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Abstract 

 

 The main focus of this study is to investigate the interfacial behaviour in liquid 

Ga-Bi and Ga-Pb alloys in a wide temperature range. For this purpose methods of X-ray 

photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and scanning 

tunnelling microscopy (STM) were mainly utilized. The systems under consideration can 

be characterized by an ultra-thin wetting film for temperatures above the surface freezing 

point. In general, a surface active component, which has a lower value of the surface 

tension, segregates at the liquid-vapour interface and thus decreases the overall surface 

energy of the system. The quantitative characterization of this phenomenon is essential 

from both a theoretical and experimental point of view. The dependences of the wetting 

film thickness on temperature and bulk concentration of the surface active component 

have been studied. The results are in good agreement with model calculations, which 

predict the increase of the wetting film thickness with decreasing temperature. 

 A surface phase transition characterized by the formation of a surface freezing 

(SF) film was studied in both Ga-Bi and Ga-Pb systems. Samples with different 

concentrations of the surface active component between eutectic and monotectic points 

were investigated. The formation of the SF films on cooling was systematically observed 

at temperatures above the corresponding temperature of the bulk liquidus line, according 

to the bulk phase diagram. Thickness and homogeneity of the SF films were investigated 

in detail. The behaviour of the SF films in the Ga-Bi and Ga-Pb systems has been found 

to be similar, showing however some differences. The distinguishable features comprise 

the stability of the films after formation and the magnitude of the Ga signal in the XPS 

spectra. The latter feature i.e. the higher intensity of the Ga peak for the Ga-Pb system 

can be interpreted either as a smaller thickness of the corresponding SF films, or as higher 

concentration of Ga in the film. Overlayer (or slab) models with constant or variable 

composition of the film were applied for the quantitative interpretation of the results from 

the electron spectroscopy. Assuming a homogeneous film of pure Pb a thickness of the 

SF film in Ga-Pb system of ~20 Å is estimated for temperatures slightly below the surface 

freezing temperature. In the case of Ga-Bi this thickness seems to be above 100 Å. 

 For the first time the instability of the SF films in Ga-Pb systems was observed at 

constant temperature and at slow (< 3 K/h) cooling rates. The formation of the islands of 
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the liquid phase and other defects was detected with a CCD-camera. When islands form a 

further increase of the Ga-signal in the XPS spectra is observed. For a quantitative 

description of the system with defects a modification of the overlayer model is proposed, 

which takes into account an incomplete coverage of the surface with a SF film.  

 Additional information about the atomic structure of the films quenched to room 

temperature was obtained from STM measurements. These measurements reveal 

extraordinary large, atomically flat terraces, which were found to be much larger in 

comparison to those typically found in pure materials (Bi and Pb). An analysis of the 

interatomic distances from the STM images with atomic resolution demonstrates that the 

utmost surface layers consists of the pure surface active component with a basal trigonal 

plane (0001) in the case of Bi and a hexagonally orientated (111) plane for Pb. 
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Zusammenfassung 

 

 Hauptzielsetzung dieser Arbeit war, die Grenzflächeneigenschaften von flüssigen 

Ga-Bi und Ga-Pb Legierungen in einem breiten Temperaturintervall aufzuklären. Hierzu 

wurden die Methoden der Röntgen-Photoelektronen Spektroskopie (XPS), Auger-

Elektronen Spektroskopie (AES) sowie Rastertunnelmikroskopie (STM) eingesetzt. Die 

gemeinsame charakteristische Eigenschaft von den untersuchten Systemen ist die Bildung 

von ultradünnen Benetzungsfilmen bei Temperaturen oberhalb des 

Oberflächenerstarrungspunktes. Dabai gilt allgemein, dass die Komponente mit kleiner 

Oberflächenspannung sich an der flussig-dampf Grenzfläche konzentriert, so dass die 

totale Oberflächenenergie des Systems abgesenkt wird. Die quantitative 

Charakterisierung dieses Phänomens ist wichtig sowohl vom theoretischen Standpunkt als 

auch für den Experimentator. Die Abhängigkeit der Dicke der Benetzungsfilme von 

Temperatur und Konzentration der oberflächenaktiven Komponente im Volumen wurde 

bei Annährung an die Liquiduskurve untersucht. Die Ergebnisse stimmen mit 

Modellrechnungen überein, die einen leichten Anstieg der Filmdicke mit abnehmender 

Temperatur voraussagen. 

 Die Bildung von Oberflächenerstarrungsfilmen wurde in beiden Systemen, Ga-Bi 

und Ga-Pb, analysiert, wobei die untersuchten Konzentrationen den Bereich zwischen den 

eutektischen und den monotektischen Zusammensetzungen abdecken. Die Abweichung 

der Oberflächenerstarrungstemperatur von der entsprechenden Liquidustemperatur, die 

aus den Phasendiagrammen entnommen wurde, kann systematisch nachgewiesen werden. 

Dicke und Homogenität der Filme wurden ausführlich erforscht. Das Verhalten der Filme 

in Ga-Bi und Ga-Pb Systemen wurde als ähnlich charakterisiert, jedoch wurden einige 

quantitative Differenzen beobachtet. Die Unterschiede liegen vor allem in der Stabilität 

der Filme und in der Größe des Ga-Signals im XPS Spektrum. Die höhere Intensität des 

Ga-Peaks in Ga-Pb kann entweder als kleinere Dicke des entsprechenden 

Oberflächenerstarrungsfilmes oder als höhere Ga Konzentration im Film interpretiert 

werden. Schichtmodelle mit konstanter oder variabler Filmzusammensetzung wurden für 

die quantitative Darstellung der Ergebnisse aus der Elektronen Spektroskopie verwendet. 

Unter den Annahmen, dass der Film homogen ist und aus reinem Pb besteht, wird ein 

Wert von ~20 Å für die Dicke des erstarrten Filmes in der unmittelbaren Nähe unterhalb 



4 

des Oberflachenerstarrungspunktes gefunden. In Ga-Bi dagegen scheinen die Filme mehr 

als 100 Å dick zu sein. 

 Zum ersten Mal wurde eine Instabilität der erstarrten Filme in Ga-Pb beobachtet. 

Dies geschieht, wenn die flüssigen Legierungen bei konstanter Temperatur gehalten oder 

langsam (< 3 K/Stunde) abgekühlt werden. Die Bildung von Inseln und anderen 

Defekten, die aus der flüssigen Phase bestehen, wurden mithilfe einer CCD-Kamera 

aufgezeichnet. Solche Transformationen führen zum Anstieg des Ga-Signals im XPS 

Spektrum. Für die quantitative Beschreibung der Oberfläche mit Inseln wurde das 

Schichtmodell modifiziert, um die nicht vollständige Bedeckung der Oberfläche zu 

berücksichtigen. 

 Zusätzliche Information über die atomare Struktur der festen Filme, die bis 

Raumtemperatur abgekühlt worden sind, konnte mit STM Messungen gewonnen werden. 

Diese Experimente zeigten, dass die Oberfläche aus sehr großen und atomar flachen 

Terrassen besteht, die viel größer sind als die, die man üblicherweise in reinen Metallen 

(Bi und Pb) erhält. Die Analyse der STM-Bilder mit atomarer Auflösung weist darauf 

hin, dass die äußersten Grenzschichten aus reinem Bi (basale trigonale (0001)-

Orientierung) oder Pb (hexagonale (111)-Orientierung) bestehen. 
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Chapter 1. 

 

1. Introduction 
 

 Surfaces and interfaces start to play a crucial role when dimensions of the objects 

under consideration are decreased. The availability of the methods and instruments which 

can cope with objects on the nanometre scale gives rise for such disciplines as 

nanoscience and nanotechnology. The number of publications in this field has 

dramatically increased in the last 15 years [1, 2]. Some fundamental problems such as 

phase formation and phase transition in reduced dimensions (2D) are not completely 

studied as yet. Both experimental and theoretical efforts help to understand these 

phenomena in details. 

 The phenomena of surface melting [3, 4] and roughening phase transitions, both of 

which are characterized by the suppression of long-range order interactions near the free 

interface, are common meanwhile. In this case the surface phase is less ordered than the 

bulk phase. This phenomenon has been studied for a variety of metals and molecular 

crystals [5-7]. In particular it has been studied thoroughly on ice [8-12]. 

 In contrast to the surface melting, the situation where a highly ordered surface 

phase is in equilibrium with a less ordered bulk and vapour is rather rare [13]. This 

phenomenon is referred to as surface freezing (SF). It has been studied so far mainly for 

alkanes both experimentally and theoretically [14]. 

 Understanding of the phenomena of surface freezing and surface melting is very 

important not only from the theoretical point of view. They influence many everyday 

processes. For example, interfacial melting may promote the sintering of solid particles 
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and the flow of glaciers [15]. The inverse process of interfacial freezing is likely to 

influence viscoelastic properties of lubricating films and the properties of liquids flowing 

through ultra-narrow restrictions [16, 17]. 

 The majority of the reported evidences of the SF transition have been observed in 

long-chain alkanes (CnH2n+2 with 14 < n < 50) and their mixtures [18-21]. It was found 

that a solid monolayer is formed on the surface of the solid in a small temperature interval 

above the bulk solid-liquid transition. The monolayer consists of hexagonally oriented, 

stretched (trans-configuration) alkane chains which are oriented normal, or slightly tilted 

with respect to the normal, to the surface. Only a single solid monolayer exists in the 

temperature range between the surface and bulk freezing points and no evidence for the 

gradual growth of the surface ordered phase approaching the temperature of the bulk 

transition has been found. 

 Besides alkanes, SF transitions have been observed so far in liquid crystals [22-

25], alcohols [26-30], diols [31], semi-fluorinated alkanes [32] and mixtures of those 

substances [33]. All these systems contain relatively large, long-chain molecules. 

 The surface freezing phenomenon in metallic systems, characterized by short-

range screened Coulomb interactions, has not been studied so intensively in comparison 

to the previously mentioned systems. Confirmation for the SF transition was reported so 

far only for three systems1: Ga-Bi [34], Ga-Pb [35] and Ga-Tl [36]. The first two systems 

have been investigated in our group by means of SHG and plasma generation methods 

[34, 37, 38], surface light scattering [39, 40] as well as by ellipsometry [36, 41]. The SF 

transition was detected for the entire range of concentrations between the respective 

eutectic and monotectic points. All three methods are very sensitive for the structural 

changes on the surface. Precise temperature measurements reveal that the appearance of 

the solid-like film can be observed several degrees above the solid-liquid coexistence 

line. This systematic difference between the temperatures of surface and bulk freezing 

amounts ~12K for the composition near to the eutectic point in the Ga-Bi system and 

decreases for the higher Bi concentrations [34].  

 These experimental studies certainly help to understand many aspects of the SF 

phenomenon, but a number of questions remain open. For instance, there is no 

quantitative information about the thickness and chemical composition of the SF films in 

                                                 
1  There are also some experimental evidences of the SF transition for the Au-Si system. It was intensively 
investigated in the group of P. Pershan using X-ray reflectivity and grazing incidence diffraction 
experiments [42]. 
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the systems mentioned above. The dependence of the film thickness on temperature and 

cooling rate as well as the thermodynamic stability of the SF films are unknown. The aim 

of this study is to solve some of these problems. 

 Basic description of the X-ray photoelectron spectroscopy (XPS) – the primary 

technique of this work – is given in Ch. 3.1.1 and 3.1.2. This method is used widely in the 

surface science. Besides high surface sensitivity XPS has another important advantage: 

the information about chemical composition of the utmost surface layers is directly 

available from the XPS spectra. In case when the surface is covered by a film, 

determination of its thickness requires a model of the interface. The overlayer (or slab) 

model describing the system as a homogeneous, uniformly thick film, consisting of pure 

Bi or Pb, which covers the bulk (pure Ga), is given in Ch. 3.1.3. This model appeared to 

be appropriate for wetting films, while the model with variable chemical composition of 

the film has been successfully applied for surface freezing films in the Ga-Pb system. The 

discussion in Ch. 6.1 provides a comparison of different models. 
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Chapter 2. 

 

Interfacial phenomena 

 

2.1 Wetting transition 

 

 The simplest illustration of wetting phenomenon is that a liquid droplet on a solid 

substrate (Fig. 2.1) Depending on the nature of the droplet and substrate, temperature and 

other parameters of the system one can distinguish three possible wetting states: 

1) Θ = 180° - complete drying (non-wet state): liquid does not cover substrate at all. 

2) 0° < Θ < 180° - partial wetting: substrate is partially covered by liquid. The less 

the angle Θ, the more is the contact area liquid-substrate. 

3) Θ = 0° - complete wetting: substrate is totally covered by liquid film. 

 

The balance of forces shown in the Fig. 2.1b can be expressed by the Young’s equation: 

 

vapourliquid

liquidsolidvapoursolid

−

−− −
=Θ

σ
σσ

cos     (2.1) 

 

where σ is the surface free energy and Θ is the contact angle. Variation of the 

thermodynamic conditions of the system results in changes of the wetting state, for 

example, from partial to complete wetting. This transformation is known as a wetting 

transition. Complete wetting is characterized by a uniformly distributed liquid film, which  
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Fig. 2.1 Possible states of wetting for a liquid droplet on a solid substrate: 
(a) complete drying, Θ = 180°, (b) partial wetting 0° ≤ Θ ≤ 180°, forces in 
equilibrium are shown with arrows, (c) complete wetting Θ = 0°. 

 

covers the substrate1. In order to estimate the thickness of the wetting film we first 

consider a binary liquid mixture exhibiting a miscibility gap with an upper critical point 

(see also [43]). The bulk phase diagram of such a system is shown in Fig. 2.2. It is 

necessary to introduce the variable of surface adsorption (or surface excess), which is 

defined as: 

 

A

NN bulk
i

total
i

i

−≡Γ      (2.2) 

 

where Ni is the number of atoms of sort i, A is the area. Γ > 0 for a surface active 

component. The theory then predicts the behaviour of the surface adsorption as function 

of temperature T or chemical potential ∆µ. Two paths are of particular interest: 

1) Path Nr. 1. Temperature is increased along the coexistence line (Fig. 2.2, inset 1). 

For T < Tw ΓA increases continuously and diverges at Tw this is called a critical 

wetting transition. The second possible scenario is characterized by finite (low) ΓA 

for all T < Tw. Then at T = Tw it jumps to infinity (for infinitely large systems). 

The phenomenon is called a first order wetting transition. 

2) Path Nr. 2. Concentration of component A is increased at constant temperature. In 

this case ΓA undergoes a discontinues but finite (microscopic) change when it 

crosses the prewetting line and then diverges continuously at the coexistence 

curve. This is known as a complete wetting transition. 

                                                 
1 The theory can be also applied to the liquid substrate with minimal restriction: the shape of the interface 
will be deformed under influence of the gravity force for the non-wet and partially wet states. Complete 
wetting for the liquid substrate is similar to the solid one – the interface appears to be flat. 

b) a) c)

σ  sl

θ 

σ  lv 

σ  sv 
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Fig. 2.2 Schematic phase diagram of a binary liquid mixture with a 
miscibility gap. Prewetting line (dashed) joins wetting (Tw) and critical 
prewetting (Tcpw) points. Two paths of changing the wetting behaviour 
and surface excess ΓA are considered: 1. – behaviour of ΓA along the 
coexistence line at increasing temperature. It represents a first order 
wetting transition. 2. – behaviour of ΓA approaching coexistence line at 
constant temperature and different chemical potentials, which is related to 
concentration. ∆µ is the chemical potential difference with respect to that 
at coexistence. 

 

Both described phenomena – divergence of the surface excess ΓA at a first order and a 

complete wetting transition – imply for an infinitely large system formation of infinitely 

thick wetting films since the surface excess ΓA can be assumed to be proportional to the 

wetting film thickness. For real systems this means that macroscopically thick films are 

formed. Thin wetting films that correspond to low values of ΓA are of special interest for 

this study.  

 For a quantitative description of the films various theoretical approaches of 

statistical thermodynamics have been developed [44-46]. Understanding of wetting 

phenomena was considerably advanced by the so-called van der Waals theory. A central 

role in this theory plays the effective interfacial potential Ωeff, which is derived from 

grand canonical potential Ω. The attractive parts of the interactions are treated in mean-

field approximation, so that one obtains the following expression for two coexisting 

phases α and β in contact with substrate γ [44]: 
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)(),,( ddTdeff ωµσσµ αγαβ −∆++=Ω    (2.3) 

 

where ∆µ is the deviation of the chemical potential relative to that at coexistence, σαβ and 

σαγ are the surface free energies (β denotes the non-wetting phase). The term ω(d) 

describes the correction of the surface energies due to the finite thickness of the wetting 

film, whereby the gravitational influence can be neglected. For different types of liquids 

the expression for ω(d) is different. According to Israelachvili [47] for the van der Waals 

type liquid ω(d) = -H/d2, where H is the Hamaker constant. Then minimizing Ω
eff the 

equilibrium thickness of the wetting film is: 

 

3/1

0

2









∆
=

µ
H

d       (2.4) 

 

In case of exponentially decaying short-range interactions (Yukawa liquid) the term ω(d) 

can be approximated by ω(d) = -σ0exp(-λd) [48] and the corresponding wetting films have 

a logarithmic divergence at coexistence (∆µ = 0) according to: 

 










∆
=

µ
λσ

λ
0

0 ln
1

d      (2.5) 

 

where 1/λ is the screening length. This theory does not take into account factors that 

usually affect real systems under investigation such as diffusion, heat transfer and other 

kinetic effects.  

 

2.2 Surface freezing transition 

 

 In comparison to wetting transitions it is more difficult to describe the surface 

freezing (SF) transition using a simple model. This interfacial phenomenon is not studied 

yet in detail despite of a considerable high number of publications concerning this issue 

during the last years [17, 49, 50]. 

 Describing the SF transition it is sometimes useful to consider it together with the 

surface melting phenomenon. Generally speaking, the fact that the free energy of atoms 

on the surface differs from that of the atoms in the bulk is a driving force for both 
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interfacial phenomena. Surface melting can be considered to be a special case of 

“wetting”, namely wetting of the solid by its own melt. By analogy, SF is “wetting” of the 

liquid by its own solid. An important issue is whether or not the thickness of the frozen 

films diverges as the bulk melting temperature is approached. 

 Schematically the SF transition is shown in the Fig. 2.3. The thermodynamic 

quantity that governs the freezing or non-freezing behaviour of the surface assuming 

macroscopically thick films is the surface free energy σ [51]: 

 

liquidsolidvapoursolidvapourliquid −−− −−=∆ σσσσ *    (2.6) 

 

A positive value of ∆σ*  predicts complete surface freezing, whereas a negative one 

predicts non-freezing. However this conclusion can be strictly applied for 

macroscopically thick films, where the corresponding surface energies are defined and no 

correction term ω(d) is necessary (see also Ch. 2.1). An estimate of ∆σ*  for metallic 

systems based on semi-empirical values for the interfacial energies yields for the most 

elements negative values [51]. This means that complete SF of metals above melting 

temperature is unlikely. Monte Carlo simulations for metallic liquids [52, 53] indicate a 

layer-wise ordering of the atoms at the surface that rapidly decays with increasing depth. 

Recent X-ray reflectivity studies have also revealed a decaying oscillatory density profile 

at the free surface of metals with high surface tension like Ga [54] and Hg [55]. Another 

 

 

 

Fig. 2.3 Schematic illustration of the surface freezing transition. The top 
monolayer of the liquid becomes ordered at a temperature a few degrees 
above the bulk melting point, while the bulk liquid remains disordered. 
For alkanes the thickness of 1ML remains constant as the temperature is 
lowered toward and even below the bulk melting point without triggering 
bulk crystallization. Surface freezing requires the sum of the solid-vapour 
and the solid-liquid interfacial energies to be smaller than that for the 
liquid-vapour interface. 
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example of the interfacial ordering (freezing) was demonstrated for the liquid Ga, which 

was brought into contact with solid hard wall (diamond) [56]. 

 Combining eq. (2.6), with Young’s equation (2.1) and taking into account that  

∆σ* > 0 for the SF transition the following expression for the contact angle Θ can be 

obtained: 

 

1cos <+<−=Θ
lv

slsv

lv

slsv

σ
σσ

σ
σσ

    (2.7) 

 

(since σ is always positive). This suggests that surface freezing is associated with 

dewetting [49]. The contact angle of the solid with its own melt is finite (it is also the case 

for incomplete surface melting [57]; this condition is further enhanced for the SF 

T
SF

T
M

σ
solid-liquid

+ σ
solid-vapour

σ
liquid-vapour

σ

Temperature

 

Fig. 2.4 Temperature dependence of the surface tension in the vicinity of 
the bulk melting point Tm. The liquid-vapour below the SF point (TSF) is 
linear extrapolation of the slope from temperatures above TSF, where the 
liquid state of the surface is thermodynamically stable. Surface solid can 
coexist with the melted surface at T = TSF like macroscopic solid and 
liquid phase coexist at T = Tm. The slope of the σlv(T) and (σlv + σlv)(T) 
functions varies for different kind of systems: this figure corresponds to 
metallic systems, whereas for n-alkanes the slope of the (σlv + σlv)(T) 
becomes negative. 
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case). Consideration of the temperature dependence of the surface tension shows that 

there should by a lower limit to the contact angle allowed in a system that exhibits SF. 

Assuming that the interfacial energies of either side of the SF film can be expressed in 

terms of macroscopic σsolid-vapour and σsolid-liquid, the lower bound follows by equating   

σsolid-liquid to zero. 

 The liquid-vapour interfacial energy is shown in Fig. 2.4. For the region below SF 

temperature the σliquid-vapour is a linear extrapolation of the line, having a negative slope 

from the higher temperatures [58]. The study of the surface tension for this metastable 

region for n-alkanes demonstrated that the SF transition can occur either below or above 

the bulk melting point [58]. It has been also shown that macroscopic interfacial energies 

for either side of the frozen film can be used as a first order approximation, because it 

explains an experimentally observed value of the contact angle for n-alkane droplet on the 

silica [49, 59]. 

 The following theory of SF of n-alkanes has been proposed by Tkachenko and 

Rabin [14]: Surface monolayer is entropically stabilized by fluctuations along the axis of 

the normally oriented chain-like molecules. Stabilization against bulk freezing is reached 

through entropic repulsion between ad-joint solid layers. Though designed to explain the 

surface behaviour of n-alkanes, the model suggests that the phenomenon might be a 

general feature of straight chain-like molecules of intermediate molecular weight. The 

model appears to be controversial since some parameters associated with the interfacial 

energies in the calculation do not agree with the experimental values [60]. 

 A mechanism of the SF film formation in binary alloys has been proposed by 

Freyland et al. [61]. Wetting film on the liquid-vapour interface slightly above the 

liquidus line is considered as undercooled Bi or Pb liquid film, because the temperature of 

the system in this case is well below the corresponding freezing temperature of the bulk 

Bi or Pb. At a given undercooling ∆T = Tm(bulk) – TSF freezing of the film may be 

triggered if its thickness d reaches the size of a critical nucleus, Rc. If a homogeneous 

nucleation is assumed and a critical nuclei radius is expressed as follows: 

 

µ
σ

∆
= −

n
R solidliquid

C

2
     (2.8) 

 

one can estimate Rc ~ 1nm for ∆T = 200 K. Taking into account, that n∆µ is proportional 

to the undercooling ∆T, one expect a growth of the SF film when a bulk Bi or Pb 
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concentration is increased approaching the monotectic point. A kinetic of the SF film 

formation is predicted to be fast, since the energy barrier is zero at complete wetting. 

 Summarizing the available information about SF transition one can conclude that 

both experimental and theoretical efforts are essential for the further understanding of this 

phenomenon. 
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Chapter 3. 

 

Applied methods 

 

3.1 Electron spectroscopy 

 

3.1.1 Basic principles of XPS, AES and UPS 

 If the surface of some material undergoes a radiation of photons or electrons of 

sufficient energy it starts to emit its own electrons. For the case of photons this 

phenomenon is known as photoeffect, whereas the interaction caused by high-energy 

electrons with the electronic shell of atoms is denoted as Auger-effect. The energy of 

incident photons or electrons must be greater than the binding energy of the ejected 

electrons in the material under investigation. The analysis of the kinetic energy 

distribution of electrons allows important information about the electronic structure of the 

substrate. For example, chemical composition, oxidation state, electronic structure and 

many other properties can be determined by means of electron spectroscopy (ES). In this 

study it was mainly utilized for purposes of quantitative chemical analysis. 

 Generally ES is divided into three broad areas, depending on the source used for 

excitation of the sample. The first one is Auger electron spectroscopy (AES) employing 

an electron beam, whose interaction with sample results in emission of Auger electrons. 

The second one is X-ray photoelectron spectroscopy (XPS); it utilizes X-rays producing 

both Auger- and photoelectrons. The third one operating with ultraviolet radiation is 

known as ultraviolet photoelectron spectroscopy (UPS). Ejection of electrons followed by 
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its detection is a common feature of all three techniques mentioned above. This appears to 

be a great advantage which allows one to combine those methods in one experimental 

setup. Let’s consider the physical processes that take place in AES, XPS and UPS in 

detail. 

 The changes in the electronic structure in the case of the Auger-effect are shown 

in Fig 3.1c. The incident electron with energy of typically 1-10keV ejects one of core 

electrons of the shell producing a hole (level K in the scheme). This results in the decay 

of an electron from a higher energy orbital (EL1). The excess energy released by the latter 

process is transferred to an electron on the third orbital (EL2,3), forcing it to be ejected. 

This last electron is detected when passing the energy analyzer. 

 There can be different combinations of neighbouring electron levels taking part in 

Auger-processes, especially for large atoms. The kinetic energy of Auger electrons 

determined with the electron detector can be written as 

 

effAuger UEEEE −−−= 321      (3.1) 

 

where E1, E2 and E3 are the energies of the three electrons, involved in the process and 

Ueff is the extra energy required to remove an electron from a double ionized atom. One 

can notice that the energy of incident electron is not included in the expression (3.1). This 

means, that the registered kinetic energy of the corresponding Auger peak remains 

constant even if the energy of the primary beam is changed.  

 The process of electron emission in the case of XPS and UPS is shown 

schematically in Fig 3.1a and 3.1b. The energy balance is described with following 

relationship: 

 

WEhE bk −−= ν      (3.2) 

 

where hυ is the photon energy; Eb and Ek are the binding energy of the electron in the 

atom and the kinetic energy of emitted electron respectively; W is work function of 

detector. Binding energy of the electron in atom is specific for every element and 

electronic shell. This allows to determine the chemical composition of the surface. 
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Fig. 3.1 Schematic diagram of the processes of an electron emission. 
Electrons are depicted as filled circles. The interactions of the atom with 
UV-radiation (a), X-rays (b) and electron beam (Auger effect) (c) are 
shown. 

 

 Those photoelectrons, which are excited and escape without energy loss, 

contribute to characteristic peaks in the spectrum. Here is a brief description of the 

nomenclature of XPS and Auger transitions. The following notation is used in XPS: nlk, 

where n is the principal quantum number; l corresponds to the orbital quantum number 

(for l=0,1,2,3 – s,p,d,f are used); k is the absolute value of the sum of l and spin quantum 

number, which can accept values of either +½ or -½. The AES notation has the general 

form Ab, where A is a capital letter K,L,M etc., which is used instead of the principal 

quantum number n; b varied from 1 to (2lmax+1). The entire AES label has three notations, 

for example KL1L3, because three electrons are involved in the Auger transition. Since 

the exact information about these electrons is not available (or not important), small 

indices are often omitted. 

 Usually, together with the main transition peak a number of signals with lower 

intensity are to be found in ES spectra. These peaks, known as satellites, reflect minor 

processes of electronic shell relaxation and other secondary effects. Their position in the 

spectrum is shifted in positive or negative direction of the kinetic energy scale in 
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comparison to the main peak. The perturbations which give rise to these peaks are just 

mentioned here without further description (for detailed information see [62]). These 

small peaks can have different origins, e.g. chemical shift (not all atoms of element X 

have same oxidation state, e.g. core electrons, emitted from positively charged ions have 

lower kinetic energy in comparison to neutral atoms); bulk and surface plasmon 

excitation (the outgoing electron excites collective oscillation in the conduction band; this 

is found for metallic surfaces); “shake-up” effect (interaction of the outgoing electron 

with conduction band states; if the electron in the conduction band does not gain some 

energy, but it is completely ejected, this is referred to as “shake off” effect); muliplet 

splitting signals (arise from different spin distribution of the electrons in the band 

structure). These features may contain important information about the surface. For 

example, in this study the absence of impurities on the surface (like oxides) has been 

checked by means of XPS: the spectrum of an oxidized surface has oxygen peaks as well 

as shifted peaks of the metals. 

 Besides XPS and AES satellites, which appear because of the above processes in 

the sample, so-called “ghosts” are sometimes found in XPS spectra. They originate from 

impurities in the X-ray source. Through the oxidation of the anode material (see next 

chapter) or misalignments inside the source, the outgoing X-ray radiation may have some 

noise lines besides the main one. In this case the kinetic energy of the peaks, which 

additionally appear in the spectrum, differs from the energy of the main peaks. 

 UPS as well as XPS uses the principle of the photoeffect. The difference is that the 

energy of photons in the case of UPS is some two orders of magnitude lower than the 

energy of X-rays. Therefore it is possible to excite electrons only in the valence band. 

UPS is used to study the electronic structure of molecular compounds, to determine the 

electron work function etc. In this study the band structure of interfacial bismuth has been 

determined with the help of UPS. 

 

 

3.1.2 Radiation sources and electron detection in electron spectroscopy 

  As a source of X-rays the twin anode X-ray tube was applied. Thermally emitted 

electrons accelerated by a voltage up to 15kV interact with the anode material, emitting 

X-ray radiation. It consists of an intense narrow line accompanied by weak radiation with 

higher wavelength. The origin of the first feature is X-ray fluorescence, while the second 
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one (known as Bremsstrahlung) results from the inelastic interaction of high energy 

electrons with the positively charged atomic nucleus. The energy of the X-ray 

fluorescence line depends on the material of the anode: in our case it was 1253.6 eV for 

Al and 1486.6 eV for Mg (in both elements Kα transition occurs). In principle such a 

combination of anodes provides the possibility of depth profiling due to different kinetic 

energies of the outgoing electrons. 

 The electron beam for AES is generated using an electron gun. A hairpin-shaped 

tungsten filament heated by electric current serves as electron source. Besides the 

filament, the electron gun has a number of electrostatic lenses which are used to 

accelerate the electrons, to focus the electron beam and to deflect it. Thus it is possible to 

generate a stable, mono-energetic and bright electron beam of narrow crossection 

(<1mm2). 

 Ultraviolet radiation for UPS is generated by means of a gas discharge tube. With 

the help of fine a leak valve the pressure of helium of some 10-2mbar can be achieved. 

The discharge zone is connected to the analysis chamber, so a very effective differential 

pumping system is required keep the pressure in the UHV region. The radiation emitted 

by HeI (21.2eV) and HeII (40.8eV) transitions is applied in this study. 

 To analyze the kinetic energy of electrons emitted from the sample, the 

HemiSpherical electron energy Analyzer (HSA) (Fig. 3.2) was utilized. It consists of a 

pair of concentric hemispherical electrodes, between which there is a gap for the electrons 

to pass (1); a sequence of electrostatic lenses (5) is mounted in the tube (2), shielded by 

the material with high magnetic permeability (µ-metal) from the Earth’s magnetic field. 

The lenses are used to vary the area on the surface of the sample to be analyzed, to 

change the acceptance criteria concerning the angle distribution of analyzed electrons and 

to retard the electrons with high kinetic energy, which allows to increase the analyzer 

resolution. The battery of electron multipliers (channeltrons ®) (3) is located on the other 

side of the hemispherical cap. The electron flux can be additionally regulated by means of 

entrance and exit slits (4). 

 A potential difference is applied across the two hemispherical electrodes, with the 

outer one being more negative than the inner one. Only those electrons, which possess 

energy given by 
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Fig. 3.2 Scheme of the hemispherical electron analyzer (HSA). 1 – two 
hemispherical electrodes with the radii R1 and R2, 2 – entrance tube 
shielded from any external magnetic field, 3 – battery of 7 channeltrons, 
which are used to detect the electrons, 4 – slits used to control electron 
flux, 5 – electrostatic lenses focus and retard the electrons. Electrons enter 
the analyzer from below and pass through the electrostatic lenses (5) and 
the gap between electrodes (1) followed by the detection in the 
channeltrons (3). 

 

at the entrance of the analyser’s cap will reach the detector. Here E is the kinetic energy 

of the electrons, e is the charge of electron, ∆V is the potential difference between 

hemispheres, R1 and R2 are the radii of inner and outer hemispheres respectively) One can 

notice that the kinetic energy is directly proportional to the applied potential difference.  

e- 
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 The electrons with much higher (lower) energy in comparison to the value given 

by expression (3.3) have larger (smaller) radius of the trajectory and collide with walls of 

hemispheres. But if the difference in kinetic energy is not large, those electrons can also 

reach the output plane of the analyser. Several channeltrons on the output plane are 

arranged radially so that each of them can detect electrons with different kinetic energy E 

± δE. The entire sensitivity of the instrument is increased by a factor equal to the number 

of channeltrons. 

 Two operating modi are available for HSA: Constant Analyser Energy mode 

(CAE) and Constant Retard Ratio mode (CRR). In the CAE mode the electrons are 

accelerated or retarded to some user defined value (known as pass energy) with the help 

of electrostatic lenses before they enter the hemispherical cap. The difference of the 

hemisphere potentials remains constant throughout the energy range. In the CRR mode 

the electrons entering the analyser are retarded to a constant fraction of their original 

kinetic energy so that the ratio of electron kinetic energy to the analyser pass energy is 

kept constant for the whole spectrum. In order to achieve analysis in the CRR mode, the 

hemispheres potential difference is increased with growing kinetic energy. The retard 

ratio is defined as 
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where φa is the work function of the analyser. The resolution and the sensitivity are 

different for the CAE and CRR modi. The CAE mode is preferred if one wants to achieve 

a constant resolution throughout the whole kinetic energy range; the sensitivity, however, 

is inversely proportional to the kinetic energy. In the CRR mode both parameters are 

proportional to the pass energy (and therefore kinetic energy); sensitivity is reduced at 

lower kinetic energy. At the higher kinetic energy in the CRR mode the resolution can be 

improved by increase of the retard ratio. The analysed sample area and the distribution of 

accepter emission angle remains almost constant in the CRR mode or they vary slightly 

with the kinetic energy in CAE mode. The CAE mode is usually applied for the 

acquisition of XPS spectra and for the quantitative analysis. The CRR mode is more 

suitable for AES with lower kinetic energy of emitted electrons. 
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 The single electron multiplier or channeltron consists of a spiral-shaped glass tube 

with a conical entrance at one end and a metal anode output plate at the other. A material, 

which coats the internal walls of channeltrons, emits several secondary electrons being hit 

by a primary electron with kinetic energy greater than the work function of the 

channeltron. Those secondary electrons are accelerated within the tube and then, colliding 

with the walls, they produce additional electrons progressively so that the electrical signal 

can be detected at the output plate. 

 

 

3.1.3 Quantification with XPS and AES 

 XPS and AES are known to be powerful tools for quantitative chemical analysis. 

The incident X-ray radiation and high-energy electrons are able to penetrate and to ionize 

the material of the sample well deep (>103Å). But only a small fraction of the electrons 

expelled in such a way can leave the material without energy loss. The main source of  

 

 
Fig. 3.3 The dependence of the electron inelastic mean free path (IMFP) λ 
on the emitted electron energy for different elements [64]. 



Chapter 3 25 

energy losses comes from the interactions of the outgoing electrons with surrounding 

atoms. The deeper the ionisation centre, the greater the probability of inelastic scattering. 

Therefore only those electrons, which originate from the outermost surface layers will 

escape elastically from the material and can be subsequently detected. This makes ES an 

extremely surface sensitive technique. The average escape depth, which is also known as 

Inelastic Mean Free Path (IMFP) or Effective Attenuation Length (EAL) requires special 

consideration. 

 First of all, the IMFP of the emitted electrons depends on their kinetic energy as is 

shown in Fig.3.3. A so-called universal curve describes IMFP for most of the chemical 

elements. It has a minimum around 20-50 eV, this region of kinetic energy corresponds to 

the maximum of surface sensitivity of ES. The increase of IMFP on the left of the 

minimum can be explained by taking into account the decrease of energetically allowed 

scattering processes. With growing kinetic energy the impact cross-section will shrink, so 

that the IMFP will be greater. 

 Considering the intensity (I) of a photoelectron peak from a homogeneous solid, it 

can be expressed in simplified form as [63]: 

 

λσρ ⋅⋅⋅⋅= KJI A      (3.5) 

 

where J is the photon flux, ρ is density of atoms of sort A in the investigated material, σ is 

the cross-section for the electron production (which depends on the element and energy 

being considered), K is a term which covers all instrumental factors, like transmission, 

analyser settings, efficiency of the detector or stray magnetic fields, affecting the 

transmission of low-energy electrons and λ is the IMFP. The intensity is usually measured 

as integrated area under the peak in an ES spectrum. For a preliminary evaluation the 

height of the peak can be taken instead of its area. 

In order to increase the precision of the intensity determination an appropriate 

method of background subtraction is required. The options are simple linear cut or 

improved S-shaped background subtraction, which is also known as Shirley method [65]. 

The equation 3.5 can be theoretically used for direct quantification (so-called first 

principles approach). A more usual way of quantification implies experimental 

determination of sensitivity, which includes the terms σ, K and λ. They are incorporated in 
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the intensity (I0
A) acquired from the sample with thickness d >> λ, consisting of pure 

element A, which has the same size and shape as the samples under investigation. 

 For quantified description of electron scattering in the material the modified 

Lambert-Beer low can be applied: 

 

d
I

I
⋅= ε0ln      (3.6) 

 

The ε can be substituted with 1/ λ: 
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where I the is intensity of electrons emitted from all depths, greater than d, normal to the 

surface, I0 is the intensity from infinitely thick, uniform substrate, ε is the extinction 

coefficient, λ = IMFP. The distribution of the number of escaped electrons as a function 

of the depth, at which they are emitted, is shown on the Fig. 3.4.  
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Fig. 3.4 The distribution of the number of escaped electrons as a function 
of the depth, at which they are emitted. Approx. 95% of the entire signal 
for homogeneous, one-component material originates from the depths       
0 > d > 3λ. 
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One can see that some 65% of the entire signal in the detected XPS (or AES) peak come 

from the depth less than λ, some 20% come from the slab between λ and 2λ, ~10% form 

2λ <d <3λ and less than 5% of the signal originate from the substrate with d > 3λ. Taking 

into account the typical values for λ of 10-30Å one can ensure once again the ultimate 

surface sensitivity of ES. 

 Usually not only those electrons, which are emitted normally to the surface can be 

detected, but also those, which are emitted at some angle θ, different from 90°. Then 

expression (3.7) becomes: 
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Here the surface sensitivity is increased and the effective analytical depth is decreased 

with decreasing θ. 

 We can consider the more complicated case of a non-uniform substrate containing 

several chemical elements (or their compounds). If the signal of an atom occurs in the 

XPS or AES spectrum, it is unfortunately impossible to define immediately the position 

(= the depth) of this atom in the sample. It can be located at the first monolayer at the 

surface or at the fifth one – with 95% probability it is not deeper than 3λ. Therefore 

additional consideration of the sample nature is required like, for example, increase of the 

concentration of surface active component in the first monolayer. In other words the 

problem can be solved if it is possible to construct a feasible model. 

 A simple and at the same time appropriate model for XPS data analysis, which is 

used in this study to describe surface freezing in a two-component metallic system is the 

so-called overlayer model (Fig 3.5; other notations are slab- and three phases model). The 

model implies that the bulk alloy is covered by a thin overlayer film. Let us assume that 

the overlayer consists of pure component A. So the intensity of the A peak in the 

spectrum is expressed as follows: 
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where d is overlayer thickness; I0
A is the intensity measured from an infinitely thick 

substrate, consisting of pure A; λA = λ(EA) is the IMFP for the electrons, emitted from A, 

which have the kinetic energy, characteristic for the considered transition. From the bulk, 

consisting of pure element B, the intensity IB is described as: 
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where λ’A = λ(EB) is IMFP at the kinetic energy of the B peak in pure A (in order to reach 

the detector, the electrons emitted in the bulk must go through the overlayer, consisting of 

A). One can see that if the overlayer thickness dA is much greater than λ’A, the signal from 

the bulk will be completely attenuated in the overlayer. So this model can be directly 

applied only for systems with relative modest overlayer thickness. 

 All variables in expressions (3.9) and (3.10) except of d can be either measured 

(I0
A , I0

B , IA , IB, θ) or found in literature or databases (λA, λ’A). Therefore, the overlayer 

thickness d can be calculated. 

 

 

 
Fig. 3.5 Scheme of the overlayer (or slab) model used for the 
characterization of thin films in this study. The film consists of one 
component A, the bulk is the pure component B.  X-rays penetrate the film 
and the top of the bulk emitting electrons. The probability, that the electron 
will be detected without energy loss, depends on the length of its trajectory 
in material. The higher the IMFP, the deeper emitted electrons can be 
detected. 
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 One can extend the overlayer model for the case when the overlayer and/or the 

bulk become homogeneous mixtures of A and B with different concentrations. In this 

case the expressions for IA and IB would be more complicated because they result from the 

combination of (3.9) and (3.10): 
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Here xb
A and xo

A are mole fractions of A in the bulk and in the overlayer respectively. As 

it is well known, at fixed kinetic energy the value of λ does not depend much on the kind 

of material. So it can be estimated very good also for mixtures [62]. 

 For the quantitative analysis of AES data the equations derived above can be 

applied only with the correction for backscattering electrons: 
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where r(EA) is the backscattering factor, see also [62]. For rough estimation this 

additional term can be neglected. 

 

 

3.1.4 Depth profiling 

 The task of depth profiling is to describe the distribution of different chemical 

elements in the material under investigation. A very important assumption here is that the 

sample is homogeneous in lateral direction i.e. the gradient of the concentration of all 

components in X and Y directions (Z is normal to the surface) is zero. This assumption is 

not always valid, but it can simplify the description of the system and interpretation of 

experimental results. 

 The theory reported in the last chapter can be applied for the solution of the depth 

profiling problem if the system under investigation has rather simple structure like a thin 
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homogeneous overlayer. The thickness of the overlayer cannot be measured reliable if it 

becomes much larger in comparison to IMFP. The situation will be even more 

complicated if the system has more than one overlayer or the distribution of chemical 

elements in them is unknown. In this case one can receive the information about the 

system by stepwise removal of atoms from the surface. This can be done e.g. by means of 

sputtering of the surface by noble gases ions, the same procedure as used for cleaning of 

samples in vacuum.  

 The method mentioned above is visualized on Fig. (3.6). The data collected during 

a depth profiling experiment are the intensities of the detected elements I as a function of 

sputtering time t. This so-called “measured sputtering profile” is to be converted into the 

original distribution of concentration C with depth z, C = C(z). First the sputtering time 

scale must be calibrated in terms of mean eroded depth, z = z(t), then the XPS or AES 

signals must be calibrated in terms of local concentrations C = C(I). So the measured 

concentration profile 

 

 

 

Fig. 3.6 Principles of sputtering profile evaluation: conversion of a 
measured sputtering profile I = I(t), to a true concentration profile             
C = C(z). 
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will correspond to the original “true” profile. However, the sputtering is not always a 

homogeneous process, i.e. the atoms will not be removed from the surface ideally, layer-

by-layer. Phenomena such as preferential sputtering or topographical profile distortions as 

well as changes of the IMFP must be taken into account in a second step in order to reveal 

the true original profile C = C(z). A deviation between the measured profile and the true 

one can be described by depth resolution [62].  

 The velocity of surface erosion z = z(t) can be either obtained in calibration 

experiments with a sample containing an overlayer of known chemical composition and 

thickness, or calculated with the following formula: 
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where M = molar mass, ρ = density, NA = Avogadro number, e = electron charge; S = 

sputtering yield (atoms/ion), jp = primary ion current density. The detected XPS intensity 

for element i can be generally expressed as: 
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I0
i here is the intensity from infinitely thick sample. The solution for an arbitrary profile is 

given by: 
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In practice a cyclic procedure consisting of XPS (or AES) measurement followed by 

scattering during definite time is applied.  

 An important restriction of the described depth profiling method is that the 

investigated material must be stable in time. This is almost always the case for solid 

systems without chemical reactions. Such a method cannot be used directly for study of 

surface freezing phenomena, where the bulk remains liquid. Another limitation is that this 

method is invasive by nature (in comparison to non-invasive XPS or AES). 
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3.2 Scanning tunneling microscopy 

 
3.2.1 Theoretical concept 

 Scanning tunneling microscopy (STM) and spectroscopy (STS) use the electron 

tunneling effect; this can be described only with the help of quantum mechanics. The 

tunneling effect is defined by the transition of an electron between two states, which are 

separated by potential barrier; the energy of the electron here is not sufficient to overcome 

the barrier according to classical mechanics. The height and the width of the barrier affect 

the probability of the transition. This effect is utilized in tunneling microscope, which was 

invented in 1982 by Binning, Rohrer and Gerber [66]. A sharp metal needle (so-called 

tunneling tip) is placed very close to the surface of an electrically conductive material in 

this device. Despite of the absence of direct electrical contact, a weak, but measurable 

electrical current, resulting from electron tunneling, can be detected if the voltage is 

applied between the tip and the surface. The tip can be driven by piezoelectric device in 

three dimensions and its position is known precisely; in this way a topographical map of 

the surface under investigation can be obtained. 

 Qualitatively the tunneling effect is illustrated on Fig. 3.7. The electron, which has 

wavefunction ψ, comes from the left (only one dimension is considered). The amplitude 

of the oscillations falls exponentially within the barrier (shaded area, left), because the 

 

 

 
Fig. 3.7 Illustration of tunneling effect: decrease of the wavefunction (a) 
and energy diagram for the metal-metal STM junction (b), EF – Fermi 
level, EB – height of barrier, z – distance between tip and sample, V – 
applied bias voltage, φ – workfunction; φ1 ≠ φ2 in general. 
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energy of an electron E is lower than the height of the barrier V. If the barrier has finite 

thickness then ψ will not go to zero on the right side and oscillations will continue. This 

means that the probability to find an electron on the other side of the barrier is not zero – 

the electron can tunnel though the barrier. 

 In order to describe the tunneling effect quantitatively one has to consider the 

three dimensional theory in detail. The fluctuation theory for tunnel contact, developed 

originally by Barden [67] and improved by Tersoff and Hamann [68], gives the following 

expression for the tunnel current: 
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Here ψi and ψf are the wavefunctions of the initial and final state of the electron under 

consideration, Mif is the tunnelling matrix element between initial and final states, Ei and 

Ef are the corresponding energies respectively, f(E) is Fermi-Dirac distribution, V is the 

height of potential barrier and e the is charge of electron. The initial state of the electron 

can be its state in the tip and the final one is in the surface if the negative potential is 

applied to the tip (and vice versa depending on the bias voltage applied). The 

wavefunctions are defined for the tip and the surface when they are considered separately 

i.e. without tunneling transition. They can describe the tunneling transition properly only 

if the distance between both parts of the entire system is large (and applied potential 

difference is low). If it is not the case and the interaction between the tip and the surface 

are significant, one cannot use two independent wavefunctions ψi and ψf to describe the 

system. The expression for the tunneling current can be simplified if we assume that: 1) 

the apex of the tunneling tip has an ideal spherical shape; 2) only s-wavefunctions of the 

atoms in the tip take part in the electron transition. Then it takes the form [68]: 
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where Dt is the density of states for the tip, EF is Fermi energy, R is the radius of the apex, 

d is the distance between apex and surface and κ = ħ-1(2mφ)1/2 is the minimum inverse 

decay length for the wave functions in vacuum (φ is the work function). The last exponent 
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represents the local density of states on the surface at the Fermi level at the point closest 

to the apex. So it is shown that the probability of the tunnel transition depends on the 

distance between the tip and substrate exponentially.  

 Not all assumptions of the model described above are completely correct for the 

real STM experiment. For example, an image with atomic resolution cannot be explained 

if the electrons are transferred only through s-electrons. But the model, which takes into 

account p, d and f-orbitals, is much more complicated and it will not be considered here. 

For detailed information the reviews [69-71] are available. 

 

 

3.2.2 Measurement modes 

 As one can see from equation (3.17) the tunneling current depends mainly on the 

distance between the tip and the surface; the density of states of both tip and substrate  

plays a secondary role. If we assume that the distribution of the electronic density of 

states in the tip is continuous, the picture resulting from an STM experiment will 

represent the electronic  

density of the surface. For objects in the micro- and nanometer scale this picture 

corresponds to the geometrical shape very well. This means that the usual interpretation 

of STM images as topographic maps is correct for most cases. 

 There are two ordinary methods of acquisition of STM images. They are shown 

schematically in Fig. 3.8. The first one is known as constant current mode: the feedback 

electronics of the microscope keeps the tunneling current constant during the scan of the 

surface in X- and Y-directions. In order to reach that, the vertical position (Z) of the tip is 

continuously adjusted. The Z-coordinate is recorded as a function of X and Y and these 

data are used to construct the STM image. The tunneling current can be kept constant if 

the scan speed is not high, because the reaction time of the feedback electronics is not 

infinitely short. 

 The second possibility is the constant height mode. Here the vertical position of 

the tip is not changed and the tunneling current will be recorded. One obtains a similar 

image as a result. This method is not used often because of one important restriction: the 

surface must be very flat, in order not to short circuit during the scan. The tip will be 

damaged with high probability in the case of direct mechanical contact with the surface. 
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Fig. 3.6 Two modi used in scanning tunneling microscopy: a) constant 
current mode; b) constant height mode. 

 

The advantages of the constant height mode are higher scan speed and better quality of 

images on an atomic scale. 
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Chapter 4. 

 

Experimental detail, data analysis and error discus sion 

 

4.1 Preparation of samples; measurement cell 

 

 The reliable measurements of the properties of SF films require special accuracy 

on every step of experiment beginning with the sample preparation. Only very pure 

components are suitable for the manufacturing of the alloys, because most of the 

impurities have a tendency to be concentrated on the surface. Therefore only pure metals 

i.e. Ga, Bi and Pb (99,9999% purchased from Alfa Chemicals) were used in this study. 

The purities of the main components refer only to metallic impurities but not to oxides 

and hydroxides, so a primary purification was required. For Ga this was done by slow 

flowing of the liquid metal through a glass capillary. The oxide impurities, which have a 

lower surface tension, remain on the surface and stick to the glass wall. The procedure 

was performed in a special glow-box, filled with Ar and isolated from the atmosphere 

(concentration of O2 and H2O is about 1ppm). In the case of Bi and Pb, which have 

greater melting temperatures, a similar procedure was done in a quartz vessel under 

vacuum (p ≈ 10-5 mbar). The metals were placed in a glass syringe and heated by means 

of high-frequency induction furnace up to the melting point. Then they flowed into the 

container, mounted below, and solidified there. Afterwards the metals were transferred 

into the glow-box. The pure components, prepared in such a way, can be stored in Ar 

atmosphere for a longer time without significant oxidation. 

 For the preparation of the alloy the required amount of liquid Ga was placed into 

the crucible (see below) with the help of a glass syringe. Then the exact mass of Ga was 
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determined by means of weighting (precision ± 0.0001g). The mass of Bi or Pb was 

calculated for the desired concentration; small pieces can be cleaved with the help of 

pincers – they were to be weighted and added to liquid Ga. The crucible was cooled down 

to approx. -20°C in order to solidify the metal and transferred on air into the chamber for 

the subsequent cleaning of the surface. This step was necessary to remove large visible 

particles of impurities, which appear in spite of all precautions, described above. 

 The cleaning chamber was equipped with a resistance furnace, which was able to 

heat the sample up to 500°C, an Ar sputter-gun and a wobble-stick manipulator with an 

electrically heated tungsten wire. The pumping system of the cleaning chamber, 

consisting of roughing pump and turbomolecular pump, allows to achieve a pressure of 

10-7 mbar within 24 hours without complicated and time-consuming bakeout. Such a 

vacuum can be also obtained faster with the help of a liquid nitrogen trap. After reaching 

of the vacuum level mentioned above the sample was heated up to some 250°C and held 

at this temperature during 1.5 - 2 hours in order to dissolve Bi (or Pb) in Ga completely. 

 The cleaning of the sample was started by bombardment of the surface with 

accelerated Ar+ ions, generated in a sputter-gun. A typical ion current consisted of 25-35 

µA. A few minutes of sputtering were enough to break the oxide layer, which originally 

covered the whole surface, into many small particles. It was not possible to achieve 

complete removal of all impurities in such a way in reasonable time and without 

evaporation of too much of metal. 

 In the second step the tungsten wire (from Goodfellow) was employed. The U-

shaped wire (∅=0.5mm) was first annealed at about 1500°C. Then its temperature was 

reduced to some 400°C and the wire was brought in touch with the metal in the crucible. 

After the wetting of the wire by the alloy part of the impurities stick to the wire. This 

effect is described in the work of [72]. The optimal temperature and the shape of the wire 

were found experimentally. Afterwards, the manipulator with wire was moved to the 

cylindrical extension of the main chamber. This extension can be separated from the main 

chamber by means of vertically driven shields. The temperature of the wire was increased 

to ~1500°C for some 5 seconds to allow complete evaporation of the material collected 

on the wire. This procedure was repeated several times until total removal of visible 

particles. Additional visual check of the surface was performed with a CCD-camera with 

5x zoom. When the surface seemed to be absolutely clean the heating and the sputter-gun 

were shut down, followed by cooling of the sample. In order to minimize the oxidation of 

the metal during subsequent transportation to the Omicron apparatus the alloy must be 
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solid in order to reduce the solubility of impurities. For Ga-Bi system the alloy solidified 

at room temperature, whereas Ga-Pb alloys required some –20°C for solidification due to 

supercooling. This was reached by cooling of the cleaning chamber vessel with liquid 

nitrogen. The transportation of the sample to the Omicron apparatus on air took about 5 

minutes. The sample was placed into the entry-lock, evacuated during ≈ 40 min. and 

transferred in the preparation chamber (see description of the Omicron apparatus below). 

The last step was the sputtering of the sample in the preparation chamber. A few 

monolayers of oxidized material were removed together with molecules of adsorbed 

gases. 

 The quality of the surface was finally checked with XPS. Usually no signals with 

exception of the elements of the alloy were found in the spectrum. 

 During the experiments that took sometimes more than one month the elementary 

composition of the surface was regularly checked. It was shown that the concentration of 

adsorbed oxygen (as main impurity) increases with time even under UHV condition (10-10 

mbar). When the signal of oxygen was significantly higher than the noise level and/or 

visible impurities appeared, a new cleaning procedure after transfer to the cleaning 

chamber was performed. 

 A series of samples were prepared for some auxiliary experiments. Since they 

were solid there was no need of cleaning with tungsten wire. A quartz plate (10x10 mm, 1 

mm thick) covered by uniform Au layer (thickness 200-300 nm, Berliner Glass) was 

placed in a quartz tube; a small container, filled with pure Bi was placed nearby. The 

subsequent evacuation of the tube and heating of the container resulted in the evaporation 

of Bi followed by its precipitation on the Au layer. The distance between the Bi container 

and plate was large enough to allow uniform coverage of the plate. Then this plate was 

fixed in a sample holder and used in depth profiling experiments after cleaning of the 

surface with sputter-gun. For the calibration and fine focusing of the Auger electron gun 

the plate was prepared in a similar way: it was covered by a mask with stripes and squares 

of known dimensions. After removal of the mask only a part of the surface was covered 

by a Bi layer. 

 Also a steel plate covered with magnesium oxide (prepared by holding the plate 

above burning Mg on air) was used for fluorescence in the electron beam. Samples with 

solid Ga, Bi and Pb were prepared by pressing of corresponding metals into the cavity in 

the sample plate. 
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 Two types of crucibles made of molybdenum were used in this study (see Fig. 

4.1). The first one has a simple cylindrical shape (height = 7 mm, inner diameter = 13 

mm, outer diameter = 14 mm). The relatively small size of the crucible was determined 

by the dimensions of the sample holders of the Omicron chamber. The amount of alloy 

placed inside the crucible was about 40% of its total volume (this corresponds to a 

cylinder of 3 mm height for the hypothetical situation of the contact angle alloy-

molybdenum-vapour is exactly 90°). At perfect wetting this amount could lead to floating  

 
a) 

 
 

b) 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 

 
Fig. 4.1 Two types of crucibles used in this study: a) cylindrical crucible. 
Due to the wetting of the walls by the liquid alloy the liquid-vapour 
interface becomes concave from above after a while. b) funnel-shaped 
crucible with flat liquid-vapour interface. Boring in the bottom of the 
crucible (b) used for temperature measurements. 
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of the liquid alloy over the crucible walls, what could result in serious problems in the 

measuring setup. Molybdenum was chosen as material for the crucibles because of its 

inertness to alloy components in a wide range of temperatures. Additionally, it was 

shown, that several subsequent cleaning procedures do not affect the concentration of the 

alloy. Moreover, the amount of alloy does not change significantly. The crucible was 

fixed in a stainless steel plate specially designed for the transportation of the sample 

within the Omicron apparatus. 

 Despite of the relative simplicity of the construction, the crucible described above 

appeared not to be optimal for spectroscopic and STM measurements. The following 

disadvantages were found during several trails: 

- The wetting of the crucible walls during cleaning increased continuously that can 

be explained by removal of oxides from the Mo container during sputtering. 

Finally the liquid alloy interface became concave from above with almost 

complete wetting of inner walls of the crucible. For different samples the interface 

was similar, but not identical – this results in slight differences at quantitative 

evaluation of XPS and AES spectra. 

- Because the X-ray source and the electron gun are not located directly above the 

crucible (see next chapter), the walls of the crucible cast a shadow on the 

interface. That means the analysis of the entire surface was not possible. 

- In STM experiment the relative position of the tip above the surface was not 

visible. This increased the time required for the approach. 

- The temperature of the alloy was unknown. It can be only estimated from the 

reading of the thermocouple mounted on the manipulator near the heating 

element. A series of experiments on Ga-Bi alloys with various concentration of Bi 

exhibits that respective surface freezing temperatures can be reproduced by this 

thermocouple more or less well (see also Ch. 4.2). 

All those drawbacks were eliminated in the second version of the crucible (Fig. 4.1b). 

The amount of material in the crucible was kept constant; a crucible together with a 

sample plate was machined from a single piece of molybdenum. When the cleaning 

procedure was conducted carefully the edges of the liquid interface lie exactly on the top 

of a cylindrical part of the crucible i.e. the inclined side of the funnel was not wet. A 

practically planar and shadow free interface was achieved in this crucible.  
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 A boring (∅ = 1mm) in the bottom of the crucible was utilized to the temperature 

measurements. An additional thermocouple was installed in the analysis chamber 

replacing one of spare blind flange with feed-through (see Ch. 4.2). 

 

 

4.2 Overview of the Omicron UHV unit including XPS, AES, UPS 

and STM techniques 

 

 For the investigation of the alloy surface the commercially available Multiprobe P 

system supplied by Omicron Nanotechnologies was utilized. A schematic overview of the 

apparatus is shown in Fig. 4.2. It consists of three parts, connected to each other: Fast 

Entry Lock (FEL) chamber (I), preparation chamber (II) and analysis chamber (III). All 

chambers have their own pumping stages. They are separated by manually operated gate 

valves (1) that allow independent pumping. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 4.2 Top view of the Omicron Multiprobe P apparatus. It consist of 
three chamber (I – Fast entry lock, II – Preparation chamber, III – 
Analysis chamber) separated with manual valves (1). Following parts are 
depicted with numbers: 2 – probe transporter, 3 – linear transfer head, 4, 5 
– high precision manipulators, 6 – magnets for linear transfer and rotation, 
7 – pincer grip wobble stick, 8 – revolver storage, 9 – Ar sputter gun, 10 – 
X-ray tube, 11 – e-gun, 12 – UV lamp, 13 – flange for electron analyser 
(not shown). 
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 Samples and STM tips are loaded through the CF63 port on the FEL chamber. A 

probe transporter (2) carries the sample from the sample acceptance stage to the sample 

transfer head (3), which is used for further transportation of the sample to manipulators (4 

and 5) in the preparation and analysis chamber, respectively. Both probe transporter and 

sample transfer head can be rotated and linearly moved using magnets (6). Once a sample 

is landed on the manipulator it can be moved in 3 dimensions with sub-millimetre 

precision and rotated around the axis of the manipulator. For the transfer of samples (and 

tip holders) to the tunnelling microscope a pincer grip wobble stick (7) is used. There is 

also a possibility to keep up to 6 samples in the analytical chamber simultaneously by 

means of revolver storage (8). Preparation chamber is equipped with the Ar+-ion 

sputter gun (9) mounted on the upper side of the chamber. The sputter gun generates an 

ion beam of variable intensity used for the sample surface cleaning. Radiation sources for 

the XPS (10), AES (11) and UPS (12) are located in the analysis chamber as well as the 

electron analyser (it is not shown explicitly in the Fig 4.2 due to large dimensions). The 

electron analyser is attached to the analysis chamber through CF100 flange (13). The 

tunnelling microscope (14) is mounted in separate vessel attached to the analysis 

chamber. 

 The FEL chamber makes it possible to introduce and to remove samples without 

ventilation of the main chambers. The relatively small volume of the FEL chamber allows 

fast pumping and therefore a pressure of 10-6 mbar can be reached within some 30 

minutes. During the transfer the valve between FEL and preparation chamber must be 

open. In this way vacuum in the preparation chamber is spoiled from typically 10-9 – 10-10 

mbar to 10-7 mbar for a short time, but it recovers fast when the valve is closed. He 

scheme of the pumping system of the apparatus is shown in Fig. 4.3. 

In the preparation chamber the sample is subjected to final cleaning procedures, 

which are carried out by means of the Ar+-ion sputter gun. During the sputtering a thin 

layer of adsorbed atmosphere gases (O2, CO2, H2O) and metal oxides are removed from 

the surface. The sample prepared in this manner has an atomically clean surface, so it is 

ready for ES and STM experiments.  

The construction of the manipulator head is shown in Fig. 4.4. It consists of the 

massive molybdenum holder with rails (1) for the insertion of the sample plate. A 

resistance furnace (2) with ceramic insulation is located between the rails, direct under the 

sample plate. It is connected to DC power supply through the terminals (3). A 

temperature range up to 650K is available for this setup. It can be measured with two  
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Fig. 4.3 Scheme of the gas supply and pumping system of the Omicron 
Multiprobe P apparatus. 

 

thermocouples (4) and (5). Practically only the thermocouple (4) was used, because it 

displays a relevant temperature of the holder frame near by the crucible and the heater. 

The manipulator head is mounted on the stainless steel rod (8); ceramic ring (9) provides 

proper insulation of the head from the ground. 

A cooling system consists of the reservoir (6) and a massive copper braid (7). 

Strongly cooled gaseous or liquid nitrogen was used as coolant. The reservoir and the 

braid provide very effective thermal exchange, allowing to reach the temperature of the 

crucible till ~150K. The primary purpose of the cooling system is to solidify the liquid 

alloy in order to prevent possible leaks during transportation within the UHV apparatus. 

The original Omicron setup did not allow measuring the temperature inside the 

crucible; it could only be estimated roughly from the thermocouple mounted on the rails 

of the manipulator. Therefore an additional thermocouple was attached to the analysis 

chamber. As the crucible is set on the manipulator, the thermocouple tip can be inserted 

into the boring in the bottom of the crucible. The thermocouple for the  
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Fig. 4.4 Manipulator head in preparation and analysis chambers. Side and 
top view. 1 – molybdenum holder with guiding rails for sample plate or 
crucible, 2 – heating element in ceramic insulation, 3 – terminals for DC 
supply, 4, 5 – thermocouples, 6 – heat exchange reservoir, 7 – massive 
copper braid for heat exchange between reservoir and sample holder, 8 – 
stainless steel rod connecting the head to the holder, 9 – ceramic 
insulation. 

 

crucible as well as the cooling system were assembled and tested in the laboratory of the 

institute. 

 

 

4.3. Electronic spectra measurements 

 

In order to get reliable and reproducible electron spectra of Ga-Bi and Ga-Pb bulk-

vapour interfaces some peculiarities should be taken into account. 

An electric charge on the sample affects the kinetic energies of outgoing electrons. 

Continuous bombardment of the sample by accelerated electrons or X-rays leads to the 

growth of electric charge on the sample when it is not connected to earth. This may result 

in a shift of the entire spectrum to higher kinetic energy (lower binding energy). 

Therefore correct spectra can be measured only if the analysed material is properly 

grounded. This was done by connection of one of the two wires of the resistance heater to 

the ground. The heater has an electrical contact to the sample holder; DC power supply 

was used. 
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The appropriate reproducibility of the intensities in XPS and AES spectra can be 

achieved only if the sources provide constant, time-independent flux of electrons/X-rays. 

Practically this means that one should switch on the source some 2-3 hours prior the 

measurement. Trial acquisition of reference samples showed very good stability of the X-

ray tube: the signal level appeared to be constant for many hours (for the peak area of 

approx. 500 eV*kcts/s the difference is less than 0.5%). The electron gun displays less 

stable behaviour. Short-time variations (during the acquisition of one spectrum, typically 

0.5-3 minutes) were about 3-5%; long-time drift was detected to be even more significant 

(up to 15% per hour). Fortunately, it was possible to read the electron emission current on 

the display of power supply unit and to adjust it manually in case of strong deviation. 

Additionally, the desired accuracy was reached by reduction of the acquisition time and 

increase of the number of taken spectra. 

The yield of the electron detector (the level of the signal per single electron) has 

changed with time due to the aging of the channeltrons. This happens slowly, but if the 

interval between single measurements is longer than several months, the yield should be 

checked (and corrected if necessary), for example, by measurements of reference 

samples. Their role in this study played the pure metals (Ga, Pb, Bi) placed in standard 

molybdenum crucibles. 

The detected intensity of the peaks should be kept within definite ranges. If it is 

too low the signal/noise ratio is also low and this results in an increase of the uncertainty 

of the peak areas (see also chapter 4.5). If the intensity is too high a part of the electrons 

will not be detected by the channeltrons, i.e. the output of the channeltrons becomes not 

linear. This factor plays a significant role for intensities greater than 106 cts/s per channel. 

There are several possibilities to control the intensities of the signal: the hemispherical 

analyser is equipped with a set of adjustable entrance and exit slits that can reduce the 

electron flux. It can be also done by the regulation of the output power of the electron gun 

or X-ray tube as well as the regulation of the distance to the sample (possible only for X-

ray tube). All those parameters were optimized in the beginning of the experiments and 

then they were kept without changes in order to provide the same conditions for all ES 

measurements and to allow the subsequent analysis of the data.  

 A slightly different wetting of the crucible walls by the alloy can in principle 

affect the absolute values of the XPS and the AES signals. This increases the relative 

error of the quantitative analysis and makes it difficult to compare the film thickness for 

different concentrations. In order to investigate the influence of the interface curvature on  
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Fig. 4.5 Stainless steel samples used for the modeling of different wetting 
of the crucible walls. Radii of the curvature: 1 - ∞ (flat surface), 2 – 
23mm, 3 – 13.5mm. 

 

the XPS intensity the following experiment was performed: three pieces made of stainless 

steel were placed in the crucible. The pieces were machined so that their upper side 

models the different wetting situations (Fig. 4.5), whereas the mass of the pieces was the 

same. Then the XPS spectra of all three samples were recorded and the area of the Fe 

2p3/2 (780 eV KE) peak was compared. A difference of 4% was found for two extreme 

cases (R = ∞ and R = 13.5 mm). With the assumption that the wetting of the crucible 

walls in Ga-Bi and Ga-Pb systems is similar for all samples, this source of error was 

considered as negligible.  

 

 

4.4. STM image acquisition 

 

 All STM images in this study were recorded with the help of the variable 

temperature (T ≤ 650K) “Micro SPM H” microscope supplied by Omicron 

Nanotechnologies. Since the microscope was maintained in the UHV chamber, all 

manipulations like exchange of samples and tunnelling tips are performed without 

ventilation of the chamber.  

 The principle of the construction of the microscope used in this study is shown in 

Fig 4.6. A sample (1) (crucible with alloy or sample plate) is inserted into the sample 

holder (2), which is equipped with stepping motors (3). They are used to move the sample 

in X- and Y-directions. The scanner tube (4) has a small magnet on the lower end, which 

fixes the tip holder (5). The scanner is connected to preamplifier, control unit and PC.  
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Fig. 4.5 Scheme of the sample stage of Micro SPM H microscope. Top 
and side view. Vibration isolation elements are not shown. 1 – sample 
plate, 2 –sample holder, , 3 – stepping motors, 4 – scanner tube, 5 – tip 
holder with tip, 6 – heating element, 7 – massive microscope stage. 

 

 It is very important to isolate the sample holder and the scanner from any sort of 

mechanical vibration originated typically from roughening and turbomolecular pumps, 

which are located very close to the UHV chamber with the microscope. Usually they 

should be switched off during the STM acquisition. Another sort of vibration, which can 

distort the STM images, is the vibration of the floor. Such a phenomenon arises even if 
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the laboratory is located in the basement of the building. In the case of the Omicron setup 

special pneumatic legs are used to get rid of the building vibration. They can lift the 

whole table with the apparatus, so it has no direct contact to the floor. In addition, the 

floor under Omicron apparatus was separated from the rest of the building. The 

microscope itself is also equipped with vibration isolating vitone rings. 

 Before starting the STM measurements, the tip holder with a new tip must be 

mounted on the scanner. This can be done by the series of manipulations when the special 

tag with a tip holder is inserted in the microscope. After subsequent replacement of the 

tag with the sample a two-stage approach of the tip to the surface starts. In the beginning 

the tip-surface distance can be estimated by eye and the approach is controlled by the 

experimenter. When the distance becomes small, the automatic, feedback-controlled 

approach is initialized. It stops when the specified tunnelling current is achieved; then the 

scanning can be started. 

 Several parameters can be independently adjusted during the scan in order to 

increase the quality of STM images: gap voltage, feedback tunnelling current, loop gain, 

scan speed and scan area. There is no general rule how to optimize them, the “trial-and-

error” method is used very often. A two-channel oscilloscope, connected to the control 

unit of the microscope was utilized to observe two important variables during the scan: 

actual tunnelling current and tip-surface distance. The analysis of the time dependence of 

those variables allows to find the suitable set of scan parameters. It also helps to locate 

the sources of noise. 

 The thermal expansion of materials drastically affects the images in STM; this 

phenomenon is known as thermal drift. Practically it appears as a shift or stretch/shrink of 

the scanned area1. The best way to get rid of thermal drift is to keep the temperature of 

the whole setup, including the microscope and the sample at constant level. This was 

done with the help of air-conditioning in the laboratory, where the deviation of room 

temperature was kept within one degree. 

 

 

 

 

 
                                                 
1 In principle the Scala Pro STM software used in our experiments provides a possibility to take into 
account the thermal drift and to correct the recorded images. This option can be used for the correction of 
linear (time-independent) thermal drift, which is seldom in practice. 
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4.5. Error analysis 

 

 Different sources of errors are considered below. Their influence on the final 

results i.e. thickness and chemical composition of the films is also described in this 

chapter. In general, the following sources of error have to be considered: error in 

concentration of the surface active component (Pb or Bi) in the liquid alloy, error in the 

measurement of the temperature of the alloy, error of the IMFP, electron analyzer 

instrumental error and error of XPS or AES peak area. These contributions are considered 

separately. 

Error of concentration. This error is influenced mainly by such factors as precision 

of the balance, purity of the chemicals used for the sample preparation, peculiarity of the 

cleaning procedure. Since the purity of metals according to the data of manufacturer is 

very high, the corresponding error is considered as negligible. “Sartorius” R 160P 

piezoelectric balance used for the samples preparation allows the weight measurements 

with a precision of 0.1 mg. The expression for the mole fraction of Bi and corresponding 

error is given as follows (in case of Ga-Pb error is the same): 

 

Ga
Ga

Bi
Bi

Bi

Bi
Bi

Ga

Ga

Bi

Bi

Bi

Bi
Bi m

m

x
m

m

x
x

M

m

M

m

M

m
x ∆

∂
∂+∆

∂
∂=∆








+








= ;   (4.1) 

 

For the most dilute sample (x(Pb) = 0.0006) this expression gives a relative error of 2.5%; 

for higher concentrations it is less. Cleaning of the sample surface including removal of 

oxide particles mechanically and by sputtering may theoretically result in depletion of the 

surface active component in the alloy. This does not happen as one can judge from the 

fact that the surface freezing temperature was found to be constant after several cleaning 

procedures. Total concentration error can be therefore estimated to be lower than 3%. 

Error of temperature. Temperature measurements were performed with a Ni-NiCr 

thermocouple with an absolute accuracy of ±0.5% (temperature in K). This means an 

absolute error of less than 2.5K for the entire temperature interval of the measurements. 

The temperature of the alloy surface can slightly differ from that in the bottom of the 

crucible, where it was measured. This difference is much more pronounced in the first 

version of the crucible, where the measurement point was located on the top of the sample 
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holder. In the second version of the crucible the temperature gradient seems to be low 

because of a relative small size of the crucible. Unfortunately one can not be completely 

sure due to lack of the experimental data concerning temperature gradient. One can 

estimate the maximal absolute error of 5K for the crucible 1 and around 1K for the 

crucible 21. 

Error of IMFP. Inelastic mean free path is a constant for the material, which is 

used in the analysis of the XPS and AES data. This constant characterizes the interaction 

of the electrons of specific kinetic energy with atoms of the material. The values used in 

this study were taken from [73]. IMFPs were calculated from these empirical expressions 

showing that the root mean square difference between these IMFPs and those initially 

calculated was 11%. Given values of the IMFP are strictly correct only for ideal, flat 

surfaces. There are numerous facts in the literature, which prove that the surface of the 

material usually undergoes so-called surface roughening transition [74-77]. This effect is 

not strong for pure Bi [75], whereas for Pb it is well known [77]. In addition one should 

take into account the influence of the aggregate state of the surface on the IMFP through 

the capillary waves for the liquid surface. The amplitude of the capillary waves depends 

on the temperature and surface tension [78]. The possibility of the surface roughening as 

well as difference between solid and liquid surfaces increases the uncertainty of the 

IMFP. 

Error of electron analyzer. According to the user’s manual of the EA 125 electron 

energy analyzer the difference between real electron flux and detected one overcome 1% 

for count rates above 106 cts/s pro channeltron (this corresponds to 7·106 cts/s for device), 

since the channeltrons have specific dead-time. Those count rates were not reached in the 

experiments; typical count rate was not higher than 1.5·106 cts/s. Furthermore, the peak 

intensities of the references and studied samples usually have the same order of 

magnitude. Therefore the electron analyzer error is considered as negligible. 

Error of XPS and AES peak area. The higher is the measured XPS or AES peak 

intensity, the larger is the corresponding signal-to-noise ratio. As it is mentioned in Ch. 

4.3, the noise level of the X-ray source was much lower than that for the electron gun. 

Therefore the absolute error of the XPS peak area was found to be less than 2 eV*kcts/s. 

This corresponds, for example, to the relative error of 3% for the peak with an area of 70 

                                                 
1 With exception of particular measurements, where the thermocouple rod was deformed. This affected the 
thermal contact resulting in the lower temperature values in comparison the measurements with the proper 
thermocouple. 
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eV*kcts/s, for larger peaks it is certainly smaller. AES spectra are characterized by the 

relative error of the peak area up to 15%.  

 Additional source of error is background correction in the XPS and AES spectra. 

However, the influence of both peak area and background correction errors on the film 

thickness d is reduced, since the expressions for d contain always a ratio of the measured 

intensity to standard one, i.e. (I/I0). 

 Another source, which can affect the ES results, is different wetting of the crucible 

walls for standards (pure metals) and alloys, which results in slightly different surface 

profile. The influence of the wetting of the walls was reduced in the second version of the 

crucible (see also Ch. 4.1) 

 Total error can be calculated by Gauss’ formula. For example, the error of the film 

thickness d, according to the overlayer model (eq. 3.9) depends on the error of two 

variables as follows: 
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The quantitative characterization of the film thickness becomes difficult, when d > 3λ (or 

approximately 85 Å). In this case less than 5% of the signal comes from the bulk 

component, which is comparable to the error of λ and XPS measurements. 

 Error of the interatomic distances in the STM measurements results from two 

factors: resolution of the STM images and thermal drift of the sample under investigation. 

Images shown in this study were recorded with a maximum resolution of 400x400 pixels. 

This corresponds to maximal uncertainty of approximately 5 nm for the image of 2x2 µm 

size. For the STM images with atomic resolution (5x5 nm) the uncertainty is less than 

0.125 Å. The influence of the thermal drift was taken into account by measuring of the 

interatomic distance in three different directions for the hexagonal orientation. The 

standard deviation of the distance from one considered atom to the next neighbour can be 

used for the characterization of the thermal drift. The vertical resolution of the STM 

scanner is 0.02 Å as given by manufacturer. So the height of terraces can be defined with 

this accuracy. The uncertainty in the depth of pits and grooves (see also Ch. 5.4) is much 

larger, because of relatively small dimensions of these objects1. 

                                                 
1 If the apex of the tip is larger than the width of the structure under study (groove or pit) one can not 
exclude the possibility of the tunnelling contact between the sides of the tip and the substrate. This makes 
apparent depth smaller than it is in reality. 
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Chapter 5. 

 

Results 

 

5.1 Wetting films in Ga-Bi and Ga-Pb systems 

 

We start the presentation of the results with the characterization of the wetting 

films by means of X-ray photoelectron spectroscopy. The behaviour of the Ga-Bi and Ga-

Pb systems for the concentration range between the eutectic and the monotectic points, 

i.e. 0.0022<xBi<0.085, 302.6<T(K)<495.2 and 0.0006<xPb<0.024, 302.6<T(K)<588.0 is 

described in this chapter. The considered temperature range starts nearly from the 

corresponding melting point and extends 100-150K above it. The XPS data for the alloys 

with different concentration of Bi as well as those for pure components are interpreted in 

terms of the overlayer model in order to obtain the effective film thickness [79]. 

Appendix A contains primary information concerning all XPS experiments performed in 

this study. 

 

 

5.1.1 Ga-Bi 

For the wetting film study in the Ga-Bi system the crucible of type I (cylindrical 

shape, curved interface) was used. In total five samples with the mole fraction of Bi 

0.0028, 0.0031, 0.0112, 0.0115 and 0.0472 as well as pure Bi and Ga were investigated. 

The conditions for the XPS spectra acquisition were as follows: relative position of the 

sample holder in the analysis chamber (X/Y/Z): 14/140/5, EA entrance slit: 6x12 mm, EA 
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exit slit: 5x11 mm, 7 channel acquisition, position of the X-ray source according to the 

scale on the X-ray tube: 37 mm, X-ray source: Mg anode, Kα radiation, 1486.6 eV, 

power: 255W (15kV x 17mA). All data concerning the kinetic energy of XPS transitions 

are related to the energy of the source given above. 

 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1 XPS spectra of pure Bi (a) and Ga (b) at room temperature. 
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Fig. 5.1 shows the XPS spectra of pure Ga and Bi. Both spectra are very similar to 

those, which were measured by other authors [80, 81]. The characteristic background due 

to secondary electrons can be observed at low kinetic energies. The acquisition of the 

spectra for the pure components is vitally important for two reasons: 

- to receive I0 intensities for the quantitative analysis. 

- to make sure that the alloy under investigation does not contain any impurities, 

which can affect the formation of the wetting film. 

The most intense peak in case of Ga is the 2p3/2 transition with kinetic energy of 370 eV. 

The 3p1/2 and 3p3/2 transitions with corresponding energies of 1379 eV and 1383 eV are 

not so intense, furthermore they partially overlap each other. 

 Bi has numerous XPS transitions in a wide range of kinetic energy. The maximum 

intensity has the 4f7/2 peak at 1329.6 eV. 

 The spectrum of Ga exhibits a series of signals from 800 to 1100 eV, which can 

not be identified as XPS transitions. The kinetic energy of these peaks remains constant 

when the energy of the incident radiation is changed. This implies that they represent 

different Auger transitions. 

 In the beginning of the experiments the choice between Mg and Al anodes as the 

radiation source for all measurements was made in favour of Mg: in this case the Ga 

Auger series does not overlap with other signals in the spectrum. 

 In this and all subsequent studies the amount of oxygen, as the main impurity on 

the surface, was checked at regular intervals. A typical fragment of the spectrum for 

oxygen check is shown in Fig 5.2. The oxygen peak of maximum intensity is supposed to 

be found at 955.6 eV [82]. The sample was subjected to a cleaning procedure (see Ch. 

4.1) when this signal became significant (dashed and dotted lines) and/or visible particles 

appeared on the surface. A small amount of oxygen in form of oxides is believed to be 

adsorbed at the interface between the bulk alloy and the walls of the crucible. It can come 

to the surface by means of diffusion when the bulk is liquid. The second way is the 

adsorption from the gas phase. This was observed, for example, when the sample was 

kept for several weeks in the UHV chamber, even at very low pressure (~10-10 mbar). 

 One can discriminate between physi- and chemisorption if the exact kinetic energy 

of the oxygen peak can be determined. The deviation of the peak from 955.6 eV to higher 

kinetic energy reveals the presence of oxides [62]. 
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Fig. 5.2 XPS spectrum used for the oxygen check. 
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Fig. 5.3 XPS spectrum of Ga-Bi liquid alloy. x(Bi) = 0.0031, T=170°C. 
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As we already mentioned in Ch. 3.1 the absolute values of the XPS signals can be 

reproduced very well. Therefore only one spectrum is normally shown. In practice the 

measurements were performed usually several times. 

The spectrum of the wetting film for the liquid alloy (xBi=0.0031 T=130°C i.e. 

~65°C above the SF temperature) is presented in Fig. 5.3. It appears to be a combination 

of the spectra for the pure components. Since the absolute intensities of the corresponding 

Ga and Bi peaks are relevant for quantitative analysis, only the narrow regions shown in 

Fig 5.3 were recorded with high resolution (∆E=0.1 eV, dwell time = 0.4 sec.). These 

spectra for different temperatures were used to determine the wetting film thickness 

according to the overlayaer model.  

Fig 5.4 represents the dependence of the wetting film thickness as a function of 

temperature for different Bi concentrations. The value of d was obtained by solution of 

eq. 5.1, derived for the overlayer model (see eq. 3.9 and 3.10 in Ch. 3): 
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Fig. 5.4 Dependence of the wetting film thickness in Ga-Bi system for 
different concentration of Bi and temperatures above the respective 
surface freezing temperature TSF. 



58 Results 

For low Bi concentration one can neglect the Bi content in the bulk phase and consider it 

as pure Ga. For the concentration xBi=0.0472 it was not the case, so equations 3.11 and 

3.12 were used. 

The thickness of the wetting film varies between ~2.5Å for x(Bi)=0.0031 and 

~5.5Å for x(Bi)=0.0472. Despite of the experimental error of 10 to 20%, one can notice 

the decrease of the wetting film thickness with temperature for all studied concentrations. 

The increase of the film thickness from 2.5Å to 5.5 Å corresponds to a growth from ~1 to 

~2 monolayers of Bi. This result is in good agreement with the results obtained by other 

methods [40, 83]. It is also consistent with model calculations [95]. 

 

 

5.1.2 Ga-Pb 

The XPS spectra of the Pb and the Ga-Pb alloy are shown in Fig. 5.5 and 5.6, 

respectively. One can notice, that these spectra closely resemble the spectra of Bi and Ga-

Bi alloy, since Pb as the neighbour of Bi in the periodic system of elements has a very 

similar pattern of transitions to Bi (compare 5.4a and Fig. 5.1a) The 4f7/2 peak at 1349 eV, 
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Fig. 5.5 XPS spectra of pure Pb (a) at room temperature. For quantitative 
analysis the area of Pb 4f 7/2 peak was used. 
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Fig. 5.6 XPS spectra of Ga-Pb alloy, x(Pb) = 0.0052 in liquid (a), T > TSF 
and solid (b), T<<TSF states. 
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 which has a high intensity and almost no overlapping, was chosen for the quantitative 

analysis and determination of the film thickness. It was performed as described above 

(see Ch. 3.1) using the absolute intensities of standards i.e. pure Ga and Pb in terms of 

overlayer model. In order to double-check the result, the calculation of d was repeated 

using eq. (3.9) and (3.10) separately. In this case one obtains two values for d: one comes 

from considering the XPS signals of the pure wetting film component (Pb) (eq. 3.9), 

another one is defined by the ration (I/I0) for the bulk component (Ga) (eq. 3.10). Both 

values of d were found to be very similar to each other; moreover they were close to 

those, which were obtained by the combined formula (eq. 5.2): 
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 The general behaviour of the wetting film thickness in the Ga-Pb system 

resembles that for Ga-Bi system. The film thickness increases slightly with the 

concentration of Pb and decreases slowly with the temperature. These relative changes  
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Fig. 5.7 Temperature dependence of the wetting film thickness in Ga-Pb 
system for different concentration of Pb. 
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are clearly visible on the XPS spectra, but their magnitude remains within the 

experimental error of the applied method. The dependence of wetting film thickness on 

the temperature for several studied concentrations of Pb is shown in Fig. 5.7. 

 

 

5.2 Surface freezing films in the Ga-Bi system 

 

 One central objective of this study is to characterize the surface freezing films 

studied before by SHG [34, 38], surface light scattering [39, 40], ellipsometry [36] and 

model calculation [95]. This chapter describes the experimental results for the Ga-Bi 

system with compositions between the eutectic and the monotectic points. The questions 

of interest comprise such properties as SF film thickness, its homogeneity and chemical 

composition as well as the dependence of these variables on the temperature. Results from 

electron spectroscopy methods (XPS, AES) as well as tunneling microscopy techniques 

are presented below.  

 

 

5.2.1 Homogeneity of the SF films – results from AES 

 This part of the study was supposed to answer the following questions:  

1) Does the SF film cover the entire alloy-vapor interface after the SF transition? 

2) Is the thickness of the SF film everywhere the same? 

As it is already mentioned in Ch. 3.1 a significant difference between AES and XPS 

techniques is the dimensions of the analysis area. In the setup used in this study it is 

practically impossible to resolve the fragments of the surface using XPS. So the AES, 

capable to answer the questions above, was successfully applied. The numerical 

interpretation of the AES results is more difficult in comparison to the XPS because of 

the unknown electron backscattering factor r(E). But this method is suitable for the 

determination of the relative changes in the SF film thickness as a function of the position 

on the surface. 

 The AES experiments were conducted as follows: By means of the manipulator 

the crucible was set so that one spot of ~1mm in diameter on the surface is exposed to the 

electron beam from the e-gun. Then the spectra of the Ga LMM Auger transition (1067  
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.8 Fragments of the AES spectra of Ga (a), Bi and Pb (b) 
 

eV) and Bi (NOO transition, 105 eV) were recorded (see Fig.5.8). Afterwards the crucible 

was moved so that another point appears in the focus of the e-gun and so on. Only the 

position of the crucible in the XY plane was changed, the geometry of the analyzer and  

1050 1055 1060 1065 1070 1075 1080

1780000

1800000

1820000

1840000

1860000

1880000

1900000

1920000

1940000

 

 

In
te

ns
ity

 (
ct

s/
s)

Kinetic energy (eV)

 Ga LMM

85 90 95 100 105 110 115

320000

330000

340000

350000

360000

370000

380000

 

 

In
te

ns
ity

 (
ct

s/
s)

Kinetic energy (eV)

 Pb NOO
 Bi NOO



Chapter 5 63 

 

Fig. 5.9 Surface profile in the cylindrical crucible. The apparent film 
thickness is not the same for different points on the surface. It depends on 
the surface curvature. 

 

the source were kept constant. Typical distance between measurement points was 2-3 

mm; so a rectangular grid, covering the entire surface, consisted of 15-25 points. The 

following settings of the e-gun were used: Eel = 3000 eV, Ifil  = 2.25 A, Iem = 1 µA, grid =  

0.28, focus = 5.62 (relative scale). The temperature of the crucible during the whole scan 

must be kept constant. 

 The value of the SF film thickness was determined by the numerical solution of 

eq. (5.3) – analog of the eq. (5.1) applied for the XPS measurements: 

 









⋅
















−−⋅

+
+=

θλθλ cos)(
exp

cos)(
exp1

)(1

)(1

)(/)(

)(/)(
0

0

GaBiBiBiGa

Bi

E

d

E

d

Er

Er

GaIGaI

BiIBiI
 (5.3) 

 

whereby the electron backscattering factor r(E) was assumed to be equal to zero for all 

points [62]. The I0(Pb)/I0(Ga) ratio was estimated from the AES data for the wetting film 

with known thickness. For a quantitative analysis the curvature of the surface should be 

taken into account (Fig. 5.9). The electron emission angle θ is not the same for all points 

of the AES scan. It is difficult to describe the precise shape of the surface, so an 

approximated model is required. We modeled the alloy-vapor interface as a fragment of a 

sphere with the radius R (Fig. 5.9). R as the only fitting parameter was estimated from the 

AES measurements of the wetting film. Using this model one can calculate the correct 

values of θ for different measurement points. The shadow effect from the walls of the 
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crucible was also taken into account excluding a part of the area from consideration. After 

the calculation of the thickness d for a given temperature the map of the surface i.e. the 

thickness profile of the SF film as a function of the coordinates X and Y was constructed. 

 A typical map for the Ga-Bi system at T=TSF is shown in Fig. 5.10a. For all 

measured concentrations of Bi the maps of the SF films exhibit similar features: 

1) In most experiments the SF film covers the entire surface of the alloy. This is 

consistent with the observation made by naked eye. 

2) The SF films are more or less homogeneous i.e. the calculated thickness does not 

vary much when one jumps from one measurement point to the next one. 

3) All observed films are very thick in comparison with the wetting films. The 

typical thickness obtained with eq. 5.2 were found to be around 50-70Å. This 

value is 4-5 times larger than the IMFP λ for the Ga LMM signal (and ~10 times 

larger than λ(EBi). Thus, the error of the overlayer model for such d is very large. 

So the real thickness of the SF film can be much greater than 50Å. 

4) The properties of the SF films were found to be independent on the cooling rate. 

Different cooling rates (1-20 K/h) were investigated. 

5) After the SF transition the formed film seems not to change its thickness and 

homogeneity if the temperature of the system is decreased. No significant 

transformations were observed on the SF films during the subsequent cooling 20-

50K below TSF (similar behaviour shows SF films in Ga-Pb system at cooling 

rates > 1 K/h, characterizing however by lower thickness, see also Fig. 5.14, circle 

symbols). This means either the film is stable and the thickness does not change or 

these changes are outside of the depth resolution of the AES method. 

6) The SF films are stable with time. No changes of thickness or homogeneity were 

observed within the period up to 96 hours, when the system was kept at the SF 

temperature. 

One should notice that a different behaviour, comparing to that described above, was 

observed in a few experiments. For example, fragment of the surface, which was not 

covered with the SF film, was sometimes detected at T ≤ TSF when formation of the film 

was already complete. This can be ascribed on the impurity effect, when the oxidized 

surface prevents the formation of the SF film, although oxygen content was not 

determined by means of AES. 
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5.2.2 Thickness of the SF films 

 Some aspects concerning the thickness of the SF films were discussed in the 

previous chapter. More precise measurements of the thickness were performed by means  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.10 Maps of the surface constructed on the results of AES 
investigation of the Ga-Bi alloy, x(Bi)=0.0115. After formation of the SF 
film at a cooling rate of 5 K/h (a) the sample was heated up with 0.05 K/h. 
The resulting surfaces (b) and (c) are thinner than the original one. The 
thickness of the SF film changes gradually without partial melting. 
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of XPS. Typically, after the SF transition on cooling one can see a strong increase of the 

Bi signal simultaneously with the rapid disappearing of the Ga peak [84]. 

 The magnitude of the Ga 2p3/2 peak after the SF transition for all measured 

concentrations is distinguishable in different cooling cycles, but in most cases it was 

relatively low. The eq. 5.2 yields the corresponding thicknesses of the SF films between 

25 and 40Å. As it is already mentioned, this value is 3-4 greater than the IMFP for Ga 

peak (~10Å at 370eV), what increases dramatically the uncertainty of the method for such 

thick film. It is not clear why the relative intensities of Bi and Ga sometimes vary 

significantly for different experiments, performed under the same (or very similar) 

conditions. One possible explanation can be an incomplete coverage of the interface with 

the SF film, whereby the small part of the surface remains liquid. This effect has been 

observed several times when the system was kept at T = TSF for 5-10 hours or when the 

temperature was slowly (3-5 K/h) decreased below TSF. The incomplete coverage could  

 
Fig. 5.11 Typical XPS spectra of Ga-Bi alloy, x(Bi)=0.0031 on heating. 
The transition from one spectrum to the next one is gradual, without 
abrupt changes. 
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result in an increase of the Ga signal, accompanied by a decrease of the Bi one1. Taking 

into account the latter possibility one can qualitatively conclude that the SF films in Ga-

Bi system are usually more than 40-60Å (~ 15-20 ML) thick independently on the Bi 

concentration. 

 XPS spectra of the Ga-Bi system on cooling for the temperatures below SF point 

do not reveal any changes, because the intensities of the both components remain 

practically the same. Therefore, it was concluded that no significant perturbations in the 

SF film takes place, when the system is cooled below the SF temperature. If it is heated 

up after the formation of the SF film, the following phenomena were observed: At a 

temperature of 2-4K above TSF the SF film starts to melt. This is consistent with the 

hysteresis behaviour observed in the SHG and capillary wave studies [40, 34, 38] The 

melting of the SF film, appears to the observer as the gradual melting of bulk material i.e. 

disappearing of the SF film from parts of the surface. It is accompanied by a significant 

growth of the Ga peak simultaneously with a fall of the Bi signal in the XPS spectrum 

(Fig. 5.11). At the end of the transition the alloy seems to be identical to the one before 

cooling. Such behaviour was found to be typical for SF films, formed at cooling rates of 

0.5-5 K/h. 

 One experiment with the Ga-Bi alloy for xBi=0.0115 was performed with an 

extremely slow heating rate of 0.05 K/h. The film thickness was measured by means of 

AES. The results are shown in Fig. 5.10. In this case the gradual decrease of the film 

thickness rather than partial melting was observed. In a separate run the temperature of 

the alloy was kept constant for the same period of time (~5 days) and no changes in the 

thickness were detected. 

 The altering of the alloy surface, resulting from the formation of the SF film was 

also studied by means of UPS. The UPS spectra of the Ga-Bi (x(Bi) = 0.0031) alloy for 

two temperatures above and below the SF transition are displayed in Fig. 5.12. The 

spectrum of the SF film is characterized by two signals at 18.3 eV and 20.5 eV 

respectively. These signals were also found in the spectrum of pure Bi, measured by 

Ölhafen et al. [85]. They disappear when the SF film melts at increasing temperature 

(>50°C). 

 

                                                 
1 We emphasize, that only a few number of XPS measurements on the SF films in Ga-Bi system resulted in 
high Ga-peak intensity, what can be interpreted either as low film thickness or as the thick film, which 
covers only a part of the interface. 
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Fig. 5.12 UPS spectra of Ga-Bi alloy, x(Bi)=0.0031 before and after SF 
transition. Two peaks at 18,3 eV and 20.5 eV are specific for solid Bi. 

 

 The depth profiling experiment utilizing layer-by-layer sputtering was performed 

with strongly undercooled SF films in the Ga-Bi system. The surface of the alloy was 

prepared in a following way: the SF film was obtained as usual by cooling of the sample 

with a cooling rate of 7 K/h starting from one-phase region. After formation of the SF 

film the cooling was continued until the room temperature is reached. This resulted in the 

solidification of the bulk alloy, because he Ga-Bi system does not show a supercooling 

behaviour. The surface of the alloy (i.e. strongly undercooled SF film) was sputtered 

during definite time and subsequently analyzed by means of XPS. Then this procedure 

was repeated several times. The results are summarized in the Table 5.1. The calibration 

of the sputter-gun yields the sputtering rate of 0.25±0.1 ML/s for pure Bi. The effect of 

the preferential sputtering was considered as negligible. From the Table 5.1 one can see 

that the change of the chemical composition of the sputtered material takes place only 

during the first hundred seconds of sputtering; this corresponds to the removal of 

approximately 25 ML of the material. The study of deeper layers up to 1.5 µm gives 

almost the same chemical composition within the error of the method. It is remarkable, 
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Sputtering time 
(hours) 

Depth (nm) 
I(Ga) 

(eV*cts/s) 
I(Bi) 

(eV*cts/s) 
x(Ga) 

from I(Ga) 
0 0 268.9 1172 0.065 

0.03 10 580.4 1019 0.14 

0.06 20 576.2 999.0 0.14 

0.1 32 532.5 992.8 0.13 

0.6 195 609.1 981.6 0.15 

1.6 520 550.6 985.6 0.14 

3.6 1200 590.1 952.4 0.15 

4.6 1500 640.1 926.8 0.16 

 

Table 5.1 The results of the depth profiling experiments using sputtering 
in Ga-Bi (x(Bi)=0.0031) alloy. According to the calibration procedure 
sputtering rate was estimated to ~0.25±0.1 ML/s for pure Bi. Thickness 
for one ML of 0.4nm [87] was taken. 

 

that the bulk composition was not reached even after removal of 1.5 µm of the metal. The 

SF film appears to play an important role for the nucleation and growth of the Bi-reach 

bulk phase during the phase separation process. Although this method does not provide 

information about the SF film thickness in the moment of its formation, it can be useful 

for the characterization of the alloy at lower temperatures (T << TSF). 

 

 

5.2.3 Surface topography of the strongly undercooled films 

 The aim of the following part of this study was to investigate the surface structure 

of the SF films on the micro- and nanometer scale with the STM technique. Such 

information can help to answer many questions concerning the properties of the SF films. 

Unfortunately all attempts to acquire STM images at the SF temperature, directly after SF 

film formation, were not successful. We assume that the liquid Ga-rich phase underneath 

the SF film can cause some critical problems for the STM image acquisition. These could 

be e.g. a floating of the entire film on the top of the liquid phase. Another complication is 

that a short electric contact of the tunneling tip with the liquid phase occurs (it can happen 

due to defects in the SF film). In this case the feedback electronics of the microscope will 

withdraw the tip immediately, this is also known as jump-to-contact phenomenon, 

described by [86]. In order to get rid of these negative effects the temperature of the 
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system was decreased to reach the point of the bulk freezing. In this state it was possible 

to reach a stable, vibration-free tunneling mode. 

 The strongly undercooled SF films for the Ga-Bi samples with Bi concentrations 

of 0.0031 and 0.0115 were investigated by STM at room temperature. The parameters for 

the microscope were chosen as follows: bias voltage ±0.08-0.4 V, tunneling current 0.08-

0.5 nA, loop gain 5-10%, scan speed 2000-3000 nm/s. The dimensions of the STM 

images were varied from 5x5 nm2 (atomic resolution) up to 2x2 µm2. Usually one or two 

pulses of 5-10 V were applied to the fresh W-tip in order to remove the oxidized material 

from the apex and so to reach the appropriate quality of the STM images. This procedure 

was sometimes repeated during the experiment. 

 

 

 

 

Fig. 5.13 STM image at room temperature of the solid/vapour interface of 
a Ga-Bi alloy, x(Bi) = 0.0115 after the SF transition and bulk 
solidification. Atomically resolved Bi(0001) is shown in inset. 
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 The image in Fig 5.13 shows typical features of the undercooled SF films in the 

Ga-Bi system. Atomically flat terraces have an area up to some µm2. This value is 

extraordinary large in comparison to the dimensions of the terraces in pure bulk 

crystalline Bi [87]. The height of the terraces was determined to be 0.37±0.02 nm; this 

value is in good agreement with the step edge height of 0.4±0.002 nm measured by STM 

at room temperature on a Bi single crystal cleaved along the basal trigonal (0001) plane 

[88]. The terraces contain a few defects like islands and holes. Their height (depth) was 

observed to have a thickness corresponding to 1ML. The latter feature was not always 

detected for the freshly prepared surfaces. One can see that these small defects as well as 

large terraces have very often a triangular symmetry. A zoom into the terrace results in 

the atomic resolved image (Fig 5.13, inset), exhibiting an ordered hexagonal structure 

with the corresponding interatomic distance of 0.44±0.02 nm. This result is also in good 

agreement with the known lattice constant of 0.4533 for Bi in the (0001) plane in a three-

fold symmetrical trigonal network.  

 

 

5.3 Surface freezing films in the Ga-Pb system 

 

5.3.1 Thickness and homogeneity of SF films in the Ga-Pb system 

 Formation of the SF film in the Ga-Pb system is considered in this chapter. XPS 

and AES techniques have been applied to characterize the film thickness and 

homogeneity. A comparison with the SF phenomenon in the Ga-Bi system is also 

provided. 

 The appearance and development of the SF film for the Ga-Pb alloy looks similar 

to that in the Ga-Bi system if one observes it with naked eye. A front, which has a 

different reflection (it appears grayer), starts to grow from one or several points usually 

near the walls of the crucible, when the temperature of the alloy on cooling reaches a 

certain value above the liquidus temperature, known as SF temperature. The fronts join 

each other and the film formed in this way covers a large fraction of the surface. This 

process usually took less than one minute for the crucible used in our experiments. Those 

parts of the interface near the walls of the crucible, which were not covered by the SF 

film, do not undergo visible changes if the cooling of the crucible is continued. That 

means, the lateral growth of the film seems to stop in approx. one minute after the 
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beginning of the formation and the film seems not to expand or to stretch during further 

cooling. 

 The film appears for the observer to be more or less homogeneous immediately 

after formation and in the next 60-100 minutes. Using a high-resolution CCD camera one 

can only see joints of different fronts and the border between the SF film and the “liquid” 

parts of the interface1. After approx. 1.5 hours when the system is kept at constant 

temperature one can record with the CCD camera the unexpected appearance of 

microscopic islands (see detailed description in Chapter 5.3.2).  

 For the characterization of the SF film without any visible defects one of the 

following approaches can be used. The XPS spectrum can be either recorded immediately 

after SF film formation or at lower temperatures with sufficient cooling rate. It was found 

experimentally that the formation of defects (islands) can be suppressed when the system 

is cooled down with a cooling rate higher than approx. 3 K/h. 
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Fig. 5.14 The dependence of the SF film thickness on temperature for two 
different cooling rates. The thickness is calculated according to the 
overlayer model (eq. 5.2). 

 

                                                 
1 Designation “liquid” is more or less correct since this part seems not to change during SF transition. 
Unfortunately we do not have further information, but the optical observation of the reflection difference 
gives a strong indication. 
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 In a first approximation the thicknesses of the SF films can be calculated in the 

same way as for wetting film i.e. using eq. (5.2). Limitations of this approach as well as 

alternative methods are discussed in ch. 6.1. Fig. 5.14 represents the changes in the SF 

film thickness as a function of temperature. Such behaviour (slow increase of d with 

decreasing temperature) was found to be typical for all studied alloys. The comparison of 

the thickness dependence for films with and without defects is also provided. 

 

 

5.3.2 Evolution of the SF films in Ga-Pb system 

 The SF films in the Ga-Pb system are not stable – they undergo deep changes with 

time if the system is kept at constant temperature. Defects of different types appear on the 

surface after a while, in contrast to the Ga-Bi system1. Detailed description of these 

defects as well as a quantitative interpretation of the XPS data is provided in this chapter. 

 An important experimental observation, which attracted special attention to the 

problem of the time evolution of the SF films, was a significant increase of the Ga signal 

in XPS spectra recorded 3-6 hours after film formation. First it was associated with a 

relaxation of the film and respective decrease of the film thickness. Then the use of a 

high-resolution CCD-camera with zoom function gave unexpected results: the film did 

not appear as a homogeneous one, but it had many islands of approximately the same 

size. The subsequent detailed analysis revealed that the islands become visible in ~1 hour 

after SF film formation2. The appearance and the growth of islands were followed within 

next 5-7 hours. Depending on the conditions of the film formation (cooling rate, external 

heat sources like X-ray tube etc.) the islands can rich 100-150 µm in diameter (Fig 5.15 

left, bottom) or they grow together forming some kind of interconnected structure (Fig 

5.15 right bottom). In some experiments the appearance of grooves with ~100 µm width 

was also observed. This seems to be a final state in the evolution of the SF film, because 

no change was usually observed after 10-15 hours. 

 The reflection of defects (islands and grooves) resembles the reflection of the 

liquid surface of Ga-Pb alloy at the temperature above SF transition i.e. wetting film. 

Moreover, the reflection of islands does not change on heating of the alloy, which results  

                                                 
1 Ga-Bi system has been intensively studied in our laboratory in a separate experiment by means of 
ellipsometry. The CCD camera was used to check the surface of the liquid alloy ad SF films. Formation of 
islands or other kinds of defects was not observed. 
2 Minimal size of objects, that can be resolved using this camera, is about 10µm. 
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Fig. 5.15 Evolution of the SF film in Ga-Pb system, x(Pb) = 0.0041 at 
constant temperature. Formation of defects is clearly visible. 

 

in the film melting. So the assumption, that the islands consist of a Ga-rich liquid phase, 

is very probable. 

 As it was mentioned above, at the high cooling rates (3 K/h and more) the 

formation of island is not observed. The time-dependent formation of islands is likely in 

competition with the growth of the film thickness in z-direction. If the film is thick 

enough, the defects probably could not start to form. At the lower temperatures the 

deposition of bulk Pb on the SF film, which is precipitated due to phase separation, can 

theoretically improve this effect. 

 Unfortunately the use of AES could not give any additional information that can 

be used for the characterization of the SF films. The spot size of the AES gun was found 

to be too large (~1mm in diameter) to resolve the defects (~0.1mm), so one can obtain 

only an averaged signal of islands and film. Taking into account additional difficulties 

concerning the interpretation of the AES results and respective large uncertainties, they 

are omitted here.  

0 h. 1 h. 

5 h. 16 h. 
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5.3.3 Surface topography of the strongly undercooled films 

 Investigation of the undercooled SF films in the Ga-Pb system was performed in a 

similar way as this was done for the Ga-Bi system. Usually the alloy was heated up well 

above the liquidus temperature and then it was cooled to the room temperature with a 

cooling rate of 5-7 K/h, which is high enough to avoid the formation of islands. Due to a 

strong tendency of the bulk Ga-Pb alloy to be supercooled for all studied concentrations, 

temperatures of -20 -40°C were required in order to reach the freezing of the bulk. 

 Prepared in such a way the surface was subjected to the STM characterization. 

The following parameters were used for the microscope: bias voltage ±0.2 – 0.35V, 

tunneling current 0.15-0.25nA, loop gain 6-10%, scan speed of ~2500 nm/s for large 

images (1x1µm2, 2x2µm2), and ~250 nm/s for small images with atomic resolution (5x5 

nm2, 10x10nm2). 

 

 

Fig. 5.16 STM image at room temperature of the solid/vapour interface of 
a Ga-Pb alloy , x(Pb) = 0.0041 after the SF transition and bulk 
solidification. Atomically resolved Pb(111) is shown in inset. 
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 The typical view of the surface was found to be independent on the Pb 

concentration in the bulk. One of the STM images, representing special features of the 

strongly undercooled SF film in Ga-Pb alloy, is shown in Fig 5.16. The surface is 

characterized by very large, atomically flat terraces without any defects. The edges of the 

terraces have curved shape, its height was found to be about 0.3±0.02nm (value of 0.33 is 

given by [89] for pure Pb). Such a step edge height corresponds to one monolayer. The 

small image with atomic resolution shows hexagonally ordered atoms with lattice 

constant of 0.36±0.01nm. This value is also in good agreement with known lattice 

constant for (111) surface of Pb monocrystal [90]. 

 

 

5.4 Tip-induced surface modification and nanostructuring 

 

 The phenomena described in this chapter are modification of the alloy surface on 

the nanometer scale via interactions with STM tip. Such a modification was not the 

primary objective of the study, however it was discovered during the STM experiments 

on the strongly undercooled SF films in the Ga-Bi system [90]. Although surface 

modification though the STM tip is a well known phenomenon described in the literature 

[91-94], the case of Bi to our knowledge is not studied yet. The mechanism of tip-induced 

surface modification is also under discussion [94]. Therefore we report here the results, 

which appear to be very interesting and promising for further investigation. 

 The tip-induced surface modification experiments were performed on the Ga-Bi 

alloy with the concentration of Bi = 0.0115. The SF film was obtained as it is described in 

Ch. 5.1.4. Very large, atomically flat terraces on the top of the SF film in the Ga-Bi 

system represent a perfect platform for the surface modification experiments. Even 

unsignificant changes can be easily detected on such a flat surface. Basically three types 

of the tip-induced nanostructures were observed: squares, small craters/holes and large 

ones. We begin the description with the first observed type of artificial nanostructure, i.e. 

the squares (or parts of it). An unexpected STM scan results from the same area repeated 

several times initiates subsequent investigations. The feature, which attracted an attention, 

was a kind of rectangular pattern in the upper left angle of the STM image. It was not 

visible on the first scan, then it appeared on the second scan (same area and dimensions), 

twice on the third one and so on. Careful consideration of the images in Fig. 5.17 results  
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Fig. 5.17 STM images of Ga-Bi, x(Bi) = 0.0031 solid/vapour interface. 
Three subsequent scans. See text for details. 

 

 

 

 

Fig. 5.18 Artificial nanostructures of rectangular shape. Parameters of the 
scan are as follows: Vbias = 0.4 V. 
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in the following observation: the distance between the first rectangular pattern and the 

point “X” (it was arbitrarily chosen on the step edge on the first image and then fixed). 

That means, the surface undergoes a slight thermal drift. Moreover, one can notice, that 

rectangular pattern lies exactly on the left and upper borders of the previous image. 

 Fig. 5.18 displays the result of another experiment: after the series of scans the 

scan area was shifted down and to the right from the original position. Then the scan was 

repeated, the resulting image is shown on the Fig 5.18. One can see that the upper left 

angle shows quite different features in comparison to the rest of the picture. The surface 

appears to be changed during the first scan. The step edges can be still be recognized 

despite of the damage. The borders of the first scan appear as barriers of 1-2nm (3-5ML) 

height. Formation of such barriers on the outer borders of the scan area was confirmed in 

several experiments with different tunneling tips, including the scans, rotated by 45° in 

respect to the previous one. 

 The key to the understanding of the surface modification during the STM imaging 

is variation of scan parameters: bias voltage, feedback current and, probably, scan speed. 

Without discussion of the mechanism of the nanostrucruring, it is important to notice that 

the appropriate combination of scan parameters results in atom transfer between the STM 

tip and the sample surface. The set of parameters can be empirically adjusted in order to 

control the intensity and direction of the atom transfer. 

 The approach described above was further developed for the creation of one-

dimensional patterns (grooves or barriers) as well as zero-dimensional ones (pits and 

islands). An option in Scala® software used together with Micro SPM H microscope to 

switch the scanner among frame-, line- and point-mode can be utilized for this purpose. 

An optimization of the scan parameters was performed empirically in order to achieve 

controlled extraction and deposition of Bi atoms. 

 Fig 5.19 shows artificially formed nanostructures such as islands (1), barrier (2), 

pits (3) and groove (4). They were obtained by applying relatively high bias voltage of 

+3V (3,4) and -2,8V (1,2) respectively. Switch of the sign of the bias voltage results in 

change of the atom transfer direction. Tunneling current was kept constant at 0.5nA. 

Point-mode (1,3) and line-mode (2,4) of the scanner were utilized, in latter case a rather 

large value for the scan speed (4000 nm/s) is required to achieve the desire effect. 

 The respective height profiles are shown in the Fig 5.19b. The depth of the pits 

and grooves corresponds mostly to 1-2ML i.e. it is greater than normal step edge of the 

terraces. Islands and barriers can be characterized with the same height. It was shown that  



Chapter 5 79 

 

 

 

 

Fig. 5.19 Artificial nanostructures on the surface of the Ga-Bi alloy made 
by high bias voltage pulses; (a) STM images (dimensions: 150x60 nm): 
islands (1), barrier (2), pits (3) and groove (4) are formed applying -2.8V 
(1,2) or +3.2V (3,4) bias voltage; (b) corresponding line profiles. 

 

near circular shape of the pits and islands is not stable with time. After a while they 

accept a triangular shape, which seems to be typical and energetically more favourable for 

the defects at Bi-surface.  

 The size of the nanostructures can be changed by slight variation of the bias 

voltage, but this effect was found to be weak. Further increase of the bias voltage to ±4V 

results in much more serious damage on the surface. One can see the outcome of such a 

pulse in point mode in the Fig 5.20. A mount of ~20nm height surrounded by “moat” is 

formed. Real dimensions of the moat are probably larger than that shown in the picture, 

because the tip is probably unable to reach its deepest point if the width of the moat is  
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Fig. 5.20 STM image of Ga-Bi, x(Bi) = 0.0031 solid/vapour interface. 
Dimensions: 2x2µm. The defect in the middle is the result of the pulse 
application. (Vp = 4V). Correspond depth profile is shown below. 

 

smaller than the width of the tip. An array of splitters is visible in the lower part of the 

image – they appear as many preferentially triangular islands of 1ML height. 

 The mechanism of described surface modification and nanostructuring as well as 

the details of tip-surface interactions will be discussed in the Ch. 6.3. 
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Chapter 6. 

 

Discussion 

 

6.1 Modelling of thickness, coverage and chemical composition 

for the surface freezing films in the Ga-Pb system 

 

 Several approaches to the interpretation of the XPS data with respect to the 

thickness and homogeneity of the SF films are proposed and discussed. Besides of the 

simple overlayer model, which assumes Pb as the only component of the SF film, another 

model approach describing the film material as a mixture of Pb and Ga is considered. For 

the quantitative description of the SF film with defects in Ga-Pb system a possibility of 

incomplete coverage is taken into account. 

 

 

6.1.1 Surface freezing films without defects 

 One of the main problems for the thickness determination of the SF films in the 

Ga-Pb system is that the overlayer model fails if one splits the eq. 5.2 into two equations 

considering the Ga and Pb signals separately: 
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where d1 and d2 are the thickness of the overlayer calculated in two different ways: eq. 6.1 

takes into account only the change in the intensity of the overayer component, whereas 

eq. 6.2 operates with bulk component only. Indeed, if the model were correct both 

equations should give the same value for the overlayer (= SF film) thickness: 
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i.e. d1 must be equal to d2, which is not the case for the most of XPS measured SF films in 

Ga-Pb system. One example, illustrating this discrepancy is given in the table 6.1. From 

the table 6.1 one can conclude that the overlayer model gives consistent values of d for 

the wetting films, whereas the difference between d1 and d2 for he SF films is quite large. 

 

 

I(Ga) 2p3/2 I(Pb) 4f7/2 T (°C) d1 (Å), Pb 

from eq.(6.3) 

d2 (Å), Ga 

from eq. (6.4) 

deffective 

from eq. (5.2) 

System 

state 

1320 89.1 237.1 4.7±0.4 4.6±0.4 4.6±0.4 WF 

1334 89.9 236.0 4.7±0.4 4.5±0.4 4.6±0.4 WF 

1294 102.5 180.8 5.4±0.4 4.9±0.4 5.2±0.4 WF 

1296 103.3 179.9 5.5±0.4 4.9±0.4 5.2±0.4 WF 

1295 103.7 179.3 5.5±0.4 4.9±0.4 5.3±0.4 WF 

856 428.4 179.0 38±5 9.5±0.9 16±3 
SFF 
starts 

to form 
434.1 464.6 178.3 45±7 17±3 21±4 SFF 

427 466 176.7 46±7 17±3 22±4 SFF 

 

Table 6.1 XPS measurements of the SF transition in Ga-Pb (x(Pb) = 0.0052) 
alloy. Cooling rate of 5 K/h was used. Notes: WF – wetting film, SFF – 
surface freezing film, SFF+I – surface freezing film with defects (islands). 
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 This discrepancy in two different methods of the thickness calculation can not be 

explained merely through large uncertainty of the film thicknesses. Therefore it gives rise 

to the assumption, that the structure of the SF films is more complicated than we believed 

in the beginning. The time evolution of the SF film, i.e. the formation of islands allows us 

to assume that the film is not in thermodynamic equilibrium and it consists probably of 

Pb with some small fraction of Ga. This could be different types of incorporations like 

cavities or clusters of Ga-rich phase in the film. This could be also microscopic islands of 

Ga, which are visible neither by naked eye, nor by the CCD-camera. Since these are only 

assumptions and nothing specific is known about those incorporations, the material of the 

film could be considered as a mixture of two components with effective concentration of 

Ga (Pb is main component). 

 In order to find a more appropriate way of characterization of the SF film it may 

be useful to introduce two more variables besides of the film thickness d: The first one is 

the mole fraction of Ga in the film material, xf
Ga , which will characterize the effective 

chemical composition of the film. The second variable is the coverage c describing the 

ratio between frozen parts of the interface and the entire analysis area. The appropriate 

model for the description of the SF film should probably take into account all three 

unknowns: d, xf
Ga and c. From a mathematical point of view a maximum of two 

unknowns can be found by the solution of the system of two equations. For the SF film 

without holes i.e. immediately after its formation, the coverage is nearly one for most 

cases3. So one can describe the system with an effective thickness d and an effective Ga 

concentration in the film, xfGa . The corresponding relative XPS intensities for Ga and Pb 

can therefore be expressed as (α and β are introduced for convenience as the relative XPS 

intensities for Ga and Pb, respectively): 
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3 Although on the photographic images one can see the border between liquid and frozen parts (see e.g. Fig. 
5.14), we believe that the liquid part is outside of the analysis area and the XPS signal comes from the 
frozen part only. 
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where λPb+Ga describe the IMFP in mixed media. As a good approximation one can accept 

λPb+Ga ≈ λPb since the IMFP depends on the outgoing electron energy, rather than the 

nature of the material; moreover, Pb appears to be the main component of the SF film. A 

further assumption is, that Pb concentration in bulk liquid can be neglected (xb
Ga ≈ 1). An 

analytical solution of the system of equations given above is possible neither for d nor for 

xf
Ga. But one can express one of the unknowns from the first equation and then set it into 

the second one e.g. xf
Ga: 
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The eq. (6.7) and (6.8) can be solved either numerically or graphically. The numerical 

calculation of d and xfGa was performed with an aid of the MathCAD software package. 

The determined values of d and xfGa with corresponding experimental data α and β are 

shown in the table 6.2. 

 Another method for the determination of d and xfGa is a graphical solution: β(α,d) 

and β(α, xf
Ga) are to be plotted on the same graph, whereby α is considered as an 

independent variable; d and xfGa taken as parameters. Such a plot is shown in Fig. 6.1a. 

The solid line in the Fig. 6.1 on the left of the plot represents the solution of the eq. (6.8) 

for the constant film composition of xf
Ga = 0.12. The lower dashed line is β=β(α,d) for d = 

60Å. An intersection of the solid line with the dashed one the only solution for given α 

and β. Graphical data representation has significant advantage in comparison to the 

numerical solution of the equations (6.7), (6.8), because the influence of the experimental 

error in the XPS intensities on the film thickness and composition is clearly visible if the 

experimental points are plotted in the same graph with corresponding error bars. So if the 

intersection of two lines is in the uncertainty region of the experimental point that means 

that the film can be characterized within the considered model by definite values of 

thickness, composition. The uncertainty of two unknowns, i.e. thickness and chemical 
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composition, depends on the error of experimental points: all intersections located within 

the uncertainty region of experimental points represent possible states of the system. 

 Analysing all experimental data for the SF films in the Ga-Pb system with 

different concentration of Pb we have concluded that the applied model can describe the 

experimentally observed values of the relative XPS intensities more or less good.  

 

 

x(Pb) Run Nr. α β T (°C) xf
Ga d (Å) dmin (Å) dmax (Å) 

0.0052 1 0.215 0.787 178.3 0.21±0.02 macro- 
scopic 94 macro- 

scopic 

TSF =177±1°C  0.211 0.788 176.7 0.21 207 91 macro- 
scopic 

 2 0.26 0.704 172.8 0.26 84 68 130 

  0.26 0.722 170.7 0.26 103 77 macro- 
scopic 

  0.168 0.841 23 0.17 macro- 
scopic 102 macro- 

scopic 

  0.168 0.903 5 0.17 macro- 
scopic 

macro- 
scopic 

macro- 
scopic 

 3 0.214 0.765 172.7 0.21 102 77 macro- 
scopic 

  0.205 0.784 171.1 0.20 118 83 macro- 
scopic 

  0.153 0.824 165.4 0.15 100 77 macro- 
scopic 

0.0041 1 0.197 0.789 166.5 0.20 114 82 macro- 
scopic 

TSF =164±3°C  0.192 0.79 165.9 0.19 106 79 macro- 
scopic 

  0.181 0.8 165.4 0.18 106 79 macro- 
scopic 

  0.176 0.808 162.8 0.18 110 81 macro- 
scopic 

  0.166 0.848 160.0 0.17 macro- 
scopic 110 macro- 

scopic 

  0.156 0.84 155.0 0.16 150 90 macro- 
scopic 

  0.121 0.876 40 0.12 163 92 macro- 
scopic 

 2 0.188 0.831 160.2 0.19 macro- 
scopic 117 macro- 

scopic 

  0.075 0.938 136.9 0.07 macro- 
scopic 111 macro- 

scopic 

0.0027 1 0.075 0.938 136.9 0.07 macro- 
scopic 110 macro- 

scopic 
TSF=136±0.5°C 2 0.156 0.839 136.3 0.16 145 89 macro- 

scopic 
  0.166 0.831 136.4 0.17 157 90 macro- 

scopic 
 

Table 6.2 Experimental results of α and β for different bulk concentrations 
x(Pb) measured at different temperatures relative to the surface freezing 
temperature TSF; with these data the thickness d and composition xfGa of the 
surface freezing film have been determined by numerical solution of the 
equations (6.7) and (6.8). 

 



86 Discussion 

 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1 Graphical solution of the model for description of the SF films in 
Ga-Pb system (a). The intersection of dash- and solid lines represent the 
thickness and chemical composition of the SF film for given intensities α 
and β. All intersections within the error bars of the experimental point 
describe possible state of the system. The second plot (b) shows the 
distribution of the experimental points in different experiments i.e. 
different cooling cycles and concentration of Pb. See also Table 6.2. 
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Following information is obtained: 

1) One cannot observe a clear correlation of any variables d or xf
Ga to the 

concentration of Pb in the bulk. The distribution of experimental points i.e. α and 

β is similar for all studied Pb concentrations (see Fig. 6.1b). 

2) The lower limit of thickness according to the model is about 80Å. As an upper 

limit one should take infinity, in practical view that means macroscopic values of 

few microns. 

3) Considering the SF films immediately after formation, one can see that the content 

of Ga in the film varies for different experimental points from 0.16 to 0.26. The 

value of 0.19±0.03 in the middle appears to be more probable, because the 

majority of the experimental points lie near it. 

4) Within one run the Ga content in the SF film decreases with falling temperature. 

For the film thickness the tendency to opposite. These dependences are 

demonstrated in the Fig. 6.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2 Content of Ga in the SF film (-□-) and the lower limit of the SF 
film thickness (-●-) as a function of temperature. x(Pb) = 0.0052 with one 
exception for the points on the left of the plot: x(Pb) = 0.0041 T = 137°C. 
As the maximal values of the thickness the model predicts very high 
(macroscopic) values for all points. 
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5)  The model predicts macroscopic film thickness and low Ga content in the film 

for the temperatures much lower than that for SF transition. This is correct 

also for the room temperature.  

Additionally one can notice that different effective Ga concentration in the film for 

different experiments is in good agreement with known facts about instability and 

evolution of the film, described in the next chapter. 

 Describing the SF films in the Ga-Bi we considered the Ga signal in XPS 

spectrum as an artefact, resulting from the incomplete coverage where the parts of the 

interface near the crucible walls remain liquid after SF transition. An alternative 

explanation for the Ga peak, which cannot be excluded, is also the possibility that the 

material of the SF film can contain some small fraction of Ga. 

 A theoretical description of the SF films in Ga-Bi system is given in the work of 

Tsekov and Freyland [95]. Pure Bi has been considered as the material of the film 

because of negligible solubility of Ga in solid Bi. For the constant composition of the 

alloy the authors predicted an exponential increase of film thickness approaching the 

liquidus line by decrease of the temperature. This result from the condition of equality of 

the chemical potentials in different phases in contact: 

 

),(),( dTxT film
solid

bulk
liquid µµ =     (6.9) 

)exp(lnln),( 210
0 dkTTcTccxRTxT TF

solid
Biliquid

bulk
liquid −⋅∝++++= ρµµ  (6.10) 

 

where ρBi
solid = 47400 - 1.87T mol/m3 is the molar density [96], kTF is the wavevector of 

the Thomas-Fermi screening. This theoretical description can be strictly applied only for 

the systems in thermodynamically equilibrium state. In the experiments performed in this 

study the SF films in the Ga-Bi system characterized by the intermediate thicknesses 

(between one monolayer and macroscopic value) were not observed. This could be 

explained if one assumes that the real films investigated in XPS and AES experiments did 

not reach thermodynamic equilibrium. It seems that the SF films in both Ga-Bi and Ga-Pb 

systems in the moment of its formation and in the further time are metastable. The SF 

films in Ga-Pb system can be definitely defined as metastable, because of dramatic 

changes, which can be observed in several hours after the film formation at constant 

temperature. 
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6.1.2 Surface freezing films with defects in the Ga-Pb system 

 Besides of the model for the SF films described above, which is characterized by 

variable thickness and chemical composition and which assumes a homogeneous film, an 

alternative modelling approach is proposed and evaluated within the frameworks of this 

study. It takes into account inhomogeneity of the film as shown in Fig. 5.15. A varying 

coverage is the obvious difference between the films with and without defects. For the 

latter case the coverage of 100% was assumed, whereas the occurrence of islands 

decreases this value significantly. Two models described below use the coverage as 

variable together with thickness (1) and composition (2). These approaches are presented 

below. 

 1. Variable thickness and coverage. The SF film is considered as a slab with an 

effective thickness d, which covers a certain part of the interface – the rest of the interface 

is liquid. The spot of electron analyzer contains both of them. The system is described 

with the following equations: 
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Graphical solutions are constructed using: 
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where the contribution of the wetting film is given by constants: t1 = exp(-dwf/λPb(EPb)) = 

0.842, t2 = exp(-dwf/λPb(EGa)) = 0.65 (dwf = 4.8Å). The model did not give satisfactory 

results for the SF film with or without defects. 

 2. Variable composition and coverage. As in the latter model the SF film does not 

cover the entire analysis area. The frozen part is assumed to be a of macroscopically thick 

film (10 µm) with some fraction of Ga as incorporations or cavities. XPS intensities are 

expressed as follows: 
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Contribution of bulk under SF film in total Ga signal can be neglected1. Corresponding 

functions for the graphical solution are given as: 
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Plots for graphical solution are shown in the Fig. 6.3. 

 The model of the film with variable chemical composition and coverage can be 

successfully applied for the characterization of the SF films with defects. An attempt to 

use these models for the interpretation of the XPS data for the films without defects failed 

because both models do not provide a combination of d and c (or xf
Ga and c) which  

 

                                                 
1 For the SF film thickness a rather large, macroscopic value of 10µm was chosen. Since d here is several 
orders of magnitude greater than λGa the part of Ga signal coming from the bulk phase underneath the film 
is zero. Another (smaller) value of thickness will shift the lines of constant coverage down as well as the 
lines of constant composition. As a result the number of intersections with experimental point will be 
decreased. In other words the model is getting worse. 
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Fig. 6.3 Graphical solution of the model of variable thickness and 
coverage (a) and variable chemical composition and coverage (b). The 
second model was successfully applied for the interpretation of the XPS 
intensities of the SF films with defects in the Ga-Pb system. 
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Model for SF film with defects 
variable xfGa and c  

at constant d = 10µm 

 

x(Pb) Run Nr. 
Film age 

(h) 
α β T (°C) 

xf
Ga c 

0.0052 1 18 0.301 0.662 176.7 0.11-0.29 0.66-0.95 

 2 5.5 0.206 0.797 160.2 0.13-0.28 0.86-1 

0.0041 1 2.75 0.222 0.788 162.0 0.16-0.3 0.89-1 

 2* 4 0.252 0.734 161.9 0.16-0.31 0.82-1* 

0.0027 1 1.5 0.183 0.812 136.5 0.07-0.24 0.82-1 

  3 0.204 0.79 137.4 0.09-0.26 0.81-1 

  15 0.285 0.673 137.5 0.06-0.27 0.79-0.93 

  20 0.271 0.691 134.2 0.05-0.26 0.65-0.95 

  23.5 0.258 0.707 132.4 0.05-0.25 0.67-0.97 

  44 0.216 0.742 122.3 0-0.19 0.63-0.93 

  48 0.225 0.749 120.6 0.04-0.24 0.71-1 

  120 0.201 0.752 106.0 0-0.16 0.61-0.91 

  135 0.147 0.843 34.0 0.01-0.19 0.8-1 

 2 17 0.396 0.542 137.3 0.15-0.36 0.53-0.82 

  19 0.435 0.506 137.3 0.23-0.41 0.54-0.84 

  22 0.455 0.465 137.4 0.17-0.4 0.44-0.73 

  39 0.514 0.395 137.4 0.26-0.47 0.39-0.67 

 3 24 0.409 0.545 134.2 0.23-0.4 0.61-0.91 

  48 0.471 0.41 135.0 0-0.33 0.24-0.52 
 

Table 6.3 Results from the model 2 (variable composition and coverage) 
used for the description of the XPS measurements of the SF film in Ga-Pb 
alloys with defects. For the concentration x(Pb) = 0.0041 after 4 hours at T 
= 161.9°C (marked with *) a photographic image was made. 

 

corresponds to the experimentally observed points. The parameters of the SF film 

predicted by the model are given in the table 6.3. 

 According to the model with variable d and c (xf
Ga = 0) the area of island amounts 

about 10% of the analysis area for the first measurement and continually grows with time. 

The area of islands can be independently checked by analyzing of the photographic 

images of the alloy surface (it was found that islands have ~15% of the area (c = 0.85) for 

x(Pb) = 0.0041 after 4 hours at T = 161.9°C). This confirmed the value for the coverage 

given above (0.82-1). The process of the SF film aging at very slow cooling rate of 0.4 

K/h is shown in Fig. 6.4. Decrease of the coverage corresponds to growth of islands,  



Chapter 6 93 

0 10 20 30 40

0,10

0,15

0,20

0,25

time, (h)

xf G
a

 xf

Ga

0,70

0,75

0,80

0,85

0,90
C

overage
 H

 
Fig. 6.4 Time dependence of Ga content in the SF film (-□-) and coverage 
of the interface (-●-). Temperature was decreased very slowly (0.4 K/h). 
Area of islands grows (decreasing coverage) simultaneously with xfGa. 
Error bars for c and xfGa are quite large. 

 

which was experimentally observed. The model also predicts the fall of xfGa with time. 

Extrapolating this result to the room temperature one will get very low Ga content in the  

film, that means if the islands are not taken into account, the material of the film is rather 

pure Pb. 

 Since the SF film with islands is formed from the “normal” SF film one can 

expect, that the Ga concentration in the film cannot differ much from the Ga 

concentration in the original film (here only the rest film is considered, islands are not 

taken into account). Indeed, for the majority of the experimental points the value of xf
Ga 

between 0.15 and 0.2 was found. This is in good agreement with the value of xf
Ga , which 

was observed for the SF films without defects (ch. 6.1.1) 

 The formation of defects on the SF films in the Ga-Pb system was observed, to our 

knowledge, for the first time. The cooling rate appears to be an effective method to 

control the formation and the growth of defects. The formation of defects can be 

completely suppressed at high cooling rates (> 3K/h). 
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 All applied modelling approaches are strictly correct only for the flat surfaces. 

This is generally not always the case for the system under investigation. On one hand, we 

know from the STM experiment that the surfaces in both Ga-Bi and Ga-Pb systems show 

atomically flat terraces at room temperature, characterized by an area in the µm2 range. 

On the other hand, the surface roughening transition [74-77] may affect the surface of the 

frozen films at elevated temperature. 

 

 

6.2 Mechanism of the tip-induced nanostructuring 

 

 Surface modification on the nanometer scale is well known phenomenon [91, 93] 

in vacuum as well as in electrolyte environment [97]. One should start with an issue of 

reported applications of the STM for altering of the surface and fabrication of the 

structures on the nanometer scale.  

 Different mechanisms for the description of this phenomenon are proposed. 

According to [98] the interactions of the W-tip with Au-surface can be described in terms 

of the electroetching. Standard current density j in a normal tunneling mode can be 

approximately described by the following equation: 

 

( ) ( )dVEN
mA

e
j FSTM

5.0
2

1.1exp
2

~ ϕ−h
   (6.1) 

 

where V is the bias voltage, φ is the effective height of the tunnel barrier A is the effective 

area of the interaction (about 0.1 nm2), d - the tip-surface separation ~0.5 nm., R is the 

radius of the apex., N(EF) is the density of states at the Fermi level for the tip. A relatively 

high value of the current in the very first moment after the pulse and low effective area of 

the emission region of the tip gives a large value of the tunneling current density. 

 Increase of the bias voltage may result in the transition from the normal tunneling 

mode to so-called Field Emission Mode (FEM) at a well-defined threshold, which is 

characterized by the Fowler-Nordhiem equation [99]: 
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( )FyvcFj tipFEM /)(exp~ 2/32 ϕ−    (6.2) 

 

where F, the strength of the electric field, is related to the applied bias voltage by 

F=βVpulse , (β – geometrical factor) c is a known constant, φ is the work function of the tip 

and v(y) is the slow varying function of the parameter y=(e3
βV)1/2/ φtip. 

 The current density in the FEM mode is 100-1000 times greater in comparison to 

the STM mode. This may result in sudden increase of the substrate and tip temperature 

followed by partial evaporation of the material. Similar processes take place also during 

the first treatment of the new W-tip. In order to remove the tungsten oxide from the tip 

apex and to reach the tunneling mode between two metals (substrate and tip) one applies 

a pulse of 5-10V bias voltage. The pulse changes the microstructure of the apex, which is 

followed by the formation of an atomically sharp tip apex capable to acquire the STM 

images with atomic resolution. 

 The second hypothesis, originally proposed for the description of the Pt nanodot 

formation on the Si(111) 7x7 substrate [100] implies the formation of the nanobridge 

between the tip and the substrate. Authors assume the following mechanism: application 

of relatively high bias voltage (+3V) results in a significant increase of the electric field 

density in the gap region. In this situation only one or two additional atoms are needed in  

 

 

 
     Vbias = 0.3V  Vbias = 3V     Vbias = 3V   Vbias = 3V      Vbias = 0.3V 
      I = ISTM   I = Ishort      I = Ishort    I = 0        I = ISTM 

 

 

Fig. 6.5 Possible mechanism of the surface modification on the nanometer 
scale from [100]. Comments are in text. 
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the tunneling gap to disturb the tunneling mode increasing electron transport by several 

orders of magnitude. Such extra atoms can originate, on one hand, from the thermal 

diffusion processes on the surface or, on another hand, from the applied electric field. 

Once these atoms fill the gap, the electric current though the tip suddenly increases, this 

causes the electromigration-induced transfer of the atoms located on the tip surface to the 

apex. These atoms completely fill the gap region (~0.4nm), forming a nanobridge. The 

reaction time of the STM electronics is much longer in comparison to the time of the 

nanobridge formation. Therefore it occurs for the next several milliseconds, while the tip 

is being withdrawn. This results in the break of the nanobridge in some point, nearly in 

the middle. Finally after relaxation some part of the nanobridge atoms is deposited on the 

surface, whereas the rest spreading on the tip forms a new apex. Schematic representation 

of whole process is given in the Fig 6.5. 

 Depending on the applied voltage the nanobridge can leave different traces on the 

surface, which was successfully demonstrated in our experiments (ch. 5.4). 

 Another model for the understanding of the Bi (0001) surface nanostructuring, 

which combines two approaches described above, was proposed in [90]. The mechanism 

closely resembles a jump-to-contact description, which is typical for the material transfer 

from tip to substrate in the electrochemical environment [97]. At positive electric pulses 

Bi is field evaporated from the substrate with a barrier of evaporation of approx. 2.2 eV 

and is deposited on the tungsten tip. Here the field induced evaporation is followed by the 

formation of a nanobrdge between tip and surface. Since Bi completely wets W, the tip 

apex will be covered homogeneously by a Bi film. Depending on the behaviour and 

stability of this film a jump-to-contact can occur. The model assumes that the processes 

of Bi evaporation and condensation are much faster in comparison to the reaction time of 

the microscope. 

 In order to reverse the direction of the Bi transport one can switch the polarity of 

the applied pulse. The difference of this mechanism in comparison to that in 

electrochemical environment is the source of Bi: in latter case it is accumulated on the tip 

apex from the electrolyte by reduction, whereas in our case it is evaporated from the Bi 

surface leaving defects such as pits and grooves. 

 

 



Appendix A 97 

Appendix A 

 

XPS peak intensities measured on the pure components (Ga, Bi, Pb) 

and alloys (Ga-Bi, Ga-Pb) 

 

Area of peaks for the following XPS transitions is provided in the tables below:  
Ga – 2p3/2 Bi - 4f7/2 Pb - 4f7/2 

Film thickness is calculated, according to the eq. (5.1) for Ga-Bi and eq. (5.3) for Ga-Pb e.g. 
the film is considered as a slab consisting of pure surface active component (Bi or Pb). 
Numbers in brackets give the effective thickness of the SF films with defects (islands). 
Acronyms frequently used as notes: 

WF – wetting film 
SFF – surface freezing film 
SFF+I – surface freezing film with defects (islands) 

 
Pure components: Ga, Bi, Pb 
Metal T (°C) I0 (eV*kcts/s) Notes 
Ga 20 4106 solid crucible 1 
 70 4055 liquid, crucible 1 
 170 4124 liquid, crucible 1 
 25 2020* crucible 2 
 100 1613** liquid, crucible 1 
Bi 325 1174 liquid, crucible 1 
 25 1094 solid, crucible 1 
Pb 25 630** solid, crucible1 
 25 590 solid, crucible2 
 25 585* solid, crucible2 
* - estimated from the measurements on the wetting film, see Ch. 5.1.1 
** - reference for Ga-Pb x(Pb) = 0.06% 
 
 
Ga-Bi x(Bi) = 0.31%, crucible 1, measurement 1 28.07.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
130 3321 99.1 2.20 WF 
100 3242 103.3 2.33 WF 
70 3247 113.9 2.52 WF 
50 275.6 1073 28.9 SFF 
 
 
Ga-Bi x(Bi) = 0.31%, crucible 1, measurement 2 04.08.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
120 3137 115.5 2.62 WF 
60 3122 131.6 2.93 WF 
58 3084 130.0 2.94 WF 
56 2961 127.9 2.99 WF 
54 615.1 942 21.5 SFF 
52 652.7 953 21.2 SFF 
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Ga-Bi x(Bi) = 0.31%, crucible 1, measurement 3 06.08.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
140 3085 150.8 3.29 WF 
70 3073 153.9 3.36 WF 
54 2923 186.8 4.04 WF 
45 154.1 1095 33.8 SFF 
 
 
Ga-Bi x(Bi) = 0.31%, crucible 1, measurement 3 07.08.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
140 3108 162.3 3.47 WF 
45 257.8 1090 29.5 SFF 
0 485.2 1172 25.0 SFF 
 
 
 
Ga-Bi x(Bi) = 0.31%, crucible 1, measurement 4 08.08.2003 
T 
(°C) 

Sputtering 
time (h) 

I(Ga) 
(eV*kcts/s) 

I(Bi) 
(eV*kcts/s) 

Film 
thickness (Å) 

Ga 
content 

Notes 

20 0 268.9 1172 29.8  SFF 
20 0.03 580.4 1019  0.14 SFF 
20 0.06 576.2 999.0  0.14 SFF 
20 0.1 532.5 992.8  0.13 SFF 
20 0.6 609.1 981.6  0.15 SFF 
20 1.6 550.6 985.6  0.14 SFF 
20 3.6 590.1 952.4  0.15 SFF 
20 4.6 640.1 926.8  0.16 SFF 
 
 
Ga-Bi x(Bi) = 1.12%, crucible 1, measurement 1 02.09.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
180 2956 165.9 3.66 WF 
140 3152 168.3 3.53 WF 
133 3147 171.2 3.58 WF 
125 3112 173.5 3.65 WF 
115 3060 187.3 3.91 WF 
112 360.6 1053 26.5 SFF 
55 215.9 1106 31.1 SFF 
 
 
Ga-Bi x(Bi) = 1.12%, crucible 1, measurement 2 29.10.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
209 3326 149.4 3.08 WF 
132 3219 169.8 3.49 WF 
100 3175 179.2 3.68 WF 
96 1372 609.3 13.0 SFF 
96 1192 757.6 15.3 SFF 
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Ga-Bi x(Bi) = 1.12%, crucible 1, measurement 3 18.08.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
180 3128 162.2 3.45 WF 
170 3124 181.3 3.76 WF 
120 2948 197.5 4.19 WF 
90 715.0 1024 21.0 SFF 
25 642.8 1057 22.1 SFF 
 
 
Ga-Bi x(Bi) = 1.15%, crucible 2, measurement 4 10.12.2003 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
178  2665 167.0 3.98 WF 
131.8  2627 180.7 4.27 WF 
128 0 32.1 1049 47.2 SFF 
127.8 0.5 71.5 1038 40.0 SFF 
130.2 10 215.9 940.2 29.8 SFF 
130.2 16 314.0 1183 28.6 SFF 
 
 
Ga-Bi x(Bi) = 4.72%, crucible 1, measurement 1 23.09.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
280 2848 229.6 4.79 WF 
200 2742 266.9 5.46 WF 
174 2880 236.8 4.85 WF 
90 135.8 1195 35.7 SFF 
 
 
Ga-Bi x(Bi) = 4.72%, crucible 1, measurement 2 06.11.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
230 2566 245.9 5.40 WF 
194 2570 257.4 5.57 WF 
161 99.0 1024 37.0 SFF 
 
 
Ga-Bi x(Bi) = 4.72%, crucible 1, measurement 3 06.11.2003 
T (°C) I(Ga) (eV*kcts/s) I(Bi) (eV*kcts/s) Film thickness (Å) Notes 
270 2710 213.0 4.70 WF 
175 2611 256.5 5.49 WF 
166 82.7 1034 38.7 SFF 
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Ga-Bi x(Bi) = 4.72%, crucible 1, measurement 4 13.11.2003 
T (°C) I(Bi) (eV*kcts/s) Film thickness (Å) 

calculated from  
Bi signal only (eq. 6.3) 

Notes 

280.0 229.6 5.54 WF 
270.0 212.9 5.09 WF 
230.0 245.9 5.99 WF 
200.0 266.9 6.58 WF 
194.0 257.4 6.31 WF 
183.0 251.6 6.15 WF 
175.0 262.5 6.45 WF 
170.0 262.0 6.44 WF, very slow cooling 
169.0 261.0 6.41 WF 
168.0 287.3 7.16  
167.0 292.9 7.33  
166.7 328.1 8.39  
166.3 340.2 8.76  
166.0 364.0 9.51  
165.7 360.0 9.39  
165.4 376.4 9.92  
165.0 385.0 10.20  
164.5 360.3 9.40  
163.5 368.4 9.66 no visible changes 

on the surface 
 
 
Ga-Pb x(Pb) = 0.06%, crucible 1, measurement 1 28.11.2005 
T (°C) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
170 1267 74.5 3.31 WF 
120 1183 70.0 3.33 WF 
80 1113 79.5 3.87 WF 
60 1094 86.9 4.20 WF 
 
 
Ga-Pb x(Pb) = 0.06%, crucible 1, measurement 2 31.03.2004 
T (°C) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
128 1179 73.7 3.48 WF 
50 719.5 259.9 11.4 SFF 
40 485.4 315.4 15.3 SFF 
 
Ga-Pb x(Pb) = 0.06%, crucible 1, measurement 3 01.04.2004 
T (°C) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
62.5 1080 81.3 4.03 WF 
53.3 636.4 203.4 10.61 SFF 
58.0 1126 90.8 4.25 WF 
53.1 870.7 157.4 7.52 SFF 
52.8 679.2 175.7 9.39 SFF 
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Ga-Pb x(Pb) = 0.27%, crucible 2, measurement 1 23.04.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
141.0  1169 90.5 5.12 WF 
136.1 0 982 125.1 7.23 ? 
134.2 24 826 321.6 (13.7) SFF+I 
135.0 48 951 241.8 (11.0) SFF+I 
 
 
Ga-Pb x(Pb) = 0.27%, crucible 2, measurement 2 30.04.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
139.0  1323 98.3 4.97 WF 
136.9 0 151.1 553.4 32.4 SFF 
137.3 17 799.6 319.6 (13.9) SFF+I 
137.3 19 878.2 298.4 (12.8) SFF+I 
137.4 22 919.2 274.2 (11.9) SFF+I 
137.4 39 1039 233.3 (10.2) SFF+I 
 
 
Ga-Pb x(Pb) = 0.27%, crucible 2, measurement 3 05.05 - 10.05.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
177.2  1415 97.7 4.71 WF 
139.3  1379 104.6 5.05 WF 
136.3 0 316.1 494.9 24.7 SFF  

cooling 
0.5 K/h 

136.4 0.5 336.0 490.1 24.0 SFF 
136.5 1.5 369.0 479.3 (23.1) SFF+I 
137.4 3 411.6 465.9 (21.9) SFF+I 
137.5 15 575.0 397.0 (17.9) SFF+I 
134.2 20 546.6 407.7 (18.5) SFF+I 
132.4 23.5 521.5 417.0 (19.1) SFF+I 
131.0 26.5 510.6 424.6 (19.4) SFF+I 
124.6 39.5 445.3 434.3 (20.7) SFF+I 
122.3 44 436.2 438.0 (20.9) SFF+I 
120.6 48 455.4 441.7 (20.6) SFF+I 
106.0 120 406.5 443.8 (21.6) SFF+I 
34 135 296.6 497.6 (25.3) SFF+I 
 
 
Ga-Pb x(Pb) = 0.27%, crucible 2, measurement 4 25.05.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
138.3  1353 98.8 4.91 WF 
136.6 0 235.7 548.0 28.2 SFF 
136.6 2.3 369.9 503.9 (23.5) SFF+I 
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Ga-Pb x(Pb) = 0.41%, crucible 2, measurement 1 17.09.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
180  1347 100.2 4.97 WF 
162.3 0 395.4 475.7 22.4 SFF 
184.5 1 1359 100.3 4.94 WF 
162.2 0 313.3 527.6 25.3 SFF 
162.0 2.75 448.2 464.8 (21.2) SFF+I 
161.9 4 509.7 438.5 (19.6) SFF+I 
 
 
Ga-Pb x(Pb) = 0.41%, crucible 2, measurement 2 22.09.2004 
T (°C) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
164.6 1301 77.9 4.23 WF 
160.2 378.8 490.1 23.0 SFF 
136.9 151.1 553.4 32.4 SFF 
 
 
Ga-Pb x(Pb) = 0.41%, crucible 2, measurement 3 03.11.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
167.9  1397 84.5 4.26 WF 
166.5 0 397.5 465.8 22.2 SFF  

cooling 1 K/h 
165.9 0.5 387.0 466.1 22.4 SFF 
165.4 1 366.2 471.9 23.0 SFF 
162.8 3.5 355.4 476.8 23.3 SFF 
161.7 4.5 347.1 483.7 23.7 SFF 
160.0 6 335.0 500.3 24.2 SFF 
155.0 22 314.8 495.6 24.7 SFF 
40 25 245.4 516.8 27.3 SFF 
 
 
Ga-Pb x(Pb) = 0.52%, crucible 2, measurement 1 22.09.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
172.7 0 432.3 451.6 21.2 SFF  

cooling 2 K/h 
171.1 1 413.6 462.3 21.8 SFF 
165.4 2.5 380.6 485.9 22.9 SFF 
160.2 5.5 416.2 470.2 (21.9) SFF+I 
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Ga-Pb x(Pb) = 0.52%, crucible 2, measurement 2 20.10.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
237.1  1320 89.1 4.63 WF 
236.8  1334 89.9 4.62 WF 
180.8  1294 102.5 5.21 WF 
179.9  1296 103.3 5.23 WF 
179.3  1295 103.7 5.25 WF 
178.3 0 434.1 464.6 21.4 SFF, 

 T is kept  
constant 

176.7 2 427.0 466.0 21.6 SFF 
176.7 18 608.0 390.7 (17.4) SFF+I 
 
 
Ga-Pb x(Pb) = 0.52%, crucible 2, measurement 3 19.11.2004 
T (°C) Time (h) I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 
178.7  1304 103.4 5.21 WF 
176.1  1331 94.6 4.81 WF 
172.8 0 524.3 415.5 19.0 SFF 
170.7 0.5 525.5 425.7 19.2 SFF 
23 1.5 338.9 496.0 24.1 SFF 
5 2.6 339.1 533.0 24.7 SFF,  

frozen bulk 
 
 
Ga-Pb x(Pb) = 0.52%, crucible 2, measurement 4 22.09.2004 
T (°C) Sputtering 

time (h) 
I(Ga) (eV*kcts/s) I(Pb) (eV*kcts/s) Film thickness (Å) Notes 

20 0 295.7 527.3 25.8 SFF  
20 0.2 285.6 531.7 26.2 SFF 
20 0.4 333.1 518.0 24.6 SFF 
20 0.6 297.1 541.4 26.0 SFF 
 
 



104 Appendix B 

Appendix B 

 

Phase diagrams of the Ga-Bi and Ga-Pb systems. 

1. Ga-Bi (B. Predel, Z. Phys. Chem. NF 24 (1960) 206) 

 
2. Ga-Pb (B. Predel, Z. Metallk., 50 (1959) 663)  
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Manufacturer list 

 
Alfa Chemicals    A. Johnson Matthey Company 
      Postfach 110765 
      D-76057, Karlsruhe, Germany 
 
Goodfellow      Goodfellow GmbH 
      Postfach 1343 
      D-61213, Bad Nauheim, Germany 
 
Omicron     Omicron Nanotecnology GmbH 
      Limbergerstr. 75 
      D-65232, Taunusstrein, Germany 
 
Berliner Glass     Berliner Glass KG 
      Waldkraiburgerstr. 5 
      D-12347, Berlin, Germany 
 
Eurotherm     Eurotherm GbmH 
      Postfach 1453 
      D-65534, Limburg an der Lahn, Germany 
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