tive, as the prolongation of the algebraic equations (14) leads to additional

differential equations. Instead of analysing the effect of these integrability

conditions, we proceed as follows. If we assume that R1 is involutive, then

we know from Theorem 4.2 that the algebraic equations (14) are solvable.

In the proof of the theorem we even produced an explicit row echelon form

of the system matrix which we can now exploit to eliminate some of the

unknowns ζ̂
k
i as a linear combinations of the remaining ones.

Theorem 4.3. Assume that δ-regular coordinates have been chosen for

the differential equation R1 and that R1 is analytic. Then the combined

system (14,15) is solvable.

Proof. Following the strategy outlined above, we eliminate some of the un-

knowns ζ̂k
i . Because of the simple structure of (15), it turns out that we

must take a closer look only at those equations where the leading deriva-

tive is of one of the unknowns we eliminate. A somewhat lengthy but

straightforward computation shows that these equations actually vanish.

The remaining equations still form an involutive system. Thus we eventu-

ally arrive at an analytic involutive differential equation for the coefficient

functions ζ̂
k
i which is solvable according to the Cartan-Kähler theorem.

Example 4.4. Consider the first-order equation

R1 :

{
ut = vt = wt = us = 0 , vs = 2ux + 4uy ,

ws = −ux − 3uy , uz = vx + 2wx + 3vy + 4wy .

It is formally integrable, and its symbol is involutive with dimN1 = 8.

Thus R1 is an involutive equation. For the matrices Ξi, all of which are
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3× 8-matrices, we find

Ξ1 =
(
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

)

, Ξ2 =
(

0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

)

,

Ξ3 =
(

0 −1 −2 0 −3 −4 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

)

, Ξ4 =
(

0 0 0 0 0 0 0 0
−2 0 0 −4 0 0 0 0
1 0 0 3 0 0 0 0

)

, Ξ5 = 03×8 .

For the first two steps in the construction of the fields Ui, the rank con-

ditions are trivially satisfied even for the non-contracted matrices. But not

so in the third step where we have in the row echelon form of the arising

9 × 32-matrix in the 7th row zero entries throughout except in the 12th

column (where we have −2) and in the 17th column (where we have 2).

As a consequence, we obtain the equality ζ4
1 = ζ1

2 and the rank condition

for this step does not hold. However, since both ux and uy are parametric

derivatives and in our ordering Y1 = ι∗(∂ux
) and Y4 = ι∗(∂uy

), this equality

is already taken into account in our reduced ansatz and for the matrices Ξ̂i

the rank condition is satisfied.

Note that the rank condition is first violated when the rank reaches the

symbol dimension (which is 8). From then on, the rank of the left matrix

in (20) stagnates at dimR1 while the rank of the augmented matrix may

rise further. The entries breaking the rank condition differ by their sign,

while their corresponding coefficients in Lemma 2.4 are collected into one

sum and thus vanish.

References

[1] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths. Ex-

terior Differential Systems. Mathematical Sciences Research Institute Publications

18. Springer-Verlag, New York, 1991.

[2] E.D. Fackerell. Isovectors and prolongation structures by Vessiot’s vector field for-

mulation of partial differential equations. In R. Martini, editor, Geometric Aspects of

the Einstein Equations and Integrable Systems, Lecture Notes in Physics 239, pages

303–321. Springer-Verlag, Berlin, 1985.

[3] M. Hausdorf, M. Sahbi, and W.M. Seiler. δ- and quasi-regularity for polynomial

ideals. These proceedings.

133



GIFT 2006

[4] T.A. Ivey and J.M. Landsberg. Cartan for Beginners: Differential Geometry via

Moving Frames and Exterior Differential Systems. Graduate Studies in Mathematics

61. American Mathematical Society, Providence, 2003.

[5] I.S. Krasilshchik, V.V. Lychagin, and A.M. Vinogradov. Geometry of Jet Spaces and

Nonlinear Partial Differential Equations. Gordon & Breach, New York, 1986.

[6] V.V. Lychagin. Homogeneous geometric structures and homogeneous differential

equations. In V.V. Lychagin, editor, The Interplay between Differential Geometry

and Differential Equations, Amer. Math. Soc. Transl. 167, pages 143–164. Amer.

Math. Soc., Providence, 1995.

[7] M. Modugno. Covariant quantum mechanics. Unpublished manuscript, Dept. of

Mathematics, University of Florence, 1999.

[8] J.F. Pommaret. Systems of Partial Differential Equations and Lie Pseudogroups.

Gordon & Breach, London, 1978.

[9] W.M. Seiler. Completion to involution and semi-discretisations. Appl. Num. Math.,

42:437–451, 2002.

[10] W.M. Seiler. Involution — The Formal Theory of Differential Equations and its

Applications in Computer Algebra and Numerical Analysis. Algorithms and Compu-

tation in Mathematics. Springer-Verlag, Berlin/Heidelberg, manuscript accepted for

publication.

[11] O. Stormark. Lie’s Structural Approach to PDE Systems. Encyclopedia of Mathe-

matics and its Applications 80. Cambridge University Press, Cambridge, 2000.

[12] P.J. Vassiliou. Vessiot structure for manifolds of (p, q)-hyperbolic type: Darboux

integrability and symmetry. Trans. Amer. Math. Soc., 353:1705–1739, 2001.
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Abstract

Cental issues of the Dirac constraint formalism are discussed in relation to the algorithmic

methods of commutative algebra based on the Gröbner basis techniques. For a wide

class of finite dimensional polynomial degenerate Lagrangian systems, we describe an

algorithmic scheme of computation of the complete set of constraints, their separation

into subsets of first and second class constraints as well as the construction of a generator

of local symmetry transformations. The proposed scheme is exemplified by considering

the so-called light-cone Yang-Mills mechanics with an SU(2) gauge structure group.

Keywords: constrained Hamiltonian dynamics, commutative algebra, Gröbner basis.
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1 Introduction

Lagrangians used for the description of fundamental particles, such as elec-

trons and photons, as well as quarks and gluons have a degenerate Hessian

functions. This rather unusual property, compared to standard Lagrangian

mechanical models, profoundly modifies the whole mathematical descrip-

tion of classical evolution. It demands the physical interpretation of con-

strained variables (e.g. longitudinal components of the electromagnetic

potential) and also requires the generalisation of the canonical quantisa-

tion scheme. From the mathematical point of view the new element of the

Hamiltonian description of a degenerate Lagrangian system is the involu-

tion analysis of the differential equations of motion. Its pivotal ingredients

in the generalized Hamiltonian dynamics [1]-[5] are realised in the form of

the Dirac scheme to determine constraints. This is related to [6, 7, 8]

the formal theory of differential equations [9]. The process of the deter-

mining all the integrability conditions that can not be derived using only

the algebraic operations with the existing differential equations is just the

“reproduction” of constraints in the Dirac formalism. Having a complete

set of constraints we are able to identify the set of “truly” dynamical equa-

tions for this involutive system and therefore finally provide a deterministic

classical evolution of the physical observables and perform the subsequent

quantization.

Effective completion to involution of systems of differential equations

needed in field theories represents a very complicated challenge requiring

sophisticated computer-algebraic methods [10]. Similarly the generalized

Hamiltonian formalism also needs an efficient algorithmisation and imple-

mentation in a proper computer algebra software.

In the present paper we apply the most universal algorithmic tool of

commutative algebra, the Gröbner bases [11], as the main algorithmic in-

gredient of the generalized Hamiltonian dynamics for degenerate mechan-

ical models with polynomial Lagrangians. In [12] it was already suggested

to use the Gröbner bases for the computation and separation of constrains

for such models. The underlying Dirac-Gröbner algorithm is based on the
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facility of the Gröbner bases method to manipulate with a polynomial in

the phase variables modulo constraint manifold, and, in particular, to check

whether the polynomial vanishes on the manifold. In the present note we

propose some further algorithmic improvements and extensions aiming at

the computational realization of the Hamiltonian reduction of degenerate

mechanical system possessing local symmetries.

It should be noticed that constructive ideas of the involution analysis of

differential equations combined with those from the Gröbner bases tech-

nique have culminated in the concept of involutive bases [13] as a special

type of Gröbner bases providing the efficient involutive algorithms [14] for

construction of the involutive as well as the reduced Gröbner bases.

The plan of this paper is as follows. We start (Section 2) with a brief de-

scription of the main issues in the Dirac constraint formalism that should

be put into an algorithmic form suitable for effective calculations. In Sec-

tion 3 the ways to achieve this goal for finite-dimensional mechanical sys-

tems with polynomial Lagrangians are described. Then (Section 4) we

consider the so-called light-cone SU(n) Yang-Mills mechanics as an inter-

esting example of constrained model for which the first algorithmic issue

of the Dirac formalism, namely, construction of the primary constraints,

can be performed for arbitrary n. The remaining algorithmic issues of the

Dirac formalism are illustrated in Section 4 for this model specified [15] to

the simplest nontrivial structure group SU(2). Finally, in Section 5 some

conclusions are presented.

2 The issues requiring algorithmisation

Here we sketch briefly the basic notions and definitions from the Dirac con-

straint formalism for a finite dimensional degenerate Lagrangian system

and make a list of the main procedures requiring an algorithmic reformu-

lation.

Consider an n-dimensional mechanical system whose configuration space

is R
n and the Lagrangian L(q, q̇) is defined on a tangent space as a function

of the coordinates q := q1, q2, . . . , qn and velocities q̇ := q̇1, q̇2, . . . , q̇n .
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The Lagrangian system is called a regular one if the rank r := rank‖Hij‖
of the corresponding Hessian function Hij := ∂2L/∂q̇i∂q̇j is maximal (r =

n). In this case the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= 0 , 1 ≤ i ≤ n (1)

rewritten explicitly as

Hij q̈j +
∂

2
L

∂qj∂q̇i
q̇j −

∂L

∂qi
= 0

can be resolved with respect to the accelerations (q̈) and there is no hid-

den constraints. Otherwise, if r < n, the Euler-Lagrange equations are

degenerate or singular. In this case not all differential equations (1) are of

second order, namely there are n − r independent equations, Lagrangian

constraints, containing only coordinates and velocities. Passing to the

Hamiltonian description via a Legendre transformation

pi :=
∂L

∂q̇i
(2)

the degeneracy of the Hessian manifests itself in the existence of n − r

relations between coordinates and momenta, the primary constraints

φ
(1)
α (p, q) = 0 , 1 ≤ α ≤ n− r . (3)

Equations (3) define the so-called primary constraints subset Σ1. This

definition is implicit and therefore the first algorithmisation topic is:

Issue I: Find all primary constraints describing the subset Σ1 .

From (3) the dynamics is constrained by the set Σ1 and by the Dirac

prescription is governed by the total Hamiltonian

HT := HC + Uαφ
(1)
α , (4)

which differs from the canonical HamiltonianHC(p, q) = piqi−L by a linear

combination of the primary constraints with the Lagrange multipliers Uα.

138



Towards an algorithmisation of the Dirac constraint formalism

The next step is to analyze the dynamical requirement that classical

trajectories remain in Σ1 during evolution,

φ̇
(1)
α = {HT , φ

(1)
α }

Σ1= 0 . (5)

In (5) the evolutional changes are generated by the canonical Poisson brack-

ets with the total Hamiltonian (4) and the abbreviation
Σ1= stands for a week

equality, i.e., the right-hand side of (5) vanishes modulo the constraints.

The consistency condition (5), unless it is satisfied identically, may lead

either to a contradiction or to a determination of the Lagrange multipli-

ers Uα or to new constraints. The former case indicates that the given

Hamiltonian system is inconsistent.

In the latter case when (5) is not satisfied identically and is independent

of the multipliers Uα the left-hand side of (5) defines the new constraints.

Otherwise, if the left-hand side depends on some Lagrange multipliers Uα

the consistency condition determines these multipliers, and, therefore, the

constraints set is not enlarged by new constraints. The subsequent iteration

of this consistency check ends up with the complete set of constraints

and/or determination of some/or all Lagrange multipliers.

The number of Lagrange multipliersUα which can be found is determined

by the so-called Poisson bracket matrix

Mαβ :
Σ
= {φα, φβ} , (6)

where Σ denotes the subset of a phase space defined by the all constraints

including primary φ(1)
α , secondary φ(2)

α , ternary φ(3)
α , etc., constraints, Φ :=

(φ(1)
α , φ(2)

α , . . . , φ(k)
α )

Σ : φα(p, q) = 0 , 1 ≤ α ≤ k . (7)

The co-rank s := k− rank(M) of matrix M represent the number of first-

class constraints ψ1 , ψ2 , . . . , ψs , linear combinations of constraints φα

ψα(p, q) =
∑

β

cαβ(p, q)φβ , (8)
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whose Poisson brackets are weakly zero

{ψα(p, q), ψβ(p, q)}
Σ
= 0 1 ≤ α , β ≤ s . (9)

The remaining functionally independent constraints form the subset of

second-class constraints .

This method of constraints determination in the Dirac formalism repre-

sents the particular form of completion of the initial Hamiltonian equations

to involution; the generated constraints are nothing else than the integra-

bility conditions [6, 7, 8].

Therefore the second algorithmisation challenge can be formulated as

Issue II: Determine all integrability conditions and perform

their separation into first and second class conditions.

First-class constraints play a very special role in the Hamiltonian de-

scription: they provide the basis for generators of local symmetry transfor-

mations. The knowledge of a local symmetry transformation is important

because according to physical requirement the physical observables are sin-

glets under the gauge symmetry transformations.

So the next important algorithmisation problem is

Issue III: Construct the generator of local symmetry transfor-

mation and find the basis for singlet observables.

The last problem has direct impact on the process of Hamiltonian re-

duction, that is a formulation of a new Hamiltonian system with a re-

duced number of degrees of freedom but equivalent to the initial degener-

ate one [2, 16, 17]. The presence of s first-class constraints and r := k − s

second-class constraints guarantees the possibility of local reformulation of

the initial 2n dimensional Hamiltonian system as a 2n−2s−r dimensional

reduced Hamiltonian system (cf. [7]).

Therefore, the final fourth algorithmisation challenge we formulate here

as

Issue IV: Construct an equivalent unconstrained Hamiltonian

system on the reduced phase space.
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3 How the algorithm works

Here we extend the main ideas of [12] and describe the algorithmic basics

that can be used to solve the problems stated in the previous section. In

doing so, we restrict our consideration to an arbitrary dynamical system

with finitely many degrees of freedom whose Lagrangian is a polynomial in

coordinates and velocities with rational (possibly parametric) coefficients1

L(q, q̇) ∈ Q[q, q̇].

3.1 Primary constraints

For degenerate systems the primary constraints (3) are consequences of the

polynomial relations (2). These relations generate the polynomial ideal in

Q[q, q̇, p]

Ip,q,q̇ ≡ Id(∪n
i=1{pi − ∂L/∂q̇i}) ⊂ Q[p, q, q̇] . (10)

Thereby, primary constraints (3) belong to the radical
√

Ip,q of the elimi-

nation ideal

Ip,q = Ip,q,q̇ ∩ Q[p, q] .

Correspondingly, for an appropriate term ordering which eliminates q̇, a

Gröbner basis of Ip,q (denotation: GB(Ip,q)) is given by [11, 18]

GB(Ip,q) = GB(Ip,q,q̇) ∩ Q[p, q] .

This means that construction of the Gröbner basis for the ideal (10) with

omitting elements in the basis depending on velocities and then construct-

ing of GB(
√

Ip,q) allows us to compute the set of primary constraints. If

GB(
√

Ip,q) = ∅ then the dynamical system is regular. Otherwise, the al-

gebraically independent set Φ1 of primary constraints is the subset Φ1 ⊂
GB(

√

Ip,q) such that

∀φ(p, q) ∈ Φ1 : φ(p, q) 6∈ Id(Φ1 \ {φ(p, q)}) . (11)

1 Throughout this section we use some standard notions and definitions of commutative algebra (see, for
example, [18]).
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Verification of (11) is algorithmically done by computing the following

normal form: NF (φ,GB(Id(Φ1 \ {φ})).

Therefore, all the computational steps described above admit full al-

gorithmisation by means of Gröbner bases. In addition, the canonical

Hamiltonian Hc(p, q) is computed as NF (piqi − L,GB(Ip,q,q̇)).

3.2 Complete set of constraints and their separation

The dynamical consequences (5) of a primary constraint can also be algo-

rithmically analyzed by computing the normal form of the Poisson brackets

of the primary constraint and the total Hamiltonian modulo GB(
√

Ip,q).

Here the Lagrange multipliers Uα in (4) are treated as time-dependent

functions. If the non-vanishing normal form does not contain Uα, then it

is nothing else than the secondary constraint. In this case the set of pri-

mary constraints is enlarged by the secondary constraint obtained and the

process is iterated. At the end either the complete set Φ of constraints (7)

is constructed or inconsistency of the dynamical system is detected. The

detection holds when the intermediate Gröbner basis, whose computation

is a part of the iterative procedure, becomes {1}.
To separate the set Φ = {φ1, . . . , φk} into of first and second class con-

straints the Poisson bracket k × k matrix M (6) is built. Its entries are

computed as normal forms of the Poisson brackets of the constraints mod-

ulo a Gröbner basis of the ideal generated by set Φ.

To construct s := k − r; where r = rank(M) first-class constraints

as linear combinations (8) of constraints (7) satisfying (9) it suffices to

find the basis P = {p1, . . . , pk−r} of the null space (kernel) of the linear

transformation defined by M. Every vector p ∈ P generates the first-class

constraint of form pαφα.

Now consider the s× k matrix (pj)α composed of components of vectors

in P and find a basis T := {t1, . . . , tr} of the null space of the corresponding

linear transformation. For every vector t ∈ T the second-class constraint

is constructed as tαφα.
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Thus the constraints separation can be done using linear algebra opera-

tions with the matrix M alone. Together with the Gröbner bases technique

this implies full algorithmisation for computing the complete set of alge-

braically independent constraints and their separation ( Issues I and II

of Section 2).

3.3 Generator of local symmetry transformations

The local symmetries are generated by first-class constraints (cf. [5]) but

the presence of the second-class constraints makes realization of the sym-

metry transformations very subtle. To overcome some of these difficulties

one can effectively eliminate the second class constraints by changing the

initial Poisson bracket to the new Dirac bracket defined as

{f, g}D := {f, g} − {f, χα}C
−1
αβ{χβ, g} ,

where χα (1 ≤ α ≤ r) denotes the second-class constraints, and the invert-

ible r × r matrix Cαβ is defined as

Cαβ :
Σ
= {χα, χβ} .

Since for an arbitrary function f it follows that {f, χα}D = 0 the second-

class constraints can be set to zero either before or after evaluating a Dirac

bracket. This last evaluation, modulo the constraint functions, can be per-

formed algorithmically exploiting the Gröbner bases. After elimination of

all second-class constraints follow to the Dirac conjecture [1] the genera-

tor G of local transformations is expressed as a linear combination of all

first-class constraints

G =
k1∑

β=1

ε
(1)
β φ

(1)
β +

s∑

γ=k1+1

ε
(2)
γ φ

(2)
γ , (12)

and its action on phase space coordinates (q, p) is given now with the aid

of the Dirac bracket

δqi = {G, qi}D, δpi = {G, pi}D .
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In (12) the coefficients ε
(1)
β and ε(2)

γ are functions of time t and the first sum

includes k1 primary first-class constraints while the second sum contains

the all remaining first-class constraints. Not all of the functions ε in (12)

are independent ones. Here we briefly state how following the method

suggested in [19] one can extract the irreducible set of functions from the

set of ε. The total time derivative of the gauge-symmetry generator (12)

is given in terms of the Dirac bracket of G and the canonical Hamiltonian:

dG

dt
=
∂G

∂t
+ {G,HC}D . (13)

Since the set of first-class constraints is complete, the Dirac bracket in the

right-hand side of (13) is

{φµ, HC}D = ρµνφν . (14)

The unctions ρµν can be algorithmically computed by using the Gröbner

bases method. To perform this computation one can use, for example,

the extended Gröbner basis algorithm [20]. Given a set of polynomials

F = {f1, . . . , fm} ⊂ Q[p, q] generating the polynomial ideal Id(F ), this

algorithm yields the explicit representation

gi = hij fj (15)

of elements in the Gröbner basis {g1 . . . , gn} of this ideal in terms of

the ideal generated by polynomials in F . Therefore, having computed

a Gröbner basis for the ideal generated by the first-class constraints and

the corresponding polynomial coefficients for the elements in the Gröbner

basis as given in (15), the coefficients ρµν are easily computed by reduc-

tion [11, 18, 20] of the Dirac bracket in (14) modulo the Gröbner basis

expressed in terms of the first-class constraints φν. Note that one can

similarly compute the algebra of first-class constraints

{φα, φβ}D = ̺αβγφγ ,

if the structure functions ̺αβγ are polynomials in p, q.
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The generator of local transformation is conserved modulo the primary

constraints

dG

dt

Σ1= 0 ⇒ ε̇
(2)
γ φ

(2)
γ + ε

(1)
β ρβγφ

(2)
γ + ε

(2)
δ ρδγφ

(2)
γ

Σ1= 0 . (16)

Since, by their construction,the constraints φ(2)
γ do not vanish on the primary-

constraint manifold Σ1, the relations (16) represent the following system

of differential equations on the gauge functions ε
(1)
β and ε(2)

γ

ε̇
(2)
γ + ε

(1)
β ρβγ + ε

(2)
δ ρδγ = 0 , (k1 + 1 ≤ γ ≤ s) , (17)

where the index β runs from 1 to k1, γ runs from k1 + 1 to s and the

functions ρµν are projected on to the subset Σ1.

Since the differential system (17) is underdetermined, one can express

the functions ε
(1)
β in terms of arbitrary functions ε(2)

γ (t) and their deriva-

tives [19]. Since this last procedure is algorithmic, this completes the algo-

rithmic construction of the generator of the local symmetry transformation.

The above described algorithmic procedures have been implemented as

a Maple package (currently for Maple 10), and this package was used to

perform the computations presented in the next section.

It is worth noting here that the remaining part of Issue III as well as

Issue IV still require an algorithmisation.

4 Light-cone Yang-Mills mechanics

Now we discuss the application of the general scheme described above to a

mechanical model originated from Yang-Mills gauge theory formulated on

the light-cone under the assumption of spatial homogeneity of the gauge

fields.

The standard action of Yang-Mills field theory with structure group

SU(n) in four-dimensional Minkowski space M4, endowed with a metric

η is

S :=
1

g2
0

∫

M4

trF ∧ ∗F , (18)
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where g0 is a coupling constant and the SU(n) algebra valued curvature

two-form

F := dA+A ∧ A

is constructed from the connection one-form A. The connection and cur-

vature, as Lie algebra valued quantities, are expressed in terms of the

antihermitian algebra basis T a,

A = A
a
T

a
, F = F

a
T

a
. a = 1, 2, . . . , n2 − 1 .

The metric ηγδ enters the action through the dual field strength tensor

defined in accordance with the Hodge star operation

∗Fµν := 1
2

√

det(η) ǫµναβ F
αβ , with totally antisymmetric tensor ǫµναβ .

The light-cone version of the theory is formulated using the frame where

two vectors e± := 1√
2

(e0 ± e3) tangent to the light-cone are combined with

the orthogonal pair ek , k = 1, 2 . The corresponding coordinates are usually

called (see, e.g. [21]) light-cone coordinates xµ =
(

x+, x−, x⊥
)

x
± :=

1
√

2

(

x
0 ± x

3
)

, x
⊥ := x

k
, k = 1, 2 .

The non-zero components of the metric are η+− = η−+ = −η11 = −η22 = 1 .

The connection one-form in the light-cone basis is given as

A := A+ dx
+ + A− dx

− + Ak dx
k
. (19)

By definition, the Lagrangian of light-cone Yang-Mills mechanics follows

from the corresponding Lagrangian of Yang-Mills theory if one supposes

that the components of the connection one-form A in (19) only depend on

the light-cone “time variable” x+

A± = A±(x+) , Ak = Ak(x
+) .

Substitution of this ansatz into the classical action (18) defines the La-

grangian of light-cone Yang-Mills mechanics

L :=
1

2g2
(F a

+− F
a
+− + 2F a

+k F
a
−k − F

a
12 F

a
12) , (20)
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where g is the “renormalized” coupling constant g2 = g
2
0/(Volume) and the

light-cone components of the field-strength tensor are given by

F
a
+− :=

∂Aa
−

∂x+
+ fabc

A
b
+A

c
− ,

F
a
+k :=

∂A
a
k

∂x+
+ fabc

A
b
+A

c
k ,

F
a
−k := fabc

A
b
−A

c
k ,

F
a
ij := fabc

A
b
i A

c
j , i, j, k = 1, 2 .

Therefore, (20) determines the SU(n) Yang-Mills light-cone mechanics as

4(n2−1)- dimensional system with configuration coordinatesA± , Ak evolv-

ing with respect to the light-cone time τ := x+.

The Legendre transformation

π
+
a :=

∂L

∂Ȧa
+

= 0 ,

π
−
a :=

∂L

∂Ȧa
−

=
1

g2

(

Ȧa
− + fabc

A
b
+A

c
−

)

,

π
k
a :=

∂L

∂Ȧa
k

=
1

g2
fabc

A
b
−A

c
k

gives the canonical Hamiltonian

HC =
g2

2
π
−
a π

−
a − fabc

A
b
+

(

A
c
− π

−
a + A

c
k π

k
a

)

+
1

2g2
F

a
12F

a
12 . (21)

The non-vanishing Poisson brackets between the fundamental canonical

variables are

{Aa
± , π

±
b } = δ

a
b , {Aa

k , π
l
b} = δ

l
kδ

a
b .

The Hessian of the Lagrangian system (20) is degenerate, det || ∂2L

∂Ȧ∂Ȧ
|| =

0, and as a result there are primary constraints whose computation by the

algorithm of Section 3.1 gives

ϕ
(1)
a := π

+
a = 0 , (22)

χ
a
k := g

2
π

a
k + fabc

A
b
−A

c
k = 0 . (23)
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The non-vanishing Poisson brackets between these constraints are

{χa
i , χ

b
j} = 2fabc

ηijA
c
− .

According to the Dirac prescription, the presence of primary constraints

affects the dynamics of the degenerate system. Now the generic evolution

is governed by the total Hamiltonian

HT := HC + Ua(τ)ϕ
(1)
a + V

a
k (τ)χa

k ,

where the Lagrange multipliers Ua(τ) and V a
k (τ) are unspecified func-

tions of the light-cone time τ . Using this Hamiltonian the dynamical

self-consistence of the primary constraints may be checked. From the re-

quirement of conservation of the primary constraints ϕ(1)
a it follows that

0 = ϕ̇
(1)
a = {π+

a , HT} = fabc
(

A
b
−π

−
c + A

b
kπ

k
c

)

. (24)

Therefore, there are three secondary constraints ϕ(2)
a

ϕ
(2)
a := fabc

(

A
b
−π

−
c + A

b
kπ

k
c

)

= 0 (25)

which obey the SU(n) algebra

{ϕ(2)
a , ϕ

(2)
b } = fabc ϕ

(2)
c .

The same procedure for the primary constraints χa
k gives the following

self-consistency conditions

0 = χ̇
a
k = {χa

k , HC} − 2 g2 fabc
V

b
k A

c
− .

A further issue, the identification of the first class constraints among the

primary constraints χa
k, depends on the rank of the structure group. Below

we specify to the simplest special unitary group of rank one.
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4.1 The SU(2) structure group

Here we present the results of our computations performed for the case

of SU(2) algebra where the structure constants are given by the totally

antisymmetric three dimensional Levi-Civita symbol, fabc = ǫ
abc
.

Constraints and their separation. Computation of the complete set of con-

straints, as described in Section 3.2, gives nine primary constraints ϕ(1)
a , χ

a
k

and three secondary constraints ϕ(2)
a , in accordance with (22) and (25).

Performing the separation of the primary constraints (23) we find two ad-

ditional first-class constraints

ψk := A
a
−χ

a
k ,

and four second class constraints

χ
a
k⊥ := χ

a
k −

(

Ab
−χ

b
k

)

Aa
−

(A1
−)2 + (A2

−)2 + (A3
−)2

.

The new first class constraints ψi are abelian, {ψi , ψj} = 0 , and also have

zero Poisson brackets with all other constraints, while the second class

constraints χa
k⊥ have the following non-zero Poisson bracket relations

{χa
i⊥ , χ

b
j⊥} = 2 g2

ǫ
abc
A

c
− δij ,

{ϕ(2)
a , χ

b
k⊥} = ǫ

abc
χ

c
k⊥ .

Summarizing, there are 8 first-class constraintsϕ(1)
a , ψk, ϕ

(2)
a and 4 second-

class constraints χa
k⊥.

Generator of local symmetry transformations. The presence of two first

class constraints ψi raises the question of the existence of new local sym-

metries as well as the expected SU(2) gauge symmetry. To clarify this

point we construct the corresponding generator of local symmetry trans-

formation following Section 3.2. We start from the expression

G =
3∑

a=1

ε
(1)
a ϕ

(1)
a +

2∑

i=1

ηiψi +
3∑

a=1

ε
(2)
a ϕ

(2)
a , (26)
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with the eight light-cone time-dependent functions ε(1)
a (τ), ε(2)

a (τ) and ηi(τ) ,

then compute the functions ρ (see eq. (14)). Equation (16) reads now as
(

ε̇
(2)
a + ε

(1)
a − ǫabcε

(2)
b A

c
+ − ηiA

a
i

)

φ
(2)
a

Σ1= 0 .

Therefore expressing ε(1)
a in terms of the functions ε(2)

a , the generator of

local transformation takes the final form

G =
(

−ε̇(2)
a + ǫabcε

(2)
b A

c
+ + ηiA

a
i

)

φ
(1)
a + ηiψi + ε

(2)
a φ

(2)
a . (27)

Analyzing the changes of the canonical coordinates Aa and πa generated

by (27) we find that the abelian subgroup of the 5-parameter local sym-

metry is in some sense “inherited” from the rigid conformal symmetry of

initial Yang-Mills theory. But now, instead of the conformal symmetry, the

light-cone SU(2) Yang-Mills mechanics has the SL(2, R) dynamical group

of symmetry. Moreover, the group action is accompanied by the abelian

transformations generated by two constraints ψi . A detailed discussion of

this symmetry realization will be given elsewhere.

Hamiltonian reduction to unconstrained system. Now that we have the

generator of local transformation, we can address the question of finding a

set of suitable coordinates part of which represent the invariants of these

transformations. Solving this problem will let us project our system onto

the constraint manifold and thus determine the unconstrained Hamiltonian

system. We refer for details to [15], and here present the set of correspond-

ing singlet variables (as an example of the solution of the second part

of (Issue III ). We also give a result of subsequent implementation of a

Hamiltonian reduction (Issue IV) of the “redundant” degrees of freedom

associated to the symmetries generated by constraints ϕ(1)
a , ϕ(2)

a and ψa.

Let us pass to a matrix notation: the 3 × 3 matrix Aab whose entries

of the first two columns are Aa
i and the third column is composed by the

elements Aa
−. Now one can verify that the elimination of local degrees of

freedom associated with the three constraints ϕ(2)
a can be achieved by using

the polar representation [22]

A = OS
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where S is a positive definite 3 × 3 symmetric matrix and the orthogonal

matrix O is parameterized by three Euler angles. It turns out that these

three angles represent the pure gauge degrees of freedom corresponding to

the constraints ϕ(2)
a .

To find the gauge degrees connected with the remaining two abelian

constraints ψ1 , ψ2 one can pass to a principal axes representation for the

symmetric matrix S

S = R
T diag (q1 , q2 , q3) R

with the orthogonal matrix R(χ1, χ2, χ3) given in terms of the Euler angles

(χ1, χ2, χ3). Now again it turns out that the two angles χ1 and χ2 are pure

gauge degrees of freedom.

Solving for the remaining second class constraints χa
i ⊥ leads to an uncon-

strained system which represents a free particle or, considering the complex

solutions to the second class constraints, to a more interesting model, the

so-called conformal mechanics. In this case the diagonal variable q1 and the

angular variable χ3 together with the corresponding conjugate momenta

p1 and pχ3
are two unconstrained canonical pairs and their dynamics is

governed by the reduced Hamiltonian

H =
g2

2



p
2
1 +

p2
χ3

4

1

q2
1



 , (28)

which is a projection of the canonical Hamiltonian (21) to the constraints

shell. Finally, noting that pχ3
is a constant of motion, the Hamiltonian (28)

coincides with the Hamiltonian of conformal mechanics with the coupling

constant p2
χ3
/4 .

5 Concluding comments

In this paper we have raised several issues for a constrained mechanical sys-

tems which require computational realization. We described how using the

Gröbner basis technique the computation and separation of the complete
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set of constraints as well as the construction of the local gauge transforma-

tions can be achieved in degenerate mechanical models whose Lagrangians

are polynomials in coordinates and velocities. The remaining challenges,

namely, the construction of a basis for singlet (gauge-invariant) variables as

well as the subsequent Hamiltonian reduction still needs algorithmisation.

However, a first step in this direction also has been performed. In systems

with first-class constraints the configuration space should be factorized by

the local symmetry group in order to find a gauge invariant basis. The in-

finitesimal structure of a local symmetry group is encoded in the generator

of gauge transformations, and we have shown that its construction allows

an effective algorithmisation.

As an example of the effectiveness of the proposed algorithms light-cone

Yang-Mills mechanics with the SU(2) structure group was analysed in de-

tails: we determined and separated constraints, constructed a local invari-

ance transformation and found the equivalent unconstrained Hamiltonian

system.

For the SU(2) light-cone mechanics the computations with our imple-

mentation in Maple 10, which is an improved and extended version of that

given in [12], takes about 1 minute on a machine with a 1.7 GHz processor.

This uses the standard Gröbner package in the Maple library. Unfortu-

nately, recent extensions of the Maple Gröbner bases facilities with the

packages Gb and Fgb developed by J.C. Faugère [23] do not improve on

the standard package. Gb is slower for our problems while Fgb cannot deal

with the parametric coefficients. For the same reason we cannot use our

software GINV [24] to implement the involutive algorithms [14] for invo-

lutive or/and Gröbner bases. Manipulation with parametric coefficients is

essential for the Dirac formalism due to the presence of physical parameters

(e.g. masses, coupling constants) in the initial Lagrangian, the Lagrange

multipliers in the total Hamiltonian (4) and the time-dependent functions

in the generator (12) of local symmetry transformations.

Consideration of light-cone mechanics with n ≥ 3 is under current study.

Here we note only that a recent paper [25] on geodesic motion on the
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SU(3) group provides us with a useful parametrization suitable for this

investigation.
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University Press, 1998.

[12] Gerdt V.P. and Gogilidze S.A.: Constrained Hamiltonian Systems and Gröbner
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The Electrodynamics of Charged Continua
1
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Abstract

The dynamic behaviour of a distribution of charged particles is explored in terms of a self-

permeable continuum model interacting self-consistently with the Maxwell field in vacuo.

The model is developed using intrinsic tensor field theory and exploits to the full the

relativistic structure of Minkowski spacetime. The model predicts the dynamic formation

of domains that separate multi-component currents. To determine the location of such

domains one is confronted with a new type of electrodynamic problem in which the num-

ber of charged current components is indefinite and the state of a finite bunch of charge

may approach a highly mixed configuration reminiscent of turbulence. In this paper a

formalism is established to describe such a multi-component system in terms of a flow

map between 4−manifolds. This map inter-relates a complex Euler description of elec-

trodynamics on spacetime with a computational Lagrangian scheme on a 4-dimensional

body-time manifold, the domain of the flow map.

Keywords: Maxwell, Charged Fluid, Multi-component Currents, Relativistic Dynam-

ics, Self-permeable, Charged Bunches, Accelerator Science, Fields over maps, Lagrangian

picture.

1 Introduction

Modern theories regard matter as being composed of interacting particles.

A fruitful way to formulate these interactions is in terms of fields whose

sources are related to the particles themselves [1], [2]. In most classical

and quantum descriptions the fields and sources are sections of bundles

over spacetime that fulfil the requirements placed on them by physical

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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laws compatible with observation. Although the notion of a point particle

is probably no more than a convenient idealisation in classical physics it

forms the conceptual basis of many models of charged sources in electrody-

namics [3], [5]. However the physical laws of electrodynamics sit uneasily

in such a framework and require awkward manoeuvres to eliminate the

self-interaction effects attributed to the fields produced by particles act-

ing on themselves [4]. Models of matter that adopt charged continua as

fundamental concepts can evade these issues [6], [7]. They have the advan-

tage that notions of continuity and differentiability can then be controlled

mathematically in the field equations that determine the dynamics of such

continua. Furthermore by regarding the motion of charged continua as a

subset of spacetime on which a smooth 4-velocity vector field is defined [8],

the notion of a particle history can be recovered by identifying it with a

particular parameterised integral curve of such a vector field. The distri-

bution of integral curves can be specified by a measure (the proper charge

density) obtained in principle by solving Maxwell’s equations in conjunc-

tion with a force law based on the vanishing of the divergence of the total

stress-energy-momentum tensor of the complete system.

Although this program leads to a well defined differential system for the

electromagnetic fields, source density and velocity field it is rare that initial

conditions exist leading to a smooth vector field on spacetime. The exis-

tence of crossing integral curves after a finite time means that the premise

on which the model is based breaks down. This is a common occurrence in

many fluid models for flow fields. In neutral gas dynamics such occurrences

are identified with the formation of shocks and appeal is made to dissipa-

tive effects to ameliorate singularities that arise as a result. Although

energy dissipation can arise in many dynamic configurations of charged

continua appeal to a similar amelioration is not available for systems con-

trolled solely by electrodynamic forces and a new physical scenario must

be accommodated in the model.

The approach adopted here is to regard a charged continuum subject to

purely electrodynamic forces as a self-permeable structure that permits
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self-penetration. It may be described as the continuum limit of a collec-

tion of dynamically interacting but non-colliding particles. Alternatively

it may be regarded as a multi-component continuum described by a collec-

tion of vector fields on subsets of spacetime that have supports determined

by the global dynamics of the entire system. At the interface of such sub-

sets the measure describing the smooth source proper charge density may

density. To determine the location of and interaction between these lower

dimensional sources means that one is confronted with a new type of elec-

trodynamic problem in which the number of charged current components

is indefinite and the state of a finite bunch of charge may approach a highly

mixed configuration reminiscent of turbulence.

In this paper a formalism is established to describe such a multi-component

system in terms of a flow map whose properties follow from a generalisation

of the single component scheme outlined above. This map inter-relates a

complex Euler description of electrodynamics on spacetime with a compu-

tational Lagrangian scheme on a 4-dimensional body-time manifold, the

domain of the flow map.

2 Fields over maps

To establish notation the reader is reminded about the notion of a section

over a map. Let φ : B → M be a continuous map between manifolds B

and M (assumed orientable), and let πE : E → M be a bundle over M.

The notation

f ∈ Γ(φ, E)

means that

f : B → E and πE ◦ f = φ (1)

i.e. the following diagram commutes
E

π
E

��

B

f
>>

|
|

|
|

|
|

|
| φ

// M

(2)
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The map f may be referred to as a section of E over φ or an E field over

φ. Scalar fields over B may also be regarded as scalar fields over φ i.e.

ΓΛ0B = Γ(φ, Λ0M) (3)

where ΛpM is the bundle of exterior p−forms over M and in general ΓE

denotes the space of sections of E .

Let M be (Minkowski) 4−dimensional spacetime with metric tensor g and

associated Hodge map ⋆. The canonical measure on M is taken as ⋆1. A

general point in M will be written p ∈ M. Denote B = R ×B as the four

dimensional body-time manifold, where B is a three dimensional oriented

body manifold. A general point in B will be written P = (τ, P ) ∈ B. Since

B = R × B, there exist projection maps

τ : B → R , τ(τ ′
, P ) = τ

′ (4)

and

π : B → B , π(τ ′
, P ) = P (5)

These give rise to a preferred vector field T ∈ ΓTB which may be written

T = ∂τ (6)

The model under consideration is constructed in terms of two fundamental

fields: the flow field

C : B → M (7)

and the electromagnetic field

F ∈ ΓΛ2M, (8)

each assumed to be continuous with degrees of differentiability as required.
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3 Generic and Critical points

In general the flow map C : B → M is assumed neither surjective (onto)

nor injective (one-to-one). As a result, for any point p ∈ M, there may

exists none, one, many or even an infinite number of roots P ∈ B which

solve the equation C(P ) = p. The set inverse of C is defined as

C
−1(U) =

{
P ∈ B

∣
∣ C(P ) ∈ U

}
for U ⊂ M (9)

Thus

C
−1({p}) =

{
P ∈ B

∣
∣ C(P ) = p

}
(10)

Let the function N : M → {0, 1, 2, . . .} ∪ {∞} ,

N(p) = number of elements of C
−1({p}) (11)

be the number of roots of C. If the number of roots is finite write

C
−1({p}) =

{
P[1], . . . , P[N(p)]

}
(12)

Square bracketed subscripts are used to label the roots and any structure

associated with the root P[i].

Let p ∈ M and
{
P[1], . . . , P[N(p)]

}
= C−1({p}) with 0 < N(p) < ∞. The

point p is said to be generic if there exist open disjoint neighbourhoods

UB
[1], . . . , U

B
[N(p)] ⊂ interior(B) and UM ⊂ M such that P[i] ∈ UB

[i], p ∈ UM,

N(p)
⋃

i=1

U
B
[i] = C

−1(UM) (13)

and such that the maps

C[i] = C|UB

[i]
: U

B
[i] → U

M (14)

are diffeomorphisms, i.e. C[i] is differentiable and invertible and C
−1
[i] is

differentiable.
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For p ∈ M such that N(p) = 0, p is defined as generic if N is continuous

at p. Recall that for integer valued functions, being continuous at a point

is equivalent to being constant about that point.

It may be shown that a point p ∈ M is generic if and only if it obeys the

following four conditions

• The set
{
P[1], . . . , P[N(p)]

}
= C

−1({p}) is finite (15)

• The Jacobian of C at P[i]) 6= 0 (16)

• P[i] 6∈ ∂B (17)

• N : M → {0, 1, 2, . . .} ∪ {∞} is continuous at p (18)

All points which are not generic are called critical. Denote the set of all

critical points p ∈ M by Mcrit and the set of all generic points p ∈ M by

Mgen. From the definition of generic points the function N is continuous

on Mgen but in general is not continuous on M. For a given neighbourhood

UM, all p′ ∈ UM have the same number of pre-images, N(p′), so N(UM) =

N(p′) can be defined. The point P ∈ B will be called critical if it is the

pre-image of a critical point p ∈ M . Thus

P is critical in B if C(P ) is critical in M (19)

yielding the corresponding sets Bcrit and Bgen. The sets Mgen ⊂ M and

Bgen ⊂ B are open sets and Mcrit ⊂ M and Bcrit ⊂ B are closed sets.

4 Differential equations for the flow field

The map (7) and the preferred vector field T give rise to the vector valued

map

Ċ ∈ Γ(C, TM) ; Ċ(P ) = C⋆(T |P ) ∈ TC(P )M (20)

This is the push forward, under C⋆, of the vector TP = T |P ∈ TPB to the

tangent fibre TC(P )M. In terms of coordinate maps (xµ
, ẋ

µ) for TM the

field Ċ over C is given by

x
µ(Ċ(P )) = x

µ(C(P )) and ẋ
µ(Ċ(P )) = TP (xµ ◦ C) (21)
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The field C also gives rise to a collection of curves given by

CP : R → M for P ∈ B , CP (τ) = C(τ, P) (22)

The total derivative of CP is given by

ĊP ∈ Γ(CP , TM) , ĊP (τ ′) =
dCP

dτ
(τ ′) = CP ⋆(∂τ |τ ′) = Ċ(τ ′

, P ) (23)

The coordinate τ is chosen so that Ċ is a unit timelike field

g(Ċ, Ċ) = −1 (24)

Furthermore let it be related to the Maxwell 2-form F on M by the equa-

tion of motion

∇ĊĊ = ĩĊF (25)

where for any vector field X on M, the 1−form X̃ ≡ g(X,−).

The above yields an ordinary differential system for the curves CP given

by

∇ĊP
ĊP = ĩĊP

F (26)

In the coordinates (xµ
, ẋ

µ) on TM this becomes

C̈
µ
P (τ) + Γµ

αβ(p)Ċα
P (τ)Ċ

β
P (τ) = F

µα(p)Ċ
β
P (τ)gαβ(p) (27)

where p = C(τ, P), C
µ
P (τ) = xµ(CP (τ))

Ċ
µ
P (τ) = ẋ

µ(CP (τ)) =
dC

µ
P (τ)

dτ
, C̈

µ
P (τ) =

dĊ
µ
P (τ)

dτ
=

d
2
C

µ
P (τ)

dτ 2

and where Γµ
αβ(p) denote the coordinate components of the Levi-Civita

connection ∇ at p.
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5 Proper Charge Density and the map ∆

A Lagrangian current 3-form J on B will be identified with a measure

(non-vanishing 3−form) J ∈ ΓΛ3B on B

J = π
⋆J ∈ ΓΛ3B (28)

This induces a natural measure on B given by

dτ ∧ J ∈ ΓΛ4B (29)

Note that dJ = dπ⋆J = π⋆dJ = 0 and iT J = iT π⋆J = π⋆iπ⋆T J = 0.

The measure (29) enables us to define the map ∆ related to the Jacobian

of the flow field C

∆ ∈ ΓΛ0B = Γ(φ, Λ0M) , ∆ dτ ∧ J = C
⋆(⋆1) (30)

Furthermore since τ is used to define the unit timelike field C⋆T this can be

identified as the inverse of the partial proper charge density scalar, given

by

ρ : B → R ∪ {∞} , ρ =
1

|∆|
(31)

It will be shown below that the pull back by C of iĊ ⋆ 1 is the pull back

by C of the total electric current 3−form ⋆J̃ on M. Regions on B where

∆ = 0 and hence ρ = ∞ may be identified with loci having a finite surface

or line charge density.

6 Example

Before considering a coupled problem in which the flow field depends on

F through Maxwell’s equations it is of interest to examine an artificial but

non-trivial flow field that exhibits features that may be expected to arise

in the coupled situation.
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Let B = I × R2 with coordinates (σ, Y, Z), where σ ∈ I ⊂ R is the

closed-open interval I = {σ|0 ≤ σ < 1}. This interval will demonstrate

the various types of critical points that can arise2. Let spacetime M have

Cartesian coordinates (t, x, y, z) with metric g = −dt⊗dt+dx⊗dx+dy⊗

dy + dz ⊗ dz and choose the measure on B to be

J = K(σ)dσ ∧ dY ∧ dZ (32)

where K(σ) > 0. Define the flow map by

(t, x, y, z) = C(τ, σ, Y, Z) = (t̂(τ, σ), x̂(τ, σ), Y, Z)

where t̂(τ, σ) = sinh τ + σ , x̂(τ, σ) = cosh τ
(33)

The map ∆ then follows from

∆ dτ ∧ π
⋆J = ∆ dτ ∧ K(σ)dσ ∧ dY ∧ dZ = C

⋆(⋆1)

= (cosh τ dτ + dσ) ∧ (sinh τ dτ) ∧ dY ∧ dZ

Hence

∆ = −
sinh τ

K(σ)
and ρ =

K(σ)

|sinh τ |
(34)

The map C possesses various types of critical points which may be written

Mcrit = Mdegen
crit ∪Mclosed

crit ∪Mopen
crit

The set Mdegen
crit correspond to the points where ∆ = 0 i.e. τ = 0 and hence

x = 1:

Mdegen
crit =

{
(t, x, y, z) ∈ M

∣
∣ x = 1 and 0 ≤ t ≤ 1

}

The set Mclosed
crit is the image of ∂B = {(τ, 0) ∈ B}

Mclosed
crit =

{
(t, x, y, z) ∈ M

∣
∣x

2 − t
2 = 1 and x ≥ 1

}

2 Domains of this type are useful to accommodate fields which would otherwise have singularities in their
domains of definition.
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Bdegen
crit Mdegen

crit

Bclosed
crit Mclosed

crit

Bopen
crit Mopen

crit (Points not in B.)

Figure 1: Anatomy of B and M with the map C between them. Coordi-

nates Y, Z and y, z are suppressed.

The set Mopen
crit must include the remaining critical points, i.e. those points

where N changes but which are not in Mdegen
crit or Mclosed

crit .

Mopen
crit =

{

lim
σ→1

(C(τ, σ, Y, Z))
∣
∣τ, Y, Z ∈ R

}

=
{
(t, x, y, z) ∈ M

∣
∣x

2−(t−1)2=1 and x≥1
}

Some of the points in Mopen
crit have pre-images (e.g. given by Bopen

crit below)

while others do not. All critical points in Mcrit are indicated on the right

of figure 1.

The generic points Mgen are then the remaining open sets. There are 5

disconnected components of Mgen shown in figure 1 labelled

Mgen = U
M
[0,left] ∪ U

M
[0,right] ∪ U

M
[1,low] ∪ U

M
[1,high] ∪ U

M
[2,cent]
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The number in each case refers to the number of pre-images.

U
M
[2,cent] =

{

(t, x, y, z) ∈ M
∣
∣x <

√

1 + t2 , x <

√

1 + (t − 1)2 ,

x > 1 and 0 < t < 1
}

,

U
M
[0,left] =

{

(t, x, y, z) ∈ M
∣
∣x <

√

1 + t2 ,

x <

√

1 + (t − 1)2 and (t, x, y, z) 6∈ U
M
[2,cent]

}

,

U
M
[0,right] =

{

(t, x, y, z) ∈ M
∣
∣x >

√

1 + t2 , x >

√

1 + (t − 1)2
}

,

U
M
[1,high] =

{

(t, x, y, z) ∈ M
∣
∣x <

√

1 + t2 , x >

√

1 + (t − 1)2
}

,

U
M
[1,low] =

{

(t, x, y, z) ∈ M
∣
∣x >

√

1 + t2 , x <

√

1 + (t − 1)2
}

The critical points on B are given by

Bcrit = Bdegen
crit ∪ Bclosed

crit ∪ Bopen
crit

where

Bdegen
crit =

{
(τ, σ, X, Y ) ∈ B

∣
∣ τ = 0

}
,

Bclosed
crit =

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ = 0

}
∪

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ = −2 sinh τ

}
,

Bopen
crit =

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ = 1 − 2 sinh τ

}

These are shown on the left of figure 1. Thus the generic points of B are

given by

Bgen = U
B
[1,high] ∪ U

B
[1,low] ∪ U

B
[2,high] ∪ U

B
[2,low]

where

U
B
[1,high] =

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ > 1 − 2 sinh τ

}
,

U
B
[1,low] =

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ < −2 sinh τ

}
,

U
B
[2,high] =

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ < 1 − 2 sinh τ and τ > 0

}
,

U
B
[2,low] =

{
(τ, σ, X, Y ) ∈ B

∣
∣ σ > −2 sinh τ and τ < 0

}
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The diffeomorphisms from the components of Bgen to the components of

Mgen are given by

C[1,high] : U
B
[1,high] → U

M
[1,high] , C[1,low] : U

B
[1,low] → U

M
[1,low] ,

C[2,high] : U
B
[2,high] → U

M
[2,cent] , C[2,low] : U

B
[2,low] → U

M
[2,cent]

(35)

If the Maxwell field generated by sources defined by C is ignored one can

readily find a background electromagnetic field that generates this flow.

The C given in (33) obeys the equations of motion with a prescribed con-

stant electric field in the above frame. This follows since

Ċ(τ, σ) =
(
cosh τ ∂t + sinh τ ∂x

)∣
∣
C(τ,σ)

(36)

so that C generates a normalised timelike velocity field (24) and further-

more setting the prescribed (external) electromagnetic field to

Fext = dt ∧ dx (37)

confirms that

C̈|C(τ,σ) = (sinh τ ∂t + cosh τ ∂x

)
|C(τ,σ) = ˜iĊ(τ,σ)Fext

Thus C is a flow field in the background external electromagnetic field (37).

7 Equations for the electromagnetic field.

In the coupled situation, where there is no external applied electromagnetic

field on M then F in a domain containing generic points obeys Maxwell’s

equations

dF = 0 (38)

and

d ⋆ F = − ⋆ J̃ (39)
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with a current vector field J ∈ ΓTMgen. At a generic point p0 ∈ Mgen let

C[i] : UB
[i] → UM be the diffeomorphism given in (14). The partial current

J[i] associated with C is defined by

J[i] ∈ ΓTU
M

, J[i] =
(
ρ ◦ C

−1
[i]

)(
Ċ ◦ C

−1
[i]

)
(40)

that is for all p ∈ UM,

J[i]|p = ρ(P[i])Ċ(P[i]) where P[i] = C
−1
[i] (p) (41)

The total current J associated with C at all generic points is defined to be

the sum of the partial currents

J |UM =

N(UM)
∑

i=1

J[i] ∈ ΓTU
M (42)

The field F is then given at generic points by the Maxwell system above.

Continuity conditions of F must be used to define F at critical points.

For an equivalent definition of the partial current, let p ∈ Mgen, P[i] =

C
−1
[i] (p) and observe that from (30)

∆(P[i]) (dτ ∧ J )|P[i]
= C

⋆
P[i]

(⋆1)

where C⋆
P : Λ

q

C(P )M → Λ
q
PB is the pointwise pull back. Contracting with

iT |P
[i]

gives

∆(P[i])J |P[i]
= iT |P

[i]
C

⋆
P[i]

(⋆1) = C
⋆
P[i]

(iC[i]⋆(T |P
[i]

) ⋆ 1) = C
⋆
P[i]

(iĊ(P[i])
⋆ 1)

= C
⋆
P[i]

(⋆ ˜̇
C(P[i])) = C

⋆
P[i]

(

⋆
˜̇
C(P[i])ρ(P[i])

∣
∣∆(P[i])

∣
∣

)

= C
⋆
P[i]

(⋆J̃[i]|p)
∣
∣∆(P[i])

∣
∣

Since C[i] is a diffeomorphism, so that (C⋆
[i])

−1 = (C−1
[i] )⋆, one has the equiv-

alent form

⋆J̃[i]|p = sign(∆(P[i])) C
−1 ⋆
P[i]

(J |P[i]
) (43)

167



GIFT 2006

Since (43) is true for all p ∈ UM write (43) in terms of the pull back

C
−1 ⋆
[i] : ΓΛ3

U
B
[i] → ΓΛ3

U
M

⋆J̃[i]|UM = sign(∆|UB

[i]
) C

−1 ⋆
[i] (J ) (44)

d ⋆ J̃[i]|UM = sign(∆|UB

[i]
) dC

−1 ⋆
[i] (J ) = sign(∆|UB

[i]
) C

−1 ⋆
[i] (dJ ) = 0

hence at generic points

d ⋆ J̃ = 0 (45)

There is also an integral relation which inter-relates (39), (42) and (44).

Integral formulae offer a practical method to implement numerical discreti-

sations of the above dynamical equations.

If φ : B → M is a diffeomorphism, S ⊂ M a hypersurface of dimension s

and ω ∈ ΓΛsM, then the theory of integration gives

∫

S

ω = κ

∫

φ−1S

φ
⋆
ω (46)

where κ = 1 if φ
−1 preserves the orientation of S and κ = −1 otherwise.

Given a 3−dimensional spatial hypersurface S ⊂ M such that the set

S ∩Mcrit has measure zero let U
B
[i] be one of the open sets in (13). Then

from (46) and (44) the partial electric charge

Q[i][S ∩ U
M] =

∫

S∩UM

⋆J̃[i] = κ

∫

C−1

[i]
(S∩UM)

C
⋆
[i](⋆J̃[i])

= sign(∆|UB

[i]
)κ

∫

C−1

[i]
(S)∩UB

[i]

J |UB

[i]

Since Q[i][S ∩ U
M] cannot change sign under evolution one must choose

κ = sign(∆|UB

[i]
)
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and so

Q[i][S ∩ U
M] =

∫

C−1

[i]
(S)∩UB

[i]

J |UB

[i]
=

∫

C−1

[i]
(S)∩UB

[i]

J

Summing over all partial currents gives the total charge on S ∩ U
M

∫

S∩UM

⋆J̃ =

N(UM)
∑

i=1

∫

S∩UM

⋆J̃[i] =

N(UM)
∑

i=1

Q[i][S ∩ U
M] =

N(UM)
∑

i=1

∫

C−1

[i]
(S)∩UB

[i]

J

Since the disjoint union

N(UM)
⋃

i=1

(

C
−1
[i] (S) ∩ U

B
[i]

)

= C
−1(S ∩ U

M)

one has
∫

S∩UM
⋆J̃ =

∫

C−1(S∩UM) J . Taking the union of all the UM yields
∫

S∩Mgen
⋆J̃ =

∫

C−1(S∩Mgen) J and since S ∩Mcrit has measure zero
∫

S
⋆J̃ =

∫

C−1(S)

∫

∂S
⋆F =

∫

S
d ⋆ F = −

∫

S
⋆J̃ . Hence

∫

∂S

⋆F = −

∫

C−1(S)

J (47)

This is a global identification of the total electric charge (associated with C)

with the integral of ⋆F over a regular 3−dimensional spacelike hypersurface

S ⊂ M.
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8 Example Continued

It is of interest to compute from Maxwell’s equations the field F for the

flow field prescribed in the example in section 6 above. This of course

ignores the back reaction of the electromagnetic field on the source which

is taken into account in the fully coupled system.

The inverses of the maps (35) are given by

C
−1
[1,high](t, x, y, z) = (τ = arccosh(x), σ = t −

√

x2 − 1, Y = y, Z = z) ,

C
−1
[1,low](t, x, y, z) = (τ = −arccosh(x), σ = t +

√

x2 − 1, Y = y, Z = z) ,

C
−1
[2,high](t, x, y, z) = (τ = arccosh(x), σ = t −

√

x2 − 1, Y = y, Z = z) ,

C
−1
[2,low](t, x, y, z) = (τ = −arccosh(x), σ = t +

√

x2 − 1, Y = y, Z = z)

(48)

The partial current J[2,high] ∈ ΓTU
M
[2,cent] is given by (41), (48), (34) and

(36) as

J[2,high]|(t,x,y,z)

=ρ(τ, σ, Y, Z)Ċ(τ, σ, Y, Z)

=ρ(arccosh(x), t−
√

x2 − 1, Y, Z)Ċ(arccosh(x), t−
√

x2 − 1, Y, Z)

=
K(t −

√
x2 − 1)

sinh(arccosh(x))
(cosh(arccosh(x))∂t + sinh(arccosh(x))∂x)

=K(t−
√

x2 − 1)

(
x

√
x2 − 1

∂t + ∂x

)

and likewise J[2,low] ∈ ΓTUM
[2,cent] is given by

J[2,low]|(t,x,y,z) =K(t +
√

x2 − 1)
(

x√
x2−1

∂t − ∂x

)

.

Also J[1,high] ∈ ΓTUM
[1,high] is J[1,high]|(t,x,y,z) =K(t−

√
x2 − 1)

(
x√

x2−1
∂t + ∂x

)

and J[1,low] ∈ ΓTU
M
[1,low] is J[1,low]|(t,x,y,z) = K(t +

√
x2 − 1)

(
x√

x2−1
∂t − ∂x

)

.
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Summing the partial currents in the five domains of Mgen gives

J |(t,x,y,z) =







K(t −
√

x2 − 1)
(

x√
x2−1

∂t + ∂x

)

+

K(t +
√

x2 − 1)
(

x√
x2−1

∂t − ∂x

)

if (t, x, y, z) ∈ U
M
[2,cent]

K(t −
√

x2 − 1)
(

x√
x2−1

∂t + ∂x

)

if (t, x, y, z) ∈ UM
[1,high]

K(t +
√

x2 − 1)
(

x√
x2−1

∂t − ∂x

)

if (t, x, y, z) ∈ UM
[1,low]

0 if (t, x, y, z) ∈ UM
[0,left]

0 if (t, x, y, z) ∈ U
M
[0,right]

Maxwell’s equations (38) and (39) are solved with

F = E(t, x)dt ∧ dx (49)

where

E(t, x) =







k(t +
√

x2 − 1) − k(t −
√

x2 − 1) + E−∞ if (t, x, y, z) ∈ U
M
[2,cent]

k(t +
√

x2 − 1) + E−∞ if (t, x, y, z) ∈ U
M
[1,high]

k(1) − k(t −
√

x2 − 1) + E−∞ if (t, x, y, z) ∈ UM
[1,low]

E−∞ if (t, x, y, z) ∈ UM
[0,left]

E = k(1) + E−∞ if (t, x, y, z) ∈ U
M
[0,right]

with

k(σ) =

∫ σ

0

K(σ)

and E−∞ is a constant.

9 The Spherically Symmetric Coupled System

In this section the coupled system (24), (25), (38), (39) is explored where

(40) and (42) define the dynamic sources. A spherically symmetric distri-

bution of charge is considered to simplify the analysis. In spacetime M
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with standard spherical coordinates (t, r, θ, φ) and metric g = −dt ⊗ dt +

dr ⊗ dr + r2dθ ⊗ dθ + r2(sin θ)2dφ ⊗ dφ, write the electromagnetic field

F |(t,r,θ,φ) =
Q(t, r)

r2
dt ∧ dr (50)

for all (t, r, θ, φ) ∈ M with r > 0.

Let B = I × S
2 where I ⊆ R+, with coordinates (σ, Θ, Φ). By spherical

symmetry the solution can be described in terms of fields on and maps

between 2-dimensional manifold. These will be shown in bold font.

Let B = R × I, coordinated by (τ, σ), be the projected body-time man-

ifold and M = R × R+ coordinated by (t, r) be the projected spacetime

manifold.

Let π : B → I be the projection and J ∈ ΓΛ1I be the choice of measure,

so that dτ ∧ J ∈ ΓΛ2B is a measure on B where J = π⋆J .

On M the induced metric is g = −dt⊗ dt+ dr⊗ dr. This induces the flat

Levi-Civita connection ∇ and Hodge map ⋆ with ⋆1 = dt ∧ dr.

The projected flow map is

C : B → M ; C(τ, σ) = (t̂(τ, σ), r̂(τ, σ)) (51)

Thus the 4-dimensional spherically symmetrical flow map C is given by

t ◦ C(τ, σ, Θ, Φ) = t̂(τ, σ) , r ◦ C(τ, σ, Θ, Φ) = r̂(τ, σ) ,

θ ◦ C(τ, σ, Θ, Φ) = Θ and φ ◦ C(τ, σ, Θ, Φ) = Φ
(52)

Substituting (50) and (52) into the equations of motion (24) and (25) yields

g(Ċ, Ċ) = −1 (53)

∇Ċ

˜̇
C|(τ,σ) =

Q(C(τ, σ))

r̂(τ, σ)2
⋆

˜̇
C(τ, σ) (54)

where

Ċ(τ, σ) = C⋆(∂τ |(τ,σ)) ∈ Γ(C, TM) (55)
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Here (53) is an equation over ΓΛ0B and (54) is an equation over Γ(C, TM).

In terms of the component maps t̂σ(τ) = t̂(τ, σ) and r̂σ(τ) = r̂(τ, σ), (54)

gives the ordinary differential system

¨̂
tσ(τ) =

Q(t̂σ(τ), r̂σ(τ))

r̂σ(τ)2
˙̂rσ(τ) and ¨̂rσ(τ) =

Q(t̂σ(τ), r̂σ(τ))

r̂σ(τ)2
˙̂
tσ(τ) (56)

where ˙= d/dτ .

Maxwell’s equations yield on M

dQ =

N(p)
∑

i=1

C−1 ⋆
[i] (J ) (57)

For a spherically symmetric charge distribution, the integral representation

(47) reduces to

∫

∂S

Q =

∫

C−1(S)

J (58)

where S ⊂ M is a curve and ∂S are its end points.

For (t, r) ∈ M let S(t, r) = {(t, r′) ∈ M | 0 < r
′
< r} then

Q(t, r) −Q(t, 0) =

∫

C−1(S(t,r))

J

S(t, r) represents a spherically symmetric ball of radius r at time t. Since

J is closed in regular domains Q(t, 0) = Q0 must be independent of t and

hence

Q(t, r) =

∫

C−1(S(t,r))

J + Q0 (59)

If Q0 is non zero one has a point charge fixed at the centre of the ball. For

currents that are smooth in regular domains Q0 = 0. Since (59) involves a

field E at time t one must express (56) as a system of o.d.e’s with evolution
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parameter t. Since Ċ is required to be unit future timelike, t̂σ is strictly

increasing so set

τ̌σ = (t̂σ)
−1 and řσ = r̂σ ◦ τ̌σ (60)

Then, with ′ = d/dt

˙̂
tσ(τ̌σ(t)) =

1

τ̌ ′
σ(t)

,
¨̂
tσ(τ̌σ(t)) = −

τ̌ ′′
σ (t)

(τ̌ ′
σ(t))

3
,

˙̂rσ(τ̌σ(t)) =
ř
′
σ(t)

τ̌ ′
σ(t)

and ¨̂rσ(τ̌σ(t)) =
ř
′′
σ(t)

(τ̌ ′
σ(t))

2
−

ř
′
σ(t)τ̌

′′
σ (t)

(τ̌ ′
σ(t))

3

(61)

and substituting (61) into (56) yields ordinary differential equations for

τ̌σ(t) and řσ(t). These equations involve Q so must be solved in conjunction

with (59). To express (59) in terms of τ̌σ(t) and řσ(t) observe that

C−1(S(t, řσ(t))) =
{
(τ, σ′)

∣
∣t̂σ′(τ) = t and r̂σ′(τ) < řσ(t)

}

=
{
(τ̌(t), σ′)

∣
∣řσ′(t) < řσ(t)

}

and, since π is injective on the set
{
(τ̌(t), σ′)

∣
∣řσ′(t) < řσ(t)

}

∫

C−1(S(t,řσ(t)))

J =

∫

{(τ̌ (t),σ′)|řσ′ (t)<řσ(t)}

J =

∫

π{(τ̌ (t),σ′)|řσ′ (t)<řσ(t)}

π−1⋆(J )

=

∫

{(σ′)|řσ′ (t)<řσ(t)}

J

Therefore

Q(t, řσ(t)) =

∫

{σ′|řσ′(t)<řσ(t)}

J + Q0 (62)
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Figure 2: History of a spherically symmetric Gaussian ball of charge

evolving from rest. The discretisation used σi = i/40, i = 1 . . . 40, with

Qi = 0.05 exp(−(5σi)
2), Q0 = 0, tλ = λ/20, λ = 0 . . .40. τ̌i(t0) = 0,

τ̌
′
i(t0) = 1, ři(t0) = σi and ř

′
i(t0) = 0. Evidence for the multi-component

nature of the evolution is clearly visible as charge initially closer to the

centre overtakes more slowly moving charge in the expanding ball. The

curve furthest left, at r = 0.025, is vertical since it corresponds to the

innermost discretised shell inside of which there is no charge.

Equations (56), (61) and (62) can now be integrated numerically by dis-

cretising σ and t. Discretise I by choosing σ′
0 < σ1 < σ′

1 < σ2 < σ′
2 < · · · <

σm < σ′
m ∈ I with σ′

0 = inf(I) and σ′
m = sup(I). Let

Qi =

∫ σ′

i

σ′

i−1

J

Furthermore, since Q(t, r) will change with t, the o.d.e system generated

from (56) and (61) will be integrated numerically in a series of time bands

given by t0 < t1 < · · · < tλ < · · · < tmax. This yields the curves τ̌i(t) ≈

τ̌σi
(t) and ři(t) ≈ řσi

(t) for some initial conditions for τ̌i(t0), τ̌
′
i(t0), ři(t0)

and ř′i(t0), where for each tλ and σi, Q(t, ř(t)) for the time interval tλ <

t < tλ+1 is replaced by

Qi(tλ) = Q0 +
∑

{j|řj(tλ)<ři(tλ)}

Qj
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10 Conclusion

A formalism has been established for the description of the motion of elec-

tric charge under the influence of both external and self electromagnetic

fields. The laws of classical covariant electrodynamics have been expressed

in terms of a flow map between a structured body-time manifold B and

Minkowski spacetime. By assuming that this map is not necessarily either

surjective or injective, distinct domains in spacetime may be associated

with possibly more than one pre-image in the body-time manifold. These

pre-images in turn give rise to a complex collection of electric currents that

determine the structure of the flow map via Maxwell’s equations. The total

proper charge density is a dynamic scalar related to the Jacobian of the

flow map and a Lagrangian measure on a 3−dimensional body manifold

on B.

A simple example of a non-trivial flow map is explicitly constructed corre-

sponding to the plane symmetric motion of charge in a prescribed constant

laboratory electric field. It is also demonstrated how Maxwell’s equations

are treated in the presence of a prescribed source corresponding to this

non-trivial flow map. Finally a fully coupled system is considered in terms

of the evolution of a spherically symmetric ball of charge from rest with

an initially smooth gaussian distribution of charge. The evolution is cal-

culated numerically by discretisising the coupled equations of motion and

Maxwell’s equations. The results of this simulation (figure 2) indicate that

the integral curves Cσ cross and that the initial crossing occurs within the

charge distribution. As expected the ball of charge explodes outward but

with some of the inner spheres of charge overlapping the outer ones. An in-

teresting feature of these solutions is that although F is continuous across

regions in spacetime where ∆ = 0 (and hence ρ = ∞) it is not in general

differentiable. This is a general property of solutions where the sources can

change discontinuously during the evolution of the coupled system.

The techniques established here have immediate application in accelerator

science particularly in devices where charged bunches with large laboratory

charge densities in ultra-relativistic motion are demanded [9]. They extend
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naturally to multi-component continua such as plasmas where the phenom-

ena of “wave breaking” in wake-field accelerators and bubble regimes may

benefit from an analysis in terms of relativistic flow maps with properties

analogous to those presented in this paper.
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Abstract

We consider the effective construction of δ-regular coordinates for polynomial ideals. Spe-

cial attention is given to quasi-stable ideals, i. e. monomial ideals possessing a Pommaret

basis. Finally, we show that δ-regularity for an ideal I is equivalent to quasi-regularity

for P/I (in the sense of Serre).

Keywords: polynomial ideal, Pommaret basis, δ-regularity, quasi-regularity

1 Introduction

Involutive bases [3, 5, 9] are a special kind of Gröbner bases [1] with ad-

ditional combinatorial properties. The underlying ideas originated in the

theory of differential equations. In particular, Pommaret bases are closely

related to the involution analysis of symbols in the formal theory of differ-

ential equations [11]. It is a well-known problem that a polynomial ideal

I possesses only in suitable, so-called δ-regular, coordinates a Pommaret

basis (note, however, that generic coordinates are δ-regular). In [10] it is

1 This work has been partially supported by GIFT (NEST project no. 5006 in the Sixth Framework
Programme of the European Union)
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shown that coordinates regular in this sense are very useful for a number

of applications; e. g. regular sequences or Noether normalisations of P/I

take a particularly simple form.

The traditional approach to obtain δ-regular coordinates consists of ap-

plying a random transformation (see e. g. [13] for a discussion in the con-

text of differential equations). This method has at least two disadvantages.

While random coordinates are δ-regular with probability 1, they still may

be singular. More importantly, random transformations usually destroy

any sparsity present in a basis of the ideal I making any subsequent com-

putation much more expensive.

In [8] we presented a deterministic solution for the related problem of

δ-regularity in partial differential equations based on a comparison of the

Janet and Pommaret multiplicative variables. Here we first adapt this

solution to polynomial ideals. Then we show that our criterion for singular

coordinates is closely related to the algebraic theory of a class of monomial

ideals studied by Bermejo and Gimenez [2]. Finally, we relate the theory

of Pommaret bases to Serre’s dual version of the Cartan test (see the letter

by Serre appended to [7]). We prove that Serre’s notion of quasi-regular

coordinates for the factor ring P/I coincides with δ-regularity for I.

2 Involutive Bases

Identifying the Abelian monoid (Nn
0 , +) with the set of terms x

µ in a poly-

nomial ring P = k[x1, . . . , xn] over a field k, we have the usual divisibility

relation: µ|ν if ν ∈ C(µ) := µ + Nn
0 . An involutive division is a rule L

(satisfying certain conditions, see [9] for details) restricting this relation

by assigning to each member µ of every finite subset N ∈ Nn
0 a set NL,N

of allowed (multiplicative) indices, resulting in restricted involutive cones

CL,N (µ) := µ + {ν | νi = 0 for i 6∈ N}. For this new relation, we write

µ|L,Nν if ν ∈ CL,N (µ) (µ involutively divides ν). In this article, we only

need the following two involutive divisions which we denote by P and J ,

respectively:
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Pommaret division :

NP,N (µ) := {i | i ≤ cls µ}, where clsµ := min{i | µi 6= 0}.2

Janet division:

NJ,N (µ) := {i | µi ≥ νi for all ν ∈ N withµj = νj for j > i}.

The (involutive) span 〈N 〉 (resp. 〈N 〉L) of N is the union of the (invo-

lutive) cones of its elements. N is (involutively) autoreduced, if no member

is contained in the (involutive) cone of another element. A finite subset

N̂ ⊂ 〈N〉 is a weak involutive basis of 〈N 〉, if 〈N̂ 〉L = 〈N 〉, and a (strong)

involutive basis, if furthermore N̂ is autoreduced. We refer to N̂ as a

(weak/strong) involutive completion of the set N , if N ⊆ N̂ . One can

show that to every finite set N there exists a Janet basis of 〈N 〉, but not

necessarily a Pommaret basis. By contrast, a basis minimal among all the

Pommaret bases of N is unique, whereas the same does not hold for the

Janet division.

While the definitions of the Pommaret and Janet division, respectively,

look very different, the two divisions are in fact closely related, as the

following result demonstrates.

Proposition 2.1 ([4]). Let the finite set N ⊂ Nn
0 be involutively autore-

duced with respect to the Pommaret division. Then NP (ν) ⊆ NJ,N (ν) for

all ν ∈ N .

An involutive basis N leads via the involutive cones to a disjoint de-

composition of the ideal I = 〈N 〉 as a k-linear space (a so-called Stanley

decomposition [12]). For many applications it is also of interest to decom-

pose the complement Ic := Nn
0 \I; both Janet and Pommaret bases induce

such complementary Stanely decompositions. In the latter case, we have

the following result.

2 This is independent of the set N , so we will drop the reference to it in the sequel.
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Proposition 2.2 ([10]). The monoid ideal I ⊆ Nn
0 possesses a weak Pom-

maret basis of degree q, if and only if the sets N̄0 = {ν ∈ Ic | |ν| < q} and

N̄1 = {ν ∈ Ic | |ν| = q} define the complementary decomposition

Ic = N̄0 ∪
⋃

ν∈N̄1

CP (ν) . (1)

The notion of an involutive basis can now be easily lifted to polynomial

ideals. Choosing a term order ≺ determines for each f ∈ P its leading

term lt≺f with leading exponent vector le≺f . Let F ⊂ P be a finite set.

Then we assign to each element f ∈ F the multiplicative variables

XL,F ,≺(f) = {xi | i ∈ NL,le
≺
F(le≺f)} ; (2)

the involutive span of F is then the set

〈F〉L,≺ =
∑

f∈F

k[XL,F ,≺(f)] · f ⊆ 〈F〉 . (3)

A polynomial g ∈ P is involutively reducible with respect to F , if it con-

tains a term xµ such that le≺f |L,le
≺
F µ for some f ∈ F ; g is involutively

head reducible, if x
µ = lt≺g in the previous definition. The set F is invo-

lutively autoreduced, if no polynomial f ∈ F contains a term xµ such that

another polynomial f
′ ∈ F \ {f} exists with le≺f

′ |L,le
≺
F µ; the definition

of involutively head autoreduced is similar. A finite set H ⊂ P is a weak

involutive basis of I for an involutive division L if le≺H is a weak involutive

basis of le≺I; it is a (strong) involutive basis, if le≺H is a strong involutive

basis of le≺I and no two elements of H have the same leading exponents.

As above, any finite set F can be completed to a Janet basis of 〈F〉, while

this is not necessarily true for Pommaret bases.

For the remainder of the article, all ideals I considered will be homo-

geneous. If M is a graded P-module, we write Mq for the homogeneous

component of degree q and M≥q :=
⊕

q′≥q Mq′ for the truncated module

(similar for M<q). As usual, we call Isat := I : 〈x1, . . . , xn〉 the saturation

of I.
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Remark 2.3. If a Pommaret basis H of the ideal I exists, then a number

of important invariants of the factor algebra P/I can be immediately read

off of H [10]:

• If degH := maxh∈H deg h = q, then the dimension D of the algebra

P/I is given by D = min {i | 〈H, x1, . . . , xi〉q = Pq} and {x1, . . . , xD}
is a maximal independent set modulo I (in fact, the complementary

Stanley decomposition of Proposition 2.2 yields at once the whole

Hilbert series of P/I).

• If clsH := minh∈H clsh = d (whith cls h := cls le≺h), then depthP/I
= d − 1 and (x1, . . . , xd−1) is a maximal regular sequence for P/I
(combined with the result above, this observation yields a simple

proof of the well-known Hironaka criterion for Cohen-Macaulay rings).

• If ≺ is the degree reverse lexicographic order3, then degH equals

the Castelnuovo-Mumford regularity of I (this is a consequence of

the interesting syzygy theory of Pommaret bases leading to a free

resolution of minimal length).

• The isomorphism P/I ∼=
⊕

ν∈N̄0
k ·xν ⊕

⊕

ν∈N̄1
k[x1, . . . , xcls ν] ·x

ν ask-linear spaces is a Rees decomposition of P/I, where the sets N̄0 and

N̄1 are defined for the Pommaret basis of le≺H as in Proposition 2.2.

Together with Theorem 3.11 below, the first two items show that if a Pom-

maret basis exists, then the chosen coordinates are particularly adapted

to the ideal I and considerably simplify the analysis of the algebra P/I.

In the next section we will see how one can systematically construct such

coordinates for any ideal I.

3 δ-Regularity and Systems of Parameters

An ideal I ⊆ P may be interpreted as an ideal in the symmetric algebra

SV over an n-dimensional k-linear space V ∼= P1 after having chosen a

basis (x1, . . . , xn) of V. As we will show now, the existence of a Pommaret

basis for I depends only on this choice.

3 Note that we use the ordering xn > . . . > x1 on the variables.
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Definition 3.1. The variables x = (x1, . . . , xn) are δ-regular for the ideal

I ⊆ P and the term order ≺, if I possesses a Pommaret basis for ≺.

As in practice one defines an ideal I ⊆ P by some finite generating set

F ⊂ I, we introduce a concept of δ-regularity for such sets. Assume that

F is involutively head autoreduced with respect to an involutive division

L. We call the total number of multiplicative variables of its elements its

involutive size and denote it by

|F|L,≺ =
∑

f∈F

|XL,≺,F(f)| . (4)

Let x̃ = Ax be a linear change of coordinates with a regular matrix

A ∈ kn×n, i. e. a change of basis in the vector space V. It transforms

each polynomial f ∈ P into a polynomial f̃ ∈ P̃ = k[x̃1, . . . , x̃n] of the

same degree. Thus F is transformed into a set F̃ ⊂ P̃ which generally is

no longer involutively head autoreduced.4 Performing an involutive head

autoreduction yields a set F̃△. The leading exponents of F̃△ may be very

different from those of F and thus |F|L,≺ may differ from |F̃△|L,≺.

Definition 3.2. Let the finite set F ⊂ P be involutively head autoreduced

with respect to the Pommaret division. The coordinates x are δ-regular

for F , if after any linear change of coordinates x̃ = Ax the inequality

|F|P,≺ ≥ |F̃△|P,≺ holds.

Note that generally δ-regularity of variables x for a set F according to

Definition 3.2 and for the ideal I = 〈F〉 according to Definition 3.1 are

independent properties.

Example 3.3. One of the simplest instances where the definitions differ is

not for an ideal but for a submodule of the free k[x, y]-module with basis

{e1, e2}. Consider the set F = {y2
e1, xye1 + e2, xe2} and any term order

for which xye1 ≻ e2. The used coordinates are not δ-regular for F , as

any transformation of the form x = x̄ + aȳ with a 6= 0 will increase the

4 We consider here the involutive division and the term order as being defined on the exponent vectors.
Thus after the transformation we can still use the same division and order as before.
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involutive size. Nevertheless, the used coordinates are δ-regular for the

submodule 〈F〉. Indeed, adding the generator ye2 (the S-“polynomial”

of the first two generators) makes F to a reduced Gröbner basis which

is simultaneously a minimal Pommaret basis. Examples of this type are

critical for the algorithmic determination of Pommaret bases: although a

finite basis exist, some completion algorithms may loop infinitely in such

a situation, as they try to construct a Pommaret basis for 〈le≺F〉 as an

intermediate step.

Proposition 3.4. Let H be a Pommaret basis of an ideal I ⊆ P. Then

the given coordinates x are δ-regular for H.

Most coordinates are δ-regular for a given set F . Choosing an arbitrary

reference coordinate system, we may identify every system of coordinates

with the regular matrix A ∈ kn×n defining the linear transformation from

our reference system to it.

Proposition 3.5. The coordinate systems that are δ-singular for a given

finite involutively head autoreduced set F ⊂ P form a Zariski closed set inkn×n.

Proof. We perform first a linear coordinate transformation with an unde-

termined matrix A = (aij) ∈ kn×n, i. e. we treat its entries as parameters.

This obviously leads to a δ-regular coordinate system, as each polynomial in

F̃△ will get its maximally possible class. δ-singular coordinates are defined

by the vanishing of certain (leading) coefficients. Since these coefficients

are polynomials in the entries aij of A, the set of all δ-singular coordinate

systems can be described as the zero set of an ideal of k[a11, . . . , ann].

Theorem 3.6. Let the finite set F ⊂ P be involutively head autoreduced

for the Pommaret division and a class respecting term order5 ≺. Further-

more assume that the underlying field k is infinite. If |F|J,≺ > |F|P,≺,

then the coordinates x are δ-singular for F .

5 This means that for deg t1 = deg t2 and cls t1 < cls t2 we always have t1 ≺ t2. The degree reverse
lexicographic order has this property.
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Proof. By Proposition 2.1, we have XP (f) ⊆ XJ,F(f) for all f ∈ F . As-

sume that for a polynomial h ∈ F the strict inclusion XP (h) ⊂ XJ,F(h)

holds. Thus at least one variable xℓ ∈ XJ,F(h) with ℓ > k = cls h ex-

ists. We perform the linear change of variables xi = x̃i for i 6= k and

xk = x̃k + ax̃ℓ with a yet arbitrary parameter a ∈ k \ {0}. This induces

the following transformation of the terms6:

x
µ =

µk∑

j=0

(
µk

j

)

a
j
x̃

µ−jk+jℓ . (5)

Let le≺h = µ. Thus µ = [0, . . . , 0, µk, . . . , µn] with µk > 0. Consider

the multi index ν = µ − (µk)k + (µk)ℓ; obviously, cls ν > k. Applying

our transformation to h leads to a polynomial h̃ containing the term x̃
ν.

Note that ν cannot be an element of le≺F . Indeed, if it was, it would be

an element of the same set (µℓ+1, . . . , µn) as µ. But this contradicts our

assumption that ℓ is multiplicative for the multi index µ with respect to

the Janet division, as by construction νℓ > µℓ.

Transforming all polynomials f ∈ F yields the set F̃ on which we per-

form an involutive head autoreduction in order to obtain the set F̃△. Since

we assume that the gound field k is infinite, we can always choose the pa-

rameter a such that after the transformation each polynomial f̃ ∈ F̃ has

at least the same class as the corresponding polynomial f ∈ F , as our term

order respects classes. This is a simple consequence of (5): cancellations

of terms may occur only, if the parameter a is a zero of some polyno-

mial (possibly one for each member of F) with a degree not higher than

degF . By the definition of the Pommaret division, if le≺f2 |P le≺f1, then

cls le≺f2 ≥ cls le≺f1. Hence even after the involutive head autoreduction

the involutive size of F̃△ cannot be smaller than that of F .

Consider again the polynomial h. The leading term of the transformed

polynomial h̃ must be greater than or equal to x̃ν. Thus its class is greater

than k. This remains true even after an involutive head autoreduction with

all those polynomials f̃ ∈ F̃ that are of class greater than k, as xν /∈ lt≺F .

6 jk means the multiindex with entry j at position k and zero elsewhere.
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Hence the only possibility to obtain a leading term of class less than or

equal to k consists of an involutive reduction with respect to a polynomial

f̃ ∈ F̃ with cls f ≤ k. But this implies that cls le≺f̃ > k. So we may

conclude that after the transformation we have at least one polynomial

more whose class is greater than k. So the coordinates x cannot be δ-

regular.

Corollary 3.7. If the coordinates x are δ-regular for the finite Pommaret

head autoreduced set F , then 〈F〉J,≺ = 〈F〉P,≺ for any class respecting term

order ≺.

It is important to note that this corollary provides us only with a nec-

essary but not with a sufficient criterion for δ-regularity. In other words,

even if the Janet and the Pommaret size are equal for a given set F ⊂ P,

this fact does not imply that the used coordinates are δ-regular for F .

Example 3.8. Let F =
{
z2 + y2 − 2x2, xz + xy, yz + y2 + x2

}
. The

underlined terms are the leaders with respect to the degree reverse lexico-

graphic order. One easily checks that the Janet and the Pommaret division

yield the same multiplicative variables. If we perform the transformation

x̃ = z, ỹ = y + z and z̃ = x, then we obtain after an autoreduction the

set F̃△ =
{
ỹ2, ỹz̃, z̃2 − ỹx̃

}
. Again the Janet and the Pommaret division

yield the same multiplicative variables, but |F̃△|P,≺ > |F|P,≺. Thus the

coordinates (x, y, z) are not δ-regular for F .

The explanation of this phenomenon is very simple. Our criterion de-

pends only on the leading terms of the set F ; in other words, it analyses

the monomial ideal 〈lt≺F〉. In Example 3.8 〈lt≺F〉 = 〈xz, yz, z2〉 and one

easily verifies that the used generating set is already a Pommaret basis.

However, for I = 〈F〉 the leading ideal is lt≺I = 〈x3
, xz, yz, z

2〉 (one ob-

tains a Janet basis for I by adding x3 to F) and obviously it does not

possess a Pommaret basis, as such a basis would have to contain all mono-

mials x3yk with k ∈ N (or we exploit our criterion noting that y is a Janet

but not a Pommaret multiplicative variable for x
3). We have here just the

opposite situation to Example 3.3: there lt≺I had a Pommaret basis but

〈lt≺F〉 not.
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Example 3.9. Even in the case that 〈lt≺F〉 = 〈lt≺I〉 (i. e., F is a Gröbner

basis), the notions of δ-regularity for a set F and for an ideal I gener-

ated by it are not equivalent. Consider the monomial ideal spanned by
{
x2, y2, z2

}
. A Pommaret basis is obtained by adding

{
y2z, x2y, x2z, x2yz

}

and thus the coordinates are δ-regular for the ideal. But for the subset
{
z2, y2, x2, x2z, x2y

}
, the Janet and the Pommaret sizes differ (9 vs. 8), so

the coordinates are not δ-regular for this set. This shows that in general for

an ideal and δ-regular coordinates there may exist ideal bases for which the

coordinates are not δ-regular. Whether or not such a situation is encoun-

tered during the completion to an involutive basis cannot be recognised

a priori and depends also for instance on the choice of the selection term

order in the completion algorithm.

Theorem 3.10. In suitably chosen coordinates x every ideal I ⊆ P has

a Pommaret basis.

Proof. We only sketch a proof here, as a rigorous demonstration requires

the detailed formulation of a completion algorithm for the construction of

an involutive basis ([5, 6]), which we omit here for lack of space.

Each iteration of the completion algorithm consists of selecting an ele-

ment from the current basis, multiplying it with one of its non-multipli-

cative variables, performing an involutive reduction and then adding the

result (if it is different from zero) to the basis. Only if this action has en-

larged the ideal spanned by the leading terms, a test for δ-regularity and,

if necessary, a coordinate change according to the proof of Theorem 3.6

are carried out. By regarding all the bases in a fixed reference coordinate

system, the ideals spanned by the leading terms form an ascending chain

that eventually becomes stationary at lt≺I. On the other hand, if the ideal

spanned by the leading terms remains unchanged (which it does especially

after we have reached lt≺I), we have performed one step in the monomial

completion of this ideal, which has to terminate under the assumption that,

after suitable transformations, we are in δ-regular coordinates.

The search for δ-regular coordinates corresponds to putting I in Noether

position, as the following result shows:
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Theorem 3.11. Under the assumptions of Remark 2.3 (in particular, if

the coordinates x are δ-regular for I), the restriction of the canonical pro-

jection π : P → P/I to k[x1, . . . , xD] is a Noether normalisation of P/I
(or equivalently, x1, . . . , xD form a homogeneous system of parameters).

Proof. {x1, . . . , xD} is a maximal independent set modulo I, so the restric-

tion of the projection π to k[x1, . . . , xD] is injective. Proposition 2.2 gives

the complementary decomposition for le≺I which is defined by a finite set

N ⊂ Nn
0 . As for each generator in N the associated multiplicative indices

form a subset of {1, . . . , D} and since the complement of lt≺I is a basis

of P/I as a vector space over k, the finite set {π(xν) | ν ∈ N} generates

P/I as a k[x1, . . . , xD]-module.

The converse of this theorem is in general not true: even if the variables

are chosen such that k[x1, . . . , xD] defines a Noether normalisation of P/I,

this is not sufficient to conclude that I possesses a Pommaret basis. In the

next section, we will show (in the case that I is a monomial ideal) that

the existence of a Pommaret basis is equivalent to a stronger property.

4 Quasi-stable Ideals

While a polynomial ideal I always possesses a Pommaret basis (after a

suitable coordinate transformation), the same is not true for a monomial

ideal, as the transformed ideal is in general no longer monomial. Hence

we give the class of monomial ideal possessing a Pommaret basis a special

name.

Definition 4.1. A monomial ideal I ⊆ P is quasi-stable, if it has a Pom-

maret basis.

Remark 4.2. Recall that a (possibly infinite) set N ⊆ Nn
0 is called stable,

if for each multi index ν ∈ N all multi indices ν − 1k + 1j with k = cls ν <

j ≤ n are also contained in N . A monomial ideal I ⊆ P is stable, if the

exponent vectors of the monomials contained in it form a stable set. If I
is a quasi-stable ideal in the sense of the definition above, then one can
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easily show that for a sufficiently high degree q the truncated ideal I≥q is

stable (one may e. g. take q = degH with H the Pommaret basis of I).

Proposition 4.3. Let I ⊆ P be a monomial ideal with dimP/I = D.

Then the following five statements are equivalent.

(i) I is quasi-stable.

(ii) The variable x1 is not a zero divisor for P/Isat and for all 1 ≤ j < D

the variable xj+1 is not a zero divisor for P/〈I, x1, . . . , xj〉
sat.

(iii) We have I : 〈x1〉
∞ ⊆ I : 〈x2〉

∞ ⊆ · · · ⊆ I : 〈xD〉
∞ and for all

D < j ≤ n an exponent kj ≥ 1 exists such that x
kj

j ∈ I.

(iv) For all 1 ≤ j ≤ n the equality I : 〈xj〉
∞ = I : 〈xj, . . . , xn〉

∞ holds.

(v) For every associated prime ideal p ∈ Ass (P/I) an integer 1 ≤ j ≤ n

exists such that p = 〈xj, . . . , xn〉.

Proof. The equivalence of the statements (ii)–(v) was proven by Bermejo

and Gimenez [2, Proposition 3.2] who called ideals satisfying one of these

conditions monomial ideals of nested type.7 We now show that this concept

is identical with quasi-stability by proving the equivalence of (i) and (iii).

Assume first that the ideal I is quasi-stable with Pommaret basis H. The

existence of a term x
kj

j ∈ I for all D < j ≤ n follows then immediately from

Remark 2.3. Consider a term xµ ∈ I : 〈xk〉
∞\I for some 1 ≤ k ≤ n. There

exists an integer ℓ such that xℓ
kx

µ ∈ I and hence a generator xν ∈ H such

that x
ν |P x

ℓ
kx

µ. If cls ν > k, then ν would also be an involutive divisor of µ

contradicting the assumption xµ /∈ I. Thus we find cls ν ≤ k and νk > µk.

Next we consider for arbitrary exponents m > 0 the terms x
m
k+1x

ν ∈ I.

For each m a generator xρ(m)

∈ H exists which involutively divides xm
k+1x

ν.

By the same reasoning as above, clsxρ(m)

> k + 1 is not possible for an

involutively autoreduced basis H yielding the estimate cls ν ≤ cls x
ρ(m)

≤
k + 1.

We claim now that there exists an integer m0 such that ρ(m) = ρ(m0) for

all m ≥ m0 and cls xρ(m0)

= k +1. Indeed, if cls xρ(m)

< k +1, then we must

have ρ
(m)
k+1 = vk+1 +m, since xk+1 is not multiplicative for xρ(m)

. Hence xρ(m)

7 One must revert the ordering of the variables in order to recover the statements in [2].
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cannot be an involutive divisor of x
m+1
k+1 x

ν and ρ
(m+1)

/∈ {ρ(1)
, . . . , ρ

(m)}.

As the Pommaret basis H is a finite set, cls x
ρ(m0)

= k + 1 for some value

m0 > 0. But then xk+1 is multiplicative for xρ(m0)

and thus xρ(m0)

is trivially

an involutive divisor of x
m
k+1x

ν for all values m ≥ m0.

By construction, the generator xρ(m0)

is also an involutive divisor of

x
m0

k+1x
µ, as xk is multiplicative for it. Hence this term must lie in I and

consequently xµ ∈ I : 〈xk+1〉
∞. Thus we can conclude that I : 〈xk〉

∞ ⊆ I :

〈xk+1〉
∞. This proves (iii).

For the converse assume that (iii) holds and let B be the minimal basis

of the ideal I. Let x
µ ∈ B be an arbitrary term of class k. Then x

µ
/xk ∈

I : 〈xk〉
∞. By assumption, this means that also xµ/xk ∈ I : 〈xℓ〉

∞ for

any nonmultiplicative index ℓ. Hence for each term xµ ∈ B and for each

value cls (xµ) < ℓ ≤ n there exists an integer qµ,ℓ such that x
qµ,ℓ

ℓ x
µ
/xk /∈ I

but x
qµ,ℓ+1
ℓ xµ/xk ∈ I. For the values 1 ≤ ℓ ≤ cls xµ we set qµ,ℓ = 0.

Observe that if x
ν ∈ B is a minimal generator dividing x

qµ,ℓ+1
ℓ x

µ
/xk, then

xν ≺invlex xµ, since cls (xν) ≥ cls (xµ) and νk < µk.

Consider now the set

H =
{
x

µ+ρ | x
µ ∈ B , ∀1 ≤ ℓ ≤ n : 0 ≤ ρℓ ≤ qµ,ℓ

}
. (6)

We claim that it is a weak involutive completion of B and thus a weak

Pommaret basis of I. In order to prove this assertion, we must show that

each term x
λ ∈ I lies in the involutive cone of a member of H.

As xλ is assumed to be an element of I, we can factor it as xλ =

xσ(1)

xρ(1)

xµ(1)

where xµ(1)

∈ B is a minimal generator, xσ(1)

contains only

multiplicative variables for x
µ(1)

and x
ρ(1)

only non-multiplicative ones.

If xµ(1)+ρ(1)

∈ H, then we are done, as obviously cls
(
xµ(1)+ρ(1)

)
= cls

(
xµ(1)

)

and hence all variables contained in x
σ(1)

are multiplicative for x
µ(1)+ρ(1)

,

too.

Otherwise there exists a non-multiplicative variables xℓ such that ρ
(1)
ℓ >

qµ(1),ℓ. Any minimal generator xµ(2)

∈ H dividing x
q
µ(1),ℓ

+1

ℓ xµ(1)

/xk is also a

divisor of xλ and we find a second factorisation xλ = xσ(2)

xρ(2)

xµ(2)

where

again xσ(2)

consists only of multiplicative and xρ(2)

only of non-multiplicative
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variables for xµ(2)

. If xµ(2)+ρ(2)

∈ H, then we are done by the same argument

as above; otherwise we iterate.

According to the observation made above, the sequence xµ(1)

, xµ(2)

, . . . of

minimal generators constructed this way is strictly descending with respect

to the inverse lexicographic order. However, the minimal basis B is a finite

set and thus the iteration cannot go on infinitely. As the iteration only

stops, if there exists an involutive cone containing xλ, the involutive span

of H is indeed I and thus I quasi-stable.

Note that we actually proved that (iii) may be replaced by the equivalent

statement I : 〈x1〉
∞ ⊆ I : 〈x2〉

∞ ⊆ · · · ⊆ I : 〈xn〉
∞ requiring no a priori

knowledge of D (the dimension D arises then obviously as the smallest

value k such that I : 〈xk〉
∞ = P). In this formulation it is straightforward

to verify (iii) effectively: bases of the colon ideals I : 〈xk〉
∞ are obtained

by setting xk = 1 in a basis of I and for monomial ideals it is trivial to

check inclusion.

For the sequel, we make the convention that the formal expression I : x∞
0

equals I. The following technical results will be useful later.

Lemma 4.4. For a quasi-stable ideal I and for all 0 ≤ i ≤ n, we have:

(i) I : 〈xi〉
∞ can be minimally generated by elements having class at least

i + 1.

(ii) (I : 〈xi〉
∞) : 〈xj〉

∞ = I : 〈xj〉
∞ for all i < j ≤ n.

Proof. No element of a minimal basis of H of I : 〈x〉∞i can depend on xj.

Now assume that xν ∈ H satisfies cls ν = ℓ < k. Then xm
j xν is a minimal

generator of I for some suitable exponent m ∈ N0. This in turn implies

that xm
j xν/x

νℓ

ℓ ∈ I : 〈xℓ〉
∞ ⊆ I : 〈xj〉

∞ and hence xν/x
νℓ

ℓ ∈ I : 〈xj〉
∞ which

contradicts our assumption that xν was a minimal generator. This proves

Part (i); Part (ii) follows directly from the definition of the saturation and

Proposition 4.3 (iii).

From the next proposition it follows that for a monomial set H, equality

of the Pommaret and the Janet size entails quasi-stability of the ideal 〈H〉;
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thus in this case a converse to Theorem 3.6 can be obtained.

Proposition 4.5. Let I ⊆ P be a monomial ideal and H a finite, Pom-

maret autoreduced monomial basis of it. If I is not quasi-stable, then

|H|J > |H|P , i. e. for some generator in H a variable exists which is Janet

but not Pommaret multiplicative.

Proof. By Proposition 2.1 we have |H|J ≥ |H|P . As I is not quasi-stable,

there exists a minimal value k such that I : 〈xk〉
∞ * I : 〈xk+1〉

∞. Let x
µ

be a minimal generator of I : 〈xk〉
∞ which is not contained in I : 〈xk+1〉

∞.

Then for a suitable exponent m ∈ N0 the term x
µ̄ = x

m
k x

µ is a minimal

generator of I and hence contained in H.

We claim now that H contains a generator for which xk+1 is Janet but

not Pommaret multiplicative. If xk+1 ∈ XJ,H(xµ̄), then we are done, since

according to Lemma 4.4 (i) cls µ̄ = k and hence xk+1 /∈ XP (xµ̄). Otherwise

H contains a term xν such that νℓ = µℓ for k +1 < ℓ ≤ n and νk+1 > µk+1.

If several generators with this property exist in H, we choose one for which

νk+1 takes a maximal value so that we have xk+1 ∈ XJ,H(xν) by definition

of the Janet division. If cls ν < k + 1, we are again done, since in this case

xk+1 /∈ XP (xν). Finally assume that cls ν = k + 1 and consider the term

xρ = xν/x
νk+1

k+1 . Obviously, xρ ∈ I : 〈xk+1〉
∞ contradicting our assumption

x
µ

/∈ I : 〈xk+1〉
∞ since x

ρ | x
µ. Hence this case cannot arise.

From Condition (v) in Proposition 4.3 we see that (modulo a permuta-

tion of the variables) quasi-stable ideals are precisely those monomial ideals

with a single minimal associated prime ideal. Going one step further, one

can even read off a primary decomposition from the ascending chain of

ideals in Condition (iii).

As above, let D denote the dimension of I. We restrict ourselves to the

case that x1 (and hence each variable) occurs in some minimal generator of

I; otherwise, we change P accordingly. I contains pure powers of exactly

the variables xD+1, . . . , xn; thus I : 〈xD〉
∞ is 〈xD+1, . . . , xn〉-primary. For

1 ≤ i ≤ D, let si := min{s | I : 〈xi〉
s = I : 〈xi〉

s+1}; this is just the the

maximal xi-degree of a minimal generating set of I. Furthermore, let Si :=
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I+〈x
si+1

i+1 , . . . , x
sD

D 〉 and qi := Si : 〈xi〉
∞ = I : 〈xi〉

∞+〈x
si+1

i+1 , . . . , x
sD

D 〉 for 0 ≤
i ≤ D. Because of Lemma 4.4, qi is 〈xi+1, . . . , xn〉-primary. By repeatedly

applying the well-known identity I = I + 〈xs〉 ∩ I : 〈x〉s (provided that

I : 〈x〉s = I : 〈x〉∞) and Lemma 4.4 (ii), we can decompose each ideal

I : 〈xi〉
∞ (0 ≤ i ≤ D) as:

I : 〈xi〉
∞ =

(
I : 〈xi〉

∞ + 〈x
si+1

i+1 〉
)
∩ (I : 〈xi〉

∞) : 〈xi+1〉
∞

︸ ︷︷ ︸

=I:〈xi+1〉∞

=
(
I : 〈xi〉

∞ + 〈x
si+1

i+1 , x
si+2

i+2 〉
)
∩

(
I : 〈xi〉

∞ + 〈x
si+1

i+1 〉
)

: 〈xi+2〉
∞

︸ ︷︷ ︸

=I:〈xi+2〉∞+〈x
si+1

i+1
〉

∩ I : 〈xi+1〉
∞

. . .

=qi ∩
(
I : 〈xD〉

∞ + 〈x
si+1

i+1 , . . . , x
sD−1

D−1〉
)
∩ . . . ∩ I : 〈xi+1〉

∞

(7)

Because of the quasi-stability of I, the last ideal in this decomposition

is always contained in all the preceding ones except qi, so these can be

dropped. Since qD = I : 〈xD〉
∞, we thus get a primary decomposition

I =
⋂D

i=0 qi, where the radicals of the primary components are pairwise

different.

Proposition 4.6. In the decomposition I =
⋂D

i=0 qi, the primary compo-

nent qj is redundant if and only if I : 〈xk〉
∞ = I : 〈xk+1〉

∞.

Proof. The above construction immediately yields I : x∞
k =

⋂D
i=k qi. An

elementary computation involving sums and intersection of ideals further-

more shows that Sk =
⋂k

i=0 qi. Therefore, I = Sk−1 ∩I : x∞
k (we set S−1 =

P). From that, we see at once that qk is redundant if I : x∞
k = I : x∞

k+1. For

the other direction, assume that I : x
∞
k ( I : x

∞
k+1. For k = 0, this immedi-

ately implies that q0 cannot be redundant. For k > 0, take a minimal gen-

erator m of I : 〈xk+1〉
∞ (having class at least k+2) which is not in I : 〈xk〉

∞

and consider the monomial x
sk

k m. It is obviously contained both in Sk−1

and in I : 〈xk+1〉
∞, but not in I : 〈xk〉 and thus also not in qk (since from

I : 〈xk〉
∞ = qk ∩ I : 〈xk+1〉

∞ we have that qk ∩ (I : 〈xk+1〉
∞ \ I : 〈xk〉

∞) =

∅); therefore, qk + q0 ∩ . . . ∩ qk−1 ∩ qk+1 ∩ . . . ∩ qD.
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The following result on the Nother normalisation of a quasi-stable ideal

is also due to Bermejo and Gimenez [2, Proposition 3.6].

Corollary 4.7. Let I ⊆ P be a monomial ideal with dimP/I = D.

Furthermore, let I = q1 ∩ · · · ∩ qr be an irredundant monomial primary

decomposition with Dj = dimP/qj for 1 ≤ j ≤ r. The ideal I is quasi-

stable, if and only if k[x1, . . . , xD] defines a Noether normalisation of P/I

and k[x1, . . . , xDj
] one of P/qj for each primary component qj.

Proof. By assumption, each ideal qj is a monomial primary ideal. This

implies that k[x1, . . . , xDj
] defines a Noether normalisation of P/qj , if and

only if the associated prime ideal is
√

qj = 〈xDj+1, . . . , xn〉. Now the asser-

tion follows from Condition (v) in Proposition 4.3.

5 δ-Regularity vs. Quasi-Regularity

Definition 5.1 ([7]). A linear form v = a1x1 + . . . anxn ∈ P1 is called

quasi-regular at degree q for the P-module M, if v · m = 0 entails m ∈
M<q. A finite sequence (v1, . . . , vk) of linear forms in P is quasi-regular at

degree q for M, if each vi is quasi-regular at degree q for the factor module

M/〈v1, . . . , vi−1〉M.

This generalisation of the classical notion of a regular sequence appears in

the dual formulation of Cartan’s test for an involutive polynomial module

due to Serre (see his letter appended to [7]). Recall that a polynomial mo-

dule M is involutive at a degree q0, if no minimal generator of the Koszul

homology H•(M) has a symmetric degree greater than or equal to q0.

Theorem 5.2 (Dual Cartan Test [7]). Let M be a polynomial module

finitely generated in degree less than q > 0. The module M is involutive

at degree q, if and only if for generic coordinates {x1, . . . , xn} the maps

µk : Mr/〈x1, . . . , xk−1〉Mr−1 −→ Mr+1/〈x1, . . . , xk−1〉Mr (8)

induced by the multiplication with xk are injective for all r ≥ q and 1 ≤
k ≤ n, i. e. if and only if (x1, . . . , xn) is a quasi-regular sequence at degree

q for M.
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The goal of this section is to show that the notion of δ-regularity for

an ideal I as discussed in Section 3 is equivalent to the above introduced

concept of quasi-regularity for the polynomial module P/I.

Lemma 5.3. Let I ⊆ P be a homogeneous ideal and ≺ the degree reverse

lexicographic order. The sequence (x1, . . . , xn) is quasi-regular at degree q

for the module M = P/I, if and only if it is quasi-regular at degree q for

M′ = P/lt≺I.

Proof. Let G be a Gröbner basis of I for ≺, so that the normal form with

respect to G defines an isomorphism between the vector spaces M and M′.

One direction is trivial, as an obvious necessary condition for m = [f ] ∈ M
to satisfy x1 ·m = 0 is that x1 · [lt≺f ] = 0 in M′. Hence quasi-regularity of

x1 for M′ implies quasi-regularity of x1 for M and by iteration the same

holds true for the whole sequence.

For the converse let r ≥ q be an arbitrary degree. We may choose for the

vector space Mr a basis where each member is represented by a monomial,

i. e. the representatives simultaneously induce a basis of M′
r. Let xµ be

one of these monomials. As x1 is quasi-regular for M, we have x1 · [x
µ] 6= 0

in M. Suppose that x1 · [x
µ] = 0 in M′ so that x1 is not quasi-regular for

M′. Thus x
µ+11 ∈ lt≺I and G contains a polynomial g with lt≺g | x

µ+11.

Because of the assumption xµ /∈ lt≺I, we must have cls(lt≺g) = 1. By

definition of the reverse lexicographic order, this implies that every term

in g is of class 1. Iteration of this argument shows that the normal form of

x
µ+11 with respect to G is divisible by x1, i. e. it can be written as x1f with

f ∈ Pr and lt≺f ≺ xµ. Consider now the polynomial f̄ = xµ−f ∈ Pr\{0}.
As it consists entirely of terms not contained in lt≺I, we have [f̄ ] 6= 0 in

Mr. However, by construction x1 · [f̄ ] = 0 contradicting the injectivity of

multiplication by x1 on Mr.

For the remaining elements of the sequence (x1, . . . , xn) we note for each

1 ≤ k < n the isomorphism M(k) = M/〈x1, . . . , xk〉M ∼= P (k)/I(k) where

P (k) = k[xk+1, . . . , xn] and I(k) = I ∩ P(k). It implies that we may iterate

the arguments above so that indeed quasi-regularity of (x1, . . . , xn) for M′

is equivalent to quasi-regularity for M′.
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Theorem 5.4. The coordinates x are δ-regular for the homogeneous ideal

I ⊆ P in the sense that I possesses a Pommaret basis H for the degree

reverse lexicographic term order with degH = q, if and only if the sequence

(x1, . . . , xn) is quasi-regular for the factor algebra M = P/I at degree q

but not at any lower degree.

Proof. By the definition of a Pommaret basis and by Lemma 5.3, it suffices

to consider monomial ideals I. Assume first that the basis {x1, . . . , xn} is

δ-regular. By Proposition 2.2, the leading terms lt≺H induce a comple-

mentary decomposition of M where all generators are of degree q = degH

or less. Thus, if Mq 6= 0 (otherwise there is nothing to show), then we can

choose a vector space basis of it as part of the complementary decompo-

sition and the variable x1 is multiplicative for all its members. But this

observation immediately implies that multiplication with x1 is injective

from degree q on, so that x1 is quasi-regular for M at degree q.

For the remaining elements of the basis {x1, . . . , xn} we proceed as in

the proof of Lemma 5.3 and use the isomorphism M(k) ∼= P (k)/I(k). A

Pommaret basis of I(k) is obtained by setting x1 = · · · = xk = 0 in the

subset H(k) = {h ∈ H | cls h > k}. Thus we can again iterate for each

1 < k ≤ n the argument above so that indeed (x1, . . . , xn) is a quasi-regular

sequence for M at degree q.

For the converse, we first show that quasi-regularity of (x1, . . . , xn) im-

plies the existence of a Rees decomposition for M. Exploiting again the

isomorphism M(k) ∼= P (k)
/I(k), one easily sees that a vector space ba-

sis of M
(k)
q is induced by all terms xµ /∈ I with |µ| = q and cls µ ≥ k.

By the definition of quasi-regularity, multiplication with xk is injective on

M(k), hence we take {x1, . . . , xk} as multiplicative variables for such a term

(which is exactly the assignment used in the Rees decomposition induced

by a Pommaret basis according to Remark 2.3).

We claim now that this assignment yields a Rees decomposition of M≥q

(and hence one of M, since we only have to add all terms x
µ

/∈ I with

|µ| < q without any multiplicative variables). The only thing to prove is

that our decomposition covers all of M≥q. If xµ /∈ I is an arbitrary term
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with |µ| = q+1 and clsµ = k, then we can write x
µ = xk ·x

µ−1k. Obviously,

xµ /∈ I implies xµ−1k /∈ I and cls(µ − 1k) ≥ k so that xk is multiplicative

for it. Hence all of Mq+1 is covered and an easy induction shows that we

have indeed a decomposition of M≥q.

Proposition 2.2 entails now that I has a weak Pommaret basis of degree

q. As the autoreduction of a weak basis to a strong one can only decrease

the degree, I has a strong Pommaret basis of degree at most q. However, if

the degree of the basis actually decreased, then, by the converse statement

already proven, (x1, . . . , xn) would be a quasi-regular sequence for M at a

lower degree than q contradicting our assumptions.

The same “reverse” argument shows that if I has a Pommaret basis of

degree q, then the sequence (x1, . . . , xn) cannot be quasi-regular for M at

a lower degree, as otherwise a Pommaret basis of lower degree would exist

which is not possible by the uniqueness of strong Pommaret bases.

For monomial ideals I ⊆ P a much stronger statement is possible. Using

again the isomorphism M(k) ∼= P (k)
/I(k), we may identify elements of M(k)

with linear combinations of the terms xν /∈ I satisfying cls xν > k. Then

we obtain the following simple relationship between the Pommaret basis

of I and the kernels of the maps µk appearing in Theorem 5.2.

Proposition 5.5. Let x1, . . . , xn be δ-regular coordinates for the quasi-

stable ideal I. Furthermore, let H be the Pommaret basis of I and set

Hk = {xν ∈ H | cls ν = k} for any 1 ≤ k ≤ n. Then the set {xµ−1k
| xµ ∈

Hk} is a basis of kerµk.

Proof. Assume that xν ∈ Hk. Then xν−1k
/∈ I, as otherwise the Pommaret

basis H was not involutively autoreduced, and hence we find xν−1k
∈ kerµk.

Conversely, suppose that xν ∈ kerµk. Obviously, this implies xν+1k
∈ I

and the Pommaret basis H must contain an involutive divisor of xν+1k
. If

this divisor was not xν+1k
itself, the term xν would have to be an element of

I which is obviously not possible. Since xν ∈ kerµk entails cls(ν +1k) = k,

we thus find xν+1k
∈ Hk.
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Remark 5.6. These results also lead to a simple proof of the characterisation

(ii) of a quasi-stable ideal in Proposition 4.3. If I is quasi-stable, then the

coordinates x1, . . . , xn are δ-regular for it, hence by Theorem 5.4 they form

a quasi-regular sequence for P/I at a suitably chosen degree. By Propo-

sition 4.3, Condition (iv), we have that Isat = I : 〈x1〉
∞ and hence multi-

plication by x1 is injective on P/Isat. As obviously P/〈I, x1, . . . , xj〉
sat ∼=

P (j)/(I(j))sat, we can apply the same argument also for all 1 ≤ j < D.

Conversely, if x1 · f ∈ I for a polynomial f ∈ P \ I, then f ∈ Isat \ I
and hence deg f < satI. Thus x1 is quasi-regular for P/I at the degree

satI. Using again the isomorphisms P/〈I, x1, . . . , xj〉
sat ∼= P (j)

/(I(j))sat,

we can apply the same argument for all 1 ≤ j < D, so that (x1, . . . , xD) is

a quasi-regular sequence for P/I at a sufficiently high degree.

The characterisation (ii) of Proposition 4.3 obviously implies that the

set {x1, . . . , xD} is maximally independent modulo Isat.

Hence dimP/〈Isat, x1, . . . , xD〉 = 0 entailing that (x1, . . . , xn) is a quasi-

regular sequence for the algebra P/I at a sufficiently high degree. By

Theorem 5.4, the ideal I is thus quasi-stable.

199



GIFT 2006

References
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Abstract

Theory of laminated wave turbulence developed recently allows to study at the same base

both types of turbulent wave systems - statistical and discrete. The main novelty of the

theory is the following: discrete effects do appear not only in the long-wave part of the

spectral domain (corresponding to small wave numbers) but all through the spectra. One

of the new problems put forth by the theory of laminated wave turbulence is construction

of fast algorithms for computations in integers of order 1012 and more. In this paper we

present the mathematical basics of this new theory in terms of integer points of resonant

manifolds and formulate its open questions, both theoretical and computational, in order

to attract “pure”mathematicians and specialists in computer algebra to work on the

subject.

Keywords: Nonlinear waves, wave turbulence, discrete wave systems, irrational and

transcendental algebraic equations, computations in integers

1 Introduction

The roots of the theory of nonlinear dispersive waves date back to hydro-

dynamics of the 19th century. It was observed, both experimentally and

theoretically, that, under certain circumstances, the dissipative effects in

nonlinear waves become less important then the dispersive ones. In this

way, balance between nonlinearity and dispersion gives rise to formation

of stable patterns (solitons, cnoidal waves, etc.). Driven by applications in

plasma physics, these phenomena were widely studied, both analytically
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and numerically, starting from the middle of the 20th century. The main

mathematical break-through in the theory of nonlinear evolutionary PDEs

was the discovery of the phenomenon of their integrability that became the

starting point of the modern theory of integrable systems with Korteweg-

de Vries equation being the first instance in which integrability appeared.

But most evolutionary PDEs are not integrable, of course. As a powerful

tool for numerical simulations, the method of kinetic equation has been

developed in 1960-th and applied to many different types of dispersive

evolutionary PDEs. The wave kinetic equation is approximately equiva-

lent to the initial nonlinear PDE: it is an averaged equation imposed on

a certain set of correlation functions and it is in fact one limiting case of

the quantum Bose-Einstein equation while the Boltzman kinetic equation

is its other limit. Some statistical assumptions have been used in order

to obtain kinetic equations; the limit of their applicability then is a very

complicated problem which should be solved separately for each specific

equation.

The role of the nonlinear dispersive PDEs in the theoretical physics is

so important that the notion of dispersion is used for “physical” classifi-

cation of the equations in partial variables. On the other hand, the only

mentioning of the notion “dispersion relation” in mathematical literature

we have found in the book of V.I.Arnold [1] who writes about important

physical principles and concepts such as energy, variational principle, the

Lagrangian theory, dispersion relations, the Hamiltonian formalism, etc.

which gave a rise for the development of large areas in mathematics (the-

ory of Fourier series and integrals, functional analysis, algebraic geometry

and many others). But he also could not find place for it in the conse-

quent mathematical presentation of the theory of PDEs and the words

“dispersion relation” appear only in the introduction.

In our paper we present wave turbulence theory as a base of the “phys-

ical” classification of PDEs, trying to avoid as much as possible specific

physical jargon and give a “pure” mathematician a possibility to follow

its general ideas and results. We show that the main mathematical object

202



Laminated Wave Turbulence

of the wave turbulence theory is an algebraic system of equations called

resonant manifolds. We also present here the model of the laminated wave

turbulence that includes classical statistical results on the turbulence as

well as the results on the discrete wave systems. It is shown that discrete

characteristics of the wave systems can be described in terms of integer

points on the rational manifolds which is the main novelty of the theory of

laminated turbulence. Some applications of this theory for explanation of

important physical effects are given. A few open mathematical and numer-

ical problems are formulated at the end. Our purpose is to attract pure

mathematicians to work on this subject.

2 General Notions

For the completeness of presentation we began this section with a very

brief sketch of the traditional mathematical approach to the classification

of PDEs.

2.1 Mathematical Classification

Well-known mathematical classification of PDEs is based on the form of

equations and can be briefly presented as follows. For a bivariate PDE

of the second order

aψxx + bψxy + cψyy = F (x, y, ψ, ψx, ψy)

its characteristic equation is written as

dx

dy
=

b

2a
±

1

2a

√

b2 − 4ac

and three types of PDEs are defined:

• b2 < 4ac, elliptic PDE: ψxx + ψyy = 0

• b2 > 4ac, hyperbolic PDE: ψxx − ψyy − xψx = 0
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• b
2 = 4ac, parabolic PDE: ψxx − 2xyψy − ψ = 0

Each type of PDE demands then special type of initial/boundary condi-

tions for the problem to be well-posed. “Bad”example of Tricomi equation

yψxx+ψyy = 0 shows immediately incompleteness of this classification even

for second order PDEs because a PDE can change its type depending, for

instance, on the initial conditions. This classification can be generalized

to PDEs of more variables but not to PDEs of higher order.

2.2 Physical Classification

Physical classification of PDEs is based on the form of solution and is al-

most not known to pure mathematicians. In this case, a PDE is regarded in

the very general form, without any restrictions on the number of variables

or the order of equation. On the other hand, the necessary preliminary

step in this classification is the division of all the variables into two groups

- time- and space-like variables. This division originated from the special

relativity theory where time and three-dimensional space are treated to-

gether as a single four-dimensional Minkowski space. In Minkowski space

a metrics allowing to compute an interval s along a curve between two

events is defined analogously to distance in Euclidean space:

ds2 = dx2 + dy2 + dz2 − c
2dt2

where c is speed of light, x, y, z and t denote respectively space and time

variables. Notice that though in mathematical classification all variables

are treated equally, obviously its results can be used in any applications

only after similar division of variables have been done.

Suppose now that linear PDE with constant coefficients has a wave-like

solution

ψ(x, t) = A exp i[kx− ωt] or ψ(x, t) = A sin(kx− ωt)

with amplitude A, wave-number k and wave frequency ω. Then the sub-

stitution of ∂t = −iω, ∂x = ik transforms LPDE into a polynomial
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on ω and k, for instance:

ψt + αψx + βψxxx = 0 ⇒ ω(k) = αk − βk
3
,

ψtt + α
2
φxxxx = 0 ⇒ ω

2(k) = α
2
k

4
,

ψtttt − α
2
ψxx + β

2
ψ = 0 ⇒ ω

4(k) = α
2
k

2 + β
2

where α and β are constants.

Definition Real-valued function ω = ω(k) : d2
ω/dk2 6= 0 is called

dispersion relation or dispersion function. A linear PDE with wave-like

solutions are called evolutionary dispersive LPDE. A nonlinear PDE with

dispersive linear part are called evolutionary dispersive NPDE.

This way all PDEs are divided into two classes - dispersive and non-

dispersive [2]. This classification is not complementary to a standard math-

ematical one. For instance, though hyperbolic PDEs normally do not have

dispersive wave solutions, the hyperbolic equation ψtt − α2ψxx + β2ψ = 0

has them. Given dispersion relation allows to re-construct corresponding

linear PDE. All definitions above could be easily reformulated for a case of

more space variables, namely x1, x2, ..., xn. Linear part of the initial PDE

takes then form

P (
∂

∂t
,
∂

∂x1
, ...,

∂

∂xn

)

and correspondingly dispersion relation can be computed from

P (−iω, ik1, ..., ikn) = 0

with the polynomial P . In this case we will have not a wave number k

but a wave vector ~k = (k1, ..., kn) and the condition of non-zero second

derivative of the dispersion function takes a matrix form:

|
∂

2
ω

∂ki∂kj

| 6= 0.
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2.3 Perturbation technique

Perturbation or asymptotic methods (see, for instance, [3]) are much in

use in physics and are dealing with equations having some small parameter

ε > 0. To understand the results presentated in the next Section one needs

to have some clear idea about the perturbation technique and this is the

reason why we give here a simple algebraic example of its application. The

main idea of a perturbation method is very straightforward - an unknown

solution, depending on ε, is written out in a form of infinite series on

different powers of ε and coefficients in front of any power of ε are computed

consequently. Let us take an algebraic equation

x
2 − (3 − 2ε)x+ 2 + ε = 0 (1)

and try to find its asymptotic solutions. If ε = 0 we get

x
2 − 3x+ 2 = 0 (2)

with roots x = 1 and x = 2. Eq.(1) is called perturbed and Eq.(2) -

unperturbed. Natural suggestion is that the solutions of perturbed equation

differ only a little bit from the solutions of unperturbed one. Let us look

for solutions of Eq.(1) in the form

x = x0 + εx1 + ε
2
x2 + ...

where x0 is a solution of Eq.(2), i.e. x0 = 1 or x0 = 2. Substituting this

infinite series into Eq.(1), collecting all the terms with the same degree of ε

and consequent equaling to zero all coefficients in front of different powers

of ε leads to an algebraic system of equations







ε0 : x2
0 − 3x0 + 2 = 0,

ε
1 : 2x0x1 − 3x1 − 2x0 + 1 = 0,

ε2 : 2x0x2 + x2
1 − 3x2 − 2x1 = 0,

...

(3)
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with solutions

x0 = 1, x1 = −1, x2 = 3, ... and x = 1 − ε+ 3ε2 + ...;

x0 = 2, x1 = 3, x2 = −3, ... and x = 2 + 3ε− 3ε2 + ...

Notice that exact solutions of Eq.(1) are

x =
1

2
[3 + 2ε±

√

1 + 8ε+ 4ε2]

and the use of binomial representation for the expression under the square

root

(1 + 8ε+ 4ε2)
1

2 = 1 + (8ε+ 4ε2) +
1
2(

−1
2 )

2!
(8ε+ 4ε2)2 + ... = 1 + 4ε− 6ε2 + ...

gives finally

x =
1

2
(3 + 2ε− 1 − 4ε+ 6ε2 + ...) = 1 − ε+ 3ε2 + ...

and

x =
1

2
(3 + 2ε+ 1 + 4ε− 6ε2 + ...) = 2 + 3ε− 3ε2 + ...

as before. This example was chosen because the exact solution in this case

is known and can be compared to the asymptotic one. The same approach

is used for partial differential equations, also in the cases when exact so-

lutions are not known. The only difference would be more elaborated

computations resulting in some system of ordinary differential equations

instead of Eqs.(3) (see next Section).

3 Wave Turbulence Theory

3.1 Wave Resonances

Now we are going to introduce the notion of the wave resonance which is

the mile-stone for the whole theory of evolutionary dispersive NPDE and
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therefore for the wave turbulence theory. Let us consider first a linear

oscillator driven by a small force

xtt + p
2
x = εe

iΩt
.

Here p is eigenfrequency of the system, Ω is frequency of the driving force

and ε > 0 is a small parameter. Deviation of this system from equilibrium

is small (of order ε), if there is no resonance between the frequency of the

driving force εeiΩt and an eigenfrequency of the system. If these frequencies

coincide then the amplitude of oscillator grows linearly with the time and

this situation is called resonance in physics. Mathematically it means

existence of unbounded solutions.

Let us now regard a (weakly) nonlinear PDE of the form

L(ψ) = εN(ψ) (4)

where L is an arbitrary linear dispersive operator and N is an arbitrary

nonlinear operator. Any two solutions of L(ψ) = 0 can be written out as

A1 exp i[~k1~x− ω(~k1)t] and A2 exp i[~k2~x− ω(~k2)t]

with constant amplitudes A1, A2. Intuitively natural expectation is that

solutions of weakly nonlinear PDE will have the same form as linear waves

but perhaps with amplitudes depending on time. Taking into account

that nonlinearity is small, each amplitude is regarded as a slow-varying

function of time, that is Aj = Aj(t/ε). Standard notation is Aj = Aj(T )

where T = t/ε is called slow time. Since wave energy is by definition

proportional to amplitude’s square A2
j it means that in case of nonlinear

PDE waves exchange their energy. This effect is also described as “waves

are interacting with each other”or “there exists energy transfer through

the wave spectrum”or similar.

Unlike linear waves for which their linear combination was also solution

of L(ψ) = 0, it is not the case for nonlinear waves. Indeed, substitution

of two linear waves into the operator ǫN(ψ) generates terms of the form

exp i[(~k1 + ~k2)~x− [ω(~k1) + ω(~k2)]t which play the role of a small driving
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force for the linear wave system similar to the case of linear oscillator above.

This driving force gives a small effect on a wave system till resonance

occurs, i.e. till the wave number and the wave frequency of the driving

force does not coincide with some wave number and some frequency of

eigenfunction:

{

ω1 + ω2 = ω3,

~k1 + ~k2 = ~k3

(5)

where notation ωi = ω(~ki) is used. This system describes so-called reso-

nance conditions or resonance manifold.

The perturbation technique described above produces the equations for

the amplitudes of resonantly interacting waves Aj = Aj(T ). Let us demon-

strate it taking as example barotropic vorticity equation (BVE) on a sphere

∂△ψ

∂t
+ 2

∂ψ

∂λ
+ εJ(ψ,△ψ) = 0 (6)

where

△ψ =
∂

2
ψ

∂φ2
+

1

cos2 φ

∂
2
ψ

∂λ2
−tanφ

∂ψ

∂φ
and J(a, b) =

1

cosφ
(
∂a

∂λ

∂b

∂φ
−
∂a

∂φ

∂b

∂λ
).

The linear part of spherical BVE has wave solutions in the form

AP
m
n (sinφ) exp i[mλ+

2m

n(n+ 1)
t],

where A is constant wave amplitude, ω = −2m/[n(n+ 1)] and Pm
n (x)

is the associated Legendre function of degree n and order m.

One of the reasons to choose this equation as an example is following.

Till now a linear wave was supposed to have much more simple form,

namely, A exp i[~k~x− ω(~k)t] without any additional factor of a functional

form. For a physicist it is intuitively clear that if the factor is some oscil-

latory function of only space variables then we will still have a wave of a

sort ”“but it would be difficult to include it in an overall definition.
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We seem to be left at present with the looser idea that whenever oscil-

lations in space are coupled with oscillation in time through a dispersion

relation, we expect the typical effects of dispersive waves”[2]. By the way,

most physically important dispersive equations have the waves of this form.

Now let us keep in mind that a wave is something more complicated then

just a sin but still smooth and periodic, and let us look where perturbation

method will lead us. An approximate solution has a form

ψ = ψ0(λ, φ, t, T ) + εψ1(λ, φ, t, T ) + ε
2
ψ2(λ, φ, t, T ) + ...

where T = t/ε is the slow time and the zero approximation ψ0 is given as

a sum of three linear waves:

ψ0(λ, φ, t, T ) =

3∑

k=1

Ak(T )P (k) exp(iθk) (7)

with notations P (k) = Pmk
nk

and θk = mkλ− ωkt. Then







ε
0 : ∂△ψ0/∂t+ 2∂ψ0/∂λ = 0,

ε1 : ∂△ψ1/∂t+ 2∂ψ1/∂λ = −J(ψ0,△ψ0) − ∂△ψ0/∂T,

ε2 : .....

(8)
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and

∂△ψ0

∂λ
=i

3∑

k=1

P
(k)
mkNk[Ak exp(iθk) − A

∗
k exp(−iθk)];

∂△ψ0

∂φ
= −

3∑

k=1

Nk

d

dφ
P

(k) cosφ[Ak exp(iθk) + A
∗
k exp(−iθk)];

J(ψ0,△ψ0) = − i

3∑

j,k=1

NkmjP
(j) d

dφ
P

(k)[Aj exp(iθj) −A
∗
j exp(−iθj)]

· [Ak exp(iθk) + A
∗
k exp(−iθk)] + i

3∑

j,k=1

NkmkP
(k) d

dφ
P

(j)

· [Aj exp(iθj) + A
∗
j exp(−iθj)][Ak exp(iθk) − A

∗
k exp(−iθk)];

∂△ψ0

∂T
=

3∑

k=1

P
(k)
Nk[

dAk

dT
exp(iθk) +

dA∗
k

dT
exp(−iθk)].

leads to the condition of unbounded growth of the left hand in the form

J(ψ0,△ψ0) =
∂△ψ0

∂T

with resonance conditions θj + θk = θi ∀ j, k, i = 1, 2, 3. Let us fix some

specific resonance condition, say, θ1 + θ2 = θ3, then

∂△ψ0

∂T

∼= −N3P
(3)[

dA3

dT
exp(iθ3) +

dA∗
3

dT
exp(−iθ3)],

J(ψ0,△ψ0) ∼= −i(N1 −N2)(m2P
(2) d

dφ
P

(1)) −m1P
(1) d

dφ
P

(2) ·

A1A2 exp[i(θ1 + θ2)] − A
∗
1A

∗
2 exp[−i(θ1 + θ2)],

where notation ∼= means that only those terms are written out which can

generate chosen resonance. Let us substitute these expressions into the

coefficient by ε1, i.e. into the equation

∂△ψ1

∂t
+ 2

∂ψ1

∂λ
= −J(ψ0,△ψ0) −

∂△ψ0

∂T
,
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multiply both parts of it by

P
(3) sinφ[A3 exp(iθ3) + A

∗
3 exp(−iθ3)]

and integrate all over the sphere with t→ ∞. As a result following equation

can be obtained:

N3
dA3

dT
= 2iZ(N2 −N1)A1A2,

where

Z =

∫ π/2

−π/2

[m2P
(2) d

dφ
P

(1) −m1P
(1) d

dφ
P

(2)]
d

dφ
P

(3)
dφ.

The same procedure obviously provides the analogous equations for A2 and

A3 while fixing corresponding resonance conditions:

N1
dA1

dT
= −2iZ(N2 −N3)A3A

∗
2,

N2
dA2

dT
= −2iZ(N3 −N1)A

∗
1A3,

(9)

In general, the simplest system of equations on the amplitudes of three

resonantly interacting waves is often regarded in the form







Ȧ1 = α1A3A
∗
2,

Ȧ2 = α2A
∗
1A3,

Ȧ3 = α3A1A2 ,

(10)

and is refereed to as a 3-wave system (keeping in mind that analogous

system has to be written out for A∗
i ). Coefficients αi depend on the initial

NPDE. Similar system of equations can be obtained for 4-wave interactions,

with the products of three different amplitudes on the right hand, and so

on.
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3.2 Zakharov-Kolmogorov energy spectra

The idea that a dispersive wave system contains many resonances and wave

interactions are stochastic led to the statistical theory of wave turbulence.

This theory is well developed [4] and widely used in oceanology and plasma

physics describing a lot of turbulent transport phenomena. Avoiding the

language of Hamiltonian systems, correlators of a wave field, etc., one can

formulate its main results in the following way. Any nonlinearity in Eq.(4)

can be written out as

Σi

V(12..i)δ(~k1 + ~k2 + ...+ ~ki)

δ(ω1 + ω2 + ...+ ωi)
A1A2 · · ·Ai (11)

where δ is Dirac delta-function and V(12..i) is a vertex coefficient. This

presentation, together with some additional statistical suggestions, is used

then to construct a wave kinetic equation, with corresponding vertex coef-

ficients and delta-functions in the under-integral expression, of the form

Ȧ1 =

∫

|V(123)|
2
δ(ω1−ω2−ω3)δ(~k1−~k2−~k3)(A2A3−A1A2−A1A3)d~k2d

~k3

for 3-waves interactions, and similar for i-waves interactions. One of the

most important discoveries in the statistical wave turbulence theory are

stationary exact solutions of the kinetic equations first found in [5]. These

solutions are now called Zakharov-Kolmogorov (ZK) energy spectra and

they describe energy cascade in the wave field. In other words, energy

of the wave with wave vector ~k is proportional to k
α with α < 0 and

magnitude of α depends on the specific of the wave system. Discovery

of ZK spectra played tremendous role in the wave turbulence theory and

till the works of last decade (e.g. [6]-[8]) it was not realized that some

turbulent effects are not due to the statistical properties of a wave field

and are not described by kinetic equations or ZK energy spectra.

3.3 Small Divisors Problem

In order to use presentation (11) one has to check whether so defined

nonlinearity is finite. This problem is known as the small divisors problem
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and its solution depends on whether wave vectors have real or integer

coordinates.

Wave systems with continuous spectra were studied by Kolmogorov,

Arnold and Moser [9]-[11] and main results of KAM-theory can be briefly

formulated as follows. If dispersion function ω is defined on real-valued

wave vectors and the ratio αij = ωi/ωj is not a rational number for any

two wave vectors ~ki and ~kj, then

• (1C) Wave system is decomposed into disjoint invariant sets (KAM

tori) carrying quasi-periodic motions;

• (2C) If the size of the wave system tends to infinity, (1C) does not

contradict ergodicity, random phase approximation can be assumed,

kinetic equations and ZK energy spectra describe the wave system

properly;

• (3C) Union of invariant tori has positive Liouville measure and Q has

measure 0, there exclusion of the waves with rational ratio of their

dispersions is supposed to be not very important.

Wave systems with discrete spectra demonstrate [6]-[8] substantially dif-

ferent energetic behavior:

• (1D) Wave system is decomposed into disjoint discrete classes carry-

ing periodic motions or empty; for any two waves with wave vectors
~ki and ~kj belonging to the same class, the ratio αij = ωi/ωj is a

rational number;

• (2D) Energetic behavior of the wave system does not depend on its

size, is not stochastic and is described by a few isolated periodic

processes governed by Sys.(10);

• (3D) In many wave systems (for instance, with rational dispersion

function, as spherical Rossby waves in the earth atmosphere) KZ

spectra do not exist and discrete classes describe the total energy

transfer.
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3.4 Laminated Wave Turbulence

The results formulated in the previous section gave rise to the model of

laminated wave turbulence [12] which includes two co-existing layers of

turbulence in a wave system - continuous and discrete layers, each demon-

strating specific energetic behavior. In other words, KAM-theory describes

the wave systems leaving some “holes”in the wave spectra which are “full-

filled”in the theory of laminated turbulence.

Continuous layer, with its kinetic equation, energy cascades, ZK spectra,

etc. is well-studied while the existence of the discrete layer was realized

quite recently. In order to understand which manifestations of the discrete

layer are to be expected in numerical or laboratory experiments, let us

regard an example with dispersion function ω = 1/
√
m2 + n2 . First of

all, it is important to realize: the fact that the ratio αij = ωi/ωj is a

rational number does not imply that dispersion function ω is a rational

function. Indeed, for ω = 1/
√
m2 + n2 we have

ω : Z × Z → R

and for wave vectors ~k1 = (2, 1) and ~k2 = (9, 18), the ratio ω1/ω2 = 1/9

is rational number though ω is irrational function of integer variables.

Decomposition of all discrete waves into disjoint discrete classes Clq in

this case has the form

{~ki = (mi, ni)} ∈ Clq if |~ki| = γi

√
q, ∀ i = 1, 2, ...

where γi is some integer and q is the same square-free integer for all wave

vectors of the class Clq. The equation ω1 + ω2 = ω3 has solutions only if

∃q̃ : ~k1,
~k2,

~k3 ∈ Clq̃.

This is necessary condition, not sufficient. The use of this necessary con-

dition allows to cut back substantially computation time needed to find

solution of irrational equations in integers. Namely, one has to construct
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classes first and afterwards look for the solutions among the waves belong-

ing to the same class. In this way, instead of solving the irrational equation

on 6 variables

1/

√

m2
1 + n2

1 + 1/

√

m2
2 + n2

2 = 1/

√

m2
3 + n2

3 (12)

it is enough to solve the rational equation on 3 variables

1/γ1 + 1/γ2 = 1/γ3. (13)

There are few different reasons for a class Clq̃ to be empty:

• Index q̃ has no representation as a sum of two squares of integer num-

bers. Example: Cl3 .

All these indices are described by Euler’s theorem: an integer can be

represented as a sum of two squares if and only if its prime factor-

ization contains every prime factor p ≡ 4u+ 3 in an even degree.

• Index q̃ can be represented as a sum of two squares but Eq.(13) is not

satisfied in the physically relevant finite domain |mi|, |ni| ≤ D ∀i =

1, 2, 3. Example: Cl500009 in the domain D = 1000.

The number 500009 = 3252 + 6282 and the minimal possible form

of Eq.(13) (that is, with minimal weights) is

1

2
√

500009
+

1

2
√

500009
=

1
√

500009

which obviously can not be satisfied with all mi, ni ≤ 1000.

• Index q̃ can be represented as a sum of two squares and Eq.(13) is

satisfied but not linear equation ~k1 + ~k2 = ~k3, that is the second

equation of Sys.(5), in finite domain. Example: Cl465881 in the

domain D = 1000.

The number 465881 = 592 + 6802 = 3162 + 6052 and Eq.(13) takes

the form

1

2
√

465881
+

1

2
√

465881
=

1
√

465881
⇒

1

2
+

1

2
= 1.
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There are reasons to suggest that in some cases the linear equation renders

the solution set empty not only in a finite domain but generally, for example

for Cl2, but at present we do not posses a rigorous prove of it. Obviously,

each non-empty class has infinite number of elements due to the existence

of proportional vectors so that ~k1 = (2, 1) with the norm |~k1| =
√

5

and its proportional ~k2 = (9, 18) with the norm |~k2| = 9
√

5 belong to

the same class Cl5. On the other hand, not all the elements of a class

are parts of some solution which means that not all waves take part in

resonant interactions. Complete analysis of the properties of the classes is

an important necessary step before performing any computer simulations,

an example of the exhaustive analysis can be in [13] for the dispersion

function ω = (m2 + n
2)1/4 and resonance conditions

{

(m2
1 + n

2
1)

1/4
+ (m2

2 + n
2
2)

1/4
= (m2

3 + n
2
3)

1/4
+ (m2

4 + n
2
4)

1/4

m1 +m2 = m3 +m4, n1 + n2 = n3 + n4.

Let us come back to physical interpretation of these results. Resonantly

interacting waves will change their amplitudes according to Sys.(10). In

this case the role of ZK spectra kα, α < 0, is played by the interaction

coefficient Z ∼ kα, α > 0 (see Fig.1). Non-interacting waves will have

constant amplitudes (they are not shown in Fig.1). In the next Section

we demonstrate some examples of different wave systems whose behavior

is explained by the theory of laminated turbulence.

4 Examples

• Ex.1 Turbulence of capillary waves (dispersion function ω
2 = k

3,

three-wave interactions) was studied in [14] in the frame of simplified

dynamical equations for the potential flow of an ideal incompressible

fluid. Coexistence of ZK energy spectra and a set of discrete waves

with constant amplitudes was clearly demonstrated. The reason why
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Figure 1: Two layers of turbulence are shown symbolically. Low panel: 2D-domain in

spectral space, nodes of the integer lattice are connected with the lines which correspond

to 3-wave resonant interactions of the discrete layer. Middle panel: ZK energy spectrum

k
−3/2 with “the holes”in the nodes of the integer lattice. Upper panel: Interaction

coefficient Z ∼ k
3/2 in the nodes of the integer lattice.

in this case the amplitudes are constant is following: equation

k
3/2
1 + k

3/2
2 = k

3/2
3

has no integer solutions [8]. It means that there exist no three-wave

resonant interactions among discrete capillary waves, they take no

part in the energy transfer through the wave spectrum and just keep

their energy at the low enough level of nonlinearity.

• Ex.2 Similar numerical simulations [15] with gravity waves on the

surface of deep ideal incompressible fluid (dispersion function ω
4 =

k2, four-wave interactions) show again coexistence of ZK energy spec-

tra and a set of discrete waves. But in this case waves amplitudes

are not constant any more, discrete waves do exchange their energy

and in fact play major role in the energy transfer due to the fact that

equation

k
1/2
1 + k

1/2
2 = k

1/2
3 + k

1/2
4
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has many non-trivial integer solutions [16] (it is important in this

case that 2-dimensional waves are regraded, i.e. k = |~k| =
√
m2 + n2

with integer m,n).

• Ex.3 Some recurrent patterns were found in different atmospheric

data sets (rawindsonde time series of zonal wind, atmospheric angu-

lar momentum, atmospheric pressure, etc.) These large-scale quasi-

periodic patterns appear repeatedly at fixed geographic locations,

have periods 10-100 days and are called intra-seasonal oscillations

in the Earth atmosphere. In [17] Eq.(6) (dispersion function ω =

−2m/n(n+1), three-wave interactions) is studied which is classically

regarded as a basic model of climate variability in the Earth atmo-

sphere. It is shown that a possible explanation of the intra-seasonal

oscillations can be done in terms of a few specific, resonantly inter-

acting triads of planetary waves, isolated from the system of all the

rest planetary waves.

Remark In contrast to the first two examples, in this case only

discrete layer of turbulence exists. Indeed, while ω = −2m/n(n+1) is

a rational function, any ratio ω(mi, ni)/ω(mj, nj) is a rational number

and KAM-theory is not applicable.

• Ex.4 A very challenging idea indeed is to use the theory of laminated

turbulence to explain so-called anomalous energy transport in toka-

maks. Turbulent processes responsible for these effects are usually

described as H- and L-modes and ELMs (high, low and edge local-

ized modes consequently). Interpretation of the known experimental

results in terms of non-resonant (H), resonant (L) and resonant with

small non-zero resonance width (ELM) modes gives immediately a

lot of interesting results. In this case non-resonant discrete waves are

of major interest because they will keep their energy as in Ex.1, for

a substantial period of time. This approach allows to get two kind of

results: 1) to describe the set of the boundary conditions providing

no resonances at all - say, if the ratio of the sides in the rectangular
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domain is 2/7, no exact resonances exist; or 2) to compute explic-

itly all the characteristics of the non-resonant waves (wave numbers,

frequencies, etc.) for given boundary conditions. Some preliminary

results are presented in [18], in the frame of Hasegawa-Mima equa-

tion in a plane rectangular domain with zero boundary conditions

(dispersion function ω = 1/
√
n2 +m2, three-wave interactions).

It is important to remember that a choice of initial and/or boundary

conditions for a specific PDE might lead to a substantially different form

of dispersion function and consequently to the qualitatively different be-

havior of the wave system. For instance, Ex.3 and Ex.4 are described by

the same Eq.(6) regarded on a sphere (rational dispersion function, only

discrete layer of turbulence exists) and in a rectangular (irrational disper-

sion function, both layers exist) respectively. For some equations, a special

choice of boundary conditions leads to transcendental dispersion functions.

5 Open Questions

We have seen that the main algebraic object of the wave turbulence theory

is the equation

ω(m1, n1) + ω(m2, n2) + ...+ ω(ms, ns) = 0 (14)

where dispersion function ω is a solution of a dispersive evolutionary LPDE

with | ∂2ω
∂ki∂kj

| 6= 0. So defined class of dispersion functions includes rational,

irrational or transcendental function, for instance

ω(k) = αk− βk
3
, ω

4(k) = α
2
k

2 + β
2
, ω = m/(k+ 1), ω = tanhαk, · · ·

where α and β are constants and k =
√
m2 + n2. Continuous layer of the

wave turbulence, that is, with mi, ni ∈ R, is well studied. On the contrary,

there are still a lot of unanswered questions concerning the discrete layer

of turbulence, mi, ni ∈ Z, and we formulated here just a few of them.

Eq.(14) can be regarded as a summation rule for the rational points of

the manifold given by ω. These manifolds have very special structure -
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namely, they can be transformed into a one-parametric family of simpler

manifolds, namely (12) into (13). This situation is general enough, the

definition of classes can be generalized for a given c ∈ N, c 6= 0, 1,−1

considering algebraic numbers k1/c, k ∈ N and their unique representation

kc = γq
1/c
, γ ∈ Z

where q is a product

q = p
e1

1 p
e2

2 ...p
en

n ,

while p1, ...pn are all different primes and the powers e1, ...en ∈ N are all

smaller than c. Then algebraic numbers with the same q form the class

Clq and the following statement holds:

The equation a1k1 + a2k2... + ankn = 0, ai ∈ Z where each ki = γiq
1/c
i

belongs to some class qi ∈ q1, q2...ql, l < n with ... is equivalent to a

system






aq1,1γq1,1 + aq1,2γq1,2 + ...+ aq1,n1
γq1,n1

= 0

aq2,1γq2,1 + aq2,2γq2,2 + ...+ aq2,n2
γq2,n2

= 0

...

aql,1γql,1 + aql,2γql,2 + ...+ aql,nlγql,nl = 0

(15)

The questions are: what is the geometry underlying this parametriza-

tion? What is known about these sort of manifolds? What other properties

of the resonance manifold are defined by a given summation rule? What

additional information about these manifolds gives us the fact that they

have many (often infinitely many) integer points?

Another group of questions concerns transcendental dispersion functions.

All our examples were constructed for rational and irrational dispersion

functions and the theoretical results were based on some classical theorems

on the linear independence of some sets of algebraic numbers. In the case of

a transcendental dispersion function like ω = tanhαk similar reasoning
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can be carried out using the theorem on the linear independence of the

exponents but it is not done yet. The question about special functions in

this context is completely unexplored though very important. For instance,

a dispersion function for capillary waves in a circle domain is described by

Bessel function. Any results on their resonant interactions will shed some

light on the nature of Faraday instability.

One of the most interesting questions about the resonance manifolds

would be to study their invariants, i.e. some new function f = f(m,n, ω)

such that ω1 + ω2 = ω3 implies f1 + f2 = f3. An example of this

sort of analysis is given in [19] for 3-wave interactions of drift waves with

ω = αx/(1 + y2) but for real-valued wave vectors, x, y ∈ R. Existence

of the invariants is important because it is directly connected with the

integrability of corresponding nonlinear PDE. Coming back to the phys-

ical language this means that the wave system possesses some additional

conservation law.

6 Summary

We formulated above some interesting questions of the theory of laminated

wave turbulence in the terms of integer points on the resonant manifolds. A

very important task would be to develop fast algorithms to compute these

integer points. The parametrization property allows to construct specific

algorithms for a given dispersion function as it was done in [16] for 4-wave

interactions of gravity waves, ω = (m2 + n2)1/4 . The work on the generic

algorithm for a dispersion function ω = ω(k) ( k =
√
m2 + n2 or k =√

m2 + n2 + l2 with integer m, n, l ) is on the way [13] but it does not

cover even simple cases of rational dispersion functions like ω = m/n
2

not mentioning transcendental dispersion functions.
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Abstract

We present invariant formulation of the Beals-Kartashova factorization procedure (BK-

factorization) which allows to factorize simultaneously classes operators equivalent to

the initial one under gauge transformations. We compare two factorization methods -

Hensel descent and Beals-Kartashova factorization procedure (BK-factorization) aiming

to emphasize the constructiveness of BK-factorization. We also show the possibility to

use the same procedure for the construction of the approximate factorization of LPDE in

the case when corresponding LPDO is not exactly factorizable and point out the problems

to solve while factoring approximately noncommutative polynomials.

Keywords: linear partial differential operator, Hensel descent, BK-

factorization, invariant transformations, approximate factorization

1 Introduction

Factorization of ordinary and partial linear differential operators (LODOs

and LPDOs) is a very well-studied problem and a lot of pure existence

theorems are known. For LODOs it is proven that a factorization is unique

up to factor permutation while for LPDOs even uniqueness is not true any

more and in fact parametric families of factorizations can be constructed

for a given LPDO as will be demonstrated below.

First constructive method of factoring second order hyperbolic LPDO
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in the form

∂x∂y + a∂x + b∂y + c, (1)

belong to Laplace who formulated it in terms of invariants â = c − ab −
ax and b̂ = c−ab− by now called Laplace invariants. An operator (1) is

factorizable if at least one of its Laplace invariants is equal to zero. Various

algorithms are known now for factoring LPDOs over different differential

fields beginning with the simplest field of rational functions [1].

Recently two papers ([2], [3]) on factoring arbitrary order LPDOs have

been published. In [2] a modification of well-known Hensel lifting algo-

rithm (see, for instance, [4]) is presented and sufficient conditions for

the existence of intersection of principal ideals are given. These results

are applied then to re-formulate the factorization formulae for second and

third order operators from the ring D = Q(x, y)[∂x, ∂y] obtained by Miller

(1932) in terms of principal intersections.

In [3] necessary and sufficient conditions are given for factoring

of bivariate LPDOs of arbitrary order with coefficients being arbitrary

smooth functions. In [5] it was shown that this procedure called now

BK-factorization principally can not be generalized on the case of more

than two variables. In was also shown that conditions of factorization

found in [3] are invariants under gauge transformation and classical Laplace

invariants are particular case of this generalized invariants.

In this paper we re-formulate BK-factorization in more suitable for appli-

cations invariant form and illustrate it with a few examples, give a sample

of the symbolical implementation of this method in MATHEMATICA and

also discuss some possibilities to use this method for approximate factor-

ization of LPDOs.

2 Hensel descent and BK-factorization

Hensel descent, the latest known to us new method published before BK-

factorization, has been considered as constructive. There also exist an

opinion that BK-factorization is a minor generalization of the Hensel de-
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scent. To clarify the matter, we begin this paper with comparative analysis

of these two methods in order to show merits and draw-backs of each of

them.

• In [3] factorization of a bivariate LPDO is looked for in the form

An =
∑

j+k≤n

ajk∂
j
x∂

k
y = (p1∂x + p2∂y + p3)

( ∑

j+k<n

pjk∂
k
x∂

j
y

)

(2)

and in [2] - operator of m ≥ 2 independent variables is regarded and

for m = 2 factorization is looked for in the form

An =
∑

j+k≤n

ajk∂
j
x∂

k
y =

( ∑

j+k≤l

pjk∂
k
x∂

j
y

)( ∑

j+k≤r

pjk∂
k
x∂

j
y

)

with l+r = n.

(3)

• In [3] coefficients ajk are arbitrary smooth functions, for instance

trigonometric functions; in [2] conditions for reducibility of an oper-

ator are studied when ”coefficients are from a universal field of zero

characteristic” , while ”studying factorization algorithms we will as-

sume that the input operators are from the ring Q(x1, ..., xm)[∂1, ..., ∂m]”

This suggestion is necessary:”From now on the coefficients of a given

second-order operator are assumed to be from the base field Q(x, y).

This is necessary if the goal is to obtain constructive answers allow-

ing to factorize large classes of operator” ([2], Sec.3);”In this section

we study third-order LPDOs from the ring D = Q(x, y)[∂x, ∂y].” ([2],

Sec.4).

• In [3] it was shown that in generic case factorization can be con-

structed explicitly and algebraically, while in [2] (Sec.5) it is con-

cluded that ”the factorization problem for second- and third-order

differential operators in two variables has been shown to require the

solution of a partial Riccati equation, which in turn requires to solve

a general first-order ODE and possibly ordinary Riccati equation.

The bottleneck for designing a factorization algorithm for a LPDO is
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general first-order ODE which make the full problem intractable at

present because in general there are no solution algorithm available”

• In [5] it is pointed out that BK-factorization procedure has to be

modified in some way (presently unknown to authors) in order to

proceed with operators of more than 2 independent variables, while

in [2] (Sec.5) it is written that ”some of the results described in this

article may be generalized to any number of independent variables”

• In [5] it shown that BK-factorization procedure gives rise to con-

struction of the whole class of generalized invariants particular case

of them being classical Laplace invariants. This leads to a possibility

to factorize simultaneously the whole class of operators equivalent

under gauge transformation (see next Section) while Hensel descent

is used for factoring of a one specific operator.

We summarize all this in the Table below.

Property / Method BK-factorization Hensel descent

Order of operator n n

Coefficients of operator arbitrary smooth functions rational functions

Number of variables 2 possibly > 2

Conditions necessary and sufficient sufficient

Form of factors of order 1 and (n− 1) of order k and (n− k)

Formulated as explicit formulae ideals intersection

In the next Sections we demonstrate some other interesting properties

of BK-factorization - first of all, that it has invariant form and can be

used therefore to factorize simultaneously the whole classes of equivalent

LPDOs. Second, the use of this invariant form of BK-factorization for con-

struction of approximate factorization for LPDEs to be solved numerically.

3 Invariant Formulation

We present here briefly main ideas presented in [3], [5] beginning with the

definition of equivalent operators.
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Definition. The operators A, Ã are called equivalent if there is a gauge

transformation that takes one to the other:

Ãg = e
−ϕ
A(eϕ

g).

BK-factorization is then pure algebraic procedure which allows to to

construct explicitly a factorization of an arbitrary order LPDO A in the

form

A :=
∑

j+k≤n

ajk∂
j
x∂

k
y = L ◦

∑

j+k≤(n−1)

pjk∂
j
x∂

k
y

with first-order operator L = ∂x−ω∂y +p where ω is an arbitrary simple

root of the characteristic polynomial

P(t) =

n∑

k=0

an−k,kt
n−k

, P(ω) = 0. (4)

Factorization is possible then for each simple root ω̃ of (4) iff

for n = 2 ⇒ l2 = 0,

for n = 3 ⇒ l3 = 0, & l31 = 0,

for n = 4 ⇒ l4 = 0, & l41 = 0, & l42 = 0,

and so on. All functions l2, l3, l31, l4 l41, l42, ... are explicit functions

of aij and ω̃.

Theorem. All l2, l3, l31, .... are invariants under gauge transformations.

Definition. Invariants l2, l3, l31, .... are called generalized invariants of a

bivariate operator of arbitrary order.

In particular case of the operator (1) its generalized invariants coincide

with Laplace invariants.

Corollary. If an operator A is factorizable, then all operators equivalent

to it, are also factorizable.

As the first step of BK-factorization, coefficients pij are computed as

solutions of some system of algebraic equations. At the second step, equal-

ity to zero of all generalized invariants lij = 0 has to be checked so that
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no differential equations are to be solved in generic case. Generic

case corresponds to a simple root of characteristic polynomial, and each

simple root generates corresponding factorization. Moreover, putting some

restrictions on the coefficients of the initial LPDO ai,j as functions of x and

y, one can describe all factorizable operators in a given class of functions

(see Example 5.3 in [3]). The same keeps true for all operators equivalent

to a given one. Equivalent operators are easy to compute:

e
−ϕ
∂xe

ϕ = ∂x + ϕx, e
−ϕ
∂ye

ϕ = ∂y + ϕy,

e
−ϕ
∂x∂ye

ϕ = e
−ϕ
∂xe

ϕ
e
−ϕ
∂ye

ϕ = (∂x + ϕx) ◦ (∂y + ϕy)

and so on. Some examples:

• A1 = ∂x∂y + x∂x + 1 = ∂x(∂y + x), l2(A1) = 1 − 1 − 0 = 0;

• A2 = ∂x∂y + x∂x + ∂y + x+ 1, A2 = e
−x
A1e

x; l2(A2) = (x+ 1) −
1 − x = 0;

• A3 = ∂x∂y + 2x∂x + (y + 1)∂y + 2(xy + x+ 1), A3 = e−xyA2e
xy;

l2(A3) = 2(x+ 1 + xy) − 2 − 2x(y + 1) = 0;

• A4 = ∂x∂y +x∂x+(cosx+1)∂y+x cosx+x+1, A4 = e− sin xA2e
sin x;

l2(A4) = 0.

Generic case which can be treated pure algebraically by BK-factorization

corresponds to a simple root of characteristic polynomial. Each

multiple root leads to necessity of solving some Ricatti equation(s) (RE).

If appeared RE happens to be solvable, such a root generates a parametric

family of factorizations for a given operator. For instance, well-known

Landau operator

∂
3
xxx + x∂

3
xxy + 2∂xx + (2x+ 2)∂2

xy + ∂x + (2 + x)∂y

has characteristic polynomial with one distinct root ω1 = −x and one

double root ω2,3 = 0. Factorization then has form

(∂x + r)(∂x − r + 2)(∂x + x∂y)
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where r is a solution of Ricatti equation

1 − 2r + ∂x(r) + r
2 = 0

which is easily solvable:

r = 1 +
1

x+ Y (y)

with arbitrary smooth function Y (y) of one variable y so that factorization

has form

A = (∂x + 1 +
1

x + Y (y)
)(∂x + 1 −

1

x+ Y (y)
)(∂x + x∂y).

Notice that to factorize an ordinary differential operator it is al-

ways necessary to solve some RE. Nevertheless, just formal application

of BK-factorization will produce all the linear factors in the case when

corresponding RE are solvable. For instance, the factorization has been

constructed in [6]

x∂xxx +(x2−1)∂xx−x∂x +
2

x2
−1 = (∂x +

x2 − 1

x
)(x∂x−

√
2)(∂x +

√
2 − 1

x
).

while both RE appearing at the intermediate steps are solvable.

These two last examples show the main difference between factorizing

of ordinary and partial differential operators - LODO has always unique

factorization while LPDO may have many. An interesting question here

would be to compute the exact number of all possible factorizations of a

given LPDO into all linear factors (its upper bound is, of course, trivial:

n!). A really challenging task in this context would be to describe some

additional conditions on the coefficients of an initial operator which lead

to solvable RE.

4 Left and Right Factors

Factorization of an operator is the first step on the way of solving cor-

responding equation. But for solution we need right factors and BK-

factorization constructs left factors which are easy to construct. On the
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other hand, the existence of a certain right factor of a LPDO is equivalent

to the existence of a corresponding left factor of the transpose of that op-

erator. Moreover taking transposes is trivial algebraically, so there is also

nothing lost from the point of view of algorithmic computation. In our

paper [3] we just used the transpose in one example assuming that the op-

eration is well known. Apparently, it is not, and some new works appeared

quite recently on the construction of a complicated new right-factor algo-

rithms (i.e. [7] and others) for bivariate operators of order 2 and 3 though

our left-factor algorithm gives the explicit formulae for arbitrary order n.

This is the reason why we decided to include the explicit formula for the

adjoint in our present text.

Definition. The transpose At of an operator A =
∑
aα∂

α, ∂α = ∂
α1

1 · · · ∂αn
n .

is defined as

A
t
u =

∑

(−1)|α|∂α(aαu).

and the identity

∂
γ(uv) =

∑
(
γ

α

)

∂
α
u ∂

γ−α
v

implies that

A
t =

∑

(−1)|α+β|

(
α + β

α

)

(∂β
aα+β)∂α

.

Now the coefficients are

A
t =

∑

ãα∂
α
,

ãα =
∑

(−1)|α+β|

(
α + β

α

)

∂
β(aα+β).

with a standard convention for binomial coefficients in several variables,

e.g. in two variables

(
α

β

)

=

(
(α1, α2)

(β1, β2)

)

=

(
α1

β1

) (
α2

β2

)

.
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In particular, for order 2 in two variables the coefficients are

ãjk = ajk, j+k = 2; ã10 = −a10+2∂xa20+∂ya11, ã01 = −a01+∂xa11+2∂ya02,

ã00 = a00 − ∂xa10 − ∂ya01 + ∂
2
xa20 + ∂x∂xa11 + ∂

2
ya02.

For instance, the operator

∂xx − ∂yy + y∂x + x∂y +
1

4
(y2 − x

2) − 1 (5)

is factorizable as
[
∂x + ∂y + 1

2(y − x)
] [
...

]

and its transpose At
1 is factorizable then as

[
...

] [
∂x − ∂y + 1

2(y + x)
]
.

Implementation of the BK-factorization for bivariate operators of order

n ≤ 4 is therefore quite straightforward and has been done in MATHE-

MATICA while all roots of characteristic polynomial are known in radicals.

For instance, for the operator (5) with 2 simple roots we get one factoriza-

tion
[
∂x − ∂y + 1

2(y + x)
] [
∂x + ∂y + 1

2(y − x)
]
.

corresponding to the first root while in the case of the second root, gener-

alized invariant is equal to 2.

If n ≥ 5 the problem is generally not solvable in radicals and very simple

example of non-solvable case is: x5− 4x− 2 = 0. Thus, to find solutions in

radical for n > 4 one needs some constructive procedure of finding solvable

Galois group but this lies beyond the scope of the present paper.

5 Approximate Factorization

An interesting possible application of the invariant form of BK-factorization

is to use it for construction of approximate factorization of a given LPDE,
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in the case when exact factorization of corresponding LPDO does not ex-

ists. Indeed, as a results of BK-factorization one gets

(1) factorization coefficients {p
(i)
ij } for the i-th factorization of a given

operator, and

(2) generalized invariants l
(i)
2 p

(i)
ij , with all p

(i)
ij , l

(i)
(kj)

being explicit func-

tions of the coefficients of initial operator aij.

In numerical simulations coefficients aij of the equation are always given

with some non-zero accuracy, say ε > 0, which means that it is enough to

construct an approximate factorization in the following sense. One has to

find restrictions on the coefficients aij of an initial LPDO which provide

|l
(j)
kj
| < ε with a given accuracy 0 < ε << 1. Many different strategies are

possible here, we just give a brief sketch of two approaches we are working

on right now:

5.1 Quantifier Elimination

We illustrate this idea on the simple example of a hyperbolic operator

∂xx − ∂yy + a10∂x + a01∂y + a00 with linear polynomial coefficients.

What we have is:

a00(x, y) = b3x+ b2y + b1,

a10(x, y) = c3x+ c2y + c1,

a01(x, y) = d3x+ d2y + d1;

a function constructed from general invariants

R =
s3 − s2

2
+

(s3x+ s2y + s1)
2

4

with si = ci − di.

What we need is:

To find some function(s) F = F (aij) such that if F (ai,j) = 0, then

−ε < a00 −R < ε, for some constant 0 < ε << 1,
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i.e. to find some conditions on the initial polynomials which provide that

function R differs not too much from one these polynomials, namely a00.

Notice that simple symmetry considerations allowed us to reduce number

of variables needed for CAD calculations. Initially we had 9 variables

b3, b2, b1, c3, c2, c1, d3, d2, d1 but in fact it is enough to regard only 6 variables

s1, s2, s3, b1, b2, b3. Nevertheless, the computation time may become crucial

while using this approach due to the substantial number of variables. On

the other hand, this approach allows us to work generally on the operator

level including initial and/or boundary conditions first at some later stage.

5.2 Auxiliary Operator

Another approach is to construct a new auxiliary operator with coefficients

ãij = f(x, y))aij for all or for some of the coefficients aij of the initial op-

erator, keep invariants (almost) equal to zero and find function(s) f(x, y)

minimizing the differences between the coefficients of initial and new op-

erators. In this way an auxiliary operator is constructed which can be

regarded as an approximate operator for the initial operator. Of course,

it does not mean that solutions of the initial and approximate operators

will be also close but simple properties of linear operators show that it is

necessary (but not sufficient!) step on the way of construction of a good

approximate solution of a given LPDE - in the case of a well-posed prob-

lem, of course. In particularly, it means that one has to introduce proper

metrics in the space of operators and in the space of solutions. Choice

of the both metrics and of a function f will depend on (1) coefficients of

the initial operator; (2) class of functions in which we are looking for a

solution; (3) initial and/or boundary conditions.
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To demonstrate all this let us regard two different un-factorizable mod-

ifications of the operator (5):

A = ∂xx − ∂yy + y∂x + x∂y +
1

2
(y2 − x

2) − 1 (6)

with l2(A) = 1
4(y

2 − x
2) and

B = ∂xx − ∂yy + sin y ∂x + cosx ∂y +
1

2
(sin2

y − cos2
x) (7)

with l2(B) = 1
2
(cos y − sinx) (see Fig.1). One can see immediately that

l2(B) is a bounded function of two variables and l2(A) is an unbounded.

This means that quite different choice of function f is needed for these two

cases in order to minimize the invariants. Influence of initial/boundary

conditions is now also very clear - for instance, best approximation of

l2(B) can be obtained in the narrow belts of the lines parallel to one of the

coordinate axis while for l2(A) these directions are in no way special.
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Figure 1: Invariant l2(A) = 1

4
(y2 − x

2) (left) and invariant l2(B) = 1

2
(cos y − sin x)

(right), in the domain −10 ≤ x, y ≤ 10
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Figure 2: Upper panel: l2(B̃) (left) and a10 − ã10 (right); lower panel: a01 − ã01 (left)

and a00 − ã00 (right); in the domain 10 ≤ x, y ≤ 100

To construct a sample of such an approximate factorization for the oper-

ator (7) we just suppose intuitively that auxiliary operator B̃ is ”good” if

its coefficients differ from the coefficients of (7) not much, and its invariant

is small. Our MATHEMATICA implementation of the BK-factorization

includes simple graphic functions to display the differences between all the

parameters of the initial and auxiliary operators. A choice of the function

f(x, y) = sin 1
xy

gives an auxiliary operator B̃ of the form

B̃ = ∂xx − ∂yy + sin y sin
1

xy
∂x + cosx sin

1

xy
∂y (8)

+
1

2
(sin2

y − cos2
x) sin

1

xy
.
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It is demonstrated at the Fig.2 that for 10 ≤ x, y ≤ 100 opera-

tor B̃ gives good enough approximation and correspondingly approximate

factorization of the initial operator B has form

B ∼
[1

2

(

− cosx sin
1

xy
+ sin

1

xy
sin y

)

+ ∂x + ∂y

]

·
[1

2

(

cosx sin
1

xy
+ sin

1

xy
sin y

)

+ ∂x − ∂y

]

with |l2(B̃)| ∼ 5 · 10−4. On the other hand, in the domain 0.001 ≤ x, y ≤
1 qualitatively different approximation is needed while in this domain

|l2(B̃)| ∼ 102 (see Fig. 3).
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Figure 3: Invariant l2(B̃) in the domain 0.0001 ≤ x, y ≤ 1

Obviously, if we get enough approximate factorizations of the given

LPDE with different solvable first-order factors we can write out explicitly

general solution of the initial LPDE. Otherwise, one gets a chain of the

linear first-order equations

Ai0,nψ0 = 0, Ai0,n−1ψ1 = ψ0, ....

to be solved numerically which is a great numerical simplification, of course,

specially for higher order LPDEs. On the other hand, while performing
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numerical simulations, one has to take into account a lot of other factors,

first of all, initial and boundary conditions. It would be a nontrivial task

to include them into the exact formulae given by BK-factorization. In

order to estimate usefulness of this approach from numerical point of view

we still have to answer all the questions concerning computation time,

stability, computation error, etc. For instance, coming back to the example

of approximate factorization given in the previous section, one have to

estimate what is numerically more reasonable for a given set on initial and

boundary conditions - to solve numerically the system of equations

{

[12(cosx sin 1
xy

+ sin 1
xy

sin y) + ∂x − ∂y] ◦ ψ0 = 0

[12(− cosx sin 1
xy

+ sin 1
xy

sin y) + ∂x + ∂y] ◦ ψ1 = ψ0

or one equation B ◦ ψ = 0. Some answers can be given by the method

presented in [9] where a symbolic approach is used to generate automati-

cally finite difference schemes for LPDEs and to check their von Neumann

stability. Some preliminary steps to be taken in this direction might be

following: (1) to take a non-factorizable but solvable operator, for instance,

A1 = ∂x∂y + x∂x + 2, then LPDE A1(ψ) = 0, has general solution

ψ = −∂x

(

X(x)e−xy +

∫

e
x(y′−y)

Y (y′)dy′
)

with two arbitrary functions X(x) and Y (y); (2) to construct its approx-

imate factorization Ã1 = L1 ◦ L2; (3) to get computational schemes using

[9] - for A1 and Ã1; (4) compute both numerically; (5) to compare results

for A1 and Ã1 with the general solution for some classes of initial data and

for a fixed choice of computational scheme.

6 Summary

We presented here invariant formulation of BK-factorization and formu-

lated some ideas about using it for approximate factorization of LPDOs,

i.e. non-commutative polynomials. The great number of results is known
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on factorization of commutative polynomials (see, for instance, [10] and

others) where measure of the difference between factorizable and non-

factorizable polynomials can be introduced as a function of the coefficients

of a polynomial. It is not the case for non-commutative polynomials the

reason being that infinitesimal changes in the coefficients can change dras-

tically the solution of the corresponding LPDE, as well as changes of the

initial and boundary conditions. The problem of defining a reasonable

measure for non-commutative polynomials is under the study.
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Given a system of PDE, Riquier theory starts with answering the question:

“Which coefficients of the Taylor expansion of a solution can be chosen ar-

bitrarily (parametric derivatives) and which are then uniquely determined

by the system (principal derivatives)?” The answer is given in two parts:

prolongation, which says how to assign values to the principal derivatives,

and completion, which says how to cope with possible conflicts.

Current developments are driven by computer algebra applications, such

as symmetry analysis. Existing installations can deal with systems con-

taining hundreds of equations, which means that efficiency is an important

issue. In [4] we deal with the problem of finding a small sufficient subset of

integrability conditions – a subset of integrability conditions which when

satisfied imply satisfaction of all.

To be more specific, let symbols u
k
µ denote derivatives, where u

k is a depen-

dent variable and µ stands for a monomial over the set X of independent

variables. Let ≺ be a ranking of the set of derivatives, i.e., uk ≺ uk
x, and

u
k
µ ≺ u

k
ν ⇒ u

k
xµ ≺ u

k
xν for all x ∈ X and monomials µ, ν.

Consider a system Σ of PDE resolved with respect to certain derivatives,

Σ = {uk
µ = Φk

µ},

1 The author acknowledges the support from GAČR under grant 201/04/0538 and from the MŠMT
under project MSM4781305904. Special thanks are due to V.P. Gerdt for encouragement and enlightening
discussions.
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where Φk
µ are functions of the other derivatives (including zeroth-order

derivatives u
k) and independent variables xi. Let dom Σ denote the set of

all derivatives uk
µ on the l.h.s. of Σ. The system Σ is said to be orthonomic

with respect to the ranking ≺ if it is algebraically reduced, meaning that the

r.h.s. Φk
µ do not depend on derivatives from dom Σ; one-to-one, meaning

that for every u
k
µ ∈ dom Σ the system contains exactly one equation with

uk
µ on its l.h.s.; and normal, meaning that every uk

µ ∈ dom Σ is ≺-maximal

in its equation.

Henceforth Σ is assumed to be orthonomic. We consider the infinite pro-

longation

Σ∞ = {uk
µσ = DσΦ

k
µ}

where σ is an arbitrary monomial over X and Dx = ∂/∂x+
∑

k,µ u
k
µx ∂/∂u

k
µ

is the usual total derivative. Derivatives from dom Σ∞ are said to be prin-

cipal, the others are said to be parametric.

In general, Σ∞ is not orthonomic even if Σ is so. Deviations from being

one-to-one are expressed by integrability conditions: all r.h.s for one and

the same principal derivative have to reduce (see below) to one and the

same expression. The above-mentioned completion procedure consists in

augmenting the system with all its integrability conditions.

It is well known that it suffices to check a finite subset of integrability con-

ditions. Classical Janet’s method as well as Reid’s method of minimal and

supplementary conditions still leave considerable redundancy. In polyno-

mial elimination theory (theory of Gröbner bases), substantial progress was

due to exploatation of syzygy methods (Boulier [1]; Gebauer and Möller [3];

Carboara, Kreuzer and Robbiano [2]); to Riquier theory, syzygies were ap-

plied by Rust [6].

To introduce the results of [4], we first answer the question: “What is

reduction?” An orthonomic Σ∞ determines a submanifold EΣ∞ in the jet

space J∞ in a natural way (parametric derivatives become coordinates on

EΣ∞). Then reduction is the restriction operator S = |EΣ∞
. But what if

Σ∞ is not orthonomic? We simply choose a subsystem Σ′ of Σ∞ that is

orthonomic and satisfies dom Σ′ = dom Σ∞; then reduction is S = |EΣ′

.
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There are usually plenty of ways to choose Σ′. A purely theoretical con-

struction is possible by transfinite induction in the well-ordered set dom Σ∞.

It is also quite easy to write a reduction algorithm working on a compute-

on-demand basis. There are essentially two rules to be followed when com-

puting the reduction Su
k
µ of a principal derivative u

k
µ: (a) if the system

contains an equation uk
µ = Φk

µ, then Suk
µ := Φk

µ; (b) if we already know

Suk
µ/x for some independent variable x, then Suk

µ := SDxSuk
µ/x.

Henceforth we fix an orthonomic subsystem Σ′ of Σ∞ such that dom Σ′ =

dom Σ∞. Let S denote the reduction |EΣ′

. For every derivative uk
µ ∈ dom Σ∞

we introduce the set of all independent variables x such that u
k
µ/x ∈ dom Σ∞

and denote it by Xk
µ. Elements of this set can be interpreted as “directions”

leading to u
k
µ from another principal derivative.

If in Σ there is an equation of the form uk
µ = Φk

µ such that the set Xk
µ is

nonempty and x ∈ Xk
µ, then Φk

µ = SDxSuk
µ/x

is an integrability condition

of the first kind at the point uk
µ, meaning that prolongation by rule (a) and

rule (b) coincide. If x, y ∈ Xk
µ, then SDxSuk

µ/x = SDySuk
µ/y is an integrabil-

ity condition of the second kind at the point u
k
µ, meaning that prolongations

by rule (b) coincide for any two directions.

Construction 1. (sufficient set of integrability conditions) For every prin-

cipal derivative u
k
µ, let ∼ denote the symmetric relation in the set X

k
µ given

by

x ∼ y ⇔ u
k
µ/xy ∈ dom Σ∞

.

Let ≈ denote the equivalence relation obtained as the reflexive and transi-

tive closure of the relation ∼.

For every u
k
µ ∈ dom Σ with nonempty X

k
µ, choose one integrability condition

of the first kind Φk
µ = SDxSuk

µ/x, where x ∈ Xk
µ is arbitrary.

For every u
k
µ ∈ dom Σ∞ such that the set X

k
µ contains s equivalence classes

[x1]≈, . . . , [xs]≈ with s > 1, choose arbitrary representatives x1, . . . , xs of

these classes and consider integrability condition of the second kind in the

form of a chain of equations

SDx1
Su

k
µ/x1

= SDx2
Su

k
µ/x2

= . . . = SDxs
Su

k
µ/xs

.
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Theorem 2. Suppose that an orthonomic system Σ satisfies some sufficient

set of integrability conditions as above. Then the system Σ∞ is equivalent

to the system Σ′ and the manifolds EΣ∞ and EΣ′ coincide.

An integrability condition of the second kind is said to be trivial whenever

x ≈ y. Trivial integrability condition is redundant and may be omitted. In

particular, a nontrivial integrability condition of the second kind at a point

u
k
µ exists iff there are at least two distinct equivalence classes in X

k
µ/≈. Any

such point is the least common multiple lcm(α, β) with uk
α, uk

β ∈ dom Σ

(cardinal point), but not the converse.

It is easy to write an algorithm to find all cardinal derivatives and compute

the relation ≈ to select nontrivial among them. In the old and recent

literature we were unable to find any example (unless very special ones,

such as linear systems with constant coefficients) with a result better than

that given by our algorithm. This leads us to the conjecture that the set

of integrability conditions found by the algorithm is irredundant.

Given an orthonomic system Σ, let PΣ denote the poset of nontrivial cardi-

nal derivatives under the ordering by divisibility. Minimal cardinal points

belong to PΣ and harbour minimal integrability conditions in Reid’s [5]

sense. In generic case, PΣ is an antichain. For every number n > 2 of

independent variables, examples exist of PΣ being a chain of length n− 1.

Proposition 3. The poset PΣ does not contain a chain of length n, where

n is the number of independent variables.

For every fixed k, derivatives u
k
µ can be visualized as points in the n-

dimensional grid Nn ⊂ Rn. Integrability conditions of the second kind

then have a rather transparent geometric interpretation, at least in low

dimensions.

Example 4. Considering a system of equations uxxy = f , uyz = g, uxz = h,

nontrivial integrability conditions (of the second kind only) are visualized

by bold dots on the following geometric scheme:
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Of them, uxyz is minimal and uxxyz is supplementary in Reid’s [5] sense.
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Given a dynamical system,

ż = X(z), (1)

and a particular integral curve of it, z = z(t), at the end of the XIX century

Poincaré proposed the variational equation along z = z(t),

ξ̇ =
∂X

∂x
(z(t))ξ, (2)

as the fundamental tool to study the behavior of (1) in a neighborhood z(t)

[5]. The equation (2) gives the linear part of the flow of (1) along z = z(t).

So, we have the following General Principle:

1 Work supported by NEST-Adventure contract 5006 (GIFT).

249



GIFT 2006

If we assume that the dynamical system (1) is “integrable” in any rea-

sonable sense, then it is natural to conjecture that the linearized differential

equation (2) must be also “integrable”.

It seems clear that in order to convert this principle in a true conjec-

ture it is necessary to clarify what kind of “integrability ” is considered for

equations (1) and (2).

As (2) is a linear differential equation, it is natural to consider the in-

tegrability of this equation in the context of the Galois theory of linear

differential equations [6]. In order to do that, for technical reasons it is

convenient to move to the complex analytical category, i.e., all the equa-

tions are complex analytical and defined over complex analytical spaces,

fiber bundles, etc. Then we can define the integrability of a linear differen-

tial equation: a linear differential equation is integrable if it can be solved

by a combination of algebraic functions, quadratures, and exponential of

quadratures (the classical terminology is that the general solution is ob-

tained by Liouvillian extensions over the field of coefficients). Moreover,

the equation (2) is integrable if and only if it has a Galois group with a

solvable identity component.

For complex analytical hamiltonian systems the General Principle works

very well and in a joint work with Ramis we obtained the following result

[3] (see also [2]), that in some sense can be considered as a generalization

of a result by Ziglin in 1982 [7].

Theorem 1 Assume that a complex analytical hamiltonian system is com-

pletely integrable by means of meromorphic first integrals in a neighborhood

of the integral curve z = z(t) . Then the identity component of the Galois

group of the (2) is a commutative group.

We remark that this theorem is a typical version of several possible

theorems and it has been applied by several authors to the study of the

non-integrability of a wide range of systems (see [4] for concrete references):
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a) N-body problems, problems with homogeneous potentials and cos-

mological models.

b) Some physical problems .

c) Other mechanical problems (rigid body, spring–pendulum,...).

d) Systems with some chaotic behaviour (splitting of asymptotic sur-

faces).

One of the essential points in the proof of the above theorem is the

following lemma (this lemma is called in the reference [1] the Key Lemma):

Key Lemma ([3], see also [2]) Let f be a meromorphic first integral of

the dynamical system (1). Then the Galois group of (2) has a non-trivial

rational invariant .

Theorem 1 has been generalized recently to higher order variational equa-

tions (the solutions of these equations are the quadratic, cubic, etc. contri-

butions to the flow of the Hamiltonian system along the particular solution

z = z(t)) [4].

In this talk I will try to point out some recent works and works in progress

about applications of Theorem 1 or some extensions based on the General

Principle and the Key Lemma: applications to celestial mechanics and

homogeneous potentials, non-holonomic dynamics, variational equations

over invariant manifolds, newtonian homogeneous fields (see the work by

Maciejewsky and Przybylska in this conference), connections with Lie sym-

metries, connection with the Malgrange Galois theory, etc.
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Abstract

We study the ordinary differential equation yy
(n+1) + αy

′
y

(n) = 0 and show that this

equation is always ⁀integrable for a certain value of α. We also note that α = 0 is a special

case for which this equation has a nonlocal symmetry which enables one to reduce it to

an equation of maximal symmetry. Different features of the differential equation and its

intrinsic connection to the sl(2, R) subalgebra are illustrated including the connection to

integrating factors. In this paper, we look at the reduction properties of these equations

from an algebraic point of view.

Keywords: Maximal symmetry, Integrating factor.

1 Introduction

Our original motivation comes from the Ermakov-Pinney equation [1, 2]

which in its simplest form is

w
′′ +

K

w3
= 0, (1)
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where K is a constant. In theoretical discussions the sign of the constant

K is immaterial and in fact it is often rescaled to unity. In practical

applications it would be negative to avoid ’collapse into the origin’ due to

its interpretation as the square of angular momentum [3, 4].

The general form of (1), videlicet

ρ̈ + ω
2(t)ρ =

1

ρ3
(2)

occurs in the study of the time-dependent linear oscillator, be it the clas-

sical or the quantal problem, as the differential equation which determines

the time-dependent rescaling of the space variable and the definition of

’new time’. In this context we mention the references [5, 6, 7, 8, 9, 10, 11].

The same form is one of the basic equations of Ermakov systems which,

with their generalisations, have been the subject of an extensive literature

over the last thirty years. Some references are [12, 13, 14, 15, 16, 17].

Another origin of (1) – of particular interest in this work – is as an

integral of the third-order equation of maximal symmetry which in its

elemental form is

y
′′′ = 0. (3)

The integration of this equation, which is a feature of the calculation of the

symmetries of all linear ordinary differential equations of maximal symme-

try [18], by means of an integrating factor gives a variety of results de-

pending upon the integrating factor used. Including the one relevant to

(1) some obvious integrating factors give

1.y′′′ = 0 −→ I3 = y
′′

x.y′′′ = 0 I2 = xy′′ − y′

1
2x

2
.y

′′′ = 0 I1 = 1
2x

2
y
′′ − xy

′ + y

y′′.y′′′ = 0 J = 1
2y

′′2 ie 1
2I

2
3

y.y
′′′ = 0 y

′′
y

3 + K = 0

(4)

and the last of these is to (1) when the integral is interpreted as an equation.

(The numbering of the fundamental first integrals follows the convention

given in Flessas et al [19, 20].)
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To illustrate the point on integrating factors we consider the equation of

maximal symmetry (3) which has seven Lie point symmetries. These are

G1 = ∂y

G2 = x∂y

G3 = x
2
∂y + 2x∂y′

G4 = y∂y + y
′
∂y′

G5 = ∂x

G6 = x∂x + y∂y

G7 = x
2
∂x + 2xy∂y.

The algebra is 3A1, {sl(2, R)⊕s A1} and 3A1. The autonomous integrating

factors for (3) are y′′ and y as mentioned above. We list the symmetries

and algebra when each of the integrating factors is treated as an equation

and as a function.

When we multiply y
′′′ = 0 by the integrating factor y

′′ we obtain y
′′
y
′′′ =

0. Integrating this expression gives 1
2y

′′2 = k, where k is a constant of

integration. This may be rewritten as y′′ = k without loss of generality.

This may be treated as the function y
′′ or as an equation y

′′ − k = 0 in

which k is a parameter. We then have three cases for which we list the

symmetries as follows:

y
′′ = 0 y

′′ = k y
′′

G1 = ∂y G1 = ∂y G1 = ∂y

G2 = x∂y G2 = x∂y G2 = x∂y

G3 = y∂y G3 = (1
2
x2k − y)∂y G3 = ∂x

G4 = ∂x G4 = ∂x + 2xk∂y G4 = x∂x + 2y∂y

G5 = x∂x G5 = x∂x + x2k∂y

G6 = x
2
∂x + xy∂y G6 = x

2
∂x + (xy + 1

2x
3
k)∂y

G7 = y∂x G7 = (y − 3
2x

2k)∂x − x3k2∂y

G8 = xy∂x + y
2
∂y G8 = (xy − 1

2x
3
k)∂x + (y2 − 1

4x
4
k

2)∂y.

(5)
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Remark

• The algebra of the symmetries listed in columns one and two is

sl(3, R) : 2A1 ⊕s {sl(2, R) ⊕ A1} ⊕ 2A1 whereas that for the third

column is A1
4,9 : A2 ⊕s 2A1.

• This is a clear indication of the distinction of the algebraic properties

between first integrals, that is the function of column three, and

configurational invariants, that the equations of columns one and

two.

If y is used an the integrating factor we obtain yy′′′ = 0. Integrating this

equation gives

yy
′′ − 1

2y
′2 = k (6)

which can be written as

(y1/2)′′ =
k

(y1/2)3
(7)

and is the simplest form of the Ermakov-Pinney equation [1, 2]. As before

we write down the point symmetries corresponding to the three cases of

the differential equation u
′′ = k/u

3 where u = y
1/2. We have the following:

u
′′ = 0 u

′′ = k/u
3

u
′′
u

3

G1 = ∂u G1 = ∂u G1 = ∂u

G2 = x∂u G2 = 2x∂x + u∂u G2 = 2x∂x + u∂u

G3 = u∂u G3 = x2∂x + xu∂u G3 = x2∂x + xu∂u.

G4 = ∂x

G5 = x∂x

G6 = x2∂x + xu∂u

G7 = u∂x

G8 = xu∂x + u2∂u

(8)

The transformation of yy
′′ − 1

2y
′2 = k to u

′′ = k/u
3 does not make a

difference in terms of the symmetries as we just have a point transformation

in this case.
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The characteristic feature of the Ermakov-Pinney equation, (1), is that it

possesses the three-element algebra of Lie point symmetries sl(2, R) which

in itself is characteristic of all scalar ordinary differential equations of max-

imal symmetry. One of the purposes of this paper is to investigate higher-

order analogues of the Ermakov-Pinney equation. The basic criterion is

algebraic.

In investigations of the Emden-Fowler equation [21, 22, 23, 24] the exis-

tence of a Lie point symmetry for certain indices1 is intimately connected

[25, 26, 27] with the solution of the fourth-order equation

2yy
′′′′ + 5y′y′′′ + αy

′′′ = 0, (9)

where α is a parameter which occurs in both the Emden-Fowler equation

and in the symmetry [26, 27, 28, 29, 30, 31]. The determination of the

first integral associated with the symmetry is not possible in closed-form

for nonzero α. When α = 0, the Lie symmetry becomes a Noether sym-

metry and the associated integral follows directly from an application of

Noether’s theorem [32]. Equation (9) possesses just two Lie point sym-

metries. However, in the case that α = 0, ie, when the equation has the

form

2yy
′′′′ + 5y′y′′′ = 0, (10)

there are the three Lie point symmetries

Γ1 = ∂x, Γ2 = x∂x and Γ3 = y∂y. (11)

Reduction by Γ1 leads to a third-order equation which also has three Lie

point symmetries. Two of these are the descendants of Γ2 and Γ3 as one

would expect since Γ1 is the normal subgroup in both cases. The third

symmetry of the reduced equation,

Λ4 = 2u2
∂u + uv∂v (12)

1 For instance when the Emden-Fowler equation of index two given by y′′ = f(x)y2 gives rise to (9). See
[25] for a detailed treatment of this equation.
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(the variables of the reduced equation are u = y and v = y
′) is a hidden

symmetry of Type II [33, 34, 35] and has its origin in the nonlocal symmetry

of the fourth-order equation,

Γ4 = 3
(∫

ydx

)

∂x + 2y2
∂y. (13)

When the symmetry (12) is used to reduce the third-order equation to

a second-order equation, the resulting equation is of maximal symmetry

and so linear when expressed in the correct coordinates [25]. Without this

hidden symmetry the reduction by the three symmetries given in (11) leads

to an Abel’s equation of the second kind of particularly daunting aspect.

Equation (10) was used by Euler et al [36] as an example in their study

of the integrability properties of equations of the form

y
(n+1) = h

(

y, y
(n)

)

y
′ (14)

and they showed that the equation could be reduced to d4
Y/dX4 = 0, that

is the fourth-order equation of maximal symmetry, by means of a complex

sequence of nonlocal transformations which by most curious happenstance

included the very Emden-Fowler equation from which it arose.

In this paper we draw together various features to which we have alluded

above to make a coherent study. We commence with first integrals which

possess three Lie point symmetries with the algebra sl(2, R) and have a

structure resembling that of (1). The associated differential equation is

of the form of (14) with an explicit form of the function h, that is the

imposition of the algebraic constraint provides a precise definition of the

associated differential equation. Equation (10) does not fit into this struc-

ture. Equation (10) is a particular case of the two-parameter family of

differential equations,

yy
(n+1) + αy

′
y

(n) = 0, (15)

and we make a study of the point symmetries for general values of the

parameter α using the parameter-testing facility of Program LIE [37, 38].

We find that there is a value of the parameter, α, for which (15) is always

integrable. We see that (10) and its useful nonlocal symmetry is peculiar.
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2 Higher-order analogues of the Ermakov-Pinney equation

As we indicated above, there are several approaches which may be taken.

Here we assume that the integral has the same structure as (1) and pos-

sesses the Lie algebra sl(2, R) of point symmetries.

Suppose that there exists an integral of the form

I = y
(n)

y
α
, (16)

when α is a parameter to be determined, with the associated (n+1)th-order

equation

yy
(n+1) + αy

′
y

(n) = 0 (17)

such that the integral, I, has the sl(2, R) symmetries appropriate [18] to

the nth-order equation of maximal symmetry, y
(n) = 0, ie

Γ1 = ∂x

Γ2 = x∂x + 1
2(n − 1)y∂y (18)

Γ3 = x
2
∂x + (n − 1)xy∂y.

The first symmetry, Γ1, is implied by the autonomy of (16). Since the Lie

Bracket, [Γ1, Γ3]LB = 2Γ1, we need use only Γ1 and Γ3. The (n + 1)th

extension of Γ3 is

Γ
[n+1]
3 = x

2
∂x + (n − 1)xy∂y + [(n − 1)y + (n − 3)xy

′] ∂y′ (19)

+ [2(n − 2)y′ + (n − 5)xy
′′] ∂y′′ + [3(n − 3)y′′ + (n − 7)xy

′′′] ∂y′′′

+ . . . + [n − (2n + 1)]xy
(n)

∂y(n) −
[

(n + 1)y(n) + (n + 3)xy
(n+1)

]

·∂y(n+1).

Since both integral and equation are autonomous, (20) may be split into

an x-free part and an x-dependent part. The former does not contain any

operators of relevance to the integral and so gives zero automatically. In

the case of the latter we obtain

−(n + 1)xy
(n)

y
α + (n − 1)αxyy

(n)
y

α−1 (20)
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which is zero provided the parameter α takes the value (n + 1)/(n − 1).

Evidently n 6= 1, ie there does not exist a first-order Ermakov-Pinney

equation.

We recall that the Ermakov-Pinney equation has the form

w
′′ =

K

w3
(21)

in the notation adopted above whereas its primitive form is

yy
′′ − 1

2y
′2 = 1

2K (22)

as the direct integral of y′′′ = 0 in association with the integrating factor

y. The transformation is y = 1
2w

2. Does a similar property persist at the

higher order?

Consider the general equation (17) constrained to possess the represen-

tation of the sl(2, R) subalgebra given in (18)2,

yy
(n+1) +

n + 1

n − 1
y
′
y

(n) = 0, (23)

which is the derivative of the Ermakov-Pinney equation

y
(n) +

K

y(n+1)/(n−1)
= 0. (24)

For the purposes of this treatment equation (24) defines the general Ermakov-

Pinney equation for n > 1. The property holds for n = 2. For n = 3 the

Ermakov-Pinney equation is

y
′′′ +

K

y2
= 0 (25)

and the corresponding fourth-order equation is

yy
′′′′ + 2y′y′′′ = 0. (26)

2 Equation (23) is not the most general nth order ordinary differential equation invariant under sl(2, R).
See [39] for a detailed treatment of this question.
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To see if this equation has a simple form we set y = w
α, where α is a

parameter to be determined. The fourth-order equation becomes, after a

modicum of simplification,

w
3
w

′′′′ + 2(3α − 1)w2
w

′
w

′′′ + 3(α − 1)w2
w

′′2 (27)

+ 12(α − 1)2
ww

′2
w

′′ + 3(α − 1)2(α − 2)w′4 = 0.

It is evident that the original form of the equation is the simplest available

under this class of transformations. In the case of n = 2 the ability to

reduce the nonlinear equation obtained by differentiation of the second-

order Ermakov-Pinney equation to the third-order equation of maximal

symmetry was accidental and not an intrinsic property of Ermakov-Pinney

equations.

3 The structure of Euler et al

A second approach to the investigation of equations of the structure of the

Ermakov-Pinney equation is to begin from the structure treated by Euler

et al [36]. The model equation which they treated had the general form

y
(n+1) = h

(

y, y
(n)

)

y
′
. (28)

We impose an sl(2, R) algebraic structure on this equation. We take the

structure to be

Γ1 = ∂x

Γ2 = x∂x + my∂y (29)

Γ3 = x
2
∂x + 2mxy∂y,

where the parameter m is at our disposal.

The structure assumed for (28) makes the possession of Γ1 automatic.

The action of the (n + 1)th extension of Γ2 leads to

my
∂h

∂y
+ (m − n)y(n) ∂h

∂y(n)
= −nh (30)

dy

my
=

dy
(n)

(m − n)y(n)
=

dh

−nh
(31)
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and from the associated Lagrange’s system, (31), we find that the charac-

teristics of the first-order linear partial differential equation, (30), are

u = hy
n/m and v =

y(n)

y(m−n)/m
(32)

so that the form of (28) invariant under the actions of Γ1 and Γ2 is

y
n/m

y
(n+1) = g




y(n)

y(m−n)/m



 y
′
. (33)

We now turn to Γ3. The (n + 1)th extension is

Γ
[n+1]
3 = x

2
∂x + 2mxy∂y + 2 [my + (m − 1)xy

′) ∂y′

+ 2 [(2m − 1)y′ + (m − 2)xy
′′] ∂y′′ + . . .

+ 2
{[

nm − 1
2n(n − 1)

]

y
(n−1) + (m − n)xy

(n)
}

∂y(n)

+ 2
{[

(n + 1)m − 1
2n(n + 1)

]

y
(n) + (m − n − 1)xy

(n+1)
}

· ∂y(n+1).

When this is applied to (33), there is no need to consider the part which

has x as coefficient since the actions of Γ1 and Γ2 have already done that.

The effective part of the operator gives

y
n/m

[

(n + 1)m − 1
2n(n + 1)

]

y
(n)

= gmy +
g′

y(m−n)/m

[

nm − 1
2n(n − 1)

]

y
(n−1)

y
′
. (34)

However, y(n−1) is not permitted. The coefficient of y(n−1) must be zero, ie

m = 1
2(n − 1). With this restriction on the value of m we find from (34)

that

g = −
n + 1

n − 1
y

n + 1

n − 1y
(n)

and the equation is specifically (23). Thus the sl(2, R) equation in combi-

nation with the constraint of Euler et al is unique at all orders.
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4 Conclusion

We have studied the differential equation yy
(n+1) + αy

′
y

(n) = 0 and shown

that this equation is always ⁀integrable for a certain value of α. The value

of α = 0 is a special case for which this equation has a nonlocal symmetry

which enables one to reduce it to an equation of maximal symmetry. Dif-

ferent features of the differential equation and its intrinsic connection to

the sl(2, R) subalgebra are illustrated including the connection to integrat-

ing factors. We have shown how the integrating factors, for example, of

the third ordinary differential equation give different symmetry properties

depending on which integrating factor is used. It is important to mention

that if y is an integrating factor of y
(n) = 0, then the integral obtained by

using this integrating factor always has the sl(2, R) subalgebra.

In the case that n = 1 in (20) the representation of sl(2, R), (18), takes

a form for which there is no second-order equation. There is an equation

of the third order which has these symmetries. Indeed the third-order

equation with a double set of these symmetries, one in x and the other

in y, is the Kummer-Schwarz equation which is a nonlinear representation

of a third-order equation of maximal symmetry when one admits contact

symmetries.

There are still some additional questions which still to be answered like

why is there a difference in reduction properties in reduced equations when

moving from 6th, 5th, 4th, 3rd and 2nd order and a rigorous look into the

reduction properties of these equations from an algebraic point of view.
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265



GIFT 2006

equation, Journal of Mathematical Physics, 34, 4809-4816, 1993.

[35] Abraham, S.B. and Leach, P.G.L.: Hidden symmetries of nonlinear ordinary differen-

tial equations, Exploiting symmetry in Applied and Numerical Analysis, Allgower,E.,

Georg, K. and Miranda, R. (Eds.), Lectures in Applied Mathematics, 29 , AMS,

Providence, 1-10, 1993.

[36] Euler, N. and Leach, P.G.L.: First integrals and reduction of a class of nonlinear

higher order ordinary differential equations, Journal of Mathematical Analysis and

Applications, 287, 337-347, 2003.

[37] Head, A.K.: LIE, a PC program for Lie analysis of differential equations, kept com-

puter Physics Communications, 77, 241-248, 1993.

[38] Sherring, J., Head, A.K. and Prince, G.E.: Dimsym and LIE: symmetry determining

packages, Mathematical and Computer Modelling, 25, 153-164, 1997.

[39] Leach, P.G.L. and Govinder, K.S.: On the uniqueness of the Schwarzian and lineari-

sation by nonlocal contact transformation, Journal of Mathematical Analysis and

Application, 235, 84-107, 1999.

266



Integrability of homogeneous systems.

Results and problems
1

Andrzej J. Maciejewski 1 Maria Przybylska 2,3

1 Institute of Astronomy, University of Zielona Góra, Podgórna 50,
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Abstract

We report our recent results concerning the integrability of two classes of equations:

natural Hamiltonian systems with homogeneous potentials and Newton’s equations with

homogeneous right-hand sides. Our approach combines the methods of differential Galois

theory and a certain kind of the global analysis of the investigated systems. We show that

among the methods known till now, our approach gives the strongest necessary conditions

for the integrability.

Keywords: integrability, non-integrability criteria, differential Galois group, hypergeo-

metric equation, Hamiltonian equations, Newton equations

1 Introduction

During the last two decades analytical methods used to study differential

equations have been considerably developed. In the integrability theory,

after the epoch of the Painlevé analysis, rigorous methods of proving the

non-integrability appeared. Now, it is commonly accepted (but in the

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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whole generality not proved) that a ‘generic’ system of differential equa-

tions is not integrable. Having this fact in mind, all efforts to find integrable

systems or to prove the non-integrability of the given system, can be con-

sidered as an exotic curiosity. However, it is not like that. First of all,

integrable systems are interesting as such, not only from the mathematical

point of view. Furthermore, many physical systems depend on parame-

ters. For such systems there is an interesting question how to find values

of parameters for which the system is integrable. Obviously, numerical

methods cannot answer this question. On the contrary, applying analyt-

ical methods we can distinguish a low dimensional set in the parameters’

space such that for the parameters from this set all necessary conditions

for the integrability are satisfied. If the distinguished set consists of a fi-

nite number of points, then we can apply a direct method for searching

first integrals. It is also possible to apply numerical methods to check if

for prescribed parameters’ values the system behaves regularly. Moreover,

even if we know that the considered system is not integrable, it is of great

importance to gain information about the reason and mechanisms of the

non-integrability.

The meaning of the integrability depends on the context, or, more pre-

cisely, on a class of the investigated systems. All accepted definitions of the

integrability follow the same philosophy: a system is integrable iff it pos-

sesses such a number of first integrals (and/or other tensor invariants) that

it is solvable by quadratures. For example, the integrability of a Hamil-

tonian system in the Liouville sense implies that solutions of Hamilton’s

equations can be expressed by quadratures.

Generally, only few methods for proving the non-integrability are known.

Let us mention here three of them.

a) The Lagutynskii-Levelt method, see [1, 2] This is an algebraic ver-

sion of the Kovalevskaya analysis. It can be used for proving the

non-existence of one or more polynomial or rational first integrals of

general homogeneous or qusi-homogeneous polynomial systems. In

the cited references it was formulated in the form applicable for ho-
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mogeneous systems. In [3] we generalised this simple but effective

method for quasi-homogeneous systems.

b) The Ziglin method [4, 5] is applied to Hamiltonian systems. It can

be used for proving the non-integrability in the Liouville sense. It is

less known that it can also be applied for proving the non-existence

of a certain number of additional meromorphic first integrals which

do not necessarily commute.

c) The Morales-Ramis method is, in some sense, a purely algebraic

version of the Ziglin method. It applies for proving the meromor-

phic non-integrability in the Liouville sense. In [6] we extended

the application of the Morales-Ramis approach for proving the non-

integrability in the non-commutative sense.

All the above methods are based on a linearisation of the investigated

system around a particular solution. Among them the most powerfull is

the Morales-Ramis method.

The aim of this paper is to show the main results of the integrability

studies of two classes of polynomial systems applying the Morales-Ramis

theory. The first of them are natural Hamiltonian systems

d

dt
q = p,

d

dt
p = −V

′(q), V
′(q) = gradV (q), (1)

with Hamilton function

H =
1

2

n∑

i=1

p
2
i + V (q), (2)

where V = V (q) ∈ C[q] is a homogeneous polynomial of degree k > 2.

The second class is a direct generalisation of (1), namely, the class of

autonomous Newton equations

q̈ = −F (q), q = (q1, . . . , qn)
T ∈ Cn

, (3)
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with homogeneous polynomials Fi = Fi(q1, . . . , qn) of degree k − 1 > 1.

Obviously, the Hamilton equations (1) are a special case of the Newton

equations with F = V
′.

For Hamiltonian systems of the form (1) the Morales-Ramis theory is

directly applicable. As a matter of fact, J.J. Morales-Ruiz and J.-P. Ramis

formulated a theorem, see [7, 8], which gives the necessary conditions for

the integrability of such systems. Thus, our aim was to improve this result.

We observed that it is important to take into account globally all the impli-

cations of the Morales-Ramis theorem applied for all accessible particular

solutions. As an outcome, we obtain a ‘finiteness’ theorem. Roughly speak-

ing: for a fixed k among Hamiltonian systems (1) there is at most a finite

number of the ones satisfying the necessary conditions for the integrability.

For the Newton equations, the Morales-Ramis theory is not applicable

directly, as such systems are not Hamiltonian. Nevertheless, we show that

it is possible to use the differential Galois theory for the integrability study

of such systems. Then we follow the ideas which appeared to be so fruitfull

in our investigations of Hamiltonian systems.

The idea of this paper is to give a guide-book presenting main ideas,

results and open problems. An interested reader can find all the details

in cited publications. We present also completely new results contained in

papers which are under preparations.

2 Sketch of the applied theory

All the methods mentioned in the introduction arose as developments of an

idea due to Weierstrass and Kovalevskaya that solutions of an integrable

system considered as functions of the complex time should be single valued.

Of course, in applications, the independent variable, or the time is real, so

the solutions are functions of a real variable. Nevertheless, to understand

all properties of functions of a real variable it is fruitfull to investigate them

in a complex domain.
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Thus let us consider a complex analytic manifold M
n, a holomorphic

vector field v on Mn and the following dynamical system generated by this

field
d

dt
x = v(x), x ∈ M

n
, t ∈ C. (4)

All the mentioned methods are based on the linearisation of the original

system around a particular non-equilibrium solution ϕ(t) of (4), thus we

introduce variational variables ξ as

x(t) = ϕ(t) + ξ(t). (5)

The linearisation of equation (4) along ϕ(t) has the form

ξ̇ = A(t)ξ, A(t) =
∂v

∂x
(ϕ(t)), ξ ∈ TΓM

n
. (6)

The particular solution ϕ(t) defines a Riemann surface Γ with t as a local

coordinate. We can consider the entries of matrix A as elements of field

K := M(Γ) of meromorphic functions on Γ. This field with differentiation

with respect to t as a derivation is a differential field. Only constant func-

tions from K have a vanishing derivative, so the subfield of constants of K
is C.

It is obvious that solutions of (6) are not necessarily elements of Kn.

The fundamental theorem of the differential Galois theory guarantees that

there exists a differential field F ⊃ K such that it contains n linearly

independent (over C) solutions of (6). The smallest differential extension

F ⊃ K with this property is called the Picard-Vessiot extension. A group

G of differential automorphisms of F which does not change K is called the

differential Galois group of equation (6). It can be shown that G is a linear

algebraic group. Thus, it is a union of disjoint connected components. One

of them containing the identity is called the identity component G◦.

But for us more important is the fact that the differential Galois group

of variational equations has a close connection with the integrability of

variational equations (6) as well as (4).
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Now we explain why the differential Galois group of variational equations

is important in a study of the integrability. At first, we introduce a few

definitions. Let us consider a holomorphic function F defined in a certain

connected neighbourhood of solution ϕ(t). In this neighbourhood we have

the expansion

F (ϕ(t) + ξ) = Fm(ξ) + O(‖ξ‖m+1
), Fm 6= 0. (7)

Then the leading term f of F is the lowest order term of the above expan-

sion i.e., f(ξ) := Fm(ξ). Note that f(ξ) is a homogeneous polynomial of

variables ξ = (ξ1, . . . , ξn) of degree m; its coefficients are polynomials in

ϕ(t). If F is a meromorphic function, then it can be written as F = P/Q

for certain holomorphic functions P and Q. Then the leading term f of

F is defined as f = p/q, where p and q are leading terms of P and Q,

respectively. In this case f(ξ) is a homogeneous rational function of ξ.

One can prove that if F is a meromorphic (holomorphic) first integral

of equation (4), then its leading term f is a rational (polynomial) first

integral of variational equations (6). Moreover, if system (4) has k ≥ 2

functionally independent meromorphic first integrals F1, . . . , Fk, then by

the Ziglin Lemma [4, 9, 10] one can assume that the leading terms of

F1, . . . , Fk, are functionally independent rational first integrals of (6).

Additionally, if G ⊂ GL(n, C) is the differential Galois group of (6), and

f is its rational first integral, then f(g(ξ)) = f(ξ) for every g ∈ G [11, 7]

(see also [9]). This means that f is a rational invariant of group G. Thus

we have a correspondence between the first integrals of the system (4) and

invariants of G.

Lemma 1. If equation (4) has k functionally independent first integrals

which are meromorphic in a connected neighbourhood of a non-equilibrium

solution ϕ(t), then the differential Galois group G of the variational equa-

tions along ϕ(t) has k functionally independent rational invariants.

As mentioned, a differential Galois group is an algebraic group, thus in

particular it is a Lie group, and one can consider its Lie algebra.
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This Lie algebra reflects only the properties of the identity component of

the group. It is easy to show that if a Lie group has an invariant, then

also its Lie algebra has an integral. Let us explain what the last expression

means. Let g ⊂ GL(n, C) denotes the Lie algebra of G. Then an element

Y ∈ g can be considered as a linear vector field: x 7→ Y (x) := Y x,

for x ∈ Cn. We say that f ∈ C(x) is an integral of g, iff Y (f)(x) =

df(x) · Y (x) = 0, for all Y ∈ g.

Proposition 1. If f1, . . . , fk ∈ C(x) are algebraically independent invari-

ants of an algebraic group G ⊂ GL(n, C), then they are algebraically inde-

pendent first integrals of the Lie algebra g of G.

The above facts are the starting points for applications of differential

Galois methods to integrability studies. If the considered system is Hamil-

tonian, then we have additional constrains. First of all, the differential Ga-

lois group of variational equations is a subgroup of the symplectic group.

Secondly, commutation of first integrals imposed by the Liouville integra-

bility implies commutation of variational first integrals. Using all these

facts Morales and Ramis proved the following theorem [7, 11].

Theorem 1. Assume that a Hamiltonian system is meromorphically inte-

grable in the Liouville sense in a neighbourhood of a phase curve Γ, and that

variational equations along Γ are Fuchsian. Then the identity component

of the differential Galois group of the variational equations is Abelian.

It can happen that a considered system satisfies all conditions of the

above theorem, but nevertheless it is not integrable. It is nothing strange

as this theorem gives only necessary conditions for the integrability, for

examples of such systems see e.g [7, 12, 13]. Such examples show a need

of stronger necessary conditions for the integrability. As far as we know,

there is only one method which gives effectively such conditions. It was

developed by C. Simo, J.J Morales and J.-P. Ramis [7, 14] and is based on

higher order variational equations. The simplest way to derive the higher

order variational equations is following. Instead of (5) we introduce a
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formal series

x = ϕ(t) +

∞∑

i=1

ε
iξi, (8)

where ε is a formal parameter. Inserting the above series into both sides

of (4) and comparing terms of the same order with respect to ε we obtain

an infinite chain of linear non-homogeneous equations of the form

d

dt
ξk = A(t)ξk + Xk(ξ1, . . . , ξk−1), X1 ≡ 0, k = 1, 2, . . . . (9)

The first of the above equations coincides with (6). Although for k > 1

equations (9) are non-homogeneous, there exists an appropriate framework

allowing to define the differential Galois group for such equations, for de-

tails see [7, 14]. The following theorem was announced in [7], and in [14]

the reader can find its proof with the detailed theoretical exposition.

Theorem 2. Assume that a Hamiltonian system is meromorphically inte-

grable in the Liouville sense in a neighbourhood of the analytic phase curve

Γ, and variational equations along Γ are Fuchsian. Then the identity com-

ponent of the differential Galois group of k-th variational equations along

Γ is Abelian for all k ≥ 1.

For applications of the above theorem see [7, 14, 12, 15, 13].

3 Particular solutions and variational equations

Let F = (F1, . . . , Fn) ∈ C[q]n, and all Fi be homogeneous polynomials of

the same degree. Assume that for a non-zero d ∈ Cn, F (d) is parallel to

d. Then the same property has d̃ = γd for an arbitrary γ ∈ C⋆. Thus

such vectors lie on a line. This line is called a Darboux point (or a radial

direction) of the force F provided that F does not vanish on it. If F = V ′

for a homogeneous potential V ∈ C[q] we talk about a Darboux point of

the potential. In other words, a Darboux point is a point [d1 : · · · : dn]

in projective space CPn−1 such that F (d) = γd for a certain γ ∈ C⋆. In
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practice Darboux points of a force are given by solutions of the non-linear

equation

F (d) = d, (10)

however, we must remember that different solutions of the above equation

can give the same Darboux point.

Darboux points are important because they give particular solutions

of Newton’s equations (3) (and also for Hamilton’s equations (1) when

F = V ′). In fact, if d is a Darboux point satisfying (10), then

q(t) = ϕ(t)d, p(t) := q̇(t) = ϕ̇(t)d, (11)

is a solution of (3) provided ϕ(t) satisfies the equation

ϕ̈ = −ϕ
k−1

. (12)

This equation determines a family of elliptic (for k = 3) or hyperelliptic

curves (for k > 3)

ϕ̇
2 =

2

k

(
ε − ϕ

k
)
, (13)

depending on a parameter ε.

The variational equations along solution (11) have the form

ẍ = −ϕ(t)k−2F ′(d)x, (14)

where F ′(d) is the Jacobi matrix calculated at the Darboux point d. In

the case of Hamiltonian systems the Jacobi matrix of F is the Hessian V ′′

of the potential V .

Let us assume that the Jacobi matrix is diagonalizable, thus in a certain

basis equations (14) take the simple form

η̈i = −λiϕ(t)k−2
ηi, i = 1, . . . , n, (15)

where (λ1, . . . , λn) are eigenvalues of F ′(d). By homogeneity of F one of

eigenvalues, e.g. λn, is λn = k − 1.
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Since variational equations split into a system of independent second or-

der variational equations, their differential Galois group is a direct product

of differential Galois groups for these particular equations

G = G1 × · · · × Gn. (16)

Let us note that by the absence in (15) terms proportional to the first order

derivative η̇i every Gi is an algebraic subgroup of Sp(2, C) for i = 1, . . . , n

and G ⊂ Sp(2n, C). Here we underline that this statement is valid for

Hamilton’s as well as for Newton’s equations. Changing the independent

variable t −→ z := ϕ(t)k/ε, as it was proposed by Yoshida [16], we trans-

form every equation (15) into a very particular linear equation with rational

coefficients

z(1 − z)η′′
i +

(
k − 1

k
−

3k − 2

2k
z

)

η
′
i +

λi

2k
ηi = 0, i = 1, . . . , n. (17)

One can recognise immediately that the above equation is the Gauss hy-

pergeometric equation [17]

z(1 − z)η′′
i + [c − (a + b + 1)z]η′

i − abηi = 0, (18)

with parameters

a + b =
k − 2

2k
, ab = −

λi

2k
, c = 1 −

1

k
. (19)

Properties of this equation are characterised by the differences of exponents

at singularities z = 0, 1,∞, that are

λ = 1 − c =
1

k
, µ = c − a − b =

1

2
, ν = a − b =

1

2k

√

(k − 2)2 − 8kλi,

(20)

respectively. Transformation to the hypergeometric equation is crucial

for further considerations, because for this equation its differential Ga-

lois group was analysed in detail by Kimura [18]. However, to make this

fact useful, we should know a relation between differential Galois groups of
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equations (15) and (18). It can be shown, see e.g. [7, 10], that the identity

components of these groups are isomorphic.

The well known Kimura theorem [18] specifies all cases when all solutions

of the hypergeometric equation (18) are Liouvillian. In these cases, by the

Lie-Kolchin theorem the identity component of the differential Galois group

is solvable. Kimura gave the complete list of hypergeometric equations with

Liouvillian solutions in the form of a table with admissible differences of

exponents. Application of this result to our hypergeometric equation with

differences of exponents given by (20) yields the following result.

Lemma 2. The identity component G(λ)◦ of the differential Galois group

of equation (18) with parameters a, b and c given by (19) is solvable if and

only if (k, λ) belong to the following list

1.

(

k, p +
k

2
p(p − 1)

)

, 2.

(

k,
1

2

[
k − 1

k
+ p(p + 1)k

])

,

3.

(

3,−
1

24
+

1

6
(1 + 3p)

2

)

, 4.

(

3,−
1

24
+

3

32
(1 + 4p)

2

)

,

5.

(

3,−
1

24
+

3

50
(1 + 5p)

2

)

, 6.

(

3,−
1

24
+

3

50
(2 + 5p)

2

)

,

7.

(

4,−
1

8
+

2

9
(1 + 3p)

2

)

, 8.

(

5,−
9

40
+

5

18
(1 + 3p)

2

)

,

9.

(

5,−
9

40
+

1

10
(2 + 5p)

2

)

.

Here p is an integer.

4 Hamiltonian systems with homogeneous potentials. Results

and open problems

For Hamiltonian systems we have a standard definition of the integra-

bility in the Liouville sense and one can use directly the main theorem

of the Morales-Ramis theory, namely Theorem 1. Considering systems

with homogeneous potentials we divide all potentials of the same degree

277



GIFT 2006

into equivalence classes. Two potentials V (q) and VA(q) are equivalent iff

there exists a matrix A ∈ PO(n, C) ⊂ GL(n, C) such that VA(q) := V (Aq).

Here by PO(n, C) we denote a group of n × n complex matrices A such

that AAT = αE where α ∈ C⋆ and E is the identity matrix.

For Hamiltonian systems with homogeneous potentials necessary inte-

grability conditions obtained from the analysis of differential Galois group

of the hypergeometric equation were formulated by Morales and Ramis in

[7, 8]. They are expressed by means of eigenvalues λ1, . . . , λn of the Hessian

V ′′ of potential V calculated at a Darboux point.

Theorem 3. If Hamiltonian system (1) with a polynomial homogeneous

potential V (q) of degree k > 2 is meromorphically integrable in the Liouville

sense, then at a Darboux point values of (k, λi) for i = 1, . . . , n belong to

the list given in Lemma 2.

One can observe that the last eigenvalue λn = k − 1 does not give

any restriction for the integrability. The remaining eigenvalues yield the

strongest known necessary integrability conditions. But still, for potentials

depending on some parameters, generally these conditions distinguish only

infinite families of parameters for which the system can be integrable.

Theorem 3 was a starting point of our analysis. It is clear that the

more Darboux points we have, the more constrains for the integrability

follow from this theorem. Thus, it is reasonable to consider simultaneously

all Darboux points for a given potential. With each Darboux point d

we have associated n − 1 non-trivial eigenvalues {λ1, . . . , λn−1} of Hessian

V
′′(d). Our basic observation was that these eigenvalues taken at different

Darboux points are not arbitrary.

We investigated in detail the case of two degrees of freedoms. In this

case a homogeneous potential of degree k has at most k Darboux points

(except the case of radial potential). For a Darboux point di there exists

only one non-trivial eigenvalue of V
′(di) which we denoted by λi. In [13]

we proved the following theorems.

Theorem 4. Assume that a homogeneous polynomial potential V (q1, q2) of

degree k > 2
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• has 0 < l ≤ k simple Darboux points with corresponding eigenvalues

λi, and

• if (q2 ± iq1) is a linear factor of V , then it has multiplicity 1.

Then the shifted eigenvalues Λi = λi − 1 satisfy the following relation

l∑

i=1

1

Λi

= −1. (21)

Theorem 5. Let a homogeneous polynomial potential V (q1, q2) of degree

k > 2

• have 0 < l ≤ k simple Darboux points, and

• if (q2 ± iq1) is a linear factor of V , then its multiplicity r± 6= k/2.

Then
l∑

i=1

1

Λi

= −1 − θr+,2
r+

k − 2r+
− θr−,2

r−

k − 2r−
. (22)

In (22) we used the step function

θx,y :=

{

0 for x < y,

1 for x ≥ y.
(23)

These relations were obtained from the Global Residue Theorem [19] ap-

plied to an appropriate meromorphic one-form on CP1.

Let us explain why the above theorems are important. If the considered

system is integrable, then all Λi = λi−1 belong to sets of rational numbers

determined by Lemma 2. In [13] we proved that there is at most a finite

number of such Λi satisfying the conditions of Theorem 3 and relation (21)

or (22) . As for a given set of λi there is at most a finite number of non-

equivalent potentials which take these eigenvalues at Darboux points, we

have the following result.
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Theorem 6. For a fixed k > 2, among homogeneous potentials of degree

k satisfying the assumptions of Theorem 5, at most a finite number of

non-equivalent potentials is integrable.

A weak point of the above theorem is that we have to assume a kind of

genericity of the potential, i.e. that Darboux points are simple. But the

integrability is not a generic property, so we cannot discard non-generic

potentials. Another type of the degeneracy appears when the potential

does not have the maximal number of Darboux points. The lowest de-

generations of this type are however tractable. A given potential does not

have the maximal number of Darboux points iff it has a factor (αq1 +βq2),

α2 + β2 6= 0 with multiplicity greater than one. When this multiplicity is

two, we have the following.

Theorem 7. Assume that a homogeneous potential V ∈ C[q1, q2] of degree

k > 2 has a linear factor (αq1 + βq2), α
2 + β

2 6= 0 with the multiplicity 2.

Then, Hamilton’s equations (1) does not admit an additional rational first

integral.

For details see [13].

There exist homogeneous potentials without Darboux points. For them

Theorem 3 is not applicable. In spite of the fact that such potentials are

very special, we cannot discard them from investigations. In fact, using

the direct method we have found one new, according to our knowledge,

integrable potential [20]

V = (q2 − iq1)
2(q2 + iq1)

5
, i =

√
−1, (24)

with an additional first integral quartic in momenta

F =4(p1 − ip2)
4
z1 + 4(p1 − ip2)

3(p1 + ip2)z2 − 4(p1 − ip2)
2
z

2
1z

6
2

− 8
(
p

2
1 + p

2
2

)
z1z

7
2 − (p1 + ip2)

2
z

8
2 − 4z3

1z
12
2 , z1 = q2 − iq1,

z2 = q2 + iq1.

(25)

In the case of potentials possessing only one Darboux point when the only

non-trivial Λ = λ−1 belongs to one of the appropriate sets from Lemma 2,
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the additional integrability conditions can be only obtained from an anal-

ysis of higher order variational equations along the considered particular

solution.

If a potential possesses a multiple Darboux point, then at this point

always Λ = 0 and there is no relation of the type (21). In such a case, we can

apply the higher order variational equations corresponding to the particular

solution generated by this multiple Darboux point. It is interesting that

an application of the higher order variational equations in this case is quite

easy – namely, in calculations only the first terms of solutions of variational

equations play a role. The calculations up to order k = 11 suggest the

hypothesis that the only integrable potentials with multiple Darboux points

exist for k even and they are radial potentials V = (q2
1 + q

2
2)

k/2.

The described procedure yields the opportunity to classify all integrable

polynomial homogeneous potentials of a given degree k possessing at least

one Darboux point. In [15] it was shown that there is no another mero-

morphically integrable Hamiltonian systems with homogeneous potentials

of degree 3 except these already known and collected in [21, 22]. For po-

tentials with k = 4 the integrability problem was definitively solved for all

potentials except one one-parameter family

V2 =
1 − α

2
q

2
1 (q1 + iq2)

2
+

1

4

(
q

2
1 + q

2
2

)2
, α ∈ C⋆

. (26)

In this case, using the Morales-Ramis theory, one can only prove that the

necessary condition of the integrability for V2 is

α ∈ {p + 2p(p − 1) | p ∈ Z} ∪
{

3

8
+ 2p(p + 1) | p ∈ Z

}

∪

{

−
1

8
+ 2

9
(1 + 3p)2 | p ∈ Z

}

.

For all details see [13].

For k = 5 the situation becomes more complicated. For the first time

appear potentials with a non-maximal number Darboux points and these
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factorisable by term (q2 ± iq1) with the multiplicity greater than one. Ap-

plication of the higher order variational equations is more complicated

because our particular solution becomes a hyperelliptic curve. Thus vari-

ational equations no more transform into the product of Lamé equations.

The absence of logarithmic terms in solutions of higher order variational

equations still yields very strong obstructions, but it is not clear if its pres-

ence implies that the identity component of a differential Galois group of

higher order variational equations is not Abelian. Under the assumption

that this hypothesis is valid, one can solve the integrability problem for all

potentials possessing at least one Darboux point except

V14 =
1

15
(q2 − iq1)

2(3q3
2 + 6iq1q

2
2 − 9q2

1q2 − 2iq3
1), (27)

corresponding to (Λ1, Λ2, Λ3) = (−1,−1,−1) [23].

Starting from k = 6 at first sight the problem of seeking the sets of

admissible Λi seems to simplify. Indeed, now λi = Λi + 1 can belong only

to the first or the second family of rational numbers given in Lemma 2.

One can observe that for any k ≥ 6 there are two admissible families of Λi

I
(I)
k = {−1,−1, k − 2, . . . , k − 2

︸ ︷︷ ︸

k−2 times

}, I
(II)
k =






−

k + 1

2k
, k + 1, . . . , k + 1
︸ ︷︷ ︸

k−1 times






.

(28)

The reconstruction of the potential made for I
(II)
k yields the known inte-

grable potential with binomial coefficients introduced in paper [24]

Vk =

[k/2]
∑

i=0

2−2i

(
k − i

i

)

q
2i
1 q

k−2i
2 =

1

r

[(
r + q2

2

)k+1

+ (−1)k

(
r − q2

2

)k+1
]

.

(29)

Here [x] denotes the integer part of x and r =
√

q2
1 + q2

2.

Potentials corresponding to I
(I)
k are give by polynomial solutions of the

second order differential equation

v
′′(z) +

1 − k

z − α
v
′(z) + k(k − 1)

α

(z − α)(z2 + 1)
v(z) = 0, (30)
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as V (q1, q2) = qk
1v(q2/q1). Here α ∈ C is a free parameter. One can

observe that the case α = 0 corresponds to the separable in the Cartesian

coordinates potential V (q1, q2) = qk
1 + aqk

2 , where a ∈ C⋆.

But, unfortunately, families I
(I)
k and I

(II)
k are not the only ones satisfying

relation (21). For k ∈ {14, 17, 19, 26, 32, 34, 37, 71, . . .} other sets of {Λi}
satisfying (21) exist. The similar situation takes place for the generalised

relation (22) for potentials factorisable by (q2 ± iq1)
r±. Except for a family

which exists for all k, we have found ‘sporadic’ sets of Λi satisfying (22)

which exist for a certain k and r±.

Obviously, for a fixed k one can try to repeat all calculations similar to

those made for k = 3, 4, 5, but it seems that there is no chance to obtain

a general integrability result valid for any k > 5 without other stronger

necessary conditions for the integrability.

The natural question appears about the extension of this analysis for

Hamiltonian systems with a greater number of degrees of freedom. Theo-

rem 3 is formulated for any number of degrees of freedom, thus only the

extensions of relations (21) and (22) are necessary. Such relations connect-

ing n − 1 non-trivial eigenvalues of the Hessian matrix calculated at all

Darboux points really exist and are now under consideration.

5 Newton homogeneous equations. Results and open problems

We did not find in the literature works devoted to a systematic study of

the integrability of Newton’s equations. Thus, we start our investigation

from finding a proper notion of the integrability of such systems. Since for

the vector field

v(q, p) :=

n∑

i=1

(

pi

∂

∂qi

− Fi(q)
∂

∂pi

)

, p := q̇, (31)

defined by the right hand sides of Newton’s equation (3) we have

div(v) :=

n∑

i=1

∂vi

∂xi

= 0, x = (q, p), (32)
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thus

µ = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn, (33)

is an invariant 2n-form. According to the Jacobi theorem [25], if a system

of m first order autonomous differential equations has m − 2 functionally

independent first integrals and an invariant m-form (the Jacobi Last Mul-

tiplier), then it is integrable by quadratures. Thus, we adopt the following

definition.

Definition 1. We say that a system of n Newton’s equations of the form (3)

is integrable in the Jacobi sense iff it admits 2n−2 functionally independent

first integrals.

It is convenient to divide the Newton equations into equivalence classes.

We say that forces F and F̃ are equivalent if there exists a non-singular

matrix A ∈ GL(n, C) such that F̃ (q) = A
−1F (Aq). Obviously, if Newton’s

equations with force F are integrable in the Jacobi sense, then Newton’s

equations with forces equivalent to F are also integrable in the Jacobi

sense. It should be mentioned that the set of all Newton’s systems with

homogeneous forces of degree k − 1 contains all Hamiltonian systems with

homogeneous potentials of degree k. Hence analysing Newton’s equations

we have to distinguish clearly the non-Hamiltonian class of such equations.

Our main effort was to find the necessary conditions for the integrability

in the Jacobi sense. More precisely, we wanted to find such conditions

applying the main ideas of the Morales-Ramis theory.

As was shown in Section 3 for the Newton homogeneous equations par-

ticular solutions related to Darboux points also exist. If Jacobi matrix

F ′(d) at a Darboux point d is diagonalisable, then variational equations

have the form of a product of second order equations, and their differential

Galois group is a direct product

G = G1 × · · · × Gn ⊂ Sp(2n, C), (34)

with Gi ⊂ Sp(2, C), for i = 1, . . . , n. It should be remarked here that, gen-

erally, a differential Galois group of variational equations along a particular
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solution is a subgroup of GL(2n, C). Only the specific form of particular

solutions corresponding to Darboux points guarantees that it is a subgroup

of Sp(2n, C).

The starting point is Lemma 1 which applied to the considered system

implies that if it is integrable in the Jacobi sense, then the differential Ga-

lois group of the variational equations possesses 2n− 2 rational invariants.

To find explicit obstructions for the integrability from this implication it

is useful to consider the Lie algebra of the differential Galois group. De-

composition (34) implies that the Lie algebra g of G is a direct sum

g = g1 ⊕ · · · ⊕ gn, gi ⊂ sp(2, C). (35)

Now, we can apply Proposition 1. Considering first integrals of a Lie

subalgebra g of sp(2, C) it is convenient to use the following facts. An

element Y of Lie algebra sp(2n, C), considered as a linear vector field, is a

global Hamiltonian vector field with a quadratic polynomials homogeneous

Hamiltonian H : C2n → C. In this way we can identify sp(2n, C) with a

C-linear vector space of homogeneous polynomials of degree 2 with the

canonical Poisson bracket as the Lie bracket. Thus for a Lie algebra g ⊂
sp(2n, C), a rational function is a first integral of g, iff {H, f} = 0, for all

H ∈ g. In the considered case Lie algebra g is a direct sum and this allows

us to show the following.

Theorem 8. Assume that the Newton system (3) with polynomial homo-

geneous right-hand sides of degree l ≥ 2 is integrable in the Jacobi sense.

Then if d is a Darboux point such that F ′(d) is semi-simple, then the

identity component of the differential Galois group of variational equations

along a particular solution defined by d is Abelian.

Using the above theorem and Lemma 2 we obtained a result similar to

Theorem 3.

Theorem 9. Assume that the Newton system (3) with polynomial homo-

geneous right-hand sides of degree k − 1 ≥ 2 is integrable in the Jacobi

sense. Then if d is a Darboux point such that F ′(d) is semi-simple and
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λ1, . . . , λn are the corresponding eigenvalues, then (k, λi) for i = 1, . . . , n

belong to the list from Lemma 2.

It is remarkable that the necessary conditions for the Liouville inte-

grability of Hamiltonian systems with a homogeneous potential and the

integrability in the Jacobi sense are the same.

Then we focused our attention on the case n = 2. Our aim was to

perform a global analysis similar to that we did for Hamiltonian systems.

The obtained result is the following.

Theorem 10. Let us assume that F = (F1, F2) is a homogeneous polyno-

mial force of degree k − 1, and moreover

a) F admits 0 < l ≤ k simple Darboux points di with non-trivial eigen-

values λi of F ′(di), for i = 1, . . . , l;

b) if polynomials G(q1, q2) := F2(q1, q2)− q2F1(q1, q2) and F1(q1, q2) have

a common linear factor (q2 − siq1), then

mult(G, q2 − siq1) = mult(F1, q2 − siq1).

Under the above assumptions Λi := λi − 1 satisfy

l∑

i=1

1

Λi

= −1. (36)

We proved this theorem as in the Hamiltonian case, i.e. we applied the

Global Residue Theorem to an appropriately defined differential one-form

ω on CP1. A Darboux point di is a simple pole of this form with residue

1/Λi. In a case when mult(G, q2−siq1) 6= mult(F1, q2−siq1) relation among

Λi becomes more involved. The differential form ω has additional poles at

si with non-vanishing residues which depend on coefficients of (F1, F2).

For these residues we have no restrictions and this leads to considerable

complications.

We performed a complete analysis for the non-factorisable Newton equa-

tions of homogeneity degree 2, 3 and 4, except for certain cases of forces
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which do not admit Darboux points. Among this class we also found one

superintegrable system with three first integrals

q̈1 = −q
k−1
2 , q̈2 = 0,

I1 = p2, I2 =
1

k + 1
q

k+1
2 + p2(q2p1 − q1p2), I3 = p1p2 +

1

k
q

k
2 .

(37)

Let us note that almost all obtained integrable systems are Hamiltonian.

This is related to the fact that most of the integrable systems possess first

integrals quadratic in velocities. If the quadratic form of velocities in this

first integral is non-degenerated, then system is Hamiltonian and this first

integral becomes the Hamilton function. All details of the integrability

analysis of Newton’s equations will be published in [26].

References

[1] Lagutinskii, M. N.: Partial Algebraic Integrals, Kharkov, 1908, in Russian.

[2] Moulin Ollagnier, J., Nowicki, A., and Strelcyn, J.-M.: On the non-existence of

constants of derivations: the proof of a theorem of Jouanolou and its development.

Bull. Sci. Math., 119(3), 195–233, 1995.

[3] Maciejewski, A. J. and Przybylska, M.: Normal forms and Kovalevskaya-Lagutinskii-

Levelt method, in preparation.

[4] Ziglin, S. L.: Branching of solutions and non-existence of first integrals in Hamilto-

nian mechanics. I. Functional Anal. Appl., 16, 181–189, 1982.

[5] Ziglin. S. L.: Branching of solutions and non-existence of first integrals in Hamilto-

nian mechanics. II. Functional Anal. Appl., 17, 6–17, 1983.

[6] Maciejewski, A. J. and Przybylska, M.,: Differential Galois obstructions for non-

commutative integrability, Nonlinearity, submitted.

[7] Morales Ruiz, J. J.: Differential Galois theory and non-integrability of Hamiltonian

systems, volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1999.
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From Homological Perturbation to Spectral
Sequences: a Case Study1

A. Romero

Universidad de La Rioja, Departamento de Matemáticas y Computación,
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Abstract

In this paper, a program computing spectral sequences is reported. The theoretical al-
gorithm supporting this program is based on effective homology and homological pertur-
bation techniques. We illustrate the fundamental ideas of this algorithm by means of an
example related to the famous Serre spectral sequence.

Keywords: Symbolic computation, spectral sequences, Serre spectral sequence, con-
structive algebraic topology, homological perturbation.

1 Introduction

Homological methods are important in the field of formal integrability of
PDE systems. In particular, Spencer cohomology is a tool which can be
used to determine the involutivity of a system (see [1] and [2]). Recently,
Sergeraert has developed some programs computing the Koszul homology
of polynomial ideals2, a notion closely connected to Spencer cohomology.
This program is based on his theory of effective homology and, in partic-
ular, uses intensively homological perturbation techniques.

In parallel, the author of the present paper has obtained algorithms
computing spectral sequences of filtered chain complexes, even when the
1 Partially supported by Comunidad Autónoma de La Rioja, project ANGI-2005/19, and by Ministerio
de Educación y Ciencia, project MTM2006-06513 and by NEST-Adventure contract 5006 (GIFT).
2 A pdf presentation for several talks about this subject can be found in
www-fourier.ujf-grenoble.fr/~sergerar/Papers/Koszul.pdf
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original chain complex is not of finite type, on condition that this chain

complex is an object with effective homology. The aim of this paper is to

illustrate, by means of a significant example, the corresponding computer

program which has been written down to implement this algorithm, in

order to facilitate its further application to reach more knowledge in the

case of the Koszul homology and the Spencer cohomology.

The organization of the paper is the following. In Section 2 we introduce

an example of application of the Serre spectral sequence, showing the non-

constructive nature of this spectral sequence and comparing this method

with the effective homology one. Then, in the next section, some necessary

definitions and results about spectral sequences and effective homology are

explained. Sections 4 and 5 show two important examples of application of

the effective homology technique, including as a particular case the exam-

ple presented before. In Section 6 we explain how the effective homology

method can also be used to compute spectral sequences, and we illustrate

it again by means of our particular case study. Finally, the paper ends

with a section of conclusions and further work.

2 An example of spectral sequence

A Spectral Sequence is a family of “pages” {Er
p,q, d

r
p,q} of differential bi-

graded modules, each page being made of the homology groups of the

preceding one. If we know the stage r in the spectral sequence (Er, dr)

we can build the bigraded module at the stage r + 1, Er+1, but this can-

not define the next differential dr+1 which therefore must be independently

defined too.

One of the first examples of spectral sequence is due to Serre (using

previous work of Leray), involving the fibrations G →֒ E → B, where G

is the fiber space, B the base space and E the total space. The three

spaces were initially topological spaces, but this notion of fibration can

be generalized to many other situations, in particular the case where B

is a simplicial set and F is a simplicial group. The total space E can be

considered as a twisted product of B and G, and the underlying twisting
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operator τ : B → G explains how the twisted product E = B ×τ G is

different from the trivial product B × G. The definition of the associated

spectral sequence is given by the following theorem, and it can be found

in [3].

Theorem. Let G →֒ E → B be a fibration with a base space B simply

connected. Then a first quadrant spectral sequence {Er
p,q, d

r
p,q}r≥2 is defined

with E2
p,q = Hp(B,Hq(G)) and Er

p,q ⇒ Hp+q(E).

It is frequently thought this spectral sequence is a process allowing one to

compute the groups H∗(E) when the groups H∗(B) and H∗(G) are known.

But in general this is false, because the differentials dr
p,q are unknown and

in many cases we do not have the necessary information to compute them.

And even if we know all the differentials dr
p,q and we can reach the limit

groups E∞
p,q, we must deal with a (not always solvable) extension prob-

lem to determine the homology groups H∗(E). This means that the Serre

spectral sequence is not an algorithm that allows us to compute the ho-

mology groups of the total space of the fibration, but in fact it is a (rich

and interesting) set of relations between the groups H∗(G), H∗(E) and

H∗(B). Moreover, we must emphasize here that in many cases this spec-

tral sequence can not be determined. To illustrate this non-constructive

nature, we include here one of the initial examples of Serre, considering

the beginning of his calculations.

The computation of sphere homotopy groups is known as a difficult prob-

lem in algebraic topology. It is not hard to prove that πn(S
k) = 0 for

n < k and πk(S
k) = Z. Furthermore, in 1937 Freudenthal proved that

π4(S
2) = Z2, and at the beginning of the fifties Serre computed many

sphere homotopy groups, being his famous spectral sequence the main tool

to obtain these calculations. In particular, Serre proved π6(S
3) has 12 ele-

ments, but he was unable to choose between the two possible options Z12

and Z2 + Z6.

For instance, how can we use the Serre spectral sequence to determine

the homotopy groups of S3? It is well-known that πn(S
3) = 0 for n < 3 and

π3(S
3) = Z. To compute π4(S

3), we consider a fibration F2 →֒ X4 → S3,
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where F2 = K(Z, 2) is an Eilenberg-MacLane space. The beginning of the

spectral sequence (that is, the groups E2
p,q) is determined by means of the

well-known homology groups of S3 and F2; the result is shown in the next

figure.

Z 0 0 Z

0 0 0 0

Z 0 0 Z

0 0 0 0

Z 0 0 Z

p

q r = 2

//

OO

We observe that all the arrows d2
p,q : E2

p,q → E2
p−2,q+1 are necessarily

null so that the groups E3
p,q are equal to the corresponding E

2
p,q. But

problems arise when trying to determine the differential maps d3
p,q. The

arrow d3
3,0 must be an isomorphism, but to know the arrows d3

3,2q some

other (extra) information than which is given by the spectral sequence

itself is necessary. In this particular case, a specific tool (the multiplicative

structure of the cohomology) gives the solution, the arrow d
3
3,2q : Z → Z is

the multiplication by q + 1. This implies the E3
3,2q die and Er

0,2q = Zq for

4 ≤ r ≤ ∞ and q ≥ 2. In this way, the Serre spectral sequence entirely

gives the homology groups H0(X4) = Z, H2n(X4) = Zn for n ≥ 2 and the

other Hn(X4) are null. In particular, the Hurewicz theorem and the long

exact sequence of homotopy imply that π4(S
3) = π4(X4) = H4(X4) = Z2,

a result known by Freudenthal.

Then, a new fibration F3 →֒ X5 → X4 is considered to determine π5(S
3),

where F3 = K(Z2, 3) is chosen because π4(X4) = Z2. In this case Serre was

also able to obtain all the necessary ingredients to compute the maps dr
p,q

which play an important role in the beginning of the associated spectral

sequence. The main tool (extra information) are the multiplicative struc-

ture in cohomology and more generally the module structure with respect

to the Steenrod algebra A2. The final groups E∞
p,q (with p+ q ≤ 8) of this
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spectral sequence are showed in the following figure.

Z 0 0 0 0 0 Z3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 Z2

0 0 0 0 0

Z2 0 0 0

Z2 0 0

Z2 0

p

q r = ∞

//

OO

Again the Hurewicz theorem and the long homotopy exact sequence

imply π5(S
3) = π5(X4) = π5(X5) = H5(X5) = Z2; it was the first important

result obtained by Serre.

These two examples illustrate the fact that the computation of the Serre

spectral sequence is not an easy task and in some situations some other

information than which is given by the spectral sequence itself is needed.

In other cases, the computation of the Serre spectral sequence is in fact not

possible, since some differentials dr
p,q can not be determined by any other

mean (we do not have the necessary extra information). Therefore, as we

have said, the Serre spectral sequence is not an algorithm that allows us

to compute H∗(E) if H∗(B) and H∗(G) are known.

On the contrary, the method based on the notion of object with effective

homology provides real algorithms for the computation of homology groups

of many complicated spaces. In particular, this technique can be applied

to compute the homology groups of the total space of fibrations when the

base and fiber spaces are objects with effective homology, replacing in this

way the Serre spectral sequence.
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Based on the effective homology method, the Kenzo system [4] was de-

veloped. Kenzo is a Common Lisp program devoted to Symbolic Compu-

tation in Algebraic Topology that works with rich and complex algebraic

structures (chain complexes, differential graded algebras, simplicial sets,

simplicial groups, morphisms between these objects, etc). It implements

the effective homology method for the computation of homology groups of

different spaces. As an example, we show in the following lines how this

program can be used to compute the homology groups of the space X5

introduced in this section.

First of all, the object X5 must be built, and we can do it by means

of the following instructions. We do not explain the Lisp functions that

appear here but most of them are self-explanatory.

> (setf s3 (sphere 3))

[K1 Simplicial-Set]

> (setf f3 (z-whitehead s3 (chml-clss s3 3)))

[K37 Fibration K1 -> K25]

> (setf x4 (fibration-total f3))

[K43 Simplicial-Set]

> (setf f4 (z2-whitehead x4 (chml-clss x4 4)))

[K292 Fibration K43 -> K278]

> (setf x5 (fibration-total f4))

[K298 Simplicial-Set]

The result of the last evaluation is the object K298, which is an instance

of the class Simplicial-Set, and is located through the symbol x5. We

can ask for the effective homology of X5:

> (efhm x5)

[K608 Homotopy-Equivalence K298 <= K598 => K594]

We will see in the following section what a homotopy equivalence is.

The homology groups of X5 are then easily computable using its effective

homology, for example, in degrees 5 and 6 the known results H5(X5) = Z2

and H6(X5) = Z6 are obtained.
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> (homology x5 5)

Homology in dimension 5 :

Component Z/2Z

---done---

> (homology x5 6)

Homology in dimension 6 :

Component Z/6Z

---done---

But although the effective homology method allows us to compute the

homology groups of the total space of a fibration (in our example, X5), the

structure of the Serre spectral sequence can also give useful informations

about the involved construction, sometimes even more interesting than the

final homology groups. In fact, both techniques can be combined and it

can be seen the effective homology method can also be applied to obtain an

algorithm that compute, as a by-product, the relevant spectral sequence

(with the whole set of its components).

This algorithm combining both spectral sequence and effective homology

methods has been concretely implemented as an extension of the Kenzo

program, allowing the user to compute in an easy way spectral sequences

associated with filtered complexes, and as a particular case, Serre spectral

sequences. For example, as we will see in Section 6, with these programs

all the ingredients of the spectral sequence associated with the fibration

F3 →֒ X5 → X4 introduced in this section (groups, differential maps, con-

vergence...) are easily obtained by means of simple instructions, without

needing any extra information.

3 Preliminaries

In this section, some necessary concepts about spectral sequences and ef-

fective homology are presented. First of all, we include here some basic

definitions and results of Algebraic Topology that can be found, for in-

stance, in [5].
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Definition 1. A chain complex is a pair (C, d) where C = {Cn}n∈Z is a

graded Abelian group and d = {dn : Cn → Cn−1}n∈Z (the differential map)

is a graded group homomorphism of degree -1 such that dn−1dn = 0 ∀n ∈ Z.

The graded homology group of the chain complexC isH(C) = {Hn(C)}n∈N,

with

Hn(C) = Ker dn/Im dn+1

A chain complex homomorphism f : (A, dA) → (B, dB) between two chain

complexes (A, dA) and (B, dB) is a graded group homomorphism (degree

0) such that fdA = dBf .

Definition 2. A filtration F of a chain complex (C, d) is a family of sub-

chain complexes FpC ⊂ C such that

· · · ⊂ Fp−1Cn ⊂ FpCn ⊂ Fp+1Cn ⊂ · · · ∀n ∈ Z

Note 1. A filtration F on C induces a filtration on the graded homol-

ogy group H(C). Let ip : FpC →֒ C the p-injection, then Fp(H(C)) =

H(ip)(H(Fp(C))).

Definition 3. A filtration F of a chain complex C is said to be bounded if

for each degree n there are integers s = s(n) < t = t(n) such that FsCn = 0

and FtCn = Cn.

Definition 4. A Z-bigraded module is a family of Z-modulesE = {Ep,q}p,q∈Z.

A differential d : E → E of bidegree (−r, r − 1) is a family of ho-

momorphisms of Z-modules dp,q : Ep,q → Ep−r,q+r−1 for each p, q ∈ Z,

with dp,q ◦ dp+r,q−r+1 = 0. The homology of E under this differential is

the bigraded module H(E) ≡ H(E, d) = {Hp,q(E)}p,q∈Z with Hp,q(E) =

Ker dp,q/ Im dp+r,q−r+1

Definition 5. A spectral sequence E = {Er, dr} is a family of Z-bigraded

modules E1, E2,. . . , each provided with a differential dr = {dr
p,q} of bide-

gree (−r, r − 1) and with isomorphisms H(Er
, d

r) ∼= E
r+1, r = 1, 2, . . .

Definition 6. A spectral sequence E = {Er
, d

r} is said to be convergent

if for every p, q ∈ Z there exists rp,q ∈ N such that dr
p,q = 0 = dr

p+q,q−r+1 for

all r ≥ rp,q.
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If E = {Er
, d

r} is convergent, then E
r
p,q = E

rp,q

p,q ∀r ≥ rp,q. We define

E∞
p,q = E

rp,q

p,q , which can be seen as the “limit” of the groups Er
p,q when

r → ∞.

Definition 7. A spectral sequence (Er
, d

r) is said to converge to a graded

module H (denoted by E1 ⇒ H) if there is a filtration F of H and for each

p isomorphisms E∞
p

∼= FpH/Fp−1H of graded modules.

Theorem 1. (Theorem 3.1, Chapter XI, in [5]) Each filtration F of a chain

complex (C, d) determines a spectral sequence (Er
, d

r), defined by

E
r
p,q =

Z
r
p,q ∪ Fp−1Cp+q

dZ
r−1
p+r−1,q−r+2 ∪ Fp−1Cp+q

where Zr
p,q is the submodule [a| a ∈ FpCp+q, d(a) ∈ Fp−rCp+q−1], and the dif-

ferential map dr : Er
p,q → E

r
p−r,q+r−1 is the homomorphism induced on these

subquotients by the differential on C, d : C → C.

If F is bounded, E1 ⇒ H(C); more explicitly,

E
∞
p,q

∼= Fp(Hp+qC)/Fp−1(Hp+qC)

(with Fp(HC) induced by the filtration F , as explained in Note 1).

On the other hand, we also include here some definitions and fundamen-

tal ideas about the effective homology method. More details can be found

in [6].

Definition 8. A reduction ρ : D ⇒ C between two chain complexes is a

triple (f, g, h) where

a) the components f : D → C and g : C → D are chain complex

morphisms;

b) the component h : D → D is a graded group homomorphism of

degree +1;

c) the following relations are satisfied

fg = idC; gf + dDh+ hdD = idD; fh = 0; hg = 0; hh = 0
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Remark 1. These relations express that D is the direct sum of C and a

contractible (acyclic) complex. This decomposition is simply D = Ker f ⊕

Im g, with Im g ∼= C and H∗(Ker f) = 0. In particular, this implies that

the graded homology groups H∗(D) and H∗(C) are canonically isomorphic.

Definition 9. A (strong chain) equivalence between the complexes C and

E (denoted by C ⇐⇒ E) is a triple (D, ρ, ρ′) where D is a chain complex,

and ρ and ρ′ are reductions from D over C and E respectively:

Dρ
s{ ppppp

ppppp ρ′

#+
NNNNN

NNNNN

C E

Note 2. An effective chain complex is essentially a free chain complex C

where each group Cn is finitely generated, and there is an algorithm that

returns a Z-base in each degree n (for details, see [6]).

Definition 10. An object with effective homology is a triple (X,HC, ε)

where HC is an effective chain complex and ε is an equivalence between a

free chain complex canonically associated with X and HC.

Note 3. It is important to understand that in general the HC component

of an object with effective homology is not made of the homology groups of

X; this component HC is a free Z-chain complex of finite type, in general

with a non-null differential, allowing to compute the homology groups of

X; the justification is the equivalence ε.

In this way, the notion of object with effective homology makes it possible

to compute homology groups of complicated spaces by means of homology

groups of effective complexes (which can easily be obtained using some

elementary operations).

The next theorem is a very useful tool that will be considered to obtain

the effective homology of several spaces. In particular, it is one of the

main ingredients for the proof of the effective homology version of the

Serre spectral sequence, explained in Section 5. The general idea of this

theorem is that given a reduction, if we perturb the big complex then it
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is possible to perturb the small one so that we obtain a new reduction

between the perturbed complexes. A reference where this theorem can be

found is [7].

Theorem 2 (Basic Perturbation Lemma, BPL). Let ρ = (f, g, h) be a

reduction ρ : C ⇒ D and δ a perturbation of dC, that is, an operator

defined on C of degree -1 satisfying the relation (dC + δ) ◦ (dC + δ) = 0.

Furthermore, the composite function h ◦ δ is assumed locally nilpotent,

that is, ∀x ∈ C, there exists n ∈ N such that (h ◦ δ)n
x = 0. Then a new

reduction ρ′ : C ′ ⇒ D′, ρ′ = (f ′, g′, h′), can be constructed where:

a) C ′ is the chain complex obtained from C by replacing the old differ-

ential dC by (dC + δ),

b) the new chain complex D′ is obtained from the chain complex D by

replacing the old differential dD by (dD + δ̄), with δ̄ = f ◦ δ ◦ φ ◦ g =

f ◦ ψ ◦ δ ◦ g,

c) f ′ = f ◦ ψ = f ◦ (Id− δ ◦ φ ◦ h),

d) g
′ = φ ◦ g,

e) h′ = φ ◦ h = h ◦ ψ,

where the operators φ and ψ are defined by

φ =

∞∑

i=0

(−1)i(h ◦ δ)i; ψ =

∞∑

i=0

(−1)i(δ ◦ h)i = Id− δ ◦ φ ◦ h,

(the series are convergent thanks to the locally nilpotency of h ◦ δ)

In Sections 4 and 5, we present two important examples of application

of this theorem.

4 Effective homology of a bicomplex

The computation of the effective homology of a bicomplex (double com-

plex) is a very simple example where the BPL can be applied. First of all,

let us recall the definition of a bicomplex.
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Definition 11. A bicomplex (or double complex ) is a bigraded module

C = {Cp,q}p,q∈Z provided with morphisms d′p,q : Cp,q → Cp−1,q and d′′p,q :

Cp,q → Cp,q−1 satisfying d′d′ = 0, d′′d′′ = 0 and d
′
d
′′ + d

′′
d
′ = 0. Then, we

define the totalization (T (C), d) of the bicomplex C as the chain complex

given by

Tn(C) =
⊕

p+q=n

Cp,q

and differential map d = d
′ + d

′′.

This notion is easy to understand by means of the following diagram,

where the horizontal arrows are the maps d′p,q and the vertical arrows are

the differentials d′′p,q. The totalization is represented by the diagonals.

C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

C0,2 C1,2 C2,2 C3,2

C0,3 C1,3 C2,3 C3,3

oo oo oo

oo oo oo

oo oo oo

oo oo oo

��

��

��

��

��

��

��

��

��

��

��

��

From now on, we consider C to be a first quadrant bicomplex, that is,

such that Cp,q = 0 if p < 0 or q < 0.

The identity d′′d′′ = 0 implies that for a fixed i ∈ N the column C i =

{Ci,n}n∈N is a chain complex, so it makes sense to look for the relation be-

tween the homologies of the columns C i and that of the totalization T (C).

Let us suppose that the columns C i are objects with effective homology, in

particular such that there exist reductions C i ⇒ HC
i with HC

i an effec-

tive complex for all i ∈ N. Then we are going to construct a new effective

complex HC which provides us the effective homology of the totalization

T (C).

As a first step, we build a chain complex (T (C), d′) totalization of the

bicomplex C, but where only the vertical arrows are considered. Using

the reductions of each C i over HC i, it is easy to construct a reduction of
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(T (C), d′) over a new chain complex (T (HC), d̄′) which is the totalization

of a new double complex with columns HC i (and where all the horizontal

arrows are null). It is clear that in each degree the component Ti(HC) is a

sum of finite type groups, so that the chain complex T (HC) is an effective

complex.

The reduction (T (C), d′) ⇒ (T (HC), d̄′) is the first ingredient for the

application of the BPL. Then, we also need a perturbation of the differential

d
′, which is defined by the horizontal arrows, δ = d

′′. It is not difficult to

see that the composition h ◦ δ is locally nilpotent, so that the conditions

of the BPL are satisfied. In this way, we deduce a reduction from the

complex (T (C), d) (the initial one, where now all the arrows are considered)

over a finite type complex, obtaining the looked-for effective homology of

(T (C), d).

A natural generalization of double complexes are multicomplexes, where,

in addition to horizontal and vertical arrows, morphisms dr
p,q : Cp,q →

Cp−r,q+r−1 are considered for each r ∈ N. The totalization is obtained in the

same way, with differential map defined as the sum of all the components,

d =
∑
dr.

Again, if for each column C i there exists a reduction C
i ⇒ HC

i where

the HC i are effective complexes, then using the BPL as before it is possible

to construct a new effective complexHC and a reduction T (C) ⇒ HC that

provides us the effective homology of the multicomplex C.

5 Effective homology of a fibration

Given a fibration

G →֒ E → B

with fiber G and base B, where G and B are objects with effective homol-

ogy, in this section we explain how to determine the effective homology of

the total space E = B ×τ G.

From now on, all the chain complexes canonically associated with sim-

plicial sets are normalized, that is, only the non-degenerate n-simplices of

301



GIFT 2006

X are considered to be generators of Cn(X).

Let us suppose there exist two homotopy equivalences

DG

s{ ooooo
ooooo

"*
MM

MM
MM

MM
MM

MM
DB

s{ ooooo
ooooo

"*
MM

MM
MM

MM
MM

MM

C(G) HG C(B) HB

where HG and HB are effective complexes. How can we obtain a new

equivalence between C(B ×τ G) and an effective chain complex?

The starting point is the Eilenberg-Zilber reduction C(B×G) ⇒ C(B)⊗
C(G) (see [8]), that relates the cartesian product of two simplicial sets with

the tensorial product of the associated chain complexes. In our case, we

must also take account of the torsion τ , that does not change the underlying

graded group, only the differential is modified (by a perturbation δ(b, g) =

(∂0b, ∂0g · τ(b))− (∂0b, ∂0g)). We could try to apply the BPL; for this, the

nilpotency condition must be satisfied.

In both chain complexes C(B × G) and C(B) ⊗ C(G) it is possible to

define the following filtrations. First of all, C(B×G) is filtered through the

degeneracy degree with respect to the base space: a generator (xn, yn) ∈
Cn(B × G) has a filtration degree less or equal to q if ∃x̄q ∈ Bq such that

xn = ηin−q
· · · ηi1x̄q. On the other hand, the filtration on C(B) ⊗ C(G) is

defined through the dimension of the base component,

Fp(C(B)⊗ C(G)) =
⊕

m≤p

C(B)m ⊗ C(F )

It is not difficult to see that the three operators involved in the Eilenberg-

Zilber reduction (that is, the three components f , g and h) are compatible

with these filtrations. On the contrary, the perturbation δ decreases the

filtration degree on C(B × G) by one unit, so that the composition h ◦ δ

is locally nilpotent and the hypothesis of the BPL are satisfied. In this

way, a new reduction C(B ×τ G) ⇒ C(B) ⊗t C(G) is obtained, where the

symbol ⊗t represents a twisted (perturbed) tensor product, induced by τ .
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On the other hand, with the effective homologies of B and G, it is easy

to build a new equivalence

DB ⊗DG

px hhhhhhhh

hhhhhhhh

&.UUUUUUUUU

UUUUUUUUU

C(B) ⊗ C(G) HB ⊗HG

Let us consider now the necessary perturbation δ̄ of C(B) ⊗ C(G) to

obtain the twisted cartesian product C(B) ⊗t C(G) (this perturbation

δ̄ has been obtained when applying the BPL to the Eilenberg-Zilber re-

duction). If the base space B is 1-reduced then it can be seen that δ̄

decreases the filtration degree at least by 2. This perturbation can be

transferred to the top chain complex DB⊗DG, obtaining a twisted prod-

uct DB ⊗t DG, modified by a perturbation on DB ⊗ DG with the same

property about the filtration degree. Finally, the homotopy operator of the

reduction DB ⊗DG ⇒ HB ⊗HG increases the filtration degree at most

by one, and therefore the Basic Perturbation Lemma can be applied to the

right reduction and an equivalence is obtained as follows.

DB ⊗t DG

px hhhhhhhh

hhhhhhhh

&.UUUUUUUUU

UUUUUUUUU

C(B)⊗t C(G) HB ⊗t HG

The chain complex HB ⊗t HG is an effective complex, so that the com-

position of the two equivalences

C(B ×τ G)
Id

qy llllll
llllll

%-TTTTTTT

TTTTTTT

DB ⊗t DG

qy jjjjjjjj

jjjjjjjj

%-
RRRRRRRR

RRRRRRRR

C(B ×τ G) C(B) ⊗t C(G) HB ⊗t HG

is the effective homology of B ×τ G.

We consider now our particular example X5 introduced in Section 2,

which is the total space of the fibration F3 →֒ X5 → X4, where F3 =

K(Z2, 3). The objectX4 is again the total space of a fibrationF2 →֒ X4 → S3

with F2 = K(Z, 2).
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To compute the effective homology of X5, we need the effective homolo-

gies of the fiber and base spaces, F3 and X4. First, the simplicial group

F3 = K(Z2, 3) is of finite type and therefore its effective homology is triv-

ial. To compute the effective homology of X4, which is the total space of

another fibration, we must apply again the same method, so that the effec-

tive homologies of F2 and S3 are necessary. On one hand, the simplicial set

S3 is already of finite type and therefore its effective homology presents no

problem. And finally, the difficult part is the computation of the effective

homology of F2 = K(Z, 2).

The computation of the effective homology of Eilenberg-MacLane spaces

K(π, n)’s is in general a difficult problem (especially in what regards to

the algorithmic complexity), but in the case π = Z it can be solved as

follows. First, the space K(Z, 0) is considered to be the simplicial group

with all the components equal to Z and with the identity map as faces and

degeneracies. Then, the simplicial groupK(Z, n) can be recursively defined

as the classifying space of K(Z, n− 1), that is, K(Z, n) = W(K(Z, n− 1)).

In our case, F2 = K(Z, 2) = W(K(Z, 1)) = W(W(K(Z, 0))).

It is well known K(Z, 1) has the homotopy type of the circle S1. More-

over, although we are not going to give the details about this construction,

it can be seen that there exist a mechanism (similar to that of the fibra-

tion) for the computation of the effective homology of the classifying space

of a simplicial group with effective homology. Therefore we can apply this

method to compute the effective homology of F2.

In this way, we have the necessary ingredients to obtain the effective

homology of X4, and recursively, that of X5. With this effective homology

we can easily compute, as we have seen in Section 2, the homology groups

of this space.

As we have showed in this section, the effective homology method ap-

plied to a fibration G →֒ E → B (with base space B 1-reduced) gives in

particular to its user an algorithm to compute the homology groups of the

total space E, replacing in this way the Serre spectral sequence technique.

But anyway, even if the homology groups of E are known, this spectral

304



From Homological Perturbation to Spectral Sequences: a Case Study

sequence has a great interest by itself and therefore it also would be in-

teresting to compute the whole set of its elements. As we see in the next

section, the effective homology method can also be useful for this task.

6 Computing spectral sequences

The next theorem combines both spectral sequence and effective homology

concepts and is the main result that allows us to use the effective homology

method to compute spectral sequences of filtered complexes. The proof is

straightforward and is not included here.

Theorem 3. Let C be a filtered chain complex with effective homology

(HC, ε), with ε = (D, ρ, ρ′), ρ = (f, g, h), and ρ′ = (f ′, g′, h′). Let us

suppose that filtrations are also defined on the chain complexes HC and

D. If the maps f , f ′, g, and g′ are morphisms of filtered complexes (i.e.,

they are compatible with the filtrations) and both homotopies h and h′ have

order ≤ t (i.e. they increase the filtration degree at most by t), then the

spectral sequences of the complexes C and HC are isomorphic for r > t:

E(C)r
p,q

∼= E(HC)r
p,q ∀r > t

This theorem provides us an algorithm to compute spectral sequences

of (complicated) filtered complexes with effective homology. If a filtered

complex is effective, then its spectral sequence (that of Theorem 1) can be

computed by means of elementary operations with matrices (in a similar

way to the computation of homology groups); otherwise, the effective ho-

mology is needed to compute the Er
p,q by means of an analogous spectral

sequence deduced of an appropriate filtration on the associated effective

complex, which is isomorphic to the spectral sequence of the initial com-

plex after some level r. In particular, we can apply this result to compute

the Serre spectral sequence, as we explain in the following paragraph.

The Serre spectral sequence associated with a fibration G →֒ E → B

can be defined as the spectral sequence of the total space E, with the

natural filtration of cartesian products. The space E is not effective in most
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situations, so in general it is not possible to compute directly its spectral

sequence. However, as we have seen in Section 5, provided that the spaces

B and G are spaces with effective homology (and B is 1-reduced) we can

also build the effective homology of the total space E, which allows us to

determine the homology groups of E. Moreover, the natural filtration of

tensor products can be defined on the effective complex and we have already

seen that all the homotopies involved in the equivalence have order ≤ 1.

Applying Theorem 3, the spectral sequence of E and that of the effective

complex are isomorphic after level r = 2, and in this way we can compute

the Serre spectral sequence associated with the fibration by means of the

spectral sequence of an effective complex (which can easily be computed).

Using these results, we have developed a set of programs enhancing the

Kenzo system that allow computations of spectral sequences of filtered

complexes when the effective homology of this complex is available. The

programs determine not only the groups, but also the differential maps dr

in the spectral sequence, as well as the stage r on which the convergence

has been reached and the filtration of the homology groups by the spectral

sequence. As a particular case, the computation of Serre spectral sequences

where the base and the fiber spaces are objects with effective homology is

possible.

We consider again the example X5 introduced in Section 2, total space

of the fibration F3 →֒ X5 → X4. As we have seen, the effective homology

of X5 can be determined by means of the effective homology of F3 and X4,

and in fact the Kenzo program implements this computation and uses it

to determine the homology groups H∗(X5). This effective homology is also

necessary to compute the corresponding Serre spectral sequence with our

new programs.
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First of all, the space X5 and its effective equivalent object must be fil-

tered with the natural filtrations of cartesian products and tensor products

respectively, as follows.

>(change-chcm-to-fltrchcm x5 fbrt-flin ‘(fbrt-flin))

[K298 Filtered-Simplicial-Set]

>(change-chcm-to-fltrchcm (rbcc (efhm x5)) tnpr-flin

‘(tnpr-flin))

[K594 Filtered-Chain-Complex]

Then, the whole set of the Serre spectral sequence can easily be obtained.

We show here the computation of some groups.

>(print-spct-sqn-cmpns x5 2 6 0)

Spectral sequence E^2_{6,0}

Component Z/3Z

>(print-spct-sqn-cmpns x5 4 8 0)

Spectral sequence E^4_{8,0}

Component Z/4Z

>(print-spct-sqn-cmpns x5 4 4 3)

Spectral sequence E^4_{4,3}

Component Z/2Z

The differential maps dr
p,q can also be determined for every r. For exam-

ple, d4
8,0 : E4

8,0 = Z4 → E4
4,3 = Z2 sends the generator of E4

8,0 = Z4 to the

generator of E4
4,3 = Z2.

>(spct-sqn-dffr x5 4 8 0 ’(1))

(1)

The convergence level of the spectral sequence for p+ q = 8 is r = 9.

>(spct-sqn-cnvg-level x5 8)

9

And finally, we can determine the filtration of the homology groups by

the spectral sequence. For instance, for H6(X5) ≡ H6 = Z6, we obtain

F0H6 = F1H6 = . . . = F5H6 = Z2, F6H6 = H6 = Z6.
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>(homology-fltr x5 6 0)

Filtration F_0 H_6

Component Z/2Z

>(homology-fltr x5 6 5)

Filtration F_5 H_6

Component Z/2Z

>(homology-fltr x5 6 6)

Filtration F_6 H_6

Component Z/6Z

7 Conclusions and further work

In this paper, a program computing spectral sequences of filtered com-

plexes has been presented. It is based on the effective homology method

and in particular allows its user to compute the Serre spectral sequence

associated with a fibration where the base and fiber space are objects with

effective homology. For a better understanding of the fundamental ideas

on which this program is based, we have considered a particular example

of application.

At this point, new goals appear. First of all, one of our next aims is the

application of our program to the computation of the Koszul homology and

the Spencer cohomology ([2]), enriching in this way the program developed

by Sergeraert. On the other hand, we are planning to extend our programs

to the case of spectral sequences which are not necessarily associated with

a filtered complex. Concretely, we focus on the Bousfield-Kan spectral

sequence [9], used to compute homotopy groups of simplicial sets.
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eduardo.saenz-de-cabezon@dmc.unirioja.es

Abstract

Homological Algebra provides tools and concepts that are at the merging of important

problems in Formal Theory of Differential Equations and Commutative Algebra. As

was pointed in [1], using a result by Serre, t̀he knowledge of the vanishing of a certain

Tor gives some computational insight in the completion of general systems of partial

differential equations and is also useful for the concrete determination of formal power

series of solutions. A good way to compute Tor is to use Koszul homology of ideals

of the polynomial ring, a central issue in Commutative Algebra strongly related to the

most important homological invariants of these rings, such as minimal resolutions, Betti

numbers, Hilbert function, Castelnuovo-Mumford regularity, etc. Using tools coming

from Algebraic Topology, namely the Mayer-Vietoris sequences, we compute the Koszul

homology of ideals of the polynomial ring. We focus on the computations for monomial

ideals and the results achieved can be used to compute the Koszul homology of general

polynomial ideals making use of Gröbner basis techniques and Homological Perturbation.

Keywords: Koszul homology, monomial ideals, minimal free resolutions, Mayer-Vietoris

trees.

1 Introduction

Given a differential system, we can associate to it a symbol comodule N

which is dual to a module M over the polynomial algebra. A criterion for

an involutive symbol in terms of this module M is provided by the Cartan

Test, see the details of all these considerations in [1]. A result by Serre

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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relates the Cartan criterion to the vanishing of certain Tor modules of the

module M dual to the symbol comodule N or equivalently, to the vanishing

of certain Cotor modules of the symbol comodule itself.

For computing Cotor one can use Spencer Cohomology and dually, for

computing Tor one uses Koszul homology. In the sequel we will focus on

the Koszul homology side. Being this homology bigraded, the interpreta-

tion of involution in terms of it makes extensive use of this bigrading: the

degree of involution is the symmetric degree at which the Koszul homol-

ogy vanishes i.e. the Castelnuovo-Mumford regularity. Some references to

Formal Theory and the use of Spencer cohomology are [2],[3] or [4].

Thus, our goals include the complete computation of the Koszul ho-

mology of ideals of the polynomial ring, where complete means we will

compute not only the dimensions of the modules (Betti numbers) or even

the graded or multigraded version of these dimensions (graded and multi-

graded Betti numbers), but also an explicit set of generators for each of the

modules. We will also be able to read all the information about the ideal

that comes from the computation of Koszul homology: minimal resolution,

Hilbert function and Castelnuovo-Mumford regularity. The main tool we

will use in our strategy will be a short exact sequence of complexes, which

is an analogue to the Mayer-Vietoris short exact sequence from Algebraic

Topology. Applying recursively these sequences will lead us to the actual

computations.

In the first section of this paper, the terminolgy and main definitions are

given. In the second section, the Mayer-Vietoris tree of a monomial ideal

is introduced and used to compute homological invariants of the ideal from

its tree. The third section describes an algorithm for computing Mayer-

Vietoris trees, and read the homological information in them. Finally, the

last section is devoted to examples and conclusions.

2 Basic Terminology and Definitions

Let k be a field and R = k[x1, . . . , xn] the ring of polynomials in n variables

over k.
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2.1 The Koszul Complex and Koszul Homology

Let V be a n-dimensional k-vector space. Let SV and ∧V be the Symmetric

and Exterior algebras of V respectively. We consider the basis of V given

by {x1, . . . , xn}; then we can identify SV and R and consider the following

complex

K : 0 → R ⊗ ∧nV
∂
→ R ⊗ ∧n−1V

∂
→ · · ·R ⊗ ∧1V

∂
→ R ⊗ ∧0V → k → 0

Any element of R ⊗ ∧iV can be written in two different ways: First, as

a k-linear combination of elements of the form x
µ1

1 . . . x
µn
n ⊗ x

j1
1 ∧ · · · ∧ x

jn
n ,

where the µk are integers and the jk are either 0 or 1, and exactly i of them

are 1’s. In this case, the differentials ∂ are given by the rule

∂(x
µ1

1 . . . x
µn

n ⊗ x
j1
1 ∧ · · · ∧ x

jn

n ) =
∑

jk=1

(−1)σ(k)+1
xk · x

µ1

1 . . . x
µn

n

⊗ x
j1
1 ∧ · · · ∧ x

jk−1
k ∧ · · · ∧ x

jn

n

where σ(k) is the position of k in the set {k|jk = 1}.

Alternatively, elements of R ⊗ ∧iV can be expressed as k-linear combi-

nations of elements of the form x
µ1

1 . . . xµn
n ⊗xj1 ∧ · · ·∧xji

with j1 < · · · ji ∈(
n
i

)
;then, the differentials have the form

∂(x
µ1

1 . . . x
µn

n ⊗ xj1 ∧ · · · ∧ xjn
) =

i∑

k=1

(−1)k+1
xjk

· xµ1

1 . . . x
µn

n (1)

⊗ xj1 ∧ · · · ∧ x̂jk
∧ · · · ∧ xjn

This differential verifies ∂2 = 0 and makes K a complex, which is called

the Koszul complex. This complex is a minimal free resolution of k = R/m,

where m = 〈x1, . . . , xn〉, the maximal ideal in R.

Given a graded module M, its Koszul complex (K(M), ∂) is the tensor

product complex M⊗R K:

K(M) : 0 → M⊗∧nV
∂
→ M⊗∧n−1V

∂
→ · · ·M⊗∧1V

∂
→ M⊗∧0V → k → 0

This complex is no longer acyclic, and we define the Koszul homology of

M as the homology of K(M).
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Grading, bigrading and multigrading of the Koszul Complex

Consider an element of R⊗∧V of the form x
µ ⊗ x

J where x
µ = x

µ1

1 . . . x
µn
n

and J = x
j1
1 ∧ · · · ∧ xjn

n as before. We say that the total degree of xµ ⊗ xJ

is µ1 + · · · + µn + j1 + · · · + jn and that the total multidegree of xµ ⊗ xJ

is (µ1 + j1, · · · , µn + jn). Equivalently, if J is given in the form J = j1 <

· · · < ji then the total degree of xµ ⊗ xJ is µ1 + · · · + µn + i and the total

multidegree is (µ1 + [1 ∈ J ], . . . , µn + [n ∈ J ]) where [i ∈ J ] equals 1 if i is

in J and 0 otherwise.

It is clear that for these elements, the Koszul differential preserves both

the total degree and total multidegree. Thus, we can consider the following

(multi)gradings in K and K(M):

• With respect to the total degree,we have

K =
⊕

d∈N

Kd and K(M) =
⊕

d∈N

Kd(M)

where

Kd : 0 → Rd−n ⊗ ∧nV
∂
→ Rd−n+1 ⊗ ∧n−1V

∂
→ · · ·Rd−1 ⊗ ∧1V

∂
→ Rd ⊗ ∧0V → k → 0

and similarly for Kd(M). Here, Rl denotes the polynomials of degree

l and in K(M) we have that Ml is the degree l component of M.

Because of this grading in K and K(M), the homologies of them are

also graded:

H∗(K) =
⊕

d∈N

H∗(Kd) and H∗(K(M)) =
⊕

d∈N

H∗(Kd(M))

And then, for each homological dimension p we have

Hp(K) =
⊕

d∈N Hp(Kd) =
⊕

q+p=d Hq,p(K); so we have a bigrading

and we denote by Hq,p(K) and Hq,p(K(M)) the respective homology

modules at Rq ⊗∧pV and Mq ⊗∧pV. We say that q is the symmetric

degree of Hq,p(K) or Hq,p(K(M)) and p is its exterior degree.
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• With respect to the total multidegree, we have

K =
⊕

a∈Nn

Ka and K(M) =
⊕

a∈Nn

Ka(M)

where for every a = (a1, . . . , an) ∈ Nn with aj1, . . . , ajl
6= 0

Ka : 0 → Ra−(0..1j1
...1jl

..0) ⊗ ∧lV
∂

−→
⊕

k=1,...,l

Ra−(0..1j1
..0jk

..1jl
..0) ⊗ ∧l−1V

· · ·
∂

−→
⊕

k=1,...,l

Ra−(0,...,1jk
,...,0) ⊗ ∧1V

∂
−→ Ra ⊗ ∧0V −→ k → 0

and similarly for Ka(M). Here, Rµ denotes the set of polynomials of

multidegree µ. In this case, we have that the homologies of K and

K(M) are also multigraded:

H∗(K) =
⊕

a∈Nn

H∗(Ka) =
⊕

a∈Nn

Ha(K)

Hp(K) =
⊕

a∈Nn

Hp(Ka) = Ha,p(K)

H∗(K(M) =
⊕

a∈Nn

H∗(Ka(M)) =
⊕

a∈Nn

Ha(K(M))

Hp(K(M)) =
⊕

a∈Nn

Hp(Ka(M)) = Ha,p(K(M))

2.2 Koszul Complex and Tor

From the definitions, it is clear that we can identify the Koszul homology

modules with Tor
R
• (M,k): We have a resolution of k (the Koszul complex)

to which we have applied the functor M⊗−. The homology of the resulting

complex is by definition TorR
• (M,k).

Another way of computing the Koszul homology of M would start with

a resolution P : · · · → Pi
δi→ Pi−1 → · · · → P0 of M and then compute the
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homology of P⊗k. This homology is independent of the chosen resolution

of M or of k. If P is minimal,the differentials are given by matrices with

polynomial coefficients, none of which is a nonzero constant. Thus, ten-

soring with k yields the zero differential everywhere and then the number

of generators of each Pi equals Tor
R
i (M,k) and the dimension of the i-th

Koszul homology of M. If P is not minimal one could either minimalize

it with some standard procedure (see for example [5]) or compute the ho-

mology of the resulting resolution P ⊗ k. The Tor modules inherit the

gradings, bigradings and multigradings we have seen before just consid-

ering the corresponding gradings in the homology modules used to define

Tor.

2.3 Monomial Ideals and Multigrading

Definition 2.1. A monomial in R is a product xa = x
a1

1 · · ·xan
n with ai ≥

0 ∀i. We say that a ∈ Nn
0 is the multidegree of xa. An ideal I ⊂ R is called

a monomial ideal if it is generated by monomials.

A monomial ideal is uniquely determined by its monomials, i.e. two

monomial ideals are the same if and only if they contain the same mono-

mials. An important result for monomial ideals is the so called Dickson’s

Lemma, which states that all monomial ideals of R are finitely generated,

see for example [6] for a proof. Moreover, this minimal set of monomial

generators is unique.

2.4 Mayer-Vietoris sequence of Koszul Complexes

The Mayer-Vietoris sequence is a standard tool in Algebraic Topology (see

for example [7]) used to explore the relations between the homology groups

of two spaces A and B, their intersection A ∩ B and their union A ∪ B.

Making some assumptions, we can define a short exact sequence

0 → A ∩ B → A ⊕ B → A ∪ B → 0
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which induces a long exact sequence in homology, which is called the

Mayer-Vietoris sequence:

· · · → Hn(A∩B) → Hn(A)⊕Hn(B) → Hn(A∪B)
∆
→ Hn−1(A∩B) → · · ·

We can construct an analogue of it in the following way: consider two

monomial ideals A and B, minimally generated by {a1, . . . , arA
} and

{b1, . . . , brB
} respectively. Then we have that the ideal A ∩ B is generated

by the set {lcm(a, b)} where a is a generator of A and b is a generator of

B; and in the place of A ∪ B we install A + B, the ideal generated by all

the generators of A and B.

Given a monomial ideal I minimaly generated by {m1, . . . , mr} we define

the (recursive) Mayer-Vietoris exact sequence of I in the following way:

For each 1 ≤ s ≤ r denote Is := 〈m1, . . .ms〉, Ĩs := Is−1 ∩ 〈ms〉 =

〈m1,s, . . . , ms−1,s〉, where mi,j denotes lcm(mi, mj). Then, for each s we

have the following exact sequence of ideals:

0 → Ĩs → Is−1 ⊕ 〈ms〉 → Is → 0

and the following short exact sequence of Koszul complexes:

0 −→ K(Ĩs)
i

−→ K(Is−1) ⊕ K(〈ms〉)
j

−→ K(Is) −→ 0,

the maps given by

i(γ) = (γ,−γ), j(η, η
′) = η + η

′

for γ ∈ K(Ĩs), η ∈ K(Is−1) and η′ ∈ K(〈ms〉).

These sequences induce a long exact sequence in Koszul homology for

each s, the set of all of them is what we call the (recursive) Mayer-Vietoris

Sequence of I.

Since the differential ∂ of K(I) preserves multidegree, and denoting by

Ka(I) the multidegree a piece of K(I), we have a multigraded version of

the sequence:

0 −→ Ka(Ĩs) −→ Ka(Is−1) ⊕ Ka(〈ms〉) −→ K(Is)a −→ 0
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and the corresponding multigraded version of the Mayer-Vietoris Sequence

of I:

· · · −→ Hi+1(Ka(Is))
∆

−→ Hi(Ka(Ĩs) −→

Hi(Ka(Is−1) ⊕ Ka(〈ms〉)) −→ Hi(Ka(Is))
∆

−→ · · · (2)

3 The Mayer-Vietoris Tree of I.

Using recursively these exact sequences for every a ∈ Nn we could compute

the Koszul homology of I = 〈m1, . . . , mr〉. When making use of them to

compute H∗(Ka(I)), we need H∗(Ka(Ĩr)) and H∗(Ka(Ir−1)); and for each of

these two computations, one needs the corresponding smaller ideals. Note

that the size of the involved ideals decreases until they are generated by

only one monomial, in which case the Koszul homology is trivial.

The involved ideals can be displayed as a tree, the root of which is I

and every node J has as children J̃ on the left and J
′ on the right (if J

is generated by s monomials, J̃ denotes J̃s and J ′ denotes Js−1). This is

what we call the Mayer-Vietoris Tree of a monomial ideal I, and we

will denote it MV T (I). Note that the MV T (I) depends on the ordering

in which the monomials are given, thus, for a given ideal I we have several

(and eventually different) trees depending on the order of its generators.

Remark 3.1. Observe that if we have the monomials in our ideal J sorted in

a way such that ms has the biggest exponent in some of the variables, then

the generators in J̃ will have the same exponent in this variable. Keeping

the nodes ordered in such a way gives us small trees, as the left branch will

have a length of at most the number of variables plus one.

Example 3.2. The monomial ideal I = 〈xy, xz, yz〉, has the following

Mayer-Vietoris tree, if we change the order of the generating monomials,

we obtain isomorphic trees (i.e. isomorphic as graphs and with isomorphic

ideals in the corresponding nodes)
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xy, xz, yz

xyz xy, xz

xyz xy

On the other side, for I = 〈x2
, y

2
, xy〉 we obtain two different trees

according to the ordering of the monomials:

x2, y2, xy

x2y, xy2

x2y2 x2y

x2, y2

x2y2
x2

xy, x2, y2

xy2 xy, x2

x2y xy

Since by definition MV T (I) is a complete tree i.e. every father has ex-

actly two children, we can assign position indices to every node, in the

following way: I has position 1 and if J has position p then J̃ has po-

sition 2p and J
′ has position 2p + 1. We will denote this MV T1(I) =

I, MV Tp(I) = J, MV T2p(I) = J̃ , MV T2p+1(I) = J ′. These indices will be

very useful for efficiently reading the information hidden in MV T (I).

Remark 3.3. Two famous objects that express the combinatorial structure

of monomial ideals based on the least common multiples of their generators

are the Taylor resolution [8] and the lcm-lattice [9]. For a monomial ideal

I = 〈m1, . . . , mr〉 the first one is a complex supported in elements of the

form mU for all subset U of {1, . . . , r} i.e. 2r − 1 elements, and the lcm-

latice contains all the different least common multiples (lcm) of generators

of the ideal, in general, the lcm-lattice is smaller than the Taylor complex.

The Mayer-Vietoris tree is in general smaller, because it takes into account

divisibility between lcm’s of generators. In the last example, the Taylor

resolution is suported on 7 elements, the lcm-lattice contains 6 different
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monomials, and the (minimal) Mayer-Vietoris tree has only 5 different

monomials.

3.1 MV T (I) and Koszul homology computations

Let J be a node in MV T (I) and denote by md(HiK((J))) (or mdi(J) for

short) the set of multidegrees in which Hi(K(J)) is different from zero.

We have that all the mdi(I) are present as exponents of generators in the

nodes of the Mayer-Vietoris tree. In the following lemmata J is a node of

MV T (I) minimally generated by {m1, . . . , ms}.

Lemma 3.4. H0(K(J)) = H0(K(J ′)) ⊕ 〈ms〉

Proof: In homological dimension 0 we have the following exact sequence

in homology

· · · −→ H0(Ka(J̃)) −→ H0(Ka(J
′) ⊕ Ka(〈ms〉)) −→ H0(Ka(J)) −→ 0

but if x
µ is such that µ ∈ md0(J

′⊕〈ms〉) then x
µ = mj for some j. Now,

if µ ∈ md0(J̃) then xµ = mis for some i. Then mj = mis, and we have

that mj|mi, mj|ms which is a contradiction. Then the exact sequence in

homology is of the form

0 −→ H0(Ka(J
′) ⊕ Ka(〈ms〉)) −→ H0(Ka(J)) −→ 0

and hence the result. �

Lemma 3.5. ∀i > 0, mdi(J) ⊆ mdi−1(J̃)
⋃

mdi(J
′)

Proof: Let a ∈ Nn
0 such that a /∈ mdi−1(J̃)

⋃
mdi(J

′) then the exact

sequence in homology

·· −→ Hi(Ka(J
′))−→Hi(Ka(J))

∆
−→ Hi−1(Ka(J̃)) −→ Hi−1(Ka(J

′))−→ · ·

is of the form

0 −→ Hi(Ka(J)) −→ 0

and then Hi(Ka(J)) = 0. �
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Proposition 3.6. If Hi(Ka(I)) 6= 0 for some i, then xa is a generator of

some J ∈ MV T (I)

Proof: The result comes from the preceding lemmata. �

From this proposition we have that all the multidegrees of Koszul genera-

tors of I appear in MV T (I). We could have some multidegrees appearing

in the Mayer-Vietoris tree that do not correspond to Koszul generators.

However, there are some of them that will always have a corresponding

generator. Among the nodes in MV T (I) we call relevant nodes to those in

even position or in position 1. This is because for all other nodes in odd

position, the corresponding generators have already appeared in a relevant

node.

Lemma 3.7. If xa appears only once as a generator of a relevant node J

in MV T (I) then there exists exactly one generator in H∗(K(I)) which has

multidegree a.

Proof: Let x
a be a generator of I (i.e. of the relevant node in position

1). Then xa appears only in this relevant node in MV T (I) and it is clear

that there is a generator of H0(K(I)) that has multidegree a, namely xa

itself.

If xa appears only as a generator of the node J in even position p, then

exists L ∈ MV T (I) such that J = L̃. Then we have the following exact

sequence in homology (we know that xa does not appear in L)

0 −→ H1(Ka(L)) −→ H0(Ka(J)) −→ 0

so we have that the connecting morphism is an isomorphism and we have

exactly one generator in H1(K(L)) with multidegree a. When iterating the

process to compute H(K(I)) we will always be in one of the following

situations:

• If there exists M ∈ MV T (I) such that M ′ = L then we have the

following exact sequence

·· −→ H1(Ka(M)) −→ H1(Ka(L)⊕Ka(〈ms〉)) −→ H0(Ka(M̃)) −→ 0
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but in this case M̃ is a relevant node, and thus the sequence is just

0 −→ H1(Ka(M)) −→ H1(Ka(L) ⊕ Ka(〈ms〉)) −→ 0

• If there exists M ∈ MV T (I) such that M̃ = L then we have the

following exact sequence

·· −→ H2(Ka(M)) −→ H2(Ka(M
′)⊕Ka(〈ms〉)) −→ H1(Ka(L)) −→ 0

but in this case the sequence is just

0 −→ H2(Ka(M)) −→ H1(Ka(L)) −→ 0

Iterating this process, we have that there is one generator in some

Hi(K(I)) in multidegree a. �

With this proposition, collecting all the non repeated generators of the

relevant nodes, we have a lower bound for the Betti numbers of I, let us call

β̂i(I) to these ‘estimated’ Betti numbers. On the other hand, if we collect

all the generators in the relevant nodes, we have an upper bound for the

Betti numbers. We denote β̄i(I) these upper bounds. In some cases these

are all the Koszul generators, and thus, the bounds for the Betti numbers

are sharp.

Remark 3.8. Observe that what we obtain from the Mayer-Vietoris Tree

of the ideal is not only bounds for the Betti numbers, but a subset of the

multidegrees in which the Betti numbers are nonzero, and a superset of

this. THis information of course provides the lower and upper bound for

the Betti numbers, but is more complete. In fact this will be very useful

for applications.

Proposition 3.9. If I is a generic monomial ideal, then β̂i(I) = βi(I) ∀i.

If I is minimally resolved by its Taylor resolution, then βi(I) = βi(I) ∀i.

Proof:

• A monomial ideal I = 〈m1, . . . , mr〉 is called generic [10] if whenever

two distinct minimal generators mi and mj have the same positive

322



Mayer-Vietoris Trees of Monomial Ideals

degree in some variable, there is a third generator mk which strictly

divides lcm(mi, mj). For every monomial ideal I = 〈m1, . . . , mr〉 its

Scarf Complex of I, ∆I is the collection of all subsets of {m1, . . . , mr}
whose least common multiple is unique:

∆I = {σ ⊆ {1, . . . , r}|mσ = mτ ⇒ σ = τ}

If I is a generic monomial ideal, then the chain complex supported

on the Scarf complex ∆I minimally resolves R/I. Now, let c be a

generator of the Koszul homology of I, let a be its multidegree. Then,

a is the multidegree of a generator of a relevant node in MV T (I) and

thus it is the least common multiple of a set of minimal generators

of I, lets call this set S; we have then that mS = x
a. Assume a

appears in some other relevant node, then there exists another set T

of minimal generators of I such that mT = x
a. If I is generic, we know

that the Scarf complex minimally resolves I and then the multidegree

of each generator of the Koszul homology of I corresponds to the

least common multiple of exactly one set of minimal generators of

I. Hence, we have a contradiction, and xa appears only once in a

relevant node of MV T (I).

• If the Taylor Resolution of I is minimal, we know that we have a

Koszul generator corresponding to every subset of minimal generators

of I. These are exactly the generators appearing in the relevant nodes

of MV T (I) in this case. �

Of course if we only have non-repeated generators in the relevant nodes

of MV T (I) then βi(I) = β̂i(I) = βi(I) ∀i. When we have repeated gen-

erators we still can obtain all the relevant information,including the Betti

numbers, the Multigraded Betti numbers, and the actual generators of the

homology modules, using the properties of the exact sequence, and other

considerations (see [14] and later).
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3.2 Mayer-Vietoris resolution of Monomial Ideals

This small section gives just a brief (and somewhat informal) description

of the process of obtaining a (minimal) resolution of our ideal I using its

Mayer-Vietoris tree. A usual technique to build resolutions in a recursive

way is using mapping cone resolutions [11]. For them, one must use what is

known as the algebraic mapping cone (see [7] for example) of a map between

two chain complexes. The usual procedure is to have a map between two

resolutions of ideals with fewer generators and from the mapping cone of

this map, one constructs a resolution of an ideal with one more generator.

Two problems show up when using such a construction: first, it’s is not

always easy to build the chain complex map between the two small resolu-

tions; and second, the mapping cone of two minimal resolutions needs not

to be minimal, so some minimization process must be performed later, and

this can be rather inefficient. The first problem is solved using tecniques

from Effective Homology [12]; the second can be treated in an efficient way

using these techniques.

The starting point for the recursive process we want to implement is the

short exact sequence of ideals associated to the Mayer-Vietoris sequence of

an ideal I. We begin with the sequence

0 −→ Ĩ2
i

−→ I1 ⊕ 〈m2〉
j

−→ I2 −→ 0

We want to use the following theorem from effective homology:

Theorem 3.10. Let (A, i, ρ, B, j, σ, C) be an effective short exact sequence

of effective chain-complexes:

0 A C 0
i

ρ

j

σ
B

where i and j are chain complex morphisms; ρ and σ are graded module

morphisms and the following relations hold: idA = ρi, idB = iρ + σj and

idC = jσ, then, an algorithm constructs a canonical reduction (see [12])

between Cone(i) and C from the data.
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The recursive application of this theorem builds a resolution of I sup-

ported on the Mayer-Vietoris tree of I. To use it, we need to transform

our initial short exact sequence in an effective one, i.e. we need maps

ρ : Is−1 ⊕ 〈ms〉 → Ĩs and σ : Is → Is−1 ⊕ 〈ms〉 such that ρi = 1, jσ = 1 and

iρ+σj = 1, and it is not hard to define such maps for our monomial ideals,

for each elements one just needs to be careful with the summands that

lie in each of the ideals involved, or the differences among them. Another

ingredient we need are effective resolutions of the leftmost ideals, i.e. we

need explicit contracting homotopies for them. As the initial step works

with ideals generated by one and two monomials, we know that the Tay-

lor resolution of them is minimal, and moreover, an explicit contracting

homotopy is known for it [13] thus, theorem 3.10 provides us an effective

resolution of I2 and we can go on with the process.

The use of effective short exact sequences allows us to overcome the main

(algorithmic) dificulty when using this recursive procedure, namely the

construction of the comparison maps i [11]. This procedure gives us also a

good recursive description of the differentials involved in the so constructed

resolution. We know that Cone(i)q = Bq⊕Aq−1 and the differential is given

by d
Cone(i)
q =

(
dB

q iq

0 −d
A
q−1

)

. Thus, if we keep minimality at each step,

we know that the only possible part of the matrix which can be reduced

is that corresponding to iq, and the minimalization process is improved.

Moreover, as we keep track of the multidegrees involved, only when the

same multidegree appears in the resolutions of both Ĩs and Is1
⊕ 〈ms〉 at

the same homological dimension we can have some non-minimality on the

resolution of Is. This provides a new criterion for detecting multidegrees

such that even if are repeted at some relevant nodes of MTV (I), will

contribute to the Koszul homology of I. Note that the size of the resolution

constructed this way is given by the number of generators in the relevant

nodes of the tree.

325



GIFT 2006

4 Reading the Mayer-Vietoris Tree

We know that the only multidegrees relevant to the homology compu-

tation of I are those in position 1 of MV T (I), from which we obtain

H0(K(I)) and those in even position in MV T (I). The dimension of the

homology to which (up to possible cancellations if we have long homology

sequences) they contribute, can also be read from their position in the tree.

If we asign a dimension to every node in MV T (I) in the following way:

dim(MV T1(I)) = 0, if dim(MV Tp(I)) = d then dim(MV T2p(I)) = d + 1,

dim(MV T2p+1(I)) = d, then the generators of each relevant node con-

tribute to the homology modules in the homological dimension given by

the dimension of the node. To verify this just consider the Mayer-Vietoris

sequence at each multidegree in the tree, and the fact that at the bottoms

of the tree, one has always a node with two generators and two children

with one genertor each, the right child contributes with its homology just

in dimension zero (it is a generator of its father) and the left child con-

tributes with one generator in dimension one, the recursive construction of

the tree and the sequences yield the correspondence between dimensions.

If we compute MV T (I) keeping track of the dimension of a node and

the number of generators it has, then the (bounds of the) Betti numbers

can be computed at once with the tree. Algorithm 1 computes the Mayer-

Vietoris tree of I and every node is given by its position, dimension and

generators:

On steps 10 and 11 the children of a given node are computed. The

procedures tilde(ideal) and ideal′ compute the corresponding new ideals

and give the list of generators sorted. A good ordering would be as said

before, putting in the last place a generator with highest exponent in some

variable. Another strategy could be keeping the ideal generic as long as

possible, etc. Note that the complexity of this algorithm depends strongly

on the number of generators of I and has only a weak dependence on the

number of variables (the neccesary divisibility tests depend on the number

of variables); it is independent on the degrees of the generators involved.

Once the tree is built in this way, we can use the information in it reading
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Algorithm 1 : Mayer-Vietoris Tree of a Monomial ideal I

Input : Minimal generatng set of I = 〈m1, . . .mr〉
Output : MV T (I) as a list of pairs (position, ideal)

1 if r = 1 then return {({1, 0, {m1}})}
2 else

3 tree := {(1, 0, {m1, . . . , mr})}
4 undone := tree

5 while undone 6= ∅do

6 node := first(undone)

7 undone := tail(undone)

8 ideal := ideal(node)

9 pos := position(node), dim := dimension(node)

10 append(tree, (2 ∗ pos, dim + 1, tilde(ideal)))

11 append(tree, (1 + 2 ∗ pos, dim, ideal′))

12 if number of generators(tilde(ideal)) > 1

then append(undone, (2 ∗ p, dim + 1, tilde(ideal)))

13 if number of generators(ideal
′) > 1

then append(undone, (1 + 2 ∗ p, dim, ideal
′))

14 endwhile

15 return tree

16 end if

the tree upwards looking for the resolution, or reading directly from the

output of the algorithm the bounds β̂i and β̄i for each i.

As the multidegree of the generators and the dimension(s) in which they

(can) contribute to the homology are given in the tree, one can read from

it the involutivity degree of the system our ideal is associated to. We

proceed downwards from the highest possible degree. If we can assure this
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multidegree is present in the Koszul homology, because it appears only

once in some relevant node or because of some other considerations (see

later) then we have our involutivity degree. If we find it does not contribute

to the Koszul homology of the ideal, we go to the next multidegree and

perform the same test until we find an element of the homology, and we

are done.

5 Examples and Experiments

5.1 A first small example

Here we have an example of the computation of the Koszul homology of a

monomial ideal in 3 variables with four generators. In this case, the ideal is

not generic and still it’s homology can be automatically computed from the

Mayer-Vietoris tree. Let I = 〈xy2, xyz3, y5, z6〉, then it’s Mayer-Vietoris

tree is

xy2, xyz3, y5, z6 :: 1, 0

xyz6, y5z6 :: 2, 1

xy5z6 :: 4, 2 xyz6 :: 5, 1

xy2, xyz3, y5 :: 3, 0

xy5 :: 6, 1 xy2, xyz3 :: 7, 0

xy2z3 :: 14, 1 xy2 :: 15, 0

here the numbers denote the positions and dimensions of the nodes in

the tree. According to our rules, we can read the Betti numbers of I from

MV T (I):

β0(I) = 4, β1(I) = 4, β2(I) = 1

and looking at the generators in each position we also obtain the multi-

graded Betti numbers :
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β0 : 120, 113, 050, 006

β1 : 116, 056, 150, 123

β2 : 156

If we look at the bigrading, we see that the dimensions f the bigraded

homology modules of I are:

dim(H3,0(I)) = 1, dim(H5,0(I)) = 2, dim(H6,0(I)) = 1

dim(H5,1(I)) = 2, dim(H7,1(I)) = 1, dim(H10,1(I)) = 1

dim(H10,2(I)) = 1

and thus, the degree of involution of I is 10.

In general some ‘unpleasant’ multidegrees, i.e. those that are repeated

in some relevant nodes, will appear. In this case, we can still use some

criteria to determine wether they contribute to the Koszul homology of

the ideal or not, like the maps in the resolution we saw in the precedent

section or the length of the associated Mayer-Vietoris sequence. We can

also use local computations of the homology, using simplicial techniques

for the computation of generators, as seen in [14]. These simplicial tech-

niques include easy criteria for the vanishing of the homology at a given

multidegree, or actual computation of the generators at each multidegree.

In the following table we show the results of computations1 in some ran-

dom examples, n is the number of variables g the number of generators, S

the size of the minimal resolution and U the number of ’unpleasant’ multi-

degrees in which we have to make some computations; the column CoCoA

shows the time (in seconds) used by the CoCoA [15] command BettiDia-

gram in computing the Betti Diagram of I and the column Tree shows the

time in which our algorithm, implemented in CoCoAL, returns the esti-

mated Betti numbers of I. The question mark means that computations

were stopped after five hours with no result.

1 All computations were made on a Pentium IV processor (2.5GHz) running CoCoA 4.5 under Linux
(Mandriva 2006).
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n g S U CoCoA Tree

5 19 235 20 3.61 2.44

6 34 713 10 18.89 5.59

30 12 3275 26 60.85 13.18

50 13 8191 0 800.92 54.01

70 12 4095 0 1809.0 161.81

100 10 1023 0 732.16 11.0

105 13 8191 0 ? 100.74

5.2 Valla Ideals

In his paper [16], G. Valla studies the Betti numbers of some monomial

ideals strongly related with fat points. These ideals are not stable and in

[16], formulas for their Betti numbers are given. If we want to study the

multigraded Betti numbers of these ideals or their Koszul homology, we can

use their Mayer-Vietoris trees. The ideals Valla studies can be described

as follows:

Ia,b = 〈xa+b−2j
1 J

j
, x

a−t
1 J

t〉, j = 0, . . . , b − 1, t = b, . . . a

where a and b are positive integers such that a ≥ b, and J = 〈x2, . . . , xn〉.

These ideals grow very rapidly, and their Mayer-Vietoris trees compute

very efficiently their multigraded Betti numbers. Here is a table with sev-

eral examples. In the table, n is the number of variables, a and b define the

corresponding Valla ideal, g is the number if generators, Min is the size of

the minimal resolution, MV T is the size of the Mayer-Vietoris resolution,

T ime shows the time (in seconds) that took to compute the Mayer-Vietoris

tree of each ideal, and CoCoA shows the time it took CoCoA to compute

the BettiDiagram of each ideal.

Note that for all the examples in the table (and for all other examples

computed so far by the author) the Mayer-Vietoris tree provides the exact

(multigraded) Betti numbers. The question about this being a general

result is only a conjecture.
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n a b g Min MVT Time CoCoA

3 3 2 10 31 31 0.13 0.02

3 6 4 28 97 97 0.45 0.05

4 3 2 20 111 111 0.32 0.04

4 6 4 84 545 545 3.83 0.27

6 3 2 56 1023 1023 3.08 0.53

6 6 4 462 10625 10625 123.03 91.26

8 3 2 120 7423 7423 21.73 23.86

8 6 4 1716 141569 141569 2906.49 ?

10 3 2 220 47103 47103 167.10 ?

5.3 Ideals from Reliability Theory

In their paper [17], Giglio and Wynn relate coherent systems, from Reliabil-

ity Theory, with monomial ideals. In reliability computations, an inclusion-

exclusion identity for the probability of failure of the system is used. In the

commutative algebra side, this is strongly related to compute multigraded

Betti numbers and Multigraded Hilbert series. In [17], the Scarf complex

(see [10] for example) is used to improve this inclusion-exclusion identity,

so that fewer terms are used. Instead of the Scarf complex, we can use

Mayer-Vietoris trees for this improvements. In the case of generic ideals,

both the Scarf complex and The Mayer-Vietoris trees will yield the same

terms. In the non-generic case, we expect the trees will be closer to the

minimal resolution than the non-generic Scarf complex. In fact this can be

seen in the examples computed in [17]:

The first non-generic example in [17], corresponding to a binary network,

is the ideal I = 〈x1x6, x1x4x7, x2x4x6, x1x4x5x8, x2x7, x3x4x5x6, x2x5x8,

x3x5x7, x3x8〉 in Q[x1, . . . , x8]. The Scarf complex associated to I has size

103, the Mayer-Vietoris resolution has size 87, the same that the minimal

resolution.
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The following example, corresponding to a binary non-network, is the

ideal in Q[x1, . . . , x4] given by I = 〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4〉, the

Scarf complex of which has size 19, while the Mayer-Vietoris and the min-

imal resolution have both size 17.

Finally, the last example, corresponding to a multistate system, is the

ideal I = 〈x3
1x

2
2x

3
3x4, x

2
1x

3
2x

3
3x4, x

2
1x

2
3x

2
4, x1x2x

2
3x

2
4, x

2
2x

2
3x

2
4, x

3
1x3x

3
4, x

2
1x2x3x

3
4,

x1x
2
2x3x

3
4, x

3
2x3x

3
4〉 in the ring Q[x1, . . . , x4]. In this case, the size of the

Scarf complex is 31, while both Mayer-Vietoris and minimal resolutions

have size 25.

In all these examples we see that the Mayer-Vietoris trees improve the

computations made with the help of the Scarf complex, and thy even yield

the actual (multigraded) Betti numbers for the examples in the literature.

6 Future work

Future work includes making a complete study about which monomial or-

derings are better to obtain smaller and/or better trees for a given ideal,

and give caracterizations of families of ideals such that their Mayer-Vietoris

trees have no repeated relevant generators. Also merging the Mayer-

Vietoris tree with the different techniques presented in [14] and the cri-

teria coming from the Mayer-Vietoris resolution and homology sequence,

in order to implement an algorithm to compute the Koszul homology of

monomial ideals. Finally, another issue is to fully describe and implement

the transfer of the results in the monomial case to computations in the

polynomial case. For this, the Homological Perturbation Lemma gives a

good tool, and it’s application to our case is described in [1] and [18].
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1

Jan A. Sanders

Vrije Universiteit, Faculty of Sciences, Department of Mathematics

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract

An algorithm is given to compute a Stanley decomposition for the normal form of a

three degree of freedom Hamiltonian at equilibrium in the semisimple resonant case. This

algorithm is then applied to compute Stanley decompositions of the normal form of the

first and second order resonances.

Keywords: Hamiltonian, normal form, Stanley decomposition

1 Introduction

We consider Hamiltonians at equilibrium with quadratic term

H
0 =

3∑

j=1

mjxjyj,

where xj = qj + ipj and yj = qj − ipj, and the qj, pj are the real canonical

coordinates. We assume mj ∈ N, although it is straightforward to apply

the results in the more general case mj ∈ Z. The signs are important in the

nonsemisimple case, and of course, in the stability considerations. With

these quadratic terms we speak of the semisimple resonant case.

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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For the asymptotic analysis of such resonances, see [SV85]. Most biblio-

graphic references are taken form the second edition of [SV85], in prepara-

tion. We now pose the problem to find the description of a general element

H ∈ k[[x1, y1, x2, y2, x3, y3]]

such that {H0
, H} = 0 (see [Mur03, Section 4.5]). Since the flow of H0

defines a compact Lie group (S1) action on T ∗R3, we know beforehand that

H can be written as a function of a finite number of invariants of the flow

of H0, that is, as

H =

q
∑

k=1

Fk(α1, · · · , αpk
)βk,

where {H0, αι} = {H0, βι} = 0 for all relevant ι. The αι, βι are monomials

in the x1, · · · , y3 variables and are to be determined explicitly. The Fk are

completely arbitrary polynomials or formal power series. If it follows from

q
∑

k=1

Fk(α1, · · · , αpk
)βk = 0

that all the Fk are identically zero, we say that we have obtained a Stanley

decomposition of the normal form. While the existence of the Stanley

decomposition follows from the Hilbert finiteness theorem, it is general not

unique: both F (x) and c + G(x)x are Stanley decompositions of general

functions in one variable x. Notice that the number of primary variables

αι is in principle variable, contrary to the case of Hironaka decompositions.

One can define the minimum number q in the Stanley decomposition as

the Stanley dimension. In general one can only obtain upper estimates

on this dimension by a smart choice of decomposition.

We show that if M = m1 +m2 +m3, the Stanley dimension of the ring of

invariants of H0 is bounded by 1 + 2M .

We do this by giving an algorithm to compute a Stanley decomposition,

and we illustrate this by giving the explicit formulae for the genuine zeroth,

first and second order resonances, that is, those resonances which have more
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than one generator of degree ≤ 4, not counting complex conjugates and

xjyj’s. These resonances are the most important ones from the point of

view of the asymptotic approximation of the solutions.

2 The kernel of ad(H0)

First of all, we see immediately that the elements τj = xjyj all commute

with H
0. We let I = k[[τ1, τ2, τ3]]. In principle, we work with real Hamil-

tonians as they are given by a physical problem, but it is easier to work

with complex coordinates, so we take the coefficients to be complex too. In

practice, one can forget the reality condition and work over C. In the end,

the complex dimension will be the same as the real one, after applying the

reality condition.

Any monomial in ker ad(H0) is an element of one of the spaces I[[yn1

1 x
n2

2 x
n3

3 ]],

I[[xn1

1 y
n2

2 x
n3

3 ]], I[[xn1

1 x
n2

2 y
n3

3 ]], where n = (n1, n2, n3) is a solution of n1m1 =

n2m2 + n3m3, n2m2 = n1m1 + n3m3, n3m3 = n1m1 + n2m2, respectively,

and all the nj ≥ 0.

In the equation n1m1 = n2m2 +n3m3 one cannot have a nontrivial solution

of n1 = 0, but if n1 > 0, one can either have n2 = 0 or n3 = 0, but not

both. We allow in the sequel n2 to be zero, that is, we require n1 > 0,

n2 ≥ 0 and n3 > 0.

We formulate this in general as follows. Consider the three equations

nimi = ni+mi+ + ni++mi++.

where the increment in the indices is in Z/3 = (1, 2, 3) (that is, 2++ ≡ 1,

etc.), where we allow ni+ to be zero, but ni and ni++ are strictly positive.

We now solve for given m the equation n1m1 = n2m2 + n3m3, and then

apply a cyclic permutation to the indices of m.

Suppose that gcd(m2, m3) = g1 > 1. In that case, assuming m is primitive,

we may conclude that g1|n1. Let n1 = g1n̄1, mj = g1m̄j , j = 2, 3. Then

n̄1m1 = n2m̄2 + n3m̄3, gcd(m̄2, m̄3) = 1.
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By cyclic permutation, we assume now that gcd(m̄i, m̄j) = 1, and we call

m̄ the reduced resonance. Observe that the Stanley dimension of the ring

of invariants is the same for a resonance and its reduction.

Obviously, keeping track of the divisions by the gcd’s, one can reconstruct

the solution of the original resonance problem from the reduced one. Ob-

serve that in terms of the coordinates, the division is equivalent to taking

a root, and this is not a symplectic transformation.

Dropping the bars, we again consider n1m1 = n2m2 + n3m3, but now we

have gcd(m2, m3) = 1.

If m1 = 1, we are immediately done, since the solution is simply n1 =

n2m2 + n3m3, with arbitrary integers n2 ≥ 0, n3 > 0.

So we assume m1 > 1 and we calculate modm1, keeping track of the posi-

tivity of our coefficients. Let mj = m̄j + kjm1, j = 2, 3, with 0 < mj < m1

since gcd(mj, m1) = 1. Let m̃3 = m1 − m3, so again 0 < m̃3 < m1. For

q = 0, · · · , m1 − 1 let

n2 = qm̃3 + l2m1

n3 = qm̄2 + l3m1

with the condition that if q = 0, then l3 > 0. Then

n1m1 = (qm̃3 + l2m1)m2 + (qm̄2 + l3m1)m3

= qm̃3m2 + qm̄2m3 +m1(l2m2 + l3m3)

= qm̃3(m̄2 + k2m1) + qm̄2(m̄3 + k3m1) +m1(l2m2 + l3m3)

= qm̃3m̄2 + qm̄2m̄3 +m1(qm̃3k2 + qm̄2k3 + l2m2 + l3m3)

= m1(q(k2m̃3 + (1 + k3)m̄2) + l2m2 + l3m3)

or

n1 = q(k2m̃3 + (1 + k3)m̄2) + l2m2 + l3m3, q = 0, · · · , m1 − 1.

This is the general solution of the equation n1 = n2m2 + n3m3.

The solution is not necessarily giving us an irreducible monomial: it could

be the product of several monomials in ker ad(H0). To analyze this we put

qm̄2 = ψ
q
2m1 + φ

q
2, 0 ≤ φ

q
2 < m1, ψ

q
2 ≥ 0
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and

qm̃3 = ψ
q
3m1 + φ

q
3, 0 ≤ φ

q
3 < m1, ψ

q
3 ≥ 0.

We now write yn1

1 x
n2

2 x
n3

3 as 〈n1, n2, n3〉. Then

〈n1, n2, n3〉 =

= 〈q(k2m̃3 + (1 + k3)m̄2) + l2m2 + l3m3, qm̃3 + l2m1, qm̄2 + l3m1〉

= 〈m2, m1, 0〉
l2〈m3, 0, m1〉

l3

·〈q(k2m̃3 + (1 + k3)m̄2), ψ
q
3m1 + φ

q
3, ψ

q
2m1 + φ

q
2〉.

Let φ
q
1 = q(k2m̃3 + (1 + k3)m̄2) − ψ

q
2m3. Then

φ
q
1 = q(k2m̃3 + (1 + k3)m̄2) − ψ

q
2m3

= k2qm̃3 + (1 + k3)(ψ
q
2m1 + φ

q
2) − ψ

q
2(m̄3 + k3m1)

= k2qm̃3 + (1 + k3)φ
q
2 + ψ

q
2m1 − ψ

q
2m̄3

= k2qm̃3 + (1 + k3)φ
q
2 + ψ

q
2m̃3 ≥ 0.

We now write φ
q
1 = ψ̃

q
3m2 + χ

q
1, and we let ψ̂

q
3 = min(ψ̃

q
3, ψ

q
3). We have

〈n1, n2, n3〉 =

= 〈m2, m1, 0〉
l2+ψ̂3〈m3, 0, m1〉

l3+ψ
q
2

·〈(ψ̃q3 − ψ̂
q
3)m2 + χ

q
1, (ψ

q
3 − ψ̂

q
3)m1 + φ

q
3, φ

q
2〉.

We define

αι = 〈mι+ , mι, 0〉

β
0
ι = 〈mι++ , 0, mι〉

β
q
ι = 〈(ψ̃qι++ − ψ̂

q
ι++)mι+ + χ

q
ι , (ψ

q
ι++ − ψ̂

q
ι++)mι + φ

q
ι++, φ

q
ι+〉.

Thus

〈n1, n2, n3〉 = α
l′2
1 (β0

1)
l′3β

q
1, l

′
2, l

′
3 ∈ N, q = 0, · · · , m1 − 1,
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or, in other words, 〈n1, n2, n3〉 ∈ I[[α1, β
0
1 ]]β

q
1. This means that I[[α1, β

0
1 ]]β

q
1

is the solution space of the resonance problem. Notice that by construction

these spaces have only 0 intersection.

Let K be defined as
⊕

ι∈Z/3 Kι, where

Kι =

mι−1⊕

q=0

I[[αι, β
0
ι ]]β

q
ι .

Then we have

Theorem 1 Let K̄ denote the space of complex conjugates (that is, xj
and yj interchanged) of the elements of K. Then I ⊕ K ⊕ K̄ is a Stanley

decomposition of the m1 : m2 : m3-resonance.

Corollary 1 In each Kι there are mι direct summands. Therefore there

are M = m1 +m2 +m3 direct summands in K. This enables us to estimate

the Stanley dimension from above by 1 + 2M .

Remark 1 The number of generators need not be minimal. In particular

the βq’s can be generated by one or more elements. We conjecture that the

βq, q = 1, · · · , mι − 1, are generated as polynomials by at most two invari-

ants. Furthermore, the βqι ’s, are for q > 0 not algebraically independent of

αι and β0
ι . The relations among them constitute what we will call here the

defining curve. Since the Stanley decomposition is the ring freely generated

by the invariants divided out by the ideal of the defining curve, this gives us

a description of the normal form that is independent of the choices made

in writing down the Stanley decomposition.

Remark 2 The generating functions of the following resonances have been

computed by A. Fekken [Fek86]. They are the Poincaré-Hilbert series of the

Stanley decomposition and can be computed by computing the Molien series

of the group action given by the flow of H0, that is, by computing circle

integrals (or residues).

The 15 tables contain all the information to compute the Stanley decom-

position for the lower order resonances.
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ι α β
0

1 y1x2 y1x3

2 y2x3 x1y2

3 x1y3 x2y3

Table 1: The 1 : 1 : 1-resonance ([FHPY02])

ι α β
0

1 y2
1x2 y2

1x3

2 y2x3 x
2
1y2

3 x2
1y3 x2y3

Table 2: The 1 : 2 : 2-resonance ([MMV81]). This is derived from the

1 : 1 : 1-resonance by squaring x1 and y1.

ι α β0

1 y
3
1x2 y

3
1x3

2 y2x3 x3
1y2

3 x
3
1y3 x2y3

Table 3: The 1 : 3 : 3-resonance.This is derived from the 1 : 1 : 1-resonance

by raising x1 and y1 to the third power.

ι α β0 β1

1 y1x2 y2
1x3

2 y
2
2x3 x1y2

3 x2
1y3 x2

2y3 x1x2y3

Table 4: The 1 : 1 : 2-resonance ([vdAS79, vdA83]). The defining curve is

((β1
3)

2 − α3β
0
3).
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ι α β0 β1

1 y2
1x2 y4

1x3

2 y2
2x3 x2

1y2

3 x4
1y3 x2

2y3 x2
1x2y3

Table 5: The 1 : 2 : 4-resonance ([vdA83]). This is derived from the

1 : 1 : 2-resonance by squaring x1 and y1.

ι α β0 β1

1 y3
1x2 y6

1x3

2 y2
2x3 x3

1y2

3 x6
1y3 x2

2y3 x3
1x2y3

Table 6: The 1 : 3 : 6-resonance. This is derived from the 1 : 1 : 2-resonance

by raising x1 and y1 to the third power.

ι α β0 β1 β2

1 y1x2 y
3
1x3

2 y3
2x3 x3

1y2

3 x
3
1y3 x

3
2y3 x

2
1x2y3 x1x

2
2x3

Table 7: The 1 : 1 : 3-resonance The defining curve is (β1
3β

2
3 −α3β

0
3 , β

1
3β

1
3 −

α3β
2
3 , β

2
3β

2
3 − β

0
3β

1
3).

ι α β0 β1 β2

1 y
2
1x2 y

6
1x3

2 y3
2x3 x6

1y2

3 x
6
1y3 x

3
2y3 x

4
1x2y3 x

2
1x

2
2y3

Table 8: The 1 : 2 : 6-resonance ([VdADW94]). This is derived from the

1 : 1 : 3-resonance by squaring x1 and y1.
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ι α β
0

β
1

β
2

1 y3
1x2 y9

1x3

2 y3
2x3 x9

1y2

3 x9
1y3 x3

2y3 x6
1x2y3 x3

1x
2
2y3

Table 9: The 1 : 3 : 9-resonance. This is derived from the 1 : 1 : 3-resonance

by raising x1 and y1 to the third power.

ι α β0 β1 β2

1 y2
1x2 y3

1x3

2 y3
2x

2
3 x2

1y2 x1y
2
2x3

3 x3
1y3 x3

2y
2
3 x1x2y3 x2

1x
2
2y

2
3

Table 10: The 1 : 2 : 3-resonance. The defining curve is (β1
2β

1
2 −

α2β
0
2 , (β

1
3)

3 − α3β
0
3).

ι α β0 β1 β2

1 y2
1x2 y3

1x
2
3

2 y
3
2x

4
3 x

2
1y2 x1y

2
2x

2
3

3 x3
1y

2
3 x3

2y
4
3 x1x2y

2
3 x2

1x
2
2y

4
3

Table 11: The 2 : 4 : 3-resonance ([vdA83, Kum75]). This is derived from

the 1 : 2 : 3-resonance by squaring x3 and y3.

ι α β0 β1 β2 β3 β4

1 y2
1x2 y5

1x3

2 y5
2x

2
3 x2

1y2 x1y
3
2x3

3 x5
1y3 x5

2y
2
3 x3

1x2y3 x1x
2
2y3 x4

1x
3
2y

2
3 x2

1x
4
2y

2
3

Table 12: The 1 : 2 : 5-resonance ([VdADW94, HW96, Hal99]). The

defining curve is ((β1
2)

2 − α2β
0
2 , β

3
3 − β1

3β
2
3 , β

4
3 − (β2

3)
2, (β2

3)
3 − β0

3β
1
3 , (β

1
3)

2 −
α3β

2
3 , β

1
3(β

2
3)

2 − α3β
0
3).
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ι α β0 β1 β2 β3

1 y
3
1x2 y

4
1x3

2 y4
2x

3
3 x3

1y2 x1y
3
2x

2
3 x2

1y
2
2x3

3 x
4
1y3 x

4
2y

3
3 x1x2y3 x

2
1x

2
2y

2
3 x

3
1x

3
2y

3
3

Table 13: The 1 : 3 : 4-resonance. The defining curve is ((β2
2)

2 −
β

0
2β

1
2 , (β

1
2)

2 − α2β
2
2 , β

1
2β

2
2 − α2β

0
2 , (β

1
3)

4 − α3β
0
3).

ι α β
0

β
1

β
2

β
3

β
4

1 y3
1x2 y5

1x3

2 y
5
2x

3
3 x

2
1y2 x

2
1y

4
2x

2
3 x1y

2
2x3

3 x5
1y3 x5

2y
3
3 x2

1x2y3 x4
1x

2
2y

2
3 x1x

3
2y

2
3 x3

1x
4
2y

3
3

Table 14: The 1 : 3 : 5-resonance. The defining curve is (β1
2 − (β2

2)
2
, (β2

2)
3−

α2β
0
2), β

4
3 − β1

3β
3
3 , (β

1
3)

3 − α3β
3
3 , (β

3
3)

2 − β0
3β

1
3 , (β

1
3)

2β3
3 − α3β

0
3).

ι α β0 β1 β2 β3 β4 β5 β6

1 y
3
1x2 y

7
1x3

2 y7
2x

3
3 x3

1y2 x1y
5
2x

2
3 x2

1y
3
2x3

3 x7
1y3 x7

2y
3
3 x4

1x2y3 x1x
2
2y3 x5

1x
3
2y

2
3 x2

1x
4
2y

2
3 x6

1x
5
2y

3
3 x3

1x
6
2y

3
3

Table 15: The 1 : 3 : 7-resonance ([VH92]). The defining curve is ((β1
2)

2 −
α2β

2
2 , (β

2
2)

2 − β0
2β

1
2 , β

1
2β

2
2 − α2β

0
2 , β

3
3 − β1

3β
2
3 , β

4
3 − β2

3β
2
3 , β

5
3 − β1

3β
2
3β

2
3 , β

6
3 −

β
2
3β

2
3β

2
3 , β

1
3)

2 − α3β
2
3 , (β

2
3)

4 − β
0
3β

1
3 , β

1
3(β

2
3)

3 − α3β
0
3).
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3 Concluding remarks

An obvious application of the given results is the computation of the non-

semisimple case. Nilpotent terms in H0 are possible whenever there is a

1 : 1-subresonance and show up in the tables as quadratic terms of type

xiyj. By computing the action of the nilpotent term on the other gen-

erators, one can then try to obtain the nonsemisimple normal form, see

[Mur03].
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Abstract

After reviewing thermomechanical constitutive theory in the context of a simple Cosserat

rod model, we explore a simple thermomechanical rod model by generalizing the classical

Kirchhoff constitutive relations. The mechanically induced dissipation of energy is dis-

tinguished from that produced by the coupling to a temperature field along the rod. The

model involves relatively few parameters that may be estimated from experimental data.

A further objective is to analyze the evolutionary properties of the governing system of

partial differential equations that depend on the (extended Kirchhoff) free energy function

and the constitutive relations compatible with the Clausius-Duhem relation appropriate

for a slender rod. The evolution characteristics of the system are explored in specific nu-

merical simulations. These indicate the presence of thermally induced damping of axial

and torsional excitation modes under forced and free vibration.

Keywords: Cosserat rod, thermomechanics, nonlinear dynamics, constitutive relations,

Clausius-Duhem, modelling, Kirchhoff, simulation
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1 Introduction

Many engineering components have one or more spatial dimensions much

smaller than the other(s). Thus they qualify as slender structures. Rods,

cables, chains, ropes, discs and shells all exhibit these characteristics. In

this article emphasis is on structures that can be approximated by curves

in space. The aim is to explore simple models, compatible with the laws

of physics, that can be used to describe the thermomechanical behavior

of rods or strings. Since all materials conduct heat to some extent their

thermomechanical characteristics will affect their mechanical response to

different types of loading. The behavior of this response is one of the

motivations for what follows.

The detailed response of materials to mechanical and thermal loads de-

pends to a great extent on the constitutive properties exhibited by the

material and these in turn are constrained by the laws of thermodynamics.

Such constraints leave a great deal of freedom in empirical choices of con-

stitutive relation and guidance from experiment often becomes necessary.

However this requires a particular theoretical framework or model to be

effective.

The linear theory of 1-d thermomechanics can be found in [1]. An exten-

sive theoretical investigation into the non-linear thermomechanics of rods

was initiated in 1974 by Green, Naghdi and Wenner[2]. This has been

subsequently refined [3] and generalized to include multi-phase structures

[4].

The thermomechanics of beams with either flexure [6, 7, 8, 9] or axial

deformation [10, 11] have been explored. The energy dissipation in a one-

dimensional rod was investigated in [12] using the characteristic equation

approach, while exponential stability for linear [13], semilinear [14] and

nonlinear [13] one-dimensional rods has been studied using specific energy

estimates. Boundary control laws [15] and uniform stabilization methods

[16] of linear thermo-elastic beams have been designed using Lyapunov

methods.
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The thermomechanics of MEMS components has also attracted attention

in more recent times [17, 18, 19, 20, 21]. For the transverse vibration of

a double-ended tuning fork, Lauderdale and O’Reilly [22] proposed a rod-

based model using the rod theory developed by Green, Naghdi and several

of their coworkers [23, 24], which incorporates end masses, the anisotropy

of silicon, finite deformation effects and thermal influences.

The simple Cosserat theory of rods has been extensively studied and

found to have wide applicability [25]. In many circumstances the classical

Kirchhoff constitutive relations offer a valuable approximation that can

accommodate a large range of coupled non-linear mechanical behaviors in

rods. However the inclusion of dissipation in these simple models remains

somewhat ad-hoc. In particular when the coupling with heat is involved it

is sometimes difficult to separate the effects of mechanical damping from

thermally induced damping within the formalism.

Although in principle earlier formulations of the thermomechanics of

rods offer many different approximations for modeling they appear to us as

somewhat complicated. In this article, after reviewing thermomechanical

constitutive theory in the context of the simple Cosserat model, we attempt

to find a simple thermomechanical model that can be used to generalize

the classical Kirchhoff constitutive relations used in Cosserat rod models.

In this way we hope to distinguish the effects of mechanically induced dis-

sipation of energy from that produced by the coupling to a temperature

field along the rod. The model involves relatively few parameters that may

be estimated from experimental data. A further objective is to analyze the

evolutionary characteristics of the governing system of partial differential

equations that depend on the (extended Kirchhoff) free energy function

and the constitutive relations compatible with the Clausius-Duhem rela-

tion appropriate for a slender rod. The evolution characteristics of par-

ticular system are explored using specific numerical simulations. These

indicate the presence of thermally induced damping of excitation modes

under forced and free vibration.
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Throughout this paper vectors are elements of Euclidean 3-space with its

usual affine structure. They are denoted by lowercase, bold-face symbols,

e.g., u, v; tensors are denoted by upper-case, bold-face symbols, e.g., I,

J; matrices are denoted by upper-case, italic, bold-face symbols, e.g., M ,

K. The symbols (˙) and ( ′ ) denote differentiation with respect to time t

and arc-length parameter s, respectively. For any function f that depends

explicitly on some variable x we sometimes write fx for ∂f
∂x

. Repeated

indices follow the Einstein summation convention.

2 Thermomechanical Cosserat Equations

2.1 The simple Cosserat rod

The general mathematical theory of non-linear elasticity is well established.

The general theory of one-dimensional Cosserat continua derived as limits

of three-dimensional continua can be consulted in Antman [25]. The theory

is fundamentally formulated in the Lagrangian picture in which material

elements of a rod are labeled by s. The dynamical evolution of a “slender

structure” with mass density, s ∈ [0, L0] 7→ ρ(s), and cross-sectional area,

s ∈ [0, L0] 7→ A(s), is governed by Newton’s dynamical laws:

ρA r̈ = n
′ + f (1)

∂t( I(w)) = m
′ + r

′
n + l (2)

applied to a triad of ortho-normal vectors (directors):

s ∈ [0, L0] 7→ {d1(s, t),d2(s, t),d3(s, t)} (3)

over the space-curve:

s ∈ [0, L0] 7→ r(s, t) (4)

at time t where n
′ = ∂sn,≡ ns ṙ = ∂tr, f and l denote external force and

torque densities respectively and s ∈ [0, L0] 7→ I is a “slender structure”

moment of inertia tensor.
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In these field equations the contact forces n and contact torques m are

determined by constitutive relations2 involving the strains u, v, w. The

strains are themselves defined in terms of the configuration variables r and

dk for k = 1, 2, 3 by the relations:

r
′ = v, d

′
k = udk, ḋk = wdk. (5)

The latter ensures that the triad remains ortho-normal under evolution.

One has

did
′
i = di(udi) = u(di · di) − di(di · u) = 2u (6)

diḋi = di(wdi) = w(di · di) − di(di · w) = 2w (7)

The last equation identifies

w =
1

2

3∑

k=1

dk ḋk (8)

with the local angular velocity vector of the director triad.

Here and in much of the following, the components Zi of any Euclidean

vector Z will be taken in the dynamical basis di (i.e. Zi = Z · di), so

v(s, t) = vi(s, t)di(s, t), u(s, t) = ui(s, t)di(s, t), w(s, t) = wi(s, t)di(s, t)

with summation over 1 to 3.

Assume further that the structure possesses a positive temperature T (s, t),

positive internal energy ǫ(s, t) per unit reference mass, entropy density

η(s, t) per unit reference mass and a heat flux q(s, t) directed along the

rod. In addition there may be an applied heat power h(s, t) per unit ref-

erence mass along the structure.

The local energy balance between these sources of power and the power

expended by kinetic energy is expressed in the first law of thermodynamics:

2 In general for non-uniform rods and non-stationary environments the constitutive relations (see below)
and director components of the inertia tensor could also depend explicitly on s and t.
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ρA ǫ̇ + ρA ṙ · r̈ + w · (I(w))˙ =f · ṙ + l · w + ρA h + ∂s(n · ṙ + m ·w) (9)

− A∂sq

Elimination of the mechanical power, using the above Cosserat equations

of motion, yields:

ρA ǫ̇ = P + ρA h − A∂sq (10)

where P = niv̇i + m ·w′. Furthermore using the relations: di
′
ḋi = uw,

w
′ = u̇ + uw gives P = niv̇i + miu̇i and hence

ρA ǫ̇ = niv̇i + miu̇i + ρA h − A∂sq (11)

The second law of thermodynamics will be adopted as a constraint on

the constitutive relations to be discussed below. This is implemented in

terms of the Clasius-Duhem inequality

d

dt

∫ L0

0

ρA η ds ≥

∫ L0

0

ρA
h

T
ds −

Aq

T

∣
∣
∣

L0

0
(12)

For the purposes of this article its local form

ρA η̇ ≥ ρA
h

T
− ∂s(

Aq

T
) (13)

will be exploited. By eliminating h using (11) this becomes, in terms of

the free energy φ ≡ ǫ − Tη,

niv̇i + miu̇i −
Aq

T
∂sT − ρA (φ̇ + Ṫ η) ≥ 0 (14)

Thus in addition to six independent dynamical variables encoded in the

fields r, di one has four additional dynamical thermal fields η, q, T, φ (or ǫ)

over the structure.
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Now restrict to material constitutive relations of the form:

ni = n̂i(uj, vj, T, T ′, u̇j, v̇j), mi = m̂i(uj, vj, T, T ′, u̇j, v̇j)

φ = φ̂(uj, vj, T, T ′, u̇j, v̇j), η = η̂(uj, vj, T, T ′, u̇j, v̇j)

q = q̂(uj, vj, T, T ′, u̇j, v̇j)

constrained by (13). Inserting these in (13) gives:

(n̂i − ρA φvi
)v̇i + (m̂i − ρA φui

)u̇i + ρA (φ̂T + η̂)Ṫ + ρA φ̂u̇i
üi

+ ρA φ̂v̇i
v̈i + ρA φ̂Ts

Ṫs −
Aq̂

T
T

′ ≥ 0 (15)

Since üi, v̈i, Ṫ
′, Ṫ are not arguments of the constitutive functions one

must have η̂ = −φ̂T , φ̂u̇i
= φ̂v̇i

= 0, φ̂T ′ = 0. Thus φ = φ̂(ui, vi, T ) and:

(n̂i − ρA φvi
)v̇i + (m̂i − ρA φui

)u̇i −
Aq̂

T
T

′ ≥ 0 (16)

Suppose, for some fields α, β, the derivative arguments of the constitutive

functions are scaled as follows:

T
′ 7→ β T

′
, u̇i 7→ α u̇i, v̇i 7→ α v̇i. (17)

If one writes (16) as Y(α, β) ≥ 0 then since Y(0, 0) = 0 one has generically

∂αY|α=β=0 = 0, ∂βY|α=β=0 = 0 or, since these must hold for all v̇i, u̇i, T
′,

n̂i(uj, vj, T, 0, 0, 0) = ρA φ̂vi
(uj, vj, T ), (18)

m̂i(uj, vj, T, 0, 0, 0) = ρA φ̂ui
(uj, vj, T ), (19)

q̂(uj, vj, T, 0, 0, 0) = 0. (20)

Thus one may split off contact forces nD and torques mD (with n̂
D
i

(uj, vj, T, 0, 0, 0) = 0 and m̂D
i (uj, vj, T, 0, 0, 0) = 0) responsible for dissipa-

tion as

follows:

n̂i(uj, vj, T, T
′
, u̇j, v̇j) = ρA φ̂vi

(uj, vj, T ) + n̂
D
i (uj, vj, T, T

′
, u̇j, v̇j) (21)

m̂i(uj, vj, T, T
′
, u̇j, v̇j) = ρA φ̂ui

(uj, vj, T ) + m̂
D
i (uj, vj, T, T

′
, u̇j, v̇j) (22)
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and the final form of the Clausius-Duhem constraint on these functions

becomes:

n̂D
i (uj, vj, T, T ′, u̇j, v̇j) v̇i + m̂D

i (uj, vj, T, T ′, u̇j, v̇j) u̇i

−AT ′

T
q̂(uj, vj, T, T

′
, u̇j, v̇j) ≥ 0 (23)

Simple relations compatible with this take the form:

n̂
D
i (uj, vj, T, T

′
, u̇j, v̇j) = Nik(uj, vj, T, T

′
, u̇j)v̇k (24)

m̂
D
i (uj, vj, T, T

′
, u̇j, v̇j) = Mik(uj, vj, T, T

′
, v̇j)u̇k (25)

for positive matrices N, M with Nik(uj, vj, T, 0, 0) = 0 and

Mik(uj, vj, T, 0, 0) = 0 and

q̂(uj, vj, T, T
′
, u̇j, v̇j) = −K(uj, vj, T, u̇j, v̇j)T

′ (26)

for any positive function K with K(uj, vj, T, 0, 0) = 0.

3 A closed system with particular constitutive relations

Consider the closed system of equations (1,2,11) with n̂i, m̂i linear in dis-

sipative variables. Thus assume constitutive relations (24), (25) with

Nij, Mij depending on variables y = {vj, uj, T} only, but with

q̂(uj, vj, T, T ′, u̇j, v̇j) general at this point.

Calculating the time derivative in equation (2) with I(w)) = ρI
i
jwi dj :

∂t(I(w)) = ρI
i
j∂t(wi dj) = ρI

i
j(ẇi dj + wi(wdj)) (27)

and the derivative m
′ = m

′
k dk + mk(udk) write (2) in the form

ρI
i
kẇi = −ρI

i
jwi(wdj)k + m

′
k + mj(udj)k + (vn)k + lk,

Applying I
−1 k
l yields

ρẇl = −ρI
−1 k
l I

i
jwi(wdj)k + I

−1 k
l m

′
k + I

−1 k
l (um)k (28)

+I
−1 k
l (vn)k + I

−1 k
l lk.
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Similarly, using ṙ = ṙi di + ri(wdi) and r̈ = r̈i di + 2ṙi(wdi)

+ ri(ẇ di) + ri(w(wdi)), Equation (1) becomes

ρAr̈k = − ρA[2ṙi(wdi)k + ri(ẇ di)k + ri(w(wdi))k]

+ n
′
k + ni(udi)k + fk. (29)

In the second term on the right side ẇ di = (ẇk dk + wk ḋk)di =

(ẇk dk + wk(wdk))di = (ẇk dk + (ww))di =

ẇl(dl di), and (ẇ di)k = ẇl(dl di)k = ẇlǫlik. Substituting (29) into (29)

yields

ρAr̈k = − ρA[2ṙi(wdi)k + ri(w(wdi))k] (30)

+ AriǫlikρI
−1 p
l I

i
jwi(wdj)p

− Ariǫlik

[

I
−1 p
l m

′
p + I

−1 p
l mj(udj)p + I

−1 p
l (vn)p + I

−1 p
l lp

]

+ n
′
k + ni(udi)k + fk,

or

ρAr̈k = − ρA[2ṙi(wdi)k + ri(w(wdi))k] (31)

+ ρAriǫlikI
−1 p
l I

i
jwi(wdj)p − AriǫlikI

−1 p
l m

′
p + n

′
k

− AriǫlikI
−1 p
l (mj(udj)p + nj(vdj)p) − AriǫlikI

−1 p
l lp + fk.

We have separated here the kinematic terms from the constitutive terms

of different order and from the terms containing the external forces.

Next substitute the constitutive relations (21)-(25) (using the notation

y = (uj, vj, T )) for the strains and temperature variables:







n̂i(uj, vj, T, T
′
, u̇j, v̇j) = ρA φ̂vi

(y) + Nik(y, T
′
, u̇j)v̇k,

m̂i(uj, vj, T, T ′, u̇j, v̇j) = ρA φ̂ui
(y) + Mik(y, T ′, v̇j)u̇k.

(32)

355



GIFT 2006

Derivatives with respect to s of these constitutive functions have the

form







∂sn̂i(uj, vj, T, T ′, u̇j, v̇j) = Ui(y, T ′, u̇j, v̇k, u
′, v′)

+
∂Nik

∂T ′
T

′′
v̇k +

∂Nik

∂u̇p

u̇
′
pv̇k + Nikv̇

′
k,

∂sm̂i(uj, vj, T, T ′, u̇j, v̇j) = Vi(y, T ′, u̇j, v̇k, u
′, v′)

+
∂Mik

∂T ′
T

′′
u̇k +

∂Mik

∂v̇p

v̇
′
pu̇k + Miku̇

′
k.

(33)

with highest derivatives explicitly displayed.

Inserting (32) and (33) into the balance equations (29) and (??) yields

ρAr̈k = −ρA[2ṙi(wdi)k + ri(w(wdi))k] + ρArdǫldkI
−1 p
l I

i
jwi(wdj)p

−ArdǫldkI
−1 i
l

(

Vi(y, T
′
, u̇j, v̇j, u

′
, v

′) +
∂Mij

∂T ′
T

′′
u̇j

+
∂Mij

∂v̇p

v̇
′
pu̇j + Miju̇

′
j

)

+

(

Uk(y, T ′, u̇j, v̇j, u
′, v′) +

∂Nkj

∂T ′
T

′′
v̇j +

∂Nkj

∂u̇p

u̇
′
pv̇j + Nkjv̇

′
j

)

− ArdǫldkI
−1 p
l ǫijp (uim̂j + vin̂j) − ArdǫjdkI

−1 p
j lp + fk, (34)

and

ρẇk = − ρI
−1 p
k I

i
jwi(wdj)p + I

−1 i
k li

+ I
−1 i
k

(

Vi(y, T
′
, u̇j, v̇j, u

′
, v

′) +
∂Mij

∂T ′
T

′′
u̇j +

∂Mij

∂v̇p

v̇
′
pu̇j + Miju̇

′
j

)

+ I
−1 p
k ǫijp(uim̂j + vin̂j). (35)

The energy equation (11) takes the form
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ρA ǫ̂T Ṫ = − ρA (ǫ̂vi
v̇i + ǫ̂uj

u̇j) + (ρA φ̂vi
(uj, vj, T ) + Nik(uj, vj, T )v̇k)v̇i

+ (ρA φ̂ui
(uj, vj, T ) + Mik(uj, vj, T )u̇k)u̇i + ρA h − ρA∂sq̂, (36)

with ǫ = φ + Tη = φ− TφT = ǫ̂(u, v, T ). Equations (34,35) and (36) are

written to explicitly display highest order derivatives.

One now has a closed system of equations for seven functions of two

independent variables: 3 components ri(s, t) of the position vector, three

angular variables φi defining the frame di(s, t) and the temperature T (s, t).

We assume that the forces f and momenta l may depend on the spatial

gradients of these functions.

The initial value problem for the system (34,35,36) requires one to specify

the initial values (at t = 0) of the variables ri, ṙi, φi, time derivatives of

φi (i.e. equivalently wi) and that of the temperature T . This system

does not allow the direct application of existing results of existence and

uniqueness of the Cauchy-Kovalevskaya type ([30]) since the hyperplane

t = 0 is characteristic for the system due to the presence of third mixed

derivatives v̇′i, u̇
′
j on the right side of equations (34,35) and of the second

mixed derivatives v̇i, u̇j on the right side of (36), see ([30]). Existing results

for the characteristic Cauchy problem (see [29]) shows that even for the

linearization of the system (34,35, 36) near the trivial solution u = v =

0, T = T0 the characteristic Cauchy problem with initial data at t = 0 does

not have a distributional solution for all initial data.

Notice that without the 3rd order terms (no dissipation) one would get a

mixed hyperbolic-parabolic system of equations and that would guarantee

a non-characteristic property of t = 0 if (as is usually true) the matrix of

coefficients of the second order time derivatives in the left side of (34,35)

is non-degenerate ([27, 28]).

Yet, one sees from the initial data given above that one can calculate

values of all unknown functions and their derivatives on the right side of

equations (34,35, 36) and then determine initial values of time derivatives

on the left side from the equations. Iterating this procedure one can get
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the values of all time derivatives of variables (ri, φi, T ) at the hyperplane

t = 0. This allows one to construct a formal power series for the solutions.

Thus the classical approach gives one hope for at least the local existence

of a solution.

Probably, semigroup methods for studying the coupled hyperbolic-parabolic

systems ([27, 28]) can be adopted for the study of the system (34,35, 36)

with dissipation (see also [26]. The essentially nonlinear character of these

equations for properly chosen constitutive relations may yield systems that

are amenable to solution as Cauchy or mixed problems (cf the situation

with the KdV equation).

3.1 Modeling with Extended Kirchhoff Constitutive Relations

To gain some insight into the influence of thermodynamic constraints on

the constitutive assumptions for rods we take some guidance from the phe-

nomenology associated with slender materials that exhibit linear mechani-

cal behavior. In the absence of effects due to heat and dissipation the classic

Kirchhoff constitutive relations [25] encompass such a phenomenology. It

is natural to adopt a minimal extension of these relations, compatible with

this phenomenology, by first assuming that the free energy φ = ε − Tη

takes the form

ρAφ̂(uj, vj, T ) =
1

2
v̂ · K(T̂ )v̂ +

1

2
û · J(T̂ )û

−
ρCpA

2T0
T̂

2 − α(T̂ ) · v̂ − β(T̂ ) · û (37)

where T̂ = T − T0, v̂ = v − v0, û = u − u0, the tensors K(T̂ ) and

J(T̂ ) are determined in terms of ρ, the elastic moduli E(T̂ ), G(T̂ ), (all

assumed independent of s) and the geometrical shape of the cross-section.

The strains v0,u0 describe a static reference configuration at temperature

T0 and uj and vj are the components of u and v taken in the director

basis dj, i.e., u = uj dj and v = vj dj. The coupling of heat to the

rod depends ultimately on its atomic structure and dynamic state and the
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quantity ρCp is the macroscopic heat capacity of the material. In this

model we have additionally encoded the thermomechanical coupling into

the temperature dependent body vectors α(T̂ ) and β(T̂ ), These describe

the thermal effects of the strains u and v in the internal energy. In general

these coupling vectors may be expressed α(T̂ ) = αj(T̂ ))dj and β(T̂ ) =

βj(T̂ ))dj. with director components αj(T̂ ) and βj(T̂ ) (j = 1, 2, 3) assumed

independent of s. Such couplings may model Cosserat rods with thermal

properties inherited from transverse anisotropic media with chiral (spring-

like) characteristics. The extended Kirchhoff constitutive relations now

follow from (37) as

{

n̂(uj, vj, T, u̇j, v̇j, T
′) = K(T̂ )(v − v0) − α(T̂ ) + n̂

D(uj, vj, T, u̇j, v̇j, T
′),

m̂(uj, vj, T, u̇j, v̇j, T
′) = J(T̂ )(u− u0) − β(T̂ ) + m̂

D(uj, vj, T, u̇j, v̇j, T
′).

(38)

Thus the dynamical equations for our extended Kirchhoff rod with dis-

sipation follow as







ρAr̈ =
(

K(T̂ )(v − v0) − α(T̂ ) + n̂
D
)′

+ f

∂
∂t

(I(w)) =
(

J(T̂ )(u− u0) − β(T̂ ) + m̂
D
)′

+ v

(

K(T̂ )(v − v0) − α(T̂ ) + n̂
D
)

+ l
ρCpA

T0
Ṫ T + T

(

(αT (T̂ ) · v̂). + (βT (T̂ ) · û).
)

− n̂
D
i v̇i − m̂

D
i u̇i

= ρAh + A (KT
′)
′
+ 1

2

(

T v̂ ·KT (T̂ )v̂ + T û · JT (T̂ )û
).

(39)

In linear theories for a homogeneous rod the classical Fourier heat law

relating heat flux and temperature assumes (K) is a constant, i.e.

q̂(uj, vj, T, T
′
, u̇j, v̇j) = k T

′, where the constant k > 0 is its thermal con-

ductivity. We shall tentatively adopt this correspondence in these extended

constitutive relations along with the simplifying assumption that we ex-
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plore temperature regimes where K and J are independent of T . Fur-

thermore to model mechanically induced dissipation one must adopt func-

tional forms for n̂
D
, m̂

D compatible with the Clasius-Duhem inequality as

discussed above. In this note we set n̂
D = m̂

D = 0 so that all observed

damping can be attributed to thermal dissipation.

4 Analysis of Particular Dynamical Configurations

Consider a rod with K and J independent of temperature having both ends

fixed and clamped but executing axial and torsional vibrations about an

equilibrium state with the rod in a state of axial compression:

r(s, t) = (s + z(s, t))e3, s ∈ [0, ℓ] (40)

where, relative to a fixed global frame {e1, e2, e3} in space







d1(s, t) = cosϕ(s, t)e1 + sin ϕ(s, t)e2

d2(s, t) = − sinϕ(s, t)e1 + cos ϕ(s, t)e2

d3(s, t) = e3

(41)

Then

{

w(s, t) = ϕ̇(s, t)e3, u(s, t) = ϕ′(s, t)e3,

v(s, t) = r
′(s, t) = (1 + z′(s, t))e3

(42)

With T̂ ≡ ϑ and the choice α = T̂ α̂3d3, β = T̂ β̂3d3 (with α̂3, β̂3 con-

stant) here, the equations of motion become







ρAz̈ = EAz′′ − A3EAϑ′ + f3

I33ϕ̈ = J33ϕ
′′ − B3J33ϑ

′ + l3

ρCpA

T0
ϑ̇(T0 + ϑ) + (T0 + ϑ)(α̂3ż

′ + β̂3ϕ̇
′) = ρAh + kAϑ

′′

(43)
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In terms of the linear coefficients of expansion Aj we have α̂j = EAAj.

We also write β̂j = JjjBj (no sum) for j = 1, 2, 3, so that for zero

heat source h the system above simplifies to







ρAz̈ − EAz′′ + A3EAϑ′ = f3,

I33ϕ̈ − J33ϕ
′′ + B3J33ϑ

′ = l3,

ρCpA

T0
ϑ̇ −

kA

T0 + ϑ
ϑ
′′ + A3EAż

′ + B3J33ϕ̇
′ = 0.

(44)

The adopted initial conditions are:

{
z(s, 0) = z0(s), ż(s, 0) = ż0(s),

ϕ(s, 0) = ϕ0(s), ϕ̇(s, 0) = ϕ̇0(s), ϑ(s, 0) = ϑ0(s)
(45)

with boundary conditions

z(0, t) = z(ℓ, t) = ϕ(0, t) = ϕ(ℓ, t) = ϑ
′(0, t) = ϑ

′(ℓ, t) = 0 (46)

The above system has been analysed numerically and exhibits thermally

induced damping of all modes in general. However for a rod at room

temperature with the characteristics of copper although such damping is

apparent it is small compared with mechanical damping. This is demon-

strated in the following numerical analysis of (43) based on a uniform rod

of reference length ℓ = 2.0m and rectangular cross section, 0.10m by 0.04m.

The mass density and Young’s modulus are respectively ρ = 2.0103[kg/m3]

and E = 70.0109Pa ( copper ). It will be assumed that G = νE with

ν = 0.35. The coefficient of linear thermal expansion, the specific heat

capacity, and the thermal conductivity are taken as A3 = 23.1 10−6 [1/K],

Cp = 904 [J/K/kg], and k = 236 [W/m/K], respectively with reference

temperature T0 = 293.16 [K]. When the rod is driven the external sources

will be assumed harmonic in time.
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Figure 1: Axial displacement response to harmonic loading. Both ends of the rod are

fixed in space and clamped.

The axial and torsional responses of the model described by (43) for

a rod (with both ends fixed in space and clamped and with zero initial

displacements and velocities) under the external loadings

f3(s, t) = 6000 sin(πs) sin(0.3ω0t) N · m−1, ω0 =
π

2

√

E

ρℓ2
rad · sec−1

,

l3(s, t) = 5000 sin(2πs) sin(0.24ω0t) N, h(s, t) = 0

were obtained using Femlab/Matlab and are shown in Figure 1 and Fig-

ure 2, respectively.

The behavior of the temperature field of the rod is shown in Figure 3.

The weak thermomechanical coupling necessarily leads to relatively small

thermally induced mechanical damping. In order to illustrate the nature

of the asymptotic behavior of pure axial oscillations (i.e. ϕ =constant),

we artificially amplify the coefficient of linear thermal expansion to A3 =

46.210−6 [1/K] and the thermal conductivity to k = 236104 [W/m/K].
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Figure 2: Torsional displacement response of the clamped-clamped rod to harmonic

loads.
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Figure 3: Temperature response of the clamped-clamped rod to harmonic loads.
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With zero external force f3(s, t) = 0 and heat source h(s, t) = 0, consider

a purely axial response governed by







ρAz̈ − EAz′′ + A3EAϑ′ = 0,

ρCpA

T0
ϑ̇ −

kA

T0 + ϑ
ϑ
′′ + A3EAż

′ = 0.
(47)

With the initial conditions

z(s, 0) = 0.04 sin(πs), ż(s, 0) = 0, and ϑ(s, 0) = 0. (48)

Figure 4 shows the evolution of axial motion. These and similar simulations

indicate that the motion is damped. The associated temperature field (e.g.

shown in Figure 5) behaves similarly.
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Figure 4: Transient responses of the clamped-clamped rod with initial conditions (48).

5 Summary and Concluding Remarks

The governing equations for a slender heat conducting rod have been de-

rived based on the tenets of simple Cosserat modeling. The contact forces
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Figure 5: Temperature response of the clamped-clamped rod with initial conditions

(48).

and torques, the free energy, entropy density and heat flux are dependent in

general on the Cosserat strains arising from the deformation gradient along

the rod, the temperature and temperature gradient and the temporal rates

of change of the Cosserat strains. The constraints on these general consti-

tutive dependencies, implied by adopting the Clausius-Duhem inequality

appropriate for a rod, are made explicit. A large class of constitutive re-

lations compatible with this inequality are discussed and the properties of

the governing equations of motion explored for systems where the contact

forces and torques are linearly dependent on the strain rates. Thermo-

mechanical modeling of a rod is developed in terms of a free energy that

extends the classic Kirchhoff constitutive relations when generalized to in-

clude heat conduction. The dissipative behavior of the model is explored

by numerical simulation of the evolution of particular dynamic configura-

tions involving axial, torsional vibrations in the presence of internal heat

flow. Thermally induced damping is in evidence in these simulations. Al-

though in some situations such effects may be small relative to mechanical

viscoelastic and hysteretic damping these studies show that for realistic

parameters thermal coupling with heat flow produces effective dissipation
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and mechanical damping. There remain challenging problems to ascertain

how the simple model here responds to other thermal loadings particularly

those involving high frequency and impulsive sources since these are of

relevance to many practical application in modern micro-technology.
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