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Chapter 0.

Introduction

Why should a Riemannian geometer be interested in the study of the Laplacian?
We shortly try to answer this question. Firstly, the Laplacian ∆ := −div grad is
a canonical elliptic differential operator of second order, which is easy to define
on any Riemannian manifold. Secondly, the Laplacian, on a Riemannian manifold
it is also called Laplace-Beltrami operator, appears in such important equations
as the heat equation ∂

∂t
u = −∆u, the wave equation ∂2

∂t2
u = −∆u, as well as the

Schrödinger equation i~ ∂
∂t
u = ~2

2m
∆u of a free particle with mass m.

This dissertation is devoted to the Lp-spectral theory of the Laplace-Beltrami
operator on non-compact locally symmetric spaces whose curvature is non-positive.

0.1. Heat Diffusion and Heat Equation

In chemistry or physics one type of transport phenomena is called diffusion. It
describes the movement of particles or a substance such as heat due to concentra-
tion differences and creates a flow from regions of higher concentration to regions
of lower concentration. The process of diffusion in the simplest case is modeled
by the heat equation, which is a parabolic evolution equation we are now going to
derive.
In 1822 Jean Baptiste Joseph Fourier stated in [34] his famous law of heat conduc-
tion:

q = −k gradu,

where q is the rate of heat flow, k > 0 is called conductivity and u(t, x) is the
temperature at time t in the point x. This law forms the basis for the derivation of
the heat equation (cf. for example [13]): We consider a region Ω in some perfectly
isolated material and assume that there are neither heat sources nor heat sinks.
Therefore, the total change of internal energyQ (in the absence of work) in Ω results
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Chapter 0. Introduction

from the heat flow across the boundary ∂Ω. The change of internal energy Q can
be related to the change of the temperature u, i.e. Q(t1)−Q(t2) = cρ(u(t1)−u(t2))
with the capacity c and the mass density ρ. After the choice of a certain zero-point
on the temperature scale we obtain the formula

Q = cρu.

Hence, the total change of internal energy in Ω is

cρ

∫
Ω

∂

∂t
u dx.

On the other hand, using Fourier’s law and the divergence theorem, the heat flow
across ∂Ω into Ω is given by

k

∫
∂Ω

〈gradu, ν〉 dA = k

∫
Ω

−∆u dx,

with an outward unit normal vector field ν on ∂Ω and the Laplacian ∆ = −div grad.
This leads first to the equation cρ ∂

∂t
u = −k∆u and after a change of the time scale

to the so called heat equation:
∂

∂t
u = −∆u.

The fundamental solution K(t, x, y) to this equation is called heat kernel, i.e.
K(t, ·, y) is a solution of the heat equation with limt→0K(t, ·, y) = δy, where δy
denotes Dirac’s delta (see also Chapter 2). Physically, K(t, x, y) can be interpreted
as the temperature in the point y at time t if the initial temperature distribution
was concentrated in x with total temperature 1.

0.2. Lp-Spectral Theory

The Laplace-Beltrami operator ∆M on a Riemannian manifold M is a positive
self-adjoint operator on the Hilbert space L2(M) and −∆M generates therefore
an analytic semigroup e−t∆M on L2(M). Hence, for any initial heat disribution
u(0, x) = u0(x) on M with u0 ∈ L2(M) a solution to the heat equation is given by
u(t, x) = e−t∆Mu0(x). It can be shown (cf. Section 2) that for any p ∈ [1,∞) there
is a strongly continuous semigroup Tp(t) on Lp(M) with T2(t) = e−t∆M such that
Tp(t)|Lp∩Lq = Tq(t)|Lp∩Lq , i.e. the semigroups Tp(t) are consistent.
On the one hand, the natural space to describe (heat) diffusion is L1(M). If

T1(t)u0 = u(t, ·) : M → R≥0

denotes the heat distribution at time t ≥ 0 with respect to some initial heat
distribution u0 ∈ L1(M), the total amount of heat in some region Ω ⊂M is given
by

||u(t, ·)|Ω||L1(Ω) =

∫
Ω

u(t, x) dvol(x),

2



0.2. Lp-Spectral Theory

i.e. the L1-norm has a physical meaning.
On the other hand, the L1-spaces turn out to be more difficult to handle than the
reflexive Lp-spaces. One example for this is the question whether the semigroup
T1(t) is analytic or not, whereas for p ∈ (1,∞) the semigroups Tp(t) are always
analytic.
We denote by −∆M,p the generator of the semigroup Tp(t) and call ∆M,p the
Laplace-Beltrami operator on Lp(M). It is actually possible that the Lp-spectrum
σ(∆M,p) depends on p. This may happen because, in spite of the consistency of
the semigroups Tp(t), the resolvents (λ−∆M,p)

−1 need not be consistent for some
λ.

For the Lp-spectral theory of more general (elliptic) operators on Lp(Ω), where
Ω denotes an open subset of Rn, we refer to [3, 21, 43, 44, 46, 52, 53, 54].

0.2.1. Volume Growth and Lp-Spectrum

K.-T. Sturm related in [72] the question whether the spectrum σ(∆M,p) depends
on p or not to the volume growth of the Riemannian manifold M . He actually
considered not only the Laplace-Beltrami operator on M but also uniformly elliptic
operators in divergence form. In terms of the Laplace-Beltrami operator ∆M,p his
main results can be stated as follows.

Theorem 0.1. (p-Independence). Let M denote a Riemannian manifold with
Ricci curvature bounded from below. If the volume of M grows uniformly subexpo-
nentially, i.e. for any ε > 0 there is some constant C > 0 such that for all x ∈M
and r > 0 the following inequality for the volume of balls B(x, r) with center x and
radius r holds:

volB(x, r) ≤ CeεrvolB(x, 1),

then we have for p ∈ [1,∞):

σ(∆M,p) = σ(∆M,2).

We conclude that the Lp-spectrum of a Riemannian manifold M does not depend
on p if M is compact or if the Ricci curvature of M is non-negative. In particular,
the Lp-spectrum of the Laplacian on Euclidean space Rn does not depend on p
(and coincides with the interval [0,∞)).

To state the next theorem we need the following definition. Let us denote by SxM
the unit sphere in the tangent space TxM of M in x and by

√
g(r, ζ), r ≥ 0 and ζ ∈

SxM , the volume density of the Riemannian manifold M with respect to geodesic
normal coordinates. We say that the volume density of M grows exponentially in
every direction if there is some point x ∈ M with empty cut locus and constants
ε, C > 0 such that √

g(r, ζ) ≥ Ceεr,

for any r > 0 and ζ ∈ SxM .
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Chapter 0. Introduction

Theorem 0.2. (p-Dependence). Let M denote a Riemannian manifold with
Ricci curvature bounded from below. If the volume density of M grows exponen-
tially in every direction, it follows

inf Reσ(∆M,1) = 0 and inf σ(∆M,2) > 0.

In particular, the Lp-spectrum depends on p.

Notice, that all simply connected manifolds with constant negative curvature sat-
isfy the conditions in Theorem 0.2. In particular, the Lp-spectrum of the Laplace-
Beltrami operator on the n-dimensional hyperbolic space Hn (n ≥ 2) depends on
p. However, it is not at all clear how the Lp-spectrum precisely looks like. Another
point to mention is that Theorem 0.2 can not be applied to non-trivial quotient
manifolds, say e.g. Γ\Hn where Γ ⊂ Isom(Hn) denotes a discrete subgroup of the
isometry group which acts freely on Hn, since there is no point in Γ\Hn with empty
cut locus.

In the case of non-compact quotientsM = Γ\Hn where Γ denotes a geometrically
finite subgroup, E. B. Davies, B. Simon, and M. E. Taylor explicitly determined
the Lp-spectrum of the respective Laplace-Beltrami operator ([24]). They prove
that the Lp-spectrum σ(∆M,p) is the union of a (possibly empty) discrete set of
eigenvalues of ∆M,2 and a parabolic region Pp that degenerates to the interval
[(n− 1)2/4,∞) for p = 2:

σ(∆M,p) = {λ0, . . . , λm} ∪ Pp.

For quotients M = Γ\Hn with infinite volume the authors needed also to assume
that M has no cusps.

Figure 0.1.: Lp-Spectrum of Hn.

M. E. Taylor generalized the mentioned results from [24] to symmetric spaces of
non-compact type (cf. [75]). He also showed that the methods from [24] can be used
to prove that the Lp-spectrum of certain locally symmetric spaces M is contained
in the union of some discrete set of eigenvalues for ∆M,2 and some parabolic region.

4



0.3. Locally Symmetric Spaces

We conclude this section with a result due to E. B. Davies (cf. [20]), that in
some points could be regarded as a generalization of Theorem 0.1. Davies considers,
more generally, a locally compact, second countable metric space M but assumes
the somewhat stronger condition of polynomial volume growth instead of uniform
subexponential volume growth. If A denotes a non-negative self-adjoint operator on
L2(M) (defined with respect to some Borel measure on M) such that the semigroup
e−tA : L2(M) → L2(M) has an integral kernel with a Gaussian upper bound, he
shows that there is a consistent family of strongly continuous semigroups Tp(t) on
Lp(M), p ∈ [1,∞), with T2(t) = e−tA. Furthermore, if −Ap denotes the generator
of Tp(t), the spectrum σ(Ap) does not depend on p.

0.3. Locally Symmetric Spaces

Why do we restrict ourselves to the Laplace-Beltrami operator on locally symmetric
spaces with non-positive curvature?

A substantial part of this dissertation was inspired by the already cited paper
[24]. I was wondering to what extent these results could be generalized to mani-
folds with variable curvature. In order to obtain precise results the manifolds in
our considerations should not be too general.
Locally symmetric spaces are characterized by ∇R = 0, i.e. the covariant deriva-
tive of the Riemannian curvature tensor R vanishes or, equivalently, the sectional
curvature is invariant under parallel translations (cf. Chapter 8, Proposition 10 in
[63]).

Hence, the class of locally symmetric spaces includes all manifolds with constant
curvature and in particular quotients Γ\Hn of the n-dimensional hyperbolic space
by a discrete subgroup Γ of the isometry group, that acts freely on Hn, which
were considered in [24]. On the other hand, locally symmetric spaces have enough
structure in order to make precise statements. Actually, a complete classification
of (globally) symmetric spaces due to Élie Cartan is available (see e.g. [41]).
Note also, that the L2-spectral theory of locally symmetric spaces plays a major
role in fields like harmonic analysis, representation theory, and number theory.

0.4. Outline of Chapter 1 – Chapter 6

The first two chapters have an introductory character. Our main results are con-
tained in the Chapters 3 – 5.

Chapter 1.

We introduce locally symmetric spaces and present some decomposition theorems
needed in the following.

5



Chapter 0. Introduction

Chapter 2.

Basic properties of the heat kernel on Riemannian manifolds are stated in the first
section. We define the heat semigroup on Lp-spaces for p ∈ [1,∞) as well as the
Laplace-Beltrami operator on Lp. In Section 2.3 we prove that the Lp-spectrum of
a Riemannian product M1 ×M2 is nothing else than the set theoretic sum of the
Lp-spectra of M1 and M2, p ∈ (1,∞). This result enables us to restrict ourselves to
irreducible Riemannian manifolds if we are interested in the Lp-spectrum. Optimal
bounds for the heat kernel on globally symmetric spaces of non-positive curvature
are discussed in Section 2.4. These results, in their final form, are due to J.-P.
Anker and P. Ostellari (cf. [2, 64]). In the last section of Chapter 2 we prove a
formula connecting the heat kernel K of a Cartan-Hadamard manifold X with the
heat kernel k of a quotient M = Γ\X of X by a discrete subgroup Γ ⊂ Isom(X) of
the isometry group that acts freely on X. More precisely, we show for all x, y ∈ X:

k(t, π(x), π(y)) =
∑
γ∈Γ

K(t, x, γy), (0.1)

where π : X → Γ\X denotes the covering map. In case of X = R and M = S1 =
R/Z formula (0.1) reads

k(t, eix, eiy) =
∑
n∈Z

K(t, x, y + 2πn),

where x, y ∈ R. Physically, we expect this formula to be true as heat starting in
eix ∈ S1 can arrive at eiy ∈ S1 by flowing around the circle in any direction any
number of times.

Chapter 3.

In this chapter we derive (Gaussian) upper bounds for the heat kernel on locally
symmetric spaces M = Γ\X and lower bounds for the bottom λ0(M) of the L2-
spectrum σ(∆M,2). Our main results are stated in Theorem 3.15, Corollary 3.22,
and Corollary 3.24. This generalizes results from [23] and gives a new proof for
Leuzinger’s lower bounds of λ0(M) (see [57]).
We begin with a brief discussion of the Laplace-Beltrami operator on a general
compact Riemannian manifold. Since such general statements as in the first section
can not be expected in the non-compact case we restrict ourselves to non-compact
locally symmetric spaces in the remaining part.
A major role in the derived upper bounds for the heat kernel plays the so-called
Poincaré series

P (s;x, y) :=
∑
γ∈Γ

e−sd(x,γy),

with s ∈ (0,∞) and x, y ∈ X. Therefore, we are concerned with estimates of the
Poincaré series in Section 3.2. In Section 3.3 we derive upper bounds for the heat

6



0.4. Outline of Chapter 1 – Chapter 6

kernel k on Γ\X by estimating each term on the right hand side of formula (0.1)
using Anker’s and Ostellari’s upper bound for the heat kernel K on X (Theorem
2.12). In the upper bounds of k(t, π(x), π(y)) obtained in this way appears the
Poincaré series P (s;x, y) (see e.g. Theorem 3.6). Unfortunately, our estimates
from Section 3.2 do only apply to Poincaré series of the form P (s;x, x). On the
other hand, the results can be used to derive lower bounds for λ0(M) (Section 3.4),
and these bounds in turn, together with a result due to Davies and Mandouvalos
(Theorem 3.19), yield new heat kernel bounds (Corollary 3.22 and Corollary 3.24)
containing the functions P (s;x, x) instead of P (s;x, y).

Chapter 4.

Our main result in this chapter is Theorem 4.2, in which we completely determine
the Lp-spectrum of the Laplace-Beltrami operator on certain locally symmetric
spaces M = Γ\X. More precisely, our theorem states that σ(∆M,p) coincides with
a parabolic region Pp depending on p:

Theorem 4.2. Let X = G/K denote a symmetric space of non-compact type with
rank(X) = 1 and dim(X) ≥ 3. Assume, that the locally symmetric space M = Γ\X
has bounded geometry and that Γ is small. Then we have for p ∈ [1,∞):

σ(∆M,p) = Pp = σ(∆X,p).

In the proof of this theorem we use the heat kernel estimates and the lower bounds
for λ0(M) derived in Chapter 3.
If p = 2, the statement of Theorem 4.2 reads as follows:

σ(∆M,2) = [||ρ||2,∞) = σ(∆X,2).

For a definition of ρ see Chapter 1. Even in this case the result seems to be new.
Theorem 4.2 is a rigidity theorem for the Lp-spectra of locally symmetric spaces
Γ\X with respect to small subgroups Γ, where the size of a discrete subgoup Γ is
measured by the critical exponent δ(Γ) of the Poincaré series (cf. Section 3.2): If
Γ is as in Theorem 4.2, the Lp-spectrum σ(∆M,p) of M = Γ\X coincides always
with the Lp-spectrum of the universal cover X of M .
Note, that the locally symmetric spaces from above all have infinite volume (The-
orem 4.19). A class of non-compact locally symmetric spaces with finite volume
will be treated in Chapter 5.

Chapter 5.

We examine the Lp-spectrum of a locally symmetric space M = Γ\X where Γ
denotes an arithmetic lattice with Q-rank 1 that acts freely on a symmetric space
X of non-compact type.

7



Chapter 0. Introduction

If X is a rank one symmetric space, we again are able to determine the Lp-spectrum
of the Laplace-Beltrami operator ∆M,p. In this case we have for p ∈ (1,∞)

σ(∆M,p) = {λ0, . . . , λm} ∪ Pp,

where 0 = λ0, . . . , λm ∈
[
0, ||ρ||2

)
are eigenvalues of ∆M,2 and Pp is the same

parabolic region as in Chapter 4, i.e. Pp = σ(∆X,p). This result is stated in
Corollary 5.15. Consequently, the continuous spectrum of the Laplace-Beltrami
operator on Lp(Γ\X) is, for fixed X with rank one, for all considered non-compact
locally symmetric spaces Γ\X the same.
In the case where X denotes a higher rank symmetric space we are able to prove
that a certain parabolic region is contained in the Lp-spectrum. But now, the
parabolic region coincides in general not with σ(∆X,p). Nevertheless, it seems to
be likely that the Lp-spectrum of M in this case is the union of some finite set
{λ0, . . . , λm} and this (different) parabolic region.

Chapter 6.

The proofs in Chapter 5 show that the cusps of a locally symmetric space Γ\X
are responsible for the parabolic region contained in the Lp-spectrum. Hence, the
results of the preceding chapter generalize immediately to manifolds with cusps of
rank one. This generalization is briefly discussed in this chapter.

8



Chapter 1.

Locally Symmetric Spaces

A connected Riemannian manifold X is called symmetric space if for all x ∈ X
there is an isometry sx ∈ Isom(X) such that

(i) sx(x) = x,

(ii) dsx|x = −idTxX .

The isometry sx is called geodesic symmetry at the point x ∈ X. Since isometries
preserve geodesics, we obtain immediately that for any geodesic c(t) with c(0) = x
the formula sx(c(t)) = c(−t) holds. As a first consequence symmetric spaces are
always complete and homogeneous. Furthermore, we have for all x ∈ X:

sx : X → X, expx(v) 7→ expx(−v),

where expx : TxX → X denotes the Riemannian exponential map. In the following,
we will only consider simply connected symmetric spaces X with non-positive
sectional curvature. Then we have the decomposition X = X− × X0, where X−
denotes a symmetric space of non-compact type and X0 a Euclidean space (cf.
Proposition 4.2 in [41]).

1.1. Algebraic Description of Symmetric Spaces

As symmetric spaces are homogeneous, there is a description as coset manifolds
X = G/K where G and K are certain Lie groups with K being compact in G. In
the subsequent sections we will need more information about the structure of the
Lie group G, and therefore we summarize several important properties:
Since X is a product X− ×X0, the identity component Isom0(X) of the isometry
group Isom(X) also splits (cf. Theorem VI.3.5 in [51]):

Isom0(X) = Isom0(X−)× Isom0(X0).

9



Chapter 1. Locally Symmetric Spaces

Then G := Isom0(X−) × Rm ⊂ Isom(X) is a connected real reductive Lie group
in the Harish-Chandra class and still acts transitively on our symmetric space X.
Recall, that the attribute Harish-Chandra class means the following: If we denote
by g the Lie algebra of G then the semi-simple Lie group with Lie algebra [g,g]
has finite center.
Furthermore, the isotropy subgroup K := {g ∈ G : g · x0 = x0} of an arbitrary
basepoint x0 is a maximal compact subgroup of G and X is diffeomorphic to the
quotient G/K.

If we consider on the other hand a connected real reductive non-compact Lie
group G in the Harish-Chandra class and a maximal compact subgroup K ⊂ G,
the coset manifold G/K admits a G-invariant Riemannian metric relative to which
G/K is a symmetric space with non-positive curvature (this is actually true for
any G-invariant metric). In the following, we give a short outline of the proof of
this statement to point out the differences from the semi-simple setting. Our main
references are Part II of [76] and [35, 49].
With regard to Proposition IV.3.4 in [41] it is sufficient to find, besides a G-
invariant metric, an analytic involution σ of G such that the set of fixed points of
the involution σ coincides with K. But this is the content of Theorem 13 in Part
II of [76]. This involution induces further a Cartan involution θ := dσ of the Lie
algebra g of G and therefore a decomposition of g – the Cartan decomposition –
into the respective eigenspaces of θ:

Theorem 1.1. Let g denote the Lie algebra of a real reductive Lie group G in the
Harish-Chandra class. We have

g = k⊕ p,

where k := {Z ∈ g : θZ = Z} and p := {Z ∈ g : θZ = −Z}. Furthermore, k is
the Lie algebra of the maximal compact subgroup K.

Proof. The decomposition follows immediately from θ2 = id and the assertion that
the Lie algebra of K is given by k is analogously proven as Theorem IV.3.3 in
[41].

The fact that θ is a Lie algebra automorphism implies

[k,k] ⊂ k, [k,p] ⊂ p, [p,p] ⊂ k. (1.1)

Since the Lie algebra g is reductive, we also have the decomposition

g = g1 ⊕ Z(g),

where g1 := [g,g] is a semi-simple Lie algebra and Z(g) := {H ∈ g : [H, Y ] =
0 for all Y ∈ g} denotes the center of g. The Lie subgroup G1 of G with Lie algebra

10
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g1 has finite center because G lies in the Harish-Chandra class. The intersection
K1 := G1 ∩ K is a maximal compact subgroup in G1. This induces a Cartan
decomposition g1 = k1 ⊕ p1 of the semi-simple Lie algebra g1. Because of Z(g) =
(k ∩ Z(g))⊕ (p ∩ Z(g)) (use (1.1)), we can conclude

k = k1 ⊕ (k ∩ Z(g)),

p = p1 ⊕ (p ∩ Z(g)).

The definition of a G-invariant metric on G/K is equivalent to the definition of
an Ad(K)-invariant inner product on p ∼= TeK(G/K). The next theorem ensures
the existence of such an inner product.

Theorem 1.2 (cf. Theorem 16 in Part II of [76]). Let g denote the Lie algebra
of a real reductive Lie group G in the Harish-Chandra class. Then there exists a
non-degenerate symmetric bilinear form B on g such that

(i) B is invariant under Ad(G) and θ,

(ii) B is negative definite on k and positive definite on p,

(iii) B(k,p) = B(g1, Z(g)) = {0}.

In particular, if we define for Y and Z ∈ g

〈Y, Z〉 := −B(Y, θZ),

then 〈·, ·〉 is an Ad(K)-invariant inner product on g.

Proof. We define
B := B1 ⊕B2,

where B1 denotes the Killing form on g1 and B2 an arbitrary symmetric non-
degenerate bilinear form on Z(g) which is negative definite on k ∩ Z(g), positive
definite on p ∩ Z(g), and for which the subspaces k ∩ Z(g) and p ∩ Z(g) are
orthogonal. Then (ii), (iii) and the θ-invariance are evident. To show the Ad(G)-
invariance of B, we first claim that Ad(G) acts trivially on Z(g). More precisely,
we want to show for all Y ∈ Z(g) and g ∈ G the identity

Ad(g)Y = Y.

To see this, we first mention that for Y ∈ Z(g) the image exp(tY ) lies in the center
Z(G) of G: One checks easily exp(tY )g = g exp(tY ) for g = exp(Y ′) ∈ U where
U is a neighborhood of e in G such that the exponential map exp : V → U is
a diffeomorphism for a certain neighborhood V of 0 in g. Since U generates the
connected group G the same is true for arbitrary g ∈ G. The claim now follows
from

exp(tAd(g)Y ) = g exp(tY )g−1 = exp(tY ).

11



Chapter 1. Locally Symmetric Spaces

To complete the proof we choose open neighborhoods V := V1 ⊕ V2 of 0 in
g = g1⊕Z(g) and U of e in G such that the map ϕ : V := V1⊕V2 → U, (Y1, Y2) 7→
exp(Y1) exp(Y2) is a diffeomorphism. For g ∈ U we therefore have a unique decom-
position g = g1g2 with g1 ∈ G1 and g2 ∈ Z(G). For all Y ∈ g1 we can conclude

Ad(g)Y = Ad(g1)Y,

where the equality holds because the center Z(G) of G equals the kernel of the
adjoint representation Ad : G → GL(g). Now the Ad(G)-invariance of B follows
from the Ad(G1)-invariance of the Killing form B1 of the semi-simple Lie group
G1.

In conclusion we obtain a decomposition of our symmetric space X := G/K
as a product of the symmetric space X1 := G1/K1 of non-compact type and the
Euclidean space X2

∼= (p ∩ Z(g)).

1.2. The Metric of Irreducible Symmetric Spaces

In the preceding theorem we constructed – by using the Killing form – a Rieman-
nian metric that turns G/K into a symmetric space of non-positive curvature. Now
it is natural to ask how many other metrics possibly exist. Because of de Rahm’s
decomposition theorem it suffices to answer this question for irreducible symmetric
spaces G/K of non-compact type only. Notice that in this case G is a simple Lie
group. Then we have the following result.

Theorem 1.3. Assume G is a non-compact simple Lie group, K ⊂ G a maximal
compact subgroup and g a Riemannian metric that turns G/K into a symmet-
ric space of non-compact type. Then the restriction of g to p ∼= TeK(G/K) is a
(positive) multiple of the Killing form B on g, i.e.

geK(Y, Z) = λB(Y, Z)

for some λ > 0 and all Y, Z ∈ p.

Proof. The assertion is equivalent to the analogous statement about orthogonal
involutive simple Lie algebras. The proof therefore follows directly from Theorem
8.2.9 in [80].

1.3. Locally Symmetric Spaces

A Riemannian manifold M is called a locally symmetric space if for any point
p ∈ M there exists a neighborhood U of p such that the local geodesic symmetry
sp at p, defined by

sp : U → U, expp(v) → expp(−v),

12
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is an isometry.
If G denotes a non-compact real reductive Lie group in Harish-Chandra’s class,

K ⊂ G a maximal compact subgroup, and Γ ⊂ G a discrete subgroup of isometries
which acts freely on X = G/K, the orbit space M := Γ\X is a complete locally
symmetric space. The canonical projection π : X → M, x 7→ Γx is a Riemannian
covering and Γ is isomorphic to the fundamental group π1(M) of M . The metric
dM on M is given by dM(Γx,Γy) = minγ∈Γ d(x, γy) and is just the distance of the
respective orbits in X.

1.4. Decomposition Theorems

Let g denote the Lie algebra of a real reductive Lie group G in the Harish-Chandra
class. We already became acquainted with the Cartan decomposition

g = k⊕ p

of the Lie algebra g into eigenspaces with respect to a Cartan involution θ of g.
Below we will need other decompositions of both the reductive Lie algebra g and
the reductive Lie group G. Our main references are again [35], Part II of [76] or
[49].
Let us fix a Cartan decomposition g = k ⊕ p and choose a maximal abelian
subalgebra a ⊂ p. Recall that all such maximal abelian subalgebras are conjugate
under K. The dimension of such an algebra does therefore not depend on our
choice and we define the rank of the symmetric space G/K by

rank(G/K) := dim a.

We further denote by a∗ the dual space of a and put for any α ∈ a∗

gα := {Y ∈ g : ad(H)(Y ) = α(H)Y for all H ∈ a}.

Then α ∈ a∗ \ {0} is called a (restricted) root of (g,a) if gα 6= {0}. Let us denote
by Σ = Σ(g,a) the set of all (restricted) roots. If α is a root, the only multiples
of α that can also be roots are ±1

2
α,±α, ±2α, and −α is always a root with

dim gα = dim g−α. In contrast to the semi-simple case there can be a non-trivial
subspace of a on which all the roots vanish: we have α(H) = 0 for all α ∈ Σ if and
only if H ∈ Z(g) ∩ p.
One easily checks that the family {ad(H) : H ∈ a} consists of commuting and
symmetric operators with respect to the non-degenerate bilinear form 〈·, ·〉 defined
in Theorem 1.2. As a consequence of this we obtain the following.

Theorem 1.4. (Root space decomposition). The reductive Lie algebra g is
the direct sum of root spaces:

g = g0 ⊕
⊕
α∈Σ

gα.

13



Chapter 1. Locally Symmetric Spaces

Notice that we have g0 = m⊕a where m := Zg(a)∩ k is the intersection of the
centralizer Zg(a) of a in g with the Lie subalgebra k.

We call an H ∈ a regular if α(H) 6= 0 for all α ∈ Σ, otherwise singular. The
subset of regular elements

areg := {H ∈ a : α(H) 6= 0 for all α ∈ Σ}

is the complement of a union of finitely many hyperplanes and the connected
components of areg are called Weyl chambers. Let us fix a Weyl chamber a+.
With respect to this Weyl chamber a root α is said to be positive if α(H) > 0
for all H ∈ a+. We denote by Σ+ the set of positive roots and by Σ+

0 the set of
indivisible positive roots, where a positive root α is called indivisible if 1

2
α is not a

root. Then
n :=

⊕
α∈Σ+

gα

is a nilpotent subalgebra of g. We further denote by N := exp n the analytic
subgroup of G defined by n.

Theorem 1.5. (Iwasawa decomposition of g and G).

(a) We have the following direct sum decompostion of g:

g = k⊕ a⊕ n.

(b) The map
K × A×N → G, (k, a, n) 7→ kan

is a diffeomorphism.

We will write log : A → a for the inverse of the diffeomorphism exp : a → A.
Notice that for a given K the Iwasawa decomposition depends on the choice of a
maximal abelian subalgebra a in p and on the choice of a Weyl chamber a+ in a.

Let us denote by mα := dim gα the multiplicity of a root α. We further define

ρ :=
1

2

∑
α∈Σ+

mαα

as half the sum of the positive roots counted according to their multiplicity.

The Cartan decomposition g = k ⊕ p induces a decomposition G = KP with
P := exp p. Since all maximal abelian subalgebras a ⊂ p are conjugate under
K, we clearly have p =

⋃
k∈K Ad(k)a and therefore P ⊂ KAK. This proves the

following proposition.

14
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Proposition 1.6. For a non-compact real reductive Lie group G in the Harish-
Chandra class we have the decomposition

G = KAK.

In the following, we want to give a refinement of this proposition. For this, we
first define the Weyl group

W := M ′/M

of the pair (g,a) with the normalizer M ′ := {k ∈ K : Ad(k)a ⊂ a} and the
centralizer M := {k ∈ K : Ad(k)H = H for all H ∈ a} of a in K. It is known
that W acts simply transitively on the set of Weyl chambers. Given two Weyl
chambers a+

1 and a+
2 we can therefore find a k ∈ K such that Ad(k)a+

1 = a+
2 .

Together with Proposition 1.6 this proves the first part of the following Theorem.
For the uniqueness we refer to Lemma 2.2.3 in [35].

Theorem 1.7. (Cartan decomposition of G). Let G denote a non-compact real
reductive Lie group in the Harish-Chandra class and a+ the closure of the Weyl
chamber a+. Then we have the decomposition

G = K exp a+K.

More precisely, this means that each g ∈ G can be written as g = k1 exp(H)k2 with
k1, k2 ∈ K and H ∈ a+. Moreover, H = H(g) is unique.
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Chapter 2.

Heat Kernels on Riemannian
Manifolds and Spectral Theory

In this Chapter we give a short introduction to the theory of heat kernels, the
Laplace-Beltrami operator on Lp-spaces, and we derive a formula for the heat
kernel on quotients of Cartan-Hadamard manifolds which will be of importance in
Chapter 3.

2.1. The Heat Kernel on a Riemannian Manifold

Let us denote by (M, g) an arbitrary Riemannian manifold and by

∆M := −div grad

the corresponding Laplace-Beltrami operator on C2(M). In local coordinates we
have the formula

∆M = − 1√
det(gij)

∑
i,j

∂i(g
ij
√

det(gij) ∂j), (2.1)

where the metric g is represented by the matrix (gij) in these coordinates and the
inverse matrix is denoted by (gij). The principal symbol of ∆M is ξ 7→ −

∑
i,j g

ijξiξj
and ∆M is an elliptic operator (of order 2).

The heat kernel K(t, x, y) on M is defined as the smallest positive fundamental
solution to the heat equation on (0,∞)×M . This means that for a bounded and
continuous function u0 : M → R a solution to the Cauchy problem

∂

∂t
u(t, x) = −∆Mu(t, x), (2.2)

u(0, x) = u0(x)

17
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is given by

u(t, x) =

∫
M

K(t, x, y)u0(y) dvol(y).

We say that u : [0, T ) ×M → R is a solution of the Cauchy problem (2.2) with
initial data u0, if

(i) the function u is continuous,

(ii) u is C1 in t for t ∈ (0, T ) and C2 in the space component,

(iii) u(0, ·) = u0,

(iv) u satisfies the heat equation: ∂
∂t
u(t, x) = −∆Mu(t, x).

There exists always a heat kernel K on a Riemannian manifold (cf. [14]). We
summarize several important properties in the next lemma.

Lemma 2.1. For the heat kernel K on a Riemannian manifold M the following
holds:

(a) K is a strictly positive C∞-function on (0,∞)×M ×M ,

(b) K is symmetric in the space components,

(c)
∫

M
K(t, x, y) dvol(y) ≤ 1,

(d)
∫

M
K(s, x, y)K(t, y, z) dvol(y) = K(s+ t, x, z) (semigroup property).

The proof of these properties is contained in Chapter VIII of [14].

We also have the following uniqueness theorem (c.f. Theorem 2.2 in [26]):

Theorem 2.2. If M is a complete Riemannian manifold with Ricci curvature
bounded from below, then bounded solutions to the Cauchy problem (2.2) are
uniquely determined by their initial data u0.

That some curvature condition in this theorem is necessary is a consequence
of [4], Proposition 7.9: R. Azencott proved that for complete, simply connected
Riemannian manifolds with negative sectional curvature which tends to −∞ suf-
ficiently fast, there exists a non-constant solution u of the Cauchy problem with
initial data u0 = 1.

From the uniqueness theorem we obtain immediately that there is exactly one
fundamental solution to the heat equation if the manifold is complete and the
Ricci curvature is bounded from below. It follows also that these manifolds are
stochastically complete:
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Lemma 2.3. Let M denote a complete Riemannian manifold with Ricci curvature
bounded from below. Then the heat kernel K satisfies∫

M

K(t, x, y) dvol(y) = 1.

Recall that locally symmetric spaces are complete Riemannian manifolds with
Ricci curvature bounded from below since their universal covering spaces are ho-
mogeneous. Thus, the above results apply to these spaces.

Example 2.4. In the Euclidean case M = Rn the heat kernel is given by the
well known formula

K(t, x, y) =
1

(4πt)n/2
exp

(
−d

2(x, y)

4t

)
.

If M = H3 is the 3-dimensional real hyperbolic space one has

K(t, x, y) =
1

(4πt)3/2

d(x, y)

sinh d(x, y)
exp

(
−t− d2(x, y)

4t

)
,

(cf. Section 3 in [23]).
Further information about heat kernels is contained in [14, 26] and in the survey

article [37].

2.2. The Heat Semigroup on Lp-Spaces

In this section we denote by M an arbitrary complete Riemannian manifold with
heat kernel K. Our aim is to give a definition of the Laplace-Beltrami operator
∆M,p on the complex Lp(M)-spaces, p ∈ [1,∞), where we construct the Lp(M)-
spaces with respect to the Riemannian measure of our manifold M .

The Laplace-Beltrami operator acting on the Hilbert space L2(M) with domain
C∞

c (M) (the set of differentiable functions with compact support) is, for complete
manifolds M , essentially self-adjoint. That is to say, the closure of the Laplace-
Beltrami operator, we call it also ∆M , is self-adjoint. Furthermore, ∆M is a positive
operator, i.e. 〈∆Mf, f〉 ≥ 0 for f ∈ dom(∆M), and therefore −∆M generates a
bounded analytic semigroup e−t∆M on L2(M), which can be defined by the spectral
theorem for unbounded self-adjoint operators. One can prove the equality

e−t∆Mu0(x) =

∫
M

K(t, x, y)u0(y) dvol(y),

for all initial data u0 ∈ L2(M), where K denotes the corresponding heat kernel.
Details for this can be found in [71].
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Lemma 2.5. The semigroup e−t∆M on L2(M) is a symmetric Markov semigroup,
i.e.

(i) ∆M is positive and self-adjoint,

(ii) e−t∆M is positive, which means e−t∆Mf ≥ 0 for all f ∈ L2(M) with f ≥ 0,

(iii) e−t∆M is a contraction on L∞(M).

Proof. It remains to prove (ii) and (iii). But these properties follow immediately
from the positivity of the heat kernel K and the fact∫

M

K(t, x, y) dvol(y) ≤ 1.

The terminology for these semigroups is not unique. Another widely used
term is submarkovian semigroup reflecting better that these semigroups are L∞-
contractions. I would prefer to include the condition e−t∆M 1 = 1 in the definition
of symmetric Markov semigroups, which is in our case equivalent to stochastic
completeness and therefore satisfied for the heat semigroups on locally symmetric
spaces.

For a proof of the next theorem we refer to Theorem 1.4.1 and Theorem 1.4.2 in
[19].

Theorem 2.6. (a) The semigroup e−t∆M leaves the set

L1(M) ∩ L∞(M) ⊂ L2(M)

invariant and e−t∆M may be extended to a positive contraction semigroup
Tp(t) on Lp(M) for all p ∈ [1,∞].

(b) These semigroups are consistent, i.e.

Tp(t)f = Tq(t)f

if f ∈ Lp(M) ∩ Lq(M), and they are strongly continuous if p ∈ [1,∞).

(c) If p ∈ (1,∞), the semigroup Tp(t) is a bounded analytic semigroup with angle

of analyticity θp ≥ π
2

(
1− |2

p
− 1|

)
.

The proof of part (c) in [19] relies on the Stein interpolation theorem. Another
approach, which yields a better estimate of the angle θp, can be found in [59]:
V.A. Liskevich and M.A. Perelmuter proved for the angle of analyticity θp of any
submarkovian semigroup:

θp ≥
π

2
− arctan

|p− 2|
2
√
p− 1

p ∈ (1,∞). (2.3)
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Notice that in general a symmetric Markov semigroup on L1(M) needs not be
analytic. For an example where this happens cf. Section 4.3 in [19]. However, if M
is a complete Riemannian manifold with bounded geometry, the heat semigroup
T1(t) = e−t∆M : L1(M) → L1(M) is analytic in some sector (cf. [77, 18]).

Definition 2.7. The Laplace-Beltrami operator ∆M,p on Lp(M), p ∈ [1,∞) is the
negative of the generator of the strongly continuous contraction semigroup Tp(t) on
Lp(M).

In the subsequent sections we write ∆M instead of ∆M,2 for the Laplace-Beltrami
operator on L2(M) and e−t∆M,p instead of Tp(t).

Lemma 2.8. If p, q ∈ [1,∞), the operators ∆M,p and ∆M,q are consistent, i.e.

∆M,pf = ∆M,qf for any f ∈ dom(∆M,p) ∩ dom(∆M,q).

Proof. Since the semigroups e−t∆M,p and e−t∆M,q are consistent, we have for f ∈
dom(∆M,p) ∩ dom(∆M,q):

1

t

(
e−t∆M,pf − f

) ||·||Lp−−−→ −∆M,pf (t ↓ 0)

and
1

t

(
e−t∆M,pf − f

)
=

1

t

(
e−t∆M,qf − f

) ||·||Lq−−−→ −∆M,qf (t ↓ 0).

Furthermore,
∆M,pf −∆M,qf ∈ Lp(M) + Lq(M)

and Lp(M) + Lq(M) is a Banach space for the norm

||g||Lp+Lq :=

inf {||h1||Lp + ||h2||Lq : h1 ∈ Lp(M), h2 ∈ Lq(M) with g = h1 + h2} .

In particular, we obtain

||∆M,pf −∆M,qf ||Lp+Lq ≤

||1
t

(
e−t∆M,pf − f

)
+ ∆M,pf ||Lp + ||1

t

(
e−t∆M,qf − f

)
+ ∆M,qf ||Lq

−→ 0 (t ↓ 0).

If we identify as usual the dual space of Lp(M), p <∞, with Lp′(M), 1
p
+ 1

p′
= 1,

we obtain the following lemma.

Lemma 2.9. The adjoint (or dual) operator of ∆M,p equals ∆M,p′:

(∆M,p)
′ = ∆M,p′ .
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Proof. This follows from the facts that both operators are closed and coincide on
C∞

c (M): Since the adjoint of a closed operator is always closed, we only need to
show the last claim. For this we take f1, f2 ∈ C∞

c (M). Using Stokes’ theorem and
the formula div(fZ) = g(gradf, Z) + fdivZ we obtain Greens formula∫

M

f1∆Mf2 dvol(x) =

∫
M

g(gradf1, gradf2) dvol(x),

where g denotes the Riemannian metric on M . Denoting by 〈·, ·〉 the duality
bracket we obtain

〈(∆M,p)
′f1, f2〉 = 〈f1,∆M,pf2〉

=

∫
M

f1∆M,pf2 dvol(x) =

∫
M

(∆M,p′f1)f2 dvol(x)

= 〈∆M,p′f1, f2〉.

Now the lemma follows from the Hahn-Banach theorem or by constructing certain
cut-off functions f2.

Definition 2.10. The Lp-spectrum σ(∆M,p) of a Riemannian manifold is the spec-
trum of ∆M,p, p ∈ [1,∞).

The theory of analytic semigroups and (2.3) imply that σ(∆M,p), p ∈ (1,∞), is
contained in the sector{

z ∈ C \ {0} : | arg(z)| ≤ π

2
− θp

}
∪ {0} ⊂{

z ∈ C \ {0} : | arg(z)| ≤ arctan
|p− 2|

2
√
p− 1

}
∪ {0},

which degenerates in the case p = 2 to the set of non-negative real numbers. Our
considerations in Chapter 4 yield the result that the angle (2.3) is optimal with
respect to the class of symmetric markov semigroups. Other proofs for this can be
found in [53, 54, 78], where the argument in [54] even shows that the angle (2.3)
is optimal for the class of Neumann Laplacians on domains in Euclidean space.

2.3. Lp-Spectrum of a Product Manifold

In this section we want to prove the following theorem.

Theorem 2.11. Let M = M1 ×M2 be a (Riemannian) product of Riemannian
manifolds M1 and M2. Furthermore, we denote by ∆M,p,∆M1,p, and ∆M2,p the
Laplace-Beltrami operators on the respective Lp-spaces. Then the Lp-spectrum for
p ∈ (1,∞) of ∆M,p is the set-theoretic sum of the spectra of ∆M1,p and ∆M2,p:

σ(∆M,p) = σ(∆M1,p) + σ(∆M2,p) = {w + z : w ∈ σ(∆M1,p), z ∈ σ(∆M2,p)} .
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Proof. We obtain for all f ∈ C∞
c (M1 × M2) as a consequence of representation

(2.1) the formula

∆M,pf(x1, x2) = ∆M1,pf(·, x2)|x1 + ∆M2,pf(x1, ·)|x2 . (2.4)

The statement of the theorem follows easily for p = 2 if the manifolds M1 and M2

are compact. Note that the spectrum of compact manifolds is discrete and consists
only of eigenvalues, cf. Section 3.1 below. In this case we can find complete
orthonormal systems {Φi : i ∈ I} of L2(M1) and {Ψj : j ∈ J} of L2(M2) consisting
of eigenfunctions for ∆M1 and ∆M2 . Then the set {ΦiΨj : i ∈ I, j ∈ J} is a
complete orthonormal system of L2(M) consisting of eigenfunctions for ∆M and
the claim follows. For p ∈ (1,∞) the result follows since the Lp-spectrum of a
compact Riemannian manifold does not depend on p. This is a consequence of a
result due to K.-T. Sturm, cf. [72].
If the manifold is non-compact, the spectrum needs not be discrete and may depend
on p. To prove the theorem in full generality we need deeper results from the theory
of tensor products. For more details we refer to the Appendix A and the book [25].
The Banach space Lp(M1 ×M2) is isometrically isomorphic to the tensor product
Lp(M1)⊗̃4pL

p(M2). Thus, we obtain in view of formula (2.4)

∆M,p = ∆M1,p ⊗ I + I ⊗∆M2,p.

It is known, that there is a uniform cross norm (or tensor norm) gp which coincides
with the norm 4p on Lp(M1)⊗ Lp(M2). Recall also that the semigroups e−t∆M1,p

and e−t∆M2,p are analytic. Therefore, our theorem is a special case of Theorem 5
in [68] and the proof is complete.

2.4. The Heat Kernel on a
Symmetric Space of non-positive Curvature

The asymptotic behavior of the heat kernel for t→∞ on symmetric spaces X was
investigated in a series of papers (cf. [1] and the references therein):

E.B. Davies and N. Mandouvalos determined the asymptotic behavior for all real
hyperbolic spaces X = Hn+1 with n ≥ 1:

K(t, x, y) � t−
n+1

2 (1 + d+ t)n/2−1(1 + d) exp

(
−1

4
n2t− 1

2
nd− d2

4t

)
, (2.5)

for all t > 0 and x, y ∈ X such that d = d(x, y).1

J.-P. Anker and L. Ji generalized this result to all symmetric spaces of non-
positive curvature for those t > 0 and x, y ∈ X such that the time variable t is
large compared to the distance d(x, y) between the points x and y (cf. [1]).

1We write f � h for functions f and h if there is a positive constant c such that 1
ch ≤ f ≤ ch.
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Finally, in [2] or rather [64] J.-P. Anker and P. Ostellari were able to give a proof
without this additional assumption. Before we can state this result, we need some
preparation.

We again identify the symmetric space X with G/K and use the terminology
of Chapter 1. Notice first that G acts by isometries on X and that therefore the
Laplace-Beltrami operator is G-invariant: ∆X(f ◦g) = (∆Xf)◦g for all f ∈ C∞(X)
and g ∈ G. The uniqueness of the fundamental solution of the heat equation (c.f.
Theorem 2.2) then implies the G-invariance of the heat kernel, i.e. K(t, gx, gy) =
K(t, x, y) for all g ∈ G and x, y ∈ X. If we denote again by x0 the base point of
X and if we choose points x, y in the homogeneous space X, there are isometries
g, h ∈ G such that x = gx0 and y = hx0. Because of the Cartan decomposition
G = K exp a+K of the Lie group G (cf. Theorem 1.7) there are k, k′ ∈ K and
H = H(g−1h) ∈ a+ with g−1h = k expH(g−1h)k′. We can therefore write the heat
kernel as follows:

K(t, x, y) = K(t, gx0, hx0) = K(t, x0, g
−1hx0)

= K(t, x0, k expH(g−1h)k′x0) = K(t, x0, expHx0).

Of course, the isometries g and h are not necessarily uniquely determined. But
H ∈ a+ is uniquely determined by x and y ∈ X: assuming the isometries g′

and h′ ∈ G satisfy also x = g′x0 and y = h′x0, we clearly have g′ = gk1 and
h′ = hk2 with k1, k2 ∈ K. On the other hand, this implies g′−1h′ = k−1

1 g−1hk2 =
k−1

1 k expH(g−1h)k′k2 and the claim is proven because the H ∈ a+ in the Cartan
decomposition is unique. For the distance between x and y ∈ X we obtain by an
analogous calculation the formula

d(x, y) = d(x0, expHx0) = ||H||.

J.-P. Anker and P. Ostellari proved the following theorem.

Theorem 2.12. For all H ∈ a+ and all t > 0 we have

K(t, x0, expHx0) � t−n/2

 ∏
α∈Σ+

0

(1 + 〈α,H〉)(1 + t+ 〈α,H〉)
mα+m2α

2
−1


· e−||ρ||2t−〈ρ,H〉− ||H||2

4t ,

where Σ+
0 denotes the set of indivisible positive roots and ρ half the sum of the

positive roots (counted according to their multiplicity).
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We conclude this section by explaining how we can recover the heat kernel es-
timate (2.5) due to E.B. Davies and N. Mandouvalos for the hyperbolic plane H2

from the preceding theorem. We first remind the reader of the fact

H2 = SL(2,R)/SO(2,R).

The Lie algebra sl(2,R) = {Z ∈ R2×2 : tr(Z) = 0} has dimension 3, and we choose
the Cartan subalgebra

a :=

{(
λ 0
0 −λ

)
: λ ∈ R

}
.

Let us denote by Eij the 2× 2 matrix that has a 1 in the position (i, j) and zeros

elsewhere. Because of ad(H)(Z) = HZ − ZH, we obtain for H :=

(
λ1 0
0 λ2

)
∈ a

the following:

ad(H)(Eij) = (λi − λj)Eij (i 6= j),

ad(H)(E11 − E22) = 0.

The only roots are therefore α and −α with α(

(
λ1 0
0 λ2

)
) = λ1 − λ2, and the

corresponding root spaces are one dimensional, more precisely

gα = span(E12) and g−α = span(E21).

If we choose the Weyl chamber

a+ =

{(
λ 0
0 −λ

)
: λ > 0

}
,

we have Σ+ = Σ+
0 = {α} and ρ = 1

2
α. The inner product on sl(2,R) induced from

the Killing form is just twice the Euclidean inner product on R2×2:

〈Z1, Z2〉 = 2 tr(Z1 · Z>
2 ).

Therefore H1 := 1
2

(
1 0
0 −1

)
is the vector in a+ with norm 1. We obtain

||ρ|| = ρ(H1) =
1

2
α(H1) =

1

2
.

After these comments, the right hand side in Theorem 2.12 reads for general H ∈
a+ as follows:

t−1(1 + ||H||)(1 + t+ ||H||)−1/2e−
1
4
t− 1

2
||H||− ||H||2

4t .

Because of ||H|| = d(x, y) this is just the right hand side of (2.5) in the case n = 1.
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2.5. The Heat Kernel on Quotients of
Cartan-Hadamard Manifolds

In this section we want to determine the heat kernel k on a quotient M = Γ\X of
a Cartan-Hadamard manifold X by a discrete subgroup Γ of the isometry group
that acts freely on X if the heat kernel K on the universal covering space X is
given. Using Theorem 2.12 we will be able to estimate k in the next section if M
is a locally symmetric space.
Recall, that a Cartan-Hadamard manifold is a connected, simply connected, com-
plete Riemannian manifold with non-positive sectional curvature.

Theorem 2.13. Let X denote an n-dimensional Cartan-Hadamard manifold. As-
sume, that the Ricci curvature is bounded from below by the constant (n− 1)κ < 0.
Furthermore, we take a discrete subgroup Γ ⊂ Isom(X) of the isometry group which
acts freely on X. If we denote by K the heat kernel on X and by k the heat kernel
on the quotient space Γ\X, we have for all x, y ∈ X:

k(t, π(x), π(y)) =
∑
γ∈Γ

K(t, x, γy)

with the covering map π : X →M .

In the case of X = Hn there is a proof in [12]. If the quotient manifold M
is compact and if the heat kernel K on X and the first derivatives of K satisfy
certain estimates, this result can already be found in [27]. In [16] there is a proof
for symmetric spaces of non-compact type.
In the remaining part of this section X and Γ are always assumed to satisfy the
conditions of Theorem 2.13. But before we can give a proof of this theorem, we
need to prove two lemmas.

Let f ∈ C(X) be a Γ-invariant function, i.e. f(γx) = f(x) for all γ ∈ Γ and
x ∈ X. We define the projection Pf of f to C(M) by (Pf)(π(x)) := f(x). Because
of the Γ-invariance of f the projection Pf is well-defined.

Lemma 2.14. If f ∈ C(X) is Γ-invariant and if the restriction of f to a funda-
mental domain F ⊂ X for Γ has compact support (f |F ∈ Cc(F )), we have:

e−t∆M (Pf) = P (e−t∆Xf).

Proof. This lemma will follow from the uniqueness theorem 2.2. We first consider
the following two Cauchy problems on M or X respectively:

∂

∂t
ũt(x̃) = −∆M ũt(x̃),

ũ0(x̃) = (Pf)(x̃),
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2.5. Quotients of Cartan-Hadamard Manifolds

and

∂

∂t
ut(x) = −∆Xut(x),

u0(x) = f(x). (2.6)

The solutions are
ũt(x̃) = (e−t∆M (Pf))(x̃)

and

ut(x) = (e−t∆Xf)(x) =

∫
X

K(t, x, y)f(y) dvol(y).

Because of the observation

ut(γx) =

∫
X

K(t, x, γ−1y)f(y) dvol(y) =

∫
X

K(t, x, y)f(γy) dvol(y)

the solution ut(x) is also Γ-invariant. Now it suffices to show the equality ut = ũt◦π
since ut(x) = P (e−∆Xf)(π(x)). For this we check whether ũt ◦ π is also a solution
of the Cauchy problem (2.6):

−∆X(ũt ◦ π) = −(∆M ũt) ◦ π =

(
∂

∂t
ũt

)
◦ π =

∂

∂t
(ũt ◦ π),

where we used in the first step that the covering map π : X → M is a local
isometry. Furthermore, we have:

ũ0 ◦ π(x) = (Pf)(π(x)) = f(x).

Because of
∫

X
K(t, x, y) dvol(y) = 1 (cf. Lemma 2.3) the boundedness of the

solution ut(x) follows from the boundedness of f . An analogous argument implies
also that ũt ◦π(x) is bounded. But since bounded solutions to (2.6) are unique (cf.
Theorem 2.2), the claim follows.

Lemma 2.15. Let N(s;x, y) := #{γ ∈ Γ : d(x, γy) < s} denote the orbit counting
function. Then there exists a constant C1 > 0, only depending on Γ, the dimension
n of X and κ, such that

N(s;x, y) ≤ C1e
(n−1)

√
−κs.

Proof. Choose x, y ∈ X and a ball B(y, ε) with center y and radius ε = ε(Γ) > 0
such that B(y, ε) ∩B(γy, ε) = ∅ for all γ 6= id. It follows

N(s;x, y)volB(y, ε) ≤ volB(x, s+ ε).

If we compare the volume of a ball in X with the volume of a comparison ball in
the simply connected space form Mn

κ with constant sectional curvature κ < 0 or
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with the volume in the Euclidean space Rn respectively, we obtain the estimate
(cf. Chapter 3.4 in [15]):

N(s;x, y) ≤ volB(x, s+ ε)

volB(y, ε)
≤ cn,κe

(n−1)
√
−κ(s+ε)

c′nε
n

= C1e
(n−1)

√
−κs.

For symmetric spaces of non-compact type a sharper estimate is possible, c.f. for
example [56]. The estimate therein is based on a sharper estimate of the volume
of balls (cf. [50]).

Proof of Theorem 2.13. We first remark that

k̃(t, π(x), π(y)) :=
∑
γ∈Γ

K(t, x, γy)

is a well-defined function k̃ on (0,∞)×M ×M with values in [0,∞].

In the next step we show that the series converges uniformly on [a, b] × B × B
for all 0 < a < b < ∞ and any non-empty compact subset B ⊂ X. Therefore,∑

γ∈ΓK(t, x, γy) is continuous on (0,∞)×X ×X.
We first claim that for any R > 0 the set

Γ(B,R) := {γ ∈ Γ : d(B, γB) ≤ R}

is finite. To see this, we observe that BR := {x ∈ X : d(B, x) ≤ R + diam(B)} is
a compact subset of X. Furthermore, we have B ⊂ BR and for each γ ∈ Γ(B,R)
also γB ⊂ BR. We conclude γBR ∩ BR 6= ∅. Since the subgroup Γ is discrete, the
set Γ(B,R) has to be finite.
Our aim is to prove that

∑
γ∈Γ\Γ(B,R)K(t, x, γy) converges uniformly on [a, b] ×

B × B to zero if R→∞. For this, it suffices to use the following upper bound of
the heat kernel on X:

K(t, x, y) ≤ C2 t
−n/2 exp

(
−d

2(x, y)

2Dt

)
, (2.7)

for all t > 0, D > 2 and a constant C2 = C2(D) > 0 that depends only on D. Such
an estimate holds in all Cartan-Hadamard manifolds and a proof can be found in
Section 7.4 of [37]. Combining this with the fact that the orbit counting function
N(s;x, y) := #{γ ∈ Γ : d(x, γy) < s} grows at most exponentially in s (cf. Lemma
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2.15) we obtain:

∑
γ∈Γ\Γ(B,R)

K(t, x, γy) ≤ C2 a
−n/2

∑
γ∈Γ\Γ(B,R)

exp

(
−d

2(x, γy)

2Db

)

≤ C2 a
−n/2

∞∑
m=1

#{γ ∈ Γ \ Γ(B,R) : mR ≤ d(x, γy) < (m+ 1)R}

· exp

(
−m

2R2

2Db

)
≤ C1C2 a

−n/2

∞∑
m=1

e(n−1)
√
−κ(m+1)R exp

(
−m

2R2

2Db

)
.

The last series is uniformly convergent (with respect to R > 1), independent of
(t, x, y) ∈ [a, b]×B ×B and converges to zero if R→∞.

Now, the theorem is a consequence of Lemma 2.14: On the one hand, we have
for all positive, Γ-invariant, and continuous functions f with f |F ∈ Cc(F )

P
(
e−t∆Xf

)
(π(x)) = e−t∆Xf(x) =

∫
X

K(t, x, y)f(y) dvol(y)

=
∑
γ∈Γ

∫
γF

K(t, x, y)f(y) dvol(y)

=
∑
γ∈Γ

∫
F

K(t, x, γy)f(y) dvol(y)

=

∫
F

(∑
γ∈Γ

K(t, x, γy)

)
f(y) dvol(y).

Note, that we used the monotone convergence theorem due to B. Levi for inter-
changing summation and integration. On the other hand we have

(
e−t∆M (Pf)

)
(π(x)) =

∫
F

k(t, π(x), π(y))f(y) dvol(y),

where k denotes the heat kernel on M . This concludes the proof since the mapping∑
γ∈ΓK(t, x, γy) is continuous.
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Remark 2.16. The proof above shows that Theorem 2.13 holds for more general
Riemannian manifolds if we have

(i) a rough heat kernel estimate like (2.7) and

(ii) an upper bound for the orbit counting function that grows at most exponen-
tially, c.f. Lemma 2.15.
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Chapter 3.

Heat Kernel Estimates and
L2-Spectrum

In this chapter we first give an upper bound for the heat kernel on general compact
Riemannian manifolds. After that, we use the results from Sections 2.4 and 2.5
to prove (upper) Gaussian bounds of the heat kernel k on non-compact locally
symmetric spaces M := Γ\X. This generalizes results obtained by E.B. Davies
and N. Mandouvalos in [23] for non-compact hyperbolic manifolds.

3.1. General Compact Riemannian Manifolds

In this section we denote by M always a compact, connected Riemannian manifold
(without boundary). For details to the results below consult for example [14] or
[70].

The resolvent (∆M + 1)−1 : L2(M) → L2(M) of the Laplace-Beltrami op-
erator ∆M := −div grad has the integral kernel (Green function) G−1(x, y) =∫∞

0
e−tK(t, x, y) dt where K : (0,∞) × M × M → R denotes the fundamental

solution of the heat equation on M . Since we assume M to be compact, we
have G−1 ∈ L2(M × M) and the resolvent (∆M + 1)−1 is therefore a Hilbert-
Schmidt operator, in particular compact. Because of the spectral mapping theo-
rem (for resolvents) we obtain: The L2-spectrum of the Laplace-Beltrami operator
∆M := −div grad on M is discrete and consists only of an infinite series of eigen-
values

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞,

where each eigenvalue appears according to its (finite) multiplicity.
Since the manifold M is compact, all the constant functions ( 6= 0) are L2-eigen-

functions and therefore λ0 has to be zero. These are actually all the possible
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eigenfunctions for the eigenvalue 0 since any harmonic function on a compact and
connected Riemannian manifold is a constant function.

Furthermore, we can find a complete orthonormal system of the Hilbert space
L2(M) consisting of eigenfunctions for ∆M . Elliptic regularity implies that every
eigenfunction Φ is differentiable: Φ ∈ C∞(M).

If K : (0,∞)×M ×M → R denotes again the heat kernel on M and {Φj : j ∈
N} a complete orthonormal system of L2(M) consisting of eigenfunctions for the
eigenvalues λj, ∆MΦj = λjΦj, we have

K(t, x, y) =
∞∑

j=0

e−λjtΦj(x)Φj(y) =
1

vol (M)
+

∞∑
j=1

e−λjtΦj(x)Φj(y), (3.1)

with uniform convergence on subsets of the form [a,∞)×M ×M , a > 0.

The next theorem shows that the heat kernel K on a compact Riemannian
manifold converges for t→∞ exponentially in t and uniformly in x, y ∈M to the
limit 1

vol (M)
. Because of the physical interpretation of the heat equation and the

heat kernel, this is plausible: The heat tries to diminish differences of temperature
in M by flowing from regions of high temperature to regions of low temperature.
Since M is compact, this will end up in a stationary state.

Theorem 3.1. There is a constant C = C(M) > 0, only depending on M , such
that for all x, y ∈M and t ≥ 1 the following holds:∣∣∣∣K(t, x, y)− 1

vol (M)

∣∣∣∣ ≤ Ce−λ1t.

Proof. The manifold is compact. Therefore, the claim is an easy consequence of
the observation∣∣∣∣K(t, x, y)− 1

vol (M)

∣∣∣∣ =

∣∣∣∣∣
∞∑

j=1

e−λjtΦj(x)Φj(y)

∣∣∣∣∣
= e−λ1t ·

∣∣∣∣∣
∞∑

j=1

e−(λj−λ1)tΦj(x)Φj(y)

∣∣∣∣∣
≤ e−λ1t ·

(
N∑

j=1

e−(λj−λ1)t|Φj(x)Φj(y)|

+

∣∣∣∣∣
∞∑

j=N+1

e−(λj−λ1)tΦj(x)Φj(y)

∣∣∣∣∣
)
.

Because of uniform convergence of the series (3.1) on [1,∞)×M ×M , we can find
an N ∈ N such that the second term in parentheses is less than 1. Since M is
compact, the first term is bounded and the claim follows.

32
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Gaussian (upper) bounds on compact Riemannian manifolds are not of major

interest since the Gaussian factor exp(−d2(x,y)
4t

) is bounded away from zero for fixed
t. Hence, we will turn to (Gaussian) heat kernel estimates on non-compact locally
symmetric spaces.

3.2. Poincaré Series and the Critical Exponent

Let us denote by X = G/K as before a symmetric space of non-positive sectional
curvature and by Γ ⊂ G a discrete subgroup of the isometry group which acts
freely on X. The resulting locally symmetric space is again denoted by M = Γ\X.

A major role in our estimates and upper bounds plays the Poincaré series

P (s;x, y) :=
∑
γ∈Γ

e−sd(x,γy)

with s ∈ (0,∞), x, y ∈ X and its critical exponent

δ(Γ) := inf{s ∈ (0,∞) : P (s;x, y) <∞}.

Since all γ ∈ Γ are isometries, an application of the triangle inequality implies that
the definition of the critical exponent δ(Γ) does not depend on the choice of the
points x and y ∈ X. We further remark, that because of P (s; γ1x, γ2y) = P (s;x, y)
for all γ1, γ2 ∈ Γ, the Poincaré series P (s; ·, ·) can be considered as a function on
M ×M .

Recall the orbit counting function N(R;x, y) := #{γ ∈ Γ : d(x, γy) ≤ R}. One
can prove the equality

δ(Γ) = lim sup
R→∞

logN(R;x, y)

R
, (3.2)

cf. [62] or [73]. The critical exponent δ(Γ) is therefore a measure for the exponential
growth rate of Γ orbits in X.

Before we begin with estimating the Poincaré series, we give an upper bound for
the critical exponent δ(Γ).

Lemma 3.2. If ρ denotes (as above) half the sum of the positive roots, we have

δ(Γ) ≤ 2||ρ||.

Proof. We consider the symmetric space X = X−×Rm with non-positive sectional
curvature where X− denotes a symmetric space of non-compact type. Then the
following holds for the volume of a ball in X with center x ∈ X and radius R > 0:

volB(x,R) � RmR
(rankX−)−1

2 e2||ρ||R, (3.3)
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cf. [50]. As in the proof of Lemma 2.15 we obtain the estimate

N(R;x, y) ≤ volB(x,R + ε)

volB(y, ε)
≤ C

(
R + ε

ε

)m(
R + ε

ε

) (rankX−)−1

2

e2||ρ||R.

The claim now follows from formula (3.2).

3.2.1. Estimates of the Poincaré Series

Since the Poincaré series appears in our heat kernel estimates, we prove in this
subsection certain upper bounds for this series. These bounds are important if one
is not only interested in the asymptotic behavior of the heat kernels k(t, x̃, ỹ) if
t→∞ (for fixed points x̃ and ỹ ∈M) but also if the space variables x̃ and ỹ vary.

In the following lemma we denote by inj(x̃) the injectivity radius of x̃ ∈ M =
Γ\X. Recall the formula

inj(x̃) =
1

2
min {d(x, γx) : γ ∈ Γ \ {id}} ,

which is true for all x ∈ X projecting to x̃, i.e. π(x) = x̃ where π : X → Γ\X
denotes the canonical projection. For such points x, we therefore define inj(x) :=
inj(x̃).

It turns out, that under the assumption s > 2||ρ|| it is easier to obtain upper
bounds of the Poincaré series P (s;x, y).

Lemma 3.3. Let s > 2||ρ|| and choose 0 < 2ε < s−2||ρ||. Then there is a constant
C = C(s, ε) > 0, such that

1 ≤ P (s;x, x) ≤ 1 + C

(
1

inj(x)

)m+
(rankX−)−1

2

· e(2||ρ||−s+2ε)inj(x).

Proof. The lower bound is trivial since id ∈ Γ. The upper bound follows essentially
from (3.3). In fact, we have

P (s;x, x) ≤

1 +
∞∑

n=0

#{γ ∈ Γ : inj(x) + n ≤ d(x, γx) ≤ inj(x) + n+ 1} · e(−s(inj(x)+n)).

Since the open balls B(γx, inj(x)) are pairwise disjoint, we obtain the following
estimate for Sn(x) := #{γ ∈ Γ : inj(x) + n ≤ d(x, γx) ≤ inj(x) + n+ 1}:

Sn(x)volB(x, inj(x)) ≤ volB(x, 2inj(x) + n+ 1).
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For all ε > 0 we have volB(x,R) ≤ cεe
(2||ρ||+ε)R with a constant cε > 0 that

depends on the choice of ε. Using (3.3) we can conclude

Sn(x) ≤ volB(x, 2inj(x) + n+ 1)

volB(x, inj(x))

≤ Cε

(
1

inj(x)

)m+
(rankX−)−1

2

· e(2||ρ||+ε)(2inj(x)+n+1)e−2||ρ||inj(x).

This implies the following upper bound of the Poincaré series:

P (s;x, x) ≤ 1 + Cε

(
1

inj(x)

)m+
(rankX−)−1

2

· e(2||ρ||−s+2ε)inj(x)e2||ρ||+ε ·

·
∞∑

n=0

e(2||ρ||−s+ε)n.

Because of our choice of s and ε we have in particular 2||ρ|| − s + ε < 0 and
the geometric series

∑∞
n=0 e(2||ρ||−s+ε)n equals (1 − e2||ρ||−s+ε)−1. Now the proof is

complete.

Of course, it would suffice for the proof of the lemma above that ε satisfies the
inequality 2||ρ||−s+ε < 0. But this (weaker) assumption does not guarantee that
the term e(2||ρ||−s+2ε)inj(x) converges (exponentially) to zero as inj(x) →∞.

Recall, that a Riemannian Manifold M is said to have bounded geometry if its
injectivity radius inj(M) := infx∈M inj(x) is bounded from below by a strictly
positive constant and if its Ricci curvature is bounded from below. The second
condition is always fulfilled if M is a locally symmetric space.

Corollary 3.4. Let M = Γ\X be a locally symmetric space and choose s > 2||ρ||.

(a) Assume, that M has bounded geometry. Then the Poincaré series P (s;x, x)
is (for fixed s) bounded from above.

(b) If xn ∈ X is a sequence with inj(xn) →∞, it follows P (s;xn, xn) → 1.

For the following estimates of the Poincaré series we choose an arbitrary (but
fixed) point x′ ∈ X.

Lemma 3.5. Choose s > 2||ρ|| and x′ ∈ X. Then the following holds:

(a) There is a positive constant C = C(x′, s) (only depending on x′ and s) such
that

P (s;x, x′) ≤ C

for all x ∈ X.
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(b) There is a positive constant C = C(x′, s) (only depending on x′ and s) such
that

P (s;x, x) ≤ CesdM (π(x),π(x′))

for all x ∈ X.

Proof. (a) The proof is similar to the preceding one:

P (s;x, x′) ≤
∞∑

n=1

#{γ ∈ Γ : n− 1 ≤ d(x, γx′) ≤ n} · e−s(n−1)

≤
∞∑

n=1

volB(x, n+ inj(x′))

volB(x′, inj(x′))
· e−s(n−1)

≤ Cε

(
1

inj(x′)

)m+
(rankX−)−1

2

· e−2||ρ||inj(x′) ·

·
∞∑

n=1

e(2||ρ||+ε)(n+inj(x′)) · e−s(n−1)

= Cε,x′,s

∞∑
n=1

e(2||ρ||+ε−s)n.

If we choose ε sufficiently small, the last series converges and the claim fol-
lows.

(b) Using the triangle inequality d(x, γx) + d(x, γ′x′) ≥ d(γx, γ′x′) we can con-
clude for all γ′ ∈ Γ:

P (s;x, x) ≤
∑
γ∈Γ

e−sd(γx,γ′x′) · esd(x,γ′x′)

= P (s;x, γ′x′)esd(x,γ′x′)

= P (s;x, x′)esd(x,γ′x′).

We choose an isometry γ′ ∈ Γ with the property

d(x, γ′x′) = min
γ∈Γ

d(x, γx′) = dM(π(x), π(x′)).

Now part (b) follows immediately from part (a).

3.3. Gaussian Bounds – Part 1

First of all we define

ρmin := min
{
〈ρ,H〉 : H ∈ a+, ||H|| = 1

}
≥ 0.
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3.3. Gaussian Bounds – Part 1

In the following we study the cases δ(Γ) < ρmin and δ(Γ) ≥ ρmin separately. In
the first case we obtain a Gaussian bound directly while we need in the second
case a result due to A. Grigor’yan to obtain Gaussian bounds at least in certain
situations.

Theorem 3.6. Assume δ(Γ) < ρmin. Then there is for any s ∈ (δ(Γ), ρmin) a
constant C = C(s) > 0 such that for all t > 0 and x̃, ỹ ∈M = Γ\X the estimate

k(t, x̃, ỹ) ≤ Ct−n/2(1 + t)m exp

(
−||ρ||2t− d2

M(x̃, ỹ)

4t

)
P (s; x̃, ỹ)

holds. Here, m ≥ 0 is defined by m :=
∑

α∈Σ+
0

(
mα+m2α

2
− 1
)
≥ 0.

Proof. We use Theorem 2.12 to estimate k(t, x̃, ỹ) =
∑

γ∈ΓK(t, x, γy), where x, y ∈
X are chosen such that π(x) = x̃ and π(y) = ỹ. For this we denote by H(γ) the
unique element in a+ with

K(t, x, γy) = K(t, x0, expH(γ)x0)

and
d(x, γy) = ||H(γ)||

(cf. Section 2.4). First, we obtain:

k(t, x̃, ỹ) ≤ C1t
−n/2(1 + t)m ·

·
∑
γ∈Γ

 ∏
α∈Σ+

0

(1 + 〈α,H(γ)〉)
mα+m2α

2

 e−||ρ||
2t−〈ρ,H(γ)〉− ||H(γ)||2

4t .

Because of dM(x̃, ỹ) = minγ∈Γ d(x, γy) it further follows:

k(t, x̃, ỹ) ≤ C1t
−n/2(1 + t)me−||ρ||

2t− d2
M (x̃,ỹ)

4t ·

·
∑
γ∈Γ

 ∏
α∈Σ+

0

(1 + 〈α,H(γ)〉)
mα+m2α

2

 e−〈ρ,H(γ)〉

≤ C1t
−n/2(1 + t)me−||ρ||

2t− d2
M (x̃,ỹ)

4t ·

·
∑
γ∈Γ

 ∏
α∈Σ+

0

(1 + ||α|| · ||H(γ)||)
mα+m2α

2

 e−ρmin||H(γ)||.

Now we have a closer look at the last sum. Since the term∏
α∈Σ+

0

(1 + ||α|| · ||H(γ)||)
mα+m2α

2
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Chapter 3. Heat Kernel Estimates and L2-Spectrum

is the square root of a polynomial in ||H(γ)||, we can find for every s ∈ (δ(Γ), ρmin)
a constant C2 = C2(s) > 0, such that∏

α∈Σ+
0

(1 + ||α|| · ||H(γ)||)
mα+m2α

2 e−ρmin||H(γ)|| ≤ C2e
−s||H(γ)|| = C2e

−sd(x,γy).

This concludes the proof.

The condition s < ρmin prevents an application of the results from Subsection
3.2.1: Using the triangle inequality, we can conclude P (s;x, y) ≤ P (s;x, x)esd(x,y).
But for the proof of the estimates of the Poincaré series P (s;x, x) in the mentioned
subsection we made the assumption s > 2||ρ||. Therefore, we give in Section 3.5
further heat kernel estimates where this problem does not occur.

In the following we give an estimate of the heat kernel on quotients M = Γ\X
for larger subgroups Γ, i.e. δ(Γ) ≥ ρmin. The statement of the next theorem is
also true for subgroups with δ(Γ) < ρmin but the estimate is weaker than the one
obtained in Theorem 3.6.

Theorem 3.7. Assume δ(Γ) ≥ ρmin. Then there is for all ε > 0 a constant
C = C(ε) > 0 such that the following estimate for the heat kernel k on M holds:

k(t, x̃, ỹ) ≤ Ct−n/2(1 + t)me−(||ρ||2−(δ(Γ)−ρmin+ε)2)t · P (δ(Γ) + ε/2; x̃, ỹ),

where m ≥ 0 is defined as in Theorem 3.6.

Proof. In order to estimate

k(t, x̃, ỹ) =
∑
γ∈Γ

K(t, x, γy),

we use again Theorem 2.12. First of all, we concentrate on the term

e−||ρ||
2t−〈ρ,H〉− ||H||2

4t ≤ e−||ρ||
2t−ρmin||H||− ||H||2

4t .

A straightforward calculation shows that for any β ∈ R the right hand side of this
inequality coincides with the left hand side of the next inequality:

e−(ρmin+β)||H||−||ρ||2te
−(

||H||
2
√

t
−β

√
t)2

eβ2t ≤ e−(ρmin+β)||H||−||ρ||2teβ2t.

Choose ε > 0 and define β := β(ε) := δ(Γ)− ρmin + ε.
We obtain the estimate (cf. the proof of Theorem 3.6)

k(t, x̃, ỹ) ≤ C1t
−n/2(1 + t)me−(||ρ||2−(δ(Γ)−ρmin+ε)2)t ·

·
∑
γ∈Γ

 ∏
α∈Σ+

0

(1 + 〈α,H(γ)〉)
mα+m2α

2

 e−(δ(Γ)+ε)||H(γ)||

≤ Ct−n/2(1 + t)me−(||ρ||2−(δ(Γ)−ρmin+ε)2)t · P (δ(Γ) + ε/2;x, y).

In the last step we again used 〈α,H(γ)〉 ≤ ||α|| · ||H(γ)|| and ||H(γ)|| = d(x, γy).
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3.3. Gaussian Bounds – Part 1

Remark 3.8. Because of k → 0 (if t→∞) this estimate of the heat kernel k is
only interesting if there is an ε > 0 such that ||ρ||2− (δ(Γ)− ρmin + ε)2 is positive.
But this is equivalent to ||ρ||+ ρmin > δ(Γ) ≥ ρmin.
For symmetric spaces X = G/K of rank 1 the Lie subalgebra a has dimension one
and we therefore have ρmin = ||ρ||. The condition from above reads in this case
||ρ|| ≤ δ(Γ) < 2||ρ||. If the Lie group G has additionally Kazhdan’s property (T)
this condition is satisfied by a discrete subgroup Γ if and only if ||ρ|| ≤ δ(Γ) and
the co-volume vol (Γ\X) is infinite (cf. Theorem 4.4 in [16]).

If we apply the following result due to A. Grigory’an, we obtain for all subgroups
Γ with ρmin ≤ δ(Γ) < ||ρ||+ ρmin a Gaussian estimate.

Theorem 3.9 (cf. [36] or [37]). Choose two points x and y on a connected Rie-
mannian manifold M and denote by k the heat kernel on M . Assume, we have for
all t ∈ (0, T ) (with T being a positive real number or infinity)

k(t, x, x) ≤ 1

f(t)

and

k(t, y, y) ≤ 1

g(t)

with regular functions f and g (compare the definition below). Then there is for
all D > 4 a constant µ = µ(D) > 0 such that the following estimate holds for any
t ∈ (0, T ) and all x, y ∈M :

k(t, x, y) ≤ const.√
f(µt)g(µt)

exp

(
−d

2(x, y)

Dt

)
.

Definition 3.10. We call a function f : (0,∞) → R regular if it satisfies the
conditions (i) and (ii):

(i) The function f is positive and monotone increasing.

(ii) There are constants A ≥ 1 and a > 1, such that the following inequality holds
for all 0 < t1 < t2:

f(at1)

f(t1)
≤ A

f(at2)

f(t2)
.
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Chapter 3. Heat Kernel Estimates and L2-Spectrum

By using the estimates from Theorem 3.7 and Theorem 3.9 we obtain the corol-
lary announced above:

Corollary 3.11. Assume ρmin ≤ δ(Γ) < ρmin + ||ρ||. Then we have for the heat
kernel k on M = Γ\X the Gaussian estimate

k(t, x̃, ỹ) ≤ Ct−n/2(1 + t)me−(||ρ||2−(δ(Γ)−ρmin+ε)2)µt ·

e−
d2
M (x̃,ỹ)

Dt

√
P (δ(Γ) + ε/2; x̃, x̃)

√
P (δ(Γ) + ε/2; ỹ, ỹ),

with constants D > 4, µ = µ(D) > 0, C = C(ε,D) > 0 and a constant ε > 0 small
enough, such that the term ||ρ||2 − (δ(Γ)− ρmin + ε)2 is positive.

Proof. We define for each x̃ ∈M a function f : (0,∞) → R by (cf. Theorem 3.7):

1

f(t)
:= Ct−n/2(1 + t)me−(||ρ||2−(δ(Γ)−ρmin+ε)2)t · P (δ(Γ) + ε/2; x̃, x̃).

Now, the corollary is a direct consequence of Theorem 3.9 if f is a regular function.
If we choose ε as mentioned in the corollary we see immediately that condition (i)
is fulfilled. To check property (ii), we first prove the existence of a T > 0 such that

for t ≥ T the quotient f(at)
f(t)

is monotone increasing. For t ≤ T we can show that

there is a constant A > 1 with f(at) ≤ Af(t). The regularity of f now follows as
in [36], p.38.

In this case we also have the problem that δ(Γ) + ε/2 is smaller than 2||ρ||
and therefore, we cannot apply the estimates of the Poincaré series obtained in the
previous section. This problem will be remedied in Section 3.5 under the additional
assumption dim(X) ≥ 3, too.

3.4. Heat Kernels and L2-Spectrum

The results of the preceding section can be applied in order to give a lower bound
for the bottom of the L2-spectrum

λ0(M) := inf{λ : λ ∈ σ(∆M)} ≥ 0

for locally symmetric spaces M := Γ\X. If M is a Riemannian manifold with finite
volume, we always have λ0(M) = 0 since the constant functions are contained in
L2(M). The basis for our estimates is the following lemma.

Lemma 3.12. Let M be a non-compact, connected Riemannian manifold with
Laplace-Beltrami operator ∆M and heat kernel K. Assume, there are b > 0, E ∈ R
and x ∈M with

K(t, x, x) ≤ be−Et

for all t ≥ 1. Then it follows λ0(M) ≥ E.
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3.4. Heat Kernels and L2-Spectrum

A similar result can be found in [23] (Lemma 5.3) for hyperbolic manifolds with
stronger assumptions: The authors require such an estimate of the heat kernel
for all points (x, y) ∈ M × M . In the proof they use the spectral theorem for
unbounded self-adjoint operators. We give a more elementary proof by recalling
the construction of heat kernels on Riemannian manifolds.

Definition 3.13. With Ω ⊂⊂ M we denote connected open subsets of M whose
closure Ω is compact and whose boundary ∂Ω is a differentiable submanifold.

We consider for Ω ⊂⊂M the Dirichlet eigenvalue problem ∆Ωu = λu, u|∂Ω = 0
in L2(Ω). Since the subsets Ω are pre-compact, the spectrum of the Laplace-
Beltrami operator ∆Ω is discrete: σ(∆Ω) = {λn(Ω) : n ∈ N} with 0 ≤ λ0(Ω) ≤
λ1(Ω) ≤ ...→∞. The associated heat kernel KΩ is given by

KΩ(t, x, y) =
∞∑

j=0

e−λj(Ω)tΦj,Ω(x)Φj,Ω(y),

where the Φj,Ω form an orthonormal basis consisting of eigenfunctions of ∆Ω with
eigenvalues λj(Ω). The maximum principle implies that for subsets Ω,Ω′ ⊂⊂
M with Ω ⊂ Ω′ the respective heat kernels satisfy the inequality KΩ(t, x, y) ≤
KΩ′(t, x, y).
For the remaining part of this section we denote by (Ωk)k∈N a sequence of pre-
compact subsets Ωk ⊂⊂M with Ωk ⊂ Ωk+1 and ∪∞k=1Ωk = M . One can prove that
the heat kernel K on M is the limit of the heat kernels KΩk

:

K(t, x, y) = lim
k→∞

KΩk
(t, x, y),

and the convergence is uniform on compact subsets of (0,∞) ×M ×M . Details
for this can be found in [14],[26] or [37].

Lemma 3.14. For a Riemannian manifold M the following holds:

λ0(M) = inf{(∆Mf, f)L2(M) : f ∈ C∞
c (M) with ||f ||L2(M) = 1}

= inf{λ0(Ω) : Ω ⊂⊂M}
= lim

k→∞
λ0(Ωk).

Proof. The first equality follows as in [45] since the spectrum of self-adjoint oper-
ators coincides always with the approximate point spectrum and since C∞

c (M) is
dense in the domain of the Laplace-Beltrami operator.
The second and third equality are consequences of the first one: On the one hand
we have

λ0(Ωk) = inf{(∆Ωk
f, f) : f ∈ C∞

c (Ωk), ||f ||L2(Ωk) = 1} ≥ λ0(M),

since C∞
c (Ωk) is dense in the domain of the Dirichlet-Laplace operator ∆Ωk

.
Choose on the other hand ε > 0 and f ∈ C∞

c (M), ||f ||L2(M) = 1 with (∆Mf, f) ≤
λ0(M)+ε. If we choose k ∈ N with suppf ⊂ Ωk, we obtain λ0(Ωk) ≤ λ0(M)+ε.
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Chapter 3. Heat Kernel Estimates and L2-Spectrum

Now we are ready to give a proof of Lemma 3.12:

Proof of Lemma 3.12. We have K(t, x, x) ≤ be−Et for all t ≥ 1. First we deduce

∞∑
j=0

e−λj(Ωk)tΦ2
j,Ωk

(x) = KΩk
(t, x, x) ≤ be−Et

for all k ∈ N. This is equivalent to

∞∑
j=0

e(E−λj(Ωk))tΦ2
j,Ωk

(x) ≤ b.

We choose k0 ∈ N such that x ∈ Ωk for all k ≥ k0. For these k we have the in-
equality λ0(Ωk) ≥ E since Φ0,Ωk

(x) 6= 0 (cf. [70], Lemma VI.3.10). An application
of Lemma 3.14 concludes the proof.

3.4.1. L2-Spectrum of Locally Symmetric Spaces

Theorem 3.15. Let Γ\X be a non-compact locally symmetric space. Then we
have the following lower bounds for the bottom λ0(Γ\X) of the L2-spectrum:

(a) λ0(Γ\X) ≥ ||ρ||2 if δ(Γ) < ρmin,

(b) λ0(Γ\X) ≥ ||ρ||2 − (δ(Γ)− ρmin)2 if ρmin ≤ δ(Γ) ≤ ||ρ||+ ρmin.

Proof. The assertions follow from Lemma 3.12 if we recall Theorem 3.6 and The-
orem 3.7: The function h : [1,∞) → R, t → t−n/2(1 + t)m is monotone decreasing
since m < n/2. Therefore, we obtain in the first case the estimate

k(t, x̃, x̃) ≤ b(x̃)e−||ρ||
2t

for all t ≥ 1 with a positive function b on Γ\X. In the second case, analogous
considerations lead for any ε > 0 to

k(t, x̃, x̃) ≤ bε(x̃)e
−(||ρ||2−(δ(Γ)−ρmin+ε)2)t

for all t ≥ 1.

In case of δ(Γ) > ||ρ||+ ρmin the term ||ρ||2 − (δ(Γ)− ρmin)2 is negative. Thus,
we still have zero as lower bound for λ0(Γ\X) in this case.

Remark 3.16. As in [23] (“note” after Theorem 5.1) we obtain also an upper
bound for all locally symmetric spaces Γ\X: λ0(Γ\X) ≤ ||ρ||2.

With this remark we can conclude:
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3.5. Gaussian Bounds – Part 2

Corollary 3.17. If Γ\X is a locally symmetric space with δ(Γ) < ρmin, we have

λ0(Γ\X) = ||ρ||2.

The lower bounds for the bottom of the L2-spectrum from above generalize
numerous former achievements: If Γ is a Fuchsian group, the results can already
be found in [31], [32], [33] and [65]. For hyperbolic spaces X = Hn with n ≥ 3 these
results are contained in [74]. K. Corlette proved these results for rank-1 symmetric
spaces X of non-compact type (cf. [16]). A generalization to symmetric spaces of
non-compact type with arbitrary rank is due to E. Leuzinger (cf. [57]). A closer
look at the last paper shows that the proof therein also works in our case, i.e. for
symmetric spaces X = G/K with non-positive curvature and discrete subgroups
Γ ⊂ G of the reductive Lie group G which act freely on X. But the methods in the
cited paper are different: The author uses Green function estimates due to J.-P.
Anker and L. Ji, and these are also valid in our (more general) situation (cf. [1]).

We summarize all the results from above:

Theorem 3.18. Let X = G/K be a symmetric space of non-positive sectional
curvature and Γ ⊂ G a discrete subgroup of the reductive Lie group G that acts
freely on X. Then the following holds:

(a) λ0(Γ\X) = ||ρ||2 if 0 ≤ δ(Γ) ≤ ρmin,

(b) ||ρ||2 − (δ(Γ)− ρmin)2 ≤ λ0(Γ\X) ≤ ||ρ||2 if ρmin ≤ δ(Γ) ≤ ||ρ||,

(c) max{0, ||ρ||2 − (δ(Γ)− ρmin)2} ≤ λ0(Γ\X) ≤ ||ρ||2 − (δ(Γ)− ||ρ||)2

if ||ρ|| ≤ δ(Γ) ≤ 2||ρ||.

3.5. Gaussian Bounds – Part 2

In this section we want to apply a theorem due to E.B. Davies and N. Mandou-
valos in order to obtain Gaussian bounds for a larger class of locally symmetric
spaces. Furthermore, we also give new upper bounds of the heat kernel on Γ\X for
subgroups Γ ⊂ G with δ(Γ) < ρmin which are suitable for applying the estimates
of the Poincaré series of Section 3.2.1.

Theorem 3.19 (E.B. Davies & N. Mandouvalos, cf. [22]). Let M denote a non-
compact Riemannian manifold with dimension n ≥ 3. We further denote by σ :
M → (0,∞) a C∞ function and by F ∈ R a constant such that

−∆Mσ

σ
≥ F.

Assume that for all t ∈ (0, 1] and x ∈ M the following (on-diagonal) estimate for
the heat kernel K on M holds:

K(t, x, x) ≤ Ct−n/2σ2(x).
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Then we have for all µ ∈ (0, 1), t > 0, and x, y ∈M the Gaussian estimate

K(t, x, y) ≤ Cµt
−n/2σ(x)σ(y) exp

(
(2µ− λ0(M))t− d2(x, y)

4(1 + µ)t

)
.

We begin with the definition of a function σ on our symmetric space X = G/K
which descends to a suitable function on the quotient spaceM = Γ\X for a discrete
subgroup Γ ⊂ G that acts freely on X.

Definition 3.20. Choose a non-negative function f ∈ C∞
c ([0,∞)) with f(0) 6= 0

and put h : X ×X → [0,∞), (x, y) 7→ f(d2(x, y)). For s > δ(Γ) we define

σ : X → (0,∞), x 7→
∫

X

h(x, y)
√
P (s; y, y) dvol(y).

To show that this function has the properties we need (in view of Theorem 3.19)
we prove the next lemma.

Lemma 3.21. The function σ is differentiable, Γ-invariant, and defines therefore
a function on the quotient space Γ\X. Furthermore, we have:

(a) There is a constant c > 1 such that

1

c

√
P (s;x, x) ≤ σ(x) ≤ c

√
P (s;x, x).

(b) There is a constant F with

|∆Xσ(x)| ≤ Fσ(x).

In particular, we have −∆Xσ
σ

≥ −F .

Proof. The differentiability of σ and the Γ-invariance are evidently clear. For the
proof of the remaining assertions we first remark that the triangle inequality implies

P (s; y, y) ≤ e2sd(x,y)P (s;x, x).

(a) The definition of the function σ implies the existence of a constant β > 0,
such that h(x, y) = 0 for all points x, y ∈ X with d(x, y) > β. We therefore
obtain

σ(x) =

∫
d(x,y)≤β

h(x, y)
√
P (s; y, y) dvol(y)

≤
∫

d(x,y)≤β

h(x, y)esd(x,y)
√
P (s;x, x) dvol(y)

≤ (maxh)esβ
√
P (s;x, x)volB(x, β) ≤ c1(s, h)

√
P (s;x, x),
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with a constant c1 > 0 that depends only on s and the function h. Notice,
that we used in the last step the fact that the volume of a ball B(x, β) in X
is smaller than the volume of a comparison ball in some hyperbolic space Hn

of constant curvature.
We choose 0 < a <∞ with f(s) > 0 for all s ∈ [0, a2]. It follows:

σ(x) ≥
∫

d(x,y)≤a

h(x, y)e−sd(x,y)
√
P (s;x, x) dvol(y)

≥ e−sa
√
P (s;x, x)

∫
d(x,y)≤a

h(x, y) dvol(y)

≥ e−sa
√
P (s;x, x) min

s∈[0,a2]
f(s)

∫
d(x,y)≤a

dvol(y)

≥ c2
√
P (s;x, x),

with a positive constant c2. In the last step we applied again a volume
comparison theorem in order to find a positive lower bound of the integral.
More precisely, we compared the volume of the ball B(x, a) ⊂ X with the
volume of a Euclidean comparison ball.

(b) Using (a), we obtain

|∆Xσ(x)| =

∣∣∣∣∫
d(x,y)≤β

(∆Xh)(x, y)
√
P (s; y, y) dvol(y)

∣∣∣∣
≤ esβ

√
P (s;x, x) max(|∆Xh|) = c3

√
P (s;x, x)

≤ Fσ(x),

and in particular F ≥ |∆Xσ(x)|
σ(x)

≥ ∆Xσ(x)
σ(x)

.

This yields the

Corollary 3.22. Let dimX ≥ 3 and µ ∈ (0, 1). Then we obtain the following
upper bounds for the heat kernel k on M := Γ\X:

(a) If δ(Γ) < ρmin and s > δ(Γ):

k(t, x̃, ỹ) ≤ Cµt
−n/2 exp

(
(2µ− ||ρ||2)t− d2

M(x̃, ỹ)

4(1 + µ)t

)
·

·
√
P (s; x̃, x̃)

√
P (s; ỹ, ỹ).

(b) If δ(Γ) ≥ ρmin:

k(t, x̃, ỹ) ≤ Cε,µt
−n/2 exp

(
(2µ− λ0(M))t− d2

M(x̃, ỹ)

4(1 + µ)t

)
·

·
√
P (δ(Γ) + ε; x̃, x̃)

√
P (δ(Γ) + ε; ỹ, ỹ),

for all ε > 0.
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Proof. The assertions follow from Theorem 3.19 and Lemma 3.21 since the results
in Section 3.3 imply in both cases a heat kernel estimate of the form

k(t, x̃, x̃) ≤ Ct−n/2σ2(x), t ∈ (0, 1],

with some x ∈ X such that π(x) = x̃.
We provide some details in case (b): Using Theorem 3.7 and Lemma 3.21 we
conclude for t ∈ (0, 1]:

k(t, x̃, x̃) ≤ Cεt
−n/2P (δ(Γ) + ε/2; x̃, x̃) ≤ C ′

εt
−n/2σ2(x),

where we put s := δ(Γ) + ε/2 in the definition of σ. The claim follows since
σ2(x) ≤ cP (δ(Γ) + ε/2;x, x).

Remark 3.23. These bounds contain also in case of δ(Γ) < ρmin the functions
P (s;x, x) instead of P (s;x, y) and s can be chosen as large as one wishes. Since
there is also no restriction on the choice of ε > 0 in part (b), and since we estimated
the functions P (s;x, x) in Section 3.2.1 for s > 2||ρ||, we now have “complete”
upper bounds for the heat kernels.

Using the estimate λ0(M) ≥ ||ρ||2−(δ(Γ)−ρmin)2 (cf. Theorem 3.15), we obtain
a slight improvement of Corollary 3.11:

Corollary 3.24. Let ρmin ≤ δ(Γ) < ρmin + ||ρ||. Then there is for all ε > 0 and
µ ∈ (0, 1) a constant Cε,µ, such that

k(t, x̃, ỹ) ≤ Cε,µt
−n/2 exp

(
(2µ− (||ρ||2 − (δ(Γ)− ρmin)2))t− d2

M(x̃, ỹ)

4(1 + µ)t

)
·
√
P (δ(Γ) + ε; x̃, x̃)

√
P (δ(Γ) + ε; ỹ, ỹ).

For the remaining part of this section we assume that X = G/K is a symmetric
space of non-compact type. Note, that the Lie group G is therefore semi-simple.
If we assume that G possesses moreover Kazhdan’s property (T), we can find a
constant c̃(G) > 0 (only depending on G), such that for all locally symmetric
spaces M = Γ\X the following holds (cf.[56]):

||ρ||2 ≥ λ0(M) ≥ c̃(G) > 0.

Together with Corollary 3.22 we obtain
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Corollary 3.25. Assume X = G/K is a symmetric space of non-compact type and
G has Kazhdan’s property (T). Then there are universal constants c(G), µ(G) > 0,
such that the following estimate holds for the heat kernel on all locally symmetric
spaces Γ\X:

k(t, x̃, ỹ) ≤ Cεt
−n/2 exp

(
−c(G)t− d2

M(x̃, ỹ)

4(1 + µ(G))t

)
·

·
√
P (δ(Γ) + ε, x̃, x̃)

√
P (δ(Γ) + ε, ỹ, ỹ),

for all ε > 0.

Proof. We define µ(G) := min{1
2
, c′(G)

4
} ∈ (0, 1) and c(G) := −2µ(G) + c̃(G) >

0.

3.6. Lower Bounds

In this section we determine lower bounds for the heat kernel k on locally symmetric
spaces Γ\X. Note, that these bounds hold only pointwise on the diagonal.

Lemma 3.26. Let M denote an arbitrary Riemannian manifold. Then, for any
ε > 0 and x ∈M , there is a constant Cx > 0 such that for all t > 0 the estimate

K(t, x, x) ≥ Cx exp (−(λ0(M) + ε)t)

holds.

Proof. We choose a pre-compact subset Ω ⊂⊂M with x ∈ Ω and λ0(Ω) ≤ λ0(M)+
ε. We conclude

K(t, x, x) ≥ KΩ(t, x, x) =
∞∑

j=0

e−λj(Ω)tΦ2
j,Ω(x) ≥ e−λ0(Ω)tΦ2

0,Ω(x).

As Φ0,Ω(x) 6= 0 (cf. [70], Lemma VI.3.10) the claim follows.

Together with Theorem 3.18 we obtain the next corollary.

Corollary 3.27. Assume M := Γ\X is a locally symmetric space. Then we have
the following lower bounds for the heat kernel k on M :

(a) Let 0 ≤ δ(Γ) ≤ ||ρ||. For any ε > 0 and x̃ ∈ M there is a constant Cx̃ such
that the estimate

k(t, x̃, x̃) ≥ Cx̃ exp
(
−(||ρ||2 + ε)t

)
holds.
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(b) If ||ρ|| ≤ δ(Γ) ≤ 2||ρ||, there is for any ε > 0 and x̃ ∈M a constant Cx̃ such
that the estimate

k(t, x̃, x̃) ≥ Cx̃ exp
(
−(||ρ||2 − (δ(Γ)− ||ρ||)2 + ε)t

)
holds.

Let us compare these lower bounds with the upper bounds obtained in Theorem
3.6 and in Theorem 3.7:
For subgroups Γ with δ(Γ) < ρmin in both cases the term e−||ρ||

2t is dominant if one
is interested in the asymptotic behavior for t→∞ (pointwise on the diagonal).
If δ(Γ) ≥ ρmin, the lower bound and the upper bound differ more and more the
larger the difference ||ρ|| − ρmin becomes. Since for rank-1 symmetric spaces X we
have ||ρ|| = ρmin, the dominant terms (for t→∞) coincide also in the rank-1 case
for subgroups with δ(Γ) ≥ ||ρ||.

3.7. L2-Eigenfunctions of the Laplace-Beltrami
operator

We apply some of the previous results in this chapter to prove that every L2-
eigenfunction of the Laplace-Beltrami operator on a locally symmetric space with
bounded geometry is bounded. Note that a locally symmetric space M = Γ\X has
bounded geometry if and only if the injectivity radius inj(M) of M is bounded away
from zero. If M has bounded geometry and in addition finite volume, the manifold
M is necessarily compact since no cusps can occur. Therefore the theorem below
is interesting only if the volume of M is infinite.

Theorem 3.28. Let M := Γ\X denote a locally symmetric space with bounded
geometry and dimM ≥ 3. Then every eigenfunction ϕ ∈ L2(M) of ∆M is bounded.

The proof of Theorem 3.28 is an easy consequence of the next lemma.

Lemma 3.29. Assume, the locally symmetric space M := Γ\X has bounded ge-
ometry and n := dimM ≥ 3. Then there exists a positive function t 7→ C(t) such
that

||e−t∆Mf ||L∞ ≤ C(t)||f ||L2

for all f ∈ L2(M). More precisely, we can choose

C(t) = ct−n/4eµt

for certain positive constants c and µ.
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Proof. We first remind the reader of the heat kernel estimate (cf. Corollary 3.22)

k(t, x̃, ỹ) ≤ C1t
−n/2e2µt

√
P (s; x̃, x̃)

√
P (s; ỹ, ỹ),

where s > δ(Γ). If we choose s > 2||ρ||, the Poincaré series is (for fixed s) bounded
(cf. Corollary 3.4). We obtain

k(t, x̃, ỹ) ≤ C2t
−n/2e2µt =: C̃(t).

This yields for any f ∈ L1(M) the estimate

||e−t∆Mf ||L∞ ≤ C̃(t)||f ||L1 .

Therefore, e−t∆M : L1(M) → L∞(M) is bounded and the operator norm is bounded
by C̃(t).

Because of
∫

M
k(t, x̃, ỹ) dvol(ỹ) ≤ 1, we have for all f ∈ L∞(M):

||e−t∆Mf ||L∞ ≤ ||f ||L∞ .

Applying the Riesz-Thorin interpolation theorem we obtain the boundedness of
the operators e−t∆M : L2(M) → L∞(M) and further

||e−t∆M ||L2→L∞ ≤ C̃(t)1/2.

Now, we are prepared for the proof of Theorem 3.28.

Proof of Theorem 3.28. We first remark that the self-adjoint operator ∆M is uni-
tarily equivalent to a multiplication operator Tf by the spectral theorem for un-
bounded self-adjoint operators:

U∆MU
∗ = Tf .

For the semigroup e−t∆M it follows Ue−t∆MU∗ = Te−tf . If the function ϕ ∈ L2(M)
is an eigenfunction of ∆M with eigenvalue λ, we can conclude that ϕ is also an
eigenfunction of e−t∆M with eigenvalue e−tλ. We therefore obtain:

e−λ||ϕ||L∞ = ||e−λϕ||L∞ = ||e−∆Mϕ||L∞ ≤ c̃ ||ϕ||L2 ,

where we used in the last step the preceding lemma. As ϕ lies in L2(M) the claim
follows.
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The last proof implies immediately

Corollary 3.30. Let M := Γ\X denote a locally symmetric space with bounded
geometry and dimM ≥ 3. If ϕλ is an L2-eigenfunction of ∆M with eigenvalue λ
and ||ϕ||L2 = 1, the following holds:

||ϕλ||L∞ ≤ c̃ eλ.
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Chapter 4.

Locally Symmetric Spaces with
Small Fundamental Group

In [75] M. E. Taylor showed that the Lp-spectrum of the Laplace-Beltrami operator
on a symmetric space of non-compact type coincides with a certain parabolic region
Pp which degenerates in the case p = 2 to the interval P2 = [||ρ||2,∞).
He also proved that the Lp-spectrum of certain locally symmetric spaces M = Γ\X
is – except for a finite subset of R – contained in the parabolic region Pp. More
precisely, we have:

Proposition 4.1 (cf. [75], Proposition 3.3). Let X denote a symmetric space
of non-compact type and M = Γ\X a locally symmetric space with either finite
volume or bounded injectivity radius, i.e. inj(M) ≥ c > 0. If

σ(∆M,2) ⊂ {λ0, . . . , λm} ∪ [||ρ||2,∞), (4.1)

where λj ∈ [0, ||ρ||2) are eigenvalues of finite multiplicity, then we have for p ∈
[1,∞):

σ(∆M,p) ⊂ {λ0, . . . , λm} ∪ Pp.

However, the L2-spectrum of locally symmetric spaces (with infinite volume) is
in general unknown. Moreover, for finite volume locally symmetric spaces the as-
sumption (4.1) is in general false (cf. Chapter 5).

Our main concern in this chapter is to prove that for certain locally symmetric
spaces M = Γ\X (with infinite volume) the Lp-spectrum of the respective Laplace-
Beltrami operator coincides with the parabolic region Pp and therefore with the
Lp-spectrum of the universal cover X of M :
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Theorem 4.2. Let X = G/K denote a symmetric space of non-compact type with
rank(X) = 1 and dim(X) ≥ 3. Assume, that the locally symmetric space M = Γ\X
has bounded geometry and that Γ is small. Then we have for p ∈ [1,∞):

σ(∆M,p) = Pp = σ(∆X,p).

The precise definitions of a small subgroup and the parabolic region Pp will be
given in Definition 4.22 and Definition 4.24. In the case p = 3 the parabolic region
Pp is indicated in Figure 4.1 as the hatched area. The dashed rays in this figure
are tangent to the parabolic region Pp and are the boundary of the sector{

z ∈ C \ {0} : | arg(z)| ≤ arctan
|p− 2|

2
√
p− 1

}
∪ {0}

from Section 2.2. Since the Lp-spectrum has to be contained in the sector from
above, this proves that the estimate of V.A. Liskevich and M.A. Perelmuter for
the angle of analyticity θp for submarkovian semigroups, cf. (2.3), is optimal.

Figure 4.1.: The parabolic region Pp if p = 3.

Proposition 4.26 below implies that we can omit the assumption “M = Γ\X has
bounded geometry” in the case p = 2. Thus, the L2-spectrum in this situation is
given by

σ(∆M,2) = [||ρ||2,∞) = σ(∆X,2)

and coincides with the L2-spectrum of the universal covering space X. This gen-
eralizes a result due to K. Corlette (cf. Theorem 4.2 in [16] or Theorem 3.18) who
proved that the bottom of the L2-spectrum λ0 is in both cases given by ||ρ||2.

Usually, one proves such a result by the use of a Fourier type transform that
turns the Laplace-Beltrami operator into a multiplication operator. In the universal
covering space X for example, we have the Helgason-Fourier transform (cf. [42]),
and for arithmetic non-uniform lattices Γ the theory of Eisenstein series can be
used in order to determine the L2-spectrum of the Laplace-Beltrami operator on
Γ\X (cf. Chapter 5 and the references given there). In the general case however,
we have no Fourier transform.
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4.1. Preliminaries

4.1.1. Horocyclic Coordinates

Let X = G/K denote a rank-1 symmetric space of non-compact type. Recall, that
in this case G := Isom0(X) is a semi-simple Lie group. We further assume that the
Riemannian metric 〈·, ·〉 of X in eK coincides with the restriction of the Killing
form B to p ∼= TeKG/K, which is not a great restriction (cf. Section 1.2).

We denote by g the Lie algebra of G, by g = k ⊕ p the Cartan decomposition,
and by a ⊂ p a maximal abelian subalgebra.
The choice of a Weyl chamber a+ determines an Iwasawa decomposition G =
NAK. This yields a diffeomorphism

µ : N × A→ X, (n, a) 7→ na · x0.

We remind the reader of the fact N = exp
(∑

β∈Σ+ gβ

)
, where Σ+ denotes the set

of positive (restricted) roots of the pair (g,a) with respect to the Weyl chamber
a+. Note also, that the root spaces gα and gβ for α 6= β ∈ Σ+ are orthogonal with
respect to the scalar product 〈·, ·〉. We choose for each α ∈ Σ+ an orthonormal
basis of gα and the union {N1, . . . , Nn−1} of these bases yields an orthonormal basis
of the subspace n. Furthermore, we take a unit vector H from the 1-dimensional
subalgebra a. This leads to a global coordinate map

ϕ : X = NA · x0 → Rn,

exp

(
n−1∑
i=1

xiNi

)
exp (yH) · x0 7→ (x1, . . . , xn−1, y) =: (x, y).

We call these coordinates horocyclic coordinates since the orbits N · x are usually
called horocycles in X. In the rank-1 case, the orbits under N are horospheres
but for higher rank symmetric spaces this is not true as horospheres always have
codimension one (for more details cf. [47]).

4.1.2. The Metric in Horocyclic Coordinates

For all α ∈ Σ+ we define a left invariant bilinear form hα on the nilpotent subgroup

N = exp
(∑

β∈Σ+ gβ

)
by

hα :=

{
〈·, ·〉, on gα,
0, else,

where 〈·, ·〉 denotes again the scalar product defined by means of the Killing form.
Then we have the following formula for the pullback µ∗g of the metric g on X to
N × A.
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Proposition 4.3. Denoting by log a the unique H ∈ a with expH = a, the pullback
µ∗g is given by

ds2
(n,a) =

(
1

2

∑
α∈Σ+

e−2α(log a)hα

)
⊕ da2.

Proof. The proof follows directly from Proposition 1.6 in [6] or Proposition 4.3 in
[7] respectively.

We immediately obtain the following three important corollaries.

Corollary 4.4. The representation of the metric g with respect to horocyclic co-
ordinates is given by

(gij)i,j(na · x0) =


2−1e−2α1(log a)

. . .

2−1e−2αn−1(log a)

0

0 1

 ,

where the roots αi ∈ Σ+ appear in the matrix above according to their multiplicity
and the indices are chosen in a way such that(∑

α∈Σ+

e−2α(log a)hα

)
(Ni, Ni) = e−2αi(log a).

Corollary 4.5. Let X denote a rank-1 symmetric space of non-compact type. The
volume form of X with repect to horocyclic coordinates is√

det(gij)(na · x0) dxdy =

(
1

2

)(n−1)/2

e−2ρ(log a) dxdy

=

(
1

2

)(n−1)/2

e−2yρ(H) dxdy,

where log a = yH.

Corollary 4.6. Let X denote a rank-1 symmetric space of non-compact type. If
we choose in the definition of horocyclic coordinates H ∈ a+ with ||H|| = 1, the
Laplace-Beltrami operator in these coordinates is given by

∆X = −2
n−1∑
i=1

e2αi
∂2

∂x2
i

+ 2||ρ|| ∂
∂y

− ∂2

∂y2
,

where e2αi is short hand for the function (x, y) 7→ e2yαi(H).
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Proof. Remember the formula

∆X = − 1

det(gij)1/2

∑
i,j

∂i(g
ij det(gij)

1/2∂j)

and notice that ρ(H) = ||ρ||. Then a straightforward calculation shows the asser-
tion.

4.1.3. Geodesic Compactification and Limit sets

Let X denote in this subsection always a symmetric space of non-compact type.
Our main references are [29, 30].

Geodesic Compactification

Definition 4.7. Two unit speed geodesics c1 and c2 of X are called asymptotic if
there exists a positive constant C such that

d(c1(t), c2(t)) ≤ C for all t ≥ 0.

This clearly defines an equivalence relation on the unit speed geodesics of X. The
set of equivalence classes is called the geodesic boundary of X and denoted by
X(∞). We further put

X := X ∪X(∞).

If c is a unit speed geodesic in X, the respective equivalence class is denoted by
c(∞).

For the proof of the next proposition we refer to Proposition 1.2 in [30].

Proposition 4.8. Let c0 denote a unit speed geodesic in X. Then for any point
x ∈ X there exists a unique unit speed geodesic c in the equivalence class of c0 with
c(0) = x.

Because of this proposition, the geodesic boundary X(∞) can be identified with
the unit sphere SxX in any tangent space TxX, in particular with the unit sphere
in p ∼= Tx0X.

Example. If we represent the hyperbolic plane H2 as the open unit disc in R2

with metric

ds2 =
4

(1− x2 − y2)2
(dx2 + dy2),

the unparameterized geodesics are the Euclidean circles orthogonal to the unit cir-
cle S1, and the diameters of the unit disc. Two geodesics are asymptotic if and
only if they meet S1 in the same point. Therefore, H2(∞) ∼= S1.
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Notation. (1) By cxy we denote the unit speed geodesic connecting x and y with
cxy(0) = x.
(2) For v ∈ SxX we denote by cv the unit speed geodesic with cv(0) = x and
c′v(0) = v.
(3) For x ∈ X and ξ ∈ X(∞) we denote by cxξ the unique unit speed geodesic in
the equivalence class ξ with cxξ(0) = x.
(4) Let c denote a unit speed geodesic with c(0) = x0. For any ε > 0 and r > 0 we
define the truncated cone (with vertex x0, axis c, and angle ε) by

C(c, ε, r) := {x ∈ X : ^x0(c
′(0), c′x0x(0)) < ε} \ {x ∈ X : d(x0, x) ≤ r}.

Proposition 4.9 (cf. Proposition 2.3 in [30]). There is a unique topology τ on
X = X ∪X(∞) such that:

(1) Given x ∈ X and ξ ∈ X(∞) the truncated cones C(cxξ, ε, r) with ε > 0, r > 0
form a neighborhood basis for the topology at ξ.

(2) The topology of X induced from τ coincides with the original topology of X
and X is a dense open subset of X.

This topology τ is called cone topology.

The following theorem indicates an analogy with the Poincaré ball model for the
hyperbolic space.

Theorem 4.10 (cf. Theorem 2.10 in [30]). Choose x ∈ X and denote by B(x)
the closed unit ball with boundary sphere SxX in the tangent space TxX. Let
f : [0, 1] → [0,∞] be a homeomorphism. Then the map

ϕ : B(x) → X, v 7→ exp (f(||v||)v)

is a homeomorphism with ϕ(SxX) = X(∞).

Since asymptotic geodesics are mapped onto asymptotic geodesics by isometries,
we also have the following result.

Lemma 4.11. Any isometry of X extends to a homeomorphism of X.

Limit Sets

Definition 4.12. Let Γ ⊂ Isom(X) denote an arbitrary subgroup of the isometry
group. The limit set Λ(Γ) of Γ is defined as

Λ(Γ) := Γ · x ∩X(∞),

where Γ · x is the closure of the orbit Γ · x in X.
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Note, that the limit set Λ(Γ) does not depend on the choice of x ∈ X (cf. [29],
p.33).

Lemma 4.13. (1) The limit set Λ(Γ) is a closed subset of X(∞).

(2) If Γ ⊂ Isom(X), Γ 6= {id}, is a discrete, freely acting subgroup, the limit set
Λ(Γ) is always non-empty.

Proof. The first assertion follows directly from the definition. For a proof of the
second assertion we refer to [29], p.33.

In accordance with the theory of discrete subgroups in hyperbolic geometry we
make the following definition (see e.g. [67], p.577).

Definition 4.14. A discrete, freely acting subgroup Γ ⊂ Isom(X) is called a sub-
group of the first kind if Λ(Γ) = X(∞) and of the second kind otherwise.

For a subgroup of the second kind, the ordinary set

Ω(Γ) := X(∞) \ Λ(Γ)

is always a non-empty open subset of the geodesic boundary X(∞).
If rank(X) = 1, Ω(Γ) is often called region of discontinuity. The following

proposition justifies this.

Proposition 4.15 (cf. Proposition 8.5 in [30]). Let X denote a symmetric space
of non-compact type with rank(X) = 1 and Γ ⊂ Isom(X) a discrete, freely acting
subgroup of isometries. Then the set of points of X at which the action of Γ is
properly discontinuous is X ∪ Ω(Γ).

Example 4.16. Let X = G/K denote a rank one symmetric space of non-compact
type and G = NAK an Iwasawa decomposition of the semi-simple Lie group
G := Isom0(X). A discrete subgroup Γ = 〈a〉, a 6= id of the one dimensional Lie
group A is always a second kind subgroup. This can be seen as follows:
If x0 ∈ X denotes the basepoint for the Iwasawa decomposition and ifH = log(a) ∈
a is the unique element in the Lie algebra of A with exp(H) = a, the unparameter-
ized geodesic A·x0 is given by the image of the curve c(t) = exp(tH)·x0. The equiv-
alence class of the geodesic c(t) (resp. c(−t)) is denoted by c(∞) (resp. c(−∞)).
Hence, the limit set Λ(Γ) consists only of the two points c(∞) and c(−∞) ∈ X(∞).

Since we want to work with Dirichlet fundamental domains in the next section,
we present some results here.

Recall, that for a discrete, freely acting subgroup of isometries Γ and x0 ∈ X
the set

F = F (x0) := {x ∈ X : d(x, x0) < d(γx, x0) for all γ ∈ Γ \ {id}}

is called Dirichlet fundamental domain (with respect to x0 ∈ X). An easy calcu-
lation shows that F is star-shaped with respect to x0.
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Lemma 4.17 (cf. Corollary 3.3.2 in [11]). Let X denote a symmetric space of
non-compact type with rank(X) = 1 and Γ ⊂ Isom(X) a discrete, freely acting
subgroup of isometries. If F = F (x0) is a Dirichlet fundamental domain, the set

Γ · F

is locally finite on X ∪ Ω(Γ).

The following two theorems have their analogues in hyperbolic geometry (see
e.g. Theorem 12.1.13 and Theorem 12.1.15 in [67]). For the lack of knowledge of
a reference in the general rank 1 case, we give proofs here.

Theorem 4.18. Let X denote a symmetric space of non-compact type with
rank(X) = 1 and F = F (x0) a Dirichlet fundamental domain for a discrete, freely
acting subgroup Γ ⊂ Isom(X) of isometries. Then

Ω(Γ) =
⋃
γ∈Γ

γ
(
F ∩ Ω(Γ)

)
,

where F denotes the closure of F in X.

Proof. Since the ordinary set Ω(Γ) is Γ-invariant, it is clear that the right hand
side is contained in the left hand side. In order to prove the other inclusion, we
choose ξ ∈ Ω(Γ). Then there exists a sequence (xi)i∈N in X converging to ξ. For
any i ∈ N we can find an isometry γi ∈ Γ such that xi ∈ γiF . Since Γ ·F is locally
finite on X ∪Ω(Γ), only finitely many isometries of the sequence (γi)i are distinct.
Hence, there is a j ∈ N such that

xi ∈ γjF

for infinitely many i ∈ N. Therefore, we have ξ ∈ γjF and in conclusion

ξ ∈ γjF ∩ Ω(Γ) = γj

(
F ∩ Ω(Γ)

)
.

Theorem 4.19. Let X denote a symmetric space of non-compact type with
rank(X) = 1 and Γ ⊂ Isom0(X) a subgroup of the second kind. Then

vol (Γ\X) = ∞.

Proof. Let F = F (x0) be a Dirichlet fundamental domain for Γ. It clearly suffices
to prove vol (F ) = ∞.

The ordinary set Ω(Γ) is non-empty and homeomorphic to an open subset of
the unit sphere in any tangent space. In particular, the ordinary set is a Baire
space. As a discrete subgroup, Γ is countable and therefore one of the closed
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subsets γ
(
F ∩ Ω(Γ)

)
of Ω(Γ) must have non-empty interior. Thus, the interior of

F ∩ Ω(Γ) is non-empty.
Choose an interior point ξ of F ∩ Ω(Γ). Since F is star-shaped with respect to

x0, the geodesic ray cx0ξ : [0,∞) → X, t 7→ cx0ξ(t) is completely contained in F . If
U ⊂ F ∩ Ω(Γ) is an open neighborhood of ξ, every geodesic ray starting at x0 in
the equivalence class of some η ∈ U is contained in F for the same reason. Hence,
there are ε > 0 and r > 0 such that the truncated cone C(cx0ξ, ε, r) is contained in
F . Let us take an Iwasawa decomposition

G ∼= N × A×K

of G = Isom0(X) where K is the isotropy subgroup of G with respect to x0,
A · x0 = cx0ξ(R), and if H ∈ a (the Lie algebra of A) is defined by the equation

exp(tH) · x0 = cx0ξ(−t),

the positive Weyl chamber of a is

a+ := {tH : t > 0}.

Furthermore, we choose a compact neighborhood N0 of the identity in N such that
for all n0 ∈ N0 and t ≥ r + 1 the geodesic

t 7→ n0 · cx0ξ(t)

is contained in the truncated cone C(cx0ξ, ε, r). We claim that the “box”

N0 · cx0ξ(R≥r+1)

has infinite volume. Since this box is completely contained in the fundamental
domain F (x0), this proves

vol (Γ\X) = vol (F ) = ∞.

We use horocyclic coordinates (cf. Section 4.1.1 and 4.1.2) and obtain

vol (N0 · cx0ξ(R≥r+1)) =

(
1

2

)(n−1)/2 ∫
ϕ(N0·cx0ξ(R≥r+1))

e−2yρ(H) dxdy

=

(
1

2

)(n−1)/2 ∫
ϕ(N0·x0)

dx

∫ −r−1

−∞
e−2y||ρ|| dy

= ∞.
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Definition 4.20. Let X denote a symmetric space of non-compact type with
rank(X) = 1. A discrete subgroup Γ ⊂ Isom0(X) that acts without fixed points
on X is called geometrically cocompact if the Kleinian manifold

MΓ := (X ∪ Ω(Γ)) /Γ

is compact.

In [16], Theorem 5.2, K. Corlette proved the following result.

Theorem 4.21. Let X denote a symmetric space of non-compact type with
rank(X) = 1 and Γ ⊂ Isom0(X) a geometrically cocompact subgroup. Then, the
Hausdorff dimension of the limit set Λ(Γ) is bounded from above by the critical
exponent δ(Γ).

We can conclude for geometrically cocompact subgroups Γ with δ(Γ) ≤ ||ρ|| that
the (closed) limit set Λ(Γ) does not have full Hausdorff dimension. Consequently,
Γ is a subgroup of the second kind.

Definition 4.22. Let X be a symmetric space of non-compact type with rank(X) =
1. A subgroup Γ ⊂ Isom0(X) of the second kind is called small if δ(Γ) ≤ ||ρ||, where
δ(Γ) denotes the critical exponent of Γ.

Example 4.23. The subgroup Γ = 〈a〉 in Example 4.16 is small. To see this,
it only remains to check whether its critical exponent is small. Recall, that the
critical exponent of Γ can be defined as follows:

δ(Γ) := inf{s > 0 :
∑
n∈Z

e−sd(x0,anx0) < ∞},

where x0 ∈ X denotes the basepoint that corresponds to the maximal compact
subgroup K. If H ∈ a is the unique element in the Lie algebra a of A such that
a = exp H, we obtain

d(x0, a
nx0) = d(x0, exp(nH)x0) = |n| · ||H||

and therefore for any s > 0

∑
n∈Z

e−sd(x0,anx0) =
∑
n∈Z

e−s|n|·||H|| =
1 + e−s||H||

1− e−s||H|| < ∞.

In particular, we may conclude δ(Γ) = 0.
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4.2. Lp-Spectrum

4.2. Lp-Spectrum

In this section we denote by X = G/K a symmetric space of non-compact type
with rank(X) = 1. We further assume as above that the restriction of the metric
to the tangent space Tx0X

∼= p of the basepoint x0 equals the restriction of the
Killing form to p.

Definition 4.24. For p ∈ [1,∞) we put

Pp :=

{
z = x+ iy ∈ C : x ≥ 4||ρ||2

p

(
1− 1

p

)
+

y2

4||ρ||2(1− 2
p
)2

}
if p 6= 2 and P2 := [||ρ||2,∞).

Notice, that the boundary ∂Pp of the parabolic region Pp is given by the curve

R → C, s 7→ 4||ρ||2

p

(
1− 1

p

)
+ s2 + 2i||ρ||s

(
1− 2

p

)
=

(
2||ρ||
p

+ is

)(
2||ρ|| − 2||ρ||

p
− is

)
.

One part of the proof of Theorem 4.2 is a consequence of Proposition 3.3 in [75]
(cf. Proposition 4.1). The constraint on the dimension of X and that the subgroup
Γ is of the second kind will not be important in this part:

Proposition 4.25. Let X = G/K denote a symmetric space of non-compact type
with rank(X) = 1, Γ ⊂ G a discrete, freely acting subgroup of G such that M =
Γ\X has bounded geometry and δ(Γ) ≤ ||ρ||. Then we have for p ∈ [1,∞):

σ(∆M,p) ⊂ Pp.

Proof. Recall, that
σ(∆M,2) ⊂ [||ρ||2,∞)

(cf. Theorem 3.18), and that we have the following estimate for the volume of a
ball B(r) ⊂ X with radius r > 0:

volB(r) ≤ Ce2||ρ||r

(cf. [50]). In view of Proposition 3.3 in [75] this is enough to prove the assertion.

The following proposition is a crucial step towards the proof of the reverse in-
clusion in Theorem 4.2.

Proposition 4.26. Let X = G/K denote a symmetric space of non-compact type
with rank(X) = 1, Γ ⊂ G a subgroup of the second kind, and M = Γ\X the
respective locally symmetric space. Then, for any p ∈ [1,∞), the boundary ∂Pp of
the parabolic region Pp is contained in the approximate point spectrum of ∆M,p:

∂Pp ⊂ σapp(∆M,p).
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Chapter 4. Locally Symmetric Spaces with Small Fundamental Group

Remark 4.27. We know that e−t∆M,1 : L1(M) → L1(M) is an analytic semi-
group if the manifold M has bounded geometry (cf. [77, 18]). A consequence
of Proposition 4.26 is that the semigroup e−t∆M,1 for M as in Theorem 4.2 is not
a bounded analytic semigroup – in contrast to the semigroups e−t∆M,p for p ∈ (1,∞).

Since compact perturbations of any complete non-compact Riemannian manifold
M do not change the continuous L2-spectrum of ∆M if considered as a subset
of R, the continuous spectrum depends only on the geometry at infinity of M .
This follows from the so-called decomposition principle (cf. [28]): If M0 ⊂ M is a
compact manifold with boundary of the same dimension asM and ∆′ the Laplacian
on M \M0 (with Dirichlet boundary conditions), then ∆M and ∆′ have the same
continuous spectrum. That is why the supports supp(fn) of our sequence fn in the
proof of Proposition 4.26 will leave every compact subset of M at some time.

Proof of Proposition 4.26. To prove this proposition, we will construct for each
z ∈ ∂Pp a sequence of differentiable functions fn ∈ Lp(X) with support in an open
Dirichlet fundamental domain for Γ such that

||∆X,pfn − zfn||Lp

||fn||Lp

→ 0 if n→∞. (4.2)

Such a sequence (fn) descends to a sequence of differentiable functions in Lp(M)
and consequently, we are done as soon as we have shown (4.2). Our proof is subdi-
vided into two steps. First, we construct a box completely contained in a Dirichlet
fundamental domain for Γ, that can be easily described by using horocyclic coor-
dinates. This box will be the same as the box constructed in the proof of Theorem
4.19 but we need a finer description here. Secondly, we use horocyclic coordinates
to construct for any z ∈ ∂Pp a sequence of differentiable functions fn with support
in the constructed box satisfying (4.2).

We choose the basepoint x0 ∈ X corresponding to the maximal compact sub-
group K of G. By F = F (x0) we denote the Dirichlet fundamental domain with
respect to x0 and by F we denote the closure of F in X = X ∪ X(∞). Since Γ
is a second kind subgroup, the region of discontinuity Ω(Γ) is a non-empty open
subset of X(∞) and consequently, we can find an interior point ξ in F ∩ X(∞).
Let us denote by cx0ξ the unique unit-speed geodesic in the equivalence class ξ with
cx0ξ(0) = x0. Note, that the ray cx0ξ(R≥0) is contained in F as the Dirichlet funda-
mental domain F is star-shaped with respect to its center x0. Since the truncated
cones

C(cx0ξ, ε, r) := {x ∈ X : �x0
(ξ, x) < ε} \ {x ∈ X : d(x, x0) ≤ r}

form a neighborhood basis for the cone topology at ξ ∈ X(∞), we can find ε > 0
and r > 0 such that

C(cx0ξ, ε, r) ∩X ⊂ F.
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4.2. Lp-Spectrum

If we choose the maximal abelian subgroup A := {exp(tH) : t ∈ R} in G such that
cx0ξ(t) = exp(−tH) · x0, and the positive Weyl chamber a+ = {tH : t > 0} of the
one dimensional Lie algebra a of A, we obtain an Iwasawa decomposition

G ∼= N × A×K,

with a nilpotent subgroup N of G. Note, that we have ||H|| = 1. We finally choose
a neighborhood N0 ⊂ N of the identity such that for any n0 ∈ N0 the geodesic

t 7→ n0 exp(−tH) · x0

is contained in the truncated cone C(cx0ξ, ε, r) if t ≥ r + 1. Hence, the box

N0{exp(tH) : t ≤ −(r + 1)} · x0

is contained in the fundamental domain F .
We proceed with the second step. Choose

z = z(s) =

(
2||ρ||
p

+ is

)(
2||ρ|| − 2||ρ||

p
− is

)
∈ ∂Pp.

With respect to horocyclic coordinates (cf. Section 4.1.1)

ϕ : X = NA · x0 → Rn,

exp

(
n−1∑
i=1

xiNi

)
exp (yH) · x0 7→ (x1, . . . , xn−1, y) =: (x, y)

we define the sequence

fn(x, y) := b(x)cn(y)e(
2||ρ||

p
+is)y,

with an arbitrary function b ∈ C∞
c (ϕ(N0 · x0)) and a (so far arbitrary) sequence

cn ∈ C∞
c ((−∞,−(r + 1)]). Since the supports of fn are clearly contained in the

Dirichlet fundamental domain F for Γ, this sequence descends to a differentiable
sequence with compact supports in M . For this reason, it suffices to perform all
the calculations below in the universal covering space X of M .
We begin with the calculation of ∆Xfn using the formula for the Laplace-Beltrami
operator in horocyclic coordinates derived in Corollary 4.6:

∆Xfn(x, y) = −2

(
n−1∑
i=1

e2αi(H)y ∂
2

∂x2
i

b(x)

)
cn(y)e(

2||ρ||
p

+is)y

+ 2||ρ||b(x)
(
c′n(y) + (

2||ρ||
p

+ is)cn(y)

)
e(

2||ρ||
p

+is)y

− b(x)

(
c′′n(y) + 2(

2||ρ||
p

+ is)c′n(y) + (
2||ρ||
p

+ is)2cn(y)

)
e(

2||ρ||
p

+is)y.
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This leads to

∆Xfn(x, y) = −2

(
n−1∑
i=1

e2αi(H)y ∂
2

∂x2
i

b(x)

)
cn(y)e(

2||ρ||
p

+is)y

+ b(x)

(
zcn(y) + (2||ρ|| − 2(

2||ρ||
p

+ is))c′n(y)− c′′n(y)

)
e(

2||ρ||
p

+is)y.

Therefore, we obtain

∆Xfn(x, y)− zfn(x, y) = −2

(
n−1∑
i=1

e2αi(H)y ∂
2

∂x2
i

b(x)

)
cn(y)e(

2||ρ||
p

+is)y

+ b(x)

(
(2||ρ|| − 4||ρ||

p
− 2is))c′n(y)− c′′n(y)

)
e(

2||ρ||
p

+is)y.

Recall the volume form (cf. Corollary 4.5)(
1

2

)(n−1)/2

e−2||ρ||y dxdy

of the rank-1 symmetric space X. In the subsequent lines we estimate the Lp norm
of ∆Xfn − zfn:

||∆Xfn − zfn||Lp ≤ C1

n−1∑
i=1

(∫
X

∣∣∣∣e2αi(H)y ∂
2

∂x2
i

b(x)

∣∣∣∣p |cn(y)|p dxdy
) 1

p

+ C2

(∫
X

|b(x)|p|c′n(y)|p dxdy
) 1

p

+ C3

(∫
X

|b(x)|p|c′′n(y)|p dxdy
) 1

p

= C1

n−1∑
i=1

(∫ ∣∣∣∣ ∂2

∂x2
i

b(x)

∣∣∣∣p dx) 1
p
(∫ ∞

−∞
e2pαi(H)y|cn(y)|p dy

) 1
p

+ C2

(∫
|b(x)|p dx

) 1
p
(∫ ∞

−∞
|c′n(y)|p dy

) 1
p

+ C3

(∫
|b(x)|p dx

) 1
p
(∫ ∞

−∞
|c′′n(y)|p dy

) 1
p

for some positive constants C1, C2 and C3 (only depending on z and p). We also
have

||fn||Lp =

(∫
|b(x)|p dx

) 1
p
(∫ ∞

−∞
|cn(y)|p dy

) 1
p

.
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4.2. Lp-Spectrum

We need to construct a sequence of functions cn such that for increasing n these
functions become flatter and flatter, and the supports tend to negative infinity (be-
cause of the term e2pαi(H)y). More precisely, we choose a function ψ ∈ C∞

c (R), ψ 6=
0, with supp(ψ) ⊂ (−2,−1) and a sequence of positive real numbers rn such that
rn →∞ (for n→∞). We define

cn(y) := ψ

(
y

rn

)
.

Since supp(cn) is a subset of (−2rn,−rn), we have cn ∈ C∞
c ((−∞,−(r + 1)]) for

sufficiently large n. We claim that for any choice of b ∈ C∞
c (ϕ(N0 · x0)) it follows

||∆Xfn − zfn||Lp

||fn||Lp

→ 0 (n→∞).

To see this, we compute∫ ∞

−∞
e2pαi(H)y|cn(y)|p dy = rn

∫ −1

−2

e2pαi(H)rnu|ψ(u)|p du

≤ rn max |ψ(u)|p
∫ −1

−2

e2pαi(H)rnu du

≤ max |ψ(u)|p

2pαi(H)
e−2pαi(H)rn ,

and ∫ ∞

−∞
|cn(y)|p dy = rn

∫ −1

−2

|ψ(u)|p du,∫ ∞

−∞
|c′n(y)|p dy = r1−p

n

∫ −1

−2

|ψ′(u)|p du,∫ ∞

−∞
|c′′n(y)|p dy = r1−2p

n

∫ −1

−2

|ψ′′(u)|p du.

In conclusion

||∆Xfn − zfn||Lp

||fn||Lp

≤
n−1∑
i=1

ci
e−2αi(H)rn

rn

+ c̃1
1

rn

+ c̃2
1

r2
n

,

with positive constants ci, c̃1 and c̃2 (depending only on p, z, and the function b).
Since the right hand side converges to 0 if n→∞, the proof is complete.

Corollary 4.28. Let X = G/K denote a symmetric space of non-compact type
with rank(X) = 1. Assume that Γ ⊂ G is a small subgroup. Then the following
holds for the L2-spectrum of the locally symmetric space M = Γ\X:

σ(∆M,2) = [||ρ||2,∞).
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Proof. The inclusion [||ρ||2,∞) ⊂ σ(∆M,2) is a special case of the previous proposi-
tion. Since the bottom of the L2-spectrum λ0(M) equals ||ρ||2 (cf. Theorem 3.18),
the assertion follows.

Lemma 4.29. Let X = G/K denote a symmetric space of non-compact type with
dimX ≥ 3, Γ ⊂ G a discrete, freely acting subgroup of G, and M = Γ\X the
respective locally symmetric space. Assume further, that M has bounded geometry.
If 1 ≤ p ≤ q <∞, we have

e−t∆M ∆M,p ⊂ ∆M,q e−t∆M .

Proof. We first claim that

e−t∆M : Lp(M) → Lq(M)

are bounded linear operators. To see this, we notice that the general fact∫
k(t, x̃, ỹ) dvol(ỹ) ≤ 1

implies the boundedness of e−t∆M : L∞(M) → L∞(M) as well as the boundedness
of e−t∆M : L1(M) → L1(M). From Corollary 3.4 it follows that the Poincaré series
P (s;x, x) is bounded if s > 2||ρ|| since M has bounded geometry. In view of the
heat kernel estimates in Corollary 3.22 we can conclude that (for fixed t) the heat
kernel k(t, x̃, ỹ) is bounded. Therefore, the operators e−t∆M : L1(M) → L∞(M)
are bounded. An application of the Riesz-Thorin interpolation theorem finishes
the proof of our first claim.
To proof the lemma, we choose an f ∈ dom(∆M,p) = dom(e−t∆M ∆M,p). We obtain

||1
s
(e−s∆M e−t∆Mf − e−t∆Mf)− e−t∆M ∆M,pf ||Lq ≤

C ||1
s
(e−s∆Mf − f)−∆M,pf ||Lp → 0 (s→ 0+).

Therefore, the function e−t∆Mf is contained in the domain of ∆M,q and we also
have the equality

e−t∆M ∆M,pf = ∆M,q e−t∆Mf.

Proposition 4.30. Let X = G/K denote a symmetric space of non-compact type
with dimX ≥ 3, Γ ⊂ G a discrete, freely acting subgroup of G, and M = Γ\X the
respective locally symmetric space. Assume further, that M has bounded geometry.
If 1 ≤ p ≤ q ≤ 2, we have the inclusion

σ(∆M,q) ⊂ σ(∆M,p).
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Proof. The statement of the proposition is obviously equivalent to the reverse in-
clusion for the respective resolvent sets:

ρ(∆M,p) ⊂ ρ(∆M,q).

Recall Lemma 4.29:

e−t∆M ∆M,p ⊂ ∆M,q e−t∆M .

The proof now follows as in Proposition 3.1 in [44] or Proposition 2.1 in [43]. For
the sake of completeness we work out the details.
We are going to show that for λ ∈ ρ(∆M,p) ∩ ρ(∆M,q) the resolvents coincide on
Lp(M) ∩ Lq(M). From Lemma 4.29 above, we conclude for these λ

(λ−∆M,q)
−1 e−t∆M = (λ−∆M,q)

−1 e−t∆M (λ−∆M,p)(λ−∆M,p)
−1

= (λ−∆M,q)
−1(λ−∆M,q) e−t∆M (λ−∆M,p)

−1

= e−t∆M (λ−∆M,p)
−1, (4.3)

where the equality is meant between bounded operators from Lp(M) to Lq(M). If
t→ 0, we obtain

(λ−∆M,q)
−1|Lp∩Lq = (λ−∆M,p)

−1|Lp∩Lq .

For 1
p

+ 1
p′

= 1 and λ ∈ ρ(∆M,p) = ρ(∆M,p′) we have by the preceding calculation

(λ−∆M,p′)
−1|Lp∩Lp′ = (λ−∆M,p)

−1|Lp∩Lp′ .

The Riesz-Thorin interpolation theorem implies that (λ − ∆M,p)
−1 is bounded if

considered as an operator Rλ on Lq(M).
In the remainder of the proof we show that Rλ coincides with (λ − ∆M,q)

−1 and
hence ρ(∆M,p) ⊂ ρ(∆M,q). Notice, that (4.3) implies

(λ−∆M,q)e
−t∆M (λ−∆M,p)

−1f = e−t∆Mf,

for all f ∈ Lq(M) ∩ Lp(M). Since ∆M,q is a closed operator, we obtain for t → 0
the limit

(λ−∆M,q)Rλf = f.

As Lq(M)∩Lp(M) is dense in Lq(M) and ∆M,q is closed, it follows (λ−∆M,q)Rλf =
f for all f ∈ Lq(M). Therefore, (λ−∆M,q) is onto. If we assume that (λ−∆M,q) is
not one-to-one, λ would be an eigenvalue of ∆M,q. But since the semigroup e−t∆M

is strongly continuous (on any Lp(M)) it would follow from Lemma 4.29 that there
is a t > 0 such that e−t∆Mf 6= 0 is an eigenfunction with eigenvalue λ of ∆M,p′ , and
this contradicts λ ∈ ρ(∆M,p) = ρ(∆M,p′). We finally obtain Rλ = (λ−∆M,q)

−1.
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Chapter 4. Locally Symmetric Spaces with Small Fundamental Group

We are now prepared to prove Theorem 4.2:

Proof of Theorem 4.2. In view of Proposition 4.25 we need only show the inclusion

Pp ⊂ σ(∆M,p), p ∈ [1,∞).

But this follows for p ∈ [1, 2] from Proposition 4.26 and Proposition 4.30 by ob-
serving

Pp =
⋃

q∈[p,2]

∂Pq.

The remaining cases p ≥ 2 follow by duality as the parabolic regions Pp and Pp′

coincide if 1
p

+ 1
p′

= 1.
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Chapter 5.

Locally Symmetric Spaces with
Q-Rank 1

5.1. Preliminaries

In Section 5.2 below we examine the Lp-spectrum of a locally symmetric space
Γ\X = Γ\G/K where Γ denotes an arithmetic, non-uniform lattice with Q-rank 1
that acts freely on a symmetric space X of non-compact type.
In this section we provide a short introduction (without proofs) into the theory of
arithmetic groups, the notions of Q-Rank and R-Rank of algebraic groups, Siegel
sets and reduction theory. Our main references (for the proofs) are [5, 8, 81] and
the unpublished notes [79]. A nice introduction and overview to these topics can
also be found in the paper [48] and the book [9].

5.1.1. Arithmethic Groups, Q-Rank and R-Rank

Notation. Suppose G ⊂ GL(n,C) is an algebraic group and S ⊂ C is any subring
with unit. We define

GL(n, S) := {g ∈ GL(n,C) : g ∈ Sn×n and det g ∈ S×}.

Furthermore, we denote by G(S) := G ∩ GL(n, S) the S-points of the algebraic
group G and by G(S)0 the connected component of G(S) that contains the identity.

Let G = Isom0(X) denote the connected component containing the identity of
the isometry group of a symmetric space X of non-compact type. Then G is a non-
compact semi-simple Lie group with trivial center (cf. [29], Proposition 2.1.1), and
we can find a connected, semi-simple algebraic group G ⊂ GL(n,C) defined over
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Chapter 5. Locally Symmetric Spaces with Q-Rank 1

Q such that the groups G and G(R)0 are isomorphic as Lie groups (cf. Proposition
1.14.6 in [29]).

Let us denote by TK ⊂ G (K = R or K = Q) a maximal K-split algebraic
torus. Remember that we call a closed, connected subgroup T of G a torus if T
is diagonalizable over C, or equivalently if T is abelian and every element of T
is semi-simple. Such a torus T is called R-split if T is diagonalizable over R and
Q-split if T is defined over Q and diagonalizable over Q.

All maximal K-split tori in G are conjugate under G(K), and we call their
common dimension K-rank of G. This definition can be used to define the R-rank
of the Lie group G and it turns out that the R-rank of G coincides with the rank
of the symmetric space X, i.e. the dimension of a maximal flat subspace in X.
However, it is impossible to define in this way the Q-rank of a semi-simple Lie
group G since different embeddings of G in GL(n,R) may indeed yield different
values for the Q-rank. This problem does not occur if we fix an arithmetic lattice in
G. Since we are only interested in non-uniform lattices Γ, we may define arithmetic
lattices in the following way (cf. Corollary 6.1.10 in [81] and its proof):

Definition 5.1. A lattice Γ ⊂ G in a connected semi-simple Lie group G with
trivial center and no compact factors is called arithmetic if there are

(i) a semi-simple algebraic group G ⊂ GL(n,C) defined over Q and

(ii) an isomorphism
ϕ : G(R)0 → G

such that ϕ(G(Z) ∩G(R)0) and Γ are commensurable, i.e. ϕ(G(Z) ∩G(R)0) ∩ Γ
has finite index in both ϕ(G(Z) ∩G(R)0) and Γ.

For the general definition of arithmetic lattices see [81], Definition 6.1.1.
A well-known and fundamental result due to G. A. Margulis ensures that this is

usually the only way to obtain a lattice (for a proof see [60] or [81]):

Theorem 5.2. (Margulis’ Arithmeticity Theorem). Let G be a connected,
semi-simple Lie group with trivial center, no compact factors and R-rank(G) ≥ 2.
If Γ ⊂ G is an irreducible lattice then Γ is arithmetic.

Further results due to K. Corlette (cf. [17]) and M. Gromov & R. Schoen (cf.
[39]) extended this result to all connected semi-simple Lie groups with trivial center
except SO(1, n) and SU(1, n). In SO(1, n) (for all n ∈ N) and in SU(1, n) (for
n = 2, 3) actually non-arithmetic lattices are known to exist (cf. for example [38]
and [60]).

Definition 5.3. (Q-rank of an arithmetic lattice). Suppose Γ ⊂ G is an
arithmetic lattice in a connected semi-simple Lie group G with trivial center and
no compact factors. Then Q-rank(Γ) is by definition the Q-rank of G, where G is
an algebraic group as in Definition 5.1.
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Figure 5.1.: Tangent Cone at Infinity of a Compact Space.

The theory of algebraic groups shows that the definition of the Q-rank of an
arithmetic lattice does not depend on the choice of the algebraic group G in Def-
inition 5.1. A proof of this fact can be found in Chapter 9 of [79] (cf. Corollary
9.12).

We already mentioned a geometric characterization of the R-rank: The R-rank
of a semi-simple Lie group G with trivial center coincides with the rank of the
corresponding symmetric space X = G/K. For the Q-rank of an arithmetic lattice
Γ there is also a geometric interpretation in terms of the large scale geometry of
the corresponding locally symmetric space Γ\G/K:
Let us fix an arbitrary point p ∈ M = Γ\X. The tangent cone at infinity of
M is the (pointed) Gromov-Hausdorff limit of the sequence (M, p, 1

n
dM) of pointed

metric spaces. Heuristically speaking, this means that we are looking at the locally
symmetric space M from farther and farther away. The precise definition can be
found in Chapter 10 of [66]. We have the following geometric characterization of
Q-rank(Γ). For a proof see [40, 58] or [79].

Theorem 5.4. Let X = G/K denote a symmetric space of non-compact type and
Γ ⊂ G an arithmetic lattice. The tangent cone at infinity of Γ\X is isometric to a
Euclidean cone over a finite simplicial complex whose dimension is Q-rank(Γ).

An immediate consequence of this theorem is that Q-rank(Γ) = 0 if and only if
the locally symmetric space Γ\X is compact.

Figure 5.2.: Tangent Cone at Infinity of a Q-Rank One Space.
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5.1.2. Siegel Sets and Reduction Theory

Let us denote in this subsection by G again a connected, semi-simple algebraic
group defined over Q with trivial center and by X the corresponding symmetric
space of maximal compact subgroups of G = G(R).

Langlands Decomposition of Rational Parabolic Subgroups

Definition 5.5. A closed subgroup P ⊂ G defined over Q is called rational
parabolic subgroup if one of the following equivalent conditions holds:

(1) G/P is a projective variety.

(2) P contains a maximal, connected solvable subgroup of G. (These subgroups
are called Borel subgroups of G.)

(3) G/P is compact.

For any rational parabolic subgroup P of G we denote by NP the unipotent
radical of P, i.e. the largest unipotent normal subgroup of P and by NP := NP(R)
the real points of NP. The Levi quotient LP := P/NP is reductive and both NP

and LP are defined over Q. If we denote by SP the maximal Q-split torus in the
center of LP and by AP := SP(R)0 the connected component of SP(R) containing
the identity, we obtain the decomposition of LP(R) into AP and the real points
MP of a reductive algebraic group MP defined over Q:

LP(R) = APMP
∼= AP ×MP.

After fixing a certain basepoint x0 ∈ X, we can lift the groups LP,SP and MP

into P such that their images LP,x0 ,SP,x0 and MP,x0 are algebraic groups defined
over Q (this is in general not true for every choice of a basepoint x0) and give rise
to the rational Langlands decomposition of P := P(R):

P ∼= NP × AP,x0 ×MP,x0 .

More precisely, this means that the map

P → NP × AP,x0 ×MP,x0 , g 7→ (n(g), a(g),m(g))

is a real analytic diffeomorphism.
Denoting by XP,x0 the boundary symmetric space

XP,x0 := MP,x0/K ∩MP,x0

we obtain, since the subgroup P acts transitively on the symmetric spaceX = G/K
(we actually have G = PK), the following rational horocyclic decomposition of X:

X ∼= NP × AP,x0 ×XP,x0 .
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More precisely, if we denote by τ : MP,x0 → XP,x0 the canonical projection, we
have an analytic diffeomorphism

µ : NP × AP,x0 ×XP,x0 → X, (n, a, τ(m)) 7→ nam · x0. (5.1)

Note, that the boundary symmetric space XP,x0 is a Riemannian product of a
symmetric space of non-compact type by a Euclidean space.

For minimal rational parabolic subgroups, i.e. Borel subgroups P, we have

dimAP,x0 = Q-rank(G).

In the following we omit the reference to the chosen basepoint x0 in the subscripts.

Q-Roots

For the results in this subsection we refer also to [10] and [6].
Let us fix some minimal rational parabolic subgroup P of G. We denote in the

following by g,aP, and nP the Lie algebras of the (real) Lie groups G,AP, and NP

defined above. Associated with the pair (g,aP) there is – similar to Section 1.4 – a
system Φ(g,aP) of so-called Q-roots. If we define for α ∈ Φ(g,aP) the root spaces

gα := {Z ∈ g : ad(H)(Y ) = α(H)(Y ) for all H ∈ aP},
we have the root space decomposition

g = g0 ⊕
⊕

α∈Φ(g,aP)

gα,

where g0 is the Lie algebra of Z(SP(R)). Furthermore, the minimal rational
parabolic subgroup P defines an ordering of Φ(g,aP) such that

nP =
⊕

α∈Φ+(g,aP)

gα.

The root spaces gα,gβ to distinct positive roots α, β ∈ Φ+(g,aP) are orthogonal
with respect to the Killing form:

B(gα,gβ) = {0}.
In analogy to Section 1.4 we define

ρP :=
∑

α∈Φ+(g,aP)

mαα,

where mα is the multiplicity of the positive root α, i.e. the dimension of the
respective root space.

The elements of Φ(g,aP) are differentials of characters of the maximal Q-split
torus SP. For convenience, we identify the Q-roots with characters. If restricted
to AP we denote therefore the values of these characters by α(a), (a ∈ AP, α ∈
Φ(g,aP)) which is defined by

α(a) := expα(log a).
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Siegel Sets

Since we will consider in the succeeding section only (non-uniform) arithmetic
lattices Γ with Q-rank(Γ) = 1, we restrict ourselves from now on to the case

Q-rank(G) = 1.

For these groups we summarize several facts in the next lemma.

Lemma 5.6. Assume Q-rank(G) = 1. Then the following holds:

(1) For any proper rational parabolic subgroup P of G, we have dimAP = 1.

(2) All proper rational parabolic subgroups are minimal.

(3) The set Φ++(g,aP) of simple positive Q-roots contains only a single element:

Φ++(g,aP) = {α}.

For any rational parabolic subgroup P of G and any t > 1, we define

AP,t := {a ∈ AP : α(a) > t},

where α denotes the unique root in Φ++(g,aP).
If we choose a0 ∈ AP with the property α(a0) = t, the set AP,t is just a shift of the
positive Weyl chamber AP,1 by a0:

AP,t = AP,1a0.

Before we define Siegel sets, we recall the horocyclic decomposition of the sym-
metric space X = G/K:

X ∼= NP × AP ×XP.

Definition 5.7. Let P denote a rational parabolic subgroup of the algebraic group
G with Q-rank(G) = 1. For any bounded set ω ⊂ NP×XP and any t > 1, the set

SP,ω,t := ω × AP,t ⊂ X

is called Siegel set.

Precise Reduction Theory

We fix an arithmetic lattice Γ ⊂ G = G(R) in the algebraic group G with
Q-rank(G) = 1. Recall, that by a well known result due to A. Borel and Harish-
Chandra there are only finitely many Γ-conjugacy classes of minimal parabolic
subgroups (see e.g. [5]). Using the Siegel sets defined above, we can state the
precise reduction theory in the Q-rank one case as follows:
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Theorem 5.8. Let G denote a semi-simple algebraic group defined over Q with
Q-rank(G) = 1 and Γ an arithmetic lattice in G. We further denote by P1, . . . ,Pk

representatives of the Γ-conjugacy classes of all rational proper (i.e. minimal)
parabolic subgroups of G. Then there exist a bounded set Ω0 ⊂ X and Siegel sets
ωj × APj ,tj (j = 1, . . . , k) such that the following holds:

(1) Under the canonical projection π : X → Γ\X each Siegel set ωj × APj ,tj is
mapped injectively into Γ\X (i = 1, . . . , k).

(2) The image of ωj in (Γ ∩ Pj)\NPj
×XPj

is compact (j = 1, . . . , k).

(3) We have the following disjoint decomposition of Γ\X:

Γ\X = π(Ω0) ∪
k∐

j=1

π(ωj × APj ,tj).

In particular, the subset Ω0∪
∐k

j=1 ωj×APj ,tj is an exact fundamental domain
for Γ.

Geometrically this means that each set π(ωj×APj ,tj) corresponds to one cusp of
the locally symmetric space Γ\X and the numbers tj are chosen large enough such
that these sets do not overlap. Then the bounded set π(Ω0) is just the complement
of
∐k

j=1 π(ωj × APj ,tj).

Figure 5.3.: Disjoint Decomposition of a Q-rank-1 Space.

Since in the case Q-rank(G) = 1 all rational proper parabolic subgroups are mini-
mal, these subgroups are conjugate under G(Q) (cf. [5], Theorem 11.4). Therefore,
the root systems Φ(g,aPj

) with respect to the rational proper parabolic subgroups
Pj, j = 1 . . . k, are canonically isomorphic (cf. [5], 11.9) and moreover, we can
conclude ||ρP1|| = . . . = ||ρPk

||.

5.1.3. Rational Horocyclic Coordinates

For all α ∈ Φ+(g,aP) we define on nP =
⊕

α∈Φ+(g,aP) gα a left invariant bilinear
form hα by

hα :=

{
〈·, ·〉, on gα

0, else,
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Chapter 5. Locally Symmetric Spaces with Q-Rank 1

where 〈·, ·〉 denotes the scalar product defined by means of the Killing form. We
then have (cf. Proposition 1.6 in [6] and Proposition 4.3 in [7]):

Proposition 5.9. (a) For any x = (n, τ(m), a) ∈ X ∼= NP × XP × AP the
tangent spaces at x to the submanifolds {n}×XP×{a}, {n}×{τ(m)}×AP,
and NP × {τ(m)} × {a} are mutually orthogonal.

(b) The pullback µ∗g of the metric g on X to NP ×XP × AP is given by

ds2
(n,a,τ(m)) =

1

2

∑
α∈Φ+(g,aP)

e−2α(log a)hα ⊕ d(τ(m))2 ⊕ da2.

If we choose (as in the preceding chapter) orthonormal bases {N1, . . . , Nr} of
nP, {Y1, . . . , Yl} of some tangent space Tτ(m)XP and H ∈ a+

P with ||H|| = 1, we
obtain rational horocyclic coordinates

ϕ : NP ×XP × AP → Rr × Rl × R,(
exp(

r∑
j=1

xjNj), exp(
l∑

j=1

xj+rYj), exp(yH)

)
7→ (x1, . . . , xr+l, y).

In the following, we will abbreviate (x1, . . . , xr+l, y) as (x, y). The representation
of the metric ds2 with respect to these coordinates is given by the matrix

(gij)i,j(n, τ(m), a) =



1
2
e−2α1(log a)

. . .
1
2
e−2αr(log a)

0

0 hkm

1


where the positive roots αi ∈ Φ+(g,aP) appear according to their multiplicity and
the (l × l)-submatrix (hkm)l

k,m=1 represents the metric d(τ(m))2 on the boundary
symmetric space XP.

Corollary 5.10. The volume form of NP × XP × AP with respect to rational
horocyclic coordinates is given by√

det(gij)(n, τ(m), a) dxdy =

(
1

2

)r/2√
det(hkm(τ(m)) e−2ρP(log a)dxdy

=

(
1

2

)r/2√
det(hkm(τ(m)) e−2yρP(H)dxdy

=

(
1

2

)r/2√
det(hkm(τ(m)) e−2y||ρP||dxdy,

where log a = yH.
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A straightforward calculation yields:

Corollary 5.11. The Laplacian on NP×XP×AP in rational horocyclic coordinates
is

∆ = −2
r∑

j=1

e2αj
∂2

∂x2
j

−
r+l∑

j=r+1

∂2

∂x2
j

− ∂2

∂y2
+ 2||ρP||

∂

∂y
+ ∆XP

, (5.2)

where ∆XP
denotes the Laplacian on the boundary symmetric space XP.

5.2. Lp-Spectrum

In this section X = G/K denotes a symmetric space of non-compact type whose
metric coincides on TeK(G/K) ∼= p with the Killing form on the Lie algebra g of
G. Furthermore, Γ ⊂ G is an arithmetic, non-uniform lattice with Q-rank(Γ) = 1.

The corresponding locally symmetric space M = Γ\X has finitely many cusps
and each cusp corresponds to a Γ-conjugacy class of a minimal rational parabolic
subgroup P ⊂ G. Let P1, . . . ,Pk denote representatives of the Γ-conjugacy classes.
Since these subgroups are conjugate under G(Q) and the respective root systems
are isomorphic (cf. Section 5.1.2), we consider in the following only the rational
parabolic subgroup P := P1. We denote by ρP as in the preceding section half the
sum of the positive roots (counted according to their multiplicity) with respect to
the pair (P,AP).

In analogy with Definition 4.24, we define for any p ∈ [1,∞) the parabolic region

Pp :=

{
z = x+ iy ∈ C : x ≥ 4||ρP||2

p

(
1− 1

p

)
+

y2

4||ρP||2(1− 2
p
)2

}

if p 6= 2 and P2 := [||ρP||2,∞).
The boundary ∂Pp of Pp is parametrized by the curve

R → C, s 7→ 4||ρP||2

p

(
1− 1

p

)
+ s2 + 2i||ρP||s

(
1− 2

p

)
=

(
2||ρP||
p

+ is

)(
2||ρP|| −

2||ρP||
p

− is

)
.

Our main result in this chapter reads as follows:

Theorem 5.12. Let X = G/K denote a symmetric space of non-compact type
and Γ ⊂ G an arithmetic lattice with Q-rank(Γ) = 1. If we denote by M := Γ\X
the corresponding locally symmetric space, the parabolic region Pp is contained in
the spectrum of ∆M,p, p ∈ (1,∞):

Pp ⊂ σ(∆M,p).
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The picture is quite similar to the one of Chapter 4 (see e.g. Figure 4.1).

Lemma 5.13. Let M denote a Riemannian manifold with finite volume. For
2 ≤ p ≤ q <∞, we have the inclusion

σ(∆M,p) ⊂ σ(∆M,q).

Proof. Since the volume of M is finite, it follows for 1 ≤ p ≤ q ≤ ∞ (by Hölder’s
inequality)

Lq(M) ↪→ Lp(M),

i.e. Lq(M) is continuously embedded in Lp(M). Therefore, we obtain the bound-
edness of the operators

e−t∆M : Lq(M) → Lp(M), p ≤ q.

It now follows as in Lemma 4.29

e−t∆M ∆M,q ⊂ ∆M,p e−t∆M (1 ≤ p ≤ q ≤ ∞).

With this result at hand we can argue as in the proof of Proposition 4.30 to prove
the claim.

Proposition 5.14. For 1 ≤ p <∞ the boundary ∂Pp of the parabolic region Pp is
contained in the approximate point spectrum of ∆M,p:

∂Pp ⊂ σapp(∆M,p).

Proof. Choose some

z = z(s) =

(
2||ρP||
p

+ is

)(
2||ρP|| −

2||ρP||
p

− is

)
∈ ∂Pp.

The subsequent proof uses the same ideas as the proof of Proposition 4.26, i.e.
we construct a sequence fn of differentiable functions in Lp(X) with support in a
fundamental domain for Γ such that

||∆Xfn − zfn||Lp

||fn||Lp

→ 0 (n→∞).

A fundamental domain for Γ is given by a subset of the form

Ω0 ∪
k∐

i=1

ωi × APi,ti ⊂ X

(cf. Theorem 5.8), and each Siegel set ωi × APi,ti is mapped injectively into Γ\X.
Furthermore, the closure of π(ωi × APi,ti) fully covers an end of Γ\X (for any
i ∈ {1, . . . , k}).
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We take the Siegel set ω×AP,t := ω1×AP1,t1 where AP,t = {a ∈ AP : α(a) > t},
and define a sequence fn of smooth functions with support in ω×AP,t with respect
to rational horocyclic coordinates by

fn(x, y) := cn(y)e( 2
p
||ρP||+is)y,

where cn ∈ C∞
c

(
( log t
||α|| ,∞)

)
. Since ω is bounded, each fn is clearly contained in

Lp(X). Furthermore, the condition supp(cn) ⊂ ( log t
||α|| ,∞) ensures that the supports

of the sequence fn are contained in the Siegel set ω × AP,t.
Using formula (5.2) for the Laplacian in rational horocyclic coordinates, we ob-

tain after a straightforward calculation

∆Xfn(x, y)− zfn(x, y) =

=

(
−c′′n(y) +

(
2||ρP|| − 2(

2

p
||ρP||+ is)

)
c′n(y)

)
e(

2||ρP||
p

+is)y,

and therefore

||∆Xfn − zfn||pLp =

∫
ω×AP,t

|∆Xfn − zfn|pdvolX

=

(
1

2

)r/2 ∫
ω×AP,t

|∆Xfn(x, y)− zfn(x, y)|p
√

det(hkm(τ(m)) e−2||ρP||y dxdy

= C

∫ ∞

0

∣∣∣∣−c′′n(y) +

(
2||ρP|| − 2(

2||ρP||
p

+ is)

)
c′n(y)

∣∣∣∣p dy,
where C :=

(
1
2

)r/2 ∫
ω

√
det(hkm(τ(m)) dx <∞ because ω ⊂ NP ×XP is bounded.

This yields after an application of the triangle inequality

||∆Xfn − zfn||Lp ≤ C1

(∫ ∞

0

|c′′n(y)|p dy
)1/p

+ C2

(∫ ∞

0

|c′n(y)|p dy
)1/p

.

By an analogous calculation we obtain

||fn||Lp = C3

(∫ ∞

0

|cn(y)|p dy
)1/p

.

We choose a function ψ ∈ C∞
c (R), not identically zero, with supp(ψ) ⊂ (1, 2), a

sequence rn > 0 with rn →∞ (if n→∞), and we eventually define

cn(y) := ψ

(
y

rn

)
.
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For large enough n, we have supp(cn) ⊂ ( log t
||α|| ,∞). As in the preceding chapter, we

obtain ∫ ∞

0

|cn(y)|p dy = rn

∫ 2

1

|ψ(u)|p du,∫ ∞

0

|c′n(y)|p dy1 = r1−p
n

∫ 2

1

|ψ′(u)|p du,∫ ∞

0

|c′′n(y)|p dy1 = r1−2p
n

∫ 2

1

|ψ′′(u)|p du.

In the end, this leads to the inequality

||∆Xfn − zfn||p
||fn||p

≤ C4

rn

+
C5

r2
n

−→ 0 (n→∞),

where C4, C5 > 0 denote positive constants, and the proof is complete.

Proof of Theorem 5.12. The inclusion

Pp ⊂ σ(∆M,p)

for p ∈ [2,∞) follows as in the proof of Theorem 4.2. But now we use Lemma 5.13,
Proposition 5.14, and note

Pp =
⋃

q∈[2,p]

∂Pq.

The inclusion for all p ∈ (1,∞) follows again by duality.

Up to now, we considered non-uniform arithmetic lattices Γ ⊂ G with Q-rank
one. We made no assumption concerning the rank of the respective symmetric
space X = G/K of non-compact type. However, if rank(X) = 1, we are able
to sharpen the result of Theorem 5.12 considerably. In the case Q-rank(Γ) =
rank(X) = 1, the one dimensional abelian subgroup AP of G (with respect to
some rational minimal parabolic subgroup) defines a maximal flat subspace, i.e.
a geodesic, AP · x0 of X. Hence, the Q-roots coincide with the roots defined in
Chapter 1 and for any rational minimal parabolic subgroup P we have in particular

||ρP|| = ||ρ||.

This proves one part of the following corollary.

Corollary 5.15. Let X = G/K denote a symmetric space of non-compact type
with rank(X) = 1. Furthermore, Γ ⊂ G denotes a non-uniform arithmetic lattice,
and M = Γ\X is the corresponding locally symmetric space. Then, we have for all
p ∈ (1,∞) the equality

σ(∆M,p) = {λ0, . . . , λm} ∪ Pp,

where 0 = λ0, . . . , λm ∈
[
0, ||ρ||2

)
are eigenvalues of ∆M,2.
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Proof. Langlands’ theory of Eisenstein series implies (see e.g. [55] or the surveys
in [48] or [9])

σ(∆M,2) =
{
λ0, . . . , λm

}
∪
[
||ρ||2,∞

)
.

Thus, we can apply Proposition 3.3 from [75] and obtain

σ(∆M,p) ⊂ {λ0, . . . , λm} ∪ Pp.

As in the proof of Lemma 6 in [24] one sees that the discrete part of the L2-
spectrum {λ0, . . . , λm} is also contained in σ(∆M,p) for any p ∈ (1,∞). Together
with Theorem 5.12 and the remark above this concludes the proof.

Recall, that the critical exponent δ(Γ) attains for lattices Γ the maximal possible
value: δ(Γ) = 2||ρ||. In Theorem 4.2 we proved a similar result in the rank one case
if the critical exponent is small, i.e. δ(Γ) ≤ ||ρ||. In the case δ(Γ) ∈ (||ρ||, 2||ρ||) it
is still not clear what the Lp-spectrum is but it is quite natural to conjecture that
an analogous result to Corollary 5.15 holds.
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Chapter 6.

Manifolds with Cusps of Rank 1

In this chapter we consider a class of Riemannian manifolds that is larger than
the class of Q-rank one locally symmetric spaces but contains all of them. This
larger class consists of those manifolds which are isometric – after the removal of a
compact set – to a disjoint union of rank one cusps. Manifolds with cusps of rank
one were probably first introduced and studied by W. Müller (see e.g. [61]).

6.1. Definition

Recall, that we denoted by ω × AP,t ⊂ X Siegel sets of a symmetric space X =
G/K of non-compact type. The projection π(ω × AP,t) of certain Siegel sets to a
corresponding Q-rank one locally symmetric space Γ\X is a cusp and every cusp
of Γ\X is of this form (cf. Section 5.1.2).

Definition 6.1. A Riemannian manifold is called cusp of rank one if it is isometric
to a cusp π(ω × AP,t) of a Q-rank one locally symmetric space.

Definition 6.2. A complete Riemannian manifold M is called manifold with cusps
of rank one if it has a decomposition

M = M0 ∪
k⋃

j=1

Mj

such that the following holds:

(i) M0 is a compact manifold with boundary.

(ii) The subsets Mj, j ∈ {0, . . . , k}, are pairwise disjoint.

(iii) For each j ∈ {1, . . . , k} there exists a cusp of rank one isometric to Mj.
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Such manifolds certainly have finite volume as there is only a finite number of
cusps possible and every cusp of rank one has finite volume.

From Theorem 5.8 it follows that any Q-rank one locally symmetric space is
a manifold with cusps of rank one. But since we can perturb the metric on the
compact manifold M0 without leaving the class of manifolds with cusps of rank one,
not every such manifold is locally symmetric. Of course, they are locally symmetric
on each cusp and we can say that they are locally symmetric near infinity.

6.2. Lp-Spectrum and Geometry

Precisely as in Proposition 5.14 one sees that we can find for every cusp Mj, j ∈
{1, . . . , k} of a manifold M = M0 ∪

⋃k
j=1Mj with cusps of rank one a parabolic

region P
(j)
p such that the boundary ∂P

(j)
p is contained in the approximate point

spectrum of ∆M,p. Here, the parabolic regions are defined as the parabolic regions
in the two preceding chapters (cf. for example Definition 4.24), where the constant
||ρ|| or rather ||ρP|| is replaced by an analogous quantity, say ||ρPj

||, coming from
the respective cusp Mj. That is to say, we have the following lemma:

Lemma 6.3. Let M denote a manifold with cusps of rank one. Then we have for
p ∈ [1,∞):

∂P (j)
p ⊂ σapp(∆M,p).

Since the volume of a manifold with cusps of rank one is finite, we can ap-
ply Lemma 5.13 in order to prove (cf. the proof of Theorem 5.12) the following
Theorem:

Theorem 6.4. Let M = M0 ∪
⋃k

j=1Mj denote a manifold with cusps of rank

one. Then, for p ∈ (1,∞), every cusp Mj defines a parabolic region P
(j)
p that is

contained in the Lp-spectrum:

k⋃
j=1

P (j)
p ⊂ σ(∆M,p).

Of course, the compact submanifold M0 contributes some discrete set to the
Lp-spectrum, and 0 is always an eigenvalue as the volume of M is finite. It seems
to be very likely that besides some discrete spectrum the union of the parabolic
regions in Theorem 6.4 is already the complete spectrum. But at present, I do not
know how to prove this result. The methods used in [24] or [75] to prove a similar
result need either that the manifold is homogeneous or that the injectivity radius is
bounded from below, and it is not clear how one could adapt the methods therein
to our case.

Nevertheless, given the Lp-spectrum for some p 6= 2, we have the following
geometric consequences:
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Figure 6.1.: The union of two parabolic regions P
(1)
p and P

(2)
p if p 6= 2.

Corollary 6.5. Let M = M0 ∪
⋃k

j=1Mj denote a manifold with cusps of rank one
such that

σ(∆M,p) = {λ0, . . . , λr} ∪ Pp,

for some p 6= 2 and some parabolic region Pp. Then every cusp Mj is of the form
π(ωj × APj ,tj) with volume form(

1

2

)rj/2

e−2yc dxdy,

where c is a positive constant.

Proof. Since all parabolic regions P
(j)
p induced by the cusps Mj coincide, the quan-

tities ||ρPj
|| coincide. Therefore, we can take c := ||ρP1||.

This result generalizes to the case where the continuous spectrum consists of a
finite number of parabolic regions in an obvious manner.
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Appendix A.

Tensor Products

We adopt the terminology used in the book [25] which serves also as our main
reference in this chapter. The field K denotes in this part always the real numbers
R or the complex numbers C.

Let us first recall the definition of a tensor product of vector spaces and some
basic properties.

Definition A.1. Let E and F denote K-vector spaces. A pair (H,Ψ0) consisting of
a K-vector space H and a bilinear map Ψ0 : E×F → H is called tensor product of
the pair (E,F ) if for each K-vector space G and each bilinear map Φ : E×F → G
there exists a unique linear map T : H → G with Φ = T ◦Ψ0:

E × F -Φ
G

?

Ψ0

H
�

�
�

�
��3

T

One can prove that up to isomorphisms there is a unique tensor product of the
vector spaces E and F : If (H1,Ψ

(1)
0 ) and (H2,Ψ

(2)
0 ) are two tensor products, we

can find an isomorphism S : H1 → H2 such that S ◦Ψ
(1)
0 = Ψ

(2)
0 . We write E ⊗ F

for the (unique) tensor product and x ⊗ y for the image Ψ0(x, y). Note, that we
have

E ⊗ F = span{x⊗ y : x ∈ E, y ∈ F}.

If E and F are normed spaces, there are in general many possibilities to define
a norm on the tensor product E ⊗ F . Given a norm α on E ⊗ F , we denote by
E⊗̃αF the completion of the normed space (E ⊗ F, α).
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Appendix A. Tensor Products

In the proof of Theorem 2.11 we claimed

Lp(M1 ×M2) ∼= Lp(M1)⊗̃4pL
p(M2) (1 < p <∞),

where ∼= means isometrically isomorphic. The norm 4p on the tensor product
Lp(M1)⊗Lp(M2) is defined as follows: Given

∑n
i=1 fi⊗ gi ∈ Lp(M1)⊗Lp(M2), we

put

4p

(
n∑

i=1

fi ⊗ gi

)
:=

(∫
M1

∫
M2

∣∣∣∣∣
n∑

i=1

fi(x1)gi(x2)

∣∣∣∣∣
p

dx2 dx1

)1/p

.

Using Fubini’s theorem, we can conclude that the inclusion

ι : Lp(M1)⊗4p L
p(M2) → Lp(M1 ×M2),∑n

i=1 fi ⊗ gi 7→
∑n

i=1 figi

is isometric. Since the image of ι is dense in Lp(M1 ×M2) (it containes the tensor
product of the step functions in Lp(M1) and Lp(M2)), the claim follows. For a
more general treatment cf. Section 7 in [25].

To prove Theorem 2.11, we want to apply Theorem 5 in [68] where an appropriate
spectral mapping theorem for operators of the form A1 ⊗ I + I ⊗A2 on the tensor
product E⊗̃αF of two Banach spaces E and F is proven. The norm α can be an
arbitrary uniform cross norm (or tensor norm). For a definition cf. 12.1 in [25].
Unfortunately, 4p is not a uniform cross norm (cf. also 12.1 in [25]). But we are
lucky, because there is a uniform cross norm gp, which coincides with 4p on the
tensor product Lp(M1) ⊗ Lp(M2). This is the content of Corollary 2 in 15.10 in
[25]. For the definition of gp see 12.7 therein.
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