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Preface: Algorithms - not only for
Computational Problems

The term “algorithm” lies at the heart of computer science. Following a simple definition
in the web [1], an algorithm is “a finite set of well-defined instructions for accomplishing
some task which, given an initial state, will result in a corresponding recognizable end-
state”. This definition leaves the task itself unspecified and also means, as an example,
that a set of instructions to prepare tomato salad is an algorithm. For obvious reasons, it
is common in computer science to consider an algorithm as a set of instructions solving a
computational problem. Following Horowitz and Sahni [2], one has further the following
criteria:

1. Input: there are zero or more quantities which are externally supplied;
2. QOutput: at least one quantity is produced;

3. Definiteness: if we trace out the instructions of an algorithm, then for all cases the
algorithm will terminate after a finite number of steps.

4. Effectiveness: every instruction must be sufficiently basic that it can in principle
be carried out by a person using only pencil and paper. It is not enough that each
operation be definite as in (3) but it must also be feasible.

During the 90s the idea of building a quantum computer attracted broad interdisciplinary
interest in computer science, physics, and mathematics. Such a machine works with quan-
tum superpositions of logically different states, and a completely new type of algorithms,
so-called quantum algorithms, were invented. The elementary operations in quantum
algorithms cannot be described as classical logical computation steps. These algorithms
contain instructions which are not “sufficiently basic that they can in principle be carried
out by a person using only pencil and paper” (see item 4.). Instead, they would require
special ‘quantum paper’ on which one could write superpositions of different numbers. A
quantum computation can only be performed with hardware which enables such super-
positions between logically different states. This works only in physical systems which
are sufficiently isolated from their environment to show typical quantum phenomena,
and it is more likely feasible for small systems than for macroscopic systems. Therefore
an important part of quantum computing research is the development of methods for
controlling physical systems on the nanoscopic, microscopic, or mesoscopic scale. These
systems can, for instance, be ions, atoms, molecules, or electromagnetic fields. Typical
tools to manipulate their physical states are laser beams or other kind of electromagnetic
waves like high-frequency radiation.



Apart from the goal of developing hardware for the quantum computer, it is clear
that controlling tiny objects is a challenging task in its own right, having many poten-
tial applications. Focussing electron or light beams in a microscope or building smaller
transistors which are triggered by single electrons for future electronic chips are only
two examples of applications where states of quantum systems have to be controlled
and measured. The idea of quantum computing encouraged theoreticians and experi-
mentalists to further develop existing control technologies. On the other hand, it seems
as if theoretical and experimental tools created for quantum computing could be also
useful for non-computational problems. Among others, the following non-computational
applications of quantum control techniques are closely related to quantum computing:

1. NMR Spectroscopy: Nuclear magnetic resonance (NMR) experiments are used
in medicine, biology, chemistry, and physics to analyze organic and an-organic mat-
ter. Roughly speaking, the spins of the atoms in the analyzed material can be
considered as little magnets. These ‘magnets’ are rotated by an electromagnetic
pulse. While they turn back to their original position, they emit electro-magnetic
pulses which give insight in the chemical structure. In many experiments the mat-
ter is subjected to rather complex sequences of electromagnetic pulses since the
emitted radiation after this treatment is characteristic for the specific material and
the interactions among its nuclear spins. The design of these pulse sequences is
analogous to algorithmic problems in quantum computing (QC) even though these
methods existed in NMR long before they were rediscovered for QC.

2. Quantum Lithography and Microscopy: Optical lithography is a primary tool
in the microchip industry for transferring circuit images onto substrates. Similiarly
as in microscopy, the resolution of the image is limited by the wavelength of the light
beam, the so-called diffraction limit. Recent research suggests that the diffraction
limit can in principle be beaten using non-classical light with quantum correlated
photons. The proposals to prepare this type of light use a sequence of optical
devices which is designed in strong analogy to the design of quantum circuits from
elementary gates.

3. Cooling Molecular Systems: Modern cooling techniques which lower the tem-
perature of atomic or molecular systems (in order to prepare it for further exper-
iments) use rather sophisticated sequences of control operations. In the context
of NMR experiments, there exists even a proposal for a cooling algorithm which
can at the same time be considered as a data compression algorithm if the atomic
states are interpreted as logical values of bits. Even though the original intention
of this proposal was to initialize the system for quantum computing, it shows that
the non-computing task of cooling a system can be treated algorithmically.

This work should elucidate what we can learn from quantum computing and communi-
cation research for non-computational problems:

e Quantum Algorithmic Thinking and Complexity Theory: The principle of
concatenating elementary transformations that generate complex physical processes
is not restricted to computational processes. Present research results indicate that



it makes sense to think about which physical processes require complex sequences
of elementary operations and to develop a complexity theory for non-computational
processes. Our own research has shown that one can even connect such a complexity
theory with the conventional complexity theory of computer science.

e Simplicity of Models: The central concept of quantum information theory is
a quantum-bit (‘qubit’). It is, physically speaking, a two-level system which is
certainly the simplest thinkable quantum system. In the 90s it was realized that
there were still interesting questions unsolved dealing with just two qubits. After
quantum theory existed almost for a century, quantum information research came
up with models and unsolved questions which are surprisingly simple compared to
the examples and problems of quantum systems in textbook quantum mechanics.
This has already deepened the understanding of quantum laws.

e Physical Relevance of Information: The crucial role of the quantity entropy
has already been generally accepted in thermodynamics, showing that, in princi-
ple, information is also an important concept in physics. However, in studying
conventional thermodynamic machines like steam engines it seems rather academic
to interpret heat transfer as information transfer. Likewise, it seems academic to
interpret information flow among computing devices as heat transfer. In contrast,
the information in a quantum computer is stored in simple physical degrees of free-
dom and the relation between heat and information becomes much more obvious
on this elementary level. This allows thermodynamic insights to be obtained which
have strong analogies to the mathematical issues of information theory like coding
problems. We will show how these insights can be used to derive new bounds on
the physical resource requirements of computation.

For the above reasons, the intention of this thesis is to advocate a quantum computer
science approach to a control theory for nanoscopic objects. It is organized as follows.

In Chapter 1 we sketch the central ideas of quantum computation and information as
a basis for this thesis.

Chapter 2 shows that these ideas help to rethink fundamental problems of different
scientific disciplines: First, quantum computing research gave a more explicit operational
meaning to the ingrediences of conventional quantum mechanics: quantum state prepa-
ration, dynamics and measurements can be seen as algorithms based on some elementary
operations. Second, QC provides clear and simple toy models to understand thermody-
namics which allows to derive thermodynamic constraints for molecular processes which
do not exist in conventional thermodynamics. These constraints may be relevant to un-
derstand potential thermodynamic limits of low power computation. Third, quantum
computing has made more obvious that the laws of physics determine which compu-
tation problems can be solved efficiently. In the same way they determine which non-
computational tasks can be done efficiently - there appears to be no substantial difference.
Fourth, we consider a quantum computing toy model to demonstrate that causal reason-
ing in every-day life has to take into account quantum effects. Even though this problem
is not strongly related to the rest of this work it shows that simple models taken from
quantum information research may lead to insights for problems which seem completely
disconneted to usual computation problems.



In Chapter 3 we explain why an appropriately general definition of algorithms and
their complexity is required to treat non-computational problems in an algorithmic way.

In Chapter 4 we present algorithms for non-computational problems. In contrast to
Chapter 2 where problems of state preparation and measurements are considered for rea-
sons of pure research, we consider here problems which stem from potential applications.
We relate the complexity of some of those natural control problems to the complexity the-
ory of computational problems. This can be seen as a first step for developing complexity
classes for non-computational problems.

The intention of this thesis is to show connections between rather different issues in
the field. For the details we refer to the literature.



Chapter 1

Quantum Information and
Computation

The main subject of this thesis is not quantum computing itself; rather it should show
that a broad variety of applications in future nano technology could use complex control
algorithms which are in strong analogy to algorithms in quantum computation. In order
to demonstrate this, we first present some of the basic concepts of quantum computing
(for details we refer to [3]). They will provide a useful basis to discuss non-computational
control problems. In particular, the simplicity of the standard model quantum computer
is an attractive venue to discuss many of these issues.

1.1 Standard Model of a Quantum Computer

The power of quantum computing lies in the fact that the quantum register allows quan-
tum superpositions between different inputs. This makes it, roughly speaking, to some
extent possible to process many different inputs at once. The most important element of
quantum computing and quantum information theory is the quantum bit, called “qubit”.

In contrast to a classical bit, it can have not only the values 0 and 1, but also linear
superpositions between them. According to quantum theory [4], the mathematics of
superpositions can be described by Hilbert spaces. We will use bra and ket notation, i.e.,
vectors in a space ‘H are denoted by symbols |¢)) and vectors in its dual by (¢|. The inner
product is written as (4[1), bra and ket in the reversed order denote rank-one operators:
|1} {(¢| is defined by the intuitive equation

(1) (@Dle) = 1) (ble) .

Now we define the unit of quantum information, i.e., a qubit:

Definition 1 (Quantum-Bit = Qubit)

A qubit is the quantum generalization of a bit. The states of a qubit are the one-
dimensional subspaces of C* where the span of the two canonical basis vectors, denoted
by |0) and |1), correspond to the logical states 0 and 1, respectively. If a state is the
one-dimensional space C|) where |1) is the unit vector ¢y|0) +c1|1), the values |co|* and
|c1]? are the probabilities to find a qubit in the state |0) or |1), respectively, if its logical
state is read out.
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Figure 1.1: The state of a qubit can be represented by a vector in the Bloch sphere.

It is often useful to represent the one-dimensional subspaces of C? by unit vectors in the
Bloch sphere, a ball in R3. The correspondence is given as follows. The span of

7 : 7
cos §|0) + €' sin §|1>

corresponds to the unit vector characterized by angles # and ¢ as seen in Fig. 1.1. This
is possibly the most natural visualization of the state of a qubit since the direction
in 3-dimensional space given by the Bloch vector is for every spin-1/2 particle directly
interpreted as the direction of its magnetic moment. Spin-1/2 particles with their two
basis states ‘spin up’ and ‘spin down’ are a good example for physical systems representing
qubits.

However, such an intuitive representation exists only for one qubit. An n-qubit register
is a system consisting of n qubits. Note that this statement is not as ‘harmless’ as it seems
since the state of an n-qubit register is not described by the states of its n components,
i.e., its state cannot be represented by n Bloch vectors:

Definition 2 (State of a Quantum Register)

The states of an n-qubit register are given by the one-dimensional subspaces of H =
(C*)®". The canonical basis states of H are in one-to one correspondence to binary
words of length n.

One may interpret this fact by stating that quantum theory allows superpositions of
binary words b since every unit vector

[4) = clb) (1.1)

b

defines a state. This is the decisive difference to any classical computational devices
which work with some kind of ‘fuzzy’ logical values between 0 and 1: The ‘fuzzy-value’
of the whole register would always be given by describing the fuzzy values of all its
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components. The superposition principle is a general feature of quantum systems: If |¢)
and [1),) are possible state vectors then ¢;[11) + c2|1) is for every two complex numbers
c1, o with |e1]? + |ca|? = 1 also a possible state vector.! A decisive phenomenon of the
quantum world, namely entanglement, then follows: A generic superposition of binary
words cannot be written as a product

V) = |¥1) @ [12) @ -+ @ |tn)

where each [1);) is a state vector in C? (see [3] and references therein for details). In other
words, the state of a single qubit is undefined if no such factorization exists.

It is interesting to note that the models of quantum computing implicitly contain
an important statement on the connection between information and physics which holds
for classical computation, too: the two states of a classical bit must be represented by
physical states which are mutually orthogonal. This means that whenever the logical
value of a bit is changed, this is based on a quantum dynamical evolution of a state
moving between two orthogonal Hilbert space vectors. Even though this insight was
probably not a new idea stemming from QC research, the language used in QC made
it more obvious and the abstract concept of representing information by qubits can also
be useful to explore device independent limits of classical computation. The essential
advantage of a qubit compared to a bit for describing classical computation is that the
continuous physical process changing the value of the bit cannot be described on bits,
but it can be described on qubits [5]. Note that this difference can even be the basis
for an axiomatic derivation of the laws of quantum mechanics [6, 7]. In other words,
the concept of classical information is indeed consistent with quantum mechanics as long
as one restricts the attention to a set of mutually orthogonal states. We emphasize
that this consistency does not require any multi-particle or macroscopic limits. But
we claim that the description of dynamics of classical information requires either the
concept of quantum information or some macroscopic limits. This statement is the leading
motivation in Subsection 2.2.7 where a quantum bound for copying timing information
is derived and in Subsection 2.2.10 where we argue that quantum information transfer is
useful for clock synchronization protocols.

1.1.1 Quantum Gates and Quantum Circuits

In classical computation it is well-known that every boolean circuit can be generated from
circuits with two input bits and one output bit. One can even implement every boolean
circuit using only NAND-gates or only NOR gates. To some extent as an analogy to
this result, it is well-known in quantum computing that every unitary transformation on
H = (C?)®" can be generated by so-called two-qubit gates, i.e., unitary transformations
which act non-trivially on two components of the n-fold tensor product [8]. Note that in
this framework a gate is a physical process in contrast to classical circuits where one thinks
of AND, NAND, OR, NOR, and NOT gates usually as hardware devices in which input
and output can exist simultaneously. In quantum computing, there is a fundamental
law which forbids having input and output simultaneously: the no-cloning theorem [9]

!Note that the superposition refers to state vectors even though the latter is only defined up to a
phase factor for a given state, therefore one should rather speak about superposition of state vectors
than of states.
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states that the content of a quantum register, the quantum information cannot be copied
without disturbing it. We define:

Definition 3 (2-Qubit Quantum Gate)
A gate acting on the qubit pair (i,1+ 1) is a process which changes the state 1)) of the
quantum register into

1®i—1 QU ® 1®n—i—1|w> ’

where U is a unitary operator on C*® C2. In general, U may act on non-adjacent pairs
(1,7), but this is difficult to write symbolically.

The following gates are widely used as elementary transformations.

1. NOT: This gate is given by the linear extension of the permutation |0) < |1) and
is described by the Pauli matrix

(01
o=\ 41 0 /-

It is drawn as
—@—

2. C-NOT: The controlled-not gate inverts the target qubit if the control qubit is
in the |1) state. If the control qubit is in the |0) state the target is unchanged.
Superpositions in the control qubit lead in general to entanglement between control
and target qubit.

control ——¢—

target ——p—

The C-NOT gate is a good model for copy-operations in general. Since it copies
the logical state 0 or 1 to the target, it destroys superpositions between |0) and |1).
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3. TOFFOLI: a double-controlled not. It inverts the state of the target iff both
control qubits are in the state |1).

control (1) ——e——

control (2) —e——

target ——pH—

Even though the standard model quantum computer is often formulated with one
and two qubit gates only, we mention the Toffoli gate since it plays a central role
in the theory of classical reversible computation. Compositions of Toffoli gates can
compute arbitrary boolean functions. In contrast to AND, NAND, OR, NOR gates,
the output of such a Toffoli gate allows the reconstruction of the input completely.
This fact can be used [10] to prove that computation does not necessarily involve
logically irreversible operations, which is an important feature from the thermody-
namical point of view [11].

All these gates are classical in the sense that they do not create superpositions between bi-
nary words. Certainly quantum computing requires also gates which do not only permute

basis states.

1. HADAMARD: Its matrix is

It is drawn as

2. C-U: The controlled-U-gate is for any unitary U on 1 or more qubits defined by
C—-U:=10)0|@1+|1){1|eU

where |0)(0] and |1)(1| denote orthogonal projections onto the spaces spanned by
|0) and |1), respectively. The C-U gate implements U on the target if the control
qubit is in the 1 state. It is drawn by

control
target
If U is diagonal in the computational basis one calls C-U a controlled phase shift.

The question of which set U of gates is universal in the sense that concatenation of
elements in U can approximate every n-qubit unitary transformation has attracted broad



10 CHAPTER 1. QUANTUM INFORMATION AND COMPUTATION

interest. A simple example of a universal set is a C-NOT together with arbitrary one-qubit
rotations [12]. Another example [13] is the Hadamard gate together with the controlled
phase shift C' — o 2, which implements the phase shift

10
1/2 ._
oz (0 z)

1.1.2 Readout of Quantum Registers

whenever the control qubit is 1.

In the standard model it is usually assumed that the possible measurements are given
by the readout of single qubits. If all qubits are measured, the values |c;|?* in eq. (1.1)
are the probabilities for obtaining the binary word b as result. If one measures only the
logical states of all qubits in the subset j := (j1, jo, - . -, ji) the probability for the outcome
71, ... is obtained by a sum over all |c]? in the cylinder set given by all binary words
b e {0,1}" with

bj, =x; withl=1,... k.

If P, ; is the projector onto the space spanned by all |b) with b in this cylinder set the
probability for the result z in the state |¢)) is given by

(| Pojl) -

This suggests the more general quantum-mechanical principle of calculating probabilities
for measurement outcomes from projections (see Subsection 1.2.1). It will be further
generalized later, leading to an abundance of possible measurements even for a single
qubit.

1.1.3 Quantum Circuits and Algorithms

A sequence of quantum gates is usually called a quantum circuit. A quantum algorithm
is a rule for generating quantum circuits in such a way that the circuits solve a given
problem [14]. This rule for creating the circuit is actually a classical algorithm. It
may be surprising that such a classical “meta-algorithm” is needed; the problem is that
a completely quantum Turing machine would have superpositions between inputs with
different running time of the algorithm. This leads to paradoxical superpositions of
terminal states and states which tells the machine to continue [15, 16]. We briefly mention
that a similar problem will appear in Subsection 2.2.9 when we describe a computation
process which is performed by a closed physical system. Such an autonomous dynamics
can never stop if the free energy of the system is finite. As a solution to this problem we
present a model which avoids this problem by encoding the computational result in the
time average of the infinitely repeated dynamics.

In order to describe how to use quantum gates for computation we have to clarify
what it means for a quantum circuit to compute a function f. Let f: {0,1}" — {0, 1}*
be arbitrary. In order to realize this as a unitary mapping we could choose U such that

U(la) @ ly)) = 1) @ |f(a) D y)
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for any input a € {0,1}" and y € {0,1}*. If n = k and f is a bijective function, we can
also have
Ula) = |f(a)) .

Then, by linearity, a superposition of different inputs a leads to a superposition of differ-
ent outputs f(a). However, since the state vector cannot be read out it is not clear why
this kind of ‘parallelism’ should help. This is the same situation as in classical probability
theory wherein the probability distribution of randomly chosen inputs is reflected in the
distribution of the outputs, but it is impossible to determine the probability distribution
from a single experiment. In quantum information, one is tempted? to believe in the pos-
sibility of such a readout if one considers the ‘quantum state’ as a physical object instead
of a statistical description about its preparation (for the problems of interpretations of
quantum mechanics we refer to [17]). Hence the essential challenge in finding quantum
algorithms is to use the parallelism in a more sophisticated way. We briefly mention the
two most famous such algorithms: Grover’s search and Shor’s factoring algorithm.

Grover’s algorithm searches binary words which satisfy a given condition. Given a
function

f:{0,1}" — {0,1},
the output is a binary string b of length n such that f(b) = 1 whenever it exists. In

contrast to the best known classical algorithm (with running time O(2")) it has only
running time O(2"/2). The essential ideas are: (1) Given a superposition of all binary

words
> al)y N=2",

0<b< N

quantum mechanics offers the possibility of inverting the coefficients of all binary words
satisfying the condition f(b) = 1 and thus, to obtain the state

> a(-1)/O).

b

(2) There is a transformation which ‘reflects’ all coefficients about the average

>_alb) =D 2a —c)b),

b b

with ¢ := ), . The concatenation of (1) and (2) amplifies the modulus of all coeffi-
cients ¢, which satisfy f(b) = 1. Repeating the amplification procedure, one generates
superpositions which consist primarily of binary words b with f(b) = 1.

Shor’s algorithm efficiently factors composite numbers into primes. Prior to its in-
vention it was already known [18] that this problem can be reduced to the (still difficult)
question of order-finding: Given natural numbers x and n, determine the smallest » € N
such that 2" = 1(mod n). The essential idea is here, that it is possible to efficiently
generate the superposition state

\/LN Z 1b) ® |2°(mod n)).

2this is the error in some beginners-proposals for quantum algorithms.
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Note that r is now the period of the map b + 2. It can be found by the quantum

discrete Fourier transform which is the linear extension of
1 .
@) = —=> ™b).
gy

In the context of this thesis we mention that the order-finding problem can be thought of
as determining the period of a classical dynamical system, namely the dynamics on the
set {0,...,n — 1} given by a — ax (mod n). It would be interesting to know whether
this could be used for investigations of dynamical systems, i.e., to acquire information
about recurrence time and orbit lengths of given initial points.

The statement that Grover’s and Shor’s algorithms outperform the best known classi-
cal algorithms refers to the standard model of quantum computing. Therefore it is based
on the hope that one will succeed in controlling quantum systems in such a way that
the basic operations sketched in Subsection 1.1.1 can be implemented. To measure the
complexity of a quantum circuit one can either count the number of gates or the number
of time steps and assume that gates acting on disjoint qubit pairs can be implemented
simultaneously. For classical circuits an important complexity measure is their depth,
i.e., the length of the number of gates that are passed from the input to the output when
the longest path is considered [19]. Since the spatial propagation of information from
the input to the output of one gate translates to one time step we define the depth of a
quantum circuit as follows:

Definition 4 (Depth of a Quantum Circuit)
The number of time steps of a quantum circuit is the depth. Fach time step may contain
several gates acting on disjoint qubit pairs or qubits.

1.1.4 Realization

Here we give a (rather incomplete) overview of some important proposals for the realiza-
tion of the standard model quantum computer. We select two of the famous proposals.

e Ton Trap QC: (Cirac-Zoller proposal [20]) A string of several ions is trapped in
a dynamic magnetic field. The qubit basis states are represented by two different
internal states of the ions. The ions can be addressed separately in order to drive
transitions between their internal states. This allows the implementation of arbi-
trary single qubit gates. Due to the repulsive electrostatic forces between the ions
they can perform collective oscillations. The different quantum states of this oscil-
lator is used as ‘data bus’: By applying appropriate laser pulses to the ions one can
cause an information transfer between them which is mediated by the oscillation
mode.

e NMR QC: The nuclear spins of different atoms are used as qubits. The states |0)
and |1) are given by the ‘spin up’ and ‘spin down’ states of the spin-1/2 nuclei. The
reference frame is given by a static external magnetic field which causes an energy
gap between |0) and |1). Single qubit gates can be performed by electro-magnetic
radiation of appropriate frequency. The natural pair-interaction between them is
used to implement two-qubit gates. Using so-called selective decoupling techniques
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(where appropriate one-qubit rotations can cancel unwanted terms, see Subsection
3.1.3) it is possible to switch off all but one of the pair interactions. This can be
used to implement a controlled-phase gate [21].

Meanwhile, there are many more proposals (see e.g. [3] as well as many other examples
on the quant-ph archive). Our choice above contains no judgment on the proposals.
We mentioned (1) because it is probably one of the most direct implementations of the
standard model quantum computer: Its basic operations are really initialization of basis
states, implementation of one and two qubit gates, and readout of single qubits. We
mentioned (2) since it is an important example of a new understanding of what constitutes
a quantum algorithm. Present day NMR is a nice example for a non-computing quantum
algorithm.

The discussion whether quantum computing may be realizable in the future must
focus on two questions:

1. Will it be possible to isolate larger quantum systems sufficiently to keep quantum
information alive over a sufficiently long time period?

2. Will it be possible to implement the required control operations?

It seems as if both questions would be issues of experimental physics only. However,
one should not neglect the mathematical and computer science aspect of both questions:

First it is not yet clear how noisy the system is allowed to be in order to still allow
quantum computation. Whereas it is often argued that quantum computing on large reg-
isters would require large-scale entanglement which is extremely fragile, error correcting
codes generate superpositions which are less fragile [22]. Second it is not clear how much
the set of operations can be reduced without dropping the power of universal quantum
computing. The ‘one-way’ quantum computer [23] shows, for instance, that the prepara-
tion of appropriate initial states together with single qubit readout is already sufficient
for quantum computing.

1.2 Arbitrary Quantum Systems as Quantum Regis-
ters

Clearly quantum registers need not necessarily consist of qubits. One can also define
qudits, i.e., systems having d basis states instead of 2. A qudit is already the most
general abstract description of an arbitrary finite-dimensional quantum system. Whereas
a physical example for a qubit is a spin-1/2 system, qudits are for instance given by
spin-(d — 1)/2 systems. Quantum computing on infinite dimensional systems has also
been proposed [24, 25| and algorithms for transferring quantum information between
continuous and discrete “registers” have been considered by [26]. Therefore one could
interpret every quantum system as quantum register or a part of it and every physical
process as a generalized logical operation. This point of view makes it more obvious that
the questions what can be computed efficiently and which non-computational processes
could be implemented efficiently are quite close together.
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1.2.1 States, Dynamics and Measurements in Textbook Quan-
tum Mechanics

To show in which way quantum computing research brought another point of view into
quantum theory, we sketch how the latter is introduced in most textbooks. A crucial
role in the formal description of a quantum system is the Hilbert space H which may be
finite or infinite. An example for the former is C?, the qubit, which may e.g. be the spin
configuration of a spin-1/2 particle, and for the latter the wave function of a Schrédinger
particle (e.g. an electron). It is given by a square-integrable complex valued function
on R3 such that |¢(x)|? is the probability density for finding the particle at the position
r € R3. A mathematically correct discussion of infinite dimensional quantum systems
involves some tools from functional analysis, while the finite dimensional systems con-
sidered in quantum computing allow much simpler formulations of interesting quantum
control problems. We will therefore mainly restrict to the finite case. The most important
concepts of quantum mechanics are as follows [4, 27].

e Preparations (States): Pure states are the one-dimensional subspaces of H,
mixed states are the positive operators on H with trace 1. If only pure states
are considered the corresponding density operator |¢)(1)| is usually represented
by the state vector |¢) with the additional remark that this representation is not
unique. States represent the preparation or, more precisely, our knowledge about
the preparation.

Often one needs mized states: If a source emits either of the quantum states [);)
with probability p; then our knowledge about the system is described by the positive
operator p with trace one given by

pi= ij|¢j><¢j|~

Even though every positive trace-one operator can be written as a mixture over pure
states in this sense it is (from the philosophical point of view) doubtful to assume
that the system “is in one of the states |¢;)(¢;| but we only do not know it”.
One reason is that the decomposition into pure states is not unique, in contrast to
classical probability theory where each measure on a set has a unique representation
as a (possible uncountable) mixture of point measures (“pure states”). The second
reason is the following. Given any pure entangled state on a bipartite system (see
“system composition” below), the reduced state on one component is necessarily
mixed even though one knows the pure state of the composed system.

Density operators p, p are perfectly distinguishable whenever they are supported by
mutually orthogonal subspaces, i.e., the kernel of p contains the complement of the
kernel of p. This is equivalent to tr(pp) = 0 since the operators are non-negative.
We will simply call p and p mutually orthogonal.

e Dynamics: The dynamical evolution of a closed system is described by the one-
parameter group (U;);cg mapping the state 1)) onto Uy|i)) after the time t. The
evolution is determined by U; = exp(—iHt), where H is the Hamiltonian of the
system. This self-adjoint operator has to be determined by physical knowledge
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about the system. It constitutes the physical content of quantum mechanics in
contrast to the purely abstract setting. By manipulating classical control fields,
one can change the Hamiltonian of the system. Apart from the dynamics, the
Hamiltonian also determines the thermodynamics of the system (see below).

e Measurements (Observables): Every physical quantity is represented by a self-
adjoint operator A acting on H with the following interpretation: If P; is the
spectral projection of A corresponding to the eigenvalue J\;, then

tr(pP;)

is the probability to obtain the result A;, where the density operator of the system
is p. According to Liider’s postulate, the conditioned post-measurement state is
P;pP; /tr(P;p) if the result was A;. If a d-dimensional quantum system is considered
as a qudit, one assumes usually that there is a preferred measurement basis, its
logical states |0),...,|d —1).

e System Composition: If two systems are described by Hilbert spaces H4 and
‘H, respectively, then the composed system has the Hilbert space

Hi®Hpg.

The fact that the Hilbert space of an n-qubit register is described by (C?)®", is
a special case of this postulate. A quantum system with n-dimensional space can
be always considered as composition of two systems whenever n is not a prime
number. It is a matter of taste whether one wants to consider only systems with
prime dimension as elementary. However, it seems reasonable to define subsystems
such that they agree either with physical particles or with systems that exist at
different locations in space. This is because the question which operations are
elementary and which ones are not should be somehow connected with the chosen
tensor product structure. Since the fundamental physical interactions are pair-
interactions between particles, operations acting on two particles are ‘supported by
nature’. This leads naturally to two-qudit gates. We will elaborate on this point in
Subsection 3.1.2.

e System Restriction: Given a joint density operator p of a bipartite system with
Hilbert space H = H4®Hp. The partial trace over B is the unique density operator
p? which coincides with p when subjected to any measurement on A. Formally this
means:

tr(ApM) =tr((A®1)p).

The partial trace generalizes the marginal distribution of a classical joint probability
measure on a Cartesian product.

The operations which occur by restricting the effect of a unitary map to a subsystem
are so-called completely positive (CP) trace-preserving maps [28, 3]. We will make use
of them in what follows.
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1.3 Tools of Quantum Communication
Theory

The main application of quantum communication theory at present is quantum cryptog-
raphy. Here we instead apply quantum communication tools to the thermodynamics of
clock synchronization in Section 2.2 and to problems of causal reasoning from classical
statistical data in everyday life in 2.4, refering the reader also interested in cryptography
to [3] and references therein.

Therefore we will only briefly explain those tools which are necessary for our applica-
tions and mention only the context in which they are usually used. The selection of topics
is by no means representative for the issues which are important in the usual context.

1.3.1 Entropy and Information

The natural generalization of the Shannon entropy

S(p) === p;logyp;
J

of a discrete probability distribution (p;) is the von-Neumann entropy of a density oper-
ator

S(p) == —tr(plog, p) .
It coincides with the Shannon entropy of the eigenvalues of p.

An important problem in classical information theory [29] is of optimally distinguish-
ing between a set of possible probability distributions p™™,p®, ... ,. This problem occurs,
for instance, when an input j of an information channel leads to the probability distri-
bution pU) on the set of possible outputs. Then it is known that the receiver can obtain

the information ' .
I=50 ¢p") =Y ;Sp")
J J

about the input, when the input j is chosen with probability ¢;. The simplest quantum
generalization of this quantity is the Holevo-information.

Definition 5 (Holevo-Information)
Given an ensemble pY) of quantum states which are chosen with probability q;, the Holevo
Information of the ensemble is:

Iy =S _a;p") = > a;S(pV) .
j j

The Holevo-Information is, however, only an upper bound on the so-called accessible
information about j which can be obtained by performing optimal measurements on the
states. Note that the problem to optimally distinguish between a set of quantum states
is not only relevant for issues of quantum computing and quantum communication. In
Subsection 2.2.8 we will, for instance, consider a model for a classical computing device
which interacts with its environment and therefore transfers some information about the
computation to its surroundings. Statements about the released information have clearly
to refer to quantum states in order to be sufficiently general.
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1.3.2 Quantum and Classical Correlations

Bipartite quantum systems play an important role in quantum communication protocols.
Each of two parties, say Alice and Bob, has a quantum system (‘generalized quantum
register’). The composite system Hilbert space is the tensor product of the Hilbert spaces

of the subsystems:
H=Hi®@Hp.

An uncorrelated state is a state which is a tensor product
A
p=ptep”’.

For an uncorrelated state the von-Neumann entropy S(p) is equal to the sum of the
entropies S(p?) and S(p?) of both subsystem. For a general state one defines:

Definition 6 (Quantum Mutual Information)
The difference
I(A: B) = S(p") + S(s™) — S(p) (1.2)

is the mutual information between A and B [3]. The symbols p** and pP denote here the
restriction of p to A and B by partial trace, respectively.

This definition is a natural generalization of the classical mutual information between
two random variables [29] defined in terms of Shannon entropies even though its meaning
is less clear.

Furthermore the following concept is crucial in quantum information theory:

Definition 7 (Separable and Entangled States)
A separable state is a convex sum of uncorrelated states

p=>_pip)@p7.

J

with positive probabilities p, i.e., Zj p; = 1. A state which is not separable is called
entangled.

Entanglement is a form of non-classical correlations which can only occur in quantum
systems. In contrast to classical stochastics where a joint probability distribution can
also be decomposed into a convex sum or integral of probability distributions without
correlations, entanglement is the same sort of correlations which also occurs in pure states.
A pure state is entangled if and only if its state vector is not a tensor product.
Separable states are sometimes considered classically correlated. It is, however, not
commonly agreed that this is appropriate since the correlations of separable states may
have also non-classical aspects. This has most explicitly been stated by Ollivier and Zurek
[30]. Here we explain their ideas in our own words. Assume Alice sends Bob either of n
states ,0;3 with j = 1,...,n and Bob should guess which one it was by implementing a
measurement. If the density operators pf do not mutually commute it is not clear which
measurement basis he should choose. It is certainly commonly agreed that the choice of
the optimal basis is a typical question of quantum estimation theory [31]. Consider a
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third observer who does not share Alice’s knowledge about which of the states was sent.
He only knows the set of possible states and the probabilities p; for the choice of each.
According to his description the bipartite system is in a correlated state

p= v} @p),

J

where pj-‘ denote some states of Alice’s mind or memory storing the information about
which state was sent. If her mind or memory is perfect, they are perfectly distinguishable,
i.e., orthogonal density operators. When Bob applies measurements on his system in order
to obtain some information on j his intention could also be interpreted as trying to find
out something about the state of Alice’s memory. This is certainly also a question of
quantum information since we have accepted that it is a question of quantum information
theory to get information about j. As realized in [30], for non-commuting pj‘ there is a
difference between the mutual information between Alice and Bob and the information
that Bob can obtain about Alice’s system by applying the measurement () to his own
system. The latter quantity is given by

S(p™) =Y aS(e) (1.3)
l
where ¢; is the probability for obtaining the measurement outcome [ and

o= %mg((l ® P)p(1® R))

is the conditional post-measurement state of Alice given that the outcome was [. The
minimum of the difference between (1.2) and (1.3) over all measurements was called
‘quantum discord’ in [30]. Even though it was not explicitly stated there, it is clear
that the definition could be modified by also allowing POVM measurements [32, 33].
It should only briefly be mentioned that in the special case above where Alice’s states
are perfectly distinguishable this modified discord is exactly the difference between the
Holevo-information and the accessible information [3] of the state ensemble p;, pP. As we
will see later, states with discord will appear in the context of clock synchronization.

1.3.3 Secret Correlations and Entanglement

We have already explained in Section 1.2 that mixed states appear in quantum theory in
two different situations: First, if we prepare randomly some pure state without knowing
which one was prepared and second, if we consider the restriction of a pure bipartite
pure state to one of the subsystems. It is irrelevant for the statistics of all possible
measurements performed on this system which possibility lead to the mixture. Likewise,
if Alice and Bob share a mixed joint state it is irrelevant for the correlation between their
measurement results whether their joint state is mixed because it is the restriction of
an entangled state shared with a third party. However, there are two reasons why the
difference matters nevertheless. For cryptography it is certainly important whether there
is some third system which shares some information with Alice and Bob. Therefore it is
useful for cryptography when Alice’s and Bob’s correlations are due to the entanglement
of a pure bipartite state. Then there cannot be any correlation to a third party.
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Secondly the difference is important from the thermodynamic point of view: If a com-
munication protocol between Alice and Bob creates correlations with their environment
(which is, by definition, a system where they do not have any access to) the process is
irreversible and is accompanied by a loss of free energy (see Section 2.2). This will be
important when we consider the problem to synchronize clocks such that no correlation
with the environment occurs.
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Chapter 2

Old Fundamental Problems in Light
of Modern Quantum Information
Research

This work advocates the use of tools from quantum information and computation to
revisit fundamental questions in physics and computer science. The application to com-
puter science requires perhaps less justification. Supposing someday quantum computers
are built and outperform classical computers this would certainly greatly impact the
paradigms of computer science. For physics, there are mainly two reasons to use QC
tools also to revisit the fundamental issues: First the clarity and simplicity of models are
attractive. Second the terminology of quantum information theory abstracts from specific
hardware in constrast to the traditional language of physics which tends to refer rather to
the theory of specific systems. Examples of this include the terms ‘canonically conjugated
observables’ in quantum theory (which exist only for infinite systems) or ‘pressure and
volume’ in thermodynamics (which are not appropriate to describe the thermodynamics
of spin variables). Hence I prefer the concept of qudits (or their infinite dimensional
generalization) as an abstract model of an unspecified quantum system. As we will see,
the abstraction will help to shed light on device-independent limits of quantum control.

2.1 Revisiting Quantum Mechanics from an Algo-
rithmic Point of View

In books on the foundations of quantum mechanics [27, 28], states are often introduced
as equivalence classes of preparation procedures (for quantum objects) which lead to
the same statistics in every potential measurement. Similarly, observables are equiva-
lence classes of measurement procedures which lead to the same statistics given the same
preparation procedure. This approach expresses already the demand to give an oper-
ational meaning to the ingrediences of quantum theory instead of speculating ‘what a
quantum state really is’. Quantum computing research can be considered as the most
ambitious effort since the beginning of quantum theory to find such an operational mean-
ing: It was stated in [34, 3] that every proposal for quantum computing should clarify (0)
how the quantum information is represented in a sufficiently protected manner, (1) how

21
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appropriate initial states are prepared, (2) how a sufficient set of unitary transformations
is implemented, and (3) how the output is measured. It would be interesting to know
which states are difficult to prepare and which observables are difficult to measure, and
more ambitiously, one would like to find general principles which do not rely too much on
features of a particular physical system. The word ‘difficult’ can have different meanings
in different contexts. From a computer science point of view it seems to refer to some sort
of complexity theory in the sense of counting elementary operations. But ‘difficult’ could
also mean that a particular state preparation or measurement would require controlling
the system very precisely and isolating it strongly to protect it against being disturbed by
the environment. This kind of ‘thermodynamic’ difficulty may differ substantially from
the complexity theoretical criterion as will be seen in Subsection 2.1.2.

2.1.1 Operational Meaning of States, Observables, and Unitary
Maps

We introduce states as equivalence classes of preparation procedures. The most elemen-
tary preparation procedure is not to act on the quantum system at all. But what is the
state of a system which has not been subjected to any external treatment? A central
postulate of thermodynamics is that it is in a thermal equilibrium state:

e Thermal Equilibrium: When subjected to an environment with temperature 7T
each system is after a while described by the Gibbs state

= eI ftr(eT),

where H is the Hamiltonian and £ is Boltzmann’s constant. Hence the eigenvalues
p;j of yp are computed from the eigenvalues £; of H according to the Boltzmann

formula
E; E
_ 1 j : _ =L
p] = e k:T/ e kT
1

This implies that the ‘most natural initial state’ of a quantum register is not neces-
sarily the state |0...0), it is rather the thermal equilibrium depending on the system
Hamiltonian. In present day NMR experiments it is one of the main problems that the
Gibbs state is highly mixed [35].

The abstract setting above raises the following questions: Is it possible to prepare
an arbitrary state vector |¢)) € H? Is it possible to implement an arbitrary unitary
transformation U on H? Is it be possible to measure every self-adjoint operator? If one
assumes that the standard model of the quantum computer will be realized in the future
one could answer the questions above. The answers could easily be generalized to qudits.

1. Unitary Operations: Every unitary operation on (C?)®" can at least approxima-
tively be generated from one- and two-qubit gates. A central issue for proposals of
QC implementations is how they can be realized. Since the arguments below rely
on the feasibility of sufficiently many basic operations we will add some remarks
showing why one- and two-qubit gates are natural basic operations at the end of
this subsection.
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. State Preparation: Initially, the system is described by its equilibrium state

pr according to the temperature T. Measuring the logical state of the register
yields some basis state |b) with some binary word b. Applying an appropriate
unitary operation U, one may obtain any desired pure state [¢)) with arbitrary
accuracy. Mixed states can be obtained by randomizing this procedure using an
external random generator. For large numbers of qubits or qudits the preparation
of a generic state would certainly require a huge number of gates [36, 37]. One
could also define a Kolmogoroff complexity for quantum states [38] based on the
complexity of the description of preparation procedures. In [39] an efficient scheme
was given to prepare a state of the form

9) = Y- VIO ).

whenever p is a probability distribution on the N = 2" basis states and ¢ specifies
the corresponding phase under the assumption that p and ¢ can be computed
efficiently on a classical computer and that all p(j) are bounded from above by
some constant multiple of 1/N. In keeping with the general intended message of
this thesis, it is interesting to note that Grover’s algorithm is used to solve this
non-computational problem.

. Von-Neumann Measurements: Given arbitrary unitary operations, one can

measure every self-adjoint operator A. Let U be a unitary that diagonalizes A, i.e.,
UAUT is diagonal in the computation basis. Let (|1);))j=o,. n—1 be an orthonormal
set of eigenvectors of A. If Uly;) = |j) we may measure A by applying U and
measuring in the computational basis [40]. One obtains the result j with probability
(1j|A;). If one demands that the post-measurement state is an eigenstate of A one
can implement UT afterwards. For degenerate A (i.e. if not all eigenspaces are one-
dimensional) this does not imply that the procedure projects onto the eigenspaces.

. Von-Neumann Measurements with Liiders’ Postulate: If one would like to

have a measurement with minimal disturbance such that the state vector is projected
onto the eigenspace [41], one has to get around the following problem: measurements
of a subset of k < n of the n qubits could only implement projections onto subspaces
of dimension 2" %. However, observables having arbitrary dimensional eigenspaces
can easily be measured using additional qubits, so called ‘ancillas’: after the ancillas
are all set to 0, one implements the mapping

ullz) @) =1 elle fi)

where the numbers f(0),..., f(2" — 1) enumerate the eigenvalues and f(j) is the
number of the eigenvalue of |¢);). Afterwards one measures the ancillas and imple-
ments UT.

. Generalized Measurements (POVMs): Even though generalized measure-

ments are usually not considered in quantum mechanics textbooks, they are older
than quantum computing research [28]. This concept of advanced quantum the-
ory describes every measurement with outcomes in a measurable set Y as positive
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operator-valued measure (POVM) on ¥, i.e., a map S — Mg for every measurable
set S C X such that Mg > 0 and My, = 1. For every state p

p(5) = tr(pMs)

is the probability for obtaining an outcome in S. It is by no means clear how
to implement a generic POVM. However, in principle one can use the Naimark
extension [42, 43] in which the system is embedded into a larger system and the
POVM measurement is reduced to a von-Neumann measurement on the larger
system. Note that this is also called ‘frame dilation’ in other contexts. On the
quantum computer one could reduce every POVM with finitely many outcomes to
von-Neumann measurements.

. Reversibility of Quantum Dynamics: Understanding the difference between

the future and the past is considered a deep fundamental problem of science and
philosophy [44, 45]. One of the most difficult questions in this context is to un-
derstand the second law of thermodynamics: Whereas the laws of micro-physics
and particle physics seem to be symmetric with respect to time reflection there is
no such symmetry on the level of thermodynamics. In my opinion, reversibility
of microphysics could mean both of the following statements, my impression being
that they are sometimes not clearly distinguished:

e Formal Time Inversion Symmetry: Given a basis of energy eigenstates
(|E;)), the anti-linear map

R:> ¢lE) — > TlE)
J J
can be considered as a time-reflection due to

Rexp(—iHt)R = exp(iHt).

When replacing all observables A with RAR one seems to observe the time-
reversed process. For a Schrodinger wave function one replaces, for instance
the momentum P (which is up to a factor the velocity of the particle) with
—P.

e Implementing the Inverse Time-Evolution: Note that the formal symme-
try above does not answer the control-theoretic question of how to implement
a transformation which transforms

exp(—Ht)[)

back to |¢). We may also consider a system with non-degenerate density
operator p. The only possibility to convert

exp(—tHt)pexp(iHt)

back to p is to apply the unitary operation exp(iHt), i.e., to implement the in-
verse of the time-evolution. But it can be more difficult to implement exp(iHt)
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than exp(—iHt). The reason for this kind of “arrow of time” is simply that H
is the real Hamiltonian and not —H. This argument does not necessarily apply
when the Hamiltonian of the system stems from an external control field like
the Hamiltonian of a spin system in a magnetic field, where H can be reversed
by reversing the field. The situation we have in mind is that H is an interac-
tion between particles like the electrostatic forces between two electrons which
cannot be reversed. In [46] we have considered the complexity of simulating
—H when H is present, i.e., to intersperse the natural dynamics in such a way
that the effective dynamics runs backwards. In Subsection 3.1.3 we consider
the problem of inverting the dynamics of n interacting spin-1/2-particles by
appropriate sequences of single-spin operations!. Depending on the specific
type of the interaction this refocusing sequence involves necessarily n — 1 time
steps. We have argued that this holds also if the interaction between many
pairs are small, e.g. due to large distances between them. This suggests that
the inversion of n-particle dynamics requires in the generic case sophisticated
control sequences with a complexity which increases with n.

In a system where not many control operations are available it is not clear how
to invert the time evolution at all. However, whenever the set of operations
are sufficient to allow a transfer of quantum information between the system
and a register of a universal quantum computer, an efficient implementation
of time inversion is probably possible. This is implied by a generalized under-
standing of the strong Church-Turing principle: given the assumption that the
quantum computer can simulate the original dynamics exp(—iHt) efficiently,
it can certainly also simulate the reversed evolution exp(iHt) by reversing the
whole circuit. This implies that wrreversible processes in the sense that no
implementation of exp(iHt) is feasible could only take place in systems which
allow no sufficient interface to a universal quantum computer.

The question of which control operations are the most elementary ones is certainly an
essential question of algorithmic quantum control. For state preparation we have already
mentioned that it is natural to consider the preparation of an equilibrium state as elemen-
tary as long as it is the real temperature of the environment surrounding the system. To
achieve different temperatures would already be a non-trivial control problem. It is less
clear which measurements and unitary control operations are basic. From the pragmatic
point of view this is just an issue of experimental physics. Nevertheless, it would be
interesting to understand in which way the mathematical structure of the fundamental
interactions in physics support some operations and not others. First of all, the fact
that these forces are pair-interactions is closely related to the special role of one- and
two-qubit or two-qudit gates. This is discussed in Subsection 3.1.2 where the discrete
quantum circuits are replaced by time-dependent pair-interactions and it is shown that
this computation model differs little from the two-qubit gate model. Unfortunately, this
analogy is not completely convincing since the fundamental forces between particles are
not controllable, they are simply always present. At first sight it seems as if controllable
pair-interactions would require three-particle interactions as the following model suggests.
Let Hy and H; acting on H4 ® Hp be two interactions between two particles A and B.

the so-called refocusing technique in NMR [47]
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We would like Hy to be present when our controlling device is in state |0) and H; when
it is switched to |1). This is given by an interaction among controller and A and B which
reads

10)(0] ® Hy + [1){1| ® H, .

This seems to be at least a three-particle interaction which would be unphysical. However,
there are several solutions to this problem. One possibility is that H4 and Hp are not
the whole Hilbert spaces of the particles. The spaces |0) ® H4 and |1) ® H 4 could, for
instance, be different subspaces of the whole Hilbert space of particle A. Then the control
operation consists of bringing A into either of the subspaces where the interaction looks
like either of both Hamiltonians H;.

A second possibility is that Hy and H; are only effective interactions. They may
describe, for instance, the situation when independent unitary operations on H 4 and Hp
of the form

U:=Us@Up

are applied to a system which intersperse the natural time evolution of a fixed Hamiltonian
H (see Subsection 3.1.2). To control the implementation of the single-particle operations
U and Up requires only pair-interactions between the particles and the controlling device.

In [48] we tried to understand in which way the structure of the interactions between
system and controlling device determines which control operations on the system are easy
to implement. In doing so, we considered a model of quantum control where a system and
its controller are both represented by quantum systems with a fized interaction between
them. The only access to the system is given by operations on the controller. This raises
the question which operations on the controller are possible which would clearly lead to an
infinite chain of controllers and its meta-controllers. The arbitrariness of the borderline
between system and controller is well-known in discussions of the quantum measurement
process. In this context, the borderline is called the Heisenberg cut [49]. Surprisingly,
I do not know of any remark in the literature that the Heisenberg cut appears also in
quantum control if one takes into account that interactions cannot be changed; they are
simply given by the laws of particle physics. To understand the resource requirements of
quantum control from this point of view, the state of the whole controlling device is the
program determining the sequence of control operations and the dynamics of system and
controller is the autonomous dynamics generated by a large Hamiltonian. An interesting
result of the models in [48] is that even though the access to the controller is unrestricted
there is a distinguished set of observables and unitaries which allow particularly simple
implementations.

In [50] we have reduced the control possibilities further and constructed a ‘pro-
grammable Hamiltonian’. which simulates universal gate operations if its initial state
is chosen appropriately. It can be considered as a continuous time version of a cellular
automaton. Even though our model requires 10-qubit interactions there is no apparent
reason why this should not be possible with more realistic interactions. Meanwhile I
found nearest-neighbor-interactions among qutrits on a 2D-lattice which implement an
autonomous quantum computer [51]. The remarks above relate, at least in a vague sense,
the physical resource requirements of quantum computing with space and time require-
ments of such a continuous-time quantum cellular automaton to implement a certain
control sequence on a part of its register.
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2.1.2 Micro- and Macro-Physics and Fault-Tolerance of Quan-
tum Gates

Since the early days of quantum mechanics it has been an issue of many debates why
physics in every-day life behaves classically and not according to the superposition princi-
ple. The famous ‘Gedankenexperiment’ with Schrodinger’s cat was intended to show the
counter-intuitive implications of quantum mechanics for every-day life: A cat being in a
superposition between alive and dead. Textbook quantum mechanics does not restrict
the superpositions principle such that those counter-intuitive superpositions are a priori
excluded.

The hypothesis of quantum computing research is: Every state in the Hilbert space
(C*H)®" of a quantum register can indeed be prepared. This means that one could even

prepare the ‘cat state’

1
E(‘O'”OHH”’D)’ (2.1)

If every qubit is given by the spin of a particle and |0),|1) are the states with spin up
and down, respectively, this would be a state with undefined magnetization, i.e., only if
one measures the magnetization “the system decides” whether it is a magnet in positive
or in negative z-direction.

The reason that superpositions like the cat state above are surprising is that some
properties of a physical system have such an immediate effect on the surrounding of the
system that it does not require a measurement instrument to investigate them. This is, for
instance, the case for the mean magnetization of a many-spin system which determines the
magnetic field around the system. Let us state these philosophical issues more explicitly.
Consider an observable A and a state p that commutes with A, allowing the interpretation
that A has at the moment a certain value, but we just do not know it. If p is, for
instance, a superposition of eigenstates of A the statement “A has a definite value but
we do not know it” contradicts the principles of quantum theory. However, the generic
situation is between those two cases: If p, for instance, almost commutes with A, then the
uncertainty of A-measurements is partly due to our missing knowledge and partly due
to inherent quantum uncertainty. Given some definition of macroscopic observables we
consider macro-realism as the statement that for all macroscopic observables A the trace
norm of the commutator [p, A is small for all states p in nature. The consideration of the
trace-norm is justified by the observation [52] that for any pure state p, the expression
| [A4, p || coincides with the standard deviation of A up to the factor 2.

Even though we do not have a definition for macroscopic observables, we have argued
above? that all observables of the form

n
_ 1
a::—g @
n 4 J
Jj=1

are macroscopic, where a; is the 1-qubit operator a acting on qubit j. Accepting this
definition, one would tend to find those states p more ‘natural’ and less paradoxical which
almost commute with all observables of this type. It is easy to check that the cat state
(2.1) satisfies

)l az] [ =2,

in agreement with Poulin [53], see also our arguments in [52]

2
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which is already the maximum of a commutator with two norm-one observables.

It would be an attractive idea to assume that such counter-intuitive states which do
not almost commute with macroscopic observables require preparation procedures with
high complexity. Then macro-realism would, so to speak, be supported by complexity
theory. But this is easy to disprove because the following scheme prepares the n-qubit
cat state (2.1) using a circuit of depth O(log, n).

1. Start with the state [¢g) := [0)®".

2. Perform a Hadamard gate on the first qubit and obtain
() == 1/v2(|0) + [1)) @ [0)*" .

3. Perform a C-NOT controlled by qubit 1 with qubit 2 as target. This prepares a cat
state on 2 qubits.

4. Given a cat state on a 2F-qubit cluster obtain a cat state on a 28! qubit cluster by
applying 2¢ C-NOT gates. Each of them is controlled by one qubit in the 2* cluster
and has an arbitrary target qubit in the remaining set.

To show that O(log, n) is optimal we proved in [40] that every state prepared by a
quantum circuit with depth d from a product state satisfies

2
alll; <4/ =2¢.
ol < /2

We also considered the question whether one could create macroscopic superpositions by
any measurements which can be implemented using circuits with depth less than Q(log, n)
In our model the measurement is given by performing a unitary U, measuring a subset of
k < n qubits in the computational basis and performing U afterwards. We have shown
that such a measurement (F;) satisfies
2d
a. Pl < —— 2.2

if the circuit U has depth d. In other words, measuring observables which do not almost
commute with @ requires logarithmically increasing depth in n. Summarizing these re-
sults, the preparation complexity of states which are not consistent with macro-realism
increases with n, even though the increase is only logarithmic. Therefore the arguments
do certainly not show that there are complexity theoretic limitations for creating macro-
scopic superpositions in a quantum computer.

However, one can nevertheless maintain the claim that it is ‘hard’ to prepare states
which contradict macro-realism on a hypothetical mega-qubit quantum computer since
cat states require an extremely closed system as well as reliable gates. This is similar
to the widely-accepted view that macrorealism is an effect of the environment [54]. But
usually it is only argued that the environment destroys macroscopic superpositions very
quickly. Here we want to argue that they are not even created when the reliability of the
gates is not sufficient.
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To give an intuition for the idea, we consider a quantum circuit which provides simul-
taneously a probabilistic algorithm for approximative @, measurements of n qubits and a
model for the decoherence caused by the environment. Depending on the measurement
accuracy demanded we use k additional qubits initialized to |0---0). Then we apply k
C-NOT gates with the k£ ancillas as targets, where we choose randomly k of the n qubits
as control inputs. After counting the number [ of ancillas in the upper state |1) the value
[ k/n gives an estimation for .. One can easily show that the output density operator
p of the n qubit register has only a small commutator with @,. This could be a good
model for the effect of the environment if one decides independently and randomly for
each qubit whether it is a control qubit for some C-NOT. But the environment will not
always ‘measure’ in the o, basis. If the C-NOT is conjugated by some unitary U on the
control qubit the environment ‘measures’

Ufto,U .

Note that a measurement with respect to some randomly chosen basis in C? (according to
the unique SU(2) invariant probability distribution) has the same effect on the measured
system as the depolarizing channel

1
D(p) =1 -e)p+eil,
with some small ¢ > 0. Hence a weakly polarizing channel on n qubits acts as if all
observables @ are approximatively measured and leads to states p where all commutators
[@, p] are small. The detailed version of the intuition above can be found in [52]. We have
proven that every state in the image of D®™ satisfies

1 1

en(l — a?) * nea

I, allly < 2( )

for every 1 > a > 0. In the asymptotics for large n we obtain a commutator with @ in the
order of 1/4/en. For separable states one obtains O(1/4/n). Furthermore we have shown
that each observable B with ||B|| < 1 defines an entanglement witness: Given a partition
of the n qubits into subsets (“clusters”) of size l1,...,ly (with } . l; = n). Then every
state which has no entanglement among the clusters satisfies

wriofa, B) < =[S0,

This shows that quantum uncertainty of macroscopic observables requires large scale
entanglement.

The fact that even a weakly polarizing channel makes it impossible to obtain states
with large quantum uncertainty of @ implies that the generation of those states requires
extremely reliable gates, since it is natural to assume that every real gate implementa-
tion depolarizes the qubit with some probability [52]. The possibility of quantum error
correction is irrelevant for this result if interpreted correctly, since our result refers to the
physical level, whereas error correction refers to the logical level. 1t is clear that error
correction [22] allows the preparation of cat states on the logical qubits with arbitrarily
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high accuracy if a certain reliability threshold for the gates can be guaranteed. Neverthe-
less, all observables @ defined on the original physical qubits have essentially only classical
uncertainty. The reason for this phenomenon is a separation of scales: Clearly the logical
cat state will also have some quantum uncertainty of @ but it will not be visible on the
scale of |[@||. To explain the appearance of a classical world as an effect of the deco-
herence caused by the environment is meanwhile standard [54]. However, the approach
above shows that macroscopic superpositions not only decohere quickly, they are even im-
possible to prepare with inaccurate operations. Taking into account that accurate gate
implementations will typically require complex experimental setup this statement can
also interpreted as complexity theoretic limitation for violating the type of macrorealism
considered above.

The sensitivity of macroscopic superpositions to inaccuracies of the preparation pro-
cedure has also another aspect. The state of a many-particle system is typically ex-
changeable. An n qubit state is called exchangeable if (1) it is symmetric with respect
to permutation of qubits (2) for every m € N there is a permutation symmetric state on
n+m qubits such that its restriction to n qubits coincides with p. The notion of exchange-
ability formalizes a natural preparation procedure for macroscopically large ensembles of
particles: The preparation procedure not only treats all particles in an equivalent way,
the preparation procedure is not specifically adapted to the number n of qubits. In other
words, there is a family of preparation procedures generating states p, such that the
restriction of p,.,, to an arbitrary selection of n qubits is p,. This is, in some sense, also
a fault-tolerance of the preparation procedure: It is not necessary to specify the number
n of qubits before running the preparation procedure, one may run it for some n’ > n and
select n qubits afterwards. Due to the quantum de Finetti theorem each exchangeable

state has the form
p= / VAN (v)

with an appropriate measure A on the set of 1-qubit states . Such states are almost
undisturbed by @-measurements if the latter are smoothed in an appropriate way (for
details see [53]).

2.2 Revisiting Thermodynamics

The relation between thermodynamics and information theory is not really easy to explain
as long as one considers classical physical systems. Its physical states are points in a
continuous phase space which require infinite information to describe. As a generalization
of Shannon entropy of discrete probability distributions (p;) to probability densities (p(z))
one uses often the integral

S(p) = / p(x) log, p(z)dz + ¢

with an arbitrary additive constant c. The relation of such a quantity to bits (as the ele-
mentary unit of information) is less obvious than in the discrete case and the arbitrariness
of ¢ reflects its unclear meaning [55]. Certainly one can define classical discrete models
by for instance discretizing the phase space or by neglecting superpositions in quantum
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systems (as often done in Ising models in statistical physics). The problem is that clas-
sical models with finitely many states cannot have continuous reversible time-evolution
[6]. Hence classical thermodynamics suffers from a lack of simple models.

In the following we will therefore often consider the thermodynamics of quantum me-
chanical two-level systems. The role of quantum superpositions will only be marginal.
The decisive input from quantum information theory in these considerations is to consider
unitary transformations on collections of two-level systems as simplest interesting exam-
ples for thermodynamically reversible operations on physical objects. This gives a first
impression how closely related thermodynamic machines like heat engines and refrigera-
tors are to computing devices. Some ideas for a complexity theory of thermodynamical
machines will be presented in Section 3.2

2.2.1 Understanding Thermodynamics by Toy Models

Even though the laws of thermodynamics are directly relevant in every day life they are
commonly not well understood and in particular the second law is sometimes considered
mysterious even by physicists. The following questions are among the essential ones:

e Why is it not possible to use all the heat around us to generate other forms of
energy even though heat is also a form of energy? (such a machine would be called
‘perpetuum mobile of the second kind’)

e Why does a refrigerator need energy even though it is only required to extract
energy from the inside?

The answer ‘this follows from the second law’ is not really satisfying. One has learned
to accept the fact that energy generation from heat requires temperature differences
and that, for the same reason, the generation of temperature differences requires energy
(otherwise one could generate energy by generating temperature differences first).

As a physicist, one learns to accept that the impossibility of a perpetuum mobile of
the second kind has to do with a ‘mysterious quantity’, called entropy which can only
increase but never decrease. And, what makes all these statements even harder to believe,
entropy quantifies information, or more precisely, the missing information about nature.
The fact that the information about nature is decisive for the worth of the available
energy seems a bit odd. However, it may be illustrated by the following:

A shop sells batteries and collects those which are used up for recycling purposes.
After almost all the full batteries are sold, the shop contains almost only empty batteries.
Unfortunately, the owner is sloppy and he forgets to keep the full and empty batteries
separately. If only one full battery is among the empty, its energy is lost from the point
of view of a lazy shop-owner who does not want to search all his shelves for the full
one. However, it is not lost from the fundamental point of view. A thrifty shop-owner
would measure the voltage of the batteries in order to identify the new one. But the
measurement consumes a little bit of the energy. If we substitute the batteries with some
energy storage on the atomic level the measurement may consume more energy than the
atom contains and thus some energy is really lost by forgetting the location of the full
battery.
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In the following we will present models which provide a quantitative understanding
that information is as valuable as energy. The standard model of quantum computing
(see Section 1.1) also provides appealing models to explain this. One may be surprised
why we have chosen to use quantum computers as models even though superposition
states do not play any role in this section. The ability to process superpositions seems to
be the essential feature of the quantum computer. However, the quantum computer has
in fact two important features:

1. It preserves superpositions between logically different states

2. Tt does not copy any information from its register to the environment during the
computation.

It is easy to see that (1) implies (2). This is essentially the no-cloning theorem [9].
As soon as a mechanism copies the classical states to the environment a superposition
between different logical states could not survive. One tends to believe that (2) implies
also (1). We will address this question in Subsection 2.2.8.

Now we will try to understand thermodynamics by scaling down thermo-dynamical
machines to the quantum scale, since this makes the relation between information and
energy more obvious. We recall that the main physical information about a system is
represented by its Hamiltonian H. If a fixed reference temperature co # T > 0 is
given, one can equivalently describe the energy level structure by the equilibrium state
~vr. Hence we will describe a system merely by this density operator 7. If a system is
not in equilibrium it is described by some density operator p # ~vr. By specifying the
pair (p,vr) (both density operators acting on a common Hilbert space H) one has all
thermodynamically relevant information. We define therefore:

Definition 8 (Thermodynamical Object)
A thermodynamical object is given by the pair O := (p,~yr) where vy is the equilibrium
state and p the actual state.

An equilibrium object is a pair (yr,v7). Since the equilibrium state of non-interacting
systems is simply the tensor product of equilibrium states one has a simple composition
rule for describing two objects in one:

0®0 = (p,7) ® (3,77) = (p ® p, ¥ ® i) -
Now we consider the question which objects are energy resources, i.e., which objects can

be subjected to a physical process in such a way that the process extracts energy in the
statistical average. Here we allow only unitary transformations as processes and define:

Definition 9 (Energy Source)
An object (p,yr) is an energy source if there is a unitary U acting on the system Hilbert
space H (where p and yr act) such that

Eyain = tr(pH) —tr(UpU'H) > 0,

where H is the Hamiltonian specified by ~yr.

The gained energy is transfered to the environment or the physical medium (e.g. control
field) which drives the implementation of U. The reason why we allow only for unitary
operations is that we want to include all possible entropy sinks in the description®. It is

3For a detailed justification see [56].
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easy to characterize non-energy sources explicitly (see [57, 56]):

Lemma 1 (Condition for Energy Sources) An object O is not an energy source if
and only if p and yp commute* and the eigenvalues of p are non-increasing with decreasing
eigenvalues of yr, i.e., with increasing eigenvalues of H.

We conclude easily:

Theorem 1 (Impossibility of Perpetuum Mobile) An equilibrium object is not an
enerqgy source.

But of course there are also non-equilibrium objects which are not an energy source in
the sense above. Nevertheless, there is a relation between the property of being an energy
source and being the equilibrium state. This is shown by the following theorem®. We
gave a slightly different proof in [56] which shows nicely that the Boltzmann distribution
arises from geometric arguments.

Theorem 2 (Copies of Non-Equilibrium States are Energy Sources)
For an object O with different energy levels the following statements are equivalent:

1. O is an equilibrium object for some T € (0, 00| or p is such that the whole probability
15 concentrated in the lowest energy levels.

2. There is no n € N such that the n-fold copy O®™ is an energy source.

We conclude that every non-equilibrium object (p,y7) can be used as energy source if we
have sufficiently many copies of it. This asymptotic statement coincides with conventional
thermodynamics where every non-equilibrium system is an energy source. For large
systems one can argue as follows. Given a state p which is not an equilibrium state for
any temperature 7. Then the average energy tr(pH) of p coincides with the average
energy tr(yrH) of the equilibrium state for some temperature 7'. Since 7 is the unique
state with maximal entropy given its average energy the entropy of p is less than the
entropy of 7. This means that one can lower the average energy of the system without
extracting entropy and the system is thus an energy source. To discuss issues like that
conventional thermodynamics introduces the concept ‘free energy’, formalizing the fact
that the amount of usable energy depends on the entropy inherent in the system. We
will come to that point later.

2.2.2 The Most Elementary Heat Engine

The essential difference between a heat engine like a steam engine in contrast to a per-
petuum mobile of the second kind is that the former is driven by two or more equilibrium
objects with different temperatures and not by one equilibrium object as is the latter. We
would like to understand intuitively why two systems with different temperatures may
be an energy source, whereas two systems with equal temperature are not. For doing so

“Note that this condition is equivalent to [p, H] = 0.
Ssee [57], for a generalization to infinite dimensional systems see also [58].
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we take both systems to be the most elementary ones, namely two-level systems. Let
system A have energy gap F4 and system B have gap Ep < F4. Assume furthermore

T T

AL B

E,  FEp
Label the basis states of the bipartite system (A, B) by 00,01, 10, 11. One observes easily
that the state 10 has more energy than 01 even though the latter is more likely. This
shows the following calculation:

P10 _fa Ep Ep_Ea
— =e¢ *aek’B =eTB Ta |

Po1
which is greater than 1 by assumption. Hence we gain energy by implementing the
SWAP-gate, i.e., the permutation 10 <» 01. The fact that the system is only an energy
source if E4 # Ep is a constraint which seems not directly to be related with the second
law. It is something like an additional constraint for micro-physics. Those constraints
become less relevant in larger systems since we can construct heat engines consisting of
many two-level systems with equal energy gap.

2.2.3 The Most Elementary Refrigerator

The same system as above can be used as a refrigerator. We assume that both two-level
systems have temperature 7' at the beginning. Due to E4 > Ep the state 01 is more
likely than 10 and has less energy than the latter. Therefore the permutation 10 «<» 01
reduces the (marginal) probability for the upper state in the right system by the amount
Po1 — P1o- Since every decreasing distribution on a two-level system is an equilibrium state
for some temperature (see remarks in Subsection 2.2.1), the final marginal distribution
of system B is an equilibrium state with lower 7. The marginal distribution of A is a
state with higher T'. It is easy to see that the process 10 < 01 requires energy since now
the higher-energy state is more likely. This nicely shows that this fridge needs energy in
order to generate a temperature difference.

2.2.4 Computer Scientist’s Fridge

Our toy models for heat engines and refrigerators with 2 two-level systems requires two
systems with different energy gaps. Here we show that refrigerators are also possible for
systems with equal energy gaps when at least 3 of them are available. Such a system has
8 basis states. Now we construct a cooling process for the third two-level system which
maps the 4 states with least probabilities to those states |b) where b has suffix 1. This
can be done by the map [011) < |[100) which leaves all the other basis states invariant.
A circuit® from C-NOT and TOFFOLI gates that implements this transformation can be
seen in Fig. 2.1.
Let p,q the probabilities for the upper state of one qubit. They are given by (see

Section 2.1)

P ._ —B/kT)

q

6Thanks to Joe Renes for this circuit.
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Figure 2.1: Quantum circuit with C-NOT and TOFFOLI gates which is a fridge and heat
engine at the same time. If all three qubits start with identical temperatures the circuit lowers

the temperature of the third qubit and the implementation requires energy. If the third qubit
is initially already sufficiently colder than the others, the implementation releases energy.

After the cooling process the temperature T” of the third qubit is given by

BT _ P3P
q3 + 3q2 ’

where numerator and denominator are the total initial probabilities for the 4 initial states
with Hamming weight at least 2 and less than 2, respectively.

In general one may wish to cool k systems by transferring the heat to the remaining
n—k systems. For combinatorial questions of this kind it is typically (as in coding theory)
easier to make statements about the asymptotics than for any finite n. According to
Shannon’s theorem [29] it is possible that the probability for the state 0...0 in the k
rightmost systems approaches 1 with arbitrary accuracy whenever k/n is at most 1 — S
where the entropy S is defined by S := —plog, p — (1 — p) log,(1 — p). Note that there
exists indeed a proposal for a cooling algorithm [35] where the entropy of one part of a
quantum register is transfered to the other part in order to obtain almost pure initial
states in NMR computing (see Subsection 4.2.1). The scheme shows that initialization
and cooling are closely connected. This suggests an implication of the second law observed
by Landauer [11]: because bit erasure requires the transfer of entropy to the environment,
it requires some amount of energy in analogy to the energy consumption of a refrigerator.
We will elaborate on this statement in Subsection 2.2.6.

2.2.5 Computer Scientist’s Heat Engine

Not only a refrigerator but also the heat engine can be run with equal gap two-level
systems. Consider, for instance 2n two-level systems, where n have the temperature Ty
and n have temperature Tg # T4. To see that this is an energy source for sufficiently
large n we consider first the object O given by the composition of one system with
temperature T4 with another one with temperature Tz. It can easily be checked that
O is not an equilibrium object if AE # 0. Hence there is an n € N such that O%" is
an energy source due to Theorem 2. The smallest number n for which this is possible
depends on T4 and Ts. Whenever we have Ty > 2T one can also construct a heat
engine with 2 + 1 equal systems: Then the state 110 is more likely than 001 even though
its energy is twice as much. Hence the process 110 < 001 which already appeared as a
refrigerator extracts some energy (see Fig 2.1). This example suggests already that there
is a strong analogy between computation and work extraction. In [56] we have tried to
make this analogy more precise by showing that there are molecular systems where the
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N

S

Figure 2.2: Two 3-level systems with energy gaps E4 and Ep satsifying 2Eg > Ex > Ep.
If the temperatures T4 and T satisfy E T > 2EgT4 the optimal heat engine implements a
computationally universal transformation.

unitary U implementing an optimal heat engines is necessarily a transformation that can
be used for computation.

One instance is a pair of 3-level systems where the unitary which implements the
optimal heat engine is a transformation that is universal for classical boolean circuits.
We rephrase our construction presented in [56]. We assume that system A and B have
both equidistant levels |0),[1), |2) with energy gaps E4 and Ep, respectively. Up to an
irrelevant factor the energy of a state |n, m) with n,m = {0, 1,2} is given by

E(n,m)=en+m

with e := E4/FEp. The inverse logarithm of the probabilities is, up to irrelevant additive
and multiplicative constants, given by

Q(n,m)=qn+m

with q := E4Tg/(EgT4). When e and ¢ are not in {1/2,1,2} the Hamiltonian as well
as the density matrix of the bipartite system are non-degenerate and the optimal heat
engine implements a unique reordering of basis states. The following choice of values e, g
turns out to be useful: setting 1 < e < 2 (as in Fig. 2.2) we induce an order on energy
values of the pairs n, m which is a refinement of the degenerate order induced by n +m
such that for pairs with equal n + m preference is given to the pair with smaller m.

Explicitly, this is the order 00, 10,01, 20, 11,02, 21, 12, 22. With ¢ > 2 the probabilities
are in the lexicographic order 00,01, 02,10, 11,12, 20, 21, 22. By comparing these orders
one checks easily that the optimal heat engine implements the map

00 ~ 00 (2.3)
01 — 10
02 — 01
10 — 20
11 — 11
12 — 02
20 — 21
21 — 12
22 — 22.

Assume we are given a collection of systems of type A and type B. If we are able
to implement the heat engine above on every pair of 3-level systems consisting of one
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system of type A and one of type B we can also implement classical computation on the
collection of these 3-level systems. In order to show this, we choose the encoding such
that the logical states 0, 1 are the states |1) and |2), respectively and obtain a universal
set of logical operations as follows:

1. OR from A, B to B :

A

B B
Apply U once. One checks easily on tabular (2.3) that the second state is |2) if the
input is one of the states [12),]21),|22) and |1) if the input is |11).

2. WIRE from A to B :

—__

Use our OR gate by initializing B to |1), i.e., the logical 0 state.

3. FANOUT from B to A, B :

A

B I B
Initialize system B to |1). Apply U four times. We get the mapping 12 — 20 and
11 +— 11. The output on A coincides already with the input on B. The output on
B is 1 or 0 according to whether the input on B was 1 or 2. Hence the information
has already been copied to B but with the wrong encoding. For the decoding we

initialize an additional system A’ to the state |1) and apply U? to A’, B. We get
10 +— 02 and 11 — 11. Hence B agrees with the original input on B.

4. WIRE from B to A :

I ]
B
Use the FANOUT.

5. NOT from B to B :

5 e

Implement the first part of the FANOUT operation which changes the input state
2 to 0 and leaves 1 invariant. By initializing an additional system A’ to |2) and
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applying U once we decode and negate the information on B simultaneously :
20 — 21 and 21 — 12.

These operations allow obviously universal computation since every boolean function can
be computed from circuits which consist only of NOR gates. We summarize :

Theorem 3 (Computing with Heat Engines on 3-level Systems)
Given two reservoirs of 3-level systems with temperature Ty and Ty and energy gap Fa

and Eg, respectively, such that
Ty, 1Tg
2—/— < —
Ey FEp
and

Ea
2> —>1
Ep ’

then the ability to implement the optimal heat engine on any chosen pair consisting of one
system of type A and one of type B implies the ability to implement universal classical
computation on the 3-level systems.

The results above stimulate the following questions:

1. Is it possible that “algorithmic” heat engines of this kind can be implemented in
future technology such that the energy consumed by the implementation is less than
the formal energy gain according to Definition 97

The question whether this will ever be possible is strongly connected with to ques-
tions of the ultimate limits of computation: Is there a fundamental lower bound on
the energy consumption for performing a logical operation? This question will be
addressed in Subsection 2.2.9, even though it will not be answered there.

2. Consider n + n two level systems as above with large n. How complex is the
implementation of an optimal process 7?7 In case the optima are complex, what
is the trade-off between efficiency (i.e. the energy yield compared to the maximal
yield) of the heat engine and the complexity of the quantum circuit?

We will discuss these questions partly in Chapter 4.

2.2.6 Classifying Thermodynamic Resources

The essential feature of the transformations considered above was that they are not
energy conserving. The cooling mechanism requires energy for the implementation and
the heat engine releases energy. In the first case the required energy is provided by
the control fields which implement the transformations, in the second case the energy
is transferred to the environment, e.g. some field mode. This can best be seen in the
case of a simple two-level system: If the upper level is more likely occupied then the
lower level the implementation of NOT is usually a stimulated emission, i.e., an emitted
photon transfers the released energy to the environment. If the lower level is more likely
occupied the energy required to implement the NOT gate is taken from the field which
implements it. Now we present a thermodynamic setting where these energy sources
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and sinks are explicitly included into the model. This could be interesting if in future
technology control fields are scaled down in such a way that a microscopic description is
appropriate. In particular, it is of interest whether the amount of energy for manipulating
the microscopic world can be reduced arbitrarily. We have already mentioned one well-
known bound given by the second law or Landauer’s principle: Preparing certain pure
quantum state from a mixed one requires energy since it is connected with the extraction
of entropy. However, the amount S of entropy which has to be extracted for preparing
single quantum systems is tiny (for a two-level system it is at most one bit!) hence the
energy SkT is” negligible. For our purpose, we are more concerned with the fact that
an energy source is required at all than about the tiny amount of energy which has to
be supplied. The reason why this is important is that we show that it is not sufficient
to have an energy source which can supply the required amount of energy, it is rather
necessary that the source provides energy of high quality in a sense which is formalized by
the quasi-order of resources explained below (for further details see [59]). This ‘quality’
depends in a sophisticated way on statistical properties of the energy source, in other
words, it depends on our knowledge about the state of the resource system. It can be
shown that reliable state preparation can only be driven by an energy source about which
we have reliable knowledge in a certain sense. We consider this as a refinement of the
second law of thermodynamics. To motivate this point of view we emphasize that the
idea that the worth of an amount of energy depends on our knowledge about the state of
the resources is one of the central statements of the Second Law: the knowledge about a
system containing a certain amount of energy is minimal in its thermal equilibrium state.
Accordingly, the internal energy of such a thermal heat bath is completely worthless
without making use of other systems with deviations from equilibrium. This can be
expressed by the quantity ‘free energy’: An energy source containing the energy E and
the entropy S contains the free energy £ — SkT In 2, i.e., the worthless part of the energy
is subtracted. The amount SkT'In2 of energy would be necessary in order to bring the
energy source into a perfectly known pure state. The quasi-order is a refinement of these
statements in the sense that the usability of energy resources cannot be expressed by a
single quantity like free energy: for the purpose of an exact state preparation it is possible
that the free energy of a source may be sufficient, but other statistical properties of the
source may make it worthless for achieving the desired accuracy. It is even possible that
an energy source is able to drive many unreliable preparations but is not able to drive a
single reliable one.

We can now formalize what it means that ‘an energy source is able to drive’ a prepa-
ration process and work with thermodynamical objects in the sense of Definition 8 where
we drop the index of yr. Our model consists of three quantum systems:

e The resource system which is the energy source driving the process. It is initially in
the mixed state p and therefore the object (p, ). After the preparation procedure
its state is closer to the thermal equilibrium state 7, because the free energy has
partly been used up.

e The environment which can be any quantum system starting in its equilibrium
state 4. This is not a restriction of the theory, it expresses rather our point of view,

“where k denotes the Boltzmann constant and T is the temperature of the entropy sink.
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since every system in a non-equilibrium state should be regarded as resources. The
environment can be a large quantum system.® It is the object (¥,7%).

e The target system which is initially in its thermal equilibrium state 4 and should be
driven into another state p. Hence it is initially the object (¥,%) and should finally

be (p,7).

Now we define:

Definition 10 (Thermodynamic Quasi-Order)

The resource object (p,~) is able to drive the preparation of (p,7) in the target system
if and only if there is an environment such that there is an energy conserving physical
process involving the three systems described above such that the target system ends up in
the state p. We write

(p:7) = (5, 7)
for short. Formally, this means the following. Let H and H be the Hilbert spaces of

resource and target system, respectively. Then there exist Hilbert spaces H,, a state 7,
and unitary transformations U, on

HRH, ®H
commuting with v ® v, ® v such that

Tim 2r15(Un(p @ 90 @ NUY) =5,
where tris denotes the partial trace over the first and the second system.

It is easy to check that the condition that U is energy conserving is equivalent to
U,v® 4 ® 4] =0. One may wonder why - appears in the notation although it appears
neither in the initial nor in the final state of the composed system. Actually ~ appears in
a subtle way since the term ‘energy conserving’ refers to the Hamiltonian of the resource
system which is (up to an irrelevant constant) determined by ~.

Due to the conservation of free energy, the final amount of free energy of the target
system can never exceed the initial amount of the resource system. This gives a necessary
condition for (p,~) > (p,7) which is well-known in standard thermodynamics. But this
condition is by no means sufficient. Under the special assumption that p or p are time-
invariant states we can characterize the quasi-order in a quite explicit way [59]. When p
and v commute we characterize the object simply by the vectors p, g of eigenvalues of p
and ~, respectively and denote the object by (p, g).

Theorem 4 (Explicit Description of Quasi-Order)
Let (p,g) and (p, g) be resource systems. Then

(»,9) > (,9)
if and only if there exists a stochastic matriz A such that

Ap=p and Ag=3g.

81t might possess an infinite dimensional Hilbert space. In our formalism, we work therefore with a
sequence of finite dimensional Hilbert spaces.
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In the limit of infinite temperature, ¢ is the uniform distribution on the set of energy
eigenstates and if g and g have equal dimension the condition Ag = § is simply the
condition that A is a double stochastic matrix. Then (p,g) > (p,g) if and only if p
majorizes p. We say that the vector p majorizes p if

l l
Y opi=Y B Yi<n
j=1 j=1

whenever py,...,p, and py, ..., D, are the entries of p and p, respectively, in non-decreasing
order. Note that the density matrix + corresponding to a vector g with uniform distribu-
tion is the maximally mixed state which commutes with every other matrix. Therefore
we can diagonalize p and 7 always simultaneously for this case. Hence we have an explicit
description for the quasi-order:

Corollary 1 (Resource Order by Majorization)
Let resource and target system both have d dimensional Hilbert spaces. Then

(p,1/d) > (p,1/d)
if and only if the vector of eigenvalues of p majorizes the vector of eigenvalues of p.

Note that the spectral majorization criterion above is equivalent to stating that p is in the
convex span of unitary conjugates of p [60]. Then the only possible operations on resources
are a deterministic or a random choice of unitary transformations, i.e., the environment
can only serve as an entropy source but never as an entropy sink. The Hamiltonian of
the system looses its relevance and the worth of resources are only determined by the
eigenvalues of the density matrix. Then our theory of resources coincides with the manner
in which M. Horodecki, P. Horodecki, and J. Oppenheim [61] classify thermodynamic
resources: in their setting all ancillas in maximally mixed states are free, which is exactly
the Gibbs state to infinite temperature or completely degenerate Hamiltonian. However,
this limiting case cannot consistently describe infinite dimensional systems.

An important observation is that the quasi-order is not a linear order, i.e., we do not
have necessarily (p,7v) > (p,7) or (p,7) > (p,v). Mathematically this can most easily
be seen in the limit v = 1/d. Chose two density matrices p, p. In 3 dimensions they can
certainly be chosen such that they have the same von-Neumann entropy but different
spectrum. If one would majorize the other its entropy would be strictly lower.

An interesting feature of the quasi-order is that one can compare also systems with
different Hilbert spaces and different Hamiltonians. We want, for instance, to recover
Landauer’s principle [11] stating that the initialization of one bit requires the energy
In 2kT', where k is Boltzmann’s constant and 7" the reference temperature of the environ-
ment which absorbs the entropy. In order to simplify the discussion we represent the bit
by a degenerated two-level system. The initialized bit is hence the object

O = (|0)(0],1/2).

First we have to formally introduce free energy. We define it such that it is zero for
equilibrium states.
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Definition 11 (Free Energy)
The free energy of an object is given by

F(p):=tr(pH) — S(p) n2kT —tr(yH) + S(v) In2kT .
It can be written in terms of the Kullback-Leibler relative entropy between p and ~y:

F(p) = kT In2 K(p||y) := kT (tr(vlogy v) — tr(plog, 7)) -

The free energy of the initialized bit is In2 kT, i.e., its information in natural units
multiplied by k7. Note furthermore that we have monotonicity of the quasi-order with
respect to relative entropy distance:

Theorem 5 (Monotonicity of Relative Entropy)
Conversion of resources can never increase the relative entropy distance of the actual
state from its equilibrium, i.e.,

(p.7) > (p,7)
implies
K(plly) = K(pl|7) - (2.4)
and
KA1p) = K(vllp) - (2.5)

The proof follows directly from the fact that the operation which converts p to p would
convert v to 7, since equilibrium states can only create equilibrium states. Then the

statement follows because such operations cannot increase the distance between p and ~y
[62]. We conclude:

Corollary 2 (Landauer’s Principle)

Let
(10)(0f, 1/2)

be the formal representation of an initialized bit. Every resource (p,~y) with

(p,7) = (10){0}, 1/2)
satisfies
K(plly) = K(|0){0[][1/2),
i.e. F(p) >In2kT.

Recalling that we have here derived Landauer’s principle from the monotonicity of K (p||7)
according to ineq. (2.4) one may ask the implications of the monotonicity of K(v||p)
according to ineq. (2.5). We derive a tightened version of Landauer’s principle:

Corollary 3 (Tightening the Second Law) There are objects O, O where O has more
free energy than O but nevertheless

0#0.

Another necessary condition is given by

K(llp) = K(#|lp) -



2.2. REVISITING THERMODYNAMICS 43

The latter condition is remarkable since the distance diverges for non-invertible p. This
implies that one can never obtain resources with singular density matrices from resources
with invertible density matrices. In [59] we argued that a natural energy source supplies
always non-singular density matrices. This can, for instance, be a Gibbs state with higher
temperature. With such an object one can never drive the initialization of a bit reliably.
This is only possible in the limit of infinite copies:

Theorem 6 (Tightening Landauer’s Principle)
Let O be an object with non-singular density matriz and

Oc := (e[1)(1] + (1 = €)[0)(0], 1/2)

be a bit which is initialized with probability 1 — €. Then one needs increasing number of
copies of O to prepare O, i.e., )

0®" > O,
holds only for n — oo if € tends to 0.

Actually there is an extremely simple idea behind the tightened version of Landauer’s
principle: For any two non-singular matrices p and ~ there is no measurement that can
reliably distinguish between them. Every rule specifying how we could estimate whether
p or v is the actual state could be formalized by a POVM with two operators P, and P, .
It is easy to see that no estimation which is neither always p or always v can avoid errors
of both kinds: estimating p when it was v and vice versa. Assume (p,7y) could reliably
drive the bit initialization. Then we could check the bit, if its value is 1 the resource
system cannot have been in the state p. This would be a non-trivial decision rule with
only one kind of error: one could take the state v for the state p but not vice versa. We
found [59]:

Theorem 7 (Resources for Reliable Bit Erasure)

The object O = (p,~y) can drive the preparation of the state (1 — €)]0)(0] + €|1)(1| if and
only if there is a measurement with outcomes p,~y described by a POVM (M,, M,) such
that [y, M,] = 0 with the error probabilities

Fy=tr(yM,) =1/2,

and
Fy =tr(pM,) =e.

One direction of the proof is already given by the arguments above: The preparation
procedure followed by a readout would provide a POVM with exactly these error prob-
abilities. For the proof of the converse we refer to [59]. The same arguments as above
hold for perfect cooling of non-degenerate two-level system:

Theorem 8 (Resource Requirements for Low Temperatures) .
The object O = (p,~y) can drive the cooling of a two-level system with energy gap E down

to the temperature T if and only if there is a measurement with outcomes p,~y described
by a POVM (M,, M,) such that [y, M,] = 0 with the error probabilities

o~ B/(kT)

Fy=tr(yM,) = ——————
1 T(’y P) 1_'_6—E/(k)T)
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and
1

The theorem is a quantitative basis for the intuition that the generation of very low
temperatures is extremely costly.

The hypothesis testing argument (see [31] for quantum estimation theory) explained
here might be called the principle that ‘distinguishability can never increase’. It shows
that much more sophisticated information theoretic quantities than entropy play also
a fundamental role in thermodynamics. But apart from this, one should expect that
the worth of resources is given by quantities which do not have necessarily any obvious
information theoretic meaning. Assume for instance that the resource state is time-
invariant. Then it can never drive the preparation of a non-time-invariant state. This is
formulated quantitatively in the quasi-order of clocks in Subsection 2.2.7.

The practical relevance of the quasi-order lies rather in stating which processes are
not possible than to say which are possible. Even though the preparation of p given the
resource p would not require energy “in principle” in the sense of our setting whenever
(p,7) = (p,7), it seems to be far from currently feasible to implement the resource
conversion using only a negligible amount of energy. However, such an implementation
would be given if the process was implemented by the autonomous time evolution of
resource system + ancilla system + target system. As we have seen in Subsection 2.2.5
heat engines may require quite a few non-trivial logical operations. The problem of
finding an interaction which implements transformations like those could be as hard as
finding an interaction for autonomous universal quantum computing as needed for the
ergodic quantum computer (see Subsection 2.2.9).

F2 = t’l“(pM.y)

2.2.7 Timing Information as a Thermodynamic
Quantity

Thermodynamics describes the interplay between energy and information and how this
determines fundamental limits to physical processes. In our quasi-order of resources
all systems in the Gibbs-state are free. One could be more generous and state that
all systems with stationary states are free, i.e., all systems with [p, H] = 0 instead of
p = exp(—H/(kT)). Then the value of a resource lies alone in its dynamics, i.e., the
off-diagonal elements with respect to the energy eigenbasis makes the resource valuable.
The extent to which the states exp(—iHt)pexp(iHt) are distinguishable for different ¢
determines the worth of this Hamiltonian system when it is used as a clock. This is the
main idea of the quasi-order of clocks introduced and investigated in [63]. In this setting,
we characterize a quantum ‘clock” abstractly by the pair (p, H), where p is the system’s
density matrix and H its Hamiltonian. We define formally:

Definition 12 (Quasi-Order of Clocks) .
The clock (p, H) is able to prepare the clock (p, H)), formally writing

(p. H) > (p, H)
if there is a completely positive trace preserving map G such that G(p) = p and G satisfies
the covariance condition

Goag=a0,0G forallteR
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with the abbreviation
ay(0) = exp(—iHt) o exp(iHt)

for each density matriz o (and &; defined similarly).

We say that two clocks are equivalent if each of both majorizes the other in the sense
of this quasi-ordering. The equivalence class of trivial (or ‘worthless’) clocks is given by
all those clocks with [p, H] = 0. They are majorized by all the other clocks.

We illustrate the intuition of this quasi-order in the following protocol: assume Alice
sends a clock (p, H) to Bob. Assume this system for the moment to be a spin 3/2 system
rotating about its z-axis. Carol asks Bob to send her a clock showing as much about
Alice’s time as possible, but she complains: ‘please do not send the spin 3/2 system, I
am not able to read it out.” Since she can only deal with spin 1/2 particles, she asks
Bob to put as much information as possible about Alice’s time into a spin-1/2-particle.
Bob’s possible transformations are mathematically described by a completely positive
trace preserving map G from the set of density matrices of spin 3/2-systems to the set of
density matrices of spin-1/2-systems. To illustrate why G has to satisfy the covariance
condition note that the state of the system received by Carol is given by

(@10 Goar)(p)

if the time t has passed since the preparation of the resource state p and Bob ran the
conversion process at time 7. Since Bob is not able to run the process at a well-defined
time 7, he applies a mixture over all 0 < 7 < t, whether he wants to or not. If we assume
for simplicity that t is large compared to the recurrence time of the quantum dynamics,
this mixture can equivalently be described by a time covariant map G.

As already stated, the thermo-dynamical quasi-order is stronger than the quasi-order
of clocks, i.e.,

(P, H) zthermodyn ([)7 H) lmphes (P, H) chock (ﬁ, H) .

The reason that the covariance condition is also a necessary condition (even though it is
not sufficient) in the thermodynamic quasi-order is essentially the energy-time uncertainty
principle: If a process is started by a negligible amount of switching energy it cannot be
well-localized in time, i.e., the process cannot be started without using a clock.

One can easily extend the quasi-order in such a way that it also includes classical
systems since the setting of operator-algebraic quantum theory [64] allows a unified de-
scription of quantum and classical aspects [63]. The observable algebras are abelian
C*-algebras for classical systems and non-abelian for quantum systems. The state of a
classical clock is a moving probability distribution in its phase space?. The simplest ex-
ample would be a probability distribution on the unit circle which rotates with constant
angular velocity. The time evolution is in both cases a C*-automorphism group. The
completely positive operation which generates the state of the target clock from the state
of the resource clock satisfies a covariance condition with respect to these automorphism
groups.

The quasi-order of clocks (like the thermodynamic quasi-order) is not a linear order.
This reflects the fact that timing information has many aspects, here we only mention

9which is the Gelfand space [65] of the abelian algebra
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a few of them. First, the periodicity of two systems is essential. If the dynamics of one
system has period 1 and the other has period 2 the first cannot majorize the other in
the quasi-order since the latter distinguishes between the time instants 0 and 1. Further-
more, the time resolution matters. If p; and p;,a¢ act on mutually orthogonal subspaces
whereas p; and py;1a; have large overlap, the latter clock can certainly not majorize the
former. Another interesting question about timing information is whether it is quantum
or classical information. This is a deep question which will be addressed later. In the
setting above, purely classical timing information exists since the setting includes propa-
gating probability measures, i.e., the dynamics is a flow in a classical phase space. This
is however, the limit of infinite energy since this dynamics a point measure moves to
another point measure, perfectly distinguishable from the first one. Now we describe in
which situations our quasi-order puts constraints on many physical processes. For the
formal proofs in the C*-algebraic setting we refer to [63].

1. Time Transfer between Classical Clocks: In this case the quasi-order is easy
to understand. For simplicity we assume that both are probability measures pu, ji on
the unit circle I'. The time evolution of these measures is generated by the rotation

Z— e Wy
Then the first clock majorizes the second if and only if there is a measure v on I’
such that

fi = pu*v
where * denotes the convolution. The intuition is that the transfer of timing in-
formation from one clock to another may only add some independent error to the
uncertainty of the first.

2. Time Transfer from Classical to Quantum Clocks: One can easily argue [63]
that all such transfer processes are given by preparing a state

a(p)

whenever the classical clock shows the time ¢. It is clear that this can be done with-
out disturbing the classical clock and can therefore be used to generate arbitrarily
many copies of quantum clocks.

3. Time Transfer from Quantum to Classical Clocks: Assume we have a quan-
tum clock (p, @) rotating with the recurrence time 1, i.e., a1(p) = p and we want to
transfer its timing information on a classical clock with the same period. Consider
for instance the classical clock mentioned above with w = 27. Time transfer is
done by measuring the quantum system and nitializing the classical pointer to the
position exp(—i27t’) € I' according to the estimated time ¢’. The set of possible
values ¢’ in this estimation might be discrete or continuous and a priori there is no
restriction to the positive operator valued measure describing the possible measure-
ments. Nevertheless one can show that each clock initialization can equivalently be
performed by a time covariant measurement [63]. The classical clock generated by
the covariant measurement (M;).c(0,1) is given by the probability measure p on I
with density

p(t) = tr(pMy) .
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It is clear that the transfer of timing information from quantum to classical clocks is
irreversible. If one could obtain a quantum clock which is equivalent to the original
one from the classical clock one could also get many copies of it, i.e., one could
clone the quantum clock. The task of copying timing information is related to the
problem of cloning quantum states with unknown phase [66, 67]. An example is
the qubit state |0) + exp(—iwt)|1) with unknown t.

4. Time Transfer from Quantum to Quantum Clocks: In [63] we have shown,
as an example, that the quasi-order helps to derive fidelity bounds when an op-
tical mode in a coherent state drives the preparation of a superposition state
[4+) := (1/+/2)(|0) + 1)) in a two-level system. The coherent state does not, strictly
speaking, majorize the pure superposition state in the quasi-order sense and one can
only achieve increasing reliability with increasing field strength. We have argued in
[63] that this is not just a consequence of phase uncertainty for finite field energy
since superpositions of finite photon number states exist that allow the preparation
of a pure |+) state.

5. Copying Timing Information: The following result gives some insight on the
‘quantumness’ of timing information. Given a quantum clock we would like to trans-
fer as much timing information as possible to two other quantum clocks, whereas
the timing information of the original clock may be destroyed. We quantify the
timing information by the quantum Fisher information F. Using the quasi-order
we proved the following bound [63]: Let the resource clock have initially the timing

information F'. Then for the timing information F}, F5 of the two target clocks we
find:

o121

F F,~ F (E?)’
where (E?) denotes the expectation value of the square of the total energy of the
two target clocks. This shows that the Fisher information F; and F, of the target
clocks cannot both be as large as F'. The bound allows this only in the limit of
infinite (E?). This shows that perfect cloning of timing information is only possible
in the limit of clocks with infinite energy. Of course such a quantum limitation is
not specific to timing information, but time is one of the most natural applications
where the estimation of a parameter by measurements on a continuous family of
states is necessary.

A rather explicit characterization of the set of all covariant maps G mapping states on
a Hilbert space H on states on H is given in [68]. This can help to better understand
the quasi-order of clocks. The decomposition derived holds also for infinite dimensional
Hamiltonian systems. Here we rephrase the finite dimensional case with non-degenerate
Hamiltonian. A covariant map G can be written as a sum over CP maps G, where each
G, is a concatenation of a dephasing map and an energy shift, i.e., CP map that increases
or decreases the energy of the system by the amount ¢ € R. The dephasing is described
by the multiplication of the density operator (given with respect to the energy basis) with
a positive operator. The Kraus operator of the energy shift is a partial isometry that
generalizes the canonical shift on square-integrable functions on R to measure spaces with
non-translational invariant measures. The fact that these operations can only destroy or
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translate superpositions between different energy eigenstates shows that the classification
of clocks with respect to their timing information considers coherent superpositions of
energy states as the essential resource.

The most important drawback of the quasi-order above is probably that absolute
timing information with respect to a unique reference clock is less relevant in applications
than relative timing information. To put relative timing information between two parties,
say Alice and Bob, into an analogous formal setting we define a synchronism of clocks A
and B as a correlated joint state p which is invariant with respect to the joint evolution
a; ® [ and not invariant with respect to a; ® 6_; , where a; and 3; acts on Alice’s and
Bob’s clock. The fact that the joint state is a; ® f;-invariant formalizes that we consider
only relative timing information, i.e., the state is seen from the point of view of an observer
without any knowledge on the actual time. Consider the case that Alice and Bob share
two-level systems with the same frequency w. Both states are in a superposition state
with the same phase:

500+ e 1)) ® (10) +¢11)).

For the external observer they share a mixed state obtained by mixing this states over
all .
We denote a synchronism as defined above by the triple (p, «, 3) and define:

Definition 13 (Quasi-Order of Synchronisms)

The bipartite system A x B is said to be better than or equally synchronized as the system
A x B, formally denoted by

(p, . B) > (p. &, B)

if there is a process G converting p to p satisfying the covariance condition
Go(a'®p) = (&_1®6~)0G.

The covariance condition formalizes the requirement that Alice and Bob are not allowed
to use additional synchronized clocks in order to run the process G. Of course relative
timing information can be created in a synchronization scheme whereas absolute timing
information is a fixed resource.

2.2.8 Coherence, Reversibility and Secrecy of
Computation

As we have already mentioned in Subsection 2.2.1 there is roughly speaking a strong
connection between the tasks of preserving coherence during a computation and of per-
forming computation in a thermodynamically reversible way. In both cases one has to
ensure that no information is copied to the environment. Consider for instance the follow-
ing model where the logical state of a bit is represented by a qubit and the environment by
a second qubit. Let the interaction between bit and environment implement a controlled
not with the environment qubit as target (see Fig. 2.3).

Let the logical bit be encoded in the basis states of the qubit, with initial state . If the
environment is in either of the states py := |0)(0] or p; = [1)(1]| the CNOT copies the
logical state oy := |0)(0| or oy := |1)(1] to the environment since the logical state of the
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Figure 2.3: When is a bit a qubit? Toy model for the interaction of a qubit with its environment.
The environment is also modeled by a single qubit. The interaction destroys alway coherence.
Whether information is transferred to the environment depends on the initial state p of the
latter.

environment is inverted whenever the qubit was in the state 1 and not inverted if it is in
the state 0. It therefore destroys the superpositions in the qubit. This is also true if the
environment starts in an equally weighted mixture of |0)(0| and |1)(1]. The argument
showing that superpositions are destroyed works as well since it is irrelevant whether
p1 Or po is present. On the other hand, the environment does not get any information
about the classical state: it remains in its maximally mixed state, no matter whether
the register was in state oy or oy. This is like running a copy machine with black paper.
The document which is to be copied is treated as if a real copy would be produced.
But the copy is useless because the ‘initial state of the paper’ was bad. This toy model
shows that there is no obvious reason for the statement that thermodynamically reversible
computation should always keep quantum superpositions alive: The computation may
leave the classical state unaffected but would nevertheless destroy superpositions if the
input was in such a superposition state. Therefore the connection between physical
reversibility and coherence of a computation is less tight than it may seem at first sight.
However, the model above does not provide an example for a computation which runs
in an energetically closed system. The operation is here triggered by an external signal
which is not taken into account as a thermodynamical resource. The question to what
extent thermodynamically reversible computation requires quantum coherence when is
driven by a Hamiltonian of a closed physical system seems more difficult to answer. We
will address it in Subsection 2.2.9.

We also want to mention a tight quantitative connection between thermodynamic
reversibility and secrecy of a computation. Whereas cryptographic security refers usually
more to coherence than to thermodynamic reversibility, there is an interesting sense in
which secrecy is also connected with reversibility even though the remarks below may be
of no practical interest for cryptography.

To explain the connection we consider an 1-bit computer'® on which we implement a
NOT gate. Let v be the environment in its thermal equilibrium state for the temperature
T. Let U be a unitary operation acting on v ® o to implementing the NOT. The reduced
state of the environment is

pji=try(U(y®ay)U") j=0,1.
The reduced state of the logical bit is
Uj@l .

The Holevo information (see Section 1.3) of the environment about the logical state is

1= 5500+ p1)) — 5(S(00) + (o)

10We prefer to use ‘bit’ instead of qubit because it is a priori a bit. The fact that it is represented by
a qubit is only due to its quantum mechanical description.
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Since 7 is the state with the least free energy, the average free energy of p; is greater than
the free energy of v by at least the amount I due to

S(F(n) + F(p) 2 T+ P50+ p2)) 2 F(2)

Since the average free energy of the bit cannot have changed (because it is still either
of the states o; with probability 1/2), the operation U has required at least the energy
I. Of course the same argument works also for registers with several qubits and other
reversible logical functions as NOT. We conclude:

Theorem 9 (Reversible Computation is Secret)
A logical operation which requires at most the average energy E has at most transferred
the information E/(In2kT') to the environment.

2.2.9 Computing and Quantum Control in a Closed Physical
System

As we have already mentioned, information processing necessarily consumes some energy
whenever it involves logically irreversible operations. Furthermore it has been clarified
[10, 69, 70] that computing is possible with logically reversible operations’ and that the
complexity overhead seems acceptable [71].

However, logically reversible operations are not necessarily implemented by thermo-
dynamically reversible devices. Therefore it has been asked whether computers could
exist which do not ‘consume free energy’ at all, i.e., do not generate entropy. It is clear
that each bijective function f on {0, 1}* defines in a canonical way a unitary operation on
k qubits by the linear extension of |b) — |f(b)). An important example is the TOFFOLI
gate which allows universal classical computation. Unfortunately this does not show that
the whole computation process can be thermodynamically reversible because the physical
system which controls the implementation of the circuit has not yet been taken into ac-
count. We will therefore describe those problems arising in models of computers where
the computation is the dynamics of a closed physical system and recall solutions in the
literature as well as own contributions.

Clearly one can introduce a quantum system which controls the implementation of
these reversible gates. A simple model of such a ‘clock’ is the wave packet of a particle
moving in one spatial dimension. Its Hilbert space is L*(R), i.e., the square integrable
functions. It would be convenient to have the time evolution

(Sp)(z) = P(z + 1),

i.e., a simple shift. Then the wave packet moves without dispersion, i.e., given an initial
state with compact support the support will remain compact. The interaction between
this clock and the devices to be controlled could be such that it triggers the implemen-
tation of a certain operation j whenever the wave packet reaches a certain region R;.
This is one of the ideas behind Benioff’s construction of a Hamiltonian computer [72].

1 Gee also the simulation of NAND by TOFFOLI gates in Subsection 3.2.1
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Unfortunately the spectrum of the Hamiltonian which generates the shift is unbounded
from below and above since it is given by

1d
H:=-—.
1 dx

Since the spectrum of physical Hamiltonians are bounded from below the situation above
can only be approached in the limit that the system energy is far above the lower bound
such that it becomes irrelevant. The wave packet with compact support is therefore an
infinite-energy limit, whereas the realistic physical Hamiltonian —d?/(dz)? would lead to
a dispersing wave packet. This would then lead to superpositions of computation states
because different operations (‘computation steps’) j are performed simultaneously.

Feynman [73, 74] considered a discrete clock which is a linear chain of many qubits
where the clock states are binary words with Hamming weight 1 and a symbol 1 at
position j is the jth clock state. Before we explain Feynman’s Hamiltonian we first
discuss a naive construction of a clock in order to motivate his approach. To simplify
mathematics we consider a cyclic chain with n qubits. One would like a Hamiltonian H
which implements the cyclic shift

S‘b(]a .- -,bn—1> = \bn—17507 s bn—2>

in the sense that S = exp(—iH). The simplest way to construct H is to choose a
polynomial p which solves the interpolation problem

ple”™®™/My =2mj/n j=0,....n—1.

Then H := p(S) satisfies exp(—iH) = S by usual functional calculus of operators [65]
because exp(—i27j/n) are the eigenvalues of S. Unfortunately H contains all powers
of S and involves rather unphysical interactions between long-distant qubits. Feynman
preferred to choose a more physical Hamiltonian H involving only interactions between
adjacent qubits:

n—1
H = Z aja;H + a}aﬂl ;
=0
where a; is the annihilation operator a := |0)(1| acting on qubit j. The restriction of H

to the subspace spanned by basis states with Hamming weight 1 is the operator
H,:=S+5",

where S is the cyclic shift on C". The problem is that the dynamics generated by H,
leads to a spreading wave packet [75]. Hence the computer controlled by this clock is in
a superposition between different computation steps. If one starts the clock in a basis
state there would even part of the wave propagating backwards. Feynman argued that
one can prepare superpositions of basis states such that the spreading is not too large
and that the wave is mainly propagating in forward direction.

Margolus [76] constructed a cellular automaton which is implemented by a Hamilto-
nian that is strongly reminiscent of solid-state interactions due to its lattice-symmetric
structure. Here we explain his two-dimensional version. The whole data register which
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Figure 2.4: System of neighborhoods of the Margolus cellular automaton. The circles indicate
the cells and the squares are the neighborhoods on which the updates are implemented.

carries the information to be processed is divided into a two-dimensional array of cells
(1,7) € Z x Z, where each cell consists of several data qubits. First one thinks of a
computation that consists of updating all cells in rows 7,7 + 1 in time step j. The
update rules consist of independent operations involving 4 cells. They are given by
(i,7), (4,5 + 1), (i + 1,75),(¢ + 1,5 + 1) for all 4,5 where ¢ + j is even. This system of
overlapping neighborhoods is depicted in Fig. 2.4

The update rules are such that they propagate the information of the lower two cells in
a neighborhood to the upper two cells after the two-qubit state of the lower ones has been
subjected to a logical transformation which allows universal computation.'?. Margolus
observed that this update scheme does not really require global clocking; it only has to be
ensured that each neighborhood is updated only if the two neighborhoods which intersect
the lower cells have already been updated. It is like building a wall with bricks where
each brick in row k& can only be added if both bricks in row k£ — 1 where it has to lie on are
already there. Based on this observation, his local synchronization uses one additional
clock qubit in each cell. The allowed states of the clock are given by those states where
in each row exactly one clock qubit is in state |1). The local synchronization condition
imposes (in analogy to the growth of a wall) that the positions of the symbol 1 in two
adjacent columns can differ at most by one row. The Hamiltonian of the clock reads

He = Z aivjai+1,ja;'r+1,ja;'[+1,j+1 +he., (2:6)

where h.c. denotes the adjoint (‘hermitian conjugate’) of the first term. This term ensures
that H is self-adjoint. The sum runs over all 7, j € Z with ¢ + j even and qa; ; denotes the
annihilation operator |0)(1| on cell 7, 5. Whenever there are two symbols 1 in the lower
two cells they are both propagated to the upper cells. Furthermore, the full Hamiltonian
is defined such that this propagation of the ‘clock wave front’ is accompanied by an update
of the neighborhood. In analogy to the Hamiltonian of the Feynman model one also has
the problem that the dynamics leads to a clock wave which is a superposition of many
wave front positions. Starting with a wave front which is localized in a well-defined row,
part of the wave will also run backwards and trigger a computation in the wrong direction.
However, Margolus argues that the state of the clock wave can (as in Feynman’s proposal)
be prepared such that it propagates mainly forward. These superpositions of different
wave front positions are in general entangled states. Furthermore one has to read out the
computation result during the time period where the clock wave is in the correct region
of the clock register. If the clock register is finite the clock wave will be reflected and

12Note that already a lot of computationally universal reversible cellular automata are known [77, 78,
79, 80].
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if the topology of the register is cyclic the computation will be repeated. A computer
whose calculation stops would therefore need an infinite clock register. From the point
of view of thermodynamics this is a problematic point: an initialized register with an
infinity of mutually orthogonal states needs infinite resources since this corresponds to
the erasure of infinitely many bits. This can be formulated as a general paradox in the
thermodynamics of computation:

Lemma 2 (Computers with Finite Free Energy can Never Stop)

Let p be the initial state of a computer and the computation be driven by the Hamiltonian
H on some Hilbert space H. Let the computation be finished after the time ty and all
states au(p) for t >ty be perfectly distinguishable from p, i.e., the density operators act
on mutually orthogonal subspaces of H. Then the free energy of p is infinite.

Proof: 1t is clear that for all n,m € Z with n # m

At (p) L mi (p) (2.7)

where | denotes orthogonality of density matrices, since

P 1 Q(n—m)ts (p)

by assumption. Let p be a probability measure on Z. Define p, by the mixture
Pp = ijatj(p) :
J

Due to the orthogonality (2.7) the von-Neumann entropy of p, satisfies

S(pp) = S(p) + S(p)

where S(p) is the Shannon entropy of p. For the free energy (see Definition 11) we find

F(p) = F(pp) + S(p)

because the energy tr(Hay(p)) is the same for all ¢. The free energy of p, is at least the
free energy of the thermal equilibrium state (which was defined to be zero). Since the
entropy of p can be chosen infinitely large the lemma follows. O

It is clear that the practical relevance of this result is limited. One will be satisfied
if the initial state and the final state are only distinguishable with very high probability.
Consider for instance a two-level system with energy gap F > kT and assume that it
is initialized to its excited state |1). Due to its coupling to the environment, usually to
some field modes, one will observe relaxation, i.e., the system goes back to |0) with high
probability. If ¢ is chosen sufficiently large compared to the life time of the excited state
the density matrix of the two-level system together after the time ¢ is almost orthogonal
to its initial density matrix. Nevertheless it should, for physical reasons, be possible
to describe the decay by an appropriate Hamiltonian system including the field modes
such that the free energy of the composed system is finite. It is important to note that
the approximative statements like almost orthogonal may hold up to an error rate which
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decreases exponentially in the amount of available energy. For instance, the probability
to find a two-level system still in its initial state |1) after thermalization is exponentially
small for increasing . This toy model of a ‘primitive computation’ which switches both
states |1),]0) to |0) shows that finite energy allows rather reliable computation despite
Lemma 2.

Nevertheless we found it unsatisfactory that the Feynman and Margolus computer
needed to be read out during a certain time interval. In order to determine the resource
requirements of computation we wanted to avoid this since timing information is also a
thermodynamic resource (see Subsection 2.2.7). Furthermore we did not want to start
with entangled initial states of the clock since this already requires the solution of a
non-trivial quantum control problem with unknown resource requirements. Therefore
we modified Margolus’ model of a Hamiltonian computer such that the computation
result needs not to be read out during a certain time interval. It can rather be read out
at a random time instant since the result is encoded in the time average of the state
of the system. As an additional feature, we defined the update operations such that
one obtains a ‘programmable’ quantum computer which can simulate every quantum
circuit when it is appropriately initialized, whereas Feynman’s and Margolus’ models
were designed for classical computation!®. Therefore we add two program qubits to the
center of each neighborhood. The 4 basis states of this system determine which one
of the following 4 two-qubit gates is applied to the lower two data qubits before the
information is propagated to the upper row: (0) identity (1) Hadamard on the first qubit

(2) Hadamard on the second (3) controlled-o/ (see Fig. 2.5).

In order to have a finite system, we choose cylindric topology (see Fig. 2.6, left),
i.e., a forward propagating clock wave circulates around the cylinder and triggers the
implementation of the quantum gates according to the states of the program qubits. The
quantum circuit can be thought of as wrapped around the cylinder (see Fig. 2.6, right). In
general, the computation may require several rounds, i.e., the quantum circuit is applied
several times. This feature ensures that the space requirement of this computation model
does not necessarily linearly increase with the running time of the algorithm. In [50] we
have shown that our computation model can solve all PSPACE problems on polynomial
space, i.e., the space overhead compared to a Turing machine is only polynomial. After
sufficiently many circulations of the clock wave the qubits in the output region (see
Fig. 2.6, right) are changed from their initial state to the solution. Of course they cannot
stay in this state forever since every finite dimensional dynamics is quasi-periodic. We
have designed the circuit such that it is, after several more rounds, set back to their initial
state. In other words, the output region oscillates between correct result and initial state
as the wave front circulates and each is half of the rounds present. But both results
are only visible when the wave is in the output region. Measuring the clock qubits in
the output region at a random time one has good chance to find the wave there when
the output area is large compared to the whole cylinder. Measuring the data qubits
in the cells where the clock wave was found one would find the computation result or
the initial state with probability 1/2 each. So far, we have described the computation
process from the point of view of a forward propagating wave front. But the computer
works also if we initialize the clock state such that the wave front starts at a well-

13The name ‘quantum computer’ for their models should only express that the computer is a closed
quantum system and not that quantum gates are simulated.
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Figure 2.5: The spin wave which propagates over the clock register triggers the implementation
of one of the four gates on the right. The program qubits specify which one of those is chosen.
The gates are applied to the lower (blue) data qubits. Afterwards a SWAP between the upper
and the lower pair of data qubits propagates the information one row upwards. The diagonal
square indicate the Wigner-Seitz cell of the crystal which characterizes the symmetry of the
interaction and does not coincide with the neighborhoods (see text).

Figure 2.6: (Left) Cylindric crystal consisting of ¢ x h cells. A pair of program qubits is
located at the red points. The lines indicate the boundaries of a cell. (Right) The circuit
wrapped around the cylinder. Every time when a two-qubit gate is applied the information of

both qubits is propagated one row upwards. The output region consists only of trivial gates,
i.e. the information is only propagated.
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defined position. Then the wave propagates with rather different velocities and part of
it travels backwards. The idea of ergodic quantum computing is that this ‘probability-
1/2-principle’ holds even though the wave front does not propagate step by step but
propagates forwards and backwards simultaneously. To show this formally and to analyze
the required time interval such that the limiting time average is approximately attained is
a technically complex task, worked out in [50]. The idea is that on the relevant subspace
the Hamiltonian dynamics is isomorphic to several independent quantum random walks
on one-dimensional circular chains.

To characterize the symmetry of our hypothetical crystal we have figured out how a
so-called Wigner-Seitz (WS) cell [81] can be defined in analogy to crystallography. It is
the diagonal square in Fig. 2.5 and contains 6 qubits. A translation from one WS-cell to
the next is a symmetry operation of our interaction.

The Hamiltonian described above, also provides an interesting model in which to dis-
cuss the following questions. Looking at present day experiments with coherent quantum
control (e.g. with lasers in quantum optics or high frequency fields in NMR) one could
conclude that every coherent quantum control must necessarily use macroscopic fields.
Otherwise the quantum uncertainty of the relevant field variables seems to create entan-
glement between control field and controlled system. Does the Hamiltonian model of a
quantum computer above support this conjecture or does it disprove it? One could easily
initialize the program qubits such that some desired unitary operations are applied to
the data qubits. However, the data qubits are entangled with the clock qubits and the
desired output state is only available given that the clock wave is in the desired region.
Nevertheless we have found a spatially homogeneous Hamiltonian with finite range inter-
actions which solves complex coherent quantum control tasks even though no macroscopic
control fields are involved.

2.2.10 Saving Energy by Quantum Information
Transfer?

The models for computing in a closed physical system are by definition quantum coherent
models, i.e., they preserve superpositions — otherwise they would not be closed. Never-
theless it is a difficult question whether thermodynamical reversible computation requires
the isolation of the computer such that it would even preserve superposition. Clearly, the
destruction of superposition is an irreversible process. On the other hand the dephas-
ing operation shown in Subsection 2.2.8 is thermodynamically reversible whenever it is
applied to basis states and only generates entropy when it is applied to superpositions.
Therefore one could think of a classical computer which does not generate entropy when
it is run with classical states (i.e. basis states) but would generate entropy if one would
put superposition into the register. In such a system one could avoid wasting resources by
avoiding superpositions. However, it is remarkable that there are communication tasks
where the ability to send quantum superpositions can save thermodynamical resources.
We first want to rephrase some interesting observations by several authors about the
thermodynamical relevance of quantum information in communication schemes and use
them as basis for our own work.

In their paper “quantum non-locality without entanglement” [82] Bennett et al. con-
sider the situation where two parties, Alice and Bob, want to prepare either of some
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bipartite pure states
|¥5) = lay) ®16))

with probabilities p;. The states |1;) are constructed such that they are mutually orthog-
onal but neither all |o;) nor all |;) are mutually orthogonal. If Alice and Bob want to
prepare state |1;) after they have agreed on the choice of j by classical communication, at
least some of the information which was sent has to be erased since the classical messages
must be distinguishable whereas the states |3;) are not all perfectly distinguishable. A
somewhat different situation has been considered by Zurek [83]. He considered bipartite
mixed states of two parties, Alice and Bob, which have discord (see Section 1.3). Then
we assumes that Alice and Bob both want to erase their systems, i.e., prepare an uncor-
related pure state. By Landauer’s principle this initialization requires energy since the
entropy has to be transfered to the environment. Consider first the case that they do not
communicate at all. Then the entropy Alice has to transfer to the environment is S(c4).
The entropy which Bob has to transfer is S(op). Then consider the case that Alice and
Bob communicate with a quantum channel. The entropy cost to initialize a pure state
is only S(o), the von-Neumann entropy of the joint state. Hence they waste the infor-
mation /(A : B) when not using their channel. Zurek asked the question of how much
information they waste if they use only a classical channel. Here we explain the argument
according to our reformulation in [84]. Assume, for instance, that they use only classical
one-way communication from Alice to Bob after a von-Neumann measurement (P;) on
Alice’s system. There can be two reasons why they lose thermodynamic resources. First
the measurement creates some entropy if the unselected post-measurement state is con-
sidered. This entropy production coincides with the Kullback-Leibler distance between
the initial state and the post-measurement state [85]:

AS = K(o]| Y g;07) (2.8)

J

where g; is the probability for the measurement outcome j and o; is the post-measurement
state 0; := (P} ® 1)o(P; ® 1)/q; given j. A second reason why Alice and Bob will in
general waste some information by not using a quantum channel is that they do not make
use of the fact that the selected post-measurement states o; may still be correlated. The
average over the remaining mutual information given the message J with values j can be
written as the average Kullback-Leibler distance

I(A:B|J)= qu @Haf@af), (2.9)

where the states with superscripts denote the restrictions to A and B, respectively. We
have shown [84] that the sum of (2.8) and (2.9) coincides with a modified definition
of discord introduced by Zurek in [83]. Although it differs from the first discord (see
Subsection 1.3.2) it vanishes if and only if o can be written as a sum p;, v; with mutually
orthogonal states p; such that

U:ij,uj@l/j.

J
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Then Alice is able to distinguish between all possible product states j; ® v; without any
information loss and without any entropy generation by choosing a measurement (P)
such that Pj,uj = Wj-.

Horodecki, Horodecki, and Oppenheim [61] considered two-sided multi-step protocols
and proposed to quantify quantumness of correlations by the so-called thermodynamic
work deficit, i.e., the entropy cost to prepare pure product states when only a classical
channel is available.

Even though these remarks may show the thermodynamical relevance of quantum
communication one may ask why Alice and Bob should prepare those non-entangled
quantum correlated bipartite states at all. In [84] we tried to answer this question by
stating that the need to prepare quantum correlated separable states appears naturally in
clock synchronization schemes (this is related with the remarks above saying that timing
information is always to some extent quantum information except in the infinite energy
limit). Our reasoning was that the joint state of two synchronized clocks, viewed by an
external observer who does not have any knowledge about the actual time, always has
some discord whenever both clocks are quantum. This statement refers to the following
model: Given two independent quantum dynamical systems A and B, with Hilbert spaces
H.a and Hp and time evolutions U := exp(—iH st) and UP := exp(—iHpt), respectively.
Let a; be the time evolution on the density operators given by

a(p) = U pUP

and let similarly 3; be the time evolution of Bob’s clock. Then we proved that every joint
state that is stationary with respect to the joint evolution a; ® 3; and non-stationary
with respect to the relative translation oy ® 5_; has some discord (see Subsection 2.2.7).
The state of synchronized clock is always non-invariant with respect to such a relative
time translation. Our quantitative bound states, roughly speaking, that the joint state
of two clocks which are synchronized up to an error of At necessarily have the discord

1
OB 2 S A AT
where AFE is the energy bandwidth of the bipartite system. The same bound applies
certainly to the discord 6(A|B).

Whereas discord concerns here the cost for resetting synchronized clocks, we also
considered the thermodynamic cost for preparing synchronized states, i.e., the entropy
generated in a synchronization protocol. We showed for one-way protocols that syn-
chronization can only be performed in a thermodynamical reversible way if a quantum
channel is used. We briefly sketch the argument. The whole correlation between Alice’s
and Bob’s clock is generated by sending a classical message from Alice to Bob. That
is, given this message j, both clocks are in an uncorrelated state p; ® v;. If the states
vj are not perfectly distinguishable Bob has erased some information since the different
messages are represented by mutually distinguishable states. In our derivation of a lower
bound on the thermodynamical information loss of a state o = >, p; j1; ® v; we argued
that the bipartite state of Alice on one side and Bob and his environment on the other side
is a state without discord. This means that it has a decomposition into product states
that are mutually orthogonal on Bob’s side. Only the restriction to the two clock system
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has no such orthogonal decomposition. We proved that for every two synchronized clocks
the mutual information between Bob’s clock and his environment is at least

h2
(4AEAt)?

if the synchronization has accuracy At. Hence the entropy generation during the syn-
chronization is at least this amount of entropy.

As we stated in [84] the result may have implications for low power computation. Since
computation always involves some degree of synchronization among different components
and devices, it always generates entropy when no quantum channels connect the devices.
This raises the question to what extent purely classical reversible computation is possible
at all if dynamical and aspects of clocking are taken into account.

2.3 Complexity Theory

Quantum Computing provides a computation model which is inequivalent to the classical
Turing machine at least with respect to query complexity. It is known that Grover’s
algorithm searching for the pre-image of a function needs less oracle queries than the
best possible classical would need. Meanwhile, quantum complexity theory has already
attracted broad interest in the field [14]. Chapters 3 and 4 will address issues of complexity
theory in a different context. Here we will only briefly mention why already the standard
model of quantum computing made it necessary to rethink complexity theory.

2.3.1 Challenging the Strong Church-Turing Thesis

The so-called strong Church Turing thesis states that every process in nature where n
components interact can be simulated on a Turing machine with some given precision such
that the simulation time is polynomial in n. Implicitly, it has already been questioned
by Feynman [86] whether this still holds true for the simulation of interacting quantum
systems. The discovery of Shor’s factoring algorithm strongly supported this doubt!4.
Hence one should work instead with the quantum version of the strong Church Turing
thesis: every system in nature which consists of n components can be simulated on a
quantum computer such that the number of required qubits £ and required time steps is
polynomial in 7, in the simulated time 7" and in 1/e when € is the demanded accuracy. In
other words, the quantum version of the strong Church-Turing thesis states the following:

1. If there are fundamental laws which make the realization of the quantum com-
puter impossible, the complexity measure given by the standard model of quantum
computation is a lower bound for the ‘complexity measure given by nature’.

2. If quantum computing is in principle possible the complexity measure given by
nature is equivalent to the measure given by the standard model.

Later we will argue that the quantum version of the strong Church Turing thesis
implies predictions on the efficiency of control mechanisms.

4Note, however, that in [87] the conjecture was stated that an efficient classical algorithm for factoring
large numbers is possible.
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2.3.2 Quantum Complexity Classes

Complexity classes are an essential part of complexity theory in classical computer science
[88]. These classes are often associated with languages. These languages define computa-
tional problems with answer ‘yes’ or ‘no’ as determining whether an input string is in a
language L or not. Probably the most important complexity class in classical computer
science is P, the set of problems which can be solved by algorithms where the running
time increases only polynomially in the length of the input string. Formally one has:

Definition 14 (the Languages in the Class P)

A language L is in P if there is an algorithm on a classical computer which determines
whether the input string x is in L such that the running time increases only polynomially
in the length |x| of x. For short: Its running time is in O(poly(|z|)).

There is also a probabilistic version of this [14]:

Definition 15 (the Languages in BPP)
Let 1/2 > € > 0 be constant. L is in BPP if there exists an algorithm A with running
time in O(poly(|x|)) such that

o [fx € L the output of A is 1 with probability at least €

o [fx & L the output is 1 with probability at most €.

In quantum computing it is usual that the output is probabilistic. Hence it is more
common to define the quantum analogue of BPP than that of P:

Definition 16 (the Languages in BQP)
A language L is in BQP if there is a quantum algorithm with running time in O(poly(|x|)
that computes probabilistically whether x € L.

It is believed that BPP C BQP (in the sense of proper inclusion), i.e., that there are
problems which can be solved by a quantum computer in polynomial time but not by a
classical one. For instance, no classical polynomial algorithm for factoring large numbers
is known, whereas the Shor algorithm is polynomial (see Subsection 1.1.3). Feynman’s
conjecture that quantum dynamics cannot be simulated efficiently by classical computers
suggests the definition of a class of problems which arise from the simulation of dynamics
and which are in BQP but probably not in BPP: Given two k-local n-qubit interactions
H, and H,, decide whether the norm distance between

exp(—iH;t)]0...0)

and
exp(—iHst)|0...0)

is either at least 2¢ or at most € with ¢ € O(poly(|z|) and 1/e € O(poly(|x|), where z is a
string specifying H; and Hs. The following quantum algorithm decides this in polynomial
time:
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1. Prepare the state [0...0).

2. Simulate exp(—iH;t) on a quantum computer. Due to [89] an accuracy of d requires
the time O(t?/§). Simulate exp(iHat).

3. Perform a measurement on the state |i) = exp(iHst) exp(—iH;t)|0...0) in the
computational basis. Repeat the whole procedure such that [(1[0...0)|? can be
determined with the required accuracy.

Clearly the determination of the overlap up to an inverse polynomial error requires in this
procedure only polynomial running time because of the promise that it is not between €
and 2e. This example shows that BQ P problems arise in a natural way from quantum
control problems.

In Subsection 4.2.2 we will furthermore need the complexity class QMA which is the
quantum analogue of NP. We shortly recall the definition of NP.

Definition 17 (the Languages in the class NP)

A language L is in NP if for every string x € L there is a witness, i.e., another string y,.,
such that, given vy, a classical algorithm can check in polynomial time that x € L holds.
If L ¢ NP no such witness exists.

The probabilistic version for NP is MA:

Definition 18 (the Languages in MA)

A language L is in in MA if for every x € L there is a string y, and a probabilistic
program A with input x,y, such that the output is 1 with probability at least 1 — e and for
every x & L the output of A is 0 with probability at least 1 — € for all y,.

The string y, which leads to the positive result with probability 1 — € is called a witness.
There are at least two possible quantum analogues of M A:

Definition 19 (the Languages in QMA/QCMA)

A language L is in QMA (QCMA, respectively) if for every x € L there is a quantum
state (respectively a basis state) |1,) and a probabilistic quantum algorithm A with input
|z) @ [1by) such that the output is 1 with probability at least 1 — e and for every x & L the
output of A is 0 with probability at least 1 — € for all y,, respectively |1),).

In other words, the witness for QMA is a quantum state, for QCMA it is a classical string.
In Subsection 4.2.2 we will rephrase an interesting example of a QMA-complete problem
which appears in the theory of low temperature physics. We have given [90] an example
of a QMA-complete problem which appears in the design of quantum circuits, namely
to decide whether two circuits which are specified by a sequence of gates implement
unitaries that are not almost equivalent. We rephrase the completeness statement for a
special instance, namely to decide whether a circuit is almost the identity:

Theorem 10 (Non-Identity-Check is QM A-Complete)
Let z be a classical description of a quantum circuit U, of complexity polynomial in |z|.
Then the following problem is QMA-complete.

Decide whether U, is up to a global phase close to the identity in the following sense:
Decide which of the two following cases is true given the promise that either of the con-
ditions 1. or 2. is satisfied:
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1. for all ¢ € [0,27) one has ||U, — €®1|| > 6§ or
2. there exists an angle ¢ € [0,27) such that ||U, — 1| < p.
Assume furthermore that 1/(5 — p) € O(poly(|x])).

This shows that problems of optimal circuit design for implementing a desired quantum
process can lead easily to problems which are not only NP-hard but even QMA-hard.

The complexity classes NP, MA, QMA, and QCMA are believed to include problems
which require exponential running time. Nevertheless they can all be solved with poly-
nomial space resources. In other words, they belong to the complexity class PSPACE,
which is usually defined with respect to the Turing machine model [91, 92

Definition 20 (the Languages in PSPACE) PSPACE is the class of all languages
recognizable by polynomial space bounded deterministic Turing machines that halt on all
nputs.

It is known [93] that the class of problems which a quantum computer could solve in
polynomial space is not greater than PSPACE. Therefore there is no need for a specific
quantum version of PSPACE. The class PSPACE will occur in Subsection 4.1.1 where we
will show that accurate von-Neumann measurements of some natural types of observables
could solve problems in this class in polynomial time. The fact that PSPACE is an
extremely large class will be interpreted as an indicator for limits of complexity theoretic
limits of measurement technology. This shows that limits of computation and limits of
other technologies controlling the nanoscopic world may have a common origin in the
law of physics which all processes must respect. In Section 4.2.2 we will consider the
complexity of a state preparation problem and define a complexity class which will be
related to complexity classes of computation.

2.3.3 Complexity Measures from Nature?

The statement that the laws of physics determine complexity of computation [86, 94]
seems meanwhile to be widely accepted. In a vague sense, the conventional computational
models like Turing machines or cellular automata already reflect some features of physics.
The fact that the head of the Turing machine only reads and writes on the cells at
its current position can be seen as an idealization of the statement that its interaction
with other cells decreases strongly with distance. A similar kind of locality condition
appears in the update rules of cellular automata which refer only to a neighborhood of the
updated cell. The spatial homogeneity of a cellular automaton can furthermore be seen
as an analogue of the crystal structure of solid states. To make this analogy even closer,
one should modify the cellular automaton to continuous-time dynamics. Since classical
dynamics on cells with finitely many states would not allow deterministic dynamics, it is
natural to replace the classical automaton by a quantum system. In this sense, a finite
range Hamiltonian on a periodic array of finite dimensional quantum systems (like those
studied in [76, 50]) is the most natural continuous-time analogue of a cellular automaton.
In one dimension, for instance, they have the form

H:ZHR
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where Hp is an operator acting on a region R of k£ adjacent qudits j,7+1,...,j+k—1 and
the sum runs over all intervals of length k. Each operator Hr can be considered as the
continuous-time analogue of a cellular automaton update rule acting on region R. Due
to the continuity of the dynamics, the update in each region R is only an ‘infinitesimal’
change of the state [¢):

) = [¢) —idt Hrlp)

after the infinitesimal time dt. Note that this type of continuous time cellular automaton
is indeed a type of Hamiltonian which is used to describe the theory of crystals [95,
96]. However, to study complexity issues using such physical Hamiltonians could be a
hard task. Thus, even in quantum computing one prefers therefore to consider discrete
cellular automata [97, 98]. Note that the results in [89] imply that the standard quantum
computer can efficiently simulate the time evolution of the ‘crystal Hamiltonian’ above.
Therefore it can also be simulated by every discrete quantum cellular automaton which
is able to simulate the quantum computer.

It seems reasonable to assume that the interaction Hamiltonians available in nature
determine quantum complexity. In a world where every interaction among the qubits
could be achieved one could, for any given unitary U on n qubits, choose a Hamiltonian
H such that

exp(—iH) =U,

i.e., the system needs only a time period of length 1 to perform U and H can be chosen
such that its operator norm is only 7. Hence one needs not even a strong interaction for
the computation. Physics suggests to restricting the Hamiltonians as follows.

Definition 21 (k-local Hamiltonian)
A k-local Hamiltonian H is a sum of operators which act on only k qudits, i.e.,

H = Z Hj, . j

J1yJk

where each summand acts on the qudits 1, ..., Ji-

If the qudits coincide with fermionic particles, the fundamental forces are 2-local. Some-
times it is convenient to represent the state of a particle by several qubits. Then one
can also have k > 2, meaning effective interactions which appear in a phenomenological
treatment of real physical situations. However, large k are certainly unphysical. Even
though physical reality would also suggest excluding interactions between distant par-
ticles it follows from [99, 100] that this constraint would not change the computational
power of the Hamiltonian up to a polynomial time overhead as long as additional single-
qudit operations are available. For details we refer to the broad literature on simulation
of Hamiltonians ([101] and references therein) and to Section 3.1.

2.4 Quantum Communication and Causal
Reasoning

Quantum theory has challenged human intuition about causality since its early days. In
their famous objection against quantum mechanics, Einstein, Podolsky, and Rosen [102]
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argued that it cannot be true that measurements performed on one part of an entangled
state of a bipartite system affect the quantum state of the other subsystem. Bell real-
ized [103] that this paradox should have testable implications: entangled systems show
correlations between potential measurements on each of the subsystems which could only
explained by a classical theory if there was a signal running from one system to the
other. In other words, from the classical point of view, the correlations would require
causal connections between the subsystems. This lead to experiments where causal con-
nections could excluded with high probability and strong correlations could nevertheless
be observed. More interesting for current quantum information is the situation in which
there is some signal between two parties and the entanglement enables some communica-
tion tasks to be better performed than would be possible without entanglement. It allows,
for instance, the creation of a secret key or the computation of a certain function with less
communication complexity. If one considers the amount of information exchange between
two parties as a measure for the strength of a causal interaction between their systems, it
follows that entanglement allows some phenomena on interacting systems which required
‘more causal influence’ among the systems if entanglement would not be there. Here we
will explain a situation where one have to rethink rules of causal reasoning in classical
statistics. It should be emphasized that the paradox below does not require entanglement
between distant systems. We only use a system with bipartite entanglement because it
is easier to explain within the chosen quantum communication setting.

Causal reasoning in every-day life is mainly based on humans observations of corre-
lations between events, respectively variables. A rather explicit formulation of this was
given by Reichenbach [44] when he stated the “Common Cause Principle”: Given the
observation that two events A and B are correlated, i.e., the probability P(A A B) differs
from the product P(A)P(B), there is always a causal influence from A to B, from B to
A or there is a common cause C' influencing both. In order to consider C' as a complete
explanation for the correlations between A and B, Reichenbach formulated the condition
that A and B must be independent, given C'. This approach turned out to be a clear
axiomatic basis to derive causal statements from statistical data. In [104, 105, 106] one
can find rules to infer cause-effect relations between n variables from the structure of the
correlations among them. Here we want to explain why these rules for causal reasoning
do not remain the same when the indeterminism of the observations are partly caused by
quantum randomness.

2.4.1 Dense Coding and Quantification of Causal
Effects

The fact that quantum correlated systems behave different from classically correlated
systems is closely related to the fact that shared prior entanglement helps to reduce the
amount of information exchange which is necessary for certain communication tasks. An
example is dense coding where the transfer of one qubit allows to transfer two classical
bits [107].

Before we explain the idea, we first mention briefly several methods to quantify the
strength of a causal effect in the theory of causal reasoning. Assume that a variable X
(cause) affects the variable Y (effect). Assume that the whole correlation between X and
Y stems from the cause-effect relation, i.e., there is neither a backwards-directed causal



2.4. CAUSAL REASONING 65

effect from Y to X nor an effect from a confounding variable Z effecting both X and Y.
First of all, one often considers linear models [106], in which the cause-effect relation is
given by a so-called structural equation [105] of the form

Y =8X+S,

where § € R is a structural parameter and S is an independent variable which introduces
some indeterminism. It is straightforward to regard |3| as the strength of the causal
effect. If X and Y are binary variables with values xg,x; and g, y; one can also define
the average causal effect [105] by

For a general non-linear model, concepts of information theory help: In [108] Granger
uses the mutual information

I(X:Y) ==Y P(y)log, P(y) = > Plylz)log, P(y|z)P(x),

to quantify the causal strength. In [109] we proposed to consider the capacity of the
channel X — Y defined by the stochastic matrix P(y|r) as measure for the causal
strength. It is defined by the maximum over the mutual information over all distributions
of X. The method is a little more complicated if there are confounding variables. Assume,
for instance, that the correlations between X and Y are partly due to a variable Z effecting
both X and Y. Then the strength of the stochastic dependencies between X and Y is not
relevant, but only that part which is due to the cause-effect relation. To formalize this
difference, Pearl [105] introduced the so-called do-calculus. We will briefly sketch this
concept. Given that the causal relations between a set of n random variables Xq,..., X,
is known and formalized as a directed acyclic graph with the random variables as vertices.
Pearl then gives rules for calculating the probability of X, = z; given that variable X}
was set to xy. These rules are important whenever it is not possible to do the experiment
setting X, to z;. He calls this P(x;| do X} = x;) and explains in detail how it has
to be distinguished from the usual conditional probability P(x;|x)). Here we prefer to
demonstrate this difference using the example with Z as common effect. If X is set to z,
the probability distribution of y is not P(y|z) but

P(yldo X =x) = P(ylz,2)P(2).

Formally P(y| do X = z) defines also a classical-to-classical channel and its capacity C
would again be a good measure to quantify the effect of X on Y.

It is an interesting question how the concepts in [104, 105, 106] could be generalized to
the quantum setting. This is non-trivial even for Reichenbach’s principle of the common
cause [110]. Here we do not claim to present an answer to these deep questions; we only
want to show that the possibility of dense coding can be a difficulty for the quantification
of causal effects. Dense coding works as follows. Alice and Bob share a maximally
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which is one of the four Bell states |¢F),|¢%) [3]. It is easy to see that they can be
converted into each other by local transformations 1,0,,0,,0. on Alice’s or Bob’s sub-
system alone. Let the classical variable X determine which of the 4 operations Alice
applies. Then she sends her qubit to Bob. He can distinguish between all 4 Bell states
with certainty. By such a measurement Bob could define 4 values of a random variable
Y. They are completely determined by the values of X and therefore without loss of
generality the same. Even though we have no formal do-calculus in the quantum setting,
we can set X to specific values x and verify that P(y| do X = z) = 4,,. Hence we
have a two-bit classical-to-classical channel. This means that the causal effect of Alice’s
transformations on Bob’s measurement results is 2 classical bit. On the other hand, one
may like to define the strength of a causal arrow with the amount of information flow
(through space-time) in a reasonable sense. And there is no doubt that the information
which propagated through the space from Alice to Bob was only one qubit. One may
resolve this conflict between these two reasonable ways to quantify the causal strength by
saying that one qubit is more than one bit. However, here it should only be stressed that
problems of this kind occur when causal strength is defined in information-like terms.

2.4.2 Hidden Variable Models in Clinical Drug Testing

Now we explain another interesting phenomenon about causal reasoning in every-day life
in the presence of quantum correlations. The paradox shows that a classical model may
fail in describing correlations between classical observations even when the causal effect
from one system to the other is a purely classical signal. The potential relevance of this
phenomenon for every-day life statistical reasoning can be explained in a clinical drug
test.

To test whether or not a drug helps to recover from a certain disease one may direct
some patients to take the drug and some not to take it. It is clear that allowing the
patients to freely decide whether or not to take it, the patients who take it may no longer
be representative since for instance their age, their personality, or some other confounding
variables may be different in the group of volunteers compared to the control group.
Therefore one has to decide randomly who should take the drug and who shouldn’t.
However, it is a well-known problem in clinical tests that not all patients comply. Some
may take the drug even though they were instructed not to take it and some could
not take it even though they were directed to take it. Due to the arguments above
it is clear that the error caused by the non-compliers cannot be avoided if one could
find out the non-compliers (for instance by a blood-test): the compliers may no longer
be a representative group and correlations between taking or non-taking the drug and
recovery are not necessarily caused by the drug; they could also be caused by confounding
variables. On the other hand it is clear that an extremely small compliance rate could
not fake arbitrarily high correlations between taking the drug and recovery. This is the
idea of the analysis below where we follow mainly Pearl [105].

First, let us rephrase his most intuitive conclusion. Imagine that an inexperienced
researcher, unaware of the non-compliance issue, observes the two binary variables Z
and Y. The values Z7 = z; or Z = z; mean that the patient had or had not been
selected to take the drug and Y = y; or Y = gy, means that the patient recovered or
not, respectively. The inexperienced researcher would then take the difference between
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the probability of recovering if the patient was instructed to take the drug minus the
probability of recovering if the patient was not instructed to take the drug, i.e., the value

P(yl\zl) - P(yﬂzo),

as the (positive) causal effect of the drug.'> Now imagine that a more experienced statis-
tician asks for the maximal error that this naive conclusion can cause. He observes the
variable X where X = x; or X = 7 means that the patient has or has not taken the
drug, respectively. He concludes that in the worst case of overestimating the effect, all
those who had been instructed to take the drug but did not comply and have recovered,
would have stayed ill had they complied. On the other hand, all those patients who had
been instructed not to take it and took it nevertheless and did not recover may have
recovered if they would have complied. By this intuition he concludes that the causal
effect of the drug is to increase the probability of recovering at least by

P(y1|z1) — P(y1l20) — P(y1, xo|z1) — P(yo, z1]20) , (2.11)

where P(y1,xo|z1) denotes the conditional probability of the event ‘no drug taken and
recovered’, given that the instruction was to take it. The other definitions are similarly
constructed.

By the same kind of reasoning, one can find bounds on the underestimation of the
causal effect. The result is that the recovery rate is increased by at most

P(y1l21) — P(yil20) — P(yo, zol21) — P(y1, 71]20) - (2.12)

Note that the increase in the recovery rate we are describing is the increase that would
happen if all patients took the drug (including those who have decided not to take it).
Therefore the definition of the causal effect relies on the hypothetical result of an exper-
iment where all patients are forced to comply.

For a formal proof of statements of this kind we need a precise model in which terms
such as “the recovery rate if all patients take the drug” make sense. Remarkably, the
proofs which can be found in the literature [111, 105] refer to a hidden variable model of
mental and physical behavior of the patients. Fig. 2.7 shows the graphical model of the
causal structure.

It is assumed that the mental and physical state which determines whether he decides
to take the drug or not and whether he recovers or not can be described by a hidden
variable U. As we have briefly sketched above, the causal effect of Z on Y could be
identified if the confounding variable U could be observed. We have then

P(y| do z) = P(yla,u)P(u).

Due to the existence of a confounder, the formula (2.10) for the average causal effect has
to be redefined in terms of do-probabilities instead of usual conditional probabilities:

ACE(X —-Y) = P(y] doxy) — P(y1| do zo)
= Z(P(y1|:):1,u)P(u) — P(y1|zo, u)P(u).

u

15Here we use the large sampling assumption, i.e., the sample size is large enough to estimate the joint
distribution P on all observed random variables. Issues of significance of correlations can therefore be
neglected here.
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Figure 2.7: Graphical model of causal structure of the compliance problem: Z is the instruction
to take the drug, X is patient’s decision to take it, Y is his physical response (recovered or not),
and U represents all relevant latent factors influencing decision and response.

The interesting insight of the analysis in [105, 111] is that one can derive bounds on the
causal effect even without observing U at all. They argue that U, no matter how complex
its influence on behaviors and health is, can be represented by a variable with 16 values
without loss of generality. Based on this hidden-variable model they derive 8 lower and 8
upper bounds on ACE in terms of conditional probabilities with the observable quantities
X,Y, Z. One of them reads, for instance:

ACE Z P(yl,l’1|2’0) — P(yl,l’1|21) — P(yl,l’0|21) (213)
—P(yo, z1]|20) — P(y1, 70| 20) -

These 16 bounds are tighter than the more intuitive bounds (2.11), (2.12). But what
happens if the confounder U is not a classical variable but a quantum state? Even though
we have chosen not to digress into the controversial subject of to what extent quantum
mechanical effects play a crucial role for mental and physiological processes here, we
cannot assume, as yet, that the quantum effects are irrelevant. The toy model below
shows that neglecting these quantum effects can lead to causal misconclusions. Assume
that mental and physical conditions of the patient could be described by a state p of
two qubits, where the left is thought to belong to the mental part of the patient and
the right to his physical constitution. Assume furthermore that the instruction to take
the drug influences his mind in such a way that it implements V ® 1. The patient’s
decision is determined by a measurement of the left qubit in the computational basis
(with projectors Py and P;). The effect of the drug is that it implements 1 ® W. Then
the outcome of a measurement on the right qubit determines whether the patient recovers
or not.

Obviously the causal effect of the drug is given by

P(y] do z1) = P(yi| do o) = tr(p(1 © UTPU)) — tr(p(1® 1)),

since the instruction is irrelevant for the right qubit. The strongest violation of the ACE
bounds that we found is given as follows. Define

pi=H@H e ) (@ [(H @ H ') = (H @ 1)@ )(e|(H* @ 1),

with the Bell state ]

W) = —=(01) = [10)),
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and the Hadamard gate H. The second identity is due to the invariance of |¥~) with
respect to common rotations on both qubits. Let V and W both be the Hadamard gate
H. The specific feature of |®~) is that measurements in the same basis performed on
both qubits lead always to different outcomes. Let F§', Pi* be measurement operators
with respect to the basis

|thg) 1= cos &r|0) + sin r|1)

and
|¢1) = sina|0) — cosa|1) .

If the measurements F§, P* and POB , Plﬁ are performed on the left and the right side,
respectively, then the probability for obtaining the same outcome is given by sin?(a — f3).
Reinterpreting the transformations H and H?/? as a change of the measurement basis the
instruction to take or not to take the drug leads to measurement angles oy = 22,5, oy =
67,5°, respectively. The taking or not-taking of the drug leads to 3, = 0°,3; = —45°,
respectively.

The average causal effect of the drug is zero. To see this recall that ACE measures the
increase of the recovery rate in a hypothetical experiment where all patients take the drug
compared to the case that nobody takes it. In this hypothetical experiment, the taking
of the drug is decoupled from the patient’s decision to take it. This means that the angle
of the right hand filter is not determined by the outcome of the left hand measurement.
In this experiment there is certainly no correlation between the taking of the drug and
the recovery since the change of the measurement angle by the drug is irrelevant for the
fact that half of the patient’s recover. However, the ACE bounds claim a causal effect
with our specific choice of the angles. The decisive conditional probabilities are given by

Ply;, apl2) = 3(1 — (1) cos(20, — 203))

This can be seen as follows: The indices [ (instruction to take/ not to take) and k
(taken or not) determine the angles a and [ of the filters. The probability that the
patient’s decision (0 or 1) coincides with his response to the drug (0 or 1) is given by
(1 —cos(20q —20,)) /2. The probability that the results disagree is (14 cos(2a; —205)) /2.
The probabilities for the results 1 and 0 in the first measurement are 1/2 each, regardless
of the measurement angle. This gives an additional factor 1/2. In contrast to the ACE
bound (2.13) we find
P(yy, x1]2) = 1/4(1 + 1/V/2) =t a™

and all the other terms on the right hand side are
1/4(1 = 1/V2) = a™.
The ACE-bound would therefore imply
ACE > 1/4(=3+5/V2) ~ 0.134.

Hence the third ACE-bound claims the average causal effect to be at least about 13%
although it is zero. Due to the symmetry of the problem we can violate three of the 8
inequalities similarly (for details see [112]).
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Note that in this setting it was essential that there indeed exists a causal effect of
the drug on the recovery - sometimes negative and sometimes positive depending on the
patient’s decision. Hence the conclusion that the drug influences patient’s health is true
nevertheless. In [112] we have furthermore shown that the other bounds as well as the
intuitive bounds (2.11),(2.12) are even true in the quantum setting. The formal setting
for investigating the violation of the classical ACE-bounds by latent quantum factors is
based on the following assumptions.

1.

The instruction to take or not to take the drug is perfectly randomized and inde-
pendent of all other factors.

All relevant latent factors influencing the patient’s decision and his response be-
havior to the drug are described by the state of a physical system in the sense of
algebraic quantum theory. This state includes the patient’s mental and physical
state as well as noise that influences the decision or response or both. The state
is the state p of a physical system described by an observable algebra, i.e., a C*-
algebra A (see [64]). This generalizes the concept of states used so far, where it is a
density operator. Explicitly, it is a positive linear functional of norm 1 on A. The
system is either purely quantum, purely classical, or a mixture of both. Although
this may be too a materialistic view on mind and consciousness, this approach is
more general than any hidden variable model in the literature.

To take or not to take the drug is a classical event that either occurs or does not
occur but there is no quantum superposition between both. The process of human
decision is therefore like a measurement process in its broadest sense, as explained
in Subsection 4.1.2. This instrument is described by CP-maps D1, D, acting on A.
Therefore, the state p is transformed to p o Dy/||p o D1|| if the patient has decided
to take the drug and po Dy/||po Dyl|| otherwise. If the decision itself is ignored, the
process of decision making is described by the process p — po D with D := Dy+ D;.

. The instruction to take or not to take the drug is a classical signal that influences

the patient’s internal state. The instruction to take or not to take transforms the
state to p o G or p o G, respectively. Here G; are CP-maps on A.

The effect of the drug is to transform the internal state p to p o E;, whereas the
natural evolution without the drug in the considered time interval changes the state
according to the operation E,. The operations F; are CP-maps on A.

Whether the patient recovers or not is a classical event and is therefore equivalent
to a measurement process in the sense above. It corresponds to a yes-no-experiment
described by a positive operator m € A.

The instruction to take or not to take the drug has no direct causal influence on
the health. It influences the probability of recovery only by indirectly influencing
the decision. This corresponds to the fact that the graphical model Fig. 1 for the
classical setting has no arrow from Z to Y.

One may think that it would be more appropriate to assume that the operations G; and
E; act on different systems: G acts on the mind and E; on the body. But we do not
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want to restrict our proofs to this assumption. In particular, we emphasize that there may
be a part of the body with the property that its quantum state influences the decision
and the recovery. This may, for instance, be a cell that influences the production of some
hormone that has a causal effect on both mood and health. It would be rather speculative
to discuss whether such a phenomenon is likely to happen; nevertheless cautious scientific
reasoning should not rely to hidden-variable models of phenomena like mental processes
which are not yet well-understood.
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Chapter 3

Extending the Definition of
Algorithms

Here we will argue that the usual understanding of algorithms is too strict when all
existing proposals of quantum algorithms are taken into account. First, the finiteness
of the number of steps which is essential in classical computer science does not give
consideration to the continuity of quantum logical operations. Continuous algorithms
require their own language based on Lie-algebraic terms. Second, quantum algorithms for
non-computational problems deserve other specifications than algorithms for computation
since input and output are not necessarily classical strings.

3.1 Continuous Algorithms

In the preface we have quoted a definition of algorithms which states that an algorithm
consists of finitely many steps. The idea is that this is necessary in order to have finite
running time since every machine has a minimal time to perform a logical operation. For
classical computation, there are clear physical reasons supporting this point of view. As
shown in [113] this is due to the finiteness of the available energy since the change of the
logical state of a bit within a time interval At requires at least an amount of ' > h/(4At)
of available energy. For a qubit there is, however, no such a bound. The state space of
a qubit or a quantum register is a continuum. Changing the state only a little bit may
require an arbitrarily short time period.

Of course, all processes in a classical computer are also continuous processes when the
computation is considered on the physical level. But the computer science description of
a computation is restricted to the logical level and does not consider the period of the
switching process itself where some bits may be in a logically undefined state.

In quantum computing, the quantum logical state can be defined even during the
implementation of a unitary operation. However, it is important to note that this is not
necessarily the case. Consider a qubit being in the state |0). In order to switch to |1)
we implement the o, gate. Consider two quantum computers with different hardware.
The first implements o, by the time evolution exp(io,t). We could call this evolution
a continuous algorithm for implementing o,. In contrast, the second computer creates
entanglement with the environment during the implementation. Then the time evolution
of the qubit is described by a family of completely positive maps instead of a family of

73
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unitaries. But this is not the essential point. One could easily generalize the term ‘con-
tinuous algorithm’ to CP-maps. But the family of CP-maps which describe the evolution
of the qubit density matrix is not a semi-group and is therefore not a concatenation of in-
finitesimal CP-maps. Therefore the latter hardware would not use a continuous algorithm
for the o,-implementation.

The implementation of the continuous algorithm for implementing the NOT operation
is usually controlled by a classical field. Applying a magnetic field with field vector
B := (B,, By, B,) yields, for instance, a Hamiltonian dynamics of a spin-1/2 particle
given by

H= Y Byoa. (3.1)

a=T,Y,z

An algorithm could be a description of a function ¢ +— B(t), i.e., the time-dependence
of the field. It does not make sense to talk about time steps here. Therefore, the basic
resource for quantum computation is in many cases given instead by the available physical
interactions than by a discrete set of gates. We briefly want to mention that there is also
another type of algorithm which does not fit in the discrete standard model of quantum
computing at all. In adiabatic quantum computing a method which will be addressed in
Subsection 3.1.4, a computational problem is encoded into an interaction in such a way
that the ground state of the system (i.e. the zero temperature state) gives the solution.

3.1.1 Languages for Continuous Algorithms

Motivated by the remarks above we may define an algorithm with running time 7" as a
mapping
t— H(t)

with t € [0,7] and H(t) the Hamiltonian at time ¢. We will assume that the map is
integrable in an appropriate sense such that for every ¢ € [0, 7] there is a unique unitary
transformation U, as solution of the time-dependent differential equation

%Ut = —iH(t)U,.

Furthermore, there must be an efficient algorithm that computes the function ¢t — H(t)
in analogy to the requirement that the circuits used for a discrete quantum algorithm
can be computed efficiently.

Above we have argued that the time-dependence of H may stem from a time-dependent
field which controls the system. Another instance of such a continuous algorithm is given
by models with a fixed Hamiltonian H and the additional ability to implement so-called
bang-bang control. These control operations are usually unitaries in some set ¢ and it is
assumed that the implementation time for each U € U is extremely short compared to the
time scale of the natural evolution exp(—iHt). This is also called the ‘fast-control limit’.
One obtains algorithms which consist of unitaries U; implemented at time ¢; and the
natural evolution during the time interval between. This implements the transformation

exp(—iHt,)U, exp(—iHt, 1)Up_1...exp(—iHt,)U; .
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By defining V; := U, - - - U; this is equal to
Viexp(—iV;HV]t)),

i.e. up to the transformation VjT the dynamics is as if it was generated by a time-dependent
Hamiltonian with

H(t):= V;HV] fort € [t;,t;41].

If U is a group, the set of available Hamiltonians is the set of conjugates of H under
all available control operations . Since these different Hamiltonians can (according to
the fast-control limit) be applied on short time intervals one can easily generate further
Hamiltonians: Using concatenations of evolutions

exp(—iH ) exp(—iHye) = exp(i(H, + Hy)e) + O(€?) (3.2)

simulates the sum of two available Hamiltonians H;, H,. But one can also simulate
i[Hy, Hs] using the rule

eiHleengse—iH1ee_iH25 — 6—[H17H2}52 + 0(63) . (33)

This is also possible if Hy, H, are already given by simulations. In other words, proce-
dures to generate a Hamiltonian H using a set of natural Hamiltonians Hi, Hs, ... could
be formulated in terms of subroutines simulating “intermediate” Hamiltonians in order
to obtain the final one. This Lie-algebraic methods offer, so to speak, a ‘higher pro-
gramming language’ for simulating H by a given set of Hamiltonians. Keeping in mind
the subroutines above one may use terms like ‘simulate [Hy, Hy] + H3 using simulations
of Hy, Hy, H3’. This language was widely used in the theory of simulating Hamiltonian
and for proving that different many-particle interactions have the same computational
power [99]. We have formulated a measurement algorithm for the energy of n qubits
which are subjected to an unknown interaction in this language [114] and an algorithm
to distinguish between a set of n Hamiltonians on C" [115]. Note that every explicit
description of the steps, i.e., the time intervals at which the Hamiltonians are switched
on, refers to a specific approximation accuracy. Hence the number of necessary steps
for these simulations cannot be defined. The running time, however, is in the limit of
arbitrary accuracy infinite, only becoming finite if only first order simulation according
to rule (3.2) is used.

3.1.2 Comparing Discrete to Continuous Complexity

In the complexity theory of classical algorithms the time complexity plays a crucial role
and an algorithm is called efficient if its running time increases only polynomially in the
size of the input string. It seems therefore straightforward to consider the running time 7'
of the continuous algorithm as the analogue of the classical time complexity. However, this
does not make sense if the set of available Hamiltonians is a vector space. This is shown
by the example in eq. (3.1) where the magnetic field can be made arbitrarily strong. Then
one could obtain arbitrarily small running time by rescaling the Hamiltonian. Sometimes
it will make sense to bound the norm of all available Hamiltonians. However, one can
also obtain interesting computation models if the norms of some available Hamiltonians
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Figure 3.1: Depth (D) and weighted depth (w) of a circuit: D counts only the number of layers
(time steps) while w takes also into account their weights.

are unbounded. Actually, the bang-bang control (fast-control limit) in Subsection 3.1.1
can be interpreted as a time-dependent Hamiltonian model where on some intervals H ()
is only the natural Hamiltonian H active and on other small intervals the superposition
of H with a strong control Hamiltonian!. If the control Hamiltonian is much larger than
the natural one, the bang-bang model is obtained.

In [117] we have tried to find a complexity measure for continuous algorithms which is
as close to gate complexity as possible. For doing so, we modify the complexity measure
depth (see Definition 4) such that it better meets the continuity of physical processes:
in order to take into account that gates which are close to the identity can possibly be
implemented more quickly, we introduced the concept weighted depth. First we defined
the angle of a unitary U as the minimal norm over all self-adjoint A with exp(:A) = U.
Then we define (see Fig. 3.1 for an illustration):

Definition 22 (Weighted Depth of a Circuit)
The weighted depth w of a quantum circuit of depth d is the sum

d

w = E U)j

j=1
where the weight w; is the mazimal angle of all gates implemented in step j.

It order to define complexity of continuous algorithms we define the complexity of an
interaction. We will restrict to pair-interactions partly for physical reasons and partly
because this fits well with the discrete model with two-qubit gates. Let H on n qubits

be given by
H:=> Hy,

Jk<n

where each Hjj acts on the qubit pair jk. Our following definition of complexity is lead
by the intuition that H is more complex if many Hj; are non-zero for overlapping qubit
pairs and is not complex if it acts only on mutually disjoint pairs. Furthermore, due to
the remarks above, we call an interaction more complex if the norms of Hj; are large.
A complexity measure which takes both aspects into account is given as follows. First

!Simulation of Hamiltonians using bounded control fields are considered in [116].
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define a weighted graph with the qubit numbers 1,...,n as vertices and c;;, := || H,i|| as
weights. Two vertices j, k are connected if and only if Hj;, # 0. As generalization of the
chromatic index of a graph (i.e. the least number of colors needed to color the edges) we
define [117]:

Definition 23 (Weighted Chromatic Index)
The weighted chromatic index W of a weighted graph with weights c;, > 0 is given as
follows. Let n,. be the chromatic index of the graph which consists of all edges (j, k) for

which cji, > r. Then
W .= / n,dr .
0

Now we can straightforwardly define the complexity of a continuous algorithm as the
time integral of the complexity of the interaction over the whole running time:

Definition 24 (Continuous Complexity)
Let t — H(t) with t € [0,T] a continuous algorithm and W (t) its weighted chromatic
index at time t. Then its complexity is

C:= /OTW(t)dt.

In [117] we have shown that this continuous complexity measure coincides with the
weighted depth, i.e., we have:

Theorem 11 (Continuous Complexity Equals Weighted Depth)

There is a continuous algorithm with complexity C' which implements U if and only if
there is a sequence of discrete algorithms implementing unitaries U,, converging to U such
that their weighted depth converges to C'.

Remarkably our theory of simulation of Hamiltonians justifies the point of view that
interactions with low weighted chromatic index are easy to obtain. This is explained in
the next subsection.

3.1.3 Mutual Simulation of Hamiltonians

We have already argued that qubits, in contrast to classical bits, allow ‘logical’ oper-
ations which change the state arbitrarily little. Hence a quantum computer may not
necessarily have a ‘smallest’, most elementary logical operation. Therefore a set of avail-
able Hamiltonians may replace the elementary steps. According to common language
of physicists, they represent ‘infinitesimal’ operations. In classical computer science one
compares different computing devices by establishing the overhead when one device sim-
ulates the other. Therefore it is natural to compare quantum computers by asking for
the complexity overhead when one Hamiltonian simulates another. But, apart from this
straightforward analogy, one may use mutual simulation of Hamiltonians in order to use a
quantum computer for simulating an arbitrary physical system which is not a computer.

To explain our results on these issues we follow the setting for mutual simulation of
Hamiltonians in [118] which refers to the first order approximation of eq. (3.2). Let H
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and H be the Hamiltonian of the system which simulates and is simulated, respectively.
Furthermore the first system is endowed with a set of some additional group U of unitary
control operations. As already explained in Subsection 3.1.1 one can simulate every
Hamiltonian in the convex span of all UHU' for U € U if the implementation time for
each U is neglected. If H is not in the convez span but in the positive span, i.e.,

H=> ¢U;HU},

J

with 3, ¢; = 7 > 1, the simulation has time overhead 7 since this is exactly the slow-
down factor of the simulation compared to the dynamics to be simulated. In [119] one
can find the theory of mutual simulation of two-qubit interactions where H and H are
Hamiltonians of the form
H = anﬂaa ®og,
a,p

where o,,0,,0, denote the Pauli matrices and the set of allowed unitary operations is
given by products of the form
U=u ®us

acting on C?® C?. Then the convex optimization problem of simulating H is worked out
in detail in [119]. We considered the case where H and H are n-qubit interactions of the

form
H = Z Z Jkl;aﬁaék)gg) )

k<l af

with an appropriate symmetric 3n x 3n matrix J. Note that the symmetry of the coupling
matrix J does not imply any physical symmetry of the interaction. It is a consequence of
our redundant representation which considers ordered qubit pairs. This turns out to be
very useful below. The coupling matrix .J consists of 3 x 3-blocks, where the 3 x 3-matrix
Jri given by the block at position (k,1) describes the coupling between the qudits & and
I, and the blocks k = [ are zero. We will henceforth characterize H by J and H by J.
The available unitaries are also products

UZZU1®UQ®"'®U”. (34)

This model is a strongly idealized version of real NMR-physics (e.g. [120, 47]). To express
the effect of the control operations on the coupling matrix J one should note that any
unitary operation u € SU(2) corresponds to a rotation on the Bloch sphere via the

relation
ulf ( Z caaa)u = Z Calq
(0% (0%

where the vector ¢ = (¢, éo, ¢3) is obtained by applying a rotation U € SO(3) on the
vector ¢ = (c1,c9,c3). It is straightforward to verify that conjugation of H; by U :=
U Uy ® - - - ®uy, corresponds to conjugation of J by a block diagonal matrix of the form

Vi=UWeUPae...aU"ecs0(3).
k=1
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Hence the condition for correct simulation is given by

=Y "tV (3.5)

J

where the orthogonal matrix V; corresponds to the unitary U; which conjugates the time
evolution in the time interval j. Obviously H can only simulate H if its interaction graph
is a subgraph of the interaction graph of H; the latter connects all qudit or qubit pairs
J, k for which H contains an interaction term Hj ;. This requirement is stronger than in
simulations which do not use average-Hamiltonian theory but refer to higher-order terms
as eq. (3.3). Then it is sufficient that H has a connected interaction graph [99]. We showed
that H can simulate all H even if not all product unitaries are allowed. Moreover, one
can also restrict the set U to all product unitaries where each tensor component is in a
sufficiently large group [121] which we called transformer groups. They are subgroups
of SU(2) (or SU(d) for qudits) which act irreducibly in their adjoint representation
U + UAUT on the self-adjoint traceless operators.

We first focus on our time overhead bounds for simulating the coupling J by J. With
T = > ;t; and p; := ;7 one can easily check that J is a convex sum of orthogonal
conjugates of the matrix 7.J. Using elementary results of linear algebra we concluded in
118]:

Theorem 12 (Lower Bound on Time Overhead) .
Let J and J be the coupling matrices of two pair-interactions H and H among n qubits.
If H simulates H with time overhead T then 7J majorizes J.

Obviously we know also that H must majorize H (a condition which was used in [119]
for the 2-qubit case) but this condition seems less helpful for the n-qubit case since the
Hamiltonians themselves can have exponential size whereas the coupling matrices J and
J are 3n X 3n-matrices.

The time overhead is not the only reasonable complexity measure. The number of
time steps is also important. Both measures may differ significantly [46] as will briefly
be reported below. To derive bounds on the number of time steps it will also turn out to
be useful to compare spectra of J and J. We restrict our attention to interactions with
an additional symmetry, namely Hamiltonians of the following form

H = Z Wy Z caﬁag“)ag) . (3.6)

k<l af

The matrix W := (wy,) is a real symmetric n X n-matrix with zeros on the diagonal. It
describes the coupling strengths and the signs of the interactions between all qudits. The
matrix C' = (c,p) is a real symmetric 3 x 3-matrix characterizing the type of the coupling.
This means that all qudits interact with each other via the same interaction and that
only the coupling strengths and the signs vary. It is important that in this special case
the coupling matrix J can be expressed as a tensor product of W and C,i.e., J =W ®C.

To derive a general lower bound for simulating arbitrary interactions J by a tensor
product interaction J = W ® C' it is useful to observe that the decisive condition in
eq. (3.5) is invariant with respect to the following rescaling of interactions: Multiply each
3 x 3-block k, 1 of J and J with the same factor r. In the case that J is a tensor product
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W @ C where W has no zero entries except from the diagonal, we can therefore replace
W with a matrix K which has only 1 as non-diagonal entries after we have rescaled J in
the same way.

If the coupling J should be simulated, we obtain

N
Y VK@)V =]

j=1
Set R := Zjvzl t;V;(1® C)V}'. By adding R to both sides we obtain

itjvj»((KJrl)@C)VjT:J’JrR. (3.7)

J=1

The rank of the matrix (K + 1) is 1 since all its entries are 1. The rest uses some linear
algebra using arguments on the rank of both side of (3.7). After relating this back to the
initial scaling we obtain (see [122] for a detailed proof):

Theorem 13 (Lower Bound on Time Steps)

Let J := W ® C be the coupling matriz of the system Hamiltonian, J an arbitrary
coupling matriz of the interaction that is simulated, and p the time overhead. Denote
the minimal and mazimal eigenvalues of C' by Apin and Amax, respectively and its rank
by r(C). Let I be the m x m-matriz whose all entries are 1. Let s be the number of
eigenvalues of J /(W @ I) that are not contained in the interval

1:= [,U)\minnu)\max] .
Then the number of time steps required to simulate Hj by Hy is at least s/r(C).

More concrete statements can be given when the J is homogeneous, i.e., also a tensor
product:

Theorem 14 (Lower Bound on Time Steps; Homogeneous Case) Let W @ C be
the coupling matriz of the natural Hamiltonian and W ® C' the coupling that we want to
simulate. Assume all non-diagonal entries of W are non-zero.

1. Let C be a positive semidefinite matriz. Then the number of time steps is at least
the number of positive eigenvalues of W /W .

2. Let C = diag(1,1,...,1) be the m x m-identity matriz. Then the number of time
steps is at least n — k, where k is the multiplicity of the smallest eigenvalue piyi, of

W/W.

3. Let the natural coupling be C := diag(0,0,1), i.e., we have o, ® o, interactions
between all spin-1/2-particles. Let the set of local control operations be restricted to
10, —transformations. Then one requires at least n—k time steps with k as in Case 2.
If piin 18 irrational then at least n steps are necessary. In any case, n(n—1)/2+1
time steps are always sufficient.



3.1.

CONTINUOUS ALGORITHMS 81

Iy ot oo
rrpp EED e e
1) 2) 3) 4)

Figure 3.2: Simulation of the square lattice interaction with 4 subroutines

Interesting examples for the complexity bounds (time steps and time overhead) for the
case J =W ® C' are the following:

1. Time Inversion: Simulate —H by H. A detailed presentation is given in [46]. A

relevant application is the refocussing problem in NMR. The following cases can
occur:

(a) C is traceless. For instance, the dipole-dipole coupling in NMR is described
by C = diag(1,1, —2).
All spins can be subjected to the same transformations in each time step, the
number of time steps and the time overhead are at most 2.

(b) C has negative and positive eigenvalues but tr(C) # 0. In NMR one obtains
this case by a combination of dipole-dipole coupling with scalar coupling (see
example 3) [123].

The spins have to be addressed separately, the number of time steps necessarily
grows for increasing n. But the time overhead does not depend on n. It
depends only on the eigenvalues of C.

(c) C is either positive or negative semidefinite, i. e., the non-zero eigenvalues have
the same sign. An example in NMR is the strong scalar coupling where C' is
the identity.

Then the spins have to be addressed separately, the number of time steps is
at least n — 1, and the time overhead is also at least n — 1.

2. Simulating a Square Lattice: We consider a quantum system of n = [? spins

located on a two-dimensional square lattice. For simplicity assume that [ is even.
We want to simulate a lattice with only nearest neighbor interactions.

The desired interaction graph is shown on the left of Fig. 3.2. This kind of interac-
tion can for instance be used for preparing the initial state in the ‘one-way quantum
computer’ proposed in [23]. The eigenvalues of the corresponding adjacency matrix
A are known in graph theory [124]:

™

) +2 (—) i=1,....1. 3.8
z>+ cos (7577 iy ] (3.8)

T
2 cos (
[+1
We first consider the time overhead. An upper bound is given by 4 since this is the
chromatic index of the graph (see, for instance, [117]). It is easy to see that the
minimal eigenvalue of A is given by

Amin = 2 COS (HLl l) + 2 cos <Z+L1 l) ) (3.9)
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By Theorem 14 (Case 3) the lower bound on the number of time steps is n since the
smallest eigenvalue is irrational. Note that this example shows that the complexity
measures time overhead and number of time steps may differ significantly.

An upper bound on the number of time steps can be obtained as follows. The graph
has 2(I — 1)l edges. We can partition the edges into 4 sets of edges such that each
set contains only disjoint interacting pairs. These 4 partitions are shown in Fig. 3.2.
The simulation consists of 4 subroutines simulating one of the interactions in one
of the 4 classes. For each subroutine we choose selective decoupling schemes (which
will be described in more detail in Subsection 4.3.1) using Hadamard matrices.
Since the numbers of cliques are [?/2 or [?/2 + [ in each subroutine, the square
lattice graph can always be simulated in O(I?) = O(n) time steps.

Generalizations of the theory for qudits, i.e., higher dimensional units of quantum infor-
mation, can be found in [101]. The common idea of all the bounds above is that the
spectrum of the adjacency matrix tells us to what extent the simulation schemes can be
parallelized. Remarkably, the continuous model of quantum computing lead to discrete
combinatorial parallelization problems which are strongly analogous to parallelization
problems in usual computer science.

The theory above shows that there are rather similar-looking interactions where one
is more powerful. Consider for instance the two n-qubit Hamiltonians

Hy =3 000 4 000k
ik

The time overhead to simulate H, by H_ is at most 2 since one could cancel all z-
interactions without time overhead. For half of the time period we convert this zz-
interaction into a zz-term. But simulating H_ by H, requires at least time overhead
(n — 1)/2. The argument is that H_ can simulate —H_ without any time overhead.
Given a simulation of H_ by H, with time overhead 7, we can construct a time inversion
scheme for H, with time overhead 27. On the other hand, H, needs time overhead n —1
to simulate its own inverse because it belongs to case (c).

Another message of the complexity theory of mutual simulation of Hamiltonians is
the following. Given a fixed interaction, one may define a complexity of the topology of
the interaction graph of another interaction. This can most nicely be demonstrated if H
is a zz-interaction between all qubits and we only want to cancel the interaction between
some qubit pairs. Let A be the adjacency matrix given by the remaining interaction
graph. Then the theory above implies (for details see [118]) that the time overhead is the
least number 7 > 0 such that the vector (n — 1,—1,—1..., —1) majorizes the spectrum
of A. In particular, 7 is at least the modulus of the smallest eigenvalue of A. On the
other hand, the selective decoupling techniques explained in Subsection 4.3.1 allow one
to cancel (without time overhead) all interactions between cliques of qubits after one has
chosen an arbitrary partition of the qubits into arbitrarily many cliques. By choosing
cliques which consist of at most 2 qubits it follows that an upper bound on the time
overhead is given by the chromatic index of the simulated interaction graph, i.e., the
number of colors required to color its edges. In Fig. 3.3 we show simple and complex
coupling topology according to the time overhead.
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Figure 3.3: Interactions with ‘simple’ and ‘complex’ topology: The linear chain has chromatic
index 2 and the star n for n exterior nodes

This lower bound on the simulation time overhead generalizes even to the weighted
chromatic index (see Definition 23) when the given interaction is a zz-interaction between
all pairs and with equal strength (‘complete zz-Hamiltonian’) and an arbitrary pair-
interaction is simulated.

Theorem 15 (Relevance of Weighted Chromatic Index)
The time overhead to simulate an arbitrary pair-interaction on n qubits by the complete
zz-Hamiltonian is at most its weighted chromatic index.

This result (shown in [118]) gives not only a further justification to our definition of
weighted chromatic index, it supports also the integrated chromatic index (Definition 24)
and the weighted depth (see Theorem 11) as reasonable complexity measures:

Theorem 16 (Relevance of Weighted Depth)
The time to implement a unitary U by the complete zz-Hamiltonian is at most the
weighted depth of a discrete quantum circuit implementing U.

It is clear that the complete zz-Hamiltonian is unphysical since interactions between
distant qubits will generally be smaller. However, qualitative ideas of the theory above
apply also for interactions with deceasing strength between distant qubits. Partly we
have stated those generalizations already above.

The average Hamiltonian model is of course only an approximation of the time evolu-
tion when the natural dynamics is interspersed by external unitary control. To generate
an arbitrary n-qubit or n-qudit Hamiltonian in an optimal way from local unitaries and
a given interaction is a hard problem. Even the derivation of bounds is difficult when the
first order approximation is dropped. For the special case of n = 2 qubits the optimal
implementation can be found in [125]. In [126] it was shown that the transport of quan-
tum information from the qubit at one end of a 2-qubit chain to the qubit at the other
end is faster by directly using the interaction compared to the usual approach where the
interaction is selectively decoupled in order to implement two-qubit gates. For n qubits
one can at least give some lower bounds [127, 128] on the implementation time for general
unitaries.

3.1.4 Adiabatic Quantum Computing

Here we sketch a proposal for a type of continuous quantum algorithms which had at-
tracted broad interest (see e.g. [129, 130, 131]). It shows that continuous algorithms do
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not necessarily just simulate discrete circuits to solve a computation problem. Therefore
we mention it in order to show how general any reasonable definition of ‘algorithm’ has
to be in order to include only every present day proposal for quantum computing. Fur-
thermore it is a nice potential application for mutual simulation of Hamiltonians. As in
subsection 3.1.1 an adiabatic algorithm is also described by a time dependent Hamiltonian

Ht) = (1— %)HB + %Hp.

The essential point is that Hpg is here some Hamiltonian with knwon ground states which
are easy to prepare; whereas the ground state of Hp is not known and encodes the solution
of a problem. The idea is that the problem can even be NP-complete. Provided that
H(t) is changed sufficiently slowly compared to the inverse of the energy gaps between
ground state and first excited states for all H(t), the quantum adiabatic theorem says
that the system will at any time be with good reliability in its ground state. Whether
this ‘adiabatic change’ condition could imply a running time which is not better than the
running time of ‘conventional’ algorithms has been an issue of controversial discussions
[131]. This is not our subject.

It is known [132] that the ground state of the following Hp encodes the solution of
the NP-complete problem max independent set. We recall [92]:

Definition 25 (Max Independent Set)

The NP-complete problem ‘Independent Set’ reads: Given a graph G = (V,E) and a
positive integer K < |E|. Does G contain an independent set of size K or more, i.e. a
subset V! C V' such that |V'| > K and such that no two vertices in V' are joined by an
edge in E?

We define

Hp = Z oMol 4 Zagk) .

(k,)EE keV

The problems are (1) that Hp may involve interactions between arbitrarily distant qubits
with equal strength and (2) that the solution of every problem instance requires a dif-
ferent interaction. It seems hence unsatisfying to realize such Hamiltonians as hardware.
Therefore we considered in [133] the problem of simulating Hamiltonians which could
solve NP-complete problems. We modified Hp to Hp such that it (1) involves only
nearest neighbor interactions on a 2-dimensional grid (a so-called orthogonal planar em-
bedding) and (2) solves still MAX INDEPENDENT SET. Then Hp is simulated by a
nearest neighbor interaction which is either already given by nature or by cancelling un-
wanted interactions between more distant qubits using the scheme in the second example
of Subsection 3.1.3.

3.2 Non-Computational Problems

The specification of algorithms for non-computational problems contains statements which
do not only refer to its ‘input’ and its ‘output’. Optimal thermodynamic machines should,
for instance, process the information in such a way that no information is transfered to
the environment since this would imply energy loss. This requirement is only included in



3.2. NON-COMPUTATIONAL PROBLEMS 85

the specification of the demanded output if the whole ‘state of the universe’ is considered
as output. One should rather consider it as an additional requirement which refers to
neither the input nor to the output. Note that the ‘no-information to the environment’-
condition is not necessarily a restriction to the set of available operations but rather refers
to the whole algorithm since information could be stored on an additional memory and
erased afterwards. Requirements like this can pose a considerable difficulty in finding
algorithms for non-computational problems as the next subsection shows.

3.2.1 Difference between Implementing and Computing a Boolean
Function

First we define formally what it means to calculate a boolean function

f{0,1}" — {0,1}*

on a quantum computer. We define such a calculation as a unitary transformation U on
a register of n + m qubits such that the partial trace of

trpem—r(Ula0...0)(a0...0[UT) (3.10)

is the state

£ (a))(f(a)l.

If n =k and f is known to be bijective one could also demand that U satisfy
Ula){alU" = | f(a))(f(a)], (3.11)
or the weaker condition
Ula0...0Y{a0...0]U" =|f(a)0...0)(f(a)0...0|. (3.12)

From the computational point of view, it does not make sense to demand (3.11) or (3.12).
However, from the thermodynamical point of view the difference to (3.10) is important.
Restoring the ancilla qubits in (3.10) after the implementation of U requires energy
resources according to Landauer’s principle (see Section 2.2). There could, in principle,
also be cryptographic reasons to prefer (3.11) or (3.12) to (3.10) because the erasure
operation transfers information to the environment which could be useful for a potential
eavesdropper.

In order to explain why there is a difference from the point of view of complexity
theory whether one demands (3.11) or (3.12) in contrast to demanding only (3.10), we
rephrase some ideas from the theory of reversible computation [70, 71]. Assume one
wants to compute f(x) for an arbitrary boolean function from n to k bits. Then one
can first decompose f into elementary boolean gates like AND, NAND, NOR, OR, NOT.
Except from the NOT gate they are not bijective and therefore not allowed for reversible
computation. However, they can be embedded into reversible functions [10]. One example
of such a reversible extension of a NAND gate by a Toffoli gate is given in Fig. 3.4. Using
such a reversible embedding one obtains a bijective function

F:{0,1}™ — {0,1}™
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Figure 3.4: Simulation of a NAND gate by a TOFFOLI gate.

such that

F,...,0,z) = (f(z),y),
where y is some data garbage on the remaining m —k qubits. To remove this garbage, one
can copy the result f(z) to k additional ancilla qubits and implement F~! afterwards.
Unfortunately this trick does not help if we want to implement |a) — |f(a)) since this
requires not only the removal of the garbage but also the initial state. The method above

implements
0...0)®a) ®@1|b) — [0...0) ® |a) @ [bD f(a)) .

where |0...0) denotes additional ancilla qubits. They are used during the computation
in order to simulate boolean functions like NAND using TOFFOLI-gates and restored
afterwards. The symbol & denotes bitwise XOR.

Now assume that we have also a classical boolean circuit consisting of NAND gates
that computes f~'. We could use the same scheme as above to implement

0...0) @ |a® f'(c)) @ |c)

with a possibly different number of ancillas. We can use this algorithm to erase |a) in the
middle register since we obtain |a & f~(f(a))) = |0). Using a SWAP-operation between
the middle and the right register we obtain

10...0)@]a)®]0...0)—[0...0)@ |f(a) ®]0...0).

This shows that an implementation of f on n qubits is possible using representations
of f and f~! as boolean circuits (in [70] one can find similiar arguments in the context
of reversible Turing machines). It is easy to see that the reverse is also true: Given a
sequence of unitary transformations which implement transformation

|a) = [f(a))

we can certainly reverse the order of the gates and replace each gate by its inverse in
order to have an implementation of

ja) = |f ' (a)).
Roughly speaking we conclude:

Theorem 17 (Implementing f is as Hard as Computing f and 1)
Given a bijective functions on n bits. To find a gate sequence which ‘implements [’ in
the sense that it performs a unitary operation U on n + k qubits for some k such that

U(la) ®0)%%) = | f(a)) @ |0)**

s as hard as finding classical boolean circuits which compute f and others which compute

I
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Implementations of bijective boolean functions will play a crucial role in the theory of
algorithmic thermodynamic machines like refrigerators and heat engines in Section 4.2.
For these purposes we have used computer algebra systems to decompose a given permu-
tation on {0,1}" into elementary permutations induced by TOFFOLI and C-NOT and
NOT gates.

3.2.2 Algorithms with Quantum Input or Output

Quantum algorithms like Shor’s and Grover’s receive classical strings as input and gener-
ate classical strings as solutions. Subroutines of such algorithms do not necessarily work
with classical in- and output. Consider, for example the phase estimation procedure.
Given an eigenstate of a unitary U it computes the corresponding eigenvalue. Apart
from using it as a building block in algorithm, phase estimation is therefore also a mea-
surement procedure for the projector-valued measurement (P;) defined by the spectral
projections of U. In other words, measurement algorithms are an example for algorithms
with quantum input. This input cannot necessarily be described by classical variables
with reasonable amount of resources since the description of an n-qubit quantum state
up to a certain accuracy (with respect to the Hilbert space norm) requires an exponential
number (in n) of classical bits. But sometimes a measurement is also an algorithm with
relevant quantum output. This is, for instance, the case if measurements should be imple-
mented in the sense of the Liiders postulate (see Subsection 2.1.1). In [40] we have shown
that the additional demand that a measurement should project into the eigenspaces of
the measured observable can increase the complexity of a von-Neumann measurement.
Consider for instance the n-qubit observable

. 4On
Zi=o.".

If only the measurement result matters, one could simply measure Z by measuring every
qubit and computing the parity of the obtained string. To reduce a von-Neumann mea-
surement of Z to a single-qubit measurement in order to obtain 2" !-fold degenerated
eigenspaces one could implement a unitary U such that

UZU =0, ®1,_1.

It follows from our results in [40] that circuits which implement Z in the sense of a
projection onto its 2 eigenspaces have at least the depth

k> —(1+logyn).

N | —

To show this we define the macroscopic observable (see Subsection 2.1.2):
e ot
J

where o) is the Pauli matrix 0, acting on qubit 7. We observe that its commutator with
7 satisfies

iloz, Z] = 20, .
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We can apply inequality (2.2) to the projection P := (Z + 1)/2 and find

oz Pl = -

Sl 21 =1,

which implies

1

Note that this gives a logarithmic lower bound for the complexity of the von-Neumann
measurement, whereas the arguments show that a measurement which does not care about
the output state is given by independent single-qubit measurements. This demonstrates
that the specification of the post-measurement state does indeed change the complexity
of the measurement algorithm.

An algorithm with classical input and quantum output is, for instance, a state prepa-
ration procedure. The cooling problem, i.e., to prepare the ground state of a physical
system with good reliability is an example for a specification of such an algorithm.

Note that the goal of thermodynamic reversible computation defines a problem which
is somewhat at the border between a computation problem and a non-computational
control problem. The latter consists of implementing the computation steps in such a
way that no information is copied to the environment. The specification of this type of
algorithm therefore does not only contain statements on its logical in- and output but
also on the in- and output of physical resources.



Chapter 4

Algorithmic Approach to Natural
Non-Computational Problems

In the context of quantum computing many non-computational problems like state prepa-
ration and measurements are treated in the literature. However, the usual intention is
to use these procedures as building blocks of a quantum computation or for quantum
cryptography. Here we want to describe problems which arise from other applications.
Nevertheless the discussions will remain on an abstract level; for presentations of the
problems which describe experimental facts we refer to the literature. We only want to
describe briefly why many algorithmic control problems stem from interesting (potential
or real) applications.

4.1 Measurements

The term ‘measurement’ is usually used for a process which has numerical values as
outcomes describing the state of a system. There is no doubt that implementing this type
of measurements in molecular systems is an important task: measuring the state of an
atomic clock in order to get information about the actual time [134] is only one example.
Another example would be measurements of the energy of a molecule which give insight in
its level structure. However, the abstract concept of quantum measurements introduced
already in the 70s [28] is general enough to include non-numerical outcomes. It describes
every process where the interaction of a quantum object with some apparatus generates a
visible effect on the macroscopic scale. The measurement outcome could therefore also be
an image that is obtained when particles interact with a screen. Algorithmic measurement
theory tries to use a set of available operations to ensure that the interaction between
system and apparatus extracts the relevant information about the quantum system in an
optimal way.

To develop a complexity theory of measurements is an ambitious goal. First of all
one has to ask what the elementary measurements are. But it is by no means clear which
observables can be ‘directly’ measured. Furthermore, one could object that a complexity
theory of observables would necessarily strongly depend on the considered physical sys-
tem since there is no canonical correspondence between observables in different physical
systems. However, if one would therefore claim that a complexity theory of observables
would not make sense one could not accept a complexity theory for computational prob-

89
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lems as being device-independent either: the latter relies on assumptions about which
observables are easy to measure. Given an appropriate measurement, one could even save
the whole computation. In other words, lower bounds on the computational complex-
ity require assumptions on the complexity of measurements or restrictions on the set of
available measurements. We will be content to (1) give algorithms for certain types of
interesting measurements and (2) connect complexity of observables with complexity of
computational problems.

4.1.1 Von-Neumann Measurements and their
Complexity

In the standard model of the quantum computer the only possible measurements are
given by reading out single qubits. There is no clear physical justification for this restric-
tion. On the other hand, it would trivialize all algorithms if one could implement any
arbitrary measurement, since the implementation of a unitary circuit U followed by a
diagonal observable D (with respect to the computational basis) could be replaced with
a measurement of UTDU. This shows that lower complexity bounds for solving a certain
computational problem can only exist where the set of observables is either restricted
or there is a notion of “complexity of observables”. It is clear that every measurement
of A can in principle be implemented by diagonalizing A (see Subsection 1.2.1) when-
ever the post-measurement state does not matter. Simpler algorithms can be expected if
additional ancillas are allowed.

These remarks relate the complexity for measuring a self-adjoint observable A with the
complexity of the diagonalizing transformation U. But there is also another simple idea
that relates complexity of measurements for self-adjoint operators A to the complexity
of the unitaries exp(—iAt) generated by A. To explain this well-known idea [135] we
start by reducing measurements to unitaries in analogy to the observations in using the
phase-estimation procedure [136]:

Algorithm 1 (Measuring A using exp(iAt))
Given descriptions of quantum circuits U; := exp(ieT A27) for j = 1,...,k where T €
(=7 /| All, 7/ || All)-

1. Initialize an ancilla register with k qubits in the equal superposition of all binary

words.
\/—Z\ \0> +[1))®*

2. Implement a controlled — U; conditioned at the state of the j-th ancilla.
3. Apply the Fourier transform to the ancilla register.

4. Measure the logical state of the ancilla register. If the first register is in an eigenstate
of A with eigenvalue X the result | satisfies

N — 1] <e (4.1)
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with at least probability
1

T

Hence we get a binary digit representation of the corresponding eigenvalue as measure-
ment result. Due to inequality (4.1) the accuracy increases exponentially in the number
of ancillas. Note that the algorithm does not work with black-box implementations of
Uj. It needs the circuit descriptions in order to build the controlled-U; gates by replacing
each single gate V with a controlled-V gate. For the case that A is an unknown pair-
interaction Hamiltonian I have in [114] given a ‘continuous time algorithm’ (in the sense
of Subsection 3.1.1) to convert exp(—iAt) into a controlled-exp(—iAt) evolution.

An interesting question arises as to how the required resources increase with the de-
manded accuracy. The error decreases exponentially in the number of ancilla qubits, and
the running time of the Fourier transformation increases only as O(k?). The bottleneck
comes from the implementation of exp(—iAT27) for j = 1,...,k typically requiring a
running time which is exponentially increasing in k. One may interpret the result above
by stating that measurements of A up to an accuracy € have the time complexity at most

o/ + Y G

j<—logsye

where Cj is the time complexity for implementing exp(iA27).

To explain the converse statement which relates the complexity of observables with the
complexity of unitaries®, we assume first that we have given a so-called pre-measurement
for an n-qubit observable A with some natural numbers of eigenvalues. We assume further
that it is given by a unitary operation U on n + k qubits such that

U(w) ®10...0) =Y _Blp)@[b) V[y) € (C)",

where P, are the spectral projections of A corresponding to the eigenvalue b. Given this
subroutine the following algorithm implements exp(iAt) for any desired t:

Algorithm 2 (Implementing exp(iAt) using A-pre-measurements)

1. Initialize the k ancilla qubits to |0...0).
2. Implement U on the n + k qubit register.

3. Implement
exp(it2’)[1) (1] + [0) (0]

on the jth ancilla qubit of the ancilla register. On the whole ancilla register this is
the phase shift |b) — exp(ith)|b) for 0 < b < 2",

4. Implement UT.

IThis direction should also be well-known even though I did not find an explicit remark in the
literature.
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Of course, a measurement apparatus is not necessarily a quantum computer. We now
assume that it is some physical mechanism which is efficient in any reasonable sense. Then
the reduction above is not directly possible since we need a coherent implementation of a
pre-measurement instead of a real measurement which contains an irreversible destruction
of superpositions. Furthermore we also need an implementation of the reverse process
Ut.

However, if the strong quantum Church-Turing Thesis holds in a sufficiently general
sense, these requirements should be possible to fulfill: without loss of generality we assume
that the results of our measurement are displayed in the form of a binary number since it
should always be possible to convert any other display of a measurement instrument into
such a form. Then there should exist an efficient simulation of the whole process on a
quantum computer such that the digits of the display are represented by some qubits. But
this simulation would then already provide the pre-measurement above! On the quantum
computer we can also efficiently invert the simulation after we have given an appropriate
phase to the display qubits. Note that the complexity of implementing exp(—itA) does not
depend on t in the example above. This is not surprising, since the dynamics exp(—itA)
is periodic as it has integer spectrum. One could object that this example is also specific
in another respect. It can neither be expected that a realistic measurement projects
perfectly onto the eigenspaces nor that its simulation on a quantum computer does. This
inaccuracy will be increasingly relevant for increasing ¢. If the spectral values of A consist
of a finite set of rational numbers we could rescale and shift it to obtain natural numbers
as eigenvalues. The number of required ancillas would then depend on the least common
divisor of the original spectrum. For an observable A with the spectrum Ay, ..., Agn if
any efficient implementation of

1) = exp(iAit)[])

is available one could also simulate the measurement in such way that the [th eigen-
value corresponds to the [th state of the k ancilla qubits. This shows that exact pre-
measurements of A together with appropriate diagonal unitaries can simulate long-time
behavior of a system with Hamiltonian A in such a way that the running time of the
simulation would not increase with the running time of the dynamics. This surprising
feature already suggests that precise von-Neumann measurements can be hard. We will
return to this issue later in this subsection.
The relation between the complexity of implementing the unitaries

exp(iAt)

and a von-Neumann measurement of A appears also in a control-theoretic setting. In
[48] we have considered a bipartite quantum system, the controller and the the system.
Their Hilbert spaces are denoted by H¢ and Hg, respectively. Then we assume that a
fixed interaction Hamiltonian H on He ® Hg is given and that this interaction is the only
possible medium to access the system S. The only way to implement transformations
and measurements in this model is to operate on the controller. On the other hand,
we assume that we can implement arbitrary unitary transformations and von-Neumann
measurements on the controller and that these operations take an negligible amount of
time. One of the main intention of this model was to show that H determines which
measurements on S are simple and which ones require complex control sequences. If one
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allows some unitary transformations or measurements on S, the complexity of observables
depends strongly on this set of control operations. Here we want to show that in this
model with optimal access to the controller the interaction between system and controller
‘supports’ some unitaries and some observables on Hg and that there is a tight relation
between both. We can always write H as

H:=> A;®B;,
J

with self-adjoint operators A;, B; such that the set (A;) is linearly independent and the
set (Bj) is, too. For simplicity we have assumed that all A;, B; can be chosen to be
traceless. The idea to use this interaction for measurements of an observable D is to
simulate an interaction of the form

C®D (4.2)

with some operator C'. This interaction allows (1) measurements of D without disturbing
the eigenstates of D during the measurement and (2) implementation of the transforma-
tions exp(iDt). The latter is done by initializing the controller to some eigenstate of
C. To use C ® D for a D-measurement we choose eigenvectors |1g) and [¢) of C' with
different eigenvalues Ao, \; (this is always possible because C' is traceless) and consider
their span as the state space of a qubit. The effect of the interaction (4.2) on this qubit is
equivalent to the effect of a controlled-exp(—iDt(A\; — A\g)) gate after the time ¢. Now we
assume that the remaining space of H¢ is sufficiently large to perform a measurement of
D by Algorithm 1. Note that this measurement does not change the state of the system
when it is in an D-eigenstate even during the procedure is running. This is a specific
feature of this measurement scheme. If one allows state changes on the system during
the procedure, the complexity of any arbitrary observable is bounded from above by two
times the complexity to implement a SWAP between Hg and an isomorphic subspace of
‘Hc. Similarly, the time of this SWAP operation is an upper bound for the implementa-
tion time of any exp(—iDt). Only if we restrict the attention to algorithms which do not
change the eigenstates of D at all, we need to simulate an interaction H which allows
a continuous evolution exp(—iDt) on the system. The question is for which D we can
simulate the interaction (4.2) easily and for which it requires complex control sequences.

1. First Order Simulation: Let D be in the span of all B;. For D = Zj c;B;
we have to choose a linear map L on the real vector space of traceless self-adjoint
operators such that L(A;) = ¢;D. We can always find [115] a set of unitaries

Uy, ..., U, and positive numbers ty, ..., %, such that

> U AU = ¢;C V.
l

This clearly defines a simulation scheme that transforms H into

z:z:tl(]lfélj(]l]L ®B] = ZCjC®Bj = C@ZC]'BJ'.
l J J

J

The space of observables spanned by all B; plays therefore a distinguished role in
our setting.
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2. Higher Order Simulation: By the remarks above it is clear that one can simulate
A; ® Bj for each j in first order approximation schemes. Using the anti-commutator
{F,G} := FG 4+ GF we have

1
[A; ® By, Ax @ By] = 5([Aj,Ak] ® {Bj, Br} + {4, Ar} ® [By, By]) .

The remarks above suggest that not only commutators of B; but also anti-commutators
can be simulated (for details see [48]). By concatenating Lie-brackets in this way we find
simulation schemes for C'® D for every D in the matriz algebra (and not only in the
Lie-algebra) generated by all B;.

This gives an interesting structure to the set of observables as we will briefly sketch.
Let the system S consist of n qubits and the interaction between system and controller
be

H = ZAJVO‘ ®a((xj),

7,

where o’ denotes the Pauli matrlx 0, acting on qubit 5. We said that all observables D
in the span of the operators o allow a first order simulation. This includes, for instance
all single qubit observables as well as the ‘macroscopic’ observables (see Subsection 2.1.2)

1 G
ok

This explains why both types of observables are very natural ones. To implement a mea-
surement for products of single qubit observables like o4 )Uﬁ by simulating an interaction

of the form C' @ o aé ) requires a second order simulation scheme using commutators.
To implement measurements for higher order spin correlations uses even higher order ap-
proximations in this setting. This gives an intuition about how the interaction supports
measurements of some observables more than measurements of others.

Now we explain how the complexity of observables could be compared to complexity
classes of computational problems. A natural non-trivial observable is the energy of an
interacting many-particle system. The fact that the long-term dynamics of such a system
is hard to predict, already suggests that precise energy measurements may be hard since
the remarks above show that both complexities are related. Let us consider a k-local
n-qubit Hamiltonian H as a model for a natural interaction. Recall that k-locality means
that H consists of operators acting on k qubits. Efficient approzrimative measurements for
k-local observables can be obtained by Algorithm 1 since k-local dynamics have efficient
simulations due to [89]. We have mentioned that the complexity increases with the
desired accuracy but it was not clear whether this shortcoming is specific to this particular
algorithm or whether accurate measurements require in general long running times. For
an unknown Hamiltonian H it is certainly true that accurate measurements of H require
a long measurement time since two Hamiltonians with small operator-norm distance
can only drive a state into mutually orthogonal states after evolving the state for a
sufficiently long time. Clearly this argument does not hold for measurements which are
specified by the classical description of an observable. Otherwise one could not measure
any observable in a degenerate two-level system. But the following arguments suggest
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that accurate measurements of k-local observables are already hard for £ = 4: In [137] we
have shown that precise measurements for k = 4 correspond already to the complexity
class PSPACE. Before we rephrase our main result we must specify more clearly what we
mean by ‘accuracy of a measurement’. We do not need a precise definition of accuracy,
but only demand that the following condition is satisfied:

Postulate 1 (Measurement Accuracy)
Let A be a self-adjoint operator on a finite dimensional Hilbert space and Zj A P; its
spectral resolution where \; are the eigenvalues and P; are the corresponding spectral
projections.

A measurement of A with accuracy AN has the following property: For all density
matrices p the probability to obtain an outcome in the interval I := [\; — AN, \;j + A)] is
at least (3/4) tr(pP;).

The results below are not sensitive to the particular definition of accuracy. However, it
is convenient to work with the formulation above. We found [137]:

Theorem 18 (Measuring 4-Local Observables is PSPACE-Hard)
Let M be a hypothetical machine with the following properties:

1. M receives a classical description of a 4-local n-qubit observable A.
2. M receives a state [1)) on a quantum register with state space (C?)®™.
3. M implements an A-measurement on |1) and gives the result as output

4. The accuracy of the output is sufficient to distinguish all different eigenvalues of A.

Then M can be used to solve any decision problem in the complexity class PSPACE in
polynomial time.

To prove this we need a characterization of PSPACE with respect to quantum circuits.
In particular, we need the result that every PSPACE language can be recognized by
applying an appropriate circuit many times. This is stated by the following lemma.

Lemma 3 (Solving PSPACE with one Circuit)

For every language L in PSPACE there is a polynomial-time uniformly generated family
of quantum circuits (V})en, | denoting the length of the input x such that the following
conditions hold:

FEach V; consists of s; = poly(l) elementary quantum gates and acts on my; = poly(l)
many qubits. The circuit V; decides whether an input string x is an element of L in the
following sense.

There is a polynomial-time computable natural number r; such that the r;-fold con-
catenation of V; solves the corresponding PSPACE problem, i.e.

Vit (lz) @ ly) ©100...0)) = [z) @ [y ® f(x)) ®]00...0),

where f is the characteristic function of L, that is f(z) = 1 if x € L and f(x) = 0
otherwise. The vector |x) is the basis state given by the binary word x € {0,1}!, the
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vector |y) is the state of the output qubit and |00...0) is the initial state of m; — 1 — 1
ancilla qubits.

Moreover, the circuits Vi can be chosen such that they only permute computational
basis states.

The details of the proof can be found in [137]. Let us only sketch the idea. By defini-
tion, every problem in the complexity class PSPACE can be solved on a classical Turing
machine using a polynomial number of bits. It is furthermore possible to replace the
initial Turing machine by a reversible one at the cost of some polynomial space overhead
[138]. The operations of the latter Turing machine can be simulated by a quantum cir-
cuit acting on a polynomial number of qubits when the position of the simulated head is
represented by the state of an addition register tape index. But then the problem arises
that the concatenated application of the same circuit can never simulate a terminating
computation?. To overcome this difficulty we observe that there is an upper bound on the
running time from the number of states due to the bounded tape. Instead of simulating
the termination, the circuit U performs idle steps which consist in incrementing a counter
until the upper bound on the running time is reached. Hence the formal end of the com-
putation is after a fixed number of steps. Unfortunately we demand that U has to restore
the initial state (except for the output qubit). Therefore it has to count backwards on
the idle step counter and reverse the whole computation. The switching between these 4
operation modes (computation, idle counts, reverse idle counts, reverse computation) has
to be done by the circuit itself. The whole circuit V' can be seen in Fig. 4.1. The circuit
U simulates the behavior of the Turing machine. It acts on the cells (each consisting of
a few qubits) of the Turing machine, the head and an accumulator, and is controlled by
the operation mode. The circuits INC and DEC' increase or decrease the counters, the
lower counter counts always forward or backwards. The idle counter is activated as soon
as the circuit U is finished. It is decreased afterwards. Now we come to the main idea of
the proof of Theorem 18:

1. Given a binary function f in the complexity class PSPACE. Construct a quantum
network V' which computes f after it is applied r times to the input string x:

Vi(|z) @ ly) ®10---0)) = [2) @ [y © f(x)) @0---0)
2. If f(z) = 1 the initial state is restored after 2r applications, if f(z) = 0 it is restored

after r applications.

3. The decomposition of |z) @ |y) ® |0---0) with respect to the eigenspaces of V
depends on f(x) due to the different period length r or 2r.

4. Construct an observable A such that the spectral decomposition of |z)®|y)®]0 - - -0)
with respect to A coincides (almost) with the decomposition with respect to V.

Now we shall sketch the idea how A can be constructed based on the circuit V' above.
Let Uy, ...,U; be a sequence of two-qubit gates implementing V. Set

A=>"V;eU;+VeU]

J

2analogue to ‘Halting-problems’ in the context of other chapters
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Figure 4.1: Quantum circuit computing f(x) using a known number of steps
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where each V; implements the propagation of the state of an additional clock register.
The interaction with the clock register encodes the order of the unitaries U;. Since V;
and U; are chosen as two-qubit operators, A is by construction 4-local.

4.1.2 Generalized Measurements (POVMs)

Even though textbook quantum mechanics refers to observables usually as self-adjoint op-
erators, the most natural measurements in nature are rather proper POVM measurements
since the description of measurement inaccuracies already requires POVMs. But it has
also been noted that in some situations POVM measurements extract more information
about an unknown state from a quantum system than any von-Neumann measurement
could do [139]. Apart from this, POVMs allow approximate simultaneous measurements
of physical quantities which are actually incompatible: For two non-commuting self-
adjoint operators A and B there is no common spectral resolution. Therefore there is no
von-Neumann measurement that measures A and B simultaneously. Nevertheless there
can be a POVM which can be interpreted as an approximative simultaneous measurement
for A and B. An example is position and velocity of a particle where appropriate POVM
measurements allow pretty good simultaneous estimations of both quantities [28] as long
as the relevant scale is not too close to the Heisenberg limit. Another problem which
requires POVMs is the estimation of the direction of a nuclear spin. Since the operators
for the angular momenta in z, y, and z-direction do not mutually commute there is no
measurement which determines the spin direction. On the other hand, it is clear that the
angular momentum of a sufficiently large physical object is an almost well-defined vector
in R3. However, even though it is rarely explicitly stated, this macroscopic limit requires
POVMs [53] which allow appropriate estimations of the spin direction.®> To respect the
symmetry of this estimation problem it is natural to use a SO(3)-covariant POVMs.
D’Ariano [140] has described a method to implement the SO(3)-symmetric POVM using
an interaction between the magnetic moment of the spin with three field modes.

Here we will describe general design principles for measurement algorithms for group
symmetric POVMs. First we consider POVMs on a single qubit. We assume that this
qubit is part of a quantum register. Since we can apply every unitary to the register
we can, by Naimark’s theorem [42], reduce the POVM measurement to a read out of
the computational basis. Clearly an n-qubit register only allows the implemention of
measurements with 2" outcomes. We must therefore restrict our attention to POVMs
with finitely many outcomes in contrast to [140]. Furthermore, we only consider POVMs
(M;) where all M; are rank one operators. For the further discussion one should recall
that such a POVM can be characterized by a set of vectors in R?® by

vj = (tr(M;o,), tr(M;oy,), tr(M;o)) .

The condition »_,v; = 0 corresponds to ). M; = 1.

Formally, an implementation of (M;);=;, .y means the following: To measure the
qubit it is embedded in an n qubit quantum register such that N < 2". Let the other
n—1 qubits be initialized in the state |0...0). Then implement a unitary transformation

3POVMs therefore define the natural measurements which intermediate between micro- and macro-
physics on a mesoscopic scale between the quantum and the classical regime.
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U on the register such that a readout of the logical state has N outcomes which occur
with probabilities ¢r(M;p) when the qubit was in the state p.

However, the problem to implement a POVM on one qubit consisting of only rank-one
operators is still too general since it can be rewritten as follows. Let [¢1),..., |y) be
vectors with [1;)(1);| = M;. Define the 2 x N matrix

M= ([¢n) [¥2) - Jow) )

Then the implementation of the POVM requires to implement some N x N unitary UT
such that U extends M up to some global phases for each column. As a short remark,
we note the formal analogy to the state preparation problem to find a unitary U such
that U|0...0) is a desired state |¢). The latter problem requires the construction of a
unitary extension of the 2" x 1 matrix |¢) and finding an implemention for U by circuits.
Since the problem to extend rows or columns seems still too general to establish general
rules we restricted our attention to group covariant POVMs [141, 142]:

Definition 26 (Group-Covariant POV Ms)

A POVM (M;) with finitely many operators is called covariant with respect to a unitary
representation g — U, of a group G if the set (M;) is invariant with respect to the group
action

M; — Uy M;UYT .

Still a bit stronger is the requirement that the group acts transitively, i.e., one can obtain
all M; by operating on a single operator M;. If one has furthermore

U, MU # Uz MU}

for g # g the elements g can be used as index characterizing the element in (A/;) and the
possible measurement outcomes.

Remarkably, the quantum Fourier transform turns out to be a useful tool for imple-
menting group covariant POVMs. This supports the general statement of this thesis that
algorithms for non-computational quantum control problems use often the same tools
as those solving computational problems. To give a rough idea about how the Fourier
transform comes in we consider a POVM with vectors vy, ..., vy in the equatorial plane
with equal length and angle 27 /N between neighbors. One can choose the vectors |1;)
such that M consists of the first two rows of the quantum Fourier matrix DFT)y [141].
The Fourier transform is also an essential building block in POVMs corresponding to the
symmetry groups of platonic solids. We described [141], for instance, a quantum circuit
to measure a POVM where the vectors vy, ...,vy are the edges of a dodecahedron as
seen in Fig. 4.2. The circuit for the implementation is seen in Fig. 4.3. The matrices B
and C' in Fig 4.3 are defined by

B:z(u_ —u+)7 C'::(U_ Ut )
U4 u— Vg —U—

with
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Figure 4.2: The dodecahedron with two faces perpendicular to the z-axis.

10)(0] F5 @13

BB B BB

Figure 4.3: Circuit to implement the dodecahedral POVM. The Fourier transformation in
dimension 5 is an important constituent. The unitaries B and C are defined in the text.
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Note that it is completely new compared to classical computer science that the readout
of a single quantum bit is a non-trivial task.

Using the equatorial POVM above as an example, we sketch now the general principles
of [142] to implement group covariant POVMs. The POVM above is group-covariant
with respect to a representation of the abelian group Zy, the integer addition modulo
N. Therefore the unitary W which implements a 27 /N rotation in the equatorial plane
shifts the POVM operators My, ..., Mxy_y cyclically. If the phase factors of each [¢;) are
chosen appropriately, W will shift the vectors |1);) in a cyclic way:

W) = [¥jen) -

Therefore M satisfies _ '
WIM=MS" Vjez

where S is the cyclic shift on CV. The maps j — W7 and j — S7 are both representations
of Zy and M is an intertwiner [142] between these two representations. The first is the
representation which defines the POVM and the second is the regular representation of
the group Zy.

In general M intertwines between the representation defining the group covariance
and a monomial representation, i.e., a representation consisting only of unitary matrices
which have only one non-zero entry in each column. In [142] we decided to choose the
unitary extension M of M such that it intertwines j — S7 with an appropriate N x N
extension of j — W7. To implement the obtained M we can make use of a well-developed
theory on decomposing unitaries which intertwine between group representations [143].
Implementations for unitary intertwiners with quantum circuits can be found in [144]. An
essential tool are Fourier transforms and their generalization to non-abelian groups [145].
Note that the feature of generalized Fourier transforms is that they block-diagonalize the
regular representation which makes it an important tool in our work [142].

A natural example where the implementation of a group covariant POVM could be
relevant to future explorations of microscopic and mesoscopic physics has already been
mentioned above: The observables position and momentum? of a quantum particle are
incompatible, i.e., the self-adjoint operators X and P on L*(R) defined by

(X0)(@) = () and  (P)(a) = (a)

have no common spectral resolution. Simultaneous measurements of momentum and
position exist in an approximative sense if one allows POVM-measurements [28]. In
infinite dimensions such a POVM is e.g. given by the operator-valued density

1 . .
_ _ez(Ps—l—Xt)‘w><¢‘e—z(Ps+Xt) )

M, =
’ 27
Here we interpret
p(s,t) :==tr(pMs,)

as the probability density that the particle has position s and momentum ¢, or, a bit
more correctly, that we estimate ‘position s and momentum ¢’.

4which is the velocity up to the factor ‘mass’
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Figure 4.4: Circuit for the implementation of the POVM with respect to the Weyl-
Heisenberg group and the vector |¥) = (vy,...,v,,)T. The vector |¥) determines the
matrix A

Now we will give an implementation of a finite dimensional analogue of this POVM
which has furthermore finitely many outcomes. They can be seen as a simultaneous
measurement of discretized position and momentum. The physical situation would be a
particle on a cyclic chain which can be at the discrete positions j = 0,1,...,m — 1. Its
crystal momentum [81] can take the values in the 1-dimensional Brillouin zone [—m, 7).
Due to the cyclic structure of the chain there are only m possible values —m + 2xl/m
with [ =0,...,m. A POVM that allows reasonable simultaneous estimations of j and [ is
given by the orbit of an appropriate rank-one operator |¢)(1)| under the Weyl-Heisenberg
group:

M1 = - S3T ) (61 TS50
where S is the cyclic shift on C™ on T := diag(1,w,w?, ...,w™ ') with the root of unity
w = exp(—i27/m). To implement it on a quantum computer we assume that m = 2*
and that there is an interface between the cyclic chain and the 2k-qubit quantum register
such that the position states |0),[1),...,|m — 1) of the chain can be mapped onto the
binary words |j) of an k-qubit sub-register. We will also investigate the efficiency of
the implementation. In analogy to computational problems we shall call an algorithm
‘efficient’ if its complexity increases only polynomially with the length of the input string.
Here we do not have an input string but rather a k-qubit quantum state as input, and
therefore consider k as the input size. The circuit in Fig. 4.4 implements the POVM on
2k qubits for a k-qubit input. The gate T,, is the phase shift

1 0 1 0 10
Ti= (g o ) (o gon )@ (o 5 )-

One can easily show that for all [ we can implement a controlled-T!, gate efficiently.
The gate F, is the DF'T,,, which is efficient if m is a power of two [3]. The gate AT is
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any unitary that has F},|) as first coefficients where 1) is obtained by conjugating the
coefficients of 1. Note that we have to choose [1) (1| such that uncertainty of position
and momentum are both not too large. Otherwise the POVM would be inappropriate to
estimate these quantities. We found a vector [¢) satisfying this for which we could find
an efficient circuit AT. The above arguments show that the whole scheme is efficient.

At the moment it is unclear which other useful applications POVM measurements
could allow. Meanwhile Renes [146] has, for instance, proposed a protocol for crypto-
graphic key distribution which uses the tetrahedral POVM (with Bloch vectors pointing
on the vertices of a tetrahedron) for which an implementation was given in [141]. We
discuss further potential applications of POVMs in Subsection 4.3.2.

4.2 Thermodynamic Machines

Now we will address other non-computational control problems and develop a complexity
theory in analogy to complexity theory of computation problems.

We have already used toy models to illustrate the thermodynamics of refrigerators
and heat engines. However, one would not expect that future cooling technologies and
molecular heat engines would really be based on quantum gate operations on qubits. This
might be true for some exceptions like the algorithmic cooling proposed in the context
of NMR quantum computing, but it deserves some more justification why we consider
the complexity of algorithmic heat engines and refrigerators here. The main motivation
is the hope that the models presented here could nevertheless give an intuition about
the complexity of molecular thermodynamical machines if they should be, for instance, a
maximally efficient heat engines or a cooling apparatus leading to the minimal achievable
temperature. Whether one shares this hope or not, one may in any case agree that it is
only a generalized version of the strong Church Turing principle to believe that complexity
of non-computational tasks performed on a non-computing device could also be studied
in quantum computing models.

4.2.1 Cooling Weakly Interacting Systems

Cooling microsystems can be considered as key technology in quantum control since
many interesting quantum effects can only be observed in sufficiently cold systems. For
the Cirac-Zoller proposal [20] (which is an ion trap quantum computer), the thermal
motion of the ions is a major obstacle and recent developments of cooling these degrees
of freedom are considered a decisive step towards the realization. Despite of the practical
relevance of these laser cooling technologies, we prefer to sketch a cooling algorithm
for molecules which can be described as an algorithm in the standard model quantum
computer. Whereas the laser cooling schemes mentioned above transfer the entropy to
the environment, the algorithm below transports the entropy only within the quantum
computer®. This makes it a nice setting in which to study it from an information-theoretic
point of view.

®Note, however, that a mechanism which is cooling one part of a register for the cost of heating the
other part can also lower the total entropy of the register because the hot part will transfer some heat
to the colder environment [147, 148]. This method has even be demonstrated experimentally.
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In Subsection 2.2.4 we have described the idea of cooling with logical gates on 3
qubits. Here we want to discuss algorithms for arbitrarily large qubit numbers and the
corresponding complexity issues. Consider n qubits in a thermal state v for temperature
oo > T > 0. For optimal cooling we would look for a unitary transformation U that
maximizes the probability for the ground state |0...0) for k& < n qubits. This means
that

tr(Uy2"Ut (1n_, ®10...0)(0...0]))

is minimal. One would minimize the entropy of the k-qubit system by transferring as
much entropy into the remaining n — k qubits. In order to get efficient algorithms we
probably have to relax this demand.

The cooling algorithm in [35] has been proposed in the context of NMR quantum
computing. In this context one would rather call it ‘initialization’ than ‘cooling’. However,
it is the equivalence of both terms which makes the example so nice. The major problem
in all realizations of NMR quantum computing so far is the initialization of the register.
The system starts in its equilibrium state and each atom can be considered as a two-
level system. The energy of the lower and upper level |0) and |1) differ only slightly
compared to kT which implies (see subsection 1.2.1) that both are almost equally likely.
There is only a small statistical bias €, i.e., the upper state has probability (1 —€)/2 and
the lower state (14 €)/2. Hence all computation works with a state which is almost the
maximally mixed state. Only the extremely large size of the ensemble makes it possible at
all to readout the computational results despite of the noise. As we have already argued,
thermodynamics allows the transfer of entropy from k qubits into the remaining n — k.
However, every algorithm doing this has to be implemented without using initialized
ancillas, making the problem that much harder. Note that even a new complexity class
has been introduced consisting of those problems which can be solved using only one
initialized qubit when all the rest of the register is in its maximally mixed state [149]. In
order to give a rough idea how many clean bits we can expect we recall that the binary
entropy function

p = —plogyp — (1 —p)log,(1 —p)

has a maximum at p = 1/2. Therefore the entropy decreases in the order of €* with the
bias €, so we can expect that asymptotically the fraction of clean qubits is of order €2.

The first phase in the algorithm [35] is a simple bias amplification. We simplify the
setting to the case that all qubits are uncorrelated. Consider two qubits with bias e.
Assume we could measure whether both are in the same state or not and discard both
whenever the states are different and discard one when the states are equal. Whenever
they are in the same state, they are with probability

1+ 2¢ 1— 2¢
14€2 14€2
“THe nd py = — 2

2 2

Poo =

in the state 00 and 11, respectively. Given that one qubit survived the procedure, its
state has therefore the new bias 2¢/(1 + €2). The expected number of bits that survive is
n(1 + €%)/4. In order to implement the discarding unitarily, a C-NOT is applied to the
pair such that the target qubit is 1 if and only if the logical values were different. Then the
target qubit can be used to control SWAP-operations which transport the logical state
of the qubit to be ‘discarded’ into an irrelevant part of the register. This procedure can
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then be concatenated. However, as argued in [35] an arbitrary concatenation of this bias
amplification could not provide a fraction of clean qubits that is constant in n. Therefore
this was only phase 1 of the 3 phases of the algorithm. In phase 2 they discard a collection
of [ bits by, ..., b whenever its parity is odd. This is done by adding the parity of the
bit string bo, ..., b on b;. The authors argue that this allows an exponential decrease of
the probability for the upper state. After this probability has been sufficiently decreased
they perform phase 3, in which a collection of bits is discarded if the Hamming weight
modulo 4 of the string is not zero. The authors analyze the performance of this scheme
and come to the conclusion that (e)n bits can be initialized with arbitrary reliability.
The proposal above shows that cooling can be done by logical operations. Now we will
describe some circumstances under which cooling necessarily implements logical gates:

Theorem 19 (Optimal Refrigerator Computes MAJORITY)
Given 2n+1 two-level systems with finite temperature T # 0. Let U be an optimal unitary
cooling process on the corresponding 2n + 1-qubit Hilbert space in the sense that it lowers

the temperature of the first two-level system as much as possible. Then U computes the
logical function MAJORITY, i.e.,

Ulb) = [f(b)) ® |yy) b€ {0, 1},

where f(b) = 1 if and only if the Hamming weight of b is larger than n. |i) is an
arbitrary state (not necessarily a basis state) in the remaining 2n-qubit Hilbert space.

Proof: The optimal cooling process has to reduce the probability for the |1) state of the
first qubit as much as possible. Let p := 75*"™ be the density matrix of the initial state.
The eigenspace of p corresponding to its 22" smallest eigenvalues have to be mapped to
|1). This eigenspace is clearly spanned by the words with Hamming weight greater than
n since the probability for the upper state is smaller than for the lower state in each

two-level system. O.

Even though MAJORITY is not a particularly complex logical function, it is treated
as an interesting example in the theory of small-depth classical circuits [19], because it
cannot be computed by circuits with bounded depth [19, 88]. Note that the construction
of U from elementary quantum gates is probably more difficult than the computation
of MAJORITY because by assumption the fridge consists of unitary gates. Initialized
ancilla qubits (which would be required to simulate classical logical operations like AND
and OR with TOFFOLI-gates) are not allowed in the setting above (compare Subsection
3.2.1). Note that this restriction is, for instance in NMR, given by physical reality since
initialized qubits would be cold two-level systems. Hence the results in [19] can only
provide lower bounds on the complexity of the optimal refrigerator.

4.2.2 Complexity of Cooling Strongly Interacting
Systems
In the last subsection we have described cooling procedures for weakly interacting systems.

In the NMR cooling proposal the interaction between the qubits must, of course, be used
for the implementation of the algorithm. However, the interaction is so weak that the



106 CHAPTER 4. NATURAL NON-COMPUTATIONAL PROBLEMS

level structure of the system is dominated by the energy gap of each two-level system.
In other words, the energy eigenstates are the logical states of the quantum register
and cooling means initializing the system to the ground state |0...0) with high fidelity.
This is completely different when the interactions change the level structure. Then the
states with least energy may be any other states, not necessarily basis states. It is not
even clear whether they have an explicit short description. In statistical physics it was
known for many years that one can construct classical spin-spin interactions such that
the computation of the ground state energy is an NP-hard problem [150]. Kitaev, Shen,
and Vyalyi [14] found a quantum generalization of this statement which states, roughly
speaking, that (even an approximative) determination of the ground state energy of
interacting quantum systems is quantum-NP-complete. Here we rephrase the improved
version of Kempe, Kitaev, and Regev [151]:

Theorem 20 (2-local Hamiltonian is QMA-Complete)
Let H be an n-Qubit Hamiltonian which consists of pair-interactions only, i.e.,

H=> Hy,
g,k

where each H; . acts only on the qubit pair (j, k). Then the decision problem ‘determine
whether the smallest eigenvalue of H is smaller than b or greater than a with 1/(a —b) €
O(poly(n))’ is QMA-complete.

In a previous article [152] this was only shown for 3-local Hamiltonians. We have modified
[153] this problem in such a way that it leads to a QCMA-complete problem: Decide
whether all states which can be prepared with at most k£ gates have energy at least a or
whether there exists at least one state which can be prepared using at most k gates that
has energy at most b with 1/(a — b) € O(poly(n)). The following idea should show the
potential relevance of this result. One could be tempted to assume that a physical system
needs a lot of time ‘to find” ground states which have a large preparation complexity in
terms of elementary quantum gates. It seems reasonable to consider this as an implication
of a generalized strong Quantum Church-Turing thesis. Then one may only be interested
in low energy states with low complexity since the system ‘would not find’ the others on
the relevant time scale, it would rather remain in less complex ‘meta-stable’ states.

In order to show that complexity classes also for non-computational problems as
state preparation makes sense, we first recall that the following classical computational
problems are closely related:

Definition 27 (SAT)
Gien a family of functions f, : {0,1}" — {0,1} defined by a Boolean expression of
polynomial size. Decide whether there exists an x € {0,1}™ with f(z) = 1.

This problem is NP-complete [154]. Strictly speaking, this problem has to be distin-
guished from the problem to find an x with f(x) = 1, the problem FSAT. However, given
an oracle which tells us whether a Boolean expression has a solution, one can easily find
a solution: Define functions f°, f* : {0,1}""' — {0,1} that are obtained from f if the
first input bit is set to 0 or 1, respectively. Asking the oracle whether f° and/or fO is



4.2. THERMODYNAMIC MACHINES 107

satisfiable, one already has the first bit of a solution x. Proceeding in the same way, one
obtains an x with less than 2n queries. In general one can define FNP as the class that
consists of the problems to find a proof of an NP decision problem. Such a reduction
of FNP to NP cannot be transferred to the “Quantum-NP” class QMA. The problem
of finding a state |¢)) which works as a proof for a QMA problem cannot be reduced to
the problem of finding the restriction of |¢) to all n qubits. Therefore the problem to
construct the proof has to be distinguished from the problem to find the yes/no-answer.
The problem to provide the proof |¢) is a quantum state preparation problem and not a
computational problem. Based on this observation we defined FQMA as a complexity
class for channels [155]:

Definition 28 (FQMA)

Fiz 6 = 1/r(|x|) for an arbitrary polynomial r. A sequence of channels with classical
input x and quantum output p, is in FQMA if there is a language L in QMA with a
verifier U, and € as in Definition 19 such that

tr(Uy (pz ®10...0)(0...0NUI P)>1—¢—6,
whenever x € L. For x & L the output is allowed to be arbitrary.

Kempe and Regev have shown that for every circuit U with output yes/no, one can
construct a 2-local Hamiltonian H such that H eigenvalues smaller than or equal to b if
there is a state which is accepted by U and all eigenvalues of H are at least a > b if there
is no state accepted by U with high probability. Consider a machine M that prepares
states with energy about a. Certainly, M generates proofs for the 2-local Hamiltonian
problem. However, it is not clear that the generated states are accepted by U with high
probability. If two different circuits U and V define the same language L € QM A it may
make an important difference to prepare states that are accepted by U or by V. This
demonstrates the following quantum control problem.

Given n qubits with k-local interaction Hamiltonian H, assume they are initially in
the state |0...0) and that we are only able to access m < n of them. Therefore we have
to use these m qubits to control the other n —m. For instance, we would like to prepare
the m “controller”’-qubits in such way that the rightmost qubit is with high probability
in its 1-state after the natural time evolution exp(—iHt) was active for the time 7T'. This
leads to the following problem:

e Is there a state [¢)) € (C?)®™ such that the rightmost qubit is with high probability
1 in the state
exp(—iHT)(|¢) ®10...0)).

This problem is in QMA for constant 7', since the time evolution can efficiently be
simulated by a quantum circuit U such that the running time increases only with
O(T?/¢) for the error € [89)].

e Prepare the state |¢). This problem is in FQMA.

Clearly, one could prove that such a |¢) exists by constructing another circuit U’ which
has an accepted state if and only if U has. However, we would not be satisfied to have
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a channel which prepares proofs for the circuit U’ since this would not solve our original
control problem. Therefore it does not directly follow from [151] that a channel preparing
low-energy states could always prepare proofs for each circuit U defining a QMA-problem.
However, in [155] we have shown that this is indeed the case. This means that every
machine which is able to prepare low energy states and low temperature states could
be used to prepare proofs for all QMA-problems. Furthermore we have estimated the
temperature which would be sufficient to do this, finding:

Theorem 21 (Temperature which is Sufficient for QMA)
To prepare proofs for a QMA-problem with r qubit input defined by a circuit U acting on
r 4+ m qubits which is composed of L gates, a cooling procedure satisfying the following
requirement 1s sufficient:

Cool a system with n :=r +m + L qubits with an appropriate 3-local Hamiltonian to
the temperature T,, such that

1—2¢

T, ;
S T2kl +

(4.3)

where k is Boltzmann’s constant.

For the classical complexity class NP we can prove a higher lower bound on the necessary
temperature [155]:

Theorem 22 (Temperature sufficient for NP)
For NP-problems it is sufficient to have

! ! (4.4)

T :
" kn2m2qn)  kq(n)’

with polynomials q and ¢. In other words, the temperature must only decrease as the
reciprocal of a polynomial in n.

The fact that our bound is lower for QMA than for classical NP is illustrated in Fig. 4.5.
It is not clear whether lower temperatures could even solve PSPACE-hard problems.
An indicator supporting this conjecture is maybe the fact that our result mentioned in
Subsection 4.1.1 showed that the fine-structure of the spectrum of a 4-local Hamiltonian
H can encode the solution of PSPACE-problems. However, the problem is that this
statement refers to the spectrum of H in a specific H-invariant subspace and not to the
whole spectrum of H.

4.2.3 Complexity and Efficiency of Molecular Heat
Engines

In Subsection 2.2.5 we have explained the idea that molecular heat engines may be imple-
mented by logical transformations. We have considered quite simple molecular systems as
hold and cold reservoirs. It is natural to ask how the complexity of logical transformation
required for work extraction increases for larger reservoirs. We will not expect that heat
engines using the heat of many particles are necessarily complex in the sense that they
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NP: T=0(1/n)
Quantum-NP: T=0O(1/p(n))

0 K= -273.15°C

Figure 4.5: The thermometer indicates the different upper temperature bounds for solving NP
and quantum-NP: our bound for the latter is lower.

would require circuits of large logical depth. This is for the following two reasons: first
one can obviously group the particles and act on only a few hot and a few cold particles
at once. Second we know that heat engines acting on reservoirs with more than 10%
particles exist since the beginning of the industrial revolution. Due to the strong Church-
Turing thesis, we should expect that there is an efficient simulation of these macroscopic
heat engines on a quantum computer.

However, we will argue that there are two main conditions which require complex
heat engines. First, if we demand optimal heat engines in the sense that they extract
maximal amount of work. By relaxing the demand on optimal efficiency, the complexity
decreases substantially and for very large numbers of particles the loss of extracted work
is negligible. Second, it is complex to extract work from reservoirs having almost the
same temperature.

Before we will provide theorems on the complexity of heat engines we will first consider
a system that helps to understand intuitively the complexity of optimal heat engines®.

A very natural system in physics is a quantum harmonic oscillator. Its Hilbert space
[>(Np) is spanned by the number states |0),[1),]2),... with 0,1,2,... quanta. Such a
system can be a quantum optical mode or a mechanical oscillator. A state with j quanta
of frequency w has the energy E(j) = jhw and the system Hamiltonian is therefore

szthj|j><jl-

The bipartite system on which our heat engine will be defined consists of two modes with
different frequencies wy and wg.

Now we assume that the ratio e := w4 /wp is irrational. This ensures that the Hamil-
tonian of the composite system is non-degenerate. Up to irrelevant constants, the energy

5The following ideas are taken from my article [56].
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of a state with n4 quanta in mode A and ng quanta in mode B is
E(na,ng) =ens+ng

with e € R\ Q. We define a bijective function k : N2 — Ny such that k(n4,ng) indicates
the number of the pair (n4,np) when all pairs are put into an increasing order with
respect to E(na,np). Now we choose the temperatures 0 # Ty # Tp # 0 such that

. Ex/Ty
- Ep/Tg

is also irrational which holds for instance when T4 /Tp is rational. It follows that the
density operator ps ® pp is also non-degenerate. Up to an additive constant and a
negative factor, the logarithm of the probability for a state |n4) ® |npg) is given by

Q(na,ng) :=qna+ng.

A larger value QQ(na,np) indicates that the state is less likely. In analogy to the map k
we define a bijective function [ : N2 — Nj indicating the order of the pairs (n4,ng) with
respect to their values Q(n4,np). Define a permutation 7 on N2 by

Ti=kol'.

This permutation of basis states |n4,ng) defines a unitary U, by linear extension’. The
density operator of the whole system after having implemented the heat engine U, is

Ur(pa® pp)U} .

The heat engine permutes the eigenvalues such that they are reordered according to the
corresponding energy values. We have computed the corresponding reordering of states
for the values e = v/2 and ¢ = 1/v/3. The mapping is depicted in Fig. 4.6, showing that
the heat engine defines a quite complex low in the discrete two-dimensional plane. Here
complexity is understood in a rather intuitive sense.

In Subsection 2.2.5 we have introduced heat engines which act on two-level systems.
This setting makes a computer science approach to complexity possible since the analogy
to logical operations is more obvious.

First we discuss the complexity of heat engines which are able to extract work from
two systems with almost the same temperature. The required number of two-level systems
which are necessary in order to make a heat engine possible at all increases whenever the
temperature quotient gets closer to 1 :

Theorem 23 (Complexity of Using Small Temperature Gaps)
A heat engine on na hot and ng cold qubits with temperatures Ty and Ty, respectively,
and equal energy gaps, is possible if and only if

1. (forma <ng)
T,

TB_TLA—l

"Note that the ordering of pairs given by E or Q is a term order in the sense of [156].
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Figure 4.6: Optimal heat engine acting on two harmonic oscillators with frequency ratio
wa/wp = V2 and temperature ratio Tg/T4 = wp/(v/3wa). A point in row n and column
m is a basis state with n quanta in mode A and m in mode B. An arrow (n,m) — (n,m)
indicates that a state with n quanta in mode A and m in mode B has to be converted into a
state with 7, quanta, respectively. Points which have their image or pre-image outside the
depicted area obtain no arrow.
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2. (forna >ng)

Furthermore, every heat engine acting on an infinite reservoir of hot and cold qubit level
systems must use operations which connect at least ny hot and ng cold systems such that
the above conditions hold.

Proof: We note that a heat engine can work if and only if a pair of states exist such that
the first has more energy even though it is more likely. Let (I4,[l5) denote the Hamming
weights (i.e. the number of symbols 1) of a basis state in the n4 +np qubit system. The
pair (la,lp) and (ka, kp) satisfies this condition if

(ZA—]{?A)—(ZB—]CB) >0

and
(ZA — ka)TA — (ZB — k‘B)TB <0
Elementary computation shows that this implies

Ty la—ka
Ty ZB—]{?B

> 1.

Clearly the modulus of the numerator and the denominator are at most n4 and ng,
respectively. The smallest possible quotient which is still greater than 1 is therefore
na/(na—1) or (ng+1)/np, respectively. This shows that the conditions (1), respectively
(2) are necessary in order to make a heat engine possible.

For the converse we observe that in case (1) a permutation of the states (n4,0) and
(0,n4 — 1) extracts some amount of energy. In case (2) one extracts energy by permuting
(ng+1,0) and (0,np). O.

Fig. 4.7 illustrates how the complexity of heat engines on two-level systems with equal
energy gap increases when the temperature gaps decrease in the sense that more qubits
have to be involved. Note that Fig. 4.7 furthermore suggests a simple method to obtain
suboptimal heat engines on many particles by independently applying few-qubit heat
engines.

In order to present now a computer science approach to the complexity of heat engines
we first mention an instance where the optimal heat engine requires at least as many gates
as computing the boolean function MAJORITY:

Consider 2n two-level systems with temperature Ty = co and 1 system with T = 0.
The basis states of the system are binary words of length 2n 4 1. The joint Hamiltonian
of the system is given by

H o= EY wgt(b) ),

where F is the energy gap of each two-level system and wgt(b) denotes the Hamming
weight of the binary word b. Let the suffix of each of this binary words indicate the state
of system B. Then all binary words with suffix 0 have probability 1/2" and words with
suffix 1 never occur. Every optimal heat engine U has to map the subspace spanned by
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Figure 4.7: Heat engines with T4 /T > 2 can be implemented with joint operations on 2 hot
and 1 cold qubit (left). For 2 > T4 /Tp > 3/2 operations on 3 hot and 2 cold qubits are needed
(middle), and heat engines for 3/2 > T4 /T > 4/3 must involve 4 hot and 3 cold qubits (right)

the former 2™ words onto the subspace corresponding to the 2" smallest eigenvalues of
H. It is the space spanned by all words with Hamming weight at most n. Therefore the
inverse of the heat engine, i.e., U~! computes the boolean function MAJORITY in the
sense that the rightmost qubit in the state

U~ o)

is 1 if and only if wgt(b) > n, i.e., the majority of the qubits are in the 1 state. We would
like to estimate the gate complexity of U when it is implemented by elementary gates. If
the set of elementary gates contains with every gate also its inverse the complexity of U
and U~! coincide. To obtain a lower bound on the circuit complexity we could therefore
use bounds on the circuit complexity of MAJORITY. In [19] one can find bounds for
classical circuits with bounded depth consisting of AND and OR with arbitrary fan-in.
We can give a lower bound on the circuit depth which holds for arbitrary k-qubit gates.
Our reasoning is as follows. The observable which measures whether the suffix of a binary
word is 1 or 0 is A := 15, ® 0,. This is obviously a 1-qubit observable since A acts only
on the rightmost qubit non-trivially. The observable U AUT which measures whether the
majority of qubits are 1 is a proper 2n + 1-qubit observable because the logical states
of all qubits are relevant. In [40] we have argued that a circuit of depth [ can convert a
1-qubit observable at most into a k'-qubit observable. Therefore we obtain

[ > logr(2n + 1)

as lower bound on the depth. This shows after all that the depth must necessarily increase
with n even though logarithmic growth would be quite slow. We summarize :

Theorem 24 (Lower Bound on the Depth)

Let U be an optimal heat engine on 2n two-level systems with temperature T4 # 0 and one
two-level system with T = 0 where all 2n 4+ 1 systems have the same energy gap. Then
the implementation of U with k-qubit gates requires at least a circuit of depth log,(2n+1).
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Now we will describe an instance of heat engines where the required complexity becomes
serious: Given n two-level systems with different energy gaps, the optimal heat engine
could solve the NP-complete problem KNAPSACK. First we recall an instance which is
already NP-complete [92]:

Definition 29 (KNAPSACK)

Given a sequence of some positive integers vy, ..., v, and two natural numbers K, B, is
there a subset S C {1,...,k} such that
K<) v <B.
jes

If there is such a subset the optimal heat engine will always find it:

Theorem 25 (Optimal Heat Engine solves KNAPSACK)
Let
Ey... . E,

be the energy gaps of n+ 1 two-level systems. Let Ty be the temperature of the Oth system
and T of the remaining n. Let the values be such that there is no b € {0,1}" such that

T
blE) = Ey— .
bIE) = B
Let U acting on C? ® (C?)®™ be an optimal unitary heat engine for this system. Then
U solves a KNAPSACK problem in the following sense. Perform a measurement in the
computational basis on the rightmost n two-level systems in the state

UL 10...0)).

Let b € {0,1}" be the obtained result. Then b satisfies

T
Ey > (b|E) > By (4.5)
Ty

if and only if such a binary word b exists.

For the detailed reduction of KNAPSACK to this heat engine see [56]. It is seen that
the hard instances of KNAPSACK (with B — K small) correspond to small temperature
differences. One may ask whether this theorem indicates complexity theoretic bounds on
the efficiency of nanoscopic heat engines. Admittedly, the setting is very special since it is
more likely to have a collection of two-level systems with equal gap (when the temperature
difference is not chosen as in the example above). However, we leave the complexity of
such a heat engine as an open question.

One could object that it is not natural to implement heat engines by quantum gates
and real interactions could potentially solve the heat engine problem in a much more
natural way than our artificial toy models. But this raises, again, the question whether
one should extend the strong Church-Turing principle to non-computational problems.
It could read roughly as follows: Given a physical system with Hilbert space H which has
an interface to a quantum computer such that the quantum state on H can be swapped
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with the register state. Assume there is an efficient implementation for a transformation
U on H which achieves some non-computational task. Then there is always an efficient
quantum circuit V' such that

U=W'v w,

where W transfers the state of H to some subspace of the register. Applied to heat
engines, this would mean: If there is any efficient way to extract energy from a family
of increasing systems and there is an interaction with a quantum computer which is
powerful enough to implement the SWAP, then one can always realize the heat engine
by a quantum computer.

4.3 Imaging and Material Analysis

We have already mentioned that imaging can also be considered as a generalized mea-
surement. This will only play a role in a part of this section. The aim of this section is
rather to sketch some examples where imaging may lead to algorithmic control problems.
The type of algorithm discussed in the next subsection is from the mathematical point
of view simply a special case of the simulation of Hamiltonians (Section 3.1). However,
according to the general message of this thesis, I preferred to mention it here in order to
emphasize that simple forms of these algorithmic control techniques have already been
applied in NMR spectroscopy for decades without any computational application in mind.
The remaining subsections sketch only vague ideas about perspectives for future imaging
technologies. It is certainly not possible to discuss experimental feasibility at this stage.

4.3.1 Decoupling Strategies and their Complexity

It is maybe a matter of opinion to judge when the era of quantum information processing
began. However, there are decades-old standard techniques in NMR imaging involv-
ing algorithmic control of many-body quantum systems. We rephrase these decoupling
strategies and sketch the complexity theory which we have developed [46].

The principle of NMR imaging is the following. The nuclear spins are subjected to a
static magnetic field, whose direction is referred to as the z-axis. Then the Hamiltonian
of the system is a scalar multiple of the Pauli matrix o, i.e.,

H = Bco, (4.6)

where B is the strength of the field and ¢ an appropriate constant. The initial state is a
thermal equilibrium state where the probability for the upper state |1) is slightly lower
than for the lower state |0). Now we neglect that this bias is only small (and take this
only into account by the remark that it causes a bad signal to noise ratio) and assume
that the initial state is |0). By applying an oscillating magnetic field the qubit is brought
into the superposition state (1/v/2)(|0) + |1)). The natural time evolution according to
H is the phase rotation (1/v/2)(|0) + exp(—iBct))|1)) which is, classically speaking, a
precession. This motion causes the system to emit radiation with the frequency w = Be.
For different molecules these frequencies are different, giving some information about the
chemical structure. Using magnetic fields with different strength at different positions
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one could also get information about the distribution of molecules at different positions.
With classical post-processing one obtains NMR images.

The Hamiltonian (4.6) was oversimplified; in reality, the Hamiltonian of a molecule
with several spins involves interactions between the spins. Assuming that we have n
spin-1/2 particles (which allows the interpretation of the molecule as an n-qubit quantum
register) the Hamiltonian of the n-spin molecule could have the form

H = Zag) + Z ij,aﬂ(fg)dg
J gk

with an 3n x 3n coupling matrix J. For many tasks, the interactions are unwanted,
therefore one would like to cancel them by applying appropriate unitary transformations.
Using the language of mutual simulation of Hamiltonians, the task of decoupling is to
simulate the Hamiltonian H = 0 using H. It has been observed [157] that the com-
binatorial concept of orthogonal arrays [158, 159] offers a systematic way to construct
decoupling schemes. We rephrase this concept for the case that the coupling involves
only 0, ® o, terms between the qubits.

Assume we apply the transformation o, to qubit j and let the system evolve due to its
natural evolution and apply o, again. Then the whole dynamics is as if the system was
subjected to a modified Hamiltonian, namely the operator obtained by adding a minus
sign to all interactions that involve qubit j due to ¢,0,0, = —o,. This is a very simple
way to remove all interactions with qubit j. Certainly we cannot use it to remove the
interactions between all pairs in a single step because the interaction o, ® o, is unchanged
if the o,-transformation is applied to both qubits. To cancel all interactions one has to use
more than one time step. The whole problem can be formulated with graphs: Let each
qubit be a vertex. Each time-step is represented by a labeling of the vertices with labels
+1. To conjugate the time evolution by a o, transformation on qubit j corresponds to
labeling node 5 with —1, not to apply it corresponds to +1. The product of the labels
of nodes j, k determines the value that the edge (j, k) obtains, showing whether or not
the interaction between qubit j and k is inverted. For each edge the interaction of the
whole procedure is the sum over all time steps when they are chosen to last equally long.
To cancel the interaction the values +1 and —1 must occur equally often for each vertex.
The whole scheme is represented by a matrix where each row shows the sequence of signs
over the time steps. The inner product between row j and k is the total interaction
strength between j and k over all time steps. Hence the matrix is a decoupling scheme
if and only if all rows are mutually orthogonal. This is for instance the case when for
each two rows each of the 4 pairs (£1,41) occur equally often over the columns. In
the language of combinatorics the matrix is an orthogonal array “of strength 2”. For an
extensive study and overview of decoupling schemes see [160] and references therein. In
[161] it is shown that not only does every orthogonal array define a decoupling scheme,
but also the converse.

The fact that orthogonal arrays exist for every power of 2 implies that the interaction
above can be cancelled within 2¥ time steps whenever 2 > n. Hence the decoupling
schemes have time step complexity O(n). In [46] we show that this bound is optimal for
many interactions. If one would restrict the attention to the example above where one
has to find n orthogonal vectors with £1 as entries, one had obviously the lower bound
n, since the number of time steps is the dimension of the vectors. General decoupling
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schemes could apply arbitrary unitary transformations to each qubit. We briefly explain
how to derive a complexity bound in this case. First we could derive it from complexity
bounds for the time inversion problem to simulate —H by H since this problem is closely
related [46]. Here we will describe a direct derivation using the spectral methods explained
in Subsection 3.1.3. We assume that the coupling matrix J is

J=K®C
where
1 00
C:=1000
000
and K is the adjacency matrix of the complete graph. A decoupling scheme with N time

steps of duration ¢y, ..., ¢y using the orthogonal transformation O; = 0]1 b 0]2- ®--- @07
in time step j satisfies

N
> t0;J07 =0.
j=1

We add R =} t;0;(1® C)OT on both sides and obtain

> 40,I1®C)0f =R,

J

The left hand side has at most rank N. To see that the right hand side has at least
rank n we note that R is block diagonal and its restriction to block [ is > thy)CO](-l)T
which has at least rank 1 due to 0 # C' > 0. We conclude that decoupling schemes
for the zz-interaction require at least n time steps. If n is a power of two this can
exactly be achieved using an orthogonal array of length n. It is easy to see that the
decoupling schemes sketched above work also for selective decoupling, where the spins
are arbitrarily partitioned into cliques and only connections between spins in different
cliques are removed.

4.3.2 Is an Image a Covariant POVM-Measurement?

The remarks below should only give a vague idea about how general the tool ‘POVM-
implementation’ is as a theoretical concept. Traditionally, the term ‘measurement’ sug-
gests numbers as outcomes, but the Platonic solid POVMs [141] are a nice example where
it is more natural to use non-numerical labeling (for instance the vertices of the Platonic
solids) for the measurement outcomes. For a POVM which is used to estimate which
state in a number of potential states is present one may label the outcomes simply by
the estimated state. Here we argue that it also could make sense to describe an image as
the result of a POVM measurement whenever the imaged object is quantum.

An article with headline “electrons seen in its orbit” [162] showed pictures of the
electron density in the electron orbitals of a crystal. The images were obtained using
the diffraction of an electron beam. This raises the question of the ultimate quantum
limits for obtaining pictures of wave functions of Schrédinger particles. First one has to
clarify what a picture of an orbital is. Clearly, the unknown wave function of a single
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electron cannot be pictured in the sense that we have depict real and imaginary part
of the Schrodinger wave. Otherwise one could prepare the same wave function again
and would have violated the no-cloning principle. Of course we could estimate the wave
function after an appropriate measurement. Given that the electron is, for instance, in an
energy eigenstate of an Hydrogen atom one could clearly measure the energy and depict
the corresponding orbital. But this is obviously not what one means by an image because
one has used too much prior information on the possible orbital shapes for the illustration.
The imaging process is only useful if it can be applied to unknown orbitals. A reasonable
method could be to use only the prior information that the electron is confined to some
area by a potential with unknown shape and that its energy is at most some given value
E. Then the remaining state space is of finite dimension d since the momentum satisfies
p? < 2Em and also the position is in a certain circle. On this subspace one could perform
an estimation using a SU(d) covariant POVM. This formalizes the demand that no prior
information on the state is used apart from the confinement to C¢. Given several copies
of the same orbital SU(d), covariant POVMs on the joint space allow better estimation
of the wave function. If one prefers to measure a finite POVM which is a pretty good
approximation for the uniform distribution of operators of the d-sphere one has to solve
problems which are related to distributing points on the surface of a unit sphere such
that they are pretty much uniformly distributed (problems which appear also in coding
theory). We do not mathematically analyze this situation here, we only emphasize that
covariance conditions may formalize the idea that an imaging process should by definition
not require too much prior information on the depicted object. This can already be
seen in usual photography: The photographer does not have to tell his camera where
the object is which should be shot. If the object is translated, it appears simply at
another position on the picture. As an idealization, one may assume that R3-translations
of the object lead to R2-translations on the picture. This is certainly a R3-covariant
measurement: if one neglects the boundaries of the image and the fact that it consists of
pixels the measurement outcomes are functions on R? indicating the color distribution.
If the depicted object is quantum, such an analysis could indeed make sense in order to
investigate ultimate quantum limits for the resolution. Whether covariant POVMs will
really play a crucial role in the construction of optimal imaging techniques has to be left
to the future.

4.3.3 Microscopy with Pre-Processing the Input Beam

Interesting proposals to improve microscopy and lithography by using entangled photon
states can be found in the literature [163, 164]. The idea is that light which consists
of entangled photons behaves in some respect like photons with smaller wave length.
Theoretical analysis has shown that one therefore obtains images with sub-wavelength
resolution. We will not explain the physics of this phenomenon here, but only want to
mention that the proposal shows a natural algorithmic state preparation problem.

Microscopy and also lithography with entangled photons can use the so-called NOON
state. It is a state of two light modes which should interfere and is defined as follows.
The Hilbert space is I?(Ng) ® [?(Ng) where |n,m) is a state with n photons in the first
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mode and m in the second. Then one defines
1
V2

Then the proposals explain [164] how the NOON state can be prepared from the Fock
state |V, N) by N/2 operations. These operations ®,. .., ®y/, are, however, not unitary
transformations since they are obtained by an optical interferometric device with two
beam splitters, two detectors, and one phase plate where the output state is only used
whenever there are coincident clicks in the detectors. Given such a coincidence, the device
@, has transformed the state |n,m) to

NOON := —(|N,0) + [0, N)) .

(a® + %) In, m) ,

where a and b are annihilation operators on the first and second mode, respectively, i.e.,
they decrease the photon numbers by 1. Using a and b, the NOON state can be written
as

NOON = (a™ + b™)|N, N),

which can be decomposed into
(a® + e10%)(a® + €20?) - - - (a® + V2% |N, N)
when the phase factors ¢, are chosen as the N/2-th roots of unity, i.e.,

_ amk

Pr =

The authors of [164] admit that the performance of the scheme scales badly with increas-
ing N since its success probability decreases exponentially. They conjecture that this
problem could possibly be solved by producing NOON states off-line and storing them
in memories.

4.3.4 Microscopy with Quantum Post-Processing

The intention of the proposal above was to improve microscopy by generating quantum
states of light which would allow higher resolution. One could say that the input beam
is therefore subjected to a ‘pre-computation’” which prepares the desired state. It is
also interesting to think about schemes which apply quantum transformations to the
post-object beam in order to convert the information which is inherent in the quantum
state of the output beam to classical information in an optimal way. Here we describe a
model which is formally quantum process tomography. By this one means algorithms to
gain information about the unknown dynamics of a quantum system. We first explain
the usual setting for process tomography. Given a Hilbert space ‘H and an unknown
completely positive map G € G where G is some set of possible maps, identify G by
subjecting several initial states p to G and measuring the final states. This setting has
been a widely studied subject (see e.g. [165, 166, 167]). It has been emphasized in [87]
that interferometry experiments, for instance in the context of microscopy, are formally
equivalent to interference in quantum computing. Here we argue that there are standard



120 CHAPTER 4. NATURAL NON-COMPUTATIONAL PROBLEMS

methods in electron holography which have direct interpretation as quantum process
tomography. Then we want to use the formal setting of quantum information processing
in order to show that it offers interesting perspectives. Actually, the main part of this
section deals with ideas which are standard in quantum interferometry. The intention
is only to show that quantum information language could help to further develop these
ideas.

We first describe so-called off-axis electron holography (see e.g. [168, 169]) in a sim-
plified way. An electron source with a lens generates plane electron waves. The object
is located in the electron beam such that only part of each wave front passes the object,
the other part is later used as reference beam. The object changes the electron wave
with respect to its phase and its amplitude. For simplicity we assume that the amplitude
is not affected, i.e., all electrons pass the object. Such objects are called phase objects.
The object beam and reference beam are diffracted by a biprism in such a way that they
interfere. According to the phase change caused by the object, one observes constructive
or destructive interference. Consider the following simplified mathematical model. The
Schrodinger wave of a single electron is described by a vector in L?(R?) when the degree
of freedom in the direction of propagation is not explicitly taken into account. We assume
that the object beam is confined to some region A and the reference beam to some region
A’. Therefore the wave function is actually confined to the subspace L?(A) & L*(A’)
where A’ is obtained by translating A by the vector [, i.e., A’ = A+ 1.

The phase object can be described by a diagonal unitary which maps the wave function
|1y onto Uly) with Ui(z) = u(z)(x), where u(z) = exp(i¢(x)) and u(x) = 1 for all
x & A. When both beams interfere we obtain a probability distribution to detect the
electron on a screen which is described by

[¥(x) + u(@)i (@)

which gives certainly some insight on the phase function u(x) after sampling with suffi-
ciently many electrons. The task to obtain as much information about U as possible is
therefore an issue of quantum process tomography.

Now we describe a situation where terminology and tools of quantum information
processing may help to create new methods in microscopy. Assume one has two objects
and would like to know whether they differ considerably or not. We could split a plane
Schrodinger wave such that one part passes object O and the other passes object O'.
Assuming that the input waves, before they pass the objects, have constant probability
amplitude and phase, the joint wave behind the objects is given by

V= clusd),

where ¢ is some positive normalization factor. In order to check whether the wave func-
tions u and u' are substantially different one could use a usual interference device: A
beam splitter could transfer the function to
~ c
= —(u+u)® (u—1u)).
() © ()

The probability for finding the particle in the left beam is given by

%2(1 + 2Re(/u(x)mdfc)) ,
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where Re denotes the real part of a complex number. For u = v/ we obtain 1. After a
small number of runs of the experiment one can estimate whether the real part of the
integral is considerably smaller than 1 which would indicate a difference of the phase
functions v and u'.

Another possibility to compare the objects is to choose two electrons, one which passes
object O and one for object O’. The output state of the bipartite system is therefore

1

The controlled SWAP permutes
u@u —u Q@u

conditioned on the ancilla state. The ancilla is prepared and measured as above. The
probability for a positive measurement result is now given by

(u@u|PTlu@u) = 1+|/ o (z) dz)?) .

This measurement is in some respects more sensitive to small differences between the two
wave functions: If the overlap between u and «’ is only slightly below 1 the probability for
the P™ measurement is more reduced than above since the term appears quadratically.
On the other hand the two-electron experiment is insensitive to global phase differences
between v and u'. If v’ = exp(iA)u with A € R, only the one-electron experiments detects
that the functions are different. Note that the terms ‘symmetric’ and ‘antisymmetric’
should not be confused with symmetry or antisymmetry of the whole wave function of two
particles. Since electrons are fermions the total wave function of two electrons is always
antisymmetric. However, here we can treat the particles as if they were distinguishable
since we identify them by being in different beams.

Perhaps one could think of applications where it is important to use as few electrons as
possible in order to disturb or damage the object as little as possible. It should be noted
that this goal is formally equivalent to minimizing the number of queries of an oracle
for answering a certain question. The oracle is here given by the unitary U ® U’. Each
passing electron is one query. We can formally consider the two object as one ‘bipartite
object’ where the decision problem consists of ‘similarity’. For one object there could be
other features of interest like: ‘Is there a region with area at least a where the phase ¢(z)
satisfies |¢(z)| > d for some 0 < d < w7’ This could, for instance indicate that the object
is thicker in that region. We summarize:

Observation 1 (Radiation Exposure is Query Complexity)

The problem to answer a question about a phase object with as few electrons as possible is
formally equivalent to the construction of an algorithm for determining some analogous
property of a black-box diagonal unitary such that the query complexity is minimal.

This relation should show that a quantum algorithmic approach to microscopy could in
principle help to reduce the radiation of objects when only a certain aspect of the object
is relevant. This connection between physical resources and computer scientific resources
shows that Landauer’s statement ‘information is physical’ [170] has many interesting
aspects.
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Chapter 5

Conclusions

David Deutsch emphasized [94] that the laws of physics determine which computational
problems can be solved efficiently. The approach here seems to reverse his statement
by claiming that the laws of computation determine which physical processes can be
performed efficiently. However, this point of view ignores the fact that the laws of physics
determine which operations are reasonable to consider as the elementary operations of
quantum computing. But given these operations, the question how to concatenate them
in order to generate a complex process is certainly an issue of a generalized computer
science.

A complexity theory for physical processes will always have the problem that it is
not clear which parts of the whole experimental setup has to be taken into account. If
the controlled-not in an ion trap is considered as an elementary operation, one neglects
all the operations which were necessary to cool the vibrational modes. Furthermore
the laser has already solved the non-trivial quantum control problem of generating a
many-photon coherent light beam. Hence elementary operations on a quantum register
may require a huge experimental setup which solves already complex non-computational
control problems to enable the ‘elementary’ operation. But this does not show that
complexity theory does not make sense here; it rather leads to a complexity theoretical
aspect of reliability. In other words, it suggests that we need of a complexity theory that
takes into account the resource requirements specific to precise control. One would like to
know how the complexity of the controlling devices increases if a ‘basic’ operation should
be performed more and more reliably. This connection meets very well the spirit of this
thesis: We have discussed, for instance, how the complexity of a measurement can increase
with the demanded accuracy and have illustrated in toy models that the complexity of
a heat engine grows with its efficiency. Furthermore, our toy models suggest that the
resource requirements of cooling processes diverge for information theoretic reasons when
approaching the zero temperature limit. However, it is not clear whether the asymptotic
point of view which is usual in complexity and information theory will ever be as useful
in physics as in computer science. Perhaps the finiteness of all resources is much more
relevant for difficult control tasks. Nevertheless I hope that the considered toy models
can give some intuition and hints on the real physical limitations.
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