
Universität Karlsruhe – Fakultät für Informatik – Bibliothek – Postfach 6980 – 76128 Karlsruhe

Perspectives in Software Architecture Quality –
Short papers of the 2nd International Conference
on the Quality of Software Architectures (QoSA

2006), June 27-29, 2006, Västeras, Sweden

Herausgeber:
Christine Hofmeister, Ivica Crnkovic,

Ralf Reussner, Steffen Becker
Interner Bericht 2006-10

Universität Karlsruhe
Fakultät für Informatik

ISSN 1432 - 7864

Supplement to the Proceedings of the 2nd International Conference on
the Quality of Software Architectures

Preface

Although the quality of a system’s software architecture is one of the critical factors in its
overall quality, the architecture is simply a means to an end, the end being the
implemented system. Thus the ultimate measure of the quality of the software
architecture lies in the implemented system, in how well it satisfies the requirements and
constraints of the project and whether it can be maintained and evolved successfully. But
in order to treat design as science rather than an art, we need the ability to address the
quality of the software architecture directly, not simply as it is reflected in the
implemented system.

This is the goal of QoSA: to address software architecture quality directly by addressing
the problems of:

• designing software architectures of good quality,
• defining, measuring, evaluating architecture quality, and
• managing architecture quality, tying it upstream to requirements and downstream

to implementation, and preserving architecture quality throughout the lifetime of
the system.

Cross-cutting these problems is the question of the nature of software architecture.
Software architecture organizes a system, partitioning it into elements and defining
relationships among the elements. For this we often use multiple views, each with a
different organizing principle.

But software architecture must also support properties that are emergent, that cannot be
ascribed to particular elements. For this we often use the language of quality attributes.
Quality attributes cover both internal properties, exhibited only in the development
process (e.g. maintainability, portability, testability, etc.), and external properties,
exhibited in the executing system (e.g. performance, resource consumption, availability,
etc.). Quality attributes cover properties that are emergent, that have a pervasive impact,
that are difficult to reverse, and that interact, thereby precluding or constraining other
properties.

Thus in addition to examining software architecture quality, QoSA also aims to
investigate quality attributes in the context of the problems of the design, evaluation, and
management of software architecture. The papers selected for QoSA 2006 describe
research and experience on these topics. Architecture evaluation is the most prevalent
theme of the papers. The approaches varies from formal models to support evaluation to
experience with process-centered approaches. The focus of the evaluation varies from
evaluation of a particular quality attribute, such as performance or safety, to approaches
where the evaluation covers a number of quality attributes, determined by the evaluator.

1

Another theme for QoSA 2006 is processes for supporting architecture quality. These
papers go beyond the problem of evaluation to address software architecture quality at
the process level. A final significant theme is the problem of managing and applying
architectural knowledge.

Nineteen papers were presented at QoSA 2006. Twelve of these were long papers
published in the conference proceedings. Seven of these describe interesting emerging
results or novel case studies, and these are contained in this supplement to the
proceedings. These papers have a stronger focus on novelty than on being long-running
validated research. Therefore, they are part of this supplement, rather than the regular
proceedings which are more concerned with established results. Also presented at QoSA
were keynote addresses from Jan Bosch and Clemens Szyperski, and three tutorials on
the QoSA themes.

We thank the members of the program committee and additional reviewers for their
thorough, thoughtful, and timely reviews of the submitted papers. We also thank Sven
Overhage and Judith Stafford for their work in supporting QoSA. Finally, we thank the
generous sponsors of QoSA 2006: University of Karlsruhe (TH), Mälardalen Unverity,
and Västerås City. These conference would not be possible without the support of all the
above people and sponsors.

 Ivica Crnkovic
 Christine Hofmeister
 Ralf Reussner
 Steffen Becker

2

QoSA 2006 Organization

General Chair:
Ivica Crnkovic , Mälardalen University, Sweden

Program Committee Chair:
Christine Hofmeister, Lehigh University, USA

Steering Committee:
Ralf Reussner, University of Karlsruhe (TH), Germany
Judith Stafford , Tufts University, USA
Sven Overhage, Augsburg University, Germany
Steffen Becker , University of Karlsruhe (TH), Germany

Program committee:
Colin Atkinson, University of Mannheim, Germany
Len Bass, Software Engineering Institute, USA
Don Batory, University of Texas at Austin, USA
PerOlof Bengtsson, University of Karlskrona/Ronneby, Sweden
Jan Bosch, Nokia Research Center, The Netherlands
Alexander Brandle, Microsoft Research, United Kingdom
Michel Chaudron, Technische Universiteit Eindhoven, The Netherlands
Viktoria Firus, University of Oldenburg, Germany
Hassan Gomaa, George Mason University, USA
Ian Gorton, National ICT, Australia
Volker Gruhn, University of Leipzig, Germany
Wilhelm Hasselbring, University of Oldenburg / OFFIS, Germany
Jean-Marc Jezequel, University of Rennes / INRIA, France
Philippe Kruchten, University of British Columbia, Canada
Patricia Lago, Vrije Universiteit, The Netherlands
Nicole Levy, University of Versailles, France
Tomi Mannisto, Helsinki University of Technology, Finland
Raffaela Mirandola, Politecnico di Milano, Italy
Robert Nord, Software Engineering Institute, USA
Frantisek Plasil, Charles University, Czech Republic
Iman Poernomo, King's College, United Kingdom
Sasikumar Punnekkat, Märlardalen University, Sweden
Andreas Rausch, University of Kaiserslautern, Germany
Matthias Riebisch, Technical University of Ilmenau, Germany
Bernhard Rumpe, University of Technology Braunschweig, Germany
Chris Salzmann, BMW Car-IT
Jean-Guy Schneider, Swinburne University, Australia
Michael Stal, Siemens, Germany
Clemens Szyperski, Microsoft, USA
Hans van Vliet, Vrije Universiteit, The Netherlands

3

Wolfgang Weck, Independent Software Architect, Switzerland

Reviewers:
Sven Apel, University of Magdeburg, Germany
Roberto Lopez-Herrejon, University of Oxford, United Kingdom
Moreno Marzolla, INFN, Italy

Sponsors:
University of Karlsruhe (TH)
Mälardalen Unverity
Västerås City

4

Table of Contents
Abstracts of the keynotes 6

Abstracts of the tutorials 8

Session I: Architecture Evaluation: Selecting Alternatives

Merging In-House Developed Software Systems - A Method for Exploring Alternatives 13
Rikard Land, Jan Carlson, Ivica Crnkovic, Stig Larsson

Session II: Managing and Applying Architectural Knowledge

Using Architectural Decisions 24
Jan Salvador van der Ven, Anton Jansen, Paris Avgeriou, Dieter Hammer

Session III: Architectural Evaluation: Performance Prediction

A Case Study for Using Generator Configuration to Support Performance Prediction of Software
Component Adaptation 34
Niels Streekmann, Steffen Becker

Session IV: Processes for Supporting Architecture Quality

Software Architecture Evaluation Methods for Performance, Maintainability, Testability, and
Portability 42
Michael Mattsson, Håkan Grahn, Frans Mårtensson

Towards a Framework for Large Scale Quality Architecture 52
Markus Voss

Session V: Models for Architecture Evaluation

An Approach to Resolving Contradictions in Software Architecture Design 59
Daniel Kluender, Stefan Kowalewski

Session VI: Architectural Evaluation

Quality Attribute Variability within a Software Product Family Architecture 64
Varvana Myllärniemi, Tomi Männistö, Mikko Raatikainen

5

Jan Bosch, VP and head of the Software and Application Technologies Laboratory at
Nokia Research Center

Expanding the scope of software product families: problems and alternative approaches

Abstract:
Software product families have found broad adoption in the embedded systems industry.
Product family thinking has been prevalent in this context for mechanics and hardware and
adopting the same for software has been viewed as a logical approach. During recent years,
however, the trends of convergence, end-to-end solutions, shortened innovation and R&D
cycles and differentiaton through software engineering capabilities have lead to a
development where organizations are stretching the scope of their product families far beyond
the initial design. Failing to adjust the product family approach, including the architectural
and process dimensions when the business strategy is changing is leading to several
challenging problems that can be viewed as symptons of this approach. The keynote discusses
the key symptoms, the underlying causes for these symptons as well as solutions for
realigning the product family approach with the business strategy.

Prof. dr. ir. Jan Bosch is a VP and head of the Software and Application
Technologies Laboratory at Nokia Research Center, Finland. Earlier, he
headed the software engineering research group at the University of
Groningen, The Netherlands, where he holds a professorship in software
engineering. He received a MSc degree from the University of Twente, The
Netherlands, and a PhD degree from Lund University, Sweden. His research
activities include software architecture design, software product families,
software variability management and component-oriented programming.
He is the author of a book "Design and Use of Software Architectures: Adopting and
Evolving a Product Line Approach" published by Pearson Education (Addison-Wesley &
ACM Press), (co-)editor of several books and volumes in, among others, the Springer LNCS
series and (co-)author of a significant number of research articles. He has been guest editor
for journal issues, chaired several conferences as general and program chair, served on many
program committees and organized numerous workshops. Finally, he is and has been a
member of the steering groups of the GCSE and WICSA conferences.

6

Clemens Szyperski, Software Architect,Microsoft Research

Composing with Style - Components meet Architecture

Abstract:
Composability itself is probably the least composable term in the theory of computer science.
In this talk, I'll explore some of thetroubling reasons why we have succeeded only so-so when
it comes to the creation of composable software - and thus software components. Architecture
can often come to the rescue, but only when applied with great style.

Clemens Szyperski joined Microsoft Research as a Software Architect in
1999. His team moved into a product incubation phase in 2001 and began
production development in early 2003. A first product developed in an
entirely new way will be released together with the upcoming Office System
2007. Since late 2005 he is now working on driving novel platform
technology in Microsoft's new Connected Systems Division. His focus is on
the end-to-end issues of leveraging component software to effectively build
new kinds of software. He maintains an affiliation with Microsoft Research and continues his
general activities in the wider research arena. His Jolt-award-winning book Component
Software (Addison Wesley) appeared in a fully revised and extended second edition in late
2002. Software Ecosystem (MIT Press), co-authored with Dave Messerschmitt of UC
Berkeley, was published in mid 2003. Clemens serves on numerous program committees,
including ECOOP, ESEC/FSE, ICSE, and OOPSLA. He served as assessor and panelist for
national funding bodies in Australia, Canada, Ireland, the Netherlands, and USA. He is a
cofounder of Oberon microsystems, Zurich, Switzerland, and its now-public spin-off
esmertec.

From 1994 to 1999, he was an associate professor at the School of Computer Science,
Queensland University of Technology, Australia, where he retains an adjunct professorship.
He held a postdoc scholarship at ICSI, affiliated with UC Berkeley in 1992/93. In 1992, he
received his PhD in computer science from the Swiss Federal Institute of Technology (ETH)
in Zurich under Prof. Niklaus Wirth and in 1987 his Masters in electrical engineering/
computer engineering from Aachen University of Technology (RWTH).

7

Judith Stafford, Senior Lecturer, Tufts University, Boston

Documentation Principles and Practices that You Can Live With

Abstract:
Software architecture has become a widely-accepted conceptual basis for the development of
non-trivial software in all application areas and by organizations of all sizes. Effectively
documenting an architecture is as important as crafting it; if the architecture is not understood,
or worse, misunderstood, it cannot meet its goals as the unifying vision for software
development. Development-based architecture strategies, such as Rational's Unified Process,
stop short of prescribing documentation standards. The Views and Beyond approach to
software architecture provides practical guidance on the what, why, and how of creating IEEE
1471-2000 compliant documentation for your software architecture that will be used for years
to come. The approach is based on the well-known concept of views and is presented in the
context of prevailing prescriptive models for architecture, including the Unified Process and
UML 2.0, which has improved support for representing key architectural elements over its
predecessors.

Attendee Background:
Participants should have experience with creating or using descriptions of large software
systems and some knowledge of the Unified Modeling Language.

Tutorial Objectives:
The primary aim of this tutorial is to teach developers what constitutes good documentation of
a software architecture, why it is worth the effort to create and maintain a documentation
package, and how to write it down. A secondary aim is to teach other stakeholders why they
should care about architectural documentation and how they can use it to make their life
easier, increase productivity, and decrease overall system development and maintenance
costs.

Judith Stafford is a Senior Lecturer in the Department of Computer Science
at Tufts University, and is also a visiting scientist at the Software Engineering
Institute, Carnegie Mellon University. Dr. Stafford has worked for several
years in the area of compositional reasoning and its application to software
architectures and component-based systems. She has organized workshops,
given invited talks, taught tutorials, and written widely in these areas
including co-authoring the book that inspired this tutorial, Documenting
Software Archtiectures: Views and Beyond, Addison Wesley, 2002 and several book chapters
on software architecture and component-based software engineering.

8

Prof. Dr. Ralf Reussner and Steffen Becker, University of Karlsruhe

Model-based Software Development with Eclipse

Abstract:
The tutorial consists of two parts. In the first part (45 min), Ralf Reussner focuses on the
importance of an explicitly modelled software architecture. Besides an introduction into
common architectural views, the role of the software architect is compared to "classical
building" architects. As part of this, the often used comparison between building architecture
and software architecture is critically reviewed. In particular, the role of an architect is
discussed in model-driven software projects.

During the second part of the tutorial (135 min), Steffen Becker demonstrates online model
driven development tools based on Eclipse. First, an introduction is given on the meta-
modelling tools of the Eclipse Modelling Framework (EMF) and on the Graphical Modelling
Framework (GMF) used to generate a domain specific editors for user defined (meta-)models.
Additionally, the MDA framework of the OMG is presented and the concepts are applied to
the introduced tools.

A live demonstration of the capabilities of the introduced tools for model transformations
shows finally how a domain specific modelling tool can be generated to a large extend
automatically using an EMF-model instance and the generator of GMF. As a result, an editor
based on the Eclipse Graphical Editing Framework (GEF) can be deployed and run using
Eclipse.

Professor Ralf Reussner holds the Chair for Software-Design and -Quality at
the University of Karlsruhe since 2006. His research group is well established
in the area of component based software design, software architecture and
predictable software quality. Professor Reussner shaped this field not only by
over 60 peer-reviewed publications in Journals and Conferences, but also by
establishing various conferences and workshops. In addition, he acts as a PC
member or reviewer of several conferences and journals. As Director of Software Engineering
at the Informatics Research Centre in Karlsruhe (FZI) he consults various industrial partners
in the areas of component based software, architectures and software quality. He is principal
investigator or chief coodinator in several grants from industrial and governmental funding
agencies. He graduated from University of Karlsruhe with a PhD in 2001. After this, Ralf was
a Senior Research Scientist and project-leader at the Distributed Systems Technology Centre
(DSTC Pty Ltd), Melbourne, Australia. From March 2003 till January held the
Juniorprofessorship for Software Engineering at the University of Oldenburg, Germany, and
was awarded with a 1 Mio EUR grant of the prestigious Emmy-Noether young researchers
excellence programme of the National German Science Foundation.

Steffen Becker is a member of the research staff at the Chair for Software-
Design and -Quality at the University of Karlsruhe since 2006. In his PhD
thesis he concerned with combining model driven software development and
prediction of the resulting Quality of Service properties of component based
software systems. As part of his work he is working on a component model
enabling the prediction of component based software systems. He is known in
his field of research by several scientific publications and also as a member of the steering
committee of the QoSA conference and the WCAT workshop series at ECOOP. He gained

9

practical experiences during his internship as software engineer in Johannesburg, ZA in 2000
as well as during consulting activities at the OFFIS in Oldenburg, Germany. He holds a
diploma in business administration and computer science combined (Dipl.-
Wirschaftsinformatik) from the Darmstadt University of Technology.

10

Heinz Züllighoven, Carola Lilienthal (University of Hamburg) and and Marcel
Bennicke (Brandenburg University of Technology Cottbus)

Software Architecture Analysis and Evaluation

Abstract:
A software architecture describes the structure of a software system on an abstract
implementation independent level. In forward engineering it serves as a blueprint to prescribe
the intended software structure (so-called architecture model). In reverse engineering it can
provide an abstract view of the actual code structure of the existing software system (so-called
code architecture). Architecture models and actual code architectures play a vital role for all
comprehension and communication tasks during the development and evolution of large
software systems. Therefore, architecture models and code architectures have to be explicitly
represented and consistently maintained during the development, maintenance, and
reengineering processes.

The need to insure compliance of the architecture model and the actual code architecture has
drawn considerable attention in recent years. In order to facilitate maintainability and
enhancement of a software system the compliance of the architecture model and the actual
code architecture is essential. Various tools have been developed to analyse and evaluate the
deviation of code architecture and architecture model. In this tutorial we present static
analysis tools that may be used for architectural analyses. We demonstrate how these tools
can create useful architectural views for different evaluation tasks such as identification of
reconstruction scope, critical architectural elements and potential design irregularities. If
possible we will analyse a software system provided by a participant of the workshop in a life
demonstration.

Heinz Züllighoven, graduted in Mathematics and German Language and
Literature, holds a PhD in Computer Science. Since October 1991 he is
professor at the Computer Science Department of the University of Hamburg
and head of the attached Software Technology Centre. He is one of the
original designers of the Tools & Materials approach to object-oriented
application software and the Java framework JWAM, supporting this
approach. Since 2000, Heinz Züllighoven is also one of the managing directors of C1
Workplace Solutions Ltd. He is consulting industrial software development projects in the
area of object-oriented design, among which are several major banks. Heinz Züllighoven has
published a number of papers and books on various software engineering topics. An English
construction handbook for the Tools & Materials approach has been published by Morgan
Kaufmann in 2004. Among his current research interests are agile object-oriented
development strategies, migration processes and the architecture of large industrial interactive
software systems. In addition, he an his co-researchers are further developing a light-weight
modeling concept for business processes which is tool-supported.

Carola Lilienthal holds a Diploma degree in computer science from
University of Hamburg (1995). She is a research assistant at the University of
Hamburg and is working in the Software Engineering Group of Christiane
Floyd and Heinz Züllighoven. Since 1995 she is also working as a consultant
for object oriented design, software architecture, software quality, agile
software development and participatory design in several industrial projects.

11

She has published a number of papers on various software engineering topics. Her research
interests are the construction and analysis of large software systems, software architecture,
software quality analysis and agile software development.

Marcel Bennicke holds a Diploma degree in computer science from
Brandenburg University of Technology (2002). He is a research associate
with the Software Systems Engineering Group at the same university. His
research interests are software architecture, software quality and software
quality analysis. Between 2004 and 2005 he has been working as a consultant
in several industrial projects doing software quality analyses and introducing
measurement programs in software development projects.

12

Merging In-House Developed Software Systems

– A Method for Exploring Alternatives

Rikard Land, Jan Carlson, Ivica Crnković, Stig Larsson
Mälardalen University, Department of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 10 70 35

{rikard.land, jan.carlson, ivica.crnkovic, stig.larsson}@mdh.se, http://www.idt.mdh.se/{~rld, ~jcn, ~icc}

Abstract
An increasing form of software evolution is software
merge – when two or more software systems are being
merged. The reason may be to achieve new integrated
functions, but also remove duplication of services,
code, data, etc. This situation might occur as systems
are evolved in-house, or after a company acquisition
or merger. One potential solution is to merge the
systems by taking components from the two (or more)
existing systems and assemble them into an existing
system. The paper presents a method for exploring
merge alternatives at the architectural level, and
evaluates the implications in terms of system features
and quality, and the effort needed for the
implementation. The method builds on previous
observations from several case studies. The method
includes well-defined core model with a layer of
heuristics in terms of a loosely defined process on top.
As an illustration of the method usage a case study is
discussed using the method.

1. Introduction
When organizations merge, or collaborate very
closely, they often bring a legacy of in-house
developed software systems. Often these systems
address similar problems within the same business and
there is usually some overlap in functionality and
purpose. A new system, combining the functionality of
the existing systems, would improve the situation from
an economical and maintenance point of view, as well
as from the point of view of users, marketing and
customers. During a previous study involving nine
cases of such in-house integration [10], we saw some
drastic strategies, involving retiring (some of) the
existing systems and reusing some parts, or only
reutilizing knowledge and building a new system from
scratch. We also saw another strategy of resolving this
situation, which is the focus of the present paper: to
merge the systems, by reassembling various parts from

several existing system into a new system. From many
points of view, this is a desirable solution, but based
on previous research this is typically very difficult and
is not so common in practice; there seem to be some
prerequisites for this to be possible and feasible [10].

There is a need to relatively fast and accurately
find and evaluate merge solutions, and our starting
point to address this need has been the following
previous observations [10]:
1. Similar high-level structures seem to be a

prerequisite for merge. Thus, if the structures of the
existing systems are not similar, a merge seems in
practice unfeasible.

2. A development-time view of the system is a simple
and powerful system representation, which lends
itself to reasoning about project characteristics, such
as division of work and effort estimations.

3. A suggested beneficial practice is to assemble the
architects of the existing systems in a meeting early
in the process, where various solutions are outlined
and discussed. During this type of meeting, many
alternatives are partly developed and evaluated until
(hopefully) one or a few high-level alternatives are
fully elaborated.

4. The merge will probably take a long time. To
sustain commitment within the organization, and
avoid too much of parallel development, there is a
need to perform an evolutionary merge with
stepwise deliveries. To enable this, the existing
systems should be delivered separately, sharing
more and more parts until the systems are identical.

This paper presents a systematic method for exploring
merge alternatives, which takes these observations into
account: by 1) assuming similar high-level structures,
2) utilizing static views of the systems, 3) being simple
enough to be able to learn and use during the
architects’ meetings, and 4) by focusing not only on an
ideal future system but also stepwise deliveries of the
existing systems. The information gathered from nine

13

case studies was generalized into the method presented
in this paper. To refine the method, we made further
interviews with participants in one of the previous
cases, which implemented the merge strategy most
clearly.

The rest of the paper is organized as follows. We
define the method in Section 2 and discuss it by means
of an example in Section 3. Section 4 discusses
important observations from the case and argues for
some general advices based on this. Section 5 surveys
related work. Section 6 summarizes and concludes the
paper and outlines future work.

2. Software Merge Exploration
Method
Our software merge exploration method consists of
two parts: (i) a model, i.e., a set of formal concepts and
definitions, and (ii) a process, i.e., a set of human
activities that utilizes the model. The model is
designed to be simple but should reflect reality as
much as possible, and the process describes higher-
level reasoning and heuristics that are suggested as
useful practices.

To help explaining the method, we start with a
simple example in Section 2.1, followed by a
description of the method’s underlying model (Section
2.2) and the suggested process (Section 2.3).

2.1 An Explanatory Example
Figure 1a shows two simple music sequencer software
systems structured according to the “Model-View-
Controller” pattern [2]. The recorded music would be
the model, which can be viewed as a note score or as a
list of detailed events, and controlled by mouse clicks
or by playing a keyboard.

The method uses the module view [3,5] (or
development view [8]), which describes modules and
“use” dependencies between them. Parnas defined the
“use” dependency so that module α is said to use
module β if module α relies on the correct behavior of
β to accomplish its task [14].

In our method, the term module refers to an
encapsulation of a particular functionality, purpose or
responsibility on an abstract level. A concrete
implementation of this functionality is called a module
instance. In the example, both systems have a
EventView module, meaning that both systems
provide this particular type of functionality (e.g., a
note score view of the music). The details are probably
different in the two systems, though, since the
functionality is provided by different concrete
implementations (the module instances EventViewA

and EventViewB, respectively). The method is not
restricted to module instances that are present in the
existing systems but also those that are possible in a
future system; such new module instances could be
either a planned implementation (e.g.,
EventViewnew_impl), an already existing module to be
reused in-house from some other program (e.g.,
EventViewpgm_name), or an open source or commercial
component (EventViewcomponent_name).

2.2 The Model
Our proposed method builds on a model consisting of
three parts: a set of model elements, a definition of
inconsistency in terms of the systems’ structures, and a
set of permissible user operations.

2.2.1 Concepts and Notation
The following concepts are used in the model:
• We assume there are two or more existing

systems, (named with capital letters, and
parameterized by X, Y, etc.).

• A module represents a conceptual system part
with a specific purpose (e.g., EventView in
Figure 1). Modules are designated with capital
first letter; in the general case we use Greek letters
α and β.

• A module instance represents a realization of a
module. It is denoted αX where α is a module and
X is either an existing system (as in EventViewA)
or an indication that the module is new to the
systems (as in EventViewpgm_name or
EventViewcomponent_name).

• A “use” dependency (or dependency for short)
from module instance αX to module instance βY
means that αX relies on the correct behavior of βY
to accomplish its task. We use the textual notation
αX βY to represent this.

• A dependency graph captures the structure of a
system. It is a directed graph where each node in
the graph represents a module instance and the
edges (arrows) represent use dependencies. In
Figure 1a, we have for example the dependencies
NoteViewA MusicModelA and MouseCtrlB
MusicModelB.

• An adaptation describes that a modification is
made to αX in order for it to be compatible, or
consistent with βY, and is denoted 〈αX, βY〉 (see
2.2.2 below).

• A scenario consists of a dependency graph for
each existing system and a single set of
adaptations.

14

Event
ViewA

Mouse
CtrlA

Note
ViewA

System A System B

Adaptation Set: <KbdCtrlnew, MusicModelA> <MusicModelB, MouseCtrlA>

Music
ModelA

Kbd
CtrlA

Event
ViewB

Mouse
CtrlB

Note
ViewB

Music
ModelB

Kbd
CtrlB

Event
ViewA

Mouse
CtrlA

Note
ViewB

System A System B

Music
ModelA

Kbd
Ctrlnew

Event
ViewA

Mouse
CtrlA

Note
ViewB

Music
ModelB

Kbd
CtrlB

a) Initial state

b) State after some changes have been made to the systems

Figure 1. Two example systems with the same structure being merged.

2.2.2 Inconsistency
A dependency from αX to βY can be inconsistent,
meaning that βY cannot be used by αX. Trivially, the
dependency between two module instances from the
same system is consistent without further adaptation.
For the dependency between two modules from
different systems we cannot say whether they are
consistent or not. Most probably they are inconsistent,
which has to be resolved by some kind of adaptation if
we want to use them together in a new system. The
actual adaptations made could in practice be of many
kinds: some wrapping or bridging code, or
modifications of individual lines of code; see further
discussion in 4.1.

Formally, a dependency αX βY is consistent if
X = Y or if the adaptation set contains 〈αX, βY〉 or 〈βY,
αX〉. Otherwise, the dependency is inconsistent. A
dependency graph is consistent if all dependencies are
consistent; otherwise it is inconsistent. A scenario is
consistent if all dependency graphs are consistent;
otherwise it is inconsistent.

Example: The scenario in Figure 1b is
inconsistent, because of the inconsistent dependencies
from NoteViewB to MusicModelA (in System A) and
from EventViewA to MusicModelB (in System B).
The dependencies from KbdCtrlnew to MusicModelA
(in System A) and from MouseCtrlA to MusicModelB
(in System B) on the other hand are consistent, since
there are adaptations 〈KbdCtrlnew, MusicModelA〉 and
〈MusicModelB, MouseCtrlA〉 representing that
KbdCtrlnew and MusicModelB have been modified to

be consistent with MusicModelA and MouseCtrlA
respectively.

2.2.3 Scenario Operations
The following operations can be performed on a
scenario:
1. Add an adaptation to the adaptation set.
2. Remove an adaptation from the adaptation set.
3. Add the module instance αX to one of the

dependency graphs, if there exists an αY in the
graph. Additionally, for each module β, such that
there is a dependency αY βZ in the graph, a
dependency αX βW must be added for some βW
in the graph.

4. Add the dependency αX βW if there exist a
dependency αX βZ (with Z≠W) in the graph.

5. Remove the dependency αX βW if there exists a
dependency αX βZ (with Z≠W) in the graph.

6. Remove the module instance αX from one of the
dependency graphs, if there are no edges to αX in
the graph, and if the graph contains another
module instance αY (i.e., with X≠Y).

Note that these operations never change the
participating modules of the graphs (if there is an αX in
the initial systems, they will always contain some αY).
Similarly, dependencies between modules are also
preserved Note also that we allow two or more
instances for the same module in a system; when this
could be suitable for a real system is discussed in 4.2.

15

2.3 The Process
The suggested process consists of two phases, the first
consisting of two simple preparatory activities (P-I and
P-II), and the second being recursive and exploratory
(E-I – E-IV).

The scope of the method is within an early
meeting of architects, where they (among other tasks)
outline various merge solutions. To be able to evaluate
various alternatives, some evaluation criteria should be
provided by management, product owners, or similar
stakeholders. Such criteria can include quality
attributes for the system, but also considerations
regarding development parameters such as cost and
time limits. Other boundary conditions are the strategy
for the future architecture and anticipated changes in
the development organization. Depending on the
circumstances, evaluation criteria and boundary
conditions could be renegotiated to some extent, once
concrete alternatives are developed.

2.3.1 Preparatory Phase
The Preparatory phase consists of two activities:

Activity P-I: Describe Existing Systems. First,
the dependency graphs of the existing systems must be
prepared, and common modules must be identified.
These graphs could be found in existing models or
documentation, or extracted by reverse engineering
methods, or simply created by the architects
themselves.

Activity P-II: Describe Desired Future
Architecture. The dependency graph of the future
system has the same structure, in terms of modules, as
the existing systems. For some modules it may be
imperative to use some specific module instance (e.g.,
αX because it has richer functionality than αY, or a new
implementation αnew because there have been quality
problems with the existing αX and αY). For other
modules, αX might be preferred over αY, but the final
choice will also depend on other implications of the
choice, which is not known until different alternatives
are explored. The result of this activity is an outline of
a desired future system, with some annotations, that
serve as a guide during the exploratory phase. This
should include some quality goals for the system as a
whole.

2.3.2 Exploratory Phase
The result of the preparatory phase is a single scenario
corresponding to the structure and module instances of
the existing systems. The exploratory phase can then
be described in terms of four activities: E-I “Introduce
Desired Changes”, E-II “Resolve Inconsistencies”, E-
III “Branch Scenarios”, and E-IV “Evaluate
Scenarios”.

The order between them is not pre-determined;
any activity could be performed after any of the others.
They are however not completely arbitrary: early in the
process, there will be an emphasis on activity E-I,
where desired changes are introduced. These changes
will lead to inconsistencies that need to be resolved in
activity E-II. As the exploration continues, one will
need to branch scenarios in order to explore different
choices; this is done in activity E-III. One also wants
to continually evaluate the scenarios and compare
them, which is done in activity E-IV. Towards the end
when there are a number of consistent scenarios there
will be an emphasis on evaluating these deliveries of
the existing systems. For all these activities, decisions
should be described so they are motivated by, and
traceable to, the specified evaluation criteria and
boundary conditions. These activities describe high-
level operations that are often useful, but nothing
prohibits the user from carrying out any of the
primitive operations defined above at any time.

Activity E-I: Introduce Desired Changes. Some
module instances, desired in the future system, should
be introduced into the existing systems. In some cases,
it is imperative where to start (as described for activity
P-II); the choice may e.g., depend on the local
priorities for each system (e.g., “we need to improve
the MusicModel of system A”), and/or some strategic
considerations concerning how to make the envisioned
merge succeed (e.g., “the MusicModel should be
made a common module as soon as possible”).

Activity E-II: Resolve Inconsistencies. As
modules are exchanged in the graphs, dependencies
αX βY might become inconsistent. There are several
ways of resolving these inconsistencies:
• Either of the two module instances could be

modified to be consistent with the interface of the
other. In the model, this means adding an
adaptation to the adaptation set. In the example of
Figure 1b, the inconsistency between NoteViewB
and MusicModelA in System A can be solved by
adding either of the adaptations 〈NoteViewB,
MusicModelA〉 or 〈MusicModelA, NoteViewB〉 to
the adaptation set. (Different types of possible
modifications in practice are discussed in Section
4.1.)

• Either of the two module instances could be
exchanged for another. There are several
variations on this:
− A module instance is chosen so that the new

pair of components is already consistent. This
means that αX is exchanged either for αY
(which is consistent with βY as they come from
the same system Y) or for some other αZ for
which there is an adaptation 〈αZ, βY〉 or 〈βY,

16

αZ〉. Alternatively, βY is exchanged for βX or
some other βZ for which there is an adaptation
〈βZ, αX〉 or 〈αX , βZ〉. In the example of Figure
1b, MusicModelA could be replaced by
MusicModelB to resolve the inconsistent
dependency NoteViewB MusicModelA in
System A.

− A module instance is chosen that did not exist
in either of the previous systems. This could
be either of:

i) a module reused in-house from some other
program (which would come with an
adaptation cost),

ii) a planned or hypothesized new development
(which would have an implementation cost,
but low or no adaptation cost), or

iii) an open source or commercial component
(which involves acquirement costs as well as
adaptation costs, which one would like to
keep separate).

• One more module instance could be introduced
for one of the modules, to exist in parallel with the
existing; the new module instance would be
chosen so that it already is consistent with the
instance of the other module (as described for
exchanging components). The previous example
in Figure 1a and b is too simple to illustrate the
need for this, but in Section 4 the industrial case
will illustrate when this might be needed and
feasible. Coexisting modules are also further
discussed in Section 4.1.

Some introduced changes will cause new
inconsistencies, that need to be resolved (i.e., this
activity need to be performed iteratively).

Activity E-III: Branch Scenarios. As a scenario
is evolved by applying the operations to it (most often
according to either of the high-level approaches of
activities E-I and E-II), there will be occasions where
it is desired to explore two or more different choices in
parallel. For example, several of the resolutions
suggested in activity E-II might make intuitive sense,
and both choices should be explored. It is then possible
to copy the scenario, and treat the two copies as
branches of the same tree, having some choices in
common but also some different choices.

Activity E-IV: Evaluate Scenarios. As scenarios
evolve, they need to be evaluated in order to decide
which branches to evolve further and which to
abandon. Towards the end of the process, one will also
want to evaluate the final alternatives more
thoroughly, and compare them – both with each other
and with the pre-specified evaluation criteria and
boundary conditions (which might at this point be
reconsidered to some extent). The actual state of the

systems must be evaluated, i.e., the actually chosen
module instances plus the modifications to reduce
inconsistencies). Do the systems contain many shared
modules? Are the chosen modules the ones desired for
the future system (richest functionality, highest quality,
etc.)? Can the system as a whole be expected to meet
its quality goals?

2.3.3 Accumulating Information
As these activities are carried out, there is some
information that should be stored for use in later
activities. As operations are performed, information is
accumulated. Although this information is created as
part of an operation within a specific scenario, the
information can be used in all other scenarios; this idea
would be particularly useful when implemented in a
tool. We envision that any particular project or tool
would define its own formats and types of information;
in the following we give some suggestions of such
useful information and how it would be used.

Throughout the exploratory activities, it would be
useful to have some ranking of modules readily
available, such as “EventViewA is preferred over
EventViewB because it has higher quality”. A tool
could use this information to color the chosen modules
to show how well the outlined alternatives fit the
desired future system.

For activity E-II “Resolve Inconsistencies”, it
would be useful to have information about e.g., which
module could or could not coexist in parallel. Also,
some information should be stored that is related to
how the inconsistencies are solved. There should at
least be a short textual description of what an
adaptation means in practice. Other useful information
would be the efforts and costs associated with each
acquirement and adaptation; if this information is
collected by a tool, it becomes possible to extract a list
of actions required per scenario, including the textual
descriptions of adaptations and effort estimates. It is
also possible to reason about how much of the efforts
required that are “wasted”, that is: is most of the effort
related to modifications that actually lead towards the
desired future system, or is much effort required to
make modules fit only for the next delivery and then
discarded? The evaluation criteria and boundary
conditions mentioned in Section 2.2 could also be used
by a tool to aid or guide the evaluation in the activity
E-IV.

3. An Industrial Case Study
In a previous multiple case study on the topic of in-
house integration, the nine cases in six organizations
had implemented different integration solutions [10].
We returned to the one case that had clearly chosen the
merge strategy and successfully implemented it

17

(although it is not formally released yet); in previous
publications this case is labelled “case F2”. The fact
that this was one case out of nine indicates that the
prerequisites for a merge are not always fulfilled, but
also that they are not unrealistic (two more cases
involved reusing parts from several existing systems in
a way that could be described as a merge). To motivate
the applicability of the proposed method, this section
describes the events of an industrial case and places
them in the context of our method.

3.1 Research Method
This part of the research is thus a single case study
[17]. Our sources of information have been face-to-
face interviews with the three main developers on the
US side (there is no title “architect” within the
company) and the two main developers on the Swedish
side, as well as the high-level documentation of the
Swedish system. All discussion questions and answers
are published together with more details on the study’s
design in a technical report [9].

Although the reasoning of the case follows the
method closely, the case also demonstrates some
inefficiency due to not exploring the technical
implications of the merge fully beforehand. It therefore
supports the idea of the method being employed to
analyze and explore merge alternatives early, before
committing to a particular strategy for the in-house
integration (merge or some other strategy).

3.2 The Case
The organization in the case is a US-based global
company that acquired a slightly smaller global
company in the same business domain, based in
Sweden. To support the core business, computer
simulations are conducted. Both sites have developed
software for simulating 3D physics, containing state-
of-the-art physics models, many of the models also
developed in-house.

As the results are used for real-world decisions
potentially affecting the environment and human lives,
the simulation results must be accurate (i.e., the output
must correspond closely to reality). As the simulations
are carried out off-line and the users are physics
specialists, many other runtime quality properties of
the simulation programs are not crucial, such as
reliability (if the program crashes for a certain input,
the bug is located and removed), user-friendliness,
performance, or portability. On the other side, the
accuracy of the results are crucial.

Both systems are written in Fortran and consist of
several hundreds of thousands lines of code, and the
staff responsible for evolving these simulators are the
interviewees, i.e., less than a handful on each site.
There was a strategic decision to integrate or merge the

systems in the long term. This should be done through
cooperation whenever possible, rather than as a
separate up-front project.

The rest of this section describes the events of the
case in terms of the proposed activities of the method.
It should be noted that although the interviewees met
in a small group to discuss alternatives, they did not
follow the proposed method strictly (which is natural,
as the method has been formulated after, and partly
influenced by, these events).

Activity P-I: Describe Existing Systems. Both
existing systems are written in the same programming
language (Fortran), and it was realized early that the
two systems have very similar structure, see Figure
2a). There is a main program (Main) invoking a
number of physics modules (PX, PY, PZ, …) at
appropriate times, within two main loops. Before any
calculations, an initialization module (Init) reads data
from input files and the internal data structures (DS)
are initialized. The physics modeled is complex,
leading to complex interactions where the solution of
one module affects others in a non-hierarchical
manner. After the physics calculations are finished, a
file management module (FM) is invoked, which
collects and prints the results to file. All these modules
use a common error handling and logging library (EL),
and share the same data structures (DS). A merge
seemed plausible also thanks to the similarities of the
data models; the two programs model the same reality
in similar ways.

Activity P-II: Describe Desired Future
Architecture. The starting point was to develop a
common module for one particular aspect of the
physics (PXnew), as both sides had experienced some
limitations of their respective current physics models.
Now being in the same company, it was imperative
that they would join efforts and develop a new module
that would be common to both programs; this project
received some extra integration funding. Independent
of the integration efforts, there was a common wish on
both sides to take advantage of newer Fortran
constructs to improve encapsulation and enforce
stronger static checks.

Activity E-I: Introduce Desired Changes. As
said, the starting point for integration was the module
PX. Both sides wanted a fundamentally new physics
model, so the implementation was also completely new
(no reuse), written by one of the Swedish developers.
The two systems also used different formats for input
and output files, managed by file handling modules
(FMSE and FMUS). The US system chose to
incorporate the Swedish module for this, which has
required some changes to the modules using the file
handling module.

18

InitSE

MainSE

PXSE

ELSE FMSEDSSE

Swedish System

PrintSE
...PYSE PZSE InitUS

MainUS

PXUS

ELUS FMUSDSUS

US System

PrintUS
...PYUS PZUS

InitSE

MainSE

PXnew

ELnew FMSEDSSE

Swedish System

PrintSEPYSE PZSE InitUS

MainUS

PXnew

ELnew FMSE

US System

PrintUSPYUS PZUS

ELSE

PXSE

DSnew DSUSDSnew

Init?

Main?

PXnew

ELnew FMSE

Print?...PY? PZ?

DSnew

a) Initial state

b) Current state

c) Future System

... ...

Adaptation set: <MainSE, PXnew> <PXnew, ELnew> <PXnew, DSnew> <MainUS, PXnew> <PYUS, ELnew>
 <PYUS, DSnew> <PZUS, ELnew> <PZUS, DSnew>

Figure 2: The current status of the systems of the case.

Activity E-II: Resolve Inconsistencies. The PX
module of both systems accesses large data structures
(DS) in global memory, shared with the other physics
modules. An approach was tried where adapters were
introduced between a commonly defined interface and
the old implementations, but was abandoned as this
solution became too complex. Instead, a new
implementation of data structures was introduced. This
was partially chosen because it gave the opportunity to

use newer Fortran constructs which made the code
more structured, and it enabled some encapsulation
and access control as well as stronger type checking
than before.

This led to new inconsistencies that needed to be
resolved. In the US system, six man-months were
spent on modifying the existing code to use the new
data structures. The initialization and printout modules
remained untouched however; instead a solution was

19

chosen where data is moved from the old structures
(DSSE and DSUS) to the new (DSnew) after the
initialization module has populated the old structures,
and data is moved back to the old structures before the
printout module executes. In the Swedish system, only
the parts of the data structures that are used by the PX
module are utilized, the other parts of the program uses
the old structures; the few data that are used both by
the PX module and others had to be handled
separately.

The existing libraries for error handling and
logging (EL) would also need some improvements in
the future. Instead of implementing the new PX
module to fit the old EL module, a new EL module
was implemented. The new PX module was built to
use the new EL module, but the developers saw no
major problems to let the old EL module continue to
be used by other modules (otherwise there would be an
undesirable ripple effect). However, for each internal
shipment of the PX module, the US staff commented
away the calls to the EL library; this was the fastest
way to make it fit. In the short term this was perfectly
sensible, since the next US release would only be used
for validating the new model together with the old
system. However, spending time commenting away
code was an inefficient way of working, and
eventually the US site incorporated the EL library and
modified all other modules to use it; this was not too
difficult as it basically involved replacing certain
subroutine calls with others. In the Swedish system,
the new EL library was used by the new PX module,
while the existing EL module was used in parallel, to
avoid modifying other modules that used it. Having
two parallel EL libraries was not considered a major
quality risk in the short run.

Modifying the main loop of each system, to make
it call the new PX module instead of the old, was
trivial. In the Swedish system there will be a startup
switch for some years to come, allowing users to
choose between the old and the new PX module for
each execution. This is useful for validation of PXnew
and is presented as a feature for customers.

E-III Branch Scenarios. As we are describing the
actual sequence of events, this activity cannot be
reported as such, although different alternatives were
certainly discussed – and even attempted and
abandoned, as for the data structure adapters.

E-IV Evaluate Scenarios. This activity is also
difficult to isolate after the fact, as we have no
available reports on considerations made. It appears as
functionality was a much more important factor than
non-functional (quality) attributes at the module level.
At system level, concerns about development time
qualities (e.g., discussions about parallel module

instances and the impact on maintenance) seem to have
been discussed more than runtime qualities (possibly
because runtime qualities in this case are not crucial).

Figure 2 shows the initial and current state of the
systems, as well as the desired outlined future system.
(It is still discussed whether to reuse the module from
either of the systems or create a new implementation,
hence the question marks).

4. Discussion
This section discusses various considerations to be
made during the exploration and evaluation, as
highlighted by the case.

4.1 Coexisting Modules
To resolve an inconsistency between two module
instances, there is the option of allowing two module
instances (operation 2). Replacing the module
completely will have cascading effects on the
consistencies for all edges connected to it (both “used-
by” and “using”), so having several instances has the
least direct impact in the model (potentially the least
modification efforts). However, it is not always
feasible in practice to allow two implementations with
the same purpose. The installation and runtime costs
associated with having several modules for the same
task might be prohibiting if resources are scarce. It
might also be fundamentally assumed that there is only
one single instance responsible for a certain
functionality, e.g., for managing central resources.
Examples could be thread creation and allocation,
access control to various resources (hardware or
software), security, etc. Finally, at development time,
coexisting components violates the conceptual
integrity of the system, and results in a larger code
base and a larger number of interfaces to keep
consistent during further evolution and maintenance.
From this point of view, coexisting modules might be
allowed as a temporary solution for an intermediate
delivery, while planning for a future system with a
single instance of each module (as in the case for
modules EL and DS). However, the case also
illustrates how the ability to choose either of the two
modules for each new execution was considered useful
(PXSE and PXnew in the Swedish system).

We can see the following types of relationships
between two particular module instances of the same
module:
• Arbitrary usage. Any of the two parallel modules

may be invoked at any time. This seems
applicable for library type modules, i.e., modules
that retains no state but only performs some action
and returns, as the EL module in the case.

• Alternating usage. If arbitrary usage cannot be
allowed, it might be possible to define some rules

20

for synchronization that will allow both modules
to exist in the system. In the case, we saw accesses
to old and new data structures in a pre-defined
order, which required some means of
synchronizing data at the appropriate points in
time. One could also imagine other, more dynamic
types of synchronization mechanisms useful for
other types of systems: a rule stating which
module to be called depending on the current
mode of the system, or two parallel processes that
are synchronized via some shared variables.
(Although these kinds of solutions could be seen
as a new module, the current version of the
method only allows this to be specified as text
associated to an adaptation.)

• Initial choice. The services of the modules may
be infeasible to share between two modules, even
over time. Someone will need to select which
module instance to use, e.g., at compile time by
means of compilation switches, or with an
initialization parameter provided by the user at
run-time. This was the case for the PXSE and
PXnew modules in the Swedish system.
The last two types of relationships requires some

principle decision and rules at the system
(architectural) level, while the signifying feature of the
first is that the correct overall behaviour of the
program is totally independent of which module
instance is used at any particular time.

4.2 Similarity of Systems
As described in 2.1.1, the model requires that the
structures of the existing systems are identical, which
may seem a rather strong assumption. It is motivated
by the following three arguments [10]:
• The previous multiple case study mentioned in

Section 3.1 strongly suggests that similar
structures is a prerequisite for merge to make
sense in practice. That means that if the structures
are dissimilar, practice has shown that some other
strategy will very likely be more feasible (e.g.,
involving the retirement of some systems).
Consequently, there is little motivation to devise a
method that covers also this situation.

• We also observed that it is not so unlikely that
systems in the same domain, built during the same
era, indeed have similar structures.

• If the structures are not very similar at a detailed
level, it might be possible to find a higher level of
abstraction where the systems are similar.
A common type of difference, that should not

pose large difficulties in practice, is if some modules
and dependencies are similar, and the systems have
some modules that are only extensions to a common
architecture. For example, in the example system one

of the systems could have an additional View module
(say, a piano roll visualization of the music); in the
industrial case we could imagine one of the systems to
have a module modeling one more aspect of physics
(PW) than the other. However, a simple workaround
solution in the current version of the method is to
introduce virtual module instances, i.e., modules that
do not exist in the real system (which are of course not
desired in the future system).

5. Related Work
There is much literature to be found on the topic of
software integration. Three major fields of software
integration are component-based software [16], open
systems [13], and Enterprise Application Integration,
EAI [15]. However, we have found no existing
literature that directly addresses the context of the
present research: integration or merge of software
controlled and owned within an organization. These
existing fields address somewhat different problems
than ours, as these fields concern components or
systems complementing each other rather than systems
that overlap functionally. Also, it is typically assumed
that components or systems are acquired from third
parties and that modifying them is not an option, a
constraint that does not apply to the in-house situation.
Software reuse typically assumes that components are
initially built to be reused in various contexts, as
COTS components or as a reuse program implemented
throughout an organization [7], but in our context the
system components were likely not being built with
reuse in mind.

It is commonly expressed that a software
architecture should be documented and described
according to different views [3,5,6,8]. One frequently
proposed view is the module view [3,5] (or
development view [8]), describing development
abstractions such as layers and modules and their
relationships. The dependencies between the
development time artifacts were first defined by Parnas
[14] and are during ordinary software evolution the
natural tool to understand how modifications made to
one component propagate to other.

The notion of “architectural mismatch” is well
known, meaning the many types of incompatibilities
that may occur when assembling components built
under different assumptions and using different
technologies [4]. There are some methods for
automatically merging software, mainly source code
[1], not least in the context of configuration
management systems [12]. However, these approaches
are unfeasible for merging large systems with complex
requirements, functionality, quality, and stakeholder
interests. The abstraction level must be higher.

21

6. Conclusions and Future Work
The problem of integrating and merging large complex
software systems owned in-house is essentially
unexplored. The method presented in this paper
addresses the problem of rapidly outlining various
merge alternatives, i.e., exploring how modules could
be reused across existing systems to enable an
evolutionary merge. The method makes visible various
merge alternatives and enables reasoning about the
resulting functionality of the merged system as well as
about the quality attributes of interest (including both
development time and runtime qualities).

The method consists of a formal model with a
loosely defined heuristics-based process on top. The
goal has been to keep the underlying model as simple
as possible while being powerful enough to capture the
events of a real industrial case. One of the main drivers
during its development has been simplicity, envisioned
to be used as a decision support tool at a meeting early
in the integration process, with architects of the
existing systems. As such, it allows rapid exploration
of multiple scenarios in parallel. We have chosen the
simplest possible representation of structure, the
module view. For simplicity, the method in its current
version mandates that the systems have identical
structures. This assumption we have shown is not
unreasonable but can also be worked around for minor
discrepancies. The method is designed so that stepwise
deliveries of the existing systems are made, sharing
more and more modules, to enable a true evolutionary
merge.

Assisted by a tool, it would be possible to
conveniently record information concerning all
decisions made during the exploration, for later
processing and presentation, thus giving an advantage
over only paper and pen. We are implementing such a
tool, which already exist as a prototype [11]. It
displays the graphs of the systems, allows user-
friendly operations, highlights inconsistencies with
colors, and is highly interactive to support the
explorative process suggested. The information
collected, in the form of short text descriptions and
effort estimations, enables reasoning about subsequent
implementation activities. For example, how much
effort is the minimum for a first delivery where some
module is shared? What parts of a stepwise delivery
are only intermediate, and how much effort is thus
wasted in the long term?

There are several directions for extending the
method: First, understanding and bridging differences
in existing data models and technology frameworks of
the existing systems is crucial for success and should
be part of a merge method. Second, the model could be
extended to allow a certain amount of structural

differences between systems. Third, the module view
is intended to reveal only static dependencies, but
other types of relationships are arguably important to
consider in reality. Therefore, we intend to investigate
how the method can be extended to include more
powerful languages, including e.g., different
dependency types and different adaptation types, and
extended also to other views.

6.1 Acknowledgements
We would like to thank all interviewees and their
organization for sharing their experiences and allowing
us to publish them. Also thanks to Laurens Blankers
for previous collaboration that has led to the present
paper, and for our discussions on architectural
compatibility.

7. References
 [1] Berzins V., “Software merge: semantics of

combining changes to programs”, In ACM
Transactions on Programming Languages and
Systems (TOPLAS), volume 16, issue 6, pp.
1875-1903, 1994.

 [2] Buschmann F., Meunier R., Rohnert H.,
Sommerlad P., and Stal M., Pattern-Oriented
Software Architecture - A System of Patterns,
ISBN 0-471-95869-7, John Wiley & Sons,
1996.

 [3] Clements P., Bachmann F., Bass L., Garlan D.,
Ivers J., Little R., Nord R., and Stafford J.,
Documenting Software Architectures: Views
and Beyond, ISBN 0-201-70372-6, Addison-
Wesley, 2002.

 [4] Garlan D., Allen R., and Ockerbloom J.,
“Architectural Mismatch: Why Reuse is so
Hard”, In IEEE Software, volume 12, issue 6,
pp. 17-26, 1995.

 [5] Hofmeister C., Nord R., and Soni D., Applied
Software Architecture, ISBN 0-201-32571-3,
Addison-Wesley, 2000.

 [6] IEEE Architecture Working Group, IEEE
Recommended Practice for Architectural
Description of Software-Intensive Systems,
IEEE Std 1471-2000, IEEE, 2000.

 [7] Karlsson E.-A., Software Reuse : A Holistic
Approach, Wiley Series in Software Based
Systems, ISBN 0 471 95819 0, John Wiley &
Sons Ltd., 1995.

 [8] Kruchten P., “The 4+1 View Model of
Architecture”, In IEEE Software, volume 12,
issue 6, pp. 42-50, 1995.

 [9] Land R., Interviews on Software Systems
Merge, MRTC report, Mälardalen Real-Time
Research Centre, Mälardalen University, 2006.

22

 [10] Land R. and Crnkovic I., “Software Systems In-
House Integration: Architecture, Process
Practices and Strategy Selection”, In
Information & Software Technology, Accepted
for publication, 2006.

 [11] Land R. and Lakotic M., “A Tool for Exploring
Software Systems Merge Alternatives”, In
Proceedings of International ERCIM Workshop
on Software Evolution , 2006.

 [12] Mens T., “A state-of-the-art survey on software
merging”, In IEEE Transactions on Software
Engineering, volume 28, issue 5, pp. 449-462,
2002.

 [13] Meyers C. and Oberndorf P., Managing
Software Acquisition: Open Systems and COTS
Products, ISBN 0201704544, Addison-Wesley,
2001.

 [14] Parnas D. L., “Designing Software for Ease of
Extension and Contraction”, In IEEE
Transaction on Software Engineering, volume
SE-5, issue 2, pp. 128-138, 1979.

 [15] Ruh W. A., Maginnis F. X., and Brown W. J.,
Enterprise Application Integration, A Wiley
Tech Brief, ISBN 0471376418, John Wiley &
Sons, 2000.

 [16] Wallnau K. C., Hissam S. A., and Seacord R.
C., Building Systems from Commercial
Components, ISBN 0-201-70064-6, Addison-
Wesley, 2001.

 [17] Yin R. K., Case Study Research : Design and
Methods (3rd edition), ISBN 0-7619-2553-8,
Sage Publications, 2003.

23

Using Architectural Decisions
Jan S. van der Ven, Anton Jansen, Paris Avgeriou, and Dieter K. Hammer

University of Groningen, Department of Mathematics and Computing Science,
PO Box 800, 9700AV Groningen, The Netherlands,

[salvador|anton|paris|dieter]@cs.rug.nl,
WWW home page:http://search.cs.rug.nl

Abstract— There are increasing demands for the explicit rep-
resentation and subsequent sharing and usage of architectural
decisions in the software architecting process. However, there is
little known on how to use these architectural decisions, or what
type of stakeholders need to use them. This paper presents a
use case model that arose from industrial needs, and is meant to
explore how these needs can be satisfied through the effective
usage of architectural decisions by the relevant stakeholders.
The use cases are currently being validated in practice through
industrial case studies. As a result of this validation, we argue
that the usage of architectural decisions by the corresponding
stakeholders can enhance the quality of software architecture.

I. I NTRODUCTION

One of the proposed ways to advance the quality of software
architecture is the treatment of architectural decisions [1], [2],
[3], [4] as first-class entities and their explicit representation
in the architectural documentation. From this point of view,
a software system’s architecture is no longer perceived as
interacting components and connectors, but rather as a set of
architectural decisions [5]. The main reason that this paradigm
shift improves the quality of software architecture is that it
reducesArchitectural Knowledge Vaporization[1], [5]. It is
presently not possible to completely eliminate vaporization,
as the result still depends on the judgment and the chosen
tradeoffs that the architect makes.

Architectural knowledge vaporizes because most of the
architectural decisions, which are the most significant form of
architectural knowledge [6], are lost during the development
and evolution cycles. This is due to the fact that architectural
decisions are neither documented in the architectural docu-
ment, nor can they be explicitly derived from the architectural
models. They merely exist in the form of tacit knowledge
in the heads of architects or other stakeholders, and thus
inevitably dissipate. The only way to resolve this problem is
to grant architectural decisions first-class status and properly
integrate them within the discipline of software architecture.

Although the domain of architectural decisions is receiving
increasing attention by the software architecture community,
there is little guidance as to how architectural decisions can be
used during both architecting and in the general development
process. In fact, in order to give architectural decisions first-
class status there should be a systematic approach that can
support their explicit documentation and usage by the architect
and the rest of the stakeholders. We believe that it is too
early at this stage to introduce methods or processes, and
even more so supporting systems for creating and subsequently

using architectural decisions. We argue that, first, we need to
understand the complex nature of architectural decisions, and
their role in the software development process and within an
organization.

To achieve this goal, we present in this paper a use case
model, that elaborates on two important issues: first, which
are the stakeholders that need to use architectural decisions;
second, how can the decisions be used by the relevant
stakeholders. We have worked with industrial partners to
understand the exact problems they face with respect to loss of
architectural decisions. We have thus compiled a wish list from
practitioners on the use of architectural decisions. Furthermore
we have combined this wishlist with what we consider as the
ideal requirements for a system that supports the usage of
architectural decisions. We have thus followed both a bottom-
down and a top-down approach and finally merged them into
a use case model that represents real and ideal industrial
needs for effective usage of architectural decisions. Finally,
we validated this use case model in practice, by applying it at
the industrial partners in small case studies.

The idea of a use case model for using architecture knowl-
edge was introduced in [2], which forms the foundation work
for our paper. This idea is further elaborated in [7]. It discusses
the concept of architectural knowledge, from an ontological
perspective, and typical usages of architectural knowledge in
a broad context.

The rest of the paper is structured as follows: in Section 2
we give an overview of how our industrial partners defined the
needs for using and sharing architectural decisions. Section 3
presents the use case model, including the actors and system
boundary. The ongoing validation of the use cases is conducted
in Section 4. Section 5 discusses related work in this field and
Section 6 sums up with conclusions and future work.

II. FROM INDUSTRIAL NEEDS TOUSE CASES

The use cases that are described in the rest of the paper refer
to a potential system that would support the management of
architectural decisions. To the best of our knowledge, there
is no such system implemented yet. We envision this system
as a Knowledge Grid [8]: “an intelligent and sustainable
interconnection environment that enables people and machines
to effectively capture, publish, share and manage knowledge
resources”.

Before pinpointing the specific requirements for a knowl-
edge grid in the next sections, it is useful to consider the more

24

generic requirements by combining the areas of knowledge
grids and architectural decisions. First, this system should
support the effective collaboration of teams, problem solv-
ing, and decision making. It should also use ontologies to
represent the complex nature of architectural decisions, as
well as their dense inter-dependencies. Furthermore, it must
effectively visualize architectural decisions and their relations
from a number of different viewpoints, depending on the
stakeholders’ concerns. Finally, it must be integrated with the
tools used by architects, as it must connect the architectural
decisions to documents written in the various tools or design
environments, and thus provide traceability between them.

We are currently participating in the Griffin project [9] that
is working on tools, techniques and methods that will perform
the various tasks needed for building this knowledge grid.
Until now, the project has produced two main results: a use
case model, and a domain model. The domain model describes
the basic concepts for storing, sharing, and using architectural
decisions and the relationships between those concepts [10].
The use case model describes the required usages of the
envisioned knowledge grid. The use cases are expressed in
terms of the domain model, in order to establish a direct link
between the concepts relevant to architectural decisions (the
domain model), and how the architectural decisions should be
used (use cases). The focus in this paper is on the use case
model.

Four different industrial partners participate in the Griffin
project. They are all facing challenges associated to architec-
tural knowledge vaporization. Although the companies are of
different nature, they all are involved in constructing large
software-intensive systems. They consider software architec-
ture of paramount importance to their projects, and they all
use highly sophisticated techniques for maintaining, sharing
and assessing software architectures. Still, some challenges
remain.

We conducted qualitative interviews with 14 employees of
these industrial partners. Our goal was to analyze the prob-
lems they faced concerning sharing architectural knowledge,
and to identify possible solutions to these problems. People
with different roles were interviewed: architects (SA), project
managers (PM), architecture reviewers (AR), and software
engineers (SE). A questionaire (see the appendix at the end of
this paper) was used to streamline and direct the interviews.
The questionaire was not directly shown to the employees, but
used as a starting point and checklist for the interviewers.

The results from the interviews were wrapped up in in-
terview reports that described the current challenges and
envisioned solutions by these companies. The interview reports
contained some needs from the interviewees, which included:

1) Find relevant information in large architectural descrip-
tions (SA, PM, AR).

2) Add architectural decisions, relate them to other archi-
tectural knowledge like architectural documentation, or
requirement documentation (SA, PM).

3) Search architectural decisions and the underlying reasons,
construct (multiple) views where the decisions are repre-

sented (SA, PM, AR).
4) Identify what knowledge should minimally be made

available to let developers work effectively (SA).
5) Identify the changes in architectural documentation (PM).
6) Identify what architectural decisions have been made in

the past, to avoid re-doing the decision process. This
include identifying what alternatives were evaluated and
the issues that played some critical role at that time (SA,
PM, AR, SE).

7) Reuse architectural decisions (SA, PM, SE).
8) Keep architecture up-to-date during development and

evolution (SA, PM).
9) Get an overview of the architecture (SA, PM, AR).

The interview reports and the needs stated in these reports
form the starting point for constructing the use cases. Except
for this bottom-up approach we also followed a top-down
approach: we thought about the ideal usages of a system that
supports the usage of architectural knowledge. This was neces-
sary as most of the interviewees had a rather implicit and vague
notion of architectural decisions and had not thought of using
architectural decisions, represented as first-class entities. Both
real needs from the interviewees and ideal needs proposed
by the research group were merged into a use case model
presented in the next section.

III. T HE USE CASE MODEL

This section elaborates on a set of use cases that roughly
define the requirements for a potential knowledge grid. First,
we describe the actors of the knowledge grid, starting from
the roles of our interviewees. After this, the primary actor
and the scope are discussed. To understand the dependencies
between the use cases a use case model consisting of 27
use cases, including the relations, is presented in figure 1.
Besides presenting the dependencies among the use cases,
the figure also relates the use cases to the identified needs
described in the previous section. Note that this is not a one-
to-one mapping; some needs resulted in multiple use cases and
few use cases do not originate from needs but from ‘ideal’
requirements.

A. Actors

We identified the following actors being relevant for the use
cases, based on the roles of the interviewees.

• Architect.Architects should be able to create and manage
an architecture, and get an overview of the status of the
architecture. This results in demands for views that show
the coverage of requirements or describe the consistency
of the design. Also, the architect is responsible for pro-
viding stakeholders with sufficient information, to ensure
that their concerns are met in the architecture design.

• Architecture Reviewer.Architecture reviewers are often
interested in a specific view on the architecture. They can
be colleagues, experts from a certain field, or reviewers
from an external organization. They want to understand
the architecture quickly and want to identify potential pit-
falls in the architecture, like poorly founded architectural

25

Knowledge Grid

17

Project
Manager

Architecture
Reviewer

Architect

Maintainer

All

Summary User-Goal Subfunction

2

16

4

5

26

14

24

25

1

6

9

11

15

21

23

10

12

18

19

22

20

13

8

3

7
27

Legend

X

Use case X Actor Includes
relationship

Use Case Titles

1. Check implementation against architectural
 decisions (need 8)
2. Identify the subversive stakeholder (need 3)
3. Identify key architectural decisions for a specific
 stakeholder (need 1,9)
4. Perform a review for a specific concern (need 3)
5. Check correctness (need 8, 9)
6. Identify affected stakeholders on change
 (need 3)
7. Identify unresolved concerns for a specific
 stakeholder (need 9)
8. Keep up-to-date (need 5)
9. Inform affected stakeholders (need 5)
10. Retrieve an architectural decision (need 6)
11. View the change of the architectural decisions
 over time (need 5)
12. Add an architectural decision (need 2)
13. Remove consequences of a cancelled
 architectural decision (need 8)
14. Reuse architectural decisions (need 14)
15. Recover architectural decisions (need 6, 7)
16. Perform incremental architectural review
 (need 1, 9)
17. Assess design maturity (need 1)
18. Evaluate impact of an architectural decision
19. Evaluate consistency (need 1)
20. Identify incompleteness (need 1)
21. Conduct a risk analysis
22. Detect patterns of architectural decision
 dependencies
23. Check for superfluous architectural decisions
24. Cleanup the architecture
25. Conduct a trade-off analysis (need 3)
26. Identify important architectural drivers (need 3)
27. Get consequences of an architectural decision
 (need 3, 6)

Fig. 1. Use case diagram
26

decisions, architectural incompleteness, or architectural
inconsistency.

• Project Manager.The concerns of the project manager
are usually driven by the planning; what is the status of
the architecture, are there potential upcoming problems
or risks, and how can we address them? The project
manager also addresses people-related issues, e.g. which
stakeholder is the biggest risk for the architecture?

• Developer.The primary concern of the developer is that
the architecture should provide sufficient information
for implementing the system. The descriptions must be
unambiguous. Also, the developer must know where to
look for the necessary knowledge; this can be in the
architectural documentation, or by knowing which person
to contact.

• Maintainer. The maintainer is often ignored as a stake-
holder of an architecture. However, the maintainer is one
of the most important actors when the architecture has
to evolve. The maintainer has interest in the evolution
of the architecture (up-to date information), and the
consequences of changes in the architecture.

We encountered that the different companies used different
terms for the roles they have in the software development
process. The list of actors presented above is an abstraction
of those different roles.

B. Describing the use cases

We present the use cases, as mandated in [11], using the
following elements:

• Scope.All the use cases are defined as an interaction on
a knowledge grid type of system (see section 2.1). From
the use case model perspective, this system is considered
a black-box system.

• Goal level. The descriptions from the interviews were
very diverse in detail. As a consequence, some use cases
describe a single interaction on the system (e.g. add
an architectural decision), while others are very high-
level demands of the system (e.g. perform an incremental
architectural review). We adopted three goal levels from
[11] of a decreasing abstraction: Summary, User-goal and
Subfunction, for describing this difference. A Summary
goal use case can involve multiple User-goals use cases,
and often have a longer time span (hours, days). A
User-goal use case involves a primary actor using the
system (in Business Process Management often called
elementary business process), often in one session of
using the system. Subfunction use cases are required to
carry out User-goal use cases. They typically represent
an elementary action on the system, which is used by
multiple User-goal use cases.

• Primary actor.The list of actors described in section III-
A are used to determine the primary actor for a specific
use case. Sometimes, a use case can be performed by all
actors (e.g. identify key architectural decisions). In these
cases, the term All is used as a substitute for the primary
actor. In other cases, when the type of actor affects the

use case, the most suitable actor was selected as primary
actor, and the others were left out.

• Main success scenario and steps.First, a short description
of the use case was constructed. From this, a set of steps
was defined, describing the main success scenario. Due to
space constraints, this is not shown for all the use cases.
In the next section, four use cases are described in detail.

• Includes relationships.The “include” relationships be-
tween the use cases are based on the steps defined for
these use cases. This relationship expresses that a use case
contains behavior defined in another use case, as defined
in UML 2.0 [12]. When a use case includes another use
case with a different primary actor, this typically means
that the first actor will ask the second actor to perform the
specified use case. For example, in use case 2 (Identify
the subversive stakeholder), the project manager will ask
the architect to conduct a risk analysis (use case 21). Off
course one person can also have multiple roles, and thus
perform as the primary actor in both use cases.

Figure 1 presents the characteristics (Primary actor, goal
level, and name) of the use case model, which consists
of 27 use cases. Note that to enhance the readability, the
uses relationship (between the actor and the use case) is
not visualized with arrows, but by horizontal alignment. For
example, the architecture reviewer acts as a primary actor for
use cases 16, 4, 26, and 5. The use cases are vertically divided
in the three goal levels: Summary, User-goal and Subfunction.
For example, use case 16 is a Summary use-case and use case
4 an User-goal.

IV. U SE CASE VALIDATION

A use case model like the one presented in section III
can not be directly validated in a formal, mathematical sense.
Instead, the use cases need to be applied in practice and their
effect on the development process should be evaluated. How-
ever, before the use cases can be applied, the use cases need
further refinement to become usefull. In this validation section,
we present these refinements, demonstrate the relevance of the
use cases in an industrial setting, and present the improvement
these use-cases have made on the development process.

Currently, the Griffin project is involved in conducting case
studies at our industrial partners to validate the use cases.
In this section we briefly present the Astron Foundation case
study. Astron is currently engaged in the development of the
LOw Frequency ARray (LOFAR) for radio astronomy [13].
LOFAR pioneers the next generation of radio telescope and
will be the most sensitive radio observatory in the world.
It uses many inexpensive antennas combined with software,
instead of huge parabolic dishes, to observe the sky. This
makes LOFAR a software intensive telescope. LOFAR will
consists of around 15.000 antenna’s distributed over 77 differ-
ent stations. Each antenna will generate around 2 Gbps of raw
data. The challenge for LOFAR is to communicate and process
the resulting 30Tbps data stream in real-time for interested
scientists.

27

In the LOFAR system, architectural decisions need to be
shared and used over a time span of over 25 years. This is
due to the long development time (more then 10 years), and
a required operational lifetime of at least 15 years. Astron is
judged by external reviewers on the quality of the architecture.
The outcome of these reviews influences the funding, and
consequently the continuation of the project. Therefore, it is
evident that the architecture has to hold high quality standards.

Together with Astron, we identified eight use cases being of
primary concern for the LOFAR case study: 5, 7, 10, 12, 15,
17, 19, and 20. This section focuses on assessing the design
maturity, which is a major concern for Astron. Assessing the
design maturity is a specialization of the earlier identified need
for getting an overview of the architecture (see section II, need
9). The following use-cases are relevant with regard to this
assessment:

• Asses design maturity (UC 17, see figure 2)
• Identify incompleteness (UC 20, see figure 3)
• Check correctness (UC 5, see figure 4)
• Evaluate consistency (UC 19, see figure 5)
Of these four use cases, use case 17 is the onlySummary

level use case (see figure 1). Use cases 5, 19, and 20 are
used by this use case. In the remainder of this section, these
use cases are presented in more detail. For each use case, the
following is presented: the relevance to Astron, the current
practice at Astron, a more elaborate description of the use
case, and the envisioned concrete realization within Astron.

The elaborated use case descriptions make use of the
concept ofknowledge entity. All the domain concepts defined
within the knowledge grid are assumed as being knowledge
entities. For this case study, this includes among others:
architectural decisions, rationales, decision topics, alternatives,
requirements, specifications, assumptions, rules, constraints,
risks, artifacts, and the relationships among them.

A. UC 17: Assess design maturity

RelevanceThe design maturity is an important part of the
quality of the LOFAR architecture. LOFAR is constructed
using cutting edge technology to enquire maximum perfor-
mance. However, due to the long development time, these
cutting edge technologies are typically emerging when the
initial architecture design is being made. So, the architecture
has to be made with components that do not yet exist. It is
therefore hard for Astron to make a judgment whether the
architecture is sufficiently matured to start actual construction.
Current Practice Within the LOFAR case study, the design
maturity is first assessed for the various subsystems by each
responsible architect. For each subsystem the main issues with
regard to incompleteness, correctness, and consistency are
reported. Based on these reports, the opinions of the architects
and project management it is decided whether the system is
mature enough to be proposed to the external reviewers to
proceed to the next project phase.
Use case realizationThe design maturity use case is presented
in figure 2. This use case consists of three other use cases that
in turn are used to check the architecture for completeness,

UC 17: Assess design maturity

Description: This use case verifies whether a system con-
forming to the architecture can be made or bought. The archi-
tect wants to know when the architecture can be considered
as finished, complete, and consistent.
Primary actor: Project Manager.
Scope: Knowledge grid
Level: Summary.
Precondition: None.
Postcondition: The knowledge grid provides an overview
of the matureness, and reports potential risks.
Main success scenario:

1) Identify incompleteness (UC 20)
2) Check correctness (UC 5)
3) Evaluate consistency (UC 19)
4) The grid generates a report based on the knowledge of the

previous steps

Extensions: None

Fig. 2. Use case 17

correctness, and consistency. These use cases are presented in
the remainder of this section.

B. Use Case 20: Identify incompleteness

RelevanceUse case 20 determines whether the architecture
covers all (essential) requirements. For Astron this is relevant
from a management perspective; incompleteness gives pointers
to directions where additional effort should be concentrated.
Current practice Astron checks for the completeness of the
architecture description by peer review and risk assessment.
The peer review is done iteratively; fellow architects give
feedback (among others) on the completeness of the archi-
tectural descriptions. A risk assessment is performed before
every external review. The result of this process, a risk matrix,
is used for the next iteration of the architectural description.
During the design phase, the architect signifies specific points
of incompleteness, typically by putting keywords like ‘tbd’
(to be determined), or ‘tbw’ (to be written) in the architecture
documents.

For example, in the central processor, the signals of the
antenna’s should be correlated with each other. Therefore, the
signals of all the stations should be routed all-to-all. However,
the architectural decision on what network topology to use
for this task is still incomplete, as some alternatives have
been evaluated, but no suitable (cost-effective) solution can
be selected so far.
Use case realizationThe general use case is described in
figure 3. For Astron this is realized by the following:

Risks Currently, the relationships between the identified
risks (for example in the risk matrix) and the design (in
the architectural documentation) are not explicitly clear. The
knowledge grid allows the architect to relate risks to particular
parts of the design and to architectural decisions. This use case
enables the architect topartially check the completeness of

28

Use Case 20: Identify incompleteness

Description: In this use case, the system provides a report
about the structure of the architectural decisions.
Primary actor: Architect.
Scope: Knowledge grid
Level: User-goal.
Precondition: The user is known within the knowledge grid.
Postcondition: The knowledge provides an overview of the
incomplete knowledge entities.
Main success scenario:

1) The architect selects a part of the architecture.
2) The knowledge grid identifies the knowledge entities in

the part.
3) The grid reports about the incompleteness of these knowl-

edge entities.

Extensions: None

Fig. 3. Use case 20

the mitigation of risks, as every risk should be addressed by
at least one architectural decision. Whether the risk is actually
addressed by the decision, is checked by UC 5, presented in
the next subsection.

RequirementsAs an example of inconsistency indicators
every requirement should lead to one or more (mostly non-
formal, usually textual) specifications. It can thus be automat-
ically determined which requirements are not covered by any
specifications.

VisualizationPossibilities of visualization for incomplete-
ness can be visualized by a “to-do” list of open decision
topics, or visual indicators in the documentation (e.g. icons,
or coloring of text pieces).

C. Use Case 5: Check correctness

RelevanceBesides completeness, it is also important to know
whether the architectural decisions actually address the re-
quirements. In this sense, correctness is complimentary to
completeness. For example, completeness only means that
there exist decisions taken with respect to all requirements,
while correctness means that these decisions actually lead
to a solution that meets these requirements. Astron spends
considerable effort in verifying the correctness of the design.
Prototypes of major hardware and software components are
made and evaluated. Simulations and models are used as well.
For example, to deal with the major concern of the enormous
amounts data to be processed, Astron has developed an elab-
orate performance model. This model allows the architects
to simulate and validate the correctness of many different
concepts for distributed data processing.
Current practice Similar to the check for completeness, peer
reviews are used to verify the correctness of the design descrip-
tion. Domain experts verify the design description created by
the architect. Based on this feedback, the architect adapts the
design description. Doubts about the correctness of parts of
the design are typically annotated with the key word ‘tbc’ (to

Use Case 5: Check correctness

Description: In this use case, the knowledge grid supports
the user in validating the correctness of the architectural
decisions addressing the requirements.
Primary actor: Architect.
Scope: Knowledge grid
Level: Subfunction.
Precondition: The knowledge grid contains incompleteness
information of the design.
Postcondition: The knowledge grid contains markings
about the correctness; An overview of incorrect knowledge
entities is provided.
Main success scenario:

1) The architect selects a set of requirements in the knowl-
edge grid.

2) The knowledge grid provides a list of related architec-
tural decisions and other related knowledge entities (e.g.
assumptions, rules, constraints).

3) The architect evaluates related elements and marks the
incorrect elements.

4) The architect continues with the next requirement.
5) The knowledge grid provides an overview of incorrect

architectural decisions and requirements.

Extensions:
3a. The elements are correct, the architect marks them as
such.

Fig. 4. Use case 5

be confirmed) or placed in a separate open issue sections. If
there is any doubt about theway in which the correctness is
verified, keywords like ‘under discussion’ are typically used
in the architectural documentation.

For example, there has been an incorrect assessment of
the distributed behavior of the used calibration algorithm. It
was expected that each node used 80% local data, and that
for the remaining 20% all the data on the other nodes was
needed. Based on this assessment the architectural decision
was made to use a distributed database grid. However, during
performance tests it turned out that for this 20% the data of
only one or two other nodes was needed, instead ofall the
other nodes. Consequently, the architectural decision turned
out to be wrong, as the architectural decision for a centralized
database is a significant better alternative. In retrospect, ver-
ification of the architectural decision by the correct domain
expert could have prevented this situation from arising in the
first place.
Use Case realizationThe knowledge grid itself cannot de-
termine the correctness of the architectural decisions without
in-depth semantic knowledge of the underlying architectural
models. Therefore, this use case makes provision for assisting
the architect in determining the correctness of the design,
rather than that the knowledge grid determines the correctness
itself.

29

RequirementsFor each requirement or risk, the architect
needs to find out whether the involved architectural decisions
correctly address the requirement or risk. This use case de-
scribes how this process can be supported.

VisualizeThe visualization of the incompleteness can sub-
sequently be used to visualize incorrect elements. However,
since the checking of correctness is mostly manual job for
the architect, the results may vary when different people are
checking the correctness. Integration of this information is then
needed.

D. Use Case 19: Evaluate consistency

RelevanceThis use case is concerned with the consistency
between the architectural decisions themselves. As the LOFAR
project consists of many components that are developed in
parallel, detecting contradictions is important, as this provides
an early warning for mistakes in the overall design. Inconsis-
tencies make the design of the system harder to understand
and create problems during the realization of the system.
Current practice Checking for inconsistencies in textual
descriptions is largely a manual job. The part of the design that
is modeled (e.g. in the performance models) can automatically
be checked for inconsistencies. However, they only cover a
very small part of the overall design, and therefore a small
part of the architectural decisions. Most of the inconsistencies
are found by inspection, either by the architect or reviewer.

For example, there has been an inconsistency in LOFAR
between the protocol used by the central processor (the cor-
relator of the radio signals) and the stations (the locations
where the antenna’s are residing). Although large efforts have
been put in a consistent definition of the data packet header,
versioning etc., the used definition of how to interpret the
subband data turned out to be inconsistent. For the station a
subband was defined starting with the lowest frequency leading
to the highest frequency of the subband, while for the central
processor it was defined the other way around.
Use case realizationThe architect is supported with rel-
evant context information in the decision making process.
For Astron, this will include the visualization of relevant
requirements, and closely related architectural decisions and
specifications. Techniques similar to the work of [14] could be
used for this. Furthermore, once an inconsistency is detected,
the architect is supported with a visualization of the relevant
architectural decisions. This allows the architect not only to
confirm an inconsistency, but also to detect its cause and
consequently resolve it.

V. RELATED WORK

Software architecture design methods [15], [16] focus on
describing how sound architectural decisions can be made.
Architecture assessment methods, like ATAM [15], assess the
quality attributes of a software architecture. The use cases pre-
sented in this paper describe some assessment scenarios that
could be reused from these design and assessment methods.

Software documentation approaches [17], [18] provide
guidelines for the documentation of software architectures.

Use Case 19: Evaluate consistency

Description: In this use case, the knowledge grid supports
the user in detecting inconsistencies in the architecture
design.
Primary actor: Architect.
Scope: Knowledge grid.
Level: User-goal.
Precondition: The user is known within the knowledge grid.
Postcondition: The knowledge grid contains markings
about the consistency; An overview of inconsistent knowl-
edge entities is provided.
Main success scenario:

1) The architect selects a subset of architectural knowledge
in the grid.

2) Architect selects a specific knowledge entity or a part of
the design, and asks the knowledge grid for consistency
assistance.

3) The knowledge grid provides a list of related (and poten-
tially inconsistent) knowledge entities.

4) The architect marks the inconsistent knowledge entities.
5) The architect repeats steps 3 and 4 for the remaining

knowledge entities.
6) The knowledge grid provides an overview of inconsistent

knowledge.

Extensions:
4a. The knowledge entities are consistent, the architect marks
them as such.

Fig. 5. Use case 19

However, these approaches do not explicitly capture the way
to take architectural decisions and the rationale behind those
decisions. The presented use cases describe how stakeholders
would like work with this knowledge.

Architectural Description Languages (ADLs) [19] do not
capture the decisions making process in software architecting
either. An exception is formed by the architectural change
management tool Mae [20], which tracks changes of elements
in an architectural model using a revision management sys-
tem. However, this approach lacks the notion of architectural
decisions and does not capture the considered alternatives or
rationales, something the knowledge grid does.

Architectural styles and patterns [21], [22] describe common
(collections of) architectural decisions, with known benefits
and drawbacks. Tactics [15] are similar, as they provide
clues and hints about what kind of techniques can help in
certain situations. Use case 22 (Detect patterns of architectural
decision dependencies), can be used to find these kinds of
decisions.

Currently, there is more attention in the software archi-
tecture community for the decisions behind the architectural
model. Tyree and Akerman [3] provide a first approach on doc-
umenting design decisions for software architectures. Concepts
and guidelines for explicit representations of architectural
decisions can be found in the work of Babar et al. [23] and

30

our own work [5], [6]. Closely related to this is the work of
Lago and van Vliet [24]. They model assumptions on which
architectural decisions are often based, but not the architectural
decisions themselves. Kruchten et al. [2], stress the importance
of architectural decisions, and show classifications of archi-
tectural decisions and the relationship between them. They
define some rough outlines for the use cases for describing
how to use architectural knowledge. Furthermore, they provide
an ontology based visualization of the knowledge in the grid.
We emphasize more on the explicit modeling of the use cases
and are validating a set of extended use cases in the context
of a case study.

Integration of rationale and design is done in the field
of design rationale. SEURAT [25] maintains rationales in a
RationaleExplorer, which is loosely coupled to the source
code. These rationales have been transferred to the design tool,
to let the rationales of the architecture and implementation
level be maintained correctly. DRPG [26] couples rationale
of well-known design patterns with elements in a Java im-
plementation. Just like SEURAT, DRPG also depends on the
fact that the rationale of the design patterns is added to the
system in advance. The importance of having support for
design rationales was emphasized by the survey conducted by
Tang et al. [4]. The results emphasized the current lack of good
tool support for managing design rationales. The use cases
presented in this paper are an excellent start for requirements
for such tools.

From the knowledge management perspective, a web based
tool for managing architectural knowledge is presented in [23].
This approach uses tasks to describe the use of architectural
knowledge. These tasks are much more abstract then the use
cases defined in this paper (e.g. architectural knowledge use,
architectural knowledge distribution).

Finally, another relevant approach is the investigation of
the traceability from the architecture to the requirements
[27]. Wang uses Concern Traceability maps to reengineer the
relationships between the requirements, and to identify the root
causes. The results from such systems could be valuable input
for defining the relationships between knowledge entities, as
used in our validation.

VI. CONCLUSIONS ANDFUTURE WORK

In order to upgrade the status of architectural decisions, we
must first understand how they can be shared and used by a
software development organization. For this purpose, we have
proposed a use case model that came out of industrial needs
and aims to fill specific gaps and in particular to alleviate the
dissipation of architectural decisions. This use case model is
considered as the black-box view of a knowledge grid type
of system that is envisioned to enrich the architecting process
with architectural decisions.

A reasonable question to reflect upon is: how exactly was
the software architecture quality enhanced by the use case
model proposed in this paper? Although pinpointing what
exactly constitutes the quality of software architecture per se
is a difficult issue, we can identify five arguments in this case:

• Less expensive system evolution. As the systems need
to change in order to deal with new requirements, new
architectural decisions need to be taken. Adding, remov-
ing and modifying architectural decisions can be based
on the documentation of existing architectural decisions
that reflect the original intent of the architects. Moreover,
architects may be less tempted to violate or override exist-
ing decisions, and they cannot neglect to remove them.
In other words the architectural decisions are enforced
during evolution and the problem ofarchitectural erosion
[28] is reduced.

• Enhanced stakeholder communication. The stakehold-
ers come from different backgrounds and have different
concerns that the architecture document must address.
Architectural decisions may serve the role of explaining
the rationale behind the architecture to all stakeholders.
Furthermore, the explicit documentation of architectural
decisions makes it more effective to share them among
the stakeholders, and subsequently perform tradeoffs,
resolve conflicts, and set common goals.

• Improved intrinsic characteristics of the architec-
ture. These concern attributes of the architecture, such
as conceptual integrity, correctness, completeness and
buildability [15]. Architectural decisions can support the
development team to upgrade such attributes, because
they give more complete knowledge, they provide a
clearer and bigger picture. In other words, architectural
decisions provide much richer input to the formal (or
less formal) methods that will be used to evaluate these
attributes.

• Extended architectural reusability. Reuse of architec-
tural artifacts, such as components and connectors, can
be more effectively performed when the architectural
decisions are explicitly documented in the architecture.
To reuse architectural artifacts, we need to know why
they were chosen, what their alternatives were, and what
benefits and liabilities they bring about. Such kind of
reusability prevents the architects from re-making past
mistakes or making new mistakes. Finally architectural
decisions per se, can and should be reused, probably after
slight modifications.

• Extended traceability between requirements and ar-
chitectural models. Architectural decisions realize re-
quirements (or stakeholders’ concerns) on the one hand,
and result in architectural models on the other hand.
Therefore, architectural decisions are the missing link be-
tween requirements and architectural models and provide
a two-way traceability between them [6]. The architect
and other stakeholders can thus reason which require-
ments are satisfied by a specific part of the system, and
vice-versa, which part of the system realizes specific
requirements.

We are currently trying to validate the use case model in
four industrial case studies to better understand the pragmatic
industrial needs and make the use case model as relevant and

31

effective as possible. After this validation, we plan to perform
a second iteration of validation interviews with the original
interviewees from the first iteration, as well as more stake-
holders with different roles, in order to fully cover the most
significant roles. Furthermore external architects will also be
asked to validate the use case model. In the meantime we have
already attempted to implement parts of the knowledge grid in
the form of tool support, which is used in the aforementioned
case study of the Astron Foundation.

ACKNOWLEDGEMENTS

This research has partially been sponsored by the Dutch
Joint Academic and Commercial Quality Research & Devel-
opment (Jacquard) program on Software Engineering Research
via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN
about architectural knowledge.

REFERENCES

[1] J. Bosch, “Software architecture: The next step,” inSoftware Architec-
ture, First European Workshop (EWSA), ser. LNCS, vol. 3047. Springer,
May 2004, pp. 194–199.

[2] P. Kruchten, P. Lago, H. van Vliet, and T. Wolf, “Building up and
exploiting architectural knowledge,” inWICSA 5, November 2005.

[3] J. Tyree and A. Akerman, “Architecture decisions: Demystifying archite-
cure,” IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[4] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of the use
and documentation of architecture design rationale,” inProceedings of
WICSA 5, November 2005.

[5] A. G. J. Jansen and J. Bosch, “Software architecture as a set of
architectural design decisions,” inProceedings of WICSA 5, November
2005, pp. 109–119.

[6] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis, and J. Bosch,
“Design decisions: The bridge between rationale and architecture,” in
Rationale Management in Software Engineering, A. H. D. et al., Ed.
Springer-Verlag, march 2006, ch. 16, pp. 329–348.

[7] P. Kruchten, P. Lago, and H. van Vliet, “Building up and reasoning about
architectural knowledge,” inProceedings of the Second International
Conference on the Quality if Software Architectures (QoSA 2006), June
2006.

[8] H. Zhuge,The Knowledge Grid. World Scientific Publishing Company,
2004.

[9] Griffin project website, http://griffin.cs.vu.nl.
[10] R. Farenhorst, R. C. de Boer, R. Deckers, P. Lago, and H. van Vliet,

“What’s in a domain model for sharing architectural knowledge?” in
Proceedings of the 18th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE2006), July 2006.

[11] A. Cockburn,Writing Effective Use Cases. Addison Wesley, 2001.
[12] The Unified Modeling Language (UML) website, http://www.uml.org/.
[13] Lofar project website, http://www.lofar.org/.
[14] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Improving after-the-fact

tracing and mapping: Supporting software quality predictions,”IEEE
Software, vol. 22, no. 6, pp. 30–37, November/December 2005.

[15] L. Bass, P. Clements, and R. Kazman,Software architecture in practice
2nd ed. Addison Wesley, 2003.

[16] J. Bosch, Design & Use of Software Architectures, Adopting and
evolving a product-line approach. ACM Press/Addison Wesley, 2000.

[17] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford,Documenting Software Architectures, Views
and Beyond. Addison Wesley, 2002.

[18] C. Hofmeister, R. Nord, and D. Soni,Applied software architecture.
Addison Wesley, 2000.

[19] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,”IEEE Trans-
actions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[20] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and N. Medvidovic,
“Taming architectural evolution,” inProceedings of the 8th European
software engineering conference. ACM Press, 2001, pp. 1–10.

[21] M. Shaw and D. Garlan,Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc., 1996.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,A
system of patterns. John Wiley & Sons, Inc., 1996.

[23] I. G. Muhammad Ali Babar and R. Jeffery, “Toward a framework for
capturing and using architecture design knowledge,” University of New
South Wales, Australia ans National ICT Australia Ltd., Tech. Rep.
UNSW-CSE-TR-0513, june 2005.

[24] P. Lago and H. van Vliet, “Explicit assumptions enrich architectural
models,” inICSE ’05: Proceedings of the 27th international conference
on Software engineering. New York, NY, USA: ACM Press, 2005, pp.
206–214.

[25] J. E. Burge and D. C. Brown, “An integrated approach for software
design checking using design rationale,” in1st International Conference
on Design Computing and Cognition (DCC ’04), July 2004, pp. 557–
576.

[26] E. L. A. Baniassad, G. C. Murphy, and C. Schwanninger, “Design pattern
rationale graphs: Linking design to source,” inProceedings of the 25th
ICSE, May 2003, pp. 352–362.

[27] Z. Wang, K. Sherdil, and N. H. Madhavji, “ACCA: An architecture-
centric concern analysis method,” in5th Working IEEE/IFIP Conference
on Software Architecture (WICSA), November 2005.

[28] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,”ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

APPENDIX

GRIFFIN QUESTIONNAIRE

This appendix contains the questionnaire that was used
during the interviews with the stakeholders at the industrial
partners. The questionnaire was sent to most interviewees in
advance and used by the Griffin research team to see whether
all relevant subjects have been discussed during the interview.

Introduction of yourself

1) Can you describe your role and responsibilities within the
organization?

2) Can you give an estimate on what percentage of your time
is spent on activities related to architecture? Examples in-
clude capturing architectural knowledge, communicating
architectural knowledge to stakeholders, et cetera.

3) With what kind of stakeholders in the architecting process
do you interact most?

Architecture

1) For the sake of clarity: what is your definition of “(soft-
ware) architecture”? Does this definition differ from the
generally accepted definition within your organization?

2) Can you describe the software design process, and the
place the architecture takes in it?

3) Are architectures kept up-to-date during evolution? What
techniques are used in keeping the architectures up-to-
date?

4) For what stakeholders are architecture documents cre-
ated? What are (generally spoken) the most important
stakeholders?

5) Are tools, methods, templates, or architectural description
languages (ADLs) used in constructing an architecture?

6) Are you satisfied about the way these tools, methods, tem-
plates, or ADLs are being utilized during the architecture
construction process? Can you mention any improvement
points?

32

Architectural knowledge

1) What architectural decisions are documented, and how?
2) Can you quantify the impact of Architectural Knowledge

that is lost / not present / too implicit? Can you give
examples?

3) Could you provide a top-3 list of burdens in modelling
architectures? What are your ideas on this?

Your architectures of today and in the past

1) What are the most important quality characteristics of
your architecture (or architectures)?

2) What kind of solutions do you provide in your design?
Do you reuse certain solutions (e.g. architectural patterns)
in your architectures?

3) (If possible to mention commonalities): With what kinds
of design aspects do you deal explicitly in your archi-
tectures? Examples of design aspects include interfaces,
error handling, execution architecture, data consistency,
and robustness.

4) From what sources do you obtain information for these
design aspects?

5) Is there a topic on which you foresee a big change in the
use of architectures in the future?

A. Architecting in daily practice

1) How is the availability of architectural information
planned, managed, and reviewed?

2) What will be (in your opinion) a big change in the
architect’s job in the future?

3) Looking back on the last few years, what would you
reckon as a significant step forward in architecting sup-
port?

4) How would you prepare for this?
5) How is this change planned?

33

Using Generator Feature Diagrams to Enhance
Performance Prediction of Software Component

Adaptation - A Case Study
Niels Streekmann

OFFIS
Escherweg 2, D-26121 Oldenburg, Germany

Email: niels.streekmann@offis.de

Steffen Becker
Institute for Programm Structures and Data Organization

Faculty of Informatics, University of Karlsruhe (TH)
Am Fasanengarten 5, D-76131 Karlsruhe, Germany

Email: sbecker@ipd.uka.de

Abstract— In order to put component based software engi-
neering into practice we have to consider the effect of software
component adaptation. Adaptation is used in existing systems
to bridge interoperability problems between bound interfaces,
i.e., to integrate existing legacy systems into new software
architectures. In CBSE, one of the aims is to predict the quality
properties of the assembled system from its basic parts in order to
avoid insufficient quality attributes of the final software system.
Adaptation is a special case of such a composition and should
be treated consequently in a special way. However, today this is
not the case. In our approach, we integrate explicit knowledge
on software component adapters to increase the accuracy of
performance predictions. Hence, this work examines the use
of adapter generators which simultaneously produce prediction
models. An experiment comparing predicted performance figures
with measured values of the generated adapter is presented.
The results show the increase in accuracy when using feature
dependent prediction models.

I. I NTRODUCTION

Software Component Adaptation is a crucial task when
building component based software systems. When developing
components there are always two design forces involved. On
the one hand, components must be reusable in a variety of dif-
ferent deployment platforms. On the other hand, components
must provide specialized functionality to make them applicable
in specialized contexts. Hence, a trade-off has to be made to
balance these forces. As a matter of fact, there are some cases
where the compromise leads to limited applicability of the
components. As a result, adaptation has to be performed at
assembly time to compensate for the trade-off.

Agreeing on the need of adaptation as a task of the system
assembler, there are two issues that have to be tackled for
adaptation to become a well planned engineering activity:
First, adaptation has to be done in a structured and guided
way to reduce the amount of hacking unstructured glue code.
Second, we need prediction methods for the impact of the
adaptation on QoS.

Tasks needed for the first step include the development
of appropriate adaptation methods. Such methods have to
detect mismatchesin a software architecture specification. The
detection should be based solely on the available specification

of the component. In the specification the provided and re-
quired interfaces of the respective components play a central
role. Specifications on different interface abstraction levels
allow the detection of different mismatch classes, e.g., the
availability of a protocol specification allows the detection
of protocol mismatches and a QoS specification allows the
detecting of mismatching QoS properties. Historical and more
up to date classifications of interface abstractions can be found
in [1].

The method used here (which has been presented initially
in [2]) is based on the use of generative or model driven
development (MDD) approaches utilizing the specification
and detection algorithms to generate the appropriate adapters.
This has been demonstrated in literature for certain problem
classes before [3], [4]. Note, that in most cases the adapter
generator is semi-automatic hence requiring additional input
by its users. We base our generated code on well known
design patterns as they are established solutions to reccurring
problems. If we take functional and extra-functional adaptation
into account, there is a huge variety of patterns that can be
used to bridge component mismatches (Note, that we consider
a mismatch in the required and offered QoS explicitly as an
adaptable interoperability problem in this paper). Nevertheless,
adaptation has an impact on QoS [5]. However, the additional
knowledge on the adapter can be used during the prediction
of the impact on the extra-functional properties.

The contribution of this paper is to apply the method
presented in [2] by implementing a generator which is capable
of generating code according to the cache and replicator
design patterns to overcome performance mismatches. During
the implementation we gained additional experience with the
application of the method which lead to a refinement of
the method. The refined method is part of section II. In
our implementation, an arbitrary selection of patterns and
prediction models - specialized for their respective generated
code - are utilized to predict the impact of the software
component adapter. Afterwards, a case study is presented
which is used to validate the method. The study presented
here has its focus on the impact of the generator configuration.
Hence, other known influences, like the underlying hardware,

34

are kept constant. The results demonstrate that the method
can be used to increase the accuracy of todays used early
performance prediction methods.

This paper is structured as follows. In section II, our
approach is explained in more detail and the advantages of the
approach are discussed. Succeeding that section, we give an
example illustrating how the proposed process can be put into
practice. This is followed by a case study in section V, where
the applicability of the approach and its effects on prediction
are discussed. After briefly highlighting some related workin
section VI, the paper concludes and highlights some future
work.

II. GENERATING ADAPTER COMPONENTS BASED ON

PATTERNS

Generators are well known tools to simplify transforma-
tions of solutions or to reuse code fragments with certain
variable parts which can even be derived by the generator
[6]. A generator uses a so-called feature diagram to structure
the input needed to configure the generation process. In
the method outlined (see also [2]), the generator uses two
sources of input: The specification of the interfaces involved
in the adaptation and additional information queried from the
component assembler. The information can be used in the
generated adapter as well as in the prediction model.

A model is required to predict the extra-functional proper-
ties of the composition between a component and its adapter in
advance. As adaptation has an impact on the extra-functional
properties of the component, its influence has to be considered
when predicting extra-functional properties of the system.
One of the reasons for the explicit inclusion of adapters in
prediction models for software architectures is the aim to
improve their accuracy. A detailed analysis of the impact of
component adaptation on QoS is presented in [5].

Figure 1 summarizes the presented method by showing the
adapter generator and the simultaneously generated prediction
model.

Adapter Component

Generator

A
n

a
ly

s
e

A
n

a
ly

s
e

G
e
n
e

ra
te

Prediction

model

Q
o
S

Q
o
S

<<feature model>>

Feature Diagram

<<template>>

Code Template

<<template>>

Prediction Model

Template

Fig. 1. Generation of Adapter and corresponding PredictionModel

The workflow for implementing the method is as follows
and can be seen in the figure. First, the QoS specifications of
the component providing a service (the right one in the figure)
is checked against the QoS requirements of the component
requiring a service (the left one in the figure). This is done by
comparing their respective QML-contracts associated to the
provided respective required interfaces. In the figure thisis
indicated by the solid "analyse" arrows.

If a mismatch is found the generator offers to generate
an appropriate adapter by querying its template database.
The template database contains adapter templates based on
patterns. For each template there is a rough characterisation
which QoS attributes are affected by using the pattern as
adapter, e.g., for the cache pattern there is the information that
it can be used to increase performance. All patterns found in
so doing are presented to the developer who selects one of
them to be applied.

For the selected pattern the generator looks up the necessary
feature diagram. The feature diagram contains the variation
points available in the selected template, i.e., the size ofthe
cache for the cache template. The generator queries the user
to specify the features needed. Afterwards, it does the actual
generation. This is implemented as simple text generator using
a template generator engine. This engine simply substitutes
special marked parts of the template with the respective feature
information. The result is a complete software artifact.

Two artifacts are generated. On the one hand, source code
for the adapter component. This source is based on the pattern
implemented in the respective template which the developer
has selected, i.e., source code implementing a software cache.
On the other hand, input files for any supported QoS prediction
method are generated. Note, that the generator uses the same
features when generating these artifacts because the features
can influence both. Take the cache size for example. It is
used in the source code to allocate an appropriate amount of
memory and in the prediction model to estimate the cache hit
and cache miss ratio. In so doing, it is ensured that the source
and the respective prediction model input is in sync. Hence,
we expect an increase in the accuracy of the predictions.

Note, that it is part of the decision of the developer of
the generator and its template database which patterns are
supported. Additionally, it is also his decision which prediction
models can be used as he has to give templates for the pre-
diction model’s input. Hence, the approach presented here can
be used with arbitrary prediction methods. The selection we
made in section V can be changed anytime when implementing
new templates. The important aspect is that the input of the
prediction methods has to be derived from the features of the
chosen pattern template.

For component based systems the use of parametric pre-
diction models is needed. Parametric models take in our
case the QoS of the adapted component as input parameter.
In so doing, those models enable compositional reasoning
taking advantage of the component based architecture of the
system. Compositionality is an important property if multiple
adaptations should be allowed, i.e., in case of two adaptations

35

the output of the analysis of the first adapter serves as input
to the second.

III. E XAMPLE

To illustrate the idea presented in the previous sections,
consider the following example. We have a component which
encapsulates a certain kind of information. The information
is not being changed frequently, but its retrieval consumes
a significant amount of time. Another component is going
to access this component but needs a lower response time
for the information retrieval service. The problem can be
detected, for example, using a Quality of Service Modeling
Language (QML) [7] specification of the respective interfaces
as depicted in figure 2. QML is highly customizable - the
possible specifications include mean values, standard deviation
or a set of quantiles characterizing the distribution of anyself-
defined quality metric. In the example, we define a metric
delay indicating the duration of the service call.

Fig. 2. A Cache to solve a Quality of Service Mismatch

In figure 2, there is also a possible solution to the presented
problem: The application of a cache can fix the detected
mismatch. The cache pattern is well-known in literature [8,
p. 83] and has been applied for a long time in hard- and
software development. In our case, we need an generator
template which is able to generate the cache. When deriving
such a template, one feature we can identify is the type of the
information objects which need to be cached from the interface
specifications.

More features can be found. In the given example, a
generator can query some information taken from the pattern
description and implemented in the feature list of the generator
template. Referring to the description in [8] we have to

• Select resources: The resource being retrieved
• Decide on an eviction strategy: Here we can choose

between well-known types like least recently used (LRU),
first in - first out (FIFO), and so on.

• Ensure consistency: We need a consistency manager
whose task is to invalidate cache entries as soon as the
master copy is changed.

• Determine cache size: How much memory the cache is
going to use. Most likely this is specified in number of
cacheable resource units.

Every single decision made here can be included addi-
tionally into the prediction model of the QoS impact. In

the specific example, it is especially important as a cache
component is quite difficult to model in QoS todays prediction
models. Caches are stateful and hence introduce the problem
of stateful components [9]. This problem results from the fact
that the operational profile has an impact on QoS. Consider
a component storing an array of records. To search in an
array containing few elements is faster than searching an
array with a lot of records. Thus, a prediction method has
to take the state of the component into account. The resulting
complexity can be high. Hence, none of the todays applied
performance prediction methods includes the runtime stateof
the components into the prediction. Nevertheless, we are able
to predict the QoS impact based on the information available
as it can be analyzed in special cases or simulated. In our
example, a simulation model can utilize the eviction, locking
and consistency strategy from the adapter generator’s input to
simulate the behaviour of the cache. During the execution of
the model calls on the adapter are simulated and the response
times are determined depending on the configuration of the
generator.

With the resulting prediction model the impact of the
adaptation can be predicted and, hence, it is possible to reason
on the composition of the adapter and the adaptee.

IV. A C ASE STUDY

The example in the preceding section has been examined
in a case study. The performance of generated adapters based
on different feature configurations has been measured. These
measurements are compared to the predictions of two applied
prediction methods. Thereby the input models of the methods
were generated by the same generator employing the same
feature configuration. To be able to conduct the case study ina
practicable period of time a set of restrictions had to be worked
out to determine the scope of the study. These restrictions are
listed in the following:

• The focus of the case study is the quality-based interface
model as described in [10]. This is further narrowed
down to performance being the only considered quality
attribute.

• Not all features and variants of the cache pattern have
been examined. The adopted patterns are shown in figure
3.

• The hardware influence is not considered. This results
from the large impact of the influence of different hard-
ware on the QoS properties of the component being
executed on a specific hardware. To meet this restriction,
all measurements were executed on the same system.

• The influence of the adapter on QoS properties other than
performance has been disregarded.

• It is assumed that the adapted component has constant
QoS properties. This restriction has to be made to gain a
solid basis for analysis and prediction. In reality however
changes to the adapted component or components it uses
will affect the QoS of the component.

In the case study adapters implementing a cache were
generated by a pattern-based generator application which is

36

described in [11]. This application is able to detect mismatch-
ing QoS properties. The basis for this detection are the QML
specifications of the provided and required interfaces of the re-
spective components. The application suggests a set of design
patterns to the system assembler which are useful to solve the
found mismatches. To make this possible, the design patterns
have to be described in an automatically processable way
including ratings respecting the affected quality properties.

Fig. 3. Basic feature diagram of the cache pattern

The choice and configuration of an adequate pattern are
delegated to the system assembler since the systems context
has to be considered. The configuration of the patterns is
based on feature diagrams as described in section II. Feature
diagrams were introduced in [6]. Figure 3 shows the used
feature diagram of the cache pattern. The diagram shows
three basic features of a cache and a selection of subfeatures.
The diagram is not intended to be complete, but includes a
selection of mandatory features that were examined in the
case study. These are the size of the cache and strategies for
the eviction of resources from the cache and the preservation
of consistency to the adapted component. Besides the feature
diagram of the cache other feature diagrams have been used
for the configuration of the generator. These diagrams contain
the implementation-dependent features of the adapter itself and
features of the adapted component. The latter include e.g. the
retrieved resources mentioned in section III.

Fig. 4. QML specification of the adapted data service

In the case study the adapted component provides a simple
data service using 100 indexed integer values as cacheable

resources. The QML specification shown in figure 4 models
the QoS of the provided interface of the adapted service. In
this case the QoS is reduced to the performance of the service
defined as its response time. The response time is defined as
a set of quantiles. The response time is the only QoS property
that has been examined during the case study. The influence
of the adapter on other QoS properties has not been observed
to preserve simplicity.

The QoS of a component C can be described by a function

qos(im(fm), op)

whereim(fm) means the implementation (im) of C depend-
ing on the feature model (fm) of C and op stands for the
operational profile of C. I.e. that the QoS of a component
depends on its feature-based generated implementation and
on the context the component is used in. Further contextual
influences as the usage of external services or the allocation
environment were fixed to reduce the complexity of the case
study. In our example the only external service used by the
adapter is the adapted service. The performance of which is
fixed to the specification given in figure 4.

From the simplified viewpoint of the case study the adapters
QoS depends on its (generated) implementation and the oper-
ational profile defined in the measurement tool. For the case
study a simple operational profile that is not tailored to fit into
a specific application domain has been used. There were only
sequential calls that queried random resources. To measure
the influence of the cache locality repeated calls to the same
resource were executed. Cache locality means the temporal
closeness of accesses to the cache with the same query.

To get a reference measure for the interpretation of the
results of the examined prediction models the response time
of the generated adapters has been measured using a simple
measurement tool. The tool simulates a customisable number
of clients as threads. It generates calls in uniformly distributed
intervals and with uniformly distributed index values. Inputs
of the tool are the number of simulated clients, the number
of calls for these clients, the probability of a writing calland
the probability of a repeated call to the same resource. The
adapters response times are measured using a standard timer.

To show the influences of the feature-based pattern config-
uration on the prediction of the response time of the adapted
component, two different prediction methods were employed
and compared to each other. As an example of an analytical
approach the Palladio performance prediction method which
is introduced in [12] has been chosen. The Palladio method
computes the response time of a service based on a finite state
machine model using discrete Fourier transform. As a second
prediction method a self-implemented simulation model has
been used.

Besides the features of the adapter further features derived
from the operational profile of the adapter and the specification
of the adapted component are needed to predict the response
time of the adapter. The selection of certain features changes
the input parameters of the parametric prediction model. Fea-
tures can thereby have different influences on the prediction

37

(a) Write-Through

(b) Write-Back

Fig. 5. Service Effect Automata modelling a cache with different consistency
strategies

model. Some change the structure of the model, others have
a certain influence on variables in the model, e.g. the variable
cache-hit-probabilitydepends on the cache size, the eviction
strategy and influences on the operational profile.

The influence of the feature-based configuration on a predic-
tion model can be seen in the Service Effect Automata in figure
5. Service Effect Automata are used to model the generated
adapters. They are the input model of the Palladio Performance
Prediction Tool, that has been used as an example for analytic
prediction in the case study. The analysis of Service Effect
Automata has been introduced in [12]. A Service Effect
Automaton is a finite state machine that models a certain
service implemented by the examined component highlighting
the external service calls needed to provide the service. The

internal execution of the components is modelled with states
while external calls are modelled as transitions. States and
transitions are annotated with the distribution of their exe-
cution times (X1-X6). Furthermore transitions are annotated
with the probability of their execution. This probability and
the distribution of execution times of the transitions influence
the analytically computed response time of the whole system.
The execution time distributions are not depicted in figure 5,
but serve as an input of the prediction tool in the corresponding
XML-representation of the automata.

The shown automata depict the cache adapter with two dif-
ferent consistency strategies. Both automata have in common
the execution of the adapter-specific methods (X1 and X6)
and the execution of reading accesses through the cache (X2)
or the adapted component (X4). The variablep represents the
cache-hit probability. The writing accesses are handled differ-
ently in both models depending on the selected consistency
strategy. The write-through strategy is modelled by a single
transition (/ServiceWrite) that represents writing to the adapted
component since every writing call affects the cache and the
adapted component. The write-back strategy on the other side
is modelled by two transitions./ServiceWriteis also used here,
but supplemented by/CacheWriteand the probabilityr that
describes how often a resource is written in the cache only
before it is written back to adapted component. In both cases
q is the probability of a writing call.

V. EXPERIMENTAL RESULTS

A. Comparison of the Measured Performance to the Predic-
tion

To validate the prediction models and to show that the
influences of the features on the adapter and the prediction
models lead to more meaningful predictions, the measured
performance of the generated adapter and the results of the
prediction models have been compared in the afore described
case study. Therefore adapters with differing configurations
have been generated using the generator application mentioned
in section IV. These adapters were installed using a test service
that implements the QML specification shown in figure 4 and
measured using the measurement tool described in section IV.
Parallel to that the build systems were specified according
to the input models of the employed prediction methods
whereupon these methods were executed. Thereby the model
used for the simulation has been directly implemented as part
of the self-implemented simulation application and the input
models of the Palladio Prediction Method consist of the XML
representation of the automata in figure 5. In the following
the results of the measurements and the prediction methods
are compared.

Figures 6 and 7 show the results of the measurement of the
generated adapter for the two examined consistency strategies
and different cache sizes. The dimensions of the diagrams
are the response time that has been measured and the writing
call probability which is a parameter of the measurement tool
described in section IV. Besides this the straight lines represent
the results for different feature configurations. The continuous

38

0

5

10

15

20

25

30

35

40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

No Adapter WB 0,1 LRU WB 0,5 LRU WB 0,9 LRU

Fig. 6. Measurement results with Write-Back strategy

0

5

10

15

20

25

30

35

40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

No Adapter WT 0,1 LRU WT 0,5 LRU WT 0,9 LRU

Fig. 7. Measurement results with Write-Through strategy

line in both figures represents a reference measure of the
adapted service without any adapter and therefore equals the
specification in figure 4 except for errors of measurement. The
other lines represent the measurement results for the adapter
with different consistency strategies and cache-sizes. Thereby
WB stands for write-back,WT for write-through and 0.1, 0.5
and 0.9 stand for the cache size relative to the total number
of resources. E.g. 0.1 means the cache is able to hold 10% of
the resources. The eviction strategy in all diagrams shown in
this section isLeast Recently Used. The results for theLeast
Frequently Usedstrategy are not shown because they do not
differ significantly. The complete results are described in[11].
It can be seen in the diagrams that the response time decreases
significantly for growing cache sizes and predominant reading
accesses for both strategies. They also show that this tendency
lowers for increasing writing calls using the write-through
strategy.

0

2

4

6

8

10

12

14

16

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Repetition Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

WB 0,1 LRU WB 0,5 LRU

Fig. 8. Measurement results for repeated calls of the same resource

Another important detail in the shown cache example is the
influence of locality effects on the prediction of the response
time of the adapter. Figure 8 shows the influence of repeated
calls of the same resource on the response time. It can be
seen that the response time decreases with increasing repetition
probability. I.e. that the response time will decrease the higher
the influence of the cache locality is in the operational profile.

0

5

10

15

20

25

30

35

40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e

(m
s
)

Simulation WB 0,1 Palladio WB 0,1 Measurement WB 0,1 LRU

(a) Cache size: 10%

0

5

10

15

20

25

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Simulation WB 0,5 Palladio WB 0,5 Measurement WB 0,5 LRU

(b) Cache size: 50%

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Simulation WB 0,9 Palladio WB 0,9 Measurement WB 0,9 LRU

(c) Cache size: 90%

Fig. 9. Prediction results for write-back strategy

Each measurement configuration was also used to generate
analytic and simulative prediction models. The results that
were achieved by executing these models where compared
to the measurement results. This can be seen in figure 9
for the write-back strategy and in figure 10 for the write-
through strategy. The figures indicate that both prediction
models and the measurements present a similar distribution
of the mean response time, where the predicted response time
of the simulation are always slightly higher as the predicted
response time of the Palladio model. The reason for this could
be that some constant factor has not been regarded in the
implementation of the simulation.

39

0

5

10

15

20

25

30

35

40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Simulation WT 0,1 Palladio WT 0,1 Measurement WT 0,1 LRU

(a) Cache size: 10%

0

5

10

15

20

25

30

35

40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Simulation WT 0,5 Palladio WT 0,5 Measurement WT 0,5 LRU

(b) Cache size: 50%

0

5

10

15

20

25

30

35

40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Writing Call Probability

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Simulation WT 0,9 Palladio WT 0,9 Measurement WT 0,9 LRU

(c) Cache size: 90%

Fig. 10. Prediction results for write-through strategy

Most results show a linear distribution of the response
times. An exception to this scheme is the measurement for
the write-back strategy and high cache sizes. It can be seen
that the measured mean response times for medium writing
probability values deviates from the linear predictions. A
maximum deviation of up to 38% could be observed for both
prediction models. The reason for this could not be found
in the present case study. On the other side most of the
predicted results deviate only up to 10% from the measured
mean response times.

B. Interpretation of the Results

The results of the case study show that feature-based
prediction is a step to component adaptation becoming a well
planned engineering activity. It provides the opportunityto
include the details of the implementation of an adapter into
the prediction in an engineering way using well-known design
patterns.

The results of the case study lead to the conclusion that
configuration on the basis of a feature model of the adapter

is able to change the implementation of the adapter and the
prediction models in a number of ways. This could also be
detected in the measurement and prediction results. The case
study further illustrated that the operational profile has adeci-
sive influence on the behaviour of the adapter. One example is
the influence of the cache locality on the response time of the
adapter. Another example is described in [11]. There it could
be shown that the concurrent usage of a component that works
sequentially leads to exponentially growing response times.

As it can be seen in the measurement of repeated calls on
the same resource, the data flow has a decisive influence on
the response time of a cache adapter and should be taken into
account in the prediction model. Another reason to consider
the data flow in the prediction models is the statefulness
of a cache mentioned in section III. On the other side the
consideration of the data flow causes the disadvantage of
a complex model which is hard to solve analytically and
will take a long time to be simulated. The importance of
the operational profile for performance predictions and the
problems that result from modelling the data flow is also
discussed in [13].

Although the maximum deviation values of up to 38% are
not regarded to be adequate for an engineering approach to
performance prediction, most of the prediction results lead
to the assumption that the proposed method is accurate for
the purpose of improving prediction quality and introduce an
engineering approach to the prediction of quality of service
properties of component based software systems.

Another result of the case study is that in our case study
QML was a suitable means to describe and analyse the QoS of
a component. A feature of QML that turns out to be a problem
in the practical application of QML is its high customizability.
Since there are no established standards for the description of
QoS properties using QML, this can cause that compatible
specifications are not recognized or that design patterns that
are able to solve a certain mismatch can not be found in an
automatic way. Another problem is the interpretability of the
specified distribution functions, especially if these are defined
by the usage of quantiles. This leads to the need of customizing
the analyzing application to the interpretation used in thegiven
specification, if this is described in the documentation of the
corresponding component.

VI. RELATED WORK

The development of systematic approaches to adaptation
of components in order to resolve interoperability problems
is still a field of active research. Many papers are based
on the work done by Yellin and Strom [3], who introduced
an algorithm for the (semi-)automatic generation of adapters
using protocol information and an external adapter specifica-
tion. Bracciali et al. propose the use of some kind of process
calculus to enhance this process and generate adapters using
PROLOG [14]. Min et al. present an approach called Smart
Connectors which allows the construction of adapters based
on the provided and required interface of the components to
connect [15].

40

QoS prediction models have to be used to predict the QoS
impact. A survey has been published recently by Balsamo et
al. [16]. Additionally, simulative approaches can be used and
the simulation environment can be generated by the adapter
generator, for example the simulator presented by Balsamo and
Marzolla [17]. Nevertheless, none of these approaches has a
specialized method for including adapters in their predictions.

Further patterns can be taken from the pattern literature,
either on the design or the architectural level. As a starting
point standard pattern literature can be used [18], [19], [20],
[8]. Some of them are suited for functional or extra-functional
adaptation.

VII. C ONCLUSION

This paper presents an approach to analyze QoS related
interoperability problems with the aim of generating adapters
to bridge these problems. Additionally, not only the adapters
are generated but also a prediction model dealing with the
QoS impact of the composition of the adapter and the adapted
component. We aimed at gaining a higher accuracy in these
models by exploiting the input of the generator and the
code templates used to generate the adapter. A case study is
presented showing the application of the approach and the
accuracy of the predicted figures.

The results presented here show that this approach is
practically applicable for the generation and prediction of the
QoS of component adapters. The predictions clearly depict
the influences of feature-based configuration that can also be
seen in the measurement results. This leads to the conclusion
that the consideration of features of adapter generators leads
to an increase in accuracy of the prediction models. Hence,
the method is suited to increase the predictability of adapted
components during the design phase and can be used to
increase the precision of performance prediction methods.

Future work on the presented approach will include further
case studies with different patterns and interface models.
In addition to this the prediction methods will have to be
enhanced and more prediction methods have to be evaluated.
A focus should thereby be laid on the ability to model the
usage profile in an adequate way. Furthermore the restrictions
that had to be made to be able to conduct the case study will
have to be weakened to achieve a generally applicable method.

REFERENCES

[1] S. Becker, S. Overhage, and R. Reussner, “Classifying Software Com-
ponent Interoperability Errors to Support Component Adaption,” in
Component-Based Software Engineering, 7th InternationalSymposium,
CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings, ser. Lecture
Notes in Computer Science, I. Crnkovic, J. A. Stafford, H. W. Schmidt,
and K. C. Wallnau, Eds., vol. 3054. Berlin, Heidelberg: Springer, May
2004, pp. 68–83.

[2] S. Becker, “Using Generated Design Patterns to Support QoS Prediction
of Software Component Adaptation,” inProceedings of the Second
International Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT 05), C. Canal, J. M. Murillo, and P. Poizat,
Eds., July 2005.

[3] D. Yellin and R. Strom, “Interfaces, Protocols and the Semiautomatic
Construction of Software Adaptors,” inProceedings of the 9th ACM
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA-94), ser. ACM Sigplan Notices, vol. 29, 10,
1994, pp. 176–190.

[4] M. Autili, P. Inverardi, and M. Tivoli, “Automatic Adaptor Synthesis
for Protocol Transformation,” inProceedings of the First International
Workshop on Coordination and Adaptation Techniques for Software
Entities (WCAT’04), 2004.

[5] S. Becker and R. H. Reussner, “The Impact of Software Component
Adaptors on Quality of Service Properties,” inProceedings of the First
International Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT 04), C. Canal, J. M. Murillo, and P. Poizat,
Eds., June 2004.

[6] K. Czarnecki and U. W. Eisenecker,Generative Programming. Addi-
son-Wesley, Reading, MA, USA, 2000.

[7] S. Frølund and J. Koistinen, “Quality-of-Service Specification in Dis-
tributed Object Systems,” Hewlett Packard, Software Technology Lab-
oratory, Tech. Rep. HPL-98-159, Sept. 1998.

[8] M. Kircher and P. Jain,Pattern-Oriented Software Architecture: Patterns
for Distributed Services and Components. John Wiley and Sons Ltd,
2004.

[9] D. Hamlet, D. Mason, and D. Woit,Component-Based Software Devel-
opment: Case Studies, ser. Series on Component-Based Software De-
velopment. World Scientific Publishing Company, March 2004, vol. 1,
ch. Properties of Software Systems Synthesized from Components, pp.
129–159.

[10] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and
M. Tivoli, “Towards an Engineering Approach to Component Adapta-
tion,” in Architecting Systems with Trustworthy Components, vol. 3938,
2006, pp. 193–215, to appear April 2006.

[11] N. Streekmann, “Einfluss von Generatorkonfigurationen auf die QoS-
Vorhersage für Komponentenadapter,” Diplomarbeit, University of Old-
enburg, Jan. 2006.

[12] V. Firus, S. Becker, and J. Happe, “Parametric Performance Con-
tracts for QML-specified Software Components,” inFormal Founda-
tions of Embedded Software and Component-based Software Architec-
tures (FESCA), ser. Electronic Notes in Theoretical Computer Science.
ETAPS 2005, 2005.

[13] H. Koziolek and S. Becker, “Transforming Operational Profiles of
Software Components for Quality of Service Predictions,” inTenth Inter-
national Workshop on Component Oriented Programming (WCOP2005),
July 2005.

[14] A. Bracciali, A. Brogi, and C. Canal, “Dynamically Adapting the
Behaviour of Software Components,” inCoordination Models and
Languages, 5th International Conference, COORDINATION 2002, York,
UK, April 8–11, 2002, Proceedings, ser. Lecture Notes in Computer
Science, F. Arbab and C. L. Talcott, Eds., vol. 2315. Springer-Verlag,
Berlin, Germany, 2002, pp. 88–95.

[15] H. G. Min, S. W. Choi, and S. D. Kim, “Using Smart Connectorsto
Resolve Partial Matching Problems in COTS Component Acquisition.”
in Component-Based Software Engineering, 7th InternationalSympo-
sium, CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings, ser.
Lecture Notes in Computer Science, I. Crnkovic, J. A. Stafford, H. W.
Schmidt, and K. C. Wallnau, Eds., vol. 3054. Springer-Verlag, Berlin,
Germany, 2004, pp. 40–47.

[16] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni, “Model-Based
Performance Prediction in Software Development: A Survey,”IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295–310, May
2004.

[17] S. Balsamo and M. Marzolla, “A Simulation-Based Approachto Soft-
ware Performance Modeling,” inProceedings of the 9th European
software engineering conference held jointly with 10th ACMSIGSOFT
international symposium on Foundations of software engineering. ACM
Press, 2003, pp. 363–366.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, USA, 1995.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture – A System of Patterns. Wiley
& Sons, New York, NY, USA, 1996.

[20] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-Oriented
Software Architecture – Volume 2 – Patterns for Concurrent and Net-
worked Objects. Wiley & Sons, New York, NY, USA, 2000.

41

Software Architecture Evaluation Methods for
Performance, Maintainability, Testability, and Portability

Michael Mattsson, Håkan Grahn, and Frans Mårtensson
Department of Systems and Software Engineering

School of Engineering, Blekinge Institute of Technology
P.O. Box 520, SE-372 25 Ronneby, Sweden

{Michael.Mattsson, Hakan.Grahn, Frans.Martensson}@bth.se, http://www.bth.se/besq

Abstract
The software architecture has been identified as an

important part of a software system. Further, the software
architecture impacts the quality attributes of a system, e.g.,
performance and maintainability. Therefore, methods for
evaluating the quality attributes of software architectures
are important. In this paper, we present a survey of soft-
ware architecture evaluation methods. We focus on meth-
ods for evaluating one or several of the quality attributes
performance, maintainability, testability, and portability.
Based on a literature search and review of 240 articles, we
present and compare ten evaluation methods. We have
found that most evaluation methods only address one qual-
ity attribute, and very few can evaluate several quality
attributes simultaneously in the same framework or
method. Further, only one of the methods includes trade-off
analysis. Therefore, our results suggest an increased
research focus on software architecture evaluation methods
than can address several quality attributes and the possible
trade-offs between different quality attributes.

1. Introduction

The software engineering discipline is becoming more
wide-spread in industry and organizations due to the
increased presence of software and software-related prod-
ucts and services in all areas. Simultaneously, this demands
for new concepts and innovations in the development of
the software.

During the last decades, the notion of software archi-
tecture has evolved and today, a software architecture is a
key asset for any organization that builds complex soft-
ware-intensive systems [5, 8, 34]. A software architecture
is created early in the development and gives the develop-
ers a means to create a high level design for the system,
making sure that all requirements that has to be fulfilled
will be possible to implement in the system.

There exists a number of definitions of software archi-
tecture with minor differences depending on domain and
people’s experience. However, most definitions share com-
mon characteristics that can be exemplified by looking at
the definition by Bass et al. [5]:

“The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements, the
externally visible properties of those elements,
and the relationships among them.” [5]
This means that the architecture describes which high

level components a software system consists of as well as
which responsibilities that these components have towards
other components in the system. It also describes how these
components are organized, both on a conceptual level as
well as a decomposed detailed level since there can be an
architectural structure inside components as well. Finally
the architecture defines which interfaces the components
present to other components and which interfaces and com-
ponents that they use.

The architecture is created based on a set of require-
ments that it has to fulfil. These requirements are collected
from the stakeholders of the system, e.g., users and devel-
opers. The functional requirements describe what the sys-
tem should do, e.g., the functions that the system should
provide to the users. Quality requirements describe a set of
qualities that the stakeholders want the systems to have,
e.g., how long time it may take to complete a certain opera-
tion, how easy it is to maintain the system. Other examples
of quality attributes are availability, testability, and flexibil-
ity. In order to help software developers make sure that a
software architecture will be able to fulfil the quality
requirements, several methods for evaluating software
architectures have been proposed.

In this paper we present a survey of software architec-
ture evaluation methods. We focus our survey on methods
that address one or more of the quality attributes perfor-

42

mance, maintainability, testability, and portability. We
think that this selection of quality attributes is relevant for
development of software systems that will be used and
maintained over a long period of time. The methods are
described and compared based on a set of criteria.

There are related evaluation methods that we have
chosen to exclude from our survey. One class of related
evaluation methods are targeted for components and mid-
dleware, e.g., i-Mate [27]. These methods are excluded
since they do not evaluate the whole architecture of a sys-
tem. Further, we have exclude many formal methods, e.g.,
Promela/SPIN [16, 27], which are more targeted for evalu-
ating correctness and consistency of an architecture but not
those quality attributes that we are interested in.

In addition, there are other factors then quality require-
ments that influence the architecture such as organiza-
tional, technical and product factors as well as risk
management and project management issues. These factors
and issues are not addressed since the majority of the found
articles do not address these issues.

The rest of the paper is organized as follows. In the
next section we introduce the concept of software architec-
ture evaluation. In Section 3 and Section 4, we present soft-
ware quality attributes in general and those that we address
in this paper, respectively. In Section 5, we discuss related
work and present how our survey relates to other surveys in
the area. Then, in Section 6, we present the architecture
evaluation methods that we include in our survey. Finally,
we discuss our findings in Section 7 and conclude our
study in Section 8.

2. Software Architecture Evaluation

Architecture evaluations can be performed in one or
more stages of the software development process. They can
be used to compare and identify strengths and weaknesses
in different architecture alternatives during the early design
stages. They can also be used for evaluation of existing
systems before future maintenance or enhancement of the
system as well as for identifying architectural drift and ero-
sion. Software architecture evaluation methods can be
divided into four main categories, i.e., experience-based,
simulation-based, mathematical modelling based. Methods
in the categories can be used independently but also be
combined to evaluate different aspects of a software archi-
tecture, if needed [8].

Experience-based evaluations are based on the previ-
ous experience and domain knowledge of developers or
consultants [2]. People who have encountered the require-
ments and domain of the software system before can based
on the previous experience say if a software architecture
will be good enough [8].

Simulation-based evaluations rely on a high level
implementation of some or all of the components in the
software architecture. The simulation can then be used to
evaluate quality requirements such as performance and cor-
rectness of the architecture. Simulation can also be com-
bined with prototyping, thus prototypes of an architecture
can be executed in the intended context of the completed
system. Examples of methods in this group are Layered
Queuing Network (LQN) [1] approaches and event-based
methods such as RAPIDE [28, 29].

Mathematical modelling uses mathematical proofs
and methods for evaluating mainly operational quality
requirements such as performance and reliability [34] of
the components in the architecture. Mathematical model-
ling can be combined with simulation to more accurately
estimate performance of components in a system.

Scenario-based architecture evaluation tries to evalu-
ate a particular quality attribute by creating a scenario pro-
file that forces a very concrete description of the quality
requirement. The scenarios from the profile are then used
to step through the software architecture and the conse-
quences of the scenario are documented. Several scenario-
based evaluation methods have been developed, e.g., Soft-
ware Architecture Analysis Method (SAAM) [19], Archi-
tecture Trade-off Analysis Method (ATAM) [21], and
Architecture Level Modifiability Analysis (ALMA) [6, 7].

3. Quality Attributes

Software quality is defined as the degree to which soft-
ware possesses a desired combination of attributes [17].
According to [8] the quality requirements that a software
architecture has to fulfil is commonly divided in two main
groups based on the quality they are requesting, i.e., devel-
opment and operational qualities. A development quality
requirement is a requirement that is of importance for the
developers work, e.g., maintainability, understandability,
and flexibility. Operational quality requirements are
requirements that make the system better from the users
point of view, e.g. performance and usability. Depending
on the domain and priorities of the users and developers,
quality requirements can become both development and
operational, such as performance in a real-time system.

A quality attribute can be defined as a property of a
software system [5]. A quality requirement is a require-
ment that is placed on a software system by a stakeholder;
a quality attribute is what the system actually presents once
it has been implemented. During the development of the
architecture it is therefore important to validate that the
architecture has the required quality attributes, this is usu-
ally done using one or more architecture evaluations.

43

4. Quality Attributes in Focus

This survey focuses on software architecture evalua-
tion methods that address one or more of the following
quality attributes: performance, maintainability, testability,
and portability. The IEEE standard 610.12-1990 [17]
defines the four quality attributes as:

Maintainability. This is defined as:
“The ease with which a software system or

component can be modified to correct faults,
improve performance or other attributes, or adapt
to a changed environment.”
Maintainability is a multifaceted quality requirement.

It incorporates aspects such as readability and understand-
ability of the source code. Maintainability is also con-
cerned with testability to some extent as the system has to
be re-validated during the maintenance.

Performance. Performance is defined as:
“The degree to which a system or component

accomplishes its designated functions within
given constraints, such as speed, accuracy, or
memory usage.”
There are many aspects of performance, e.g., latency,

throughput, and capacity.

Testability. Testability is defined as:
“The degree to which a system or component

facilitates the establishment of test criteria and
the performance of tests to determine whether
those criteria have been met.”
We interpret this as the effort needed to validate the

system against the requirements. A system with high test-
ability can be validated quickly.

Portability. Portability is defined as:
“The ease with which a system or component

can be transferred from one hardware or software
environment to another.”
We interpret this as portability not only between differ-

ent hardware platforms and operating systems, but also
between different virtual machines and versions of frame-
works.

These four quality attributes are selected, not only for
their importance for software developing organizations in
general, but also for their relevance for organizations
developing software in the real-time system domain in a
cost effective way, e.g., by using a product-line approach.
Performance is important since a system must fulfil the
performance requirements, if not, the system will be of

limited use, or not used. The long-term focus forces the
system to be maintainable and testable, it also makes porta-
bility important since the technical development on com-
puter hardware technology moves quickly and it is not
always the case that the initial hardware is available after a
number of years.

5. Related Work

Surveying software architecture evaluation methods
has, as far as we know, been done in four previous studies.
In two of the cases, Dobrica and Niemelä [11] and Babar et
al. [3], the software architecture evaluation methods are
compared with each other in a comparison framework, spe-
cific for each study. The survey by Etxeberria and Sagardui
[13] compares architecture evaluation methods with
respect to the context of architectures in software product
lines. The last survey, by Kazman et al. [20], does not
address a large number of architecture evaluation methods
but uses two evaluation methods as examples for illustrat-
ing how the methods fulfil a number of criteria the authors
argue are highly needed for an architecture evaluation
method to be usable.

The Dobrica and Niemelä survey [11], the earliest one,
presents and compares eight of the “most representative”,
according to themselves, architecture evaluation methods.
The discussion of the evaluation methods focus on 1) dis-
covering differences and similarities and 2) making classi-
fications, comparisons and appropriateness studies. The
comparison and characterization framework in the survey
comprises the following elements; the methods goal, which
evaluation techniques are included in the method, quality
attributes (what quality attributes and what number of qual-
ity attributes is considered), the software architecture
description (what views are the foci and in which develop-
ment phase), stakeholders’ involvement, the activities of
the method, support for a reusable knowledge base and the
validation aspect of the evaluation method.

The objective of the Babar et al. survey [3] is to pro-
vide a classification and comparison framework by discov-
ering commonalities and differences among eight existing
scenario-based architecture evaluation methods. To a large
extent, the framework comprises features that are either
supported by most of the existing methods or reported as
desirable by software architecture researchers and practi-
tioners. The framework comprises the following elements;
the method’s Maturity stage, what definition of software
architecture is required, process support, the method’s
activities, goals of the method, quality attributes, applica-
ble project stage, architectural description, evaluation
approaches (what types of evaluation approaches are
included in the method?), stakeholders involvement, sup-

44

port for non-technical issue, the method’s validation, tool
support, experience repository, and resources required.

The survey by Etxeberria and Sagarduia [13]
addresses an evaluation framework for software architec-
ture evaluation methods addressing software product-line
architectures. Since the life span of a product-line architec-
ture is longer than for ordinary software architectures evo-
lution is one prioritized quality attribute that deserves extra
attention in an evaluation. There exist other quality
attributes as well, e.g. variability. The context of software
product lines imposes new requirements on architecture
evaluation methods and this is discussed by Etxeberria and
Sagarduia and reflects their classification framework. The
framework comprises the following elements; The goal of
the method, attribute types (what domain engineering and
application engineering quality attributes are addressed),
evaluation phase (in the product line context the evaluation
can take place on different phases in application engineer-
ing and domain engineering, respectively, as well as in a
synchronization phase between the two), evaluation tech-
niques, process description, the method’s validation and
relation to other evaluation methods.

The purpose of the last survey, by Kazman et al. [20],
is primary to provide criteria that are important for an eval-
uation method to address, and not to compare existing eval-
uation methods. The authors argue for criteria addressing
what it means to be an effective method, one that produces
results of real benefit to the stakeholders in a predictable
repeatable way, and a usable method one that can be under-
stood and executed by its participants, learned reasonably
quickly, and performed cost effectively. Thus, the survey
ends up with the following four criteria: 1) Context and
goal identification, 2) Focus and properties under examina-
tion, 3) Analysis Support, and 4) Determining analysis out-
comes.

The survey by Dobrica and Niemelä [11] provides an
early, initial overview of the software architecture evalua-
tion methods. This was followed up by the survey by Babar
et al. [3] that presents a more detailed break-down (includ-
ing requirements on detailed method activities etc.) and a
more holistic perspective, e.g., process support, tool sup-
port. The survey by Kazman et al. [20] presents additional
requirements on what a software architecture method
should support. The software product-line context survey
by Etxeberria and Sagarduia [13] addresses evaluation
methods from a prescribed way of developing software.
This perspective opened up some additional phases where
an evaluation can take place and put product-line important
quality attributes more in focus, e.g., variability and main-
tainability.

Our survey takes the perspective from a set of quality
attributes that are of general importance for software devel-
oping organizations. This means that we are taking a more

solution-oriented approach, i.e., we are focusing on finding
knowledge about what existing evaluation methods can
provide with respect to the identified quality attributes. We
are not aiming at obtaining knowledge about general soft-
ware architecture evaluation methods or pose additional
requirements on the methods due to some completeness
criteria or specific way of developing the software, as in
the four performed surveys. We may add additional
requirements on the evaluation method, but if that is the
case, the requirements will have its origin from the four
quality attributes addressed, performance, testability, main-
tainability and portability.

6. Architecture Evaluation Methods

In this survey each of the software architecture evalua-
tion methods will be described according to a pre-defined
template. The template structures the description of the
architecture according to the following elements: Name
and abbreviation (if any), Category of method, Refer-
ence(s) where the method are described in detail, Short
description of the method, Evaluation goal of the method,
How many quality attributes the method addresses, (one,
many, or many where trade-off approaches exist), What
specific quality attributes the method address (or if it is a
more general evaluation method) and finally, the usage of
the method. Table 1 summarizes the template with indica-
tion of potential values for each element.

The initial selection of research papers was made by
searching through Compendex, Inspec, and IEEE Xplore.
The search Compendex and Inspec resulted in 194 papers,
and the search in IEEE Xplore produced an additional 46
papers. The query used for the searched used the following
keywords, “software architecture” and “any of evaluation,
assessment or analysis” and “at least one of performance,
maintainability, testability, or portability”. The keywords
where truncated and stemmed when possible. In total, we
had 240 papers found from the database searches. We then
eliminated duplicate papers and papers that did not fulfil
our criteria of addressing one or more of the quality
attributes performance, maintainability, testability, or port-
ability. After the screening we had about 25 papers that
contained architecture evaluation methods and experience
reports from their use. From these papers we have identi-
fied 10 methods and approaches that can be applied for
architecture-level evaluation of performance, maintainabil-
ity, testability, or portability.

45

6.1. SAAM — Software Architecture Analysis
Method

Software Architecture Analysis Method (SAAM) [19]
is a scenario-based software architecture evaluation
method, targeted for evaluating a single architecture or
making several architectures comparable using metrics
such as coupling between architecture components.

SAAM was originally focused on comparing modifi-
ability of different software architectures in an organiza-
tion’s domain. It has since then evolved to a structured
method for scenario-based software architecture evalua-
tion. Several quality attributes can be addressed, depending
on the type of scenarios that are created during the evalua-
tion process. Case-studies where maintainability and
usability are evaluated have been reported in [18], and
modifiability, performance, reliability, and security are
explicitly stated in [21].

The method consists of five steps. It starts with the
documentation of the architecture in a way that all partici-
pants of the evaluation can understand. Scenarios are then
developed that describe the intended use of the system. The
scenarios should represent all stakeholders that will use the
system. The scenarios are then evaluated and a set of sce-

narios that represents the aspect that we want to evaluate is
selected. Interacting scenarios are then identified as a mea-
sure of the modularity of the architecture. The scenarios are
then ordered according to priority, and their expected
impact on the architecture. SAAM has been used and vali-
dated in several studies [10, 12, 18, 19, 25]. There also
exist methods that are extensions and/or further evolutions
of SAAM, which are surveyed by Dobrica and Niemelä
[11].

6.2. ATAM — Architecture Trade-off Analysis
Method

Architecture Trade-off Analysis Method (ATAM) [21]
is a scenario-based software architecture evaluation
method. The goals of the method are to evaluate architec-
ture-level designs that considers multiple quality attributes
and to gain insight as to whether the implementation of the
architecture will meet its requirements. ATAM builds on
SAAM and extends it to handle trade-offs between several
quality attributes.

The architecture evaluation is performed in six steps.
The first one is to collect scenarios that operationalize the
requirements for the system (both functional and quality
requirements). The second step is to gather information
regarding the constraints and environment of the system.
This information is used to validate that the scenarios are
relevant for the system. The third step is to describe the
architecture using views that are relevant for the quality
attributes that were identified in step one. Step four is to
analyze the architecture with respect to the quality
attributes. The quality attributes are evaluated one at a
time. Step five is to identify sensitive points in the architec-
ture, i.e., identifying those points that are affected by varia-
tions of the quality attributes. The sixth and final step is to
identify and evaluate trade-off points, i.e., variation points
that are common to two or more quality attributes. ATAM
has been used and validated in several studies [21, 32].

6.3. ALMA — Architecture-Level Modifiability
Analysis

Architecture-Level Modifiability Analysis (ALMA)
[6, 7] is a scenario-based software architecture evaluation
method with the following characteristics: focus on modifi-
ability, distinguish multiple analysis goals, make important
assumptions explicit, and provide repeatable techniques for
performing the steps. The goal of ALMA is to provide a
structured approach for evaluating three aspects of the
maintainability of software architectures, i.e., maintenance
prediction, risk assessment, and software architecture com-
parison.

Table 1. Method Description Template

Item Potential values

Name and
abbreviation

The method’s name and
abbreviation (if any)

Category of method Experience-based, Simulation-
based, Scenario-based,
Mathematical modelling, or a mix
of categories

Reference(s) One or more literature source(s)

Short description of
the method

Text summary of the method

Evaluation goal Text description of goal

Number of quality
attributes addressed

One, many, or many with trade-
off approach

Specific quality
attributes addressed

Any of Maintainability,
Performance, Testability,
Portability, General and any
additional ones

Method usage Has the method been used by the
method developer(s) only or by
some other?

46

ALMA is an evaluation method that follows SAAM in
its organization. The method specifies five steps: 1. deter-
mine the goal of the evaluation, 2. describe the software
architecture, 3. elicit a relevant set of scenarios, 4. evaluate
the scenarios, and 5. interpretation of the results and draw
conclusions from them. The method provides more
detailed descriptions of the steps involved in the process
than SAAM does, and tries to make it easier to repeat eval-
uations and compare different architectures. It makes use
of structural metrics and base the evaluation of the scenar-
ios on quantification of the architecture. The method has
been used and validated by the authors in several studies
[6, 7, 24].

6.4. RARE/ARCADE

RARE and ARCADE are part of a toolset called SEPA
(Software Engineering Process Activities) [4]. RARE (Ref-
erence Architecture Representation Environment) is used
to specify the software architecture and ARCADE is used
for simulation-based evaluation of it. The goal is to enable
automatic simulation and interpretation of a software archi-
tecture that has been specified using the RARE environ-
ment.

An architecture description is created using the RARE
environment. The architecture description together with
descriptions of usage scenarios are used as input to the
ARCADE tool. ARCADE then interprets the description
and generates a simulation model. The simulation is driven
by the usage scenarios. RARE is able to perform static
analysis of the architecture, e.g., coupling. ARCADE
makes it possible to evaluate dynamic attributes such as
performance and reliability of the architecture. The RARE
and ARCADE tools are tightly integrated to simplify an
iterative refinement of the software architecture. The
method has, as far as we know, only been used by the
authors.

6.5. Argus-I

Argus-I [37] is a specification-based evaluation
method. Argus-I makes it possible to evaluate a number of
aspects of an architecture design. It is able to perform
structural analysis, static behavioral analysis, and dynamic
behavioral analysis, of components. It is also possible to
perform dependence analysis, interface mismatch, model
checking, and simulation of an architecture.

Argus-I uses a formal description of a software archi-
tecture and its components together with statecharts that
describe the behavior of each component. The described
architecture can then be evaluated with respect to perfor-
mance, dependence, and correctness. There is no explicit

process defined that the evaluation should follow, but some
guidance is provided. The evaluation results in a quantifi-
cation of the qualities of the architecture. The performance
of the architecture is estimated based on the number of
times that components are invoked. The simulation can be
visualized using logs collected during the simulation. The
method has, as far as we know, only been used by the
authors.

6.6. LQN — Layered Queuing Networks

Layered queuing network models are very general and
can be used to evaluate many types of systems. Several
authors have proposed the use of queuing network models
for software performance evaluation [14, 15, 22, 30, 33].
Further, there also exist many tools and toolkits for devel-
oping and evaluating queuing network models, e.g., [14,
15]. A queuing network model can be solved analytically,
but is usually solved using simulation.

The method relies on the transformation of the archi-
tecture into a layered queuing network model. The model
describes the interactions between components in the archi-
tecture and the processing times required for each interac-
tion. The creation of the models require detailed
knowledge of the interaction of the components, together
with behavioral information, e.g., execution times or
resource requirements. The execution times can either be
identified by, e.g.,. measurements, or estimated. The more
detailed the model is the more accurate the simulation
result will be.

The goal when using a queuing network model is often
to evaluate the performance of a software architecture or a
software system. Important measures are usually response
times, throughput, resource utilization, and bottleneck
identification. In addition, some tools not only produce
measures, but also have the ability to visualize the system
behavior.

6.7. SAM

SAM [38] is a formal systematic methodology for
software architecture specification and analysis. SAM is
mainly targeted for analyzing the correctness and perfor-
mance of a system.

SAM has two major goals. The first goal is the ability
to precisely define software architectures and their proper-
ties, and then perform formal analysis of them using formal
methods. Further, SAM also supports an executable soft-
ware architecture specification using time Petri nets and
temporal logic. The second goal is to facilitate scalable
software architecture specification and analysis, using hier-

47

archical architectural decomposition. The method has, as
far as we know, only been used by the authors.

6.8. EBAE — Empirically-Based Architecture
Evaluation

Lindvall et al. describe in [26] a case study of a rede-
sign/reimplementation of a software system developed
more or less in-house. The main goal was to evaluate the
maintainability of the new system as compared to the pre-
vious version of the system. The paper outlines a process
for empirically-based software architecture evaluation. The
paper defines and uses a number of architectural metrics
that are used to evaluate and compare the architectures.

The basic steps in the process are: select a perspective
for the evaluation, define/select metrics, collect metrics,
and evaluate/compare the architectures. In this study the
evaluation perspective was to evaluate the maintainability,
and the metrics were structure, size, and coupling. The
evaluations were done in a late development stage, i.e.,
when the systems already were implemented. The software
architecture was reverse engineered using source code met-
rics.

6.9. ABAS — Attribute-Based Architectural
Styles

Attribute-Based Architectural Styles (ABASs) [23]
build on the concept of architectural styles [9, 35], and
extend it by associating a reasoning framework with an
architectural style. The method can be used to evaluate var-
ious quality attributes, e.g., performance or maintainability,
and is thus not targeted at a specific set of quality attribute.

The reasoning framework for an architectural style can
be qualitative or quantitative, and are based on models for
specific quality attributes. Thus, ABASs enable analysis of
different quality aspects of software architectures based on
ABASs. The method is general and several quality
attributes can be analyzed concurrently, given that quality
models are provided for the relevant quality attributes. One
strength of ABASs is that they can be used also for archi-
tectural design. Further, ABASs have been used as part of
evaluations using ATAM [21].

6.10.SPE — Software Performance Engineering

Software performance engineering (SPE) [36, 39] is a
general method for building performance into software sys-
tem. A key concept is that the performance shall be taken
into consideration during the whole development process,
not only evaluated or optimized when the system already is
developed.

SPE relies on two different models of the software sys-
tem, i.e., a software execution model and a system execu-
tion model. The software execution model models the
software components, their interaction, and the execution
flow. In addition, key resource requirements for each com-
ponent can also be included, e.g., execution time, memory
requirements, and I/O operations. The software execution
model predicts the performance without taken contention
of hardware resources into account.

The system execution model is a model of the under-
laying hardware. Examples of hardware resources that can
be modelled are processors, I/O devices, and memory. Fur-
ther, the waiting time and competition for resources are
also modelled. The software execution model generates
input parameters to the system execution model. The sys-
tem execution model can be solved by using either mathe-
matical methods or simulations.

The method can be used to evaluate various perfor-
mance measures, e.g., response times, throughput, resource
utilization, and bottleneck identification. The methods is
primarily targeted for performance evaluation. However,
the authors argue that their method can be used to evaluate
other quality attributes in a qualitative way as well [39].
The method has been used in several studies by the authors,
but do not seem to have been used by others.

6.11. Summary of Architecture Evaluation
Methods

Table 2 summarizes the most important characteristics
(see Table 1) of our survey of software architecture evalua-
tion methods. As we can see, most of the methods address
only one quality attribute of those that we consider in this
survey, and the most common attribute to address is perfor-
mance. Surprisingly, no method was found that specifically
address portability or testability. Further, we can observe
that only one method exists that support trade-off analysis
of software architectures. Finally, we also observe that only
two methods seem to have been used by others than the
method inventor.

7. Discussion

Despite the promising number of primary studies
found, i.e., 240, it turned out that only 10 software architec-
ture evaluation methods were possible to identify that
addressed one or more of the performance, maintainability,
testability, or portability quality attributes. There exist sev-
eral reasons for this large reduction of the number of arti-
cles. First, there were some duplicate entries of the same
article since we searched several databases. Second, a large
portion of the papers evaluated one or several quality

48

attributes in a rather ad hoc fashion. As a result, we
excluded those papers from our survey since they did not
document a repeatable evaluation method or process.
Third, several papers addressed both hardware and soft-
ware evaluations, thus they did not qualify in our survey
with its focus on methods for software architecture evalua-
tion.

Continuing with the ten remaining articles, we found
that five of the methods addressed only one single quality
attribute. Only one (ATAM) of the remaining five methods
addressing multiple attributes provide support for trade-off
analysis between the quality attributes. No specific meth-
ods evaluated testability or portability explicitly. These
quality attributes could be addressed by any of the three
evaluation methods that are more general in their nature,
i.e., that could address more arbitrary selected quality
attributes, ATAM [21], SAAM [19], or the method by
Lindvall et al. [26].

Many of the methods have been used several times of
the authors. Multiple use of the method indicates an
increase in validity of the method. However, only two
methods have been used by others than the original authors
of the method. We believe that external use of a method is
an indication of the maturity of the method. These two
methods are SAAM and ATAM. However, experience
papers that use a method in whole or part are particularly
difficult to identify, since the evaluation method that has
been used is not always clearly stated.

8. Conclusions

The architecture of a software system has been identi-
fied as an important aspect in software development, since
the software architecture impacts the quality attributes of a
system, e.g., performance and maintainability. A good soft-
ware architecture increases the probability that the system
will fulfil its quality requirements. Therefore, methods for
evaluating the quality attributes of software architectures
are important.

In this paper, we present a survey of evaluation meth-
ods for software architecture quality attribute evaluation.
We focus on methods for evaluating one or several of the
quality attributes performance, maintainability, testability,
and portability. Methods that evaluate several quality
attributes and/or trade-off analysis are especially interest-
ing. Based on a broad literature search in major scientific
publication databases, e.g., Inspec, and reviewing of 240
articles, we present and compare ten evaluation methods.

We have found that many evaluation methods only
address one quality attribute, and very few can evaluate
several quality attributes simultaneously in the same
framework or method. Specifically, only one of the meth-
ods includes trade-off analysis. Further, we have identified
that many methods are only used and validated by the
method inventors themselves.

In summary, our results suggest

Table 2. Summary of evaluation method characteristics.

Name Category Quality attributes Method usage

SAAM [19] Scenario-based General creator [18, 19], other [10, 12, 25]

ATAM [21] Scenario-based General, trade-off creator [21], other [32]

ALMA [6, 7] Scenario-based Modifiabity creator [6, 7, 24]

RARE/ARCADE [4] Simulation-based Performance creator [4]

ARGUS-I [37] Simulation-based Performance creator [37]

LQN [33] Simulation-based Performance creator [1, 33]

SAM [38] Simulation-based Performance creator [38]

EBAE [26] Experience-based, metrics Maintainability creator [26]

ABAS [23] Experience-based General creator [23]

LQN [33] Simulation-based,
mathematical modelling

Performance creator [33, 1], other

SPE [36, 39] Simulation-based,
mathematical modelling

Performance creator [36, 39]

49

• an increased research focus on software architecture
evaluation methods than can address several quality
attributes simultaneously,

• an increased research focus on software architecture
evaluation methods than can address the possible trade-
offs between different quality attributes, and

• an increased focus on validation of software architecture
evaluation methods by people other than the method
inventors.

Acknowledgment

This work was partly funded by The Knowledge Foun-
dation in Sweden under a research grant for the project
“Blekinge - Engineering Software Qualities (BESQ)” http:/
/www.bth.se/besq.

References

[1] Aquilani, F., Balsamo, S., and Inverardi, P., “Performance
Analysis at the Software Architectural Design Level,” Per-
formance Evaluation, vol. 45, pp. 147-178, 2001.

[2] Avritzer, A. and Weyuker E. J., “Metrics to Assess the Like-
lihood of Project Success Based on Architecture Reviews,”
Empirical Software Engineering, 4(3):199-215, 1999.

[3] Babar, M. A., Zhu, L., and Jeffery, R., “A framework for
classifying and comparing software architecture evaluation
methods,” Proc. Australian Software Engineering Confer-
ence, pp. 309-318, 2004.

[4] Barber, K. S., Graser, T., and Holt, J., “Enabling iterative
software architecture derivation using early non-functional
property evaluation,” Proc. 17th IEEE International Confer-
ence on Automated Software Engineering, pp. 23-27, 2002.

[5] Bass, L., Clements, P., and Kazman, R., Software Architec-
ture in Practice, ISBN 0-631-21304-X, Addison-Wesley,
2003.

[6] Bengtsson, PO., Architecture-Level Modifiability Analysis,
ISBN 91-7295-007-2, Blekinge Institute of Technology, Dis-
sertation Series No 2002-2, 2002.

[7] Bengtsson, PO., Lassing, N., and Bosch, J., “Architecture
Level Modifiability Analysis (ALMA),” Journal of Systems
and Software, vol. 69, pp. 129-147, 2004.

[8] Bosch, J., Design & Use of Software Architectures – Adopt-
ing and evolving a product-line approach, ISBN 0-201-
67494-7, Pearson Education, 2000.

[9] Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P.,
and Stal, M., Pattern-Oriented Software Architecture - A
System of Patterns, ISBN 0-471-95869-7, Wiley, 1996.

[10] Castaldi, M., Inverardi, P., and Afsharian, S., “A case study
in performance, modifiability and extensibility analysis of a
telecommunication system software architecture,” Proc.
10th IEEE International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunications Sys-
tems, pp. 281-290, 2002.

[11] Dobrica, L. and Niemelä, E., “A Survey On Architecture
Analysis Methods,” IEEE Transactions on Software Engi-
neering, 28(7):638-653, 2002.

[12] Eikelmann, N. S. and Richardson, D. J., “An Evaluation of
Software Test Environment Architectures,” Proc. 18th Inter-
national Conference on Software Engineering, pp. 353-364,
1996.

[13] Etxeberria, L. and Sagardui, G., “Product-Line Architecture:
New Issues for Evaluation,” Lecture Notes in Computer Sci-
ence, Volume 3714, ISBN 3-540-28936-4, Springer-Verlag
GmbH, 2005.

[14] Franks, G., Hubbard, A., Majumdar, S., Petriu, D., Rolia, J.,
and Woodside C.M., “A Toolset for Performance Engineer-
ing and Software Design of Client-Server Systems,” Perfor-
mance Evaluation, 24(1-2):117-136, November 1995.

[15] Gunther, N., The Practical Performance Analyst, ISBN 0-
07-912946-3, McGraw-Hill, 1998.

[16] Holzmann, G.J., “The Model Checker SPIN,” IEEE Transac-
tions on Software Engineering, 23(5):279-295, May 1997.

[17] IEEE std 610.12-1990 (n.d.). IEEE Standard Glossary of
Software Engineering Terminology, 1990. Retrieved January
19, 2006. Web site: http://ieeexplore.ieee.org/

[18] Kazman, R., Abowd, G., Bass, L., and Clements, P., “Sce-
nario-based analysis of software architecture,” IEEE Soft-
ware, 13(6):47-55, November 1996.

[19] Kazman, R., Bass, L., Abowd, G., and Webb, M., “SAAM: A
Method for Analyzing the Properties of Software Architec-
tures,” Proc. 16th International Conference of Software
Engineering, pp. 81-90, 1994.

[20] Kazman, R., Bass, L., Klein, M., Lattanze, T., and Northrop,
L., “A Basis for Analyzing Software Architecture Analysis
Methods,” Software Quality Journal, 13(4):329-355, 2005.

[21] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson,
H., and Carriere, S. J., “The Architecture Tradeoff Analysis
Method,” Proc. 4th IEEE International Conference on Engi-
neering of Complex Computer Systems, pp. 68-78, 1998.

[22] King, P., Computer and Communication Systems Perfor-
mance Modelling, ISBN 0-13-163065-2, Prentice Hall,
1990.

[23] Klein, M. and Kazman, R., “Attribute-Based Architectural
Styles,” CMU/SEI-99-TR-22, Software Engineering Insti-
tute, Carnegie Mellon University, 1999.

[24] Lassing, N., Bengtsson, P., Van Vliet, H., and Bosch, J.,
“Experiences with ALMA: Architecture-Level Modifiability
Analysis,” Journal of Systems and Software, 61(1):47-57,
March 2002.

[25] Lassing, N., Rijsenbrij, D., and van Vliet, H., “Towards a
Broader View on Software Architecture Analysis of Flexibil-
ity,” Proc. Sixth Asia-Pacific Software Engineering Confer-
ence, pp. 238-245, 1999.

[26] Lindvall, M., Tvedt, R. T., and Costa, P., “An empirically-
based process for software architecture evaluation,” Empiri-
cal Software Engineering, 8(1):83-108, 2003.

50

[27] Liu, A. and Gorton, I., “Accelerating COTS Middleware
Acquisition: The i-Mate Process,” IEEE Software, 20(2): 72-
79, March/April 2003.

[28] Luckham, D. C., “Rapide: A Language and Toolset for Sim-
ulation of Distributed Systems by Partial Orderings of
Events,” Proc. DIMACS workshop on Partial order methods
in verification, pp. 329-357, Princeton, 1997.

[29] Luckham, D., John, K., Augustin, L., Vera, J., Bryan, D., and
Mann, W., “Specification and Analysis of System Architec-
ture using RAPIDE,” IEEE Transactions on Software Engi-
neering, 21(4):336-335, 1995.

[30] Menascé, D., Almeida, V., and Dowdy, L., Capacity Plan-
ning and Performance Modelling, ISBN 0-13-035494-5,
Prentice Hall, 1994.

[31] Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G.J.,
“Implementing Statecharts in PROMELA/SPIN,” Proc. 2nd
IEEE Workshop on Industrial Strength Formal Specification
Techniques, pp. 90-101, October 1998.

[32] Mukkamalla R., Britton M., and Sundaram P., “Scenario-
Based Specification and Evaluation of Architectures for
Health Monitoring of Aerospace Structures,” Proc. 21st Dig-
ital Avionics Systems Conference, Vol 2, pp. 12E1-1-12E1-
12, October 2002.

[33] Petriu, D., Shousha, C., and Jalnapurkar, A., “Architecture-
Based Performance Analysis Applied to a Telecommunica-
tion System,” IEEE Transactions on Software Engineering,
26(11):1049-1065, November 2000.

[34] Reusner, R., Schmidt, H.W., and Poernomo, I. H., “Reliabil-
ity prediction for component-based software architectures,”
Journal of Systems and Software, 66(3):241-252, 2003.

[35] Shaw, M. and Garlan, D., Software Architecture: Perspec-
tives on an Emerging Discipline, ISBN 0-13-182957-2,
Prentice-Hall, 1996.

[36] Smith, C. and Williams, L., Performance Solutions, ISBN 0-
201-72229-1, Addison-Wesley, 2002.

[37] Vieira, M. E. R., Dias, M. S., and Richardson, D. J., “Ana-
lyzing software architectures with Argus-I,” Proc. 22nd
International Conference on Software Engineering, pp. 758-
761, 2000.

[38] Wang, J., He, X., and Deng, Y., “Introducing Software
Architecture Specification and Analysis in SAM Through an
Example,” Information and Software Technology, 41(7):451-
467, May 1999.

[39] Williams, L. G. and Smith, C. U., “Performance Evaluation
of Software Architectures,” Proc. 1st International Work-
shop on Software and Performance, pp. 164-177, 1998.

51

Abstract— sd&m Research is actively working on “Quasar

Enterprise” – a framework of architectural principles and

references for large scale quality architecture. In this

contribution we present its basic and advanced concepts plus a

concrete set of rules for architectural design on enterprise level.

By explicitly working out these concepts and rules we can get a

lot more tangible on semantics of the hyped concept of service-

oriented architecture (SOA).

Index Terms—Application Landscapes, Quality Architecture,

Service-Oriented Architecture (SOA)

I. INTRODUCTION

ver the last years, sd&m Research1 has defined “Quasar”
(Quality Software Architecture) – a well founded

framework of terms, architectural principles and references for
careful planning and robust construction of information
systems [1,2,3]. Quasar has evolved to be a big success story
since its principles and references have been utilized in dozens
of industrial bespoke application development projects at
sd&m and also influenced thinking in the German software
engineering community quite a bit.

On the other hand, pure bespoke application development
projects tend to decrease in relevance compared to projects
where component integration and enterprise level architectural
design are of prime importance. An architectural concept much
discussed in this context recently is that of Service-Oriented
Architecture (SOA). SOA promises to be a good way to
structure systems on a large scale in order to achieve agility,
flexibility and maintainability - properties of IT solutions
needed to address ever faster changing requirements of
business and cost pressure. Much has been written about SOA
[4,5,6,7,8] and sd&m has published some of its experiences
with SOA in industrial practice, too [9,10,11]. Studying these
contributions, one finds that on a very general level the
understanding of SOA is quite unitary. The concept of loose
coupling e.g. is considered central in all contributions. Beyond
that however, one can make two observations:
• First, the in depth understanding of SOA is quite different,

which already starts with the usage of terms.

1 sd&m Research is the research and technology management unit of the

sd&m AG – a German software development, systems integration and IT
consulting company of over 1.000 IT professionals. sd&m’s focus is on
developing and integrating custom solutions.

• Secondly, if it comes to precise rules for designing
components and services we haven’t found much in the
given literature that goes beyond the general concepts.

Therefore sd&m Research over a year ago has started work
on “Quasar Enterprise”. As with “Quasar” sd&m Research
aims at a well founded framework of terms, architectural
principles and references for careful planning and robust
construction – but this time for architectural work on a large
scale. “Quasar Enterprise” – when completely developed – is
meant to be our enterprise architects’ handbook like [3] is
today for our software engineers.

Putting together “Quasar Enterprise” it is important, not to
“reinvent the wheel” and search for a completely new theory of
large scale architecture. The idea is to dig out proven best
practices from our enterprise level architecture and systems
integration projects and to match this with the state of the art
in scientific discourse to come up with a real synthesis. Today
[12] is the most comprehensive coverage of “Quasar
Enterprise” in this respect. But even though there is still some
way to go to finish “Quasar Enterprise”, we think it is worth to
share our view of some of its central elements with the
community.

In the following we structure and introduce these in three
categories:
• The Terms and Basic Concepts: These are the basics to

build the framework on. The contribution of “Quasar
Enterprise” here is simply to standardize by clear
definition. Within this paper we present some of the
central concepts of the ontology.

• The Advanced Concepts: These are the architectural ideas
and tools to be used to further specify Quality
Architecture compared to what is possible with only the
general concepts in terms of the least common
denominator of what a SOA is. Here the contribution of
“Quasar Enterprise” is to dig these out and make them

Towards a Framework for Large Scale Quality
Architecture

Markus Voss, Andreas Hess, Bernhard Humm

O

Fig. 1. Elements of the Framework

52

explicit. Some of these will be outlined in this paper.
• The Rules: These are the actual guidelines on how to

design domains, components, services and couplings.
Here the contribution of “Quasar Enterprise” will be to
put these together in a comprehensive depiction – possibly
for the first time. In this paper we present the current draft
of the core set of rules and even though we still work on
further consolidation, we regard it valuable to present this
intermediary result as basis for more in depth discussion
with the architectural community.

II. TERMS AND BASIC CONCEPTS

A. Business Architecture and Application Architecture

Different from many approaches to SOA which are
technology-driven (e.g. the approaches of many tool vendors,
who regard concrete enterprise service bus (ESB) solutions as
core), we regard SOA is a business-driven approach to quality
architecture. The success factors for reaching the goals of
agility and flexibility typically lie within aligning the
architecture of the application landscape according to
characteristics of the business domains and the business
processes. Therefore it is obvious, that a clear distinction
between the terms and concepts of business architecture and
application architecture is crucial for a sound approach. Doing
so, we actually follow the structure that most of the so called
Enterprise Architecture Frameworks impose (e.g. Zachman
[13], TOGAF [14] or Capgemini’s IAF [15]). In [12] we go
into more detail on the relationship between these frameworks
and “Quasar Enterprise”.
For the terms of business architecture we define as follows:

• We define business architecture to be the set of all
propositions and regularities about business domains,
business processes, business services and business objects
as well as about their relationships amongst each other.

• A business domain is a segment of an enterprise that has
influence on processes and
organization, e.g. market, customers,
suppliers, product or service type,
subsidiary structure or sales channel.
To shape an enterprise’s IT landscape
it is important to know, which of the
domains are essential and
differentiating, since these lead to
identify appropriate application
domains (see below).

• A business process is a sequence of
tasks to reach a defined business goal
directly or indirectly connected with
the enterprise’s products or services. It
may be organized in sub-processes, the
smallest units of which are elementary

tasks that are to be carried out non-
interruptible, by one actor, in one
place.

• A business service is such an elementary task, which is
context free, has a unique actor and a well-defined
business goal connected to its execution. It is these
business services, that a SOA should be built on in terms
of its application services (see below) being deduced from
these business services.

• Business objects finally are real world objects– material or
immaterial. For IT architectural problems we usually work
with their model representations which we call
information objects.

On the other hand the actual subject of our work as
enterprise architects or systems integrators is a company’s
application architecture. For the terms here we define as
follows:
• Application architecture is the set of all propositions and

regularities about application domains, application
components, application services and application service-
operations as well as about their relationships amongst
each other.

• An application domain is a set of application components
belonging together to be regarded as a unit in conjunction
with shaping the application landscape.

• The application landscape is the entirety of all application
components of an enterprise together with their
interconnections in terms of interfaces and data.

• According to [3], a component is an essential element of
design, implementation, and planning. It exports and
imports interfaces, hides its implementation details, and
can be hierarchically structured. There are many other
definitions around of what a component is (e.g. [16]), and
the concept is general enough to cover the complete
spectrum from very large scale components (complete
application landscapes) to very small scale components
(single software objects or classes). In the context of
enterprise level architecture we use the term application

component to denote a self-contained unit of functionality

Fig. 2. Terms and Relationships

53

and data, belonging to an application domain and
exporting specific parts of its functionality as an
application service.

• An application is any collection of application
components regarded meaningful by system designers.

• An application service corresponds with the interface of
an application component. It allows access to a defined
functionality which can be utilized as part of a
comprehensive process. The application service therewith
yields an abstraction of the exporting application
component hiding its implementation details. It is self-
contained and context-independent. The definition of an
application service has the character of a contractual
agreement between service provider and service user
covering syntax, semantics and non functional properties.

• Finally, application service-operations are the actual
functionalities application services are made of. They
have a signature in terms of input and output types and
semantics specifiable by pre- and post-conditions.

Fig. 2 shows the most important terms introduced and their
relationships.
In the context of enterprise level architecture and when

misapprehension is avoided, we only speak of domain,
component, service and operation. Fig. 3 shows these elements
of application architecture.

B. Service-Oriented Architecture and Quality Architecture

Having the terms defined, one can now formally say, what a
Service-Oriented Architecture is. The least common
denominator of all the definitions around probably is the
following set of statements (defined e.g. in [17]):
• Functionality is encapsulated in services

• Services represent publicly known interfaces
• Services are loosely coupled
• Services are atomic

It is obvious, that these attributes of the architecture are not
sufficient to guarantee quality in the sense of the architecture
achieving a high ranking in typical quality measures like
understandability, adaptability, flexibility, agility,
maintainability, manageability, sustainability, cost efficiency,

security, etc. Quality Architecture is
achieved by constructively searching for
an optimum among these measures
according to the actual stakeholders’
needs. A framework for Quality
Architecture like the one we are after with
“Quasar Enterprise” therefore needs to
assist in this process with more advanced
concepts and tools as well as with concrete
rules.

III. ADVANCED CONCEPTS

A. Lay-out Plan

The lay-out plan is an architectural tool
to analyze and shape application
landscapes. It is used to both visualize the

as-is structure of the landscape and visualize, how it is planned
to be developed in the future. By highlighting two dimensions
of the business architecture – often the prime business
processes and some other important business domain - it spans
an area in which the elements of the application architecture -
application domains and components - can be positioned
according to how they address or will address the according
segments of these domains. Fig. 4 shows an example of a lay-
out plan.

Lay-out plans are nothing new and widely used, e.g. as a
tool in so called business-IT alignment projects. Exactly this is
why they are useful in Quality Architecture. They bridge
between business and application architecture and support a
business-driven approach. In 4.1 we show, how rules with
respect to the development plan can help find domains.

B. Service Categories

A second valuable architectural tool is the concept of
service categorization. Application service-operations are
categorized according to their nature in terms of which
segment of large scale architecture they primarily support.
Related concepts can be found in the literature, e.g. in [8].
From our expertise we found, that the most promising set of
categories in terms of quality architecture is the following:

Fig. 3. Domains, Components, and Services

Fig. 4. Lay-Out Plan

54

• Interaction: Service-operations for user interaction with
the application landscape (e.g. in enterprise portals)

• Process: Service-operations supplying implemented
business processes (e.g. in order management)

• Function: Service-operations supplying implemented core
business functions (e.g. in billing)

• Inventory: Service-operations for managing and accessing
business data (e.g. in customer management)

The categorization of service-operations leads to an
ordering concept for application services and components. For
the later, the ideal of every component being of exactly one
category leads to a technical reference architecture on
enterprise level. This is shown in Fig. 5.

Note that the concept of categorized application components
is not to be confused with the layers or tiers of a single
application, often called presentation, business-logic and data-
handling. Large scale application components – even though
they me be of only one service category – usually consist of

sub-components on all three layers. One may only
state, that components of a special category are
typically “heavier” in the according layers
(meaning that they have “more” or “bigger” sub-
components within these layers). Fig. 6 illustrates
this.

C. Integration Levels

The third architectural tool of importance is the
concept of integration levels. The basic idea is
that application components can be integrated in
three forms resembling the layers or tiers of an
application as mentioned above:
• Presentation integration: Components are

coupled in terms of their presentation layer
components interacting. This sort of coupling

is typically technically implemented by portal server or
screen scraping technologies.

• Service integration: Components are coupled in terms of
their business-logic layer components interacting. This
sort of coupling is typically technically implemented by
enterprise application integration (EAI) technologies.

• Data integration: Components are coupled in terms of
their data-handling layer components interacting. This sort
of coupling is typically technically implemented by data
integration and extract-transform-load (ETL)
technologies.

Fig. 7 illustrates the concept.
The concept of integration levels is also not new. One can

find e.g. the same levels in SAPs Netweaver architecture [18]
(alternatively named people integration, application integration
and data integration).

As we see, integration is nothing more than the enterprise
level term for coupling of application components or
applications. Note that the concept of integration levels is not
to be confused with the service categories since these are
strictly orthogonal. As above, one may only state, that
components of a special category are typically “heavier”
coupled in the according levels in that they have “more” or
“closer” interactions within these levels. Fig. 8 illustrates this.

Talking of Service-Oriented Architecture, the focus usually
is on the service integration level. EAI / ESB solutions are
often regarded as the typical means for implementing a SOA
technically.

Fig. 5. Reference Architecture according to Service Categories

Fig. 7. Integration Levels

Fig. 6. Service Categories vs. Application Layers

Fig. 8 Service Categories vs. Integration Levels

55

Talking of Quality Architecture however, choosing the
appropriate levels of integration is indeed a measure.

D. Business Process Management and Orchestration

One specific form of service integration as introduced above
is by following a business process management (BPM)
approach. BPM recently is often cited in the same breath with
SOA (e.g. [19,20]). Even though – as with SOA – BPM can be
regarded as (only) an IT management approach, here we
regard it as a specialization of the architectural style of SOA.
The BPM approach aims at a SOA, where all elementary steps
of a business process are supported by services and all the
comprehensive process logic and the tasks of coordination
between these elementary services is located in another
dedicated service.

Another term of interest in this context is orchestration.
According to [11] e.g. orchestration is the definition of a
business process as a composition of elementary services
according to the BPM approach as defined above. In the
contrary case where process execution logic is not centralized
but implicitly contained in the messages exchanged between
the elementary services themselves the composition is called
choreography.

The BPM structure allows for separating the more stable
elements in terms of the elementary functions from the more
agile ones dealing with potentially fast changing business
processes. According to the concept of service categorization
the former correspond to function or inventory
components/services. The later correspond to process
components/services and their implementation can be based on
either dedicated systems like e.g. order managements solutions
allowing for the flexible configuration of workflows or can be
based on dedicated BPM products. How to actually implement
a BPM-aligned SOA therefore is an explicit design decision.

IV. RULES

A. Designing Domains

Business domains are defined by business requirements.
Therefore business domains in the first place are found along
the core processes of the value chain. Other domains may
result from core business objects like partner or product that
are of importance cross the business process. Thirdly, business
domains of importance may be found looking at the single
branches, e.g. product type. However, for business domains
there is no rule of how to find the right ones for your
architectural approach other then to try to understand the
business of the enterprise and its strategy. Business domains
result from questioning the stake holders.

This is different with application domains. Well cut
application domains follow the business domains identified as
important. For optimizing the domains design the following
rule applies:

� Optimal Covering: Design and arrange your application

components within domains in a way, that according to

the most important business domains the covering in the

lay-out plan is optimal. The covering is optimal, if there

are no avoidable multiply covered areas and if horizontal

and vertical partitioning is as homogeneous as possible

Unavoidableness and possibility in this regard result from

given limitations like e.g. organizational constraints
(accountability). Obviously, since shaping an application
landscape on enterprise level always starts from some a given
as-is status, applying the rule in reality is about planning a
migration on a large scale.

B. Designing Components

Finding components is probably the oldest design challenge
in software engineering. Nobody will be surprised, that the
“golden rules of good design” like
• Information Hiding (as well as the related concepts of

encapsulation and minimal coupling / maximal cohesion),
• Separation of Concerns
• Decoupling

also apply on the enterprise level finding the right
application components. Taking these plus the advanced
concepts presented in chapter 3 plus our findings from
industrial practice we propose 7 concrete rules for designing
application components in large scale quality architectures:

� Professional Categorization: Define your application

components according to appropriate professional

categories

On the highest level this demand for a separation of
concerns corresponds with the demand for a unique mapping
of application components to domains (see 4.1). But on lower
levels it also calls for separating components inside one
application domain according to different stakeholders
involved, different speeds of change (see 3.4), different
dependency on process etc.

� Service Category Orientation: Define your application

components to be of exactly one service category

After what was said in Chapter 3, this rule is obvious. We
really vote for taking service categories serious, since mixtures
here have often proven to be time and cost intensive to
maintain and later replace.

� Dependencies according to Service Categories: Allow

only for dependencies from components to components on

equal or lower level of service category

Dependencies amongst components can be of type “knows”,
“calls”, or “gets data from”. For all these we demand:
components of type interaction only depend on components of
type interaction, process, function or inventory, process only
on process, function or inventory, function only on function or
inventory and inventory only on inventory

56

� No Cyclic Dependencies: Avoid cyclic dependencies

amongst application components. Use (if appropriate)

merging, separation or call-back

Cyclic dependencies cause problems in development,
testing, maintenance and replacement.

� Minimal Coupling / Maximal Cohesion: Design your

components for minimal coupling and maximal cohesion

This is well known from software design and rightfully
demanded on the large scale, too.

� Data Sovereignty: Access to all business objects data is

allowed through components of type inventory only. The

areas of business objects data to be handled by different

components are to be disjoint

The same argument counts as with cyclic dependencies.

� Manageable Size: Domains should have a medium-size

number of components (not too many, not too little) and

all components of a domains should have approx. equal

size (e.g. in terms of lines of code, use case points etc.)

This is a well known principle supporting manageability of
the architecture.

C. Designing Services

Designing the components is one side of the coin –
designing the services is the other. But before we can define
the rules for the later, we need to add a little enhancement to
the definitions from Chapter 2 concerning types of application
service-operations. Operations can be classified as follows:
• Elementary: These operations yield simple basic

functionality.

• Compound: These operations are implemented by using
multiple elementary operations and provide added value
services.

• Orchestrateable: These operations are designed
to be a basis for an orchestration as defined in
chapter 3. Usually these are compound.

Therewith we define the following 7 rules for the
design of service-operations:

� Service Category Orientation: Every service-

operation should be of exactly one service

category

Same argument as for components.

� Implementation Neutrality: Service-operations

should not export any implementation details

This is the obvious demand for encapsulation,

e.g. technical keys should never be part of any operation
signature.

� Normality (being complete and free of redundancy):

Elementary service-operations should be normal

For a detailed discourse see [21].

� Coarse-Granularity: Orchestrateable service-operations

should be coarse-granular

Few operations doing much are better then many operations
doing little in the context of loose coupling.

� Idempotency: Orchestrateable service-operations should

be idempotent

Idempotent operations can be called multiple times if
necessary not changing the result. This is necessary in the
context of decoupling.

� Context-Insensitivity: Service-operations of type function

and inventory should not have any knowledge about the

context in which they are called and therefore should not

make any assumptions about it

This is another necessary condition for decoupling.

� Constraint on Transactionality: Transactional behavior

(guaranteeing atomicity, consistency, isolation, and

durability) is only allowed for operations of category

inventory or function. All other operations are to be

designed non-transactional with according compensation

operations

And this is yet another necessary condition for decoupling.

All presented information about rules for designing services

are summarized in Fig. 9.

Process

Function,

Inventory

Interaction

e
le
-

m
e
n
-

ta
ry

c
o
m
p
o
u
n
d

c
o
a
rs
e
-

g
ra
n
u
la
r,

id
e
m
p
o
te
n
t

c
o
n
te
x
t-

in
s
e
n
s
it
iv
e
,

p
o
te
n
ti
a
lly

tr
a
n
s
a
c
ti
o
n
a
l

n
o
r-

m
a
l

c
a
te
g
o
ry
o
ri
e
n
te
d
,

im
p
le
m
e
n
ta
ti
o
n
n
e
u
tr
a
l

o
rc
h
e
s
tr
a
te
-

a
b
e
l

Category Types Rules

Process

Function,

Inventory

Interaction

e
le
-

m
e
n
-

ta
ry

c
o
m
p
o
u
n
d

c
o
a
rs
e
-

g
ra
n
u
la
r,

id
e
m
p
o
te
n
t

c
o
n
te
x
t-

in
s
e
n
s
it
iv
e
,

p
o
te
n
ti
a
lly

tr
a
n
s
a
c
ti
o
n
a
l

n
o
r-

m
a
l

c
a
te
g
o
ry
o
ri
e
n
te
d
,

im
p
le
m
e
n
ta
ti
o
n
n
e
u
tr
a
l

o
rc
h
e
s
tr
a
te
-

a
b
e
l

Category Types Rules

Fig. 9 Rules for Designing Services

57

D. Designing Couplings

Finally, the rules for designing coupling will be presented.
We order these in two groups. The first group contains the
general rules of coupling.

� Loose Coupling: Couple your application components as

loose as possible and as tight as necessary

This is the way to achieve maximum flexibility.

� Constraint on Tight Coupling: The tightest form of

coupling in terms of synchronous intra-process

communication is only allowed for operations of category

inventory or function

The second group finally contains rules with respect to the
integration levels. These are self-explanatory.

� Presentation Integration: Choose presentation

integration, if user interfaces to be integrated already

exist and integration logic is restricted to dialogue

control and value passing

� Service Integration: Choose service integration, if

applications to be integrated with substantial business-

logic already exist and quick implementation of new

processes and products is strategic

� Data Integration: Choose data integration, if data

redundancy already exists or is planned for performance

reasons and differences between logical and physical

data model are small

V. PROSPECT

In this contribution we have outlined some of the core
elements of what we aim at with “Quasar Enterprise” – a
framework for Quality Architecture on the enterprise level. It
was shown that SOA is indeed a promising concept, but also
that there is more to Quality Architecture than SOA. Most
prominently we have proposed a draft set of concrete rules to
design a SOA to meet usual quality requirements.

Future research regarding the presented elements of “Quasar
Enterprise” will be on further consolidating the set of rules by
extending the set of concrete sd&m projects and experiences
to validate the rules against. Also we will elaborate more on
the “traceability” between rules or design decisions and the
actual quality attributed listed e.g. in II B.

Many other elements that “Quasar Enterprise” will be about
were not mentioned at all like the idea of reference

architectures for specific parts of the application architecture
(many of them already existing at sd&m, see e.g. [22]) or the
concept of embedding as a mechanism for integrating legacy
systems and COTS application components into a SOA.

Nonetheless we hope that this contribution will lead to the
sought-after scientific discourse within the community.

REFERENCES

[1] Denert, E., Siedersleben, J.: Wie baut man Informationssysteme?
Überlegungen zur Standardarchitektur. Informatik Spektrum 4/2000, pp
247-257

[2] Siedersleben, J. (Hrsg.): Quasar: Die sd&m Standardarchitektur. Teile 1
und 2, 2. Auflage. sd&m Research, 2003

[3] Siedersleben, J.: Moderne Software-Architektur – umsichtig planen,
robust bauen mit Quasar. dpunkt Verlag. 2004

[4] Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-
Oriented Architecture (SOA) Compass: Business Value, Planning, and
Enterprise Roadmap. IBM Press 2006

[5] Erl, T.: Service-Oriented Architecture : A Field Guide to Integrating
XML and Web Services. Prentice Hall PTR. April 2004

[6] Keller, W.: Enterprise Application Integration. Erfahrungen aus der
Praxis. dpunkt-Verlag 2002

[7] Krafzig, D., Banke, K., Slama, D.: Enterprise SOA : Service-Oriented
Architecture Best Practices. The Coad Series. Prentice Hall PTR.
November 2004

[8] Woods, D.: Enterprise Services Architecture. Galileo Press. Bonn, 2004
[9] Richter, J.-P.: Wann liefert eine serviceorientierte Architektur echten

Nutzen? Proceedings Software Engineering 2005, Fachtagung des GI-
Fachbereichs Softwaretechnik, 8.-11.3.2005, Essen, Page 231-242

[10] Richter, J.-P., Haller, H., Schrey, P.: Aktuelles Schlagwort
Serviceorientierte Architektur. Informatik-Spektrum Band 28, Heft 5, S.
413 – 416. Springer-Verlag, 2005

[11] Richter, J.-P., George, T., Gugel, T., Heimann, T., Lange, H. Möllers,
T.: Technology Guide: Serviceorientierte Architekturen. sd&m, 2005

[12] Hess, A., Humm, B., Voss, M.: Quasar Enterprise – Serviceorientierte
Architektur konkret. White Paper, sd&m Research, 2006

[13] Zachman, J.A.: The Zachman Framework for Enterprise Architecture –
A Primer for Enterprise Engineering and Manufacturing. Zachman
International, 2003

[14] The Open Group: TOGAF – The Open Group Architecture Framework.
www.opengroup.org/togaf/

[15] Capgemeini: IAF – Integrated Architecture Framework.
www.capgemini.com

[16] Szyperski, C.: Component Software. Addison Wesley 2002
[17] Reussner, R., Hasselbring, W.: Handbuch der Software-Architektur.

dpunkt Verlag. 2006
[18] SAP: Netweaver. www.sap.com/solutions/netweaver
[19] Noel, J.: BPM and SOA: Better together. White Paper, IBM, 2005
[20] Rother, T.: Der optimale Weg zur Geschäftsagilität: SOA oder BPM.

White Paper, Software AG, 2005
[21] Humm, B., Juwig, O.: Eine Normalform für Services. Proceedings of

Software Engineering 2006. GI Edition Lecture Notes in Informatics
(LNI) P-79. Gesellschaft für Informatik, 2006

[22] Haft, M., Humm, B., Siedersleben, J.: The architect’s dilemma – will
reference architectures help? In: R. Reussner et al. (Eds.): Quality of
Software Architectures and Software Quality (QoSA-SOQUA 2005),
Lecture Notes in Computer Science 3712, pp. 106 – 122, 2005.
Springer-Verlag, 2005

58

An Approach to Resolving Contradictions in
Software Architecture Design

Daniel Kluender
Embedded Software Laboratory

RWTH Aachen University
Aachen, Germany

Email: kluender@informatik.rwth-aachen.de

Abstract— A key element to designing architectures of good
quality is the systematic handling of contradicting quality re-
quirements and the structuring principles that support them.
The theory of inventive problem solving (TRIZ) by Altshuller
offers tools that can be used to define such a systematic way.
This paper describes the idea and preliminary results of using
inventive principles and the contradiction matrix for the resolution
of contradictions in the design of software architectures.By
rearchitecting a flight simulation system these tools are analyzed
and their further development is proposed.

I. I NTRODUCTION

It has long been recognized that a system’s software archi-
tecture has a major impact on the nonfunctional properties of
that system like dependability, performance or modifiability
[20]. Designing software architectures of good quality is
therefore central to software engineering as is the evaluation
of architecture quality.

Figure 1 shows the process of requirements analysis ac-
cording to [2]. The non-functional requirements representthe
business goals associated with the system-to-be, the functional
requirements are technically oriented. During requirements
analysis the functional specification is written down and the
driving qualities are identified. Driving qualities represent
the hard to implement but yet most important stakeholder
interests in a product. Because of their important impact onthe
architecture the driving qualities are also called architectural
drivers. Architecture design can be seen as an optimization
problem with the driving qualities being the optimization
criteria and the functional specification being the optimization
constraints.

Structuring principles which support certain qualities help
the architect in finding the optimal architecture. These struc-
turing principles can be architectural tactics or styles [2] like
information hiding or architectural patterns [6] like a client-
server architecture. Most structuring principles affect several
qualities, either enabling or inhibiting them, e. g. information
hiding supports the maintainability of a system but is impairing
its performance. While the architect can choose from a set
of well documented principles (see e. g. the work of Booch
on a handbook of software architecture [3]) the merging and
consolidation of different principles is by and large stillan ad
hoc and largely unsystematic process to date.

Conflicting quality requirements like performance and main-
tainability or conflicting structuring principles are compound-

ing the design of a system’s software architecture. The res-
olution of these conflicts relies heavily on the architect’s
experience and knowledge of the structuring principles. A
software architecture represents the tradeoffs between the
conflicting qualities that are acceptable for all stakeholders.

The author believes that the key to designing architectures
of good quality is the systematic handling of contradictions
between quality requirements or their according structuring
principles ideally resulting in the elimination or resolution of
the conflict. Thetheory of inventive problem solving (TRIZ)
by Altshuller [1] offers tools that can be used to define
such a systematic way. This paper describes the idea and
preliminary results of using the TRIZ toolsinventive principles
and contradiction matrix for the resolution of contradictions
in the design of software architectures. The rest of the paper is
structured as follows: section II gives a short introduction into
the origin of TRIZ and its possible use in software engineering.
In sections III and IV we analyze the applicability of two tools
offered by TRIZ to architecture design. These tools are usedto
rearchitect a flight simulation system as an example in section
V. Section VI concludes the paper and gives an outlook to
future work.

II. TRIZ

TRIZ is the Russian acronym for a term that is commonly
translated astheory of inventive problem solving and has been
developed by Altshuller et al. since 1946. By analyzing over
200,000 patents they found that [1]:

• Innovations emerge from the application of a relatively
small set of strategies, so calledinventive principles.

• The strongest solutions actively seek out and destroy the
conflicts orcontradictions most design practices assume
to be fundamental.

• They also transform unwanted or harmful elements of a
system into useful resources.

• Technology evolution trends are predictable.
Based on these foundations TRIZ offers a set of tools that can
be used to solve problems by applying the strategies employed
for successful inventions. These tools include e. g.Substance-
Field Analysis, Subversion Analysis, Trends of Evolution or
the Contradiction Matrix. The basic idea is to use generalized
solutions from one domain to provide inspiration for other
domains. This makes TRIZ a very general theory that can be

59

requirements
elicitation

technically oriented business oriented

architecture

design
= optimization

functional
requirements

analysis

functional spec
= optimization

constraints

non-functional
requirements

analysis

driving qualities
= optimization

criteria

requirements
analysis

Fig. 1. Two paths of requirements analysis according to [2]

applied in many areas. This paper examines the application of
the TRIZ toolContradiciton Matrix for software architecture
design.

The application of TRIZ to software engineering is a rela-
tively new field, hence publications are only few. Rea discusses
analogies to the inventive principles in software [16], [17] and
uses them to obtain several patents [19]. These analogies are
extended by Fulbright [7] and Tillaart [21]. Most of them are
not directly applicable to software architecture and will be
further discussed in section III. Nakagawa is reviewing topics
in software engineering such as structured programming to
reason about them using TRIZ [13], Rea reviews concurrency
[15]. Rawlinson discusses the application of contradictions
between speed, reliability, energy and complexity [14] butdoes
not go into the implications for software architecture. A more
general review of the application of TRIZ to software can be
found in [18]. Hartmann et al. emphasize the practicability
of TRIZ for software architecture [8], Muller classifies TRIZ
as a possible architecting method [12]. Figure 2 shows his
classification of architecting methods with the more general
methods placed to the right.

Mann’s summary [10] gives a short insight into his up-
coming book [11]. He analyzed 40,000 patents in software
and developed a newly tailored contradiction matrix, slightly
modified inventive principles, trends of evolution and other
TRIZ tools. Since the paper just gives a short overview, the
book that is not available at the time of this writing needs to
be awaited for a more detailed discussion.

III. I NVENTIVE PRINCIPLES

The aforementioned observation that innovations emerge
from the application of a relatively small set of strategies
lead TRIZ researchers to the formulation of 40 innovative
principles.These are the generalized descriptions of 40 solution
strategies like e. g.nesting, counterweight or changing the

colour that were identified by analyzing patents. Despite their
generality not all of the 40 innovative principles are directly
applicable to software architecture design, some are apparent
mismatches. Nevertheless these principles subsume solutions
to conflicts and contradictions that are successfully applied
in other domains, hence a mapping into software architecture
terms seems promising.

Since TRIZ was developed in hardware-based technology
fields this mapping is not a straight forward task. Others have
tried to find analogies [7], [16], [17], [21] but these analogies
are concerned with multiple phases of software engineering.
Most of them are close to implementation issues of specialized
domains and as such not usable for application to software
architecture. Mann has analyzed software patents [10], [11]
but as said before his results have not yet been published.
Some ideas can also be found in his paper about buildings’
architectures [9] .

Formulating a new set of innovative principles for software
architecture in the same way it was done during the devel-
opment of the TRIZ theory is hard because these principles
originate from the analysis of patents but there are few
patents on software architectures. In contrast to a derivation
of software architecting principles from patents they can be
formulated using patterns. Architectural patterns are a good
source for principle mining because they are generalized
solutions for frequently occurring problems. As such they
contain the heuristics of successfull solutions. The analysis
of correspondences between inventive principles and patterns
shows the following:

1) Inventive principles are more general than patterns and
as such often comprise several patterns. For example
the principlesegmentation is a generalized description
of patterns like thelayered architecture pattern or the
principle copying comprises several redundancy pat-

60

software archi-

tecting meth-

ods:

• SAAM

• ATAM

• 4+1 (Kruchten)

• 4 views (Soni)

• ZIFA
(Zachman)

• 9126 (ISO)

• VAP
(Bredemeyer)

multidisciplin-

ary systems

architecting

methods:

• SE practices
(INCOSE)

• 1471 (IEEE)

• CAFCR
(Muller)

methods also

addressing

process and

organization:

• Systems

Engineering
(Martin)

•Systems

Architecting
(Maier, Rechtin)

generic meth-

ods:

• TRIZ
(Altshuller)

• GST (Hitchins,

Heylighen)

(SEI)

Fig. 2. Classification of architecting methods according to[12]

terns. Hence inventive principles are no replacement for
patterns but combined with the contradiction matrix can
serve as a navigation aid for selecting patterns or finding
new ones.

2) It’s common in TRIZ to cluster the inventive principles
into four classes: contradiction resolution in space, time,
structure and material. Correspondences between archi-
tectural patterns and principles can mainly be found in
the first three.

3) For some principles we can not find any correspondences
in architectural patterns. For exampleaccelerated oxida-
tion describes the principle to replace common air with
oxygen-enriched air. Most of these principles are part of
the material class.

4) Correspondences between the 40 inventive principles
and architectural patterns can be found for 29 principles
(e. g.garbage collection as an example of the principle
rejecting and regenerating parts) and no correspon-
dences for 11 principles (e. g.changing the state of
aggregation). The complete list of correspondences can
be retrieved from the author’s website1.

IV. CONTRADICTION MATRIX

The inventive principles can be used stand-alone to search
for solutions or in form of the contradiction matrix for a more
directed search in solution space. This matrix is another TRIZ
tool that allows users to detect side-effects the 40 innovative
principles can have 39 various technical parameters like e.g.
repairability, reliability or temperature. The 39 * 39 matrix
is a table that contains the three or four most often used
inventive principles for solving contradictions between the 39
technical parameters. From an architect’s point of view these
parameters can be seen as the quality attributes of the system
to be designed. The viewpoint of TRIZ is that there are ways of
eliminating or resolving contradictions between the technical
parameters and that designers should actively look for them.
Though a software architect might rather think of a trade-
off between contradicting quality attributes the elimination
of these contradictions are considered to be a valuable ideal.

1http://www-i11.informatik.rwth-aachen.de/
kluender.html

Table I shows an extract from the contradiction matrix since
the complete matrix would use too much space. Each cell lists
the identification numbers of the inventive principles thatare
most often used to resolve a conflict or contradiction between
the technical parameters of the cell’s row and column. It
shows e. g. that inventive principle 2 (Extraction: Separate
or extract an interfering part or property from a technical
system or single out the only necessary part or property.) isthe
most often used principle to resolve the contradiction between
manufacturability and convenience of use.

For constructing a contradiction the positive and negative
effects of a function or action are described in terms of two
of the 39 technical parameters of the contradiction matrix.For
resolving this contradiction the inventive principles noted in
the corresponding cell of the matrix are applied. Therefore
the matrix’s rows describe the positively affected parameters
and the columns the negatively affected ones. Of course
each contradiction has a corresponding inverse contradiction
that is constructed by describing the effects of the inverse
function or action. Since the matrix is not completely equal
to its transpose the creation of inverse contradictions can
sometimes reveal more inventive principles. Contradictions
including more than two parameters can always be segmented
into several contradictions including only two parametersalso
described as binary contradictions [1].

As a very simple example regard a static physical object that
is to be extended without increasing its weight. The technical
parameter to be improved is thelength of a stationary object
but that would also lead to impairing the technical parameter
weight of a stationary object. In the according cell of the
contradiction matrix the following innovative principlesare
suggested: composite materials, replacement of a mechani-
cal system, transforming of physical or chemical states, use
pneumatic or hydraulic systems. It should be mentioned here
that some cells of the contradiction matrix are empty, simply
because no solution for this conflict can be found in the patents
that were analyzed to construct this matrix.

As said before quality attributes can be seen as translations
of the technical parameters when applying the contradiction
matrix to software architecture. Some of these translations
are straight forward like reliability, availability (durability of
an object), adaptability or maintainability (repair friendliness).

61

TABLE I

AN EXTRACT FROM THE CONTRADICTION MATRIX

manufacturability convenience of use repairability adaptability

manufacturability 2, 5, 13, 16 35, 1, 11, 9 2, 13, 15

convenience of use 2, 5, 12 12, 26, 1, 32 15, 34, 1, 16

repairability 1, 35, 11, 10 1, 12, 26, 15 7, 1, 4, 16

adaptability 1, 13, 31 15, 34, 1, 16 1, 16, 7, 4

Others can not be easily translated into software architecture
terms like mass, length, area or volume of a moving or
immobile object. Although not all inventive principles and
all technical parameters of the contradiction matrix can yet
be translated into software architecture terms the remaining
extract can be useful for software architecting because it
offers a navigation help when searching for an architectural
solution to contradictions in contrast to common trial-and-error
methods that are solely based on the architect’s experience.

In the software design process the contradiction matrix can
be of help if two driving qualities or their supporting archi-
tectural principles contradict each other. The architect looks
up the corresponding technical parameters in the matrix and
tries to apply the listed innovative principles and architectural
patterns that belong to them. Just as well the matrix can help
to choose an architectural pattern to support a driving quality
that has no contradicting quality requirement by supporting
information on the effect of a pattern on other qualities. That
way the matrix allows a systematic approach to choosing
patterns and resolving contradictions between quality require-
ments which can easily be integrated into mature architecture
design methods like e. g. attribute driven design [5].

V. EXAMPLE : FLIGHT SIMULATOR

To analyze the applicability of the two TRIZ tools and give
an example of their usage the well documented requirements
and architecture of the flight simulation system introduced
in chapter eight of [2] is used. Rearchitecting the existing
system allows to examine whether the inventive principles
and contradiction matrix can help designing the system’s
architecture. The question of interest is whether the general
principles for resolving contradictions found in other areas
can also be applied to software architecture.

During requirements elicitation and analysis the driving
qualities are identified. Afterwards their corresponding tech-
nical parameters from the contradiction matrix are denoted:

• the system’s performance corresponds to technical param-
eter 9: speed

• modifiability to accommodate changes in requirements
and scalability of function correspond to technical pa-
rameter 35: adaptability

• integrability corresponds to technical parameter 32: man-
ufacturability

• testability corresponds to technical parameter 37: com-
plexity of control and measuring

In general some of these architectural drivers contradict each
other. For the flight simulator improving modifiability could

impair the system’s performance. To resolve this contradiction
the contradiction matrix suggests using the inventive principles
dynamicity, prior action or copying. In fact the architecture
design suggested in [2] uses a partitioning that maintains a
close correspondence between the aircraft partitions and the
simulator virtually copying parts of the aircraft.

Other inventive principles that can be found in the suggested
architecture includesegmentation, extraction, mediator and
nesting. The example shows that the inventive principles are
no replacement for architectural tactics or patterns but rather
an extension that helps selecting merging and balancing them.
As said before some parts of TRIZ seem to make no sense for
software architecture, e. g. the suggested usage of the inventive
principle changing the state of aggregation.

VI. CONCLUSION AND FUTURE WORK

Contradicting quality requirements and the merging of their
supporting architectural strategies are core problems in soft-
ware architecture design and make it a task that is heavily
dependent on the architect’s experience and knowledge. Using
the TRIZ tools inventive principles and contradiction matrix
can help directing the search in the solution space into a
heuristically promising direction. Hence these tools can be
seen as an extension to architectural tactics and patterns.This
paper displays the author’s approach of finding correspon-
dences between inventive principles and architecture patterns
on the one hand and technical parameters and quality attributes
on the other. Although not all 40 principles and 39 parameters
have a corresponding pattern or attribute the remaining can
be useful in architecture design. In fact some of the general
principles for resolving contradictions found in other areas can
also be applied to software architecture.

Future work will concentrate on deepening the understand-
ing of inventive principles and the contradiction matrix and
their application to software architecture. Questions to be
answered are whether the matrix should be modified into
a software architecture specific matrix or whether all the
experience and knowledge of other fields can be used for
designing software architectures. The analyzed TRIZ tools
could also be used for other fields than architecture design as
e. g. scenario based architecture evaluation [4]. It might also
be promising to try to apply other TRIZ tools likeSubstance-
Field Analysis, Subversion Analysis or Trends of Evolution to
software architecture. Finally the insight of using TRIZ for
software might be valuable for TRIZ theory itself.

62

REFERENCES

[1] G. Altshuller, H. Altov, and L. Shulyak. And Suddenly the Inventor
Appeared: Triz, the Theory of Inventive Problem Solving. Technical
Innovation Ctr., 1996.

[2] Len Bass, Paul Clements, and Rick Kazman.Software Architecture
in Practice. SEI Series in Software Engineering. Addison-Wesley
Professional, 2. edition, 2003.

[3] Grady Booch. On architecture.IEEE Software, 23(2), March / April
2006.

[4] Liliana Dobrica and Eila Niemel. A survey on software architecture anal-
ysis methods.IEEE Transactions on Software Engineering, 28(7):638–
653, Juli 2002.

[5] L. Bass, F. Bachmann, and M. Klein. Quality attribute design primitives
and the attribute driven design method.In Proceedings of the 4th
International Conference on Product Family Engineering, Springer
Verlag, Berlin, Germany, 2002.

[6] Bruce Powel Douglass.Real-Time Design Patterns. Addison-Wesley,
2003.

[7] Ron Fulbright. TRIZ and software fini.TRIZ Journal, August 2004.
[8] Herman Hartmann, Ad Vermeulen, and Martine van Beers. Application

of TRIZ in software development.TRIZ Journal, September 2004.
[9] Darrell Mann. 40 inventive (architecture) principles with examples.TRIZ

Journal, July 2001.
[10] Darrell Mann. TRIZ for software?TRIZ Journal, October 2004.
[11] Darrell Mann.TRIZ for Software Engineers. IFR Press, to appear soon.
[12] Gerrit Muller. CAFCR: A Multi-view Method for Embedded Systems

Architecting. PhD thesis, Technische Universiteit Delft, 2004.
[13] Toru Nakagawa. Software engineering and TRIZ - structured program-

ming reviewed with TRIZ. InProceedings of TRIZCON. Altshuller
Institute, April 2005.

[14] Graham Rawlinson. TRIZ and software. InTRIZCON. Altshuller
Institute, March 2001.

[15] Kevin C. Rea. Using TRIZ in computer science - concurrency. TRIZ
Journal, August 1999.

[16] Kevin C. Rea. TRIZ and software - 40 principle analogiespart1. TRIZ
Journal, September 2001.

[17] Kevin C. Rea. TRIZ and software - 40 principle analogiespart 2. TRIZ
Journal, November 2001.

[18] Kevin C. Rea. Applying TRIZ to software problems. InProceedings of
TRIZCON. The Altshuller Institute, May 2002.

[19] Kevin C. Rea. TRIZ for software: Using the inventive principles. TRIZ
Journal, January 2005.

[20] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

[21] Rob van den Tillaart. TRIZ and software - 40 principle analogies, a
sequel.TRIZ Journal, January 2006.

63

Quality Attribute Variability within a Software
Product Family Architecture

Varvana Myllärniemi, and Tomi Männistö and Mikko Raatikainen
Helsinki University of Technology

Software Business and Engineering Institute
P.O. Box 9210, 02015 TKK, Finland

Email: {varvana.myllarniemi, tomi.mannisto, mikko.raatikainen}@tkk.fi

Abstract— Software variability has received research attention.
However, only a few studies address the issue of quality attribute
variability within software product families. This paper describes
the ongoing research on quality attribute variability within a
software product family architecture. We motivate the research
topic by identifying three different situations in which quality
attributes may vary. These situations can be characterised by the
trade-offs they represent. We briefly discuss a number of existing
methods that can be used for realising quality attribute variability
within the scope of one architecture, i.e., as a software product
family. The ongoing research aims to deepen this understanding.

I. INTRODUCTION

Due to the growing diversity of customer needs, software
often has to support variability. Variability is the ability of
software to be efficiently extended, changed, customised or
configured for use in a particular context [1]. Techniques such
as software product families (also known as software product
lines) have emerged to aid efficient variability management
and realisation [2], [3]. Variability in software product families
has been studied to a considerable extent. However, most stud-
ies address only functional variability, or study variability only
at a very general level. Some studies identify that also quality
attributes can vary [4]–[6], but to the best of our knowledge,
an extensive treatment on quality attribute variability from
product family point of view is missing.

Quality attributes, such as performance, security or main-
tainability, are often architectural in nature [7]. That is, the
architecture is critical to the realisation of these quality at-
tributes, and they should be designed in and evaluated at
the architectural level [7]. This is in contrast to functionality,
which is largely nonarchitectural in nature: any number of
possible structures can be conceived to implement any given
functionality [7]. Therefore, quality attribute variability may
in some cases have architectural ramifications that differ
from those of functional variability. For example, often the
realisation of a quality attribute cannot be localised into one
part of the architecture. In the worst case, a change in such
a quality attribute may require architecture-wide changes. In
contrast, functionality is often more easily decomposed into a
certain subsystem, and thus it is easier to be varied.

As said, the topic of quality attribute variability in software
product families has not received much research attention.
However, there are several existing software products that

offer varying levels of quality attributes. Since a common
theory as well as generic methods to address the issue are
missing, the solutions in the existing cases tend to be ad hoc
or very domain-specific. Therefore, quality attribute variability
should be integrated to be a part of the systematic variability
management of software product families, enabling to take an
advantage of the phenomenon to its fullest extent.

This paper describes the ongoing research on quality at-
tribute variability. We motivate the research topic by identify-
ing three different trade-off situations that can be solved with
varying quality attributes. For each situation, an example from
the Finnish industry is given. We also briefly discuss how
quality attribute variability can be realised within the scope
of a varying architecture, i.e. as a software product family.
For this purpose, we discuss a number of existing methods
in terms of their feasibility in supporting varying quality
attributes. However, the ongoing research aims to deepen this
understanding.

The scope of this research is limited to software variability.
That is, we are interested in software techniques, in partic-
ular architectural ones, that aim to achieve varying quality
attributes. Although hardware often plays a role in achieving
quality attributes, we focus on software architecture. Further,
we limit our scope to situations in which quality attribute
variability can be implemented through a varying architecture,
i.e., as a software product family.

The rest of the paper is organised as follows. Section II
characterises the research topic by identifying three situations
in which quality attributes may vary. Section III shortly
addresses existing methods for realisation of quality attribute
variability. Section IV discusses the research findings. Finally,
Section V draws conclusions and identifies future work.

II. QUALITY ATTRIBUTE VARIABILITY
CHARACTERISATION

A. Motivation for quality attribute variability

Quality attribute requirements are often specified through
minimum acceptable bounds. For a certain quality attribute,
an acceptable realised value can be better than the desired
value specified in the requirements. As an example, if user
U requires that availability is at least 0.99, she can accept a
software with availability figure of 0.995.

64

Fig. 1. Figure exemplifies how two conflicting quality attributes, Q and R, can be resolved into two variants. Instead of developing system S0 as a
compromise between Q and R, develop systems S1 and S2 to optimise Q and R, respectively. (Figure (a) has been modified from [8].)

Given this frame of reference, the need for varying quality
attributes might not be self-evident. As an example, consider
the situation in which user U1 requires availability to be
at least 0.99, and user U2 requires at least 0.995. What is
the motivation for constructing two systems S1 and S2 with
availability figures 0.99 and 0.995 respectively, since system
S2 satisfies both users’ needs?

This characteristic of quality requirements is different from
functional requirements. Although feature f2 is more extensive
than feature f1, in general f2 cannot be said to be better.
If the user regards feature f1 to match her needs, she may
be annoyed to have a system with feature f2 instead. As an
example, an advanced image editor may be more trouble than
worth to a user who only wants to view her holiday photos.

In order to see the motivation for varying quality attributes,
it is worth remembering that quality attributes interact with
each other, often affecting each other negatively [9], p. ix.
Typically, these trade-off situations are resolved by finding a
compromise between conflicting quality attributes (see Fig. 1a
and [8]). However, quality attribute variants are an alternative
way of solving the dilemma. Instead of developing one system
as a compromise of conflicting quality attributes (Fig. 1a),
develop a set of systems that optimise one quality on behalf
of the another (Fig. 1b).

In many cases, these variants can be realised effectively as a
software product family. However, in some cases the variants
can be so apart from each other that they must be built as
completely separate products. Hence, the architecture does not
need to support quality attribute variability.

B. Quality attribute variability as trade-off solutions

In order to elaborate the situations in which quality attribute
variability may provide a solution, we propose a classification
of three different situations. These situations can be char-
acterised by the trade-off they represent. For each type, an
example case is given; the cases are drawn from the Finnish
industry. Table I summarises the types and gives definitions
for each trade-off situation.

a) Trade-off between quality attributes: Many quality
attributes are in conflict with each other: security is often
in conflict with usability and performance, performance is
often in conflict with availability and maintainability. Instead
of developing a system as a compromise between security
and performance, develop some variants to favor security over
performance, and vice versa. Depending on the user needs, the
choice between these variants can be made.

Case: F-Secure is a company developing various products
related to software security. One discontinued product, SSH
client, provides a remote shell client with encrypted commu-
nication. During the installation, the user can choose the length
of the encryption key. Selecting a long encryption key provides
better security but hinders performance, and vice versa. Thus
the user can select a combination of security and performance
to suit her needs.

b) Trade-off between quality attribute and business qual-
ity: Quality attributes are often in conflict with business
qualities, such as cost, time-to-market and projected lifetime
[7]. Varying levels of quality can be differentiated with varying
price: a product with higher security costs more. Further,
projected lifetime can be varied with maintainability: a long-
lived variant is designed to be easier to maintain than a short-
lived variant.

Case: Kone Elevators produces elevators for private and
public use. A large part of revenue comes from service
contracts. Kone Elevators provides three service levels with
varying availability rates: the most expensive service contract
guarantees availability figure of 0.995, while the second level
contract guarantees availability of 0.99. Although in this case
availability can be provided by means that are not directly re-
lated to software (such as maintenance rate), higher availability
can be backed with fault-resistant software also.

c) Trade-off between quality attribute and varying ex-
ternal constraint: Finally, there may be an external varying
constraint that affects quality attributes. The constraint can
be e.g. hardware-related or market-related. Some countries
prohibit the use of too strong encryption mechanisms. In such

65

TABLE I
TYPES OF TRADE-OFF SITUATIONS THAT CAN BE SOLVED BY QUALITY ATTRIBUTE VARIABILITY. THE ABOVE DEFINITIONS ASSUME THAT THE VALUES

OF Q, R AND B CAN BE REPRESENTED WITH A COMPARABLE METRIC, I.E., COMPARISONS ARE MEANINGFUL. IF A NUMERICAL METRIC IS

UNAVAILABLE, THE METRIC CAN BE A DISCRETE SET OF TYPE {low, medium, high}. THE ABOVE DEFINITIONS CAN ALSO BE EXTENDED, SEE

SECTION II-C.

Trade-off type Quality attribute variability solution
Trade-off between Instead of system S0 as a trade-off
quality attributes with Q = q0, R = r0, provide
Q and R system S1 with Q = q1, R = r1 and

system S2 with Q = q2, R = r2

such that q2 < q0 < q1 and r1 < r0 < r2.
Trade-off between Instead of system S0 as a trade-off
quality attribute Q and with Q = q0 and B = b0, provide
business quality B system S1 with Q = q1, B = b1 and

system S2 with Q = q2, B = b2
such that q2 < q0 < q1 and b1 < b0 < b2.

Trade-off between If variants c1, . . . , cn of constraint C limit quality Q
quality attribute Q and such that ∀ci : Q ≤ qmax

i , i = 1 . . . n,
varying constraint C provide systems S1, . . . , Sn

such that ∀Si : Q = qi ≤ qmax
i , i = 1 . . . n.

a case, different security levels can be targeted for different
legislation. Further, available hardware and network resources
may affect performance. As an example, a mobile device can
increase its graphics processing throughput when a higher
bandwidth network is available.

Case: Fathammer is a small company that produces 3D
games for various mobile devices. Due to the enormous
differences in the target mobile devices, Fathammer must
compensate varying hardware by varying game performance
and memory consumption. Since graphics form a major factor
in the consumption of computing and memory resources, it
is easy to tune the performance and memory consumption
level by, e.g., changing the number of drawn polygons, the
drawing algorithms, materials and applied textures. For further
information, see [10].

C. Extending the trade-off dimensions

Sections II-A and II-B treated different trade-off types
independently from each other. In practice, these trade-off
types are seldom identified as presented in the definitions. In-
stead, there may be several simultaneously conflicting factors,
each of which may be a quality attribute, a business quality,
or a constraint. As an example, Fig. 1b assumes that two
conflicting qualities can be optimised independently from cost.
In practice, the solutions are not searched from the boundary
of technically possible solutions (crossing lines in Fig. 1b),
since these solutions tend to be very costly. In other words,
the conflict shown in Fig. 1 was two-dimensional, whereas in
general there are N ≥ 2 conflicting factors, which constraint
an N -dimensional solution space.

Also the number of variants can be extended. Most of the
definitions in Table I resolved the conflict situation with two
variants. In general terms, the number of variants can be any
M ≥ 2. As an example, F-Secure SSH client provides several
key lengths to choose from. If parameterisation is used, the
number of variants can be very large, or even practically
infinite. As an example, if there was some parameter to tune

quality Q, the variants could cover the range q ∈ [q2, q1]
(see Fig. 1b). An example of such a setting could be an
MP3 recorder with the possibility to select the bit rate as a
compromise of sound quality and file size.

Finally, besides the number of variants, also the binding
time of variants as well as the possibility to rebind needs to be
considered. If the balance between conflicting factors changes
dynamically, runtime reconfiguration of quality attributes may
a viable option. An example situation could involve a user
whose preferences over conflicting quality attributes change
dynamically (first trade-off type in Section II-B). In a similar
fashion, there may be a dynamically varying external con-
straint, such as network bandwith, to which the software can
adapt (third trade-off type in Section II-B).

III. QUALITY ATTRIBUTE VARIABILITY REALISATION

Section II characterised the situations in which quality at-
tribute variability may be needed. After the need for variability
has been identified, the variants must be realised within the
scope of a software product family architecture. In this section,
we briefly address some existing techniques in terms of their
suitability for realising quality attribute variability.

A. Specifying varying quality attribute requirements
Before varying quality attributes can be realised, they need

to be specified. In the most simplistic form, a varying quality
attribute can be captured with a range of discrete values,
such as {low, medium, high}. However, this alone does not
suffice, since the meaning of such values is ambiguous. Quality
requirements, like any good requirements, should be verifiable.
Without verifiability, it is impossible to know whether the
system actually meets its requirements.

In the other extreme, the quality requirement can be cap-
tured with a quantitative metric. If such a metric is available,
the varying requirement can contain a set or range of values
for the metric. However, many quality attributes do not have
a commonly accepted metric, and are thus difficult to be
specified quantitatively.

66

In addition to metric-based approach, there are other mech-
anisms for specifying quality requirements in a verifiable
manner. Examples include scenarios [11] and misuse cases
[12]. However, to the best of our knowledge, it has not
been studied how these constructs can capture varying quality
requirements.

Feature models [13], [14] have been proposed as a means of
specifying varying requirements. In principle, feature models
can capture quality attributes; the definitions for the term fea-
ture [3], [14] cover also non-functional properties. However,
feature modelling does not give any guidance for specifying
the quality attribute in a verifiable manner. Further, variability
in feature models is specified through discrete features. It is
unclear how feature models can capture qualities with a very
large number of variants (see Section II-C).

Finally, the means of capturing varying quality requirements
should take the dependencies between variants into account.
For example, the situation depicted in Fig. 1b creates two
dependencies between Q and R (the first dependency being
Q = q1 ⇔ R = r1 and the second Q = q2 ⇔ R = r2).

B. Architecture design strategies for varying quality attributes

In general, there are several more or less codified strategies
for achieving quality attributes in the architecture design.
These include styles, patterns and various architectural mech-
anisms [7], [15]. There are some studies on varying design
patterns [4], [6]. However, to a larger extent, there is not much
research on how these strategies can be varied within the scope
of one architecture.

The cases presented in Section II-B exemplify how quality
attributes can vary within an architecture. It is interesting to
note that varying quality requirements are achieved through
varying functionality. In case of F-Secure, security is varied
with encryption key length. For Fathammer, performance is
varied by tuning the graphics. The possibility of transform-
ing quality requirements to functional requirements has been
identified for non-varying requirements (see e.g. [3]). It seems
that this kind of approach is relatively convenient, since
functional requirements are often easier to implement and
verify. However, there is the risk of focusing too tightly on the
functionality—using a long key does not necessarily guarantee
that the system is secure.

C. Achieving quality attribute variants through evaluation

In addition to utilising traditional software architecture
design strategies for achieving quality attributes, it is possible
to construct a design method that utilises software architecture
evaluation. In such a case, the architecture that satisfies a
given quality attribute value is found, not through applying
architectural strategies, but through evaluating the quality
attributes of possible product variants. A prerequisite is that
the evaluation method should be effective enough; in practice
this requires automated evaluation.

An example of an approach that searches for suitable
variants through subsystem evaluation is presented in [16].
The evaluation in [16] is done through evaluating property

predictor functions attached to components. However, the
authors of [16] do not explicitly address how to construct
prediction functions, i.e., how to predict quality attributes from
component properties. This is typically a non-trivial task.

However, there exists a wealth of proposed evaluation
methods for this purpose. The problem of predictable assembly
[17] is as follows: given a set of components, and component
assembly, how can system-wide quality attribute value be
evaluated? In most cases, predictable assembly models require
that the quality of interest can be captured with a quantitative
metric. Several approaches have been presented, e.g., for
performance [18], resource consumption [19], and reliability
[20]. However, some quality attributes are more difficult in the
sense that their prediction requires more information [18]. Not
surprisingly, existing prediction methods tend to concentrate
on the easiest categories.

IV. DISCUSSION

Section II characterised quality attribute variability by iden-
tifying three different trade-off situations in which quality
attributes can vary. However, this characterisation as such is
not sufficient for scoping the software product family. Many
of the conflicts presented in the characterisation stem from the
constraints of the architectural design decisions. Therefore,
trade-off situations and consequently the suitable variants
cannot be identified until enough design decisions have been
made. Hence, software product family scoping must be done
in parallel with the architecture design. We plan to study this
topic further.

As can be noted from Section III-A, there are approaches for
specifying quality attribute requirements that do not address
variability explicitly. In a similar fashion, there are approaches
for specifying varying requirements that do not address quality
attributes. Although there are some studies that address both
aspects (e.g. [21]), a thorough understanding of the applica-
bility of existing methods is missing.

Section III-B shortly mentioned how quality attribute vari-
ability can be achieved with some well-known architectural
strategies. Although some studies on the topic exist, we aim
to deepen this understanding by identifying some archetypical
ways in which quality attribute variability is reflected in
the software architecture. The complexity of this relation
affects the difficulty of achieving quality attribute variability:
implementing a simple parameter or a functional component is
relatively easy, while large-scale variability may be too costly
to implement within a single software architecture.

Section III-C addressed the possibility of finding quality
attribute variants through evaluating possible architectures.
However, discussed example approach [16] evaluates archi-
tectures in a brute force fashion, i.e., one by one. The scala-
bility risks involved in [16] are unfortunate, especially since
the approach is used for dynamic reconfiguration. A more
sophisticated and effective solution would be to use a logic-
based inference engine to find the satisfying solutions. We are
currently investigating on how to model varying security levels
such that smodels [22] inference engine can be utilised for

67

finding satisfying solutions. With such a solution, the runtime
evaluation of all possible solutions can be made effectively.

Besides the more family-centric approaches described in
this paper, there are also a few research areas that address
quality attribute variability mainly from the dynamic point of
view.

The are plenty of studies on resource-constrained, QoS
(Quality of Service) adaptive applications, such as multimedia
applications [23], or distributed applications with real-time
requirements [24]. Since the availability of resources fluctuates
at runtime, the applications need to adapt their QoS in order to
ensure satisfactory user experience. In the most simple case,
this adaptation could mean sending less data; in a complex
case it could require reconfiguration of the application ar-
chitecture [24]. From the viewpoint of the characterisation
presented in Section II-B, this kind of resource-adaptive QoS is
a trade-off between quality attribute and a varying constraint.

There are also studies on context-aware and context-
adaptive systems [25]. In some cases, context switches can act
as the source of quality attribute variability. Depending on the
situation, a context switch might change the balance of user
preferences over conflicting quality attributes (first trade-off
type in Section II-B), or alter some external constraint, such
as available resources (third trade-off type in Section II-B).

V. CONCLUSIONS

This paper described the ongoing work on quality attribute
variability. To motivate the research topic, we identified three
different situations in which quality attributes may vary. These
situations were characterised by trade-offs that can be solved
with varying quality attributes. For each of these situations, an
example case was given.

We also briefly discussed how quality attribute variability
can be realised within a varying architecture, i.e. as a software
product family. We discussed some existing methods and
approaches in terms of their applicability for realising quality
attribute variability.

For the rest of our research, we plan to study the following.
Firstly, we plan to study more closely the feasibility of qual-

ity attribute variability and its relation to software architecture
design. We plan to further develop the characterisation pre-
sented in Section II by constructing an approach for selecting
and designing a cost-effective set of quality variants. We plan
to identify some archetypical ways in which quality attribute
variability is reflected in the software architecture; this has an
effect on the costs of producing quality attribute variants.

Secondly, we plan to develop an approach for modelling
software product family architectures with varying security
requirements. With such an approach, the product variants that
satisfy desired security levels are found by evaluating possible
product architectures. In order to make evaluation efficient,
we are planning to use smodels [22] inference engine for this
purpose.

ACKNOWLEDGMENT

The financial support of National Technology Agency of
Finland (Tekes) is acknowledged.

REFERENCES

[1] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxononomy of variability
realization techniques,” Software—Practice and Experience, vol. 35,
no. 8, 2005.

[2] P. Clements and L. Northrop, Software Product Lines—Practices and
Patterns. Addison-Wesley, 2001.

[3] J. Bosch, Design and Use of Software Architectures: Adapting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[4] S. Hallsteinsen, T. E. Fægri, and M. Syrstad, “Patterns in product
family architecture design,” in Proc. of Workshop on Product Family
Engineering, 2003.

[5] G. Halmans and K. Pohl, “Communicating the variability of a software-
product family to customers,” Software and Systems Modeling, vol. 2,
no. 1, 2003.

[6] M. Matinlassi, “Quality-driven software architecture model transforma-
tion,” in Proc. of Working IEEE/IFIP Conference on Software Architec-
ture, 2005.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley, 1998.

[8] M. Barbacci, T. Longstaff, M. Klein, and C. Weinstock, “Quality
attributes,” Software Engineering Institute, Tech. Rep. CMU/SEI-95-TR-
021, 1995.

[9] B. Boehm, J. Brown, H. Kasper, M. Lipow, G. Macleod, and M. Merrit,
Characteristics of Software Quality. North-Holland Publishing Com-
pany, 1978.

[10] V. Myllärniemi, M. Raatikainen, and T. Männistö, “Inter-organisational
approach in rapid software product family development—a case study,”
in Proc. of International Conference on Software Reuse, 2006.

[11] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures—Methods and Case Studies. Addison-Wesley, 2002.

[12] I. Alexander, “Misuse cases: use cases with hostile intent,” IEEE
Software, vol. 20, no. 1, 2003.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Tech. Rep. CMU/SEI-90-TR-21, ADA 235785, 1990.

[14] K. Czarnecki and U. Eisenecker, Generative Programming. Addison-
Wesley, 2000.

[15] L. Bass, M. Klein, and F. Bachmann, “Quality attribute design primi-
tives,” Software Engineering Institute, Tech. Rep. CMU/SEI-2000-TN-
017, 2000.

[16] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjørven,
“Using architecture models for runtime adaptability,” IEEE Software,
vol. 23, no. 2, 2006.

[17] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau, “Anatomy of a
reseach project in predictable assembly,” in Proc. of 5th Workshop on
Component-Based Software Engineering, 2002.

[18] M. Larsson, “Predicting quality attributes in component-based software
systems,” Ph.D. dissertation, Mälardalen University, 2004.

[19] M. de Jonge, J. Muskens, and M. Chaudron, “Scenario-based predic-
tion of run-time resource consumption in component-based software
systems,” in Proc. of 6th Workshop on Component-Based Software
Engineering, 2003.

[20] R. Reussner, H. Schmidt, and I. Poernomo, “Reliability prediction
for component-based software architectures,” Journal of Systems and
Software, vol. 66, no. 3, 2003.

[21] B. Gonzales-Baixauli, J. Prado Leite, and J. Mylopoulos, “Visual vari-
ability analysis for goal models,” in Proc. of International Requirements
Engineering Conference, 2004.

[22] P. Simons, I. Niemelä, and T. Soininen, “Extending and implementing
the stable model semantics,” Artificial Intelligence, vol. 138, no. 1–2,
2002.

[23] J. Jin and K. Nahrstedt, “QoS specification languages for distributed
multimedia applications: A survey and taxonomy,” IEEE Multimedia,
vol. 11, no. 3, 2004.

[24] J. Ye, J. Loyall, R. Shapiro, S. Neema, S. Abdelwahed, N. Mahade-
van, M. Koets, and D. Varner, “A model-based approach to desiging
QoS adaptive applications,” in Proc. of Real-Time Systems Symposium
(RTSS), 2004.

[25] R. M. Mayrhofer, “An architecture for context prediction,” Ph.D. disser-
tation, Johannes Kepler Universität, 2004.

68

	Deckblatt_short.pdf
	QoSA2006PrefaceOfSupplement.pdf
	Supplement to the Proceedings of the 2nd International Conference on the Quality of Software Architectures
	Preface
	 QoSA 2006 Organization

	abstracts.pdf
	TechReport QoSA Short.pdf
	f69.pdf
	1. Introduction
	2. Software Merge Exploration Method
	2.1 An Explanatory Example
	2.2 The Model
	2.2.1 Concepts and Notation
	2.2.2 Inconsistency
	2.2.3 Scenario Operations

	2.3 The Process
	2.3.1 Preparatory Phase
	2.3.2 Exploratory Phase
	2.3.3 Accumulating Information

	3. An Industrial Case Study
	3.1 Research Method
	3.2 The Case

	4. Discussion
	4.1 Coexisting Modules
	4.2 Similarity of Systems

	5. Related Work
	6. Conclusions and Future Work
	6.1 Acknowledgements

	7. References

	f47.pdf
	f67.pdf
	f41.pdf
	f45.pdf
	f52.pdf

	Title Short Proceedings.pdf
	Deckblatt_short.pdf
	QoSA2006PrefaceOfSupplement.pdf
	Supplement to the Proceedings of the 2nd International Conference on the Quality of Software Architectures
	Preface
	 QoSA 2006 Organization

	abstracts.pdf
	TechReport QoSA Short.pdf
	f69.pdf
	1. Introduction
	2. Software Merge Exploration Method
	2.1 An Explanatory Example
	2.2 The Model
	2.2.1 Concepts and Notation
	2.2.2 Inconsistency
	2.2.3 Scenario Operations

	2.3 The Process
	2.3.1 Preparatory Phase
	2.3.2 Exploratory Phase
	2.3.3 Accumulating Information

	3. An Industrial Case Study
	3.1 Research Method
	3.2 The Case

	4. Discussion
	4.1 Coexisting Modules
	4.2 Similarity of Systems

	5. Related Work
	6. Conclusions and Future Work
	6.1 Acknowledgements

	7. References

	f47.pdf
	f67.pdf
	f41.pdf
	f45.pdf
	f52.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

