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Abstract

Subgraph matching (aka graph pattern matching or the subgraph iso-
morphism problem) is NP-complete. But in practice subgraph matching
should be performed in reasonable time if possible.
In this work a heuristically optimizing approach to subgraph matching
on labeled graphs is described. It relies on the fact that the runtime
of the matching process can vary significantly for different matching
strategies. The finding of a good matching strategy is stated as an
optimization problem which is solved heuristically. The cost model for
the possible matching strategies takes the structure of the present host
graph into account. The necessary information can be obtained by an
analysis of the host graph.

1 Introduction

Given a labeled pattern graph G and a labeled host graph H the question is,
whether there is an occurrence of G in H. This task, which is often referred to as
subgraph matching, graph pattern matching, or the subgraph isomorphism problem,
is known to be NP-complete (see problem GT48 in Garey and Johnson [9]). But
for many problem instances it is possible to find a solution in reasonable time.
This in turn may depend on the order in which the elements of the pattern graph
are searched for. In other words for given G and H there are different matching
strategies and in several cases it makes a significant difference which of them is
used.
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In this paper the finding of good matching strategies is understood as an
optimization problem which is solved heuristically. For this reason matching
strategies are represented as search plans (section 3). According to the runtime
raised by different search plans (section 4) a cost model is defined (section 5).
Then a heuristic method for the generation of preferably good search plans is
given (section 7). The cost model assigns a cost to all the search plans possible
for G. This cost in turn depends on the current host graph H. If there is not
enough domain specific knowledge available, the required information can be
obtained by an analysis of H (section 6).

2 Foundations

2.1 Labeled Directed Multigraphs

In this work graphs are labeled directed multigraphs. A multigraph allows multiple
edges of equal direction between two nodes. Moreover all nodes and edges have
labels assigned. The node labels are taken from the finite alphabet ΣV and the
edge labels from the finite alphabet ΣE. A graph G is 6-tupel

G = (VG, EG, srcG, tgtG, `VG
, `EG

)

with the functions

srcG : EG → VG `VG
: VG → ΣV

tgtG : EG → VG `EG
: EG → ΣE.

The notion of multigraphs requires edges to be first class citizens. For this reason
the functions srcG and tgtG are needed, which assign a source and a targt node to
every edge. The functions `VG

and `EG
assign the labels to the nodes and edges

of G. For v ∈ VG and e ∈ EG the two sets

incVG
(v) := {e ∈ EG | srcG(e) = v ∨ tgtG(e) = v} ⊆ EG

incEG
(e) := {srcG(e), tgtG(e)} ⊆ VG

denote the edges (or nodes) incident to a given node (or edge). For a graph G a
subgraph G′ ⊆ G is a graph

G′ =
(
VG′ , EG′ , srcG|EG′ , tgtG|EG′ , `VG

|VG′
, `EG

|EG′

)
with VG′ ⊆ VG and EG′ ⊆ EG. The empty graph O is the graph with empty node
and edge set, i.e., VO = EO = ∅. By |G| := |VG|+ |EG| the number of all elements
of a graph G is denoted.

A sequence of edges e1, . . . , en of G is called a path in G if tgtG(ei) = srcG(ei+1)
holds for 1 ≤ i < n. We say the path leads from srcG(e1) to tgtG(en). Let v0 ∈ VG
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a node of G. If there is a path in G leading from v0 to v for all other nodes
v ∈ VG\{v0}, then v0 is called a root of G.

Let v0 a root of G and n := |EG|. Then a sequence of edges e1, . . . , en is called
a traversal of G with root v0 if {e1, . . . , en} = EG and srcG(ei) ∈

⋃i−1
j=1 incEG

(ej)∪
{v0} holds for 1 ≤ i ≤ n.

2.2 Graph Homomorphisms

The fact that a graph G occurs in another graph H is expressed by graph ho-
momorphisms. A graph homomorphisms ϕ : G → H from G to H is a pair of
functions ϕ = (ϕV : VG → VH , ϕE : EG → EH). Additionally the following two
conditions must hold:

1. srcH ◦ ϕE = ϕV ◦ srcG and tgtH ◦ ϕE = ϕV ◦ tgtG

2. `VG
= `VH

◦ ϕV and `EG
= `EH

◦ ϕE

The first condition demands that the shape of the graph G must be preserved,
the second that the labeling of the graph G must be preserved. The maps ϕV

and ϕE are called the node and edge map of ϕ. The indices V and E are omitted
if possible.

By img(ϕ) we denote the subgraph of H, that is formed by the node set
img(ϕV ) ⊆ VH and the edge set img(ϕE) ⊆ EH . We call img(ϕ) ⊆ H the
image of ϕ. Accordingly, by dom(ϕ) we denote the graph that is formed by
dom(ϕV ) ⊆ VG and dom(ϕE) ⊆ EG. It is called the domain of ϕ.

A partial graph homomorphism γ : G 9 H is a graph homomorphism with
partial node and edge maps. In this case for dom(γ) ⊆ G the condition dom(γ) 6=
G holds. Accordingly a graph homomorphism with total node and edge maps is
called a total graph homomorphism. For a total graph homomorphism ϕ : G → H
it is dom(ϕ) = G. By ωG,H we denote the partial graph homomorphism from G
to H with dom(ωG,H) = img(ωG,H) = O. It is called the empty partial graph
homomorphism from G to H.

2.3 Subgraph Matching

Given two graphs G and H. The task of finding a graph homomorphism ϕ : G →
H, such that the node and edge maps of ϕ are both injective, is called subgraph
matching, graph pattern matching, or the subgraph isomorphism problem. This
problem is known to be NP-complete1 [9]. The term of subgraph matching or
graph pattern matching can also refer to the problem of finding a non-injective
graph homomorphism. The optimization technique described here works in both
cases.

1For fixed G the time complexity of subgraph matching is polynomial, i.e., O(|H||G|). But
a runtime of, for example, O(|H|10) with |G| = 10 is still not feasible.
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In the context of subgraph matching G is called the pattern graph and H the
host graph. A total graph homomorphism ϕ : G → H is called a match.

2.4 The Minimum Spanning Arborescence Problem

An arborescence with root v0 is a subgraph T ⊆ G such that there is a unique path
in T from v0 to v for all other nodes v ∈ VT\{v0}. If VT = VG holds, then T is
called a spanning arborescence (SA for short). Let cost : EG → R≥0 a nonnegative
cost function for the edges of G. Then a minimum spanning arborescence (MSA)
is a spanning arborescence T ⊆ G that has minimal total cost∑

e∈ET

cost(e).

An MSA can be found in polynomial time by an algorithm which has been inde-
pendently proposed by Edmonds as well as by Chu and Liu [6, 3]. Gabow et al.
proposed a variant of this algorithm, which only needs O(|EG| + |VG| · log |VG|)
time [8]. An MSA can be understood as a kind of minimum spanning tree for
directed graphs. However, the well known greedy algorithms of Prim and Kruskal
as well as similar algorithms do not work in case of directed graphs.

2.5 Arithmetic and Geometric Mean

Given some quantities X1, . . . , Xn which are summarized to Y := X1 + · · ·+ Xn

one wants to know, which quantity X leads to the same result

Y = X + · · ·+ X︸ ︷︷ ︸
n-times

if n-times added to itself. This question is answered by the arithmetic mean.
The arithmetic mean yields an average summand. Accordingly it is defined as
X := 1

n

∑n
i=1 Xi.

Now given some factors X1, . . . , Xn > 0 and their product Y := X1 · · ·Xn one
wants to know, which factor X > 0 leads to the same result

Y = X · · ·X︸ ︷︷ ︸
n-times

if n-times multiplied with itself. This second question is answered by the geomet-
ric mean. The geometric mean yields an average factor. Accordingly it is defined
as X := (

∏n
i=1 Xi)

1/n. The difference between the arithmetic and the geometric
mean is explained very nicely in an online question corner of the University of
Toronto [1], which also inspired the explanation here.
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3 Matching Strategies

A matching strategy for a given pattern graph G is represented by a so called
search plan, which is defined as a sequence of primitive matching operations P =
〈o1, . . . ok〉. A primitive operation oi represents the matching of a single node or
edge of the pattern graph G to an appropriate node or edge of the host graph
H. The whole search plan represents the stepwise construction of one (or all)
matches ϕ : G → H starting from ωG,H . A partly constructed match, which is in
fact a partial graph homomorphism γ : G 9 H, is called a candidate.

3.1 Kinds of primitive Operations

There are two kinds of primitive matching operations: lookup operations and
extension operations.

Definition 1 [Primitive Matching Operations] Let G a pattern graph and
v ∈ VG, e ∈ EG. Then lkp(v) and lkp(e) are called lookup operations and ext(v, e)
is called an extension operation. In case of an extension operation the condition
v ∈ incEG

(e) must hold. The lookup and extension operations possible for the
pattern graph G form the set Ops(G). The elements of Ops(G) are called the
primitive matching operations of G. 2

A lookup operation represents the query for a host graph element which is
not necessarily connected with the already matched subgraph img(γ). More
precisely a lookup operation lkp(x) with x ∈ VG ∪ EG represents the expansion
of a candidate γ by any node (or edge) of the host graph which can be matched
by the given pattern node (or edge) x. In case x ∈ VG this means that an
appropriate node w ∈ VH of the host graph must fulfill `VH

(w) = `VG
(x). In case

x ∈ EG this means that an appropriate edge f ∈ EH of the host graph must fulfill
`EH

(f) = `EG
(x), `VH

(srcH(f)) = `VG
(srcG(x)), and `VH

(tgtH(f)) = `VG
(tgtG(x)).

The element x needs not to be connected to dom(γ). Hence, lookup operations
enable the matching of non-connected pattern graphs.

An extension operation represents a local search coming from an already
matched node. That means an operation ext(v, e) represents the expansion of
a candidate γ along a given pattern edge e coming from a pattern node v with
v ∈ dom(γ). As v ∈ incEG

(e) holds, an appropriate edge f ∈ EH must be
incident to the image of v under the current candidate, i.e., f ∈ incVH

(γ(v)).
Of course the edge f must fulfill the same requirements as in case of an

edge lookup lkp(e), i.e., `EH
(f) = `EG

(e), `VH
(srcH(f)) = `VG

(srcG(e)) and
`VH

(tgtH(f)) = `VG
(tgtG(e)) must hold. Furthermore f and e must have the

same direction, which means that f must be incoming (or outgoing) at the host
graph node γ(v) if and only if e is incoming (or outgoing) at the pattern node v.
If the other node incident to e (this is the node v′ with incEG

(e) = {v, v′})
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Figure 1: A simple pattern graph G1.

is also already matched, i.e., v′ ∈ dom(γ), then f must additionally fulfill
incEH

(f) = {γ(v), γ(v′)}.
A pattern edge e ∈ EG cannot be matched without matching the two pattern

nodes incident to e. More precisely, after the execution of an operation lkp(e)
or ext(v, e) the condition incEG

(e) ⊆ dom(γ) holds. Thus, the matching of a
node v 6∈ dom(γ) can not only happen explicitly by an operation lkp(v), but also
implicitly by an operation lkp(e) or ext(v′, e) with incEG

(e) = {v′, v}.
If injective matching is required (see section 2.3), some extra conditions must

be fulfilled. This is because an injective graph homomorphism must not match a
host graph element twice. More precisely, a match ϕ : G → H with x, y ∈ VG∪EG,
ϕ(x) = ϕ(y), and x 6= y is not allowed. For lookup operations lkp(v) with
v ∈ VG this means that an appropriate host graph node w ∈ VH must fulfill
w 6∈ img(γ) for a current candidate γ. Accordingly for operations lkp(e) and
ext(v, e) an appropriate edge f ∈ EH must fulfill f 6∈ img(γ). Additionally
the condition w′ 6= w with incEH

(f) = {w,w′} must be checked if v 6= v′ with
incEG

(e) = {v, v′}. This ensures that e is matched to a loop edge f only if it is
a loop edge itself.

3.2 Valid Search Plans

In general there are many possible search plans for a given pattern graph G. For
example consider the simple pattern graph G1 shown in figure 1. Amongst others
for G1 the following search plans are possible:

P1 = 〈lkp(v3), ext(v3, e3), lkp(v1), ext(v2, e2), ext(v2, e1)〉
P2 = 〈lkp(e2), lkp(v1), ext(v2, e1), lkp(e3)〉

However, some operation sequences do not form admissible search plans. Con-
sider, for example, the following invalid operation sequence:

〈ext(v2, e1), lkp(e2), lkp(v3)〉

It contains three errors: Firstly, each valid search plan must start with a lookup
operation. This is necessary, because an extension operation ext(v, e) requires
that the node v has already been matched. However, this is not the case if no
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matching has been performed yet. Secondly, the operation lkp(v3) demands the
matching of a node that has already been matched implicitly by the preceding
operation lkp(e2). This is not really wrong but needless. Thirdly, there is no
operation present dealing with edge e3. But a valid search plan must cover all
nodes and edges of a pattern graph G.

To characterize the nodes and edges covered by a given operation sequence, the
following two functions are defined: Firstly they are defined for single operations,
where v ∈ VG and e ∈ EG:

nodesJlkp(v)K := {v} edgesJlkp(v)K := ∅
nodesJlkp(e)K := incEG

(e) edgesJlkp(e)K := {e}
nodesJext(v, e)K := incEG

(e) edgesJext(v, e)K := {e}

Then the definition is lifted to complete operation sequences:

nodesJ〈o1, . . . , ok〉K :=
k⋃

j=1

nodesJojK

edgesJ〈o1, . . . , ok〉K :=
k⋃

j=1

edgesJojK

Now the notion of a valid search plan can be defined in terms of the above
nodes- and edges-functions. In this way it gets apparent, that one can determine
statically2 whether a given operation sequence forms a valid search plan or not.

Definition 2 [Valid Search Plans] Given a pattern graph G and a sequence
of primitive matching operations P = 〈o1, . . . ok〉 with oi ∈ Ops(G) for 1 ≤ i ≤ k.
If the conditions

1. If oi = ext(v, e), then node v has already been matched and edge e has not.
I.e., v ∈ nodesJ〈o1, . . . , oi−1〉K and e 6∈ edgesJ〈o1, . . . , oi−1〉K.

2. There are no needless lookup operations present. I.e., if oi = lkp(x) then
x 6∈ nodesJ〈o1, . . . , oi−1〉K ∪ edgesJ〈o1, . . . , oi−1〉K.

3. The whole pattern graph is covered. I.e., nodesJP K = VG and edgesJP K =
EG.

hold, then P is called a (valid) search plan for the pattern graph G. The set of
all valid search plans possible for G is denoted by Plans(G). 2

Condition 1 implies, that each valid search plans must begin with a lookup op-
eration.

2This means it can be decided whether a search plan is valid without executing it.
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Figure 2: On the execution of the search plan P1 for the pattern graph G1 the
subgraph dom(γ) ⊆ G1 grows step by step until G1 is covered completely.

3.3 Execution of Search Plans

The execution of a search plan P = 〈o1, . . . ok〉 consists in consecutively per-
forming the primitive matching operations o1, . . . , ok. While P is executed, the
subgraph dom(γ) ⊆ G is growing step by step. This is depicted in figure 2 for
the example pattern graph G1 (see figure 1) and the example search plan P1.

If an operation oi is executed, then it might be possible to expand a candidate
γ in multiple ways. If a lookup operation is performed (i.e., oi = lkp(x)), a new
candidate can be created for any appropriate host graph node (or edge). If an
extension operation is performed (i.e., oi = ext(v, e)), a new candidate can be
created for each appropriate host graph edge that is incident to γ(v). If one of
these two situation occurs, then we say that the candidate γ splits into several
new candidates.

Consider the example pattern graph G1 shown in figure 1 and the example
host graph H1 shown in figure 3. Obviously H1 contains exactly one occurrence
of G1. Assume that the operation lkp(v1) is performed with the empty partial
graph morphism γ := ωG1,H1 as current candidate. Since H1 contains two nodes
with label A, the candidate splits into two new candidates each matching a single
node (see figure 4(a)).

In the following, equally labeled edges which connect equally labeled nodes in
equal direction are referred to as isomorphic3. Now, if the operation ext(v1, e1) is
performed for a candidate γ with dom(γV ) = {v1}, dom(γE) = ∅, and γ(v1) = w1,
then four new candidates can be created. This is because there are four edges
incident to the node w1 which are appropriate for the edge e1 (see figure 4(b)).

3This term has been adopted from Dörr [5].
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Figure 3: A simple host graph H1.

If a whole search plan P = 〈o1, . . . ok〉 is executed, each primitive operation
oi may cause splitting of candidates. To find all (or one) matches ϕ : G → H, it
may be necessary to process all candidates. However, one does not need to do
this all at once; that is, all candidates can be treated one after another. More
precisely, if a candidate splits in several new candidates, the execution of P can
be continued only for one of these candidates. In this case the other candidates
can be treated later, which can be carried out by backtracking.

4 Time Complexity

The runtime needed for the execution of a search plan depends on host graph
H. However, for a fixed host graph H the runtime may vary significantly for the
different search plans.

4.1 The Runtime of a Primitive Matching Operation

The runtime raised by a search plan depends—among other things—on the run-
time needed by the primitive matching operations.

The execution of lookup operations can be accelerated by storing all nodes
and edges in different lists according to their label. If there is exactly one list for
each node or edge label ξ ∈ ΣV ∪ ΣE, which contains all nodes (or edges) with
label ξ, then a node (or edge) with label ξ can be provided directly by simply
accessing the according list. In this case the execution of an operation lkp(x)
takes only O(1) time per matched host graph element.

If all incident edges of a node are stored in a list associated with that node,
then the execution of an operation ext(v, e) only requires the scanning of those
edges of H, that are incident to the node γ(v). In the worst case this takes still

9



A

A

B

B

B

B

C

a

a

a

a

a

a

b

a

b

w2

w1

f1

(a)

A

A

B

B

B

B

C

a

a

a

a

a

a

b

a

b

w2

w1

f1

(b)

Figure 4: Splitting of candidates in the host graph H1. The highlighted subgraphs
img(γ) ⊆ H1 denote the images of candidates γ created by splitting.

O(|EH |) time. But for host graphs being sparse in the sense, that every node has
O(1) incident edges, the execution of an operation ext(v, e) takes O(1) time per
matched edge this way.

Imagine, for example, a host graph node with many incoming and few out-
going edges. If the edges of that node are scanned while looking for an outgoing
edge, then most of the edges are unnecessarily processed. So, if the incoming
and outgoing edges of a node are stored in two separate lists, even more needless
work can be avoided.

4.2 The Runtime of a Search Plan

On the execution of a search plan P = 〈o1, . . . , ok〉 splitting of candidates may
occur for any operation oi. The number of candidates which can be newly created
from a previous candidate γ is called the splitting factor of oi for γ:

• If oi = lkp(x) with x ∈ VG ∪ EG, the splitting factor equals the number of
elements that are appropriate for the pattern element x.

• If oi = ext(v, e), the splitting factor is the number of isomorphic edges
incident to γ(v), that are appropriate for the pattern edge e.

As some elements might lead to non-injective mapping, the splitting factors may
be smaller in case of injective matching.

If splitting occurs for a significant ratio of the operations and candidates,
this leads to an exponential growth of the set of possible candidates. Even if
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every node or edge can be matched in O(1) time (see section 4.1), this leads to

a runtime of O(|G| · s|G|
max) where smax is the maximal occurring splitting factor.

If the matching of edges needs O(|EH |) time each, which is the worst case, the

matching process requires even O(|G| ·s|G|+1
max ) time. However, if no splitting arises

(i.e., smax = 1) and all nodes and edges can be matched in O(1) time, the time
complexity is linear, that is O(|G|). If splitting can be avoided, but all edges
require O(|EH |) time each, then the time complexity is O(|EH | · |G|).

Again consider the example graphs G1 and H1 shown in the figures 1 and 3.
Assume that the following search plan is executed:

P3 = 〈lkp(v1), ext(v1, e1), lkp(v3), ext(v3, e3), ext(v2, e2)〉.

This search plan causes an intense splitting of candidates: Starting with the
empty candidate γ = ωG1,H1 the execution of the first operation lkp(v1) causes a
splitting of γ with factor two. So, two new candidates γ1 and γ2 are created, each
matching v1 to w1 or w2, respectively. Now the operation ext(v1, e1) is performed:
In case of γ1 this leads to a splitting with factor four, in case of γ2 to a splitting
with factor two. Altogether there are six candidates. Then the execution of the
fourth operation ext(v3, e3) reduces the number of possible candidates to two.
After execution of the last operation only one match remains. Now assume that
another search plan is performed:

P4 = 〈lkp(v3), ext(v3, e2), ext(v2, e1), ext(v2, e3)〉

Search plan P4 in contrast to search plan P3 causes no splitting at all. Further-
more all scanned lists of incoming or outgoing edges all contain one or two edges.
Altogether the execution of P4 requires only 5 steps. The execution of P3 requires
11 steps by contrast.

In case of the lookup operation lkp(v1) splitting arises, because there is more
than one node with label A present in H. But in case of the extension operations
the crucial point is, that P4 follows the edges e3 and e1 in the opposite direction
as P3 does. Obviously, the direction an edge is followed can determine, whether
a candidate splits or not.

5 A Cost Model

Under the assumption that all graph elements can be matched in time O(1) (see
section 4.1) subgraph matching in linear time is identical to the avoidance of
splitting (see section 4.2).

In case of lookup operations this means, that only nodes and edges with
seldom labels should be matched in this way. In case of extension operations
that splitting should be avoided by choosing the right direction (see section 4.2).
However, this is not always possible. In some host graphs all labels might appear
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similar often. Or a host graph edge might have a bunch of isomorphic edges on
both incident nodes. This means that splitting will occur always. If this is the
case, one can only choose a node or edge with a comparatively seldom label or—in
case of extension operations—the direction which causes less splitting.

To achieve the generation of search plans with a low overall amount of split-
ting a cost model is defined which assigns a cost to all possible search plans
(section 5.3). However, the splitting caused by a search plan P = 〈o1, . . . , ok〉
depends on the splitting caused by the primitive operations oi. So, costs are
assigned to the primitive operations first (section 5.1 and 5.2).

5.1 The Cost of a Lookup Operation

In case of non-injective matching the splitting factor s of an operation o = lkp(x)
for a current candidate γ is equal to the number of appropriate host graph ele-
ments. In case of injective matching some host graph elements may be dropped.
So, with the sets

Vζ := {v ∈ VH | `VH
(v) = ζ}

Eσ := {e ∈ EH | `EH
(e) = σ}

which gather all graph elements with a certain label ζ ∈ ΣV or σ ∈ ΣE respec-
tively the condition

s ≤
{ ∣∣V`VG

(x)

∣∣ if x ∈ VG∣∣E`EG
(x)

∣∣ if x ∈ EG

holds. So, a lookup operation lkp(x) gets the cost

c(lkp(x)) := max
{

1,
∣∣∣X`XG

(x)

∣∣∣}
assigned, where X = V for x ∈ VG or X = E for x ∈ EG, respectively. This cost
is independent from a current candidate γ and it is s ≤ c(lkp(x)) for all possible
candidates γ.

5.2 The Cost of an Extension Operation

In the following we refer to all bunches of isomorphic edges that have the same
direction and that are incident to the same node, as instances of V-structures.
This useful terminology has originally been invented by Dörr [5].

Definition 3 [V-Structures and their Instances] Given a host graph H.
Then a 4-tupel vs = (ζ, σ, ξ, d) ∈ ΣV ×ΣE×ΣV ×{in, out} is called a V-structure.
Now consider a subgraph I ⊆ H consisting of a node w ∈ VH and n nodes
w1, . . . , wn ∈ VH as well as n edges f1, . . . , fn ∈ EH with incEH

(fi) = {w,wi} for
1 ≤ i ≤ n. If the conditions
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Figure 5: The host graph H1 from figure 3 with highlighted V-instances.

1. `VH
(w) = ζ

2. `EH
(fi) = σ for 1 ≤ i ≤ n

3. `VH
(wi) = ξ for 1 ≤ i ≤ n

4. d = out implies srcEH
(fi) = w and d = in implies tgtEH

(fi) = w for
1 ≤ i ≤ n

hold, then I is called an n-fold instance of vs with root node w. 2

In this paper instances of V-Structures are often referred to as V-Instances for
short. Additionally we also say that an n-fold V-instance has multiplicity n.
Figure 5 shows the host graph H1 from figure 3 with highlighted V-instances.
There are three V-instances present: A fourfold and a twofold instance of the
V-structure (A, a,B, out) and a twofold instance of the V-structure (C, b, B, in).

If an operation ext(v, e) is performed, the V-instances present in a host graph
can cause the splitting of one or more candidates. However, this can only happen
if the operation and a V-instance apply to each other:

Definition 4 [Critical V-Structures] Given a V-structure vs = (ζ, σ, ξ, d)
and an extension operation o = ext(v, e). If the conditions

1. `VG
(v) = ζ

2. `EG
(e) = σ

3. `VG
(v′) = ξ with incEG

(e) = {v, v′}
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4. d = out implies srcG(e) = v and d = in implies tgtG(e) = v

hold, then vs is called critical for o. For a lookup operation a V-structures is
never critical. 2

To extension operations ext(v, e) we assign an average splitting factor as cost:
Let vs = (ζ, σ, ξ, d) a V-structure, such that vs is critical for o = ext(v, e). Assume
H contains exactly m instances I1, . . . , Im ⊆ H of vs with according multiplicities
n1, . . . , nm. Then ext(v, e) gets the cost

c(ext(v, e)) := max

1,

(
m∏

j=1

nj

)1/|Vζ |


assigned. In this way the multiplicities of the instances of vs , which are present
in H, are multiplicatively accumulated. Thereafter the result is normalized by
the number of potential root nodes by extracting the |Vζ |-th root. Hence, the
cost of an extension operation is determined according to the geometric mean
(see section 2.5). The idea behind this is that the multiplicity of a V-instance
potentially causes a growth of the candidate set during the matching process.

5.3 The Cost of a Search Plan

Having defined the costs for the primitive operations in Ops(G) it is possible to
define the cost c(P ) for a whole search plan P = 〈o1, . . . , ok〉. This is done by the
following formula:

c(P ) := c1 + c1c2 + c1c2c3 + · · ·+ c1c2c3 · · · ck (1)

with ci := c(oi). With the assumption that each operation takes O(1) time per
matched host graph element (see section 4.1) the essential idea of this formula is
to overestimate the average4 runtime needed by the execution of P .

To understand this, consider what happens on the execution of P : The op-
eration o1 is a lookup operation. Moreover, before o1 is performed, no element
of the host graph is matched. So the execution of o1 causes the matching of
O(c1) nodes or edges (in case o1 is an edge lookup there are also the implicitly
matched nodes, but such nodes only cause a constant additional complexity for
each edge). Furthermore, the initial empty candidate γ = ωG,H splits into up to
c1 new candidates.

Now for up to c1 candidates the operation o2 is performed. If o2 is a lookup
operation, at most O(c1c2) host graph elements are matched and the set of candi-
dates grows to a number of up to c1c2. If o2 is an extension operation, essentially
the same happens. The only difference is that c2 is no more an upper bound for

4Average in the sense of the geometric mean.
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the splitting factor, but an average splitting factor in the sense of the geometric
mean (see section 5.2). Furthermore, if no appropriate host graph edge is present
for a candidate γ, then γ is removed from the candidate set. This means that c2

overestimates the actual average splitting factor.
So, continuing this, one gets O(c(P )) as an overestimation of the average

number of host graph elements matched on an execution of P—that, at least, is
the idea. However, this is only a heuristics. Nevertheless, if ci = 1 holds for an
i ∈ {1, . . . , k}, we can be sure that the operation oi causes no splitting for any
candidate γ. So, if ci = 1 holds for every i ∈ {1, . . . , k} (which is equivalent to
c(P ) = k), we know that P causes no splitting at all. In this case an execution of
P raises a runtime of O(|G| · |EH |). If all nodes of H have O(1) incident edges,
the runtime is even linear, that is O(|G|) (see section 4.2).

6 Analysis of the Host Graph

The assignment of costs to the primitive matching operations in Ops(G) requires
knowledge about the host graph H. On the one hand this may arise from the
application domain. In this case it is not necessary to consider the present host
graph. On the other hand, if the structure of the host graphs is not a priori
known, an analysis of the host graph is required.

The analysis of the host graph has two objectives: Firstly, for each label
ξ ∈ ΣV ∪ ΣE the number of graph elements with label ξ must be determined.
Secondly, the multiplicities of all present instances must be accumulated for all
V-structures vs ∈ ΣV × ΣE × ΣV × {in, out} (see section 5.2).

Algorithm 5 [V-Structure Analysis] Given a host graph H. Then the fol-
lowing algorithm computes the values pξ := |Vξ| and qσ := |Eσ| for all ξ ∈ ΣV

and σ ∈ ΣE as well as the product

rvs :=
mvs∏
j=1

nvs
j

of the multiplicities nvs
1 , . . . , nvs

mvs
of all present instances for each V-structure

vs ∈ ΣV × ΣE × ΣV × {in, out}.

A1 Count all nodes with a certain label
For each ξ ∈ ΣV initialize a counter pξ := 0. Then iterate over all nodes
w ∈ VH and increment the according counter p`VH

(w) for each w.

A2 Count all edges with a certain label
For each σ ∈ ΣE initialize a counter qσ := 0. Then iterate over all edges
f ∈ VH and increment the according counter q`EH

(f) for each f .
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A3 Accumulate the multiplicities of all present V-instances
For each vs = (ζ, σ, ξ, d) ∈ ΣV × ΣE × ΣV × {in, out} initialize variable
rvs := 1 and a counter uσ,ξ,d := 0. Now for all nodes w ∈ VH perform the
steps (a) and (b):

(a) Consider all incident edges f ∈ incVH
(w). Let ξf := `VH

(w′), where
w′ is the node at the other end of f , that is incEH

(f) = {w, w′}.
Furthermore let σf := `EH

(f) and df the direction of f , which means
that df = in if f is incoming on w and df = out if f is outgoing on w.
Now increment the counter uσf ,ξf ,df

.

(b) Consider all incident edges f ∈ incVH
(w) again with ξf , σf , and df as

in step (a). Now set

r(`VH
(w),σf ,ξf ,df ) := r(`VH

(w),σf ,ξf ,df ) ·
{

uσf ,ξf ,df
if uσf ,ξf ,df

≥ 1
1 otherwise

and directly after that uσf ,ξf ,df
:= 0. The latter ensures that the

multiplicity of each present V-instance is included only once. 2

Step A1 and A2 need together O(|H|+ |ΣV |+ |ΣE|) time. The time complexity
of step A3 is O(|H|+ |ΣE| · |ΣV |2 + |ΣE|). If |ΣV |, |ΣE| ∈ O(1) holds, the analysis
of H needs altogether O(|H|). If the p-, q-, and r-values are stored in a table,
this requires O(|ΣE| · |ΣV |2 + |ΣE|) memory.

7 Heuristic Optimization

Since the runtime of the subgraph matching for fixed G and H can vary signifi-
cantly for different search plans (see section 4.2), the key idea of fast search plan
driven subgraph matching is to find a preferably good search plan. However, as
subgraph matching is an NP-complete problem a feasible search plan does not
always exist5.

According to the cost model defined in section 5 we are looking for a search
plan P with minimal cost c(P ), that is for a P ∈ Plans(G) with

c(P ) = min
P ′∈Plans(G)

(
c(P ′)

)
.

As we do not know an algorithm, which solves this optimization problem effi-
ciently, we use a heuristics which consists of two consecutive steps: the operation
selection and the operation ordering6. The resulting search plan is not necessary
optimal of course.

5Under the assumption that P 6= NP holds.
6These can be compared with the tasks of instruction selection and instruction ordering

performed in compiler backends.
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In the first step, namely the operation selection, the largest term of c(P ) is
minimized. This is the product c1c2c3 · · · ck (see formula (1) in section 5.3). As
this product includes the costs of all operations occurring in P , this corresponds
to the selection of a cheapest set S ⊆ Ops(G) such that the operations in S
can form a valid search plan for G. This kind of subset is characterized by the
following definition:

Definition 6 [Admissible Operation Selection] A subset S ⊆ Ops(G) is
called an admissible operation selection for G if a search plan P = 〈o1, . . . , ok〉 ∈
Plans(G) exists with S = {o1, . . . , ok}. The set of all admissible operation selec-
tions for a pattern graph G is denoted as Sel(G). 2

Let c(S) :=
∏

o∈S c(o) for S ∈ Sel(G). Then the task of operation selection is to
find an S ∈ Sel(G) with

c(S) = min
S′∈Sel(G)

(
c(S ′)

)
. (2)

As the set Sel(G) has a quite complicated structure this is not a trivial task.
In the second step, namely the operation ordering, an order for the selected

operations is computed, such that the cheaper operations occur preferably early
and the more expensive operations preferably late. This is done because of the
fact, that a cost has more impact on the value c(P ) the earlier the corresponding
operation occurs in P (see formula (1) in section 5.3). So, expensive operations
should be executed as late as possible.

7.1 The Plan Graph

The tasks of operation selection and operation ordering are solved by means of
a so called plan graph G̃. The plan graph is a directed labeled graph G̃ which
is generated from the pattern graph G in a specific way. The node labels of G̃
are taken from the set VG ∪ EG ∪ {⊥} instead of ΣV . This is because G̃ reflects
the structure of the according pattern graph G. The edge labels are also taken
from a set different from ΣE, namely the set {5, �, �,⊥}. The symbols 5, �,
and � represent different kinds of primitive matching operations. The symbol ⊥
indicates edges which are only present for technical reason. Each edge has a cost
given by the cost function cost : EG̃ → R≥1.

Each node of G̃ (except for a special root node) represents an element of the
pattern graph G and has the according element as node label. Each edge of G̃
(apart from edges labeled with ⊥) represents a primitive matching operation o ∈
Ops(G). In fact there is exactly one edge in G̃ for every operation in Ops(G). The
edges which come from the root node are labeled with � and represent the lookup
operations. The other edges (except those labeled with ⊥) represent extension
operations: The ones labeled with 5 represent extension operations ext(v, e)
that follow e with its direction. The ones labeled with � represent extension
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operations ext(v, e) that follow e against its direction. The costs assigned to the
edges represent the costs of the possible primitive operations according to the
cost model defined in section 5.

Definition 7 [Plan Graph] Given a pattern graph G. Then the according
plan graph G̃ is defined as follows:

1. G̃ has a root node wroot ∈ VG̃ with label `VG̃
(wroot) = ⊥.

2. For each node or edge x ∈ VG ∪EG the plan graph has a node x̃ ∈ VG̃ with
label `VG̃

(x̃) = x.

3. For each x ∈ VG∪EG there is an edge f ∈ EG̃ from wroot to x̃ with label �.

4. For each edge e ∈ EG with vs := srcG(e) and vt := tgtG(e) the plan graph
has four further edges:

• An edge f1 from ṽs to ẽ with label 5.

• An edge f2 from ṽt to ẽ with label �.

• Two edges f3, f4 both originating in ẽ and labeled with⊥. Furthermore
tgt G̃(f3) = ṽs and tgt G̃(f4) = ṽt holds.

5. Let f ∈ EG̃. Then the cost function is defined as

cost(f) :=


c(lkp(x)) if `EG̃

(f) = � and x = `VG̃
(w)

c(ext(v, e)) if `EG̃
(f) ∈ {5, �}

1 otherwise

with w := tgt G̃(f), v := `VG̃
(srcG̃(f)), and e := `VG̃

(w). The costs of the
operations are as defined in section 5.1 and 5.2 2

Figure 6 shows the plan graph G̃1 which belongs to the pattern graph G1 from
figure 1. The costs annotated to the edges of G̃1 arise from the multiplicities of
the V-instances present in the host graph H1 (see figure 3). Edge f1 represents
the operation lkp(v1). As there are two nodes with label A present in H1, edge
f1 gets the cost 2. Edge f2 represents the operation ext(v1, e1). So, f2 is labeled
with the symbol 5. As there are two instances of the V-Structure (A, a,B, out)
and two nodes with the label A present in H1, f2 gets the cost

√
2 · 4 ≈ 2.83

assigned. Finally there are seven edges with label A present in H1. So, the cost
of f3 is 7.
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Figure 6: Subfigure (a) shows the pattern graph G1 from figure 1. Subfigure (b)
shows the according plan graph G̃1.

7.2 Operation Selection

Each edge of G̃ which has a label other than ⊥ corresponds to an operation in
Ops(G). Let f ∈ EG̃. Then the function op : EG̃ → Ops(G) ∪ {⊥} defined by

op(f) =


lkp(x) if `EG̃

(f) = �
ext(v, e) if `EG̃

(f) ∈ {5, �}
⊥ otherwise

with x := e := `VG̃
(tgt G̃(f)) and v := `VG̃

(srcG̃(f)) is a function which yields
the primitive matching operation corresponding to an edge f of the plan graph.
Restricted to the set of edges with a label other than ⊥ the function op is even
injective.

The problem of operation selection is to find an admissible operation selection
S ∈ Sel(G) that is also minimal in the sense of equation (2). The finding of an
admissible (but not necessary minimal) selection is addressed by the following
two lemmas, which relate the finding of an admissible selection to the finding of
a spanning (but not necessary minimum) arborescence of G̃.
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Lemma 8 [From SAs to Admissible Operation Selections] Given a pat-
tern graph G and a spanning arborescence T ⊆ G̃ with root wroot. Then the set
S := op(ET )\{⊥} of primitive matching operations is an admissible operation
selection for G. That is S ∈ Sel(G) holds.

Proof. The condition S ∈ Sel(G) holds if and only if there is a valid search plan
P = 〈o1, . . . , ok〉 ∈ Plans(G) with {o1, . . . ok} = S. However, an appropriate P
can be constructed from ET as follows: Firstly, compute a traversal f1, . . . , fk′ of T
with root wroot (see section 2.1). Secondly, read the traversal from left to right and
for each edge fi with `ET

(fi) 6= ⊥ emit the operation op(fi). If `ET
(fi) = ⊥ holds,

emit nothing. Thirdly, consider the operation sequence P ′ = 〈o′1, . . . , o′k〉 with
k ≤ k′ constructed that way. If there are two operations o′i ∈ {lkp(e), ext(v, e)}
and o′j = lkp(v′) in P ′ with incEG

(e) = {v, v′} and i < j, then exchange the
positions of o′i and o′j. Do this until no such operations are present anymore.
The resulting operation sequence P = 〈o1, . . . , ok〉 is a valid search plan, that is
P ∈ Plans(G). The proposition {o1, . . . , ok} = S holds by construction. 2

The above lemma means that every spanning arborescence of the plan graph
G̃ corresponds to an admissible operation selection for the pattern graph G.
The following lemma represents the inverted statement that for every admissible
operation selection there is an according spanning arborescence.

Lemma 9 [From Admissible Operation Selections to SAs] Given a pat-
tern graph G and an admissible operation selection S ∈ Sel(G). Then there exists
a spanning arborescence T ⊆ G̃ such that op(ET )\{⊥} = S.

Proof. An appropriate spanning arborescence can be constructed as follows: For
each operation o ∈ S choose the corresponding edge fo ∈ EG̃ with op(fo) = o.
Having done this, consider all extension operations o = ext(v, e) ∈ S. Let f ′

o ∈ EG̃

the unique edge with `EG̃
(f ′

o) = ⊥, srcG̃(f ′
o) = tgt G̃(fo), and tgt G̃(f ′

o) 6= srcG̃(fo)
each. If there is no edge f ∈ EG̃ with tgt G̃(f) = tgt G̃(f ′

o) chosen yet, then also
choose f ′

o. Now let E the set of chosen edges. Then the subgraph T ⊆ G̃ that
is induced by the edge set E is a spanning arborescence of G̃ with root wroot.
Furthermore op(ET )\{⊥} = S holds. 2

According to lemma 8 and 9 the finding of an admissible operation selection is
the same as the computation of a spanning arborescence. However, the operation
selections found this way are not necessary minimal. For this reason a minimum
spanning arborescence is computed. Thereby the only problem is, that the cost
of an MSA T is computed by summation and the cost of an operation selection
S ∈ Sel(G) by a product. However, this can be settled easily: The log function
is a strictly monotonic increasing transformation between (R≥1, ·) and (R≥0, +).
Furthermore log(ab) = log a + log b for a, b ∈ R≥1 and c(o) ≥ 1 for o ∈ Ops(G)
holds. Thus, if we compute an MSA of Tmin ⊆ G̃ with cost function cost ′ : EG̃ →
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R≥0 defined by cost ′(f) := log(cost(f)), then Tmin is also an MSA of G̃ with cost
function cost according to a total cost that is defined by the product∏

f∈ET

cost(f).

Such an MSA corresponds to a minimal admissible operation selection for the
pattern graph G, as the following lemma shows:

Lemma 10 [MSAs and Minimal Operation Selections] Given an MSA
T ⊆ G̃ according to the cost function cost ′ := log ◦cost : Then the corre-
sponding operation selection S := op(ET )\{⊥} ∈ Sel(G) is minimal, that is
c(S) = minS′∈Sel(G)(c(S

′)) holds.

Proof. According to lemma 9 for each admissible operation selection S ′ ∈ Sel(G)
there exists an MSA T ′ ⊆ G̃ with S ′ = op(ET ′)\{⊥}. Let c(⊥) := 1. Then it is

log c(S ′) = log
∏
o∈S′

c(o) =
∑
o∈S′

log c(o) =
∑

f∈ET ′

log c(op(f)) =

=
∑

f∈ET ′

log(cost(f)) =
∑

f∈ET ′

cost ′(f).

The total cost
∑

f∈ET
cost ′(f) of T is minimal. As log is a strictly monotonic

increasing transformation between (R≥1, ·) and (R≥0, +) this yields that c(S) is
minimal too. Thus, the condition c(S) = minS′′∈Sel(G)(c(S

′′)) holds. 2

Figure 7 shows the plan graph G̃1 from figure 6 with transformed costs cost ′ =
log ◦cost . The bold drawn arrows denote an MSA T ⊆ G̃1. The total cost of T is
0, which is the logarithm of the total cost 1 of a multiplicatively computed MSA.
The operation selection S := op(ET )\{⊥} corresponding to T is the set

S =
{

ext(v2, e1), ext(v2, e3), ext(v3, e2), lkp(v3)
}

.

As the operations in S can be composed to a valid search plan, it is really an
admissible operation selection. A possible search plan build of S is

〈lkp(v3), ext(v3, e2), ext(v2, e3), ext(v2, e1)〉,

for example. Furthermore S has the cost c(S) = 1. According to the cost model
defined in section 5 no operation selection can have a cost smaller than 1. So S
is a minimal admissible operation selection.

As stated in section 2.4 an MSA can be computed with the Edmonds/Chu-Liu
algorithm in polynomial time [6, 3]. Alternatively a variant of this algorithm can
be used, which only needs O(|EG̃| + |VG̃| · log |VG̃|) time. It has been proposed
by Gabow et al. [8]. As |G̃| ∈ O(|G|) holds and the construction of G̃ from
G takes O(|G|) time, the operation selection has an overall time complexity of
O(|G| · log |G|).

21



v1 e1 v2

e2

e3

v3

⊥

5/1.04

⊥/0

⊥/0

�/0

�/0

⊥/0

5/0

⊥/0

⊥/0

5/0

⊥/0

�/0.69

�/0.69
�/1.39

�/0
�/1.95

�/1.95

�/0.69

Figure 7: The plan graph G̃1 with transformed cost function cost ′ = log ◦cost .
The bold drawn edges denote an MSA.

7.3 Operation Ordering

According to formula (1) a primitive operation has more impact to c(P ) the
earlier the operation occurs in a search plan P . So having selected an admissible
operation selection S ∈ Sel(G) that is minimal in the sense of equation 2, we
schedule the operations in S in a way such that the cheaper operations occur
preferably early and the more expensive operations preferably late.

This is done by a simple best-first strategy: Like in the proof of lemma 8 a
traversal of the MSA T ⊆ G̃ with root wroot is constructed. But this time the
cheaper edges are preferred to the more expensive ones, which is different from the
construction given in the proof. Having found such a best-first traversal f1, . . . , fk

of T a search plan can be generated in a very simple way: Go through the traversal
from left to right emitting the operation op(fi) each unless op(fi) = ⊥.

Admittedly, just as in the proof of lemma 8 this does not always yield a
valid search plan. In fact it fails if and only if there are edges fi, fj with i < j
present in the traversal such that op(fi) ∈ {lkp(e), ext(v′, e)}, op(fj) = lkp(v),
and incEG

(e) = {v, v′}. As this demands the lookup of an already matched node
v the emitted search plan is invalid then.

However, this requires only a slight modification to the best-first strategy con-
structing the traversal of T : Any time an edge fi with op(fi) ∈ {lkp(e), ext(v, e)}
is appended to the hitherto traversal f1, . . . , fi−1, the nodes w ∈ VG̃ with `VG̃

(w) ∈
incEG

(e) are marked as reached. In the following steps an edge f with op(f) =
lkp(v′) is omitted if the node w′ := tgt G̃(f) is marked as reached. With given
MSA T this modified best-first construction can be performed in O(|G| · log |G|)
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time. This can be achieved, for example, by using a Fibonacci heap.
Consider the MSA shown in figure 7. Then the above best-first strategy yields

one of the two following search plans:

P1 = 〈lkp(v3), ext(v3, e2), ext(v2, e1), ext(v2, e3)〉
P2 = 〈lkp(v3), ext(v3, e2), ext(v2, e3), ext(v2, e1)〉

Note that the situation shown in figure 7 requires no omitting of edges which
represent a lookup operation.

7.4 Summary

Altogether the process of search plan generation consists in the following steps:

1. The assignment of costs to primitive matching operations requires infor-
mation about the present host graph H. If not enough domain specific
knowledge about the occurring host graphs is available, an analysis of H is
required. This takes O(|H|) time (see section 6).

2. From the given pattern graph G a plan graph G̃ is constructed, which is a
labeled directed graph with edge costs. The generation of G̃ takes O(|G|)
time (see section 7.1).

3. Having constructed the plan graph G̃ an MSA T ⊆ G̃ is computed. If the
algorithm proposed by Gabow et al. is used, this requires O(|G| · log |G|)
time. The resulting MSA T represents a minimal admissible operation
selection S for G (see section 7.2).

4. Having found an MSA T a best-first traversal of T is computed. Then
an according search plan is emitted. This can be done in O(|G| · log |G|)
time and corresponds with finding a best-first order of the operations in
S. The result is a valid search plan P for the given pattern graph G (see
section 7.3).

Let P a generated search plan. If c(P ) = k holds, this means that the search
plan P raises no splitting at all for the current host graph H. In this case the
execution of P takes O(|G| · |EH |) time. If all nodes of H have O(1) incident
edges, this even reduces to O(|G|), which is a linear runtime (see section 5.3).

8 Related Work

The optimization technique described in this work extends a method originally
invented by Dörr [5]. Dörr already identified bunches of isomorphic edges present
in the host graph as a cause of unfeasible time complexity. To conceptualize this

23



he invented the terminology of strong V-structures and their instances, which is
also used in this work. However, Dörrs approach does not feature a cost model.
This means, that only a linear time search plan can be generated or no search
plan at all. In cases where Dörrs method yields a linear time search plan, the
method described here yields a linear time search plan, too. So the cost model
based optimization technique described here is a significant extension.

An older version of the cost model based approach has already been presented
by Batz [2]. At this state lookup operations for edges were not included.

Accordingly the plan graphs as used there do not contain special nodes for
the representation of pattern edges. Nevertheless, this older version has been im-
plemented very successfully in a tool called GrGen [10]. GrGen is a generative
programming system for rule based graph transformations7, which includes the
task of subgraph matching. To determine the costs of the primitive matching
operations during the search plan generation GrGen uses the analysis of the
host graph described in section 6.

The search plan based subgraph matching performed by GrGen works very
well for a benchmark introduced by Varró [11, 20, 19]. Assuming that many ap-
plication domains feature approximately sparse graphs with rich label alphabets,
we hope that such good behavior will also show in practice. For the future it is
desirable to implement the technique described in this paper at its full extend,
maybe as an enhancement of the GrGen system. It is likely that this yields
a further improvement to the runtime of the subgraph matching performed by
GrGen.

Independently Varró et al. proposed a method, which is very similar to that
older version of the optimization technique [21]. An equivalent of edge lookups is
also not supported there. Search plans are defined directly as a traversal of the
plan graph (or the search graph as it is called there). The generation of a search
plan is also done by the computation of an MSA through the Edmonds/Chu-Liu
algorithm with succeeding best-first enumeration.

A main difference consists in the cost model: Though the cost of a search
plan is also computed by formula (1), Varró et al. compute the average splitting
factors in terms of the arithmetic mean. Moreover, they allow primitive matching
operations to have costs between zero and one. The total cost of the MSA is
computed by summation and not by a product. This entire means, that the
operation selection as done there does not only reduce the splitting factor but
also includes the first-fail principle. But as a consequence the operation selection
does no longer directly correspond to the minimization of the most significant
term of formula (1) as it does here.

Zündorf also presented a search plan based approach to subgraph matching,
namely in the context of the Progres graph rewriting tool [22]. His method

7GrGen implements the well founded SPO approach to graph rewriting [7] with slight
restrictions and powerful extensions.
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provides equivalents to the extension operations and node lookups described here.
But additional features are also supported. Amongst others these are (1) the
matching of paths of unbounded length, (2) so called TestEdge operations that
check the existence of edges between already matched nodes, (3) matching with
pre-assigned nodes, and (4) attributed nodes with indexing by attribute values.
The latter allows the fast access to nodes via the values of a given attribute by
an internal indexing structure.

To enable the rating of search plans Zündorf describes a quite sophisticated
cost model. However, the planning strategy itself is a best-first method that works
greedy except for the selection of expensive lookup operations. The costs of the
primitive matching operations are derived from static knowledge and heuristic
assumptions only. At this the static knowledge consists in so called cardinality
assertion, which can be compared to the cardinalities known from UML class
diagrams.

Lillqvist [14] describes a backtracking based algorithm and mentions the con-
cept of search plans in the context of Coral that is a framework for model driven
engineering. However, he only says few about the planning itself. Nevertheless,
his work contains a nice summary of some matching methods.

Ullmann presented a backtracking algorithm which enumerates possible node
mappings while checking for required host graph edges and pruning the search
space [18]. The pruning of the search space can significantly reduce the runtime
needed by the matching process. This is done by the following two strategies:
Firstly, an initial step rules out all node mappings which affect host graph nodes
of to small degree. Secondly, during the enumeration of the remaining node
mappings the so called refinement procedure is repeatedly invoked. According
to the contiguity of the host graph the refinement procedure removes further
node mappings from the search space. Each time the procedure is invoked the
removal is done iteratively until a fixed point is reached, i.e., until no further
node mapping can be precluded.

On his experiments Ullmann treats the nodes of the pattern graph in an
order of decreasing degree. In this way it is likely, that the absence of required
edges in the host graph is detected more early. This in turn has the consequence
that the refinement procedure has more impact. Additionally, Ullmann suggests
choosing the order, in which the pattern nodes are treated, according to the
respective application context. However, this idea is similar to the concept of
search planning.

With the VF2 algorithm [4] Cordella et al. also suggest a backtracking based
technique, which also performs pruning of the search space during the matching
process: Firstly, node mappings which do not conform locally to the contiguity of
the pattern graph are ruled out. Secondly, some kind of locally restricted breadth-
first search is performed. More precisely, it is checked, whether the neighborhood
of a current potential extension of the node mapping contains enough nodes that
are rightly connected to the already processed part of the pattern and the host
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graph, respectively. Thirdly, it is also checked, whether that current potential
extension provides appropriate node and edge labels.

The authors state that (according to the number of nodes) the VF2 algorithm
has better asymptotic time and space complexity than the Ullmann algorithm:
Linear versus cubic space complexity and a time complexity that is better by a
linear factor.

Messmer and Bunke proposed a method which is somewhat similar to the
RETE approach to pattern matching [15]. It is suited for the simultaneous
matching of multiple pattern graphs to a single host graph. In a preprocess-
ing step which can be performed offline a compact representation of the pattern
graphs is generated. At this the essential idea is to represent common subgraphs
of the pattern graphs only once. If n very similar pattern graphs are matched
simultaneously, this can result in a speedup by a factor of up to n. If n totally
different pattern graphs are matched, there is no speedup.

Rudolf [17] as well as Larrosa and Valiente [13] reduce subgraph matching to
constraint satisfaction Problems (CSP). In this way all the techniques known in
the area of CSPs get available to the area of subgraph matching. Moreover the
problem of subgraph matching is decoupled from a fixed graph model.

However, to improve the time complexity by taking advantage from the struc-
ture of a respective graph implementation Rudolf invents the concept of queries.
In doing so, possible properties of a graph data structure are accessible through
an abstract concept. It turns out that the constraint graph of the CSP to that
Rudolph reduces the subgraph matching problem is quite similar to the plan
graph as defined here. The queries present in the constraint graph essentially
correspond to the edges in the plan graph representing the primitive matching
operations. This suggests that the concepts of queries and of primitive matching
operations are related. Furthermore the concept of variable ordering used in the
area of CSPs is essentially the same as the concept of search planning.

Larossa and Valiente consider four approaches within constraint satisfaction
framework. Additionally they present the new nRF+ approach which (on the
majority) outperforms the four others. The nRF+ algorithm prunes the search
space while performing a backtracking based search. Larossa and Valiente state
that Ullmanns algorithm is essentially the same thing as one of the four other
approaches. According to this it turns out that the pruning procedure of the
nRF+ algorithm is stronger than that of Ullmanns algorithm. Additional Larossa
and Valiente suggest a benchmark for subgraph matching which is based upon
the Stanford GraphBase (see Knuth [12]).

9 Conclusions

In this work a heuristic optimization technique for the generation of preferably
good strategies for subgraph matching is described. Matching strategies are rep-
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resented as search plans that are sequences of primitive matching operations. We
support two kinds of primitive matching operations: lookup and extension op-
erations. A lookup operation represents the search for an appropriate element
regardless of its position in the host graph. This allows the matching of non-
connected pattern graphs. On the other hand for seldom node or edge labels the
runtime of subgraph matching can be significantly reduced this way. An exten-
sion operation represents a local search coming from an already matched node
along an appropriate edge in the host graph.

To rate the different matching strategies, a cost model is defined, that assigns
costs to primitive matching operations and search plans. According to this cost
model a search plan is generated by a heuristic optimization. Although the
resulting search plans are not guaranteed to be optimal, several problem instances
which may occur in practice can be solved in reasonable time this way. An older
version of this approach has been implemented very successfully in the generative
graph rewriting tool GrGen.

The cost c(P ) assigned to a search plan P arises from the present host graph
H. If the domain specific knowledge about the occurring host graphs is not suffi-
cient, the needed information can be provided by the described analysis of H in
O(|H|) time. For a pattern graph G the actual search plan generation can be done
by the heuristic optimization in O(|G| · log |G|) time. The heuristic optimization
works in two phases: the operation selection, which provides a cheapest selection
of primitive matching operations, and the operation ordering, that assembles the
selected operations to a valid search plan according to a best-first strategy. If the
cost c(P ) assigned to a generated search plan P equals the number of operations
of P , the runtime raised by P is linear (under the assumption that H is sparse
in the sense that every node of H has O(1) incident edges).

If the costs of the primitive matching operations are determined according to
an analysis of the host graph, the generation of the search plan must be done
just in time. This can be implemented by materializing the primitive matching
operations and the search plans as data objects present at runtime. In this case
a possible matching algorithm works like an interpreter that executes dynami-
cally generated search plans. This is done by the mentioned graph rewrite tool
GrGen. If the domain specific knowledge about the occurring host graphs is
sufficient, the analysis can be omitted. In this case there is no need for a runtime
representation of primitive matching operations and search plans. Instead the
search plans can be generated statically. These statically generated search plans
could be emitted as source code written in a common programming language.

The optimization technique described in this work is also suited for negative
application conditions (NACs) that are common in the area of rule based graph
transformations: The application of a graph rewrite rule requires that there is no
occurrence of any NAC present in the host graph. To guaranty this, an exhaustive
search of the search space belonging to each NAC must be performed. However,
the optimality criterion for the search plan generation as described here is the
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avoiding of splitting. This in turn helps to reduce the search space and to avoid
exponential runtime behavior also for NACs, hence.
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