
Technical Report:
Model Checking for Energy Efficient Scheduling

in Wireless Sensor Networks?

Peter H. Schmitt and Frank Werner

Universität Karlsruhe (TU), Fakultät für Informatik
Institut für Theoretische Informatik
{pschmitt,werner}@ira.uka.de

Abstract. Networking and power management of wireless energy - con-
scious sensor networks is an important area of current research. We in-
vestigate a network of MicaZ sensor motes using the ZigBee protocol
for communication, and provide a model using Timed Safety Automata.
Our analysis focuses on estimating energy consumption by model check-
ing in different scenarios using the Uppaal[11] tool. Special interest is
devoted to the energy use in marginal situations that rarely occur and
consequently might not be seen doing simulation.

1 Introduction

The technique of model checking has been successfully used in many application
areas. It has proved particularly useful in very early design stages when only
a model or a blueprint of the product is available. Using model checking tools
flaws and errors have been revealed early, reducing costly changes in the later
product design cycle.

In this paper we investigate the question whether the success story of model
checking can be repeated in the area of low-energy sensor networks. We want
to gain experience how these networks can be modelled. What kind of analysis
should and can be performed? Common safety and liveness properties will cer-
tainly still play a role, although we rather focus on questions related to energy
consumption. What is the minimal energy needed to reach a state with a given
property? Can we formulate conditions that will guarantee that the live time of
a sensor node is at least three month?

The plan of this paper is as follows. In the rest of this introduction we briefly
introduce the theoretical framework of model checking. Section 2 describes our
model for sensor networks, in Section 3 we present our results, and conclude
with the usual wrap-up and suggestions for future research in Section 4.

? This work is funded by the BW-FIT Project ZeuS (Zuverlässige Informationsbere-
itstellung in energiebewussten ubiquitären Systemen).

What Model Checking is. Model checking is a formal method for automatically
verifying system designs which has been applied to an impressive variety of areas.
The method requires a model M of the system under investigation, a property
ϕ that the system should have, and an algorithm to check whether M indeed
satisfies ϕ. The method is very flexible since it is applicable to all systems that
can be modelled as some kind of finite state machine, and is the most successful
technology for formal verification.

Model checking has been applied to an impressive variety of application areas
[10, 7, 13], and investigations into applications of model checking related to wire-
less sensor networks are just starting. Fortunately, in most applications there
is a small set of properties one is interested in and only a small fraction of the
temporal logic is needed.

The downside of the model checking method is that models have to be finite.
A great deal of research went into techniques for reducing infinite state systems
via guided abstractions into finite state systems or more precise, into finite state
systems of moderate size. Otherwise that verification algorithm runs out of space
giving no answer.

Model checking has been exercised in many applications. See the web pages
of some of the more well known tools for details: SPIN1, Uppaal2, PRISM3,
HyTech4. We refer the interested reader to the papers [10, 7, 13] to get a first
impression of this work.

Uppaal The application scenario of wireless sensor networks where the majority
of nodes is in sleep mode to fulfil the energy constraints, seems to suggest the
use of probabilistic models, but at the beginning it was not clear how probabilis-
tic features would enter into our formal analysis. We were thus looking for an
easy-to-use, fairly efficient model checking tool, capable of using a cost function
on transitions, having a notion of time.

Due to several other considerations we decided to choose for modelling the
sensor network Uppaal[11], an integrated tool environment for the design, sim-
ulation and verification of real-time systems. The tool is fairly efficient, and ade-
quate for systems that can be modelled as a collection of non-deterministic pro-
cesses communicating through shared variables, binary-, or broadcasting chan-
nels, having a finite control structure, and real-valued clocks.

In addition it is easy to use since the verification algorithm works fully au-
tomatically, and in case of a state found satisfying property ϕ, a trace reaching
that very state is provided. For property ϕ to be checked, it has to be formalised
in some propositional temporal logic. This may pose a challenge to people with-
out the necessary skills and experience in formal logic.

1 http://spinroot.com/
2 http://www.uppaal.com/
3 http://www.cs.bham.ac.uk/∼dxp/prism/
4 http://embedded.eecs.berkeley.edu/research/hytech/

Timed Automata – Syntax Uppaal is based on the theory of Timed Safety Au-
tomata as presented in [8, 9]. The automata concept that is actually deployed
in Uppaal slightly differs, and extends this theoretical concept. First of all an
Uppaal automaton A consists of a set L of locations. In the automaton shown
in Fig. 5b Down, Send, Idle, and Rcv are examples of locations. The initial loca-
tion `0 ∈ L - in Fig. 5b this is the leftmost - is recognisable by the double circle.
Next, automata may use local and global variables V ranging over finite subsets
of integers or arrays of integers. Boolean variables are modelled as variables with
range {0, 1}. In Fig. 5b e.g., the variables sid, a[id], and q are employed. What
is shown in this figure is, to be precise, a template for an automaton. Templates
may be instantiated to obtain the automata that make up a system, as shown in
Fig. 4a. Templates may contain constants that will be assigned concrete values
when the template is instantiated. Fig. 5b contains e.g., the constant id that
will be instantiated to an unique identity of a process. Further constants are N
and MOD. Here N is the total number of nodes participating in the network.
The reason why we use the constant MOD stems from the requirement imposed
by all model checking approaches that the number of states should be finite.
Any kind of counting – in our application we will count the number of collisions,
number of packets send or received and also the energy consumption – has to be
somehow truncated. The way we will do this is by limit counting to the numbers
0, . . . MOD − 1 and perform all arithmetic operations modulo MOD. As a re-
minder m%MOD is the unique number r, with 0 ≤ r < MOD such that there
is some k satisfying m = k ×m + r.

An important part in the specification of Uppaal automata, that distin-
guishes them from simple finite state machines, is a set C of clocks. These are
real-valued variables. In Fig. 5b only the clock variable t occurs. Clocks may be
local or global and different clocks may show different times. Progress of time
is the same however for all clocks. The next ingredient in the specification of
an Uppaal automaton A is a finite set Ch of channels comprising a pairwise
synchronisation concept by a sending and a receiving part. In Fig. 5b e.g., the
channels Syn and Col occur.

This brings us to the most prominent part of an Uppaal automaton, its set E

of edges. An edge may best be written as `
g,c,u−→ `′, where `, `′ ∈ L are locations,

g is a constraint on the clocks and integer variables called the guard of the edge,
c is a synchronisation term of the form C! or C? with C a channel, and u is a set
of variable updates or clock resets called the update of the edge. In Fig. 5b the
left arrow from Idle to Rcv has guard a[id] == N , synchronisation term Sync?,
and an update (col := (col + 1)%MOD, a[id] = −1). Guards, synchronisation
terms and updates need not occur, in which case defaults are used.

To explain the semantics of an edge we first consider the case that no syn-
chronisation term c is given, `1

g1,u1−→ `′1. The intuitive meaning then is: if an
automaton A1 has active location `1, guard g1 is satisfied then the update u1 is
performed, and A1 moves to location `′1. In case an action on channel c is given
as C! then for the edge to fire it is additionally required that there is another

automaton A2 in the system with an edge `2
g2,C?,u2−→ `′2, such that A2 is in

location `2 and g2 is satisfied. Then A1 moves to `′1, A2 moves to `′2 and the
updates u1, u2 are performed concurrently. The same explanation applies when
C? occurs in the edge of A1 and C! at the edge in automaton A2. It is custom-
ary to call the automaton with the C!-edge the sender and its counterpart C?,
the receiver. The above explanation shows that sender and receiver change their
states synchronously. The use of binary synchronisation in Uppaal is blocking,
i.e. that the transitions can only be taken if sender and receiver do participate.
In contrast to this, Uppaal also offers the concept of broadcasting where one
sender does synchronise with an arbitrary number of receivers, and the sending
process is hereby never blocked.

So far nothing has been said about the progress of time. Edges in an au-
tomaton only offer possibilities of state changes. The out-going edge in Fig. 5a
from the initial node carries the guard t >=ActiveCycle which means that the
transition is enabled when the guard is true. It does not say that as soon as t
gets greater than ActiveCycle the edge must fire.

This brings us to the last part of the specification of an Uppaal automaton
A, the partial mapping I that attaches invariants to locations. Invariants are
simple variable constraints on locations, that allow a automaton A to stay in
this location as long as the invariant is not violated. Rephrasing the invariant-
guard duo, it can be said that in Uppaal a guard enables the transition to be
taken and a invariant eventually forces an entered state to be left. In Fig. 5a the
location Idle carries the invariant t<=ActivePeriod. If an instance automation
of the template in Fig. 5a is in location Idle and t=>ActivePeriod then it must
make a move out of Idle.

Furthermore locations can be marked with urgent - in which case time is not
allowed to elapse or committed, putting an even severe constraint on states. Com-
mitted locations must be left immediately after entering and no other transition
is permitted to be taken before. An automaton may stay in an urgent location
`urg to perform another actions involving a committed or another urgent loca-
tion. But all the actions before the one that leaves `urg will be considered to
happen at the same instance of time.

So far we have not talked much about the operations that perform the up-
dates, or that may occur in guard formulae. There are of course the usual arith-
metic and Boolean functions. In addition the user of Uppaal can define his own
functions by providing programs that compute them, see Fig. 3 for examples.
This completes the specification of Uppaal automata A = (L, V, C, Ch,E, I).

Timed Automata – Behaviour To explain the behaviour of an Uppaal automa-
ton or a system of Uppaal automata, we need the concepts of action and timed
trace. The automaton concept from [8, 9] comprises of a set Σ of actions. For
Uppaal automata this is a derived concept.

The behaviour of an Uppaal automaton A is defined by the set run(A) of all
its possible runs. A run is a finite or infinite sequence s0, s1, . . . , si . . . of states. A
state in turn is a pair (`, u) of a location ` ∈ L, and a function u that associates
values to all variables and clocks. Of course, we require that `0 is the initial state

and u0 assigns the initial values. If we look at a system of automata the state of
the system is the pair (`, u) where ` is a vector (`1, . . . , `k) of locations for all
automata A1, . . . ,Ak in the system, and u assigns values to all local and global
variables and clocks. A sequence s0, s1, . . . , si . . . of states is in run(A) if there
is a timed trace (t1, b1), . . . , (ti, bi), . . . that demonstrates that A can reach the
given states in the given order. This is to say that for all i the automaton A can
change from state si−1 = (`i−1, ui−1) to si = (`i, ui) via the timed action (ti, bi).
This change comes in two parts. In the first part from (`i−1, ui−1) to (`i−1, u

′
i−1)

only the clock variables change by di = ti − ti−1 (with t0 = 0), i.e., u and u′

differ only on variables x ∈ C, and u′i−1(x) = ui−1(x) + di. The second part is
the firing of the edge or the pair of edges bi in state (`i−1, u

′
i−1) with end states

si = (`i, ui) as already explained above.

Timed Automata – Property Checking One of the most popular query languages
for the analysis of real-time systems is the Computation Tree Logic (CTL) [6,
2]. The most important properties are displayed in the following, where ϕ is a
constraint on variables, clocks, or state labels:

A2ϕ invariantly ϕ ϕ is satisfied by all states on all runs.
E3ϕ possibly ϕ There is a state within a run that satisfies ϕ.
A3ϕ always eventually ϕ In all runs there is a state satisfying ϕ.
E2ϕ potentially always ϕ There is a run such that all its states satisfy ϕ.

The symbols A2, E3, A3 and E2 are called temporal operators. Some of the
search trees[4] for the above mentioned properties are depicted in Fig. 1 for easier
grasp. Note, that the Uppaal query language does not allow nesting of temporal
operators and consequently only a subset of CTL is permissible.

The property E3ϕ could also be interpreted as the existence of a reachable
state, that satisfies ϕ. The reachability problem for Timed Safety Automata is
– fortunately – decidable. This result depends crucially on the fact that guards
and updates are of a simple form.

2 Model of Sensor Network

For being comparable to other studies we chose the MicaZ sensor motes man-
ufactured by Crossbow as the models energy basis since they provide a versa-
tile platform in particular for low-energy sensor networks [12]. The protocol for
communication between the sensors is the ZigBee protocol[15] because it can be
beneficially used, combining low transmission rates while fulfilling the criteria of
being energy-conscious.

Out of the different topologies that exist we choose the Mesh-Network to
be the most appropriate ones in our scenario. What we pursue is a Peer-to-Peer
network consisting of only FFDs (full functional devices) since we aim on using a
beacon disabled network. Device-to-device, and device-to-router communication
is established using the CSMA/CA access on the common medium. So devices

wake up in certain intervals send their recently gathered information, and fall
back to sleep. The communication medium is represented as one channel on
which all devices communicate, which is fixed over the analysis. This is inten-
tionally done since it introduces collisions and related situations of interest. The
more, it llows us to neglect the overhead arising from network maintenance like
active-, passive scans, and channel changes because of high traffic with close-by
networks. Apart from having bidirectional communication we restrict the model
on passing information from the sensor devices to the network coordinator, and
explicitly forbid a vice versa communication flow.

Uppaal Model. In our approach of building a sensor model using timed automata
we aim at a homogeneous networking scenarios and will consider MicaZ motes in
the role of Routers (ZR), and End Devices (ZED). The corresponding Uppaal
automata templates are shown in Fig. 5. Controllers are only capable of receiv-
ing information from the network. The Controller template (Fig. 5a) is thus
obtained from the Router template, Fig. 5b, by leaving out the sending part of
the automaton. The sensor motes, Fig. 5c, collect information being queued and
transmit it to the routers.

As can be seen there are only subliminal differences between the three tem-
plates. The sensor nodes are the only devices which have the capability of col-

Fig. 1: Some possible temporal operators in the Uppaal environment with satisfying
states bluish highlighted.

lecting sensor values but in turn have no means to receive packets from the rest
of the network. Routers can receive and forward packets, and finally the network
controller has a mere capability of receiving packets. For the measure of energy
consumed, a reference sensor, and a reference router are modelled. Due to this
design issues the state space is kept small, retaining the essential functions each
device is housing.

The power draw of the reference devices [1] is incorporated into the model,
using values as shown in the table below (Tab. 1), and costs are accumulated
whenever state changes occur.
Although the model makes no use of changing transmission rates during execu-
tion due to complexity considerations, the MicaZ transmission can be changed
in advance accordingly to the distance matrix from Fig. 4b in concrete steps
of −10dBm, −5dBm, and 0dBm. To account for a very restricted state space,
the models transmission rate is constant in the model but changed over differ-
ent properties to imitate different scenarios. Higher transmission rates impose
a higher energy consumption on each device, but simultaneously enable pack-
ets to reach the ZC using less hops along the network links. On the other side
packets transmitted from other motes might collide more often in this case, and
consequently the number of retransmissions before a packet’s successful delivery
to its destination is increased.

For obtaining a deeper understanding of our model, we consider the ZigBee
reference controller from Fig. 5a and explain in particular the functions and
essential variables used.

Each automaton is labelled with a unique ID. Whenever the globally modelled
clock exceeds a value where a new round should be started (t>=ActiveCycle),
the ZigBee controller is initiating a new cycle by waking up all devices from
sleep-mode through broadcasting action GoIdle! over the network. Consequently
all devices awake and capable ones update their energy consumption according
to the state just left by use of the cost-function CE() cf. Fig. 2. Notice at this
point that all synchronisation action within the model are broadcasting.

In addition, the sensor motes collect a sensor value which is queued at the
sensor nodes (q=(q+1)%MOD). From now on each device is allowed to process and
transmit data until the Active period is expired (t<=ActivePeriod). Note at
this point the ZR and ZC have an active period prolonged by one time unit to
account for network management and configuration messages. All devices have
to leave state Idle whenever the state invariant labelling the idle state is vi-
olated. Sensor nodes can fall back to sleep earlier, that is if their sensor value
is successfully transmitted to the network and before the ActivePeriod expired.

Next we will describe the action of sending in greater detail. The array a[]
of length N denotes the availability of sensors and is manipulated by the tran-
sition updates during the operation of the network. For each i, 0 ≤ i < N the
array entry a[i] will be one of the values in {−1, 0, . . . , N−1, N}. The intended

meaning is such that a[i] == j if and only if a sending sensor j intends to send,
and a node i within the neighbourhood of j is within a receivable range. The
more we set a[i]==-1 to signal that the channel within the neighbourhood of
sensor i is idle, and a[i]==N to indicate that node i is experiencing a collision
on the the channel caused by any of the neighbouring sensor notes.

A gadget whose channel is idle, i.e. a gadget satisfying a[id]== -1, may
enter into state sending if q > 0, i.e. there is a queued message for sending.
Simultaneously t<=ActivePeriod-1, stressing that there is still time to send and
being heard by other devices. Besides from the update of the energy consumption
CE(PIdle), function CheckAv(), as shown in Fig. 3d, is executed. This operation
has no return value but changes the entries of array a[]. For all nodes i within
reach, the function call identifies potential receivers by setting a[i]==id if i is
idle and sets a[i]==N to signal a collision before moving to location send. In
case of a collision, it is possible that either a synchronisation of another group
of automata just took place in which case all receivers send a Col signal or that
there are some receivers waiting for another gadget to send data.

void CE(i n t e){
//Compute Energy o f Mote modulo CMOD
c = (c+e) % CMOD;

}

Fig. 2: Definition of the Uppaal cost function.

If no collision is detected in state Send (!Checkid(id)), the automaton
in commencing with the synchronisation after declaring itself to be sending
(sid=id). By the use of the global variable sid an sending process is indicating
its intention to send.

Table 1: Energy consumed by the MicaZ Sensor in each state.

State Proc Draw[µA] TX/RX Draw[µA] Remarks

PDown 15 1 Energy draw in sleep
PSleep 8 000 1 Proc. up, Tx/Rx down
PIdle 8 000 20 Proc. up, Tx/Rx up
PSnd1 8 000 11 000 sending at −10dBm
PSnd2 8 000 14 000 sending at −5dBm
PSnd3 8 000 17 400 sending at 0dBm
PRcv 8 000 19 700 receiving mode

If afterwards any automaton received the data (receivers[id]>0)), the
packet is removed from the sender’s queue (q=(MOD+q-1)%MOD) and the chan-
nel is cleared by function CleanAll(id) in figure 3c. Otherwise the packet is kept
in the queue. This modelling is legitimate since only one process can send at a
time since the whole sending procedure takes places within the two committed
states in which no other transmission can take place.

For the receiving side, a device is transitioning from state Idle to Receive if
it is either able to synchronise with action Sync? and no collision is detected
(sid==a[id]) in which case the packet is acknowledged at the sending side
(received[sid]=(received[sid]+1)%MOD), or a packet collision occurred and
the sender is informed (a[id]=-1).

ZigBee Protocol. For being comparable to results gained through practical ex-
periments the model is designed as proposed in the ZigBee specification [15]
for homogeneous networks underlying a tree topology. The setup is as shown in
Fig. 4a. Digits in parenthesis indicate the process number used for identification
later on in the verification part. Whenever a sensor end device (ZED) is waking
up, it is forwarding the recently collected sensor value to the router (ZR) and
the going back to sleep again. The routers in turn pass the packet along the
network link - possibly using other routers - to the ZigBee network controller
(ZC) which is the root of each ZigBee network and unique. Routers are the only
devices in our model that embody a sending and receiving side.

Since most energy is preserved in sleep mode - where processor, and on-board
transmission unit are shut down - we target an average duty cycle of 1%[12] by
defining ActivePeriod as 1 and ActiveCycle as 100. Explicitly note at this point
that we model a beacon disabled network without a contention free period,
i.e. that collisions can always occur. Distances between respective entities are
modelled using the distance matrix from Fig. 4b to determine communication
flow within the sensor network as well as the number of hops a packet as to
undergo until arriving at its destination.

By modelling a CSMA/CA like feature, packet collisions are avoided by de-
vices within the same transmission range where possible. Although being costly,
a device is sensing the channel for traffic before sending data and as such colli-
sions can only occur by participants outside the transmission range which don’t
detect ongoing transmissions.

Cost Estimation. Since special interest is devoted to the estimation of costs our
automata should offer means to keep track of e.g. energy consumption. To avoid
unnecessary blow-up of the state space not every mote automaton is equipped
with the cost estimation function CE, Fig. 2. Rather, we singly use one reference
sensor node [cf. Fig. 5c], and one reference router [cf. Fig. 5b] in our system of
automata. Only these are equipped with CE function. We chose not to estimate
cost for the controller mote, since typically this may have unlimited energy sup-
ply. The function CE adds costs from Tab. 1 for state changes by the automata,

1 bool CheckID (i d t id){
2 bool rv=fa l se ;
3 int i =0;
4 for (0 ; i<N; i++)
5 i f ((d i s t [id] [i]<=TXpowerLow) & (a [i]==N))
6 rv=true ;
7 return rv ;
8 }

(a) Function CheckID() checking whether any device within range of device id

(dist[id][i]) is able to receive in which case true is returned.

10 void Clean (i d t id){
11 int i =0;
12 for (0 ; i<N; i++)
13 i f ((d i s t [id] [i]<=TXpowerLow) & (a [i]==id))
14 a [i]=−1;
15 }

(b) Clean(id) is clearing the channel for devices that carry the flag of sensor
id.

17 void CleanAl l (i d t id){
18 int i =0;
19 for (0 ; i<N; i++)
20 i f (d i s t [id] [i]<=TXpowerLow)
21 a [i]=−1;
22 }

(c) Function CleanAll(id) clears the channel of all gadgets within the trans-
mission range.

24 void CheckAv(int id){
25 int i ;
26 for (0 ; i<N; i++)
27 i f (d i s t [id] [i]<=TXpowerLow)
28 //Put Senders ID on Rece ive r s Channel
29 i f (a [i]==−1) a [i]= id ;
30 else
31 //Put Co l l i s i o n on Rece ive r s Channel
32 i f (a [i]>−1) a [i]=N;
33 }

(d) Function CheckAv(id) does check the availability of each gadget within the
transmission range by setting a flag on array a[].

Fig. 3: Definition of the Uppaal functions.

(a) Scenario with reference sensor (ZEDR), sensors (ZED),
routers (ZR), reference router (ZRR) with cost function, and
ZigBee Controller (ZC). Edges are labelled with distances and
numbers in parenthesis denoted process.

(b) Distance ma-
trix for the se-
lected scenario.

Fig. 4: Scenario settings underlying the analysed sensor network.

giving some observables at hand. Respectively adopted to this design is the cost
of leaving state Down. Using the cost PDown multiplied by 99 time units gives
an accurate energy consumption for the time spent in this state, totalling the
transition cost to PDown′ = 1548µA. This approach is used since clock values
cannot be incorporated in arithmetic calculations with numbers of type integer
in the Uppaal version at hand.

For finding proper estimates to account for the energy used, we would re-
quire Uppaal to use the costs from table 1 multiplied by the time spend in the
corresponding state which is currently not feasible due to type constraints.
Besides this we also investigated the used of priced timed automata [5, 14] as
proposed in many studies[3]. The use of the Uppaal Cora 5 which is using
the technique of cost optimal reachability analysis in linearly priced timed au-
tomata did not deliver the promising results and completely failed in the example
at hand. Although several case studies did provide fruitful results, it failed to do
so here when working with increased complexity as in our example.

Means of Reducing the State Space By introducing several efficiency means, the
state space could be condensed far enough to verify essential properties. As such
variables are declared as meta that will not be considered when building the
state vector of Uppaal, and thus the state space is kept small. Another tech-
nique frequently used to avoid unbounded variables is by defining a modulo-class
5 http://www.cs.aau.dk/∼behrmann/cora/

(a) Template for network controller

(b) Template for reference routers

(c) Template for reference sensor mote

Fig. 5: Uppaal timed automata model of the sensor network.

of variables by a constant MOD. Consequently an upper bound is introduced
avoiding a state-explosion by unbounded values. Besides this, variables are left
out where not necessarily used, depending on the property of interest.

3 Verification Results

Properties are verified using a hash table size of 512MB for state hashing in the
Uppaal tool setting, and giving the shortest path for some satisfying property,
needed for finding the lowest cost. Before the outcomes of different properties are
tested using the new model, it is tested for being free of deadlocks (A2¬deadlock)
to assure plausible sound modelling and sanity. For all experiments the state
space is bound by fixing variable MOD to appropriate values. The transmis-
sion rate is increased over different scenarios from −10dBm, −5dBm, to 0dBm,
augmenting the theoretical coverage.

3.1 Energy Considerations

Starting with a deadlock free model, energy considerations are obtained by
searching the state space spanned by the model for properties as specified by
the user. Whenever a satisfying state is found, a path is generated that shows
the transitions taken until the state is reached. All experiments conducted here
investigate the use of energy of the reference sensor and router under different
scenarios. The desired properties are checked by definition of CTL[6, 2] formulae.

Sensor Devices. The first experiment conducted is observing the power drawn
by the reference MicaZ sensor under the following property:

E3ZC(7).rcv = 1&ZEDR(0).snd = 1

Or state more verbally :”How much energy does the reference node spend
by sending a packet - expressed in a formal property as (ZEDR(0).snd = 1)
- which is routed through the network and finally received by the controller
(ZC(7).rcv = 1)?” By use of the temporal operator E3 ϕ (”Does there exist
a path such that ϕ does eventually hold in the future”), the shortest path is
returned as defined by the appropriate strategy. Tab. 2 captures the energy
drawn for the above property while varying the transmission reach.

Table 2: Energy consumed by the sensor device for different ranges of coverage.

dist. TX[dBm] Property power use [µA]

2 −10 E3 ZC(7).rcv = 1&ZEDR(0).snd = 1 64 300
4 −5 E3 ZC(7).rcv = 1&ZEDR(0).snd = 1 67 300
6 0 E3 ZC(7).rcv = 1&ZEDR(0).snd = 1 70 700

ZigBeeRouters. After having studied the energy use by sensor gadgets, a further
step is to investigate the costs that occur at the routing devices, since they
need more power due to higher activity. For this scenario the reference router
ZRR from Fig. 5b has been chosen, since it interlinks the controller with the
network, and is hence most critical to energy constraints. The analysis observes
the energy consumption by the router using different transmission rates, and
increasing collisions occurring at the router over the experiments. Results are
illustrated in table 3 below.

As expected, by increasing the transmission rates more devices in the network
are capable of over-leaping the reference router node, thus preserving the ZRR’s
energy, and enable a faster delivery of packets to the ZC at the root.

Table 3: Energy consumed by the reference ZigBee router under different scenarios.

Property power use [mA]
Tx/Rx in dBm with (distances) −10 (2) −5 (4) 0 (6)

E3ZC(7).rcv = 1 120 126 46
E3ZC(7).rcv = 1&ZRR(6).col = 1 156 104 107
E3ZC(7).rcv = 1&ZRR(6).col = 2 211 104 168
E3ZC(7).rcv = 1&ZRR(6).col = 3 266 162 229

4 Conclusion

Our experiments showed that the timed automata model presented in Section 2
is a good basis for the analysis of energy consumption of sensor motes within an
arbitrary scenario. Special emphasis is hereby on the investigation of marginal
or borderline situations which rarely occur in simulation and can thus be ex-
haustively analysed using the here presented approach.

Furthermore we were able to determine cost optimal timings for specific
schedules. The features provided by the Uppaal tool proved to be flexible enough
to formulate queries involving the estimation of energy consumption. Especially
useful was the fact that Uppaal offers a built-in concept of multi-cast. Although
the verification is restricted due to limitations of Uppaal, we believe that the
model can be adopted to suit an even deeper analysis than shown here. Especially
by accompanying the verification techniques pursued here with more realistic
data, a deeper understanding of routing, contentions, and the energy related
can be obtained.

So far we have not made a serious attempt to use the counter measures
recommended in the Uppaal tutorial[4] to curb state explosion. It will also be
promising to explore the potentials of other tools, and to look into infinite model
checkers.

References

1. Micaz data sheet - wireless sensor networks. www.xbow.com.
2. Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-time

systems. 1990.
3. Gerd Behrmann, Ed Brinksma, Martijn Hendriks, and Angelika Mader. Produc-

tion scheduling by reachability analysis - a case studymodel-checking for real-time
systems. Ametist Project.

4. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal.
Technical report, Department of Computer Science, Aalborg University, Denmark,
November 2004.

5. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. Technical report, BRICS, Aalborg University, Den-
mark.

6. E. Clarke and I.A. Draghicescu. Expressibility results for linear-time and
branching-time logics. In J.W. deBakker, W.P. deRoever, and G. Rozenberg, edi-
tors, Proc. Workshop on Linear Time, Branching Time, and Order in Logics and
Models for Concurrency, volume 354 of LNCS, pages 257–268. Springer, 1988.

7. Sinem Coleri, Mustafa Ergen, and T. John Koo. Lifetime analysis of a sensor
network with hybrid automata modelling. In WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor networks and applications, pages
98–104, New York, NY, USA, 2002. ACM Press.

8. Thomas A. Henzinger, Xavier Cicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. In Proc. 7th Annual IEEE Symposium on
Logic in Computer Science, pages 394–406, 1992.

9. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Journal of Information and Computation,
111(2):193–244, 1994.

10. YoungMin Kwon and Gul Agha. Performance evaluation of sensor networks: A sta-
tistical modeling and probabilistic model checking approach. In ACM Transactions
on Embedded Computing Systems (ACM TECS), 2006.

11. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. Journal
on Software Tools for Technology Transfer, 1997.

12. Ciaran Lynch and Fergus O’Reilly. Processor choice for wireless sensor networks. In
Proc. 1st Workshop on Real-World Wireless Sensor Networks REALWSN, number
T2005:09 in SICS Technical Reports, pages 58–62. SICS, Stockholm, Sweden, 2005.

13. G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using proba-
bilistic model checking for dynamic power management. Formal Aspects of Com-
puting, 17(2):160–176, August 2005.

14. J.I. Rasmussen, Kim G. Larsen, and K. Subramani. Tools and Algorithms for the
Construction and Analysis of Systems, volume 2988 of LNCS, chapter Resource-
Optimal Scheduling Using Priced Timed Automata, pages 220–235. Springer, 2004.

15. ZigBee specification. Zig-Bee Document 053474r06, Version 1.0, June 2005.

