
Universität Karlsruhe – Fakultät für Informatik – Bibliothek – Postfach 6980 – 76128 Karlsruhe

Advances in Component-Oriented Programming
–

Proceedings of the 11th International Workshop on
Component Oriented Programming (WCOP 2006),

July, 3rd, 2006, Nantes, France

Herausgeber:
Ralf Reussner, Clemens Szyperski,

Wolfgang Weck
Interner Bericht 2006-11

Universität Karlsruhe
Fakultät für Informatik

ISSN 1432 - 7864

Preface

WCOP 2006 is the eleventh event in a series of highly successful workshops, which
took place in conjunction with every ECOOP since 1996.
Component oriented programming (COP) has been described as the natural
extension of object-oriented programming to the realm of independently extensible
systems. Several important approaches have emerged over the recent years,
including component technology standards, such as CORBA/CCM, COM/COM+,
J2EE/EJB, and .NET, but also the increasing appreciation of software architecture for
component-based systems, and the consequent effects on organizational processes
and structures as well as the software development business as a whole.
COP aims at producing software components for a component market and for late
composition. Composers are third parties, possibly the end users, who are not able or
willing to change components. This requires standards to allow independently
created components to interoperate, and specifications that put the composer into the
position to decide what can be composed under which conditions. On these grounds,
WCOP'96 led to the following definition: “A component is a unit of composition with
contractually specified interfaces and explicit context dependencies only.
Components can be deployed independently and are subject to composition by third
parties.”
After WCOP'96 focused on the fundamental terminology of COP, the subsequent
workshops expanded into the many related facets of component software.
WCOP 2006 emphasizes reasons for using components beyond reuse. While
considering software components as a technical means to increase software reuse,
other reasons for investing into component technology tend to be overseen. For
example, components play an important role in frameworks and product-lines to
enable configurability (even if no component is reused). Another role of components
beyond reuse is to increase the predictability of the properties of a system. The use of
components as contractually specified building blocks restricts the degrees of
freedom during software development compared to classic line-by-line
programming. This restriction is beneficial for the predictability of system properties.
For an engineering approach to software design, it is important to understand the
implications of design decisions on a system's properties. Therefore, approaches to
evaluate and predict properties of systems by analyzing its components and its
architecture are of high interest.
To strengthen the relation between architectural descriptions of systems and
components, a comprehensible mapping to component-oriented middleware
platforms is important. Model-driven development with its use of generators can
provide a suitable link between architectural views and technical component
execution platforms.
WCOP 2006 accepted 13 papers, which are organised according to the program
below. The organisers are looking forward to an inspiring and thought provoking
workshop. The organisers thank Jens Happe and Michael Kuperberg for preparing
the proceedings volume.

Ralf Reussner, Clemens Szyperski, Wolfgang Weck

Workshop Co-organizers

Ralf Reussner
Institute for Program Structures and Data Organization
Universität Karlsruhe (T.H.)
Am Fasanengarten 5
D-76128 Karlsruhe, Germany
E-mail: reussner "at" ipd.uka.de
Web: http://sdq.ipd.uka.de

Clemens Szyperski
Microsoft
One Microsoft Way
Redmond, WA 98053, USA
E-mail: clemens.szyperski "at" microsoft.com
Web: http://research.microsoft.com/~cszypers/

Wolfgang Weck
Independent Software Architect
Probusweg 9
CH-8057 Zürich,
Switzerland
E-mail: mail "at" wolfgang-weck.ch
Web: http://www.wolfgang-weck.ch

Program of WCOP 2006

Session I: Aspects and COP

On the Benefits of using Aspect Technology in Component-Oriented Architectures
Maarten Bynens and Wouter Joosen
KU Leuven, Belgium.. 1

A Safe Aspect-Oriented Programming Support for Component-Oriented Programming
Nicolas Pessemier1, Lionel Seinturier1, Thierry Coupaye2, and Laurence Duchien1
1 INRIA / LIFL, France, 2 France Telecom R&D .. 5

Leveraging Component-Oriented Programming with Attribute-Oriented Programming
Romain Rouvoy and Jacquard Project
INRIA Futurs LIFL, France ... 10

Session II: Component adaptation

Automated Component Bridge Generator
Dominik Glaser, Gregor Fischer, and Jürgen Wolff von Gudenberg
U Würzburg, Germany.. 19

Component Adaptation: Specification and Verification
Inès Mouakher, Arnaud Lanoix, and Jeanine Souquières
LORIA – CNRS – Université Nancy 2, France ... 23

Profitability-oriented Component Specialization
Ping Zhu and Siau Cheng Khoo
National University of Singapore .. 31

Session III: Component Composition and Deployment

Putting Components into Context –
Supporting QoS-Predictions with an explicit Context Model
 Steffen Becker1, Jens Happe2, and Heiko Koziolek2
1 U Karlsruhe (T.H.), 2 U Oldenburg, Germany... 38

An Architectural Component-Based model to solve the Heterogeneous
Interoperability of Component-Oriented Middleware Platforms
Francisco Domínguez-Mateos and Raquel Hijón-Neira
U Rey Juan Carlos, Spain .. 43

Automated Deployment of Component Architectures with Versioned Components
Leonel Aguilar Gayard, Paulo Astério de Castro Guerra,
Ana Elisa de Campos Lobo, and Cecília Mary Fischer Rubira
UNICAMP, Brazil... 48

Describing Framework Static Structure: promoting interfaces with UML annotations
Sérgio Lopes, Carlos Silva, Adriano Tavares, and João Monteiro
U Minho, Portugal.. 54

Interactive Component Assembly with SuperGlue
Sean McDirmid
EPFL, Switzerland .. 62

Active Documents – Taking advantage of component-orientation beyond pure reuse
Markus Reitz
U Kaiserslautern, Germany... 67

Component based method for enterprise application design
Emmanuel Renaux1 and Eric Lefebvre2

1 U Lille, France, 2 École de technologie supérieure Montréal, Canada 75

On the Benefits of using Aspect Technology in
Component-Oriented Architectures

Maarten Bynens, Wouter Joosen

DistriNet, KULeuven
Dept. of Computer Science

Celestijnenlaan 200A, B-3001 Leuven, Belgium
maarten.bynens@cs.kuleuven.be

Abstract— Aspect-oriented programming (AOP) has been ex-
plored to support the development of complex software sys-
tems that expose many interdependencies (a.k.a. crosscutting
concerns). In maturing AOP the research community has been
investigating how concepts from AOP can be enhanced to offer
the benefits of CBSE. In this position paper, we investigate
an alternative approach to the combination of AOSD (AO
Software Development) and CBSE, by identifying the essential
(yet minimal) differences that AOSD could add to the core
concepts of CBSE. We compare two alternatives and we show
how aspect-based composition can enhance a basic component
model to support sophisticated compositions that create, express
and manage complex interdependencies.

I. I NTRODUCTION

Recently, there has been a large interest in the principles
of aspect-oriented software development (AOSD, [4]). These
principles focus on the systematic identification, modulariza-
tion, representation and composition of (often crosscutting)
concerns or requirements throughout the entire software de-
velopment process. The core concepts of AOSD areconcerns,
aspects andweaving.

Concerns are similar to requirements in a broad sense
of the word, ranging from high-level requirements that are
articulated in an early stage of the software project, to
additional - often detailed - requirements that are generated
when performing detailed design and implementation. In that
sense a concern often corresponds with a feature, capability
or quality-of-service level that is important for a stakeholder
in the software project. At the programming level, an aspect
is a modular unit that implements such a concern. An aspect
definition contains (a) behavior (code that must be executed)
which is calledadvice and (b) a specification that expresses
when, where and how to invoke the advice; this specification
is called apointcut. A pointcut is conceptually defined as
a predicate that evaluates overjoin points. A join point is
a well-defined place in the structure or execution flow of a
program where additional behavior can be attached. Finally,
weaving is the process of composing core functionality
modules (typically application components) with aspects,
thereby yielding a working system.

Fig. 1. Small part of a basic banking system.

Introducing the concepts of component-based software devel-
opment (CBSD) to aspect-oriented programming (AOP) is one
of the key challenges to make the use of aspects worthwhile
and has received much attention ([9], [6]). Although this type
of extension is an important research track, it may not focus on
preserving the key concepts of CBSE, but rather on enhancing
AOSD with a CBSE flavour.

However, in the opposing direction, introducing the con-
cepts of AOSD in component models, has received less atten-
tion, maybe because the CBSE community expects no benefits
from the AO paradigm, or maybe because the integration
efforts so far have shown complicated and confusing. In this
paper we will give an overview of how the principles of
AOSD can be introduced to a component model and what the
benefits will be of doing so. In the next section we present
a basic component model and the integration of aspects into
this model. Section 3 will evaluate the benefits of using the
aspect mechanisms in the component model with respect to
both reconfigurability and reusability. Finally, section 4 will
summarize our main points.

II. I NCORPORATING ASPECTS IN A COMPONENT MODEL

Based on the definition of a component [10], we can consi-
der a basic component model as consisting of components,
interfaces and connectors. A component exports interfaces,
describing either provided or required functionality, and con-
nectors serve as ”glue” to bind components with matching
interfaces.

Consider for example a basic banking system, a small
part of which is presented in figure 1. It consists of three
components. TheCustomerClient component offers a user
interface to the customer of the bank for logging in and doing

1

transactions on his accounts. This component requires banking
and authentication functionality from the environment. The
BasicBanking component offers the basic operations for
managing accounts and for doing transactions on those
accounts. Because most of the banking operations need
to be authorized, it needs some access control logic from
the environment. The last component is theAccessControl
component that offers both authentication and authorization
functionality. Each component exports some provided and
required interfaces and matching interfaces are bound with
a connector (in the figures a connector is represented with a
dashed arrow).

There is no single accepted definition of an aspect model.
The most widespread model is that of AspectJ[5], which
extends traditional classes with pointcuts and advice, using
the keywordaspect1. Looking closer into this aspect model,
we see that the real contribution is in thepointcut language
and in the aspect environment2 that composes the aspect
behavior (advice) at the locations (join points) specified by
the pointcuts. The advice itself, on the other hand, does
not necessarily need a new mechanism, it corresponds to a
method that is executed before, after or around a set of join
points. Around advice is actually executed instead of the
service it is bound to, but is able to call the original service3.

So, concretely, when mapping the concepts of AOP to the
component model, the concepts that must be considered are
join points, the pointcut language, advice, aspects and the
weaving mechanism. The aspects themselves are important as
the module that contains the pointcuts and the binding with
the crosscutting functionality.

In the component model, the composition and all interaction
of the components goes through the interfaces. Extending this
idea to aspect composition means that the only available join
points are the entries on the interfaces.

Concerning aspects and the weaving mechanism, the aspect
model can be incorporated into the component model in more
than one way. In this paper we will now describe two of
those. The first option is to consider aspects as a new kind of
component, much like AspectJ was designed, the other option
is to consider aspects as a new kind of connector. With the
former option, the component will absorb the full behavior of
the aspect and will be called an aspect component. With the
latter option, most of the aspectual behavior will be absorbed
by the connector and will be called an aspect connector.

An alternative mechanism for dealing with crosscutting
behavior in component-oriented architectures, is the use of
containers, like for example in the Enterprise JavaBeans
technology [7]. Each component is deployed in a container,

1AspectJ also introduces inter-type declarations, which are however less
representative for AOP. Also, the contribution of inter-type declarations to the
component model is rather limited.

2A run-time environment is the most flexible, but also compile-time and
load-time environments exist.

3In AspectJ, this is done using the keywordproceed()

Fig. 2. The basic banking example using aspects as components

which means that for each component, a deployment descriptor
needs to be defined. In return the container provides some
functionality that would otherwise crosscut the components
in the container. Typical functionality that is provided by a
container is persistence, transactions, security and lifecycle
operations. Although this is a practical way to encapsulate
some frequently needed crosscutting functionality, the services
provided by a container are fixed and cannot be extended by
the component developer.

Since we are looking for mechanisms to encapsulate any
crosscutting functionality, containers are not considered here
and we will focus on the two approaches to incorporate an
aspect model into a component model, sketched above.

A. Incorporating aspects as components

Besides providing the functionality as specified by the
provided interfaces, based on the functionality on the required
interfaces, an aspect component includes crosscutting behavior
that should be exported in terms of provided and required
interfaces. Because a pointcut is a predicate over join points
and a join point is an entry on the interface of a component,
a pointcut could be exported as a required interface of the
aspect component. The semantics of such a required interface
are that the aspect component will add crosscutting behavior
to all the components connected to this required interface. The
advice included in the aspect component may or may not be
exported as normal functionality on a provided interface.

Going back to the example, theAccessControl component
could be available as an aspect component (see figure 2). It
will weave functionality at the join points as specified by its
required interfaces, which are bound to the relevant interfaces.
In this case, authentication functionality will be woven in when
a customer uses the client and authorization will be woven in
before all banking operations.

B. Incorporating aspects as connectors

Given that advice is nothing more than a normal method
woven in at the right join points, it is a valid approach to put
some of the aspectual behavior in the connectors instead of in
the components themselves. The definition of the pointcuts and
the binding of those pointcuts with the advice will be specified
in a connector, while the advice functionality is available as
a normal service on the interface of a component. Besides
normal connectors, binding matching provided and required
interfaces, we then get aspect connectors, which are able to
bind some provided functionality before, after or around a set
of join points.

2

Fig. 3. The basic banking example using aspects as connectors. The services
of AccessControl are all bound as before advice.

In the basic banking example, we see (figure 3) that the
AccessControl component didn’t change in comparison to
figure 1, because all the aspectual behavior is now in the
connectors. All the aspect connectors in this example (these are
the arrows connected to theAccessControl component) will
bind the advice before the pointcut, for example authorization
must occur before the banking operation.

Incorporating aspects like this shows some resemblances
with the composition filters programming model[1].
Composition filters intercept incoming and outgoing
messages of an object and are able to a.o. redirect, substitute
or dispatch them. In the extended composition filters
model[3] it is possible to superimpose filters on other objects.
Although these filters could be used to implement the aspect
connectors described above, there is no real integration
between composition filters and a component model, because
it is mainly focused on a programming level.

Incorporating aspects as connectors offers more flexibility
than incorporating aspects as components. All components
can be developed as usual, the developer doesn’t have to
choose between developing a normal component or an aspect
component. Only at composition time, it will be determined
whether a component is used as an aspect component or
not. This will make the component more reusable because
it hasn’t been decided whether the functionality offered by
the component is crosscutting or not. The aspect connectors
can be considered as some kind of composition descriptor
to configure the components to interact with each other.In
the following section we will take this approach as the basis
for examining the benefits of using aspect technology in a
component model.

One last note: because components can contain advice as nor-
mal services, this is also true for around advice. Around advice
can call the original service around which it is composed, but
because it is modelled as a normal service, it is not necessarily
used as around advice. What happens when this service is
bound using a normal connector? A possible solution is to
specify around advice that needs the original service in both
a provided and a required interface. To use this service as
around advice the same way as it would be used in AspectJ,
the provided service is bound around some base service with

an aspect connector and the required interface is bound to this
same base service using a normal connector.

III. M ASTERING COMPONENT DEPENDENCIES WITHAO
COMPOSITION

One of the advantages of using components instead of
traditional classes, is that dependencies between components
are made explicit through the use of required interfaces.
The remaining dependency a component has with external
functionality is twofold. On the one hand, the semantics of
the external functionality needs to be specified in a required
interface. On the other hand, the developer of the component
needs to know the exact location or execution point of where
external functionality needs to be attached. The join point
concept of AOP has been created to enable the specification
of such an execution point.

This was already a significant improvement over traditional
classes, where a class that uses external functionality needs
to know exactly the correct method to call with the correct
parameters on the correct instance of the correct class. Using
aspect-based composition can give the developer even more
control over these dependencies. Although making the de-
pendencies of a component explicit by exporting a required
interface is a good thing, it may be a burden to the developer
to specify the complete semantics of this interface. Also, the
exact location of the use of the external functionality doesn’t
have to be specified by the client component if this location
can be expressed using the join points on the interfaces.

The use of Open Modules[2] is a very promising approach
to make the interface of a component more suitable for
aspectual composition. Open Modules make it possible to add
arbitrary pointcuts to the interface of a component. It is a new
module system that is intended to be open to extension with
advice but modular in that the implementation details of a
module are hidden.

Looking at the example, we see that the banking compo-
nents no longer have specified the need for authentication or
authorization. The need for this functionality and the compo-
sition of this functionality with the banking components all
happen at composition time, making the banking components
more reusable.

IV. I NCREASING COMPONENT CONFIGURABILITY WITH

AO COMPOSITION

A component can be considered as a mapping from required
functionality to provided functionality. The (re)configuration
of a component is the adaptation of this mapping to what
functionality is available or needed in the environment.

The more (re)configurable a component, the more reusable
it will be. This comes from the fact that if the environment
does not need all the provided functionality or cannot deliver
all required functionality of a certain component, it cannot
be reused unless it can be configured to fit in the current
context. Approaches to deal with the (re)configuration have

3

been proposed before[8], but AOSD can also resolve this
matter.

Using aspectual composition it is not necessary to make
the banking components from the example, configurable with
respect to the need for access control or not. With aspectual
composition, optional functionality can be encapsulated in a
separate component, that may or may not be composed into
the application.

V. SUMMARY

In this position paper, we have studied an approach to
enhance CBSE with AO concepts, by identifying the essential
(yet minimal) differences that AOSD could add. We have
compare two alternatives: (1) the use of aspect components
that become first class components and combine behaviour and
composition semantics; and (2) the use of aspect connectors
that focus on composition semantics only. We have argued that
the latter is more suitable to create the minimal but essential
extension of a component model (i.e. rich connectors) that
integrates the key ingredients of AOSD with CBSE without
duplicating concepts.

REFERENCES

[1] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans, and Akino-
ri Yonezawa. Abstracting Object Interactions Using Composition Filters.
In Rachid Guerraoui, Oscar Nierstrasz, and Michel Riveill, editors,
Proceedings of the ECOOP’93 Workshop on Object-Based Distributed
Programming, volume 791, pages 152–184. Springer-Verlag, 1994.

[2] J. Aldrich. Open modules: Modular reasoning about advice. InECOOP
’05: Proceedings of the 19th European Conference on Object-Oriented
Programming, page 144. Springer-Verlag, 2005.

[3] Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting con-
cerns using composition filters.Commun. ACM, 44(10):51–57, 2001.

[4] Filman et al. Aspect-Oriented Software Development. Addison-Wesley,
2004.

[5] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of aspectj. InECOOP
’01: Proceedings of the 15th European Conference on Object-Oriented
Programming, pages 327–353, London, UK, 2001. Springer-Verlag.

[6] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In
AOSD ’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 90–99, New York, NY, USA,
2003. ACM Press.

[7] Sun Microsystems. Enterprise javabeans technology,
http://java.sun.com/products/ejb/index.jsp.

[8] R. Reussner. The use of parameterised contracts for architecting systems
with software components, 2001.

[9] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco:
an aspect-oriented approach tailored for component based software
development. InAOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 21–29, New
York, NY, USA, 2003. ACM Press.

[10] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York, NY, 1998.

4

1

A Safe Aspect-Oriented Programming Support for
Component-Oriented Programming

Nicolas Pessemier(1), Lionel Seinturier(1),
Thierry Coupaye(2), Laurence Duchien(1)

(1) INRIA Futurs - LIFL, Project Jacquard/GOAL
59655 Villeneuve d’Ascq, France

(2) France Telecom R&D, 28 chemin du Vieux Chêne,
38243 Meylan, France

{pessemie,seinturi,duchien}@lifl.fr
thierry.coupaye@rd.francetelecom.com

Abstract— In this paper we show that Aspect-Oriented Pro-
gramming (AOP) can be safely supported by Component-
Oriented Programming (COP) by providing a way to control the
openness of a component with regards to AOP techniques. Our
proposal reconciles the intrusive nature of AOP with the ”black
box property” of components in COP. We build a compromise
between modularity and openness applying the open modules
approach to components. The experiment has been achieved
on FAC, our model that unifies the notions of component and
aspect. We show that most of open modules principles are directly
available within our approach, we then study requirements for
others. Once all these principles integrated, we are able to
tune the accessibility of the content of a component to AOP
during system runtime. Thus, components become grey boxes
with dynamic variation points accessible to AOP techniques.

I. I NTRODUCTION

Component-Oriented Programming (COP) proposes to en-
hance object-oriented programming by separating concerns
into clearly defined entities, called components. Reusable
components with contractually specified interfaces are defined
and composed together [13]. Nevertheless, whatever the de-
composition adopted to represent a system, it has been shown
that some concerns are mixed within a same component (code
tangling), and that some concerns are scattered across several
components [3], [6]. These concerns which are called cross-
cutting concerns hinder the reusability, the maintainability, and
the evolvability of applications.

To tackle these issues, some approaches have proposed
a support for Aspect-Oriented Programming (AOP) in
component-based systems [5], [7], [12]. AOP is a well-
known paradigm to overcome this issue by modularizing
crosscutting concerns using aspects [4]. The main issue of
these approaches is that AOP is applied regardless of the
components themselves, the aspects are woven on the objects
which implement the components. This intrusiveness breaks
the encapsulation property of components and consequently
their implicit contracts. This appears to be a major issue in
COP where contracts and encapsulation are fundamentals.

At the object level, solutions have been proposed to over-
come the issue of intrusiveness of AOP. For example, Aldrich
introduced the notion of open modules, a new module system

to open a program to AOP while keeping modularity by hiding
implementation details of the module [1]. A module is defined
as a set of entities which share a set of access points for the
join points (points in the program execution flow where aspects
will apply) exported by the module. Using this module system,
the content of a module can be preserved by designating only
the variation points where aspects can act.

In this paper we propose to push the open modules approach
a step further by applying it to COP. The objective is to provide
a safe way to support AOP in COP by controlling the openness
of a component with regards to AOP. This control over
variation points of a component can be seen as a compromise
between modularity and openness. Our study focus on an
extended component model for components and aspects which
is presented in [10]. Our model, named FAC, unifies COP
and AOP notions together by representing AOP notions as
component ones. We show that when components and aspects
are unified, some open modules properties are directly handled
as first-class entities in our model. We have then extended our
model to handle all open modules properties. A component
can declare its variation points. Since our model is dynamic,
this declaration can evolve at runtime.

The remainder of this paper is organized as follows. Sec-
tion II provides some background on our unified model for
aspects and components and on the open modules approach.
Section III shows how we have applied open modules to FAC.
Finally, Section IV concludes.

II. BACKGROUND

This section provides some background on our previous
work [10] on the unification of AOP and COP, and introduces
the principles of the open modules approach.

A. FAC: An unification of AOP and COP towards COP

Since COP fails in supporting crosscutting concerns [3],
[6], our motivation was to give a support to AOP in COP
but also to take advantage from the strong encapsulation
property of COP in AOP. Therefore, our proposal is built as a
twofold integration of AOP and COP which has the benefit of
representing AOP notions using COP ones. Thus, we introduce

5

2

three main concepts which are related to the general notionsof
component, binding and composite-component that generally
appear in COP [13].

• An Aspect componentis the representation of an aspect
as a component. It offers as a provided interface a piece
of advice code (the additional behavior to weave on other
components). Basically, an aspect component applies
around incoming and outgoing calls on component in-
terfaces. Because we represent an aspect as a component
we call our approach symmetric. Aspects and components
are components, and can interact together using bindings
(Figure 1 represents an aspect component connected to
other components using various types of bindings). Tradi-
tionally in AOP two dimensions are considered: the base
and the aspect dimension. Aspects are woven on the base
and the base if oblivious of the aspect dimension. In our
approach these two dimensions are unified to facilitate the
interactions between components and aspects and their
evolution.

• An Aspect domain is the representation of the domain
of action of an aspect. It is represented as a composite
component which contains the aspect component and
the components on which it is woven. The notion of
aspect domain can be seen as a reification of the notion
of pointcut in AOP. Usually a pointcut is a description
of a set of join points on which an advice code is
woven. In our model we reify this notion as a first
class entity (a composite-component) which contains the
aspect component woven, and all the components affected
by the aspect component. This clarifies the domain of
impact of an aspect component in a system. This explicit
relationship between advised code and aspects is a notion
currently missing in AOP. Figure 1 gives an example
of the aspect domain of thetransaction Aspect
Component which is woven on componentsC, D and
E.

• An Aspect binding is the representation of the implicit
link which exists between an aspect and a component on
which the aspect is woven. The aspect binding notion
can be seen as a more fine-grained notion than the aspect
domain to capture the interaction between a component
and a particular aspect component. Our philosophy is to
consider only one dimension (aspects are components)
and two types of interactions (regular bindings and as-
pect bindings). Aspect bindings are used to connect an
aspect component with a component. By this way, each
component can locally manage the aspects applied on its
incoming and outgoing interfaces.

We have successfully mapped this general model with its
three notions to the Fractal component model. Fractal [2] is
a reflective and extensible component model, where bindings
can be set and unset dynamically (at runtime); reflection is
available through the use of special kinds of meta-interfaces
called control interfaces.

We have extended this model by introducing our three main
notions. This extension is called Fractal Aspect Component
(FAC for short). We have used the provided notions of

component and composite-component to represent our notions
of aspect component and aspect domain. We have introduced
a new control interface called theweaving interface. This
interface, which appears on each component of the system, is
in charge of setting/unsetting aspect bindings and of weaving
aspect components. It has the benefit of locally managing the
ordering of aspects for a component.

In addition to the advantages mentioned in the description
of our three notions, the mapping onto the Fractal component
model allows setting/unsetting aspect bindings dynamically.
This makes our weaver dynamic and this opens the way to
dynamic adaptation [9].

The complete description of our general model for compo-
nent and aspect and its mapping to the Fractal component
model [2], named FAC is beyond the scope of this paper
and can be found in [10]. The next sub-section introduces the
open modules approach which allows controlling the degree
of openness of a module to AOP.

B. Open modules approach

The concept ofopen moduleshas been introduced by
Aldrich to limit the access to join points of a system, which are
accessed intrusively in AOP. With this approach any exposed
join points has to be declared within a module, a special set of
classes, to be accessed by aspects. Theopen modulesapproach
is defined by Aldrich as follows:”Open Modules describes a
module system that:

• Rule 1 allows external advice to interactions between a
module and the outside world (including external calls to
functions in the interface of a module)

• Rule 2 allows external advice to pointcuts in the interface
of a module

• Rule 3 does not allow external modules to directly advise
internal events within the module, such as calls from
within a module to other functions within the module
(including calls to exported functions).”

We intentionally add rule numbers on items to facilitate the
discussion in the following sections. The complete description
of this module system can be found in [1].

More recently, the concept of open modules has been
applied to AspectJ [8]. In this study, authors have extended
the concept with new interesting features. Most of them are
specifically related to AspectJ in order to support AspectJ
pointcuts. Nevertheless it seems to us that some can be
generalized out of the context of AspectJ. Thus, the most
important feature with regards to our application of open
modules to COP is the ability to open and not only to reduce
the visibility on join points of a module. This can become
extremely useful when using for instance debug aspects, or
when considering dynamic adaptation using AOP. Among new
features provided by this study, an interesting one is the ability
to designate to which a pointcut is exposed to using a pattern
language based on package hierarchy.

To help the discussion of the next section we will call the
ability to designate which aspect has access to a moduleRule
4, and the ability to open a module by exposing join points
Rule 5.

6

3

c r o s s c u t t i n g c o n c e r n : t r a n s a c t i o n
r e g u l a rb i n d i n gr e g u l a rb i n d i n g

t r a n s a c t i o np o l i c y 1C D E
a s p e c tb i n d i n g t r a n s a c t i o np o l i c y 2

t r a n s a c t i o nA s p e c tC o m p o n e n ta s p e c tb i n d i n g
a s p e c tb i n d i n g

a s p e c t d o m a i nb a s e a r c h i t e c t u r e
A
B

Fig. 1. Aspect binding best practice

III. A PPLYING OPEN MODULES TOFAC

In this section we detail how we have applied the open
modules approach to FAC. Some of the rules defined in open
modules are directly mapped to existing notions of our model
(Section III-A), some others require the introduction of new
features to be correctly managed (Section III-B).

A. Similarities

The first obvious similarity is related to the notion of a
module and a component. A module in the open modules
approach is a collection of classes which share a set of
access points to AOP. A component in COP is a contractually
specified entity which provides and requires services by means
of interfaces. A component is a black box which naturally
hides its implementation details as required byRule 3 of
open modules. Given that in FAC, join points are incoming
and outgoing calls on component interfaces, the definition
remains correct with regards toRule 1, 2 and 3. Rule 1
and 2 are understood in FAC by the fact that an aspect
component only applies to client and server interfaces (Rule
2). Following the definition ofRule 1, an aspect component
interacts between a module (component) and the outside world
(other components).Rule 3 is preserved as soon as we do
not want to break encapsulation in FAC. Join points are not
points inside a component. However, when applying aspect
component behavior on component external interfaces, we may
consider that the original behavior of the component is altered
by the aspect component. Thus, the behavior expected from
a given component may be different. It seems important that
the weaving of aspect component on provided and required
interfaces of a component should be better controlled in order
to provide a safer integration of crosscutting concerns. We
elaborate more on that particular point in Section III-B.

The second similarity is related toRule 4which has been
defined to the particular use of AspectJ but can be also used
within our system. This rule allows to clearly designate which

aspect can apply on a given exported join point of a module.
A regular expression is given as a parameter of theexpose
to declaration which designates a set of packages that are
authorized to access the module. In FAC we have a very
similar notion: the aspect binding. An aspect binding is set
between a component and an aspect component using the
weaving interface of the component. Because the weaving
interface is a kind of meta interface, we can consider that the
access policies defined on components are of the same type of
meta-informations than the ones corresponding to theexpose
to definitions used in the extension of AspectJ supporting
open modules. This means that we can considerRule 4 as
naturally handled by each individual component which are able
to choose the aspect to be impacted by.

At this point we have seen thatRule 1, 2, 3, and 4 are
naturally handled by our model and its mapping to FAC. In the
next section we study the requirements to manage remaining
rule, Rule5.

B. Dissimilarities

We have seen that in our model and in its mapping to Frac-
tal, FAC, the considered join points are incoming and outgoing
calls on component interfaces. Thus,Rule 3 is implicitely
preserved when considering components as modules. However,
this also means that the join points inside the component are
not exposed. The original idea of open modules is to define
some pointcuts and join points and make them available by
means of interfaces of a module. In our case, the content
of a component is implicitly protected, but we still need a
support to give an access to other join points,i.e., join points
inside a component. Nevertheless, associating the level of
implementation of components and the level of interaction
between components (more architectural) takes part in our
global vision of what really means applying AOP to COP that
we have exposed in [9]. The unification of these two levels will
allow us to look inside components and to externalize some

7

4

v o i d o p e r a t i o n 1 ()v o i d o p e r a t i o n 2 (). . .v o i d o p e r a t i o n 3 ()i n t o p e r a t i o n 4 (). . .
b o o l o p e r a t i o n 5 ()v o i d o p e r a t i o n 6 (). . .b o o l o p e r a t i o n 7 ()v o i d o p e r a t i o n 8 (). . .

o p e n A c c e s s (o p e r a t i o n , i n t e r f a c er e d u c e A c c e s s (o p e r a t i o n , i n t e r f a c eW E A V I N G I N T E R F A C E

C O M P O N E N T = M O D U L E
I N T E R F A C E A
I N T E R F A C E B

I N T E R F A C E C
I N T E R F A C E Di n c o m i n g c a l l s(p r o v i d e d i n t e r f a c e s) O u t g o i n g c a l l s(r e q u i r e d i n t e r f a c e s)

Fig. 2. A conceptual view of Open Modules applied to FAC. A component is a module which controls the access to its provided and required interfaces by
means of the weaving interface. The content of the componentis not exposed to aspects.

join points. We believe that these internal join points must
also be controlled by the weaving interface. Thus, we would
be able to fulfill needs for accessing internal join points, while
preservingRule 3by means of the weaving interface to control
what is accessed or not. This approach has limitations with
regards to legacy components that would not have be able to be
instrumented to support AOP techniques. In our approach, we
only consider a full-fledged component and aspect approach,
where the design of the system follows the same formalism,
the same design model.

The remaining rule (Rule 5) states that the open modules
should not be limited to reducing the access to aspects but
also to opening it. In Section II-A we have defined the
role of the weaving interface as an interface to manage the
setting/unsetting of aspect bindings, the weaving and the
ordering/re-ordering of aspect components. We have extended
the role of this interface to also manage the openness of a com-
ponent to AOP. A conceptual view of the role of the weaving
interface is presented in Figure 2. The weaving interface isable
to prevent the weaving of aspects on a particular operation of
an interface. Because FAC is a fully dynamic framework, these
policies can be changed during runtime. A component can
then be adapted to open or reduce the access to its join points.
Moreover, since we have discussed it in Section III-A, weaving
an aspect component on component external interfaces may
change the expected behavior from other components as soon
as it intercepts communications between interfaces. The idea
of controlling the external join points which are accessible or
not by other components seems interesting even if it was not
originally considered by Aldrich in the first version of open
modules.

IV. CONCLUDING REMARKS

We have seen that AOP and COP can be reconciled on
the particular issue of the intrusive property of AOP versus
the strong encapsulation property of COP. To do so, we have
applied the open modules approach to FAC, a unified model
for components and aspects. Following the open modules

philosophy our approach is able to open a component to
AOP while keeping its content hidden from the outside. This
compromise opens the way to a safe integration of AOP in
COP. It is safe in the sense that the intrusiveness of AOP is
finely managed on each individual component. Moreover in the
case of FAC, we have seen that the openness of a component
to AOP can be managed at runtime, allowing a component to
adapt to unanticipated requirements. Black box components
become grey box components providing variability points
where AOP can access.

This integration of open modules approach to FAC takes
part of our overall vision of applying AOP to COP presented
in [9]. This vision is based on three levels: (1) An architectural
level which is achieved with FAC where aspects notions
are mapped on component ones; (2) A control level where
aspects can be used to inject the control level of components
into the remaining level, (3) the level of implementation of
components. In [11] we show how AOP can be used for (2).
In this paper we present a link between the architectural and
the implementation level: Opening a component to expose
internal join points and then, weaving architectural aspects to
this internal join points (link between (1) and (3)). Our next
step is to make all this three levels work together, allowinga
coherent weaving of aspects whatever the chosen level.

ACKNOWLEDGMENTS

This work was partially funded by France Telecom under
the external research contract number 46 131 097.

REFERENCES

[1] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP
2005 - Object-Oriented Programming, 19th European Conference, Glas-
gow, UK, July 25-29, 2005, Proceedings, volume 3586, pages 144–168.
Springer, 2005.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B.Stefani. An
open component model and its support in Java. InProceedings of the
International Symposium on Component-based Software Engineering,
Edinburgh, Scotland, May 2004.

8

5

[3] F. Duclos, J. Estublier, and P. Morat. Describing and using non
functional aspects in component based applications. InAOSD ’02:
Proceedings of the 1st international conference on Aspect-oriented
software development, pages 65–75, New York, NY, USA, 2002. ACM
Press.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting started with AspectJ.Communications of the ACM,
44(10):59–65, 2001.

[5] B. Lagaisse and W. Joosen. Component-based open middleware sup-
porting aspect-oriented software composition. InCBSE, pages 139–154,
2005.

[6] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual
Components. Technical Report NU-CCS-99-01, College of Computer
Science, Northeastern University, Boston, MA, March 1999.

[7] M. Mezini and K.Ostermann. Conquering Aspects with Caesar. In
Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD’03), pages 90–100. ACM Press, March
2003.

[8] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. deMoor, and
G. Sittampalam. Adding Open Modules to Aspectj. InProceedings of the
5nd International Conference on Aspect-Oriented SoftwareDevelopment
(AOSD’03). ACM Press, March 2006.

[9] N. Pessemier, O. Barais, L. Seinturier, T. Coupaye, and L. Duchien. A
three level framework for adapting component-based systems. InSecond
International Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT05), Glasgow, Scotland, July 2005.

[10] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A model
for developing component-based and aspect-oriented systems. In Pro-
ceedings of the 5th International Symposium on Software Composition
(SC’06), Lecture Notes in Computer Science. Springer, Mar. 2006.

[11] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A component
model engineered with components and aspects. InProceedings of the
9th International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE06), Lecture Notes in Computer Science, Stockholm,
Sweden, jun 2006. Springer.

[12] D. Suve, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented
approach tailored for component based software development. In
Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD’03), pages 21–29. ACM Press, 2003.

[13] C. Szyperski.Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., 2002.

9

Leveraging Component-Oriented Programming
with Attribute-Oriented Programming

Romain ROUVOY
JACQUARD Project – INRIA Futurs

LIFL – University of Lille 1
59655 Villeneuve d’Ascq Cedex, France

Email: romain.rouvoy@inria.fr

Philippe MERLE
JACQUARD Project – INRIA Futurs

LIFL – University of Lille 1
59655 Villeneuve d’Ascq Cedex, France

Email: philippe.merle@inria.fr

Abstract— Component-oriented programming has achieved
wide acceptance in the domain of software engineering by
improving productivity, reusability and composition. This success
has also encouraged the emergence of a plethora of component
models. Nevertheless, even if the abstract models of existing com-
ponent models are quite similar, their programming models can
differ a lot. This drawback limits the reuse and composition of
components implemented using different programming models.

The contribution of this paper is to introduce a reification of
an abstract model common to several component models. This
reification is presented as an annotation framework, which allows
the developer to annotate the program code with the elements
of the abstract component model. Then, using a generator,
the annotated program code is completed according to the
programming model of the component model to be supported
by the component runtime environment. This paper shows that
this annotation framework provides a significant simplification
of the program code by removing all dependencies on the
component model interfaces. These benefits are illustrated with
the OpenCOM and Fractal component models.

I. INTRODUCTION

Component-Oriented Programming (COP) has achieved
wide acceptance in the domain of software engineering by
improving productivity, reusability and composition. This suc-
cess has also encouraged the emergence of a plethora of
component models. These component models can now be
applied at any software level, from operating systems (e.g.,
Think [1]), to middleware (e.g., OpenCOM [2], Fractal [3]), to
applications (e.g., EJB [4], CCM [5], SCA [6]). Usually, each
of these component models defines their own abstract model
and programming model. The abstract model defines the gen-
eral concepts provided by the component model (e.g., compo-
nent, port/interface, binding/connection, composition/assem-
bly). The programming model applies these concepts to a
particular programming language, while introducing some
technical code specific to the component model. Thus, this
technical code is tangled with the business code of the applica-
tion. Furthermore, if the abstract models of existing component
models are quite similar, their programming models can differ
a lot. This drawback limits the reuse and composition of
components implemented with different programming models.

A convenient way to address this issue is to use Attribute-
Oriented Programming (@OP) techniques [7], [8], [9]. @OP
proposes to mark program code with metadata to clearly

separate the business logic from the domain-specific logic
(typically technical properties). @OP is gaining popularity
with the recent introduction of annotations in Java 2 standard
edition (J2SE) 5.0 [10] or in XDoclet [11], and attributes
in C# [12]. Recently, the Enterprise Java Bean (EJB) 3.0
specification extensively uses annotations to make EJB pro-
gramming easier [4]. The Service Component Architecture
(SCA) component implementation model provides a series of
annotations that can be placed in the code to mark specific
elements of the implementation to be used by the SCA runtime
environment [6]. Still, these annotations are specific to each
component model. Therefore, annotated EJB code can not be
used in a SCA runtime environment and vice versa.

In this paper, we introduce an abstract model common to
several component models. This abstract model is reified as
an annotation framework, which allows the developer to mark
the program code with the elements of the abstract component
model. Then, using a generator, the annotated program code
is completed by the programming model of the component
model that is supported by the desired component runtime
environment, such as OpenCOM or Fractal. We show that
this annotation framework provides a simplification of the
program code by removing all dependencies on the component
model interfaces. As a consequence, this approach protects the
annotated program code from evolutions in the component
models. Finally the annotated code can be executed with
various component models.

The remainder of this paper is structured as follows. Sec-
tion II introduces the problem of technical and business code
tangling as the motivation of this paper. Section III presents
the Attribute-Oriented Programming (@OP) approach and
its relevance to Component-Oriented Programming (COP).
Section IV provides an overview of the annotation framework
defined to represent the abstract component model. Section V
illustrates generators for two programming models: OpenCOM
and Fractal. Section VI compares our approach with related
work. Finally, Section VII concludes and provides some per-
spectives on this work.

II. MOTIVATION

Although COP provides more modularity, configurability,
and reusability to applications, the use of a given component

10

romain.rouvoy@inria.fr
philippe.merle@inria.fr

model introduces also more complexity, more verbosity and
redundancy in the information expressed by the developer
compared to object-oriented programming practices. However,
this complexity derives from the underlying programming
model used to develop an application. This programming
model maps the abstract model concepts to constructs of the
programming language used to develop components. There-
fore, the abstract model concepts are seamlessly drowned in
the program code. By having introduced dependencies on
the component model, the program code is no longer only
concerned with business properties, but also with technical
properties.

Developing an application using components requires taking
into account concerns that are not always related to the busi-
ness of the application. We illustrate these concerns with the
application HelloWorld depicted in Figure 1. This application
is composed of two components: Client and Server. These
components are linked by a common contract — usually
defined as an interface — named Service. Finally, the com-
ponent Server can be configured via an attribute header to
modify its display, which is implemented by a Logger.

Client

+print()

«interface»
Service

-header : String
Server

-logger

+run()

«interface»
Runnable

+info()
+debug()

«interface»
Logger

-service
1

1

Fig. 1. Application HelloWorld.

1 public interface Service {
2 void print(String message);
3 }

Lst. 1. Interface Service.

1 public class Client implements Runnable {
2 protected Service s;

4 public void run() {
5 this.s.print("hello world");
6 }
7 public void setService(Service s) { this.s = s; }
8 public Service getService() { return this.s; }
9 }

Lst. 2. Component Client.

To clearly exhibit the problems related to COP, we write
the program code of this application using a simple component
model targetting the Java programming language [10]. List-
ing 1 presents the method print in the interface Service
(Line 2). Listing 2 presents the implementation of the compo-
nent Client. The class Client defines the required interface
Service as an internal field (Line 2). The business code

1 public class Server implements Service {
2 protected Logger logger;
3 protected String header;

5 public Server() {
6 this.logger = JavaLog.logger("Server");
7 }
8 public void print(String msg) {
9 this.logger.info(this.header + msg);

10 }
11 public String getHeader() { return this.header; }
12 public void setHeader(String h) { this.header = h; }
13 }

Lst. 3. Component Server.

1 public class HelloWorld {
2 public static void main(String[] args) {
3 Server server = new Server();
4 Client client = new Client();

6 client.setService(server);
7 server.setHeader("-->");
8 client.run();
9 } }

Lst. 4. Application HelloWorld.

of the component is located in the method run (Lines 4–
6). The methods setService and getService (Lines 7–
8) are used to set the reference of the required interface
Service. Listing 3 presents the implementation of the com-
ponent Server. The class Server implements the interface
Service (Line 1). Then, it declares a field logger that
refers to an internal service provided by the Java platform
(Line 2). It declares the field header to store the attribute
header provided by the component Server (Line 3). The
reference of the logging service is retrieved in the constructor
of the class Server (Line 6). The business code of the com-
ponent is defined in the method print (Lines 8–10). Finally,
the methods getHeader and setHeader are defined to
configure the attribute header (Lines 11–12).

Listing 4 presents the assembly code defined to build
the application HelloWorld. The method main of the class
HelloWorld defines the variables client and server
to specify the use of the Client and Server (Lines 3–4)
components. Then, it connects the component Client to the
component Server, and configures the value of the attribute
header of the component Server (Lines 6–7). When exe-
cuting the application HelloWorld, the components are auto-
matically created and configured before executing the method
run of the component Client (Line 8).

The drawbacks that arise from such a component-oriented
implementation of the application HelloWorld are located in
the technical part of the program code. This technical part is
usually tangled with the underlying component model used
to implement the application. For example, in Listing 2, the
business method of the component Client (Lines 4–6) is
combined with methods that handle the required interfaces
(Lines 7–8). Similarly, in Listing 3, the business method of
the component Server (Lines 8–10) is mixed with the initial-
ization code of the logger (Line 6) and the methods that handle

11

the attribute header (Lines 11–12). These technical methods
can differ from one component model to another because they
are defined by the programming model of each component
model. Besides, when considering this part, it appears that the
abstract component model is tangled with the programming
model. The fields that are used by the technical methods are
implicitly required by the component model because they store
the concepts of the abstract component model. The declaration
of these fields appears to be common the component models
that can be used to develop the application. The remainder of
this paper shows that annotating these fields can provide an
abstraction of the programming model.

III. ATTRIBUTE-ORIENTED PROGRAMMING

Attribute-Oriented Programming (@OP) is a program-level
marking technique. Basically, this approach allows developers
to mark program elements (e.g., classes, methods, and fields)
with annotations to indicate that they maintain application-
specific or domain-specific concerns [9], [7], [8]. For example,
a developer may define a logging annotation and associate it
with a method to indicate that the calls to this method should
be logged, or may define a web service annotation and asso-
ciate it with a class to indicate that the class should implement
a Web Service. Annotations separate application’s business
logic from middleware-specific or domain-specific concerns
(e.g., logging and web service functions). By hiding the
implementation details of those semantics from program code,
annotations increase the level of programming abstraction and
reduce programming complexity, resulting in simpler and more
readable programs. The program elements associated with
annotations are transformed to more detailed program code
by a supporting generation engine. For example, a generation
engine may insert logging code into the methods associated
with a logging annotation. Dependencies on the underlying
middleware are thus replaced by annotations, acting as weak
references —i.e., references that are not mandatory for the
application. This means that the evolution of the underlying
middleware is taken into account by the generation engine and
let the program code unchanged.

@OP can also be used to provide continuous integra-
tion in Component-Based Software Engineering. Continuous
integration allows a developer to generate the middleware
artifacts at any step of the component development. Devel-
opers concentrate their editing work on only one source file
per component. The deployment metadata are continuously
integrated without worrying about updating them. When the
development of a component consists of several files, @OP
allows the developer to maintain only one of them while the
other files are generated automatically. Besides, working with
only one file per component gives a better overview of the
program code to the developer. Therefore, the developer can
concentrate on the business logic and reduce the development
time drastically.

@OP has been applied in several object-oriented frame-
works to ease the process of configuring applications (e.g.,

Hibernate, Struts, Castor [11]), and it has been applied by
several J2EE application servers to simplify the configuration
of Enterprise Java Bean (EJB) components (e.g., JOnAS, Web-
Sphere, JBoss). Nevertheless, these annotations target only the
configuration of the EJB components, and are specific to an
application server.

Recently, the EJB 3.0 specification has introduced extensive
annotations to make EJB programming easier [4]. The anno-
tations defined in this specification address either EJB compo-
nent configuration or program code generation concerns. Nev-
ertheless, this specification presents two weaknesses. Firstly,
it is dedicated to EJB components. This means that the
strengths of this specification are not directly applicable to
other component models. Secondly, the EJB specification does
not focus on the EJB abstract model but abstracts the EJB
programming model. Thus, the annotations defined in the
EJB specification are tightly coupled to the EJB programming
model.

This @OP approach provides an useful formalism to in-
troduce a higher-level semantics into the artifacts of existing
programming models. In particular, @OP can be applied to
represent the abstract component model using annotations.
These annotations remove all the technical code that is re-
quired by a given programming model and that is tangled with
the business code. As a side effect, the use of @OP allows
the developer to write a program code compliant with several
component models. To achieve this, it is necessary to identify
the core concepts that are usually defined in the component
models. The specificities of existing component models are
reified in some extensions of the annotation framework.

IV. COMPONENT ANNOTATIONS

This section introduces our annotation framework that lever-
ages the common COP practices. After identifying the core
concepts involved in several component models, our abstract
component model is represented as a set of five annotations.
Finally, the application HelloWorld is revisited using our
annotations.

A. Identification of the Component Model Concepts

Component

+name : String
+signature : Any
+cardinality : String

Interface

+name : String
+value : Any

Attribute

+name : String
Service

1 *

Defines
1

*

Provides

1

*

Requires

1*

Uses

+on : String
LifeCycle

Notifies

Fig. 2. Component core concepts.

Most existing component models (e.g., OpenCOM [2],
Fractal [3], JavaBean [13], EJB [4], CCM [5]) rely on some
common core concepts, as summarized in Figure 2. A Compo-
nent is defined as an entity that Provides and Requires some
interfaces. These interfaces are usually identified by a name
and a signature —i.e., a set of operations. A cardinality is also
specified to define that a Component requires several inter-
faces of the same type. A Component can additionally define

12

a set of Attributes to support configuration. An Attribute is
initialized with a value when the Component is loaded. A
Component can furthermore require some Services provided
by the runtime structure executing it. These Services often
provide to the technical properties required by a component
(e.g., logging). Finally, the component models define the
concept of Lifecycle. This concept allows the component to
be aware of its current state (e.g., created, started, stopped,
destroyed).

B. Overview of the Component Annotation Framework

Each core component concept previously identified is de-
fined as an annotation applicable to a piece of the program
code. The resulting annotations are summarized in Table I. The
annotation @Provides applies to an interface that is provided
by a component. An attribute name can be specified when
using this annotation. The attribute signature is used when
the interface signature cannot be inferred from the program
code. The annotation @Requires applies to the reference
to an interface required by a component. The attribute name
(resp. signature) is defined to override the name (resp. the
signature) of the field marked by the annotation. The attribute
cardinality is useful to indicate whether the field refers to an
optional reference or to a collection reference. The annotation
@Attribute applies to the declaration of a field. If no attribute
value is defined, the attribute is defined when composing the
components together. The annotation @Service applies to the
reference to a service provided by the component runtime
environment (e.g., logging). The attribute name refers to the
identifier of the service. The annotation @Lifecyle applies to
a method defined in the component code. This method defines
treatments that should be executed at a given transition of the
component lifecycle (e.g., from stopped to started) using the
attribute on.

C. Revisiting the Application HelloWorld with Annotations

This section revisits the application HelloWorld introduced
in Section II. To illustrate the benefit of @OP, the program
code of this application is reengineered to replace all the tech-
nical code by the previously defined annotations. Listings 5
to 7 show that the original business code is preserved. The
interface Service is marked with the annotation @Provides
to define s as its identifier (Line 1 of Listing 5). This
information was previously defined in the ADL descriptor of
the component. The reference to the interface Service in
the class Client is marked with the annotation @Requires
(Lines 3–4 of Listing 6). As a consequence the program
code related to service reference handling becomes useless.
The logging support required by the component Server
and provided by the runtime environment is replaced by the
annotation @Service, which takes in charge the configuration
of the logging service (Lines 2–3 of Listing 7). The original
constructor of the class Server is dropped because its only
use was to retrieve the logging service. Finally, the attribute
header is marked with the annotation @Attribute to reify

this field as a component attribute, enabling the removal of the
methods that get and set its value (Lines 4–5 of Listing 7).

1 /** @Provides name="s" */
2 public interface Service {
3 void print(String message);
4 }

Lst. 5. Interface Service.

1 /** @Provides name="r" signature="Runnable" */
2 public class Client implements Runnable {
3 /** @Requires */
4 protected Service s;
5 /** @LifeCycle on="start" */
6 public void run() {
7 this.s.print("hello world");
8 } }

Lst. 6. Component Client.

1 public class Server implements Service {
2 /** @Service name="logging" */
3 protected Logger logger;
4 /** @Attribute */
5 protected String header;

7 public void print(String msg) {
8 this.logger.info(this.header + msg);
9 } }

Lst. 7. Component Server.

The annotations enhance the program code elements —
i.e., classes, methods, and fields— with the core concepts
of a component model —i.e., requires, provides, attribute
etc.— without the programmer having to worry about the
specificities of its programming model. These specificities are
automatically injected into the program code by generators
that are specific to each targetted component model.

V. IMPLEMENTATION OF THE GENERATORS

This section first introduces the architecture of a generation
engine used to support the programming model of a given
component model, and then illustrates our approach on two
existing component models developed in Java: OpenCOM and
Fractal.

A. Multi-Component Generation Process

Using our annotations, the annotated program code can be
instantiated according to the programming model of various
component models, as illustrated in Figure 3. The annotated
program code is considered as Platform-Independent Code
(PIC). Using generators, the PIC becomes Platform-Specific
Code (PSC), which complies with a given programming model
(e.g., Fractal, OpenCOM). Furthermore, the same PIC can
support the evolution of a given programming model in a
seamlessness manner. This PIC can also be executed on
various component models. This approach allows developers
to support other programming models by implementing addi-
tional generators.

13

Annotation Code Element Parameter Description Cardinality Default Value
@Provides Class or name provided interface name optional interface name

Interface signature provided interface signature optional interface signature
@Requires Field name required interface name optional field name

signature required interface signature optional field signature
cardinality required interface cardinality optional 1..1

@Attribute Field name component attribute name optional field name
value component attribute value optional -

@Service Field name component service name required -
@Lifecycle Method on lifecycle state to handle required -

TABLE I
OVERVIEW OF THE COMPONENT ANNOTATION FRAMEWORK.

Next...OpenCOMFractal

Fig. 3. MDE approach.

B. Architecture of the Generation Engine

Figure 4 presents the architecture of the generation engine
used to produce the various component artifacts. This gener-
ation engine reifies the annotated program code as a model
in memory. The generator uses this program code model to
produce the Java program code (1). Then, the handwritten and
generated program code are compiled by the Java compiler
(2). Finally, the compiled code is executed by the component
runtime environment (3).

Generation
Engine

Javac

Runtime
Application

Class

Fig. 4. Generation engine.

Two functionally equivalent implementations of the annota-
tion framework have been developed. The first defines XDoc
annotations and uses the XDoclet generation engine [11] to
produce the various artifacts required by the component model.
The second defines Java 5 annotations and uses the Spoon
transformation tool [7] to enhance the handwritten program
code with the technical properties of the component model.

C. OpenCOM Component Generator

This section presents the generator defined for the Open-
COM programming model [2]. After introducing the Open-

COM component model, we present the available generator,
and the generated components.

1) OpenCOM Component Model: OpenCOM is a
lightweight, efficient, reflective component model that
uses the core features of Microsoft COM to underpin its
implementation; these features include the binary level
interoperability standard, Microsoft’s IDL, COM’s globally
unique identifiers and the IUnknown interface [2]. Recently,
a Java version of OpenCOM has been developed to provide
platform independence, and to ease the developments of
applications on top of OpenCOM.

IUknown

Client
Code

Meta
Interface

IMetaInterface
IConnections

Type Library

ILifeCycle
Runnable

IUknown

Server
Code

Meta
Interface

IMetaInterface

Type Library

ILifeCycle
Service

connectioninterface receptacle

Fig. 5. OpenCOM assembly HelloWorld.

The key concepts of OpenCOM are interface, receptacle and
connection. Each component implements a set of interfaces
and receptacles, as shown in Figure 5. An interface expresses
a unit of service provision, a receptacle describes a unit of
service requirement and a connection is the binding between
a receptacle and an interface of the same type. Among the
possible interfaces provided by an OpenCOM component, the
IUknown interface provides the reference of the component
and an operation to navigate through the component’s in-
terfaces, the IMetaInterface interface provides operations to
introspect the component, the IConnections interface is used
to connect the component receptacles to interfaces, and the
ILifeCycle interface supports the lifecycle of the component.
OpenCOM provides a standard runtime substrate per address
space that manages the creation and deletion of components,
acts upon requests to connect/disconnect components and pro-
vides service interfaces for reflective operations. The runtime
substrate dynamically maintains a graph of the components
currently in use. The maintenance of dynamic dependencies
between components is relevant for the introspection and
reconfiguration of component configurations.

2) Overview of the OpenCOM Generator: In the context of
OpenCOM, only one Java program code generator is available:

14

Component glue is a Java generator that produces, for each
OpenCOM component, the technical code required by the
OpenCOM programming model. This technical code requires
to implement the methods of the interfaces IUnknown,
IMetaInterface, ILifeCycle, and IConnections.

3) Generation for OpenCOM: Listings 8 and 9 present
the program code generated by the component glue gener-
ator. The generated class OCMClient extends the original
class Client and implements the interfaces IUnknown,
IMetaInterface, ILifeCycle and IConnections
(Listing 8). The method QueryInterface provides the
reference of the interfaces provided by the component (Lines
11–18). The methods defined in lines 20–28 manage both
the component meta-level and the component attributes. The
methods defined in lines 30–31 notify the component of its
lifecycle evolution. Finally, the methods defined in lines 33–
42 allow OpenCOM to connect the references of the required
interfaces to those provided by the Server component. In
particular, the reference to the interface Service defined
in the annotated program code is automatically updated in
these methods. The generated class OCMServer extends
the original class Server and implements the interfaces
IUnknown, IMetaInterface, and ILifeCycle (List-
ing 9). The behaviour associated with the implementation of
these interfaces is the same as that of the OCMClient.

D. Fractal Component Generators
1) Fractal Component Model: The hierarchical Fractal

component model uses the usual component, interface, and
binding concepts [3]. A component is a runtime entity that
conforms to the Fractal model. A primitive component encap-
sulates a unit of computation described in a given program-
ming language. An interface is an interaction point expressing
the provided or required methods of the component. A binding
is a communication channel established between component
interfaces. Furthermore, Fractal supports recursion with shar-
ing and reflective control [14]. Recursion with sharing means
that a composite component can be composed of several sub-
components at any level, and a component can be a sub-
component of several components. Reflective control means
that an architecture built with Fractal can be reified at runtime
and can be dynamically introspected and managed. Fractal pro-
vides also an Architecture Description Language (ADL) [15],
named Fractal ADL, to describe and automatically deploy
component-based configurations.

Fig. 6. Fractal component HelloWorld.

Figure 6 illustrates the different entities of a typical Fractal
component architecture. Thick black boxes denote the con-

troller part of a component, while the interior of the boxes
corresponds to the content part of a component. Arrows
correspond to bindings, and tau-like structures protruding
from black boxes are internal or external interfaces. Internal
interfaces are only accessible from the content part of a
component. External interfaces appearing at the top of a
component represent reflective control interfaces such as the
component controller (c), the lifecycle controller (lc), the
binding controller (bc), the content controller (cc), or the
attribute controller (ac) interfaces.

2) Overview of the Fractal Generators: In the context of
Fractal, two Java program code generators and one XML
definition generator are available. The number of generators
depends on the kind of artifacts that are generated.
Attribute controller is a Java generator that produces, for
each Fractal component defining at least one attribute, an
interface that handles the attributes of the component. This
interface contains a getter and a setter method for each
attribute.
Component glue is a Java generator that produces the techni-
cal code for each Fractal primitive component. This technical
code requires to implement the methods of the attribute
controller interface generated previously, the methods defined
in the binding controller interface, and the methods required
by the lifecycle controller.
Primitive definition is an XML generator that produces a
Fractal ADL definition for each Fractal primitive component.
This definition comprises the interfaces provided and required
by the component, the attributes with their initial value, and
the name of the content class implementing the component.

3) Generation for Fractal: The execution of the
attribute controller generator provides the interface
ServerAttributeController, which is used by
the Fractal runtime environment to handle the component
attributes (see Listing 11). The execution of the component
glue generator provides the classes FcClient (see
Listing 10) and FcServer (see Listing 12). The generated
class FcClient extends the original class Client
to introduce the interface BindingController
required by Fractal to handle the component client
interfaces. The generated class FcServer extends
the original class Server to implement the interface
ServerAttributeController and the interface
Loggable, which allows Fractal to initialize the server’s
logger. The execution of the primitive definition generator
provides the Fractal ADL definitions of the component Client
(see Listing 13), the interface Service (see Listing 14), and
the component Server (see Listing 15).

E. Conclusion

To conclude, the code produced by the generators (see
Listings 8 to 15) would have been written by developers. Thus,
our approach combining @OP and generative programming
improves the development of components drastically.

15

1 public class OCMClient extends Client implements IUnknown, IMetaInterface, IConnections, ILifeCycle {
2 private OCM_SingleReceptacle ocm_s = new OCM_SingleReceptacle(Service.class);
3 private MetaInterface _meta_;
4 public OCMClient(IUnknown binder) {
5 OCM_SingleReceptacle ocm = new OCM_SingleReceptacle(IOpenCOM.class);
6 ocm.connectToRecp(binder,"OpenCOM.IOpenCOM", 0);
7 _meta_ = new MetaInterface((IOpenCOM) ocm.m_pIntf, this);
8 }
9 // IUnknown Interface

10 public Object QueryInterface(String name) {
11 if (name.equalsIgnoreCase("Runnable")) return this;
12 Vector query = new Vector();
13 _meta_.ReadInterfaceNames(this.getClass(), query);
14 for (int i=0; i<query.size(); i++)
15 if (name.equalsIgnoreCase(query.get(i).toString())) return this;
16 return null;
17 }
18 // IMetaInterface Interface
19 public int enumIntfs(Vector ppIntf) { return _meta_.enumIntfs(this,ppIntf); }
20 public int enumRecps(Vector recp) { return _meta_.enumRecps((IUnknown)this,recp); }
21 public boolean SetAttributeValue(String id, String kind, String name, String type, Object val) {
22 return _meta_.SetAttributeValue(id, kind, name, type, val);
23 }
24 public TypedAttribute GetAttributeValue(String id, String kind, String name) {
25 return _meta_.GetAttributeValue(id, kind, name);
26 }
27 public Hashtable GetAllValues(String kind, String id) { return _meta_.GetAllValues(kind, id); }
28 // ILifeCycle Interface
29 public boolean startup(Object pIOCM) { super.run(); return true; }
30 public boolean shutdown() { return true; }
31 // IConnections Interface
32 public boolean connect(IUnknown itf, String signature, long id) {
33 boolean r = ocm_s.connectToRecp(itf, signature, id);
34 if (r && signature.equalsIgnoreCase("Service")) super.s = (Service) ocm_s.m_pIntf;
35 return r;
36 }
37 public boolean disconnect(String signature, long id) {
38 boolean r = ocm_s.disconnectFromRecp(id);
39 if (r && signature.equalsIgnoreCase("Service")) super.s = null;
40 return r;
41 } }

Lst. 8. OpenCOM component Client.

1 public class OCMServer extends Server implements IUnknown, IMetaInterface, ILifeCycle {
2 private MetaInterface _meta_;
3 public OCMServer(IUnknown binder) {
4 OCM_SingleReceptacle ocm = new OCM_SingleReceptacle(IOpenCOM.class);
5 ocm.connectToRecp(binder, "OpenCOM.IOpenCOM", 0);
6 _meta_ = new MetaInterface((IOpenCOM) ocm.m_pIntf, this);
7 super.logger = JavaLog.logger("Server");
8 }
9 // IUnknown Interface

10 public Object QueryInterface(String name) {
11 if (name.equalsIgnoreCase("Service")) return this;
12 Vector query = new Vector();
13 _meta_.ReadInterfaceNames(this.getClass(), query);
14 for (int i=0; i<query.size(); i++)
15 if (name.equalsIgnoreCase(query.get(i).toString())) return this;
16 return null;
17 }
18 // IMetaInterface Interface
19 public int enumIntfs(Vector ppIntf) { return _meta_.enumIntfs((IUnknown) this, ppIntf); }
20 public int enumRecps(Vector recp) { return _meta_.enumRecps((IUnknown) this, recp); }
21 public boolean SetAttributeValue(String id, String kind, String name, String type, Object val) {
22 if (name.equalsIgnoreCase("header")) super.header = (String) val;
23 return _meta_.SetAttributeValue(id, kind, name, type, val);
24 }
25 public TypedAttribute GetAttributeValue(String id, String kind, String name) {
26 if (name.equalsIgnoreCase("header")) return super.header;
27 return _meta_.GetAttributeValue(id, kind, name);
28 }
29 public Hashtable GetAllValues(String kind, String id) { return _meta_.GetAllValues(kind, id); }
30 // ILifeCycle Interface
31 public boolean startup(Object pIOCM) { return true; }
32 public boolean shutdown() { return true; }
33 }

Lst. 9. OpenCOM component Server.

16

1 public class FcClient extends Client
2 implements LifeCycleController, BindingController {
3 // LifeCycleController interface
4 public String getFcState() { return null; }
5 public void startFc() { super.run(); }
6 public void stopFc() { }
7 // BindingController interface
8 public String[] listFc() {
9 ArrayList _itf_ = new ArrayList();

10 _itf_.add("s");
11 return (String[]) _itf_.toArray(new String[0]);
12 }
13 public Object lookupFc(String itf) {
14 if (itf.equals("s")) return super.s;
15 return null;
16 }
17 public void bindFc(String n, Object itf) {
18 if (n.equals("s")) super.s = (Service) itf;
19 }
20 public void unbindFc(String itf) {
21 if (itf.equals("s")) super.s = null;
22 } }

Lst. 10. Fractal component Client.

1 public interface ServerAttributeController
2 extends AttributeController {
3 String getHeader();
4 void setHeader(String header);
5 }

Lst. 11. Fractal attribute header.

1 public class FcServer extends Server
2 implements ServerAttributeController, Loggable {
3 // Loggable interface
4 public Logger getLogger() { return super.logger; }
5 public void setLogger(Logger l) { super.logger = l; }
6 // ServerAttributeController interface
7 public String getHeader() {
8 return super.header;
9 }

10 public void setHeader(String header) {
11 super.header = header;
12 } }

Lst. 12. Fractal component Server.

1 <definition name="Client">
2 <interface name="r" role="server"
3 signature="Runnable"/>
4 <interface name="s" role="client"
5 signature="Service"/>
6 <content class="FcClient"/>
7 </definition>

Lst. 13. Fractal ADL definition Client.

1 <definition name="Service">
2 <interface name="s" role="server"
3 signature="Service"/>
4 </definition>

Lst. 14. Fractal ADL definition Service.

1 <definition name="Server" extends="Service"
2 arguments="header">
3 <content class="FcServer"/>
4 <attributes signature="ServerAttributeController">
5 <attribute name="header" value="${header}"/>
6 </attributes>
7 </definition>

Lst. 15. Fractal ADL definition Server.

VI. RELATED WORK

This section compares our work with existing approaches
such as Aspect-Oriented Programming and Model-Driven En-
gineering. We also compare to the existing technologies that
use Attribute-Oriented Programming to leverage the manage-
ment of technical properties.

Attribute-Oriented Programming has already been ap-
plied in the context of COP. The EJB 3.0 [4] and the
Service Component Architecture (SCA) [6] specifications ex-
tensively use annotations to make programming easier but
these approaches provide no complete abstraction of their
programming model. [16] presents an a posteriori approach
that extends an ADL to mark components with annotations.
Nevertheless, this work is limited to the introduction of
additional technical properties, such as the property of Deny
of Service detection, to legacy components. Our work is an
a priori approach to leverage COP using an annotation-
based abstraction of the programming model of the component
model.

Aspect-Oriented Programming (AOP) provides an partial
solution to the problem of technical code abstraction. In [16],
the annotations defined at the architectural level are consumed
in the program code by aspects defined with AspectJ. The
annotations mark potiential victim interfaces and are con-
sumed to inject the Deny of Service detection code. Similarly,
the AOKell implementation of the Fractal component model
provides an aspect that automatically inject the technical code
related to the handling of the component client interfaces [17].
However, AOP is not able to generate additional artifacts
such as the attribute controller interface or the component
definitions. Our approach provides Java and XML generators
to support both program code and ADL definition generation.

Model-Driven Engineering (MDE) promotes the use of
Platform-Independent Models (PIM) to define the business
concern of an application. The PIM can be transformed
into different Platform-Specific Models (PSM) that take into
account the specificities of a given platform (e.g., a given
component model). Our approach follows the same idea at
the program code level rather than at the model level. Indeed,
the annotated program code can be considered as a Platform-
Independent Code (PIC) composed of the business concern
of the application and the annotations related to COP. Then,
the generators produce the program code compliant with a
given programming model as a Platform-Specific Code (PSC).
Our approach is a practical application of MDE for the
programming level, as a consequence it appears as an inter-
esting solution to provide component model independency.
In [8], the authors combined UML stereotypes and tagged
values to simulate an annotation mechanism when modeling
an application. The stereotype and the tagged values are thus
mapped to annotations when generating the application code.
This interesting approach brings annotations to the model level
but it does not try to abstract the diversity of underlying
platforms as proposed in this paper.

17

VII. CONCLUSION & PERSPECTIVES

This paper has presented a reification of an abstract com-
ponent model as an annotation framework. This framework
gathers the core concepts of the abstract component model
manipulated by the developers. Using the five annotations
defined in the framework, the developer can write a pro-
gram code that contains only the business concern of the
application, making it more lisible. The handwritten program
code becomes simpler while being free of all the technical
code. The compliance with the programming model of a given
component model is ensured by generators that consume the
annotations to produce the technical code required by a com-
ponent model. The use of generators provides an interesting
solution to the problem of the evolution of component models
because a modification of the programming model of the
component model impacts only the generators and no more
the application. Finally, an annotated program code can be
executed on various component-oriented platforms. In this
paper, the generators for the OpenCOM and Fractal component
models are illustrated and show the benefits of our approach.

Among the possible evolutions of this approach, the sup-
port of additional component models must be considered
(e.g., JavaBean [13], EJB [4], CCM [5], SCA [6]). Besides,
the annotation framework can be easily extended to handle
crosscutting concerns (e.g., transaction, persistency). When
considering the specificities of existing component models
(e.g., asynchronous communications in CCM), the annotation
framework can easily be extended to include new annotations
and generators. Nevertheless, the use of such annotations
would restricted the list of target component models. Finally
we are interested in the definition of a common composition
language to describe component-oriented architectures. In par-
ticular, Fractal ADL provides an open interpretation engine
to associate various behaviours to Fractal ADL concepts
(e.g., configuration verification, deployment plan generation,
dynamic component deployment). We think that Fractal ADL
can be considered for describing abstract compositions of
components.

REFERENCES

[1] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller, “Think: A
Software Framework for Component-based Operating System Kernels,”
in USENIX Annual Technical Conference, General Track, Monterey,
California, USA, June 2002, pp. 73–86.

[2] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. M.
Costa, H. A. Duran-Limon, T. Fitzpatrick, L. Johnston, R. S. Moreira,
N. Parlavantzas, and K. B. Saikoski, “The Design and Implementation
of Open ORB 2,” IEEE Distributed Systems Online, vol. 2, no. 6, 2001.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “An
Open Component Model and Its Support in Java,” in 7th International
Symposium on Component-Based Software Engineering (CBSE), ser.
LNCS, vol. 3054. Edinburgh, UK: Springer, May 2004, pp. 7–22.

[4] L. DeMichiel and M. Keith, Enterprise JavaBeans (EJB) Specification,
3rd ed., Sun Microsystems, Inc., Santa Clara, California, U.S.A, Dec.
2005.

[5] OMG, CORBA Component Model (CCM) Specification, 3rd ed., Need-
ham, MA, USA, Sept. 2002.

[6] IBM Corporation, Service Component Architecture (SCA) Specification,
0th ed., Nov. 2005.

[7] R. Pawlak, “Spoon: Annotation-Driven Program Transformation - The
AOP Case,” in 1st International Middleware Workshop on Aspect-
Oriented Middleware Development (AOMD), ser. AICPS, vol. 118.
Grenoble, France: ACM, Nov. 2005, pp. 1–6.

[8] H. Wada and J. Suzuki, “Modeling Turnpike Frontend System: A Model-
Driven Development Framework Leveraging UML Metamodeling and
Attribute-Oriented Programming,” in 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS), ser.
LNCS, vol. 3713. Montego Bay, Jamaica: Springer, Oct. 2005, pp.
584 – 600.

[9] M. Eichberg, T. Schäfer, and M. Mezini, “Using Annotations to Check
Structural Properties of Classes,” in 8th International Conference on
Fundamental Approaches to Software Engineering (FASE), ser. LNCS,
no. 3442. Edinburgh, UK: Springer, Apr. 2005, pp. 237–252.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, Third Edition. Santa Clara, California, USA: Addison-
Westley Professional Computing, Dec. 2005.

[11] C. Walls and N. Richards, XDoclet in Action, ser. In Actions series.
Manning Publications, Dec. 2003.

[12] Ecma International, C# Language Specification, 3rd ed., Geneva,
Switzerland, June 2005.

[13] G. Hamilton, JavaBeans Specification, 1st ed., Sun Microsystems, Inc.,
San Antonio Road, Palo Alto, CA, Aug. 1997.

[14] E. Bruneton, T. Coupaye, and J.-B. Stefani, “Recursive and Dynamic
Software Composition with Sharing,” in 7th International Workshop on
Component-Oriented Programming (WCOP), Malaga, Spain, June 2002.

[15] N. Medvidovic and R. N. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,” IEEE
Transactions on Software Engineering, vol. 26, no. 1, pp. 70–93, Jan.
2000.

[16] V. Schiavoni and V. Quéma, “A Posteriori Defensive Programming: An
Annotation Toolkit for DoS-Resistant Component-Based Architectures,”
in 21st ACM Symposium on Applied Computing (SAC). Dijon, France:
ACM, Apr. 2006.

[17] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye, “A Component
Model Engineered with Components and Aspects,” in 9th Interna-
tional SIGSOFT Symposium on Component-Based Software Engineering
(CBSE), ser. LNCS. Stockholm, Sweden: Springer, June 2006.

18

Automated Component Bridge Generator
Dominik Glaser

docufy GmbH
D-96047 Bamberg

Email: dominik@docufy.de

Gregor Fischer
Würzburg University

Institute for Informatics
D-97074 Ẅurzburg

Email: fischer@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
Würzburg University

Institute for Informatics
D-97074 Ẅurzburg

Email: wolff@informatik.uni-wuerzburg.de

Abstract— This position paper describes an automatic compo-
nent bridge generator for embedding COM components in the
Eclipse rich client platform. While embedding of ActiveX controls
(graphical COM components) is in principle possible in Eclipse,
the data model of the control is not easily accessible, and if done
anyway, the task is quite tedious and error-prone.

Therefore an automated component bridge generator was
developed based on a model transformation framework, that
analyses information about the component and automatically
generates a bridge for the component to be used in Java. Special
care must be taken of resource management, event handling, type
mapping and constructs in COM that are not directly available
in Java like optional or out parameters.

Using the generator bridges were created within minutes that
previously took several months to code. They allow numerous
components like Word or Nero Burning Rom to be used,
embedded and controlled from Java applications.

I. I NTRODUCTION

When developing an application for the Eclipse platform,
the core Java library and of course the components of the
Eclipse platform itself (plug-ins) are available. Although this
accumulates to quite a collection of reusable software, these
are mostly rather abstract. More specific components like a
spreadsheet are not easily available (yet).

On the other hand, the missing components are often
available outside of Eclipse, e.g. as applications. Often ap-
plications export all or parts of their functionality as com-
ponents to be embedded in other applications. Unfortunately
it is quite tedious and error-prone to create bridges from the
Eclipse/Java-World to the component model of the system.
Therefore an automatic component bridge generator was de-
veloped. It builds upon a model transformation framework
that simplifies transformations of component models. Using
the framework the required transformers were implemented to
generate bridges for general COM components and ActiveX
controls in particular to be used from Java/Eclipse.

COM

The Component Object Model (COM) is currently the most
widely used model for reusing components throughout the
Windows platform. This might change once its designated
successor .NET is widely established and broadly used. But
for now most components on Windows are available as COM
components.

The interfaces and types for a COM component are defined
in a type library (as a binary standard). These are usually

generated from an (M)IDL description file. An eclipse-plugin
to recreate the IDL-file from the binary type library was
developed in this project as a side-product.

Stubs for e.g. C/C++ can be generated from the IDL-file,
so that the components of the type library can be used in
those languages. Scripting languages like Visual Basic can also
explore and use COM components dynamically.

Eclipse as execution-environment for COM components

The Eclipse Rich Client Platform runs on the Java Platform.
Hence direct interaction with the underlying system and its
components is not possible.

Although running on the Java platform, Eclipse generally
provides means to embed an ActiveX control. But up to
now the code to access the component model of the ActiveX
control had to be manually implemented. To automate this
process it was necessary to implement a library that allows
interaction with the COM system. A configurable provider,
that gives access to the installed components, was developed
in particular. It encapsulates the native code required. The
provider can of course be implemented natively using JNI,
but as the SWT (which is a part of Eclipse) already contains
the required functionality, a SWT provider was realized.

II. T HE MODEL TRANSFORMATION FRAMEWORK

In order not to be restricted to COM as input and Java as
the target for the generated bridge, a more general purpose
model transformation framework was developed.

It allows to transform arbitrary models given by model
providers to target models used by model consumers, as
long as a chain of transformations by model transformers
can be derived. All possible chains of transformation are
automatically inferred from the registered model transformers,
so that the user only needs to choose which chain to use.
Model providers are always at the beginning of a chain of
transformations. They provide a certain model. The model
can be created by arbitrary means, it does not refer to a meta
model. Model transformers accept a model from a given set of
model classes. This model is then transformed to an instance
of another model class. Model consumers finally consume a
model and create some kind of output.

Transformation wizard

The different parts of the transformation framework are
automatically composed for the usage in the import wizard

19

of Eclipse. The framework therefore first lets the user choose
a model provider from the registered ones. Next, the possible
chains of transformation and the matching model consumers
are displayed for the user to choose from.

Once the complete transformation has been selected, each
part of the chain is configured if necessary and executed. Con-
figuration of the parts is very flexible, as the parts can provide
their own wizard pages. In order to simplify creation of ”filter
transformations”, general purpose SelectionWizardPages are
provided.

III. B UILDING BRIDGES FROMECLIPSE TOCOM

To be able to use COM components from Eclipse, Java
wrappers have to be created for the elements of the COM type
library. This is realized by first providing a model for COM
components in the model transformation framework, which
is then transformed and finally consumed by a Java bridge
generator.

In the following sections we will show the most challenging
tasks that needed to be solved to achieve this.

Communication

In order to allow communication between Java and COM,
an abstract core system (comcore) was implemented. It al-
lows instantiation of components and interaction with them
through abstract classes COMUtils and COMFactory. A con-
crete implementation is realised based on Eclipse’s SWT
implementation, which already includes basic functionality to
communicate with COM components. Other implementations,
e.g. based on AWT are conceivable.

Type mapping

For the components to be usable from Java, a mapping of
data structures and types had to be realized, so that information
could be exchanged between the systems.

In COM, all ”simple” types are wrapped inside a Variant.
A Variant can therefore be an integer, a real number, a date,
a color, and so on. These types can be mapped to standard
Java types, e.g. int, float, java.util.Calendar and a specifically
created OleColor-Class.

For complex types, that are represented as classes and
interfaces in COM, matching classes are created in Java. COM
enumerations are matched with a subclass of a dedicated
abstract class that provides type-safe constants in Java 1.4
style.

Parameters

While normal (in-) parameters to functions can be easily
mapped, in COM parameters can also be declared to be out-
parameters. These can be modified by the component and must
be passed back to the Java environment. Because primitive
types cannot be modified (as seen from the caller) when passed
in as parameters in Java, these parameters are mapped to an
array of the type. When an array is passed as parameter, the
values within the array can be modified, and the modification
is also visible to the caller.

COM also allows for optional parameters. In order to
compensate for this, multiple methods are created in the
generated Java code.

Events

Besides the method invocation that is initiated from the
client to the server (the component), it is also possible that
the server needs to invoke methods on the client. This is used
when the server wants to notify the client of events.

In order for the COM server to call methods on the
client-side, the client registers for these events on component
creation. This is automatically done by the generated code.
Also Listener-, Adapter- and Event-classes are created, so that
classes can easily be written to use this functionality.

Parameter mapping is in principle done the same way
as when invoking methods the other way around. However,
the parameters are not directly passed to the Listener, but
embedded as attributes of the Event-class.

Resource Handling

Because COM employs a cooperative memory management,
users must increment a reference counter when starting to use
a component, and decrement it, when the component is no
longer needed.

The created wrapper classes try to manage this as far
as possible by themselves. The reference is increased on
construction. Also there is a dispose method to deallocate the
component.

But because Java does automatic memory management,
usually no explicit destruction of an object is done. Objects
are destructed only when the garbage collector runs. At that
time each reclaimed object’s finalize method gets invoked and
the component can be disposed of.

If however the Java Virtual Machine is shut-down, no
destruction of the objects is done. In order to prevent memory
leaks for components running outside the current process’s
memory space, it is necessary to employ a shut-down-hook to
be able to release the components.

Although this technique works well, we recommend to
explicitly dispose of no longer used components for efficiency
reasons and for a clear separation of responsibilities.

Reading type-libraries

In order to first find COM components and then read the
associated type libraries, the Windows API must be employed.
This is done by a native library written in Delphi. It allows
to read information about the COM components from the
Windows registry and the referenced binary files.

From the gathered information a model for the type library
is derived. This model can then be transformed and finally
consumed in order to create a Java bridge, but e.g. also to
recreate an IDL file.

The following figure shows the general usage of the type
library and the newly created use cases:

20

Generating code

The code finally is generated using the Java Emitting
Templates (JET) from Eclipse. The code generation is highly
configurable using name generators. This way generated code
can seamlessly be integrated in projects without breaking
coding conventions.

Furthermore the generated classes include automatically
generated Javadoc-comments. These are automatically ex-
tracted from the type library and the associated help-strings.
This way the created classes blend in the usual coding style,
and the documentation is also readily available right inside the
IDE.

The generated code depends only on the comcore library
and is therefore independent of Eclipse.

For each element of a component two classes are generated,
an internal that manages the communication and a public
class that optionally provides user defined functionality. A
regeneration of the bridge only recreates the internal classes,
thus the functionality is kept.

For graphical COM components (ActiveX controls) a SWT
component is automatically created as a wrapper for the con-
trol. That allows seamless integration of the ActiveX controls
within SWT applications.

IV. EVALUATION AND CASE STUDIES

The bridge generator has been successfully used to create
bridges to numerous COM-components. These include: Excel,
Word, XMetaL, Internet Explorer, MSHTML, Nero Burning
Rom etc., see table 1.

A bridge to the XMetaL component, that was previously
implemented manually by Docufy within about 2 man-months,
can now be generated within seconds with better documenta-
tion and (probably) less errors. The potential reduction of costs
is therefore enormous.

V. CONCLUSION AND FUTURE WORK

We have developed a framework to create bridges between
different component models and implemented a bridge from
the Java platform to the binary COM model. This bridge
enables the developer to use and integrate well established,
extensively tested, widely known components within a Java
application as if they were native Java components.

While the development of these tools is already considered
a great success, there are some points where future work can
be useful:

• Embedding ActiveX-Control in AWT
While being able to almost automatically embed ActiveX-
Controls in SWT applications is already very useful, it
would still be desirable to also be able to do so in AWT
to reduce dependency on external libraries. This can be
done, but requires natively implemented helpers, because
the necessary tasks cannot be achieved with standard
Java.

• Integration of .NET
The Component Object Model has recently been su-
perseded by the .NET framework. While currently all
major components are still available as COM components
and will remain so for quite some time, embedding
components of a .NET architecture in Java is the next
logical straight forward step.
When specific .NET components are defined in a future
version, the easiest way of transformation probably will
be to wrap the .NET components in COM components.
This can most easily be done by the author of the
component, because here it only requires adding a special
marking to the class that instructs the compiler to create
the necessary type library.
If this is not possible, e.g. because the source code is

21

TABLE I

CASE STUDIES: TIMES WERE MEASURED ON APIV DUAL 3 GHZ WITH 3 GB MEMORY.

Type Library LOC Classes Methods Time
XMetaL Editor 13597 183 1281 1 sec
MS Word 11.0 Object Library 121056 1239 12484 9 sec
MS Excel 11.0 Object Library 222756 1613 22791 11 sec
MS HTML Object Library 4.0 525597 3823 62330 22 sec
Nero 1.4 Type Library 14108 291 1444 1 sec
MS Internet Explorer 12092 121 1148 1 sec

not available, a new .NET component can be created
that is derived from the desired component. This newly
created component can then once again be attributed to
be available as COM-component, too.

REFERENCES

[1] Eclipse Corner Article: ActiveX Support In SWT.
www.eclipse.org/articles/

[2] http://www.ezjcom.com/
[3] Automatische Einbindung von existierenden COM - Komponenten in

Eclipse, Institut f̈ur Informatik, Universiẗat Würzburg, Diplomarbeit, 2006
[4] http://www.nevaobject.com
[5] Microsoft Windows Platform SDK Collection for Windows Server 2003

SP1
[6] MOF Queries, Views, Transformations. http://www.omg.org/cgi-

bin/doc?ptc/2005-11-01

22

Component Adaptation: Specification and
Verification

Inès Mouakher, Arnaud Lanoix and Jeanine Souquières
LORIA – CNRS – Université Nancy 2

Campus scientifique
F-54506 Vandoeuvre-Lès-Nancy

Email: {mouakher, lanoix, souquier}@loria.fr

Abstract— In a component-based software devel-
opment, components are considered as black boxes.
They are only described by their interfaces expressing
their visible behaviors. They must be connected in
an appropriate way, through required and provided
interfaces. To guarantee interoperability of com-
ponents, we must consider each connection of a
required interface with another provided interface.
In the best cases, a provided interface – after some
renaming – constitutes an implementation of the
required interface. In the general cases, to construct a
working system out of components, adapters have to
be defined. They connect the required operations and
attributes to the required ones. The interoperability
between a required interface and provided interfaces
through an adapter is guaranteed by the use of
the B formal method with its underlying concept
of refinement, and its powerful tool support, the B
prover.

I. INTRODUCTION

The idea underlying the paradigm of component
orientation [1], [2] is to develop software systems
not from scratch but by assembling pre-fabricated
parts, as it is common in other engineering dis-
ciplines. As in object orientation, components are
encapsulated, and their services are only accessible
via interfaces and their operations. To really exploit
the idea of component orientation, it must be
possible to acquire components developed by third
parties and assemble them in such a way that the
desired behavior of the system to be implemented
is achieved. A component is a unit of composition
with contractually specified interfaces and explicit
dependencies. An interface describes the services
offered or required by a component without dis-
closing the component implementation. It is the
only access to the informations of a component.
The offered services by a component are described
by a provided interface and the needed services are
described by a required interface.

The success of applying the component based
approach depends on the interoperability of the
connected components. The interoperability can be

defined as the ability of two or more entities to
communicate and cooperate despite differences in
their implementation language, their execution en-
vironment, or their model abstraction [3], [4]. The
interoperability of two components concerns the
compatibility between the required interface of one
of the considered components with the provided
interface of the other one. More precisely, three
levels of interoperability have to be considered. The
syntactic level covers static aspects of components
interoperability. It concerns the interface signature:
each attribute of the required interface must have a
counterpart in the provided interface, but not neces-
sarily vice versa; for each operation of the required
interface, there exists an operation of the provided
interface, such as their signatures are compatible.
The semantic level covers the behavioral aspects
of components interoperability. The protocol level
deals with the allowed sequences of method calls
that a component expects.

The specification of interfaces plays an impor-
tant role in the verification of their compatibility.
Most current interface modeling languages (IDLs),
used in several component oriented platforms like
JavaBeans [5], [6], CORBA [7], or COM [8], are
limited for expressing signature (operation names,
types, parameters) informations. They provide an
insufficient information about component behav-
iors. Hence, one cannot insure trust in component
based systems.

The availability of formal languages and tool
support for specifying these interfaces is necessary
in order to verify the interoperability of compo-
nents. The idea to define component interfaces
using B has been introduced in an earlier paper
[9]. The semantics of the component services can
be easily modeled by the B formalism. The use of
the B refinement [10] to prove that two components
are compatible at the signature and semantics levels
has been explored in [11].

In this paper we focus on the generation of

23

PI_Lights

Controller

PI_Reader

Adapter Lights

RI_Database PI_Database

RI_Turnstile_Exit RI_Turnstile_Entry

RI_Lights

RI_Reader

Fig. 1. A partial view of the architecture of the access control system

adapters that realize the matching between two
or more existing components specified by their
required and provided interfaces [12]. In fact, the
need of adapters was recognized in the late nineties
with a particular focus on automated adapter gener-
ation [13]. As a consequence, the expressive power
of interface description techniques was limited as
one had to ensure the decidability of the inclusion
problem, which is necessary to perform automated
interoperability checks; one could only generate
adapters for specific classes of interoperability.

In our approach, we are not concerned only
with specific classes of interoperability but with
adapters in general. We propose to specify inter-
faces in terms of UML 2.0 diagrams [14]. These
diagrams are then automatically transformed into
B specifications [15], [16]. A model of a correct
adapter is specified in B. The verification of the
interoperability is automatically done by the B
prover: the B model of the adapter is a refinement
of the B model of the required interface using
provided components. This verification process is
done at the signature, semantic and protocol levels.

The rest of the paper is organized as follows. In
Section II, we give an overview of our component-
based development specification with the spec-
ification of the component interfaces. We then
propose the definition of adapters in Section III
and the verification of the interoperability between
the connected components. The case study of a
simple access control system serves to illustrate our
proposition. We discuss related work in Section IV.
The paper finishes with some concluding remarks
in Section V.

II. COMPONENT-BASED DEVELOPMENT AND
INTERFACE SPECIFICATION

Our goal is to provide an approach for
component-based software development that pays
special attention to the question of how the in-
teroperability between different components can
be guaranteed. Components are specified as black
boxes, so that component consumers can deploy
them without knowing their internal details. Hence,
component interface specifications play an impor-

tant role, as interfaces are the only access points
to a component. In this framework, adaptation
between two components is a hard problem which
has to be seen in an abstract way. We propose a
methodology for specifying the required adaptation
between two or more existing components by in-
troducing a third component called Adapter. This
new component is in charge, when possible, of me-
diating the interactions of the different components
so that they can successfully interoperate.

The overall architecture of the system is ex-
pressed by a UML 2.0 composite structure di-
agram [14]. Such diagrams contain named rect-
angles corresponding to the components of the
system. Components are connected by means of
interfaces which may be required or provided.
Required interfaces explicit context dependencies
of a component and are denoted using the “socket”
notation whereas provided interfaces explain which
functionalities the considered component provides
and are denoted using the “lollipop” notation.

Figure 1 presents a partial view of the archi-
tecture of the access control system where the
access of authorized persons to a building is to
be controlled. Persons have at their disposal access
cards with identification information stored on it.
There are two turnstiles, one at the entrance to
the building, and one at the exit. At the entrance,
there is also a card reader as well as a red and
a green light. In the sequel, we will focus on the
interaction between the Controller and the Lights
components. The given requirement says that if
the access is authorized, a green light is turned
on, whereas, if the access is refused, a red light is
turned on. More precisely, the green and the red
lights cannot be turned on at the same time. The
Controller component has several interfaces; one
of its requested interface is related to the Lights
component, namely RI Lights. The Lights compo-
nent has only one interface which is provided to a
controller component, namely PI Lights.

An intermediate component named Adapter has
to be introduced: it is in charge to implement
the links between the required interface of the
Controller component and the provided interface of

24

an existing Lights component.

A. Specifying Components

For each component of the architecture, a spec-
ification of each interface has to be set up [11].
A component interface specification consists of
a data model described by a class diagram with
its different attributes and operations. The usage
protocol of the interface is modeled by a Protocol
State Machine (PSM); for each operation, its pre-
and post-conditions are specified.

<< interface >>
RI_Lights

lightG : Boolean
lightR : Boolean
on_green()
off_green()
on_red()
off_red()

invariant
 (LightG = true implies LightR = false)
 and
 (LightR = true implies LightG = false)

RI_Lights_PSM

Off

Red
On

Green
On

[lightG = false] on_green /
[lightG = true]

off_green /
[lightG = false]

[lightR = false] on_red / [lightR = true]

off_red /
[lightR = false]

Controller
RI_Lights

Fig. 2. The component Controller with its interface
RI Lights and its associated PSM

1) The Controller Component: With respect to
its interaction with a Lights component, the Con-
troller component requires an interface RI Lights as
presented Figure 2. A PSM is associated to this
interface to specify its externally visible behavior,
i.e. its usage protocol. Safety constraints on the
required interface can be added by the way of an
invariant expressed by an OCL annotation.

Different components corresponding to the be-
havior of the Lights component used in Figure 1 are
available in the component library. Let us consider
two of them, one called MultiLights corresponding
to a component with the possibility of choosing its
color and a second one called SingleLight which is
a simple light.

<< interface >>
PI_MLights

color : ML_Color
change(new : ML_Color)
on()
off()

MultiLights
PI_MLights

<< enumeration >>
ML_Color

Blue
Green
Red
Yellow

PI_MLights_PSM

ML_Off

ML_On

[color != new]
change(new) /
[color = new]off /

on /

Fig. 3. The MultiLights component with its interface
PI MLights and its associated PSM

2) The MultiLights Component: The available
MultiLights component offers, by the way of its
provided interface called PI MLights, the next func-
tionalities: the light can be turned on and turned
off. When the light is turned off, one can choose
the light color from four predefined colors: blue,
green, red and yellow. The UML specification of
this component is given Figure 3, i.e. its provided
interface, PI MLights, and its associated PSM.

<< interface >>
PI_SLight

start()
stop()

SingleLight
PI_SLight

PI_SLight_PSM

Stop

Start

stop /
start /

Fig. 4. The SingleLight component with its interface
PI SLight and its associated PSM

3) The SingleLight component: Another compo-
nent named SingleLight is available in the compo-
nent library. It corresponds to a simple light which
can only be turned on and turned off. Figure 4 gives
its UML specification, i.e. its provided interface
PI SLight and its associated PSM.

B. Derivation of UML Interface Specifications to
B

UML 2.0 proposes expressive graphical no-
tations to specify components and their inter-
faces. Nevertheless, it does not provide a suitable
framework neither to support formal verifications
nor to check the interoperability. The B formal
method [10] supports an incremental development
process, using refinement. Assembly clauses are
also available [17], [18]. B methodology is based
on proofs of invariance and refinement: the proof
obligations are generated automatically (and often
discharged) by support tools such as AtelierB [19]
or B4free [20], an academic version of AtelierB.

Inspired from the derivation rules from
UML 1.X class diagrams and state diagrams to B
specifications [15], [16], we automatically translate
the UML 2.0 interfaces and their associated
PSMs into B specifications for checking their
interoperability. Intuitively:
• a B model is derived from the interface,
• a set containing the “control” states of the

associated PSM is added to the B model,
• each transition of the PSM is formalized by a

B operation: pre- and post-conditions from a

25

transition become preconditions and substitu-
tions into the B model,

• new preconditions (and substitutions) about
the “control” states are incorporated into each
B operation to model the PSM.

MODEL
RI Lights

SETS
RI Lights STATES = {Off, GreenOn, RedOn}

VARIABLES
lightG, lightR, lr state

INVARIANT
lightG ∈ BOOL ∧
lightR ∈ BOOL ∧
lr state ∈ RI Lights STATES ∧
(lightG = TRUE ⇒ lightR = FALSE) ∧
(lightR = TRUE ⇒ lightG = FALSE)

INITIALISATION
lightG, lightR, lr state := FALSE, FALSE, Off

OPERATIONS
on green =

PRE lightG = FALSE ∧ lr state = Off
THEN lightG := TRUE ‖ lr state := GreenOn
END ;

off green =
PRE lr state = GreenOn
THEN lightG := FALSE ‖ lr state := Off
END ;

on red =
PRE lightR = FALSE ∧ lr state = Off
THEN lightR := TRUE ‖ lr state := RedOn
END ;

off red =
PRE lr state = RedOn
THEN lightR := FALSE ‖ lr state := Off
END

END

Fig. 5. B Models of the interface RI Lights

Figures 5, 6 and 7 give the B model of the
three component interfaces previously specified
with UML.

III. DEFINITION AND VERIFICATION OF
ADAPTERS

We must now prove that the controller can be
connected either with the MultiLights component
or with two versions of the SingleLight compo-
nent. A process of proving interoperability between
components using the B refinement is described in
[11]. We can show that the interface PI MLights of
the MultiLights component is not a B refinement of
the RI Lights interface of the Controller component,
because we have no direct matchings between
their interface operations. The refinement proof
fails, showing that the two components cannot be
directly connected.

As specified in Figure 1, we introduce an
adapter, i.e. a piece of code that takes place be-
tween the both considered components and com-
pensates for the difference between their interfaces.
Intuitively, this adapter proposes a way to connect
provided operations and attributes to the required

MODEL
PI MLights

SETS
ML Color = {Blue, Green, Red, Yellow} ;
PI MLights STATES = {ML Off, ML On}

VARIABLES
color, ml state

INVARIANT
color ∈ ML Color ∧
ml state ∈ PI MLights STATES

INITIALISATION
color, ml state := ML Blue, ML Off

OPERATIONS
change(new) =

PRE new 6=color ∧ ml state = ML Off
THEN color := new
END ;

on =
PRE ml state = ML Off
THEN ml state := ML On
END ;

off =
PRE ml state = ML On
THEN ml state := ML Off
END

END

Fig. 6. B Models of the interface PI MLights

MODEL
PI SLight

SETS
PI SLight STATES = {Stop, Start}

VARIABLES
sl state

INVARIANT
sl state ∈ PI SLight STATES

INITIALISATION
sl state := Stop

OPERATIONS
start =

PRE sl state = Stop
THEN sl state := Start
END ;

stop =
PRE sl state = Start
THEN sl state := Stop
END

END

Fig. 7. B Models of the interface PI SLight

ones. Let us consider two components, one with a
requested interface RI and the other with a provided
interface PI. We define an adapter between these
two components as a new component that realizes
or implements the required interface RI, using the
provided interface PI.

In order to verify the interoperability between
RI and PI, we propose to specify the adapter as
a B model. As shown in Figure 8, the B model
Adapter 1

1) REFINES the B model of the required
interface : the adapter is an “implementation”
of the required interface and

2) INCLUDES the B model of the provided
interface. The adapter uses “correctly” the
operations of the provided interface to im-
plement the required interface.

26

<< interface >>
PI_MLights

color : ML_Color
change(new : ML_Color)
on()
off()

MultiLights

<< interface >>
RI_Lights

lightG : Boolean
lightR : Boolean
on_green()
off_green()
on_red()
off_red()

Controller

<<use>><<realize>>

B model
RI_Lights

B model
PI_MLights

B model
Adapter_1REFINES INCLUDES

Adapter_1

Fig. 8. An Adapter between Controller and MultiMLights components

The B specification of this adapter is composed
of two main parts:
• The INVARIANT clause describes the

links between the attributes of both required
and provided interfaces (linking invariant).
For each required variable, the adapter must
specify how to obtain it in terms of the pro-
vided variables. The adapter must also express
the links between the control states of both
corresponding PSMs.

• The OPERATIONS clause is composed
of all the operations of the required interface.
The body of each operation is defined by
the call of some operations of the provided
interface linked together by a small part of
code.

The use of the B method and its refinement
mechanism allows us to verify that the proposed
adapter is a “correct” refinement of the B model
of the required interface RI, at the three levels of
interoperability:
• the syntactic level is verified by the linking

invariant concerning the attributes and by the
correspondence of operations between the re-
quired interface and the adapter model,

• the semantic level is checked in terms of
the B refinement: for each operation of the
B adapter model, its precondition must im-
ply, under its invariant, the precondition of
the corresponding operation of the required
model; the application of its substitutions must
preserve the linking invariant,

• the protocol constraints expressed by PSMs

have been transformed into preconditions and
substitutions of the B operations. The proto-
col level is taken into account by behavioral
constraints during the proof of the refinement.

It is to be noticed that behavioral and protocol
constraints expressed in the provided interface and
translated into the corresponding B specification
are also taken into account. When an operation of
the provided interface specification is used into the
adapter specification (this is possible by the use of
the B includes clause), its precondition is verified.

REFINEMENT
Adapter 1

REFINES
RI Lights

INCLUDES
PI MLights

INVARIANT
lightG = bool(color = Green
∧ ml state = ML On)

∧ lightR = bool(color = Red
∧ ml state = ML On)

∧ (lightG = FALSE
∧ lightR = FALSE ⇒

ml state = ML Off)
OPERATIONS

off green =
BEGIN off
END ;

on green =
IF color = Green
THEN on
ELSE

LET col BE col = Green
IN change(col) ; on
END

END ;
off red =

BEGIN off
END ;

on red =
IF color = Red
THEN on
ELSE

LET col BE col = Red
IN change(col) ; on
END

END
END

Fig. 9. B Model of Adapter 1 between Controller and
MultiLights Components

A. An Adapter for the MultiLights Component

As presented Figure 8, this adapter uses the
provided interface PI MLights implemented by the

27

Controller

RI_Lights

Adapter_2

::SingleLight
PI_Green::PI_SLight

PI_Red::PI_SLight
::SingleLight

Fig. 10. Architecture of the system when using the SingleLight component

MultiLights component in order to realize the re-
quired interface RI Lights of the Controller com-
ponent. The B specification of Adapter 1 is given
Figure 9.

• its invariant expresses the required interface
attributes lightG and lightR in terms of the
provided attributes color and ml state. It is
to be noticed that lr state does not corre-
spond to an interface attribute. As previously
explained, it has been introduced to express
the control states,

• the OPERATIONS clause expresses how
each required operation is implemented in
terms of the provided operations. For example,
the operation on green() is defined by the
choice of the suitable color before turning
on the light; the sequential operation calls is
expressed in B by a “;” statement and the
choice, by an “if. . . then. . . else. . . ” statement.

B. An Adapter for the SingleLight Component

Using the SingleLight component to realize the
required interface RI Lights of the Controller com-
ponent is not immediate. The needed functionalities
implies two colors for the lights, even if they
are not on at the same time. As the SingleLight
component provides only one light of one color, the
adapter will use two instances of this component,
namely PI Green::PI SLight and PI Red::PI SLight,
to answer the required needs. The architecture of
the system using two SingleLight components is
presented Figure 10. It is the same as the general
schema presented at the beginning of Section III,
with the use of two provided interfaces.

The B specification of Adapter 2 is given Fig-
ure 11: it includes two instances PI Green and
PI Red of the B model of PI SLight. Once we
have made the choice of using two different in-
stances of this component, the definition of the link
is immediate. The required attributes lightG and
lightR and the operations are directly expressed
in terms of the operations of the two instances of
PI SLight.

REFINEMENT
Adapter 2

REFINES
RI Lights

INCLUDES
PI Green.PI SLight,
PI Red.PI SLight

INVARIANT
lightG =

bool(PI Green.sl state = Start)
∧ lightR =

bool(PI Red.sl state = Start)

OPERATIONS
on green =

BEGIN PI Green.start
END ;

off green =
BEGIN PI Green.stop
END ;

on red =
BEGIN PI Red.start
END ;

off red =
BEGIN PI Red.stop
END

END

Fig. 11. B Model of Adapter 2 between Controller and
two instances of SingleLight

C. Verification of the interoperability

We use the B4free tool [21] to verify that
Adapter 1 and Adapter 2 refine the required in-
terface RI Lights. The verification results are as
follows:
• B4free generates 14 obvious proof obligations

for the B model of Adapter 1. All these proof
obligations were proven automatically,

• B4free generates 4 obvious proof obligations
for the B model of Adapter 2. All these proof
obligations were proven automatically.

According to these results, we conclude that
Adapter 1 refines RI Lights using the MultiLights
component and Adapter 2 refines RI Lights us-
ing two instances of the SingleLight component.
Consequently, each adapter we have considered
implements the requested interface in terms of
services provided by the corresponding component.
The interoperability is verified at the signature,
semantic and protocol levels.

IV. RELATED WORK

The main drawback of component-based soft-
ware engineering is the high cost of components
deployment. This cost comes from the verification
of the components interoperability and from the
necessary definition of adapters.

In [22], [23], Zaremenski and Wing propose
an interesting approach to compare two software
components. It determines whether one required

28

component can be substituted for another. They
use formal specifications to model the behavior of
components and exploit the Larch prover to verify
the specification matching of components.

In [24] a subset of the polyadic π-calculus is
used to deal with the components interoperability,
only at the protocol level. π-calculus is a very well
suited language for describing component interac-
tions. The main limitation of this approach is the
low-level description of the used language and its
minimalistic semantic. In [25], [26], protocols are
specified using a temporal logic based approach,
which leads to a rich specification for component
interfaces.

Henzinger and Alfaro [27] propose an approach
allowing the verification of interfaces interoper-
ability based on automata and game theories: this
approach is well suited for checking the interface
compatibility at the protocol level.

Several proposals for component adaptation have
already been made. Some practice-oriented studies
have been devoted to analyze different issues when
one is faced to the adaptation of a third-party com-
ponent [28]. A formal foundation to the notions
of interoperability and component adaptation was
set up in [13]. Component behavior specifications
are given by finite state machines which are well
known and supports simple and efficient verifica-
tion techniques for the protocol compatibility.

Braccalia and al [29], [30] specify an adapter as
a set of correspondences between methods and pa-
rameters of the required and provided components.
The adapter is formalized as a set of properties
expressed in π-calculus. From this specification
and from both interfaces, they generate a concrete
implementable adapter.

Reussner and Schmit present adapters in the
context of concurrent systems. They consider only
a certain class of protocol interoperability problems
and generate adapters for bridging component pro-
tocol incompatibilities, using interface described by
finite parameterized state machines [31], [32], [33].

Our proposition takes benefits from object ori-
ented notations : components are described using
high-level UML 2.0 interfaces and their protocol
state machines ; it also takes benefits from formal
methods and their existing support tools, using
existing derivation rules from UML diagrams to
B specifications : we propose an adapter defined
as a B specification and the interoperability verifi-
cation is supported at the signature, semantic and
protocol levels in the same framework using the B
refinement.

V. CONCLUSION

To construct a working system out of compo-
nents, adapters have to be defined. These adapters
implement a required interface in terms of some
provided interfaces. We have proposed a model
of adapters expressed in the B formal method
allowing to define rigorously the interoperability
between components and to check it with support
tools: an adapter is a correct refinement of the B
model of the required interface using existing pro-
vided components. The interoperability is verified
at the signature, semantic and protocol levels.

We want also to take into account more complex
adapters. Generally, an adapter may use some pro-
vided interfaces offered by different components
to realize some other required interfaces by others
components. We are currently exploring different
kinds of adapters in terms of specification matching
[23]. We are working on alternative versions of
compatibility and their mappings to refinement in
B, in order to give patterns for the corresponding
adapters in the same framework.

REFERENCES

[1] G. T. Heineman and W. T. Councill, Component-Based
Software Engineering. Addison-Wesley, 2001.

[2] C. Szyperski, Component Software. ACM Press,
Addison-Wesley, 1999.

[3] D. Konstantas, “Interoperation of object oriented appli-
cation,” in In O. Nierstrasz and D. Tsichritzis, editors,
Object-Oriented Software Composition. Prentice Hall,
1995, pp. 69–95.

[4] P. Wegner, “Interoperability,” ACM Computing Survey,
vol. 28, no. 1, pp. 285–287, 1996.

[5] JavaBeans Specification, Version 1.01, Sun Microsys-
tems, 1997, http://java.sun.com/products/javabeans/docs/
spec.html.

[6] Enterprise JavaBeans Specification, Version 2.0, Sun
Microsystems, 2001, http://java.sun.com/products/ejb/
docs.html.

[7] The Common Object Request Broker: Architecture
and Specification, Revision 2.2, The Object
Mangagement Group (OMG), Feb. 1998,
http://cgi.omg.org/library/corbaiiop.html.

[8] The Component Object Model Specification,
Version 0.9, Microsoft Corporation, 1995,
http://www.microsoft.com/com/resources/comdocs.asp.

[9] S. Chouali and J. Souquières, “Verifying the compatibility
of component interfaces using the B formal method,” in
International Conference on Software Engineering Re-
search and Practice, 2005.

[10] J.-R. Abrial, The B Book. Cambridge University Press,
1996.

[11] S. Chouali, M. Heisel, and J. Souquières, “Proving Com-
ponent Interoperability with B Refinement,” in Interna-
tional Worshop on Formal Aspects on Component Soft-
ware, H. R. Arabnia and H. Reza, Eds. CSREA Press,
2005, pp. 915–920, to appear in ENCTS 2006.

[12] G. Heineman and H. Ohlenbusch, “An evaluation of com-
ponent adaptation techniques,” Department of Computer
Science, Worcester Polytechnic Institute, Tech. Rep. WPI-
CS-TR-98-20, February 1999.

29

[13] D. D. M. Yellin and R. E. Strom, “Protocol specifications
and component adaptors.” ACM Transactions on Program-
ming Languages and Systems, vol. 19, no. 2, pp. 292–333,
1997.

[14] Object Management Group, “UML superstructure specifi-
cation, v2.0,” OMG, 2005.

[15] E. Meyer and J. Souquières, “A systematic approach
to transform OMT diagrams to a B specification,” in
Proceedings of the Formal Method Conference, ser. LNCS
1708. Springer-Verlag, 1999, pp. 875–895.

[16] H. Ledang and J. Souquières, “Contributions for mod-
elling UML state-charts in B,” in Third International
Conference on Integrated Formal Methods - IFM’2002,
Turku, Finland, 2002.

[17] D. Bert, M.-L. Potet, and Y. Rouzaud, “A study on com-
ponents and assembly primitives in B,” in Proceedingsof
1st Conference on the B method, 1996, pp. 47–62.

[18] P. Bontron and M. Potet, “Automatic construction of
validated B components from structured developments,”
in ZB2000: Formal Specification and Development in Z
and B, ser. LNCS, J. P. Bowen, S. Dunne, A. Galloway,
and S. King, Eds., vol. 1878. Springer-Verlag, 2000, pp.
127–147.

[19] Steria, Obligations de preuve: Manuel de référence, ver-
sion 3.0.

[20] Clearsy, “B4free,” Available at http://www.b4free.com,
2004.

[21] J.-R. Abrial and D. Cansell, “Click’n’Prove : Interactive
Proofs Within Set Theory,” in 16th International Con-
ference on Theorem Proving in Higher Order Logics -
TPHOLs’2003, ser. LNCS, D. Basin and B. Wolff, Eds.,
vol. 2758. Springer Verlag, 2003, pp. 1–24.

[22] A. M. Zaremski and J. M. Wing, “Signature matching: a
tool for using software libraries,” ACM Transactions on
Software Engineering and Methodology, vol. 4, no. 2, pp.
146–170, 1995.

[23] ——, “Specification matching of software components,”
ACM Transaction on Software Engeniering Methodolol-
ogy, vol. 6, no. 4, pp. 333–369, 1997.

[24] C. Canal, L. Fuentes, E. Pimentel, J.-M. Troya, and A. Val-
lecillo, “Extending CORBA interfaces with protocols.”
Comput. J., vol. 44, no. 5, pp. 448–462, 2001.

[25] J. Han, “A comprehensive interface definition framework
for software components,” in The 1998 Asia Pacific soft-
ware engineering conference. IEEE Computer Society,
1998, pp. 110–117.

[26] ——, “Temporal logic based specification of component
interaction protocols,” in Proceedings of the Second Work-
shop on Object Interoperability ECOOP’2000. Springer-
Verlag, 2000, pp. 12–16.

[27] L. Alfaro and T. A. Henzinger, “Interface automata,”
in 9 th Annual Aymposium on Foundations of Software
Engineering, FSE. ACM Press, 2001, pp. 109–120.

[28] D. garlan, R. Allen, and J. Ockerbloom, “Architectural
Mismatch: Why Reuse is so Hard,” IEEE Software,
vol. 12, no. 6, pp. 17–26, 1999.

[29] A. Braccalia, A. Brogi, and F. Turini, “Coordinating
Interaction Patterns,” in Symposium on Applied Computing
(SAC’2001), A. Press, Ed., 2001.

[30] A. Bracciali, A. Brogi, and C. Canal, “A formal approach
to component adaptation,” in Journal of Systems and
Software, 2005.

[31] R. H. Reussner, “Adapting Components and Predicting
Architectural Properties with Parameterised Contracts,”
in Tagungsband des Arbeitstreffens der GI Fachgruppen
2.1.4 und 2.1.9, Bad Honnef, W. Goerigk, Ed., May 2001,
pp. 33–43.

[32] H. W. Schmidt and R. H. Reussner, “Generating adapters
fo concurrent component protocol synchronisation,” in
Proceeding of the Fifth IFIP International conference
on Formal Methods for Open Object-based Distributed

Systems, I. Crnkovic, S. Larsson, and J. Stafford, Eds.,
2002.

[33] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, “Rea-
soning on software architectures with contractually speci-
fied components,” in Component-Based Software Quality:
Methods and Techniques, A. Cechich, M. Piattini, and
A. Vallecillo, Eds., 2003.

30

Profitability-oriented Component Specialization
Ping Zhu

School of Computing
National University of Singapore
Email: zhuping@comp.nus.edu.sg

Siau Cheng Khoo
School of Computing

National University of Singapore
Email: khoosc@comp.nus.edu.sg

Abstract— Partial evaluation has been applied to address
the tradeoff between genericness and efficiency of off-the-shelf
components. Except for a brute-force approach to creating all
possible binding-time signatures for a component, little effort
has been made in promoting the specialization of a component
independent of its use context. In this paper we propose a
framework pertaining to independent component specialization.
We advocate a novel concept, named profitability, to capture
specialization opportunities independent of how components are
being deployed. We further define a specialization policy to make
component specialization profitability-oriented. The conceptual
profitability declaration is translated into a profitability signature,
which is expressed in binding-time constraint form. A profitable
specialization component is then developed, aiming to be assem-
bled in various component-user’s applications in place of the
original generic component, as well as to be adapted to different
specialization contexts. In addition to the merit of reusability,
profitable specialization component also saves both the time and
the space costs in dealing with multiple binding-time signatures,
when compared with existing approaches in synthesizing those
signatures. We believe that our framework would promote the use
of partial evaluation in component-based software development.

I. INTRODUCTION

Component-based software development, CBSD for short,
advocates the philosophy that a software developer should
reuse the generic off-the-shelf components to build complex
and reliable applications [9], [14]. It has been proven to be an
effective paradigm in contemporary software industry. How-
ever, the genericness of components results in degradation of
system performance, which has been recognized in many areas
such as operating systems and graphics. To address the trade-
off between genericness and efficiency, generic components
are usually subject to specialization.

A common scenario of inefficiency can be described as:
When partial input to a generic component keeps invariant
for several runs, some identical computations are performed
repetitively during run-time, which translates into a loss in
performance. Partial evaluation [10], which is an automatic
program specialization technique that specializes a program
by aggressively propagating partial invariant input in earlier
stage (aka. compile-time), has been an applicable solution to
tackling this common inefficiency in recent years.

Partial evaluation has usually been performed with respect
to the application into which the components are installed.
We call this main-program driven specialization. However, it
does not address the issues pertaining to component special-
ization, the emphasis of which is to specialize off-the-shelf

components without taking into consideration of the latter’s
use contexts. To be more specific, an ideal component spe-
cialization should provide programmers means of independent
component specialization and if possible, to deliver a new
kind of specialized component which can still be adaptive to
different specialization contexts.

There have been some initial investigations in this direction.
Ulrik [16] validated the motivation for component special-
ization and raised some open questions related to this topic.
Bobeff et al. in [2] created all possible binding-time signatures
for a component and then synthesized those signatures with
original generic component to produce a new component
which is adaptable to various specialization contexts. But
this approach admits information which is too general to
be beneficial to specialization. To produce more informative
binding-time signatures for a component independent of its
use context, we propose a novel concept, named profitability,
to capture the specialization opportunities of a component.
We further define a specialization policy to make component
specialization profitability-oriented. We design a profitability-
oriented binding-time analysis to translate the conceptual
profitability declaration into a profitability signature which
guides the profitability-oriented component specialization.

The profitability signature of a component is used to gen-
erate a profitable specialization component, PSC for short.
PSCis installed, in place of the original generic component,
into component-user’s application and adapted to different
specialization contexts to produce a more efficient application
in the sense of declared profitability. In addition to the merit
of reusability, which is an essential requirement of any off-
the-shelf component, PSC also saves time and space costs
in dealing with multiple binding-time signatures for a single
component by identifying reusable codes. This advantage
distinguishes our framework from existing approaches in syn-
thesizing multiple binding-time signatures.

We believe that the framework advocated here, which uses
profitability to declare specialization opportunities indepen-
dently and synthesize profitability signatures into PSC has
a promising future in adopting partial evaluation to the entire
process of CBSD.

The rest of this paper is organized as follows: Section II
briefly introduces fundamental partial evaluation concepts
which will be referred later in elaborating our framework.
The limitation of conventional main-program driven special-
ization is also explained from CBSD point of view. Sec-

31

tion IV introduces the concept of profitability and define
a specialization policy that govern the profitability-oriented
component specialization. This is then followed by Section V
which elaborates our proposal for producing PSC. Finally we
summarize and conclude in Section VI.

II. BACKGROUND

A. Partial Evaluation

Partial evaluation transforms program statements in two
ways: Compiling away a statement whose computation is
solely based on partial invariant input, and reconstructing a
statement whose computation relies on varying input to form
the specialized program. According to how the transformation
decisions are made, partial evaluation is normally categorized
into online partial evaluation and offline partial evaluation.

Online partial evaluation determines and performs the trans-
formations in a single pass in the presence of concrete value
of invariant inputs. On the contrary, offline partial evaluation
is typically characterized by a preprocessing phase called
binding-time analysis, BTA for short, in which the transforma-
tion decisions are made. The input to BTA is a binding-time
division, which describes the binding-time values of program
inputs. The binding-time domain BTval normally comprises
two binding-time values: static and dynamic which can
be treated as abstract values of the invariant and varying parts
of the input respectively from abstract interpretation point of
view. BTA attempts to determine the binding-time values of
the syntactic constructs at each program point and produces a
two-level binding-time annotated program.

Offline partial evaluation can be further divided into
compile-time specialization and run-time specialization based
on when the concrete values for the static input are
available. There exist numerous cases, eg. the file system
operations, in which the concrete values of the invariants
are not known until run time and can yet be available for
extensive specialization. Compile-time specialization gener-
ates a specialized program (usually in source level) which is
semantically-equivalent with source program in the condition
that they share the same concrete static partial input. Run-
time specialization, on the other hand, compiles or interpret
the BTA result into a program (usually in binary level) which
is linked with the concrete values of static input during run-
time.

As for component specialization, it is preferable to adopt
offline run-time specialization techniques since it is rare to
establish concrete specialization values for an off-the-shelf
component.

B. Creating and Synthesizing Binding-time Division

Existing partial evaluators have provided powerful support
in facilitating programmers to declare binding-time division
for a component.

• Tempo [12] manually declares binding-time divisions for
function definitions written in C language in terms of

external specialization parameters which include func-
tions, global variables and data structure intended to be
specialized.

• DyC [1] allows programmers to express their special-
ization intentions inside program codes by using a
set of specialization primitives (eg. make static,
make dynamic) and specialization policies (eg. poly-
variant or monovariant specialization, different caching
policies, etc.). DyC does not create binding-time divisions
explicitly as Tempo does. The set of internal declarations
are compiled by DyC’s specific compiler into information
guiding the production of final specialized code.

When a binding-time division is established, a component is
ready for specialization. Tempo [6], [11] produces a generating
extension based on the preprocessing analysis result. A gener-
ating extension of a program P is a program generator GP that
can be applied with different concrete values of the same static
input parameters and produces the corresponding specialized
code for program P. The generating extension is used in both
compile-time specialization and run-time specialization.

C. Main-program Driven Specialization

Traditionally, partial evaluation of a program is initiated by
passing specialization context to the program input. The objec-
tive of partial evaluation is then to propagate the specialization
context, and perform static computation whenever possible.
This approach, which requires initial specialization context, is
termed as main-program driven specialization and does not
apply directly to component specialization, due to the lack of
specific use contexts associated with off-the-shelf components.

Consequently, Bobeff et al. choose to list down all applica-
ble binding-time signatures associated with a component when
they design their component specialization process. While
simple in implementation, such approach does not leverage on
the inherent structure of components; it also results in mini-
mal capitalization in efficiency and reusability of specialized
components.

Before proceeding to the elaboration of independent com-
ponent specialization – the technique which we propose here,
we highlight two terminologies which represent two categories
of binding-time division:
• Binding-time signature: It is a binding-time division as-

sociated with an off-the-shelf component independent of
component use context;

• Specialization context: It describes the binding-time in-
formation established at component use site.

III. LANGUAGE

A component can be diversely implemented as a process,
a function/procedure or a class. In this paper we begin
our investigation of independent component specialization by
setting a component as a C function definition which may
be interrelated with other C function definitions. The terms
component and function definition are used interchangeable in
following sections. The concepts presented in our framework

32

also apply to other kinds of implementation of component. We
will look into the extension in future.

The langauge used in this paper is a subset of C language,
excluding the features of pointer, compound data structure,
global variable. The evaluation strategy of function call is call-
by value and every function call must return a value. The
abstract syntax of this language is defined in Figure 1.

Abstract Syntax:
e ∈ Exp Expression set

::= const Constant
| id Program variable
| f (e+) Non-void function call
| e bop e Binary expression

s ∈ Stat Statement set
::= id = e Assignment statement
| int id+ Local-definition statement
| return e Return statement
| while e s Loop statement
| if e then s else s Conditional statement
| s; s Sequential statements

fd ∈ FDef Function definition set
::= id (v+) {s}

p ∈ P Program set
::= fd+

Domains:

id, f ∈ Identifier
const ∈ Real number
bop ∈ {+,−, ∗, /, ==, ! =, <, >, >=, <=, &&, ||}

Fig. 1. Syntax of C subset

IV. PROFITABILITY-ORIENTED ANALYSIS

Profitability is an abstract and declarative description that
enables a programmer to declare points of specialization
opportunities for a component independent of its use context.
However, profitability is a subjective concept that is subject
to the specific application domain and the programmer’s spe-
cialization intentions, e.g. [7], [8]. Schultz et al[15] proposed
a specialization patterns approach, which captures specializa-
tion opportunities arising from the usage of specific design
patterns. Profitability can be detected with the help of profiling
tools, such as Calpa [13]. Calpa is a tool for automatically
generating the declaration for DyC. Calpa consists of two
components: an instrumentation tool and a program analysis
tool. The former instruments the source C program and
collects some useful run-time information through a profiler.
The latter generates some candidate specialization scenarios
and applies a cost/benefit model on these scenarios based
on information gathered from instrumentation tool to decide
which are profitable scenario.

A. A Commonly-perceived Profitability

In this paper we advocate the use of profitability by con-
sidering a lightweight commonly-perceived opportunity for
specialization, i.e. the ability to specialize conditional tests

away. More specifically, the profitability for a component can
be further divided into two categories:

1) Direct profitability: The ability to specialize a condi-
tional test inside a function definition away. This direct
profitability indicates the programmer’s desire to make
the binding-time value of conditional test static.

2) Indirect profitability: The ability to specialize a function
call so that the (direct or indirect) profitability inside
the called function definition may be materialized. This
indirect profitability implies that the binding-time calling
context established at the function call site should be an
instance of the binding-time signature associated with
corresponding function definition.

A potential profitability point is a program point which
possesses direct or indirect profitability. There may be zero
or multiple profitability points inside a function definition.
We name the function definition without any conditional tests
or function calls as a plain function. In other words a plain
function does not carry any profitability.

In our framework this commonly-perceived profitability
declaration is translated into a special binding-time signa-
ture expressed in binding-time constraint form. A binding-
time constraint captures the relationship among parameters,
and provides a concise representation of (possibly) multiple
conventional binding-time signatures. The syntax of binding-
time constraint is as follows:

ξ ::= b1 op b2 | ξ1 ∧ ξ2 | ξ1 ∨ ξ2 // BT-Constraints
b ::= btv | static | dynamic // BT-Expressions

| b1 t b2 | b1 u b2
where btv is a binding-time variable

op ::= @ | v | = | A | w // Relational operators

As usual, there are two constant binding-time values, static
and dynamic, representing static and dynamic values respec-
tively. They are ordered in decreasing staticness: static v
dynamic. This ordering can be naturally extended to partial
ordering over tuples of binding-time values.

A specialization process that fulfills all or part of the (direct
and/or indirect) profitabilities available in a component is
called a profitable specialization. Otherwise, it is termed as
unprofitable. Our main thesis is that the binding-time signa-
tures for a component are produced to ensure the fulfilment of
profitable specialization. We name these profitability-oriented
binding-time signatures as profitability signatures.

B. A Simple Example

Consider the following two interrelated function definitions.

33

f(x, y)
{

if x > 0 /* profitability point 1*/
return y+1;
else return y-1;

}

g(x, y)
{

if y > 0 /* profitability point 2*/
return f(x,y); /* profitability point3*/
else return 0;

}

There are one and two potential profitability points in the
function definitions f and g respectively. These are highlighted
in the comments associated with the program code. The
profitability signatures thus derived for these two function
definitions are:

f : btx = static ∧ bty w static
g : (btx w static ∧ bty = static)∨

(btx = static ∧ bty w static)

The profitability signature of f says that as long as the
binding-time value of parameter x is static, the profitability at
point 1 can be fulfilled, regardless of the binding-time value
of the parameter y. The profitability signature of g expresses a
disjunctive condition in which the profitability at point 2 and
point 3 can be fulfilled respectively.

Implementation-wise, profitability signatures are not gen-
erated by a typical forward-fashion binding-time analysis;
instead, they are generated by propagating outwardly those
binding-time requests at the profitability points.

The profitability signature of a plain function is encoded as
FALSE. In other words, there is no satisfiable binding-time
valuation of the parameters of a plain function.

C. Specialization Policy

To make the component specialization process strictly
profitability-oriented, we set a specialization policy as follows:

If a specialization context for a function call f cannot
achieve any profitable specialization of f, all the
binding-time values of its arguments and return
value will be classified as dynamic. Otherwise, the
function call is specialized w.r.t the specialization
context.

Semantically, a specialization context SC for a function call
f can lead to any profitable specialization of function definition
f iff SC is entailed by f’s profitability signature PS.

Definition 1 (Entailment Relation): Let V(BTc) be the set
of satisfiable binding-time valuations w.r.t the binding-time
constraint BTc. A binding-time division BTD1 (i.e. a special-
ization context or a profitability signature) is said to be entailed
by a binding-time division BTD2 iff V(BTD1) ⊆ V(BTD1).

For the following simple example:

g (x, y)
{

.....
tmp = f(x, y);
if (x == 8)
.......

}

If function f is a plain function, the call f(x,y) will be
annotated as f (x : dynamic, y : dynamic), disregarding the
binding-time value that x, as well as y, holds before this
function call. The binding-time value of x will be restored to
the value before the call during the handling of the conditional
test x==8. The annotation of variables to dynamic value, which
we call dyn-annotation, is similar to the introduction of “raise”
expression in many existing partial evaluators.

It is worth pointing out that inside a component the ful-
fillment of a profitability at one profitability point may affect
the fulfillment of another profitability at another profitability
point. For example we have the following code:

g (x, y)
{

.....
tmp = f(x, y);
if (tmp==8)
.......

}

If the function definition f is a plain code, tmp will be
annotated as dynamic whatever the specialization context of
function call f is. Thereafter, the binding-time of tmp in the
conditional test tmp==8 will always be dynamic.

D. Generating Profitability Signatures

We have developed a profitability-oriented BTA to com-
pute the profitability signature of a function definition. This
analysis takes into consideration both data flow and control
flow information, which is in line with the treatment found
in conventional BTA. Moreover, the specialization policy
also requires this novel BTA to automatically introduce dyn-
annotation at various program points, when necessary. In order
to handle inter-procedural function definitions satisfactorily,
we require the analysis to operate over a library of interrelated
functions definitions. This analysis returns:
• A global function environment Fenv which maintains two

pieces of information: A binding-time expression of every
function’s return value in terms of the binding-time values
of its parameters; a set of the binding-time expressions
describing the condition for those potential profitability
points to become static. The latter information can
be converted into a disjunctive binding-time constraint,
a.k.a., profitability signature. This global environment is
required for analysis of inter-procedural function defini-
tions.

• At each program point a local binding-time environment
ρ which records the binding-time expression of program
variables at that point.

The detail of the analysis is omitted here for space limit.

34

V. PROFITABLE SPECIALIZATION COMPONENT

Before a generic component is installed into an application,
it is desirable to take advantage of the knowledge of the static
information available in the profitability signatures conveying
profitability. In this section we demonstrate how to synthesize
the generic component with its associated profitability signa-
ture to achieve independent component specialization.

A. From Component to Profitable Specialization Component

We aim to produce a kind of off-the-shelf component which
synthesizes the original, generic, component and its associ-
ated profitability signature. We term this special component
as profitable specialization component, PSC for short. The
component users can thus plug this PSC, instead of the
original component, into their applications. They can then
generate efficient applications by specializing the applications
w.r.t. the particular specialization contexts established in the
applications’ environments.

We envision the creation of a PSC from a component and its
associated profitability signature for the following purposes:

1) It can be reused, in place of the original generic com-
ponent, in multiple component applications, and

2) It can facilitate the generation of specialized applications
through direct installation of the component to applica-
tions.

The first objective requires an PSC to be receptive to
different user’s applications. This can be hard to achieve
via the existing partial evaluation technologies, since those
technologies assume the availability of an initial specializa-
tion context. Specifically, when component specialization is
performed via profitability declaration, the opportunity for
specialization becomes less dependent on any initial special-
ization context. In fact, the focus of specialization, in creating
an PSC, has shifted from “how to prepare a piece of code
for specialization in a specific context propagated from an
initial specialization context” to “how best to prepare a piece
of potentially profitable code for specialization, independent
of the specialization context.” Consequently, this requires the
PSC not to over-commit itself to any particular context.

The second objective, on the other hand, requires the PSC
to be prepared in such a manner that enables full exploitation
of a specific context provided by the application, when the
PSC is plugged into the application.

In our framework, a component can therefore exist in three
forms: Its original generic component form, its corresponding
PSC which aims to support profitable specialization, and its
specialized form which maximizes profitable specialization
under a specific specialization context pertaining to an ap-
plication.

B. Efficient Profitable Specialization Component

Profitability signature as described earlier expresses spe-
cialization opportunity in terms of a binding-time constraint,
which is equivalent with a set of conventional binding-
time signatures. Bobeff collected a set of service generators,

which are produced correspondingly to a set of binding-
time signatures, into a component generator to be reused in
user’s application [2]. A service generator is responsible for
generating a specialized component when the concrete values
for those static variables occurring in a binding-time signature
are available. This has the functionality closely resemble that
of generating extension in Tempo. Unfortunately, this approach
cannot avoid the problems of code duplication and overlapping
analysis occurring during the generation of the set of service
generators. It would be much desirable that the process of
generating PSC enables reuse of some specialized codes that
are destined to be present in different application contexts.

During the process of generating PSC, it is instructive
to perform a profitability-oriented action analysis. As found
in partial evaluators such as Schism[3] or Tempo [5], [4],
action analysis produces clear instructions that dictate the
construction of specialized code. In essence, given a program,
action analysis annotates each program points with an action.
The action domain ACval comprises of four action values:
eval, reduce, reconstruct, and identity. The action value
of each program construct is strictly determined by its binding-
time value. During actual specialization, the specialization
engine will simply conduct specialization on a program point
based on the associated annotated action. In fact, action-
annotated program is the desired product expected from run-
time specialization, when no actual input value is available
for conducting further specialization. Our efficient PSC will
mainly be a component capturing the relevant action annota-
tions, albeit in another form that aids reuse.

The tasks involved in creating and reusing an efficient PSC
include:
• Identifying codes for profitable and reusable specializa-

tion;
• Constructing a specializer for those identified codes for

effective specialization;
• Organizing the PSC so that it is receptive to further

specialization.

C. Identifying Profitable and Reusable Specialization

Given a number N ≥ 2, a piece of code within a function
definition is said to be eligible for profitable and reusable
specialization (PRS for short) if it remains profitable under
at least N binding-time signatures.
• The code is a level-0 candidate for PRS if its associated

function has exactly one binding-time signature.
This means that the code, and in fact the entire function
definition, can have exactly one action annotation at
each of its program point, independent of the number
of binding-time contexts the enclosing function definition
may possibly provide.

• The code is a level-1 candidate for PRS if it has the
same profitable binding-time information under at least
N different binding-time signatures of the associated
function definition.
This means that the code may be action-annotated in
more than one way, but a particular structure can be

35

constructed that enables co-existence of these action-
annotated programs that enables reuse.

• The code is a level-2 candidate for PRS if its set of
reducible subcode remains the same for at least N dif-
ferent binding-time signatures of the associated function
definition. A piece of subcode is considered reducible
with respect to a specialization context/ if it is subject to
either eval or reduce action under that context.
This means that the code has more than one action tree,
but there are at least N action trees which have either
eval or reduce actions at the same set of sub-trees.
A framework will be built with conditions attached to
this set of sub-trees to facilitate generation of specialized
code.
Note that the set of level-1 candidates is a subset of the
set of level-2 candidates.

D. Specializer
We have set the structure of an PSC to be a component that

has been analyzed and annotated by our profitability-oriented
action analysis. One of the main challenges of our construction
is the ability to mitigate potential code explosion caused by
overlapping action-annotations.

Our design of profitability-oriented binding-time analysis
outputs at every program point a local binding-time envi-
ronment recording the binding-time expression of program
variables at that point in terms of the binding-time values of
function parameters. This information can be further utilized
to compute the action value of each syntactic construct. We
associate each syntactic construct an action variable whose
value is computed by using two auxiliary functions Ae and As

which compute the action values for expression and statement
respectively. (The readers can refer to [4] for the detailed
implementation of these two functions.) The type signatures
of these two functions are defined as follows:

Ae :: Exp → BTexp → ACval

As :: Stat → P(ACval) → ACval

In Figure 2 we demonstrate through an example how PSC
is constructed in our prototype. The figure depicts a function
definition f and its corresponding PSC; the latter is an action-
annotated program, in which actions associated with syntactic
constructs are action variables expressed by the corresponding
action functions Ae and As.

The profitability signature for function definition f in Fig-
ure 2 to fulfill profitability is btx = static ∧ bty w
static. The known binding-time value of parameter x can
be utilized to pre-compute the values of those action variables
which are determined solely by the binding-time value of
parameter x. To be more specific, the values of the variables
H0,H4,H6,H7,H9,H11,H13 can be frozen in the PSC. Thus
we get a more efficient profitability-oriented PSC by identify-
ing PRS codes w.r.t the profitability signature.

E. Organization of PSC
Since the objective of a PSC is to act on behalf of the

original component in interacting with other codes available

Source Code Local Environments

int f(int x, int y)
{

int l; [(l, btl)]
l = 2 ∗ x; [(x, btx); (l, btx)]
if (l == 2) [(l, btx)]

l = l + y; [(y, bty); (l, btx t bty)]
else l = l ∗ y; [(y, bty); (l, btx t bty)]
return l; [(l, btx t bty)]

}
Corresponding PSC

int f(int xH0 , int yH1)
{

int lH2 ;H3
lH4 = (2H5 ∗ xH6)H7 ;H8
if (lH9 == 2H10)H11

lH12 = (lH13 + yH14)H15 ;H16
else lH17 = (lH18 ∗ yH19)H20 ;H21
return lH22 ;H23

}
where
H0 = Ae(x, btx) H1 = Ae(y, bty)
H2 = identity H3 = identity
H4 = Ae(l, btx) H5 = H6
H6 = Ae(x, btx) H7 = Ae(2 ∗ x, btx)
H8 = As(l = 2 ∗ x, {H4, H7}) H9 = Ae(l, btx)
H10 = H9 H11 = Ae(l == 2, btx)
H12 = Ae(l, btx t bty) H13 = Ae(l, btx)
H14 = Ae(y, bty) H15 = Ae(l + y, btx t bty)
H16 = As(l = l + y, {H12, H15}) H17 = Ae(l, btx t bty)
H18 = Ae(l, btx t bty) H19 = Ae(y, bty)
H20 = Ae(l ∗ y, btx t bty) H21 = As(l = l ∗ y, {H17, H20})
H22 = Ae(l, btx t bty) H23 = H22

Fig. 2. Example of PSC Construction

in an application, it can have the following two distinct usages:
1) It should support specialization activity to be conducted

on the embedding application. ie., it should, together
with its surrounding codes, enable the application to
be processed by a traditional partial evaluator, such as
Tempo.

2) It should support direct execution of its code when its
embedding application is executed. That is, PSC can be
treated as a piece of code for execution. Usually, this
entails the compilation of an PSC into a dynamically-
linked library (DLL).

Currently, our research focuses on structuring PSC to sup-
port the first usage. We hope to support the second usage in
the second stage of our research.

In order to subject a PSC to further specialization (concur-
rently with its surrounding code), we assume that compile-time
partial evaluation is employed, and require PSC to be wrapped
with a dispatcher such that the wrapped PSC provides the

36

following two functionalities:

1) In collaboration with the execution of a traditional
binding-time analysis, the wrapped PSC makes available
the various binding-time signatures it supports (ie., those
profitable binding-time signatures). It thus eliminates the
redundant time spent on re-analyzing the component for
binding-time information.
In contrast with the usual practice in binding-time anal-
ysis, the wrapped PSC does not attempt to generate new
binding-time signatures in response to a new specializa-
tion context. Instead, it will choose the most appropriate
binding-time signature to match the specialization con-
text. This is because the wrapped PSC has known to
have captured all profitable binding-time signatures, and
we can safely deem other binding-time signatures to be
unprofitable in leading to a profitable specialization.

2) In collaboration with the execution of action analysis,
the wrapped PSC selects the relevant action-annotated
meta-trees, and provides the appropriate instances of
them for the existing application. This again eliminates
the redundant time spent on performing action analysis
on the component.

The result of the above interaction is a piece of uniformly
treated application code, in which PSC is no longer present.

Of course, it is also possible to consider applying run-time
specialization on the embedding application. In this case, the
wrapped PSC still serves the above-mentioned functions. In
addition, it also dispatches specialized code (for the compo-
nent), to be combined with other specialized code to form the
generating extension for the embedding application.

VI. CONCLUSION

In this paper, we discussed the existing research direc-
tions pertaining to component specialization, and noted the
limitations of various approaches. One concern arisen from
our study is the need to reconcile efficient execution with
component reusability. We propose a novel framework to
address this concern, under the name of profitability-oriented
specialization.

This framework provides a refreshing view to program
specialization, particularly partial evaluation, by shifting the
focus of the specialization from the propagation of initial
specialization context to the exploration of profitable spe-
cialization opportunity. Specifically, we propose to replace
original components by their corresponding profitable special-
ization components (PSC). PSC exploits the opportunity for
profitable specialization so that specialization profits can be
shared across multiple applications of the component. PSC
also prepares itself for further specialization when it will
be installed into an application, thus avoiding redundant re-
analysis of component code.

The framework is currently in its implementation stage. We
intend to perform benchmarking to demonstrate its effective-
ness and efficiency.

REFERENCES

[1] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers,
and Brian N. Bershad. Fast, effective dynamic compilation. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 149–159, New York, NY, USA, 1996. ACM
Press.

[2] G. Bobeff and J. Noyé. Component specialization. In ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manip-
ulation, pages 39–50. ACM Press, 2004.

[3] C. Consel. A tour of schism: a partial evaluation system for higher-
order applicative languages. In ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation, pages 145–
154. ACM Press, 1993.

[4] C. Consel and O. Danvy. From interpreting to compiling binding times.
In Proceedings of the third European symposium on programming on
ESOP ’90, pages 88–105, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[5] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N. Volanschi,
J. Lawall, and J. Noyé. Tempo: specializing systems applications and
beyond. ACM Computing Survey, 30(3es):19–24, 1998.

[6] Charles Consel and François Noël. A general approach for run-time
specialization and its application to c. In Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
145–156, New York, NY, USA, 1996. ACM Press.

[7] Jeffrey Dean, Craig Chambers, and David Grove. Identifying profitable
specialization in object-oriented languages. In ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation,
pages 85–96, 1994.

[8] Jeffrey Dean, Craig Chambers, and David Grove. Selective special-
ization for object-oriented languages. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 93–102,
New York, NY, USA, 1995. ACM Press.

[9] G. Heineman and W. Councill. Component-Based Software Engineering
C Putting the Pieces Together. Addison-Wesley, 2001.

[10] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall International, June 1993.

[11] Julia L. Lawall and Gilles Muller. Faster run-time specialized code
using data specialization. Technical Report Research Report RR-3833,
INRIA, December 1999.

[12] A.-F. Le Meur, J.L. Lawall, and C. Consel. Specialization scenarios: A
pragmatic approach to declaring program specialization. Higher-Order
and Symbolic Computation, 17(1):47–92, 2004.

[13] Markus Mock. Automating Selective Dynamic Compilation. PhD
thesis, Department of Computer Science & Engineering, University of
Washington, August 2002.

[14] Jean-Guy Schneider and Jun Han. Components: the past, the present,
and the future. In Proc. of Ninth International Workshop on Component-
Oriented Programming, 2004.

[15] Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. Specialization
patterns. In ASE ’00: Proceedings of the The Fifteenth IEEE Interna-
tional Conference on Automated Software Engineering (ASE’00), page
197, Washington, DC, USA, 2000. IEEE Computer Society.

[16] Ulrik Pagh Schultz. Black-box program specialization. In Proceedings
of the Workshop on Object-Oriented Technology, page 187, London, UK,
1999. Springer-Verlag.

37

Putting Components into Context
Supporting QoS-Predictions with an explicit Context Model

Steffen Becker
Software Design and Quality

University of Karlsruhe
Email: sbecker@ipd.uka.de

Jens Happe
Graduate School Trustsoft
University of Oldenburg
Email: happe@ipd.uka.de

Heiko Koziolek
Graduate School Trustsoft
University of Oldenburg

Email: koziolek@ipd.uka.de

Abstract— The evaluation of Quality of Service (QoS) at-
tributes in early development stages of a software product is
an active research area. For component-based systems, this
yields many challenges, since a component can be deployed and
used by third parties in various environments, which influence
the functional and extra-functional properties of a component.
Current component models do not reflect these environmental de-
pendencies sufficiently. In this position statement, we motivate an
explicit context model for software components. A context model
exists for each single component and contains its connections, its
containment, the allocation on hard- and software resources, the
usage profile, and the perceived functional and extra-functional
properties in the actual environment. 1

I. INTRODUCTION

One of the most cited definitions of a software component
originates from the first WCOP and is stated as follows in [1]:

A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.

Thus, a component has to specify its context dependen-
cies, but it remains a bit vague what is actually part of
the context. It is evident that there are more relationships
between a component and its context than only its provided
and required interfaces. For example, the functional and extra-
functional properties of the component depend on the underly-
ing hardware. This relationship is important when predicting
the behaviour and the quality of the assembled system, but
it is usually not specified as an explicit context dependency.
Coming back to the definition, the second important fact
is that a component is composed by third parties. As a
result, the component developer does not know about the
context in which the produced component is placed. It is the
responsibility of the system architect to assemble components
to build new components or systems.

To analyse functional and extra-functional properties of a
component based system, additional information is needed
besides the structure of the system in terms of components
and their interconnections. There are four major influencing
factors perceived by the user of a component (see figure 1):

1) The implementation of the component, e.g., the selection
of the used algorithms.

1This work is supported by the German Research Foundation (DFG), grant
GRK 1076/1

2) The quality of required services, e.g. calling a slow or
a fast service will result in a different performance for
the provided service perceived by a user.

3) The runtime environment the component is deployed on.
This includes the hardware and system software like the
operating system and middleware platforms.

4) The usage of the component, e.g. if the component has
to serve many requests per time span it is more likely
to slow down.

To denote the QoS of a component more formally, we could
say that the quality of a service S can be characterised as
a function taking these dependencies as input. However, the
implementation of a component has to be handled differently,
since it is fixed by the component developer as opposed to the
other parameters, which are determined during its deployment.
Hence, the function specifying the context dependencies is
defined independent of the implementation:

qimpl : P(S)×DR ×UP → Q

where P(S) is the domain of the set of external services of
service S, DR specifies the deployment relationship saying
which component and connector is deployed on which part of
the execution environment and UP describes the usage profile.
As a result, the function yields a value in the domain of the
investigated quality metric Q.

From the introduced function, we can learn that functional
and extra-functional properties cannot be specified within
component specifications as a fixed value. This fact has to
be reflected in a component model, which generally states
what needs to be specified when describing a component. We
propose using parametric contracts (see section II) and the
explicit modelling of the component context in this position
statement as a solution to this problem.

Related work in this field of research is coming from
two areas. One area is concerned with the construction of
component models and algorithms using information in model
instances. An example for such a model is the SOFA compo-
nent model [2]. Other related work comes from the analysis
of the influences of the different context parts. We give one
example paper per influence factor in the following. The usage
profile is investigated by Hamlet et al. [3], the deployment
context by Liu et al. [4] and external services by Firus et al.
[5].

38

Fig. 1. Influences on quality

The contribution of this paper is an explicit model of context
for each component usage in order to support QoS predictions.
Contextual influences on components are illustrated by the
means of examples. In each example, we demonstrate how
the additional information specified in the context model can
be used for QoS predictions.

The position statement is structured as follows. After this in-
troduction, we give some foundations on parametric contracts
in section II. Section III highlights several context influences
by means of examples. Some model attributes of the context
are presented in section IV. The open issues are discussed in
section V. Section VI summarises this position statement.

II. PARAMETRIC CONTRACTS

Additional information on the inner component structure is
needed, to predict the QoS of a component that is embedded
into a concrete context. This information has to be specified
in a way such that it uses the influences of external services,
the execution environment, and the usage profile (see Fig. 1)
as input, to derive the QoS attributes perceived by users of
the component. Parametric contracts [6] allow us to create
a component QoS specification that is independent of those
influences and can be evaluated when the environment of a
component is known.

Parametric contracts characterise the intra-component de-
pendencies of provided and required interfaces with so-called
service effect specifications. A service effect specification
models how a provided service calls the services specified
in the required interfaces. Thus, it is an abstraction of the
provided service’s control flow. A service effect specification
can be a signature list or a set of call sequences, depending on
whether the execution order is important or not. Call sequences
can be described by any kind of language specification.

Figure 2 illustrates parametric contracts for QoS attributes.
In the service effect specification shown there as a finite state
machine, transitions represent calls to external services that are
specified in the required interfaces. States represent internal
component code.

Both can be associated with QoS annotations, which de-
scribe the relations of the context model attributes and the
perceived functional and extra-functional properties in a para-
metric manner. For example, the execution time of a service

Fig. 2. Parametric Component Contract.

is specified by a number of abstract work units executed on
a computational resource. The actual computational resource
is described in the component’s context. The specification of
the resource contains information on how many work units
the resource can process in a given time span. With this
information, the execution time of the service on that resource
is determined.

Parametric contracts also allow to model the influence of
external services. For example, the component shown in figure
2 provides a single service called a, which requires two
services b and c. The execution time of a can be calculated
from the execution times of b, c, and the execution time of
the internal component code. The computation requires the
service effect specification of a depicted in the component.
In this case, the only variable parameter of the component
specification are the external services.

III. CONTEXT INFLUENCES

Since QoS attributes of a component are strongly influenced
by the environment the component is deployed in, the actual
delivered QoS can only be determined knowing all influencing
factors. We identified three aspects defined during system
design that frame the context model: Assembly, hierarchy, and
allocation.

A. Assembly - Horizontal Composition

An assembly specifies which components are used within a
system and how they communicate. Within the assembly, the
required interfaces of a component are connected to provided
interfaces of another component. That way it is determined
which concrete external services are called by a component.

39

Fig. 3. Component assembly.

The assembly thus determines one of the influencing factors
shown in figure 1.

A component can be used multiple times within a single as-
sembly. Figure 3 illustrates this with a simple example. Three
different types of components exist in the assembly shown
there. On the right hand side, we have two I/O components
that either manage the access to a file or network connection.
Two different kinds of caching components that implement
different caching strategies are shown in the middle. The
SyncCache component on the left-hand side allows multiple
tasks to access the caches concurrently without producing an
incorrect state of the connected single-threaded caches.

The same component (SyncCache) is inserted at two
different places within the assembly. Both representations of
the component are connected differently. Thus, users or other
components that call the services provided by the different
component representations will experience different QoS on
the provided interfaces of the respective component represen-
tations. This is caused by the different caching strategies and
I/O devices used by the SyncCache components. Modelling
the component context explicitly allows us to hold the infor-
mation on the diverse connections and the resulting quality
attributes without changing the component specification.

B. Hierarchy - Vertical Composition

Besides the assembly, another important part of the context
is the hierarchy in which a component is used. In figure 4,
a composite component (BillingManager) is depicted
which has been designed to create bills and store each one in a
single PDF (Portable Document Format) file. The component
is additionally supposed to write a summary of all the created
bills as PDF file. Hence, the component PDFCreator is
used in two different places. Notice however, that this kind of
usage is usually unknown to the creator of the outer composite
component. For her, the inner component (BillCreator) is
a black box. She does not know the internal details and, hence,
the usage of the inner PDFCreator is hidden.

In this case, the PDFCreator component is used in
different contexts on different hierarchy levels. Note, that this
only makes sense if the underlying component model supports
hierarchical components at all. Considering parametric con-
tracts, both components might offer different characteristics
(QoS, functions offered, etc.). Additionally, they are used
differently in their contexts. The PDFCreator of the inner

component produces bills with less pages than the summary
PDF file created by the outer PDFCreator.

C. Allocation

An explicit context model is especially advantageous to
model the allocation of components on hardware and software
resources. Figure 5 depicts a system that uses replicated
components to fullfil requests. In our example, server I is
assumed to be slow and server II is assumed to be fast. Hence,
the workload is not distributed equally, but 30% of the requests
are directed to server I and 70% are directed to server II.

Fig. 5. Component allocation.

Here, we see several context influences. We have two copies
of the same component allocated on different machines and,
thus, in different contexts. The workload of each replicated
component is different because of the distribution strategy. The
processing power available to both replicated components is
varying with the underlying hardware systems. However, both
components are connected with an identical logical link going
from the required interface of the workload balancer to the
provided service of the replicated component. But again, each
of these logical connections is most likely using a different
physical communication channel, i.e., different network links.

IV. AN EXPLICIT CONTEXT MODEL

In the previous section, we identified different input factors
of the provided QoS of the same component in various
contexts. In order to cope with these factors, we encourage
the explicit modelling of the context when using components.
Table I summarizes the attributes of our context model.

40

Fig. 4. Component hierarchy.

Composition Allocation Usage Profile
Connection Deployed-on relation System usage:
Containment Execution environment - Call probability

- Concurrency, security, ... - Call parameter
- Container properties - Workload

Specified

- Component configuration
Functional Non-Functional Inner Component usage
Results of parametric QoS-AttributesComputed
contracts

TABLE I
PROPERTIES OF THE CONTEXT

We arrange the tabular according to two dimensions. One
is dividing the attributes into ones that have to be specified
during the design process and such that can be computed or
predicted using the former ones. The other dimension divides
the properties into those defined by system composition, those
determined by the allocation to an execution environment, and
those determined by the actual usage characteristics of the
components.

During component and/or system composition, assembly
and delegation connectors are used to describe the communica-
tion channels of the components used within the architecture.
By doing so, the QoS attributes of the external services of
the components can be determined and their influence on
the QoS attributes of the component under consideration can
be derived. Furthermore, the actual available services can be
computed by using parametric contracts [7]. This is especially
important if not all required interfaces of a compenent are
connected. In this case, parametric contracts allow us to
determine the provided services that are not affected by the
unbound interfaces.

Attributes specified in the allocation dimension contains
information on the actual hardware (CPU speed, cache sizes,
available memory, available bandwidth, ...) and on system
software (details on the used middleware, virtual machines,
container configurations, ...). Using this information, it is pos-
sible to estimate QoS properties, like the actual execution time
of given code segments on the specified runtime environment.

The specification of the usage profile contains probabilities

for calling specific services, probability distributions on the
actual parameter characteristics, or the request arrival rate.
From this information, the usage profile of the components
connected to the required interfaces of the components with
system boundary interfaces can be computed. However, it
depends on the capabilities of the analysis method, which
information has to be specified and which QoS metrics can
be derived.

Note, that our context model differs from existing ap-
proaches in context-aware computing (e.g., [8]). There, the
context is used to describe dynamic aspects of a system that
vary during runtime, like location and user awareness, whereas
our approach is concerned with static aspects that are fixed
during design time, like the deployment environment.

Deployment descriptors known from component frame-
works, like J2EE, contain information similar to our con-
text model. They specify the connections of all components
within an architecture and do not contain information about
the execution environment explicitly. Opposed to this, our
context model is specified individually for each component.
Furthermore, deployment descriptors describe the architecture
with its components and connections as a flat structure,
whereas context models allow a hierarchical composition
of components. In contrast to deployment descriptors, our
context model contains information about the functional and
extra-functional properties of components, such as computed
parameteric contracts and QoS attributes that depend on the
environment.

41

V. OPEN ISSUES

The explicit identification and modelling of a component’s
context allows us to describe the dependencies of functional
and extra-functional properties on the usage context of a
component. However, some questions are still open.

a) State of Component Protocols:: Parametric contracts
model dependencies between component interfaces with proto-
cols which, therefore, have a state. In some cases, this leads to
difficulties when analysing the interoperability of components
communicating via an interface. Assume an interface provided
by component A is accessed by components B and C. If B
changes the state of the interfaces by calling a service, does
component C see the changes or does it have its own view on
A? This question cannot be answered in general. In some cases,
components share the state, e.g. when using the Singleton
pattern, in other cases they don’t. To solve this issue, additional
information in the component model is required. Ports and
interfaces with cardinalities seem to be a promising concept.

b) Identification of the Relevant QoS Parameters:: To
achieve accurate QoS predictions, the parameters influencing
the attributes of interest need to be identified. A lot of work
has already been done in this context, in UML for example
by the definition of the UML SPT profile [9]. However,
the existing work needs to be reviewed, to be extended and
the identified parameters needed to be specified within our
component model. Furthermore, means to analyse and derive
the desired performance metrics from the input values have to
be found and/or developed.

c) Implementation:: The concept of a component’s con-
text model needs to be implemented within the Palladio com-
ponent model. In our case, this means that we have to define
a transformation from the model of a component architecture
to an implementation, simulation, or analytical model.

VI. CONCLUSION

In this position statement, we motivate the explicit mod-
elling of the context of software components in component
models. With various examples we demonstrate that this
information can be used by algorithms based on parametric
contracts to predict functional- and extra-functional properties
of the components. We identify initial attributes which are part
of the context. Finally, open issues with models for component
contexts are highlighted.

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond
Object-Oriented Programming, 2nd ed. New York, NY: ACM Press and
Addison-Wesley, 2002.

[2] F. Plasil and S. Visnovsky, “Behavior Protocols for Software Compo-
nents,” IEEE Transactions on Software Engineering, vol. 28, no. 11, pp.
1056–1076, 2002.

[3] D. Hamlet, D. Mason, and D. Woit, Component-Based Software De-
velopment: Case Studies, ser. Series on Component-Based Software
Development. World Scientific Publishing Company, March 2004, vol. 1,
ch. Properties of Software Systems Synthesized from Components, pp.
129–159.

[4] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen, “Designing a Test Suite
for Empirically-based Middleware Performance Prediction,” in Fortieth
International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific 2002), ser. Conferences in Research and
Practice in Information Technology, J. Noble and J. Potter, Eds. Sydney,
Australia: ACS, 2002.

[5] V. Firus, S. Becker, and J. Happe, “Parametric Performance Contracts for
QML-specified Software Components,” in Formal Foundations of Em-
bedded Software and Component-based Software Architectures (FESCA),
ser. Electronic Notes in Theoretical Computer Science. ETAPS, 2005.

[6] R. H. Reussner, S. Becker, and V. Firus, “Component Composition with
Parametric Contracts,” in Tagungsband der Net.ObjectDays 2004, 2004,
pp. 155–169.

[7] R. H. Reussner, “The Use of Parameterised Contracts for Architecting
Systems with Software Components,” in Proceedings of the Sixth In-
ternational Workshop on Component-Oriented Programming (WCOP),
W. Weck, J. Bosch, and C. Szyperski, Eds., June 2001.

[8] A. Lopes and J. L. Fiadeiro, “Context-Awareness in Software Archi-
tectures,” in Software Architecture, 2nd European Workshop, EWSA
2005, Pisa, Italy, June 13-14, 2005, Proceedings, ser. Lecture Notes
in Computer Science, R. Morrison and F. Oquendo, Eds., vol. 3527.
Springer-Verlag, Berlin, Germany, 2005, pp. 146–161.

[9] Object Management Group (OMG), “UML Profile for Modeling Qual-
ity of Service and Fault Tolerance Characteristics and Mechanisms,”
http://www.omg.org/cgi-bin/doc?ptc/2005-05-02, May 2005.

42

An Architectural Component-Based model to solve
the Heterogeneous Interoperability of

Component-Oriented Middleware Platforms
Francisco Domı́nguez-Mateos

Languages and Systems Department
Rey Juan Carlos University

Email: francisco.dominguez@urjc.es

Raquel Hijón-Neira
Languages and Systems Department

Rey Juan Carlos University
Email: raquel.hijon@urjc.es

Abstract— This work has two main aims. In the first place,
we expose a solution to the components heterogeneous interoper-
ability running into different Component-Oriented Middleware
Platforms. In order to achieve this, we propose an architectural
component-based model using design patterns, abstract machines
and reflection. As a result of this model development, new systems
named middlebuses have arisen. The main advantage is its high
extensibility, since expanding the system to interoperate with a
new middleware platform is as easy as to create and add a new
component. Moreover, this component is built by implementing
only four interfaces. All things considered, a middlebus is a soft-
ware system that behaves as a network communication bus but in
the middleware level. This is to say, that the interconnections of
heterogeneous middleware platforms allow them to interoperate
with each other in a bidirectional and transparent way.

I. INTRODUCTION

A heterogeneous system is the one that is made of many
unrelated parts; including interfaces, software, hardware,
operating systems, programming languages, and network
protocols.

We can find lots of solutions to heterogeneity problems at
all levels of computer technology. For instance, the internet
is an example of success at network and transport protocol
layers of heterogeneous communication solution, the key to
this success is standardisation.

In one hand, Component-Oriented Middleware Platforms
arise as a way to solve the operating systems, programming
languages, platform, and networking heterogeneity of inter-
processes component communication. On the other hand, the
boom of middleware systems has transferred the problem
of heterogeneity to this level. In this moment, two different
middleware platforms such as CORBA and Java RMI can not
interoperate. In this case, none of the existing platforms have
won the standardization’s war.

Due to the discovery of middleware heterogeneous problem
[5], many techniques have been proposed. In previous works
[3] we have analyze twenty one different technologies. The
results of this study are:

• A taxonomy definition inspired on other heterogeneous
communications technical solutions, which were already
working properly in the realm of networking communi-
cations such as: adapters, bridges, tunnels, switches and
buses.

• Identification of requirements needed to build heteroge-
neous interoperable platforms solutions.

In other research on abstract machines [2], we
discovered how virtual machines and reflection can support
interoperability since there is an isomorphic structure and
behaviour between abstract machines and middleware
platforms.
The above mentioned works steered to a first Object Oriented
Reflective Abstract Machine Architectural Model not based
on components. This architectural model specifies the
creation of software designs to implement systems that allow
heterogeneous interoperability among applications with most
of the requirements identified in [3] and described bellow.

With the idea of getting more easily extensible and
modular systems here we expose a second version that is an
Architectural Component-Based Model. Besides, extending
the system to interoperate with a new middleware platform
is as easy as creating and adding a new component by
implementing two interfaces.

The next sections of this paper expose more deeply all
this work. Firstly, section two and three explain which the
requirements of a middlebus are and why we have chosen a
reflective abstract machine as the base of our work. Secondly,
section four shows the middlebus behaviour. In the next
section, a first architectural model and a component-based
model approach are described and finally, in a conclusion
section, we argue about extensibility improvement achieved
and future research lines opened.

II. SYSTEM REQUIREMENTS

The architectural model patter design should allow the cre-
ation of architectonical instances that enable the development
of systems with the following requirements:

43

• Heterogeneity, which allows heterogeneous language in-
teroperability, different operating systems, and heteroge-
neous middleware platforms.

• Transparency, this is to say that elements from a specific
platform can see elements from other external platforms
as if they were in the same one.

• Not intrusive technology, there is no need to do any
changes neither to the existing applications nor to the
new ones designed for a specific platform.

• Extensibility, the system could be easily extended with
future communication mechanisms. Therefore, it would
be possible to build a new platform extension in other
different platform.

• Automated adaptation, proxies or wrappers are created
automatically only if they are needed, without any human
intervention or configuration.

• Uniformity, external objects do not differ from internal
ones.

• Interaction, we can interact with other applications or
extend the model with additional services for monitoring,
configuring, scheduling, etc. What is more, the program-
mer does not need to learn any other different platform
from the one he is used to work with.

III. ISOMORPHISM BETWEEN ABSTRACT MACHINES AND
MIDDLEWARE PLATFORMS

To begin with, and as we stated above in [2], we researched
some of the most outstanding commercial implementations
of abstract machines, namely: the Smalltalk virtual machine,
Java virtual machine and the .NET underlying virtual
machine, which consists in the CLI and LI definitions. In
addition, some others virtual machines are: Carbayonia from
the research project Oviedo3, and Nitro from the research
team LABTOO, which were deeply surveyed. In all of them,
the same basic structural features appeared. Above all, the
most interesting issues in our work are: firstly, memory areas
to locate items and to reference them have been identified.
Secondly, techniques to represent the data that are going to
be stored and executed have also been identified. Finally,
there are invocations facilities allowing the objects to interact
with each other, that is to say, allowing message sending.

In the second place, in [3] we studied deeply some others
most outstanding middleware distributed object platforms
such as: CORBA, DCOM and Web Services. In this case, we
discovered some common facility services, from which we
are interested in: location facility, introspection and dynamic
invocation.

Finally, we are ready to talk about the resemblance between
virtual machines and middleware platforms, since:

• Location facility in middleware is equivalent to location
in memory storages in abstracts machines.

• Introspection describes objects in middleware as virtual
machines memory structures do.

• Dynamic invocation allows message sending from objects
in the middleware as invocations facilities from virtual
machines do.

Actually, these three common features define the necessary
high conceptual interface to implement and give live to a
runtime object system. We may realise that in the back-office
of each object middleware there is a runtime object system
working. Therefore, we thought that by using virtual machines
or an abstract machine model at design level we would solve
the interaction heterogeneous problem easily.

IV. BEHAVIOURAL DESCRIPTION

In this section, we show a high level insight of the
architectural model; and in the following, a software
engineering overview through a Model Architectural view
based on the Unified Development Process [4]. We will
discuss both: a structural diagram and a behavioural diagram.

Figure 1 shows the systems we can build from our
architectural model. We call these kinds of systems
middleware bus, middlebus, or simply bus; this name comes
from its behaviour, which resembles the one of a bus in
other communication layers. The bus is named LIIBUS.
In the illustration there are some middleware connected to
the bus, such as: DCOM, RMI Java, CORBA, RPC and SOAP.

The objects of each platform will see other platform
objects as if they were in the same platform. And what is
more important, each one of them can communicate with the
others without any intrusive adaptations or bridges.

Once a new platform is installed on the bus, it is ready to be
used by objects of all other platforms and also objects of this
new platform can use objects of other platforms. This means
that there is a bidirectional communication. The foundations
of this bus are object oriented reflective abstract machines.

Fig. 1. The OVIBUS platform for interconnecting different components. The
dotted circles represent system that can be plugged to the OVIBUS system.
In the figure, Oviedo3 represents the core of the system.

With the complete LIIBUS implementation, for instance,
an expert programmer on Web Services can invoke DCOM
objects without knowing anything about DCOM programming.
Furthermore, there can be made all the combinations desired.
Moreover, this system allows communication many to many.

44

A. Basic Abstract Machine Architecture

The key concept to understand this Architectural model
is Abstract Machine. We suppose that we are extending a
existing Basic Abstract Machine, and before we extend it, it is
necessary to get an insight of it. In the figure 2 it can be seen
a static architectural view of the basic abstract machine used
as the lower stage to construct our middle bus architectural
model.

The two main abstract classes are MAIntance and MAClass,
the former is used to handle the instances and the latter is used
to handle the classes into the abstract machine. For example,
if the machine is required to manipulate numbers, two classes
are needed: on one hand by using the MAInstanceNumber
class it is possible the manipulation of instances of the number
class, on the other hand by using the MAClassNumber class
it is posible the use of the number class itself. As it can be
seen in the figure 2 if the machine users require the use of
the string class the same operation must be done by using
their required classes, which would be MAInstanceString and
MAClassString that inherit from MAInstance and MAClass
respectively.

Fig. 2. Basic Abstract Machine Static Architectural view

Therefore, if any new class has to be added, it can be done
by inheriting in the same way from MAInstance and MAClass.

V. OBJECT-BASED ARCHITECTURAL MODEL

In this section we present a first approach to a Software
Architectural Model, in this case, it is an Object-Based one
[1].

A. Classes Hierarchy

The next class diagram, figure 3, shows the main
classes involved in the architectural model. Thus, MAClass,
MAInstance, MaInstanceExternal and MAClassExternal are
part of the more extended model of the basic abstract machine
showed above, in figure 2.

This abstract machine model is the lower stage used in our
solution to the heterogeneous interoperability problem.

The more significant classes here are MAExternalSystem
and MAExternalDispatcher. The first one is in charge of
wrapping communications from internal objects of the abstract
machine to the external platforms. The second one is in charge
of dispatching external invocations from external platforms to
internal objects. For each platform we need to inherit from
these abstract classes and implement them by wrapping or
adapting the information to the external system.

Fig. 3. Architectural model class diagram

The common types system is the one the abstract machine
already uses implicitly. Therefore, there is not an explicit
invocation engine, due to the abstract machine itself is an
implicit invocation engine.

B. Generic Collaboration

The above class diagram shows a static architectural view,
with the most important classes, relationships and the hierar-
chy they define. Now we know the function of each one of
these elements. In this section, we will see all those classes
working together in a collaboration diagram representing a
behavioural architectural view. In figure 4 there are two
external systems interoperating through the architectural model
of the system, each of them don’t know this system is between
them. Therefore, each external system does not know that it
is interoperating with a different and heterogeneous system.
Thus, communication from the external system point of view is
happening with another external system although of the same

45

kind. This means that, for instance, a CORBA system sees
other external systems as if they were CORBA systems.

Fig. 4. Architectural model sequence diagram

First, the External RMI system on the left starts an
invocation. Next, the MAExternalDispatcher class intercepts
the invocation with all the information about the sender,
parameters, return type, exceptions, etc. Then, it extracts all
the information from the invocation and throws appropriated
messages to the internal abstract machine objects. The first
message is to itself, it allows identifying the name of the
class to which one of its objects has been addressed by
the invocation. Once this is done, it gets the class through
the message getClass, and this internally calls to finClass
of MAExternalSystem. This last message interacts with the
external real recipient of the message who gets the right
information. Following to that, the message getMethods
interacts with the external and real message recipient to find
the description of all methods of that class and finally wrap
the external class recipient of the invocation.

Once the wrapper is finished, this new class is added to
the pool of classes of the abstract machine using the message
addClass. From now on, the recipient class is wrapped and
available for all objects into the abstract machine and outside
it.

Afterwards, we need to build an instance of this class and
that is what newInstance from the class MAExternalClass
stands for. This last call is redirected to MAExternalSystem
newInstance method, which interacts again with the real
external system and builds the real instance that is wrapped
again through MAInstance.

Lastly, we are in a situation to build an invocation addressed
to a wrapped instance belonging to a wrapped class, and that

is what invokeInstance does; again, this message is redirected
to MAExternalSystem invoke method, which again makes this
call to the actual external system.

C. Implementation and validation

Once the architectural model is defined based on a basic
abstract machine, we need to rebuild a new architectural
model for an actual virtual machine. To do our prototype
implementation, we chose Carbayonia from the Oviedo3
project working on Windows, which is a virtual machine
containing more than two hundred and fifty C++ classes
including both, a graphical user interface system and a
structural reflection system. We implemented communication
from Carbayonia to DCOM objects that mean we had to inherit
from MAExternalSystem and implement a wrapper for DCOM
Automation Objects. In other direction we implemented
communication from Web Services to Carbayonia, in this
case we had to inherit from MAExternalDispatcher to
dispatch invocations from Web Services invocations through
the GET/POST protocol instead of the more widely used
SOAP protocol. Finally, and as a result of this work the system
allows to do invocations from Web Services to DCOM objects.

In the Java code below we can see a remote dynamic
web services invocation to the CheckSpellin() method of
the DCOM object named Word.Application, which is the
ubiquitous text processor from Microsoft.
String u="http://fdomingu.escet.urjc.es:8888/WORD/APPLICATION";
// we create the service
Service service=new Service();
// we create a call for this service
Call call=(Call) service.createCall();
// we define the destiny URL
Call.setTargetEndpointAddress(new java.net.URL(u));
// we define the operation of the service to invoke
Call.setOperationName("CheckSpelling");
// we indicate the paramenters
Call.addParameter("sHola",XMLType.XSD_STRING,ParameterMode.IN);
// we define the return value type
Call.setReturnType(XMLType.XSD_BOOL);
String sHola=new String("Hola");
// we do the invocation by passing it an object vector
// initialized as parameters
Boolean ret=(Boolean) call.invoke(new Object[]{sHola});

VI. COMPONENT-BASED ARCHITECTURAL MODEL

The above Object-Based Architectural model was fine, but
if there was a need to add a new platform we had to create the
appropriated classes for the new platform and to recompile the
complete machine. Therefore, we realise that extensibility was
a poor property on this kind of systems. Finally, to improve
this feature we thought that using components could be useful.
In this way, we extended the class hierarchy as is shown in
the next section.

A. Architectural Component view

Installing a new platform to the middlebus without stopping
the system improves the extensibility. In order to achieve
this, we defined two classes, namely: ExternalSystemProx-
yComponent and ExternalDispatcherProxyComponent. Those
are the proxies for the component platform desired in the

46

implementation and they inherit from MAExternalSystem and
MAExternalDispatches.
Position statements should clearly state how they relate to
the workshop theme, what particular problems they address,
and what solutions they envisage, and why the statement
is expected to be relevant to both this workshop and the
community.

Fig. 5. Architectural model class diagram extension allowing component
connections

As it is shown in the figure 5, for adding a new platform
to the middlebus now, all we have to do is to build a
component implementing two interfaces IExternalSystem
and IExternalDispatcher. Moreover, methods of this interface
are the same as methods of MAExternalSystem and
MAExternalDispatcher.

Each instance of ExternalSystemProxyComponent and Ex-
ternalDispatcherProxyComponent wraps communication with
a different component that allows communications with an
external middleware platform. Both of this classes have a
method named newComponentPlatform(). This method is in
charge of initialize the adequate new component platform
proxy.

B. Implementation and validation

For an implementation of this new design we used the
same prototype with the DCOM component platform to allow
the extensibility. Now ExternalSystemProxyComponent and
ExternaDispatcherPRoxyComponent are two DCOM clients,
an instance of each one is created for each platform added
to the system. We created only a component named Web-
ServicesProxyComponet, this component allows bidirectional
communication from internal Carbayonia object to web ser-
vices.

The validation code was the same that in the first case.
No modification of the code was necessary. From the user
point of view or the external middleware platforms nothing

Fig. 6. Actual Architectural model class diagram with a Web Services
external component

has changed. But now it is very easy to extend the middlebus
with a new middleware platform to interoperate with.

VII. CONCLUSIONS

Model-driven Architectural development, with its use of
generators, can provide a suitable solution to architectural
views and technical component execution platforms. In order
to achieve this, a comprehensible mapping on component-
oriented middleware platform is necessary and important. Our
proposal can do this without any use of generators at all.
A system architectural designer does not need to worry any
more about other Platform Specific Architecture. Besides, the
designer will just care about functional and QoS requirements
of the system to be build, in only one particular middleware
architecture or in only one particular virtual machine where
the middlebus is been deployed. Moreover, it is allowed to
add new middleware components platforms without having to
stop the system. Further works, will allow the virtual machine
programmer to extend the platform directly by programming
into the virtual machine.

REFERENCES

[1] Francisco Dominguez Mateos. LIIBUS: Arquitectura de Sistemas Inter-
operables entre Middlewares Heterogneos usando Máquinas Abstractas
Reflectivas Orientadas a Objetos, Universidad de Oviedo, 2005.

[2] Francisco Domnguez. Diseño e Implantación de la Máquina Abstracta
MA y la extensión reflectiva de Carbayonia, Servitec. ISBN: 84-689-
3500-X, 2005.

[3] Francisco Domnguez Mateos, Manuel Rubio. Investigacin en Sistemas
Distribuidos y su Heterogeneidad, Servitec. ISBN: 84-689-3501-8, 2005.

[4] Ivar Jacobson, Grady Booch, James Rumbaugh. El Proceso Unificado de
Desarrollo de Software Addison Wesley. ISBN: 84-7829-036-2, 2000.

[5] Tanenbaum Andrew, Van Steen Maarten. Distributed Systems Principles
and Paradigms, Prentice Hall. ISBN: 0-13-088893-1, 2002.

47

Automated Deployment of Component
Architectures with Versioned Components

Leonel Aguilar Gayard1, Paulo Astério de Castro Guerra2,
Ana Elisa de Campos Lobo1 and Cecı́lia Mary Fischer Rubira1

Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Caixa Postal 6176 – 13083-970 – Campinas – SP – Brazil

{leonel.gayard,alobo,cmrubira}@ic.unicamp.br1, asterio@acm.org2

Abstract— In the deployment of component-based applications,
concrete configurations only behave as expected if they are
deployed together with their right components in their chosen
versions. The assembling of an application from its components
is therefore a crucial step in the deployment phase and should
be automated in order to avoid human mistakes. However, this
task is generally performed by instantiation code written in
the deployment phase in anad hoc manner. In this paper, we
propose CosmosLoader, a tool that automates the assembling
of an application at runtime by means of customized class
loaders. CosmosLoader automatically instantiates components
and connects them to form an application at runtime, eliminating
the writing of instantiation code by developers.

I. I NTRODUCTION

The software architecture of a system is the structure or
structures of the system, which comprises software elements,
the externally visible properties of these elements and the
relationships among them. It represents the decisions that
should be made first in its design. The software architecture
of a system is represented by its architectural components and
architectural connectors [1]. A connector is an architectural
building block used to model interactions among components
and rules governing those interactions [2].

In constrast, a software component is a unit of composition
with provided and required interfaces and explicit contextde-
pendencies, which can be deployed independently [3]. Context
dependencies specify the deployment environment requiredby
a software component. A concrete component is a binary piece
of software that can be instantiated at run time as a part of an
executable system. In general, the deployment of component-
based applications consists in installing implementations of
components, satisfying their context dependencies and assem-
bling them to compose a concrete configuration [3].

Deployed components are retrieved and loaded at run time
to compose an application: retrieving a component consistsin
finding its implementation binaries, while loading a component
consists in loading these implementation binaries in memory,
usually through low-level mechanisms of the underlying pro-
gramming platform. These activities may differ according to
the component model in use. For instance, in the Enterprise
JavaBeans model [4], components are retrieved through an
EJB container, which is also responsible for loading them.

An important issue in composing a concrete configuration
is to consider the version of its components: as components

evolve, different versions of the same components may behave
differently. Moreover, architectural components may present
variation points [5], which means they have the ability to
connect themselves to generate a generic architecture. This
architecture is generic enough to allow different softwareprod-
ucts to be obtained by small variations in their compositions,
such as the choice of their subcomponents. These factors make
the deployment process more complex to be executed.

Ideally, the meta-information about the components and
their versions used to form a concrete configuration should be
explicitly declared either in the deployment phase or during the
start-up of the application, in order to automate its installation.
Also, the platform on which the application runs should have
some means to know which components are being loaded and
what are their versions in order to guarantee that the deployed
configuration is the correct one.

In this paper, we presentCosmosLoader, a tool which
supports the deployment process in the COSMOS compo-
nent model by automating some deployment tasks, more
specifically, the choice of the versions of the components
and the installation of components to compose the concrete
configuration.CosmosLoaderreads an XML description of
the components of a concrete configuration, instantiating and
connecting its components accordingly at runtime. By cor-
rectly describing the configuration in the XML description
file, developers can guarantee that a running application is
composed with the correct components in the correct versions.

This paper is organized as follows. Section II provides
background information on the COSMOS component model.
Section III compares the activity of deployment in EJB
and COSMOS, and exposes issues that arise in deployment.
Section IV describes our proposed solution,CosmosLoader.
Section V analyses the generality of our solution and its appli-
cation in other languages. Section VI compares the proposed
approach with related work. The last section presents some
concluding remarks and directions for future work.

II. T HE COSMOSCOMPONENT MODEL

COSMOS [6] is a component model for designing and
implementing flexible software components in Java. It ma-
terializes concepts from software architecture and component-
based development (CBD), such as components, connectors,
and provided and required interfaces in constructs available in

48

object-oriented languages, such as Java and C#, thus providing
a direct mapping between a system’s architecture and its
implementation.

In COSMOS, each component is conceived as a Java pack-
age containing two subpackages: the specification package,
spec and the implementation package,impl. The former
contains two subpackages as well, which contain specifications
for the component’s provided and required interfaces (respec-
tively, spec.prov andspec.req). The latter contains the
component’s implementation classes.

In addition to the interfaces provided by the component,
the spec.prov package also contains theIManager in-
terface, which performs configuration activities related to
the connections of components in the architecture. The con-
nection of components is done in a programmatic way
through methods defined in interfaceIManager, that de-
scribe the component interfaces and create connections be-
tween components. Theimpl package contains a manda-
tory class ComponentFactory, with only the method
createInstance, which is responsible for instantiating a
component.

COSMOS specifies that components should not be con-
nected directly. Instead, they must be connected by means ofa
connector, in order to avoid dependencies between component
interfaces, which would lead to high coupling between compo-
nents. A COSMOS connector is a simpler component with no
specification packages: it provides and requires the interfaces
of the components it connects. The implementation of the
connector is responsible for resolving mismatches betweenthe
components it connects.

COSMOS supports the definition of atomic and compos-
ite components. A component is considered a composite if
it instantiates other components, which are then considered
its parts. As such, a subcomponent is known only by the
composite which instantiated it, and is not visible to other
components in the configuration. This recursive definition of
composition is fundamental to a component model [3].

III. D EPLOYMENT OF COMPONENT-BASED APPLICATIONS

Therefore, the deployment process consists of writing meta-
information about the concrete configuration, which is usedto
correctly assemble the application from its components. The
deployment of components takes different forms depending on
to the component model used. Suppose the concrete configu-
ration depicted in Figure 1.

We describe the deployment of EJB and COSMOS compo-
nent models of this architecture. Suppose there are EJB imple-
mentations of components and connectors A, B, AB, XA, BX
and X. The steps for deployment of an EJB implementation
are as follow [4]:

1) The Java classes which constitute each EJB component
are packaged in WAR files, one per EJB.

2) A deployment descriptoris written. It is an XML file
that contains all deployment information. (Many EJB
containers offer tools to automate the writing of deploy-
ment descriptors.)

3) The JNDI1 names for each EJB are written in the
descriptor. Every EJB is known to the EJB container
by a JNDI name. However, this name is only known
to the container, other EJBs know it by another JNDI
name.
As an example, suppose EJB AB is registered within the
container with the JNDI name “AB”. EJB A requests a
reference to AB, not by asking a look-up to “AB”, but
instead to a URL that may not match the same name, say,
“java://my-ab”. Both names “AB” and “java://my-ab”
are registered in the container, which is then responsible
for translating the latter into the former and retrieving
the correct EJB.

4) Context dependencies, such as external libraries are also
packaged in WAR files.

5) The deployment descriptor and the WAR files are copied
to the EJB container.

6) The container should also be configured to allow Java
clients to access its EJBs. If a client program is also to
be run in the container (i.e., a web servlet that accesses
the EJBs), it should be deployed as well.

The deployment of a COSMOS implementation of the same
components is as follows:

1) The class files for each component are packaged as
separate JAR files, one for each component.

2) The developer writes a class whose purpose
is to instantiate the components and make
the connections between them according to
the architecture. This is done by calls to the
ComponentFactory class and to
methods getProvidedInterface and
setRequiredInterface in interface IManager
in each component, as described in [6]. The instantiation
code usually resides in a public class with a static
methodmain.

3) The instantiation class is copied to the host machine as
well.

4) The application class path is set. This is usually done by
setting the environment variable CLASSPATH to contain
all the component files and the instantiation class.

5) The class path is also set to contain the context depen-
dencies. These are also usually packaged as JAR files.

6) The Java virtual machine is invoked with the instantia-
tion class as the application’s main class.

If the application is web-based, and a web container such
as Tomcat [7] is used, then the steps above should be changed
according to the container’s specification. For instance, servlet
containers do not acquire the class path from an environment
variable, but instead look for classes in predefined directories;
the instantiation code is written in a start-up servlet, instead
of a main class.

In both component models, developers are responsible for
managing the versions of the components and the connections
between them. Two major errors may arise in the deployment

1Java Naming Directory Interface

49

Fig. 1. Component X is an application composed with components A and B and connectors AB, XA and XB.

activity: (1) the wrong versions of components may be de-
ployed, if the wrong files are copied to host machine, or if the
class path contains the wrong versions of the components; and
(2) the components may be connected erroneously, if, in EJB,
the wrong JNDI names are provided, or, if there are errors
in the COSMOS instantiation code. Errors in deployment
can cause a mismatch between a running system and its
configuration.

IV. CosmosLoader: A TOOL FOR AUTOMATED

CONFIGURATION LOADING

CosmosLoaderis a tool to automate the task of creating
a running system from a set of COSMOS components (see
Section II). Given a description of a concrete configuration,
CosmosLoaderis able to load the appropriate versions of
components and connectors, and connect them as described
in the architecture. This relieves the developer from the tasks
of writing instantiation code and managing the component
files and class path so that only the correct versions of the
application components are loaded. Instead, the developeronly
has to describe the configuration and provide access to a
component repository:CosmosLoaderfinds and instantiates
the correct versions of components and connects them to form
the concrete configuration.

A. The CosmosLoader class loader hierarchy

The three main classes inCosmosLoader are the
ComponentLoader, the ExternalLoader and the
InterfaceLoader; all of them are (indirect) subclasses
of java.lang.ClassLoader and follow the delegation
hierarchy shown in Figure 2. Their purposes are as follows:

• ComponentLoader: loads classes and implementation
resources (e.g. properties files) pertaining to a compo-
nent. Each instance of a component has an instance of
ComponentLoader associated to it.

• ExternalLoader: loads classes and implementation re-
sources from external libraries on which the components
depend. Each instance ofComponentLoader has an
instance ofExternalLoader to which it delegates the
loading of resources from external libraries.

• InterfaceLoader: loads Java interfaces corresponding
to component provided and required interfaces, as de-
scribed in Section II. There is only one instance

of the InterfaceLoader, shared among all the
ExternalLoaders.

Different instances of class loaders allow duplication of
classes accross the system and isolation of classes inside
components: in Java, two classes can have the same fully
qualified name, if they are loaded by distinct class loaders;
in fact, if a class is loaded by two different class loaders, it
will be considered as two distinct classes. Therefore, classes
in different instances of the same component are considered
different classes.

This is an important feature in the implementation of com-
ponents. As an example, suppose that a class in a component
uses class variables (marked with the keywordstatic in
Java). Class variables are a common programming feature
used, for instance, in the patternsSingletonand Factory [8].
Without the class separation provided by class loaders, a class
would be unique among two instances of a component, and
there can be a race condition for the use of the class variable.

Moreover, using different class loaders for each component
and external library has the additional benefit of allowing
different versions of the same class (and therefore, different
versions of components and libraries) to exist simultaneously
in a system.

Because components are connected by transfering their
interfaces (see Section II), the interface types should be
unique accross the system. This is achieved by forcing all
interface classes to be loaded by the same class loader. In
CosmosLoader, theInterfaceLoader is unique and loads
all the interfaces.

B. Configuration description

A concrete system is considered an instance of a composite
component. The instantiation of a composite component re-
quires a configuration of other concrete instances to fulfillthe
roles defined for its subcomponents. Such a concrete instance
can result from the instantiation of an elementary component
or, recursively, other composite components.

While the roles of the subcomponents of a system (or
composite component) are defined by its internal software
architecture, the configuration of a concrete system depends
on its specific version. Different concrete systems result from
the instantiation of a same system with different concrete
subcomponents. In the design of CosmosLoader, a version of

50

Fig. 2. The hierarchy of class loaders inCosmosLoader.

a concrete system (or composite component) is represented by
an XML file specifying the set of component versions to be
instantiated as its subcomponents. These XML files are stored
at the component repository, together with the various versions
of the elementary components. A configuration description can
be either a single XML file describing every subcomponent
in the architecture, or it can contain links to other XML files
which describe other composite components. This construction
is possible because of the tree structure of XML files and
reflects the recursive property of composition.

C. A component repository

CosmosLoaderloads component implementations from
a component repository. The three class loaders inCos-
mosLoaderload files from the repository by means of URLs.
URLs contain information about the component in which to
find the class and its version. This URL mechanism allows for
more sophisticated repositories, such as remote repositories: in
an intranet, it is possible to place the repository in a web server
and access it by well-known protocols such as HTTP or FTP.

Initially, we have designed a basic repository based on
directories on the file system. All versions of a component
implementation are available on the file system, according
to a simple directory hierarchy: there is a folder for each
component; in each component folder, there is a folder for each
version of the component implementation and which contains
the directory structure for the component.

Consider the configuration shown in Figure 1. All
components in that configuration are available in the
repository as directories, as described before. As an example,
suppose the version of componenta is 1.0.1; then its
class ComponentFactory would be found in URL
file:///usr/repo/a/1.0.1/a/impl/ComponentFactory.class
(Suppose the repository resides in directory/usr/repo).

D. CosmosLoader Implementation

The requirements to construct CosmosLoader were elicited
from our practice experience at a medium-size Brazilian soft-
ware company specialized in software solutions for financial
organizations. Component-based development is used as their
development paradigm, and their major products are based on
COSMOS components.

In this context, composition is extensively used as a form of
variability [5]: according to the needs of different customers, a
component may or may not be included in a configuration, in
order to make a functionality available on that applicationor
not. Applications should not be deployed as single units, but
should instead be assembled on site from their components,
and only the components in that configuration should be
deployed. If the deployment is as described in Section III,
then a different set of component files should be copied and a
different instantiation code should be written.CosmosLoader
will allow configurations to be materialized without the need
for customized instantiation code.

Furthermore,CosmosLoadercan be extended with autho-
rization mechanisms so that applications in a customer sitecan
load their components at run time from a remote repository
located in the developer site, so that components need not be
deployed to the customer site.

CosmosLoaderis still in its initial development stages. A
prototype has been developed and tested with small concrete
configurations.

V. ON THE GENERALITY OF THE SOLUTION

The simple structure of components makes the COSMOS
model suitable to any platform that supports the concepts of
interfaces and separation of classes in packages or namespaces.
The implementation of COSMOS components in object-
oriented languages other than Java, such as C#, is straight-
forward.

51

On the other hand, the instantiation and connection of
components performed byCosmosLoaderdepends on the
ability to load classes dinamically, in order to load the correct
components, and on meta-programming capabilities of the
platform, in order to find theComponentFactory class
and invoke its methodcreateInstance, as described in
Section II. The platform should also provide a mechanism to
isolate classes inside components, in order to prevent problems
such as those described in section IV. In Java, the class loader
mechanism provides a natural way of isolating classes.

As an example, the .NET platform [9] provides dynamic
class loading and meta-programming through classes in the
System.Reflection namespace, but the underlying in-
frastructure for class loading behaves quite differently from
the one specified for a Java Virtual Machine. Therefore, a C#
implementation ofCosmosLoadertargeting the .NET platform
is feasible, but would require a different design in order to
allow several class loaders with different scopes and thus
allow the same class to be loaded many times, one for each
component in the system.

VI. RELATED WORK

Class loader customization.Class loader customization is
a common technique for dynamically changing the behavior
of a system at run time. Several applications use customized
class loaders or hierarchies of class loaders in order to pro-
vide better encapsulation of components. Among these, we
can cite Eclipse platform (http://www.eclipse.org),
which builds a class loader hierarchy to support its plug-in
architecture, and the Tomcat container (http://tomcat.
apache.org), which uses class loaders to separate deployed
web applications at class level, thus increasing each applica-
tion security. LikeCosmosLoader, both Eclipse and Tomcat
use customized class loaders to enforce the separation of
software parts, although not in the context of Component-
Based Development.

Hall [10] describes customized class loaders to support
deployment of different versions of software modules (which
can be components, plug-ins or a similar modularization
concept) across a system. Differently fromCosmosLoader,
Hall’s Module Loader by itself does not support software com-
position, and must be embedded in component frameworks to
do so.

Component instantiation frameworks.Fractal[11] is a com-
ponent model similar to COSMOS. JULIA is a framework
that provides support for implementing Fractal components
in Java. Similar toCosmosLoader, JULIA reads an appli-
cation description and instantiates a concrete configuration
accordingly. The JULIA configuration file is different from
the CosmosLoader configuration as the developer needs to
indicate what classes will implement the component; therefore,
the configuration file is described at class level, rather than
at component level. This class-centric approach makes the
distinction between the roles of component developer and
system integrator unclear, as the integrator must to some

degree understand the implementations of components in order
to combine them in a concrete configuration.

VII. CONCLUSIONS

We have presentedCosmosLoader, a tool to automate the
instantiation and connection of COSMOS components and aid
in the deployment of component-based applications. This tool
reads the description of an architecture from a configuration
file and instantiates the components of the application accord-
ingly, even in the case where several versions of the same
component exist. Its main functionality is based on customized
class loaders that are able to load the components that compose
the application and are described in the configuration file.

CosmosLoader automates three important tasks in deploy-
ment of COSMOS applications: the copy of the concrete
components that form the application, the configuration of
the application class path, and the selection of the appropriate
version of each component. The use ofCosmosLoaderalso
reduces the effort needed in the deployment phase as it re-
places the code that instantiates and connects the components
which form the application.

Future work includes, but is not restricted to addressing
the following issues:Integration with a component repos-
itory [12]: The integration with the component repository
will use its search mechanism to find a given version of a
component in the repository, in order to load it.Integration
with Bellatrix [13]. Bellatrix is an integrated environment
that materializes the elements of a software architecture
based on COSMOS model. Integration between Bellatrix and
CosmosLoader will allow a software configuration built by
Bellatrix to be deployed by CosmosLoader.

ACKNOWLEDGEMENTS

L. A. Gayard is supported by CAPES/Brazil under grant
01P-05603/2006. C. Rubira is partially supported by CN-
Pq/Brazil under grant 351592/97-0. The authors wish to thank
AUTBANK - Projetos e Consultoria for their support in
our research in component-based development, and Fernando
Castor Filho for his contributions to this article. FINEP/Brazil,
under grant 1843/04 of CompGov (a project for Shared Library
of Components for E-Government), partially supports the work
of Paulo Asterio de Castro Guerra and Cecı́lia Rubira.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman.,Software Architecture in Practice,
2nd ed., ser. SEI Series in Software Engineering. Addison-Wesley,
2003.

[2] N. Medvidovic and R. N. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,” IEEE
Trans. Softw. Eng., vol. 26, no. 1, pp. 70–93, 2000.

[3] C. Szyperski,Component Software: Beyond Object-Oriented Program-
ming. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[4] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, andB. Stearns,
The J2EE tutorial. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[5] J. Bosch, “Software variability management,”ICSE 2004, 2004.
[6] M. C. da Silva Júnior, P. A. de Castro Guerra, and C. M. F. Rubira, “A

java component model for evolving software systems.” inASE. IEEE
Computer Society, 2003, pp. 327–330.

52

[7] The Apache Software Foundation, “Apache tomcat,” abril2006,
http://tomcat.apache.org/.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlisside,Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, Massachusetts:
Addison-Wesley, 1995.

[9] Microsoft Corporation, “Microsoft .net homepage,” agosto 2005,
http://www.microsoft.com/net/.

[10] R. S. Hall, “A Policy-Driven Class Loader to Support Deployment in
Extensible Frameworks.” inComponent Deployment, ser. Lecture Notes
in Computer Science, W. Emmerich and A. L. Wolf, Eds., vol. 3083.
Springer, 2004, pp. 81–96.

[11] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani,
“An Open Component Model and Its Support in Java,” inComponent-
Based Software Engineering: 7th International Symposium,CBSE 2004,
Edinburgh, UK, May 24-25, 2004.

[12] L. P. Tizzei, H. S. Pinho, P. A. C. Guerra, and C. M. F. Rubira,
“Um repositório de componentes com suporte à evolução centrada na
arquitetura de software,” in5o Workshop de Desenvolvimento Baseado
Em Componentes (WDBC’2005), Juiz de Fora, Minas Gerais - Brazil,
2005.

[13] R. T. Tomita, F. C. Filho, P. A. C. Guerra, and C. M. F. Rubira,
“Bellatrix: Um ambiente para suporte arquitetural ao desenvolvimento
baseado em componentes,” in4o Workshop de Desenvolvimento Baseado
Em Componentes (WDBC’2004), João Pessoa, Paraı́ba - Brazil, 2004.

53

Describing Framework Static Structure:
promoting interfaces with UML annotations

Sérgio Lopes, Adriano Tavares, João Monteiro, Carlos Silva
Department of Industrial Electronics

University of Minho, Campus de Azurém
4800-058 Guimarães, PORTUGAL

Email: <sergio.lopes,adriano.tavares,joao.monteiro,carlos.silva>@dei.uminho.pt

Abstract—Frameworks are an important form of reuse that

can help to significantly decrease the time and cost of application
development. Although widely known, there are still some diffi-
culties associated with framework reuse, which are critical to its
success. In this paper, we focus on the issues regarding the frame-
work reuse process, and more specifically, on the framework
architecture description.

This paper discusses our position on the subject. It enables a
component-oriented approach to framework reuse by emphasiz-
ing the description of black-box variation-points, and introducing
call-points. We define the UML-FD profile for UML 2.0, which
extends UML to support these and other concepts, dedicated to
describe the static structure of application frameworks.

I. INTRODUCTION
Reuse has been a major concern for software engineers, in

their quest for easier application development with reduced
time-to-market and cost. Frameworks are an important form of
reuse that can help to get closer to this long-time pursued goal.
However, several problems associated with frameworks have
been identified [2], starting from the framework development
and ending at its maintenance. This work is concerned with
the difficulties inherent to framework reuse from the perspec-
tive of the application developer.

Object-oriented frameworks [1] are widely known, but
building applications by reusing them poses problems that
software developers have to struggle with. Frameworks cap-
ture a specific domain’s commonalities and variabilities, by
implementing common elements and providing an architecture
that localizes variability at variation-points. In contrast with
passive forms of reusable software (typically, procedural li-
braries or traditional class libraries), frameworks are active
and exhibit predefined behaviour, which imposes some con-
trol flow among its components. Consequently, they are often
complex and hard to understand, what can make reusing them
a difficult and time-consuming assignment [1].

These problems must be alleviated in order to make frame-
work reuse an alternative way of building applications that is
decisively attractive. In fact, it is not always guaranteed to be
advantageous comparatively to application development by
“reinventing the wheel”. The typical framework slow learning
curve is one major issue because it results in a delayed pro-
ductivity payoff, which can arrive unrewardingly late or even
be unacceptable. Therefore, diminishing these problems is a

decisive factor for the success of framework-based reuse ap-
proach. It has been consensually recognized the need to effec-
tively communicate frameworks and provide appropriate tool
support, in order to minimize the effort and time required to
build applications. The present paper focuses on difficulties in
communicating the framework to the re-user, and our proposal
to lessen them.

Although communicating the architecture is a framework
developer responsibility, the notation chosen is decisive to the
following phases of the reuse process to be carried out by ap-
plication developers. It is widely accepted that visual notations
have crucial advantages over textual languages in the commu-
nication of software. Being a de-facto standard object-oriented
design notation in industry, UML [21] is a beneficial choice
for describing frameworks, but it is a general scope and exten-
sible language, not specifically tuned for this purpose. It has
been previously demonstrated [4] the need to explicitly repre-
sent frameworks variation-points, not supported by UML, in
order provide effective framework description. Actually, ap-
plying a subset of UML to object-oriented frameworks reuse
has been addressed before, with a few dedicated extensions
being proposed [4], [8], [9]. However, a few limitations still
endure and we investigate how to tackle them, in order to pro-
vide a more complete support for the framework reuse needs.
We propose the UML-FD profile that integrates a different
perspective, namely, promoting a component-oriented ap-
proach to application frameworks.

This paper describes on going research, and starts by dis-
cussing some issues regarding framework description in fol-
lowing section. In section III, we introduce our perspective
and discuss the foundation of our proposal. In section IV, the
requirements for object-oriented notations supporting frame-
work reuse are outlined. The UML-FD profile, defining the
proposed UML extensions, is described in section V. In sec-
tion VI, the related work is reviewed and our contribution is
explained. Finally, we present the concluding remarks.

II. ABOUT FRAMEWORK REUSE
A framework can be reused in many different ways that re-

quire different kinds and amounts of information, which may
be constrained by business interests. The support that tools
can offer is also affected, but this is not a matter for this paper.

54

We discriminate two fundamental forms of object-oriented
framework reuse: unanticipated reuse and anticipated reuse.
The differences of them are given below, in a discussion that
describes their relationships with framework documentation
aspects.

A. Anticipated Reuse vs. Unanticipated Reuse
We make the distinction between these two forms of reuse

because the information needs, the activities and the results of
each one are quite different.

Anticipated reuse takes place when the particular needs of a
re-user are fulfilled by the functionalities of the framework. In
more concrete terms, the framework provides enough varia-
tion-points (also named hot-spots [3] or hooks [17]) with
enough flexibility, to cope with a re-user objectives. Or, the
other way around, the re-user goals can be achieved by a sub-
set of all the possible variation-points’ adaptations. The
framework adaptation is realized by providing application
specific components for variation-points that observe the re-
spective constraints. With this kind of activity, typically, the
re-user does not have to worry about possible erroneous inter-
actions between the framework components.

Unanticipated reuse happens when the re-user wants to add
some functionality that is not provided by the framework com-
ponents, or only to make a slight change to some feature. Usu-
ally, these kind of goals cannot be achieved solely by adapting
the framework’s variation-points. Most probably, it will be
necessary to make adaptations outside the set of pre-defined
variation-points. By doing it, the re-user can more easily in-
troduce erroneous interactions between application specific
components and the framework. Furthermore, these flaws can
be difficult to correct, as we see next.

B. Description Information and Business Rules
Telling apart the two forms of reuse above is important be-

cause they have a strong impact on both the kind and quantity
of necessary information about the framework, which in turn
is a subject of business concerns.

Anticipated reuse is easier to document because the antici-
pated variability is localized at variation-points. Therefore, it
is sufficient to provide detailed design documentation only
about them. In particular, describing the purpose of each
variation-point, how to adapt it, and their semantic restrictions
which guarantee that the adaptation will work correctly. Tools
can also be built to provide specific assistance for filling the
variation-points. In contrast, unanticipated reuse can occur at
almost any part of the framework. Hence, besides the varia-
tion-point description, it requires detailed design (and possibly
implementation) information about the complete framework.
Notice this is generic software documentation, because it is
not possible to provide specific reuse information. The same
applies to tools, which cannot provide any special develop-
ment support for unanticipated reuse.

Communicating a precise and deep understanding of the
framework to the re-user is essential to enable the assessment
of viability that is necessary to achieve specific goals, and the
development of adaptations that do not violate the framework

architecture. Naturally, the description should be independent
of implementation details not important for design, which
might limit the framework generality, or lead to complications
caused by framework evolution (see [19] for this kind of prob-
lems). These issues apply to both kinds of reuse, but are much
harder to manage when support for unanticipated reuse is in-
tended. Unanticipated reuse requires complete information
about the framework, in order to enable the re-user to develop
unpredicted adaptations, which correctly interact with the
framework, and/or change parts of it while maintaining behav-
iour consistent with untouched parts.

Furthermore, the problem with detailed architecture de-
scription, necessary for supporting unanticipated reuse, is that
it may collide with business interests. There are a few free
open-source frameworks but, on the other hand, there are
commercial frameworks provided by vendors. Development
of a framework is a long and costly process that requires high
expertise in the target domain. Thus, revealing the architecture
details is not usually considered good business because it may
give advantages to competitors in the same market, and
framework vendors may be suppliers of dedicated support
tools. For these reasons, if a framework is not open and there
is no detailed documentation about it, it may prove to be very
difficult to achieve a successful unanticipated adaptation.

C. Description Techniques and Reuse Possibilities
The spectrum of approaches for framework documentation

can be classified according to two categories: informal pre-
scriptive techniques, and formal descriptive techniques.

Prescriptive techniques [14], [15], [16], [17] describe how
to use the framework, normally using natural language, or
other informal means of documentation. They provide valu-
able guidance but only to the limited adaptation possibilities
described. It is not possible to predict all the ways of adapting
a framework, in fact, not even is feasible to describe a large
number of them. Therefore, these techniques are more suited
to support anticipated reuse. They are also oriented towards
less skilled users, or to enable experienced users a quicker
first application build.

Descriptive techniques describe the framework architecture,
usually using formal or semi-formal visual languages, like
UML [4], [8], [9]. They do not dictate or elicit any particular
way of reusing it; instead, they try to communicate the frame-
work architecture to the user. They do not provide significant
guidance for adapting a framework; it is up to the re-user to
figure out how to adapt it, in order to meet her/his specific
requirements. Consequently, these techniques are appropriate
to support unanticipated reuse, and are more oriented towards
experienced users, who need detailed information more than
guidance.

III. OUR APPROACH
Before we get to the proposed solution to communicate

frameworks, we explain our point of view about framework
reuse, which is the foundation for it. First, the technique cho-
sen to describe frameworks, and then the perspective on reuse
technology, are presented.

55

We follow the same line as the UML techniques cited
above, i.e., investigating how to augment the reuse flexibility
that descriptive techniques provide, with as much guidance as
possible. In agreement with the exposed in the previous sec-
tion, adopting a descriptive technique to describe a framework
in detail supports unanticipated reuse. Augmenting a general
descriptive technique with support for explicit variation-point
description enables to provide guidance for anticipated reuse.
Variation-points are the typical key concept for organizing
this kind of documentation for frameworks, but they are not
enough, as it will be argued in the next section. No special
requirements apply to the description of a framework for un-
anticipated reuse, it is much like describing any other piece of
software. Therefore, the requirements for OO notations for
framework description (presented below) reflect only the part
of reuse that is anticipated, because it is the one that requires a
dedicated approach.

White-box frameworks [5], more than object-oriented, are
class-oriented because their adaptation is frequently based on
inheritance (sub-classing framework classes), which is a
mechanism that describes class hierarchies. We favour a pre-
dominantly black-box approach in which the framework is
reused by calling its interfaces and providing components that
implementing the interfaces it requires. This approach empha-
sizes use relationships instead of inheritance, and thus is suit-
able to support the representation of object interactions. In
turn, this also facilitates the specification of restrictions on
clients.

When using a framework, an application developer is reus-
ing both a design and its implementation. Therefore, we
choose not to abstract the variation-point description to the
design level, as opposed to [4]. In fact, we consider that the
framework should be described with as much precision as
possible (without neglecting what was stated in the previous
section). Design variations-points defined by inheritance can
be refactored into use relationships, with interfaces to be im-
plemented by application specific components [4]. This can be
done using the Strategy design-pattern [6], or other suitable
design patterns based on separation meta-patterns [3]. This
polymorphism and forwarding technique separates the inter-
faces from implementations, making the design more decoup-
led and flexible than with inheritance, and it is the base for a
black-box approach to reuse.

Moreover, if framework classes provide separate computa-
tional and compositional interfaces, it enables a decomposition
of the framework instantiation process into two different reuse
activities. In the literature, the process of reusing a framework
to build an application is usually denominated framework in-
stantiation [1]; we subdivide it in two activities or two phases
– framework adaptation, and application instantiation – which
we explain next.

The adaptation phase (also designated as ‘framework in-
stantiation’ in [4]) consists in providing application specific
adaptations that define the behaviour of variation-points. The
application developer learns the details about the framework
architecture from the annotated UML diagrams, and extends it
with the application specific components.

Once all components necessary for an application are avail-
able, the final application can be defined. This is accom-
plished in the application instantiation phase, by creating in-
stances of framework and application components, configur-
ing and interconnecting them to form the final executing ap-
plication. The components provide a compositional interface
including methods whose names typically start by ‘set’, ‘add’,
‘remove’, etc, that enable run-time configuration.

A complete discussion of the reasons behind the separation
between framework adaptation and application instantiation
can be found in [22], which discusses our perspective on tool
support for these activities.

To conclude, frameworks designed this way enable the ap-
plication definition by creating and configuring its run-time
units individually, like components. We consider them com-
ponent-oriented frameworks, because they can be adapted by
composing components, although we do not consider any
standard component model. We provide support for reusing
them, but we also provide specific constructs for white-box
reuse that can be useful for describing “gray-box” frame-
works.

IV. FRAMEWORK DESCRIPTION REQUIREMENTS
Considering the discussion in the previous section, we pre-

sent below, what we consider to be, the main requirements for
describing frameworks in order to facilitate its reuse.

Based on our experience in adapting and implementing
frameworks, and on the revision of previously proposed solu-
tions for framework design, we have elicited a requirements
list for design languages to describe OO frameworks. First, we
present it, and then we discuss each one of the requirements:
1) Domain and purpose of the framework and its specific

features;
2) Framework static structure with explicit variation-point

identification;
a. Support for white-box, black-box and client reuse;
b. Define different types of variation-points with clear

semantics;
c. Variation-point syntax enabling the definition of se-

mantic restrictions on the adaptation;
3) Framework dynamic behaviour with explicit support for

variation-points;
a. Define causal obligations for variation-point adapta-

tion;
b. Explicit differentiation of variation-points messages

in behavioural compositions;
4) Guidance for framework adaptation process, with support

for optional variation-points;
5) Guidance for the application instantiation process.

The complete framework documentation should include the
identification of its target domain, as much as possible defin-
ing the boundaries of that domain, and stating which problem
the framework solves in that domain. It should also provide a
functional view of the features provided by the framework.

The description of framework static structure identifies the
components that compose its design and their relationships. It

56

gives a static view of the objects’ collaborations. It should
explicitly distinguish the variation-points from the framework
core, in order to assist the framework user in identifying more
easily the parts that need to be provided, or adapted, to create
applications. This a form of endowing descriptive techniques
with some guidance for the framework adaptation phase.

White-box and black-box variation-points have been con-
sensually recognized as forms of adapting frameworks, and
their explicit identification and description has been supported
by graphical notations dedicated to framework reuse ([4], [8],
[9]). Nevertheless, frameworks do not always rely exclusively
in the Hollywood Principle (“don’t call us we’ll call you”, or
inverted control mechanism based on Template Method [6]) to
communicate with application components. Sometimes they
provide services to be called by clients, as has been recog-
nized in [18]. We have developed a framework for measure-
ment systems, inspired by [13], that combines predominant
‘inverted’ flow of control with pieces of non-inverted control
flow. This example experience suggests broadening the
framework variety to frameworks that have a neither purely
called neither purely calling architecture. The interaction be-
tween clients and framework through use relationships may
vary from single method invocation to complex protocols that
impose obligations on the clients. We share this view with
[10], which also emphasizes that use relationships, as a basis
of behaviour composition, play an important role in frame-
work integration. Therefore, we introduce the notion of call-
points as parts of the framework interface, anticipated for cli-
ent use, that play a key role in the framework operation. We
believe call-points are a concept that reflects an important
variety of reuse needs and, for this reason, we widen the ex-
plicit identification of framework reuse points to support
them.

Variation-points should be classified according to different
types, more refined than white-box and black-box, providing
additional semantics which are helpful for guiding the frame-
work adaptation. Their semantics should be made as precise as
possible, with clear description of the abstract possibilities it
opens and abstract restrictions it imposes. Their syntax should
support the representation of additional semantic adaptation
restrictions that may be useful to specify limits to the set of
possible application instantiations.

The description of dynamic behaviour gives a view of the
dynamic aspects of the framework design that clarifies the
objects’ responsibilities, their context dependencies, and how
they can be combined. By representing explicitly the run-time
collaborations between objects, it reveals the framework ar-
chitecture. How much of this information is provided depends
on the factors considered in the previous section. This infor-
mation is fundamental to comprehend the framework and,
once more, it is vital for opening the door to the flexibility of
unanticipated reuse. Furthermore, it also enables the descrip-
tion of causal obligations for variation-points and call-points.
These behavioural restrictions should be documented, if they
exist, and the corresponding messages in object interactions
should be explicitly differentiated from the framework core
messages.

The adaptation process should be guided by a description
that helps to reduce the complexity of the task, especially for
medium and large-scale frameworks. Some variation-points
may be optional, and others may require the adaptation of an-
other variation-point. These dependencies should be described
in order to provide more guidance and facilitate the job of the
application developer.

Finally comes the instantiation process, which should also
be guided some how. A framework may be adapted to build
an application, or to be integrated into a larger project. These
processes should be described, if not in abstract, at least with
partial, or complete, concrete examples.

V. STATIC STRUCTURE DESCRIPTION
Although the set of requirements in the previous section

cover all aspects of framework documentation, this paper
deals only with the description of static structure, i.e. corre-
sponding to requirement 2.

UML 2.0 is a convenient choice for describing frameworks
due to its widespread use. It provides structural diagrams,
which depict the static features of the model, and behavioural
diagrams that describe the dynamic aspects of the model.
UML structural diagrams include the class, object, package,
component, composite structure, and deployment diagrams.
To describe the frameworks’ static structure several of these
available diagrams can be used for different purposes. In our
opinion, two diagrams are rather useful: the class diagram for
explicit identification and characterization of variation-points
and call-points, and composite structure diagrams as a com-
plement to elucidate its architecture.

We introduce the UML Profile for Framework Description
(UML-FD), which extends UML with dedicated concepts
supporting a few different variation-points and call-points.
Naturally, the proposed annotations address the aforemen-
tioned requirements 2-a through 2-b, and therefore we do not
discuss them further. The UML-FD profile is defined for
UML 2.0, i.e. it augments the current version of UML making
use of its improved extensibility mechanism.

Fig. 1 defines the profile abstract syntax and its integration
with the UML 2.0 meta-model. All the UML meta-classes
extended by UML-FD belong to the Classes::Kernel
language unit. Tables I to III describe the semantics of each
individual extension in a compact tabular form (similar to the
presentation of UML 2.0 standard stereotypes). Each table
groups variations-points according to white-box variation-
points, black-box variation-points, and call-points, providing a
clear separation between these different reuse categories.

White-box variation-points are supported because they can
be useful to describe white-box frameworks, which is classi-
cally the first form that every framework assumes. The appli-
cation class annotation is not a variation-point at all, but in-
stead, it can be used to discriminate framework classes from
application specific ones. Both extensible class and non-
overridable method follow the Open-Closed Principle of ob-
ject-oriented design. Variable methods are usually abstract
methods of abstract classes. The three white-box variation-
points can be can be directly implemented by subclasses,

57

however that is not recommended. They can also be combined
in both concrete and abstract classes.

Black-box variation-points and call-points are the recom-
mended option for reusing a framework. The realizable inter-
face is the black-box reuse variation-point with inverted con-
trol flow, to be implemented during the framework adaptation
phase. All three white-box variation-points can (and should)
be converted to a realizable interface, as described in section
III. Select class and define parameter are black-box variation-
points which are defined during the application instantiation
phase (according to the approach described in section III).

In the next subsections, we discuss in more detail the main
contributions of the UML-FD profile to the description of
framework static structure.

A. Client Interface
A client interface identifies a framework call-point. A call-

point is defined by a bidirectional association between one
client interface and a framework class that provides one corre-
sponding service interface. The association end connected to
the framework class identifies (has the name of) a service in-
terface, or control method, to be used by the client interface.

The example of Figure 2 illustrates a call-point that is an
implementation of the Observer design pattern [6]. The call-
point is identified by three elements: the Observer interface;
the association connecting Observer and Figure with an
association end for Figure whose role name is subject;
and, the part of Figure class interface defined by the
Subject interface. The Observer interface is the client
interface that must be implemented by client components
using the call-point. The subject role name of the
association end identifies the name of the service interface to
be used by the Observer client interface. The Subject

interface is the service interface that defines the Figure
method(s) to be called by Observer client(s).

The client interface construction is a kind of localized role
modelling at implementation level, in which client interfaces
represent role-types to be integrated by client classes, and ser-
vice interfaces represent role-types assigned to core frame-
work classes. It enables the modelling of multiple collabora-
tions, through disjunctive groups of semantically related
methods (role types), on the same framework interface. Each
collaboration is specified by one association that identifies the
framework interface methods to be called (service interface)
and connects to the respective interface required on clients
(client interface). This solution is described only under the
perspective of the static structure description: roles, repre-

«metaclass»
Interface

«metaclass»
Operation

«metaclass»
Parameter

kind : SelectKind

«stereotype»
Select

single
set
collection

«enumeration»
SelectKind

«profile» UML-FD

«stereotype»
Application

«stereotype»
Extensible

restricted : Boolean

«stereotype»
Realizable

«stereotype»
Client

«stereotype»
Non-overridable

«stereotype»
Variable

«stereotype»
Define

«metaclass»
Class

Fig. 1. The UML-FD Profile for UML 2.0.

TABLE I
WHITE-BOX VARIATION POINTS

Applies to Stereotype Semantics

Class,
Interface «Application»

An application class, or application
interface, is part of the application, as
opposed to classes which belong to a
framework.

Class «Extensible» An extensible class can have new meth-
ods added.

Operation «Variable»
A variable method is a method to be
implemented by application classes (im-
plementation variation).

Operation «Non-
overridable»

A non-overridable method can be ex-
tended but cannot be overridden, i.e., any
overriding method must always invoke it.

TABLE II
BLACK-BOX VARIATION POINTS

Applies to Stereotype Semantics

Interface «Realizable»

A realizable interface is an abstract type
for which application classes can be de-
fined. It has a property named restricted
that if true forbids sub-typing (classes im-
plementing it, cannot have a different inter-
face).

Class,
Interface «Select»

A select class limits the variation-point to
the concrete sub-components provided by
the framework. It has a property named
kind, whose value can be single, set, or
collection.

Parameter «Define»

A define parameter, is a parameterized
variability that defines an important charac-
teristic of the framework (e.g., in opposition
to ordinary attributes or parameters related
to component interconnection). Constraints
on the valid values may be defined as sup-
ported by UML (e.g., Enumeration).

TABLE III

CALL-POINTS
Applies to Stereotype Semantics
Interface «client» A client interface is an interface to be

implemented by application classes that
interact with a framework by calling ser-
vices of its components (use relationship).
Any (call-back) methods it has define client
constraints, namely static behaviour obliga-
tions.

Operation «control» A control method is a method to be called
by clients to externally control some special
framework function or trigger some event.

58

sented by interfaces, describe type information only (or static
behaviour). However, client interfaces can be empty, which
supports the specification of dynamic behaviour obligations
on frameworks clients, independent from structural properties.

The idea behind it is to take advantage of some useful prop-
erties of the role modelling technique while avoiding some of
its intrinsic verbosity and complexity (see next section proper-
ties discussion). Namely, it enables the definition of client
restrictions without over constraining client implementation
structure. It also provides more structure and semantic infor-
mation about framework call-points and its relationships with
clients. The framework description is kept succinct because
client interfaces express role-types which are confined to call-
points. This technique avoids the overweight and complexity
of the coexistence of reusable role models with respective
implementations, by keeping the description at implementa-
tion level and within a single paradigm.

B. Control Method
The control method identifies another kind of framework

call-point. It is a simpler construction for using framework
services that involves a single component method, because it
requires no separate service interface for the core framework
component. In addition, it is not intended to be used with a
client interface, although it might (as defined above). As an
example, we have used it to model the trigger function for a
real-time embedded framework, shown in Figure 3. The
Sensor application component invokes the update()
control method, to stimulate the Trigger framework
component. Obviously, the framework description does not
include the application class, which is included in the figure
only for illustrative purposes.

Control methods are applicable more generally to event-
driven frameworks that depend on externally fed events. We
believe, control methods can also be used to model frame-
works that enable easier composition with other frameworks,
by providing externally regulated control-flow. They can be
used to synchronize the control-flow of such frameworks.

VI. RELATED WORK
The framework description problem has been addressed

from informal textual language approaches [7], to formally

defined visual notations that extend UML [8].
Informal textual techniques are usually prescriptive. One

first example is the cookbook [14] for the Model-View-
Controller framework, useful for implementing graphical user
interfaces. A similar work is found in [15], where little more
structured of a set of Alexandrian-based patterns helps to re-
use the Hot-Draw framework. Both describe the framework
purpose and how to use it. They consist of non-uniform nar-
rated descriptions with minimal structure, and examples solv-
ing problems about how to use the framework. This kind of
technique was improved by hooks [17], which are more uni-
form, formal and structured adaptation receipts. Hooks define
a classification of adaptation methods and kinds of support
provided. However, its typology does not provide a clear
separation of adaptation activities involved, and they may fo-
cus on different framework functionalities with different lev-
els of detail. As discussed in section II.C, prescriptive tech-
niques are focused on the framework intended use and there-
fore do not offer support for unanticipated reuse.

Although discussing how our approach can be combined
with software tool support is outside the scope of this paper,
we still look at tool-based solutions, but we concentrate on
framework communication and we overlook the facilities for
automating framework adaptation. By using software tools, it
was possible to improve the cookbook technique to electronic
books. Active cookbooks [20] are a prominent example, which
provides interactive receipt descriptions that explain how to
use the framework design to solve problems. However, it
lacks flexibility because the user has to follow the dictated
steps. Evolutions of the electronic book approach are Smart-
books [11] and Specialization Patterns [12]. Smartbooks are
based on a hierarchical interactive hypertext interface through
which the desired framework functionalities are chosen. From
it, a task plan is generated which guides the adaptation. Spe-
cialization patterns are described by a dedicated notation,
which lacks tool support. The specialization patterns for a
specific framework are embedded in a tool, which handles
them providing support for building applications. None of
these approaches provides the explicit representation of varia-
tion-points within the framework design. Although formalized
somehow (to enable tool processing), it is still the framework
designer who prescribes its adaptation options.

A few works have been devoted to descriptive visual ap-
proaches for documenting frameworks. UML has been the
obvious target, being extended with concepts dedicated to
framework documentation [4], [8], [9]. These works have
similarities – all provide UML extensions to identify varia-
tion-points – and parts that are complementary: [4] focus more
on variation-points identification and characterization, while
[8] provides stronger support for expressing framework syntax
and semantics, and [9] introduces selection of black-box com-

+draw(in g : Graphics) : void
+moveBy(in dx : int, in dy : int) : void
+size() : Dimension
+attach(in o : Observer) : void
+detach(in o : Observer) : void
+notify() : void

Figure

+update() : void

«Client»
Observer

+attach(in o : Observer) : void
+detach(in o : Observer) : void
+notify() : void

«interface»
Subject

0..*

subject

1

Fig. 2. Example of a Client Interface.

«Application»
Sensor calls

«Control» +update() : void

Trigger

Fig. 3. Example of a Control Method.

59

ponents and parameterization. The role modelling technique
[10] is a complementary technique that tackles object relation-
ships, which are fundamental for framework integration and
composition. The requirements on clients calling framework
services are explicitly represented but, on the other hand, this
approach disregards the explicit identification of variation-
points. frameworks may require different instantiation mecha-
nisms. Catalysis [23] also applies UML to support reuse.
However, it defines model frameworks as collaborations of
abstract types, which are reused through parameter substitu-
tion. It does not address the reuse of (code) frameworks, and
consequently it does not provide dedicated annotations for
explicit representation of its variation-points. Catalysis defines
a software development method based on the concepts of
model frameworks and components.

Our research also explores UML as visual descriptive tech-
niques for describing frameworks. It builds on previous work,
but we provide a wider and more complete coverage of the
different reuse needs. While keeping the support for white-
box variation-points, a clear and precise definition of black-
box variation-points is provided. We introduce UML exten-
sions for explicit expression of use relationships with con-
straints on clients, to facilitate the reuse and composition of
called frameworks [18] and black-box [5] frameworks. We do
that by introducing call-points, which borrow inspiration from
concepts of the cited role modelling technique. By putting a
special emphasis on use relationships, or object relationships,
we enable a black-box approach to framework reuse.

VII. CONCLUSION
Software engineering has pursued for decades the ambition

of increased reuse and software quality. Frameworks are an
important alternative, which offers high reuse potential, but
still have a few problems to be tackled. Addressing these dif-
ficulties, namely by employing graphical notations and pro-
viding appropriate tool support, it is critical to its success as
an option for application development, and for the reuse goal
in general.

Some important factors that influence the support that is
provided for framework reuse were discussed. An explanation
of our perspective on framework reuse was given. A require-
ments list for object-oriented design notations providing spe-
cific support for framework reuse was elaborated and dis-
cussed. The UML-FD profile for UML 2.0 was defined, offer-
ing a wider coverage of needs for describing framework static
structure description. The role modelling technique was ana-
lysed in more detail, because it is the background for part of
our work.

We have provided a clear separation of different reuse op-
tions: white-box, black-box and call-points. Although the pro-
posed notation supports white-box variations-points, we en-
courage a component-oriented approach by emphasizing back-
box variation-points and call-points. For that purpose, we also
define how framework interfaces must be described in order to
enable a black-box application development.

We have introduced the concepts of client-interfaces and
control methods that expand the spectrum of reuse concepts,

by including specific points for calling framework services.
These concepts are important in the context of black-box reuse
and framework integration or composition.

We believe the presented work contributes to facilitate the
communication of frameworks. Hence, it also helps to de-
crease the difficulties and complexity associated with the
framework reuse-based development, making it a more attrac-
tive, easy and rewarding alternative to develop applications.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers

for their contribution to this work.

REFERENCES
[1] M. Fayad, and D. Schmidt, “Object-oriented Application Frameworks,”

in Communications of the ACM, vol. 40, no. 10, ACM Press, Oct. 1997,
pp. 32–38.

[2] J. Bosch, P. Molin, M. Mattsson, PO Bengtsson and M. Fayad, “Object-
oriented frameworks — problems & experiences,” in Building
Application Frameworks — Object-Oriented Foundations of Framework
Design, M. E. Fayad, D. C. Schmidt and R. E. Johnson, Ed. New York,
NY: Wiley & Sons, 1999, pp. 55–82.

[3] W. Pree, “Meta Patterns — a means for capturing the essentials of
reusable object-oriented design,” in Object-Oriented Programming,
ECOOP ’94, Tokoro, Mario & Pareschi, Ed. Remo: Springer-Verlag,
1994, pp. 150–162.

[4] M. Fontoura, W. Pree and B. Rumpe, “UML-F: A Modeling Language
for Object-Oriented Frameworks," in Proc.of the European Conference
on Object-Oriented Programming (ECOOP’00), LNCS 1850, 2000, pp.
63–84.

[5] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, vol. 1, no. 2, pp. 22–35, Jun. 1988.

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, MA:
Addison-Wesley, 1995.

[7] L. Murray, D. Carrington and P. Strooper, “An approach to specifying
software frameworks,” in Proc. of the 27th Conference on Australasian
Computer Science, Dunedin, New Zealand, 2004, pp. 185–192.

[8] N. Bouassida, H. Ben-Abdallah, F. Gargouri and A. Ben Hamadou,
“Formalizing the framework design language F-UML,” in Proc. of the
1st IEEE International Conference on Software Engineering Formal
Methods, 2003, pp. 164–172.

[9] T. Oliveira, P. Alencar and D. Cowan, “Towards a declarative approach
to framework instantiation,” in Proc. of the Workshop on Declarative
Metaprogramming to Support Software Development of the 17th IEEE
International Conference on Automated Software Engineering,
Edinburgh, Sept. 2002, pp. 5–8.

[10] D. Riehle, and T. Gross, “Role model based framework design and
integration,” in Proc. of the 13th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’98),
Vancouver, Canada, 1998, pp. 117–133.

[11] A. Ortigosa and M. Campo, “Smartbooks: a step beyond active-
cookbooks to aid in framework instantiation,” in Technology of Object-
Oriented Languages and Systems, 25, IEEE Press, June 1999.

[12] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki, A. Viljamaa and J.
Viljamaa, “Annotating reusable software architectures with
Specialization Patterns,” in Proc. of the Working IEEE/IFIP Conference
on Software Architecture, August 2001.

[13] J. Bosch, “Measurement systems framework”, in Domain-specific
Application Frameworks, M. E. Fayad, D. C. Schmidt and R. E.
Johnson, Ed. New York, NY: Wiley & Sons, 2000, pp. 177–205.

[14] G. Krasner and S. Pope, “A cookbook for using the Model-View-
Controller user interface paradigm in Smalltalk-80”, in Journal of
Object-Oriented Programming, 1(3), 1988.

[15] R. Johnson, “Documenting Frameworks using Patterns,” in Proceedings
of the Conference on Object-Oriented Programming Systems,

60

Languages and Applications (OOPSLA’92), Vancouver, Canada, 1992,
pp. 63–78.

[16] W. Pree, Design Patterns for Object-Oriented Software Development,
Addison-Wesley, 1995.

[17] G. Froehlich, H. Hoover, L. Liu and P. Sorenson, “Hooking into object-
oriented application frameworks”, in Proceedings of the 1997
International Conference on Software Engineering, Boston, MA, 1997.

[18] S. Sparks, K. Benner and C. Faris, “Managing object-oriented
framework reuse,” IEEE Computer, pp. 53–61, Sep. 1996.

[19] P. Steyaert, C. Lucas, K. Mens, T. D'Hondt, “Reuse contracts: managing
the evolution of reusable assets,” in Proceedings of the 11th Conference
on Object-Oriented Programming Systems, Languages and Applications,
San Jose, CA, October 1996, pp. 268–285.

[20] W. Pree, G. Pomberger, A. Schappert and P. Sommerlad, “Active
guidance of framework development,” Sofware — Concepts and Tools,
Springer-Verlang, 1995.

[21] Object Management Group (2005, July 4th). Unified Modeling
Language: Superstructure (version 2.0) [Online] Available:
http://www.uml.org.

[22] S. Lopes, C. Silva, A. Tavares and J. Monteiro, “Application
development by reusing object-oriented frameworks,” in Proceedings of
the IEEE International Conference EUROCON 2005, Belgrade – Serbia
& Montenegro, November 2005.

[23] D. D’Souza and A. Wills, Objects, Components, and Frameworks with
UML: the Catalysis approach, Addison-Wesley, 1999.

61

Interactive Component Assembly with SuperGlue
Sean McDirmid

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
sean.mcdirmid@epfl.ch

I. INTRODUCTION

Programming is a very powerful way of interacting with a
computer because the user is not constrained by the narrow
scope of an application’s functionality. Unfortunately, even
for experienced programmers, writing a program is often too
difficult and time consuming to be performed casually because
most programming languages focus on low-level constructs to
express arbitrary computations. However, programming need
not be difficult if a language focuses on high-level constructs
to express component assemblies rather than arbitrary com-
putations. If such a language is supported with the ability to
conveniently repeat or continuously execute the program as it
is being written, then users can use the language to effectively
perform interactive component assembly to automate a wide
variety of tasks such as repetitive data processing.

A language’s support for interactive component assembly
depends on two features. First, the language must support
declarative connectors that encapsulate low-level details
about how components communicate, which substantially re-
duces the complexity of (component assembly) glue code. An
effective declarative connector is often a standardized interface
with multiple procedures that are called by component imple-
mentations, but not by glue code, according to a well-defined
protocol. In this way, glue code does not have to worry about
the control-flow details of how components communicate.
Examples of declarative connectors include pipes and signals,
which support the expression of inter-component data-flow
relationships. In contrast, procedures and events, which are
the core constructs of many programming languages, are not
declarative and expose glue code to many details about how
components communicate.

Second, a language’s support for interactive component
assembly also depends on how well an environment for the
language can support tinkering. A development process that
includes careful planning and deliberation is too slow to be
viable in an interactive component assembly context. Instead,
a user should continually or repeatedly execute a program
while changing its code. Such tinkering merges the editing
and testing parts of program development so a user can more
quickly converge on a desired program. The levels of tinkering
that we consider in this paper are as follows:

– Level-0: the status quo for most languages where editing
and testing are mostly separated and tinkering is not
supported very well.

– Level-1: a program can be edited and re-executed very

rapidly. First-level tinkering is supported in shell-based
environments such as Bourne Shell [2].

– Level-2: a program continuously executes where any
edits to the program’s code immediately changes the
behavior of this execution, which is referred to by
Tanimoto as liveness [16]. Second-level tinkering is
supported in many visual-programming environments
such as Forms/3 [3] and Quartz Composer [11].

– Level-3: the code and execution of a program are the
same so users edit a program’s execution directly, which
is referred to by Shneiderman as directness [14]. Third-
level tinkering is supported by many tools that allow
user interfaces to be laid out directly as they will appear
at run-time. Third-level tinkering is also supported by
interactive applications that support WYSIWYG docu-
ment editing.

The tinkering levels described here are only reference points
and many programming environments do not fit perfectly into
one of these levels. For example, Eclipse [9] supports Java
development beyond zero-level and first-level tinkering with
interactive compilation and limited hot code replacement.

For a programming language to be effective in interactive
component assembly, it must also provide good support for
abstraction along with support for declarative connectors and
tinkering. Designing a language for interactive component as-
sembly is challenging if this language is to support abstraction
very well. Declarative connectors sacrifice flexibility for ease
of programming: without the ability to specify control-flow
constructions such as loops or event handlers, it is difficult
for glue code to abstract over space in the form of array-like
compound data or abstract over time in the form of mutable
state. Designing declarative connectors that can abstract over
space and time is challenging. Second, as the level of tinkering
supported by a language increases, code necessarily becomes
more concrete with respect to the executing program, which
further exacerbates the problem of abstraction in assembly
code.

Interactive component assembly can be seen as an extreme
form of component-oriented programming that heavily em-
phasizes high-level connectors, predefined architectures, third-
party reuse, and rapid integration. All of these attributes
also have their uses in conventional software development
contexts where large programs undergo substantial amounts
of planning. This paper describes how interactive component
assembly can be supported in SuperGlue [12], which is a
declarative connection-based language that focuses on com-

62

ponent assembly. In the rest of this paper, we describe exist-
ing interactive component assembly approaches (Section II),
SuperGlue (Section III), related work (Section IV), and our
conclusions (Section V).

II. BACKGROUND

Interactive component assembly is based on the old idea of
interacting with a computer by writing a small program rather
than through a pre-built application. In a general sense, all
applications are somewhat programmable through interactive
manipulation; e.g., a document in Word is like a program that
customizes Word components to format the document’s data.
However, such programmability is very limited and provides
for almost no abstraction. Although today most users interact
with computers through “interactive” graphical applications
such as Word, many users lament that interaction was richer
when programs could be assembled from commands on the
command line.

A. Shell Programming

Bourne Shell [2] is an example of an environment that
supports the command line assembly of components, as
commands, with a few keystrokes to perform various text-
processing tasks. For example, in Bourne Shell a user can
type “cat notes.text | grep XXX | wc -l” to output
the number of lines that contains the string “XXX” in the file
notes.txt. Bourne Shell supports interactive component as-
sembly with text streaming pipes as declarative connectors and
a convenient shell interface to support tinkering. Commands
in Bourne Shell import and export pipes that can then be
connected together via the pipe operator (|) or connected to
(>) or from (<) a file. The shell supports program tinkering
with features such as immediate execution (just type enter),
command completion, and a history-based mechanism for
quickly changing and re-executing a command. The shell also
provides a user console that can be connected to or from pipes,
which is especially useful for tinkering because it allows the
user to directly specify a command’s input or view its output.

Pipes can be generalized into data-flow connectors that
focus on the communication of data while hiding flow-control
from glue code. Most programming languages can support
pipes at least as user-defined abstractions while many scripting
languages such as Perl provide concise syntax for using
pipes. However, the stream-based nature of pipes limit their
effectiveness in the construction of programs. For example,
although pipes can be used to filter (grep) or organize (sort)
small flat lists of data, tree-like data or data in very large tables
(databases), which cannot be practically iterated over, are
much more difficult to deal with. Additionally, pipes are not
very useful in the construction of interactive programs where,
in contrast to batch programs, component communication is
often reactive because mutable state is involved. These limita-
tions can be dealt with to some extent; e.g., through a second
language for expressing database queries or using cron for
reasoning about time intervals. However, these work arounds
are limited and make writing programs more complicated.

Fig. 1. An example of a program in Quartz Composer (top) and the
composition of the Mouse Macro patch (bottom).

The approach of programming through an interactive shell
is still popular: shells are supported for many scripting and
functional languages, such as Ruby, Scheme, and ML, while
new system shells, like Bourne Shell, are still being developed;
e.g., see Microsoft’s new Windows PowerShell. On the other
hand, shell programming is not very scalable to programs that
require multiple lines of code. Although shell variables can
solve this problem to some extent, they do not naturally fit
into a shell environment and naming is an issue. As a result,
larger programs in Bourne Shell are best expressed in their
own file where tinkering is less viable. Finally, interactive
shells only support first-level tinkering: a line of code cannot
be edited while it is being executed. For many batch programs,
this is not a big issue as the programs are not interactive and
terminate quickly. However, stronger second-level tinkering is
more desirable for interactive programs or batch programs that
process a lot of data.

B. Visual Programming

Beyond shell programming, interactive component assembly
is also the foundation of many visual programming languages.
As one example, we consider Apple’s Quartz Composer [11],
which is used to express media compositions such as anima-
tions. Components in Quartz Composer are known as patches
whose connectors are live data-flow values that can change
over time. Both components and their connectors have visual
representations as exemplified by the program in Figure 1.
The Mouse Macro patch outputs the current horizontal (X)
and vertical (Y) values of the mouse pointer, as well as the
sum modulo ((X + Y) % 1.0) of these values (Resulting
Value). These three values are then used to compute the RGB
color and three-dimensional position of a particle system. The
resulting program creates a particle system whose position
and color changes as the mouse pointer is moved around the
computer screen.

As an interactive component assembly language, Quartz
Composer improves on Bourne Shell in two ways. First, unlike
Bourne Shell’s pipes, the live data-flow values that connect
patches together can effectively abstract over time (mutable
state); e.g., the program in Figure 1 deals with a continuously
moving mouse pointer. Such time abstraction is especially
important in component assemblies that involve graphical user

63

interfaces or integrate continuously changing data. Second,
Quartz Composer supports second-level tinkering: a program
can be edited in a visual buffer while the program is running,
where changes to the program immediately change its execu-
tion. For the media-oriented programs that Quartz Composer
supports, second-level tinkering is very useful. For example,
the alpha channel of a computed color can be tweaked while
the animation in Figure 1 is running to find a value that
visually works nice. In contrast, if only first-level tinkering
were supported, tweaking the alpha channel would be much
more tedious as we would have to restart the animation after
every change.

According to the ability to express abstraction, Quartz
Composer and many other visual programming languages
suffer from a big problem: given that components and their
connectors have concrete visual representations, abstracting
over space is either impossible or requires awkward constructs
that are difficult to use. In Quartz Composer, multiplexor-
like components are used to iterate over arrays of data
while replicator-like components are used to instantiate the
same patch assemblies multiple times. The resulting code
is a “visual spaghetti” of numerous patches and even more
numerous overlapping patch connectors. The problem with
visual programming languages in general is that their programs
are less compact than programs in textual languages. In
contrast, text is more effective at abstraction with its ability
to express many kinds of space-saving constructions such as
loops, conditionals, and variables.

It is also possible to support second-level tinkering in a
declarative text-based language. For example, XAMLPad [13]
for WinFx supports the editing of XML-based user interface
code while providing continuous previews of the user interface
being constructed. Although XAML code is declarative and
not by itself very expressive, data binding in XAML code can
to some extent be used to abstract over time and space.

III. SUPERGLUE

We are currently enhancing SuperGlue [12] to support
interactive component assembly. Unlike Quartz Composer and
like XAMLPad, SuperGlue is a declarative textual language.
However, like Quartz Composer and unlike XAMLPad, com-
ponents in SuperGlue are connected together through live data-
flow values that we refer to as signals. Unique to SuperGlue,
signal connections are expressed as rules that can refer to
universally-quantified variables and are organized according
to object-oriented types. SuperGlue’s support for rules and
object-oriented typing is an elegant way for abstracting over
space to deal with unbounded-size data structures such as lists,
tables, or trees. As an example, the following SuperGlue code
views the folders of a mailbox in a user-interface tree control:

let folderView = TreeView;
let mailbox = Mailbox;
folderView.root = mailbox.root folder;
var node : folderView.Node;
var fldr : mailbox.Folder;
if (node = fldr)

node.children = fldr.sub folders;

The first two lines of this code respectively create a user-
interface tree-control (folderView) and an email mailbox.
On the third line, the root node signal of the folder view tree
is then connected to the root folder signal of the mailbox.
The fourth and fifth lines declare two universally-quantified
variables: node, which abstracts over all nodes in the folder
view tree, and fldr, which abstracts over all folders of the
mailbox. The last two lines form a rule that connects the
children signal of any node object to the sub folders

signal of any folder object when the node object is connected
to the folder object.

By using signals, rules, and objects, space and time ab-
straction integrates together completely in SuperGlue. As an
example, the following SuperGlue code views the messages
of a selected email folder in a user-interface table control:

let messageView = TableView;
if (folderView.selection.size == 1 &&

folderView.selection[0] = fldr)
messageView.rows = fldr.messages;

The rule in this code connects the rows of a message view table
to the messages of an email folder if some node is uniquely
selected in the folder view tree and this node is connected to
the email folder. The number of nodes selected in the folder
view tree can be changed by the user, causing the rule’s first
antecedent to change from true and false at run-time. As what
node is selected in the folder view tree is changed by the user,
how and if the rule’s second antecedent can change at run-time,
which changes what messages are viewed in the message view
table. Finally, as messages are added to or removed from the
selected email folder, the message view table automatically
inserts or deletes rows for these messages. See our conference
paper [12] for a more detailed description of how SuperGlue
combines signals, rules, and objects.

SuperGlue also supports SQL-like arrays that can be fil-
tered and mapped with declarative code. As an example, the
following code filters a list of messages according to whether
the sender is myBoss and maps the subjects of the resulting
messages to a user-interface urgentList list:

urgentList.input =
fldr.messages(sender = myBoss).subject;

For the purpose of describing what this code does, we could
rewrite the code in an SQL-like syntax as follows:

urgentList.input = SELECT subject
IN fldr.messages WHERE sender = myBoss

Arrays in SuperGlue are supported completely with time
abstraction; e.g., when a message whose sender is myBoss
is added to (or is deleted from) from the email folder, the
message’s subject will immediately be added to (or removed
from) the urgentList. Arrays in SuperGlue can also be im-
plemented by components in a way that avoids iteration when
being filtered. For example, an IMAP-based implementation
of email components can implement sender-based filtering
in such a way that avoids transmitting all messages in a
potentially huge mailbox across the networks.

64

A. Interactive Component Assembly in SuperGlue
Our work up until now has focused on simplifying com-

ponent assembly in SuperGlue with signals as declarative
connectors that are supported by rules and objects. In this
paper, we propose enhancing SuperGlue with support for
second-level tinkering so that it can be used as an interactive
component assembly environment. We argue that SuperGlue’s
programming model is especially suited to second-level tin-
kering for the following two reasons:

– SuperGlue programs are declarative, meaning they are
not exposed directly to program control-flow details. As
a result, repairing a program’s execution to reflect an
edit does not involve “unwinding” the effects of com-
putations that have already been executed. Support for
true second-level tinkering is very difficult for imperative
or functional languages because of computations that
must be unwound when an edit occurs. Typically, such
languages can at best can only support limited forms of
hot-code replacement that ignore all past computations.

– Edits to a SuperGlue program can be reified as changes
in the program’s mutable state, which are easily commu-
nicated as changes in signal values. Adding, changing,
or removing a rule to or from a running program causes
the signals that the rule connects to change in value.
The values of signals can already change according to
changes in program state, where editing can simply be
another way of changing program state.

Given SuperGlue’s accommodating programming model,
support for second-level tinkering is largely a tool problem:
can we build an environment, which includes an editor (front-
end) and interpreter (back-end), that enables the editing of
a SuperGlue program while it is running? Enhancing the in-
terpreter to support second-level tinkering is straight-forward:
code that manages signal changes need only be aware of
edit-based changes. Support for detecting edit-based changes,
however, is not so straight-forward in SuperGlue. Because
visual languages often support only a language-restricted form
of program editing, detecting and reporting changes in a
program is very easy. However, language restricted editing
is not very suitable in text-based languages because they
do not support intermediate edits very well [17]. For this
reason, we have decided that only language-directed editing
is appropriate, where a programmer can make arbitrary edits
to the text of a program, possibly causing it to become
syntactically or semantically incorrect.

B. Requisite Technology
We have almost completed our first prototype of an en-

vironment that supports interactive component assembly in
SuperGlue. This environment is designed around novel presen-
tation compilation technology that supports the error recovery
needed to make sense of edits that cause the program to
become structurally incorrect. Our presentation compiler is
based around the following three technologies:

– An enhanced form of precedence parsing, which allows
the structure of a parse tree to be easily repaired when

an edit is made. With precedence parsing, most edits are
processed by splitting and fusing parse tree nodes so that
a new tree structure can be computed quickly without
throwing away any old but still useful state. Because
precedence parsing does not enforce a grammar, a parse
tree for a program can always be computed even when
the program’s text does not conform to the program’s
intended grammar. Although this property means that
grammar compliance must be checked separately, it is
desirable in an interactive component assembly context
where syntactic errors commonly occur. For expressive-
ness, our incremental precedence parsing algorithm has
also been enhanced to handle brace matching in a way
that supports effective error recovery.

– A form of data-flow processing to incrementally pro-
cess a program’s parse tree to perform type checking
and repair the interpreter’s run-time data structures. Each
node in the parse tree refers to an input, which is pushed
from its parent or predecessor, and an output, which
can be pulled by its parent or predecessor. A node is
scheduled for “cleaning” when its input has changed,
when the nodes that it can push to have changed, or
when the outputs that it can pull have changed. Using
data-flow processing, type checking can be expressed
in a completely incremental way. Error recovery is also
supported by using a node’s old correct output when a
newly computed output is structurally incorrect.

– Enhanced symbol tables that record both uses as well
as definitions. As a result, symbol additions, removals,
and name changes can all be processed incrementally.

With this technology, we are able to repair a SuperGlue
program’s execution as the program’s text is being edited.
When the code of a user-interface program is edited, the
user-interface being built is updated in lock-step with the
edit. This is done in the editor’s own thread so that the
next keystroke will not even appear until the user-interface
has been updated! Edits are often processed fast enough for
two reasons. First, our compiler technology is completely
incremental, where a single edit (one key stroke) can often
be processed in constant time. Second, our error recovery
mechanisms prevent a program’s execution from changing
unless new valid constructions are produced by the edit. On the
other hand, keystroke lag can be noticeable because everything
currently executes in the editor’s user-interface thread. For
example, keystroke lag is noticeable when an editor-based state
change occurs concurrently with state changes caused by other
sources such as timers.

Similar to interactive editing in Quartz Composer, Super-
Glue can be enhanced to support second-level tinkering in
developing component assemblies. Although our incremental
compiler technology is currently very new and still being
debugged, our environment is already in a demo-able state. As
a result, we are optimistic that SuperGlue will be an effective
environment for interactive component assembly.

65

IV. RELATED WORK

The signals that SuperGlue supports are similar to signals in
functional-reactive programming languages such as Fran [7],
Yampa [8], and FatherTime [4]. However, signals in SuperGlue
support the assembly of components implemented in an im-
perative language (in our case Java), while signals in Haskell-
based Fran and Yampa (but not Scheme-based FatherTime)
support an explicit notion of time that cannot interface with
imperative code. Like SuperGlue, signals in FatherTime can
interface with imperative code [10]. However, FatherTime’s
support for Scheme’s recursion and higher-order functions
make it difficult to support it with second-level tinkering.

Many component assembly languages focus on procedures
as component connectors, which as already mentioned are too
low-level to support interactive component assembly. Arch-
Java [1] is a component assembly language that supports
custom-defined connectors. However, one of the main features
of ArchJava is its support for managed implicit sharing be-
tween components, which prevents it from supporting second-
level tinkering as inter-component aliases are difficult to
unwind in response to an edit. In contrast, all inter-component
communication in SuperGlue occurs through explicit signal
connections and no aliasing can occur between components.

Research in visual programming that is related to SuperGlue
includes Forms/3 [3], which is a Turing complete language for
building spreadsheets. Forms/3 supports second-level tinkering
and some amount of third-level tinkering; e.g., shapes can
be drawn by the user directly rather than inferred from an
abstract visual representation. However, Forms/3 is designed
as a language for expressing computations and not component
assembles. Prograph [5] is a visual language that is based on
the data-flow paradigm in the form of pipes and as a result,
like Bourne Shell, is limited in its support for interactive
component assembly. Cocoa [15] is a visual language that,
like SuperGlue, is based on rules. Unlike SuperGlue, Cocoa
cannot yet support second-level tinkering as programs need to
be restarted when rules are changed via editing.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the problem of interactive com-
ponent assembly and how SuperGlue can solve this problem
with signals, rules, objects, and an interactive programming
environment. Given these constructs, SuperGlue can be used
to rapidly build user interfaces or automate repetitive data pro-
cessing tasks through a very casual programming interface. We
are currently constructing our third prototype of SuperGlue,
which will be our first prototype that supports the interactive
editing needed to support second-level tinkering.

Besides finishing our prototype, in the future, we want to
explore how SuperGlue can support some amount of third-
level tinkering, where programmers edit program executions
directly. Third-level tinkering is limited in expressiveness
because it cannot support abstraction very well. However,
the ease-of-use benefits of concreteness cannot be ignored
and users should be given options between editing either
an abstract textual or a concrete visual representation of

a program. Changes between both representation should be
“linked” so the user can switch between both modes of editing
as needed.

REFERENCES

[1] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Language support
for connector abstractions. In Proc. of ECOOP, Lecture Notes in
Computer Science. Springer, 2003.

[2] S. R. Bourne. An introduction to the UNIX shell. In Bell System
Technical Journal, July 1978.

[3] M. Burnett, J. Atwood, R. Walpole, H. Gottfried, J. Reichwein, and
S. Yang. Forms/3: A first-order visual language to explore the boundaries
of the spreadsheet paradigm. In Journal of Functional Programming,
pages 155–206, Mar. 2001.

[4] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. To appear in ESOP, 2006.

[5] P. Cox, F. Giles, and T. Pietrzykowski. Prograph: a step towards
liberating programming from textual conditions. In IEEE Workshop on
Visual Languages, 1989.

[6] J. Edwards. Subtext: Uncovering the simplicity of program. In Proc. of
OOPSLA Onward, 2005.

[7] C. Elliott and P. Hudak. Functional reactive animation. In Proc. of ICFP,
volume 32 (8) of SIGPLAN Notices, pages 263–273. ACM, 1997.

[8] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In Advanced Functional Pro-
gramming, volume 2638 of Lecture Notes in Computer Science, pages
159–187. Springer, 2002.

[9] IBM. The Eclipse Project. http://www.eclipse.org/.
[10] D. Ignatoff, G. H. Cooper, and S. Krishnammurthi. Crossing state lines:

Adapting object-oriented frameworks to functional reactive languages.
To appear in FLOPS, 2006.

[11] P.-O. Latour. Quartz Composer. Apple Computer,
2005. http://developer.apple.com/graphicsimaging/quartz/-
quartzcomposer.html.

[12] S. McDirmid and W. C. Hsieh. SuperGlue: Component programming
with object-oriented signals. To appear in ECOOP, 2006.

[13] Microsoft. The WinFX SDK. http://msdn.microsoft.com/winfx/.
[14] B. Shneiderman. Direct manipulation: a step beyond programming. In

IEEE Computer, pages 57–69, Aug. 1983.
[15] D. Smith, A. Cypher, and J. Spohrer. Kidsim: programming agents

without a programming language. Communications of the ACM, pages
54–67, 1994.

[16] S. Tanimoto. VIVA: A visual language for image processing. In Journal
of Visual Langauges and Computing, pages 127–139, June 1990.

[17] T. Teitelbaum and T. W. Reps. The Cornell program synthesizer:
A syntax-directed programming environment. Communications of the
ACM, 24(9):563–573, 1981.

66

Active Documents
Taking advantage of component-orientation beyond pure reuse

Markus Reitz∗

University of Kaiserslautern
Software Technology Group

P.O. Box 3049, 67653 Kaiserslautern
Germany

reitz@informatik.uni-kl.de

Abstract— Since its introduction, the component-oriented
paradigm has exerted strong influence on the development
process of software. Second generation component technologies
like .NET or Java provide a plethora of general-purpose com-
ponents ready to be reused, putting development efforts on a
firm footing of well-tested building blocks. Albeit being a very
successful approach in software development, customers usually
do not benefit from component-orientation, as it is in general
invisible in the user domain. By adjusting and augmenting
component-oriented concepts with respect to the requirements
of end-users, ACTIVE DOCUMENTS pave the way for next-
generation software systems which are profoundly user-adaptive
and feature-personalisable. This paper introduces the overall con-
cepts of ACTIVE DOCUMENTS, describes their application in the
COMDECO1 project, sketches the added value and discusses some
technical key features of general-purpose ACTIVE DOCUMENT
systems.

I. INTRODUCTION

Component-orientation has induced a metamorphosis of
the often monolithic and vendor-locked software development
process. By glueing together building blocks which are made
available by steadily growing component repositories, devel-
opers are able to build reliable software for fast-emerging
markets in shorter periods of time. Unfortunately, Cox’s vision
of component markets [1] which are similarly structured as
their counterparts in the hardware sector has not been achieved
yet. Nevertheless, thinking in components is one of the most
important design principles these days. The reuse aspect of
component technology is quite well-understood, but it repre-
sents a facet that is mainly related to software development.

End-users at most marginally encounter the consequences
of reusability utilised by developers. This is not as bad as it
may seem, because other features are of greater relevance to
end-users. Software systems should be

• adaptable to slight changes and variations of requirements
(Adaptability),

• personalisable according to specific user preferences,
usage patterns and usage habits (Personalisability),

∗Supported by the cluster of excellence Dependable Adaptive Systems and
Mathematical Modeling (DASMOD) of Rhineland-Palatinate, Germany.

1Composable Derivative Contracts, a subproject of DASMOD (http://
www.dasmod.de).

• flexible to cope with changing requirements during life-
time2 (Flexibility), and

• prepared to handle increasing complexity, changing mod-
els of abstraction and usage contexts (Openness).

Moreover, configuration and tailoring should be based on easy
composition operations, that can be carried out without the
need to have an expert at hand (Simplicity).

The rest of this paper is structured as follows. The remain-
der of this section discusses general properties of ACTIVE

DOCUMENT systems. Section II gives an overview of concepts
and techniques that partially form the foundation for ACTIVE

DOCUMENT technology. The usage of ACTIVE DOCUMENTS

in the context of derivative contracts is sketched in Section III.
A brief overview of technical key concepts as realised by
the general-purpose ACTIVE DOCUMENT framework Omnia
is given in Section IV. Finally, Section V sketches further sce-
narios which may benefit from utilising ACTIVE DOCUMENT

techniques.

A. The Document Metaphor

Software developers and end-users are usually entirely
different entities. Being confronted with composition mis-
matches, writing glue code or wrapper code is one out of
a multitude of possible solutions developers can make use
of to resolve occuring problems. In contrast to that, an end-
user often does not have the necessary technical expertise
and would therefore be overstrained in the same situation.
Transferring component-orientation to the end-user domain
induces the necessity for adaptations of the conceptual model.
End-user oriented frameworks have to be based on well-
known metaphors that provide an (ideally) intuitive interaction
interface which (partially) hides the complexity of component-
oriented systems.

A document is an archetypical concept the majority of end-
users is familiar with. Books, newspapers, or tax declarations
are representatives of a metaphor that plays an important role
in the everyday life of human beings. ACTIVE DOCUMENTS

augment the originally static information representation with
state of the art software technology concepts, resulting in a

2Currently, although only a feature subset provided by the latest software
version is needed, a customer has to pay for all features.

67

hyperdocument. Being computer-based, dynamicity replaces
fixed representations, pushing away boundaries and limitations
of traditional media.

B. Properties of ACTIVE DOCUMENTS

Normally, users think in terms of applications when creating
documents. For example, a letter is written using a word
processing application and illustrations are created with the
help of a graphic tool. However, this distinction is artificial
and cumbersome, especially when creating mixed media doc-
uments, e.g. a text having embedded illustrations. A task-
oriented point of view focusing on the document instead of the
applications required for its creation is more suitable. Centered
around the document metaphor, ACTIVE DOCUMENTS support
a task-oriented style of human-computer interaction.

Built upon component-oriented principles, the power of any
ACTIVE DOCUMENT system stems from the contents of its
component repository that may be used to create new or to
enhance already existing documents. Specific repository con-
figurations support specific areas of application. An ACTIVE

DOCUMENT system is easily adapted to the user requirements
just by adjusting the component repository. Each added or
removed component influences the whole system3, i.e. ap-
plication boundaries tend to diminish, eventually vanishing
completely. Being component-oriented, structural as well as
semantical constraints may be easily checked and enforced
by the supporting runtime system. Composition operations
being usable by non-experts in conjunction with fault-tolerant
and partially guided composition mechanisms are provided
(Explorative Composition).

Active Documents possess a state that is subject to change
in case of interactions between the document’s components.
Moreover, state changes are triggered by user interactions, i.e.
an ACTIVE DOCUMENT’s state may vary in case of different
users (User-dependent Statefulness).

II. RELATED WORK

At least three mainstream component technologies are
currently competing for the favour of software developers.
CORBA, a language and vendor neutral conceptual umbrella
framework, puts the focus on general-purpose component
systems by advocating the CORBA Component Model [3].
(Enterprise) Java Beans [4], favourised by SUN, are the
premier choice for ”write once, run everywhere” component-
orientation in the Java world. The .NET platform [5] in con-
junction with the Java opponent C# [6] aims at an unification
of already available technologies like OLE or COM, hand in
hand with the introduction of supplemental features. However,
all these technologies focus on requirements of developers.
Support for end-user compatible composition is at most rudi-
mentary. Visual composition techniques are directly provided
or based on the respective component model. Unfortunately,
the available level of abstraction is too low, requiring technical
expertise an end-user cannot be expected to possess in general.

3This is partially similar to Raskin’s ideas of humane interfaces [2].

Due to end-user compatible interaction patterns, ACTIVE

DOCUMENTS are often visually composable, but it is impor-
tant to notice that the underlying supporting framework is
not fundamentally based on visual composition principles. In
fact, there may exist non-visual representations of ACTIVE

DOCUMENTS4.
Starting with Microsoft’s Object Linking and Embedding

(OLE), the concept of a compound document, a kind of
container which is able to conglomerate (theoretically) arbi-
trary media types, was introduced. Based on pure geometric
constraints, the end-user is able to autonomously arrange
desired elements. Using the concept of in-place editing, parts
of applications capable to provide appropriate editing facil-
ities are superimposed on the ”master” application, letting
application boundaries partially diminish. Apple’s OpenDoc
[7] project aimed at the development of a multi-platform
framework providing the common technological infrastruc-
ture for compound document systems, but failed. With the
introduction of Mac OS X, OpenDoc became a deprecated
technology and any further support was dropped. GNOME
Bonobo [8] is one of the few remaining multi-platform com-
pound document frameworks. Alas, work has slowed down
and feature extensions are rare. However, due to the limited
expressiveness taking only geometric properties into account,
complex composition operations cannot be supervised by a
compound document system.

ACTIVE DOCUMENT technology is an evolutionary ap-
proach which combines, inter alia, the principles of compound
documents, general-purpose component-orientation and rule-
based programming. The notion of an ACTIVE DOCUMENT

first appeared in the context of the EU-funded Easycomp
project [9], initially targeting the web engineering domain.
Minerva [10] focused on the development of a framework
supporting user-centered document systems in the context of
electronic learning materials (e-Learning). Albeit being an
important first step, Minerva does not provide the necessary
techniques for general-purpose ACTIVE DOCUMENTS. The
underlying component model is implicitly tied to the require-
ments of e-Learning applications, therefore it is usually not
suitable for use in other contexts.

III. DERIVATIVE CONTRACTS AS ACTIVE DOCUMENTS

Financial engineers work with documents and produce
documents when designing and valuating derivative contracts.
A termsheet listing the properties of a specific product is one
example.

A. Derivative Contracts

Any derivative contract may be expressed in terms of its
payoff and the conditions describing the circumstances that
allow to exercise it5.

Example III.1 Suppose an investor believes that in two years
starting from now on, the market price for palladium will

4The XML based representation of a derivative contract in the COMDECO

project is an example for a non-visual representation.
5For a general introduction to derivative contracts refer to e.g. [11].

68

significantly increase. Nevertheless, he wants to invest with
caution, i.e. if the price falls in contrary to expectations,
losses should be limited. A derivative contract that reflects
this estimation could be

”The holder of this derivative contract has the duty
to buy one ounce of palladium on June 10th 2008
for the market price valid on June 10th 2006. If
the purchase price is above the then current market
price, the holder receives a consolation of 5 C.”

By immediately selling the goods for the then valid market
price, the contract is converted into monetary units, i.e. ab-
stracting away physical goods, the given contract guarantees
a payoff of

max(S C
Pd(t1)− S C

Pd(t0), 5)

at contract’s maturity, with S C
Pd(t) denoting the market price

for palladium at time t where t0, t1 represent the dates as
defined by the contract.

In order to be able to trade a contract, a financial engineer
has to determine its market price, i.e. the contract’s monetary
value for t0 ≤ t < t1

6. It is common practice to use
spreadsheet-based prototypes when determining, among other
things, a contract’s fair price [12]. These prototypes use
appropriate valuation algorithms and models typically imple-
mented as Microsoft Excel spreadsheets. These ”development
environments” are usually augmented with glue code in form
of Visual Basic for Applications (VBA) macros and additional
C/C++ dynamic link libraries (DLL) as the need arises. Be-
cause financial engineers are usually not software developers,
solutions provided by software technology, e.g. design patterns
[13], are only slowly adopted. Inflexible prototypes dominate
and cause tremendous problems. Additionally, spreadsheet-
oriented designs do not scale up well in case of increasing
complexity. Although financial engineers and software engi-
neers work in quite different domains, the principal problems
are very similar.

B. COMDECO’s Objectives

Derivative contracts represent a large and higher-than-
average growing segment of local and world wide financial
markets. The almost arbitrary flexibility7 in conjunction with
the pressure of permanently shortening product life and time
to market cycles creates the need for efficient methods of
design and valuation. COMDECO [14] aims at providing
tools and techniques to handle the complexity of current
and future derivative contracts. In contrast to well-established
description techniques based on plain mathematical formulae
used by financial engineers for decades, COMDECO offers an
enhanced termsheet representation using a special variant of
an ACTIVE DOCUMENT - software technology meets financial
engineering. Utilising ACTIVE DOCUMENTS, any contract is

6For t = t1, the contract’s value is already known in advance, of course.
7”With derivatives you can have almost any payoff pattern you want. If you

can draw it on paper, or describe it in words, someone can design a derivative
that gives you that payoff.” (Fischer Black, 1995)

FOO

volatility

floor

constant

derivative

observable

...

C
on

tr
ac

t

M
ar

ke
t C

ha
ra

ct
er

is
at

io
n

Fig. 1. The schematic of a plain vanilla european call modeled by an
ACTIVE DOCUMENT (boxes and geometric objects of grey colour represent
environments). Combining ACTIVE DOCUMENTS representing a contract and
a market characterisation allows for fair price calculations.

represented by a component-oriented software program which
is subject to composition by the non-expert end-user.

Using a hypertermsheet, a simplified and intuitive design
process supported by the runtime system (see Figure 2)
replaces error-prone low-level programming attempts. The
explorative composition style is based on easy to understand
drag and drop gestures. Design attempts for a set of ”standard”
contracts, e.g. a plain vanilla european call, are automatically
detectable and wizard-based visual constructors are provided
to further simplify the design process.

C. Hierarchical ACTIVE DOCUMENTS

The fact that a derivative contract may be described using
a functional programming language [15] indicates the ap-
plicability of hierarchically structured description techniques.
COMDECO uses hierarchical ACTIVE DOCUMENTS to rep-
resent any kind of derivative contract (see Figure 1). Being
hierarchical, a XML-based representation is easily inferred,
resulting in a standards-based exchange format. The runtime
system provides services necessary to instantiate a hierarchi-
cal ACTIVE DOCUMENT. The usage of XML offers several
advantages.

1) Besides explorative and interactive composition tech-
niques, a programming language like approach may be
used for contract design.

2) Standard XML technologies like XSL or XML Schema
allow for transformations, checks or manipulations per-
formed by the framework or third party tools.

3) As XML is a human-readable information representa-
tion, users are not locked in proprietary binary formats
which require complex reverse engineering efforts in
case of migration.

69

Contract Component Repository

Adding a lower bound Setting its value

Fig. 2. Starting from a contract based on the underlying FOO without a stop loss limit, a floor component is added, creating a lower bound protection.
Consistent states, i.e. states in which all constraints are fulfilled, are indicated by a green background. Transitional states caused by constraint violations
because of incomplete document parts are signaled by a yellow background.

D. Modular composition constraints

COMDECO currently provides a set of ”standard” compo-
nents which can be used to construct derivative contracts. The
simplest contract is represented by a derivative component
which encapsulates further components such as sell or acquire.

Example III.2 A derivative contract which guarantees the
right to buy the underlying FOO8 for a fixed price of three
monetary units at timestep 0 and the right to sell the underly-
ing at timestep 42 for the then current marketprice is written
as:

<c o n t r a c t>
<d e r i v a t i v e>

<s e l l>
<c o n d i t i o n>

<a t t i m e s t e p =”42” />
</ c o n d i t i o n>
<o b s e r v a b l e i d=” f oo” model=”FOO” />

</ s e l l>
<acqu i r e>

<c o n d i t i o n>
<a t t i m e s t e p =”0” />

</ c o n d i t i o n>
<c o n s t a n t i d=” s t r i k e ” va l u e=”3” />

</ a c qu i r e>
</ d e r i v a t i v e>

</ c o n t r a c t>

It is obvious that a limited set of components utilisable for
the construction of contracts is not desirable. Varying and
extensible sets of building blocks have to be supported to
cope with the flexibility of derivative contracts. Composition
is based on the decorator pattern [16] which allows for
evolutionary enhancements of already existing contracts.

Example III.3 To create a plain vanilla european call having
a payoff of

P (t) =
{

max(FOO(t) − 3, 0) t = T
unknown otherwise

the simple contract of the previous example is augmented by
an additional floor component, resulting in

8For example, FOO could be a stock or a bond traded on a stock exchange.

<c o n t r a c t>
< f l o o r u s i ng=” lowerBound”>

<c o n s t a n t i d=”lowerBound” va l u e=”0” />
<!−− same as b e f o r e −−>

</ f l o o r>
</ c o n t r a c t>

Components to be used in an ACTIVE DOCUMENT provide
modular composition constraints which are merged by the
runtime system managing the component repository resulting
in a dynamic document specification. The set of constraints
varies depending on the repository’s contents.

1) Structural Constraints: Structural constraints control
the overall architecture by restricting the set of possible
relations between different entities constituting an ACTIVE

DOCUMENT. In case of hierarchical ACTIVE DOCUMENTS,
a combination of several standard schema techniques such
as Relax NG [17], XML Schema [18], and Schematron [19]
may be used. When constraining general-purpose ACTIVE

DOCUMENTS, a graph-based specification restricts the set of
possible entity configurations.

Example III.4 A cap component only influences a floor com-
ponent or a derivative component and its bound may only
be represented by a constant component or a observable
component. These constraints are expressed by the following
code fragment exploiting the hierarchical structure.

. . .
<group name=” Cons tan tOrObservab le ”>

<cho i c e>
<e l emen t maxOccurs=”1” minOccurs=”1”

name=” o b s e r v a b l e” t y p e=” o b s e r v a b l e” />
<e l emen t maxOccurs=”1” minOccurs=”1”

name=” c o n s t a n t ” t y p e=” c o n s t a n t ” />
</ c ho i c e>

</ group>
. . .

<complexType name=”cap”>
<cho i c e>

<sequence>
<group maxOccurs=”1” minOccurs=”1”

r e f=” Cons tan tOrObservab le ” />
<cho i c e>

<e l emen t maxOccurs=”1” minOccurs=”1”
name=” d e r i v a t i v e ” t y p e=” d e r i v a t i v e ” />

<e l emen t maxOccurs=”1” minOccurs=”1”
name=” f l o o r ” t y p e=” f l o o r ” />

70

</ c ho i c e>
</ s equence>
<sequence>

<cho i c e>
<e l emen t maxOccurs=”1” minOccurs=”1”

name=” d e r i v a t i v e ” t y p e=” d e r i v a t i v e ” />
<e l emen t maxOccurs=”1” minOccurs=”1”

name=” f l o o r ” t y p e=” f l o o r ” />
</ c ho i c e>
<group maxOccurs=”1” minOccurs=”1”

r e f=” Cons tan tOrObservab le ” />
</ s equence>

</ c ho i c e>
<a t t r i b u t e name=” us i ng ” t y p e=” x s : s t r i n g ”

use=” r e q u i r e d” />
</ complexType>

. . .

2) Semantical Constraints: Specifying conditions on com-
position parameters, an entity’s neighbourhood, its current
state etc., the set of valid ACTIVE DOCUMENTS is further
limited, reducing possibilities of semantical composition mis-
matches. Semantical constraints are specified using a declar-
ative style, thus separating logic and data implementation,
further reducing coupling.

Example III.5 For the lower bound F and the upper bound
C of a floor and a cap component being related to each other,
F < C should always hold. Otherwise, the corresponding
payoff formula would be P = min(max(X, F), C), which is
independent of the value of X in case of F ≥ C.
First Order Logic is currently applied for the specification of
semantical constraints. As an ACTIVE DOCUMENT consists
of components which have a state of their own, a forward-
chaining rule engine that makes use of the RETE algorithm
[20] is suitable for the semantical constraint checking layer in
the Omnia framework.

E. Separation of concerns

Potentially varying characteristics like market volatility or
the current market value of an underlying FOO are not part
of the ACTIVE DOCUMENT representing the contract. This
ACTIVE DOCUMENT just specifies the existance of such a
relation, but the concrete occurence is deferred until valuation.
For that reason, when performing price calculations, at least
one additional document has to be considered: the market
specification9. Observables represent hooks, that have to be
associated with real or simulated market data. In case of the
exemplary contract of Figure 1, the fact that the value of the
contract is dependent on the performance of the underlying
FOO is expressed by observable foo. By establishing commu-
nication links between the observable and its counterpart in the
market specification, the pricing engine is able to gather the
necessary input parameters to perform the valuation. Letting
corresponding entities communicate with each other partially
merges the two independent documents.

9Note that modeling the market specification as an ACTIVE DOCUMENT is
not the only option. Alternatively, the ACTIVE DOCUMENT representing the
derivative contract could be valuated by combining market specification data
gathered from an appropriate web service, for example.

F. Componentised valuation engine

When solving the pricing problem, there are, roughly speak-
ing, three methodological categories to choose from:

1) Closed-form solutions provide an analytical expression
that is used to determine the corresponding contract’s
market price. However, only a small fraction of the
set of imaginable contracts may be priced by hitherto
discovered closed-form solutions.

2) Monte Carlo simulation provides an almost general-
purpose framework for the pricing of derivative con-
tracts. Unfortunately, algorithms are often computation-
ally intensive.

3) Tree-based algorithms represent a financial engineer’s
swiss army knife, because any kind of derivative contract
may be priced using these algorithms. Nevertheless,
the memory footprint of such solutions may impose
practical restrictions in multi-dimensional settings.

Since the derivation of the first closed-form solution by Black
& Scholes [21] in 1973, their number has grown steadily,
but pricing arbitrary derivative contracts using closed-form
solutions remains wishful thinking. Monte Carlo simulations
and tree-based algorithms provide an almost general-purpose
framework, but both are not a panacea: their proper ap-
plicability depends on certain properties of the contract to
be valuated. Using closed-form solutions when appropriate,
apply tree-based algorithms otherwise and offer Monte Carlo
simulations as an alternative is therefore the preferred strategy
when solving the pricing problem.

Besides that, pricing has to be flexible with respect to valu-
ation models, because the de facto standard Black & Scholes is
not applicable in case of arbitrary complex contracts. Models
and valuation strategies are realised as components, stored in
a queryable repository, being plugable on demand.

Operating on pure mathematical descriptions, the determina-
tion of the best-fitting algorithm and valuation model is tricky.
The ambiguity of mathematical assembler consisting of low-
level operators like max or min may cause problems, making
global analysation techniques necessary.

Example III.6 Let a payoff function be given by

P (T) = 3 · S(T) ·
n∏

i=1

⌊
min(S(ti), B)

B

⌋

Although making use of the min operator, the corresponding
contract does not consist of any caps. Instead, it is a barrier
option.
High-level concepts, e.g. floor or cap, help to disam-
biguate and simplify the design, classification and analysation
phase. However, these abstractions cannot completely prevent
spaghetti contracts10. Their construction is just significantly
complicated, so end-users should not be able to create them
by accident.

10The analogon to spaghetti code in computer programming, i.e. hard to
understand contract specifications.

71

Valuation
Engine

Model
Repository

Algorithm
Repository

Merge

Market
Specifications

Contract
Repository

Pricing

Select

Select

Query

Fig. 3. A conceptual overview of COMDECO’s valuation engine. ACTIVE

DOCUMENTS provide query capabilities that are utilised for classification
purposes. These capabilities may also be used for queries like ”List all
contracts that have asian-style smoothing and a knockout barrier of 50 C.”
which are useful for portfolio management tasks.

Since ACTIVE DOCUMENTS are queryable entities, addi-
tional information further improving the valuation process can
easily be retrieved. The best-fitting approach can be selected
with no or little user interaction depending on the information
gained by issuing appropriate queries.

G. Further advantages

Besides offering an optimised design and valuation ap-
proach that shows up better scalability with respect to reduced
turnaround times, ACTIVE DOCUMENTS pave the way for
new kinds of applications. Normally, customers of derivative
contracts rely on financial engineers for contract design and
valuation. Individual contracts imply an increased administra-
tion effort, making OTC11 a viable option only in case of
large financial investments. With COMDECO, a non-expert
customer is able to autonomously design derivative contracts
according to individual needs. An online broker may provide
customers access to his contract and component repository,
valuate user-designed contracts instantaneously and add them
to the customer’s portfolio upon acceptance in real time. Even
small and medium non-expert investors are able to profit from
the benefits, although they do not belong to COMDECO’s
primary audience. Further advantages beyond the scope of this
paper are briefly discussed in [22].

IV. BEHIND THE SCENES

Having sketched a possible usage scenario of ACTIVE

DOCUMENTS in the domain of financial engineering, this
section gives a brief overview of the technical and conceptual
key aspects of the ACTIVE DOCUMENT framework Omnia
which is developed in parallel during the ongoing COMDECO

project.
Any ACTIVE DOCUMENT consists of combinations of the

two principal entities component and environment. In contrast
to the majority of current document systems, the document
itself is a piece of software that is composed by the user.

11Over The Counter, i.e. financial products individually tailored according
to customer requirements.

By providing an intuitive composition environment, non-expert
end-users are able to design software according to personal
requirements.

Environments are able to control the messages being ex-
changed between components and components provide ser-
vices to their neighbourhood (a component’s neighbourhood
is the set of components that may send service requests to the
component or receive responses from it). An arbitrary number
of components and other environments may be embedded,
letting an environment act like a container.

An important aspect is the communication model which
specifies the modus operandi of message exchange between
involved entities. Message propagation is controlled by envi-
ronments that receive messages from their neighbourhood and
forward these to the embedded entities. Omnia distinguishes
two kinds of messages, namely

1) Intra-environmental messages which are exchanged
between entities embedded in the same environment, i.e.
intra-environmental messages never leave the environ-
ment they were initially sent into.

2) Inter-environmental messages which cross environ-
mental boundaries, e.g. if an intra-environmental mes-
sage is received by an environment and propagated to
its embedded entities, the initially intra-environmental
message becomes an inter-environmental one.

The communication model restricts an environment’s sphere
of action concerning message propagation control. Only inter-
environmental messages may be filtered (e.g. blocked) or
altered by an environment. Intra-environmental messages are
transparently propagated to all embedded entities. This design
decision has an almost straightforward analogon in real life.
Think of components as the employees of a firm, inter-
acting with each other by means of communication. The
employees are spread over several rooms, represented by
environments. Assuming not so large rooms, every employee
is able to communicate directly with its room mates, whereas
communication with employees in other rooms is physically
restricted. However, this analogy is not exhaustive, because a
component may be embedded into more than one environment
and environments may be nested arbitrarily.

A. Partial anonymous communication

Using message multicasting mechanisms, components send
messages to their neighbourhood and may receive associated
responses. Neither determining the number of entities in a
component’s neighbourhood nor checking for entities which
are able to react to a certain message is possible. In contrast
to message sending, message reception is transparent, i.e.
receiving entities may determine the initiator of received
messages or responses, so distinguishing different senders is an
option. From a component’s point of view, its neighbourhood
is a black box which consumes and produces messages.
This partial anonymity results in loosely coupled entities,
tremendously limiting the set of assumptions a component
designer may act on. A component

72

• can neither expect a message to be processed by its
neighbourhood nor to receive a response for a message
being sent and

• can never expect message monotony, i.e. the component’s
neighbourhood reaction / response pattern triggered by a
message being sent may change over time.

B. Dynamic service interfaces

Environments act as containers, structuring both: message
propagation and the overall system architecture. From the
technical point of view, an ACTIVE DOCUMENT is created by
defining the nesting structure of environments, followed by
component injections into appropriate neighbourhoods. The
embedding relation may change during runtime, i.e. entities
are able to join and leave environments arbitrarily. An en-
vironment’s provided interface is the union of the provided
interfaces of its embedded entities. The provided interface
of a component is specified in relation to the services the
component expects from its neighbourhood. As the neighbour-
hood may change dynamically, the provided services for a
set of components are determined by calculating the transitive
closure of the requires / provides specifications of all involved
components.

Example IV.1 The components A, B, C and D are members of
a common neighbourhood, each providing services π 1 . . . πn.
The following provides / requires specifications hold (an empty
right side indicates that the corresponding service is provided
independently from any other available neighbourhood ser-
vice):

π1
A ← π1

B

π1
B ←

π2
B ← π1

A

π1
C ← π1

A, π1
D

π1
D ←

The provided services resulting from this specification are
{π1

A, π1
B, π2

B , π1
C , π1

D}. If component B leaves the common
neighbourhood, this changes to {π 1

D}.
C. Assembling & Composing components

The discussion of COMDECO has already introduced two
categories of constraints each component may contribute to:

1) Structural constraints
2) Semantical constraints

These and other component characteristics are subsumed in the
component’s ”binary” representation which merges the distinct
parts into a structured stream12.

• Java bytecode specifies a component’s behaviour. Be-
cause of contextual polymorphism, there may exist a one
to many mapping between messages and behaviour im-
plementations depending on the environment from which
messages are received.

12Instead of using a directory abstraction as in the case of Mac OS X
applications, all necessary information is stored in a single file, simplifying
cross-platform component deployment.

• Requires & provides specifications explicitly define a
component’s context dependencies.

• Composition constraints specify structural and semanti-
cal conditions that have to be met when being composed.

Example IV.2 The cap component in COMDECO uses the
following assembly specification which is used by Omnia’s
component compiler to generate the final ”binary” component.
<component>

<messages>
<message i d=” ge tCu r r en tVa l u e ”

r e t u r n t y p e=” ja va . lang . Double ” />
<message i d=”getUpperBound”

r e t u r n t y p e=” ja va . lang . Double ” />
</ messages>
<imp l emen t a t i o n c l a s s=”CapFinanc ia lComponen tFea ture”>

<mapping>
<map i d=” ge tCu r r en tVa l u e ”

i s h a n d l e d b y=” ge tCu r r en tVa l u e ” />
<map id=”getUpperBound”

i s h a n d l e d b y=”getUpperBound” />
</ mapping>

</ imp l emen t a t i o n>
<c o n s t r a i n t s>

<u n i v e r s e>
<c o n s t r a i n t name=” u n i v e r s e r u l e ” />

</ u n i v e r s e>
<world>

<c o n s t r a i n t name=” wor l d r u l e ” />
</ world>

</ c o n s t r a i n t s>
</ component>

Note that due to implementation specific considerations, the
structural specification is not part of the assembly specifica-
tion, but is provided by special method invocations triggered
by the runtime system during composition. The mechanisms
to determine a component’s required and provided services
are currently under careful consideration. A combination of
static descriptions as part of the assembly specification and a
dynamic analysation phase during composition using bytecode
inspection techniques is favourised at the moment.

Both semantical as well as structural constraints may be
distinguished in local and global specification categories, i.e.
constraints may express conditions for the whole system or
just for a component’s neighbourhood. Technically, local con-
straints are tied to environments, whereas global constraints
are bound to the ACTIVE DOCUMENT. Local constraints are
subsumed in the world section whereas global constraints are
listed in the universe section of the assembly specification.

D. Special kinds of environments

In context of COMDECO, a hierarchical ACTIVE DOC-
UMENT is used to model any kind of derivative contract.
Due to the fact that a contract is representable by a n-ary
tree datastructure, environments being used to construct the
corresponding ACTIVE DOCUMENT representation have to
obey to additional structural constraints.

• At most one component and an arbitrary number of
environments are allowed as embedded entities (Single
component per environment constraint).

• An environment lets pass a message to its embeddings
only if the message-initiating entity is a member of the
same neighbourhood as the environment (Local messages
only constraint).

73

Documents & Templates

Implementation

Requires
Provides

Composition
Constraints

Components

Domain Specific Layer (e.g. ComDeCo)

Structural
Constraints

Semantical
Constraints

Deployment

XML Schema

Relax NG

Schematron

First Order Logic

Graph based

Bytecode
Inspection

C
om

po
si

tio
n

F
ac

ili
tie

s

R
ep

os
ito

ry
 M

an
ag

em
en

t

Fig. 4. Overview of the Omnia framework which provides the necessary
mechanisms to support the development of general-purpose ACTIVE DOCU-
MENT systems.

Because this kind of environment is essential in the context
of derivative contract design, Omnia provides a default im-
plementation. Further ready to use specialisations currently
exist, e.g. fallback environments that allow for inheritance-
like messaging mechanisms and directory-based environments
which allow for rapid prototyping hierarchical environment
structures by making use of the filesystem hierarchy13.

V. CONCLUSIONS

A distinguishing property of ACTIVE DOCUMENTS in com-
parison to compound document technologies is the capability
to express and enforce structural as well as semantical con-
straints on the involved entities. The well-known and intuitive
document metaphor in conjunction with an infrastructure al-
lowing for explorative and dynamic composition operations
guarantees easy composition. In comparison with developer-
centric component models, user-oriented technologies have to
provide a high degree of runtime fault tolerance. In contrast
to software developers, ordinary end-users are usually unable
to provide appropriate glue code in case of composition mis-
matches. A high degree of loose coupling is achieved by the
component model of ACTIVE DOCUMENTS which minimises
potential composition mismatches by explicitly specifying
valid compositions. Albeit not being a silver bullet for all
problems raised by the component-oriented paradigm, ACTIVE

DOCUMENTS offer enhancements and solutions for difficulties
showing up when adapting the component-oriented paradigm
to the end-user domain. Next generation software based on
the concept of an ACTIVE DOCUMENT allows for autonomous
adaptations according to individual preferences.

COMDECO’s already available proof of concept contract
design tool demonstrates that the component model’s expres-
siveness is sufficient for the currently investigated domain of
financial engineering.

For the e-Learning domain, Minerva has already proven
conceptual practicability of ACTIVE DOCUMENTS and the
results of COMDECO may be used in this context, too. This
emphasises the vanishing application boundaries property of
ACTIVE DOCUMENTS. In fact, there is no distinct Develop-
ment Environment for Derivative Contracts, just an ACTIVE

DOCUMENT system which may be used for this purpose or (by

13This kind of environment is currently used to implement the market
specification and to support debugging within COMDECO.

adjusting the component repository and the set of constraints)
may be turned into an e-Learning environment that is used for
in-house training of financial engineers, for example.

Financial engineering and e-Learning are two domains these
concepts can be applied to successfully, but almost any appli-
cation operating on some kind of document on the conceptual
level, e.g. IDEs for software development, is a candidate for
the transformation into an ACTIVE DOCUMENT.

ACKNOWLEDGEMENT

The author would like to thank the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

[1] Cox, Brad J. and Novobilski, Andrew J.; Object-Oriented Programming
- An evolutionary approach. Second Edition. Addison-Wesley Publishing
Company Incorporated. 1991

[2] Raskin, J.; The humane interface: new directions for designing interac-
tive systems. ACM Press. Addison-Wesley Pearson Education. 2004

[3] Object Management Group; CORBA Component Model Specification
Version 4.0. 2006.

[4] Sun Microsystems Inc.; Enterprise JavaBeans Specification, Version 2.1.
2003.

[5] European Computer Manufacturers Association; ECMA 335: Common
Language Infrastructure. Third Edition. 2005.

[6] European Computer Manufacturers Association; ECMA 334: C# Lan-
guage Specification. Third Edition. 2005.

[7] Apple Computers Inc.; Inside Macintosh: OpenDoc Programmer’s
Guide. Addison Wesley Publishing Company Incorporated. 1996

[8] McCance, S.; Overview of the GNOME Platform. The GNOME Project.
2006.

[9] EASYCOMP (IST Project 1999-14191). Easy Composition in Future
Generation Component Systems.

[10] Reitz, M. and Stenzel, C.; Minerva: A component-based framework for
Active Documents. Proceedings of the Software Composition Workshop
(SC 2004). Electronic Notes in Theoretical Computer Science 114.
Elsevier. 2005

[11] Korn, R. and Korn, E.; Option Pricing and Portfolio Optimization. AMS.
Rhode Island. 2001

[12] Dalton, S.; Excel Add-In Development in C/C++: Applications in
Finance. Wiley. 2005

[13] Joshi, M.; C++ Design Patterns and Derivatives Pricing. Cambridge
University Press. 2005

[14] Reitz, M. and Nögel, U.; Derivative Contracts as Active Documents -
Component-Orientation meets Financial Modeling. Proceedings of the
7th WSEAS International Conference on Mathematics and Computers
in Business and Economics. 2006

[15] Peyton Jones, S. L. and Eber, J-M.; How to write a financial contract.
In: Fun of Programming. Palgrave Macmillan. 2003

[16] Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J.; Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional. 1997

[17] ISO/IEC 19757-2: Document Schema Definition Languages (DSDL) -
Part 2: Regular-grammar-based validation - RELAX NG. International
Organization for Standardization (ISO)

[18] XML Schema - W3C Recommendation. World Wide Web Consortium
(W3C)

[19] ISO/IEC 19757-3: Document Schema Definition Languages (DSDL) -
Part 3: Rule-based validation - Schematron. International Organization
for Standardization (ISO)

[20] Forgy, C.; Rete: A Fast Algorithm for the Many Pattern / Many Object
Pattern Match Problem. Artificial Intelligence, 19, 17–37. 1982

[21] Black, F. and Scholes, M.; The pricing of options and corporate
liabilities. Journal of Political Economy, 81, 637–659. 1973

[22] Reitz, M. and Nögel, U.; Composable Component-Oriented Contracts
- How Software Technology may influence Financial Engineering,
WSEAS Transactions on Information Science and Applications, Issue 9,
Volume 3, 1756–1763. 2006

74

Component based method for enterprise application design

Emmanuel Renaux
Trigone Laboratory

University of Lille, France
emmanuel.renaux@univ-lille1.fr

Eric Lefebvre
École de technologie supérieure

Montréal, Canada
lefebvre@ele.etsmtl.ca

Abstract

Component support has actually been enhanced
with version 2.0 of the Unified Modeling Language
and component appears as the best reusable unit of
software, whereas more and more pre-built compo-
nents are made available. However, reuse of compo-
nents to build system remains a difficult task. Compo-
nents are mostly identified in the late phases of the
system development cycle without considering the end-
users’ requirements specified in the early phases. The
effort required to develop or re-use components which
satisfy the requirements is still significant, so that a lot
of developers generally prefer to develop a system
from scratch, while being largely influenced by techno-
logical concerns.

This article presents a Model-Driven Engineering
method based on the early identification of business
components. Setting up the component identification
during use case modeling, transforming requirements
into logical components, enriches analysis using UML
diagrams. Business archetype concept and component
paradigm are jointly used to structure the component-
based process. This innovative method demonstrates
that 1) components must be identified right from the
use case model at the requirement stage of the devel-
opment cycle and 2) a mechanism must be set up to
ensure their traceability along the next stages. Build-
ing Platform Independent Models from the use case
model, using a set of four Business Archetypes, main-
tains the consistency between components and re-
quirements, ensures their traceability and facilitates
their transformation into Platform-Specific Models,
and then into code. In the whole, the proposed method
should bring another significant progress to Model-
Driven Engineering.

Keywords: Component, traceability, requirements,
information systems, engineering process.

1. Introduction

The component idea is today omnipresent in soft-
ware engineering mainly for development concerns.
Support of component during analysis has been en-
hanced with version 2 of the Unified Modeling Lan-
guage (UML) [25] but its use is not guided by a clear
method. Component appears as the best reusable unit
of software, whereas more and more pre-built binary
components are made available. Component-Based
Development (CBD) [6] has lately been extended to
integrate the concepts of service and of Service-
Oriented Architecture and then to allow a wide ex-
change of pre-built off-the-shelf components. In the
mean time, Model-Driven Engineering (MDE), follow-
ing the Model-Driven Architecture (MDA) specified
by the Object Management Group (OMG), makes
modeling an activity of software production instead of
documentation. MDE clearly separates the business
models independent of any technology from the system
models dependent of them. Both CBD and MDE fol-
low a convergent way, since MDE needs CBD to fa-
cilitate reusability during Platform Independent Model
(PIM) building, whereas CBD needs MDE to facilitate
the interoperability between technological platforms.
However CBD and MDE are today not well integrated,
so that reuse of components to build a system remains
a difficult task. Moreover, decomposing a system into
really reusable components is still non-trivial.

The main idea presented in this paper is the design
of a system with a better integration of the component
paradigm and model driven mechanism in a Unified
Process-like [2] approach. We will particularly demon-
strate that, because of this lack of integration, the
traceability between requirements and components
designed during deployment task is far from obvious in
current software development processes.

In this paper, we propose to enrich the UML nota-
tion with the logical component concept by extending
its meta-model and we describe the method to ensure
traceability. The extension mainly consists in adding

75

the logical component and business archetype concepts
[23]. Thus, it allows to map business processes as de-
scribed by the use cases with logical components of the
analysis model. We finally discuss the benefits of our
approach, according to our current works. A simple
case study, the “hotel room management” system illus-
trates our proposal.

2. The component dimension in current
engineering processes

Based on the use case model, the analysis task con-
sists in finding and defining system entities. Design
and implementation tasks deal with technological con-
cerns (see Figure 1). The use case approach allows to
specify user requirements and to provide an artefact
that is understood by each stakeholder. Nowadays,
software engineers master analysis of information sys-
tems by applying approaches like the Unified Process
(UP) [2]. The UML [1] is commonly used to build
most of the models. Each model corresponds to a view
on the whole system specifications, which is the re-
sponsibility of a particular competency [3]. However,
working with engineers on actual projects in insurance,
health care and banking companies, we observed that
there is no structural guide to map use cases with de-
ployable components. Moreover, designers and devel-
opers are guided by technology concerns, and therefore
often change decisions previously made by business
analysts about final users’ requirements. Different
stakeholders in a project team guided by a current en-
gineering process build several distinct models using
UML. Each stakeholder has his own knowledge and
responsibilities. Thus, existing tools provide an appro-
priate view of the system according to stakeholders’
different concerns.

The use case model contains the system require-
ments grouped in coarse-grained functions, i.e. the use
cases. Sets of scenarios detail use cases. Dynamic
UML sequence diagrams realize use cases and model
each scenario of use. A sequence diagram shows inter-
actions between architecture elements to process and
realize requirements. Static UML class diagrams, an
artefact of the analysis task, define the types of the
architecture elements and their relationships. Package
diagrams regroup classes to reduce system complexity
and dependencies. The design model is the transforma-
tion of the analysis model taking into account techno-
logical concerns, applying design patterns, proposing
new decomposition depending on these new concerns,
and so on. A main goal of the design task is to discover
UML deployment components and model them in a
component diagram. This diagram is a representation
of the binary components coded during the develop-

ment task. Then, deployed components are tested to
finally check that all requirements have been realized.

The goal of this simplified description of a UP-like
process is not to be exhaustive but to demonstrate that
traceability between each of these models is not im-
plicitly supported and therefore not guaranteed. Differ-
ent models provide mismatched system
decompositions. Use case model and sequence dia-
grams are organized by use cases. In analysis classes
diagram, software engineers take care of object-
oriented concerns, and of technological interests in
design model and component diagrams. Testers come
back to the use case paradigm to check that require-
ments have been completed. An experienced architect
or a competent project team leader is the only one with
a global perspective of the work. He is responsible to
check the consistency between several views, using a
matrix mechanism linking requirements with architec-
ture elements of all views. This reduces quality and
readability of the system.

Since the technological targets are component
based, we claim that component must be the master
piece of software and be present all along the devel-
opment process. According to these issues and context,
we list, in the next section, the fundamental features to
be identified in a component-based system. The con-
cept of component first appeared in research on mid-
dleware [8] [9] to deploy part of software that can be
reused in another technological context. Interoperabil-
ity was the initial purpose of component research.
Some formalisms and notations have been elaborated
to describe component-based systems. However, de-
sign approaches did not appear immediately. Thus,
engineers adapted object oriented methods to deal with
finding and defining system components. Currently,
there exist component-based approaches [4] [6]. They
are an adaptation of the UP [2]. Generally, they use
and adapt UML and apply common development life
cycle that drives developers from use cases to UML
deployment and component diagrams. However these
models remain relatively independent. Finally, these
approaches do not cover a complete MDA process and
do not obtain its benefits. UML2 only enriches the
class concept with some component concepts like Pro-
vided interfaces that represent and categorize opera-
tions or services provided by a component and Re-
quired interfaces that represent operations and services
requested by a component to successfully complete its
functions.

The aim of a component-based method is to define
the component boundaries, their interfaces and finally
their connections to realize all the user requirements.
According to these features, we claim that UML dia-
grams must be enriched with the concept of logical
component. In the next part, we present in an iterative

76

way, our method to implement this proposal. We dem-
onstrate that it should be the best unit of software at a
conceptual level.

3. Method to transform requirements into
logical components

The Information System (IS) engineering major is-
sue is to define the best way to decompose a system,
and thus to reduce and to manage its growing complex-
ity. As the complexity of IS due to the large business
domains and to the mismatched decompositions de-
pending on the different views in the project life cycle,
component based processes require a huge effort to
maintain traceability. Logical component concept aims
to reduce this effort by partitioning system models and
by explicitly representing dependencies between its
parts. Our proposal is to add the logical component
concept in each view, by encapsulating a group of view
constituents, as a membrane. Since each view ad-
dresses a specific concern, constituents are of different
types, and their traceability is difficult to maintain. As
the logical component semantic is the same in the dif-
ferent views, a logical component acts as a pivot to
support traceability and should not be transformed.

Figure 1 is the use case diagram of our case study
“Hotel room management”. The system allows to re-
serve rooms, to check-in, and check-out. The account-
ancy concerns are processed. When a customer leaves
the hotel and checks out, he pays to an employee who
validates the payment.

Figure 1 - Use case diagram of the "Hotel room

management" system

We named our proposal CUP as Component Unified
Process [24] because, it adapts the Unified Process by
extending it with the logical component concept. We
propose to split the system model in four views. The
different views of our process are presented with ex-

amples from the case study. The CUP meta-model of
the method links these four views. Any constituent
depends on each other. The four views are the frame-
work of the method and structure its presentation.

One of the first activities in a design process is the
identification and the specification of the system func-
tions. The habits are to use a UML use case diagram to
do this. Anyone can understand this diagram, without
any technical knowledge. It plays the role of a bound-
ary object between each stakeholder. CUP introduces
in the use case view the concept of logical component.
It is an innovation because it allows an early identifica-
tion of the component of the system. Component de-
sign view is a white box view representing the internal
static structure of the logical component, its provided
and required interfaces. The interaction view shows
dynamically the interactions between each internal
object of a component. This view is close of a UML
sequence diagram. Moreover, CUP introduces external
object interactions which specify that an object inside a
component needs a service outside of it. This view
specifies the dynamic of a component in an independ-
ent way. It shows interactions between parts and
through interfaces of a component to complete use-
case scenarios. The whole system is represented in the
assembly view as an assembly of connected logical
components. This black box view only shows provided
and required interfaces. It does not consider their reali-
zation.

CUP is an iterative process. Thus, we present two
iterations. The first one proposes a straight application
of the method. It is a quasi-systematic way to proceed.
The resulting model consists in decomposing the sys-
tem into primitive logical components. The second
iteration enriches the first one by detailing the features.
It proposes a simple mechanism to support analysis.
The system is represented by composite logical com-
ponents which are a merge of the primitive ones.

3.1 Primitive logical components design

Use case view

A logical component is a membrane, which contains
a subset of model elements. Requirements are modeled
by a set of use cases. Our proposal is to identify logical
components when building use cases. With the use
case view of the system, we first propose to encapsu-
late each use case in a logical component. In that sense,
a use case will be realized by elements enclosed within
this logical component in each view of the system. We
name this concept a Primitive component.

Component design view

77

Object oriented analysis consists in providing an
abstraction of the real world. Object idea is twofold.
Firstly, it has properties which represent its state. Sec-
ondly, it has operations which implement its behavior.
A basic way to represent the real world is to group
entities which have common state and behavior within
an object. This is a wrong way to do, because objects
are too small to be re-used and are too dependent of
their context. We propose to use archetypes [23] to
define a better way to create a more re-usable piece of
software. Archetypes contribute to solve the issue of
what is the best reusable module in the software. We
propose the use of four business archetypes [23], one
business archetype, which represents the dynamics of
the business process whereas the three others represent
the statics of the business entities involved in the proc-
ess.

The Party, Place, or Thing (PPT) archetype depends
on the subjacent entity. It allows to characterize an
object as an entity which has properties and operations
referring to business data and to business behaviour. It
is used in one or several business processes. The arche-
type description models a record of data attached to a
PPT, as, for instance, the Category of a room (see
Figure 2).

Figure 2 - Static diagram of Reservation and
Check-in use cases

The moment-interval archetype refers to a business
process. It is a session-long life object. It allows to
model the purpose of a business process, or a use case
as the Reservation, in our example.

The role archetype allows to link a moment-interval
which has a short life with a specific purpose to the
business entities represented by a PPT archetype. With
a role archetype, we can represent the way a PPT is
involved in one or several contexts of use. There is a
strong link between the use case definition and the
business process one. As we know that different com-
panies share similar business processes and that a busi-
ness process can be modelled by the four archetypes,
we can link requirements with analysis artefacts in a
readable way. Links are established by identifying
roles of objects, from a really simple and straightfor-

ward object oriented analysis. We then maintain trace-
ability, with the moment-interval archetype.

Interaction view

Figure 3 - Interaction view of the primitive

The interaction view (see Figure 3) partially models
collaboration. Handling this view to find collaborating
objects should help to discover components and to es-
tablish their boundaries. The view uses graphical UML
analysis stereotypes [12] to represent instances of ar-
chetypes and traditional classes. Entity: PPT arche-
types can be represented by an entity analysis stereo-
type. It is a business object containing business data
and behaviour. Control: a moment-interval represents
behaviour and data contained in an object which exists
only during a transaction, we use a control analysis
stereotype to represent it. Boundary: port is an interac-
tion with another component, as an actor link is a rela-
tionship with a human or a computer system. We there-
fore use a boundary analysis stereotype to represent a
port or an actor interaction.

Assembly view

An assembly view gives a black box point of view

of the logical component (see Figure 4) and connec-
tions with other ones.

Figure 4 - Assembly view of the primitive logical

component "Reservation"

Identification of primitive logical components in the
use case view corresponds to Jacobson proposal of the
use case module. Jacobson defines a use case module
[10] to deal with that issue. “If we could keep use case
and its realization separate, and maintain that separa-
tion, we would get a system really simpler to under-
stand, to change, and to maintain”. Unfortunately, he
demonstrated that tangling (a component contains code
that realizes several use cases) and scattering (a use
case is realized by the code of several connected com-

78

ponents) phenomena do not allow splitting a system in
use case modules only.

3.2 Composite Logical Components discovery

Figure 5 - UML collaborations

As we saw before, the use case is not the best mod-
ule of software reuse. Dependence between objects is
dramatically hard to manage. If we keep separate ob-
jects in different logical components, the complexity
remains identical. UML 1.4 [1] specifications define a
collaboration as a set of roles played by objects and
their interactions [26] (see Figure 5). Each interaction
of an object enrolled in a collaboration is represented
by a link, which is characteristic of its role in this in-
teraction. For instance, a Person object is enrolled in
the ValidPayment collaboration, and has customer role
within it. The same object Person is enrolled in Check-
out customer collaboration, and has a host role with
other responsibilities. As the use case concept, collabo-
ration has a useful goal. Thus, a use case can be trans-
formed into a set of one or several collaborations
which share the same role. This is a crucial logical link
between the use case model and the analysis model
which the process must save.

 Logical interfaces, i.e. responsibilities, are added to
an object, for each collaboration within which it is ol-
led. To specify and then implement the whole object, it
is mandatory to know all its responsibilities [4].
Named design framework in Catalysis method, a com-

position mechanism allows to define a complete speci-
fication of objects (see Figure 6). This mechanism
achieves to explicit precisely how a use case is realized
in the analysis task. It shows why it is difficult to keep
traceability manually, because of the many choices to
do.

We apply this composition mechanism to propose a
heuristic to discover logical component boundaries. In
our Hotel room management example, we group use
cases as follows. Use cases are realized by collabora-
tions which enroll objects of the system. The goal is to
minimize dependencies between components. To
achieve it, we do not authorize the enrollment of an
object in collaborations which realize a use case encap-
sulated in another logical component. Sometimes, it is
not possible and we add required interfaces to define
interactions between components as actors interactions.
The use case view (see Figure 7) shows two logical
components that encapsulate sets of use cases. The
interactions represented in are crossing logical compo-
nent boundaries through interfaces between compo-
nents. The second iteration of the process illustrates
and explains the composition mechanism that creates
composite logical components, in each view.

Use case view

Figure 7 - Use case view of "Hotel room man-

agement" system

Regarding subjacent object collaborations realizing
uses cases, some of the use cases can be grouped in the
same component (see Figure 7). This kind of logical
component is called composite. We choose this con-
figuration containing two components, one for reserva-
tion and occupation of the room and one for account-
ancy concerns. Designers are free to choose the best
selection, the one that reduces interactions and depend-
encies through component boundary, or simply the one
that takes into account SI constraints. Figure 7 results

Figure 6 - Design frameworks composition

79

from some choice made by the designer. Boundaries of
primitive logical components are not commonly kept
in order to enhance the model readability.

Component design view

The goal of a UML collaboration [1] between a set
of objects is to identify the best reusable piece of soft-
ware, not the objects themselves. The use of archetypes
can answer the issue: how to design collaborations?
We propose to use archetypes to represent in a class
diagram the associations between objects in one col-
laboration represented by a moment-interval (see
Figure 8). A collaboration is typically designed with
sequence diagrams. But sequence diagrams, which
represent use case scenarios, detail interactions be-
tween objects. Moreover, the class diagram is no
longer linked with the sequence diagrams that allow to
define roles of objects.

A composite logical component applies the compo-
sition mechanism. As in a use case view, primitive
logical components boundaries are not kept. But in this
view, the designer has to choose the PPT objects. In
the example (see Figure 8), the designer chooses to
group the Reservation, Check-in and Checkout use
cases. As views have to be consistent, the designer in
charge of the component design view, groups the cor-
responding moment-intervals. The three moment-
intervals define the roles of the PPT objects. As in the
composition of frameworks, each role must be the re-
sponsibility of one entity object. In this view, the de-
signer has also to define the interfaces of the PPT ob-
jects. Another decision has been to keep the Room
entity outside of the component to enhance its reusabil-
ity. This decision has been made in the assembly view
presented in the next section.

Figure 8 - Component Design view of the

"Rental" logical component

In a collaboration, a set of objects interacts for one
goal, as specified in the requirements. It is really diffi-

cult to reuse a part of a collaboration, i.e., a subset of
the participating objects. Because they are linked by
the collaboration, they have responsibilities corre-
sponding to the role they have in this collaboration.
Then, the analyst’s goal is to define the best boundary.
Archetypes provide a way to explicit collaboration in
an object-oriented vision. They explicit interactions
between objects enrolled in one or more collaborations.

Thanks to the archetypes, whatever the design
choices are, traceability is maintained. The moment-
interval archetypes always represent use cases and
their related business process.

Assembly view

Figure 9 – Assembly view

In this view, an architect decides to isolate room en-
tities. Then the Rental component becomes independ-
ent of what is rented and is reusable in another context.
Actually, the main concern of this view is the reusabil-
ity of the logical components.

Interaction view

As we saw before (see Figure 7), a use case view
allows to decompose a system in logical components,
grouping a set of use cases. Standard relationships be-
tween use cases, extends and includes are kept. The
difference with a traditional use case diagram is that
these relationships can cross component boundaries
through interfaces of the logical components. They
explicitly show the functional dependencies between
components. It is obvious that there are interfaces in
other views, which drive the designer to discover these
new interfaces.

Figure 10 - Interaction view

80

In the interaction view, we add the externalControl
stereotype for the Resource object. This analysis
stereotype represents the component required inter-
faces. It shows the dependencies of the component
with its context, while keeping autonomous the com-
ponent.

4. Implementation and evaluation

4.1 Method implementation using MDE
mechanisms

CUP is specified by an extension of the UML meta-
model divided in four parts (see Figure 11). The con-
cept of logical component has been added, with its
required and provided interfaces, and the externalCon-
trol role. As the notation used in the method is de-
scribed in a meta-model, its implementation can be
facilitated by a modeling tool such as ModX [27], or
by the IBM Eclipse Modeling Framework [28].

Object constraint language rules [1] have been de-
fined to constrain and guide the design. They define
consistency relationships between each model element.
Once the PIM has been built (1,2), these tools can
generate code according to some generation rules
(3,4). As the properties of our component model are
independent of any technological aspect, this enables
the translation of a CUP component into several target
platforms. In order to define mapping rules, we just
need to associate a CUP concept (described by a meta
class) with a platform specific concept. Secondly, at
each model level, the design can induce modifications
at another model level. The tool will inform the de-
signer to carry out these modifications in order to re-
store the design consistency of the complete model.

The CUP approach has been experimented in actual
projects in large business domains, i.e. insurance,
banking, health care. It has been proven that applying
such division early in the development process, and
maintaining consistency with a tool is more efficient.
Then traceability is more maintainable. The impact of
an evolution is more quickly detected. The efforts are
more easily evaluated. Some components have been
reused in different projects. It is a practical and effi-
cient way to validate the method and its benefits about
requirements traceability.

4.2 Related works

Components are often introduced too late in the
process, according to technological concerns as in the
popular UP process [12]. We propose with CUP to deal
with component boundaries very in the process, during
the requirements phase to ensure better traceability.
Then, all stakeholders can participate in the component
identification of their information systems. Benefits of
a model-driven approach, such as CUP, are that, with
design methods, analysts and designers focus on func-
tional concerns, leaving aside the technological ones.
Then the produced PIM is more re-usable, and could
be more easily transformed into a Platform Specific
Model, then into code.

Existing component-based methods often come
with a complexity of use. Catalysis [4] is one of the
most complete method, but is really difficult to imple-
ment. CUP is formalized by a meta-model, and its re-
lated constraints, and then MDE tools [27] can guide
designers with more flexible processes and tools.

Finally, the concept of logical component guaran-

tees a more focused and more efficient work, and as it
is omnipresent, it guarantees consistency between
views, from requirements to deployment. Regarding
UML 2.0 [25] components, that are enriched classes,
CUP ones, are more as a framework, i.e. a set of
classes as [5]. Then reusing these components provides
a better return on investment, because it includes the
reuse of all the models of all the component views and

Figure 11 - Model Driven
Engineering process

81

allows to connect these components without any tech-
nical concern.

5. Conclusion

In this paper, we propose an innovative method to
ensure requirements traceability in the project devel-
opment cycle. First, a use case based solution is used to
express requirements. CUP allows an early identifica-
tion of logical components in the use case view to be
decided by each stakeholder of the project. The intro-
duction of archetypes increases the quality of the sys-
tem model, by checking the functional division of the
system. Then, collaborations that realize use cases are
explicitly designed with moment-interval archetypes in
the component design view. Analysis based on arche-
types, helps to find and to consolidate boundaries of
logical components. Finding the required and provided
interfaces completes the PIM building. Traceability has
been ensured by the subjacent meta-model which links
the different views. Then generative tools [27] can
exploit the results thanks to MDE technology.

Dealing with component identification early in the
process makes easier the component re-use. For in-
stance, an existing component answering one or more
use cases can be early detected. The re-use of business
components will be favored by our approach and al-
lows to build more efficiently future information sys-
tems.

References

[1] OMG. UML1.4 – Unified Modeling Language.
Object Management Group, September 2001.

[2] Grady BOOCH, Ivar JACOBSON, and James
RUMBAUGH. RUP Software Engineering. 1997.

[3] Kruchten P., « Architectural BluePrints -- The
"4+1" view Model of Software Architecture »,
IEEE Software 12, pages 42-50,1995.

[4] Desmond Francis D’SOUZA and Alan Cameron
WILLS. Objects, Components, and Frameworks
with UML - The Catalysis Approach. Addison-
Wesley, 1998.

[5] John CHEESMAN and John DANIELS. UML
Components - A Simple Process for Specifying
Component-Based Software. Addison-Wesley,
2001.

[6] Peter HERZUM and Oliver SIMS. Business Com-
ponent Factory - A Comprehensive Overview of
Component-Based Development for the Enterprise.
Wiley Computer Pub., 2000.

[7] Hassine, I., Rieu, D., Bounaas, F., and
Seghrnouchni, O. Symphony: a Conceptual Model
based on Business Component. Revue ISI 7, 4,
HermSs, 2002.

[8] OMG, « CORBA 3.0 New Components Chapters
», OMG ptc/2001-11-03, Object Management
Group, Novembre, 2001.

[9] Sun, E.J.B. Home Page, 2001.
[10] Jacobson I., « Basic Use Case Modeling », ROAD

1, 1994.
[11] Jacobson I., « Use Cases and Aspects - Working

Seamlessly Together », Journal of Object Technol-
ogy, vol. 2, num. 4, ETH Zurich, pages 7-28, July-
August 2003.

[12] Jacobson I., Booch G., Rumbaugh J., 97, « The
Unified Software Development Process »,
Addison-Wesley, 1997.

[13] Mellor, Stephen and Balcer, Marc, Executable
UML, Addison-Wesley, 2002

[14] Kruchten, Philippe, The Rational Unified Process-
An Introduction, 2nd edition, Addison-Wesley,
2000.

[15] Gamma, Eric et al, Design Patterns, Addison-
Wesley, 1995.

[16] IBM Corporation, Business Systems Planning, In-
formation Systems Planning Guide, Publication
No. GE20-0527.

[17] Kerner, David, Business Information Characteriza-
tion Study, Data Base 10, No.4, pp.10-17, Spring
1979.

[18] Carlson, W.M., Business Information Analysis and
Integration Technique (BIAIT)-The new horizon,
Data Base Vol.10, No.4, pp. 3-9 Spring 1979.

[19] Lefebvre, Éric, Améliorer les méthodes de planifi-
cation informatique: une approche pluraliste, Thèse
de doctorat, Université Grenoble II, avril 1996.

[20] Fowler, Martin, Analysis Patterns, Addison-
Wesley, 1996.

[21] Taylor, David, Business Engineering with Object
Technology, Wiley, 1995.

[22] Jacobson, I., et al., Object-oriented Software Engi-
neering: a Use-Case Driven Approach, Addison-
Wesley, 1992.

[23] Coad, Peter, Lefebvre, Eric and De Luca Jeff, Java
Modeling in Color with UML, Prentice Hall, 1999.

[24] Renaux E., Caron O., Geib J.M., SEA - IASTED,
Marina del Rey - Los Angeles Nov. 2003, The
CUP Project - Component Unified Process

[25] UML 2.0 Infrastructure : OMG doc. ad/00-09-01
[26] Cariou E., Beugnard A., Jézéquel J.M., « An Ar-

chitecture and a Process for Implementing Distrib-
uted Collaborations, EDOC'2002, 2002.

[27] Le Pallec X., Renaux E., Olavo Moura c., ModX -
a graphical tool for MOF metamodels, ECMDA-
FA'2005, Open Source and Academic Tools, No-
vember 7-10th, Nuremberg, Germany

[28] IBM, Eclipse Modeling Framework (EMF),
http://www.eclipse.org/emf

82

	Preface
	 Workshop Co-organizers
	 Program of WCOP 2006
	03rouvoy-wcop-06.pdf
	Introduction
	Motivation
	Attribute-Oriented Programming
	Component Annotations
	Identification of the Component Model Concepts
	Overview of the Component Annotation Framework
	Revisiting the Application HelloWorld with Annotations

	Implementation of the Generators
	Multi-Component Generation Process
	Architecture of the Generation Engine
	OpenCOM Component Generator
	OpenCOM Component Model
	Overview of the OpenCOM Generator
	Generation for OpenCOM

	Fractal Component Generators
	Fractal Component Model
	Overview of the Fractal Generators
	Generation for Fractal

	Conclusion

	Related Work
	Conclusion & Perspectives
	References

	05wcop06-Lanoix.pdf
	Introduction
	Component-Based Development and Interface Specification
	Specifying Components
	The Controller Component
	The MultiLights Component
	The SingleLight component

	Derivation of UML Interface Specifications to B

	Definition and Verification of Adapters
	An Adapter for the MultiLights Component
	An Adapter for the SingleLight Component
	Verification of the interoperability

	Related Work
	Conclusion
	References

	00Preface-WCOP2006.pdf
	Preface
	 Workshop Co-organizers
	 Program of WCOP 2006

	00Preface-WCOP2006.pdf
	Preface
	 Workshop Co-organizers
	 Program of WCOP 2006

