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A numerical solution method
for an infinitesimal elasto-plastic Cosserat model

Patrizio Neff, Krzysztof Chelmiriski , Wolfgang Miiller, and Christian Wieners

ABSTRACT. We present a finite element implementation of a Cosserat elasto-plastic model
allowing for non-symmetric stresses and we provide a numerical analysis of the introduced
time-incremental algorithm. The model allows the use of standard tools from convex
analysis as known from classical Prandtl-Reuss plasticity. We derive the dual stress
formulation and show that for vanishing Cosserat couple modulus p. — 0 the classical
problem with symmetric stresses is approximated. Our numerical results testify to the
robustness of the approximation. Notably, for positive couple modulus p. > 0 there is no
need for a safe-load assumption. For small y. the response is numerically indistinguishable
from the classical response.

1. Introduction

This article addresses a finite element implementation and the numerical analysis of geomet-
rically linear generalized continua of Cosserat micropolar type for elasto-plasticity. General
continuum models involving independent rotations as additional degrees of freedom have
been first introduced by the Cosserat brothers [12].

Their development has been largely forgotten for decades only to be rediscovered in the
beginning of the sixties [56, 32, 1, 20, 18, 67, 68, 31, 41, 63, 69|. At that time
theoretical investigations of non-classical continuum theories were the main motivation
[37]. The Cosserat concept has been generalized in various directions, for an overview of
these so called microcontinuum theories look at [19, 21, 7].

Among the first contributions extending the Cosserat framework to infinitesimal elasto-
plasticity we should mention [62, 40, 6]. More recent infinitesimal elasto-plastic formu-
lations have been investigated in [14, 16, 35, 58|. These models directly comprise joint
elastic and plastic Cosserat effects. Lately, the models have been extended to a finite elasto-
plastic setting as well, see e.g. [30, 59, 60, 61, 64, 29, 22| and references therein. Most
of these extensions directly comprise joint elastic and plastic Cosserat effects as well but we
pretend that their physical and mathematical significance is at present much more difficult
to asses than models where Cosserat effects are restricted to the elastic response of the
material [22] and references therein. We will investigate a model of the second type which
has been introduced in [50, 48] in a finite strain framework. A geometrical linearization
of this model has been investigated in [52, 54| and is shown to be well-posed also in the
rate-independent limit for both quasistatic and dynamic processes.

Apart from the theoretical development, the Cosserat type models are today increasingly
advocated as a means to regularize the pathological mesh size dependence of localization
computations where shear failure mechanisms [11, 44, 42, 5, 4| play a dominant role, for
applications in plasticity see the non-exhaustive list [35, 16, 58, 13, 15, 14]. The occurring
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mathematical difficulties reflect the physical fact that upon localization the validity limit
of the classical continuum models is reached. In models without any internal length the
deformation should be homogeneous on the scale of a representative volume element of the
material [43].

The incorporation of a length scale, which is natural in a Cosserat theory, has the poten-
tial to remove the mesh sensitivity. The presence of the internal length scale causes the
localization zones to have finite width. However, the actual length scale of a material is
difficult to establish experimentally and theoretically [38] and remains basically an open
question as is the determination of other additionally appearing material constants in the
Cosserat framework. It is also not entirely clear, how the shear band width depends on the
characteristic length.

For the older mathematical analysis of infinitesimal, linearly elastic Cosserat micropolar
models the reader may consult [17, 34, 25, 26]. Existence results for a geometrically exact
elastic Cosserat model are obtained in [45].

As far as classical rate-independent (perfect) elasto-plasticity is concerned we remark that
global existence for the displacement has been shown only in a very weak, measure-valued
sense, while the stresses could be shown to remain in L?(f2), provided a safe-load condition
is assumed. For this results we refer for example to [3, 10, 66]. If hardening or viscosity is
added, then global classical solution are found see e.g. [2, 9, 8|, already without safe-load
assumption. A complete theory for the classical rate-independent case remains, however,
elusive, see also the remarks in [10].

While the infinitesimal Cosserat micropolar elasto-plasticity model in its various versions
is interesting mathematically in its own right we concentrate in this contribution on the
reqularizing properties for positive Cosserat couple modulus p. > 0 of the model presented
in [52]. We emphasize that our non-dissipative formulation seems to provide just the
necessary amount of regularization missing in classical perfect plasticity. By looking at the
Cosserat couple modulus p. as a regularizing parameter instead of a material parameter
we avoid the problematic issue of identifying this parameter in a physically reasonable
way. Indeed in [47] and [51, 46, 49] it is argued that this parameter must be set to zero,
if treated as a material parameter. This is at variance with practically all the previous
literature in this field. It does not, however, mean that the Cosserat model has lost its
physical significance; rather it calls for a geometrically exact treatment as e.g. done in [55].

Our contribution is organized as follows: first, we recall the linearized elasto-plastic Cosserat
model introduced in [50, 48] and investigated mathematically in |52, 54|. We then re-
formulate the setting in the discrete finite element spaces together with a backward Euler
discretization of the plastic flow rule in time. We show that all classical concepts from con-
vex analysis apply to the classical stress part and note that the time incremental problem
still has variational structure. The incremental problem is shown to have unique minimizers
(in the case where Dirichlet data for both displacements and microrotations are assumed),
and we prove finite element convergence for standard finite element approximations. For-
mulating the dual problem in terms of stresses and microrotations we prove that for g, — 0
classical perfect plasticity is approximated. This result for the dual, time-incremental prob-
lem complements a similar approximation result for the primal, time-continuous formulation
obtained in [53].

This is complemented by a Newton-type algorithm for the computation of minimizers of
the convex primal problem. Since the first variation of the primal functional is Lipschitz
continuous, standard semi-smooth Newton methods can be applied, where the general-
ized derivative is given by the well-known consistent tangent in classical plasticity. In the
last section, numerical experiments confirm our analytical results (even for more general
boundary conditions) and show that our Cosserat plasticity model is more regular than
Prandtl-Reuss plasticity and convergent to the classical model for u. — 0.
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2. An infinitesimal elasto-plastic Cosserat model

In this section we recall the specific infinitesimal elasto-plastic Cosserat model which is
analyzed in [52], and we derive a discrete formulation. This section does not contain new
results; it serves for the clear definition of the problem and for the introduction of the
notation.

Data. Let Q C R? (d = 2,3) be the reference configuration (an open and connected set in
R? with piecewise smooth Lipschitz boundary), and let Tp UT y = 99 be a decomposition
of the boundary. We fix a time interval [0, 7.

The problem depends on the following data: a prescribed displacement vector
up: FD X [O,T] —>Rd

for the essential boundary conditions on I'p, and a load functional
f(t,v)z/b(t)-vdx%—/ ty(t) - vda, te[0,77],
Q Ty

depending on body force densities

b: Q x [0,7] — R?
and traction force densities

ty: Dy x [0,7] — RY .
We start with the initial state up(0) = 0, b(0) =0, tx(0) = 0.
The material is described by a linear elastic response depending on the Lamé constants
A, > 0. Furthermore, we consider materials which allow for independent infinitesimal
microrotations A € so(d), where so(d) = {r € R%?: 77 = —7) is the Lie-algebra of
skew-symmetric matrices.
The symmetric matrices are denoted by Sym(d) = {7 € R%?: #7 = 7). We have the
orthogonality relation

A:T =0, A€so(d), T €Sym(d),

with respect to the inner product A : B = Zﬁjzl Ai;Bi; for A,B € R%4. Moreover,
we use the norm |B| = VB : B and the decomposition B = sym(B) + skew(B) with
sym(B) = (B + BT) and skew(B) = (B — BT).

The coupling of the skew-symmetric part of the displacement gradient Du and the microro-
tation A is determined by a parameter . > 0, called the Cosserat couple modulus, and the
internal length scale of the microrotations is described by a parameter L. > 0 describing
an internel length. On the Dirichlet boundary we prescribe

Ap:Tp x [0,T] — so(d) .

For the formulation of consistent boundary conditions we may assume that the prescribed
displacement vector up is extended into €2 such that Ap(x,t) = skew(Dup(x,t)) is well-
defined.

Finally, inelastic material behavior is modeled by a convex function

determining the convex set K = {7 € Sym(d): ¢(7) < 0} of admissible (symmetric elastic)
stresses. We assume that ¢ is smooth for 7 # 0, and we assume ¢(0) < 0.

The basic example is the von Mises flow rule ¢(7) = |dev(7)| — K for a given constant
Ky > 0. Here, dev: Sym(d) — Sym(d) is the projection orthogonal to the isotropic
operator I ® I: Sym(d) — Sym(d) defined by (JI®1) : 7 = Ltr(7)L, i. e., we have
dev =1 — éI ®I,i.e.,devB =B — étr(B)I, where 1l denotes the identity map in R%?
and I is the identity tensor in R%.
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The equations of the infinitesimal elasto-plastic Cosserat model. We want to
determine displacements
u: Qx[0,7] — R?,
in general non-symmetric Cauchy-stresses
o: Qx[0,T] — R4
(skew-symmetric infinitesimal) microrotations
A: Qx[0,T] — so(d) ,
(symmetric infinitesimal) plastic strains (no plastic spin: skew(e,) = 0)
gp: @ x [0,T] — Sym(d) ,
(with initial state €,(0) = 0), and a plastic multiplier
A:Qx[0,T] —R
satisfying the essential boundary conditions
u(x,t) = up(x,t), (x,t) € I'p x [0,T] ,
A(x,t) = Ap(x,t), (x,t) €eT'p x[0,T],
the constitutive relation
o(x,t) = 2u(sym(Du(x,t)) —ep(x,t)) + Adiv(u)(x, t)I
+ 2puc(skew(Du(x, t)) — A(x,t)), (x,t) € 2 x[0,T],

the equilibrium equations

—dive(x,t) = b(x,t), (x,t) € Q2 x[0,T],
o(x,t)n(x) = ty(x,t), (x,t) e 'y x [0,T7]
—pLZAA(x,t) = pe(skew(Du(x,t)) — A(x,t)), (x,t) € 2 x[0,7T],
DA(x,t)-n(x) = 0, (x,t) € 'y x [0,T]
(where n(x) denotes the outer unit normal vector), the flow rule
%sp(x,t) = A(x,t)Do(Tg(x,1)) , (x,t) € QA x[0,T], (1)

depending (only) on (the symmetric elastic Eshelby stress tensor Tg)
Tg(x,t) = 2u(sym(Du(x,t)) — g,(x,1)), (x,t) € 2 x[0,T],
and the complementary conditions (Karush-Kuhn-Tucker)
A(x,0)¢(Tg(x,t)) =0, A(x,t) >0, ¢(Tp(x,t)) <0, (x,t) € Q2x[0,7] . (2)

Here and in the following, for 7 € Sym(d) the derivative D¢(7) € Sym(d) is represented in
Sym(d) such that for the Gateaux derivative D¢(7)[n] holds

Do(r) s m = Do(r)ln] = lim T (o7 +hn) —o(r)),  meSymld) .

REMARK 1. For given material history ey(t) at fized time t, the displacement and the
microrotation are determined by minimizing the total energy

I(u,A,ep) = E(Du, A, ep) — ((t,u) ,

where the corresponding elastic free energy is given by
A
E(Du, A ep) = u/ | sym(Du) — sp{2dx+ B / tr(Du)? dx
Q Q

+ ,uc/ | skew(Du) — A% dx + uLg/ |IDA|? dx . (3)
Q Q
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3. The discrete elasto-plastic Cosserat model

Discretization in space. Let h be a mesh size parameter, let V;, C C%1(Q,R?) be a
finite element space, and set

Vi (up) ={v € Vi: v(x) = up(x) for x € Dy},

where Dy, C I'p is the set of all nodal points on I'p.
Analogously, let W, € C%1(2,50(d)) be another finite element space, and let

Wh(AD) = {B e Wy B(X) = AD(X) for x € D;l}

where D) C I'p is the set of all nodal points on I'p of Wj,.

Let E; C € be quadrature points and let wg be corresponding quadrature weights such
that

/v-de: ngv(f)-w(ﬁ), v,we V.
@ £EE,

Weset A ={A: By — R}, 8, = {7: E, — R*}and E} = {7: E; — sl(d)NSym(d)},
where sl(d) = {7 € R%4: tr(7) = 0} is the Lie algebra of trace-free matrices.

In our notation the integral is used also for the finite sums

/Qazedx = nga(é):e(ﬁ), o,e €3y .

1S

The semi-discrete equations of the elasto-plastic Cosserat model. Determine

displacements u: [0,7] — V}, with u(t) € V(up(t)) for t € [0, 7],
microrotations A:[0,T) — W), with A(t) € Wy, (Ap(t)) for ¢ € [0,T],
stresses o:[0,T] — Xy,

plastic strains gp: [0,T] — EV,

plastic multiplier A: [0,7] — A,

satisfying the constitutive relation
o (&) = 2u(sym(Du(§, 1)) — ep(&,)) + Adiv(w)(€, O + 2pe(skew(Du)(€, ) — A(€,1))

for (&,t) € Ej x [0,T] (using o(&,t) = o(t)(&) for o(t) € X},), the equilibrium equations

/ o(t): Dvdx = L(t,v), te[0,T], veVyo),
Q

,uLz/QDA(t) -DBdx = ,uc/ﬂ (skew(Du(t)) — A(t)) : Bdx, t€[0,T], B € Wy(0)

(where DA-DB =" 0;A;1,0;Bji,), the flow rule

ijk
dee) = AENDS(TE(ED) . (61 €Zux 0.T],

depending on

TE(gvt) = 2M(Sym(Du(£7t)) - €P(£7t)) (E?t) € By X [OvT] )

and the complementary conditions (Karush-Kuhn-Tucker)

A& 1)o(Tr(&,1) =0, A(&) >0, ¢(Te(1) <0,  (§,1)€Qx[0,T].
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Discretization in time. The model of incremental infinitesimal Cosserat plasticity is
obtained by a decomposition

O=tog<ti <---<ty=T

of the time interval and the backward Euler scheme: for n = 1,2, 3, ..., the next increment
depends on the material history described by sg_l (where 52 = 0 at tp = 0 is given), the
new load ¢"[v] = {(t,,v) and the new Dirichlet boundary values u%, = up(t,) and A% =
Ap(ty,). We compute the displacement u" € Vj,(u?,) satisfying the essential boundary
conditions, the stress 6" € X, the microrotation A™ € W, (A%), the plastic strain gy € E},
and the plastic multiplier A™ € A satisfying the constitutive relation

o"(€) = 2u(sym(Du’(€)) — €X(€)) + Adiv(u")(€)I
+ 2u(skew(Du'(§)) — A"()), €€ By, (4)

the equilibrium equations

/0’" : Dvdx
Q

ML@/DA"-DBCZX = uc/ (skew(Du") — A") : Bdx, Be€ W,(0), (5b)
Q Q

v, v € V;(0) (5a)

the flow rule

L (ep©) - p©) —AODS(TRE) . €€,

7511 - tnfl

depending on

T(&) = 2u(sym(Du™(§)) —€,(8)),  EE€En, (6)

and the complementary conditions (Karush-Kuhn-Tucker)

A"(€)o(TE(€) =0, A"(€) =0, ¢(Tp(€) <0, E€E,.

Since the problem is rate-independent, rescaling of the time parameter does not affect the
model. Thus, we define v = 2u(t,, — t,—1)A™ € A, i. e., the flow rule has the form
_ 7" (& =
@) =3O+ L po(rpe)) . gem. )
Together with (4), (5) and (6), we can state the fully discrete elasto-plastic Cosserat prob-
lem: for given Eg_l € E} find 6", T} € 3y, u" € Vi(u}), A" € Wj,(A}), and v" € A
such that

TE() = 2u( sym(Du"(€)) - e571(€)) =" (€)DS(TE(E) €€, (82)

¢(Tp(€) <0, 7"(€)o(TE(E&) =0, "(€) >0, E€By, (8b)

0" (&) = TE(&) + Adiv(u™) ()L + 2uc(skew(Du"(§)) — A™(£)), & € By, (8¢)

/ o": Dvdx = ("[v], v € Vy(0) (8d)
Q

pL? /Q DA" . DBdx = MC/Q (skew(Du™) — A") : Bdx, B € W(0) . (8e)

Then, for the next time step ), is determined by the discrete flow rule (7).

4. The closest point projection

The algorithmic treatment of the incremental plasticity problem relies on equivalent char-
acterizations obtained by the closest point projection of arbitrary stresses to the admissible
stresses. Since the set of admissible stresses is convex, the computation of the projection
onto this set is a standard problem in convex optimization.
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Projection onto the set of admissible stresses. Let Pk : Sym(d) — K be the orthog-
onal projection onto the convex set of admissible stresses K = {7 € Sym(d): ¢(7) < 0}
with respect to the norm |r| = /7 : 7. Note that 0 € K (since ¢(0) < 0). We assume that
¢ is smooth for 7 # 0.

LEMMA 2. For given 0 € Sym(d) the projection T = Pk (0) € K is uniquely determined by
the solution (T,~y) € Sym(d) x R of the KKT-system

0 T -6 +~yD(T) , (9a)
> (T), v¢(T)=0, v=0. (9b)

)

PROOF. The constraint minimization problem
1 2 . .
T € Sym(d): 3 |T — 0] = min subject to ¢(T) <0

satisfies the Slater condition (since ¢(0) < 0). Thus, the minimizer is characterized by a
saddle point (7',v) € Sym(d) x R of the Lagrange functional

1
L(T,y) =5 |T =6 +76(T) ,
and the corresponding KKT-system (9). O

The convex potential. The corresponding convex potentials are denoted by
1 1 1
ox(0) =5 16— PO, vk(0) = |6 — 1 16— Pc(6)]

for @ € Sym(d). Note that we have

Dyx(0)[n] = (6 — Px(9)) :m,  6,n€Sym(d). (10)
LEMMA 3. The functional ¥k (-) is convez, non-negative, and we have
Dyk(0)[n] = Px(0):m, 6, necSym(d). (11)

PRrOOF. The orthogonal projection Pk is uniquely characterized by
(6 — Px(0)) : (n— Px(0)) <0, 0 € Sym(d), ne K . (12)

Inserting (10) gives DYk (0)[n] = 0 : n— Dyk (0)[n] = Pk (0) : n, and we obtain from (12)
for 6,m € Sym(d)

Uk (0) — vk (n) — DYx(n)[6 — nl

Thus, DYk (n)[0—n] < Yk (0)—1Yk(N), i. e., Dk is monotone and therefore ¥k is convex.
Finally, since 0 € K we have

1 2 1 2 1 2 1 2
=-102-=10 - P >[92 — =16 —02=0.
V() = 516> = 516 — () = 516> — 516 — 0 =0
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Example. We consider the evaluation of the projection for the classical von Mises flow
rule ¢(T') = |dev(T)| — K for given (yield stress) Ky > 0. For 8 € K we have T'= 0 and
v = 0. Otherwise, the KKT-system

B dev(T)
P T e
0 = |dev(T)| — Ky
. . . B v .
has a unique solution, and using dev(0) = <1 + Tdev(T)] (T)\) dev(T') we obtain
dev(0)
P - 60— K
x(0) 6 — max {0,|dev(0)| o} v (@)
v = max{0,|dev(0)| — Ko} ,
110 |dev(0)] < Ky,
U@ = ) 1 (1 1a(8)2 4 2Ky | dev(®)| - K2 dev(8)| > K.
2 (2 tr(6) + 2Ko [dev(0)| — Kj | dev(8)] > Ko,
see [57, 23, 24]. Defining m(s) = max{0, s} and using
1 >0
om(s) =< [0,1] s=0
0 5 <0

we obtain for the multi-valued derivative of the projection

dev(0) : dev(T) dev(6)

0Pk(0)[r] = 71 —0m(|dev(0)| — Ky) [ dev(@)] dev(@)]
(| dev(0)] — dev(r)  dev(@):dev(r) dev(6)
(Idev(6)] KO)(]dev(0)| [ dev(0)) \dev(e)P) )
i e,
B  Om(l dev(@)] — dev(0) dev(0)
OPc(8) = 11— 0m(dev(6)| - Ko) g o & ok (13)
~ m(|dev(6)| — Ko) 1 _ dev(6) dev(0)
[dev(6)] (1o [dev(@)] © |dev(0)\)
For the special choice m’(s) € Om(s) defined by
, 1 s>0
m(s) = { 0 s 2 0

we obtain the following realization C(0) € 0Pk (0) for the consistent tangent defined by
) il |dev(0)| < Ko,

= 1 K 1 dev(0) dev(0)

Ao+ W((H —a1eT) - rGaeyn © \dev(0)|) | dev(8)] > Ko

Since C(0) € 9%k (0) is the second variation of the convex function 1k (-), the consistent
tangent C(0) is positive semi-definite. Moreover, we have C(0) : dev(€) = 0, i. e., C(0)
is not positive definite. Furthermore, 1k (-) is not strictly convex and it is of asymptotic
linear growth [57].

Note that m(-) and therefore Pk is semi-smooth satisfying

sup |PK(9 +01) — Px(0) — 5A[TH =0(9) .
A€ Pk (0457)

As a consequence, the nonlinear problem which will be studied in the next section is semi-
smooth as well. Thus, the convergence analysis for generalized Newton methods [36] can
be applied.
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5. Variational formulation of the discrete elasto-plastic Cosserat model

Depending on u™ and 53*1 we define the trial stress

0"(€) = 2u(sym(Du"(€)) —e;7'(€)) €€ En, (14)
i. e,

TE(€) = 0"(€) —7"(6)DH(TE(E)) €€ By .

LEMMA 4. The system (8) for the discrete elasto-plastic Cosserat model is equivalent to the
following nonlinear variational problem: -
Jor given €771 find (u", A") € Vy(ul}y) x Wi(A}) such that

/ Pk (2p(sym(Du”) — sg_l)) :Dvdx + /\/ div(u") div(v) dx
Q Q

+ 2,LLC/Q (skew(Du") — A™) : Dvdx = ("[v], v € V,(0), (15a)

pL? /Q DA™ . DBdx = ,LLC/Q (skew(Du") — A") : Bdx, B e W,(0).  (15b)

PRrROOF. Inserting Lemma 2 we obtain directly that (8a), (8b) is equivalent to

Tp(€) = Px(0"(€)), E€Bn.
Then, (8c) gives

o (&) = Pk (0"(€)) + Adiv(u")(E)I + 2puc(skew(Du"(€)) — A™(§)), & € &y,
and (15) follows from (8d) and (8e). O

It is important to observe that the weak form of the incremental Cosserat problem still has
a variational structure in the following sense.

LEMMA 5. Any minimizer (u™, A") € V,(u?) x W,,(A%) of the functional
e A) = Epa(Du,A,ep ™) — £*[u] (16)

incr
solves the monlinear variational problem (15). Here Einer denotes the free energy of the
incremental problem defined by

- 1
Einer(Du, Ajep) = ﬂ/Qq/)K(2,u(sym(Du)—.»sp)) dx+%/gtr(Du)2dx

+ uc/ | skew(Du) — AJ? dx + ML@/ |IDAP?dx.  (17)
Q Q
Note that for the first time step n = 1 and eg =0, ptc = 0, L. = 0 the functional I} _ (u,0)
reduces to the primal plastic functional of static perfect plasticity (Hencky plasticity) [65,
57, 23, 24].

PROOF. Any minimizer is a critical point, i. e., DI _(u, A) = 0. From (11) we obtain for

the first variation of I} . with respect to u

DIl (u, A)[v] = i/QPK(Q,u(sym(Du) - sg_l)) : (2usym(Dv)) dx
+ )\/Qdiv(u) div(v) dx + 2,uc/Q (skew(Du) — A) : skew(Dv) dx — ("[v]
(u", A")[B] = 0 gives (15b). O

which proves (15a); analogously D21

incr
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6. Analysis of the discrete elasto-plastic Cosserat model

For the analysis of the model we restrict ourselves to the pure Dirichlet problem with
homogeneous boundary conditions up = 0 and Ap = 0 on I'p = 99, to linear finite
elements Vy, Wy, and to mid-point quadrature on the triangles or tetrahedra. Thus, we
can identify the discrete stress space 3, with element-wise constant functions in Lo (€, R%4).
By abuse of notation we set V, := V(0) and W), := W(0), so that we have V;, C V and
Wy, € W, where V = H}(Q,R%) and W = H}(Q,s0(d)). The norm in L(f2) is denoted
by |- .

Due the the boundary conditions, Poincaré constants Cy, C; exists such that

vl < GollDv], veV, (18)
1Bl < Ci|DB|, BeW,

and, a constant C3 > 0 exists such that

|Dv|* < Cs (H divv|]® + | curlvH2>, veV, (19)
see [27]. Note that we have

[ div(v)[|* + | curl(v)[[* = || tr(Dv)||* + || skew (Dv)|* . (20)
Finally, we define |||y = ||g,unp ) |0 [v]].

THEOREM 6. The functional I
from below satisfying

Nt VX W — R in (16) is uniformly convexr and bounded

1
I (0, A) = prees (IDul + DAY = 10| - (21)
HeCq
Moreover, for p. € (0, u] the constant c4 is independent of p..

PROOF. In the first step, we show that the symmetric bilinear form
b[(u,A),(v,B)] = A / div(u) div(v) dx + 2uL? / DA - DBdx
Q Q
+ 2,uc/ (skew(Du) — A) : (skew(Dv) — B) dx
Q

induces a coercive quadratic form. Inserting || skew(Du) — A[]> > (1 — a) || skew(Du)||* +
(1— 1) A|%, with a € (0,1) yields together with (19)

bl(w, A), (w, A)] > A div(u)|? + 2uL2| DA||2
+ 211 = ) || skew(Du)||? + 2u(1 - —) 4]
> Al|div(w)|? + pL2| DA|?2

1 pL? -
_ 2 - c 2
+ 2u.(1 — @) || skew(Du)||* + (2,uc<1 a) + —012 ) A,

which gives for 1 > o > —f< > “°L2 and p. € (0, y]

77 =
‘LCQC Bet 5 £
1

bl(u, A), (0, A)] > dpees (| Dul® + [ DAJ?)

using (20), where ¢4 depends on A, p and L. but ¢4 is independent of p.. Thus, I7_ (-)

mcr
is uniformly convex since ¢k (-) is convex, b[-, | is coercive and ¢"[-] is linear. Fmally, we
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obtain the assertion from ¢k > 0 and

o(w, A) > S bl(u, A), (u, )]~ £ (w)

1
dpcey

v

2uces (| Dv]* + [ DAJ?) - 1613 = peca | Dul® .

In the pure Dirichlet case this gives directly for the norm

_ _oN\1/2
I, Dllvew = (IDu] + | DAJ?)
the following a priori bound for the solution.

COROLLARY 7. The minimization problem (16) has a unique solution (uy, A7) € Vj x
Wy, of the discrete incremental problem, which is uniquely characterized by the nonlinear
variational problem (15), i. e.,

D Slcr(uZ,AZ)[Vh,Bh] = 0, (Vh,Bh) € Vh X Wh , (22)
and which solves the discrete system (8). Moreover, we have the a priori bound
_ 2 3
I AR < —— (10" 1R + 20 e ~11) - (23)
HeCq

Analogously, a unique solution (u", A") € V x W of the incremental problem in the con-
tinuous spaces exists, satisfying

DI .(u", A")[v, B] =0, (v,B) eV xW . (24)
THEOREM 8. We have
L C . o
1w = wp, A = Ap)[vw < =2 inf (@ = v, A= Bp)lvxw . (25)

He (v, By)EV, x Wy,

Again Csy is independent of pe € (0, p].

PROOF. Since the projection Pk is non-expansive, the derivative DI (-) is uniformly

incr
Lipschitz continuous satisfying

IDLier (0, A) = DI (v, B)llvxw < Co (0, A) = (v, B)[vxw (26)

incr incr

with Cs > 0 independent of u. € (0,u]. Since I7

incr(') is uniformly convex and inserting
(22), (24), (26) gives

HeCy ”(un - U.Z, A" — AZ)H%’XW
< DIf, (u", AM)[u" —up, A" — A}] — DI (uf, Ap)[u” — ujy, A" — A7)
= —DI}i ., (up, Ap)[u” — vy, A" — By
=D Slcr(un?ﬁn)[un — Vh, An - Bh] - Dliyrllcr(uZ’ A;LL)[un - Vh?An - Bh]
< || DIf (0", A™) — DI (uy, AR [vxw [0 = v, A" = By)llvxow
< Cg (0" —up, A" — AD)|[vxw [[(0™ = vi, A" — Bp)|lvsw -

0

REMARK 9. Here, we do not discuss the convergence in time. Formally, the problem has
the same structure as considered in [33, Chap. 13| for the generalized stresses in the case
of plasticity with hardening. Thus, we expect also first order convergence in At — 0 for the
implicit Fuler method. Our numerical experiments show that for realistic time step sizes the
spatial error is dominant and therefore there is no need for higher order methods in time.
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7. The dual problem of the elasto-plastic Cosserat model

The uniform convexity and the finite element convergence estimate derived in the previous
section deteriorate in the limit y. — 0. This reflects the missing regularity of the primal
solution of the limiting model of perfect plasticity. Thus, in this section we derive the dual
formulation in order to study the dependence of the solution on .. For simplicity, we study
d=3.

Let (u", A", ") be the solution of the incremental problem. From (8c) and and (8d) we
obtain skew(o") = 2u.(skew(Du") — A") and [, 0" : Du™ dx = ("[u"]. Now, (8e) and

/ skew(g") : Du"dx = / skew (a™) : (skew(Du™) — A™) dx+/ skew(a™) : A™ dx
Q Q Q

= 2,uc/ | skew(Du") — A™|? dx—|—2,uLz/ |DA™|? dx
Q Q

yields for the primal functional (16)

B (un7An) = gincr(Dun’An’Enfl)_En[un]

incr P
1 A
= 5 ") dx + o Du")?
QM/Ql/JK(O ) dx 2/Qtr( u”)®dx

+ ,uc/ | skew(Du") — A™|? dx—{—uLz/ |IDA™|? dx — ("[u"]
Q Q

1 n A n\2

1
+ - / skew(o™) : Du" dx — / o": Du"dx
2 Ja Q

1/ A 9
= — [ yYg(O" dx—|——/trDu" dx
o [ ooy ax 5 [ au)

1
- - / skew(o™) : Du" dx — / sym(o™) : Du"dx .
2 Ja Q

Again using (14) and (16) we obtain

sym(e") = Pg(0")+ Adiv(u")I,
dev(sym(o™)) = dev(Pk(6")),

Px(0") = dev(sym(o")) + 2?“ tr(Du™)I

1 1 1
Uk(8") = L1 L18" — A0 = P(0"): 0" — L [Pc(8")
n n n—1 2:“’2 n\2 1 ny\\|2
= 2pdev(sym(o™)): (Du” —e;77) + 7tr(Du ): — 3 | dev(sym(o™))|
tr(e™)I: Du” = o i o tr(e™)? = (2u + 3)\) tr(Du™)? |

and together with

/ skew(o™): Du"dx = / skew(o™) : skew(o™) dx + 2uL2/ DA™ . DA™ dx ,
Q Q Q

20



A SOLUTION METHOD FOR AN ELASTO-PLASTIC COSSERAT MODEL 13

we finally obtain
ep (U, A7)

incr

1 A 1
= / Y (0™)dx + = / tr(Du™)? dx — = / skew(e") : Du" dx — / sym(e") : Du" dx
2u Jo 2 Ja 2 Ja 0

2
= / dev(sym(e™)) : (Du" — szfl) dx + %3)\ / tr(Du™)? dx
Q Q

1 1
- —/ | dev(sym(o™)) > dx — = / skew (") : Du" dx — / sym(o") : Du" dx
ap Ja 2 Ja

Q
1 1
-1 2
=— [ o":el dx——/ dev(sym(o™ dx+—/tr o™I: Du"dx
[om ey tax— o [ Jdevtsym(e)Pax+ g [ o)
1 1
- —/Skew(an):Du”dx——/tr(a")I:Du”dx

2 Ja 3 Ja

1 1
n n—1 ny\ |2 n\2
= — : dx — — dev dx — ——— t d
/0' €p X 4,u/ | dev(sym(e™))|* dx 62 o) / r(o™)? dx

1 _
/ | skew (o) dx—,uLz/ |DA™? dx .
Ape Jo Q

Thus, we define the dual functional
- 1 1
D (o, A) = e +—/ d 2d +7/t 2d
(o, A) /Qo' g, dx I Q| ev(sym(o))|” dx 623 Jo r(o)”dx

1 _
/ | skew (o) |? dx + pL? / |IDA|? dx . (27)
dpie Jo Q

Standard calculus in convex analysis yields the following lemma.

+

LEMMA 10. Let ep~! € Ly(Q,Sym(3)) with tr(e) ™) = 0 be given.
Then, (o™, A™) € Lo(2,R33) x W is uniquely determined by minimizing the dual functional
(27) subject to the plastic constraint

¢(sym(c™)) <0 (28)

and the equilibrium constraint

/o-":DvdX:E"[v], veV (29)
Q

QMLE/ DA™ - DBdx = / skew(o™) : Bdx, BeWw. (30)
Q Q

From Theorem 6 we obtain, that for u. > 0 always a primal solution and therefore also a
dual solution exists. For the limit case p. = 0, we have to assume that the convex set

K" = {T € L*(,Sym(3)): TeKa. e inQ, /

T:Dvdx ={"[v], v € V}
Q

is not empty (weak safe-load assumption).

LEMMA 11. If n"™ € K" ezists, we have

| skew(a™)[|* < 4pc Dine(n",0) (31)
and
2 Ct
IDA"E < s e Dhel",0) (32)

PROOF. Since (n",0) is admissible, we obtain the first assertion from

1
Ape

DﬁlCI’(n”’ 0) Z DﬁlCI’

(6™, A") = DI .. (sym(o™), A™) +

mcr

/ | skew (o) |* dx (33)
Q
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since D" (sym(o™), A") > 0. Testing with B = A™ we obtain from (30)

mcr
2uL? | DA™|]* < ||skew(a™)[| | A"|| < C1 || skew (a™)|| | DA™,

where the second inequality follows from (18). This gives directly the second assertion by
inserting the first statement. (]

Now, we denote the incremental dual solution for fixed e ~! € Ly(Q2, Sym(3)) by (o). AZC).
If K™ # (), a unique dual solution of perfect plasticity oy € K" defined by

D} .. (o3,0) <Dj .. (7,0), T c K"

mcr mcr

exists [65]. Equivalently, off € K" is characterized by

dlog, o0 — 7] < /(ag —-7): 5271 dx, TeK" (34)
Q
with the symmetric bilinear form
1 1
dlo, 7] = — | dev(sym(o)) : dev(sym(T dx—i—i/traterx.

7] = 5 [ dev(aym(o)) s devisym(m) s+ g [ (e ()
Now, we study the limit g, — O.
THEOREM 12. If n" € K" exists, we have

lim |[[sym(o} )—ogl=0. (35)
He—0 N

PROOF. The proof follows the general framework of penalty solutions of variational in-
equahtles [28, Chap. 1.7].
Let 1) be a decreasing sequence with . — 0. Since sym(o Mj) is uniformly bounded by

(33), we can extract a subsequence (again denoted by sym(o"™ o )) which is weakly convergent
to 6" € L?(Q,Sym(3)). We have UZJ- € K and therefore 6" € K a. e. in 2. Moreover, for
v € V we obtain from (29) and (31)

/ 6" :Dvdx —("[v] = lim sym(a”;) : Dvdx — ("[v]
Q j—o0 Q He
= lim [ skew(o";): Dv=0.
j—o0 Q He

Thus, we have 6" € K".
For all 7 € K" the pair (7,0) is admissible for the incremental dual Cosserat problem
satisfying (29), (30), which gives

d[sym(azz), sym(o” ﬂj skew (o \2 dx +2puL? / ]DA"J | dx

< /Q(O'Mi —-7): sg_l dx . (36)
Passing to the limit yields

dlg",6"] < lim infd[sym(o'zj),sym(o'zj)] <d[e",T]+ / (6" —71): e tdx .

j—00 Q b

Since oy € K" is uniquely characterized by (34), this proves that the weak limit solves the
dual problem of perfect plasticity, i e., 6" = (.
Finally, we show strong convergence. Inserting 7 = o} in (36) gives

d[sym(a'zz),sym(a'zi)] < d[sym(a'zi-),ag] + /Q(O.Zi —oy): g;z*l dx |
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which gives
d[SYm(O'Zz) —og, sym(a'zi-) o] = d[Sym(O'Zi% sym(azz)]
~dlsym(o",), o] ~ dlog, sym(@”,)] + d[o, o]
< d[sym(azi),ag] + /Q(UZi —o(): gg_l dx
~dlsym(o",), o] ~ dlo,sym(o",)] + dlof, o]
The limit on the right hand side is well defined, and we obtain

lim djsym(e”;) — og,sym(c”;) —og] =0.
j—o0 He He

This proves the assertion since d[-,-] is an inner product in Ly (€2, Sym(3)). O

REMARK 13. Our numerical experiments suggest that we have

[sym(ey;.) —ogll = O(he) -
We surmise that in general additional reqularity assumptions are required to obtain an

explicit estimate of this type. In principle, such an estimate could then be used for estimating
perfect plasticity in the form

loo —oonll < lloo—sym(ou )| + [Isym(o ) = sym(o p)ll + [ sym(e . n) = ool

by a suitable choice of . = pc(h). Note that an analogous result is obtained in |57| for the
static case by approrimating perfect plasticity with plasticity with hardening for vanishing
hardening modulus. It is not clear if such a result can be transferred to the quasi-static case
where in general the plastic strain is not smooth enough.

8. Numerical solution algorithm

We formulate a semi-smooth Newton method for the nonlinear variational problem
(u", A™) € Vi (ulh) x Wi(AD): F'(u™, A™) =0
in every time step n, where F" is the first variation of Ij} = defined by

F"(u,A)lv,B] = DI ,(u, A)[v, B], (v, B) € V;(0) x W,(0)

incr
(cf. Lemma 5). The functional F™ is semi-smooth, and the variation OF™ = 9%I" . is
symmetric and multi-valued. Thus, the corresponding semi-smooth Newton method can

be formally written as
0e Fn(un,k An,k) + aFn(un,k An,k)[un,k—kl _ un,k An,k—f—l _ An,k] )

Since I7 ., is convex and F" = DI}  is Lipschitz continuous, this can be analyzed within

the framework of generalized Newton methods [36].
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We consider the special case of the von Mises flow rule by inserting (13). This results in
the following realization of the semi-smooth Newton method.

S0) We start for tyg = 0 with sg =0, and we set n = 1.

S1) Choose u™?, A™0, and set k = 0. Then, set Dirichlet boundary values u™?(x) = u,(x)
for all x € D and A™(x) = A% (x) for all x € D'.

S2) Compute for every integration point & € &),
0"*(€) = 2u(sym(Du™*(€)) —ep'(8))

ke dev(6"H(E))
= e )

TkE) = ™F(€) —max {0,|dev(0™F(€))| — Ko} n™*(€)
o™k (E) = TRM(E) + Adiv(u™)(€)I + 2u.(skew(Du" (€)) — A"()) .
S3) Compute the residual

F*[v, B] = / o™ . Dvdx — ("[v]
Q
+ QHLE/ DA™ . DBdx — 2uc/ (SkeW(Du”’k) - fl”’k) : Bdx .
Q Q

If | F™*| is small enough, set u® = u™* A" = A™F,
N max {O, | dev(@"’k(é)ﬂ - KO}

20
and go to the next time step n:=n + 1 in S1).

n"* (&)

S4) Compute for every integration point & € Ej, the consistent linearization
Cr(e) = { 1 ) v |dev(8™(6))] < Ko
Mol+ B o (1= ) i€ o) |dev(0™(€)] > Ko
and define the bilinear form

a"*(w,C0),(v,B)] = 2u/ sym(Dw) : C™* : sym(Dv) dx
Q
+ )\/Qdiv(w) div(v) dx
+ 2,uc/ (skew(Dw) — C) : (skew(Dv) — B) dx
Q
2 - DBdx .
+ QMLC/QDC DBd

S5) Compute (w™* C™*) € V;,(0) x W (0) solving the linear variation problem
an,k[(wn,k’ Crn,k)’ (V7B)] = _Fn,k[va B]a (Vv B) € Vh(O) X Wh(o) ;

set uPFtl = uF 4wkt Anktl — Ank 4 OmkFland go to the next iteration step
k:=k+1in S2).

In general, we cannot guarantee that the iteration is globally convergent without damping.
Therefore, the algorithm can be extended by a time stepping control which adapts the time
step such that the nonlinear iteration is convergent within a small number of steps.
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9. Numerical experiments

In this section we discuss numerical test calculations for the infinitesimal elasto-plastic
Cosserat model. Therefore, we study a benchmark problem in perfect plasticity (see [39]).
The computations are realized in the finite element code M++ [70] supporting parallel

multigrid methods.

The geometry and the boundary conditions are illustrated in Fig. 1: let Q = (0,10) x

(0,10) \ B1(10,0)[mm?] be a quarter of a rectangle with a hole
by symmetry are given by
u1(10,z2) =0, A(10,22) =0, =9 € (1,10),

UQ(.CL'l,O) :07 A(iﬂl,O) :07 T1 € (079)7
and the load functional given by
10
£(t,v) =100 t/v(x1,10) dxy .
0

depends linearly on the loading parameter ¢t > 0.

. The Dirichlet data arising

) )

Zg

/<1|

AN AN AN AV AV AN

<l
<l
<l
<l
<l

Figure 1: Geometry and boundary conditions for the test problem. For the numerical
comparisons, we evaluate the vertical displacement at the upper right corner zy, = (10, 10).

The material parameters for this benchmark are given in Tab. 1

, and for the internal length

parameter L. in the Cosserat model we choose a small value in order to keep the elastic

Cosserat effect small.

Poisson ratio v
Young modulus E  206900.
yield stress Ky 450.

Cosserat internal length parameter L.
Cosserat couple modulus e 0,...,1

Table 1: Parameters for the Cosserat model for infinitesimal
Mises yield criterion. For various test computations a different
used. In the algorithms we use the Lamé parameter y = E/(2
v)(1 — 2v)) and the compression modulus x = %,u + A

0.29

00 [N/mm?]
00 [N/mm?|
1/48 [mm]|
0p IN/mm?]

perfect plasticity with von
Cosserat couple modulus is
(14+v)) and A = Ev/((1 +
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We use bilinear finite elements on quadrilaterals. The coarse mesh on level 0 (cf. Fig. 2) is
refined uniformly. For the numerical results we use up to 3 151 875 unknowns on refinement
level 6. In Tab. 2 and 3 we test the convergence of the discrete model with respect to space
and time. Results for the deformations, the microrotations, the plastic strain are illustrated
in Fig. 2, 3 and 4.

level 1 2 3 4 5 6
unknowns 3267 12675 49923 198147 789507 3151875
Pmax 1.48 0.78 0.40 0.20 0.10 0.05
uz(2zg, 1) 0.0046533 | 0.0046550 | 0.0046554 | 0.0046555 | 0.0046556 | 0.0046556

ua(zo, 3) 0.0140210 | 0.0140295 | 0.0140317 | 0.0140324 | 0.0140325 | 0.0140325
ua(zp,4) 0.0190866 | 0.0191066 | 0.0191124 | 0.0191138 | 0.0191142 | 0.0191143
u2(zg,4.25) | 0.0208431 | 0.0208952 | 0.0209105 | 0.0209145 | 0.0209155 | 0.0209158
uz(2z9,4.5) 0.0240566 | 0.0243134 | 0.0243963 | 0.0244190 | 0.0244249 | 0.0244263
u2(zo,4.73) | 0.0384216 | 0.0514969 | 0.0723472 | 0.0944045 | 0.1075278 | 0.1123997

Table 2: Convergence with respect to the mesh size h for pu. = u for a fixed time series
with Atmax = 0.25. The vertical displacement component us is evaluated at the point
zo = (10,10)7 for different loads.

level 2 3 4 5

Atmax = 1.0 0.0243135 0.0243963 0.0244190 0.0244249
Atmax = 0.5 0.0243135 0.0243963 0.0244190 0.0244249
Atmax = 0.25 0.0243134 0.0243963 0.0244190 0.0244249
Atmax = 0.125 0.0243134 0.0243962 0.0244189 0.0244248
Atmax = 0.0625 0.0243132 0.0243960 0.0244187 0.0244246

Table 3: Convergence in h and Atmayx for . = pand ¢ = 4.5. By comparing the convergence
rate in time and space we conclude that the error in space is dominating. Moreover,
comparing with the results in Tab. 2 we observe that the results on level 4 are correct up
to 4 digits.

N
SRR
S TR

\
OO RSLLtLRRRR Ry
T
R \SANN Ny
RN

7%

7
L

1777777
T sresst

Hhiy,

17
"I

77

H
",’,',’”"l’llllllllllll;
i

Figure 2: Coarse mesh (level 0, 256 quadrilaterals) for the benchmark problem (left) and
deformed mesh on level 2 (4096 quadrilaterals) for the Cosserat model with p. = u at
t = 4.9 (right).
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- . . .

t =4.00 t =4.40 t =4.69

B . . .

Figure 3: The distribution of the Cosserat microrotations |A| for . = p is compared (on
refinement level 4) with the continuum rotations (1/2)(Djou — Dgju) for the model of
perfect plasticity (1. = 0). Due to the symmetry boundary conditions, the microrotations
are zero on the right and the lower boundary.

- . . .

t =4.00 t =4.40 t =4.69

B . . .

Figure 4: Distribution of the effective plastic strain for the Cosserat model with u. = p
and for Prandtl-Reuss (p. = 0) on refinement level 4.
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Finally, we test the limit behavior for y. — 0. The load displacement curve in Fig. 5 shows
the regularization effect of the Cosserat model, and in Tab. 4 the convergence to perfect
plasticity is tested. The numerical results clearly confirm theoretical results in Th. 12.

£, ) T | | | T T T
He = [
4.75 te = 0.01p
e = 0.001p
te = 0.00054
4.7 |- pe = 0.0001p
pe =0
4.65 |-
4.6 L L L L L L L

0 002 004 006 008 01 012 014 us(z)

Figure 5: Load-displacement curve on refinement level 4 for different u. € [0,p]. The
displacement u = (uj,us9) is evaluated at the point zy = (10, 10)T. For t < 4.5 there is
nearly no significant difference in the solutions.

e/ ua(zp, 1) u2(zo, 3) ua(zo,4) ug(zg,4.4) uz(zp,4.6)
1 0.004655 0.014032 0.019113 0.022586 0.028123
0.1 0.004655 0.014032 0.019114 0.022592 0.028158
0.01 0.004655 0.014032 0.019117 0.022608 0.028262
0.0016 0.004655 0.014033 0.019119 0.022633 0.028450
0.0008 0.004655 0.014033 0.019120 0.022641 0.028527
0.0004 0.004655 0.014033 0.019120 0.022647 0.028592
0.0002 0.004655 0.014033 0.019121 0.022652 0.028641
0.0001 0.004655 0.014033 0.019121 0.022655 0.028673
0 0.004655 0.014033 0.019121 0.022659 0.028720

Table 4: Convergence for p. — 0 the displacement evaluated at the point zo = (10, 10)7
with Afmax = 0.0625 on level 4. For small values of u. we observe linear convergence of
the Cosserat model to perfect plasticity.
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