

Labeling of n-dimensional images with choosable
adjacency of the pixels

K. Sandfort
J. Ohser

Preprint Nr. 06/07

UNIVERSITÄT KARLSRUHE

Institut für Wissenschaftliches Rechnen

und Mathematische Modellbildung zW RM M

76128 Karlsruhe

Anschriften der Verfasser:

Kai Sandfort
Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung
Universität Karlsruhe
D-76128 Karlsruhe

Prof. Dr. Joachim Ohser
Fachbereich Mathematik und Naturwissenschaften
Hochschule Darmstadt
D-46295 Darmstadt

Labeling of n-dimensional images with choosable adjacency

of the pixels

Kai Sandfort1 and Joachim Ohser2

August 19, 2006

Abstract

The labeling of discretized image data is one of the most essential operations in digital

image processing. The notions of an adjacency system of pixels and the complementarity of

two such systems are crucial to guarantee consistency of any labeling routine. In to date’s

publications this complementarity usually is defined using discrete versions of the Jordan-

Veblen curve theorem and the Jordan-Brouwer surface theorem for two- and three-dimensional

images, respectively. We here do a thorough analysis following an alternative concept which

relies on a consistency relation for the Euler number. Exploiting this feature, which can be

defined for any dimension in a uniform manner, we think that this is a more natural and

powerful approach. We give the necessary definitions for the n-dimensional case and present

identification and convergence results for complementary adjacency systems. An extensive

discussion of a pseudo code framework for a general labeling algorithm finishes our paper,

which puts the basis for a uniform treatment of images of arbitrary dimensionality.

Keywords: Labeling, run length encoding, adjacency system, complementarity, connectivity

1 Introduction

Labeling of connected components (’objects’) is one of the most important tools of image process-
ing. It is the basis for the generation of object features as well as of some kind of filtering, i. e.
removing of noisy objects or holes in objects, where the criteria for an object or hole to be removed
can be chosen extremely flexible based on the object features. The task of labeling (object filling,
region detection) is to assign labels (in most cases unsigned integers) to the pixels in such a way
that all pixels belonging to a connected component of the image are assigned the same label, and
pixels belonging to different components have different labels.

Due to its importance in image processing, there is much literature about labeling and tech-
niques to control (and improve) the processing and memory demands, which can be tremendous
for large images frequently arising in practice. There still seems to be a lack of methods providing a
satisfying combination of usability, flexibility, and efficiency. The prototype of labeling algorithms
is the simple and well-known Rosenfeld-Pfaltz method [17, 8]. Here, the image is scanned until
a pixel xk is found that has not yet been labeled. If there is no neighboring pixel labeled with
respect to the chosen adjacency system, a new label is chosen for xk. Otherwise, if there is a
neighboring pixel xj with the label ℓj, the label ℓj is assigned also to xk. In the case of more than
one neighboring pixels having different labels, these labels are merged, which is noted in a table
of pairs of equivalent labels. Finally, pixels belonging to the same equivalence class of labels form
a connected component. The table of pairs can become very large, which may lead to problems in
finding the equivalence classes; the complexity of a corresponding algorithm is O(m log m) where
m is the number of table entries. Thus, there are various versions of the Rosenfeld-Pfaltz method
using techniques to keep m as small as possible.

Recent, more developed labeling algorithms usually comprise a preprocessing step as an essential
part. It gives either a decomposition (see e.g. [1]) or a more compact representation (our method)
of the input image and by that allows an efficient data access or just needs less memory and can
be easily decompressed. Most techniques, including the Rosenfeld-Pfaltz method and our one, are

1University of Karlsruhe, IWRMM, Engesserstraße 6, D-76131 Karlsruhe
2University of Applied Sciences, Darmstadt, Schöfferstraße 3, D-46295 Darmstadt

1

2-pass-techniques, that means they run twice through the image, where in the first pass preliminary
labels are assigned and label correspondences (pairs of equivalent labels) are collected, and in the
second pass these correspondences are resolved into equivalence classes and the final labels are set.
The resolving step is a critical issue and several methods have been proposed for this, some of which
are described in [6]. A very efficient algorithm, which we adopt later on in our code, is explained
in [21]. Instead of building the equivalence classes from all correspondences in the second run, one
can do this during the first run by capturing every (preliminary) label in a new class and merging
classes each time a correspondence occurs. Here, each label is internally mapped onto its current
equivalence class identifier, so redundant equivalences can be avoided. This idea has been exposed
in [6]. When applying this in classical algorithms where every pixel is tested for correspondences, it
can achieve a big performance improvement. Since the situation is quite different in our algorithm,
we have not (yet) incorporated it. An alternative way to reduce the number of label equivalences
is discussed in [13], it relies on a partitioning of the image and a divide-and-conquer technique.
In the method proposed in [3], a recursion step identifies a complete set of connected pixels (an
object) and avoids the explicit construction of equivalence classes. A completely different labeling
concept is followed by a single-pass-technique as described e.g. in [5], where contour tracing is used.
Although this method type eliminates the additional access to pixels for relabeling, the tracing
gets very complex (and inappropriate) for images of dimensionality ≥ 2. We finally remark that
the introduction in [21] gives a short overview of different labeling algorithms, and Chapter 6 in
[15] formalizes labeling operations on the basis of image algebra.

Our method includes a run length encoding of the input image before the actual labeling. This
preprocessing is a central feature in our approach, it compresses the data and accelerates the access
to it. As we explain in Section 5, it also is the evident reduction to the information which is needed
for the labeling. The idea behind the run length encoding represents a natural property of the
adjacency system or, equivalently, of an associated neighborhood graph, upon which the whole
procedure bases (see the inclusion (3) and the first paragraph in Section 5).

The paper is organized as follows. Section 2 gives a short introduction to lattices (point lattices,
grids). In order to give a general definition of pixel neighborhood, we follow the approaches of [11,
12, 19] and give a clear definition of adjacency on n-dimensional lattices and pairs of complementary
adjacency systems, see Section 3. Section 4 completes the discussion of the theory necessary
to legitimate and explain our labeling approach. In Section 5 we introduce the mathematical
structures needed in our algorithm and clarify their meaning within the theoretical framework.
Afterwards we state the run length encoding and the main labeling routine as easy pseudo codes,
where the latter bases on the whole exposition before. We close this section by a short explanation
of helper routines, which encapsulate some of the basic functionality. Finally, in Section 6 we
discuss the capability and performance of our approach in comparison with other algorithms,
present further applications of the run length encoding in image processing, and propose some
important optimizations.

2 Homogeneous lattices

An n-dimensional homogeneous lattice is a subset L
n of the n-dimensional Euclidean space R

n

with

L
n = {x ∈ R

n : x =

n
∑

i=1

λiui, λi ∈ Z} = UZ
n (1)

where u1, . . . , un ∈ R
n form a basis of R

n, U = (u1, . . . , un) is the matrix of column vectors, and Z

ist the set of integers, see Figure 1. The closed unit cell of L
n with respect to the basis {u1, . . . , un}

is the Minkowski sum C = [0, u1]⊕ . . .⊕ [0, un] of the segments [0, ui] = {pui : 0 ≤ p ≤ 1} between
the origin 0 and the lattice points ui. Its volume is volC = |detU | > 0, and the value of |det U |
does not depend on the choice of the basis. We denote by F0 the set of vertices of a polyhedron,
in particular F0(C) = U · {0, 1}n. The set {C + x : x ∈ L

n} of all lattice cells covers R
n, i.e.

R
n =

⋃

x∈Ln(C + x). For more details and facts concerning lattices and their bases see e. g. [4] or
[7].

Notice that for a given homogeneous lattice, the basis is not uniquely determined, and some
of the notions, such as lattice spacing, unit cell, section lattice, that we use in the following, can
depend on the choice of the basis.

2

a)

x0 x1

x2

x3

x4

x5

x6 x7

b)

-

6
*
u1

u3 u2

c)

Figure 1: (a) a part of an orthorhombic primitive lattice L
3, (b) a unit cell with the vertices

x0, . . . , x7, (c) the corresponding basis u1, u2, u3.

3 Adjacency and Euler number

In the literature, the adjacency of lattice points (or pixels) is usually characterized by a neighbor-
hood graph Γ, and the complementarity of adjacencies is defined via the Jordan-Brouwer surface
theorem, see e. g. [9]. Here we use an alternative concept of adjacency systems based on the Euler
number of a discretization, thoroughly introduced in [10, 11, 12].

3.1 Discretization with respect to an adjacency system

Let L
n be a lattice with the basis {u1, . . . , un} and the unit cell C. The vertices of C are indexed,

and we write xj =
∑n

i=1
λiui, λi ∈ {0, 1}, with the index j =

∑n

i=1
2i−1λi. Clearly, the unit cell

C has 2n vertices, xi ∈ F0(C), i = 0, . . . , 2n − 1. In a similar way we introduce the index of a
subset ξ ⊆ F0(C). Let 1 denote the indicator function of a set, i. e. 1(x ∈ ξ) = 1 if x ∈ ξ and
1(x ∈ ξ) = 0 otherwise. The index ℓ is assigned, and we write ξℓ if

ℓ =

2
n

−1
∑

j=0

2j · 1(xj ∈ ξ), (2)

i. e. ℓ ∈ {0, . . . , ν} with ν = 22
n

− 1. Notice that ξ0 = ∅, ξν = F0(C), and ξν−ℓ = ξν \ ξℓ.
The ξℓ can be considered as a local pixel configuration of the foreground of a binary image.
Finally, we introduce the convex hulls Fℓ = conv ξℓ forming convex polytopes with Fℓ ⊆ C and
F0(Fℓ) ⊆ F0(C), ℓ = 1, . . . , ν. Let F j(F) denote the set of all j-dimensional faces of a convex
polytope F . For a set F of convex polytopes we set F j(F) = ∪{F j(F) : F ∈ F}.

Now we are able to equip the lattice L
n with a (homogeneous) adjacency system defining the

neighborhood of lattice points.

Definition 1 Let F0 ⊆ {F0, . . . , Fν} be a set of convex polytopes Fℓ = conv ξℓ with the properties

(i) ∅ ∈ F0, C ∈ F0,

(ii) if F ∈ F0, then F i(F) ⊂ F for i = 0, . . . , dimF ,

(iii) if Fi, Fj ∈ F0 and Fi ∪ Fj is convex, then Fi ∪ Fj ∈ F0.

Then F0 is a local adjacency system and

F =
⋃

x∈Ln

F0 + x

is called an adjacency system on the lattice L
n.

The pair Γ = (F0(F),F1(F)) is said to be the neighborhood graph of F; it consists of the set
F0(F) of nodes and the set F1(F) of edges. The order of the nodes is called the connectivity of
L

n.
In the simplest case, where the adjacency system is generated from the unit cell C, the order

of the nodes is 2n, and we write F2n = ∪x∈Ln ∪n
j=0 F j(C + x). The maximum adjacency system

3

consisting of the convex hulls of all point configurations provides a κ-adjacency with κ = 3n − 1,
Fκ = ∪x∈Ln{F0 + x, . . . , Fν + x}. Notice that for all adjacency systems F on L

n the inclusion

F2n ⊆ F ⊆ Fκ (3)

holds. Now we recall the adjacency systems on L
3 considered in detail in [11, 12].

Examples (n = 3)

6-adjacency. The 6-adjacency is used as a standard in image processing. It is generated from the
unit cell C, F6 = ∪x∈L3 ∪3

j=0 F
j(C + x).

14.1-adjacency. This adjacency system is generated from the tessellation of C into the 6 tetrahedra
F139, F141, F163, F177, F197, and F209, which are the convex hulls of the configurations

, , , , , ,

i. e. F0 consists of all j-faces of the tetrahedra, j = 0, . . . , 3, and their convex unions. The
edges of the corresponding neighborhood graph Γ are the edges of C, the face diagonals of C
containing the origin 0, the space diagonal of C containing 0, and all their lattice translations.
The order of the nodes of Γ is 14.

14.2-adjacency. The 14.2-adjacency system is generated from the tetrahedra F43, F141, F147,
F169, F177, and F212, which are the convex hulls of

, , , , , .

The corresponding neighborhood graph Γ differs from that one for 14.1 in the choice of one
face diagonal of C such that it does not contain 0.

26-adjacency. This system is given by Fκ = F26 = ∪x∈L3{F0 + x, . . . , F255 + x}.

It should be noted that for n > 2 there can be two or more adjacency systems having the same
neighborhood graph. In other words, an adjacency system F is not uniquely determined by Γ, see
[19].

Definition 2 The discretization X ⊓ F of a compact subset X ⊂ R
n with respect to a given

adjacency system F is defined as the union of all j-faces of the elements of F for which all the
vertices hit X, i. e.

X ⊓ F = ∪{F ∈ F : F0(F) ⊆ X}. (4)

This means that a ’brick’ F ∈ F is a subset of the discretization of X if and only if all vertices of
F belong to X , see [19].

It is important to realize that in particular for higher-dimensional images the connectivity of
the pixels and, hence, the labeling can heavily depend on the choice of the adjacency system. The
number of neighbors of a pixel in an n-dimensional image can range from 2n to 3n − 1. For the
two- and three-dimensional case, the extremal choices are the well-known 4- and 8-connectivity,
while for the three-dimensional case these are the 6- and 26-connectivity. As a consequence of the
wide range of the number of neighbors, the neighborhood of pixels should be chosen very carefully
in dependence of the dimensionality of the image, the lateral resolution, the image data, and the
aims of processing and analysis.

3.2 Euler number and complementarity of adjacency systems

Since the set X ⊓ F forms a (not necessarily convex) polyhedron, the number ♯F j(X ⊓ F) of
elements of F j(X ⊓ F) is finite and, therefore, the Euler number χ(X ⊓ F) can be computed via
the Euler-Poincaré formula,

χ(X ⊓ F) =

n
∑

j=0

(−1)j ♯F j(X ⊓ F). (5)

4

A local version of (5) is given in [19].
It is well-known from image processing that if one chooses an adjacency system F on the

discretization of X , then there is implicitly chosen a system Fc on the discretization of the com-
plementary set Xc. In other words, if the ’foreground’ X ∩L

n is connected with respect to F, then
the ’background’ Xc ∩ L

n must be connected with respect to Fc. For n > 2 it is not sufficient
to consider connectivity, and further criteria have to be regarded. In the following we introduce
’complementarity’ by means of the Euler number of the discretization X ⊓ F.

Let X denote the topological closure of X . In the continuous case the consistency relation
χ(X) = (−1)n+1χ

(

Xc
)

is fulfilled for all compact, polyconvex, and topologically regular sets
X ⊂ R

n, see [11, 14], and a similar relationship should hold in the discrete case.

Definition 3 The pair (F, Fc) is called a pair of complementary adjacency systems if

χ(X ⊓ F) = (−1)n+1χ(Xc ⊓ Fc) (6)

holds for all compact X ⊂ R
n. An adjacency system F is called self-complementary if χ(X ⊓ F) =

(−1)n+1χ(Xc ⊓ F) holds for all compact X.

A more simple criterion to check the complementarity of two adjacency systems is presented
in [19]. However, for a given adjacency system F there does not necessarily exist an adjacency
system Fc such that (6) holds. Furthermore, until now there is no constructive way to find the
complementary system Fc.

Examples (n = 3)

(F6, F26), (F14.1, F14.1) and (F14.1, F14.1). The 6-adjacency is complementary to the 26-adjacency.
However, there are two self-complementary adjacency systems known, the 14.1-adjacency
and the 14.2-adjacency, see [11, 12].

18-adjacency. Consider now a lattice L
3 equipped with a neighborhood graph Γ′ = (L3,F1)

where the system of edges F1 may consist of all edges and face diagonals of the cells of L
3.

The order of the nodes of Γ′ is 18 and, hence, the adjacency is called the 18-adjacency (which
is widely used in image processing). The 18-adjacency is ’Jordan-Brouwer-complementary’
to the 6-adjacency generated solely from the edges of the lattice cells [9]. However, (6) does
not hold for the pair (F18, F6) and hence it is not complementary in the sense of Definition
3, see [19].

The last example shows that in higher dimensions (n > 2) the ’Jordan-Brouwer-complemen-
tarity’ differs from the complementarity in Definition 3.

3.3 Multigrid convergence

Now we consider the relationship between the Euler number of a compact set X ⊂ R
n and the

Euler number of its discretization. It can not be expected that χ(X) = χ(X ⊓ F) for all compact
sets X , but if X has a sufficiently smooth surface, the Euler number of X ⊓ F converges to the
Euler number of X for increasing lateral resolution. Here ’smooth’ is defined by morphological
opening and morphological closure. The set X is called morphologically open with respect to a set
A ⊂ R

n if X is invariant with respect to opening with A, X ◦ A = X . Here the opening is defined
by X ◦A = (X ⊖ Ǎ)⊕A, and X ⊖A = (Xc ⊕A)c is the Minkowski subtraction. Analogously, the
set X is called morphologically closed with respect to A if X •A = X where X •A = (X ⊕ Ǎ)⊖A
is the morphological closure with A.

Theorem 1 Let (F, Fc) be a pair of complementary adjacency systems on L
n. If X ⊂ Rn is

morphologically closed with respect to all edges F ∈ F1(F) and morphologically open with respect
to all F ∈ F1(Fc), then

χ(X) = χ(X ⊓ F) and χ(Xc) = χ(Xc ⊓ Fc).

A proof is given in [11]. Notice that a set X fulfilling the last condition is polyconvex and, hence,
its Euler number exists. However, this condition for X is very strong, it depends on F and, hence,
it will not be fulfilled in most applications. Thus, we consider a more natural condition for X .

5

Let Bε be a (small) ball of radius ε. A set X is said to be morphologically regular if there is an
ε > 0 such that X is morphologically open as well as morphologically closed with respect to Bε,
X ◦ Bε = X = X • Bε. From Theorem 1 we obtain the following lemma.

Lemma 1 Let (F, Fc) be a pair of complementary adjacency systems on L
n. Then aF is an

adjacency system on aL
n, a > 0, and it is

lim
a→0

χ(X ⊓ aF) = χ(X) (7)

for all compact and morphologically regular sets X.

This means that the Euler number is convergent for morphologically regular sets (multigrid con-
vergence). The proof of this lemma follows from the fact that if X is morphologically regular, there
exists an a > 0 such that χ(X • F) = χ(X) for all F ∈ aF and χ(X ◦ F) = χ(X) for F ∈ aFc, and
choose an a > 0 such that F ⊂ Bε for all F ∈ aF ∪ aFc.

4 Connectedness

In order to describe a labeling algorithm, it is necessary to introduce the notions of ’connectivity’
and ’connected component’. These are provided by topology. Azriel Rosenfeld introduced a digital
topology on L

2, see [16]. He defined connectedness on lattices and stated a discrete Jordan-Veblen
curve theorem. The definition of connectedness can simply be extended to n-dimensional lattices,
see e. g. [9]. Here we apply the definition of an adjacency system from Section 3.1.

4.1 Continuous case

Firstly we consider the continuous case and introduce connectivity for the Euclidean space R
n.

The connected components of a bounded set X ⊂ R
n can be considered as the equivalence classes

of X ⊆ R
n with respect to an appropriately chosen equivalence relation ∼ defined for point pairs

in R
n.

Definition 4 A set X ⊂ R
n is said to be connected if for all subsets X1, X2 ⊆ X with X1∪X2 = X

it follows that X1 ∩ X1 6= ∅ or X1 ∩ X2 6= ∅.

This definition of connectivity is closely related to path-connectivity. A path in R
n is a contin-

uous mapping f : [0, 1] 7→ R
n. If f(0) = x and f(1) = y, x, y ∈ R

n, then f is called a path from
x to y.

Definition 5 A non-empty set X is called path-connected if for every x, y ∈ X there exists a path
f from x to y such that f(·) ⊆ X.

It is well-known that every path-connected set X is also connected. Furthermore, if X is open
and connected, it is also path-connected. Obviously, a connected set X is not necessarily path-
connected. For example, the curve of the function sin(1/x) is connected, but not path-connected.
More precisely, the set X = {(x, sin(1/x)) : x ∈ R\{0}}∪{0} is connected, but not path-connected,
see [20].

We write x ∼ y for path-connected points x, y ∈ R
n. It can be shown that the binary relation

∼ is an equivalence relation, i. e. ∼ is reflexive, symmetric, and transitive. The equivalence classes
X1, . . . , Xm of X under ∼ are called path components of X . For more details see e. g. [2, 18].

4.2 Discrete case

Connectedness in a discretization is closely related to adjacency of lattice points. Hence, we
consider a homogeneous lattice L

n equipped with a pair of complementary adjacency systems
(F, Fc). Let x and y be lattice points, x, y ∈ L

n. A discrete path from x to y with respect to the
adjacency system F is a sequence of lattice points (xi)

m

i=0
⊂ L

n, m ∈ N, with x0 = x, xm = y, and
[xi−1, xi] ∈ F, i = 1, . . . , m.

A non-empty discrete set Y ⊆ L
n is called path-connected with respect to F if ♯Y = 1 or if

for all pairs (x, y) ∈ Y 2 with x 6= y there exists a discrete path with respect to F from x to y.
Connectedness with respect to F in Y is an equivalence relation.

6

Definition 6 Let L
n be a homogeneous lattice equipped with an adjacency system F, and let

Y ⊆ L
n be a discrete set. The equivalence classes Y1, . . . , Ym ⊆ Y , m ≥ 1, defined through

the connectedness with respect to F are called the connected components of Y .

We will use the notation YF = {Y1, . . . , Ym} for the set of equivalence classes of Y with respect to
F. As a consequence of Lemma 1 we obtain the following result.

Lemma 2 Let (F, Fc) be a pair of complementary adjacency systems on L
n, and let X be a compact

and morphologically regular subset of R
n with the set of equivalence classes {X1, . . . , Xm} under

∼. Then there is a constant b > 0 such that

(X ∩ aL
n)aF = {X1 ∩ aL

n, . . . , Xm ∩ aL
n} (8)

for all a with 0 < a < b.

In other words, for sufficiently high lateral lattice resolution the equivalence classes of (X ∩ aL
n)

are independent of the choice of the adjacency system. However, this holds only for sets X with
sufficiently smooth surface. In general, the equivalence classes of X ∩ L

n depend on (F, Fc).

5 The Labeling Algorithm

In this and the following section, we will turn our attention to the implementation and discussion
of a general, customizable labeling algorithm. This bases on the theoretical background developed
in the previous sections and adopts its notation. Additional variables and data structures used in
our realization are explained in the respective places. We present the routines as easy translatable
C-style pseudo codes.

Before we give precise definitions of the data structures below, we will shortly describe the
labeling procedure. To this end, we anticipate that an image Y ⊂ L

n is a finite discrete set of
lattice points (the foreground pixels of a binary image).

Preceding the actual labeling, our algorithm does a run length encoding of Y to give a compact
representation and accelerate the access to the elements of Y . As a ’run’ we here consider a set of
consecutive lattice points x ∈ L

n in a certain dimension of Y . The idea behind this approach is the
fact that the elements of a run are naturally considered as part of the same connected component.
This is expressed in the inclusion (3) and thus e. g. complies with all local adjacency systems given
on page 4 for the case n = 3. All correspondences, i. e. identifications of elements of Y belonging
to the same connected component, can be completely acquired by checking the starting (lattice)
point and the endpoint of a run for such correspondences, according to the specific local adjacency
system presumed.

To finally put it in formal terms, using the notation introduced above, a labeling is a mapping
from Y ⊂ L

n to N where each lattice point x ∈ Yk is assigned the index k, k = 1, . . . , m. Thus
each labeling depends on (F, Fc).

5.1 The model for the data structures

For the following discussion, we here formulate the model for the data structures necessary to
handle image data arising in practice and in order to formalize the operations on it.

The model. Using the notations U = (u1, . . . , un) and Uj = (u1, . . . , uj−1, uj+1, . . . , un), we
define the following structures:

the window: W = [0, m1u1] ⊕ . . . ⊕ [0, mnun], m1, . . . , mn ∈ N,

the image: Y = L
n ∩ X ∩ W where L

n = UZ
n,

a block: BW̃ = L
n ∩ X ∩ W̃ = Y ∩ W̃ where W̃ = [m̃min

1 u1, m̃
max
1 u1] ⊕ . . . ⊕ [m̃min

n un, m̃max
n un]

with m̃min
j , m̃max

j ∈ N and 0 ≤ m̃min
j ≤ m̃max

j ≤ mj for all j ∈ {1, . . . , n}, i.e. W̃ ⊆ W ,

projectors: Pj(L
n) = UjZ

n−1, i = 1, . . . , n
and PM (Ln) =

⋂

k∈M Pk(Ln) for M ⊆ {1, . . . , n},

7

a subimage: T
M̂,z =

(

z + P
M̂

(Ln)
)

∩ X ∩ W for z ∈ L
n, M̂ ⊆ {1, . . . , n},

a slice: SM̃,y = (y + PM̃ (Ln)) ∩ X ∩ W for y ∈ L
n, ♯M̃ = n − 2, M̃ ⊂ {1, . . . , n},

a line: LM,x = (x + PM (Ln)) ∩ X ∩ W for x ∈ L
n, ♯M = n − 1, M ⊂ {1, . . . , n}.

Here, ♯ denotes the number of elements in the specified set. We point out that our definition of
the structure ’image’ is a restriction to sets of a special form, however this is really common and
facilitates the description of many operations on it. Furthermore, we remark that

SM̃,y = T
M̂,z ⇔ M̃ = M̂, z − y ∈ PM̃ (Ln),

LM,x = T
M̂,z ⇔ M = M̂, z − x ∈ PM (Ln),

LM,x = SM̃1,y1
∩ SM̃2,y2

⇔ ♯(M̃1 ∩ M̃2) = n − 3, M = Ñ\(Ñ\M̃1 ∩ Ñ\M̃2)

where Ñ = {1, . . . , n}, x − y1 ∈ PM̃1
(Ln), x − y2 ∈ PM̃2

(Ln).

The first two equivalences state that a slice and a line are special types of a subimage. The third
equivalence means that a line can be represented as the intersection of two slices.

For the considerations below, the following aspects are very important:

• For a n-dimensional image Y there are 2nn! possibilities to scan through the n lattice direc-
tions of Y which are constituted by the basis elements u1, . . . , un. The factorial in this term
originates from the scanning order and the factor 2n from the orientations of the directions.
The order is specified by the ranks of the directions, where the first scanning direction has
rank 0, the second one rank 1, etc.

• Runs of lattice points are detected and coded in the direction with rank 0. Particularly
for strongly anisotropic sets X , the processing speed of the labeling heavily depends on the
choice of this direction since this determines the number of runs.

Basic structures. In the pseudo code for our algorithms for the run length encoding and the
labeling we use the following identifiers for global variables and data structures. To support an
easy understanding of the code, scalar quantities begin with a small letter, and vectors as well as
data structures begin with a capital letter. All vectors are assumed to provide the methods add()
to add an element, clear() to delete all elements, erase() to delete the element addressed by
the pointer argument, initialize() to set all elements to the value of the argument, resize()
to resize the vector to the length indicated by the argument, and size() to query the number of
elements.

As basic variables and data structures we now introduce Image, Image_Size, Directions,
Increments, Neighborhood, selection_value, RLE_Run, and RLE_Line.

By Imagewe denote the image data container for a specific image Y . Each entry of this container
is called a pixel and references a lattice point x in Y . The pixel values (i. e. the preliminary labels)
are assumed to be accessible by Image[x1][x2] . . . [xn] where (x1, . . . , xn) is the coordinate vector
for x. The dimensions of Image are stored in Image_Size.

The vector Directions provides the ranks of the lattice directions and indicators for the orien-
tations which are regarded while scanning through the image. The absolute value of Directions[i]
is the rank of the direction with index i (made up by ui), and the sign of Directions[i] determines
its scanning orientation (’+’ for the orientation given by increasing coordinates, ’−’ for the reverse
orientation).

In addition, Increments stores the step sizes for pacing the lattice directions where Increments[i]
usually equals +1 (if the sign of Directions[i] is ’+’) or −1 (if the sign of Directions[i] is ’−’).
With larger absolute values of the steps it is possible to scan through a coarse lattice than that
implicitly given by Image.

Neighborhood is a two-dimensional array which should be thought of as a vector of (coordinate)
vectors. It keeps the relative coordinates of all pixels which are considered as neighbors refering
to the current pixel. Each coordinate of each neighbor hence usually is either +1 or −1. We point
out that this data structure is essentially connected with the local adjacency system as defined in
Subsection 3.1. Neighborhood[i][j] is the relative coordinate in the direction with index j of the
i + 1-th neighbor (for the first neighbor it is i = 0, the order in which the neighbors are stored in
Neighborhood does not matter). Note that in this way general neighborhoods can be specified,

8

among which are those associated with local adjacency systems. Nevertheless it has to be noted
that due to the run length encoding the pixels which immediately precede and follow the current
pixel in the direction with rank 0 (according to the corresponding step size in Increments) are
treated as neighbors and so should be contained in Neighborhood. Since the direction with rank
0 is intended to be customizable, this should apply to every direction. However, this restriction is
quite natural and expressed in (3).

The scalar variable selection_value stores a pixel value by means of which pixels are selected
which are to be encoded as runs. If this value is set to −1, then all runs of pixels with arbitrary value
are detected and saved, otherwise only runs of pixels with the value given by selection_value

are processed. The latter option especially is important for the case that Image contains a binary
image, and selection_value should be set to the value of foreground pixels then.

The structure RLE_Run, saving the data of a single run, consists of the three members length,
pos, and label. The member length clearly gives the length of the run, i.e. the number of
constituting pixels. pos determines the starting position of the run. Note that this depends on
the sign of Directions[Rank_to_Index[0]]. The value of the pixels of the run is saved in label.
This will be changed to the label of the object comprising this run in WriteLabeledImage() later
on. We remark that this member might be discarded if Image represents a binary image with
predefined values for foreground and background pixels and selection_value is set to either of
these.

Finally, RLE_Line represents a run length encoded line and has the single member Runs, which
is a vector of RLE_Runs. The number of elements of this vector depends on the contents of the
image, Rank_to_Index[0], and selection_value.

5.2 The Run Length Encoding Algorithm

Besides the basic variables and data structures from above the implementation of our run length
encoding uses the following quantities. The letter ’C’ in the notation indicates, that the respective
variable stores a single coordinate in a certain dimension, ’V’ similarly refers to a single pixel value,
and the abbreviation ”Cs” is used in vectors which store the n (absolute or relative) coordinates
of a pixel.

counter – an auxiliary counter variable for assigning a unique preliminary label to each run of
pixels with the specified value selection_value, if this is <> -1, or to every run of pixels,
otherwise.

total_num_lines – the total number of lines.

Rank_to_Index [global] – stores the order of the directions in which to pass through the image;
it maps the rank of a direction to its index.

Index_to_Rank [global] – the complementary vector to Rank_to_Index, mapping the index of a
direction to its rank i.e. Rank_to_Index[Index_to_Rank[i]] = i and
Index_to_Rank[Rank_to_Index[r]] = r.

Orientations – stores indicators for the orientations (+1 = forward, −1 = backward) to be
regarded while passing through the image.

Line_Position – stores the relative position of the current line in the image, with respect to the
specified order of directions and their orientations, i.e.
Current_Pixel_Cs[j] = (Orientations[r] == 1)? Line_Position[r-1]:

i_size[j]-1-Line_Position[r-1] for r > 0 with j = Rank_to_Index[r].

RLE_Data [global] – an n-dimensional array of RLE_Lines storing the run length encoded version
of the image.

stop_main_loop [global] – indicates when to stop the main loop passing through the image and
processing the data.

first_pixel_0_C – the absolute coordinate of the first pixel in the dimension with rank 0.

last_pixel_0_C – the absolute coordinate of the last pixel in the dimension with rank 0.

9

Current_RLE_Line – stores the data of all runs in the current line and hence represents the run
length encoded version of the current line.

Current_Pixel_Cs – the absolute coordinates of the current pixel according to the original or-
der of directions in the image, i. e. current_pixel_V = image[Current_Pixel_Cs[0]]...

[Current_Pixel_Cs[n-1]].

current_pixel_V – stores the value of the current pixel.

previous_pixel_V – stores the value of the pixel preceding the current pixel, to detect runs.

Current_Run – stores the data of the current run.

Variables which are marked as global are assumed to be known in all subroutines called after
their definition. With this preparation we turn to the run length encoding algorithm DoEncoding().
The small auxiliary routines Transform() and Update() are considered at the end of the next
subsection, together with some other helper routines called by the labeling code. The algorithm
looks as follows:

void DoEncoding()

{

boolean stop_main_loop;

unsigned long i, total_num_lines, first_pixel_0_C, last_pixel_0_C, tmp_pixel, tmp_index;

long previous_pixel_V, current_pixel_V, counter;

vector<char>[n] Orientations;

vector<unsigned long>[n] Index_to_Rank, Rank_to_Index, Current_Pixel_Cs;

vector<unsigned long>[n-1] Line_Position;

multi_dim_array<RLE_Line>[] RLE_Data;

RLE_Run Current_Run;

RLE_Line Current_RLE_Line;

// initialize the variables

counter = 0;

total_num_lines = 1;

Rank_to_Index[0] = abs(Directions[0]);

Index_to_Rank[Rank_to_Index[0]] = 0;

Orientations[0] = sign(Directions[0]);

Line_Position.initialize(0);

FOR i FROM 1 TO n-1 DO

{

Rank_to_Index[i] = abs(Directions[i]);

// The equality Rank_to_Index[Index_to_Rank[j]] = j, j = 1,...,n-1,

// (see the explanation of the variable Index_to_Rank above)

// is implied by the following command.

Index_to_Rank[Rank_to_Index[i]] = i;

Orientations[i] = sign(Directions[i]);

total_num_lines *= Image_Size[Rank_to_Index[i]];

}

// The next command allocates memory for the array RLE_Data,

// the size of the i-th dimension (i = 1,...,n-1) of RLE_Data is the size of the image

// in the direction with rank n-i.

// Runs in the direction with rank 0 are stored in the corresponding element of RLE_Data

// of type RLE_Line.

RLE_Data = new RLE_Line[Image_Size[Rank_to_Index[n-1]]][Image_Size[Rank_to_Index[n-2]]]... >

> [Image_Size[Rank_to_Index[1]]];

stop_main_loop = false;

first_pixel_0_C = 0;

last_pixel_0_C = Image_Size[Rank_to_Index[0]] - 1;

// In the case that the direction with rank 0 should be passed backwards,

// the first and the last pixel coordinate have to be swapped.

IF Increments[Rank_to_Index[0]] < 0 THEN

{

tmp_pixel = first_pixel_0_C;

first_pixel_0_C = last_pixel_0_C;

last_pixel_0_C = tmp_pixel;

10

}

// main loop for passing through the image

WHILE NOT stop_main_loop DO

{

Current_RLE_Line.Runs.clear();

previous_pixel_V = -1;

// The following command computes the coordinates in the directions with rank > 0

// from the new line position.

// These coordinates are the same for all pixels in the new line to be encoded.

Transform(Current_Pixel_Cs, Line_Position);

// loop through the current line with respect to the given step size

FOR i FROM first_pixel_0_C TO last_pixel_0_C STEP Increments[Rank_to_Index[0]] DO

{

// set the missing coordinate of the current pixel in the direction with rank 0

Current_Pixel_Cs[Rank_to_Index[0]] = i;

// query the value of the current pixel

current_pixel_V = Image[Current_Pixel_Cs[0]][Current_Pixel_Cs[1]]...[Current_Pixel_Cs[n-1]];

// update the length of the current run, if the value of the current pixel is

// the same as the value of the previous one, or create a new run, otherwise

IF current_pixel_V == previous_pixel_V THEN

Current_Run.length += 1;

ELSE

{

// store the current run in Current_RLE_Line if it has an admissible preliminary label

// (unequal to selection_value, if this is <> -1)

IF previous_pixel_V <> -1 && (selection_value == -1 ||

(selection_value <> -1 && previous_pixel_V <> selection_value)) THEN

Current_RLE_Line.Runs.add(Current_Run);

Current_Run.length = 1;

Current_Run.pos = i;

// assign the value of the starting pixel as preliminary label for the current run

Current_Run.label = current_pixel_V;

}

previous_pixel_V = current_pixel_V;

}

// store the last run in the current line in Current_RLE_Line

// if it has an admissible preliminary label

IF selection_value == -1 ||

(selection_value <> -1 && previous_pixel_V <> selection_value) THEN

Current_RLE_Line.Runs.add(Current_Run);

// assign a new preliminary label to every run in Current_RLE_Line

// such that every run in the image gets a unique preliminary label

FOR i FROM 1 TO Current_RLE_Line.Runs.size() DO

{

counter++;

Current_RLE_Line.Runs[i-1].label = counter;

}

// store the run length encoded line, represented by Current_RLE_Line,

// in the array RLE_Data

RLE_Data[Line_Position[n-2]][Line_Position[n-3]]...[Line_Position[0]] = Current_RLE_Line;

// update the line position

// (stop_main_loop is modified in Update() if necessary)

Update(Line_Position);

}

}

5.3 Labeling with choosable adjacency

Now we consider the actual labeling of the image data which is based on a preceding application of
the run length encoding We have already mentioned above that the labeling can be correctly done
by solely testing the value of the starting point and the endpoint of runs for correspondences with

11

other pixel values. The proposed way to access the relevant image data accelerates the labeling
process, especially by substantially reducing the number of value correspondences to be processed
during the computation of the value-to-label-map (which is called Label_Map below). Further uses
of this preprocessing step in multidimensional image processing will be discussed later in a separate
section. In the pseudo code for the labeling we use the following additional variables, keeping the
introduced notation style:

current_run_V – the value of the current run.

current_neighbor_valid – indicates whether a neighboring point is within the bounds of the
image or not.

current_neighbor_C – successively stores each coordinate of the current neighboring point.

First_Run_Pixel_Cs – the starting point of the current run.

current_neighbor_V – the value of the currently tested neighboring point.

Current_Neighbor_Cs – current neighboring point.

V_Pair – stores a value correspondence, i. e. two values which are considered equivalent and will
be mapped to the same label.

Correspondences – stores all value correspondences.

Last_Run_Pixel_Cs – the end point of the current run.

Label_Map [global] – the indices of the entries of this vector represent the values (preliminary
labels) of runs, and the values of its entries are the final labels of the associated objects.

All variables not listed above have the same meaning as they have in DoEncoding(). With this
we now present the labeling algorithm.

void DoLabeling()

{

boolean stop_main_loop, current_neighbor_V;

unsigned long i, j, k;

long current_run_V, current_neighbor_V, current_neighbor_C;

RLE_Run Current_Run;

RLE_Line Current_RLE_Line;

LabelCorrespondence V_Pair;

vector<unsigned long>[n] First_Run_Pixel_Cs, Last_Run_Pixel_Cs, Current_Neighbor_Cs;

vector<unsigned long>[n-1] Line_Position;

vector<long> Label_Map;

vector<LabelCorrespondence> Correspondences;

// initialize the variables

Line_Position.initialize(0);

stop_main_loop = false;

// main loop for passing through the image

WHILE NOT stop_main_loop DO

{

// read a new run length encoded line from the array RLE_Data

Current_RLE_Line = RLE_Data[Line_Position[n-2]][Line_Position[n-3]]...[Line_Position[0]];

// The following command computes the coordinates in the directions with rank > 0

// from the new line position.

// These coordinates are the same for all starting and end points of runs in the new line

// to be decoded.

Transform(First_Run_Pixel_Cs, Line_Position);

// set the end point (of any run) to the starting point except the coordinate in the

// direction with rank 0

FOR i FROM 1 TO n DO

Last_Run_Pixel_Cs[i-1] = First_Run_Pixel_Cs[i-1];

// loop through the current line to be decoded

FOR i FROM 1 TO Current_RLE_Line.Runs.size() DO

{

12

Current_Run = Current_RLE_Line.Runs[i-1];

// get the preliminary (unique) label from the current run

current_run_V = Current_Run.label;

// set the missing coordinate of the starting point of the current run in the direction

// with rank 0

First_Run_Pixel_Cs[Rank_to_Index[0]] = Current_Run.pos;

// test the neighborhood of the starting point of the current run for label correspondences

// with respect to the given neighborhood

FOR j FROM 1 TO Neighborhood.num_neighbors DO

{

current_neighbor_valid = true;

FOR k FROM 0 TO n-1 WHILE current_neighbor_valid DO

{

current_neighbor_C = First_Run_Pixel_Cs[k] + (Neighborhood.Neighbors[j-1])[k];

// check whether the neighboring point exists

// or the starting point lies at some boundary

IF current_neighbor_C >= 0 AND current_neighbor_C < Image_Size[k] THEN

Current_Neighbor_Cs[k] = current_neighbor_C;

ELSE

current_neighbor_valid = false;

}

// query the label of the current neighbor (if existing)

IF current_neighbor_valid THEN

{

current_neighbor_V = QueryLabel(Current_Neighbor_Cs);

IF current_neighbor_V <> -1 THEN

{

// store the label correspondence between the starting point and the current

// neighboring point

V_Pair.value1 = current_run_V;

V_Pair.value2 = current_neighbor_V;

Correspondences.add(V_Pair);

}

}

}

// repeat the above testing loop for the end point of the current run

// if the run has a length > 1 (otherwise the starting and the end point coincide)

IF Current_Run.length <> 1 THEN

{

Last_Run_Pixel_Cs[Rank_to_Index[0]] = Current_Run.pos + Current_Run.length - 1;

FOR j FROM 1 TO Neighborhood.num_neighbors DO

{

current_neighbor_valid = true;

FOR k FROM 0 TO n-1 WHILE current_neighbor_valid DO

{

current_neighbor_C = Last_Run_Pixel_Cs[k] + (Neighborhood.Neighbors[j-1])[k];

IF current_neighbor_C >= 0 AND current_neighbor_C < Image_Size[k] THEN

Current_Neighbor_Cs[k] = current_neighbor_C;

ELSE

current_neighbor_valid = false;

}

IF current_neighbor_valid THEN

{

current_neighbor_V = QueryLabel(Current_Neighbor_Cs);

IF current_neighbor_V <> -1 THEN

{

V_Pair.value1 = current_run_V;

V_Pair.value2 = current_neighbor_V;

Correspondences.add(V_Pair);

}

}

}

}

}

// update the line position

13

// (stop_main_loop is modified in Update() if necessary)

Update(Line_Position);

}

// call the helper routines BuildLabelVector() and ResolveLabelVector()

// to obtain the final value-to-label-map, represented by Label_Map, where

// value means the preliminary (unique) label of a run and

// label means the final label of the object comprising this run

Label_Map = BuildLabelVector(Correspondences);

ResolveLabelVector(Label_Map);

}

After the vector Label_Map has been generated by DoLabeling(), we are ready to finally write
the labeled image by means of Label_Map and RLE_Data. This job is done by

void WriteLabeledImage()

{

boolean stop_main_loop;

unsigned long i, j;

vector<unsigned long>[n] Current_Pixel_Cs;

vector<unsigned long>[n-1] Line_Position;

RLE_Run Current_Run;

RLE_Line Current_RLE_Line;

Line_Position.initialize(0);

WHILE NOT stop_main_loop DO

{

Current_RLE_Line = RLE_Data[Line_Position[n-2]][Line_Position[n-3]]...[Line_Position[0]];

Transform(Current_Pixel_Cs, Line_Position);

FOR i FROM 1 TO Current_RLE_Line.Runs.size() DO

{

Current_Run = Current_RLE_Line.Runs[i-1];

Current_Pixel_Cs[Rank_to_Index[0]] = Current_Run.pos;

Current_Run.label = Label_Map[Current_Run.label];

FOR j FROM 1 TO Current_Run.length DO

{

Image[Current_Pixel_Cs[0]][Current_Pixel_Cs[1]]...[Current_Pixel_Cs[n-1]] = Current_Run.label;

Current_Pixel_Cs[Rank_to_Index[0]] += Increments[Rank_to_Index[0]];

}

}

Update(Line_Position);

}

}

Hence, the calling sequence for our total labeling procedure is DoEncoding() – DoLabeling()

– WriteLabeledImage(). Having described these algorithms, we also shortly explain the auxiliary
routines BuildLabelVector(), ResolveLabelVector(), Update(), Transform(), and QueryLabel().

The following routine builds an incomplete label map by means of the correspondences, the
collection of equivalent preliminary labels. To complete the map such that every possible label is
mapped to its smallest equivalent label, ResolveLabelVector() has to be called afterwards. A
similar procedure for resolving correspondences is described in [1].

vector<long> BuildLabelVector(vector<CLabelCorrespondence> Corresp)

{

vector<long> Lab_Map;

unsigned long i;

long first_label, second_label, label, max_label;

max_label = 0;

FOR i FROM 0 TO Corresp.size()-1 DO

{

label = Max(Corresp[i].value1, Corresp[i].value2);

IF label > max_label THEN

14

max_label = label;

}

Lab_Map.resize(max_label+1);

Lab_Map.initialize(0);

FOR i FROM 0 TO Corresp.size()-1 DO

{

first_label = Corresp[i].value1;

second_label = Corresp[i].value2;

WHILE Lab_Map[first_label] <> 0 DO

first_label = Lab_Map[first_label];

WHILE Lab_Map[second_label] <> 0 DO

second_label = Lab_Map[second_label];

IF first_label < second_label THEN

Lab_Map[second_label] = first_label;

ELSE IF first_label > second_label THEN

Lab_Map[first_label] = second_label;

}

return(Lab_Map);

}

The next routine ’cleans up’ and completes the label map as it is output by BuildLabelVector().
As the final step, each label for which there is no smaller equivalent label is assigned the smallest
value, which is not identified with another (non-equivalent) label.

void ResolveLabelVector(vector<long> Label_Map)

{

unsigned long i, j;

long label;

vector<long>[Label_Map.size()] Help_Vector;

j = 0;

FOR i FROM 1 TO Label_Map.size()-1 DO

{

label = Label_Map[i];

IF label == 0 THEN

{

j++;

Help_Vector[i] = j;

}

ELSE IF Label_Map[label] <> 0 THEN

Label_Map[i] = Label_Map[label];

}

FOR i FROM 1 TO Label_Map.size()-1 DO

{

IF Label_Map[i] == 0 THEN

Label_Map[i] = Help_Vector[i];

ELSE

Label_Map[i] = Help_Vector[Label_Map[i]];

}

}

The function Update() updates the line position according to the specified order of the lattice
directions and the orientations as well as the increments for passing through the directions each
time a line has been completely run length encoded.

void Update(vector<unsigned long>[n-1] L_Position)

{

boolean stop_correction;

unsigned long i;

L_Position[0] += Increments[Rank_to_Index[1]];

15

stop_correction = false;

i = 0;

WHILE NOT stop_correction DO

{

IF L_Position[i] >= Image_Size[Rank_to_Index[i+1]] THEN

{

L_Position[i] = 0;

L_Position[i+1] += Increments[Rank_to_Index[i+2]];

IF i+1 == n-2 AND L_Position[n-2] >= Image_Size[Rank_to_Index[n-1]] THEN

{

stop_correction = true;

stop_main_loop = true;

}

i += 1;

}

ELSE

stop_correction = true;

}

}

The routine below computes the coordinates of a point in the current line except the coordinate
in the direction with rank 0 (where runs are encoded). It is called each time the line position has
been updated.

void Transform(vector<unsigned long>[n] Current_Pix_C,
vector<unsigned long>[n-1] L_Position)

{

unsigned long i, j, size_j;

FOR i FROM 1 TO n-1 DO

{

j = Rank_to_Index[i];

size_j = Image_Size[j];

Current_Pix_C[j] = (Orientations[j] == 1)? L_Position[i-1]:size_j-1-L_Position[i-1]

}

}

The function QueryLabel() gives the label of a point by searching the array RLE_Data for the
run comprising this point and returning its label. Since after the run length encoding runs may be
filtered out which do not have the value specified by selection_value, if this is <> -1, the given
point may be not contained in RLE_Data. In this case -1 is returned, and the point is considered
as background.

long QueryLabel(vector<unsigned long>[n] Point)

{

boolean run_found;

unsigned long i, first_direction_pos;

long value;

vector<unsigned long>[n-1] Line_Position;

RLE_Line Current_RLE_Line;

run_found = false;

value = -1;

first_direction_pos = Point[Rank_to_Index[0]];

FOR i FROM 0 TO n-2 DO

Line_Position[i] = Point[Rank_to_Index[i+1]];

Current_RLE_Line = RLE_Data[Line_Position[n-2]][Line_Position[n-3]]...[Line_Position[0]];

FOR i FROM 1 TO Current_RLE_Line.Runs.size() WHILE NOT run_found DO

IF Current_RLE_Line.Runs[i-1].pos <= first_direction_pos AND >

> first_direction_pos <= Current_RLE_Line.Runs[i-1].pos+Current_RLE_Line.Runs[i-1].length-1 THEN

{

run_found = true;

value = Current_RLE_Line.Runs[i-1].label;

}

16

return(value);

}

6 Discussion

In this last section we discuss various aspects of our approach for encoding and labeling general
image data.

Method features. The proposed labeling algorithm can be applied to images of arbitrary di-
mensionality and with respect to any definition of connectedness which conforms to Definition 6 in
Subsection 4.2. The run length encoding and the method used to trace label correspondences make
the whole algorithm quite fast and memory efficient. The tracing method resembles the technique
by Thurfjell et al. in [21] as used in [1]. In the labeling part of our algorithm, 2m neighborhoods
have to be tested for correspondences with m denoting the number of runs, which itself can be
influenced by the choice of the scanning order. Operations and data structures whose complexity
or memory demands grow exponentially in the dimensionality of the image are minimized in this
way. The possibility to specify the scanning and encoding order further allows in principle to
inspect any subimage and to extract the relevant data with a fast memory copy routine since for
a suitable order this data is contiguous in memory.

Further applications of the run length encoding. The run length encoding as a preprocess-
ing of the image highly facilitates the selection, filtering, and denoising of the image data to be
labeled. It gives a flexible extension of morphological filtering. For example, objects whose size is
below some threshold are likely to be noise. By comparing the starting points and endpoints of
different runs, such objects can be filtered out before the labeling. With a proper arrangement of
runs, the selection of and access to parts of the image can be sped up. Since basic object features
like bounding box, volume, or barycentre of an object can be conveniently determined during the
labeling by means of the run data, such features can also be utilized to appropriately organize the
data for further processing. Finally, we remark that run length encoding as a simple compression
can serve as a basis for more sophisticated compression methods. For large and high-dimensional
images an adequate coding can be very advantageous and so should be supported by the data
format in use.

Optimization and parallelization. We emphasize that, for the purpose of generality and a
clear presentation, by far not all optimizations (for special cases) have been realized in our algo-
rithm. Here we want to address some optimizations which allow a convenient extension of the
code. At first, we note that special features of the neighborhood or the image, like symmetries
or periodicities, might be known in advance or could be detected in an affordable manner. Their
exploitation in the whole algorithm can have significant benefit in terms of memory demands and
processing time. The use of tree structures and hashing methods to store and find run data with
properties of special interest should also be considered. As another point we remark that the
way how to build the value-to-label-map could be adjusted. In the pseudo code of DoLabeling(),
all correspondences are collected before they are resolved in this map. In order to limit memory
needs, the latter step might be performed dynamically in dependence of the number of gathered
correspondences. Serializing the coding and labeling in the sense that runs are assembled only for
a couple of lines and discarded after preliminary labeling enormously reduces storage needs, but
also slows down the final relabeling.

The task of labeling itself as well as our implementation are very well-suited for parallelization.
A simple first step towards this would be a segmentation of large images into blocks (as defined
on page 7), which can be independently processed to a large extent. Such a technique is e.g.
described in [13]. In this setting, of course, also the block borders have to be tested in order to
completely acquire correspondences. We might gain an improved performance by processing these
value equivalences in single blocks before computing the value-to-label-map for the whole image.

17

References

[1] A. Aguilera, J. Rodŕıguez, and D. Ayala. Fast connected component labeling algorithm:
A non voxel-based approach. Technical report, Universitat Politècnica de Catalunya, 2002.
http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=583.

[2] M. A. Armstrong. Basic Topology. Springer-Verlag, Berlin, 1997.

[3] G. Borgefors, I. Nyström, and G. Sanniti di Baja. Connected components in 3D neighbour-
hoods. In Proc. 10th Scandinavian Conference on Image Analysis, pages 567–572, Lappeen-
ranta, Finland, 1997.

[4] J. W. S. Cassels. An introduction to the geometry of numbers. Springer, Berlin, Heidelberg,
New York, 1971.

[5] F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time component-labeling
algorithm using contour tracing technique. CVIU, 93(2):206–220, 2004.
http://www.iis.sinica.edu.tw/papers/fchang/1362-F.pdf.

[6] L. Di Stefano and A. Bulgarelli. A simple and efficient connected components labeling algo-
rithm. In 10th International Conference on Image Analysis and Processing, page 322, 1999.
http://doi.ieeecomputersociety.org/10.1109/ICIAP.1999.797615.

[7] P. M. Gruber. Geometry of numbers. In P. M. Gruber and J. M. Wills, editors, Handbook of
convex geometry, pages 739–763, Amsterdam, 1993. North Holland.

[8] R. Klette and A. Rosenfeld. Digital Geometry. Morgan & Kaufman Publ., Amsterdam, 2004.

[9] J.-O. Lachaud and A. Montanvert. Continuous analogs of digital boundaries: A topological
approach to iso-surfaces. Graphical Models, 62:129–164, 2000.

[10] W. Nagel, J. Ohser, and K. Pischang. An integral-geometric approach for the Euler-Poincaré
characteristic of spatial images. J. Microsc., 198:54–62, 2000.

[11] J. Ohser, W. Nagel, and K. Schladitz. The Euler number of discretized sets – on the choice
of adjacency in homogeneous lattices. In K. Mecke and D. Stoyan, editors, Statistical Physics
and Spatial Statistics, pages 287–311, Berlin, 2002. Springer-Verlag.

[12] J. Ohser, W. Nagel, and K. Schladitz. The Euler number of discretised sets – surprising results
in three dimensions. Image Anal. Stereol., 22:11–19, 2003.

[13] J.-M. Park, C. G. Looney, and H.-C. Chen. Fast connected component labeling algorithm
using a divide and conquer technique. Technical report, The University of Alabama, 2000.
http://cs.ua.edu/research/Reports.asp.

[14] J. Rataj and M. Zähle. Nromal cycles of Lipschitz manifolds by approximation with parallel
sets. Differential Geom. Appl., 19:113–126, 2003.

[15] G. X. Ritter and J. N. Wilson. Handbook of Computer Vision Algorithms in Image Algebra,
chapter 6, Connected Component Algorithms, pages 173–186. CRC Press Inc., 2001.

[16] A. Rosenfeld. Digital topology. Amer. Math. Monthly, 86:621–630, 1970.

[17] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture processing. JACM,
13(4):471–494, 1966.

[18] J. J. Rotman. An Introduction to Algebraic Topology. Springer-Verlag, Berlin, 1993.

[19] K. Schladitz, J. Ohser, and W. Nagel. Measurement of intrinsic volumes of sets observed on
lattices. In A. Kuba, L. G. Nyul, and K. Palagyi, editors, The 13th International Conference
on Discrete Imagery (DGCY 2006), 2006.

[20] M. Schmitt. Digitization and connectivity. In H. J. A. M. Heijmans and J. B. T. M. Roerdnik,
editors, Mathematical Morphology and its Application to Image and Signal Processing, pages
91–98, Dortrecht, Boston, London, 1998. Kluwer Academic Publishers.

18

[21] L. Thurfjell, E. Bengtsson, and B. Nordin. A new three-dimensional con-
nected components labeling algorithm with simultaneous object feature extrac-
tion capability. CVGIP: Graph. Models Image Process., 54(4):357–364, 1992.
http://portal.acm.org/citation.cfm?id=167447.167468.

19

IWRMM-Preprints seit 2004

Nr. 04/01 Andreas Rieder: Inexact Newton Regularization Using Conjugate Gradients as Inner
IteractionMichael

Nr. 04/02 Jan Mayer: The ILUCP preconditioner
Nr. 04/03 Andreas Rieder: Runge-Kutta Integrators Yield Optimal Regularization Schemes
Nr. 04/04 Vincent Heuveline: Adaptive Finite Elements for the Steady Free Fall of a Body in a

Newtonian Fluid
Nr. 05/01 Götz Alefeld, Zhengyu Wang: Verification of Solutions for Almost Linear Comple-

mentarity Problems
Nr. 05/02 Vincent Heuveline, Friedhelm Schieweck: Constrained H1-interpolation on quadri-

lateral and hexahedral meshes with hanging nodes
Nr. 05/03 Michael Plum, Christian Wieners: Enclosures for variational inequalities
Nr. 05/04 Jan Mayer: ILUCDP: A Crout ILU Preconditioner with Pivoting and Row Permuta-

tion
Nr. 05/05 Reinhard Kirchner, Ulrich Kulisch: Hardware Support for Interval Arithmetic
Nr. 05/06 Jan Mayer: ILUCDP: A Multilevel Crout ILU Preconditioner with Pivoting and Row

Permutation
Nr. 06/01 Willy Dörfler, Vincent Heuveline: Convergence of an adaptive hp finite element stra-

tegy in one dimension
Nr. 06/02 Vincent Heuveline, Hoang Nam-Dung: On two Numerical Approaches for the Boun-

dary Control Stabilization of Semi-linear Parabolic Systems: A Comparison
Nr. 06/03 Andreas Rieder, Armin Lechleiter: Newton Regularizations for Impedance Tomogra-

phy: A Numerical Study
Nr. 06/04 Götz Alefeld, Xiaojun Chen: A Regularized Projection Method for Complementarity

Problems with Non-Lipschitzian Functions
Nr. 06/05 Ulrich Kulisch: Letters to the IEEE Computer Arithmetic Standards Revision Group
Nr. 06/06 Frank Strauss, Vincent Heuveline, Ben Schweizer: Existence and approximation re-

sults for shape optimization problems in rotordynamics
Nr. 06/07 Kai Sandfort, Joachim Ohser: Labeling of n-dimensional images with choosable ad-

jacency of the pixels
Nr. 06/08 Jan Mayer: Symmetric Permutations for I-matrices to Delay and Avoid Small Pivots

During Factorization
Nr. 06/09 Andreas Rieder, Arne Schneck: Optimality of the fully discrete filtered Backprojec-

tion Algorithm for Tomographic Inversion
Nr. 06/10 Patrizio Neff, Krzysztof Chelminski, Wolfgang Müller, Christian Wieners: A nume-

rical solution method for an infinitesimal elasto-plastic Cosserat model
Nr. 06/11 Christian Wieners: Nonlinear solution methods for infinitesimal perfect plasticity

Eine aktuelle Liste aller IWRMM-Preprints finden Sie auf:

www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints

	Deckblatt 06-07
	Anschrift 06-07
	iwrmm-preprint-06-07
	Preprintliste

