
 

 

 

 

 
 

Symmetric Permutations for I-matrices to Delay and 
Avoid Small Pivots During Factorization 

Jan Mayer 

Preprint Nr. 06/08 

 
 
 

UNIVERSITÄT  KARLSRUHE 

Institut für Wissenschaftliches Rechnen  

und Mathematische Modellbildung zW RM M  

76128 Karlsruhe 



Anschrift des Verfassers:

Dr. Jan Mayer
Institut für Angewandte und Numerische Mathematik
Universität Karlsruhe
D-76128 Karlsruhe



Symmetric Permutations for I-matrices

to Delay and Avoid Small Pivots

During Factorization

Jan Mayer

Institut für Angewandte und Numerische Mathematik

Universität Karlsruhe

Abstract

In this article, we present several new permutations for I-matrices making these more
suitable for incomplete LDU-factorization preconditioners used in solving linear sys-
tems by iterative methods. A general matrix can be transformed by row permutation
as well as row and columns scaling into an I-matrix, i.e. a matrix having elements of
modulus 1 on the diagonal and elements of modulus of no more than 1 elsewhere. Re-
ordering rows and columns by the same permutation clearly preserves I-matrices. In
this article, we consider such reordering techniques which make the permuted matrix
more suitable for an incomplete LDU-factorization preconditioner than the original
I-matrix. We use a multilevel ILUC, an incomplete LDU-factorization preconditioner
using Crout’s implementation of Gaussian elimination without pivoting to test these
reorderings. The combination of I-matrix preprocessing with the various algorithms
presented here and the multilevel incomplete LDU-factorizations forms a powerful
preconditioning method for unsymmetric, highly indefinite problems.

Key words: preconditioning, I-matrix, reordering, ILUC, iterative methods, sparse linear sys-
tems.

AMS subject classification: 65F10, 65F50.

1 Introduction

Reordering rows and columns is a very successful technique for making sparse matrices
more suitable for incomplete LU-factorization and subsequent solving by an iterative
method. Initially, when mostly symmetric, positive definite problems were being inves-
tigated, the focus was on Reverse Cuthill-McKee, approximate minimal degree, nested
dissection or similar permutations. These are “symmetric” permutations, i.e. the same
permutation is applied to rows and columns, so as to preserve the symmetry and positive
definiteness of the coefficient matrix A, while changing the structure of the matrix in
such a manner that less fill-in will occur during factorization. Without dropping, no zero
pivot can occur for a Cholesky factorization of a symmetric, positive definite matrix so
that these reorderings aim only at reducing fill-in, rather than avoiding small (or zero)
pivots. Furthermore, dropping elements often has the additional, desirable effect, of in-
creasing pivots, so a zero or small pivot is generally not an issue for symmetric, positive
definite problems. Also recall that the reorderings mentioned above only make use of
the structure of the matrix (i.e. whether a certain element is zero or not), but not of the
actual elements themselves.
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These reorderings are also useful for non-symmetric matrices A, whenever zero pivots are
not a primary concern. This is the case, for example, if the matrix is diagonally dominant.
Then, the reordering is calculated using the non-zero structure of A + AT , making this
approach particularly attractive for symmetrically structured problems. However, for
many non-symmetric problems, a zero pivot can occur during the course of factorization
so that simply using a symmetric permutation is not very promising for a large number of
problems. Indeed, if a matrix is not symmetric, particularly if it is not even symmetrically
structured, there is no reason to restrict oneself to using symmetric permutations for
preprocessing. But before non-symmetric permutations were considered, developments
went in a slightly different direction. The main reason for this is probably the fact that no
non-symmetric permutation can be constructed easily which would circumvent pivoting
in all cases. Hence, the focus was on designing new incomplete LU-factorizations such
as ILUTP, see [15], or ILUCP, see [11], which implement pivoting by columns. Although
preprocessing with one of the symmetric permutations mentioned before could still be
useful for some matrices, generally the pivoting destroyed the reordering to such a degree
that it offered little benefit.

However, non-symmetric permutations seemed natural for use with non-symmetric ma-
trices, so they did receive more attention, see for example [1] for an overview. One of
the most promising approaches was initiated by Neumaier and Olschowska, see [14]. It
is clear that the rows of a matrix can be permuted in such a manner that the product of
the absolute values of the diagonal elements become maximal. Neumaier and Olschowska
construct an algorithm for finding that permutation efficiently for a dense matrix. Ad-
ditionally, they prove that the rows and columns of the permuted matrix can be scaled
in such a manner that we obtain an I-matrix, i.e. a matrix having elements of modulus
1 on the diagonal and elements of modulus of at most 1 elsewhere. (Note that Duff and
Koster developed algorithms for sparse matrices, see [6] and [7].) Intuitively, it is reason-
able to expect that I-matrices are more suitable for Gaussian elimination and numerical
experiments do indicate that this is the case, see [1], but zero pivots can be encountered
nonetheless.

A somewhat different approach is due to Saad, see [16]. He constructs “PQ reorderings”
which aim at improving diagonal dominance of the rows of a matrix upto a particular
index, i.e. of an initial block matrix. Although there are no guarantees, frequently piv-
oting can be avoided in this block. After factorization of this block has been completed,
an approximate Schur complement is calculated, which is then factored as before. This
recursion results in a multilevel scheme.

Similarly, it is natural and certainly possible to factor (incompletely) an I-matrix until
the absolute value of a pivot becomes too small, to calculate an (approximate) Schur
complement and to proceed recursively. However, this approach does not appear to have
been considered extensively. As it is obvious that I-matrices are preserved by symmetric
permutations, it seems natural to further preprocess I-matrices using one of the symmetric
permutations mentioned above. Although this approach may reduce fill-in, it does not
take into account that for many matrices we should still expect zero (or small) pivots.
Using these permutations often results in a higher number of zero pivots than necessary,
so that more levels are needed to factor A, which is fairly expensive. In some cases,
the number of levels required makes an incomplete factorization practically impossible in
reasonable time. So instead, we will investigate in this article symmetric permutations
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that are more suitable for I-matrices. They aim at both reducing fill-in and avoiding
small pivots. The basic idea is to eliminate those rows and columns first which are likely
to alter the element on the diagonal as little as possible. This suggests that rows and
columns having few elements or whose off-diagonal elements have small modulus should
be eliminated first.

The idea for constructing permutations in this manner, which can also be interpreted
as an attempt to improve diagonal dominance, is of course, not new and at least some
of permutations can be seen as symmetrized versions of the PQ reorderings mentioned
before. Nevertheless, there are several important differences. PQ reorderings select rows
having an element with good dominance properties (i.e. the modulus of one element is
larger than the others or the weighted sum of the others), move these rows to the top
of the matrix and permute the columns such that the element having large modulus
become the diagonal element. As these permutations are designed for general matrices
and not I-matrices, these permutations will generally not be symmetric. Furthermore,
the elements with largest modulus of different rows may lie in the same column, so that
one of the rows cannot be used to improve diagonal dominance and must be rejected, i.e.
moved to a higher index arbitrarily. Thus, PQ reorderings generally do not improve the
diagonal dominance properties for the entire matrix, but only upto a particular index.
This index is a natural point to terminate a level in factoring, especially if no pivoting
is used, and to proceed in calculating the Schur complement. However, for I-matrices,
this problem can be avoided. For I-matrices, no off-diagonal element has a modulus
larger than the diagonal element, hence we can always choose the column corresponding
to a particular row index, thus preserving the diagonal. The algorithm simply needs
to be modified slightly to do so. In the unmodified form, whenever several elements in
a particular row have modulus 1, the “wrong” column may be selected, i.e. a column
having a index different from the row.

The first permutation that we will consider in this article is in fact this symmetrized PQ
reordering. The other permutations will be variants of this simple idea, all moving rows
and columns having the good dominance properties to low indices, so that they will be
eliminated first. However, for these permutations, we know that the reordered matrix
will also be an I-matrix, so there is no reason to terminate a level at the particular index
indicated by a PQ reordering. Instead, we only terminate a level if the modulus of the
pivot becomes too small. Generally, this works well and requires fewer levels than the
other approach.

After describing the new symmetric permutations for I-matrices in the next section, we
will continue with numerical experiments illustrating the usefulness of this technique.
We will use a simple multilevel ILUC (modified slightly to have an incomplete LDU-
factorization) with levels being terminated whenever the absolute value of a pivot be-
comes too small. See [4] for details on ILUC as well as [2], [3] and [16] for information on
multilevel preconditioners. As a dropping rule, we used an error propagation reduction
strategy that also aims at reducing the error in L and U , see [10] and [12]. We also
considered further preprocessing, such as applying a multilevel nested dissection permu-
tation to reduce fill-in, see [9], prior to using the various permutations presented here.
As can be expected, the effects of further preprocessing were generally negligible. This is
not suprising because the final symmetric permutation is likely to destroy any advantage
that the multilevel nested dissection permutation might have provided.
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2 Symmetric Permutations for I-Matrices

There are basically two types of permutations which will be considered. The idea of
the construction of the first type is very simple. Given an (n × n) I-matrix A, weights
are assigned to each index k, k = 1, . . . , n based on the diagonal dominance properties
as well as the number of non-zero elements of the k-th row and column of A in such
a manner that low weights indicate good properties. Then, the rows and columns are
reordered by increasing weights. The main advantage of this approach lies in the ease of
implementation and the fact that A only needs to be available in either compressed sparse
row or column format, which is usually the case. The other type of permutation proceeds
inductively. Assuming that k rows and columns with indices Ik = i1, . . . , ik have already
been selected such that the submatrix corresponding to Ik has improved properties, we
select the index ik+1 such that the submatrix corresponding to Ik+1 = i1, . . . , ik+1 has
the “best” properties for all possible choices of ik+1. Implementing this approach is more
involved, as it requires more data to be manipulated and also requires A to be available
so that arbitrary rows and columns can be accessed easily. De facto means that A must
be available in both compressed sparse row and column format. In the sequel, we assume
familiarity with these formats. Details can be found in [15].

For the first type of algorithm, we allow the weight wk associated with index k to depend
on the norm ||ak,:||1 of the k-th row of A, on the norm ||a:,k||1 of the k-th column of A,
on the number nnz(ak,:) of non-zero elements of the k-th row of A and on the number
nnz(a:,k) of non-zero elements of the k-th column of A. These are obvious candidates for
calculating the weights. Having few non-zero elements will likely result in little fill-in in,
avoiding modifications of the pivot. Furthermore, little fill-in means that fewer elements
have to be dropped to attain a prescribed level of sparsity, usually resulting in a more
accurate factorization. Furthermore, having to drop fewer elements in the initial phase
of factorization generally means that fewer errors are propagated during the course of
factorization. As the diagonal element always has modulus 1, the norms of the rows
and columns are a measure of the diagonal dominance of rows and columns respectively.
They are diagonally dominant, if and only if the respective norm is less than 2. Hence,
sorting by increasing norms is equivalent to sorting by decreasing diagonal dominance. So
in order to implement this approach, we must calculate the quantities mentioned above
efficiently, then calculate the weight and finally select the indices.

We will assume that A is stored in compressed sparse row format, so that the rows of
A can be accessed efficiently. The implementation for sparse compressed column format
is similar. Even though this approach is simple and straightforward, for the sake of
completeness, we summarize it in algorithm 1. It is important to point out that if the
weights do not actually depend on all the quantities listed, then this allows for some
obvious simplifications. Let nz r, nz c, nr and nc denote vectors of dimension n used for
storing the number of non-zero elements and the norms of the rows and columns of A.
The vector w will store the n weights and P will be the permutation to reorder A.

Algorithm 1: simple greedy selection

1. Initialize nz r, nz c, nr and nc as zero vectors of dimension n

2. Initialize P as the identity
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3. for k = 1, . . . , n

4. Calculate nz r(k) using the pointers associated with A

5. for i = 1, . . . , n and a(k, i) 6= 0

6. nr(k) = nr(k) + |a(k, i)|

7. nc(i) = nc(i) + |a(k, i)|

8. nz c(i) = nz c(i) + 1

9. end for i

10. end for k

11. for k = 1, . . . , n

12. Calculate w(k) using nz r(k), nz c(k), nr(k) and nc(k)

13. end for k

14. Sort w and permute the elements of P analogously

There are some obvious choices for calculating the weights w. Among others, we consid-
ered the following:

sPQ) w(k) = nr(k) · nz r(k);

a) w(k) = nr(k) + nc(k);

b) w(k) = nz r(k) + nz c(k);

c) w(k) = (nr(k) + nc(k)) · (nz r(k) + nz c(k));

d) w(k) = nr(k) · nz r(k) + nc(k) · nz c(k);

The implementation sPQ) is essentially a symmetrized version of the simple greedy PQ-
algorithm mentioned in the introduction, see algorithm 3.2 in [16] aiming to improve the
(weighted) diagonal dominance of rows. In other words, it guarantees that the permuta-
tion used for the rows and columns is the same. Given that we use an LDU-factorization
and that we have a large degree of symmetry with respect to rows and columns, just
using rows as in sPQ) in determining a permutation is perhaps somewhat unnatural.
So even though sPQ) is a natural starting point for investigating suitable permutations
for I-matrices, it lacks this symmetry and indeed all other permutations considered are
completely symmetric with respect to rows and columns, i.e. the weights for A and AT

are equal. Hence, they aim at improving the dominance properties of both rows and
columns. Although [16] indicates that other PQ algorithms, such as such as algorithm
4.3 using dynamic averages, perform better, our numerical experiments did not confirm
this for I-matrices. For this reason and the simple fact that these other PQ algorithms
in [16] do not appear to allow for simple symmetrization, we focus on the simple greedy
approach outlined in algorithm 3.2 of [16] and its modifications.

Note that no weighing strategy requires all vectors listed. To implement sPQ), we just
need a single vector, nr, to store the norms of the rows. After these norms have been
calculated, nr can be multiplied elementwise by the number of elements per row and
sorted. Similarly, the weights in a) and b) can be calculated directly and stored in w,
so that w is actually the only vector we need. Approach c) requires separate vectors to
store the norms and the number of non-zero elements, but one of these can be overwritten
with the weights, so that in total only two vectors of dimension n are needed. Finally, to
implement strategy d), we need three vectors to store nr, nc and nz c. Using this data
and the fact that the number of elements in a row can be calculated immediately using
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the sparse compressed row format, the weights can be calculated and stored in one of
these vectors.

Although these approaches generally worked well, the number of small pivots encoun-
tered during factorization was fairly high for a number of matrices, leading to a large
number of levels or even to a failure of the preconditioner. So instead of selecting rows
and columns to have the best diagonal dominance and sparsity properties overall, we con-
sidered alternatives which only aim at improving the diagonal dominance and sparsity of
the initial (k × k)-block consisting of rows and columns having indices 1, . . . , k. For this
purpose, we assume that in the k-th step, we have already selected a set of indices Ik and
that we have a vector w of weights. The index of the smallest element of w not yet in Ik

should indicate the most suitable row and column to be eliminated at the (k+1)-th step.
Hence, this index is added to Ik to form Ik+1 and then w is updated. In order to find the
smallest element of w quickly, it is best to implement w as a binary tree. Furthermore, a
vector of length n needs to point to the various elements of w so that w can be accessed
by indices as well. This is needed so that the elements of w can be updated efficiently (by
removing and reinserting into the binary tree). Using these ideas, we obtain algorithm
2:

Algorithm 2: greedy selection for initial block

1. Initialize w as a binary tree having n elements, all set to 0.

2. for k = 1, . . . , n

3. P (k) = argmin(w)

4. remove w(P (k)) from w

5. for i = 1, . . . , n and w(i) not yet removed

6. Update w(i)

7. end for i

8. end for k

Again, there are several possibilities for calculating and updating the weights in step 6:

a) w(i) = w(i) + |a(i, P (k))| + |a(P (k), i)|

b) if a(i, P (k)) 6= 0 then w(i) = w(i) + 1
if a(P (k), i) 6= 0 then w(i) = w(i) + 1

c) w(i) = w(i) + (|a(i, P (k))| + |a(P (k), i)|) · (nz r(i) + nz c(i))

d) w(i) = w(i) + |a(i, P (k))| · nz r(i) + |a(P (k), i)| · nz c(i)

The weights in strategy b) are the number of non-zero elements belonging to the i-th
row plus those belonging to the i-th column. Hence, in the k-th step, an index will
be selected so that the least number of non-zero elements are moved into the k-th row
and column. Similarly, strategy a) minimizes the sum of the norms of the k-th row and
column, i.e. the permutation attempts to select the most diagonally dominant rows and
columns. Approaches c) and d) are weighted alternatives to b). Note that the number of
non-zero elements in a row or column of A again does not actually need to be calculated
and stored in nz r and nz c. Instead, these quantities can be determined easily using the
compressed sparse row and column formats of A.
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Finally, we do need to point out that in order to access A by arbitrary rows and columns
at any time as is needed to update w, we require that A be available both in compressed
row and column format. Generally, this should not be a problem, because memory needs
to be available for the incomplete factorization anyhow. Hence, it should be possible to
allocate enough memory to store A in both formats, to calculate the permutation, to free
the memory for one format, and to subsequently calculate the incomplete factorization.
Needless to say, this also requires more calculation time. However, both the memory
requirements and the additional calculation time are not unreasonable or more than
what other symmetric permutations require. Recall that most of these (e.g. reverse
Cuthill-McKee, multilevel nested dissection, etc.) require the graph of A + AT for their
implementation, so that the additional memory and setup times are comparable.

Algorithm 3: selection for diagonally dominant initial block

1. Initialize w as a binary tree having n elements, all set to 0.

2. Initialize nr and nc as zero vectors.

3. for k = 1, . . . , n

4. k∗ = argmin(w)

5. if for all i = 1, . . . , k − 1

6. nr(i) + |a(P (i), k∗)| < 2 and nc(i) + |a(k∗, P (i))| < 2

7. then P (k) = k∗

8. else mark k∗ as unsuitable

9. end if

10. remove w(k∗) from w

11. for i = 1, . . . , n and w(i) not yet removed

12. w(i) = w(i) + |a(i, k∗)| + |a(k∗, i)|

13. end for i

14. end for k

15. Initialize w for the rejected indices

16. Complete P as in algorithm 2a)

Algorithm 2 combined with a) selects rows and columns so as to improve diagonal domi-
nance, but there is no guarantee that diagonal dominance is actually achieved for a fairly
large submatrix. Although obtaining a large diagonally dominant block is not always pos-
sible, it is possible to modify algorithm 2, such that a larger diagonally dominant block
becomes more likely by rejecting any index that would destroy diagonal dominance. In
other words, if we assume that the submatrix at step k associated with Ik is diagonally
dominant, then we should only select P (k) = argmin(w) if next submatrix will also be
diagonally dominant. If it is not, we should reject argmin(w) and mark this index as be-
ing unsuitable. We continue selecting the index of the smallest element of the remaining
elements of w to be a candidate for the next row and column until we find one preserving
diagonal dominance. We continue in this manner until w is empty, i.e. until no more
suitable indices are left. These rejected indices should then be sorted using algorithm 2
with weighing strategy a) and without the check for diagonal dominance. To implement
this strategy efficiently, we simply need two additional arrays to keep track of the norms
of both the rows and columns of the submatrix. Selecting a particular index will preserve
diagonal dominance if and only if norms of the rows and columns of the updated matrix
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would all less than 2, but this is easy to check. In this manner, we are guaranteed to to
obtain a diagonally dominant initial submatrix. Algorithm 3 summarizes this approach.

Before continuing, it important to point out that all the weights in algorithm 1 can be
calculated in O(nnz) operations, nnz being the number of non-zero elements of A, but
strategies a)-d) require both the norms of rows and columns and hence approximately
twice as many operations as sPQ). Additionally, a vector with n elements must be sorted,
requiring O(n log n) operations if quicksort is used. On the other hand, the main work
for algorithm 2 is updating the binary tree, which essentially requires nnz updating
operations, each consisting of removing, modifying, and reinserting a weight into a binary
tree of n elements, amounting to approximately O(nnz log n) operations. The actual
number of arithmetic operations depends on the strategy chosen, but is again O(nnz),
with the more involved strategies requiring about twice as many operations as the simpler
ones.

3 Numerical Results

In this section, we will report on numerical results for the different algorithms and differ-
ent strategies for calculating the weights. All matrices tested were initially preprocessed
to become I-matrices. We give results for no further preprocessing and for further pre-
processing using multilevel nested dissection, the simple greedy PQ-strategy (algorithm
3.2 of [16]) and for all algorithms listed in the previous section. Recall that simple greedy
PQ provides an index, upto which diagonal dominance was improved. For this reorder-
ing, we give results both for terminating a level based on this index and based on the
absolute value of the pivot, analogous to the implementation of the other reorderings.

For testing the different permutations for a particular matrix, we first created an ar-
tificial right hand side, such that the exact solution was a vector consisting of all 1’s.
Next, the matrix was permuted and scaled to become an I-matrix using a subroutine
of PARDISO, see [17], [18], [19] and [20]. Next, the rows and columns of the I-matrix
were permuted using the permutation to be tested. For comparisons, we also used the
multilevel nested dissection routine in METIS, see [8]. Next, we calculated a multilevel
ILUC preconditioner. A particular level was terminated whenever the absolute value
of the pivot was less than 0.01. In this case, the approximate Schur complement was
calculated and it was treated as we just described for the initial matrix. We used the
weighted dropping strategy described in [10] and [12] aimed at reducing the propagation
of errors and the errors in L and U to ensure sparsity and varied the treshold parameter
to obtain preconditioners having approximately the same fill-in. The Schur complement
was calculated without additional dropping for the smaller matrices. For larger matrices,
the dropping parameter τ was decreased by 3 orders of magnitude for calculating the
Schur complement. We selected the zero vector as the initial guess for the solution and
iterated with BiCGstab. If the initial residual was reduced by 8 orders of magnitude and
the final residual was less than 10−8 in no more than 600 iterations, we considered the
iterative method with that preconditioner to converge and denoted a failure otherwise.
The code was programmed in C++ and compiled with the option -O3. The binary trees
that are needed for some of the algorithms were implemented using the class “multimap”
from the Standard Template Library. The calculations were performed on a 3.0 GHz
Athlon XP computer using Linux.
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We tested the same 58 matrices from the Harwell-Boeing Collection as in [16] as made
available by Matrix Market [13] as well as 28 mostly larger matrices from the University
of Florida Collection [5]. Details on these matrices can be found in these collections.
For a number of matrices, particularly those that are not too difficult to precondition,
the results were often fairly similar. Hence, we selected 17 matrices of the 58 from the
Harwell-Boeing Collection which better illustrate the effects of the different approaches.
Generally, we try to report on preconditioners having similar fill-in, but this is not always
possible, as even for the same matrix, some strategies required significantly more fill-in
for convergence than others. Furthermore, varying τ to produce a preconditioner having
a specified amount of fill-in, was not always possible in some cases, as fill-in sometimes
does not appear to depend continuously on τ . This is especially the case if varying
τ also changes the number of levels. In any of these cases, the values for fill-in are
different, but in most cases, meaningful comparisons are still possible. These results can
be found in table 1. Although we also tested multilevel nested dissection combined with
the algorithms presented in this paper, these results were very similar to those without
the multilevel nested dissection, so we will not report on them. This is not surprising,
as the algorithms presented in this article are likely to reorder a matrix significantly,
destroying any structural advantage obtained by applying any symmetric permutation.

The first observation of these results indicates that much can be gained by further pre-
processing I-matrices. Multilevel nested dissection as implemented by METIS does yield
better results for most matrices. Particularly, whenever small pivots are not an issue,
it seems that METIS is quite successful. However, in a number of cases, where near
zero-pivots occurred frequently, METIS required a large number of levels and at times
much fill-in. Considering that preprocessing is performed for each level change, this is
an expensive option. Most methods presented in this paper appear to perform better
overall.

Reordering applied to I-matrix
matrix

∅ M PQ∗ PQ sPQ 1a 1b 1c 1d 2a 2b 2c 2d 3

γ 0.7 0.5 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
bp 800 L 3 1 5 3 3 2 3 3 2 2 3 3 2 2

I 51 75 28 28 24 24 97 36 29 40 58 59 46 68
γ 1.0 1.0 1.0 1.1 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0

bp 1600 L 3 3 4 3 2 2 4 3 3 2 2 2 2 2
I 47 10 10 19 13 11 20 10 9 10 17 12 10 10
γ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

fs 760 2 L 2 5 3 2 2 8 2 2 2 2 2 2 2 2
I 163 85 10 10 10 13 12 12 12 16 23 15 12 13
γ 3.5 2.2 2.2 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.0

fs 760 3 L 3 14 4 3 16 18 2 14 12 2 2 3 3 2
I 511 234 110 195 67 85 87 51 46 36 68 41 50 59
γ 1.5 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

gemat11 L 16 14 3 7 8 14 5 7 9 3 6 4 3 3
I 387 153 25 35 30 87 44 38 43 222 39 172 88 199
γ 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

gemat12 L 20 17 6 10 9 11 7 7 8 3 4 3 3 3
I 212 41 46 69 29 36 25 15 16 43 24 39 47 49

Table 1: Specific Numerical Results for Smaller Matrices (con-
tinued on next page).
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Reordering applied to I-matrix
matrix

∅ M PQ∗ PQ sPQ 1a 1b 1c 1d 2a 2b 2c 2d 3

γ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
lns 511 L 2 2 6 2 2 1 2 1 2 1 2 1 2 1

I 69 27 115 86 26 24 26 21 24 43 72 40 32 39
γ 2.0 2.1 NC 2.0 2.0 2.1 1.8 2.5 2.4 2.3 2.1 2.3 2.2 2.1

lns 3937 L 2 2 NC 7 2 2 2 2 3 1 4 1 1 3
I 469 34 NC 463 45 71 247 125 135 329 49 466 310 48
γ 5.0 2.9 5.3 4.8 4.6 2.9 2.9 3.8 2.9 2.7 2.7 2.9 3.0 2.8

nnc666 L 11 11 5 3 10 10 9 10 9 3 3 3 2 2
I 190 86 56 83 71 62 45 109 72 28 51 42 54 41
γ 13 5.9 NC 11 28 8.0 6.1 6.1 6.2 8.0 5.1 5.1 5.1 6.1

nnc1374 L 52 30 NC 11 47 18 21 26 26 6 8 4 3 8
I 68 12 NC 26 528 21 15 156 48 6 10 21 4 28
γ 16 9.2 8.6 8.5 9.0 6.9 11 9.3 9.0 6.9 9.0 9.0 9.0 6.7

psmigr 2 L 23 16 6 7 6 11 10 7 14 9 18 13 10 8
I 215 171 147 109 269 101 37 166 48 22 25 11 16 28
γ NE 5.2 0.7 2.6 2.6 1.4 4.9 3.3 3.3 0.7 0.7 0.7 0.7 0.7

saylr4 L NE 65 2 31 33 73 67 48 48 3 4 3 3 3
I NE 366 46 48 49 50 48 49 49 46 49 48 47 47
γ 1.0 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0

watt 2 L 1 1 1 3 1 1 1 1 1 1 1 1 1 1
I 48 29 21 83 54 64 65 55 53 54 62 56 51 65
γ 0.9 0.8 1.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

west0655 L 1 4 4 7 2 2 4 2 2 2 3 2 2 2
I 349 205 386 155 48 43 39 32 41 33 35 91 66 33
γ 0.9 0.5 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

west0989 L 5 3 5 5 1 2 3 1 1 1 3 2 2 2
I 191 172 339 82 40 46 54 37 36 60 61 53 60 56
γ 1.4 0.7 1.3 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

west1505 L 4 3 5 4 3 3 3 2 2 2 2 3 2 2
I 107 44 59 40 163 29 30 54 24 36 79 35 33 35
γ 1.1 0.7 1.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

west2021 L 3 4 4 5 1 1 3 1 2 2 3 3 3 3
I 88 72 29 21 20 23 69 42 27 60 37 36 27 40

Abbreviations used:
∅ no further preprocessing used
M multilevel nested dissection, level termination by pivot size
PQ∗ standard PQ, level termination by PQ, not pivot size
PQ standard PQ, level termination by pivot size
sPQ symmetrized PQ, level termination by pivot size
γ fill-in
L number of levels used
I number of iterations needed for convergence
NC none of the preconditioners converged
NE preconditioner does not exist

Table 1: Specific Numerical Results for Smaller Matrices.
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Comparing the results for the greedy PQ reordering, we notice that terminating a level
when the reordering indicates (denoted by PQ∗) rather than whenever the absolute value
of a pivot becomes too small (denoted by PQ) seems to be worse. Indeed, the latter
strategy yielded suitable preconditioners for all matrices, whereas the former approach
failed for two matrices entirely. However, either termination criterion was better for some
matrices in terms of the number of iterations required for convergence than the other.
Finally, enforcing symmetry for PQ reorderings generally seems to be a good idea yielding
better results, except for nnc1374 and west1505 (and psimgr 2 to a lesser degree).

Unfortunately, there is no best strategy overall, but it seems that algorithm 3 is most
robust. For many matrices, it is amongst the best strategies and for the others it seldomly
amongst the worst, except perhaps for gemat11. However, it is the most involved strategy
requiring the most memory (although not unreasonably much) and the most work. For
a number of matrices, algorithm 1 requires significantly more levels than the others,
making it fairly expensive and probably unsuitable for many larger matrices. In this
regard, algorithm 2 is often a good compromise between algorithm 1 and 3.

It seems that no particular method of calculating the weights is universally best. Strategy
c) for both algorithm 1 and 2 does not appear to work particularly well. Usually, strategy
d) is significantly better or only slightly worse. Although for some matrices, using a) or b)
to calculate weights produces the best results, their behavior is somewhat unpredictable,
making d) probably the best choice overall. This result can be expected to some degree,
as it can be viewed as the symmetrization of the weights used in sPQ), which is the
weighing strategy suggested in [16].

Next, we will look at the results for some of the larger matrices from the University of
Florida Collection. Except for the results for I-matrix preprocessing (without further
permutation) or for I-matrix and METIS preprocessing, we provide the same results
as for the small matrices. Both of these approaches yielded extremely poor results for
a large number of matrices. Often the preconditioning failed because the calculations
required more than 100 levels, which was the maximum permitted. In other cases, the
preconditioner failed to converge or required an extremely large number of iterations.
Hence, often the calculation times were formidable, so that for many matrices, it was
not feasible to vary the threshold parameter sufficiently, making meaningful comparisons
impossible. Hence, only the results for the other preprocessing methods can be found in
table 2.

These results seem to confirm the observations already made. Much can be gained by
using the absolute value of the pivot to terminate a level. The advantage of enforc-
ing symmetry on the PQ reordering is, however, not as clear. For a few matrices, a
symmetic PQ reordering improves the preconditioner further, but there are notable ex-
ceptions. Furthermore, for one matrix, scircuit, symmetric PQ fails. Nevertheless, for
6 out of 12 matrices (goodwin, graham1, igbt3, nmos, onetone1 and utm5940), the re-
sults for either of the nonsymmetrized PQ methods were significantly worse than any
other method, whereas symmetrized PQ performs quite well for most of these matrices.
Hence, symmetrized PQ is not necessarily competitive, but certainly neither of the non-
symmetrized PQ reorderings can be considered attractive alternatives. By comparison,
a number of the new algorithms work well for all matrices with a reasonable amount of
fill-in and with a reasonable number of iterations. Of these, algorithm 3 again appears
to be best overall.
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Reordering applied to I-matrix
matrix

PQ∗ PQ sPQ 1a 1b 1c 1d 2a 2b 2c 2d 3

γ NC 1.1 1.8 1.8 1.8 1.9 2.0 1.2 1.9 1.1 1.1 1.1
L NC 8 1 1 1 1 1 1 1 1 1 1

bayer01 I NC 9 38 20 20 166 181 11 35 10 18 10
Ts NC 0.8 2.3 2.1 2.5 2.3 2.5 2.3 2.4 2.3 2.3 2.2
Ti NC 1.0 4.5 2.0 2.4 19 22 1.1 4.0 1.0 1.8 1.0
γ NC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
L NC 7 2 3 3 3 3 2 2 2 3 2

bayer10 I NC 24 30 15 31 24 18 18 22 19 25 21
Ts NC 0.3 0.4 0.4 0.3 0.3 0.3 0.5 0.4 0.4 0.5 0.5
Ti NC 0.5 0.5 0.3 0.6 0.5 0.4 0.3 0.4 0.3 0.5 0.4
γ 2.9 2.9 2.9 2.9 2.8 3.0 3.0 2.9 3.0 2.9 3.0 2.9
L 3 3 1 1 1 1 1 1 1 1 1 1

epb3 I 124 128 127 65 103 87 93 52 90 57 56 47
Ts 3.9 3.4 3.1 3.1 3.4 3.2 3.4 3.8 3.7 3.8 3.8 3.9
Ti 29 30 30 15 24 21 22 12 22 14 14 11
γ NC 3.4 3.3 2.8 3.3 2.8 2.8 3.3 3.2 3.3 4.0 3.1
L NC 13 9 3 25 8 4 5 17 3 7 6

goodwin I NC 145 58 79 38 67 75 104 51 33 61 80
Ts NC 5.0 4.1 4.7 8.2 3.6 3.0 8.1 9.5 4.3 6.5 3.9
Ti NC 14 6.6 8.0 4.6 6.5 7.7 12 5.6 3.9 8.3 8.7
γ NC 5.2 5.3 5.3 4.3 3.7 4.9 3.6 3.7 3.5 3.1 3.2
L NC 10 9 5 18 16 8 6 12 5 7 8

graham1 I NC 168 47 11 49 23 19 15 51 22 33 21
Ts NC 14 11 13 15 8.9 11 6.9 12 5.8 6.0 5.6
Ti NC 24 8.8 2.1 7.1 3.4 5.5 2.0 7.0 2.9 2.7 2.5
γ 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
L 6 5 2 4 2 3 3 2 2 2 2 2

igbt3 I 125 226 51 55 28 71 57 32 27 33 31 35
Ts 0.5 0.5 0.4 0.4 0.4 0.5 0.4 0.6 0.7 0.6 0.6 0.7
Ti 4.6 7.4 2.0 2.1 1.1 2.8 2.2 1.2 1.1 1.2 1.1 1.3
γ 1.7 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0 1.0 0.9
L 7 8 6 6 3 4 4 3 2 2 2 3

nmos I 204 142 46 41 40 53 61 37 40 35 34 36
Ts 1.6 1.2 1.4 1.0 0.9 1.1 1.1 1.3 1.2 1.3 1.3 1.5
Ti 18 9.9 5.3 2.6 2.8 3.6 4.2 2.2 2.4 2.2 2.2 2.1
γ NC 5.0 5.0 3.7 3.2 3.2 3.1 3.3 3.3 3.5 3.7 3.9
L NC 30 32 10 33 14 19 6 23 8 9 6

onetone1 I NC 12 12 12 11 7 10 24 19 29 25 28
Ts NC 11 12 4.6 12 5.1 6.5 4.7 15 7.5 8.1 6.2
Ti NC 3.0 3.1 2.1 1.8 1.3 1.7 3.7 3.2 5.1 4.5 4.9
γ NC 3.5 3.4 NC 2.7 2.7 2.5 NC 3.2 3.3 3.6 3.6
L NC 19 15 NC 31 19 16 NC 23 6 8 7

onetone2 I NC 20 30 NC 11 21 19 NC 40 21 24 26
Ts NC 2.8 3.1 NC 3.8 2.7 2.8 NC 6.1 3.4 3.9 3.6
Ti NC 2.5 4.4 NC 1.3 2.4 2.2 NC 5.2 2.6 3.2 3.3

Table 2: Specific Numerical Results for Larger Matrices (con-
tinued on next page).
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Reordering applied to I-matrix
matrix

PQ∗ PQ sPQ 1a 1b 1c 1d 2a 2b 2c 2d 3

γ 1.9 1.9 1.9 1.9 1.6 1.9 1.9 2.1 2.1 1.6 1.6 2.1
L 3 1 2 1 1 1 1 1 1 1 1 2

raefsky3 I 43 35 41 16 11 16 16 20 12 33 34 19
Ts 8.8 6.3 6.3 6.6 3.8 6.7 6.7 9.4 8.9 7.7 7.8 10
Ti 14 11 13 5.0 3.1 5.1 5.3 6.7 4.2 9.2 9.6 6.5
γ 2.5 2.5 NC NC 2.5 NC 2.2 1.9 1.9 1.7 1.8 1.8
L 3 73 NC NC 62 NC 79 5 21 7 8 6

scircuit I 5 5 NC NC 6 NC 263 8 6 8 8 8
Ts 10 15 NC NC 17 NC 11 9.5 12 11 11 9.6
Ti 1.0 3.7 NC NC 6.6 NC 305 3.8 3.6 3.9 4.0 3.6
γ 13 6.9 2.0 2.2 2.7 2.0 2.1 2.3 2.5 2.1 2.2 2.2
L 6 5 3 4 4 3 3 4 2 4 3 3

utm5940 I 166 124 112 129 126 235 155 209 119 217 273 238
Ts 4.0 2.1 0.3 0.4 0.6 0.3 0.3 0.5 0.3 0.5 0.5 0.6
Ti 18 6.1 2.4 3.1 3.6 5.6 4.3 5.0 1.3 4.7 6.4 5.4

Abbreviations used:
PQ∗ standard PQ, level termination by PQ, not pivot size
PQ standard PQ, level termination by pivot size
sPQ symmetrized PQ, level termination by pivot size
γ fill-in
L number of levels used
I number of iterations needed for convergence
Ts setup time for the preconditioner (in seconds)
Ti iteration time (in seconds)
NC none of the preconditioners converged
NE preconditioner does not exist

Table 2: Specific Numerical Results for Larger Matrices.

Let us consider the results for specific matrices and compare the various PQ reorderings
and algorithm 3: PQ (using the pivot size to terminate a level) is significantly better
than all other approaches only for bayer01. Although symmetrized PQ is never the best
approach, it is among the best methods for utm5940. On the other hand, algorithm 3
yields the best results for epb3, graham1, and scircuit. Furthermore, it is almost as good
as the best preprocessing for igbt3 and nmos. Hence, algorithm 3 certainly seems to be the
best method overall. Finally, if the we look that the 5 remaining matrices, we observe that
bayer10, the results for all methods are similar. Furthermore, for goodwin, symmetrized
PQ is better than algorithm 3, but not the best method overall. For onetone2, PQ with
pivot size terminating the level is better than algorithm 3, but again, not best. Finally,
for onetone1 and raefsky3, algorithm 3 is better than either of the PQ methods. Hence,
it seems that algorithm 3 is generally a better choice than any of the PQ-methods.

Overall, the simplest algorithm, algorithm 1, seems to be disappointing, although some
variant of it is best for onetone1 (1c) and raefsky (1b). Algorithm 2 generally performs
quite well with each variant sometimes being the best. However, in most cases, algorithm
3 is almost as good or better, so that the latter is usually the method of choice.

Finally, some testing was performed by varying the threshold for switching levels. Gen-
erally speaking, in most cases, varying between 10−4 and 10−1 had little effect, although
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there are exceptions, hence we choose 10−2 as a standard. Usually, selecting 10−1 resulted
in somewhat more levels, but this had little effect on the quality of the preconditioner or
on calculation times, whereas selected the threshold closer to 10−4 seemed to have even
less effect.

4 Conclusion

The three new algorithms presented here calculate row and column permutions for I-
matrices making these more suitable for incomplete LU-factorizations. This approach
reduces setup and iteration times substantially. Additionally, we obtain better robust-
ness, resulting in convergence where other methods fail. This improvement is due to two
factors: firstly, terminating a level based on pivot size is better than using suggestion for
terminating a level which standard PQ reordering provides. Secondly, these reorderings
are specifically designed for I-matrices. In particular, they permute rows and columns
analogously to preserve the I-matrix structure, resulting in further improvement.

Combined with preprocessing to produce an I-matrix and an incomplete LU-factorization
as preconditioner, these algorithms are a powerful tool for solving unsymmetric, indefinite
linear systems with iterative methods. Generally, both fill-in and iterations required for
convergence can be reduced significantly by using these strategies.

References

[1] Michelle Benzi, John C. Haws, and Miroslav Tu◦ma. Preconditioning highly indefinite
and nonsymmetric matrices. SIAM J. Sci. Comp., 22(4):1333–1353, 2000.
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[18] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equa-
tions with PARDISO. Journal of Future Generation Computer Systems, 20(3):475–
487, 2004.
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