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OPTIMALITY OF THE FULLY DISCRETE

FILTERED BACKPROJECTION ALGORITHM FOR

TOMOGRAPHIC INVERSION

ANDREAS RIEDER† AND ARNE SCHNECK‡

Abstract. Although the filtered backprojection algorithm (FBA) has been the stan-
dard reconstruction algorithm in 2D computerized tomography for more than 30 years, its
convergence behavior is not completely settled so far. Relying on convergence results by
Rieder and Faridani for the semi-discrete FBA [SIAM J. Numer. Anal., 41(3), 869-892,
2003] we show optimality of the fully discrete version and of a related algorithm.

Key words. 2D-Radon transform, tomography, parallel scanning geometry, filtered
backprojection algorithm, reconstruction filter, optimality.
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1. Introduction. X-Ray computerized tomography (CT) is a tech-
nique for imaging the density distribution inside an object. Mathematically
speaking, CT reduces to reconstructing a function from its integrals along
straight lines, see, e.g., Natterer [8] for details.

The mathematical model in 2D is the Radon transform

Rf(s, ϑ) :=

∫

L(s,ϑ)
f(x) dσ(x),

mapping a function to its integrals over the lines L(s, ϑ) = {τ ω⊥(ϑ) +
s ω(ϑ) | τ ∈ R} where s ∈ R, ω(ϑ) = (cos ϑ, sin ϑ)t, and ω⊥(ϑ) = (− sin ϑ,
cos ϑ)t for ϑ ∈ [0, π]. We assume throughout that the searched-for density
distributions are compactly supported in Ω, the unit disk in R2 centered
about the origin. Thus, the lateral variable s may be restricted to [−1, 1].

In the parallel scanning geometry we observe the discrete Radon data

D = {Rf(kh, jhϑ) : k = −q, . . . , q, j = 0, . . . , p− 1}, p, q ∈ N, (1.1)

where h = 1/q is the lateral sampling rate and hϑ = π/p is the angular
sampling rate. Let fFBA = fFBA(h, hϑ) denote the reconstruction of f by
the filtered backprojection algorithm (FBA) from D. Then, we will show
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2 A. RIEDER AND A. SCHNECK

that∗

‖f − fFBA‖L2(Ω)

.
(
hmin{αmax,α} + hαϑ + hϑh

min{αmax,α−1}
)
‖f‖Hα

0 (Ω), α ≥ 1.
(1.2)

The maximal lateral convergence rate αmax depends on the used filter and
the interpolation process after filtering. For instance,

αmax =




3/2 Shepp-Logan filter with piecewise constant interpolation,

2 Shepp-Logan filter with piecewise linear interpolation,

5/2 mod. Shepp-Logan filter with piecewise linear interpolation.

(1.3)

In principle, it is possible to construct filters and adapted local interpolation
schemes leading to arbitrarily large αmax.

Moreover, we introduce algorithm MFBA, a modification of FBA, and
we prove that

‖f − fMFBA‖L2(Ω)

. (hmin{αmax,α} + h
min{5/2−ǫ,α}
ϑ ) ‖f‖Hα

0 (Ω), α > 1/2,
(1.4)

for any ǫ > 0 where αmax is as in (1.3).

The paper is organized as follows. In the next section we introduce the
filtered backprojection algorithm, recall the convergence result of Rieder
and Faridani [9], and give some stability estimates for the Radon transform
which we will need later. Then we present and prove our convergence es-
timate for the fully discrete FBA in Section 3. Section 4 is devoted to our
modified filtered backprojection algorithm: We motivate its definition, prove
convergence, and discuss some aspects of its implementation. Numerical ex-
periments visualize our convergence results of both algorithms in the final
section where also a qualitative comparison is presented.

2. The filtered backprojection algorithm. In this section we intro-
duce the FBA in detail and recall results which we will need later.

First, we present some notation. Let f̂(ξ) := (2π)−d/2
∫

Rd f(x) e−ı ξ
tx dx

denote the Fourier transform of a function f in L1(Rd)∩L2(Rd). The Fourier
transform can be extended to L2-functions and tempered distributions by
continuity and duality. We define the Sobolev spaces Hα(Rd), α ∈ R, to be
the closure of the Schwartz class with respect to the norm

‖f‖2
α :=

∫

Rd

(
1 + |ξ|2

)α |f̂(ξ)|2 dξ.

∗A . B indicates the existence of a generic constant c such that A ≤ cB uniformly in
all parameters A and B may depend on.
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Starting point for deriving the FBA is the inversion formula

f =
1

4π
R∗(Λ ⊗ I)Rf

which holds true for f ∈ L2(Ω) [9, Sec. 3.2]†. Here, the backprojection
operator

R∗g(x) =

∫ 2π

0
g(xtω(ϑ), ϑ) dϑ (2.1)

is the adjoint of R ∈ L
(
L2(Ω), L2(Z)

)
with Z = [−1, 1] × [0, 2π]. The

Λ-operator is defined by
Λ̂u(ξ) = |ξ|û(ξ)

and maps Hα(Rd) boundedly to Hα−1(Rd). The binary operation ⊗ denotes
the tensor product of operators and spaces, respectively, see, e.g., Aubin [1].
Therefore, Λ in (Λ⊗I)Rf only affects the lateral variable (I is the identity).

Due to Rieder and Faridani [9] FBA can be written as

fFBA(x) := R∗
hϑ

(IhΛEh ⊗ I)Rf(x) (2.2)

where

R∗
hϑ
g(x) := hϑ

2p−1∑

j=0

g(xtω(ϑj), ϑj), ϑj = jhϑ.

The operators Eh and Ih are generalized interpolation operators: For u ∈
Hα(R) define

Ehu(s) := h−1
∑

k∈Z

〈
u, ǫh(· − sk)

〉
Bh(s − sk) (2.3)

where ǫh(s) = ǫ(s/h) and Bh(s) = B(s/h). Here, B ∈ L2(R) is the ’in-
terpolation function’ and ǫ ∈ H−α(R) is assumed to be even with ǫ̂(0) =
1/
√

2π. Further, 〈·, ·〉 denotes the duality pairing in Hα(R) ×H−α(R). For
u ∈ Hα(R), α > 1/2, we may choose ǫ = δ (Dirac distribution). In this
case, h−1〈u, ǫh(· − sk)〉 = u(sk). Analogously,

Ihu(s) := h−1
∑

k∈Z

〈
u, ηh(· − sk)

〉
Ah(s − sk), (2.4)

where η and A play the roles of ǫ and B, respectively. For more details on
Eh and Ih we refer to [9, Sec. 3.2].

Observe that

(IhΛEh⊗I)Rf(s, ϑ) =
∑

ℓ∈Z

(∑

k∈Z

wℓ−k
〈
Rf(·, ϑ), ǫh(·−sk)

〉)
Ah(s−sℓ), (2.5)

†Later in the paper we will benefit from the 2π-periodicity of Rf(s, ·). Therefore, the
angular variable from now on runs in the interval [0, 2π]. From a practical point of view,
however, it suffices to know Rf on [−1, 1] × [0, π] to recover f .
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with wr = υ(r)/h2 where

υ(s) :=
1

π

∫ ∞

0
σ B̂(σ) η̂(σ) cos(sσ)dσ

is the reconstruction filter. Thus, the evaluation of fFBA(x) can be imple-
mented exactly as in [8, Chap. V.1.1]. The sum over k in (2.5) represents
the filtering step.

We require the following approximation properties of Eh and Ih, respec-
tively:

(i) There are non-negative constants τmax and βmin ≤ βmax such that

‖Ehu− u‖τ . hβ−τ‖u‖β (2.6)

for βmin ≤ β ≤ βmax, 1/2 ≤ τ ≤ τmax, τ ≤ β and any u ∈
Hβ

0 (−1, 1)‡.

(ii) There is a constant αI > 0 such that

‖Ih − I‖Hα−1/2(R)→H−1/2(R) . hα (2.7)

for 0 ≤ α ≤ αI.

Both estimates, (2.6) and (2.7), are meant asymptotically as h → 0. All
further estimates involving h or hϑ have to be understood in similar manner.

Rieder and Faridani studied a semi-discrete version of FBA, that is,
they did not consider discretization of the angular variable. Their result [9,
Th. 3.7] is formulated in the following theorem (Natterer [6] gave a conver-
gence result for the other semi-discrete version of FBA where the angular
variable is discretized but not the lateral).

Theorem 2.1. Under (2.6) and (2.7) with βmax, τmax ≥ 1/2 we have
that ∥∥f − 1

4π
R∗(IhΛEh ⊗ I)Rf

∥∥
L2(Ω)

. hα‖f‖α
for max{0, βmin − 1/2} ≤ α ≤ min{αI, βmax − 1/2, τmax − 1/2} and f ∈
Hα

0 (Ω).

We present concrete examples; for proofs see again [9]. Set

f̃FBA =
1

4π
R∗(IhΛEh ⊗ I)Rf.

Example 2.2 (Shepp-Logan filter with nearest-neighbor interpolation).
Let B(·) = sinc(π ·)§ be the interpolating function in Eh and A = 1[−1/2,1/2]

¶

‡Hα
0 (D) is the closure of C

∞
0 (D), the space of infinitely differentiable functions com-

pactly supported in D ⊂ Rd, with respect to the norm ‖ · ‖α.
§sinc is the sinus cardinals: sinc(s) = (sin s)/s.
¶1D denotes the indicator function of D.
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the interpolating function in Ih. Further, let η = 1[−1/2,1/2] in Ih. Then, the
discrete filter {wr}r∈Z in (2.5) is the Shepp-Logan filter [12]:

wr =
2

π2 h2

1

1 − 4 r2
. (2.8)

Further,

∥∥f̃FBA − f
∥∥
L2(Ω)

. hmin{3/2, α} ‖f‖α for f ∈ Hα
0 (Ω), α > 0,

as long as ǫ in Eh is either an even, compactly supported and normalized
L2-function or the Dirac distribution.

Example 2.3 (Shepp-Logan filter with piecewise linear interpolation).
Let Eh and Ih be as in Example 2.2, except for A which is now the linear B-
spline, that is, A = 1[−1/2,1/2] ⋆ 1[−1/2,1/2]. Hence, Ih interpolates piecewise
linear. The discrete filter {wr}r∈Z is as in (2.8). Here, we have

∥∥f̃FBA − f
∥∥
L2(Ω)

. hmin{2, α} ‖f‖α for f ∈ Hα
0 (Ω), α > 0.

Example 2.4 (modified Shepp-Logan filter with piecewise linear inter-
polation). Let Eh and Ih be as in Example 2.3, except for η which is now
given by

η̂(σ) = (2π)−1/2 sinc(σ/2)

3/4 + cos(σ)/4
.

The corresponding discrete filter {wr}r∈Z is called modified Shepp-Logan fil-
ter [9]. Here,

∥∥f̃FBA − f
∥∥
L2(Ω)

. hmin{5/2, α} ‖f‖α for f ∈ Hα
0 (Ω), α > 0.

For later use we compile Sobolev space estimates of the Radon transform.
Set H(α,β) := Hα(R) ⊗Hβ

p (0, 2π)‖. Due to Natterer and Louis [5] we have

‖Rf‖H(α+1/2,0) . ‖f‖α for any f ∈ Hα
0 (Ω), α ≥ 0.

A similar continuity estimate by Rieder and Schuster [10] yields especially

‖Rf‖H(0,α+1/2) . ‖f‖α for any f ∈ Hα
0 (Ω), α ≥ 0.

Interpolating both latter mapping properties of R finally results in

‖Rf‖H(β,α+1/2−β) . ‖f‖α for any 0 ≤ β ≤ α+ 1/2 − β (2.9)

and f ∈ Hα
0 (Ω).

‖For the definition of the Sobolev spaces Hβ
p (a, b) of periodic functions with period

b − a, see, for instance, Lions and Magenes [4, Chap. 1.7].
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3. Convergence of the fully discrete FBA. In this section we will
prove our asymptotic convergence estimate of FBA which is stated in the
following theorem.

Theorem 3.1. Under (2.6) and (2.7) with βmax, τmax ≥ 3/2 we have
that

∥∥f − 1

4π
R∗
hϑ

(IhΛEh ⊗ I)Rf
∥∥
L2(Ω)

.
(
hmin{αmax,α} + hαϑ + hϑh

min{αmax,α−1}
)
‖f‖α, α ≥ αmin,

where αmin = max{1, βmin − 1/2}, αmax = min{αI, βmax − 1/2, τmax − 1/2},
and f ∈ Hα

0 (Ω).

The optimal sampling condition p = πq, see, e.g., Natterer [8, Ta-
ble III.1], yields the convergence rate hα as h → 0 which is optimal for
density distributions in Hα

0 (Ω), see Natterer [7] or [8, Th. IV.2.2].

Note that Theorem 3.1 reduces to (1.2) with αmax from (1.3) for our
concrete settings of Examples 2.2, 2.3, and 2.4.

Remark 3.2. In [9, Remark 4.2] Rieder and Faridani sketched a scheme
to construct interpolation operators Ih (2.4) with arbitrarily large αI. Fur-
ther, these interpolation operators are still local since A is a B-spline. Using
band-limited interpolation for Eh, that is, B(·) = sinc(π ·) and ǫ is the Dirac
distribution in (2.3), we have βmax = τmax = ∞, see [9, Th. B.4]. Thus,
one can construct efficient filtered backprojection schemes with an arbitrar-
ily large αmax. Of course, one would fully benefit from these highly accurate
filtered backprojection schemes if the searched-for density distributions are
sufficiently smooth which is not the case in medical imaging but in optical
homodyne tomography, see, e.g., Smithey et al. [13]. In optical homodyne
tomography one determines the Wigner function of the state of a quantum
system.

In the remainder of this section we verify Theorem 3.1. In view of The-
orem 2.1 we start with

‖f − fFBA‖L2(Ω) ≤
∥∥f − 1

4π
R∗(IhΛEh ⊗ I)Rf

∥∥
L2(Ω)

+
∥∥(R∗ − R∗

hϑ
)(IhΛEh ⊗ I)Rf

∥∥
L2(Ω)

(3.1)

and it remains to investigate the second error term which involves the dis-
cretization of the backprojection operator. We once again apply the triangle
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inequality and obtain
∥∥(R∗ − R∗

hϑ
)(IhΛEh ⊗ I)Rf

∥∥
L2(Ω)

≤
∥∥(R∗ − R∗

hϑ
)
(
(IhΛEh − Λ) ⊗ I

)
Rf
∥∥
L2(Ω)

(3.2)

+
∥∥(R∗ − R∗

hϑ
)(Λ ⊗ I)Rf

∥∥
L2(Ω)

.

Following we bound each of the norms on the right hand side.
As R∗

hϑ
arises from R∗ by applying the composite trapezoidal rule to the

integral in (2.1) we will rely on the following estimate for the quadrature
error.

Lemma 3.3. Let u ∈ H2k+1
p (a, b) for one k ∈ N0. Then,

∣∣∣
∫ b

a
u(t)dt− h

n−1∑

k=0

u(a+ kh)
∣∣∣ . h2k+1

∫ b

a
|u(2k+1)(t)|dt

where h = (b− a)/n and n ∈ N.
Proof. Since

{
g|[a,b] : g ∈ C2k+1(R), g is (b − a)-periodic

}
is dense in

H2k+1
p (a, b) the assertion follows for k ∈ N readily from the Euler-Maclaurin

formula [3, Cor. 9.27] and the bounded embedding H2k+1
p (a, b) →֒ C([a, b]).

For k = 0 the statement may be proved by a straightforward calculation,
see, e.g., Schneck [11].

Lemma 3.4. Let f be in Hα
0 (Ω) for α ≥ 1. Then,

∥∥(R∗ − R∗
hϑ

)(Λ ⊗ I)Rf
∥∥
L2(Ω)

. hαϑ ‖f‖α.

Proof. For the time being assume f ∈ C∞
0 (Ω). We will use a duality

argument by Natterer [6]. For g ∈ C
∞
0 (Ω) let

u(ϑ) :=

∫

Ω
g(x)Ψ(xtω(ϑ), ϑ) dx =

∫ 1

−1
Rg(s, ϑ)Ψ(s, ϑ) ds (3.3)

where Ψ = (Λ⊗I)Rf . The latter equality follows from the coordinate trans-
formation x = sω(ϑ)+ tω⊥(ϑ) 7→ (s, t). By a straightforward calculation we
find the useful relation

|〈(R∗ − R∗
hϑ

)Ψ, g〉L2 | =
∣∣∣
∫ 2π

0
u(ϑ) dϑ − hϑ

2p−1∑

j=0

u(jhϑ)
∣∣∣.

Further,

∥∥(R∗ − R∗
hϑ

)(Λ ⊗ I)Rf
∥∥
L2(Ω)

= sup
g∈C∞

0 (Ω)

|〈(R∗ − R∗
hϑ

)Ψ, g〉L2 |
‖g‖L2

= sup
g∈C∞

0 (Ω)

∣∣ ∫ 2π
0 u(ϑ) dϑ− hϑ

∑2p−1
j=0 u(jhϑ)

∣∣
‖g‖L2

.
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If we are able to bound
∫ 2π

0
|u(2k+1)(ϑ)|dϑ . ‖f‖2k+1 ‖g‖L2 , k ∈ N0, (3.4)

we have proved Lemma 3.4 via Lemma 3.3 as well as density and interpola-
tion arguments.

Since
∫ 2π

0
|u(m)(ϑ)|dϑ ≤

∫ 2π

0

∫ 1

−1

∣∣Dm
ϑ

(
Rg(s, ϑ)Ψ(s, ϑ)

)∣∣dsdϑ

≤
m∑

j=0

(
m

j

)∫ 2π

0

∫ 1

−1

∣∣(I ⊗Dm−j)Rg(s, ϑ) (Λ ⊗Dj)Rf(s, ϑ)
∣∣dsdϑ

≤
m∑

j=0

(
m

j

)
‖(I ⊗Dm−j)Rg‖H(1/2,j−m) ‖(Λ ⊗Dj)Rf‖H(−1/2,m−j)

≤
m∑

j=0

(
m

j

)
‖Rg‖H(1/2,0) ‖Rf‖H(1/2,m)

(2.9)

. 2m ‖g‖L2 ‖f‖m
estimate (3.4) as well as Lemma 3.4 hold true.

Now we handle the second error term.

Lemma 3.5. Let f be in Hα
0 (Ω). Under the assumptions of Theorem 3.1

we have
∥∥(R∗ − R∗

hϑ
)
(
(IhΛEh − Λ) ⊗ I

)
Rf
∥∥
L2(Ω)

. hϑh
min{αmax,α−1}‖f‖α.

Proof. We proceed as in the proof of Lemma 3.4. Again we benefit from
duality, density and interpolation. Let f and g be in C

∞
0 (Ω). Define u as in

(3.3), however, with

Ψ =
(
(IhΛEh − Λ) ⊗ I

)
Rf.

As in the proof of Lemma 3.4 we find that
∫ 2π

0
|u′(ϑ)|dϑ ≤ ‖(I ⊗D)Rg‖H(1/2,−1)‖Ψ‖H(−1/2,1)

+ ‖Rg‖H(1/2,0)‖(I ⊗D)Ψ‖H(−1/2,0)

≤ 2 ‖Rg‖H(1/2,0)‖Ψ‖H(−1/2,1)

. ‖g‖L2‖Ψ‖H(−1/2,1) .
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Further,

‖Ψ‖H(−1/2,1) ≤
∥∥((IhΛEh − ΛEh) ⊗ I

)
Rf
∥∥
H(−1/2,1)

+
∥∥((ΛEh − Λ) ⊗ I

)
Rf
∥∥
H(−1/2,1)

(2.7)

. hmin{αI,α−1}‖(ΛEh ⊗ I)Rf‖H(α−3/2,1)

+
∥∥((Eh − I) ⊗ I

)
Rf
∥∥
H(1/2,1)

(2.6)

. hmin{αI,α−1}‖(Eh ⊗ I)Rf‖H(α−1/2,1)

+ hmin{βmax,α−1/2}−1/2‖Rf‖H(α−1/2,1)

(2.6)

.
(
hmin{αI,τmax−1/2,α−1} + hmin{βmax−1/2,α−1}

)
‖Rf‖H(α−1/2,1)

(2.9)

. hmin{αmax,α−1}‖f‖α.

Thus, ∫ 2π

0
|u′(ϑ)|dϑ . hmin{αmax,α−1}‖g‖L2‖f‖α.

Finally,

∥∥(R∗ −R∗
hϑ

)Ψ
∥∥
L2(Ω)

= sup
g∈C∞

0 (Ω)

∣∣ ∫ 2π
0 u(ϑ) dϑ− hϑ

∑2p−1
j=0 u(jhϑ)

∣∣
‖g‖L2

. hϑ sup
g∈C∞

0 (Ω)

∫ 2π
0 |u′(ϑ)|dϑ

‖g‖L2

. hϑh
min{αmax,α−1}‖f‖α

ends the proof of Lemma 3.5.

Now Theorem 3.1 is established by (3.1), Theorem 2.1, (3.2), Lemmas 3.4
and 3.5.

Remark 3.6. Unfortunately, our convergence analysis of the FBA does
not apply to density distributions appearing in medical imaging. Image den-
sities in medical imaging can be considered elements in Hα

0 (Ω) with α < 1/2
but close to 1/2, see Natterer [8, pp. 92ff.]. Theorem 3.1, however, requires
α ≥ αmin ≥ 1. The main reason causing this lower bound on the Sobolev reg-
ularity is the error estimate for the composite trapezoidal rule (Lemma 3.3).
At present we do not know a useful estimate requiring less smoothness of the
integrand.

4. MFBA: a modified filtered backprojection algorithm. In the
representation (2.2) of the FBA we see that the Λ-operator is not discretized.
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Rather, it is applied to the continuous function (Eh ⊗ I)Rf(·, ϑj) which
interpolates or approximates the discrete Radon data with respect to the
lateral variable. We suggest an analogous approach to the angular variable,
that is, we interpolate the discrete data with respect to both variables.
Now, the Λ-operator and the backprojection operator can act exactly on
the resulting continuous bivariate function. We call the resulting numerical
scheme modified filtered backprojection algorithm (MFBA):

fMFBA(x) :=
1

4π
R∗(Ih ⊗ I)(Λ ⊗ I)(Eh ⊗ Thϑ

)Rf(x)

=
1

4π
R∗(IhΛEh ⊗ Thϑ

)Rf(x)

(4.1)

with the periodic linear interpolation

Thϑ
w(·) =

2p−1∑

j=0

w(ϑj)Chϑ
(· − ϑj)

where Chϑ
is a 2π-periodized linear B-spline. More precisely: Let C be the

linear B-spline. Then, Chϑ
(·) =

∑
k∈Z

C(·/hϑ + 2π k/hϑ).

Before we consider a numerical implementation of MFBA we prove con-
vergence with optimal rates.

4.1. Convergence of MFBA. The key for proving convergence of
MFBA is the approximation property

‖Thϑ
− I‖Hα

p (0,2π)→H−ν
p (0,2π) . hα+ν

ϑ , 1/2 + ν < α ≤ 2, (4.2)

for any 0 ≤ ν < 1/2. We will validate (4.2) below in Theorem 4.2.

Theorem 4.1. Assume (2.6) and (2.7) with βmax, τmax ≥ 1/2 and
βmin < 1. Further, let

Ih : L2(R) → L2(R) be bounded. (4.3)

Then,

∥∥f − 1

4π
R∗(IhΛEh ⊗ Thϑ

)Rf
∥∥
L2(Ω)

.
(
hmin{α,αmax} + h

min{α,αT}
ϑ

)
‖f‖α

for α > αmin = 1/2 + 2max{0, βmin − 1/2} where αmax = min{αI, βmax −
1/2, τmax − 1/2} and any αT < 5/2.

Proof. We will need that

Ih : H−1/2+ν(R) → H−1/2+ν(R) is a bounded operator (4.4)

which follows from (2.7) and (4.3) via interpolation.
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We start with

∥∥f − 1

4π
R∗(IhΛEh ⊗ Thϑ

)Rf
∥∥
L2

≤
∥∥f − 1

4π
R∗(IhΛEh ⊗ I)Rf

∥∥
L2 +

∥∥R∗
(
IhΛEh ⊗ (Thϑ

− I)
)
Rf
∥∥
L2

. hmin{α,αmax}‖f‖α +
∥∥R∗

(
IhΛEh ⊗ (Thϑ

− I)
)
Rf
∥∥
L2 ,

the last estimate being due to Theorem 2.1. Bounding the remaining error
term is basically straightforward. Under max{0, βmin − 1/2} ≤ ν < 1/2 we
find that

∥∥R∗
(
IhΛEh ⊗ (Thϑ

− I)
)
Rf
∥∥
L2

(2.9)

.
∥∥(IhΛEh ⊗ (Thϑ

− I)
)
Rf
∥∥
H(−1/2+ν,−ν)

(4.4)

.
∥∥(ΛEh ⊗ (Thϑ

− I)
)
Rf
∥∥
H(−1/2+ν,−ν)

.
∥∥(Eh ⊗ (Thϑ

− I)
)
Rf
∥∥
H(1/2+ν,−ν)

(2.6)

.
∥∥(I ⊗ (Thϑ

− I)
)
Rf
∥∥
H(1/2+ν,−ν)

(4.2)

. hαϑ‖Rf‖H(1/2+ν,α−ν)

(2.9)

. hαϑ‖f‖α

where both latter estimates require that 1/2+2ν < α ≤ 2+ν. Now we have
the freedom to choose ν in the admissible range. Choosing ν = αT−2 yields
1/2 + 2(αT − 2) < α ≤ αT. On the other hand, by ν = max{0, βmin − 1/2}
we obtain 1/2+2max{0, βmin − 1/2} < α ≤ 2+max{0, βmin − 1/2}. Hence,

∥∥R∗
(
IhΛEh ⊗ (Thϑ

− I)
)
Rf
∥∥
L2 . hαϑ‖f‖α

for 1/2 + 2max{0, βmin − 1/2} < α ≤ αT < 5/2.

As a consequence of the above theorem the error estimate (1.4) holds
true since the corresponding operators Ih satisfy (4.3), see [9] or [11] for
more details.

We complete the present section by finally verifying the approximation
property (4.2).

Theorem 4.2. For any 0 ≤ ν < 1/2 we have that

‖u− Thϑ
u‖H−ν

p (0,2π) . hα+ν
ϑ ‖u‖Hα

p (0,2π), 1/2 + ν < α ≤ 2. (4.5)

Proof. We first show the estimate for α ∈ [1, 2]. Let ϕ1 ∈ C∞
0 (0, 2π) and

ϕ2 ∈ C
∞
p (0, 2π) with τπϕ2 = ϕ2(· − π) ∈ C

∞
0 (0, 2π) such that ϕ1 + ϕ2 = 1 ∈
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C
∞
p (0, 2π) (partition of unity).∗∗ Then,

‖u− Thϑ
u‖H−ν

p (0,2π) = ‖(I − Thϑ
)(ϕ1u+ ϕ2u)‖H−ν

p (0,2π)

≤ ‖(I − Thϑ
)(ϕ1u)‖H−ν

p (0,2π)

+ ‖(I − Thϑ
)(ϕ2u)‖H−ν

p (0,2π)

. ‖(I − Thϑ
)(ϕ1u)‖H−ν

0 (0,2π)

+ ‖((I − Thϑ
)(ϕ2u))

∗|(π,3π)‖H−ν
0 (π,3π),

where w∗ denotes the 2π-periodic extension to R of w ∈ Hβ
p (0, 2π), β ∈ R.

Suppose we are able to show that

‖u− Thϑ
u‖H−ν

0 (0,2π) . hα+ν
ϑ ‖u‖Hα

0 (0,2π), 1 ≤ α ≤ 2, (4.6)

then

‖u− Thϑ
u‖H−ν

p (0,2π) . hα+ν
ϑ

(
‖ϕ1u‖Hα

0 (0,2π) + ‖(ϕ2u)
∗|(π,3π)‖Hα

0 (π,3π)

)

= hα+ν
ϑ

(
‖ϕ1u‖Hα

0 (0,2π) + ‖τπ(ϕ2u)‖Hα
0 (0,2π)

)

. hα+ν
ϑ ‖u‖Hα

p (0,2π), 1 ≤ α ≤ 2.

On the other hand, from [9, Theorem A.2] we know that

‖u− Thϑ
u‖L2(0,2π) . hαϑ‖u‖Hα

p (0,2π), 1/2 < α ≤ 2.

Hence, we are able to deduce (4.5) by an interpolation argument.
Accordingly, we only need to validate (4.6) to establish Theorem 4.2.

We begin with the simple triangle inequality

‖v − Thϑ
v‖H−ν

0 (0,2π) ≤ ‖v − T̃hϑ
v‖H−ν

0 (0,2π) + ‖T̃hϑ
v − Thϑ

v‖H−ν
0 (0,2π) (4.7)

where T̃hϑ
is the following auxiliary approximation operator

T̃hϑ
w := h−1

ϑ

2p−1∑

j=0

〈w,Chϑ
(· − ϑj)〉Chϑ

(· − ϑj), w ∈ L2(0, 2π).

For the left summand in (4.7) we find that

‖v − T̃hϑ
v‖H−ν

0 (0,2π) = sup
w∈Hν(R)

|〈v − T̃hϑ
v,w〉|

‖w‖ν
= sup

w∈Hν(R)

|〈v,w − T̃hϑ
w〉|

‖w‖ν

≤ ‖v‖L2(0,2π) sup
w∈Hν(R)

‖w − T̃hϑ
w‖L2(R)

‖w‖ν
(4.8)

. hνϑ‖v‖L2(0,2π)

∗∗Note that |||w||| = ‖ϕ1w‖Hα

0
(0,2π) + ‖τπ(ϕ2w)‖Hα

0
(0,2π) yields a norm on Hα

p (0, 2π)
being equivalent to the standard norm defined via Fourier coefficients, see, e.g., Lions and
Magenes [4, Chap. 1.7].
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where the last bound is due to [9, Theorem A.2]. We proceed with the right
summand of (4.7):

‖T̃hϑ
v − Thϑ

v‖H−ν
0 (0,2π) = sup

w∈Hν(R)

|〈T̃hϑ
v − Thϑ

v,w〉|
‖w‖ν

. (4.9)

Since T̃hϑ
v − Thϑ

v = h−1
ϑ

∑2p−1
j=0 〈v − v(ϑj), Chϑ

(· − ϑj)〉Chϑ
(· − ϑj) we have

|〈T̃hϑ
v − Thϑ

v,w〉| ≤
2p−1∑

j=0

| 〈v − v(ϑj), h
−1
ϑ Chϑ

(· − ϑj)〉︸ ︷︷ ︸
=: Lj(v)

| |〈Chϑ
(· − ϑj), w〉|.

We next study the linear functional Lj . For v ∈ H1(ϑj−1, ϑj+1) we bound

|Lj(v)| ≤
ϑj+1∫

ϑj−1

|v(ϑ) − v(ϑj)|h−1
ϑ Chϑ

(ϑ− ϑj) dϑ ≤ 2‖v‖L∞(ϑj−1,ϑj+1).

Further, Lj(P ) = 0 for any constant P and there is a constant P = P (v)
such that the Bramble-Hilbert like estimate

‖v − P‖L∞(ϑj−1,ϑj+1) . h
1/2
ϑ ‖v‖H1(ϑj−1,ϑj+1)

holds true, see, e.g., Brenner and Scott [2, Proposition 4.3.2]. Combining
our findings we have

|Lj(v)| = |Lj(v − P )| . ‖v − P‖L∞(ϑj−1,ϑj+1) . h
1/2
ϑ ‖v‖H1(ϑj−1,ϑj+1),

so that, for v ∈ H1
0 (0, 2π),

|〈T̃hϑ
v − Thϑ

v,w〉|

. h
1/2
ϑ

2p−1∑

j=0

‖v‖H1(ϑj−1,ϑj+1) ‖Chϑ
(· − ϑj)|[ϑj−1,ϑj+1]‖−ν︸ ︷︷ ︸

.h
1/2+ν
ϑ (Lem.4.3 below)

‖w‖Hν (ϑj−1,ϑj+1)

. h1+ν
ϑ

(
2p−1∑

j=0

‖v‖2
H1(ϑj−1,ϑj+1)

)1/2( 2p−1∑

j=0

‖w‖2
Hν (ϑj−1,ϑj+1)

)1/2

. h1+ν
ϑ ‖v‖1‖w‖ν .

The latter estimate together with (4.9) results in

‖T̃hϑ
v − Thϑ

v‖H−ν
0 (0,2π) . h1+ν

ϑ ‖v‖1, v ∈ H1
0 (0, 2π),

which in combination with (4.7) and (4.8) implies that

‖v − Thϑ
v‖H−ν

0 (0,2π) . hνϑ‖v‖L2(0,2π) + h1+ν
ϑ ‖v‖1, v ∈ H1

0 (0, 2π).
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For u ∈ Hα
0 (0, 2π), 1 ≤ α ≤ 2, set v := u − Thϑ

u ∈ H1
0 (0, 2π). Note that

v − Thϑ
v = u− Thϑ

u. Finally, (4.6) is established by

‖u− Thϑ
u‖H−ν

0 (0,2π) = ‖v − Thϑ
v‖H−ν

0 (0,2π) . hνϑ‖v‖L2(0,2π) + h1+ν
ϑ ‖v‖1

= hνϑ‖u− Thϑ
u‖L2(0,2π) + h1+ν

ϑ ‖u− Thϑ
u‖1

. hα+ν
ϑ ‖u‖α

where in the last step we once more applied Theorem A.2 of [9]. Thus,
Theorem 4.2 is completely verified.

Lemma 4.3. To any 0 ≤ ν < 1/2 there is a constant c = c(ν) such that

‖Chϑ
|[hϑ,hϑ]‖−ν ≤ c(ν)h

1/2+ν
ϑ .

Proof. We have

‖C2hϑ
|[2hϑ,2hϑ]‖2

−ν

=

∫

R

(1 + |σ|2)−ν |Ĉ2hϑ
(σ)|2 dσ = 4h2

ϑ

∫

R

(1 + |σ|2)−ν |Ĉ(2hϑσ)|2 dσ

= 4
√

2πh2
ϑ

∫

R

(1 + |σ|2)−ν |sinc2(hϑσ)|2 dσ

= 4
√

2πh2
ϑ

( h−1
ϑ∫

−h−1
ϑ

(1 + |σ|2)−ν |sinc2(hϑσ)|2︸ ︷︷ ︸
≤1

dσ

+

∫

R\[−h−1
ϑ ,h−1

ϑ ]

(1 + |σ|2)−ν |sinc2(hϑσ)|2︸ ︷︷ ︸
≤(hϑσ)−4

dσ

)

≤ 4
√

2πh2
ϑ

( h−1
ϑ∫

−h−1
ϑ

|σ|−2ν dσ

︸ ︷︷ ︸
= 2

1−2ν
h2ν−1

ϑ

+h−4
ϑ

∫

R\[−h−1
ϑ ,h−1

ϑ ]

|σ|−2ν−4 dσ

︸ ︷︷ ︸
= 2

2ν+3
h2ν+3

ϑ

)

= 8
√

2π

(
1

1 − 2ν
+

1

2ν + 3

)
h1+2ν
ϑ .

Thus, c(ν) = 22−ν
√√

2π
(

1
1−2ν + 1

2ν+3

)
.
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4.2. Implementation of MFBA. We discuss some aspects concern-
ing the numerical evaluation of fMFBA(x), see (4.1). Define Φ := 1

4π (IhΛEh⊗
I)Rf . Then,

Φ(s, ϑ) =
∑

k∈Z

gk(ϑ)Ah(s − sk)

where

gk(ϑ) =
1

4π
h−1〈(ΛEh ⊗ I)Rf(·, ϑ), ηh(· − sk)〉

are the filtered Radon data, compare (2.5). We obtain

fMFBA(x) =
1

4π
R∗(IhΛEh ⊗ Thϑ

)Rf(x) =

∫ 2π

0
(I ⊗ Thϑ

)Φ(xtω(ϑ), ϑ) dϑ

=

∫ 2π

0

2p−1∑

j=0

Φ(xtω(ϑ), ϑj)Chϑ
(ϑ− ϑj) dϑ

=

∫ 2π

0

2p−1∑

j=0

∑

k∈Z

gk(ϑj)Ah(x
tω(ϑ) − sk)Chϑ

(ϑ − ϑj) dϑ

=
∑

k∈Z

2p−1∑

j=0

gk(ϑj)

∫ 2π

0
Ah(x

tω(ϑ) − sk)Chϑ
(ϑ − ϑj) dϑ.

Observe that fMFBA(0) = fFBA(0).
To reduce the notational burden we introduce the abbreviation

I(s, ψ, x) =

∫ 2π

0
Ah(x

tω(ϑ) − s)Chϑ
(ϑ− ψ) dϑ.

Since gk(ϑj) = g−k(ϑj+p) as well as I(sk, ϑj, x) = I(s−k, ϑj+p, x) we have
that

fMFBA(x) = 2
∑

k∈Z

p−1∑

j=0

gk(ϑj)I(sk, ϑj , x).

It remains to compute the integrals I(sk, ϑj , x). A straightforward calcula-
tion gives that (x 6= 0)

I(sk, ϑj, x) = I(sk, ϑj − arg(x), |x|ω(0)).††

Thus, we only need to evaluate integrals like

I(sk, ψ, rω(0)) =

∫ ψ+hϑ

ψ−hϑ

Ah(r cos(ϑ) − sk)Chϑ
(ϑ − ψ) dϑ.

For A = 1[−1/2,1/2] and A = 1[−1/2,1/2] ⋆ 1[−1/2,1/2] an explicit computation
of the above integrals can be found in [11]. Please note that most of the

††arg(x) denotes the angle in the polar representation of x ∈ R2\{0}: x = |x|ω(arg(x)).
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integrals are zero and do not need to be computed. For instance, if A =
1[−1/2,1/2] ⋆ 1[−1/2,1/2] then

[
min Θ(ψ, h),max Θ(ψ, h)

]
∩
[
sk−1

r
,
sk+1

r

]
= ∅ =⇒ I(sk, ψ, rω(0)) = 0

where Θ(ψ, h) = cos([ψ − h, ψ + h]).

Remark 4.4. In principle, the band matrix M(x) = {I(sk, ϑj , x)}k,j
can be precomputed and stored as its entries only depend on the scanning
geometry and the reconstruction points where M(−x)k,j = M(x)−k,j. More-
over, the bandwidth of M does neither depend on h nor on hϑ and it is
bounded for |x| ≤ 1. Therefore, MFBA is only slightly more expensive than
FBA if the sparse matrices M are precomputed. In our numerical experi-
ments in the following section we however computed the non-zero entries of
M on-the-fly.

5. Numerical illustrations. Numerical experiments illustrating the
convergence orders of FBA (Theorem 3.1) under the optimal sampling con-
dition p = πq can already be found in [9, Sect. 6]. Further experiments are
reported in [11]. We therefore concentrate on experiments highlighting the
different convergence behaviors of both algorithms in the lateral and angular
variables. Additionally, we compare FBA with MFBA qualitatively.

First we demonstrate that the error term of FBA behaving like hαϑ does
indeed not saturate, see (1.2). To this end, we reconstruct a function f ∈
H

5/2
0 (Ω) from discrete data D, see (1.1), with q = ⌊p5/3⌋ using the Shepp-

Logan filter with piecewise constant interpolation (αmax = 3/2). From (1.2)
we expect the convergence rate p−5/2 as p→ ∞.

As density distribution f we use

f(x) :=

3∑

k=1

dk P
(
Uk(x− bk)

)
(5.1)

where P (x) = (1 − |x|2)2.01, |x| ≤ 1, and P (x) = 0, otherwise, and d1 = 1,
d2 = −1.5, d3 = 1.5, and b1 = (0.22, 0)t, b2 = (−0.22, 0)t, b3 = (0, 0.2)t.
Further, Uk = U(ϕk, δk, γk), k = 1, 2, 3, with

U(ϕ, δ, γ) :=

(
cos(ϕ)/δ sin(ϕ)/δ

− sin(ϕ)/γ cos(ϕ)/γ

)

and

δ1 = 0.51, γ1 = 0.31, ϕ1 = 72π/180,

δ2 = 0.51, γ2 = 0.36, ϕ2 = 108π/180,

δ3 = 0.5, γ3 = 0.8, ϕ3 = π/2.
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Shepp−Logan, constant
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Fig. 5.1. The relative L2-errors e
`

⌊p5/3⌋, p
´

(5.2) for reconstructing f (5.1) by FBA
using the Shepp-Logan filter with nearest neighbor interpolation. The auxiliary solid line
indicates exact decay p−5/2.

Note that f ∈ Hα
0 (Ω) for any α < 2.51. For a graphical representation of

f see [9, Fig. 2]. The Radon transform of f can be computed analytically.
From discrete Radon data we reconstructed

fFBA,q,p(x) =
1

4π
R∗
π/p(I1/qΛE1/q ⊗ I)Rf(x), x ∈ X,

on the grid X := Ω ∩ {(i/100, j/100) : −100 ≤ i, j ≤ 100}. Now we define
the relative L2-reconstruction error by

e(q, p) :=
(∑

x∈X

(
fFBA,q,p(x) − f(x)

)2/∑

x∈X

f(x)2
)1/2

. (5.2)

In Figure 5.1 we plotted e
(
⌊p5/3⌋, p

)
for p ∈ {5l : l = 1, . . . , 14}. Its decay

O(q−5/2) complies exactly with the prediction by (1.2).

Next we illustrate that the convergence order of MFBA in the angular
variable may exceed the order in the lateral variable. Let f from (5.1) be
reconstructed by

fMFBA,q,p(x) =
1

4π
R∗(I1/qΛE1/q ⊗ Tπ/p)Rf(x), x ∈ X,

with Shepp-Logan filter and nearest neighbor interpolation (αmax = 3/2)
where p = ⌊3q3/5⌋. In view of (1.4) we expect an error decay rate like
q−3/2+ǫ for any ǫ > 0 which we indeed observe in Figure 5.2.

Finally, we compare both algorithms. We computed relative L2-errors
for the reconstruction of different test objects (e.g. the functions from (5.1)
and Figure 5.3) for increasing q and p = 3q. It turned out that FBA and
MFBA are practically identical in terms of L2-errors, see Figure 5.6. This
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Fig. 5.2. The relative L2-errors e
`

q, ⌊3q3/5⌋
´

(5.2) with f from (5.1) and fFBA,q,p

replaced by fMFBA,q,p (Shepp-Logan filter and nearest neighbor interpolation). The aux-
iliary solid line indicates exact decay q−3/2.

Fig. 5.3. Superposition of indicator functions of two rectangles.

observation remains true when artificial noise corrupts the data. As the L2-
norm is known not to comply well with the human perception of images we
inspected reconstructions visually: Near to edges and vertices we found the
artifacts of MFBA less pronounced than those of FBA. For a typical example
we reconstruct the function displayed in Figure 5.3 being a superposition of
indicator functions of two rectangles (For an analytical description see [9,
Sec. 6]).

In Figures 5.4 and 5.5 we show close-ups of the reconstructions by FBA
and MFBA, respectively. Both reconstructions are based on the Shepp-
Logan filter with piecewise linear interpolation where q = 50 and p = 150.
MFBA clearly produces less artefacts which are, moreover, less severe. Ac-
cordingly the regions of constant gray values appear more homogeneous,
however, at the price of blurred edges.
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Fig. 5.4. Close-up of the reconstruction by FBA of the function from Figure 5.3
(Shepp-Logan filter, piecewise linear interpolation, q = 50, p = 150).

Fig. 5.5. Close-up of the reconstruction by MFBA of the function from Figure 5.3
(Shepp-Logan filter, piecewise linear interpolation, q = 50, p = 150).



20 A. RIEDER AND A. SCHNECK
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q=1/h

 

 

MFBA, BV−norm

FBA, BV−norm

MFBA, L2−norm

FBA, L2−norm

Fig. 5.6. Quantitative comparison of FBA and MFBA with respect to the BV- and
L2-norm. The underlying function is from Figure 5.6. Solid line with �: rel. BV-error of
MFBA, solid line with ◦: rel. L2-error of MFBA. Dashed line with ⋆: rel. BV-error of
FBA, dashed line with △: rel. L2-error of FBA.

Within the image processing community the norm of bounded variation,

‖f‖BV :=

∫

Ω
|f(x)|dx+

∫

Ω
|∇f |,

is considered a measure for comparing images which is almost as sensitive as
the human eye: Both, errors in edges and noise, result in a large BV-norm.

Figure 5.6 displays the relative BV- and L2-errors for reconstructing the
function of Figure 5.3 from discrete data where q ∈ {25, 50, 75, 100, 125, 150,
175, 200} and p = 3q. Both algorithms, FBA and MFBA, rely on the Shepp-
Logan filter with piecewise linear interpolation. While FBA and MFBA pro-
duce virtually identical L2-errors, the corresponding BV-errors differ slightly.
MFBA outperforms FBA with respect to both error measures. Interestingly,
the BV-errors decay faster than the L2-errors, roughly like O(q−3/4). So far,
we have no analytic explanation for this numerically observed order of decay.
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