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Abstract

Earthquake early warning (EEW) systems utilize the capability of modern real-time systems to pro-
cess and transmit information faster than seismic waves propagate (3-6 km/s); they provide first in-
formation on forthcoming ground shaking prior to the arrival of seismic waves at potential user sites.
Possible warning times range up to about 70 s, depending on the distances between seismic source,
sensor and user sites. The main effort in the design and implementation of EEW systems in the last
few years aims to increase warning times and thus to expand areas that can be effectively warned.
This requires new strategies and methods for the rapid characterization of earthquakes: on-site warn-
ing systems are based on observations at single stations for the quick estimate of source parameters.
The on-site warning approach is significantly faster than the network based regional strategy for early
warning even though often at the expense of accuracy.

In this thesis, I have developed a methodology for EEW - called PreSEIS (Pre-SEISmic shaking) -
that takes advantage of both, regional and on-site warning paradigms. PreSEIS integrates all available
information from a small network of seismic sensors - similar to the regional warning approach. In
contrast to regional warning, however, PreSEIS does not require that seismic waves have arrived at all
sensors before warnings are issued. To confine the space of possible solutions for the position of the
earthquake hypocenter, PreSEIS also includes information of non-triggered sensors. First estimates
are available only 0.5 s after triggering of the first early warning sensor. PreSEIS is therewith as quick
as the on-site warning approach that is based on single stations at a concurrent higher stability due
to a higher number of involved stations. PreSEIS considers EEW as a problem of time-dependent
non-linear inversion for source parameters from the available information at different sensors. With
ongoing time more and more stations will be triggered by the propagating seismic waves and longer
time series at the single sites will become available. Thus, estimates of source locations and magni-
tudes (and others) are continuously updated every 0.5 s. PreSEIS is based on Two-Layer Feed-Forward
Neural Networks, that are used for the mapping of seismic observations onto likely source parameters,
including hypocenter locations, earthquake magnitudes, rupture expansions and the Fourier amplitude
spectrum of ground motion at a specified user site.

PreSEIS has been developed and tested using the example of the Istanbul Earthquake Rapid Response
and Early Warning System (IERREWS). The Turkish mega-city Istanbul is exposed to an extremely
high seismic risk due to its closeness to seismic fault segments in the Sea of Marmara and the high
concentration of human and industrial settlements in the Marmara region. Alike many other cities and
regions in the world that are affected by a high seismic threat, the development and verification of a
methodology for early warning for Istanbul is aggravated by the lack of moderate and strong motion
records. This thesis demonstrates that synthetic records obtained, e.g., from the Stochastic Simulation
Method for Finite Faults (Beresnev and Atkinson, 1997), can be used.
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Zusammenfassung

Kapitel 1: Einleitung

Naturkatastrophen wie Erdbeben, vulkanische Eruptionen, Stürme, Überschwemmungen und
Dürren fordern jedes Jahr tausende Menschenleben und verursachen Schäden in Millionenhöhe. An-
zahl und Ausmaß von Katastrophen sind in den letzten Jahrzehnten deutlich gestiegen, insbesondere
zurückzuführen auf die zunehmende Verletzbarkeit unserer Gesellschaft gegenüber den Naturge-
walten. Das verbesserte Verständnis der physikalischen Ursachen von Risiko als Zusammenspiel
von Gefährdung und Verletzbarkeit hat in den letzten Jahren zur Entwicklung und Verbesserung
geeigneter Werkzeuge zur Vorhersage und Linderung von Desastern geführt. Im Bereich der Geo-
wissenschaften, insbesondere bei den Erdbeben, ist man hierbei mit besonderen Herausforderungen
konfrontiert: Erdbebenvorhersage im deterministischen Sinne ist aufgrund der Komplexität des
Erdbebenprozesses und der Nichtzugänglichkeit der Verwerfungszonen zu direkten Messungen ein
schwerwiegendes und ggf. unüberwindbares Problem. Auf der anderen Seite können Seismologen
wie auch Ingenieure bereits heute der Gesellschaft entscheidende Unterstützung im Bereich der
seismischen Risikominderung geben. Das Ziel der vorliegenden Dissertation ist die Entwicklung und
Erprobung einer Methode zur Erdbeben-Frühwarnung - PreSEIS1 genannt - die auf Verwendung
Künstlicher Neuronaler Netze beruht.

Erdbeben-Frühwarnsysteme (EWS) bezeichnen Systeme, die getriggert durch ein entferntes Erdbeben
noch vor Eintreffen seismischer Wellen entsprechende Warnungen an Nutzer geben können. Vorwarn-
zeiten sind abhängig von den jeweiligen Distanzen zwischen Erdbebenherd, seismischen Sensoren
und Empfängern der Warnungen. In der Regel steht ein Zeitfenster von einigen Sekunden bis zu über
eine Minute zur Verfügung. Innerhalb dieser Zeit muß das EWS die Gefahr durch das Beben anhand
der zur Verfügung stehenden Information an einem oder mehreren Sensoren zuverlässig einschätzen
können. Idealerweise werden Erdbebenwarnungen vollautomatisch in Maßnahmen zur Reduktion di-
rekter als auch indirekter Schäden infolge des Erdbebens umgesetzt. So können beispielsweise durch
Frühwarnsysteme getriggert Hochgeschwindigkeitszüge im Gefahrenbereich abgebremst, die Gas-
zufuhr zur Reduktion der Feuergefahr unterbrochen, empfindliche Fertigungsanlagen gesichert und
Computerdaten zur Vermeidung von Datenverlusten gespeichert werden. Schließlich können Warnun-
gen auch zur Unterstützung halbaktiver Schwingungstilgungen zur Vermeidung von Gebäudeversagen
verwendet oder mittels Sirenen oder Rundfunk direkt an die Öffentlichkeit weitergegeben werden.

Entwickelt und demonstriert wird PreSEIS am Beispiel der Millionenstadt Istanbul in der türkischen
Marmara-Region. Verwerfungen in der Marmara-See, die als westliche Fortsetzung der Nordanato-
lischen Störung interpretiert werden, verlaufen teilweise nur zwischen 15 und 20 km südlich von

1PreSEIS steht für Pre-SEISmic shaking, d.h. vor Einsatz seismischer Untergrundserschütterungen (im Bereich potenti-
eller Empfänger von Warnungen).
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Zusammenfassung

Istanbul entfernt. Parsons et al. (2000) schätzen, dass sich in den kommenden 30 Jahren mit einer
Wahrscheinlichkeit von über 60% ein starkes Erdbeben in der Marmara-Region ereignen wird, wel-
ches 40-50.000 Opfern fordern und Schäden von über USD 1.1 ·1010 verursachen werden kann (Erdik
et al., 2003a). Alarmiert durch die beiden zerstörerischen Erdbeben von Düzce (Mw = 7.2) und Ko-
caeli (Mw = 7.4) im Jahr 1999 hat das Kandilli Observatorium der Bosporus Universität in Istanbul in
Zusammenarbeit mit Regierungsorganisationen im Herbst 2002 die Installation von zehn Frühwarn-
stationen in der Marmara-Region im Rahmen des IERREWS (Istanbul Earthquake Rapid Response
and Early Warning System) erfolgreich abschließen können. Dieses Akzellerometernetz überträgt in
Echtzeit die an den Sensoren gemessene Untergrundsbewegungen zu zwei Datenzentren in Istan-
bul, wo die eingehenden Informationen zentral ausgewertet werden. Das momentane System basiert
auf einfachen Schwellwerten, bei deren Überschreitung das System (nicht-öffentlichen) Alarm gibt
(Erdik et al., 2003b). Mit PreSEIS soll eine alternative und zuverlässigere Methode zur Erdbeben-
Frühwarnung entwickelt werden. Diese Dissertation wurde in Kooperation mit Prof. Dr. M. Erdik und
seinem Team am Kandilli Observatorium durchgeführt.

Die vorliegende Arbeit gliedert sich grob in zwei Teile: Der erste Teil (Kapitel 2, 3 und 4) gibt nach
einer kurzen Einführung in die Erzeugung und Ausbreitung von Erdbeben-Wellen eine Beschreibung
der Simulation seismischer Untergrundsbewegungen, auf deren Basis PreSEIS entwickelt werden
wird. Im zweiten Teil der Arbeit (Kapitel 5 und 6) werden bereits existierende Frühwarnsysteme vor-
gestellt und schließlich die PreSEIS Methode entwickelt und demonstriert. Eine Zusammenfassung
der wichtigsten Ergebnisse dieser Dissertation wird in Kapitel 7 gegeben.

Kapitel 2: Erdbebenherd, seismische Wellenausbreitung und lokale Standorteffekte

Die Ausprägung der durch ein Erdbeben angeregten Bodenbewegung hängt von zahlreichen
Einflußgrößen und Prozessen in den Bereichen des Erdbebenherdes, der seismischen Wellenaus-
breitung und des lokalen Untergrundes am Beobachtungsstandort ab. Die entscheidenden Faktoren
werden diskutiert und quantifiziert. Dadurch werden die nötigen Grundlagen für das Verständnis der
in Kapitel 3 eingeführten Methode zur Stochastischen Simulation der seismischen Bodenbewegung
für ausgedehnte Quellen (Beresnev and Atkinson, 1997) gelegt.

Kapitel 3: Stochastische Simulation der seismischen Bodenbewegung

Eine besondere Herausforderung bei der Entwicklung einer Methode zur Erdbeben-Frühwarnung
für Istanbul stellt die geringe Seismizitätsrate in der Marmara-Region dar. PreSEIS wird aus
diesem Grund mit Hilfe synthetischer Zeitreihen der seismischen Bodenbewegung entwickelt.
Die stochastische Simulationsmethode, ursprünglich vorgestellt von Boore (1983), kombiniert das
geschätzte Fourier Amplitudenspektrum der Untergrundsbewegung mit einer randomisierten Phase.
Dadurch wird eine einfache und geeignete Methode zur Simulation von Beschleunigungszeitreihen
von mittelstarken bis starken Erdbeben im Frequenzbereich bis zu 10 Hz und ggf. höher zur
Verfügung gestellt. Deterministische Modellierungen der Untergrundsbewegung - wie z.B. mittels
der Finite Differenzen-Methode - würden in diesem Frequenzband ein unerreicht hochauflösendes
Untergrundsmodell erfordern. Die Besonderheit der stochastischen Simulation liegt gerade darin,
dass Details sowohl des Erdbebenherdes als auch der Ausbreitungseffekte seismischer Wellen nicht
spezifiziert werden müssen. Die Ausweitung der Punktquellen-Methode auf endliche Brüche nach
Beresnev and Atkinson (1997) ist eine wichtige Erweiterung zur Berücksichtigung quellnaher Effekte
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Zusammenfassung

wie der Direktivität. Diese Effekte sollten aufgrund der geringen Quell-Empfänger-Distanzen in
der Marmara-Region unbedingt berücksichtigt werden. Für die Anwendbarkeit der beschriebenen
Simulationsmethode auf das Problem der Erdbeben-Frühwarnung in dieser Arbeit ist zunächst
eine Erweiterung des für Scherwellen (S-Wellen) entwickelten Ansatzes auf Kompressionswellen
(P-Wellen) erforderlich. P-Wellen sind aufgrund ihrer schnelleren Ausbreitung für die Frühwarnung
essentiell: Die in der Regel amplitudenschwachen P-Wellen dienen im EWS oftmals als Informa-
tionsträger, die amplitudenstarken S-Wellen (und Oberflächenwellen) dagegen als Energieträger
(Kanamori, 2005).

Mit Hilfe der Methode der Stochastischen Simulation der seismischen Bodenbewegung für ausge-
dehnte Quellen (Beresnev and Atkinson, 1997) wird für 280 Erdbebenszenarien (4.5 ≤ Mw ≤ 7.5)
an jeder der zehn Frühwarnstationen des IERREWS die gemittelte Horizontalkomponente der seis-
mischen Bodenbeschleunigung modelliert. Um einen möglichst realistischen Datensatz zu erhal-
ten, werden die der Literatur entnommenen Durchschnittswerte geophysikalischer Parameter in der
Marmara-Region innerhalb physikalisch sinnvoller Grenzen zufällig variiert. Daneben enthält der Da-
tensatz Erdbeben mit unterschiedlichen Versatzverteilungen auf den Bruchflächen, mit sowohl uni-
als auch bi-direktionalen Bruchverläufen. Die Beben werden entlang der bekannten Verwerfungen in
der Marmara-See in verschiedenen Tiefen simuliert. Weitere Beben werden zufällig in der Marmara-
Region verteilt.

Definiert durch das Zeitfenster zwischen Erdbeben-Detektion an dem durch die P-Welle erstgetrigger-
ten Sensor und der Ankunft amplitudenstarker S-Wellen betragen Vorwarnzeiten für Istanbul in der
Regel zwischen 8 s und 15 s. Für die Erkennung des Gefahrenpotentials eines Erdbebens stehen somit
im Schnitt weniger als 4 s zur Verfügung.

Kapitel 4: Parameter der seismischen Bodenbewegung

Eine grobe Bewertung der simulierten Zeitreihen erfolgt auf Grundlage von extrahierten Pa-
rametern der seismischen Bodenbewegung. So genannte Abminderungsfunktionen beschreiben die
Abnahme dieser Parameter als Funktion der Entfernung vom Erdbebenherd. Für den stochastisch
simulierten Datensatz werden Abminderungsfunktionen für Spitzenamplituden, spektrale Beschleu-
nigungswerte und Intensitätsparameter bestimmt, und sowohl mit Abminderungsfunktionen aus
anderen seismisch aktiven Regionen (Sadigh et al., 1997; Boore et al., 1997; Campbell, 1997; Erdik
et al., 1985) als auch mit beobachteten Spitzenbeschleunigung von zwei Starkbeben (1999 Düzce,
Kocaeli) und einem Schwachbeben (2004 Yalova) in der Westtürkei verglichen. In Distanzen ab
30 km wird bei den simulierten Daten ein stärkerer Abfall der Parameter beobachtet. Man beachte
allerdings, dass Abminderungsfunktionen aus anderen Gebieten nur eingeschränkt übertragbar sind.
Insbesondere die Verteilung der Versätze auf der Bruchfläche bestimmt entscheidend den Level der
beobachteten Untergrundsbewegung.

Kapitel 5: Erdbeben-Frühwarnung

Erdbeben-Frühwarnsysteme existieren bereits in Japan (Nakamura, 1989; Saita and Nakamura,
2003), Taiwan (Wu and Teng, 2002; Wu and Kanamori, 2005a,b) und Mexiko (Espinosa-Aranda et al.,
1995). In anderen Ländern wie Kalifornien (Allen and Kanamori, 2003; Cua, 2004; Kanamori, 2005;
Wu et al., 2005), Rumänien (Wenzel et al., 1999, 2001) oder der Türkei (Erdik et al., 2003b) sind
in den vergangenen Jahren bemerkenswerte Fortschritte erzielt worden. Neben den technologischen
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Zusammenfassung

Grundvoraussetzungen der Daten-Echtzeitverarbeitung und -kommunikation ist die Entwicklung
schneller und zuverlässiger Algorithmen zur Einschätzung der von einem Erdbeben ausgehenden
Gefahr erforderlich. Kapitel 5 beschreibt die bekanntesten Erdbeben-Frühwarnsysteme auf der Welt
und gibt eine kurze Einführung in verwendete Algorithmen.

Grundsätzlich haben sich in den letzten Jahren zwei Haupttypen der Erdbeben-Frühwarnsysteme ent-
wickelt: Die so genannten regionalen Frühwarnsysteme sind vergleichbar mit herkömmlichen seismi-
schen Netzwerken mit einer Vielzahl an Sensoren, die über hunderte von Kilometern verteilt installiert
sind und seismische Daten in Echtzeit zu einer zentralen Verarbeitungseinheit übermitteln. Solche
Systeme sind in der Regel sehr zuverlässig bei der Ortung der Erdbebenquelle und der Bestimmung
der Erdbebenmagnitude. Auf der anderen Seite haben regionale Frühwarnsysteme den Nachteil, dass
sie relativ langsam sind, da zur Auswertung der seismischen Untergrundsbewegung viele Stationen
die sich ausbreitenden seismischen Wellen registriert haben müssen. Dadurch geht wertvolle Vor-
warnzeit verloren. Auf der anderen Seite wurden in den letzten Jahren, insbesondere in Japan, Taiwan
und in Kalifornien, Frühwarnsysteme entwickelt - die sog. on-site Systeme -, welche auf Beobach-
tungen an einzelnen Stationen basieren. Die Schwierigkeit bei dem on-site-Verfahren liegt vor allem
darin, innerhalb weniger Sekunden die Mehrdeutigkeit zwischen Entfernung und Stärke des Erdbe-
bens mit Hilfe einer einzigen Beschleunigungsaufzeichnung zu lösen. Während bei den regionalen
Warnsystemen also die Verarbeitungsgeschwindigkeit den limitierenden Faktor darstellt, ist bei den
on-site Systemen die Robustheit entscheidend. Bei Anwendungen in Taiwan und Kalifornien hat sich
in jüngster Vergangenheit wiederholt gezeigt, dass eine gute Abschätzung der Magnitude letztendlich
eine Mittelung über Einzelschätzungen von bis zu acht on-site Stationen erfordert (Wu et al., 2005;
Wu and Kanamori, 2005b; Lockman and Allen, 2005). Dieses Vorgehen steht jedoch im Widerspruch
zu der ursprünglichen Idee der on-site Systeme und reduziert wiederum die möglichen Vorwarnzeiten.

Bei der Entwicklung eines EWS können im Idealfall Lokationen von Erdbebenquellen von vornher-
ein mit hoher Wahrscheinlichkeit eingegrenzt werden (a priori Information). Dieser Fall ist z.B. in
Rumänien gegeben, wo das wichtigste Erdbebengebiet des Landes in den südöstlichen Karpaten - der
sog. Vrancea-Region - liegt, ca. 130 km von der Hauptstadt Bukarest entfernt. Bei den Vrancea-Beben
handelt es sich um mitteltiefe Beben, die ein enormes Schadenspotential aufweisen. Bei einem starken
Beben der Magnitude Mw = 7.4 im Jahr 1977 kamen über 1.000 Menschen ums Leben. In Zusam-
menarbeit mit Wissenschaftlern vom National Institute of Earth Physics (NIEP) in Bukarest und dem
Sonderforschungsbereich (SFB) 461: ’Starkbeben: Von geowissenschaftlichen Grundlagen zu Inge-
nieurmaßnahmen’ an der Universität Karlsruhe ist ein Frühwarnsystem für Bukarest entwickelt wor-
den, welches mittels der epizentralen P-Wellenamplituden die parametrisierte Untergrundsbewegung
in Bukarest abschätzen kann. Am Ende des Kapitels 5 werden solche Skalierungsgesetze formuliert,
ihre jeweiligen Unsicherheiten quantifiziert und schließlich mit Hilfe des Erdbebens vom 27. Okto-
ber 2004 (Mw = 5.9) verifiziert. An diesem Beben wird auch die grundsätzliche Verknüpfbarkeit von
Erdbeben-Frühwarnung mit der Urbanen Shakemap für Bukarest (Wirth, 2004; Bartlakowski et al.,
2006) demonstriert.

Kapitel 6: PreSEIS: Erdbeben-Frühwarnung durch Künstliche Neuronale Netze

Die in dieser Arbeit entwickelte PreSEIS-Methode versucht unter Ausnutzung bzw. Vermei-
dung der jeweiligen Vor- und Nachteile regionale und on-site Systeme miteinander zu kombinieren.
PreSEIS invertiert seismische Beobachtungsgrößen an mehreren Sensoren (hier: an den on-line
Stationen des IERREWS) nach seismischen Herdparametern, wie der Lage des Hypozentrums und
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Zusammenfassung

der Momentenmagnitude. Die Methode basiert also wie die regionalen Frühwarnsysteme auf Stati-
onsnetzwerken. Auf der anderen Seite setzt PreSEIS aber nicht voraus, dass die sich ausbreitenden
seismischen Wellen bereits alle Stationen des Netzes erreicht haben: Auch eine nicht-getriggerte
Station liefert entscheidende Hinweise auf die Lage des Erdbebenherdes, durch welche der Lö-
sungsraum schrittweise mit fortschreitender Zeit eingeschränkt werden kann. Erste Schätzungen
liefert PreSEIS bereits 0.5 s nachdem die P-Welle den ersten Sensor im Netzwerk erreicht und
getriggert hat. Damit ist die Verarbeitungsgeschwindigkeit von PreSEIS vergleichbar mit der der
on-site Systeme, ist aber zugleich stabiler, da eine Vielzahl an Sensormessungen in die Inversion
eingehen. Mit fortschreitender Zeit werden mehr und mehr Sensoren die P-Wellen registrieren und
längere Zeitreihen der Untergrundsbewegungen an den verschiedenen Lokationen verfügbar. PreSEIS
aktualisiert die prognostizierten Werte in regelmässigen Abständen von einer halben Sekunde.

Der Zusammenhang zwischen gemessener Bodenbewegung an den Sensoren und seismischen Herd-
parametern wird in PreSEIS über Künstliche Neuronale Netze (KNN) hergestellt. KNN können so-
wohl lineare als auch komplexe nicht-lineare Systeme und Prozesse modellieren. Sie bestehen aus
einer Vielzahl einfacher Verarbeitungseinheiten - Neuronen genannt - die durch ein Netz gewichteter
Verbindungen miteinander in Kontakt stehen. Die entsprechenden Gewichtungsparameter werden ite-
rativ mit Hilfe eines Trainingsdatensatzes mit bekannten Ein- und Ausgabewerten angepasst, indem
der Netzwerkfehler schrittweise durch geeignete Algorithmen reduziert wird (z.B. Zell, 1994). Um
eine zu starke Anpassung der Neuronalen Netze an die Trainingsdaten auf Kosten ihrer Verallgemei-
nerungsfähigkeit zu verhindern, wird der Netzwerkfehler parallel zum Trainingsdatensatz an einem
unbekannten Testdatensatz evaluiert: Das Training wird abgebrochen, sobald der Fehler für den zwei-
ten Datensatz steigt (early stopping rule). Nach dem Training sind die Neuronalen Netze in der Lage,
unbekannte Testdaten, die dem gleichen statistischen Prozess unterliegen, korrekt zu verarbeiten.

In dieser Arbeit werden so genannte Zweischichtige Vorwärtsgerichtete Netzwerke verwendet, in de-
nen die Neuronen in einer Eingabe-, einer verborgenen und einer Ausgabeschicht angeordnet sind
(z.B. Rojas, 1993). Die Komplexität solcher Netzwerke wird hauptsächlich durch die Anzahl der
Neuronen in der verborgenen Schicht gesteuert (z.B. Bishop, 1995). Mit Hilfe eines unabhängigen Va-
lidierungsdatensatzes wird die für das hier vorliegende Inversionsproblem optimale Komplexität des
Netzes bestimmt. Ein optimales Neuronales Netz wird dabei anhand seines Gesamtfehlers für bekann-
te Trainings- als auch unbekannte Testdaten bewertet (accuracy-generalization capability trade-off ).
Eine Netzwerkkonfiguration mit sechs verborgenen Neuronen stellt sich für das vorliegende Problem
als optimal heraus.

PreSEIS wird auf vier Inversionsprobleme trainiert, zu deren Lösungen jeweils eigene Neuronale
Netzwerkarchitekturen entworfen werden: Netzwerk Hypo bestimmt die geographischen Koordina-
ten und die Tiefe des Erdbebenherdes, Netzwerk Mw bestimmt die Momentenmagnitude, Netzwerk
Rupt die Lage und Ausdehnung des seismischen Bruches und Netzwerk Spec das geglättete Fourier
Amplitudenspektrum der Bodenbewegung an einer westlich von Istanbul gelegenen Industrieansied-
lung. Die einzelnen Netzwerke sind natürlich nicht unabhängig voneinander, sondern stehen über
Netzwerkein- und -ausgaben miteinander in Verbindung. Als parametrisierte Information erhalten die
Neuronalen Netze dabei die relativen P-Welleneinsätze und die kumulative absolute Geschwindigkeit
der Bodenbewegung an den verschiedenen Sensoren als Eingabe. Diese Parameter werden in regel-
mäßigen Abständen von 0.5 s aktualisiert und Schätzungen durch die Neuronalen Netze entsprechend
neu berechnet. Zur Erhöhung der Stabilität der Inversionen werden in den Trainingssatz neben korrekt
auch fehlerhaft gepickte Ereignisse integriert. Damit wird auch eine verbesserte Übertragbarkeit von
PreSEIS auf Realdaten erzielt.
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In vier Durchläufen mit jeweils unterschiedlicher Startinitialisierung der Netzwerkgewichte zu Beginn
der Trainingsphase und zufällig vertauschten Trainings-, Test- und Validierungsdatensätzen (Boot-
strapping), werden die Neuronalen Netze auf die Inversionsaufgaben trainiert und die Modelle an-
schließend bewertet. Durch die Wiederholungen wird die Stabilität der Inversionsergebnisse sicher-
gestellt. Für die Anpassung der Netzwerkgewichte während der Trainingsphase werden nacheinander
drei Optimierungsalgorithmen getestet: (1) Gradientenabstieg mit Momententerm (Plaut et al., 1986),
(2) Resilient Propagation (RPROP) (Riedmiller and Braun, 1993) und (3) Levenberg-Marquardt (Le-
venberg, 1944; Marquardt, 1963). Die Gradienten der Fehlerfunktion werden mit Hilfe des Backpro-
pagation Algorithmus (Rumelhart et al., 1986) berechnet. Analysiert wird erstens der gesamte Daten-
satz mit allen 280 simulierten Erdbebenszenarien und zweitens zwei einzelne Szenarien im Detail.

Für alle drei Algorithmen wird mit fortschreitender Zeit eine deutliche Erhöhung der Genauigkeit bei
den prognostizierten Herdparametern erzielt. Das bedeutet, dass zu jedem Zeitpunkt die Unsicher-
heit der Prognosen quantifizierbar wird. Wann und wie Nutzer auf Frühwarnungen reagieren sollten,
hängt insbesondere von den erwarteten Folgekosten eines möglichen Schadenbebens bzw. Fehlalarms
ab. Durch die Einbeziehung der Informationen von nicht-getriggerten Sensoren und der a priori Infor-
mation aus dem Trainingsdatensatz, dass Erdbeben in der Regel um Verwerfungssegmente geclustert
auftreten, werden in PreSEIS schnelle und gute Schätzungen der Herdparameter erzielt. Die bes-
ten Inversions-Modelle werden nach Levenberg-Marquardt Optimierung erhalten mit einem mittleren
Lokalisierungsfehler von 8.8 km nach 0.5 s nach Triggerung und 5.9 km nach 4.0 s. In dem gleichen
Zeitinterval kann der Magnitudenfehler von ±0.7 auf ±0.5 (Standardabweichung) reduziert werden.
Die Levenberg-Marquardt Methode hat außerdem den Vorteil, dass sie wesentlich schneller zum Mi-
nimum der Fehlerfunktion konvergiert und dadurch deutlich weniger Trainingsiterationen benötigt
werden. Während für den Gesamtdatensatz eine zeitliche Verbesserung der Abschätzung der Herdpa-
rameter beobachtet wird, kann bei einzelnen Szenarien eine zwischenzeitliche Verschlechterung der
Prognosen auftreten. Verantwortlich sind hier die oben beschriebenen fehlerhaft gepickten Daten im
Trainingsdatensatz, die die Neuronalen Netze zu einer erhöhten Verallgemeinerung zwingen.

Kombiniert mit empirischen Abminderungsfunktionen können die geschätzten Herdlokationen und
Magnituden zu punktuellen oder flächenhaften Prognosen der seismischer Bodenbewegung verwen-
det werden. Flächenhafte Abschätzungen der Bodenbewegung werden auch Alarmkarten (alert maps)
genannt. Betreiber von Netzwerken wie z.B. für Transport, Elektrizität, Wasserversorgung oder Kom-
munikation, können Alarmkarten für eine schnelle Entscheidungsunterstützung nutzen, z.B. bei der
Frage, welche Netzwerkknoten besonders gefährdet und welche Umkonfiguration der Netze jeweils
sinnvoll erscheint, um Ausfallszeiten zu minimieren oder ganz zu vermeiden. Durch die Einbezie-
hung von Standorteffekten werden Alarmkarten deutlich verbessert. Magnituden- und standortabhän-
gige Verstärkungsfaktoren für verschiedene Bodenklassen nach der NEHRP-Klassifizierung (Building
Seismic Safety Council, 1995) werden in Kapitel 4 mit Hilfe der stochastischen Simulationen der
Bodenbeschleunigung bestimmt. Eine weitere Verbesserung der Alarmkarten erfolgt durch die Einbe-
ziehung dynamischer Brucheffekte wie der Direktivität. PreSEIS schätzt daher nicht nur die Lage des
Hypozentrums, sondern auch die Ausdehnung des entsprechenden Bruches mit Hilfe des Neuronalen
Netzwerkes Rupt ab. In Abhängigkeit von der Bruchlänge und des Azimuts zwischen Bruch und einen
gegebenen Ort können dadurch Direktivitätseffekte grob abgeschätzt werden.

Ausschlaggebend bei der Prognose der Untergrundsbewegung ist in der Regel nicht die Genauigkeit
der geschätzten Herdlokation und Magnitude, sondern die Zuverlässigkeit der empirischen Abminde-
rungsfunktionen (Allen, 2005). Bei Realdaten werden insbesondere die lokalen Standorteffekte und
ggf. nichtlineare Effekte eine entscheidende Rolle spielen, die in den Abminderungsfunktionen nur
gemittelt berücksichtigt werden. Wie in dieser Arbeit anhand der stochastischen Simulationen gezeigt
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wird, können Quelleffekte allein bereits eine Unsicherheit im Bereich des Faktors zwei verursachen
(Kapitel 4). Aus dieser Problematik der Abminderungsfunktionen heraus, wird in dieser Arbeit ein
weiterer Ansatz in PreSEIS verfolgt: die direkte Prognose der Untergrundsbewegung in Form des
Fourier Amplitudenspektrums an einem vorgegebenen Ort ohne den Umweg über die empirischen
Abminderungsfunkionen zu gehen (Netzwerk Spec, s.o.). Das bedeutet, dass in diesem Fall die Neu-
ronalen Netze selbst das lokale Dämpfungsverhalten auf die seismischen Wellen erlernen müssen.
Anhand von zwei Szenarien wird am Ende von Kapitel 6 dieser viel versprechende Ansatz demons-
triert.

Kapitel 7: Zusammenfassung und Ausblick

In dieser Arbeit wird nach einer ausführlichen Einführung in die Erdbeben-Frühwarnung
eine Methode (PreSEIS) zur Inversion von seismischen Herdparametern aus zeitabhängigen Beob-
achtungen an Sensoren innerhalb eines lokalen Netzwerkes entwickelt. PreSEIS verwendet dabei nur
die zu dem jeweiligen Zeitpunkt der Inversion zur Verfügung stehenden Informationen an den Sen-
soren, um Größen wie die Erdbebenmagnitude oder Herdlokation mit Hilfe Künstlicher Neuronaler
Netze abzuschätzen. Dabei wird auch die Information nicht-getriggerter Stationen (d.h. Sensoren,
an denen noch keine seismischen Wellen angekommen sind) im Netz verwendet, da dadurch der
Lösungsraum deutlich eingeschränkt werden kann. Daneben beinhalten die Trainingsdatensätze, mit
denen die Neuronalen Netze auf das Inversionsproblem trainiert werden, a priori Informationen über
die Lage der Verwerfungssegmente, an denen Erdbeben geclustert auftreten. PreSEIS ist dadurch
in der Lage, sehr schnelle und i.d.R. sehr genaue Abschätzung der Herdparameter zu geben, auf
deren Basis Warnungen an potentielle Nutzer innerhalb der gefährdeten Region gegeben werden
können. Durch die Vorhersage der wahrscheinlichen Ausdehnung des Bruches können Prognosen
der seismischen Untergrundsbewegung, z.B. in Form von Alarmkarten deutlich verbessert werden.
PreSEIS wird auf Grundlage von synthetischen Erdbebenaufzeichnungen entwickelt und getestet.

Eine Weiterentwicklung der PreSEIS Methode zur Erdbeben-Frühwarnung ist im Rahmen des Seis-
mic eArly warning For EuRope (SAFER) (FP6-2005-Global-4) und des BMBF/DFG-Sonderprogramm
Geotechnologien - Frühwarnsysteme im Erdmanagement mit der Entwicklung eines Erdbeben-
Desaster-Informations-Systems für die Marmara Region (Earthquake Disaster Information System
for the Marmara Region, Turkey (EDIM)) geplant.
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Chapter 1

Introduction

Tens of millions people are affected by natural hazards worldwide. Disasters1 caused by earthquakes,
volcanic eruptions, storms, floods and droughts kill thousands of humans and cause economic losses
of 109 −1012 dollars each year. In 2004, for example, natural disasters claimed more than 180,000 ca-
sualties and USD 1.45·1011 economic losses (Munich Re, 2005); including the victims of the tsunami
catastrophe2 in South Asia on December 26, 2004, the number of deaths amounts to about 300,000.

Over the last decades the number and dimensions of disasters have significantly increased, mainly
caused by a heightened vulnerability of society towards hazards. Human vulnerability is a result of
complex socio-economic factors such as of population growth and migration, development processes,
and interference with natural systems. The better knowledge of physical causes of disasters has in the
last few years led to technical developments and enhancements of tools essential for the forecasting
and prediction of disasters. In particular, systems for the surveillance of disaster related factors, such
as crop status and river levels, as well as modeling techniques for providing possible scenarios have
turned out to be useful instruments for risk reduction (EWCII, 2003).

In case of geo-hazards like earthquakes, however, progress is made only slowly. After numerous un-
successful attempts to predict earthquakes (Wyss, 1997) the possibility of seismic forecasting is today
doubted by the majority of experts. Difficulties in earthquake prediction with a reliable specification
of time, location, and magnitude of a future earthquake within stated limits (deterministic prediction)
arise above all from the heterogeneity of the Earth and the inaccessibility of fault zones to direct
measurements. The likelihood of the occurrence of a major event depends in a highly non-linear way
on fine details of physical parameters within a large volume around the rupture origin; uncertainties
about the initial conditions severely limits the predictability of strong earthquakes.

1.1 Earthquake Risk Reduction

While most experts are sceptical about the heavy investment in studies of possible earthquake pre-
cursors (e.g., Geller et al., 1997), they predominantly agree on the fundamental benefit of earthquake

1"A disaster is a natural or man-made event that negatively affects life, property, livelihood or industry often resulting in
permanent changes to human societies, ecosystems and environment. Disasters manifest as hazards exacerbating vulnerable
conditions and exceeding individuals’ and communities’ means to survive and thrive....", Wikipedia Encyclopedia, 2005

2A catastrophe is a "...disaster on a larger scale...", Wikipedia Encyclopedia, 2005
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Chapter 1. Introduction

risk3 reduction from seismology and seismic engineering. Seismic risk reduction has the objectives
to (Wieland, 2001):

• protect human lives and to avoid fatalities;

• minimize economic losses;

• maintain vital services;

• minimize operation and production interruptions;

• protect the environment and cultural heritage.

Knowledge and technology for earthquake-proof design are nowadays in many cases available. Poor
ethics, low professional standards, as well as little regulation, however, make the enforcement of seis-
mic codes - especially in poor countries - extremely difficult. The main problem pose non-engineered
structures. Earthquake risk reduction can be optimized by combing seismic design and other prepara-
tive steps with protective measures during or immediately after a large earthquake (Wieland, 2001).

Measures for earthquake risk reduction can be chronologically decomposed in pre-seismic, co-seismic
and post-seismic measures, i.e. measures taken several years before, during and immediately after the
earthquake, respectively. Fig.1.1 gives an overview of the sequence of possible steps. Pre-seismic
measures include seismic hazard assessment and risk evaluation, formulation and enforcement of
seismic design codes, enforcement of existing buildings and facilities, elaboration of emergency plans,
and informing and education about seismic risk. Recent progress in seismology, instrumentation
and communication technologies can be used for the development of rapid and reliable Real-Time
Earthquake Information Systems4 (Kanamori et al., 1997). These systems have the purpose to provide
rapid notification of earthquake parameters and estimates of ground motion during and immediately
after an earthquake catastrophe. These information allow for determing locations where emergency
response is needed most as well as for estimating the overall societal impact of the earthquake. Losses
of lives and property by earthquake catastrophes can be reduced and recovery times shortened. Real-
Time Earthquake Information Systems combine co-seismic measures like earthquake early warning
and alert systems with post-seismic measures such as rapid response and aftershock warning systems
(see Fig.1.1).

1.2 Real-Time Earthquake Information Systems

1.2.1 Components of a Real-Time Earthquake Information System

In this section the main components of a Real-Time Earthquake Information System - including earth-
quake early warning and alert systems as well as rapid response and aftershock warning systems (as
shown in Figure 1.1) - are shortly described.

3"Risk is the potential harm that may arise from some [...] future event [here: earthquake]. [...] Risk combines the
probability of a negative event occurring with how harmful that event would be.", Wikipedia Encyclopedia, 2005

4Information system means here "... a system that comprises [...] methods organized to collect, process, transmit, and
disseminate data that represent [...] information.", Wikipedia Encyclopedia, 2005
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1.2 Real-Time Earthquake Information Systems

Figure 1.1: Preparative steps as well as co- and post-seismic components of a Real-Time Earthquake
Information System for seismic risk reduction. The later include early warning, alert, rapid response
and aftershock warning systems.
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Chapter 1. Introduction

1. Earthquake Early Warning Systems

A basic module of Real-Time Earthquake Information Systems is the co-seismic earthquake (or seis-
mic) early warning system. The importance of early warning systems for the mitigation of natural
catastrophes such as earthquakes was pointed out by diverse national and international organizations
in the last decade, as for example by the International Strategy for Disaster Reduction (ISDR)5 on oc-
casion of the Second International Conference on Early Warning in 2003 in Bonn, Germany (EWCII,
2003).

Seismic early warning systems provide warnings of imminent danger that can be either based on
simple thresholds or on rapid estimates of the earthquake source parameters; early warning systems
utilize the capability of modern real-time systems to process and transmit information faster than
seismic waves propagate (3-6 km/s). The possible warning time is usually in the range of up to 70
seconds, depending on the distances between seismic source, seismic sensor and user sites.

The maximum achievable warning time of an earthquake early warning system ∆tw is defined by the
time interval between the detection of the faster P-wave by a seismic sensor and the arrival of high-
amplitude S-waves at the user site. For epicentral distances x s of the sensor and xu of the user site, as
well as focal depth h, the warning time ∆tw can be approximated by

∆tw ≈
√

x2
u + h2

β
−

√
x2

s + h2

α
− ∆tp. (1.1)

P- and S-waves are assumed to travel with average velocities α and β, respectively. ∆t p is the time
needed for data processing and data transmission which is in the range of a few seconds. For long
earthquake ruptures Heaton (1985) proposes to define the warning time as the time interval between
P-wave detection and the arrival of direct S-waves from the rupturing fault segment that is closest to
the user site (which generally produces the strongest shaking); therewith the theoretical warning time
is a few seconds longer than given by (1.1).

From the above descriptions it follows that the seismic stations in an earthquake early warning system
- usually equipped with strong motion sensors to avoid saturation - are favorably deployed as close
as possible to the seismic source. Early warning systems need a continuous real-time communication
link either directly to a user (on-site warning system) or to a central processing facility and from there
to one or more users (regional warning system). Common real-time telemetry systems rely on radio,
satellite and telephone links. Modern GSM and UMTS technologies are also applied.

2. Seismic Alarm Systems

Seismic alarm (or alert) systems can be considered as the second co-seismic component of Real-Time
Earthquake Information Systems. Yet, there are important differences to earthquake early warning
systems: the seismic stations of an alarm system - usually also equipped with strong motion sensors -
are installed directly in the user’s building or premises. Potential users are, e.g., operators of nuclear
power plants. Due to very little or non-existing warning times, seismic alarm systems are as a matter
of principle unable to quantify the expected level of impending shaking; they simply issue a warning
once certain prior defined thresholds of ground motion are exceeded.

5The ISDR is successor of the International Decade of Natural Disaster Reduction (IDNDR, 1990-2000), proclaimed
by the United Nations General Assembly in 1989.
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3. Rapid Response Systems

A few minutes to hours after seismic catastrophes earthquake related information is still crucial and
strongly required for the optimized distribution of resources and disaster management in general.
Rapid response systems are important post-seismic modules of Real-Time Earthquake Information
Systems. They require large numbers of seismic stations that are preferentially distributed uniformly
over an urban or regional area. A continuous communicationto with a central processing facility is
not necessary because the system comes only into action if triggered by a strong earthquake; rapid
response systems usually have no monitoring purpose. Stations of a response system can be equipped
with mobile phones which send SMS messages with values of parameterized ground motion to the
central facility (see Chapter 4). These information are basis for the automatic preparation of shake
maps which themselves give essential input to damage and loss estimation tools.

Shake Maps
Shake maps show the distribution of ground shaking in terms of ground motion parameters (see Chap-
ter 4); they can cover different scales from urban to regional expansion. The first automatic shake map
- called ShakeMap - was developed by Wald et al. (1999b) for earthquakes in southern California as
part of the TriNet project. Meanwhile, ShakeMaps are routinely also produced in northern California,
Seattle and Salt Lake City (Wald et al., 2003). They are made available for public via the World Wide
Web within 10 minutes after the occurrence of any significant earthquake in one of the regions. URL:
http://earthquake.usgs.gov/shakemap/

Damage and Loss Estimation Tools
Shake maps and databases of geographical information about the disaster area (e.g. on infrastructure,
building stocks, distribution of population) combined with technological knowledge and experience
gained from previous disasters, are essential inputs to damage and loss estimation tools. These tools
enable potential users - for example disaster managers - to gain a quick overview of the situation and to
give optimal decision support. Prominent tools are the US-wide applicable HAZards US (HAZUS) sys-
tem, the Early Post-Earthquake Damage Assessment Tool (EPEDAT) for southern California (Eguchi
et al., 1997), and EQSIM for Romania developed at Karlsruhe University (Fiedrich et al., 2004).

4. Aftershock Warning Systems

Hours to months after strong earthquakes the likelihood of aftershocks in the disaster area is still very
high. Since numerous structures damaged by the mainshock are weakened and thus susceptible to
further damage by even small to moderate shaking, there is a need to issue aftershock warnings to res-
cue and reconstruction crews working close to weakened structures. Aftershock warning systems are
aside from rapid response systems important post-seismic modules of Real-Time Earthquake Infor-
mation Systems. A prototype aftershock warning system was developed by Bakun et al. (1994) after
the Mw = 7.1 Loma Prieta mainshock in 1989. A statistical time-dependent map of strong shaking
probability in California within 24 hours after a mainshock was recently proposed by Gerstenberger
et al. (2005); the method combines a time-independent earthquake occurrence model based on fault
data with local time-dependent earthquake clustering models.
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1.2.2 Benefits of Real-Time Earthquake Information Systems

Real-Time Earthquake Information Systems provide rapid disaster related information that is strongly
required to reduce losses of lives and property during and shortly after strong ground shaking. Post-
seismic rapid response systems are designed to mainly serve large urban or industrial areas, e.g. to
coordinate emergency services and to support rescue operations. Earthquake early warning and seis-
mic alarm systems, on the other hand, are most effective if used for triggering and execution of au-
tomatisms to prepare vulnerable systems and dangerous processes for the imminent danger. Seismic
warnings can, e.g., be used to (Harben, 1991):

• slow down rapid-transit vehicles and high-speed trains to avoid accidents;

• shutdown pipelines and gas lines to minimize fire hazards;

• shutdown manufacturing operations to decrease potential damage to equipment;

• save vital computer information and retract disk heads to inhibit loss of data;

• assist semi-active structural control to prevent building collapse.

In the scope of the TriNet Project in California (1997-2001) potential users of earthquake warnings
were identified and their specific response potential studied (Goltz, 2002) (see Appendix A of this
work). A survey within the project indicated a high interest level of fire and police departments, city
and county emergency services agencies, public works departments and schools. Although human
reactions are slow compared to automatic systems, audio or visual alarms can clearly safe lives if
people are properly trained and appropriate response times available. The TriNet studies have shown
that early warning mostly reduces panic and confusion in the public, while the tolerance level to false
alerts is significantly higher than expected. However, at the time being, only Mexico and Japan have
experience with public earthquake early warning (e.g., Espinosa-Aranda et al., 1995).

Due to progress in seismic instrumentation and communication technologies during the last decades
reliable hardware and data transfer for the implementation of earthquake early warning systems are
nowadays available (e.g., Kanamori et al., 1997). Nevertheless, there are still severe problems con-
cerning:

• the discrimination of strong earthquakes and other signals to avoid false alarms;

• the realization of alarm response systems;

• the determination of potential users of warnings6;

• the liabilities associated with issued warnings.

Opponents of earthquake early warning systems worry that these systems could divert spending from
earthquake preparedness which would be more effective in reducing damage and losses during a catas-
trophe.7

6This is clearly also an ethic problem since only a limited group of people can be warned and protected (Goltz, 2002).
7After Normile (2004) installation costs for earthquake early warning systems in Taiwan amount to USD 930,000, in

Mexico (SAS) to USD 1.2 million and Japan (Nowcast) to USD 90 million.
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1.3 Seismic Hazard in Istanbul and the Marmara Region

With more than 11 million inhabitants in immediate vicinity to one of the largest and most active
strike-slip faults in the world, the western continuation of the North Anatolian Fault zone (NAFZ), the
Turkish mega-city Istanbul is exposed to an extremely high seismic risk. The NAFZ is the northern
boundary zone of the westward moving Anatolian Block that connects the compressional regime
in the Caucasus region in the east with the extensional regime in the Aegean in the west (Fig.1.2).
Including the entire extension from Eastern Anatolia to the Greek mainland, the total length of the
NAFZ is about 1,500 km. In addition to numerous small and moderate earthquakes 9 major events
with Mw ≥ 7.0 occurred along the NAFZ during the last century. Noticeable is the westward migration
of earthquake epicenters along the NAFZ that might indicate possible seismic gaps (e.g., Toksöz et al.,
1979; Stein et al., 1997).

A historic earthquake catalogue for the Marmara region over the last 2,000 years, compiled by Am-
braseys (2002), reveals that on average at least one medium intensity (VII-VIII) earthquake has hit
Istanbul every 50 years; the average return period for high intensity (VIII-IX) events is 300 years
(Ambraseys and Finkel, 1991). From the description of earthquakes along the North Anatolian Fault
system in the Sea of Marmara combined with the time-dependent effect of stress transfer of the 1999
Kocaeli earthquake (Mw = 7.4) Parsons et al. (2000) find a 62 ± 15% probability of strong shaking
during the next 30 years and 32 ± 12% during the next decade. Ignorance of building regulations,
specified in the modern Turkish Seismic Code (1998), and a high number of informal settlements
increases Istanbul’s vulnerability to a possible earthquake catastrophe. Due to the high concentration
of industrial facilities in and around Istanbul a large earthquake in the Marmara region might affect
a third to a half of the total Turkish industrial activity (Zschau et al., 2003). A detailed study of the
possible impact of a major earthquake close to Istanbul is given in the Earthquake Master Plan for
Istanbul by the Metropolitan Municipality of Istanbul (2003).

Following the devastating Mw = 7.4 Kocaeli and Mw = 7.2 Düzce earthquakes on August 17 and
November 12, 1999, major efforts have been undertaken to obtain a better knowledge of the seismic
potential of the NAFZ in the Sea of Marmara (Barka, 1999). Since the cruise of French Ifremer R/V
Le Suroit in September 2000, first detailed bathymetric and high resolution seismic reflection data
aside from previously existing multichannel data (Imren et al., 2001) are available. From these data
Le Pichon et al. (2001) conclude the existence of a single, through-going dextral strike-slip fault in
the Marmara Sea, the Main Marmara Fault, which connects the Izmit Fault in the east with the Ganos
Fault in the west (see Fig.1.3); the Izmit Fault ruptured during the 1999 Kocaeli earthquake, the Ganos
Fault during the 1912 Mw = 7.4 Sarkoy-Murefte earthquake. The Main Marmara Fault consists of
two segments: the 115 km long Western Fault is oriented 265◦ and is close to pure dextral slip at a rate
of 23 mm/yr on its whole length. The shorter Cinarcik Fault parallel to the Prince’s Islands has only
a length of 36 km and is oriented 299◦. Using a simple kinematic model with a rigid Marmara block
Le Pichon et al. (2003) postulate for the southern part of the Cinarcik Fault a 8-10 mm/yr extension
and a 23 mm/yr of dextral strike slip along the northern part. Yet, the single through-going fault
hypothesis is heavily disputed by other authors: Armijo et al. (2002) and Armijo et al. (2005) propose
that smaller strike-slip segments and pull-apart basins alternate within the main step-over between the
strike-slip Ganos and Izmit faults, combining strike-slip and extension. By modeling of the Coulomb
stress Armijo et al. (2005) show a maximum loading with at least 4-5 m of slip deficit for a 70 km
long strike-slip segment between the Cinarcik and Central Basins on the western Marmara Fault. If
this segment ruptures a large-magnitude earthquake of Mw = 7.2 could be produced. Other segments
of the Marmara Fault appear less loaded (Armijo et al., 2005).
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Figure 1.2: Schematic sketch of the major tectonics in the eastern Mediterranean after Sperner et al.
(2003).

The most credible worst case scenario for Istanbul is after Erdik et al. (2003a) a strike-slip earthquake
of Mw = 7.5 associated with the rupture of different fault segments of the Main Marmara Fault with
source parameters similar to the 1999 Kocaeli earthquake. Erdik et al. (2003a) estimate that, if this
scenario comes true, 35,000 to 40,000 buildings - which is about 5% of the total building stock - will
be completely destroyed, about 70,000 buildings will be extensively and about 200,000 moderately
damaged. Destructions will amount to about USD 1.1 ·1010 losses. The number of deaths is estimated
to 40,000 to 50,000, including losses of 1/3 of severely injured people; between 430,000 to 600,000
households will need shelter.

1.4 Outline of this Thesis

The devastating Kocaeli and Düzce earthquakes in 1999 have pushed the development and installa-
tion of the Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) as an im-
portant step towards seismic risk reduction in Istanbul and the Marmara region (Erdik et al., 2003b).
IERREWS comprises two modules of the conceptual Real-Time Earthquake Information System in-

8
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Western Fault Cinarcik Fault

Ganos Fault

Izmit Fault

Figure 1.3: Fault segments in the Sea of Marmara after Armijo et al. (2002) (modified) and distribu-
tion of strong motion sensors of the Istanbul earthquake early warning system marked by triangles.

troduced atop: an early warning and a rapid response system. IERREWS is operated by the Kandilli
Observatory of the Bogazici University in Istanbul. Details on the system will be given in Chapter 5 of
this work. This thesis focuses on the earthquake early warning system in IERREWS, and is conducted
in close cooperation with Prof. Dr. Mustafa Erdik and his team at Kandilli. The Istanbul earthquake
early warning system consists of ten strong motion sensors that are deployed along the coast of the
Sea of Marmara (Fig. 1.3) and that transmit in real-time ground motion data via a spread spectrum
radio modem to two datacenters in Istanbul (Erdik et al., 2003b).

Using the example of Istanbul and IERREWS a new methodology for earthquake early warning -
called PreSEIS (Pre-SEISmic shaking) - will be developed and tested in this thesis. PreSEIS is based
on Artificial Neural Networks (ANNs) and is capable to estimate seismic source parameters within
a few seconds after earthquake detection. The tectonic situation in the Marmara region poses a big
challenge for the development of an early warning system: short distances between seismic faults and
Istanbul metropolitan area reduce possible warning times for strong earthquakes to a few seconds;
moreover, strong effects caused by source finiteness of rupturing fault segments - such as rupture
directivity - are expected. So far, no algorithm for early warning is capable to take source finiteness
into account.

Alike many other cities and regions in the world that are affected by a high seismic threat, the devel-
opment and verification of a methodology for early warning for Istanbul is aggravated by the lack of
moderate and strong motion data (see Figure 1.4). A possible answer to this problem is demonstrated
in this thesis by the usage of synthetic records obtained from the Stochastic Simulation Method for
Finite Faults (Beresnev and Atkinson, 1997). A general description of factors that control seismic
ground shaking, including effects of the earthquake source, seismic wave path and local site, is given
in Chapter 2. This introduction will support the understanding of the stochastic simulation method
presented in Chapter 3. After some modifications of the modelling approach for the additional simu-
lation of compressional (P-) waves, Chapter 3 will describe the simulation of a database of synthetic
earthquake records in the Marmara region. This database will establish the basis for PreSEIS.

To simplify time series and Fourier amplitude spectra of earthquake ground shaking, both quantities
are frequently reduced to so-called ground motion parameters that summarize their main characteris-
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Chapter 1. Introduction

Figure 1.4: Seismicity in the Marmara region over the last one year after the B.U. Kandilli Observa-
tory and Earthquake Research Institute.

tics. Chapter 4 will give a short summary of ground motion parameters that are most commonly used
in seismic engineering and that are more or less meaningful for the description of potential damage
by earthquakes. Based on the stochastically simulated records, attenuation laws will be determined
for nine ground motion parameters, among them peak values, spectral values and seismic intensities.
For the evaluation of the synthetics the derived attenuation relations will be compared (1) with ob-
servational data of earthquakes in northwestern Turkey and (2) with relations determined for other
seismic active regions. Alike the magnitude-dependent amplification factors for different soil types
determined in Chapter 4, the attenuation laws will play a fundamental role in the calculation of shake
and alert maps in Chapter 6.

General design paradigms for earthquake early warning systems will be discussed in Chapter 5. Earth-
quake early warning systems generally follow either the regional or the on-site warning paradigm.
The former require dense networks of seismic sensors with real-time communication link to a central
processing unit, whereas the latter systems are single station based and therewith much faster at the
expense of robustness. The most important early warning systems and algorithms for the fast evalu-
ation of impending ground shaking will be presented in Chapter 5. Special attention will be turned
towards the Romanian early warning system. Scaling relations between the maximum P-wave am-
plitude in the epicentral Vrancea region in the SE-Carpathians and ground shaking in Bucharest will
be developed to allow for a quick estimate of ground shaking in the Romanian capital before seismic
waves arrive. Early warning and rapid response shake maps can be linked to each other as will be
demonstrated for the October 27, 2004, Vrancea earthquake (Mw = 5.9).

Chapter 6 will start with a general introduction to ANNs and will then describe the PreSEIS method
developed in this thesis. A summary of this study and an outlook will be given in Chapter 7.
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Chapter 2

Earthquake Source, Path and Site Effects

Seismic ground motion is controlled by three factors: the earthquake source, seismic wave path and
local site effects. Under certain conditions - that will be elaborated within this chapter - it is possible
to describe the particle displacement field u(x, t) caused by an earthquake at some point x at time t
through a convolution of these effects, or, equivalently, by a multiplication in the frequency domain
with

U(x, ω) = S (x, ω) ·G(x) · I(x, ω) · H(x, ω) · F(x, ω) . (2.1)

S (x, ω) accounts for effects of the seismic source, G(x) and I(x, ω) account for propagation effects de-
scribing geometrical spreading and inelastic attenuation. Site effects caused by near-surface deposits
and structures close to the point of observation are considered by high-frequency attenuation term
H(x, ω) and seismic site response term F(x, ω).

This chapter will give a description of the different factors in (2.1). The derivations will closely follow
Aki and Richards (1980), Udias (1999), Lay and Wallace (1995) and papers cited in the text. I will
use common mathematical notations; vectors are denoted by boldface symbols. This introduction to
seismic ground shaking will help to better understand the stochastic modeling methodology that will
be discussed in Chapter 3. Framed equations will be used in later derivations.

2.1 Earthquake Source Mechanism

2.1.1 Point Dislocation Source

Earthquakes occur when shear stresses exceed the shear strength on a seismic fault. Starting at the so-
called hypocenter the earthquake rupture spreads across the fault surface with a speed that is generally
less than that of shear waves in the surrounding rock. At each point on the fault the passing rupture
front activates a slip of finite duration.

Mathematically described is the earthquake process by a representation theorem, such as (Aki and
Richards, 1980, (3.2))

un(x, t) =

+∞∫

−∞
dτ

∫

Σ

∫ [
ui(ξ, τ)

]
ci jpq ν j

∂Gnp(x, t − τ; ξ, 0)
∂ξq

dΣ, (2.2)

11



Chapter 2. Earthquake Source, Path and Site Effects

whereby un(x, t) is the nth component of particle displacement at location x and time t. The ith
component of the discontinuity in the slip across the fault is described by

[
ui(ξ, τ)

]
= u+

i (ξ, τ)−u−i (ξ, τ),
where ξ is a location on fault surface Σ and τ is the time at which the displacement occurs. The c i jpq
are components of a fourth-order tensor that characterizes the elastic constants of the medium; in an
isotropic medium it is ci jpq = λ δi jδkl + µ

(
δikδ jl + δilδ jk

)
with the two Lamé constants λ and µ, and

Kronecker Delta function δi j, defined by δi j = 0 for i , j and δi j = 1 for i = j. Vector ν is normal to
the fault. The Green’s function Gnp(x, t; ξ, τ) describes the motion in the n direction at location x and
time t caused by a point force acting in the p direction at location ξ at time τ. Summation is carried
out over repeated indices.

Through the integral over space, (2.2) represents ground motions at a given site as a linear combination
of the contributions from each point on the fault surface Σ. Through the convolution over time the
theorem accounts for the effect of the rupture at each point taking a finite amount of time to reach its
final value. The representation theorem has certain limitations (Anderson, 2003): (1) The assumed
linear superposition of waves from different parts of the rupturing fault does not apply in case of large
wave amplitudes, because the stress-strain relationship then becomes non-linear. (2) If the faulting
process affects the propagation of the seismic waves, the assumption that the Green’s function is
independent of time - which is presumed when writing the time dependence as (t − τ) - can break
down.

In order to solve (2.2) it is necessary to specify (1) the offset on the fault as a function of location and
time, and (2) the Green’s function. The first item incorporates earthquake source physics, the second
item seismic wave propagation.

In a spherical coordinate system the displacement in the far-field1 for a double couple in a homoge-
neous, isotropic, unbounded medium is given by

u(x, t) =
Rθφ

P

4πρα3r
µAu̇

(
t − r

α

)
+

Rθφ
S

4πρβ3r
µAu̇

(
t − r

β

)

=
Rθφ

P

4πρα3r
Ṁ0

(
t − r

α

)
+

Rθφ
S

4πρβ3r
Ṁ0

(
t − r

β

)
, (2.3)

with r = |x|.

M0(t) ≡ µAu(t) (2.4)

defines the seismic moment of the earthquake source. α and β are the propagation speed of compres-
sional (P-) and shear (S-) waves described by the Lamé constants λ and µ and the density ρ of the
medium:

α =

√
λ + 2µ
ρ

, (2.5)

β =

√
µ

ρ . (2.6)

1The far-field includes positions that are more than a few wavelengths away from the source (Aki and Richards, 1980).
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Figure 2.1: Source time functions (2.8) and their derivatives (2.9) after Beresnev and Atkinson (1997).

The angular radiation patterns Rθφ
P and Rθφ

S are given by

Rθφ
P = sin (2θ) cos (φ) r̂

Rθφ
S = cos (2θ) cos (φ) θ̂ − cos (θ) sin (φ) φ̂, (2.7)

whereby r̂, θ̂ and φ̂ are unit vectors pointing into radial and transverse directions, respectively.

Equation (2.3) shows the important result that the displacement in the far-field is proportional to parti-
cle velocities at the source u̇, averaged over the fault plane. The source time function u(t) describes the
temporal development of slip and is constrained by the fact that the displacement starts from zero and
approaches a final amount of slip u(∞) over the source rise time τr. Beresnev and Atkinson (1997)
give some examples of one class of models2 of time functions which satisfy these conditions:

u1(t) = u(∞)
[
1 −

(
1 +

t
τ

)
e−t/τ

]

u2(t) =
u(∞)

2

[
2 −

[
1 +

(
1 +

t
τ

)2
]

e−t/τ
]
, (2.8)

whereby τ is a characteristic time parameter that controls the rate of the displacement increase. The
derivatives of (2.8) can be written as

u̇n(t) =
u(∞)
n!τ

( t
τ

)n
e−t/τ, n = 1, 2. (2.9)

The normalized source time functions (2.8) and their derivatives (2.9) are illustrated in Figure 2.1.

After substituting (2.9) in (2.3) and transforming the result to frequency domain, the modulus of the
Fourier transform for compressional waves is

|uP
n (x, ω)| = Rθφ

P M0

4πρα3r

1 +

(
ω

ωc

)2
−(n+1)/2

, (2.10)

2Another class of models, e.g., are triangular functions for particle velocities.
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and for shear waves

|uS
n (x, ω)| = Rθφ

S M0

4πρβ3r

1 +

(
ω

ωc

)2
−(n+1)/2

, (2.11)

where the total released moment is
M0 = µAu(∞). (2.12)

Parameter ωc = 1/τ defines the so-called corner frequency of the Fourier amplitude spectrum. The
corner frequency decreases as magnitude increases. Setting n = 1 in (2.10) and (2.11) gives the well-
known Brune or ω2 source spectrum (Brune, 1970, 1971) which is characterized by an amplitude
fall-off proportional to ω−2 above ωc.
For P-waves it is

|S d
P(x, ω)| = Rθφ

P M0

4πρα3

1 +

(
ω

ωc

)2
−1

, (2.13)

and for S-waves

|S d
S (x, ω)| = Rθφ

S M0

4πρβ3

1 +

(
ω

ωc

)2
−1

. (2.14)

Index d stands for displacement. The distance r in the nominator is omitted here and will be separately
analyzed in the context of geometrical spreading in Chapter 2.2.1. The ω2 source-scaling relation with
a constant stress drop (see Chapter 2.1.2) gives a good fit to wave amplitudes and periods for most
records of short period instruments of the World Wide Standardized Seismographic Network (Boore,
1986).

Relationships between the Fourier amplitude spectra of displacement U, velocity V , and acceleration
A in the frequency domain are given by

|U(x, ω)| see (2.13) or (2.14)

|V(x, ω)| ≈ ω U(x, ω)

|A(x, ω)| ≈ ω2 U(x, ω). (2.15)

For the Brune source model the ω2 decay above the corner frequency ωc in the displacement spectrum
is therewith equivalent to a plateau in the acceleration spectrum.

2.1.2 Empirical Scaling Relations for Earthquake Sources

The static stress drop ∆σ of an earthquake defines the change of shear stresses acting on a fault plane
before and after the earthquake rupture. For shear fractures, ∆σ is proportional to the deformation of
the fault, i.e.

∆σ =
C
L
µu(∞), (2.16)
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2.2 Path Effects

whereby L is a length dimension of the fault and C is an adimensional factor that depends on the shape
of the fracture. Typical stress drop values for intraplate earthquakes are in the order of ∆σ ≈ 100 bars
(Hanks and McGuire, 1981). Inserting (2.16) into the definition of the seismic moment M0 (2.4) gives

M0 = L2µu ≈ ∆σL3 , (2.17)

i.e. the seismic moment of an earthquake is proportional to the stress drop and the cube of length
dimension of the rupturing fault. However, if we follow the relation between corner frequency ωc of
the Fourier amplitude spectrum and stress drop given by Brune (1970) and Brune (1971)

ωc = 2π 4.9 106 β

(
∆σ

M0

)1/3

, (2.18)

and compare (2.18) with the observed similarity of earthquake sources of different magnitudes (Aki,
1967):

M0 ω
3

c = const., (2.19)

it turns out that M0 is de facto independent of ∆σ. This can be also observed from the scaling relation
between M0 and rupture duration τc, namely

M0 ∼ τ3
c , (2.20)

whereby it is assumed that the fault width scales approximately as the fault length and therewith
τc ∼

√
A with rupture area A.

Hanks and Kanamori (1979) use the seismic moment M0 (in [Nm]) to define the moment magnitude
Mw of an earthquake by

Mw =
2
3

log (M0) − 6.03 . (2.21)

Alike M0, Mw is in principle independent of the stress drop of the earthquake. An empirical scaling
relation between Mw and rupture dimensions (rupture length L [km] and rupture width W [km]) for
strike-slip events with 4.8 ≤ Mw ≤ 7.9 is given by Wells and Coppersmith (1994) by

Mw = 3.98 (±0.07) + 1.02 (±0.03) log (LW) with
{

L = 10 −2.57 (±0.12) + 0.62 (±0.02) Mw

W = 10 −0.76 (±0.12) + 0.27 (±0.02) Mw

(2.22)

2.2 Path Effects

While propagating through the Earth’s crust, seismic waves undergo modifications due to effects of
attenuation of seismic wave amplitudes by geometrical spreading and inelastic energy absorption. Re-
flections and refractions at large-scale heterogeneities, i.e. interfaces of rocks with distinct physical
properties, and wave scattering by small-scale heterogeneities in the crust lead to additional modifica-
tions of seismic signals.
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Chapter 2. Earthquake Source, Path and Site Effects

2.2.1 Geometrical Spreading

Geometrical spreading describes the decrease of seismic wave amplitudes due to the increase in area
of the wavefront with increasing distance r from the source. For spherical waves - such as body waves
- the amplitude decrease in a homogeneous space can be described by

G(x) =
1

r(x) . (2.23)

2.2.2 Inelastic Attenuation

Since the Earth does not behave like a perfect elastic body, propagating seismic waves dissipate energy
in form of heat due to internal friction. This inelastic or viscoelastic attenuation leads to a decrease of
wave amplitudes with distance and time. The mechanisms of internal friction are complex and depend
on different factors, such as on the atomic and molecular structure of crystals in minerals, as well as
on the existence of cracks, fractures and inclusions in rocks (Udias, 1999).

The inelastic behavior of a given material is usually described by the quality factor Q which is recip-
rocally proportional to the ratio of elastic energy ∆E dissipated during one cycle of harmonic motion
of frequency ω and the maximum or the mean energy E accumulated during the same cycle:

1
Q
≡ 1

2π
∆E

E
. (2.24)

For weak to moderate earthquakes deformation amplitudes of seismic waves are small. In these cases
Q is independent of wave amplitude and attenuation can be expressed by linear laws. However, for
strong earthquakes and explosions with large yields the applicability of linear relations fails (Minster
et al., 1990).

The amplitude A of an attenuated, harmonic elastic and plane wave at site x and time t with source-
to-site distance r(x) can be described by

A(x, t) = A0 exp [i(ωt − k r(x))] exp [−α(ω) r(x)] , (2.25)

whereby A0 is the amplitude at r = 0, k the wave number and α the absorption coefficient of the
medium. Typical values of Q for consolidated, compact rocks in the Earth’s crust are between 50 to
some 1,000 (Sheriff and Geldart, 1995). This means that attenuation is generally small. If Q � 1 the
relationship between α and Q can be approximated by

α(ω) =
ω

2 Q(ω) c(ω)
, (2.26)

where c(ω) is the frequency-dependent seismic wave velocity, i.e. for P-waves: c = α and for S-
waves: c = β. Because high frequencies are stronger damped than small frequencies, seismograms
recorded at large source-to-site distances contain mostly long period motions. The increase of Q with
increasing frequency ω follows a power law with exponent η (η ≥ 1) (e.g., Lay and Wallace, 1995):

Q(ω) = Q0

(
ω

2π

)η
. (2.27)
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2.3 Site Effects

Note that (2.27) describes a simple parameterization of frequency dependence and is not a physical
law. Inserting (2.26) into (2.25) gives

A(x, t) = A0 exp [i(ωt − kr(x))] I(x, ω) (2.28)

with

I(x, ω) = exp
[
− ω r(x)

2 Q(ω) c(ω)

]
with Q(ω) = Q0

(
ω

2π

)η
. (2.29)

The assumption of Q � 1 is only valid for consolidated compact rock. For near-surface unconsol-
idated material the approximation in (2.26) is not applicable (e.g., Hatherly, 1986); in this case the
observed diminution of wave amplitudes is usually treated as local site effect (see Chapter 2.3).

2.2.3 Effects on Shaking Duration

Shaking duration is mainly governed by the earthquake source time function (see (2.8)) which is de-
termined by rise time τr and rupture duration τc. Rupture duration clearly depends on the dimensions
of the rupture, rupture velocity vr and the orientation of the observer relative to the fault. Since vr is
generally smaller than S-wave velocity β, seismic waves stimulated by a close breaking segment of
the fault will arrive earlier at a station than waves generated from a segment that ruptures later. The
relation of rupture duration τc, on the one hand, and rupture length L, rupture velocity vr and viewing
azimuth Θ, on the other hand, is given by

τc =
L
vr
− L cos(Θ)

c
, (2.30)

where c is the velocity of seismic waves, e.g. c = α for P-waves or c = β for S-waves. The area of
the source time functions that is proportional to the seismic moment of the earthquake is independent
of azimuth; only their duration changes. Therefore we expect a narrow source time function with a
high amplitude at stations located along the direction of rupture propagation (Θ = 0◦), and a broad
source time function with a small amplitude at stations on the opposite side of the rupturing fault
(Θ = 180◦). The dependence on azimuth due to fault propagation is called rupture directivity (e.g.,
Lay and Wallace, 1995). In dependence on the direction of rupture propagation relative to the site of
observation one distinguishes between forward, backward or neutral directivity. Forward and back-
ward directivity are mainly unidirectional while neutral directivity is bidirectional, i.e. the rupture is
neither predominately toward nor away from the site of observation.

Shaking duration is also influenced by focusing and scattering processes of seismic waves. Scattering
is caused by interactions of the seismic wavefield with small-scale heterogeneities and leads to a
partitioning of the high-frequency wavefield into a sequence of arrivals which form the so-called coda
waves (Sato and Fehler, 1998).

2.3 Site Effects

Site effects play a fundamental role in the observed ground shaking. They are independent of traveled
distances between earthquake sources and points of observation, and are therefore usually separately

17



Chapter 2. Earthquake Source, Path and Site Effects

treated from path effects. Site effects are defined as the response of a certain site to incident seismic
waves relative to sites that show no response. In principle, each site shows local effects whereby
changes are negligible for very hard rock sites, i.e. for sites without sedimentary overburden. Site
effects are mainly caused by shallow sediments of a few tens to hundreds of meters thickness, surface
topology, and basins (e.g., Field and the SCEC Phase III Working Group, 2000).

Site effects can be assessed on the basis of observational data or by numerical analyses. Observational
data comprises weak and strong motion data, as well as records of distant nuclear explosions or
ambient noise. Numerical analyses are generally performed for 1D wave propagation through linear
and non-linear soil models for one or more directions of shaking by solving equations of motion (e.g.,
Schnabel et al., 1972). In principle, site effects can be non-linear, i.e. a function of shaking amplitude
(e.g, Campbell and Bozorgnia, 2003; Su et al., 1999). Site effects are usually split into two terms:
the first term accounts for site amplification of seismic waves close to the point of observation (see
Chapter 2.3.1), the second term for high-frequency diminution (see Chapter 2.3.2).

2.3.1 Site Amplification

Effects of Soft Surface Layers

Amplitude amplification of seismic waves encountering a low-velocity, near-surface sedimentary layer
is mainly caused by two physical effects: the amplification of shaking due to the impedance contrast
between the two layers as a consequence of energy conservation, and secondly, these amplified waves
can be trapped in the top layer. Constructive interference of trapped waves leads to further ampli-
fication of amplitudes (e.g., Bard, 1999). As an additional effect of decreased wave velocity in the
sediments the wave path is bent to vertical (e.g., Hough, 2004).

Depending on the layer’s thickness h and on the average seismic velocity β in the sediments, cer-
tain frequencies are preferentially amplified, because the layer will only trap energy of certain wave-
lengths. Interference of trapped waves lead to resonance patterns. Generally, only layers whose
thicknesses are larger than a quarter-wavelength have impact on seismic waves (Kallweit and Wood,
1982; Sheriff and Geldart, 1995). For a 1D structure with one single layer atop of the bedrock layer
the resonant frequencies fn can be approximated by

fn = (2 n + 1)
β

4 h
, n = 0, 1, 2, 3, ..., (2.31)

whereby n = 0 gives the fundamental frequency f0, n = 1 the first harmonic f1, n = 2 the second
harmonic f2, and so on (Bard, 1999). The fundamental frequency f0 is usually in the range of 0.2
to 10.0 Hz (Bard, 1999). Resonance amplitudes are mainly controlled by the impedance contrast IC
between the surface layer and the underlying bedrock, by the material damping in sediments ξ1, and by
characteristics of the incident seismic waves (Bard, 1999). Peak amplification A0 at the fundamental
frequency for a one-layer 1D structure with vertically impinging plane S-waves is given by

A0 =
1

IC−1 + 0.5π ξ1
, (2.32)

where
IC =

ρ2 β2

ρ1 β1
. (2.33)
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β is the shear wave velocity and ρ the density of the medium; index 1 refers to the surface layer,
index 2 to the underlying bedrock. Resonance amplitudes are between 3 to 6 higher than those of the
impinging seismic waves. Peak values of more than 20 have been observed in Mexico City and San
Francisco (Bard, 1999). While the prediction of resonance frequencies gives generally good results,
the observed resonance amplitudes are mostly in disagreement with theoretical estimates. One of the
problems comes from the simplifying assumption of vertically impinging seismic waves.

Other Site Effects

Site effects due to surface topology generally manifest in amplification of motion for convex topo-
graphic structures, such as on the top of a hill, and in attenuation for concave structures, such as in the
valley or base of a hill. Bard (1999) relates these topographic effects to the sensitivity of surface mo-
tion to the angle of incidence of seismic waves, to focusing and defocusing effects of seismic waves
along the topographic surface, and to the interference of direct and diffracted waves. Topographic
effects are mostly frequency-dependent whereby the largest effects are observed for wavelengths com-
parable to the horizontal dimension of the topographic structure. Spectral amplification due to surface
topography can be as much as 10 (Bard, 1999). Further site effects are due to basin-edge-induced
waves, subsurface focusing and non-linearities.

2.3.2 High-Frequency Diminution

While the theoretical ω2-spectral model of the seismic source predicts a plateau in the Fourier acceler-
ation spectrum for frequencies above the corner frequency ωc (see (2.14)), observational data indicate
a rapid fall-off for frequencies higher than 5 to 10 Hz. Hanks (1982) calls this frequency fmax or ωmax
or simply cut-off frequency. For the description of high-frequency attenuation Boore (1983) proposes
a fourth-order Butterworth filter:

H(x, ω) =

1 +

(
ω

ωmax(x)

)8
−1/2

. (2.34)

Anderson and Hough (1984) suggest to approximate the observed exponential decay by parameter
κ [s] with

H(x, ω) = exp
(
−πκ(x)

ω

2π

)
. (2.35)

High-frequency diminution of seismic wave amplitudes is mostly attributed to effects in the near-
surface weathered layers. Some authors, however, link the effect to the seismic source (e.g., Hanks,
1982). The quantification of fmax or κ, respectively, is aggravated by trade-offs with other spectral
parameters such as with corner frequency fc.

2.3.3 Site Classification

The integration of site effects is essential in seismic ground motion prediction. While extensive studies
of site effects are in most regions in the world not available, the correlation of distint classes of
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NEHRP soil classification and amplification factors

NEHRP description V30 amplification amplification
class [m/s] 0.5 - 1.0 Hz 2.0 - 6.0 Hz

A hard rock > 1,500 < 1.2 (< 0.8) < 1.2 (< 0.9)

B firm to hard rock 760-1,500 1.6-1.2 (1.2-0.8) 1.5-1.2 (1.4-0.9)

C dense soil, soft rock 360-760 2.1-1.6 (1.9-1.2) 1.9-1.5 (2.4-1.4)

D stiff soil 180-360 2.7-2.1 (2.7-1.9) 2.3-1.9 (3.7-2.4)

E soft clays < 180 > 2.7 (> 2.7) > 2.3 (> 3.7)

F

Table 2.1: Left: soil classification after the 1994 NEHRP building code provisions (Building Seis-
mic Safety Council, 1995) along with descriptions and specifications of V30. Right: comparison of
amplification factors (for κ = 0.035 s) after Boore and Joyner (1997) and Harmsen (1997) (in brackets)
for two frequency ranges. There is a good agreement of both results.

site effects to near-surface geology has become a standard procedure in seismic engineering. Such
classifications can clearly give only average values of amplification and therefore allow only for a
very rough estimation of ground shaking. The actual amplification at a given site during earthquake
shaking can be significantly higher (or lower). The most common classification schemes for site
amplification are based on surface geology (age, depositional environment, sediment texture), on
shear wave velocity β, on geotechnical data (material type, density, stiffness, porosity), or on depth to
basement rock, usually defined as β ≈ 2, 500 m/s.

Theoretically, amplification is a function of the impedance contrast between different layers, defined
by the product of density ρ and shear wave velocity β. Since the observed variations in density are
generally small, shear wave velocity is assumed to be a suitable proxy for the estimation of amplifica-
tion. The widely applied 1994 NEHRP3 building code provisions (Building Seismic Safety Council,
1995), e.g., classify soil sites according to V30, which is the shear wave velocity averaged over the up-
permost 30 m (Table 2.1). V30 was chosen because most boreholes that are today available are limited
to a depth of 30 m, which is the depth that the most commonly available rigs were build to drill during
one day. A more sophisticated soil classification scheme is based on the quarter-wavelength measure
(Wald and Mori, 2000) that allows assigning frequency-dependent amplification functions to different
soil sites.

A link between quarter-wavelength and V30 has been established by Boore and Joyner (1997): from
data of about 210 boreholes the authors have correlated observed amplification values derived from
the quarter-wavelength method with V30. The authors have therewith obtained frequency-dependent

3National Earthquake Hazard Reduction Program
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Node points of amplification for NEHRP classes
frequency amplification

[Hz] V30 = 1, 070 m/s V30 = 520 m/s V30 = 255 m/s
(NEHRP class B) (NEHRP class C) (NEHRP class D)

0.01 1.00 1.00 1.00
0.09 1.03 1.21 1.43
0.16 1.06 1.32 1.71
0.51 1.21 1.59 2.51
0.84 1.34 1.77 2.92
1.25 1.49 1.96 3.10
2.26 1.80 2.25 3.23
3.17 2.01 2.42 3.18
6.05 2.39 2.70 3.18

16.60 2.93 3.25 3.18
61.20 3.75 4.15 3.18

Table 2.2: Node points of amplification for NEHRP classes B, C and D after Boore and Joyner (1997).
Values below 0.5 Hz and above 10.0 Hz are based on subjective judgment and are not constrained by
data. Node points for NEHRP class B are determined from non-linear interpolation in this work.

amplification functions for sites with V30 = 520, 310, and 255 m/s corresponding to soil sites of
NEHRP class C, average soil, and NEHRP class D. By non-linear interpolation I have determined the
missing factors for NEHRP class B in this work. These data are essential for the simulations of ground
shaking in Chapter 3. Node points of amplification functions are compiled in Table 2.2 and visualized
in Figure 2.2 assuming a diminution with κ = 0.035 s. The frequency-dependent amplification factors
are in good agreement with amplification values found by Harmsen (1997) (see Table 2.1, right). Note
that the amplification functions by Boore and Joyner (1997) are for the most part empirically derived
from borehole data in Western U.S.; the applicability to any other region in the world is not proven.

Figure 2.3 shows a soil map for the Marmara region following the NEHRP classification scheme
(Erdik et al., 2003a): stiff and soft soils dominate in the European part, while the Asian part is mostly
covered by firm to hard rock. Exceptions are constituted among others by river basins covered by
soft sediments, and the area in eastern Marmara, close to the Izmit Bay. These areas are prone to
ground motion amplification. The impact of site effects on the observed damage pattern during strong
earthquakes was demonstrated during the August 17, 1999 Mw = 7.4 Kocaeli earthquake: almost
1,000 people lost their lives in the collapse of buildings in the Istanbul suburb Avcilar, around 110 km
from the epicenter. The Avcilar area is covered by poorly lithified Quarternary Pliocene and Miocene
sands and gravel, marls, and limesstones to a depth of 200 m (Brinkman, 1976), capable to amplify
ground motion by a factor between 5 and 10 for frequencies from 0.5 to about 4.0 Hz (Özel et al., 2002;
Ergin et al., 2004). The example of Avcilar demonstrates that the usage of mean amplification spectra
assigned to different soil classes as done in this work can clearly underestimate ground motions.

21



Chapter 2. Earthquake Source, Path and Site Effects

10
−2

10
−1

10
0

10
1

0.4

1

2

3

4

f [Hz]

am
p 

× 
ex

p(
−π

 κ
 f)

V
30

 =  255 m/s (NEHRP class D)
V

30
 =  520 m/s (NEHRP class C)

V
30

 =  620 m/s (generic rock)
V

30
 = 1070 m/s (NEHRP class B)

V
30

 = 2900 m/s (generic very hard rock)

Figure 2.2: Combined effect of site amplification and high-frequency diminution after Boore and
Joyner (1997) with κ = 0.035s. For generic rock peak amplification of 1.6 occurs at 2.5 Hz, for soft
rock (NEHRP class C) sites of 1.8 at 2.0 Hz, and for stiff soil (NEHRP class D) sites of 2.7 at 1.0
Hz. The gray line represents the amplification function for NEHRP class B obtained from non-linear
interpolation within this work.

Figure 2.3: NEHRP soil classification map for the Marmara region close to Istanbul (Erdik et al.,
2003a). Explanations are given in Table 2.1.

22



Chapter 3

Simulation of Seismic Ground Motion

It frequently happens that seismic ground motion records are not available to assess a given seismo-
logical or earthquake engineering problem. Typical examples are structural response analyses or the
development of regional attenuation relationships, e.g., for seismic hazard assessment. In this study
earthquake records are required for the conceptual design and optimization of the PreSEIS method-
ology for earthquake early warning. The lack of data can be either due to insufficient seismic instru-
mentation in a particular geographical region or due to missing magnitude and distance ranges which
are of interest to assess the given task. Even though the North Anatolian Fault shows a high seismic
activity, most of the earthquakes that have occurred during the last decades in northern Turkey were
concentrated in the middle and eastern part of the 1,500 km long fault. Seismicity in the Marmara re-
gion, on the other hand, is relatively low (see Figure 1.4) - a circumstance that significantly aggravates
the design and verification of a seismic early warning system for the region. Simulated time histories
of seismic ground shaking help to overcome the lack of appropriate data.

This chapter will give a short overview of different techniques for the simulation of seismic ground
motion and will present a detailed review on the Stochastic Simulation Method of Seismic Ground
Motion from Finite Faults as proposed by Beresnev and Atkinson (1997). After some modifications
of the stochastic method a database of synthetic earthquakes for the Marmara region will be generated.
This database will establish the basis for subsequent studies of PreSEIS in Chapter 6.2.

3.1 Common Methods for the Simulation of Seismic Ground Motion

To produce realistic time series of earthquake shaking, modeling procedures should be capable to
account for the three main issues affecting seismic ground motion discussed in Chapter 2: the earth-
quake source, seismic wave path and local site effects. Amplitudes and time histories of long-period
motions are in principle predictable, while short-period motions are hardly forecastable because of the
increasing incoherence of seismic source radiation and wave propagation at high frequencies caused
by small-scale heterogeneities in the source process and crustal properties. Due to the lack of detailed
subsurface models short-period motions are frequently treated as stochastic phenomena (e.g., Boore,
1983).

For the modeling of wave propagation through complex 2D or 3D subsurface models, including for
example sedimentary basins, Finite Difference (FD) or Finite Element Methods (FEM) are usually
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Chapter 3. Simulation of Seismic Ground Motion

applied (e.g., Olsen, 1994; Olsen and Archuleta, 1996). Because these methods are computationally
intensive and subsurface models are generally not sufficiently resolved, finite differences and finite
element methods, however, are mostly limited to the calculation of long-period ground motions. The
two most commonly used procedures for the simulation of seismic ground motion covering the range
of frequencies that are relevant for most earthquake engineering problems (∼ up to 10 Hz) are the
method of Empirical Green’s Functions and Stochastic Modeling approaches. Hybrid Methods com-
bine different procedures in the short- and long-period range (e.g., Pulido et al., 2004).

The Empirical Green’s Function (EGF) approach (Hartzell, 1978; Hutchings and Wu, 1990) utilizes
records of small earthquakes with presumed impulse-like source time functions and certain seismic
moments as approximations of the Earth’s Green’s functions, including attenuation, propagation and
radiation pattern effects. The application of the EGF method requires a sufficient number of small
earthquake records for a given region to cover the whole fault surface as well as a certain number of
recording stations.

High-frequency ground motions observed at large source-to-site distances can be well described as
band-limited Gaussian noise of finite duration with a characteristic ω2 Fourier amplitude spectrum
(see Chapter 2.1; e.g., Boore, 1983, and references given therein). This observation paves the path
for the Stochastic Point Source Method as proposed by Hanks and McGuire (1981) and Boore (1983).
Since (semi-) empirical and theoretical approaches, such as EGF or FD, are based on observational
data or theoretical considerations, respectively, the pure stochastic simulations are more straightfor-
ward and are not limited by the availability of suitable data. By the specification of parameters that
describe the shape of the Fourier amplitude source spectrum (e.g., by the seismic moment, the stress
drop, or the rupture velocity) and modifications due to propagation and site effects at the point of
observation, the stochastic method provides a simple and effective tool for the simulation of ground
motion time series at arbitrary sites with the desired spectral features and random phase. A review
on the stochastic simulation method for point sources is given by Boore (2003). At smaller source-
to-site distances source finiteness has to be taken into account. The following section will give an
introduction to the Stochastic Simulation Method of Seismic Ground Motion from Finite Faults and
implementation in the Fortran program FINSIM by Beresnev and Atkinson (1997). A modified ver-
sion of FINSIM will be applied for ground motion simulations in this thesis.

3.2 Stochastic Simulation of Seismic Ground Motion from Finite Faults

For the consideration of source dimensions the method of Stochastic Simulation of Seismic Ground
Motion from Finite Faults treats the rupturing fault as a system composed of a certain number of point
sources: each of the n subfault elements of size ∆l is assigned an ω2 Fourier amplitude spectrum
|S a

s f ,s(x, ω)| with seismic moment m0. Index sf stands here for subfault, s for shear wave, and a for
acceleration.

The following enumeration summarizes the main steps in the FINSIM code (Beresnev and Atkinson,
1997) for the stochastic simulation of ground motion time series from finite faults. I will make use of
common mathematical notations for continuous signals. The single steps are illustrated in Figure 3.1.

1. For each subfault:

• Calculation of a skeleton function of the desired Fourier amplitude spectrum |Adesired
s f ,s (x, ω)|

based on specified input parameters (e.g., seismic moment, stress drop, rupture velocity,
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Figure 3.1: Main processing steps in the stochastic simulation method as explained in the text.

or distance from the source; see (2.1)):

|Adesired
s f ,s (x, ω)| = |S a

s f ,s(x, ω)| ·G(x) · I(x, ω) · H(x, ω) · F(x, ω) , (3.1)

with Fourier source spectrum |S a
s f ,s(x, ω)|, geometrical spreading G(x), inelastic attenua-

tion I(x, ω), high-frequency diminution H(x, ω), and site amplification F(x, ω). Relation-
ships between target and subfault spectra have to be considered; they will be discussed
aside from the skeleton function in Chapter 3.2.1.

• Generation of a time series of Gaussian white noise anoise
s f ,s (x, t) of length Td with zero mean

and unit variance (see Figure 3.1, 1.). Td depends on the rise time of the source τr and
on an additional distance-dependent term that allows for the consideration of multipathing
and scattering effects (see Chapter 2.2.3).

Td =



τr + durmin , r ≤ rmin
τr + durmin + b1 (r − rmin) , rmin < r ≤ rd1
τr + durmin + b1 (rd1 − rmin) + b2 (r − rd1) , rd1 < r ≤ rd2
τr + durmin + b1 (rd1 − rmin) + b2 (rd2 − rd1) + b3 (r − rd2), r > rd2

(3.2)
The trilinear duration model can be empirically calibrated from small earthquakes (Atkin-
son and Boore, 1995).
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Figure 3.2: Shaping window after Saragoni and Hart (1974) to give the time series an earthquake-like
shape.

• Application of a shaping window to the noise in order to obtain an earthquake-like shape
for the acceleration time series (see Figure 3.1, 2.). In this work, I will make use of a
so-called Saragoni Hart window that has been empirically derived by Saragoni and Hart
(1974) from a large set of recorded ground motions during earthquakes. It describes an
envelope function given by

w(t; ε, η, tη) = a (t/tη)b exp
(
−c (t/tη)

)
(3.3)

with

a = (exp(1)/ε)b,

b = − (ε ln η)/ [1 + ε (ln ε − 1)] ,

c = b/ε, (3.4)

and w(t; ε, η, tη) = η for t = tη = Td. Default values in FINSIM are ε = 0.2 and η = 0.2,
i.e. a = 5.74, b = 0.67 and c = 3.35 (see Figure 3.2). We obtain

ashaped
s f ,s (x, t) = anoise

s f ,s (x, t) · w(t; ε, η, tη). (3.5)

• Transformation of ashaped
s f ,s (x, t) to frequency domain via Fourier transformation (see Figure

3.1, 3.)

Ashaped
s f ,s (x, ω) =

1
2 π

TD∫

0

ashaped
s f ,s (x, t) exp− iωt dt. (3.6)

• Multiplication of Ashaped
s f ,s (x, ω) with the skeleton function (3.1) after normalization to the
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3.2 Stochastic Simulation of Seismic Ground Motion from Finite Faults

square of unit spectral amplitude (see Figure 3.1, 4. and 5.)

Aoutput
s f ,s (x, ω) =

Ashaped
s f ,s (x, ω)

√∣∣∣∣Ashaped
s f ,s (x, ω)

∣∣∣∣
2
· |Adesired

s f ,s (x, ω)|. (3.7)

• Transformation of Aoutput
s f ,s (x, ω) back to time domain via inverse Fourier transformation.

The real part of the complex output (R [·]) gives a time series for each subfault with the
desired spectral characteristics (see Figure 3.1, 6.):

aoutput
s f ,s (x, t) = R


1

2 π

TD∫

0

Aoutput
s f ,s (x, ω) exp iωt dω

 . (3.8)

2. The summation of contributions of all subfault elements considering time delays between their
triggering due to rupture propagation gives the desired acceleration time series aoutput

s (x, t) for
shear waves. In order to allow for heterogeneities in the rupture process a small random number
is added to the time intervals between the triggering of different subfaults.

3.2.1 Description of the Skeleton Function |Adesired
s f ,s (x, ω)|

This subsection will discuss the different terms of the skeleton function |Adesired
s f ,s (x, ω)| given by (3.1).

A compilation of free parameters that have to be specified by the FINSIM user is given in Table 3.1,
second column from left.1

A. Simulation of the Seismic Source |S a
s f ,s(x, ω)|

FINSIM simulates the mean horizontal component of S-wave acceleration (Beresnev and Atkin-
son, 1998). The Fourier acceleration spectrum |S a

s f ,s(x, ω)| is related to the displacement spectrum
|S d

s f ,s(x, ω)| in (2.14) by a factor ω2 (see (2.15)):

|S a
s f ,s(x, ω)| = ω2 |S d

s f ,s(x, ω)|

= ω2 fs√
2

Rθφ
s m0

4πρβ3

1 +

(
ω

ωc

)2
−1

= ω2 Cs m0

1 +

(
ω

ωc

)2
−1

, (3.9)

whereby ω indicates the circular frequency and ωc the corner frequency of the spectrum. Index d
stands for displacement, a for acceleration, sf for subfault, and s for shear wave. The spectral constant
Cs depends on the radiation pattern Rθφ

s , the density ρ and the cube of seismic velocity β of the medium
through which the seismic waves propagate, as well as on the free surface amplification2 fs = 2, i.e.

Cs =
fs√
2

Rθφ
s

4πρβ3 . (3.10)

1In practice, FINSIM requires the specification of the number of subfaults n, rather than of subfault dimension ∆l.
2Strictly speaking this is only true for horizontally polarized shear waves (SH-waves).
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The factor 1/
√

2 comes from an abitrary distribution of the SH component - for which the theory holds
- on instrumental components. The radiation pattern is quasi ignored by assuming that Rθφ

s = 0.55
which is the spatial average for S-waves (Boore and Boatwright, 1984).

Relationships between target and subsource spectra
The relationships between the target spectrum of the finite fault |S a

s (x, ω)| and the subsource spectra
|S a

s f ,s(x, ω)| will be discussed in the following paragraphs. I assume a ω2 source model.

• Link between corner frequency ωc of the target spectrum and subsource dimension ∆l:
Since the slip duration in the exponential source time functions in (2.8) is formally unlimited,
the rise time τr is usually defined as the period of time necessary for the average slip u to reach
a certain fraction m of the total slip u(∞) (Beresnev, 2001)

m ≡ u(τr)
u(∞)

=

[
1 −

(
1 +

τr

τ

)
e−τr/τ

]
. (3.11)

It is generally assumed that during the (subsource) rise time τr the average rupture propagates
the half or full length of fault segment ∆l:

τr =
∆l
vr

=
∆l
y β

. (3.12)

The rupture velocity vr is here presumed to be a constant fraction y of the shear wave velocity
β; generally it is y ≈ 0.8. Defining

z ≡ τr

τ
= τr ωc, (3.13)

the corner frequency ωc can be related to source dimension ∆l by

ωc =
z
τr

= K
β

∆l
with K = y z . (3.14)

Parameter z is linked to the maximum slip velocity vmax on the fault (Beresnev, 2001) given by

vmax =
u(∞)

exp(1) τ
=

y z
exp(1)

β

µ
∆σ, (3.15)

whereby vmax is obtained by taking the time derivative of (2.8) with t = τ. The (static) stress
drop ∆σ is defined by (2.16). Setting in (3.11), e.g., m = 0.5 gives z = 1.68. In order to allow z
values distinct from z = 1.68, FINSIM enables the user to specify parameter sfact defined by

s f act ≡ z
1.68

. (3.16)

Parameter sfact controls the level of high-frequency radiation (Beresnev and Atkinson, 1998).
Note the similarity between (3.15) resolved for ∆σ and the definition of the dynamic stress drop
∆σd by Brune (1970) and Kanamori (1994),

∆σd ≡ Cd

2
u(∞)
τr

µ

β
(3.17)

with Cd ≈ 2. Dynamic stress drops therewith can be controlled in FINSIM by parameter sfact
(3.16), and therewith can be distinguished from static stress drops, unlike in the stochastic
simulation code for point sources developed by Boore (1996) (SMSIM).
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• Link between seismic moment M0 of the target spectrum and subsource dimension ∆l:
The relation between subfault size ∆l, stress parameter ∆σ and subfault seismic moment m0 is
according to (2.17) given by

m0 ≈ ∆σ∆l3. (3.18)

The sum of moments m0 of all N subsources - N is not necessarily equal to the number of
subfaults n as will be shown later - has to result in the specified target moment M0, i.e.

N ≡ M0

m0
. (3.19)

Inserting (3.18) into (3.19) gives the desired relation between seismic moment M0 of the target
earthquake and subfault dimension ∆l:

M0 = N ∆σ∆l3 . (3.20)

In order to consider inhomogeneous slip distributions, FINSIM allows for the specification of
a weight matrix W with elements wi j to vary the subfault moments. The number of triggerings
ns of subfault (i j) - i is the subfault number along strike and j along dip on the fault plane - is
given by

nsi j = wi j
M0

m0
,

∑

i, j

wi j = 1, (3.21)

whereby W is normalized to unity in order to conserve the target moment M0. The total number
of subsources N is given by the sum of triggerings ns of all n subfaults, i.e.

N =
∑

i, j

nsi j . (3.22)

The displacement u on subfault (i j) is

ui j =
nsi j m0

µ ∆l 2 =
nsi j m0

ρ β 2∆l 2 . (3.23)

• Link between target spectrum |S a
s (x, ω)| and the sum of subsource spectra

∑ |S a
s f ,s(x, ω)|:

As the subfault spectra add incoherently, the target amplitude increases only with
√

N instead
of N (Joyner and Boore, 1986). Using (3.14) and (3.19) gives

|S a
s (x, ω)| =

∑
|S a

s f ,s(x, ω)|
≈
√

N |S a
s f ,s(x, ω)|

≈ Cs

√
M0∆σ∆l3 ω2

1 +

(
ω ∆l
Kβ

)2
−1

, (3.24)

which can be approximated by

|S a
s (x, ω)| ≈ Cs

√
M0∆σ

∆l
K2β2 . (3.25)
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Equation (3.25) indicates that the Fourier amplitude spectrum is in particular sensitive to pa-
rameter K - which itself is related to parameters z and sfact via (3.14) and (3.16) - and to the
subfault size ∆l. Beresnev and Atkinson (1998) point out that ∆l is theoretically limited by
the following constraints: the lower boundary on ∆l is determined by the requirement that the
corner frequency lies below the frequency band of interest. The upper boundary on ∆l can be
attributed to the opportunity of a reasonable number of subsources in order to obtain a realistic
shape for the accelerogram. Beresnev and Atkinson (2002) give the following empirical rule
for the relationship between subfault size ∆l - that can be understood as characteristic size of
asperities on the rupturing fault - and moment magnitude Mw of the target earthquake3 , valid
for 4 ≤ Mw ≤ 8 (∆l in [km])

log ∆l = −2 + 0.4 Mw . (3.26)

Mw is related to M0 via (2.21). A similar relationship between earthquake magnitude and typical
asperity size has been found by Somerville et al. (1999): log ∆l = −2 + 0.5 Mw.

B. Simulation of Path Effects

Geometrical Spreading G(x)
FINSIM enables the user to specify a trilinear model to describe geometrical spreading with two

distance parameters rg1 and rg2, and three parameters pow1, pow2 and pow3 characterizing the
amplitude decay:

G(x) =



rpow1 for r ≤ rg1
rg1pow1 (r/rg1)pow2 for rg1 < r ≤ rg2
rg1pow1 (rg2/rg1)pow2 (r/rg2)pow3 for r > rg2

. (3.27)

The idea behind this trilinear model comes from the observation that amplitude decay is distinct from
the theoretical value r−1 which has been derived for the elastic space in Chapter 2 (2.23). Layer-
ing in the crust causes direct-wave amplitudes to decay more steeply than r−1 (Burger et al., 1987).
In the distance range of joint arrivals of direct waves and postcritical reflections off the Moho and
intracrustal discontinuities (approximately between 50 to 200 km), amplitudes may increase with dis-
tance. At larger distances geometrical attenuation may be significantly greater than r−0.5 - which is
the theoretical value for surface waves in a half-space (Hasegawa, 1985) - depending on the nature of
the crust-mantle transition: a sharp velocity contrast traps energy within the crustal waveguide, while
a velocity gradient allows leakage into the mantle, increasing the apparent geometric attenuation.
Further amplitude variations are caused by crustal heterogeneities (Ojo and Mereu, 1986).

Inelastic Attenuation I(x, ω)
Inelastic attenuation is implemented in FINSIM by specification of parameters Q0 and η. The

3In practice, FINSIM requires specifications of Mw, the length L and width W of the rupture, and the number of subfaults
n.
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inelastic term was derived in Chapter 2 (2.29) with

Is(x, ω) = exp
(
−ω r(x)

2 Q β

)
with Q = Q0

(
ω

2π

)η
(3.28)

C. Simulation of Site Effects

Frequency-dependent Amplification F(x, ω)
Frequency-dependent amplification can be considered in FINSIM by the specification of frequency

values and respective amplification factors:

F(x, ω) = {[ω1, amp1(x)
]
, ...,

[
ωm, ampm(x)

]} (3.29)

The program interpolates automatically between the given values; for frequencies to the left and right
of the lowest and highest specified values, FINSIM assumes constant amplification.

High-Frequency Diminution H(x, ω)
High-frequency diminution by near-surface deposits and the crustal velocity gradient (see (2.35))

is realized by the specification of (site-dependent) κ values:

H(x, ω) = exp
(
−πκ(x)

ω

2π

)
. (3.30)

Alternatively, FINSIM allows for the specification of parameter fmax (see (2.34)).

3.2.2 Modifications of the FINSIM Code

For the purpose of earthquake early warning the FINSIM code by Beresnev and Atkinson (1997)
has to be modified in two aspects: first, a correct time axis is required because we are interested
in time differences between wave onsets at different seismic stations. Second, the stimulation and
propagation of compressional waves have to be considered; compressional waves are less destructive
than shear and surface waves but spread with higher velocities and are therewith the firstly recorded
seismic waves at the sensor sites. As P-waves have basically similar spectral features like S-waves
(Boore, 1986) only some simple modifications of the stochastic method are required that are shortly
explained in the following.

• Velocity α
Definitions of P- and S-wave velocities as a function of elastic moduli and density have been
given by (2.5) and (2.6). Assuming a Poisson’s ratio σ of 0.25, which is a typical value for the
Earth’s crust, it is µ ≈ λ and therewith

α ≈
√

3 µ
ρ
≈
√

3 β . (3.31)
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• Source term |S a
s f ,p(x, ω)|

The spectral constant Cs for S-waves has been defined by (3.10). Analog a spectral constant for
P-waves Cp is defined by

Cp =
fs√
2

Rθφ
p

4πρα3
. (3.32)

The average spatial radiation of P-waves is Rθφ
p = 0.33 (Boore and Boatwright, 1984). Averaged

over different angles of incidence the free surface horizontal vector amplification coefficient is
fs ≈ 2.0 for a plane P-wave (Jiang et al., 1998). A further term accounts for the angle of
incidence ε of seismic P-waves. Thus in the case of compressional waves (3.9) is modified

|S a
s f ,p(x, ω)| = ω2 Cp sin(ε) m0

1 +

(
ω

ωc

)2
−1

. (3.33)

• Inelastic attenuation IP(x, ω)
Intrinsic attenuation occurs mainly in shear which means that the quality factor for S-waves, Q s,
is always smaller than for P-waves, Qp. I assume a Qp/Qs-ratio of 9/4 which implies that only
the shear modulus contributes to Q, and not the bulk modulus (e.g., Lay and Wallace, 1995).
After substitution of β by α (3.28) becomes

Ip(x, ω) = exp
(
− ω r(x)

2 Qp α

)
with Qp =

9
4

Qs . (3.34)

• Site effects Fp(x, ω) and Hp(x, ω)
For simplicity reasons I assume that site effects on P-waves are equal to effects on S-waves.
However, as P-wave velocities in soil are generally higher than S-wave velocities, it follows
from (2.31) that the fundamental frequency of P-wave amplification is higher while the ampli-
tude of amplification is lower than those for S-waves. As the water saturation affects P-wave
velocities it has significant impact on amplification (Sokolov, 2005, pers. comm.).

Time series for P- (aoutput
p (x, t)) and S-waves (aoutput

s (x, t)) are generated separately from each other,
and then summed up with the respective time delays due to different propagation velocities. Examples
of simulated ground motion time series for earthquakes of Mw = 5.0, Mw = 6.0 and Mw = 7.0 at 15
km distance are shown in Figure 3.3, 3.4 and 3.5. Velocity and displacement data are obtained by
time-integration and high-pass filtering above 0.2 Hz.

3.3 Stochastic Simulation of Ground Motion from Finite Faults in the
Marmara Region

Using the modified FINSIM code as described in Chapter 3.2.2 a set of synthetic ground motion
records for the Marmara region is produced. Similar procedures have been applied to synthesize the
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Figure 3.3: Simulated mean horizontal components of acceleration at 15 km distance.
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Figure 3.4: Mean horizontal components of velocity obtained from time-integration of acceleration
records in Figure 3.3.
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Figure 3.5: Mean horizontal components of displacement obtained from time-integration of velocity
records in Figure 3.4.
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segment 1

segment 3 segment 2segment 4

segment 5

Figure 3.6: Fault segments in the Sea of Marmara close to Istanbul used for the simulations of seismic
ground motion in this work. SEGMENT 1 corresponds to the Izmit Fault, SEGMENT 2 to the Cinarcik
Fault, and SEGMENT 3 to the Western Fault (see Figure 1.3). Fault SEGMENT 4 represents joint
ruptures of SEGMENTS 1 to 3 which corresponds to the interpretation by Le Pichon et al. (2003).
SEGMENT 5 considers source locations beyond the Main Marmara Fault in the southeastern part of
the Sea of Marmara.

1999 Kocaeli earthquake (Stochastic Method, Durukal, 2002) or to model different scenario earth-
quakes for seismic hazard assessment in Istanbul (Hybrid Method, Pulido et al., 2004).

The required input parameters for the stochastic simulation are mostly taken from the literature (Table
3.1). These reference values are varied within reasonable limits as indicated in the table to make
the database as realistic as possible. Diverse slip distributions are simulated by randomized weight
matrices (see (3.21)) and are combined with different directions of rupture propagation, including bi-
and unidirectional cases.

The distribution of simulated earthquake hypocenters is constrained by the locations of faults in the
Sea of Marmara. As denoted in Chapter 1.3 there is an ongoing debate between Le Pichon et al.
(2003) and Armijo et al. (2002) concerning the existence of a single through-going or segmented Main
Marmara Fault4 in the Sea of Marmara. In this study both interpretations shall be considered. Five
fault segments are introduced as possible source locations of moderate and strong earthquakes (Figure
3.6): SEGMENT 1 corresponds to the Izmit Fault, SEGMENT 2 to the Cinarcik Fault, and SEGMENT
3 to the Western Fault (see Figure 1.3). Fault SEGMENT 4 represents joint ruptures of SEGMENTS
1 to 3 which corresponds to the interpretation by Le Pichon et al. (2003).5 SEGMENT 5 considers
source locations beyond the Main Marmara Fault in the southeastern part of the Sea of Marmara.
Locations of the five segments aside from specifications of the maximum possible magnitudes on
each segment determined from the Wells-Coppersmith relation (2.22) are compiled in Table 3.2.

Fifty earthquakes are simulated in narrow bands along each fault segment in the magnitude range of
4.5 ≤ Mw ≤ 7.5. The database is supplemented by 30 additional earthquakes (4.5 ≤ Mw ≤ 5.0)

4Note that even though using the term Main Marmara Fault in this work I do not want to imply that this fault is
necessarily through-going.

5Note that FINSIM can only model plane rupture propagation.
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Modeling parameters

term variable value reference

source rupture depth : Zrupt 5.0 km
rupture dip : δ 90◦

rupture length : L eq.(2.22) WC94
rupture width : W eq.(2.22) WC94
subfault size : ∆l eq.(3.26) AB95
radiation strength : sfact 0.9 − 1.3
stress drop : ∆σ 6 − 13 · 106 N/m2 HMcG81
density : ρ 3, 000 kg/m3 POA04
S-wave velocity : β 3,300 m/s POA04
moment magnitude : Mw 4.5 ≤ Mw ≤ 7.5

geometrical trilinear model : rg1 2 SCE97,
spreading see eq.(3.27) : rg2 400 mod.

: pow1 -1.5
: pow2 -0.8
: pow3 -0.7

inelastic crustal Q model : Q0 50 HKB98
attenuation see eq.(3.28) : η 1.09

site frequency-dependent : NEHRP B Table 2.2
amplification amplification : NEHRP C Table 2.2 BJ97

see eq.(3.29) : NEHRP D Table 2.2 BJ97

high-frequency κ filter : κ NEHRP B 0.035 BJ97
diminution see eq.(3.30) : κ NEHRP C 0.040

: κ NEHRP D 0.045

duration trilinear model : rmin 10 AB95,
see eq.(3.2) : rd1 70 mod.

: rd2 130
: durmin (B, C, D) 2.00, 2.20, 2.40
: b1 (B, C, D) 0.25, 0.30, 0.40
: b2 0.10
: b3 0.04

References: AB95 Atkinson and Boore (1995) POA04 Pulido et al. (2004)
BJ97 Boore and Joyner (1997) SCE97 Sadigh et al. (1997)
HMcG81 Hanks and McGuire (1981) WC94 Wells and Coppersmith (1994)
HKB98 Horasan et al. (1998)

Table 3.1: Input parameters for the stochastic simulation of seismic ground motion in the Marmara
region.
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Figure 3.7: Epicenters of 250 synthetic earthquakes (4.5 ≤ Mw ≤ 7.5) along the five fault segments
in the Sea of Marmara shown in Figure 3.6; further 30 small and moderate events (4.5 ≤ Mw ≤ 5.0)
are randomly distributed in the Marmara region. Details on the simulated earthquakes are given in
Appendix B.
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Fault segments in the Sea of Marmara

SEGMENT fault fault azimuth fault magnitude
ID start end length range

1 [40.77◦N; 29.91◦E] [40.73◦N; 29.20◦E] 265◦ 60 km Mw ≤ 7.1

2 [40.73◦N; 29.20◦E] [40.91◦N; 28.79◦E] 300◦ 40 km Mw ≤ 6.8

3 [40.91◦N; 28.79◦E] [40.83◦N; 27.61◦E] 265◦ 100 km Mw ≤ 7.4

4 [40.71◦N; 29.52◦E] [40.90◦N; 28.00◦E] 280◦ 130 km 6.5 ≤ Mw ≤ 7.6

5 [40.68◦N; 29.15◦E] [40.74◦N; 28.80◦E] 282◦ 30 km Mw ≤ 6.6

Table 3.2: Fault segments in the Sea of Marmara (see Figure 3.6) and assigned maximum possible
magnitudes determined from the Wells-Coppersmith relation (2.22) as input for the simulations in this
study.

that are independent from the large segments and that are randomly distributed in the Marmara region
(Figure 3.7). Source depths of the 280 synthetic earthquakes vary between 5 and 20 km. Tables
B.1 to B.6 in Appendix B summarize the locations of epicenters on the fault segments, aside from
specifications of source depths, magnitudes and locations of ruptures.

For each earthquake I simulate seismic ground motion at the ten stations of the Istanbul earthquake
early warning system (Figure 1.3), at one site in Istanbul (ISTAN) and at one industrial settlement close
to Istanbul (UserX) as potential users of early warnings. Station coordinates and NEHRP classes at the
respective sites are compiled in Table 3.3. Studies on site effects at these locations are not available.
For the early warning stations and the Istanbul site frequency-dependent amplification functions based
on the NEHRP soil classification scheme (Boore and Joyner, 1997) presented in Chapter 2.3.3 are
integrated. For the industrial facility site I make use of the amplification spectrum observed at station
TLC in Tulcea, Romania (see Figure 3.8, Sokolov et al. (2005)), which is installed on metamorphic
rock, to demonstrate the impact of realistic site effects. This idea shall be explained in more detail in
Chapter 6.

Histograms for magnitudes and depths of the synthetic earthquakes are displayed in Figure 3.9. Figure
3.10 shows the simulated ground motion at the different sites for a Mw = 6.5 earthquake (SEGMENT
2, #25). Rupture directivity can be well observed at station HVHRB. At all sites a 3rd order Butter-
worth filter is applied between 0.05 to 12.0 Hz at a sampling rate of 50 samples per second (Erdik
et al., 2003b).

3.4 Discussions

The principle idea behind the Stochastic Simulation Method of Seismic Ground Motion is the combi-
nation of the estimated Fourier amplitude spectrum of ground motion with a random phase (Boore,
1983, 2003). The method provides a simple and suitable technique for the simulation of ground shak-
ing time series for moderate and strong earthquakes that cover the frequency band of interest for most
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10 early warning stations and 2 user sites

STATION STATION LAT ϕ LON λ NEHRP
NO. ID ◦ N ◦ E class

1 BOTAS 40.99 27.98 C
2 BRGAZ 40.88 29.07 B
3 BUYAD 40.87 29.13 B
4 FARGE 40.76 29.36 B
5 HVHRB 40.97 28.84 D
6 HYBAD 40.88 29.09 B
7 SINOB 41.00 28.54 C
8 TUZ01 40.81 29.27 D
9 YAKUP 41.00 28.67 C

10 YLVHV 40.70 29.37 C
11 ISTAN 41.08 29.01 C
12 UserX 41.04 28.82 TLC (Figure 3.8)

Table 3.3: Coordinates and NEHRP soil classes at the ten early warning stations and two user sites
in the Marmara region. ISTAN is a site in Istanbul and UserX is located at the site of an industrial
settlement close to the mega-city. For the simulation of seismic ground motion average amplification
values are used to include site effects by near-surface soil deposits as proposed by Boore and Joyner
(1997) (see Chapter 2.3.3). At site UserX the amplification spectrum observed at station TLC in
Tulcea, Romania (see Figure 3.8, Sokolov et al. (2005)) is used. TLC is installed on metamorphic
rock, and is used to demonstrate the possible impact of realistic (non-smoothed) site effects.
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Figure 3.8: Comparison of the amplification spectrum at station TLC (Tulcea, Romania) deployed on
metamorphic rock (κ = 0.040 s, Sokolov et al. (2005)) and average amplification functions determined
by Boore and Joyner (1997) for NEHRP class C and generic rock.
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Figure 3.9: Histograms of magnitudes and depths for the synthetic database including 280 simulated
earthquakes in the Marmara region. Source depths of the modeled earthquakes are in good agreement
with observations (see Figure 1.4), while the distribution of earthquake magnitudes is unrealistic as it
does not follow the Gutenberg-Richter relation (Gutenberg and Richter, 1956).
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Figure 3.10: Seismic scenario: Simulated ground motion for a Mw = 6.5 earthquake on SEGMENT
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engineering problems (up to 10 Hz and higher). Its power is that details on earthquake sources and
propagation effects on seismic waves are not required. The stochastic simulation procedure is theo-
retically circumstantiated under the conditions of linear stress-strain relation and time-indepence of
Green’s function (Chapter 2) and is supported by observational data. As a matter of principle the
stochastic method, however, can only reflect major characteristics of ground motion, such as mean
amplitudes (see Chapter 4), and provides a simplified image of true shaking. Some of the major sim-
plifications of the approach come from the usage of averaged radiation patterns, of constant rupture
velocities (here: vr = 0.8 β) and the usage of simple models for seismic wave velocities and inelastic
attenuation. Crucial are also parameters that describe the form of the shaping window applied to the
Gaussian time series to model the random phase (Saragoni and Hart, 1974).

In comparison to the Stochastic Point Source approach the Stochastic Simulation Method for Seismic
Ground Motion from Finite Faults allows for the inclusion of source dimensions: depending on the
earthquake magnitude the length of the seismic rupture can be some tens of kilometers which clearly
affects the observed ground shaking in the epicentral area. In addition, the method allows for the
simulation of effects of rupture directivity (see Chapter 2.2.3) as shown Figure 3.10. Source dimen-
sions should be principally considered in seismic hazard analyses. As pointed out in Chapter 3.2.1
subfault size ∆l, shear wave velocity β and parameter K ≈ (3 y s f act) have to be carefully chosen as
they are crucial for the obtained simulation results (3.25). Parameter y is related to rupture velocity v r
(3.12), parameter s f act is related to the maximum slip velocity vmax (3.15). The distribution of seis-
mic wave velocities plays an important role in the level of observed ground motion; however, it has
to be extremely simplified in the stochastic modeling procedure. Rectangular rupture planes and the
consideration of only one typical asperity size on the fault (∆l) constitute further limiting assumptions
of the modeling procedure.

In this study a modified FINSIM code (Beresnev and Atkinson, 1998) is applied to simulate ground
motion records at different points of observation in the Marmara region for P- and S-waves. The
required input parameters for the simulation procedure are mostly taken from the literature (Table
3.1). In order to obtain a database of synthetic earthquakes that is as realistic as possible variability
is assigned to the subfault size ∆l, the stress drop ∆σ, and parameter s f act within specified limits
as indicated in Table 3.1. As a consequence of the random selection of source parameters and the
introduction of frequency-dependent site effects, I expect that the synthetic database includes a re-
alistic degree of inter- and intra-event variability. The quality of the simulated time series will be
evaluated on basis of ground motion parameters in the following chapter: I will compare attenua-
tion relationships derived from the synthetic database with observational data from three earthquakes
in northwestern Turkey and with attenuation laws determined for other seismic active regions in the
world.
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Chapter 4

Seismic Ground Motion Parameters

To simplify time series and Fourier amplitude spectra of earthquake ground shaking, both quantities
are frequently reduced to so-called (seismic) ground motion parameters that summarize their main
characteristics. This chapter will give a short summary of ground motion parameters that are most
commonly used in seismic engineering and that will be of interest for the development of PreSEIS in
Chapter 6. Comprehensive descriptions of ground motion parameters are given by Kramer (1996) and
Stewart et al. (2001).

Based on the stochastically simulated earthquake records presented in Chapter 3.3, I will determine
correlations between Fourier amplitudes and nine ground motion parameters, among them peak val-
ues, spectral values and seismic intensities. I will determine magnitude- and site-dependent amplifica-
tion factors and discuss the obtained results with respect to site effects and damage by earthquakes. All
these studies will enter into a meaningful parameterization of seismic ground motion required as input
information for PreSEIS; the determined amplification factors will be essential for the calculation of
shake and alert maps in Chapter 6.

The second part of this chapter is dedicated to attenuation relationships of ground motion parameters.
Based on the synthetic database I will calculate attenuation laws for nine ground motion parameters,
and compare these relations with observational data using records of the 1999 Kocaeli and Düzce
earthquakes and of a small event that occurred in the southeastern Sea of Marmara in 2004. In ad-
dition, I will compare the obtained results with relations determined for other seismic active regions,
and use these findings for a rough frequency-dependent evaluation of the synthetics.

4.1 Parameterization of Seismic Ground Motion

4.1.1 Amplitude Parameters: PGD, PGV and PGA

The most commonly used ground motion parameters in the time domain are the peak values of ac-
celeration a, velocity v, and displacement d denoted by PGA, PGV and PGD. Peak values give the
largest absolute amplitudes of the respective - mostly non-filtered - time series:

PGD ≡ max{|u|} (4.1)

PGV ≡ max{|v|} = max{|u̇|} (4.2)

PGA ≡ max{|a|} = max{|ü|}. (4.3)
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Peak values can be measured for all three components of shaking, i.e. for the two orthogonal hori-
zontal and the vertical component. Because buildings are generally designed to resist vertically acting
forces - such as gravity - the horizontal components usually cause the main damage to structures.
Some authors have introduced the terminology PHA, PHV, and PHD in order to emphasize that peak
values are taken from the horizontal components. Peak horizontal values can either refer to the maxi-
mum peak value of both horizontal components, or to the peak value of the resultant time series after
taking the vector sum of both. In this work peak values refer to the mean horizontal component.

Peak ground acceleration (PGA) is related to the peak force induced in very stiff structures and can
be correlated to earthquake intensity (e.g., Trifunac and Brady, 1975; Murphy and O’Brien, 1977;
Krinitzsky and Chang, 1987). The PGA-intensity relationship, however, is rather imprecise and is
therefore generally only applied when merely intensity information is available. This, for example,
can happen if no strong motion instruments have been installed in the area where a large earthquake
occurs. Peak ground velocity (PGV) has been found to correlate well with earthquake damage in
structures (Trifunac and Todorovska, 1997; Boatwright and Seekins, 2001). Peak ground displacement
(PGD) has not been experienced as useful parameter for engineering purpose yet (Kramer, 1996) but
is strongly related to damage within buildings.

Typically, large peak values - in particular of acceleration - indicate destructive ground motions. If
peak values, however, last only for a very short period of time or if they occur at very high frequencies,
damage to many types of structures may be little. Peak values therefore should be combined with
information on duration and frequency content of ground motion (Kramer, 1996; Jennings, 2003).

4.1.2 Spectral Parameters

The frequency content of seismic ground motion is usually quantified through spectra, such as the
Fourier amplitude spectra (FAS) or response spectra commonly used in earthquake engineering.

Fourier Amplitude Spectra (FAS): ωc, fmax, Tp, and vmax/amax

For the assessment of strong motion characteristics the frequency content of ground motion is usually
described by single period parameters instead of complete spectra. A characteristic parameter that
can be derived from the FAS is, e.g., the corner frequency ωc which is related to the cube square of
the seismic moment M0 (2.19) and therewith to the cube square of the seismic stress drop ∆σ (2.18).
Another spectral parameter is the cut-off frequency fmax (2.34) which can be either linked to local site
effects or to the earthquake source.

The predominant period T p is defined as shaking period corresponding to the maximum value of
the smoothed FAS1 (Stewart et al., 2001). Different procedures for the determination of T p in the
frequency or in the time domain - using the zero-crossing approach for example (Correig, 1996) -
have been proposed. Closely related to the predominant period is the vmax/amax ratio which indi-
cates the most significant period of ground motion (e.g., McGuire, 1978; Kramer, 1996). The high
correlation between the predominant period of the first vibrations of seismic ground motion (as well
as the vmax/amax ratio) and earthquake magnitude turns T p into a promising predictive parameter for
earthquake early warning (Chapter 5.3).

1Note that in earthquake engineering the predominant period mostly refers to the maximum value of the response spec-
trum and not of the FAS.
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Response Spectra: S d, S v, S a, PSA, and PSV

Response spectra describe the peak motion response of a single-degree of freedom elastic structure
with a specified level of viscous damping towards a base acceleration a(t), that in case of earthquakes
corresponds to seismic ground motion at the point of observation. The equation of motion of a simple
harmonic oscillator is given by a second order, linear, inhomogeneous differential equation:

ẍ + 2βωẋ + ω2x = −a(t), (4.4)

whereby β is the fraction of critical damping and ω is the natural frequency of the elastic structure.
A numerical solution for (4.4) by the approximation of a(t) by segmentally linear functions has been
proposed by Nigam and Jennings (1969) and will be used in this work:

−a(t) ≈ −ai − ∆ai

∆ti
(t − ti) , ti ≤ t ≤ ti+1, (4.5)

with

∆ti = ti+1 − ti,

∆ai = ai+1 − ai.

Displacement x and velocity ẋ at time t = ti+1 are given by

xi+1 = A(β, ω,∆ti)xi + B(β, ω,∆ti)ai, (4.6)

whereby

xi =

(
xi

ẋi

)
ai =

(
ai

ai+1

)

A =

(
a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)
. (4.7)

The elements of matrices A and B in (4.7) are specified in Nigam and Jennings (1969). Once x and
ẋ are known at time ti, the state of the oscillator can be exactly calculated at all subsequent times.
Usually, it is assumed that x = ẋ = 0 for t = t1. The desired response spectra are obtained from
the maximum values of displacement x, velocity ẋ and acceleration ẍ for a given excitation at each
frequency ω:

S d(ω, β) ≡ max {|x(ω, β)|} (4.8)

S v(ω, β) ≡ max {|ẋ(ω, β)|} (4.9)

S a(ω, β) ≡ max {|ẍ(ω, β)|} , (4.10)

where S d, S v and S a are the spectral values of displacement, velocity, and acceleration, respectively,
given damping β and natural frequency ω. Typical values for the quantified description of structural
response to ground shaking caused by an earthquake are β = 5% and T1 = 0.3 s, T2 = 1.0 s and
T3 = 2.0 s; these periods are characteristic for buildings of 3 and 10 stories, and long-period structures
such as bridges, respectively (Figure 4.1).2 I will use these values for subsequent response analyses.

2As a rule of thumb, the eigenperiod of a building or structure - which is the reciprocal value of the eigenfrequency - can
be estimated as 0.1s times the number of stories (e.g., Hough, 2004).
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Figure 4.1: Response of a building with eigenperiod T = 1.0 s towards ground shaking of different
frequency content (Hough, 2004).

Spectral velocity S v and spectral acceleration S a are generally not calculated directly but are derived
from spectral displacement S d through

PSV ≡ ωS d ≈ S v, (4.11)

PSA ≡ ω2S d ≈ S a, (4.12)

whereby the pseudo spectral velocity PSV and the pseudo spectral acceleration PSA are approxi-
mations of the true spectral values (Kramer, 1996; Jennings, 2003). Figure 4.2 shows the calculated
PSA derived from the simulated acceleration time series displayed in Figure 3.3 at 5% damping. Re-
sponse spectra provide neither information on the duration of shaking nor on the inelastic response of
structures.

4.1.3 Duration Parameters: Bracketed Duration

The duration of seismic ground shaking has generally strong impact on damage to structures caused
by earthquakes as the stiffness and therewith resistency of structures towards ground shaking can
significantly decrease with duration of seismic demand. Many physical processes, such as the increase
of pore water pressures in loose, saturated sands, depends on the number of load or stress cycles that
occur during earthquakes. This phenomenon is known as soil liquefaction (e.g., Seed and Idriss, 1982;
Osinov, 2003). Effects on shaking duration have been discussed in Chapter 2.2.3.

One of the most common measures of duration is the bracketed duration (Bolt, 1969), which is the
time interval between the first and last exceedance of specified thresholds of ground shaking. Duration
measures can be combined with other ground motion parameters such as the cumulative absolute
velocity (CAV) as will be shown in the following subsection.
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Figure 4.2: (Pseudo) spectral acceleration at 5% damping for the simulated acceleration time series
displayed in Figure 3.3.
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4.1.4 Integrative Parameters: Seismic Intensity, Ia and CAV

Seismic Intensity

Seismic intensity is a measure of shaking and damage from earthquakes. Most frequently used are
the Modified Mercalli Intensity (MMI) scale in the USA, Canada, Mexico, and others, the Medvedev-
Sponhauer-Karnik (MSK) scale in eastern and southeastern Europe, and the European Macroseismic
Scale (EMS). As differences are usually less than 0.5 units, the scales are often assumed to be identical
(e.g., Murphy and O’Brien, 1977; Chernov and Sokolov, 1988).

Computed intensity (or macroseismic/instrumental intensity) is derived from instrumental records in-
stead of human descriptions. It can therefore replace common intensity quantifications if descrip-
tions of damage are lacking, e.g., in sparsely populated areas or shortly after earthquake catastro-
phes. Macroseismic intensity is also useful for the estimation of intensity from simulated earthquake
records. Intensity can be empirically estimated from the Fourier amplitude spectra (FAS) of ground
acceleration as proposed by Chernov and Sokolov (1988), Sokolov and Chernov (1998), Chernov and
Sokolov (1999), and Sokolov (2002). In the following I will summarize the main concept of this
approach; the method will be applied for intensity estimates in this work.

From a database of about 1,150 worldwide recorded ground motion time series Sokolov (2002) has
determined empirically mean values ai, j and unit standard deviations σi, j of the logarithmized accel-
eration spectral density function log |A0| for intensity levels III ≤ i ≤ IX at so-called representative
frequencies f j in the range of 0.4-13.0 Hz (Figure 4.3). Values for lower and higher intensities up to
XII have been estimated from extrapolation (Sokolov, 2002). The probability that the logarithmized
value of the observed spectral amplitude x j at frequency f j of a given earthquake does not exceed ai, j
is given by

P
[
x j ≤ ai, j

]
= 1 − 1√

2πσ2
i, j

x j∫

xmin

exp


−(ai, j − x)2

2σ2
i, j

 dx. (4.13)

xmin is set to xmin = ai, j − 5σi, j. The (weighted) probability that all observed logarithmic spectral
amplitudes x covering all representative frequencies do not exceed ai is given by

P [x ≤ ai] =

n f∑
j=1

P
[
x j ≤ ai, j

]
σ2

i, j

n f∑
j=1
σ2

i, j

, (4.14)

where n f is the number of considered frequencies. The probability that the intensity level I of an
observed earthquake does not exceed the given value i can be estimated from

P [I ≤ i] =

XII∏

i=III

P [x ≤ ai] . (4.15)

Sokolov (2002) propose to determine the intensity level I of a given earthquake either from the maxi-
mum of the first derivative of the probability function P (4.15) or from the intensity value at P = 0.5.
Unless otherwise noted I will take the mean value of both when specifying intensities in this thesis.
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Figure 4.3: Mean acceleration spectra of earthquakes with intensities III-XI after Sokolov (2002).

Arias Intensity Ia

The Arias intensity Ia is defined by the integrated squared acceleration a(t) of seismic ground motion
over a time interval [0...tmax] whereby tmax usually corresponds to the duration of the earthquake
record (Arias, 1970):

Ia ≡ π

2g

tmax∫

0

a(t)2dt, (4.16)

where g is the acceleration of gravity (g = 9.81 m/s2). The Arias intensity quantifies the energy in the
accelerogram in units of [m/s] (Kramer, 1996). It has its own scale and cannot be directly converted
into other intensity scales.

Cumulative Absolute Velocity (CAV)

The cumulative absolute velocity (CAV) is defined by the integrated absolute velocity over a time
interval [0...tmax] whereby tmax usually corresponds to the duration of the earthquake record:

CAVtmax ≡
tmax∫

0

|a(t)| dt. (4.17)

The CAV can be taken as the sum of absolute peak-to-valley velocity changes. Figure 4.4 illustrates
the increase of CAV with time applied to a stochastically simulated Mw = 7.0 earthquake record.
Figure 4.5 shows the course of CAV for the acceleration time series plotted in Figure 3.3: magnitudes
as well as local underground appear to have significant impact on the observed CAV level.
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Figure 4.4: Bandpass-filtered simulated accelerogram (0.5-10.0 Hz) and cumulative absolute velocity
(CAV) of a Mw = 7.0 earthquake at a source-to-site distance of 35 km on stiff soil. The corresponding
seismic intensity estimated from the Fourier amplitude spectrum is 7.4.

Based on the study of about 250 observed earthquakes of intensities between I and X Benjamin and
Associates (1988) found that spectral accelerations and the cumulative absolute velocity are the two
(out of ten) most reliable ground motion parameters to predict damage. Peak ground acceleration
(PGA), on the other hand, has come off the worst. In their report on a Criterion for determing the
exceedance of the Operating Basis Earthquake (OBE)3 on behalf of the Electric Power Research
Institute (EPRI) in Palo Alto, California, Benjamin and Associates (1988) propose the following two-
level criterion to avoid unnecessary shutdowns of nuclear power plants in response to earthquakes:

"The 5% damped spectral accelerations for the earthquake ground motion at the site,
at frequencies between 2.0 and 10.0 Hz, must exceed the corresponding OBE design
response spectrum or 0.2 g, whichever is greater, and, secondly, the computed CAV value
from the earthquake record must exceed 0.3 g s."

(Benjamin and Associates, 1988)

Figure 4.6 (left) shows the observed correlation between CAV and seismic intensity for 177 earth-
quakes used by Benjamin and Associates (1988): the introduction of the proposed threshold at 0.3 g
s allows for the identification of all damaging events with intensities larger than VI. Figure 4.7 shows
that the threshold is also applicable to the simulated earthquake records presented in Chapter 3.3.

The CAV defined after (4.17) clearly depends on duration tmax. To confine the CAV calculation to
parts of ground motion that are damaging, the Yankee Atomic Electric Company (1991) suggests a
standardization of the parameter. The authors define the bracketed cumulative absolute velocity which
considers only acceleration values in one-second intervals where at least one value exceeds 0.025 g
(see Chapter 4.1.3). Using this definition the Yankee Atomic Electric Company (1991) proposes a
new CAV threshold of 0.166 g s to identify damaging earthquakes (Figure 4.6, right).

3The Operating Basis Earthquake (OBE) is defined as an earthquake which - considering specific characteristics of the
local geology - could reasonably be expected to affect the plant site during the operating life of the system.

52



4.1 Parameterization of Seismic Ground Motion

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=5

.0

N
E

H
R

P
_B

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=6

.0

N
E

H
R

P
_B

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=7

.0

N
E

H
R

P
_B

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=5

.0

N
E

H
R

P
_C

tim
e 

[s
]

cumul. absolute velocity [cm/s]
0

10
20

30
40

0

50
0

10
00

15
00

20
00

25
00

M
w
=6

.0

N
E

H
R

P
_C

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=7

.0

N
E

H
R

P
_C

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=5

.0

N
E

H
R

P
_D

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=6

.0

N
E

H
R

P
_D

tim
e 

[s
]

cumul. absolute velocity [cm/s]

0
10

20
30

40
0

50
0

10
00

15
00

20
00

25
00

M
w
=7

.0

N
E

H
R

P
_D

tim
e 

[s
]

cumul. absolute velocity [cm/s]

Figure 4.5: Cumulative absolute velocity (CAV) for the simulated acceleration time series displayed
in Figure 3.3.
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Figure 4.6: Correlations between CAV (left) and bracketed CAV (right) and seismic intensity for
177 observed weak and strong earthquakes. Benjamin and Associates (1988) propose thresholds of
0.3 g s and 0.166 g s, respectively, to identify damaging earthquakes with intensities larger than VI.
Displayed data is taken from Benjamin and Associates (1988).
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Figure 4.7: Correlation between CAV and seismic intensity for synthetic earthquake records. Seis-
mic intensity has been determined from the Fourier amplitude spectrum of acceleration (Sokolov,
2002). The threshold of 0.3 g s as proposed by Benjamin and Associates (1988) to identify damaging
earthquakes with intensities larger than VI appears to be also applicable to the simulated data.
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4.2 Correlating Ground Motion Parameters with Fourier Amplitudes

Figure 4.8 shows the correlations between nine ground motion parameters and Fourier amplitudes of
acceleration4 based on 3,600 stochastically simulated earthquake records (4.5 ≤ Mw ≤ 7.5, Chapter
3.3). From top to bottom the figure shows results for three amplitude parameters (PGA, PGV and
PGD), three spectral parameters (PSA at 0.3 s, 1.0 s and 2.0 s) and three integrative parameters (seis-
mic intensity derived from FAS, Arias intensity Ia and CAV). A linear (left column) and a non-linear
3rd order (right column) model are tested. Correlations at each frequency f are quantified through
correlation coefficient R defined by

Ri( f ) ≡


(y( f ) − y( f ))(ŷi( f ) − ŷi( f ))
σy( f ) σŷi( f )

 , i = 1, 2, (4.18)

with the two predictive models

ŷ1( f ) = a1( f ) + b1( f ) (IM),

ŷ2( f ) = a2( f ) + b2( f ) (IM) + c2( f ) (IM)2 + d2( f ) (IM)3.

The frequency-dependent model parameters ai( f ), bi( f ), ci( f ), and di( f ) are determined through
linear/non-linear least-squares regression from the synthetic database. y( f ) is the Fourier amplitude
at frequency f , IM the value of the analyzed ground motion parameter, yi( f ) and ŷi( f ) are the mean
values of Fourier amplitudes and outputs of model i at frequency f , respectively; σy( f ) and σŷi( f ) are
the unit standard deviations of y( f ) and ŷi( f ). The correlation coefficient can take values between -1
and 1.

Figure 4.8 (top) demonstrates that PGA is a high-frequency parameter that is mainly controlled by
frequencies above 3.0 Hz; PGD primarily depends on motions with frequencies below 0.5 Hz; the fre-
quency range from 0.5 to 3.0 Hz has strongest impact on parameter PGV. At low frequencies spectral
accelerations at 5% damping (Figure 4.8, center) correlate well with the corresponding Fourier ampli-
tudes. At frequencies above 1.5 Hz the correlation pertains to broader frequency bands which comes
from the plateau in the FAS of acceleration above corner frequency ωc, i.e. the correlation level is
almost constant at frequencies above ωc. This behaviour certainly applies to all studied ground motion
parameters. For integrative parameters (Figure 4.8, bottom)5 it is as expected impossible to identify
single frequencies with preferential correlation. Arias and seismic intensities show a non-linear, all
other studied ground motion parameters a linear dependency on Fourier amplitudes.

Note that these results are purely empirical; for a more sophisticated analyses of relations between
FAS and response spectra, e.g., see Jennings (2003) and references given therein.

4.3 Attenuation Relationships for Seismic Ground Motion Parameters

Attenuation or predictive relationships describe the mean (or median) and unit standard deviations
of probabilistic distributions of ground motion parameters as intensity measures IM of shaking con-
ditioned on the occurrence of an earthquake of magnitude M in a source-to-site distance r; they

4smoothed over 0.5 Hz intervals (moving average)
5Since the intensity method developed by Sokolov (2002) is not calibrated for small earthquakes, events with intensities

of less than III have been removed from the database prior to the correlation analyses.
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Figure 4.8: Correlations between nine ground motion parameters and the smoothed Fourier ampli-
tude spectrum of ground motion determined from 3,600 stochastically simulated earthquake records
(4.5 ≤ Mw ≤ 7.5) using a linear (left) and non-linear 3rd order (right) model. All correlations are
characterized by correlation coefficient R. Top: peak values PGA, PGV and PGD depend on dis-
tinct frequency bands. Center: at low damping response and Fourier amplitude spectra show a high
proportionality for long period shaking. Bottom: for integrative ground motion parameters such as
seismic intensity, Arias intensity and CAV single frequencies with preferential correlation cannot be
identified. Arias and seismic intensities show a non-linear, all other studied ground motion parameters
a linear dependency on Fourier amplitudes.

56



4.4 Attenuation Relationships for the Simulated Seismic Ground Motion in the Marmara Region

hence define the statistical moments of the probability density function f (IM|M, r, P1, P2, ...Pn) with
model parameters P1, P2, ...Pn that allow - aside from M and r - for additional characterizations of the
earthquake source, propagation path and site effects. Attenuation relationships are determined from
regression analyses of observational data, sometimes supplemented by synthetic earthquake records.

Non-uniform distributions of observational data with respect to M and r often lead to significant
epistemic uncertainties, i.e. uncertainties about the correct form of attenuation functions. Attenuation
relations are mostly based on a few well-recorded events. This allows for a good quantification of
intra-event aleatory variability of ground motion, i.e. variability from station to station within one
single event, while it prevents the evaluation of inter-event aleatory variability, i.e. variability across
a set of different events. One of the striking challenges in the formulation of attenuation laws is
the development of regression procedures that allow for a proper weighting of data points with the
objective to find a reasonable quantification of overall aleatory variability, i.e. the sum of inter- and
intra-event variability (e.g., Joyner and Boore, 1993, 1994; Campbell, 1981; Brillinger and Preisler,
1984, 1985). Simulated earthquake records, usually, do not come along with this problem.

4.4 Attenuation Relationships for the Simulated Seismic Ground Mo-
tion in the Marmara Region

Attenuation relationships for the synthetic database described in Chapter 3.3 are established on basis
of a functional form similar to a equation proposed by Kramer (1996):

ln(IM)︸ ︷︷ ︸
1.

= C1 + C2 Mw︸         ︷︷         ︸
2.

+ C3 ln(r jb + C4 Mw)︸                   ︷︷                   ︸
3.

+ C5 r jb︸︷︷︸
4.

+ C6 (soil, Mw)︸           ︷︷           ︸
5.

±σln(IM)︸ ︷︷ ︸
6.

. (4.19)

Source-to-site distances are quantified by the so-called Joyner-Boore distance r jb defined by the clos-
est horizontal distance to the vertical projection of the rupture onto the surface. The free parameters
C1 to C6 are determined through regression. Following Kramer (1996) the single terms in (4.19) can
be explained as follows:

1. Ground motion parameters are usually log-normally distributed. Thus regression should be
performed on the natural logarithm of the data, which is normally distributed.

2. Magnitude scales are usually derived from peak values of ground motion. Therewith follows
that ln(IM) and M are proportional to each other.

3. Geometrical spreading reduces amplitudes of seismic body waves traveling away from the seis-
mic source by 1/r (2.23). Strictly speaking this is only true in a homogeneous space. The
correction term accounts for the expansion of the rupture area with increasing magnitude, i.e.
for the effective distance which is usually larger than r: seismic waves causing ground motion
at a certain site partly arrive from distance r, partly from larger distances.

4. Inelastic attenuation leads to an exponential decay of wave amplitudes with increasing source-
to-distance r (2.29).

5. Ground motion parameters are affected by source and site characteristics.
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6. The standard deviation σln(IM) of the attenuation relations is assumed to be magnitude- and
site-dependent.

Regression analyses on basis of the synthetic data are separately performed for peak ground acceler-
ation (PGA), peak ground velocity (PGV), peak ground displacement (PGD)6, spectral acceleration
(PSA) at 0.3 s, 1.0 s and 2.0 s, macroseismic intensity derived from the Fourier amplitude spectrum
(FAS) of ground motion, Arias intensity, and the cumulative absolute velocity (CAV). Definitions of
these parameters have been given in Chapter 4.1.

In order to avoid epistemic uncertainties in the predictive relations due to missing magnitude and
distance ranges, an additional dataset of 900 synthetic earthquakes at dense source-to-site intervals
from 1 to 100 km with Mw = 5.0, Mw = 6.0 and Mw = 7.0 for NEHRP classes B, C, and D (Chapter
2.3.3) is simulated. Simulation parameters are the same as taken for the first database adapted to
the Marmara region (Table 3.1). Due to variability of model parameters with respect to the seismic
source and site effects, a reasonable degree of overall aleatory variability is considered. A non-linear
inversion7 for coefficients C1, ...,C5 is performed for each of the nine ground motion parameters IM
using all 2,700 records; the magnitude- and site-dependent coeffient C6 as well as the unit standard
deviation σln(IM) are determined from the obtained residuals.

The resulting coefficients for all nine ground motion parameters are compiled in Appendix C. Data
and attenuation laws are visualized in Figure 4.9. Note that there is a clear saturation of all ground mo-
tion parameters at short distances. Amplification factors relative to NEHRP class B are illustrated in
Figure 4.10: there is a clear dependency of amplification on the respective ground motion parameter.
In Chapter 2.3 it was demonstrated that with decreasing shear wave velocity in the near-surface layer
the peak of strongest amplification moves towards lower frequencies. Using the amplification spectra
for NEHRP class D (stiff soil) as proposed by Boore and Joyner (1997), e.g., highest amplification is
observed at around 0.5 - 2.0 Hz (Figure 2.2). From Figure 4.8 follows that motions in this frequency
band have strongest impact on parameters PGV, PGD, alike on PSA at 1.0 s and 2.0 s. Figure 4.10
shows that these parameters are actually strongly amplified for NEHRP class D. The resultant Fourier
amplitude spectrum as product of source and amplification spectra (corrected for propagation effects)
clearly depends on corner frequency ωc (of the source spectrum). The underlying assumption of lin-
earity in the simulation of seismic ground motions therewith leads to a stronger amplification of large
earthquakes (with low ωc) relative to small events with higher corner frequencies. This magnitude-
dependency of amplification of different ground motion parameters can be well observed in Figure
4.10.

4.4.1 Comparisons with Observational Data and other Attenuation Relationships

Figure 4.11 shows PGA values observed during the strong Kocaeli and Düzce earthquakes in 1999
(Durukal, 2002) and during a small earthquake close to Yalova in 2004. Details on the three earth-
quakes are given in Table 4.1. The data is overlaid by attenuation laws derived from the synthetic
ground motion time series described in Chapter 4.4: mean values are plotted by solid, 95% confi-
dence intervals by dashed lines. Owing to the lack of magnitude conversion schemes for northwestern
Turkey I assume for the small earthquake that Mw ≈ Ml.

6Velocity and displacement data are obtained from the acceleration time series by time-integration and high-pass filtering
above 0.2 Hz.

7The non-linear least-squares regression is performed by using the Gauss-Newton method in MATLAB Statistics Tool-
box, MathWorks Inc., function nlinfit.
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Figure 4.9: Attenuation laws for nine ground motion parameters derived from stochastically simu-
lated earthquake records. Coefficients of the relations are compiled in Appendix C.
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Figure 4.10: Magnitude- and site-dependent amplification factors relative to NEHRP class B for nine
ground motion parameters. The factors are derived from the stochastically simulated ground motion
records.
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Analyzed earthquakes in northwestern Turkey
name date lat lon depth magnitude reference

[◦] [◦] [km]
Kocaeli 1999/08/17 40.70 N 29.99 E 17 Mw = 7.4 USGS
Düzce 1999/11/12 40.93 N 31.25 E 18 Mw = 7.2 Harvard
Yalova 2004/05/16 40.70 N 29.32 E 11 Ml = 4.3 Kandilli

Table 4.1: Locations and magnitudes of three earthquakes used for the comparison of attenuation
laws derived from stochastically simulated earthquake records with observational data. See Figure
4.11.

The broadness of the 95% confidence intervals of the predictive relations (Figure 4.11, dashed lines)
indicates a strong variance of ground motion parameters derived from the synthetics due to variable
source and site characteristics. This behaviour is also observed in the measured PGA data (Figure
4.11, points). PGA values close to the rupturing fault, however, are overestimated through the atten-
uation laws determined from the simulated ground motion time series. From their 2D FD modeling
of the Kocaeli earthquake Miksat et al. (2005) conclude that the recording stations might be unfavor-
ably placed; peak values therefore appear unexpectedly small in the first kilometers from the fault
without the indication of a true trend. Peak amplitudes at distances larger than 80 km, on the other
hand, are underestimated by the predictive relations. Since the database of observational data contains
in this distance range only data recorded on soft soil (NEHRP D) the underestimation is likely due
to underestimated site effects caused by the used averaged amplification values proposed by Boore
and Joyner (1997) (Figure 2.2). In addition, the misfit of predicted and observed peak amplitudes
is likely caused by simplified models for seismic wave propagation (Chapter 3.2.1). The stochastic
simulation procedure is principally useful for the simulation of mean ground motions for a set of
earthquakes having a certain magnitude and source-to-site distance but is less suited for simulating
site- and earthquake-specific ground motions (Boore, 2003).

The comparison of attenuation laws derived from the synthetics and other predictive relationships is
established on basis of the following references8 :

A) Sadigh et al., 1997: Strong crustal earthquakes in California

Sadigh et al. (1997) have determined attenuation laws for peak ground acceleration and response
spectral acceleration of crustal earthquakes. The relations are based on Californian strong motion
data and are valid in the range of 4.0 ≤ Mw ≤ 8.0 and distances up to 100 km. For strike-slip faultings
the relationships for rock sites are given by

ln(IM) = C1 + C2M + C3(8.5 − M)2.5 + C4 ln(rrup + exp(C5 + C6M)) ,

whereby IM is the ground motion of interest and rrup the closest distance to the rupture surface.

8Coefficients of all relations are compiled in Appendix C. Peak values and spectral acceleration are given in units of [g],
distances in [km], and velocities in [m/s].
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Figure 4.11: Attenuation laws for the stochastically simulated data in comparison to three earthquakes
in northwestern Turkey: the 1999 Kocaeli and Düzce earthquakes, and a small event that occurred on
May 16, 2004, close to Yalova (see Table 4.1). PGA data for both strong events are taken from
Durukal (2002). Shown are the mean values of the attenuation laws (solid line) and 95% confidence
intervals (dashed lines).
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B) Boore et al., 1997: Earthquakes in western North America

Boore et al. (1997) have proposed predictive relations for peak acceleration and (horizontal) response
spectra derived from recordings of shallow earthquakes in western North America. The laws have the
following form:

ln(IM) = C1 + C2(M − 6) + C3(M − 6)2 + C4 ln(r) + C5 ln(V30/Va) ,

where
r =

√
r2

jb + h2,

with Joyner-Boore distance r jb. Parameter h is determined through regression. V30 is the average
shear wave velocity of the uppermost 30 m (see Chapter 2.3.3).

C) Campbell, 1997: Near-source observations

Campbell (1997) gives empirical near-source attenuation relationships for horizontal and vertical com-
ponents of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response
spectra. The relations are considered to be appropriate for the prediction of strong ground motion
caused by earthquakes of Mw ≥ 5 at distances of rseis ≤ 60 km to the seismogenic rupture surface in
any active tectonic region in the world. For peak ground acceleration the relation for strike-slip events
on soft rock sites is given by

ln(PGA) = −3.512 + 0.904M − 1.328 ln
√

r2
seis + (0.149 exp(0.647M))2 + 0.440 − 0.171 ln(rseis) ,

and for peak ground velocity

ln(PGV) = ln(PGA) + 0.26 + 0.29M − 1.44 ln(rseis + 0.0203 exp(0.958M)) + 1.89 ln(rseis+

0.361 exp(0.576M)) + (0.0001 − 0.000565M)rseis − 0.15 + 0.75 tanh(0.51D)+
fV (D)

with

fV (D) =

{
0.0 D ≥ 1km
−0.45 (1 − D) D < 1km

For spectral acceleration the relation is

ln(IM) = ln(PGA)+C1 +C2 tanh(C3(M−4.7))+ (C4 +C5M)rseis +0.5C6 +C7 tanh(C8D)+ fS A(D) .

D is the depth to basement rock. It is

fS A(D) =

{
0.0 D ≥ 1km
1.5 C6 (1 − D) D < 1km
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Figure 4.12: Comparison of attenuation laws derived from the synthetic data and common relations
for peak values, spectral acceleration (5% damping) and seismic intensity for Mw = 6.5. r jb is the
Joyner-Boore distance.
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D) Erdik et al., 1985: Earthquakes along the North Anatolian fault

Erdik et al. (1985) have determined an attenuation law for seismic intensity I for earthquakes along
the North Anatolian fault in northern Turkey with

I = −3.92 + 2.08M − 0.98 ln(rrup) .

rrup is the closest distance to the rupture surface. Note that this law has been proposed prior to the
strong Kocaeli and Düzce earthquakes in 1999.

E) Wald et al., 1999: Macroseismic intensity derived from PGA in California

Wald et al. (1999a) and Wald et al. (1999b) have proposed empirical scaling relations for peak ground
acceleration (in [cm/s2]) and seismic intensity I by

I =

{
2.20 log(PGA) + 1.00 for I < V
3.66 log(PGA) − 1.66 for V ≤ I ≤ VIII .

Note that the atop presented empirical attenuation laws are mostly based on Californian strong mo-
tion data. Several studies have repeatedly demonstrated that predictive relations for earthquakes in
one region cannot be simply modified for use in other regions. For the 1999 Kocaeli and Düzce earth-
quakes, e.g., common laws appear to overestimate ground motion for distances up to about 15 km
(e.g., Gülkan and Kalkan, 2002). Attenuation laws derived from data of the Kocaeli and Düzce earth-
quakes alone - as proposed for example by Ozbey et al. (2004) - , on the other hand, should be also
considered with caution as these relations are likely biased. (Remember the discussion on this topic
at the beginning of the subsection.) Parolai et al. presently work on attenuation relations for western
Turkey including data of the two strong motion events as well as on a high number of aftershocks
(Parolai, 2005, pers. comm.).

Distinct definitions of source-to-site distances rrup, r jb, and rseis aggravate a comparison of different
attenuation relationships. A scheme for their conversion has been recently developed by Scherbaum
et al. (2004). Figure 4.12 compares the discussed attenuation relationships for PGA, PGV, PSA at 0.3
s, 1.0 s and 2.0 s, and seismic intensity with relations derived from the synthetic database at distances
of up to 100 km; for clearness only the relation for Mw = 6.5 is plotted, assuming a basement depth
of 500 m, a rupture surface depth of 3 km, a seismogenic zone depth of 3.5 km, and a shear wave
velocity in the subsurface layer of V30 = 520 m/s. The later corresponds to soft rock sites (Table 2.1).

For all ground motion parameters the attenuation laws derived from the synthetics (dashed lines) are
in good agreement with the other relations. However, they generally predict lower values at distances
of less than 20 km, and the decay of ground motion parameters appears to be more steeply than
prognosted by the other relations. Seismic intensity (Figure 4.12, bottom, right column) is compared
with values that are (1) determined from FAS and (2) determined from the PGA-intensity relation after
Wald et al. (1999a), and (3) obtained from the relation proposed by Erdik et al. (1985). For distances
of up to 20 km the predicted intensity matches of all three methods are very high; for larger distances
the values can differ in the order of one unit.

65



Chapter 4. Seismic Ground Motion Parameters

4.5 Discussions

This chapter gave an overview of different ground motion parameters and described a number of com-
monly used attenuation laws. Ground motion parameters characterize shaking by earthquakes either
in the time or in the frequency domain; they favorably show a high correlation with damage by earth-
quakes which depends aside from mechanical characteristics and conditions of structures on ampli-
tudes, duration and frequency content of ground shaking (Jennings, 2003). Attenuation relationships
describe the decay of seismic ground motion parameters with increasing source-to-site distances.

Based on 3,600 stochastically simulated earthquake records (Chapter 3.3) correlations between nine
ground motion parameters and Fourier amplitudes have been analyzed by testing a linear and a non-
linear predictive model (Chapter 4.2). The results clearly demonstrate that peak values depend on well
separable frequency bands of shaking whereby values of peak ground displacement (PGD) show the
highest correlation with motions below 0.5 Hz, peak ground velocity (PGV) with motions between
0.5 to 3.0 Hz, and peak ground acceleration (PGA) mostly depends on motions with frequencies
above 3.0 Hz. Bringing to mind that most buildings have eigenfrequencies from 0.5 to 3.0 Hz it
appears plausible why the PGV-damage relation is stronger than for the other two peak values (Chapter
4.1.1). However, unlike PGA, peak velocity does not directly give the response of a particular class
of structures (Jennings, 2003).

Integrative ground motion parameters, such as seismic intensity derived empirically from the Fourier
amplitude spectrum (FAS) of ground motion (Sokolov, 2002), Arias intensity (Ia), and the cumulative
absolute velocity (CAV), have the advantage that they do not only depend on single amplitudes but
on the frequency content and/or duration of shaking. As described in Chapter 4.1.3 the duration
of ground motion has generally strong impact on damage to structures caused by earthquakes as
their resistency towards ground shaking can significantly decrease with duration of seismic demand;
effects such as soil liquefaction can modify the characteristics of the underground. The analyses of
correlations with Fourier amplitudes in this chapter revealed that integrative ground motion parameters
depend - as expected - on broad frequency bands of seismic ground shaking. Strongest correlations
are observed for seismic intensity and CAV for frequencies between 0.2 to 4.0 Hz; this interval has
been identified before as from the seismic engineering perspective most relevant part of the FAS. As
shown in Figure 4.7 there is a high correlation between seismic intensity derived from FAS and CAV
using the simulated data.

The knowledge of frequency bands that are most relevant for the level of different ground motion pa-
rameters appears useful for the evaluation of site effects: site effects are clearly frequency-dependent
(Chapter 2.3) and will therewith differently affect distinct ground motion parameters. From regres-
sion analyses I have determined in this chapter site- and magnitude-dependent amplification factors
relative to amplification observed for NEHRP class B using the stochastically simulated ground mo-
tion data. Examples that clearly demonstrate these effects are shown in Figure 3.3 for PGA, Figure
3.4 for PGV, Figure 3.5 for PGD, Figure 4.2 for PSA, and Figure 4.5 for CAV. The used amplifica-
tion spectra (Boore and Joyner, 1997) for the integration of site effects in the stochastic simulations
are smooth while observed site effects are much more intrigate. Note that the simulations suggest a
slight increase of amplification with increasing earthquake magnitude for almost all ground motion
parameters (Figure 4.10). Laboratory and numerical experiments suggest that non-linear characteris-
tics of soil response lead to distinct effects on seismic waves depending on the level of ground motion:
large strain levels generally decrease the shear modulus and therewith reduce seismic wave velocities.
This leads to increased impedance ratios and hence to increased amplification effects. Non-linearities,

66



4.5 Discussions

however, can also increase intrinsic attenuation and damping of seismic waves in the soil layer which
leads to decreased amplification. The reduction of the shear modulus and seismic velocities usually
leads to a lengthening of the fundamental response period of the soil layer (Borcherdt, 1994, and refer-
ences given therein). As a matter of principle the used stochastic simulation method can not reproduce
non-linearities in soil response.

It is well known that slip distributions on rupturing faults can be very complex (Chapter 5.1). The
highest slip, e.g., does not necessarily occur in the beginning of the rupture (e.g., Kanamori and
Brodsky, 2001). Figure 4.13 shows stochastically simulated ground motion time series for different
slip distributions with increasing complexity from top to bottom. It appears that inhomogeneous
slip distributions generally lead to lower values of ground motion parameters due to the increasing
incoherence of seismic waves. There is a significant difference in the level of PGA of factor 1.8 and
in seismic intensity derived from FAS of factor 1.1 which corresponds to almost one full intensity
unit. Figure 4.14 shows the logarithmized values of PGA (left) and CAV (right) for the six slip
distributions in Figure 4.13 at 5 time steps after P-wave onsets: due to the summation of amplitudes
over several seconds the CAV values appear smoother than peak values for the different slip histories
at the different time steps. The logarithmized CAV is a good indicator for earthquake magnitude for a
known source-to-site distance. This is a very important feature that will be used in the later conceptual
design of PreSEIS (Chapter 6).

There are further advantageous characteristics of the cumulative absolute velocity (CAV):

• The calculation of CAV is simple (4.17) and suitable for real-time applications.

• The CAV can be standardized: the bracketed CAV (Yankee Atomic Electric Company, 1991)
considers only damaging parts of the accelerogram (Chapter 4.1.4).9

• The CAV is an integrative ground motion parameter that depends on shaking duration but is not
strongly affected by details of rupture histories (see above).

• The logarithmized CAV is a good measure of earthquake magnitude (for a fixed or known
source-to-site distance), with a reliable convergence towards the true magnitude value (Figure
4.14).

• The CAV is sensitive to directivity effects (not shown here).

• The CAV is closely related to damage by earthquakes as has been shown by Benjamin and
Associates (1988) on basis of observational data. The CAV has been suggested as part of
the two-level criterion of the Electric Power Research Institute (EPRI) for decision support for
shutdowns of nuclear power plants in the U.S. in response to strong earthquakes (Chapter 4.1.4).

• The CAV shows a high correlation with the Fourier amplitude spectrum of seismic ground
motion including long-period shaking that is generally most destructive (Chapter 4.2).

• The superiority of the CAV to other ground motion parameters in performance-based lique-
faction hazard evaluations has been demonstrated by Kramer et al. (2003)10 . Because of its
high correlation with long-period shaking the authors propose that the CAV might have a close
relationship to pore pressure generation.

9For the simulated earthquake records used in this work the standardization is irrelevant as the data contains no noise.
10For the calculation of CAV the authors apply a threshold acceleration of 5.0 cm/s2.
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Figure 4.13: Impact of slip distributions on the observed level of (simulated) seismic ground motion
for six scenarios with Mw = 7.0 and source-to-site distances of 50 km; the rupture size is 53 km x 12
km. Figure (A) shows the distributions of slip on the fault: bright to dark colors indicate dislocations
of 0.0 m, 1.9 m, and 3.8 m, respectively. Figure (B) shows the resulting acceleration time series. Due
to increasing incoherence of seismic waves amplitudes appear lower in case of inhomogeneous slip
distributions. PGA values vary with a factor 1.8, seismic intensity with a factor 1.1 (8.5 ≤ I ≤ 9.4).
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Figure 4.14: Impact of slip distributions displayed in Figure 4.13 on logarithmic values of PGA
(left) and CAV (right) at different time steps. Note that the CAV values are as a matter of principle
smoother at each step and therefore allow for a good estimate of earthquake magnitude with a reliable
convergence towards the correct value.

Using records of the synthetic database (Chapter 3.3) attenuation relationships have been developed
for ground motion parameters PGA, PGV, PGD, PSA at 0.3 s, 1.0 s and 2.0 s at 5% damping, seis-
mic intensity derived from FAS, Arias intensity Ia and CAV (Chapter 4.4). The obtained relations
are generally in good agreement with observational data in northwestern Turkey and with attenuation
laws determined for other seismic active regions in the world (Chapter 4.4.1). At source-to-distances
of about 30 km, however, the decay of ground motion parameters derived from the synthetics appears
more steeply. Remember that the stochastic modeling procedure is - as a matter of principle - useful
for the simulation of mean ground motions, but less suited for the simulation of site- or earthquake-
specific shaking (Boore, 2003). Comparisons of attenuation laws determined for different seismic
active regions rise the question of applicability, and are aggravated by distinct definitions of model
parameters such as source-to-site distances (Scherbaum et al., 2004). Deviations between observa-
tional data of the Kocaeli and Düzce earthquakes and common attenuation relations are well known
in literature (e.g., Gülkan and Kalkan, 2002; Miksat et al., 2005).

Despite of these limitations the comparison of attenuation relations of different ground motion pa-
rameters with quantities derived from simulated data can principally allow for a rough frequency-
dependent evaluation of synthetic ground motion time series. Using the explored correlation results
between ground motion parameters and Fourier amplitudes (Chapter 4.2) it appears that the agree-
ment between synthetics and the different attenuation relationships is significantly higher for param-
eters that depend on motions above 1.0 Hz (Figure 4.12); among them are PGV, PGA and PSA at
0.3 s. On the other hand, there is a significant difference for spectral acceleration at 1.0 s and 2.0 s
that is strongly dependent on motions of 1.0 Hz and less. These findings indicate that the stochas-
tic simulations in Chapter 3.3 have problems in reproducing long-period motions, which, however,
is not necessarily a matter of principle but can be also due to inappropriate models of seismic wave
propagation including effects of attenuation and geometrical spreading (e.g., Bindi et al., 2006).
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Chapter 5

Earthquake Early Warning

Almost 140 years ago the basic idea of earthquake early warning came up in California: Cooper (1868)
describes the main concept of a seismic early warning system in the San Francisco Daily Evening
Bulletin based on the observation of the different propagation speed of seismic and electromagnetic
waves. Activated by an electronic current an alarm bell installed in San Francisco, California, should
almost instantaneously ring once seismic detectors set up near Hollister were triggered by a strong
earthquake; Hollister is located about 120 km southeast of San Francisco and is considered as a
region with high seismic potential. Cooper’s concept of an earthquake early warning system was
never implemented. It even took more than one century until the first seismic early warning system
was set up at all, and not in California but in Japan. The progress in earthquake early warning over the
last few years with respect to instrumentation and real-time communication technologies, as well as
to the development of fast algorithms for the real-time processing of seismic data is impressive. Yet,
the problem of early warning in general is far from being solved (see Chapter 1): the majority of early
warning systems is today still operated for research purpose, i.e. they do not trigger any actions.

In this chapter general design paradigms for earthquake early warning systems will be discussed.
The state-of-the-art in implementation will be presented - firstly with respect to instrumentation, later
with respect to algorithms. The objective of this chapter is to give an overview of earthquake early
warning and to provide a basis for subsequent discussions. Special attention will be turned towards
the Romanian early warning system; novel scaling relations derived in the frame of this thesis will be
presented at the end of the chapter.

5.1 Design Paradigms for Earthquake Early Warning Systems

A classification of earthquake early warning (EEW) systems can be based on the type of tectonic en-
vironment in that the system is embedded: tectonic settings frequently predetermine the technological
implementation. For example, in regions with a well-defined zone of seismic activity the EEW sys-
tem can be realized by the installation of seismic devices as close as possible to this zone to maximize
possible warning times. This design is called front-detection. Front-detection is mainly possible in
areas of subducting lithospheric plates, mostly offshore (e.g., Mexico, Japan, Taiwan), sometimes on-
shore (e.g., Romania). The more frequent case, however, is that a single seismic hazardous zone can
not be identified, i.e. locations of strong earthquakes are not known in advance. In these settings the
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conceptual design of EEW systems needs much more sophisticated strategies and requires expanded
networks of seismic instruments for earthquake detection and source localization.

Early warning systems can also be classified with respect to the underlying design paradigm (see
Chapter 1): regional warning systems, as a matter of principle, have more warning time available
which allows for the integration of ground shaking measurements at several seismic stations of a
local or regional network; the entire seismic signal including different types of seismic phases can be
analyzed. On the other hand, on-site warning systems are capable to give warnings to sites close to the
triggered device. The available warning time is thus significantly reduced compared with the regional
approach. To maximize warning times on-site warning systems use data from single seismic stations,
mostly only information extracted from the faster P-waves, following the idea: the P-wave carries the
information, the S-wave carries the energy of the earthquake (Kanamori, 2005).

The feasibility of the on-site method strongly depends on the physics behind the rupture process. Do
the beginnings of small and large earthquakes differ? How does the starting earthquake know that the
following rupture along the fault will grow to a certain size? Our today’s knowledge about rupture
initiation and evolution is still fragmentary and diverse - partly controversial - theories coexist (see,
e.g., Olson and Allen, 2005, and references given therein). In the cascade model, e.g., the earthquake
begins abruptly whereby there is no difference between a small and a large event. In the pre-slip
model, on the other hand, the earthquake rupture is preceeded by an aseismically episode of slow
stable slidings over a limited area of the fault zone, the so-called pre-slip zone. The size of the pre-slip
zone and the slip within this zone increase gradually until a critical size is reached at which the process
can become unstable and the rupture starts to propagate away.

Ellsworth and Beroza (1995) observe a scaling relation between source parameters for the so-called
nucleation phase1 and source parameters for the entire earthquake such as size and duration of the
nucleation phase. In the cascade model the nucleation phase results from a cascade of a number of
small to the largest sub-event. The breakaway phase2 then could represent the first large slip event.
The observed scaling could arise if the earthquake rupture occurs over a hierarchy of sub-event sizes
whereby the last jump (in sub-event size) determines the size of the entire earthquake (Beroza and
Ellsworth, 1996). In the pre-slip model the last stages of failure in the pre-slip zone correspond to the
nucleation phase while the breakaway phase is marked by the begin of rupture propagation. In the
pre-slip model the observed scaling between nucleation and entire earthquake can be explained by the
pre-slip zone: in case of a large slip amplitude within the nucleation zone, the dynamic rupture would
be difficult to stop (Kanamori, 2005) and the likelihood for a large earthquake is very high (Beroza
and Ellsworth, 1996). The pre-slip model therewith implicates a difference between small and large
earthquakes in the beginning. Even if the scaling relations by Ellsworth and Beroza (1995) only
refer to the nucleation phase they demonstrate that it might be feasible to already recognize a strong
earthquake in the beginning of the seismic signal. For further discussions see Kanamori (2005).

5.2 Earthquake Early Warning Systems in Operation

The following enumeration and short description of existing earthquake early warning systems is
limited to the most prominent systems and reflects the state-of-the-art in mid-2005. The realization

1The nucleation phase defines the weak initial phase of the seismogram characterized by a low moment rate.
2The breakaway phase is the very seismic rupture and is characterized by a linear increase in ground velocity.
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strategies of the diverse systems depend on the tectonic backgrounds as well as on the available bud-
gets. Though seismic alarm and early warning systems are low-cost investments in comparison to
expensive measures for seismic enforcement, the financial expense for their design, implementation
and operation, however, is considerable (see Chapter 1).

5.2.1 Alert and Early Warning Systems in Japan

Japan is exposed to an extremely high seismic hazard caused by the subduction of the Pacific and
Philippine Sea Plates under the Eurasian Plate. The January 17, 1995 Kobe earthquake (Mw = 6.9),
with more than 5,000 casualties and about USD 1011 in damage goes down in history as the most
expensive natural disaster worldwide. However, an even more scaring scenario is a strong earthquake
hitting the mega-city Tokyo. As a consequence of complex social and economic integration, experts
reckon that such a strike would have fatal impact on national as well as international level.

Japan has experience with EEW since more than twenty years. Today, there exist several early warn-
ing systems in Japan, with the Urgent Earthquake Detection and Alarm System (UrEDAS) as the most
prominent one. The development of UrEDAS started with the Ordinary Alarm System built up by the
Japanese National Railways (JNR) in the mid-sixties. The Ordinary Alarm System was designed to
avoid derailment of high-speed trains such as the Tokaido Shinkansen during strong shaking (Naka-
mura and Tucker, 1988). Using the definitions of Chapter 1 this system was clearly no early warning
in a narrower sense rather than alert system. Alarm seismometers were installed every 20 to 25 km
along the railway lines adjusted to issue alarms if preset levels of horizontal ground acceleration were
exceeded. The threshold of 40 cm/s2 was determined as the level where earthquakes are assumed to
be destructive, i.e. the system was insusceptible to small earthquakes or noise caused by passing trains
or environment.

The next step towards EEW was realized by JNR with the construction of the Coastline Detection
System for the Tohoku Shinkansen Line in the eighties. In contrast to the Ordinary Alarm System,
stations of this front-detection system were installed along the coastline at the Tohoku area where
the likelihood of strong earthquakes is very high. The Tohoku Shinkansen Line runs about 70 km
inland from this coastline. Thus the configuration provided a certain time for early warning. Based on
the P-wave, the Coastline Detection System could detect earthquakes and estimate their effect on the
railroad. The first on-site warning system was established.

The contemporary Urgent Earthquake Detection and Alarm System (UrEDAS) (e.g., Nakamura, 1989;
Saita and Nakamura, 2003) is the further development of the Coastline Detection System. Each of the
30 UrEDAS stations is capable to detect the initial P-wave onset of an earthquake and to estimate its
location and magnitude within about 3 seconds; the newest device Fast Response Equipment against
Quake Load (FREQL) by System and Data Research (URL: http://www.sdr.co.jp) needs only one sec-
ond after P-wave detection (Nakamura, 2005a).

Since 1996 the Ordinary Alarm System and UrEDAS are combined in the Compact UrEDAS. This
system can issue both, ordinary (threshold-based) and P-wave alarms; the later is based on the so-
called PI value (Nakamura, 1998, 2004). Further UrEDAS systems are currently installed in Berkeley
and Pasadena, California (Nakamura, 2005a).

During the 2003 Miyagi ken-Oki (Mw = 7.0) and Niigata ken-Chuetsu earthquakes (Mw = 6.6) Com-
pact UrEDAS successfully issued warnings. In the first case, eight Shinkansen trains in the alarmed
region between Sendai and Morioka could be de-accelerated or stopped; no derailments occurred. In
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the second case, four trains were within the alarm area between Muikamachi and Nagaoka. One of
these trains was only a few kilometers from the epicenter and derailed without loss of lives though
having received a warning (Nakamura, 2005b). All other trains could be stopped without damage.

In 2003 the National Research Project on Earthquake Early Warning System and its Application
started as a joint project of the National Research Institute for Earth Science and Disaster Prevention
(NIED), the Japan Meteorological Agency (JMA) and other agencies in Japan (Hayama et al., 2005).
The project has the objective to develop and enhance early warning technologies with a prototype
for practical application. The regional warning system uses data from about 800 seismometers of the
Hi-net, covering Japan with an average spacing of approximately 25 km. The system will implement
algorithms developed by Horiuchi et al. (2005) and build on experience with early warning gained
from the JMA Nowcast system.

5.2.2 Seismic Alert Systems in Mexico

The Mexican Seismic Alert System (SAS) is a typical front-detection system: it is primarily designed
to issue warnings to users in Mexico City if strong earthquakes occur along the Guerrero subduction
zone, around 320 km away. Despite of the large distance, the seismic threat by Guerrero earthquakes
is considered as very high due to the enormous amplification of seismic waves at the lake bed sites
below the capital. It is expected that the impact of a strong earthquake (M>7) on Mexico City could
be of the same or even higher order than the destructive Michoacan earthquake of September 19, 1985
(Mw = 8.0). The large distance towards Mexico City provides a warning time of about 60 seconds for
all earthquakes occurring in the Guerrero subduction zone.

SAS consists of 12 digital strong motion stations with a 100 Hz sampling rate; they are installed at
about 25 km intervals along the Guerrero Coast (Espinosa-Aranda et al., 1995). Each single station is
capable to detect moderate and strong earthquakes and to determine certain parameters of the seismic
signals; this information is transmitted to the central control system at the Centro de Instrumentacion
y Registro Sismico (CIRES) in Mexico City where the parameters are compared with data derived from
past earthquakes to estimate the magnitude of the event. For redundancy a warning is only issued if
the estimation of magnitude is confirmed by at least one further station. To ensure reliability, SAS uses
two independent communication paths through two different radio frequencies.

SAS provides universal alerts for Guerrero earthquakes with magnitudes M ≥ 6 and limited alerts
for earthquakes with M ≥ 5. Recipients of limited alerts are elementary schools, offices of Civil and
Mexican government agencies, universities, public services, and housing complexes. Alerts are broad-
casted via UHF radio receivers installed in the respective buildings. Universal alerts are broadcasted
via commercial radio stations to reach a larger community. Public preparedness in terms of effective
response to warnings plays an important role in the Mexican strategy for earthquake risk mitigation
(Espinosa-Aranda et al., 1995).

During operation from August 1991 to May 2005 the Seismic Alert System successfully detected 1,783
earthquakes with 2.5 < M < 7.3 and issued 11 universal and 46 limited alerts; one false alert was
given in 1993 (Espinosa-Aranda et al., 2005).

Also Oaxaca City has suffered severe damage by earthquakes in the Guerrero subduction zone in the
past. The Seismic Alert System Oaxaca (SASO) is designed to warn of earthquakes along the Guerrero
Coast, the Tehuacan-Huajuapan de Leon region, and the Tehuantepec and Orizaba areas. The system
consists of 29 seismic sensor stations installed in the seismic active regions around Oaxaca City.
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Between November 2003 and July 2005 SASO issued five warnings (Espinosa-Aranda et al., 2005).
URL: http://www.cires.org.mx/in_index.php4

5.2.3 Rapid Reporting and Early Warning System in Taiwan

Located on the western circum-Pacific belt, Taiwan has been repeatedly hit by damaging earthquakes
in the past, e.g. on 17 March 1906 in Chiayi (M = 7.1), in 1935 in the Hsinchu-Taichung area
(M = 7.1), or in 1999 in Nantou Country (Mw = 7.5), known as the Chi-Chi earthquake.

Since 1995 the Taiwan Weather Bureau (CWB) makes use of its Rapid Earthquake Information Re-
lease System (RTD) to develop a Rapid Reporting System (RRS) and an Early Warning System (EWS)
for earthquakes in Taiwan (Wu et al., 1997, 1998). RTD consists of 79 telemetered strong motion
stations which are distributed across Taiwan over an area of 100 km × 300 km. The sensors are three-
component, force-balanced accelerometers with ±2g full recording dynamic range, 50 Hz sampling
rate and 16-bit resolution. RRS is capable to provide reporting information within about one minute
after the occurrence of any significant earthquake (Teng et al., 1997; Wu et al., 2001).

For the EWS a Virtual Subnetwork (VSN) of RTD stations is used (Wu and Teng, 2002). The respective
subset is automatically configured by a monitoring software. Usually a VSN consists of about a dozen
stations, which are located in a 60-km-radius centered on the event. By the limitation of seismic
stations for the EWS the reporting time for an earthquake can be shortened to an average of about
22 seconds after the origin time. This reporting time offers more than 20 seconds of early warning to
cities at distances greater than 145 km from the source. The Virtual Subnetwork was put into operation
from December 2000 to June 2001. In this period 54 earthquakes were detected and mostly correctly
processed (Wu and Teng, 2002).

Recently, Wu and Kanamori (2005a,b) have proposed to combine the existing regional EWS with an
on-site approach to expand the possible warning area. The used algorithm will be described in the
following section.

5.2.4 Real-time Seismology and Seismic Early Warning in California and Central U.S.

Despite of important progress in earthquake research and real-time seismology in the last decades
(Noda and Meguro, 1995; Kanamori et al., 1997), the problem of earthquake early warning for Cal-
ifornia and Central U.S. has not been solved yet (Holden et al., 1989). The complexity and seismic
danger of fault systems - such as the prominent San Andreas Fault - aggravate the realization of an
early warning system. The quick detection of earthquakes and the estimation of seismic parameters
require the installation of expanded networks of telemetered seismic stations which is in contrast to
front-detection systems such as in Mexico.

One of the objectives of the TriNet Project (1997-2001) of the California Institute of Technology
(Caltech), the U.S. Geological Survey (USGS), and the California Division of Mines and Geology
was to develop a prototype earthquake early warning system for southern California, called Seismic
Computerized Alert Network (SCAN) (Heaton, 1985). SCAN could never be put into operation because
of reasons summarized in Chapter 1 (Goltz, 2002).

Of course, developments in real-time seismology are directly linked to progress in seismic instru-
mentation. The following enumeration shall provide an overview of seismic networks and projects
associated with real-time seismology in California and Central U.S. over the last decades:
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• Southern California Seismic Network (SCSN):
Since the 1960’s the Caltech Seismological Laboratory and the USGS Pasadena operate the
Southern California Seismic Network (SCSN) with more than 200 seismic analog stations. The
SCSN catalogue starts in 1932 and is with more than 344,000 events one of the most complete
in the world.

• National Strong Motion Program (NSMP) network:
Within the National Strong Motion Program (NSMP) the USGS operates nationwide 571 strong
motion stations.

• California Strong Motion Instrumentation Program (CSMIP) network:
The California Geological Survey (CGS) operates within the California Strong Motion Instru-
mentation Program (CSMIP) network 400 analog strong motion sensors.

• TERRAscope network:
The TERRAscope project started in 1987 with 19 digital stations installed in southern California,
allowing a real-time distribution of earthquake data. It was extended into the CUBE project in
1990 (Kanamori et al., 1991) and led to the foundation of the Southern California Earthquake
Center (SCEC) at Caltech. URL: http://www.gps.caltech.edu/ bryant/cube.html

• Automated Strong Motion Monitoring Program (AMOES):
In 1994 Caltech and Kinematrics Inc. started the joint development and installation of 16 digital
K2 instruments in the greater Los Angeles region.

• Rapid Earthquake Data Integration (REDI):
In 1996 the USGS Menlo Park and the Berkeley Seismological Laboratory (BSL) com-
bined their earthquake reporting operations, the Northern California Seismic Network
(NCSN) and the Berkeley Digital Seismic Network (BDSN), into a joint notification sys-
tem, the Rapid Earthquake Data Integration (REDI) (Gee et al., 1996, 2000). URL:
http://www.seismo.berkeley.edu/seismo/redi/

• TriNet project:
The TriNet project triggered the upgrade of the existing seismic networks of SCSN, CSMIP,
and NSMP with 635 digital accelerometers and broad-band seismometers, as well as real-time
processing capabilities. For telemetry digital phone lines, radios, microwave links, and internet
accesses were installed. The automatic analyses of data includes the determination of earth-
quake locations, magnitudes, and types of faulting. Aside from ShakeMaps (see Chapter 1) the
information is made public through internet and sent directly to cost-sharing partners through
a commercial paging system and intranet within minutes after the earthquake (Goltz, 2003).
URL: http://www.trinet.org/

• California Integrated Seismic Network (CISN):
The collaboration of BSL and USGS Menlo Park in northern California, and of Caltech and
USGS Pasadena in southern California together with the California Division of Mines and
Geology forms the California Integrated Seismic Network (CISN) with 155 seismic stations.
ElarmS (Allen and Kanamori, 2003), the Virtual Seismologist (Cua, 2004) and the τc method
(Kanamori, 2005; Wu et al., 2005) are current studies to address the problem of earthquake
early warning in California on basis of the CISN instrumentation. URL: http://www.cisn.org/
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• Rapid Earthquake Information System (REIS)
The Center of Earthquake Research and Information (CERI) at the University of Mem-
phis, Saint Louis University Earthquake Center, South Carolina Seismic Network, and
the U.S. National Seismic Network build up the New Moadrid Rapid Earthquake Infor-
mation System (REIS) for the central and Eastern U.S. (Withers et al., 2000a,b). URL:
http://www.ceri.memphis.edu/reis/

5.2.5 Istanbul Earthquake Rapid Response and Early Warning System (IERREWS)
in Turkey

Considering the enormous seismic risk in the Marmara region (see Chapter 1) and pushed by the 1999
Kocaeli and Düzce earthquakes, a Real-Time Earthquake Information System for Istanbul has been
designed and implemented in the Istanbul Earthquake Rapid Response and Early Warning System
(IERREWS). The installation of IERREWS by the Bogazici University with logistical support by the
Governorate of Istanbul, First Army Headquarters and Istanbul Metropolitan Municipality could be
finished in fall 2002. The system consists of 152 tri-axial strong motion stations, two data centers
and several end-use nodes. The accelerometers have a dynamic range of ±2g at 18-24 bit resolution
(Erdik et al., 2003b). IERREWS is operated by the Kandilli Observatory of the Bogazici University in
Istanbul.

One hundred of the 152 accelerometers have been installed in the metropolitan area of Istanbul; they
are operated in dial-up mode for the generation of rapid response information, such as shake maps. Ten
further seismic stations are sited along the coast of the Marmara Sea and are part of the early warning
(front-detection) system within IERREWS (see Figure 1.3). These stations are operated in online trans-
mission mode. The continuous telemetry of 50 Hz data is realized by a digital 2.4 GHz spread spec-
trum radio modem system using two repeater stations. Communication services are provided by ARIA
GSM. The warning time is assumed to be in the order of 10 seconds, depending on the point of rupture
initiation and the location of the recipient facility (Erdik et al., 2003b). The remaining 40 stations are
sited on critical engineering structures in Istanbul such as on the Bosporus Bridge. So far, IERREWS is
operated for research purpose. URL: http://www.koeri.boun.edu.tr/depremmuh/EWRR/EWRRMain.htm

5.2.6 Earthquake Early Warning in Romania

Within the last century Romania has experienced four strong earthquakes on Nov. 10, 1940 (Mw =

7.7), on March 4, 1977 (Mw = 7.4), on August 30, 1986 (Mw = 7.1), and on May 30, 1990 (Mw = 6.9)
(Oncescu and Bonjer, 1997). The 1977 event was most damaging and caused 1,570 fatalities, more
than 11,300 injured people - 90% of them in the Romanian capital Bucharest - , and USD 2 billion
direct damage costs. All strong earthquakes aside from several small to moderate size events occurred
at depths between 70 to 180 km in a well-defined volume of about 40 km × 80 km × 190 km size in
the Vrancea zone, SE Carpathians. This intermediate-depth seismicity coincides with the location of
a lithospheric slab segment whose subduction took place 22 to 10 million years ago (Sperner and the
CRC 461 team, 2005).

The favorable geometry formed by the seismogenetic Vrancea zone and Bucharest, accompanied by
consistent source mechanisms of all strong Vrancea earthquakes (Plenefisch, 1996), allows for the
design of a simple, cheep and robust earthquake front-detection system for the Romanian capital as
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proposed by Wenzel et al. (1999, 2001). The average epicentral distance of 130 km towards Bucharest
provides a warning time of about 25 seconds for all intermediate-depth events, defined by the time
difference between P-wave detection in Vrancea and S-wave arrival in Bucharest.

The National Institute for Earth Physics (NIEP) in Bucharest and the Collaborative Research Center
(CRC) 461: Strong Earthquakes: a Challenge for Geosciences and Civil Engineering (1996 to 2007)
at the University of Karlsruhe (Germany) have designed and installed key components of a prototype
front-detection system for Bucharest. The system consists of three tri-axial strong motion sensors
deployed in the epicentral area and a satellite communication link to the Romanian Data Center at
NIEP in Bucharest. The seismic sensors are installed in Vrancioaia (VRI) and in Plostina, about 8
km away. One of the Plostina stations (PL1), a FBA-23 sensor, is deployed in a 50 m deep borehole
in order to minimize accidental triggerings of the system; the other instrument (PL2) is an Episensor
that is installed on top of the borehole.

The prediction of the level of ground shaking, that Bucharest will experience during moderate to
strong earthquakes, can be based on simple scaling relations as shown by Wenzel et al. (1999). The
Romanian earthquake early warning system is now in a test phase with a sterilization facility working
with a nuclear source as a test user (Ionescu and Marmureanu, 2005).

5.3 Algorithms for Earthquake Early Warning

Aside from seismic instrumentation with real-time data transmission capability as described above,
a further key component of seismic real-time systems is a software for the automatic processing of
seismic data streams to extract information from the earthquake signals. Basic tasks of this software
encompass the detection of earthquakes, preferably a discrimination from other sources such as quarry
blasts, and a rapid determination of seismic source parameters. Once the location and magnitude of
the earthquake are known, it is possible to estimate seismic ground motion at any site from empirical
attenuation laws as described in Chapter 4 of this work.

The three fundamental tasks of earthquake detection, earthquake localization and estimation of earth-
quake magnitude are common for most seismic early warning systems. However, there are significant
differences in the realization: regional warning systems (see Chapter 1) have more time available be-
fore parameters have to be determined. Therefore, regional warning systems can process data from a
network of seismic instruments and estimate the parameters using (traditional) network approaches.
Results of such network procedures are certainly much more reliable than if obtained from single sta-
tions. The later is mostly used for on-site warning systems (see Chapter 1). On-site warning systems
have to make information much more rapidly available in order to effectively warn potential users
within some tens of kilometers away from the earthquake epicenter. In many on-site warning sys-
tems, seismic parameters are estimated from the faster (direct) P-wave to save valuable warning time.
The following subsections will present different procedures for the estimation of earthquake location
and magnitude using network and single station approaches applied to earthquake early warning.

5.3.1 Earthquake Detection

Seismic detection describes the distinction between ambient noise and earthquake registrations. Earth-
quake early warning alike other seismic monitoring systems have automatic detectors to decide
whether an earthquake has occurred or not.
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Standard detectors in geophysical data processing are based on short-term average to long-term aver-
age (STA-LTA) values (Vanderkulk et al., 1965). Alternative approaches based on data-driven reason-
ing and pattern recognition, respectively, have been proposed by Chiaruttini and Salemi (1993) and
Joswig (1990). Further algorithms are given by Allen (1978) and Magotra et al. (1987). The interested
reader is additionally referred to literature that is published in the context of the Comprehensive Test
Ban Treaty, e.g., Walter and Hartse (2002). The possible discrimination between natural earthquakes
and other sources of ground motion, such as quarry blasts or nuclear explosions, is described, e.g., by
Dowla et al. (1990).

5.3.2 Earthquake Localization

Common procedures for the localization of earthquake hypocenters are based on measurements of
arrival times of seismic waves, mainly P- and S-waves, by at least three seismic sensors distributed
around the epicenter. Graphical approaches encompass circle and hyperbola methods (e.g., Mohorovi-
cic, 1915; Pujol, 2004). The inverse problem can be also solved by numerical approaches (e.g., Lahr,
1999). The applicability of graphical procedures for earthquake early warning systems is studied by
Rydelek and Pujol (2004) in the U.S. and by Horiuchi et al. (2005) in Japan.

Based on the decay of ground motion amplitude with distance from the seismic source, Kanamori
(1993) proposes an alternative concept for earthquake localization using amplitude data instead of
travel times: starting from a given empirical attenuation law, the model space of magnitude and loca-
tion parameters is scanned to find a (global) minimum of the error function given by the observed and
computed data. Using these results as first approximation, the final solution is determined with the
method of least-squares. Because amplitude is affected not only by distance but also by specific source
and site characteristics, earthquake localization by amplitude is mostly inaccurate. Nevertheless, the
method has two important advantages over travel time based approaches: first, the exact knowledge of
the point of rupture initiation is irrelevant for post-earthquake emergency services which rather need
the rapid information of spatial distribution of ground motion parameters. Second, amplitudes are
usually easier to determine than phase onsets.

Once the earthquake magnitude is determined, e.g., by methods presented in the following subsection,
the hypocentral distance can be approximated from a single station using attenuation laws (Naka-
mura, 1998). Alternatively, it is possible to estimate the hypocentral distance from a single seismic
broadband station by the identification of individual seismic phases or by matching the observed wave-
forms with synthetics generated for an appropriate crustal model (e.g., Dreger and Helmberger, 1993).
Odaka et al. (2003) present a method for the quick estimation of the epicentral distance by fitting an
exponential function f defined by

f (t) = B t exp(−A t) (5.1)

to the initial parts of the waveform envelope of single seismic records; t denotes the time and A and
B are free parameters that are determined through regression from previous events. Using data of the
Japanese K-Net, Odaka et al. (2003) find an inverse proportionality between log B to log ∆, where
∆ is the epicentral distance. The authors claim that this relation is hardly affected by earthquake
magnitude.

Signal polarization allows the determination of station-source backazimuth using the eigenvalues and
eigenvectors of the covariance matrix of two or three signal components of a single station. Path effects
- such as scattering or anisotropy - lead to uncertainties in the estimated azimuth. Typical errors are in
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the order of 15◦. To reduce instabilities, Nakamura and Saito (1983) propose a smoothing procedure
for seismic real-time data streams. Focal depth is constrained by relative times of large-amplitude
surface-reflected arrivals in the P-coda, and by the relative amplitudes of surface- and body-wave
groups.

A comprehensive review on methods for earthquake localization using single three-component seis-
mic sensors - including Neural Network and Artificial Intelligence approaches - is given by Frohlich
and Pullim (1999) in the context of the Comprehensive Test Ban Treaty (CTBT). 3

5.3.3 Determination of Earthquake Magnitude

Seismic ground motion caused by strong earthquakes generally contains lower frequencies than if
generated by small events. Thus, it should be possible to approximate the magnitude of an earthquake
from the predominant frequency f p of the seismic signal. Several methods to estimate f p of the initial
parts of seismic recordings have been developed in the past. For real-time applications f p is generally
approximated in the time domain from the ratios of ground motion amplitudes based on Parseval’s
theorem, which states that the power of a signal represented by a function s(t) is the same whether
computed in time or in the frequency domain:

+∞∫

−∞
s2(t) dt =

+∞∫

−∞
|S ( f )|2 d f . (5.2)

Thus the predominant frequency f P can be calculated from

f P ≡
√
〈 f 2〉 =

√√√√√√√√√√√√√√

∞∫

0
f 2|U( f )|2d f

∞∫

0
|U( f )|2d f

=
1

2π

√√√√√√√√√√√√√√

∞∫

0
u̇2(t) dt

∞∫

0
u2(t) dt

, (5.3)

where U( f ) is the Fourier transform of the seismic displacement time series u(t). Kanamori (2005)
modifies (5.3) by keeping the upper limit of the integrals fixed to τ0 ≈ 3 s

f P
Kanamori ≈

1
2π

√√√√√√√√√√√√√√

τ0∫

0
u̇2(t)dt

τ0∫

0
u2(t)dt

≡ 1
τc
. (5.4)

After Kanamori (2005) it is possible to decide whether an earthquake is Mw ≤ 6.5 or Mw > 6.5 using
only information of the first three seconds of the seismic signal. The applicability of the so-called
τc method for on-site earthquake early warning has been studied by Wu and Kanamori (2005b) in
Taiwan and by Wu et al. (2005) in California. The authors find that the magnitude-τc relation can be
expressed by

M = a log τc + b, (5.5)

3Single station approaches are not unusual in the context of CTBT, because only 18% of the Earth’s surface is covered
by three or more stations within 10◦ (which can be used by the CTBT organization) - the minimum number of instruments
for the localization of earthquakes or nuclear explosions (Frohlich and Pullim, 1999).
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whereby a and b are free parameters. Strong earthquakes of M > 6 generally have τc > 1 s (Wu et al.,
2005), whereby the scattering of values, however, is partly very high.

The original idea to estimate the predominant period T p, i.e. the reciprocal value of the predominant
frequency f p, from ratios of ground motion of continuous seismic signals was proposed by Nakamura
(1985):

T P
Nakamura,i ≈ 2π

√
U̇i

Üi
= 2π

√
αU̇i−1 + u̇2

i

αÜi−1 + ü2
i

. (5.6)

The smoothing constant α takes values between 0.95 to 0.99. Note that Nakamura (1985) uses the
ratios of velocity and acceleration amplitudes (on the vertical component), whereas Kanamori (2005)
uses velocity and displacement data. The recursive algorithm given by (5.6) is implemented in the
Japanese UrEDAS. The fluctuations of magnitude that are estimated by UrEDAS are almost within
±0.5 units relative to magnitudes estimated by the Japanese Meteorological Agency (JMA) (Saita
and Nakamura, 2003). Allen and Kanamori (2003) use Nakamura’s method (1985) to estimate the
predominant period in the conceptual early warning system ElarmS in California. Since the higher
frequency content of small earthquakes (M < 5.0) is measured in a shorter time window, the magni-
tude of these events can be determined more rapidly than the magnitude of large events: magnitude
estimations are available 1 s after the P-wave arrival in case of small earthquakes and after 1 to 4
s in case of large earthquakes.4 Lockman and Allen (2003) show the existence of similar scaling
relationships for earthquakes in the circum-Pacific belt.

Cua and Heaton (2003) and Cua (2004) address the problem of magnitude and distance trade-off in
their Virtual Seismologist using a Bayesian approach: the most likely values of magnitude and location
are those, whose expected amplitudes, ratios of different components of ground motion (acceleration-
displacement ratio once again as indicator for the earthquake magnitude) and envelope parameters
are most consistent with the observations. With additional data from the ongoing earthquake rupture,
the estimations of magnitude and distance are updated. Background knowledge derived from earlier
observations - such as fault locations or the relative frequency of earthquake magnitudes (Gutenberg-
Richter law) - can be incorporated as Bayesian prior, i.e. as a priori probability. Yamada and Heaton
(2005) currently work on an extension of the Virtual Seismologist to finite faults.

Grecksch and Kümpel (1997) analyze strong-motion records of 244 earthquakes that occurred in
North and Central America between 1940 and 1986 to determine the correlation between peak accel-
eration, predominant frequency (obtained from the Fourier amplitude spectrum), spectral amplitude,
and rise time on the one hand, and epicentral distance and magnitude on the other hand. The authors
find that the magnitude can be predicted from the first second of a single accelerogram within ±1.36
magnitude units. Using eight or more accelerograms of the same earthquake, the uncertainty can be
reduced to ±0.5 magnitude units. A similar positive effect of averaging over estimations by several
stations was observed by Wu and Kanamori (2005b) and Wu et al. (2005) using the τc method.

Tsuboi et al. (2002) use the duration of the initial P-wave pulse τ to estimate the seismic moment M0
of earthquakes by using the seismic moment-duration relation (see section 2.1.2)

M0 ∝ τ3. (5.7)

The authors assume that the vertical component of displacement of a broadband recorded P-wave can
be taken for the far-field source time function of the respective earthquake. Tsuboi et al. (2002) find

4For small earthquakes, Allen and Kanamori (2003) apply a low-pass filter at 10 Hz, for large earthquakes at 3 Hz.
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that earthquakes with M > 6 are identifiable within three seconds after the P-wave arrival - the same
value that was also found by Kanamori (2005).

Another approach to predict magnitude levels on the basis of the sum of squared acceleration is im-
plemented in the Mexican SAS. In order to ensure that the incoming signal comes from the expected
distance range, a certain time window between P- and S-wave arrival has to be obeyed (Espinosa-
Aranda et al., 1992).

In contrast to the approaches for magnitude and location estimations presented so far, Scrivner and
Helmberger (1995) propose a method for single broadband station inversion to approximate source
parameters such as strike, rake, dip and seismic moment (Zhao and Helmberger, 1994). Together with
a library of Green’s functions - that are calculated for an average southern California crustal model
or derived from regional weak motion data - Scrivner and Helmberger (1995) develop a procedure to
predict the whole time series of ground motion for an arbitrary site of interest. The inversion uses
only that data that is available at each time step.

5.3.4 Other Approaches

Leach and Dowla (1996) analyze 434 three-component records of regional earthquake (2.5 ≤ ML ≤
4.6) with epicentral distances of 20 to 300 km recorded by instruments maintained by the Lawrence
Livermore National Laboratory in southern California from 1988 to 1992. For each record the authors
determine 30 parameters - that are not specified in more detail - at six different window sizes; these
values are used as input for two Two-Layer Feed-Forward Neural Networks (Chapter 6.1.3): the first
network is trained to predict the earthquake scale (in terms of peak ground acceleration), the second
to estimate the record profile expressed by envelope and duration parameters. The first prediction is
available 0.3 s after the arrival of the direct P-wave; estimates are updated at each new sample.

P-wave alarms issued by Compact UrEDAS are based on the so-called PI value intensity index (Naka-
mura, 1998, 2004). The PI value is defined as the maximum value of the logarithmic product of ac-
celeration and velocity amplitudes. There is a strong relationship between the PI value and seismic
intensity.

Wu and Kanamori (2005b) propose to make use of the correlation between the peak initial displace-
ment amplitude Pd and the peak ground velocity (PGV) at the same site to estimate ground shaking for
on-site warning systems. This approach has been successfully tested by Wu and Kanamori (2005b) in
Taiwan and by Wu et al. (2005) in southern California.

More simple are threshold based approaches as applied in the Turkish IERREWS: whenever a certain
threshold of filtered acceleration at two or three stations is exceeded, the early warning system issues
an alarm. Currently, the system works with three alarm levels associated with thresholds of 0.02 g,
0.05 g and 0.1 g. As these thresholds can be exceeded by the P-wave, the level of ground shaking in
Istanbul can be significantly higher.

The Romanian earthquake early warning system as designed by Wenzel et al. (1999) is based on
simple scaling relations between the maximum filtered P-wave amplitude Pepi, recorded on the vertical
component of an accelerometer that is deployed in the epicentral area, and filtered peak horizontal
acceleration in Bucharest PGA f ilt . A 3rd order Butterworth-filter is applied between 1 to 2 seconds
because site effects in Bucharest show a significant amplification in this period range (Bonjer et al.,
1999); in addition, this band covers the range of eigenperiods of medium to high-rise structures in
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Bucharest and is therefore meaningful for engineering problems (Wenzel et al., 1999). Secondly,
the filtering reduces the probability of false alarms caused by small earthquakes with high-frequency
motions that might occur closely to the seismic device or by site effects in the epicentral area. Based
on data of

• 18 weak motion records, FBA23, S13/SH-1, S13, and

• 2 strong motion records, digitized from SMA-1 film recorders,

Wenzel et al. (1999) find for the epicentral station MLR in Montuele-Rosu and station BUC in
Bucharest the following relation:

PGA f ilt ≈ 10 · Pepi. (5.8)

Within this thesis, the scaling relation given by (5.8) is revised on the basis of additional weak motion
data obtained from the Kinemetrics K2 strong motion network installed in Romania since 1997. Instal-
lation and maintenance of the network are achieved in joint efforts of the Romanian National Institute
for Earth Physics (NIEP) and the Geophysical Institute at Karlsruhe University (GIK). Moreover, two
strong motion records of the 1986 and 1990 Vrancea earthquakes and additional synthetic records ob-
tained from Empirical Green’s Functions (EGF) after Irikura (1983) and simulated by Wirth (2004)
are integrated into the analyses. The dataset therewith is composed of

• 19 weak motion records (3.7 ≤ Mw ≤ 5.3), Kinemetrics K2;

• 2 strong motion records (1986 Mw = 7.2, 1990 Mw = 6.9), SMA-1;

• 36 synthetic records (5.6 ≤ Mw ≤ 8.0) obtained from Empirical Green’s Functions.

The new scaling relations will be determined for the epicentral station VRI in Vrancioia5 and the
Bucharest station Incerc INC (later renamed RBA) (Figure 5.1). For earthquake early warning two
stations with real-time capability (PL1 and PL2) were installed in Plostina during spring 2004. Despite
of a distance of approximately 8 km between the sensors deployed in Plostina and station VRI in
Vrancioia, the P-wave amplitudes on the vertical components of all sensors are almost equal after
filtering (Figure 5.2). Scaling laws that will be derived for station VRI are therefore assumed to be
also applicable to the early warning sites PL1 and PL2. Moreover, the data used by Wenzel et al.
(1999) that was recorded by station MLR will be also included in the database here. This is possible
as only long-period shaking is assessed that is hardly affected by attenuation at the short distances
between the epicentral stations.

Figure 5.3 shows the time window defined by the arrivals of the direct P-wave at station PL1 (vertical
component) and the high-amplitude S-wave at station RBA in Bucharest (EW component) using the
example of the October 27, 2004 Mw = 5.9 Vrancea earthquake; the maximum possible warning time
for Bucharest therewith is - as described before - in the order of 25 seconds.

Additional scaling relations for peak ground acceleration PGA, spectral response at different periods
(PS A0.3s, PS A1.0s, PS A2.0s at 5% damping), and seismic intensity I will be determined. Input pa-
rameter is Pepi. For the validation of the new scaling relations, data of the October 27, 2004 Vrancea
earthquake (Mw = 5.9) will be used. (Instrumental) seismic intensity I will be derived from the Fourier

5For the recordings of the strong motion events station Surduc (SUR) is used as records from station VRI are not available.
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Figure 5.1: Distributions of accelerometers used for the Romanian earthquake early warning system
and additional stations used for the definition of scaling relations.
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Figure 5.2: Vertical components of recorded ground acceleration of the October 27, 2004, Vrancea
earthquake (Mw = 5.9) at station PL1 (borehole sensor) and PL2 in Plostina, and at station VRI in
Vrancioia, from top to bottom. Left: unfiltered records. Right: filtered records after application of a
3rd order Butterworth-filter between 1 to 2 seconds. The levels of P-wave amplitudes are almost equal
at all three sensors implying the applicability of the same scaling relations to all epicentral sites.
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Figure 5.3: Vertical component of ground acceleration at epicentral station PL1 (top) and horizontal
component at station RBA in Bucharest (bottom) for the October 27, 2004, Vrancea earthquake (Mw =

5.9). The maximum warning time for Bucharest is defined by the time window between the arrival of
the direct P-wave at the detecting EWS station and the S-wave arrival in Bucharest. The theoretical
warning time for Vrancea earthquakes is about 25 seconds.

amplitude spectra of acceleration applying a method proposed by Chernov and Sokolov (1988) as de-
scribed in Chapter 4.

The underlying scaling relations for PGA, PGA f ilt , PS A0.3s, PS A1.0s, and PS A2.0s are assumed to be
given by a logarithmic dependency of form

log IM = a + b log Pepi ± σ, (5.9)

and for I of form
I = a + b log Pepi ± σ. (5.10)

Pepi is the maximum filtered epicentral P-wave amplitude of acceleration on the vertical component
(in [cm/s2]), IM is the ground motion parameter of interest in [cm/s2] (for PGA and PSA), referring
to the larger value of both horizontal components of acceleration in Bucharest. Coefficients a and
b are to be determined from the database by regression. The inversion results for a, b and σ are
summarized in Table 5.1 and visualized in Figure 5.4; reliabilities of scaling relations are quantified
by determination coefficients R2 (Table 5.1).

Note that for seismic intensity the majority of weak motion events had to be excluded from the
database because the method applied for the determination of seismic intensity from the Fourier am-
plitude spectrum of acceleration is only calibrated for earthquakes with intensities I & 3.5 (Chernov
and Sokolov, 1988). This leads to a dominance of synthetic records in the database. On the other
hand, the EGF simulations seem to generally overestimate seismic intensity. This can be clearly seen
for the two strong motion SMA-1 events in Figure 5.1: the corresponding intensities are one to two
units lower than the average values determined for the entire dataset (I1). I recalculated the scaling
relations after excluding all EGF synthetics and found a significant lower increase of intensity with
P-wave amplitude. The corresponding coefficients for the new scaling relation for seismic intensity I2
are shown in Tab. 5.1.
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Scaling coefficients
IM a b σ R2

PGA f ilt 0.6643 0.9929 0.1618 0.98
PGA 1.4331 0.6310 0.1508 0.92

PS A0.3s 1.5966 0.6286 0.1660 0.89
PS A1.0s 1.3889 0.9696 0.1469 0.96
PS A2.0s 0.8914 1.0301 0.2025 0.93

I1 6.3375 2.7169 0.4468 0.87
I2 1.6435 5.2626 0.1452 0.92

Table 5.1: Coefficients for scaling relations in (5.9) and (5.10) for different ground motion parameters
for the Romanian earthquake early warning system. σ is the unit standard deviation, R2 is determina-
tion coefficient.

The revised scaling relation for filtered PGA after (5.9) with coefficients specified in Table 5.1 gives
in rearranged form

PGA f ilt ≈ 5 · Pepi. (5.11)

That is, the estimated values are two times smaller than if determined from the relation proposed by
Wenzel et al. (1999) (see (5.8)). Note, however, that the uncertainty of the scaling relation (5.11) is of
the same order; both relations are therewith not mutually exclusive.

For the validation of the proposed scaling relations, the October 27, 2004, (Mw = 5.9) Vrancea
earthquake will be used as a test scenario. The maximum filtered P-wave amplitude of the event at
station VRI is Pepi ≈ 1.2 cm/s2. Inserting this value into (5.9) and (5.10) with coefficients taken
from Table 5.1 allows predicting ground motion in Bucharest in terms of different IM. Observed
levels of ground shaking IMobs and prognostics IMest for the scenario earthquake are compared in
Table 5.2: in general, the ground motion parameters are well-predicted by the scaling laws, whereby
most parameters are slightly overestimated. Considering the 95% confidence intervals to reflect the
expected level of scattering in the data, all predictions give satisfying results; that is, ground motion
in Bucharest can be well approximated by the given relations. Slight discrepancies are given in case
of seismic intensity that is overestimated by one to two units using the first relation (I1), and half to
one unit using the second relation (I2).

5.4 Discussions

Substantial progress in real-time seismology has been made over the past few years. This holds
for improvements in real-time acquisition and communication technologies alike for developments
of new seismic processing software: numerous algorithms have been designed to educe information
from seismic real-time data - a basic requirement for earthquake early warning systems. The general
tendency in the conceptual design and implementation of early warning systems goes towards an
extension of warning times and therewith to an expansion of areas that can be effectively warned of
approaching seismic waves. While hitherto existing regional warning systems have mostly focused
on potential users in epicentral distances of some hundreds of kilometers, on-site warning systems are
supposed to serve a broader user community on local scale. On-site systems save warning time by
decentralized processing and restriction on information derived from single stations instead of station
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Figure 5.4: Correlations between maximum filtered epicentral P-amplitude Pepi and different ground
motion parameters in Bucharest : filtered peak ground acceleration (PGA f ilt), peak ground accelera-
tion (PGA), spectral response (PS A) at 0.3 s, 1.0 s and 2.0 s (5% damping), and instrumental intensity
I. The solid lines show the determined scaling relations, the dashed lines define the 95% confidence
intervals. The relations are derived from different datasets as indicated in the legends. 87
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Evaluation of scaling relations
IM IMest 2σ IMobs

PGA f ilt 5.5 ± 2.9 2.4
PGA 30.4 ± 15.2 23.7

PS A0.3s 44.3 ± 23.7 56.3
PS A1.0s 29.2 ± 14.4 15.8
PS A2.0s 9.4 ± 5.7 3.2

I1 6.6 ± 0.9 4.4
I2 5.4 ± 0.3 4.4

Table 5.2: Validation of scaling relations by usage of the Oct. 27, 2004 Vrancea earthquake (Mw =

5.9); IMest are estimated values of ground shaking, IMobs observed values (in [cm/s2 ]). Using 95%
confidence intervals - approximated by 2σ - almost all parameters are well predicted; intensity is
overestimated by both intensity relations I1 and I2.

networks; generally, only the initial parts of the seismic signals - the P-waves - are analyzed. Despite
of their rapidness, the scattering of estimations using single stations can be extremely high; frequently,
the uncertainties can be only balanced by averaging over estimates of a fairly high number of stations
(e.g., Lockman and Allen, 2005); this procedure, however, is clearly in conflict with the initial idea
behind on-site warnings.

The favorable geometry of the seismogenetic Vrancea zone in the SE-Carpathians and Bucharest
allows for the design of a simple and robust earthquake front-detection warning system for the Roma-
nian capital with a stable warning time of about 25 seconds. In this chapter, I have established scaling
relations for six commonly used ground motion parameters with associated uncertainties for the pre-
diction of ground motion that Bucharest will experience. The relations are validated by the usage of
the October 27, 2004 Vrancea earthquake (Mw = 5.9) as a test scenario. All relations give satisfying
estimates of the level of ground shaking based on information of the epicentral P-wave amplitude.
For the discrimination of intermediate-depth Vrancea earthquakes and local custal events, as well as
for the avoidance of accidental triggerings, redundancy is essential for the early warning system. The
planned integration of further stations, such as of MLR in Montuele-Rosu (Figure 5.1), will increase
the desired reliability of the system in future. Figure 5.5 demonstrates the feasibility to link the output
of the Romanian earthquake early warning system (here: the estimated PGA value at station INC
for the October 27, 2004 (Mw = 5.9) Vrancea earthquake) to the Urban Shakemap Methodology for
Bucharest proposed by Wirth (2004) and Bartlakowski et al. (2006). The shake maps at the bottom
in Figure 5.5 are predicted from the estimated PGA values at stations INC (mean, mean-2 std) by
scaling relations developed for early warning in this thesis (see Table 5.2) and ground motion ratios at
phantom sites determined by Wirth (2004) and Bartlakowski et al. (2006). For the center of Bucharest
there is a good fit with the shake map determined from observational data and phantom sites (top)
while there is a strong overestimation to the west. Note, however, that in this area phantom sites are
very sparse and uncertainties in ground motion ratios therewith very high.
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Figure 5.5: Linking the output of the Romanian Earthquake Early warning system to the Urban
Shakemap Methodology for Bucharest for the October 27, 2004 (Mw = 5.9) Vrancea earthquake.
Shown are shake maps for peak ground acceleration (PGA). Top: Urban Shakemap interpolated from
11 observational and 31 phantom sites (circles) using a method proposed by Wirth (2004) and Bart-
lakowski et al. (2006). Bottom: Shake maps predicted from the estimated level of ground shaking
at station INCERC as output of the Early Warning System and ground motion ratios at the phantom
sites relative to INCERC. Shake maps are calculated from the mean estimated PGA value at INCERC
(0.30 m/s2, left) and the mean value minus the double standard deviation (0.15 m/s2, right). These
maps can be made available around 25 s before seismic waves arrive in Bucharest. There is a good fit
of shake maps for the center of Bucharest while PGA is strongly overestimated to the west.
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Chapter 6

PreSEIS: Earthquake Early Warning
through Artificial Neural Networks

Earthquake early warning systems generally follow either the regional or the on-site warning paradigm
(Chapter 5.1). The former require dense networks of seismic sensors with real-time communication
link to a central processing unit, whereas the latter systems are single station based and therewith
much faster at the expense of robustness.

In this chapter I will develop a methodology for earthquake early warning that takes advantage of both,
regional and on-site warning strategies: PreSEIS (Pre-SEISmic shaking) combines information de-
rived from seismic observations at several sites without requiring that earthquake waves have reached
all sensors before warnings are issued. Even non-triggered stations provide important information on
likely source locations of earthquakes as they confine the space of possible solutions. PreSEIS issues
estimates on source locations, magnitudes and rupture expansions only 0.5 s after P-wave detection at
the first seismic sensor. With ongoing time longer time series of ground motion at more and more sta-
tions become available and allow to infer improved details on the earthquake; consequently, estimates
of seismic source parameters are continuously updated in the PreSEIS methodology. This is in partic-
ular important in case of highly complex rupture histories with inhomogeneous slip distributions. The
PreSEIS methodology is as fast as the on-site warning method at a concurrent higher stability due to
a larger number of involved stations. The link between time-dependent input information at the dif-
ferent sensors and predicted source parameters is established by so-called Artificial Neural Networks
(ANNs). The first part of this chapter will focus on the general architecture of ANNs and suitable
learning algorithms. The second part will describe the PreSEIS methodology developed in this thesis.
The required database is provided by the simulated earthquake time series presented in Chapter 3.3.

6.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are used as statistical models of systems and processes with a large
variety of applications. Their massively parallel structure with a high number of simple interconnected
processing units - the so-called neurons - allows the ANNs to be used for complex, linear as well as
non-linear input-output mappings. Each neuron works autonomously on local information in signals
received from other neurons. The importance of a link between one processing unit to another is

91



Chapter 6. PreSEIS: Earthquake Early Warning through Artificial Neural Networks

controlled by a weight parameter. Weights are iteratively adapted by learning from a set of example
patterns through appropriate training algorithms (see Chapter 6.1.2). Training iterations are called
epochs.

The tuning of free parameters is always a balancing of the trade-off between network accuracy and
generalization capability (see Chapter 6.1.5). Once training is accomplished, ANNs are capable to
process unknown data that follows the same statistical process as the training examples. In compar-
ison to procedures of conventional computations, ANNs have the advantage that they do not need
formulations of explicit algorithms or rules (if-then structures) that often cannot be provided. It is not
necessary to make prior assumptions on the statistical model of the input data. In summary, ANNs are
non-linear mapping functions with a high capability to generalize and a high tolerance to noisy input
data (Swingler, 1996).

ANNs are mostly applied for classification, that is for discrete mapping, or for tasks requiring con-
tinuous mapping, such as functional approximations. They are typically applied in signal processing,
e.g., as neural filters, for time series prediction, or process modeling and management, such as the
control of robotic systems (Swingler, 1996). In geophysics, ANNs are mainly applied in exploration
seismology and reservoir characterization. Examples are given in Sandham and Leggett (2003).

In the following subsections, I will give an overview of ANNs and different learning algorithms with
special attention to so-called Multi-Layer Neural Networks that will be applied within the PreSEIS
method. Derivations will mainly follow Bishop (1995), Rojas (1993), Swingler (1996), and Zell
(1994), as well as references given in the text.

6.1.1 General Architecture of Artificial Neural Networks

Artificial Neural Networks are inspired by biological neural systems like the mammalian brain. Alike
their biological counterpart, the main characteristic of ANNs is their massive parallelism. Yet biolog-
ical systems are much more complex than ANNs: the human brain, e.g., consists of more than 100
billions (1011) neural cells while the most generous ANNs consist of 102 to 104 neurons.

Artificial Neural Networks are composed of (Zell, 1994)

1. neurons (neural cells, units); at time t each neuron j is associated with

• a state of activation z j(t);

• an activation function g(·) that determines the relation between a new state of activation
of the neuron z j(t + 1), its previous state z j(t), a net input a j(t), and some threshold (bias)
θ j, i.e. z j (t + 1) = g(z j(t), a j(t), θ j); g(·) is usually a non-linear sigmoid function (logistic
function or hyperbolic tangent, see Figure 6.1, top);

• an output function f (·) that describes the dependency of cell output y j(t) on the activation
state z j(t), i.e. y j(t) = f (z j(t)); f (·) is generally the identity function, i.e. y j(t) = z j(t);

2. a network of connections between different neurons associated with certain weights w ji; de-
pending on the direction of the flow of information one distinguishes between feed-forward and
feed-back networks;

3. a propagation function that defines the computation of net input a j from outputs of previous
neurons and weights;
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6.1 Artificial Neural Networks (ANNs)

4. a learning rule that determines the iterative update of weights during Neural Network training;
learning paradigms include supervised, reinforcement and unsupervised learning rules.

6.1.2 Teaching Artificial Neural Networks: Parameter Optimization Algorithms

The aim of supervised teaching (or training) of Artificial Neural Networks is the minimization of the
error E between observed network outputs yn and target values tn for a given input vector xn in the
training set {xn, tn| n = 1, 2, ...,N}, i.e. the determination of the set of weights w∗ = (w∗1, ...,w

∗
d) at

which

∇E|w∗ =

(
∂E
∂w1

, ...,
∂E
∂wd

)T

|w∗ = 0. (6.1)

Typically, E = E(w) is a highly non-linear error or cost function in weight space with a global and
several local minima.

One of the simplest algorithms for the optimization of network parameters is Gradient or Steepest
Descent. This algorithm starts with some initial guess of the weight vector w(τ=0) that is iteratively
updated by a factor ∆w by moving at each training step τ a certain distance η in the direction of largest
decrease of the error function E(w), i.e. following the negative gradient ∇E at w(τ):

∆w(τ) = w(τ+1) − w(τ) = −η∇E|w(τ) . (6.2)

Because E(w) refers to the entire dataset of training patterns, (6.2) is called batch version of Gradient
Descent, whereas in the online version of the algorithm the gradient is evaluated for only one pattern
at a time and weights are updated using

∆w(τ) = −η∇En|w(τ) , with E =

N∑

n=1

En. (6.3)

The learning rate η controls the speed of learning: if η is very small then the search for w∗ will
proceed extremely slowly and computational times become very long. If η, on the other hand, is
inappropriately large then the algorithm might overshoot the wanted minimum in the error function.

Several modifications of Gradient Descent have been developed to reduce this problem. One of these
methods makes use of an additional momentum term µ that is included into the primary Gradient
Descent rule in (6.2):

∆w(τ) = −η∇E|w(τ) + µ∆w(τ−1), (6.4)

with 0 ≤ µ ≤ 1 (Plaut et al., 1986). For error surfaces with little curvature µ reduces the effective
learning rate. Conversely, if the error function shows a high curvature the pure Gradient Descent
algorithm is oscillatory; successive contributions from µ will tend to cancel, and the effective learning
rate is close to η (Bishop, 1995). The introduction of a momentum term generally improves Gradient
Descent though at the expense of a second parameter µ that has to be specified aside from learning
rate η.

In addition to Gradient Descent with Momentum Term, I will test two further parameter optimiza-
tion algorithms in PreSEIS: Resilient Propagation and the Levenberg-Marquardt algorithm. Resilient
Propagation (RPROP) (Riedmiller and Braun, 1993) is a so-called adaptive learning algorithm that
allows for the adaption of parameters during learning, controlled by the observed behavior of the error
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function. Unlike other adaptive learning algorithms, RPROP thereby does not consider the size of the
partial derivatives ∂E/∂wi but only their signs: oscillating signs indicate that the last update of the
learning rate was too large and the algorithm has jumped over the minimum. RPROP then decreases
the update value ∆wi by a certain factor. Stable signs of the partial derivate, on the other hand, indicate
little curvature of the local error surface and the update value will be increased.

Second order methods make use of information on the shape of the error function E(w). The Taylor
expansion of E(w) around some point ŵ in weight space is given by

E(w) = E(ŵ) + (w − ŵ)T∇E|ŵ +
1
2

(w − ŵ)T H|ŵ(w − ŵ) + .... (6.5)

where the Hessian matrix H at ŵ is defined by

H|ŵ ≡ ∂2E
∂wi ∂w j

|ŵ. (6.6)

The local approximation of the gradient of E in (6.5) at point ŵ is

∇E = ∇E|ŵ + H|ŵ(w − ŵ). (6.7)

Newton’s Method determines the desired weight vector w∗ from

w∗ = w −H−1∇E. (6.8)

For a quadratic error surface the so-called Newton Step H−1∇E, evaluated at any w, points directly
at the minimum. As the quadratic approximation is generally not exact, it is necessary to apply (6.8)
iteratively and to re-evaluate the Hessian H at each new search point. This, however, is in praxis
extremely time consumptive. Quasi-Newton Methods try to overcome this problem by building up an
approximation to the inverse Hessian over several iterations (e.g., Bishop, 1995).

The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), that - as said before - will
be tested in PreSEIS, combines Steepest Descent with Newton’s Method. The algorithm has been
developed specifically for minimizing the sum-of-squares errors (SSE)

Esse(w) = E(w) =

N∑

n=1

En(w), with En(w) =

K∑

k=1

(
tn
k − yn

k (xn)
)2
. (6.9)

Using the SSE function has the advantage that the Hessian can be estimated from the gradients
(Bishop, 1995):

(H)ik =
∂2E

∂wi ∂wk
=

∑

n

(
∂En

∂wi

∂En

∂wk
+ En ∂2En

∂wi ∂wk

)
(6.10)

≈
∑

n

(
∂En

∂wi

∂En

∂wk

)
, (6.11)

i.e. the Hessian matrix H can be approximated by

H ≈ ZT Z, with (Z)ni ≡ ∂En

∂wi
. (6.12)

94



6.1 Artificial Neural Networks (ANNs)

For a linear network (6.12) is exact, otherwise it is an approximation of the true matrix. The
Levenberg-Marquardt algorithm makes use of the following update rule

∆w(τ) = w(τ+1) − w(τ) = −
[
ZT Z + λI

]−1
ZT E

(
w(τ)

)
. (6.13)

For small λ (6.13) is equivalent to Newton’s Method using the approximated Hessian matrix in (6.12).
For large λ, on the other hand, (6.13) becomes Gradient Descent with a small step size. Because
Newton’s Method is faster and more accurate close to the error minimum, the shift towards Newton’s
Method should favorably occur as soon as possible. This means, λ should be decreased after each
successful step at that the error is reduced, and increased when a step would increase the error. Details
on the different optimization algorithms are given, e.g., in Bishop (1995).

6.1.3 Multi-Layer Feed-Forward (MLFF) Neural Networks

The most commonly applied class of ANNs are the so-called Multi-Layer Feed-Forward (MLFF)
Neural Networks. MLFF are composed of two or more layers of neurons, whereby each neuron
is connected to all neurons in the subsequent layer. Layers that do not give the total output of the
network are called hidden layers. MLFF provide a general framework for the representation of non-
linear functional mappings between a set of input and output variables (Bishop, 1995). Because
Two-Layer Feed-Forward networks have no feed-back loops, outputs can be calculated as explicit
functions of input values and weight parameters.

In the following, I will describe the main processing steps within a Two-Layer Feed-Forward1 Neural
Network as illustrated in Figure 6.1, bottom: the network is assumed to be composed of I input, J
hidden, and K output units. The input a j of the jth hidden neuron ( j = 1, 2, ..., J) is given by a linear
combination of input values xi with weights w(1)

ji in the first layer (i = 1, 2, ..., I)

a j =

I∑

i=1

w(1)
ji xi + w(1)

j0 =

I∑

i=0

w(1)
ji xi, (6.14)

whereby x0 = 1. Parameter w(1)
j0 is called threshold or bias and is equivalent to θ j introduced in

Chapter 6.1.1.

The activation z j of neuron j is obtained by the application of an activation function g(·) to (6.14), i.e.

z j = g(a j) = g


I∑

i=0

w(1)
ji xi

 . (6.15)

A commonly used activation function g(·) is the logistic function defined by

g(x) ≡ 1
1 + exp(−x) . (6.16)

Other activation functions are the hyperbolic tangent or the linear (identity) functions (Figure 6.1,
top). Note that the activation in (6.15) is independent of previous activation states, unlike in the
general formulation in Chapter 6.1.1.

1Since there is no processing of data in the input units, the input layer is generally not numbered.
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Figure 6.1: Top: From left to right logistic, hyperbolic and linear activation functions commonly
used in Multi-Layer Feed-Forward Neural Networks. Bottom: Scheme of a Two-Layer Feed-Forward
Neural Network composed of one input, one hidden and one output layer.
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For each output unit k (k = 1, 2, ...,K), input ak is calculated from linear combinations of outputs of
neurons in the hidden layer with weights w(2)

k j , i.e.

ak =

J∑

j=1

w(2)
k j z j + w(2)

k0 =

J∑

j=0

w(2)
k j z j, (6.17)

with z0 = 1 and threshold parameter w(2)
k0 . The activation and output2 yk of the kth output unit is

obtained by application of a second activation function g̃(·) to (6.17)

yk = g̃(ak) = g̃


J∑

j=0

w(2)
k j z j

 . (6.18)

Hidden and output units play different roles within the network and might require different activation
functions (Bishop, 1995). While the most common activation function applied to the hidden layer to
encompass non-linear behavior of the network is the sigmoid logistic activation function, the activa-
tion function applied to the output units is mostly linear for functional approximations and non-linear
for classifications.

Inserting (6.15) into (6.18) gives the complete transfer function of the Two-Layer Feed-Forward Neu-
ral Network with

yk = g̃


J∑

j=0

w(2)
k j g


I∑

i=0

w(1)
ji xi



 . (6.19)

Networks with only two layers of processing units are capable to approximate any continuous non-
linear function (Bishop, 1995). The principle processing steps of a Two-Layer Feed-Forward Neural
Network with two input, two hidden and one output neuron are summarized in Figure 6.2.

6.1.4 Teaching MLFF Networks: The Backpropagation Algorithm

Learning algorithms as discussed in Chapter 6.1.2 cannot be used to determine the weights w (1)
ji be-

tween input and hidden layer of MLFF networks because there is no procedure for assigning target
values to their outputs (credit assignment problem). A simple way to solve this problem is the usage
of the Backpropagation algorithm (Rumelhart et al., 1986). In the following, I will demonstrate Back-
propagation for Gradient Descent. Yet, the algorithm can be applied to any other type of optimization,
e.g. to Resilient Propagation or Levenberg-Marquardt.

For on-line Steepest Descent after (6.3) the update rule of network weights at iteration step τ is given
by

∆w(τ) = −η∇En
(
w(τ)

)
= −η∂En

∂w
|w(τ) , (6.20)

i.e. the derivatives of the error function En for pattern n are determined separately from each other.

Using the input ak of output neuron k given in (6.17), the partial derivatives of En w.r.t. the hidden-to-
output weights w(2)

kj are calculated by application of the chain rule:

∂En

∂w(2)
k j

=
∂En

∂ak

∂ak

∂w(2)
k j

= − δk
∂ak

∂w(2)
k j

, where δk ≡ −∂En

∂ak
. (6.21)

2It is assumed that output function f (·) is the identity function, see Chapter 6.1.1

97



Chapter 6. PreSEIS: Earthquake Early Warning through Artificial Neural Networks

Figure 6.2: Processing steps in a Two-Layer Feed-Forward Neural Network with two input, two
hidden and one output unit; a) linear combination of input values; b) logistic transformation of the
linear combination; c) summation of both logistic functions.
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Presuming that the activation function g̃(·) is differentiable and the sum-of-squares errors (SSE) func-
tion defined in (6.9) is chosen, it follows from (6.18) that

δk ≡ −∂En

∂ak
= −∂En

∂yk

∂yk

∂ak
= (tn

k − yn
k) g̃′(ak), (6.22)

where tn
k is the target and yn

k the observed network output. δk is called sensitivity or error of output
neuron k. The resulting update rule for hidden-to-output weights w(2)

kj for Gradient Descent after
(6.20) therewith is

∆w(2)
k j = η δk z j, with z j =

∂ak

∂w(2)
k j

. (6.23)

The partial derivatives of En w.r.t. the input-to-hidden weights w(1)
ji are determined by application of

the chain rule using (6.15)
∂En

∂w(1)
ji

=
∂En

∂z j

∂z j

∂a j

∂a j

∂w(1)
ji

, (6.24)

whereby

∂En

∂z j
=

K∑

k=1

∂En

∂ak

∂ak

∂z j
= −

K∑

k=1

δk
∂ak

∂z j
= −

K∑

k=1

δkw(2)
k j , (6.25)

∂z j

∂a j

∂a j

∂w(1)
ji

= g′(a j)xi. (6.26)

Analog to (6.22) the sensitivity or error δ j of hidden neuron j is defined by

δ j ≡ −∂En

∂a j
= g′(a j)

K∑

k=1

w(2)
k j δk. (6.27)

The resulting update rule for input-to-hidden weights w(1)
ji for Gradient Descent after (6.20) therewith

is

∆w(1)
ji = η g′(a j)

K∑

k=1

w(2)
k j δk xi = η δ j xi . (6.28)

The evaluations of (6.22) and (6.27) are called backpropagation of errors.

Sigmoid activation functions - such as the logistic function - satisfy the requirement of differentiability
of the resulting error function. The derivative of the logistic activation function (x) defined by (6.16)
with respect to argument x is

g′(x) = g(x) (1 − g(x)), (6.29)

i.e. is itself a logistic function. Because according to (6.19) Multi-Layer Feed-Forward Neural Net-
works calculate a sequence of functional compositions, the error function itself becomes continuous
and differentiable if a sigmoid activation with these properties is chosen. The smoothing effect of
sigmoid activation supports the feasibility of Gradient Descent.
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6.1.5 Accuracy versus Generalization Capability

The objective of Neural Network learning is rather to build a statistical model of the underlying
process than to find an exact representation of the training data itself. This leads to a trade-off between
mapping accuracy and generalization capability of Neural Networks. Insight into this trade-off comes
from the decomposition of the error into bias and variance components: the bias is a measure of the
averaged difference between target and observed network outputs, while the variance describes the
sensitivity of the network function to the particular choice of data (e.g., Bishop, 1995).

A balance between variance and bias is obtained through methods that allow for controlling the ef-
fective complexity of Neural Networks. Complexity of Two-Layer Feed-Forward Neural Networks is
mainly governed by the number of hidden units. In praxis, the available dataset is usually divided into
a training subset that is used for model selection, and two independent validation and test subsets that
are used for the evaluation of network performances during and after training (model validation). The
validation data is used to define an early stopping criteria that determines the transition at which the
network becomes over-fitted to the training data at the expense of generalization capability. At this
epoch the iterative update of weight parameters should be stopped. The number of hidden units can be
determined from a systematic testing of different network architectures: optimum networks perform
well for both, training and test patterns.

The splitting of data into training, validation and test subsets usually occurs on basis of a random
selection: in k-fold cross-validation the available dataset is divided into k subsets of approximately
equal size. The network then is trained k times, at each time omitting one of the subsets from training.
In bootstrapping, by contrast, the model is tested with randomly determined subsamples omitted from
the training set.

6.2 PreSEIS: Estimates of Seismic Parameters Pre-SEISmic Shaking

PreSEIS is a methodology for earthquake early warning that is based on Artificial Neural Networks.
More strictly speaking, PreSEIS makes use of Two-Layer Feed-Forward Neural Networks with pro-
cessing units arranged in an input, a hidden and an output layer that are interconnected to each other
(Chapter 6.1.3). The most important features of PreSEIS are:

• PreSEIS is a dynamic method for the inversion for seismic source parameters from time-
dependent ground motion measurements at different sensors that are combined within a sensor
network. First estimates are available only 0.5 s after P-wave detection at the first sensor - called
triggering of PreSEIS - with a continuous update of predictions every half second. Within the
first few seconds after rupture initiation the P-wave will generally have arrived at a minor subset
of sensors in the network, implying that the inversion problem for seismic parameters will be
underdetermined. Significant improvement of estimates can be achieved through the integra-
tion of information on non-triggered sensors since this allows confining the space of possible
solutions as shown, e.g., by Rydelek and Pujol (2004) and Horiuchi et al. (2005). From exam-
ple patterns in the training database, PreSEIS learns in addition a priori information on likely
source locations associated with the major faults in the region where PreSEIS is applied. With
ongoing time longer time series of ground motion at more and more sensors become available
and allow inferring improved information on the earthquake.
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• PreSEIS utilizes amplitude information on earthquakes in terms of the cumulative absolute
velocity (CAV) for the estimation of earthquake magnitudes. The merit of CAV in comparison
to other ground motion parameters has been described in Chapter 4.1.4 and 4.5.

• Seismic ground motion at a specific site can be predicted from the combination of (estimated)
magnitudes and source locations with empirical attenuation laws for the given region. Maps
visualizing distributions of ground shaking on urban or regional scale are called shake maps;
if they are calculated from estimated magnitudes and source locations these maps are usually
called alert maps. It is important to note that the level of ground motion thereby is not controlled
by hypocentral distances but by the closest distance from a site to the rupture surface. PreSEIS
cannot only predict magnitudes and hypocenter locations of earthquakes but also the positions
and expansions of evolving ruptures along the faults. From above considerations it follows
that the prediction of rupture expansions leads to a significant improvement of alert maps.
Furthermore, finite faults show dynamic effects such as rupture directivity (see Chapter 2.2.3)
that can be more easily integrated into alert maps when rupture locations and expansions are
known. A demonstration of the effect of rupture directivity on the distribution of seismic ground
motion in term of intensity is given in Figure 6.29.

• Combining estimated source parameters with estimated empirical attenuation laws rises the
problem of joining quantities that are each associated with uncertainties. As Allen (2005)
points out, the largest errors in ground motion prediction mostly do not come from incorrectly
predicted magnitudes and source locations but from uncertainties in the attenuation laws. To ex-
clude this unstableness, PreSEIS is capable to estimate ground motion directly in terms of the
Fourier amplitude spectrum of ground motion at a given site without requiring specifications
of attenuation laws. In this case, the ANNs themselves have to learn the specific attenuation
characteristics for the given region.

6.2.1 Database and Data Pre-Processing

PreSEIS has been developed and tested using a database of 280 stochastically simulated earthquake
scenarios in the Marmara region. The database comprises finite-fault earthquakes covering the mo-
ment magnitude range from 4.5 to 7.5 with randomized slip distributions and variable source param-
eters including, e.g., static and dynamic stress drops. Earthquake records have been simulated at the
ten online stations of the Istanbul Earthquake Rapid Response and Early Warning System (IERREWS,
Chapter 5.2.5) and at an additional user site (UserX) to the west of Istanbul. A detailed description of
the synthetic database is given in Chapter 3.3.

Pre-warning times are a crucial issue in any early warning system. Pre-warning times for earthquakes
are generally defined by the time window between P-wave detection by at least one early warning
station and the arrival of high-amplitude S- (and surface) waves at a potential user site (see (1.1)). For
the constant velocity model with α = 5.7 km/s and β = 3.3 km/s used for the stochastic modeling of
ground motion records in the Marmara region and for the present station configuration of IERREWS,
warning times for Istanbul city vary between zero (no warning possible) and thirty seconds with an
average pre-warning time of 8 to 15 seconds (Figure 6.3, left). For a potential user at site UserX
warning times are of the same order (Figure 6.3, right). From Figure 6.4 follows that on average
the first sensor detects the P-wave 2.5 s after rupture initiation. Within the first few seconds that are
relevant for earthquake early warning - in the Marmara region this is approximately 4.0 s - between

101



Chapter 6. PreSEIS: Earthquake Early Warning through Artificial Neural Networks

0 5 10 15 20 25 30
0

20

40

60

80

100

warning time [s]

nu
m

be
r o

f e
ar

th
qu

ak
es

Istanbul

0 5 10 15 20 25 30
0

20

40

60

80

100

warning time [s]

nu
m

be
r o

f e
ar

th
qu

ak
es

UserX

Figure 6.3: Pre-warning times for 280 simulated earthquake scenarios (Chapter 3.3) defined by the
time window between P-wave arrival at the first early warning station of IERREWS and S-wave arrival
in Istanbul (left) or at user site UserX (right). Pre-warning times range up to 30 s with an average value
of 8 to 15 s. The available warning times of course depend on respective source locations as visualized
in the maps at the bottom; the markersize of the different earthquake epicenters characterizes the
amount of available time for each event.
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Figure 6.4: Number of triggered early warning stations in the Marmara region as a function of time
after rupture initiation calculated on basis of the synthetic database in Figure 3.7. Plotted are the
average, minimum and maximum number of stations at which the direct P-wave has arrived at each
time step after rupture initiation. On average, the P-wave needs 2.5 s to reach the first sensor. Due to
the extremely little pre-warning times in the Marmara region (see Figure 6.3) only the first few seconds
(≈ 4.0 s) after detection are relevant for earthquake early warning. This means that the P-wave will
have arrived at five stations on average.

zero and eight stations will be triggered by the propagating P-wave, with an average value of five
stations. Note that all these estimates are based on the distribution of hypocenters of the simulated
earthquakes in the database.

Data pre-processing is likely the most difficult and most essential step in neural computations. Fol-
lowing the data processing flow of the IERREWS system (Chapter 5.2.5) all records in the database are
bandpass-filtered between 0.05 and 12.0 Hz. The filtered acceleration time series are parameterized
to extract information on traveltime differences and amplitudes. These parameter sets will be used as
input for the inversion for source parameters, such as hypocenter locations and moment magnitudes.

1. (Relative) P-wave arrivals
The first parameter set comprises P-wave arrival times t trigg

i,n at sensor i for the nth earthquake.3

Because earthquake origin times are unknown during real-time operation of the early warning system,
only the relative onset times ∆ttrigg

i,n =
(
ttrigg
i,n − ttrigg

i0,n

)
can be quantified; ttrigg

i0,n
is the onset time at the first

sensor i0 in the network, i.e. ttrigg
i0,n
≤ ttrigg

i,n . Information on P-wave arrivals at the different sensors will
become available only step by step. At a given time tm, onset times can of course be only specified
for stations at which the P-wave has already arrived, i.e. tm ≥ ttrigg

i,n . If - on the other hand - a station

is not triggered at time tm, it follows that ttrigg
i,n > tm. The known or estimated relative onset times that

3A break down of station numbers and names is given in Table 3.3.
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are available at time tm can be therewith determined from the following relations:

∆ttrigg
i,m,n =


tm −ttrigg

i0,n
, tm < ttrigg

i,n
ttrigg
i,n −ttrigg

i0,n
, tm ≥ ttrigg

i,n
, (6.30)

whereby the first equation gives the minimum value of the expected time interval for a non-triggered
station at time tm relative to sensor i0.

Using information that the P-wave has not arrived at certain sensors in the network at time tm confines
the space of possible source locations as demonstrated in Figure 6.6: in this example it is assumed
that information on seismic ground motion is available at two sensors, whereby the first sensor (here:
FARGE) has detected the P-wave, while the other sensor (here: TUZ01) has not. It is presumed
that both sensors work properly. In case of a homogeneous velocity distribution it follows that the
earthquake hypocenter will be closer to the first sensor than to the second. The boundary between
possible and impossible positions is indicated by the hyperbolic curve. With ongoing time the area
enclosed by the hyperbola shrinks. The additional a priori information on likely source locations
derived from the distribution of previous earthquakes (Figure 6.5) - that enters the PreSEIS system in
form of the training database for the Artificial Neural Networks - leads to a further confinement of the
space of solutions, indicated by the contour lines. As demonstrated for the example in Figure 6.6, the
combined information on non-triggered stations and the a priori knowledge on fault segments allows
for a good prediction of source locations with a clear and fast convergence of estimated (dark point)
towards correct solutions (bright star).

Figure 6.7 demonstrates the possible reduction of localization errors as a function of time using in-
formation in terms of (6.30) for two (FARGE, TUZ01), three (FARGE, TUZ01, YLVHV), and four
(FARGE, TUZ01, YLVHV, BUYAD) stations for all 31 scenario earthquakes shown in Figure 6.5. The
location errors are quantified through the 25th, 50th, 75th and the 95th percentiles; the 50th percentile
is better known as the median that divides the lower half from the higher half of a statistical distribu-
tion. The other percentiles can be interpreted in a same way, e.g., 95% of the earthquake scenarios
have location errors smaller than indicated by the 95th percentile, while 5% show larger failures. Once
again note, that also the information on non-triggered stations enters the predictions. For the analyzed
subset of earthquakes in the synthetic database, the average location error can be reduced in the first
3.5 s after triggering from 6.0 km to 2.5 km for two stations, from 3.5 km to 1.5 km for three stations,
and from 3.0 km to 1.0 km for four stations.

2. Cumulative absolute velocity (CAV)
The second parameter set derived from the synthetic database is the time-dependent cumulative

absolute velocity (CAVi,m,n) determined from the ground motion times series at sensor i for earthquake
n at time step m. The most important characteristics of the CAV have been discussed in Chapter 4.1.4
and 4.5. In order to stress the prominence of the faster (low-amplitude) P-waves in the early warning
system, CAV values are logarithmized; this leads to a faster convergence of the parameter to final
values taken over the entire record length. Linear and logarithmized CAV values for scenario #25,
SEGMENT 2 at the ten online sensors of IERREWS are visualized in Figure 6.8 (c.w. Figure 3.10).

Alike the parameter set of P-wave arrival times described above, the CAV is considered as time-
dependent parameter. At a non-triggered station the CAV is set to zero [cm/s]; because the logarithm,
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Figure 6.5: Subset of simulated earthquake scenarios in the Marmara region. The stars show the
distribution of 31 epicenters in the Izmit Bay area. Four IERREWS early warning stations (FARGE,
TUZ01, YLVHV, and BUYAD) are used for first tests on a possible design of PreSEIS. Details are given
in the text.

Figure 6.6: Using information of non-triggered stations (hyperbolic curve) and a priori information
on likely source locations (contour lines) confines the space of possible hypocenter positions with
ongoing time. The four maps demonstrate the enhancement of estimated source locations by the
ANNs and a possible interpretation of their outputs. For the distribution of earthquake epicenters see
Figure 6.5.
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Figure 6.7: Reduction of localization errors with time after trigging combining information at two,
three and four sensors. The 50th percentile is better known as the median. For the distribution of
earthquake epicenters see Figure 6.5.

however, is not defined at zero, a constant value of one [cm/s] is added to the velocity sum:

log
(
CAVi,m,n + 1

)
=



0 , tm < ttrigg
i,n

log


tm∫

ttrigg
i,n

|ai,n(t)| dt + 1

 , tm ≥ ttrigg
i,n

, (6.31)

where |ai,n(t)| is the absolute ground acceleration in [cm/s2] at station i for earthquake n; dt is the
sampling interval of the acceleration time series (here: dt = 0.02 s; Chapter 5.2.5).

The increasing reliability of estimated earthquake magnitudes with time after triggering from ampli-
tude information in terms of (6.31) at two (FARGE, TUZ01), three (FARGE, TUZ01, YLVHV) and four
(FARGE, TUZ01, YLVHV, BUYAD) sensors is shown in Figure 6.9 using the 31 scenario earthquakes
in Figure 6.5. There is a very clear enhancement of reliability of estimates with ongoing time from
0.5 to 3.5 s and with the number of involved stations quantified through the correlation coefficient R
and the unit standard deviation σ. While the prediction at 0.5 s after triggering of the first sensor -
based on information from two stations - is fairly poor (R=0.35), it can be significantly improved if
one (R=0.64) or two further stations (R=0.77) are involved. At 3.5 s after triggering prediction results
are very satisfying using two (R=0.65), three (R=0.94) and four stations (R=0.96), respectively. Note
from the histograms in Figure 6.10 that also information of non-triggered stations is used.

6.2.2 Design of the Artificial Neural Networks in PreSEIS

Using the available input information at the early warning stations of IERREWS at each time step m,
PreSEIS is capable to estimate

1. the earthquake hypocenter location characterized by the geographical latitude ϕhypo [◦], the
geographical longitude λhypo [◦], and source depth h [km],

2. the earthquake (moment) magnitude Mw,
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Figure 6.8: Linear cumulative absolute velocity (CAV, left) and logarithmized values of CAV (right)
calculated from the acceleration time series for earthquake scenario # 25 on SEGMENT 2. Records
are displayed in Figure 3.10. Using the logarithmized CAV instead of linear values assigns higher
priority to small ground motion amplitudes in the faster P-wave phase in comparison to the S-phase -
a favorable characteristic for early warning.

3. the rupture location and expansion characterized by the geographical coordinates of the start
and end points of the rupture projected onto the Earth surface, ϕrupt

start [◦], λrupt
start [◦], ϕrupt

end [◦],
λ

rupt
end [◦], and

4. the smoothed Fourier amplitude spectrum (FAS) of acceleration from 0.25 to 11.25 Hz at site
UserX.

Each of these four tasks is solved by a Two-Layer Feed-Forward Neural Network with a certain
design, named Hypo, Mw, Rupt and Spec. The Neural Networks are trained on data that is available
at time steps between 0.5 and 15.0 s after triggering with intervals of 0.5 s. This means that for
each task PreSEIS makes use of 30 subnetworks, that are identified through index m = 1, ..., 30. In
the following, I will discuss at first the general design Net(m) that is common for Hypo(m), Mw(m),
Rupt(m) and Spec(m); the second part of the subsection will focus on the specifics of each of the
networks and discuss their interconnections; this is because inputs and outputs of the different nets are
of course not independent from each other.

I. General Design of Net(m)

Following the general design description of a Two-Layer Feed-Forward Neural Network in Chapter
6.1.3, Net(m) is built up by neurons arranged in one input layer (i = 0, ..., I net), one hidden layer
( j = 0, ..., Jnet), and one output layer (k = 1, ...,Knet) as shown in Figure 6.11. The argument m
indicates that the network operates only on data that is available at time step m.

The vector of unscaled input information Xnet
m,n that is available for earthquake n (n = 1, ...,N set) at

time step m (m = 1, ..., M) is

Xnet
m,n = {xnet

0,m,n, xnet
1,m,n, xnet

2,m,n, ..., xnet
Inet,m,n}, (6.32)
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Figure 6.9: Accuracies of predicted magnitudes 0.5, 1.5, 2.5, and 3.5 s after triggering of the first
sensor (from left to right) using information on CAV measurements at two (FARGE, TUZ01), three
(FARGE, TUZ01, YLVHV) and four (FARGE, TUZ01, YLVHV, BUYAD) stations (from top to bottom).
The distribution of epicenters of the 31 analyzed earthquakes is shown in Figure 6.5. Mw, obs is the
observed, Mw, est the moment magnitude estimated by the ANNs. There is a very clear enhancement
of estimates with ongoing time and the number of involved stations quantified through correlation
coefficient R and unit standard deviation σ. Note from Figure 6.10 that also information on non-
triggered stations is used.
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Figure 6.10: Histograms showing the number of triggered stations at different time steps (from left
to right) for two, three and four sensors (from top to bottom). See Figure 6.9.
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Figure 6.11: Design of Two-Layer Feed-Forward network Net(m) with (I net + 1) input, (Jnet + 1)
hidden and Knet output neurons.

whereby m · 0.5 s are lapsed after triggering of the first sensor in the network, and xnet
0,m,n = 1.

The input data is linearly scaled so that all data points fall into the range from −1 to +1. The scaled
input then is

X̃net
m,n = {x̃net

0,m,n, x̃net
1,m,n, x̃net

2,m,n, ..., x̃net
Inet,m,n}, with (6.33)

x̃net
i,m,n = 2

xnet
i,m,n −min({xnet

i,m,1, xnet
i,m,2, ..., xnet

i,m,N set})
max({xnet

i,m,1, xnet
i,m,2, ..., xnet

i,m,N set}) −min({xnet
i,m,1, xnet

i,m,2, ..., xnet
i,m,N set })

− 1, i = 0, ..., Inet

Scaling is an essential step in data pre-processing prior to neural computations. It ensures that all
variables cover more or less the same value range; this is recommended because higher parameter
values will have a stronger impact on the error function E(w) (e.g. defined by (6.9)) during learning
than small values. Moreover, through data scaling it is often possible to reduce the required duration
of network training (Swingler, 1996). With respect to the output data, scaling is needed to ensure
that target values and network outputs are in the same range after the application of the chosen output
activation function.

Using (6.19) the scaled output of Net(m) for earthquake n at time step m can be written as:

˜̂ynet
m,n = { ˜̂ynet

1,m,n,
˜̂ynet
2,m,n, ...,

˜̂ynet
Knet,m,n}, with (6.34)

˜̂ynet
k,m,n = g̃


Jnet∑

j=0

wnet(2)
kj,m g


Inet∑

i=0

wnet(1)
ji,m x̃net

i,m,n



 ,
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Figure 6.12: Moving average architecture in PreSEIS for the smoothing of network outputs over
(d + 1) time steps.

whereby g(·) and g̃(·) are the activation functions of the hidden and output layer, respectively. PreSEIS
uses for g(·) the sigmoid logistic (6.16) and for g̃(·) a linear function (see Figure 6.1, top).

The final output of network Net(m) is obtained from the moving average of network outputs over d+1
time steps. The averaged scaled output is

˜̂Y
net

m,n = { ˜̂ynet
1,m,n, ˜̂y

net
2,m,n, ..., ˜̂y

net
Knet,m,n}, with (6.35)

˜̂y
net

k,m,n =
1

d + 1

(
˜̂ynet
k,m,n + ˜̂ynet

k,m−1,n + ˜̂ynet
k,m−2,n + ... + ˜̂ynet

k,m−d−1,n + ˜̂ynet
k,m−d,n

)
.

The link between the different time steps leads to a smoothing of outputs, i.e. to a removal of possible
outliers. The described time delay architecture is illustrated in Figure 6.12. In principle it is possible
to incorporate time delays directly into the ANNs, e.g. by so-called Time-Delay Neural Networks
(TDNN) (Lang and Hinton, 1988; Waibel et al., 1989). A separation in different networks operating
on information available at each time step m, yet, has the advantage that errors of single networks,
e.g. caused by adverse weight initialization in the beginning of the learning stage that may lead to a
trapping in a local minimum of E, can be smoothed; this effect is similar to the so-called committee
machines that combine different networks trained on the same task (e.g., Bishop, 1995).

Finally, the unscaled output of Net(m) is obtained from (6.35) by

Ŷnet
m,n = {ŷnet

1,m,n, ŷ
net
2,m,n, ..., ŷ

net
Knet,m,n}, with (6.36)

ŷnet
k,m,n =

1
2

(
˜̂y
net

k,m,n + 1
) [

max({ynet
1,m,n, y

net
2,m,n, ..., y

net
K set,m,n}) −min({ynet

1,m,n, y
net
2,m,n, ..., y

net
K set,m,n})

]

+ min({ynet
1,m,n, y

net
2,m,n, ..., y

net
K set,m,n}),

whereby ynet
k,m,n = ynet

k,n are the target and ŷnet
k,m,n the observed network outputs of Net(m) for earthquake

n at time step m. During the training phase, network weights of Net(m) are tried to be determined
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such that the error between targets ynet
k,m,n and outputs ŷnet

k,m,n, here defined by the sum-of-squares errors
(SSE)

Enet
m =

N set∑

n=1

Knet∑

k=1

(
ŷnet

k,m,n − ynet
k,m,n

)2
, (6.37)

is minimized. Details on the applied training procedure will be given below.

II. Specific Designs of Hypo(m), Mw(m), Rupt(m), and Spec(m)

So far, only the common design of Artificial Neural Networks in PreSEIS - denoted by Net(m) - has
been presented. This paragraph now will identify the specifics of each of the networks Hypo, Mw,
Rupt, and Spec that will be used to solve the different inversion tasks described above. These tasks are
not independent from each other which leads to a interconnection of the different nets. Figure 6.13
visualizes the linkage between the four networks schematically.

II.1 Network Hypo(m)
Network Hypo estimates the hypocenter location of the nth earthquake defined by (ϕhypo

n , λhypo
n , hhypo

n ).
The predicted hypocenter location at time step m (ϕ̂hypo

m,n , λ̂hypo
m,n , ĥhypo

m,n ) is based on information on the
relative P-wave onset times ∆ttrigg

i,m,n at the different sensors defined by (6.30):

Training input: Xhypo
m,n = {xhypo

1,m,n, xhypo
2,m,n, ..., xhypo

10,m,n}
= {∆ttrigg

1,m,n,∆ttrigg
2,m,n, ...,∆ttrigg

10,m,n} (6.38)

Target output : Yhypo
m,n = {yhypo

1,m,n, y
hypo
2,m,n, y

hypo
3,m,n}

= {ϕhypo
n , λ

hypo
n , hhypo

n } (6.39)

Network input : Xhypo
m,n = {xhypo

1,m,n, xhypo
2,m,n, ..., xhypo

10,m,n}
= {∆ttrigg

1,m,n,∆ttrigg
2,m,n, ...,∆ttrigg

10,m,n} (6.40)

Network output: Ŷhypo
m,n = {ŷhypo

1,m,n, ŷ
hypo
2,m,n, ŷ

hypo
3,m,n}

= {ϕ̂hypo
m,n , λ̂

hypo
m,n , ĥ

hypo
m,n } (6.41)

II.2 Network Mw(m)
Network Mw estimates the moment magnitude Mw,n of the nth earthquake. The predicted magnitude
at time step m M̂w m,n is based on information on the logarithmized CAV log

(
CAVi,m,n + 1

)
at the

different sensors defined by (6.31) and, secondly, on the true hypocenter location (ϕhypo
n , λhypo

n , hhypo
n ),

or the estimated hypocenter location (ϕ̂hypo
m,n , λ̂hypo

m,n , ĥhypo
m,n ) predicted by Hypo(m), respectively:
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Training input: XMw
m,n = {xMw

1,m,n, xMw
2,m,n, ..., xMw

13,m,n}
= {log

(
CAV1,m,n + 1

)
, log

(
CAV2,m,n + 1

)
, ..., log

(
CAV10,m,n + 1

)
,

ϕ
hypo
n , λ

hypo
n , hhypo

n } (6.42)

Target output : YMw
n = {yMw

1,m,n}
= Mw,n (6.43)

Network input : XMw
m,n = {xMw

1,m,n, xMw
2,m,n, ..., xMw

13,m,n}
= {log

(
CAV1,m,n + 1

)
, log

(
CAV2,m,n + 1

)
, ..., log

(
CAV10,m,n + 1

)
,

ϕ̂
hypo
m,n , λ̂

hypo
m,n , ĥ

hypo
m,n } (6.44)

Network output: ŶMw
m,n = {ŷMw

1,m,n}
= M̂w m,n (6.45)

II.3 Network Rupt(m)
Network Rupt estimates the start and end points of the evolving rupture of the nth earthquake de-
fined by the geographical coordinates (ϕrupt 1

n , λrupt 1
n , ϕrupt 2

n , λrupt 2
n ). The predicted coordinates

at time step m (ϕ̂rupt 1
m,n , λ̂rupt 1

m,n , ϕ̂rupt 2
m,n , λ̂rupt 2

m,n ) are based on information on the logarithmized CAV
log

(
CAVi,m,n + 1

)
at the different sensors defined by (6.31), on the true hypocenter location (ϕhypo

n ,
λ

hypo
n , hhypo

n ) or the estimated hypocenter location (ϕ̂hypo
m,n , λ̂hypo

m,n , ĥhypo
m,n ) predicted by Hypo(m), respec-

tively, and finally on the true moment magnitude Mw,n or the estimated magnitude M̂w m,n predicted
by Mw(m), respectively:

Training input: Xrupt
m,n = {xrupt

1,m,n, xrupt
2,m,n, ..., xrupt

14,m,n}
= {log

(
CAV1,m,n + 1

)
, log

(
CAV2,m,n + 1

)
, ..., log

(
CAV10,m,n + 1

)
,

ϕ
hypo
n , λ

hypo
n , hhypo

n , Mw,n} (6.46)

Target output: Yrupt
n = {yrupt

1,m,n, y
rupt
2,m,n, y

rupt
3,m,n, y

rupt
4,m,n}

= {ϕrupt 1
n , λ

rupt 1
n , ϕ

rupt 2
n , λ

rupt 2
n } (6.47)

Network input : Xrupt
m,n = {xrupt

1,m,n, xrupt
2,m,n, ..., xrupt

14,m,n}
= {log

(
CAV1,m,n + 1

)
, log

(
CAV2,m,n + 1

)
, ..., log

(
CAV10,m,n + 1

)
,

ϕ̂
hypo
m,n , λ̂

hypo
m,n , ĥ

hypo
m,n , M̂w m,n} (6.48)

Network output : Ŷrupt
m,n = {ŷrupt

1,m,n, ŷ
rupt
2,m,n, ŷ

rupt
3,m,n, ŷ

rupt
4,m,n}

= {ϕ̂rupt 1
m,n , λ̂

rupt 1
m,n , ϕ̂

rupt 2
m,n , λ̂

rupt 2
m,n } (6.49)

II.4 Network Spec(m, f)
Network Spec(f) is used to estimate the Fourier amplitude spectrum (FAS) of acceleration at fre-
quency identified by index f at site UserX of the nth earthquake defined by an, f . The predicted FAS
at time step m âm,n, f is based on information on the logarithmized CAV log

(
CAVi,m,n + 1

)
at the dif-

ferent sensors defined by (6.31), on the true hypocenter location (ϕhypo
n , λhypo

n , hhypo
n ) or the estimated
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Figure 6.13: Link between the four Neural Networks Hypo(m), Mw(m), Rupt(m), and Spec(m) in
PreSEIS and the two used parameter sets ∆ttrigg

m,n (6.30) and log
(
CAVm,n + 1

)
(6.31) at time step m for

earthquake n.

hypocenter location (ϕ̂hypo
m,n , λ̂hypo

m,n , ĥhypo
m,n ) predicted by Hypo(m), respectively, and finally on the true

moment magnitude Mw,n or the estimated magnitude M̂w m,n predicted by Mw(m), respectively:

Training input: Xspec
m,n = {xspec

1,m,n, xspec
2,m,n, ..., xspec

14,m,n}
= {log

(
CAV1,m,n + 1

)
, log

(
CAV2,m,n + 1

)
, ..., log

(
CAV10,m,n + 1

)
,

ϕ
hypo
n , λ

hypo
n , hhypo

n , Mw,n} (6.50)

Target output : Yspec
n, f = {yspec

1,m,n, f }
= {an, f } (6.51)

Network input : Xspec
m,n = {xspec

1,m,n, xspec
2,m,n, ..., xspec

14,m,n}
= {log

(
CAV1,m,n + 1

)
, log

(
CAV2,m,n + 1

)
, ..., log

(
CAV10,m,n + 1

)
,

ϕ̂
hypo
m,n , λ̂

hypo
m,n , ĥ

hypo
m,n , M̂w m,n} (6.52)

Network output: Ŷspec
m,n, f = {ŷspec

1,m,n, f }
= {âm,n, f } (6.53)

whereby f=1 identifies frequency 0.25 Hz, f=2 identifies frequency 1.25 Hz and f=12 identifies fre-
quency 11.25 Hz. Table 6.1 summarizes the specific designs of Hypo(m), Mw(m), Rupt(m), and
Spec(m).

6.2.3 Training of the Artificial Neural Networks

PreSEIS is developed on basis of 280 simulated earthquake scenarios in the Marmara region (Chapter
3.3). This database is split randomly into one subset with 196 training events (70%), one subset with
56 test events (20%), and one subset with 28 validation events (10%). The role of the different sets
was discussed in Chapter 6.1.5.

Artificial Enlargement of the Training Database
As a rule of thumb a training database with 196 example patterns allows to train a network with
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Neural Network Designs in PreSEIS

Net no. input units no. hidden units no. output units total number of
Inet Jnet Knet weights

(without bias) (without bias) (with bias)
Hypo 10 4, 6, 8, 10 3 59, 87, 115, 143

eq.(6.38) eq.(6.39)
Mw 14 4, 6, 8, 10 1 65, 97, 129, 161

eq.(6.42) eq.(6.43)
Rupt 14 4, 6, 8, 10 4 80, 118, 156, 194

eq.(6.46) eq.(6.47)
Spec 14 4, 6, 8, 10 1 (per frequency) 65, 97, 129, 161

eq.(6.50) eq.(6.51)

Table 6.1: Number of input, hidden and output units in the four Two-Layer Neural Networks Hypo for
earthquake localization, Mw for magnitude determination, Rupt for the estimation of rupture location
and dimensions, and finally Spec for the prediction of the Fourier amplitude spectrum of acceleration
(FAS) at site UserX. The total number of weights (right column) are free parameters within the net-
works and have to be adapted to the given tasks through learning from examples. Note that the total
number of weights includes the two bias terms w(1)

j0 and w(2)
k0 .

approximately 20 weight parameters; that is, each free parameter requires around 10 example patterns4

(e.g., Swingler, 1996). From Table 6.1 follows that the Neural Networks trained on the inversion for
seismic source parameters in PreSEIS are of much larger complexities. For increased stability of
the inversion routine, the available database of scenario earthquakes is artificially enlarged by the
manipulation of the existing data: PreSEIS is allowed to make small errors when picking the P-wave
onsets at the different sensors. By this, additional training patterns are obtained. A similar approach
has been proposed by Swingler (1996). Furthermore, the described procedure has the advantage
that it allows building a robust statistical model with a high degree of generalization capability that is
strongly required for real-time operation of PreSEIS because seismic wave-onsets will of course never
be perfectly picked. For each of the 280 scenario patterns in the original database, five additional
patterns with incorrectly picked onsets are determined and integrated into the updated set. The new
database therewith encompasses 6×196 = 1, 176 training examples, 6×56 = 336 test, and 6×28 = 168
validation patterns. The distribution of picking errors of the patterns in the new database is shown in
the histogram in Figure 6.14.

The Artificial Neural Networks are successively optimized through three different training algorithms:
(1) Gradient Descent with Momentum Term, (2) Resilient Propagation (RPROP), and (3) Levenberg-
Marquardt. A short description of these algorithms was given in Chapter 6.1.2.

The Optimum Number of Hidden Units and Learning Epochs
As pointed out before, one of the most crucial issues in neural computations is the determination

of model complexity, that is the optimum number of hidden units. For that purpose the database of

4The number of required training patterns depends on the acceptable error of the ANNs as well as on the intrinsic
dimension of the inversion problem (e.g., Swingler, 1996).
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Figure 6.14: Histogram of picking errors of P-wave onsets at the ten early warning stations for
280 simulated earthquake scenarios in the database. A picking error of zero means that the onset is
perfectly recognized. Through the manipulation of the available data the original dataset (without
picking errors) is artificially enlarged.

Figure 6.15: Location (left) and magnitude (right) prediction errors (MSE) as a function of training
epochs for four, six, eight and ten neurons in the hidden layer. One half of the available patterns
in the database is used for training of Hypo and Mw (solid lines), the remaining patterns are used
for validation (dashed lines). The figures demonstrate the trade-off between network accuracy and
generalization capability of the different nets. Wanted is a network that has low errors for both,
training and test datasets. For the tasks presented here six neurons in the hidden layer appear to be
appropriate.
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correctly and incorrectly picked ground motion time series is subdivided into two equally sized sub-
sets: the first set is used for training (model selection), the second set for model validation. Location
and magnitude prediction errors as a function of learning epochs are calculated for four, six, eight and
ten hidden units and are plotted in Figure 6.15: the solid lines indicate the temporal evolution of the
mean-square-error (MSE) for the training set, the dashed lines the development of MSE for the test
set.

A well-balanced Artificial Neural Network performs well on known training alike on unknown test
data provided of course that they are subject to the same statistical process. Wanted is the network
with the smallest overall failure rate. As illustrated in Figure 6.15, six neurons in the hidden layer
appear to be appropriate in the presented inversion problems. This means that the applied networks
Hypo and Mw in PreSEIS have 87 or 97 weights, respectively (see Table 6.1). These weights have
to be optimized through learning from a database of 1,176 example patterns. Analyses for the other
two networks Rupt and Spec give similar results. To confirm robustness of the findings above, this
study was repeated several times with changing training and test sets as well as with different weight
initializations at the beginning of the learning phase.

The optimum number of learning epochs is determined through early stopping (see Chapter 6.1.5),
i.e. training is terminated once the error for the independent validation set increases. This allows for
determining the transition point at which the Artificial Neural Networks start to reproduce the training
data at the expense of generalization capability. For the tasks presented here, Levenberg-Marquardt
optimization usually requires less than 40 training epochs. For the other optimization algorithms
the number of required epochs is significantly higher and ranges between some hundred to some
thousands iterations for Gradient Descent with Momentum Term and Resilient Propagation.

6.2.4 Performance Analyses

I. Comparing Neural Network Outputs for Different Optimization Algorithms
Network performances after training through the three algorithms - (1) Gradient Descent with Mo-

mentum Term, (2) Resilient Propagation (RPROP), and (3) Levenberg-Marquardt - are visualized in
Figure 6.16. The statistics summarize the results for both - training and test patterns - as a function
of time after triggering of the first sensor. (A separate analysis for training and test sets is shown
in Figure 6.17.) For each optimization algorithm, training and evaluation is repeated four times with
changing training, test, and validation sets (bootstrapping, see Chapter 6.1.5), as well as with different
weight initializations at the beginning of the training procedure.

Absolute location errors (Figure 6.16, left column) are quantified through the 25th, 50th, 75th and the
95th percentiles; the 50th percentile is better known as the median that divides the lower half from the
higher half of a statistical distribution. Absolute magnitude errors for training and test earthquakes
(Figure 6.16, middle column) are quantified at each time step through the mean prediction error and
its unit standard deviation. For all three optimization algorithms there is a clear increase of reliability
of predictions of earthquake hypocenter locations and moment magnitudes with ongoing time. The
average location error (median) is less than 10 km after only 0.5 s after triggering and can be reduced
to approximately 5 km during the following 15 s. This high accuracy is due to the advantage that the
ANNs have learned the a priori information, that earthquakes usually cluster along the major fault
segments in the Sea of Marmara (Figure 3.6). The 95th percentile of the location errors generally
starts with 35 km and falls to a value between 25 to 30 km. These higher errors are usually linked to
earthquakes that occur beyond the fault segments or in the border areas of the sensor network. With
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Resilient Propagation (RPROP)
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Figure 6.16: Performance analyses for (1) Gradient Descent with Momentum Term, (2) Resilient
Propagation (RPROP), and (3) Levenberg-Marquardt optimization. For each optimization method
the ANNs are trained and evaluated four times with randomly changing training, validation and test
subsets (bootstrapping), as well as with different weight initializations at the beginning of the training
procedure. The errors refer to the entire database of 280 earthquake scenarios, i.e. they are determined
for training, validation and test patterns. Figures in the left column show the (hypocentral) location
errors as a function of time after P-wave arrival at the first early warning station. The plots visualize
the 25th, 50th, 75th, and 95th percentiles of the error distributions. The 50th percentile is better known
as the median value. For all three optimization methods 50% of the scenarios have localization errors
of less than 10 km 0.5 seconds after triggering and less than 5 km after 10 seconds. The figures in the
middle column visualize the average magnitude errors for the same time span. The mean error at each
time step is zero, the unit standard deviation is 0.7 units after 0.5 seconds and 0.3 after 15 seconds for
Levenberg-Marquardt optimization. Estimated source locations and magnitudes are combined with
empirical attenuation laws to predict ground motion at site UserX. PreSEIS issues a warning whenever
a certain threshold of ground shaking will be likely exceeded. The figures in the right column show
the classification results after introduction of a threshold of 5.5 seismic intensity units. The error
analyses demonstrate a clear enhancement of reliability with ongoing time, and, secondly, show a
clear superiority of the Levenberg-Marquardt algorithm compared to Gradient Descent and Resilient
Propagation. Details in the text.
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respect to moment magnitudes the mean error is zero at all time steps with a clear decrease of the
unit standard deviation from 0.7 to 0.3 magnitude units in the analyzed 15 s interval for Levenberg-
Marquardt optimization. For the other two optimization methods the errors are somewhat higher.

Note that location and magnitude errors are not strongly linked to each other because Mw(m) receives
aside from the estimated hypocenter location by Hypo(m) additional amplitude information in terms
of the cumulative absolute velocity (CAV) that itself is affected by source-to-site distances5 . All results
turn out to be very stable and hardly affected by the selected data as well as weight initialization. The
best performance is achieved for Levenberg-Marquardt optimization.

From the combination of (estimated) source locations and (estimated) magnitudes with empirical at-
tenuation laws, seismic ground motion can be estimated at any given site. Based on the stochastically
simulated ground motion time series for the Marmara region, attenuation relations for different ground
motion parameters have been determined in Chapter 4.4. Figure 6.16 (right column) shows the per-
formance of the different Neural Networks when translating location and magnitude information into
estimates of seismic intensity (Chapter 4.1.4) at site UserX after the introduction of a certain thresh-
old. Whenever the expected seismic intensity at the site exceeds 5.5 units, PreSEIS issues a warning.
Note that intensity 5.5 earthquakes are generally non-destructive. However, this fairly low thresh-
old has been introduced here to assure a well-balanced distribution of alarm and non-alarm events.
Remember that the attenuation laws determined in Chapter 4.4 are rather conservative with a rapid
decrease of seismic intensity with increasing source-to-site distances. The actual intensity level might
be a half to a full unit higher than predicted from the data-consistent attenuation laws.

After the introduction of the alarm threshold at I = 5.5 intensity units, the database comprises 112
alarm events (40%) and 168 (60%) non-alarm events. Outputs of PreSEIS are classified as follows:
(1) a correct alert means recognition of an earthquake with I ≥ 5.5, (2) a missed alert means that
an earthquake with I ≥ 5.5 is not recognized, (3) a correct all-clear means recognition of a non-
destructive earthquake, and (4) a false alert means an erroneous warning in case of a non-destructive
earthquake. The classification results of the different Neural Networks are shown in Figure 6.16, right
column. Note, that the applied attenuation laws for seismic intensity described in Chapter 4.4 quantify
source-to-site distances through the Joyner-Boore distance r jb that is defined by the closest horizontal
distance to the vertical projection of the rupture onto the surface. The required information on rupture
expansion for the study described above is provided through network Rupt(m) instead of network
Hypo(m). Once again, there is a clear improvement of predictions with ongoing time.

The best performance with lowest errors in location, magnitude and ground motion prediction is ob-
tained for Levenberg-Marquardt optimization. At the same time Levenberg-Marquardt requires only
a fractional amount of training time in comparison to RPROP and Gradient Descent with Momentum
Term and therewith is the most suitable optimization algorithm here.

A separate error analyses for training and test data is visualized in Figure 6.17. Note that there are
only minor differences between performances for both sets demonstrating the high generalization
capability of the Neural Networks as a consequence of the early stopping procedure (Chapter 6.1.5).

II. Detailed Analyses of Two Scenario Earthquakes
Two earthquake scenarios will be studied in more detail. Scenario A is a magnitude Mw = 6.9 earth-

quake, approximately 55 km far from Istanbul and 40 km from UserX, accompanied by a 45 km long
5The possibility to use amplitude data in terms of PGA and CAV for source localization in terms of the strong motion

centroid has been studied by Kanamori (1993) (see Chapter 5.3).
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Figure 6.17: Separate performance analyses for training and test subsets for Levenberg-Marquardt
optimization. Top: Epicenter distribution of training (left) and test earthquakes (right). Bottom:
a) Location and magnitude errors for the training data, b) Location and magnitude errors for the
test data. For further explanation see caption of Figure 6.16. The statistics demonstrate the high
generalization capability of the Artificial Neural Networks in PreSEIS as a consequence of the early
stopping procedure.
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rupture of fault SEGMENT 4 (#8, see Appendix B); Scenario B is a magnitude Mw = 6.3 earthquake,
approximately 60 km far from Istanbul and 75 km from UserX, accompanied by a 20 km long rupture
of fault SEGMENT 1 (#30, see Appendix B). The choice of these two scenario earthquakes is due to
the consideration that PreSEIS should be demonstrated for two scenarios with different source loca-
tions and different magnitudes. A Mw = 7.5 earthquake as, e.g., proposed by Parsons et al. (2000) and
Erdik et al. (2003a) as a possible worst case scenario for Istanbul, would be accompanied - following
the Wells-Coppersmith relation in (2.22) - by a rupture of approximately 120 km length. This expan-
sion, however, requires joint ruptures of two to three fault segments in the Sea of Marmara. The joint
rupture of SEGMENTS 1 to 3 has been made possible in the synthetic database by the introduction of
the artificial SEGMENT 4 (see Figure 3.6; remember that the applied Stochastic Simulation Method
for Finite Faults (Chapter 3.2) can only model plane rupture propagation.) The simulation of strong
earthquakes along the artificial fault SEGMENT 4, however, can cause misleading distributions of
ground motion along the rupture with completely different shapes of shake maps than, e.g., predicted
by Erdik et al. (2003a). To obtain more realistic distributions, I have decided to show only results
for scenarios that are linked to ruptures of single fault segments even if this restricts the modeling to
lower magnitudes.

II.1 Simulated Acceleration Time Series and Pre-Warning Times in the Marmara Region
The stochastically simulated mean horizontal components of ground motion at the early warning

stations and at sites UserX and ISTAN are shown in Figure 6.18 (top) for Scenario A and in Figure
6.19 (top) for Scenario B. The time series are sorted according to P-wave arrivals. The Scenario A
earthquake is detected by station SINOB, approximately 4.0 s after rupture initiation. The Scenario B
earthquake is detected by station FARGE, approximately 3.5 s after rupture initiation. The maps on
the bottom left in both figures illustrate the maximum available pre-warning times defined by the time
window between the P-wave detection at the first sensor and S-wave arrivals at the different sites in
the Marmara region (see eq.(1.1)). Warning times for UserX are less than 10.0 s for the Scenario A
and less than 20.0 s for the Scenario B earthquake.

II.2 Shake Maps of Seismic Intensity
Figures 6.18 and 6.19, bottom right, show for both scenario earthquakes shake maps of seismic

intensity. The upper figures visualize the distribution of seismic (instrumental) intensity in the Mar-
mara region for rock condition (NEHRP B, see Chapter 2.3.3), the lower figures show shake maps for
Istanbul metropolitan area including mean site amplifications for different soil types. (The expansion
of the latter shake map is indicated by a square in the upper figures.) All shake maps have been de-
termined from attenuation laws and site- and magnitude-dependent amplification factors derived from
the stochastic simulated database as described in Chapter 4.4. Once again notice that these attenuation
relations are rather conservative (see Figure 4.12) with a steeper decay at large source-to-site distances
in comparison to other laws: in distances of more than 60 km seismic intensity might be a full unit
lower than predicted by the attenuation relation proposed by Erdik et al. (1985).

The shake map procedure applied here can only reflect average amplification values at the different
sites. Considering site effects, however, is a significant enhancement of shake maps that are based
on the assumption of rock conditions. A further enhancement of shake maps is obtained from the
integration of dynamic features of rupture propagation - such as rupture directivity - that have been
neglected so far. Examples of shake maps modified by directivity effects are shown in Figure 6.29.
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Figure 6.18: Scenario A (Mw = 6.9). Top: Stochastically simulated mean horizontal components
of acceleration at the early warning stations of IERREWS and at sites ISTAN and UserX (see Figure
1.3). Bottom, left: Warning times in the Marmara region defined by the time window between P-wave
detection at station SINOB and S-wave arrivals. Bottom, right: Shake maps of seismic intensity in the
Marmara region for rock condition and, beneath, with simplified site effects in Istanbul metropolitan
area. 123



Chapter 6. PreSEIS: Earthquake Early Warning through Artificial Neural Networks

Figure 6.19: Scenario B (Mw = 6.3). Top: Stochastically simulated mean horizontal components
of acceleration at the early warning stations of IERREWS and at sites ISTAN and UserX (see Figure
1.3). Bottom, left: Warning times in the Marmara region defined by the time window between P-wave
detection at station FARGE and S-wave arrivals. Bottom, right: Shake maps of seismic intensity in
the Marmara region for rock condition and, beneath, with site effects in Istanbul metropolitan area.
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A conversion scheme for the different intensity levels into simple descriptions of perceived shaking
and potential damage is provided by the scales on the lower left in Figures 6.18 and 6.19. This scheme
follows the Californian ShakeMap classification proposed by Wald et al. (1999b) and is only restric-
tively applicable to northwestern Turkey. Translations like this have the advantage that even unskilled
persons rapidly understand information provided by shake maps and might respond appropriately to
seismic warnings.

Shake maps for the Scenario A earthquake for further ground motion parameters (aside from inten-
sity) are shown in Figure 6.20. Peak ground acceleration (PGA), peak ground velocity (PGV), peak
ground displacement (PGD), pseudo-spectral acceleration (PSA) at 1.0 s and 2.0 s at 5% damping,
and the cumulative absolute velocity (CAV) are calculated from the attenuation relations determined
in Chapter 4.4. For the interpretation of the different parameters with respect to damage potential see
Chapter 4.1.

II.3 Location and Magnitude Estimates by PreSEIS: Hypo(m) and Mw(m)
Absolute prediction errors of hypocenter locations and estimates of moment magnitudes for Sce-

nario A and Scenario B by networks Hypo and Mw - each as a function of time after triggering of the
first sensor - are visualized in Figure 6.21. For the results shown here, Hypo and Mw are optimized
through the Levenberg-Marquardt algorithm. Estimates by PreSEIS are indicated by solid lines. The
results are overlaid by the 25th to 95th percentiles and confidence intervals of one standard deviation
that have been determined from the entire dataset shown in Figure 6.16. Bars at the bottom line mark
the P-wave arrivals at the different early warning sensors of IERREWS. Predictions are smoothed over
3.5 s intervals which means that d = 6 in (6.35).

Even if the reliabilities of predictions for the entire dataset clearly increase with time (Figure 6.16),
there is not necessarily such a clear convergence towards correct source parameters for single events
(Figure 6.21). This behavior is likely due to the fact that the training database contains correctly as
well as incorrectly picked events which forces the Neural Networks to stronger generalization and
averaging over similar input-output patterns. Figure 6.22 shows the network performances for both
scenarios under the assumption that P-wave onsets cannot be picked perfectly. P-wave onsets are once
again indicated by the bars at the bottom lines.

II.4 Ground Motion Prediction by PreSEIS: Hypo(m), Mw(m) and Rupt(m)
Estimates of hypocenter locations and magnitudes alone are not directly meaningful for seismic

risk and damage assessment. Only in combination with empirical attenuation laws it is possible to
quantify the expected level of ground shaking at potential user sites.

Figures 6.23 and 6.24 show the prediction errors for seismic ground motion at site UserX based on
estimates of magnitudes and rupture locations provided through Mw and Rupt: the solid lines show
the predicted level of ground motion at site UserX in terms of parameters PGA, PGV, PGD, PSA
at 0.3 s, 1.0 s and 2.0 s at 5% damping, seismic intensity, Arias intensity, and CAV as a function
of time. In addition, the figures show the level of ground shaking for the true magnitude and true
rupture location in combination with the empirical attenuation laws derived in Chapter 4.4 (dashed
lines); finally, the plots also illustrate the correct levels of ground motion derived directly from the
stochastically simulated data at site UserX (dashdot lines).

While the fit between the estimated, the calculated (from attenuation laws), and the observed level of
ground motion at site UserX is very satisfying for the Scenario B earthquake (Figure 6.24), ground
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Figure 6.20: Scenario A (Mw = 6.9). Shake maps for Istanbul metropolitan area for different ground
motion parameters calculated from the attenuation relations determined in Chapter 4.4. From top left
to bottom right: peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displace-
ment (PGD), pseudo-spectral acceleration (PSA) at 1.0 s and 2.0 s at 5% damping, and cumulative
absolute velocity (CAV).
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Figure 6.21: Scenario A (top) and B (bottom). Performance analyses with location errors (left) and
predicted magnitudes (right) as a function of time after P-wave detection at the first sensor presuming
the ideal condition that P-wave onsets are perfectly picked. Percentiles and confidence intervals refer
to results obtained for the entire database (Figure 6.16). Bars at the bottom lines indicate P-wave
arrivals at the different sensors; for the identification of the different stations see Figures 6.18 and
6.19, top. Even if there is a clear enhancement in estimates of source locations and magnitudes with
ongoing time for the entire database (Figure 6.16), for single events there is not necessarily such a
clear convergence towards correct source parameters. Remember that for earthquake early warning
only the first few seconds (≈ 4.0 s) are of interest.
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Figure 6.22: Scenario A (left) and B (right). Performance analyses for three examples of incorrectly
picked P-wave onsets at the different stations. For further explanations see caption of Figure 6.21.

128



6.2 PreSEIS: Estimates of Seismic Parameters Pre-SEISmic Shaking

motion estimated by PreSEIS in case of the Scenario A earthquake is partly two times higher than
observed (Figure 6.23). Largest errors occur between 10.0 and 15.0 s after triggering. Remember,
however, that due to the very small pre-warning times in the Marmara region only the first few seconds
(≈ 4.0 s) might be relevant for earthquake early warning. Large errors in ground motion prediction are
mainly a consequence of failures in estimates of rupture expansions: UserX is only 30 km far from the
rupture; even small errors in estimated rupture locations have strong impact on the level of predicted
ground motion.

Note also in Figure 6.23 the fairly high differences between ground motion calculated from empirical
attenuation laws and observed shaking, e.g. for PGD and PSA at 1.0 s. For real data this effect
is expected to be even stronger (in particular caused by site effects). The greatest uncertainty in
ground motion prediction is usually not due to errors in magnitude and hypocenter estimates but is a
consequence of inaccuracies in empirical attenuation laws (Allen, 2005). This means that the accuracy
of predicted locations and magnitudes is less important than the reliability of attenuation laws.

II.5 Alert Maps of Seismic Intensity by PreSEIS: Hypo(m), Mw(m), and Rupt(m)
Shake maps that are solely based on estimated source locations and magnitudes are called alert

maps. Alert maps are, in particular, for users of interest that operate or rely on networks of lifelines
and infrastructures, such as for communication, water supply, electricity, or transportation. Informa-
tion provided by shake and alert maps enables the rapid identification of network nodes that will most
likely suffer damage; the maintenance of lifelines might be ensured by rapid reconfiguration of af-
fected networks. With ongoing time alert maps can gradually transform into shake maps once seismic
waves have arrived at stations deployed within the shake map area. Shake maps are required for the
assistance of rapid response measures taken after earthquake catastrophes (see Chapter 1.1).

Figure 6.25 shows the estimated alert maps for seismic intensity for Scenario A, and Figure 6.26 for
Scenario B at 0.5, 1.5, 2.5 and 3.5 s after P-wave arrival at the first sensor. The top figures indicate
the location of the wavefronts of direct P- and S-waves, as well as the estimated and true epicenter
locations. Alert maps for rock condition are shown in the middle, with site effects in the Istanbul
metropolitan area at the bottom. Target shake maps are shown in Figures 6.18 and 6.19. In Scenario A
intensity is at first slightly overestimated, in Scenario B underestimated. Rupture expansions estimated
through Rupt are indicated by solid lines.

II.6 Estimates of Fourier Amplitude Spectra by PreSEIS: Spec(m,f)
Aside from magnitudes, hypocenter locations and rupture expansions, PreSEIS is capable to esti-

mate the smoothed Fourier amplitude spectrum (FAS) of acceleration from 0.25 to 11.25 Hz through
the Neural Network Spec. Figure 6.27 and Figure 6.28 show the estimated spectra for Scenario A and
B 0.5 to 3.5 seconds after triggering. Note that this procedure is different from the ground motion pre-
diction described atop: the FAS is estimated directly and is not determined from attenuation laws. This
has the advantage that not two sources of uncertainties are combined with each other: uncertainties of
estimated magnitudes and distances and uncertainties of the empirical attenuation laws. The ANNs
themselves have learned the local attenuation characteristics affecting seismic wave propagation. This
is a very promising approach with good results as demonstrated here for the two scenarios.
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Figure 6.23: Scenario A (Mw = 6.9). Level of shaking at site UserX quantified through different
ground motion parameters. Solid lines: ground motion from estimated rupture location and magnitude
combined with empirical attenuation laws; dashed lines: ground motion from true rupture location and
magnitude combined with attenuation laws; dashdot lines: determined from simulated acceleration
time series at site UserX. Ground motion is partly two times overestimated by PreSEIS, in particular
between 10.0 and 15.0 s after triggering. For early warning, however, only the first 4.0 s are relevant.
Note the significant differences between ground motion calculated from empirical attenuation laws
(Chapter 4.4) and the observed ground shaking, e.g. for PGD and PSA at 1.0 s. These errors are mainly
caused by failures in predictions of rupture expansions. Uncertainties in the empirical attenuation
laws have very strong impact on the predicted ground motion and are more relevant than accuracies
in estimated hypocenter locations and magnitudes (Allen, 2005).
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Figure 6.24: Scenario B (Mw = 6.3). See caption of Figure 6.23. The estimated (by PreSEIS), the
calculated (from attenuation laws) and the observed level of ground shaking at site UserX fit very
well.
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Figure 6.25: Scenario A (Mw = 6.9). Real-time estimates of seismic intensity at 0.5, 1.5, 2.5 and
3.5 s after P-wave arrival at station SINOB. Top: P- and S-wavefronts, as well as true and estimated
epicenter locations. Middle: Alert maps of seismic intensity for rock condition. Bottom: Alert maps
of seismic intensity with site effects in Istanbul metropolitan area. For target maps see Figure 6.18.
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Figure 6.26: Scenario B (Mw = 6.3). Real-time estimates of seismic intensity at 0.5, 1.5, 2.5 and
3.5 s after P-wave arrival at station FARGE. Top: P- and S-wavefronts as well as true and estimated
epicenter locations. Middle: Alert maps of seismic intensity for rock condition. Bottom: Alert maps
of seismic intensity with site effects in Istanbul metropolitan area. For target maps see Figure 6.19.
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Figure 6.27: Scenario A (Mw = 6.9). True (thin line) and estimated (thick line) Fourier amplitude
spectra (FAS) at site UserX at 0.5, 1.5, 2.5, and 3.5 seconds after P-wave arrival at station SINOB.
The ANNs themselves have learned the local attenuation characteristics of the crust; no empirical
attenuation laws are required.
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Figure 6.28: Scenario B (Mw = 6.3). True (thin line) and estimated (thick line) Fourier amplitude
spectra (FAS) at site UserX at 0.5, 1.5, 2.5, and 3.5 seconds after P-wave arrival at station FARGE.
See caption of Figure 6.27.
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6.3 Discussions

PreSEIS (Pre-SEISmic shaking) is a methodology for the non-linear inversion for seismic source
parameters from time-dependent input information on ground motion at several sensors that are com-
bined within a seismic network with real-time data transmission. The inversion for source locations
and magnitudes is based on Two-Layer Feed-Forward Neural Networks (Chapter 6.1.3). Network
weight parameters are iteratively updated during a training phase until appropriate statistical models
of the data are found. As described in this chapter, I have tested three parameter optimization methods
and found a clear superiority of the Levenberg-Marquardt algorithm to Gradient Descent with Mo-
mentum Term and Resilient Propagation (RPROP) with respect to error rates of the resulting models
as well as to the number of required training iterations.

With ongoing time more and more sensors will detect the propagating seismic waves and longer time
series of ground motion will become available at the different sites. For the entire dataset of 280
simulated scenario earthquakes in the Marmara region it is clearly possible to enhance estimates of
seismic parameters with time. This implies that at each time step after triggering of the first sensor,
estimates can be provided with assignable uncertainties. The trade-off between reliabilities of warn-
ings and remaining warning and response times can be only solved in consideration of user-specific
needs and costs in case of possible missed and false alerts. Note that for single event scenarios there
is not necessarily such a clear convergence towards correct source parameters with ongoing time and
small interim deterioration can be observed. This behavior might be a result of the high tolerance of
PreSEIS towards missed P-wave onsets on which the Neural Networks have been trained.

In combination with empirical attenuation laws estimated source locations and magnitudes can be
used to predict the level of ground motion either at a specific site or in expanded maps, called alert
maps. Alert maps provide meaningful information for users that operate or depend on infrastructure or
lifeline networks, including, e.g., communication, electricity, water supply and transportation. Neural
Networks in PreSEIS are not only trained to estimate positions of earthquake hypocenters but also
to predict likely locations and expansions of evolving ruptures, i.e. of finite sources. Predictions of
ground motion can benefit from this information because shaking generally rather depends on closest
distance between the rupture and a given site than on the hypocentral distance. In addition, effects of
rupture directivity can be more easily integrated after the assessment of rupture expansions. Examples
of the effect of rupture directivity are schematically illustrated in Figure 6.29.

One outcome of the performance studies of PreSEIS in this chapter is that not the accuracy of magni-
tude and location is most essential but uncertainties in attenuation laws. In particular, site effects and
non-linear effects in case of real strong motion data might be crucial. Also source effects have strong
impact on ground motion as follows from the attenuation laws determined in Chapter 4.4. A possible
way to solve the problem of uncertainties in attenuation laws has been demonstrated in this chapter
using the example of predicting the Fourier amplitude spectrum (FAS) of ground shaking at a given
site from ground motion measurements at the early warning sensors: PreSEIS is trained to estimate
the FAS without the indirect combination of estimated source parameters with empirical attenuation
relations. As a consequence, the Neural Networks themselves have to learn the local attenuation char-
acteristics affecting the propagating seismic waves. Performance analyses in this chapter reveal very
good results of this approach. For further discussions see Chapter 7.
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Figure 6.29: Scenario A (top) and B (bottom). Shake maps for seismic intensity for rock condi-
tion without (left) and with (estimated) directivity effects (right). The maps rather demonstrate the
principle idea than true effects.

137





Chapter 7

Summary and Outlook

This chapter will summarize the most important results linked to the PreSEIS (Pre-SEISmic shaking)
methodology for earthquake early warning developed in this thesis. For a more detailed description
of the single statements I will give references to the respective chapters in this work. Aside from
the stochastic simulation of seismic ground motion and the development of PreSEIS described in
this summary, this thesis makes an important contribution to earthquake early warning in Romania:
Scaling relations with assigned confidence intervals allow for a rapid estimation of the expected level
of ground shaking in the Romanian capital Bucharest using the maximum P-wave amplitude in the
epicentral Vrancea region (Chapter 5.3.4). These estimates are available approximately 25 s before
high-amplitude shear waves arrive in Bucharest. The feasibility to link the output of the early warning
system to the Urban Shakemap for Bucharest (Wirth, 2004; Bartlakowski et al., 2006) is demonstrated
using the example of the October 27, 2004 (Mw = 5.9) Vrancea earthquake.

7.1 Summary

Either embedded in a Real-Time Earthquake Information System or as stand-alone, earthquake early
warning systems can make a highly beneficial contribution to co-seismic risk reduction. Early warn-
ing systems make basically use of differences in the propagation speed of seismic and electromagnetic
waves; if necessary they issue warnings to potential users before seismic waves arrive. Pre-warning
times thereby are very little compared to other natural hazards such as tsunamis, volcanic eruptions, or
floods: within only a few seconds the systems must recognize the severity of impending ground shak-
ing and trigger automatisms to reduce likely damage to structures and equipment by the approaching
seismic waves (Chapter 1.1). Despite of significant progress in seismic real-time data processing and
communication technologies in the last years, there are only a few earthquake early warning systems
in operation now (Chapter 5.2). The main obstacle for the realization of warning systems is the claim
of extremely high reliability together with the need to issue warnings as soon as possible. Earthquake
magnitudes are favorably estimated from the initial parts (P-wave) of seismic recordings at single sta-
tions. This on-site warning approach is very quick, however, less robust than the traditional regional
warning approach that is based on station networks (Chapter 5.1). Empirical studies (e.g., Kanamori,
2005) support the principle feasibility of this approach, or at least the possibility to specify a lower
boundary of earthquake magnitudes within the first three seconds (Chapter 5.3). High scatter in esti-
mates, though, often requires averaging over predictions at several on-site warning sensors, which is
in contradiction to the original idea of on-site warning.
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In this thesis, I have developed a methodology for earthquake early warning - called PreSEIS (Pre-
SEISmic shaking) - that takes advantage of both, regional and on-site warning paradigms. PreSEIS
integrates all available information from a small network of seismic sensors - similar to the regional
warning approach (Chapter 6.2). In contrast to regional warning, however, PreSEIS does not require
that seismic waves have arrived at all sensors before warnings are issued because also non-triggered
stations provide important information on the location of the seismic source and help to confine the
space of possible solutions. First estimates are available only 0.5 s after triggering of the first early
warning sensor. PreSEIS therewith is as quick as the on-site warning approach that is based on single
stations at a concurrent higher stability due to a higher number of involved stations.

PreSEIS has been developed using the example of the Turkish mega-city Istanbul. Istanbul is exposed
to an extremely high seismic risk due to its closeness to seismic fault segments in the Sea of Marmara
and the high concentration of human and industrial settlements in the Marmara region (Chapter 1.3).
These fault segments form the western continuation of the North Anatolian Fault and partly run only
15 to 20 km south of Istanbul. From previous earthquakes in the Sea of Marmara and from the stress
transfer of the 1999 Kocaeli earthquake (Mw = 7.4) Parsons et al. (2000) determine a 62 ± 15%
probability of strong shaking in Istanbul metropolitan area during the next 30 years and 32 ± 12%
during the next decade. Erdik et al. (2003a) estimate that in case of a Mw = 7.5 earthquake in the Sea
of Marmara destructions might amount to about USD 1.1 ·1010 losses, with 40,000 to 50,000 deaths,
and between 430,000 to 600,000 destroyed households. Since autumn 2002 the Kandilli-Observatory
of the Bogazici University operates ten strong motion sensors with real-time communication link to
two datacenters in Istanbul. These early warning stations are part of the Istanbul Earthquake Rapid
Response and Early Warning System (IERREWS, Chapter 5.2). Pre-warning times are a crucial issue
when designing early warning systems. They are generally defined by the time window between
P-wave detection at the first early warning station and the arrival of high-amplitude S-waves at the
user site. In case of Istanbul average pre-warning times are expected to range between 8 to 15 s
(Chapter 6.2). This short time span implies that an earthquake early warning system in the Marmara
region should be capable to estimate the severity of impending ground shaking in less than 4.0 s after
detection.

The low seismicity rate in the Marmara region (Chapter 1.3) aggravates the development and ver-
ification of algorithms for earthquake early warning. Many other regions in the world are affected
by the same problem, in particular with respect to missing strong motion data. For the development
and evaluation of PreSEIS in this thesis I use simulated ground shaking time series obtained from
the Stochastic Simulation Method for Finite Faults (Beresnev and Atkinson, 1997, see Chapter 3.2).
This approach provides a simple and suitable technique for the simulation of ground shaking time
series for moderate and strong earthquakes that cover the frequency band of up to about 10 Hz. Its
power is that detailed specifications of earthquake sources and propagation effects on seismic waves
are not required. In contrast to the Stochastic Point Source Approach (Boore, 1983) the Stochastic
Simulation Method for Finite Faults (Beresnev and Atkinson, 1997) allows for the inclusion of source
dimensions. This is a strongly required extension of the initial approach since source-to-site distances
in the Marmara region are extremely short so that source finiteness must be considered. The princi-
ple idea behind the stochastic simulation of seismic acceleration is the combination of the estimated
Fourier amplitude spectrum of ground motion at a given site with a random phase (Boore, 1983,
2003). In case of the Stochastic Simulation Method for Finite Faults the seismic rupture is considered
to be composed of numerous point sources. The final seismogram is obtained from summation of
contributions of all subfault elements considering respective time delays due to rupture propagation.
Compressional waves are due to their high speed essential for early warning. The Stochastic Simu-
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lation Method for Finite Faults for shear waves is therefore extended to compressional waves so that
both, P- and S-waves, can be modeled in this thesis (Chapter 3.2.2).

The source spectrum for finite faults is highly sensitive to seismic wave speed (α, β), as well as to
maximum slip and rupture velocities (vmax and vr) (Chapter 3.2). For seismic simulations in this work
a simple 1D velocity model with α = 5.7 km/s, β = 3.3 km/s, and vr = 0.8 β is used (Table 3.1).
Source parameters, such as the maximum slip velocity controlled by the dynamic stress drop of the
earthquake, are kept variable within physically reasonable limits (Chapter 3.3). Bi- and unidirectional
ruptures are modeled. For the integration of site effects at the sensor and user sites, I make use
of mean amplification spectra empirically determined by Boore and Joyner (1997) for different soil
types following the NEHRP soil classification scheme (Building Seismic Safety Council, 1995); the
missing amplification function for NEHRP class B thereby is determined from non-linear interpolation
(Chapter 2.3.3). With adequate input parameters for the Marmara region taken from the literature, a
set of synthetic ground motion records for 280 scenarios with 4.5 ≤ Mw ≤ 7.5 is generated (Chapter
3.3). Amplitude parameters, such as peak ground acceleration (PGA), derived from this database have
a variability in the order of factor two due to varied source parameters, different amplification spectra
for distinct soil types, and the Gaussian noise as basis for the stochastically simulated phase.

Chapter 4.4 describes the determination of attenuation relations for nine ground motion parameters
from the database of simulated acceleration time series, including peak values, spectral parameters,
and intensity measures. Data-consistent attenuation laws play an important role in the later described
procedure for the calculation of shake and alert maps in the Marmara region. They can be also used for
a rough evaluation of the synthetics by comparison with observational data in northwestern Turkey
(Chapter 4.4.1) and with relations proposed for other seismic active regions in the world (Sadigh
et al., 1997; Boore et al., 1997; Campbell, 1997; Erdik et al., 1985; Wald et al., 1999a). It turns out
that the fit is generally very good, whereby the decay of ground motion parameters in the simulated
data is somewhat larger at Joyner-Boore distances of about 30 km. Correlation analyses with Fourier
amplitudes (Chapter 4.2) reveal that ground parameters rely - as expected - on distinct frequency
bands. For example, peak ground acceleration (PGA) is mainly controlled by frequencies > 3.0 Hz,
whereas peak ground displacement (PGD) generally depends on frequencies < 0.5 Hz. The afore
described fit and misfit of the attenuation relations of the different parameters therefore can be used
for a rough quality assessment of the synthetics in different frequency bands. It turns out that the
stochastic simulation method is less reliable in reproducing long-period motions (Chapter 4.5).

PreSEIS considers earthquake early warning as a problem of time-dependent non-linear inversion for
source parameters from the available information at different sensors. With ongoing time more and
more stations will be triggered by the propagating seismic waves and longer time series at the single
sites will become available. Thus, the estimates of source locations and magnitudes (and others) are
continuously updated every 0.5 s. PreSEIS is based on Artificial Neural Networks (ANNs), more
strictly speaking on Two-Layer Feed-Forward Neural Networks (Chapter 6.1.3). ANNs are generally
used as statistical models of processes and systems. They are composed of a high number of simple
interconnected processing units called neurons. The importance of a link between one neuron to an-
other is controlled by a weight parameter. Weights are iteratively adapted to a given inversion problem
from a set of example patterns using appropriate optimization algorithms (supervised learning). Neu-
rons in a Two-Layer Feed-Forward Neural Network are arranged in one input, one hidden, and one
output layer (Chapter 6.1.3).

PreSEIS uses Artificial Neural Networks for the mapping of seismic observations onto likely source
parameters, including hypocenter locations, earthquake magnitudes, rupture expansions and the
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Fourier amplitude spectrum of ground motion at a specified user site. PreSEIS uses parameterized
seismic observations at the sensors at subsequent time steps as basis for time-dependent predictions
of source parameters. In this thesis the PreSEIS approach is demonstrated for relative P-wave on-
set times and logarithmic values of the time-dependent cumulative absolute velocity (CAV) as input
information (Chapter 6.2). The CAV has several advantages in comparison to other ground motion
parameters (Chapter 4.1.4), e.g., it shows a high correlation with seismic intensity. In case of noisy
input data the usage of the bracketed CAV with a dynamic adaption to the present noise level is
recommended (Chapter 4.1.4). The PreSEIS methodology is expected to be not only applicable to
CAV but also to other parameterizations of seismic ground motions such as to the predominant period
(Chapters 4.1.2 and 5.3).

The Two-Layer Feed-Forward Neural Networks (more strictly speaking the network weights) are
adjusted to the inversion problem by usage of the stochastically simulated acceleration data: 70%
of the afore described scenario earthquakes are used as example patterns for the underlying input-
output relations. From the training database, PreSEIS learns among others the a priori information
on likely source locations in terms of earthquake clusters along the fault segments. Three parameter
optimization methods for the iterative update of network weights are tested: (1) Gradient Descent with
Momentum Term, (2) Resilient Propagation (RPROP), and (3) Levenberg-Marquardt optimization
(Chapter 6.1.2). Gradients of the error function, that describes the difference between desired and
observed network outputs for each example pattern in dependence on network weights, are determined
through the application of the Backpropagation algorithm (Chapter 6.1.4). The weight update is
terminated once the prediction error for an independent validation subset increases. The validation
subset contains 10% of the simulated scenarios. This early stopping rule accounts for the desired
generalization capability of the Neural Networks (Chapter 6.1.5). The number of required neurons in
the hidden layer of the Two-Layer Neural Networks controls the complexity of the statistical models.
Systematic tests of different architectures are used in this thesis to find the optimum network (here
with six hidden neurons) that is characterized by low errors for both, known training and unknown
test subsets. In order to exclude possible dependencies of the obtained statistical models on start
values of the inversion, performance tests are repeated four times, each time with a different weight
initialization and randomly changed training, validation and test subsets (bootstrapping). As a rule
of thumb each weight parameter in the Neural Network requires ten example patterns in the training
subset. Through the inclusion of patterns with incorrectly picked P-wave onsets, the database of
simulated scenarios for the Marmara region is artificially enlarged. This procedure has the additional
advantage that PreSEIS can now be more easily applied to observational data where onsets can be
hardly picked without errors.

Performance analyses of the PreSEIS methodology are carried out for (1) the entire database and (2)
two separate scenario earthquakes. They demonstrate a clear increase of reliability of predictions
with ongoing time after triggering of the first sensor (Chapter 6.2). Largest errors usually occur at
the boundary of the sensor network and for earthquakes that occur beyond the large fault segments
in the Sea of Marmara. From the three analyzed optimization techniques the Levenberg-Marquardt
algorithm produces the best models with lowest errors at each time step: the average hypocenter
location error is 8.8 km (median) 0.5 s after triggering of the first sensor and can be reduced to 5.9
km in the following 3.5 s. In the same time interval the magnitude error is reduced from ±0.7 to ±0.5
magnitude units (unit standard deviations). Furthermore, Levenberg-Marquardt requires the lowest
number of training iterations. For single events the convergence towards correct source parameters
can show interim deterioration; however, once again performances are generally satisfying.

Estimated hypocenter locations and magnitudes alone are not directly meaningful for seismic risk
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and damage assessment. In combination with empirical attenuation relations, however, they can be
used to predict the level of ground motion either at a specific site or in expanded maps, called alert
maps (Chapter 6.2). The required magnitude-dependent amplification factors at different soil types
are estimated from the stochastically simulated time series (Chapter 4.4). Alert maps provide mean-
ingful information to users that operate or depend on infrastructure or lifeline networks, including,
e.g., communication, electricity, water supply and transportation networks. Furthermore, alert maps
can be considered as first order shake maps that start with estimated source parameters and empirical
attenuation laws and then gradually transform into shake maps once observational data is available.
Observational data could in case of the IERREWS system come from the 100 off-line stations (Chapter
5.2.5). PreSEIS is not only capable to estimate positions of earthquake hypocenters but also to predict
in real-time likely locations and expansions of evolving ruptures. Predictions of seismic ground mo-
tion can benefit from this information because shaking generally depends rather on closest distances
between the rupture and a given site than on hypocentral distances. In addition, directivity effects of
the propagating rupture can be more easily integrated after the assessment of rupture expansions.

An important outcome of the performance studies of PreSEIS is that not accuracy of magnitudes
and locations are the most essential factors in seismic ground motion predictions, but uncertainties
in attenuation laws (Chapter 6.2). In particular, site effects and non-linear effects of seismic waves
for observational data are crucial. Remember that also source effects - such as slip distributions -
have strong impact on the level of ground motion with a variability in the order of a factor two. The
problem of uncertainties in attenuation laws can be solved as demonstrated in this thesis: the Artificial
Neural Networks in PreSEIS can be trained to predict the Fourier amplitude spectrum (FAS) of ground
motion at a given user site directly, i.e. without the combination with empirical attenuation relations
(Chapter 6.2). In this case, the ANNs themselves learn the local attenuation characteristics affecting
the seismic waves. This approach gives very promising results.

The developed PreSEIS methodology demonstrates the reasonability to combine seismic observations
at a network of ground motion sensors for a rapid and reliable estimate of seismic source parameters
suitable for earthquake early warning.

7.2 Outlook

The present PreSEIS version has two problems: first, the localization procedure is based on relative
P-wave arrivals and is therewith fairly sensitive to the P-wave onset detection at the first triggered
sensors. It is reasonable to design and train Neural Networks for different subsets of early warning
sensors that can be used if one (or more) of the sensors fail. Second, the method requires a large
training database so that the Artificial Neural Networks (ANNs) can learn the desired input-output
relations including, e.g., local ground motion characteristics at the sensor sites. For the application
of the approach to real data PreSEIS has to be modified to allow an open architecture of the network
with possibly relocated sensors. For the adjustment of weight parameters ANNs require many training
examples that are, however, in many endangered areas in the world not available. A possible solution
to this problem is the combination of (1) worldwide recorded weak and strong motion data with
information on general characteristics of seismic wave propagation; (2) local data with information
on local features, such as on fault locations, seismic wave velocities, crustal attenuation, and local site
effects at the sensors; and (3) simulated ground motion time series, e.g. generated by the Stochastic
Simulation method, the Empirical Green’s Functions approach, or Finite Difference (FD) models
(Chapter 3.1). With each new local earthquake or at regular time intervals the Neural Networks
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Chapter 7. Summary and Outlook

should be updated using the newly available records. Aside from the Two-Layer Feed-Forward Neural
Networks applied in this thesis there are many other classes of ANNs that appear useful for inversion
problems in earthquake early warning, e.g. networks with feed-back loops (e.g., Rojas, 1993). Other
methods - such as decision tree approaches - have the advantage that they provide more insight into
the inversion than ANNs which are generally considered as black boxes.

The Geophysical Institute at Karlsruhe University will participate in two successive projects on earth-
quake early warning in that the PreSEIS methodology will be tested and modified. Within the Seismic
eArly warning For EuRope (SAFER) (FP6-2005-Global-4) project it is intended to apply PreSEIS to
real weak and strong motion data recorded in Europe and California. The consideration of three-
component measurements at the different sensors will require modifications of the present PreSEIS
version. Other parameterizations of seismic input data aside from CAV will be explored. In the
scope of the BMBF/DFG-Sonderprogramm Geotechnologien - Frühwarnsysteme im Erdmanagement
the present Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) will be ex-
panded to a Earthquake Disaster Information System for the Marmara Region, Turkey (EDIM) with
additional stations and communication links through satellites. Earthquake early warning will be
stronger integrated into the rapid response systems with shake map and damage estimation tools.
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Appendix A

Response to Earthquake Early Warnings

Examples for response to early warnings with 10 and 50 s warning time after Goltz (2002):

10 s Warning Time 50 s Warning Time

1. Education:
notify teachers with walkie-talkies shut off gas
have custodian shut off gas send out/gather emergency supplies
alert custodial staff to secure building contact fire department, district office, police
shut off machines, move from lab equipment secure lab equipment / evacuate lab
notify security to be on alert sound alarms
get walkie-talkies turn off computers
move clear of falling objects evacuate to outside area

contact plant manager
protection for students in the hallways, ...
get walkie-talkies, cell phones
initiate emergency response plan
notify security to be on alert
focus on protecting smallest children

2. Health care:
shut off equipment secure equipment (beds etc.)
secure supplies better meet needs of critical patients
secure patients shut down labs
shut off gas stop surgeries, procedures
stop cutting in the emergency room some evacuation
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shut off water turn off gas, water
stop elevators secure patients with pillows, blankets

secure hazardous materials
save work on computer
get people out of pool
secure elevator
secure / shut down operating room
evacuate lobby, emergency room
get patients dressed
thorough job of alerting people

3. Emergency services:
turn off computer turn off computers
send alert to fire department command center signal buildings to open automatic doors
warn community notify schools, hospitals
make sure everyone is out of elevators prisoner relocation
start moving equipment out of building move vehicles/equipment out
activate backup notify field workers
alert field workers siren for community/broadcast to community
shut down equipment evacuate elevator
evacuate bottom floor turn generator on/switch to generators
stop hazardous work clear fire stations
secure equipment shut down gas, electricity

shut down hazardous material
direct traffic away from underpasses
use mobile data terminals
notify watch deputy/jailer

4. Utilities and transportation:
start making calls open circuit breakers
shut down computers drop customer services
notify field turn on generator
shut down gas notify field workers
alert drivers alert fuel workers
control traffic signals notify police and fire departments
put information on the computer secure equipment

stop traffic
prevent hazardous spills
inform public works
get vehicles out of garage
possibly evacuate
notify drivers/operators
shut down computers
broadcast warning
stabilize power
notify air traffic controller, floor wardens, fire station
stop elevators
shed load

146



Appendix B

Simulated Earthquakes in the Marmara
Region

The following six tables compile the details of 280 simulated earthquakes in the Marmara region
obtained from the Stochastic Simulation Method for Finite Faults (Beresnev and Atkinson, 1997)
(Chapter 3). The simulated time series of seismic ground motions are the basis for the development
and verification of the PreSEIS methodology in this thesis.

The earthquakes are simulated along the five major fault segments in the Sea of Marmara. For each
segment I have synthesized 50 earthquakes (Table B.1 to B.5). The database is supplemented by 30 ad-
ditional earthquakes which are randomly distributed in the Marmara region (Table B.6). Earthquakes
along each segment are identified by serial numbers from 1 to 50 (or 30). Geographical coordinates
and depths of the earthquake hypocenters are compiled in columns two, three and four. Moment
magnitudes Mw are shown in column five. The remaining four columns specify the geographical co-
ordinates of the start and end points of fault ruptures projected onto the surface. The distribution of
epicenters is shown in Figure 3.7. Histograms for magnitudes and depths are given in Figure 3.9.
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Appendix B. Simulated Earthquakes in the Marmara Region

Synthetics SEGMENT 1
id. epi lat epi lon depth Mw start lat start lon end lat end lon

# ◦ N ◦ E [km] ◦ N ◦ E ◦ N ◦ E
1 40.77 29.51 10.5 6.9 40.79 29.77 40.75 29.25
2 40.72 29.40 5.4 5.1 40.72 29.43 40.72 29.39
3 40.75 29.52 6.2 6.2 40.76 29.70 40.75 29.50
4 40.74 29.52 7.3 6.0 40.75 29.65 40.74 29.51
5 40.74 29.44 7.1 6.5 40.76 29.66 40.74 29.37
6 40.74 29.54 5.8 6.0 40.75 29.67 40.74 29.53
7 40.75 29.60 9.1 6.4 40.76 29.81 40.74 29.54
8 40.74 29.48 10.1 6.1 40.74 29.57 40.73 29.40
9 40.76 29.62 7.6 6.8 40.77 29.79 40.74 29.31

10 40.76 29.76 5.5 5.1 40.76 29.78 40.76 29.74
11 40.73 29.47 13.4 6.9 40.75 29.78 40.72 29.23
12 40.74 29.59 7.0 6.4 40.75 29.75 40.73 29.48
13 40.77 29.79 9.6 6.0 40.77 29.87 40.76 29.73
14 40.76 29.73 5.8 5.0 40.76 29.74 40.76 29.72
15 40.75 29.33 5.6 5.6 40.75 29.37 40.75 29.29
16 40.77 29.77 6.6 6.0 40.78 29.88 40.77 29.72
17 40.74 29.33 9.8 6.7 40.76 29.68 40.73 29.30
18 40.72 29.38 6.9 7.0 40.75 29.80 40.71 29.23
19 40.78 29.83 8.0 5.6 40.78 29.89 40.78 29.81
20 40.76 29.55 7.9 7.0 40.78 29.88 40.74 29.30
21 40.74 29.61 12.3 6.7 40.75 29.75 40.72 29.35
22 40.73 29.27 9.8 5.8 40.74 29.37 40.73 29.26
23 40.76 29.36 5.1 4.5 40.76 29.37 40.76 29.36
24 40.75 29.42 10.5 6.1 40.76 29.56 40.75 29.40
25 40.77 29.58 5.2 4.7 40.77 29.59 40.77 29.58
26 40.78 29.83 10.4 6.9 40.78 29.86 40.74 29.36
27 40.76 29.82 7.0 7.0 40.76 29.85 40.72 29.23
28 40.72 29.34 6.8 6.2 40.72 29.40 40.71 29.21
29 40.74 29.33 6.0 5.9 40.74 29.37 40.73 29.24
30 40.77 29.56 8.9 6.3 40.77 29.68 40.76 29.44
31 40.76 29.76 9.7 6.3 40.76 29.88 40.75 29.67
32 40.76 29.44 6.7 6.1 40.76 29.53 40.75 29.36
33 40.75 29.49 8.3 5.7 40.75 29.53 40.74 29.44
34 40.80 29.85 9.6 5.7 40.80 29.90 40.79 29.80
35 40.76 29.63 13.5 6.9 40.77 29.81 40.73 29.24
36 40.71 29.28 7.5 5.3 40.72 29.33 40.71 29.28
37 40.74 29.28 10.6 6.3 40.76 29.47 40.74 29.26
38 40.75 29.41 10.4 6.9 40.78 29.88 40.75 29.38
39 40.76 29.85 11.2 7.1 40.76 29.90 40.72 29.22
40 40.74 29.36 10.3 6.8 40.76 29.69 40.73 29.21
41 40.75 29.73 5.8 4.6 40.75 29.73 40.75 29.72
42 40.75 29.35 5.2 4.5 40.75 29.36 40.75 29.35
43 40.79 29.81 7.0 5.7 40.79 29.86 40.78 29.76
44 40.75 29.39 10.4 6.9 40.78 29.85 40.74 29.36
45 40.78 29.77 7.9 5.9 40.78 29.81 40.77 29.69
46 40.76 29.38 9.8 5.9 40.76 29.44 40.75 29.32
47 40.75 29.33 8.5 5.3 40.75 29.35 40.74 29.29
48 40.76 29.55 5.6 5.2 40.76 29.55 40.76 29.51
49 40.74 29.34 10.3 6.0 40.74 29.42 40.73 29.27
50 40.78 29.72 10.6 6.9 40.79 29.84 40.75 29.30
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Synthetics SEGMENT 2
id. epi lat epi lon depth Mw start lat start lon end lat end lon

# ◦ N ◦ E [km] ◦ N ◦ E ◦ N ◦ E
1 40.80 29.07 5.2 4.5 40.80 29.07 40.81 29.06
2 40.86 28.91 6.7 6.2 40.84 28.96 40.91 28.80
3 40.83 28.99 6.3 6.3 40.80 29.06 40.88 28.87
4 40.74 29.16 6.6 5.4 40.73 29.19 40.75 29.13
5 40.77 29.03 8.8 6.8 40.71 29.18 40.87 28.81
6 40.78 29.10 10.4 6.2 40.77 29.11 40.85 28.94
7 40.78 29.04 10.9 6.2 40.72 29.19 40.79 29.02
8 40.83 28.96 8.5 6.2 40.82 28.97 40.89 28.81
9 40.80 29.01 6.8 6.2 40.79 29.03 40.86 28.87

10 40.76 29.09 6.1 6.1 40.74 29.12 40.81 28.97
11 40.83 28.94 11.5 6.3 40.75 29.13 40.84 28.93
12 40.83 28.89 8.0 5.9 40.81 28.92 40.86 28.81
13 40.81 29.02 8.4 5.2 40.80 29.03 40.82 28.99
14 40.80 29.12 11.7 6.6 40.79 29.14 40.91 28.86
15 40.75 29.19 5.5 4.9 40.75 29.20 40.76 29.19
16 40.84 28.95 10.8 6.3 40.79 29.06 40.88 28.87
17 40.83 28.96 7.3 5.9 40.82 28.99 40.87 28.88
18 40.88 28.87 5.2 4.5 40.88 28.88 40.88 28.87
19 40.91 28.84 5.8 4.6 40.90 28.84 40.91 28.83
20 40.86 28.93 7.1 5.4 40.84 28.98 40.86 28.93
21 40.87 28.87 5.8 6.1 40.83 28.96 40.89 28.82
22 40.77 29.11 5.5 4.8 40.77 29.12 40.77 29.11
23 40.86 28.90 5.8 4.9 40.86 28.91 40.86 28.90
24 40.82 28.99 5.6 5.7 40.81 29.01 40.85 28.93
25 40.78 29.06 6.4 6.5 40.74 29.16 40.85 28.90
26 40.75 29.13 7.8 5.5 40.73 29.18 40.75 29.12
27 40.83 28.98 5.2 4.6 40.83 28.98 40.83 28.97
28 40.82 29.03 5.2 4.5 40.82 29.03 40.82 29.02
29 40.89 28.83 11.5 6.3 40.81 29.02 40.90 28.81
30 40.83 28.94 6.7 5.4 40.83 28.94 40.86 28.89
31 40.77 29.07 5.6 5.7 40.76 29.10 40.80 29.02
32 40.85 28.92 10.9 6.4 40.79 29.04 40.89 28.83
33 40.89 28.87 7.3 5.5 40.87 28.91 40.90 28.85
34 40.86 28.91 10.3 5.9 40.82 29.00 40.87 28.88
35 40.76 29.17 8.2 6.0 40.75 29.20 40.80 29.07
36 40.85 28.97 8.1 5.4 40.84 28.99 40.86 28.93
37 40.77 29.04 11.0 6.4 40.75 29.10 40.84 28.88
38 40.81 29.02 5.5 4.6 40.81 29.02 40.82 29.01
39 40.82 29.03 6.2 6.2 40.76 29.16 40.84 28.99
40 40.80 29.01 6.8 6.0 40.79 29.04 40.84 28.92
41 40.81 28.96 9.6 5.8 40.81 28.97 40.85 28.88
42 40.87 28.95 10.7 6.1 40.83 29.04 40.89 28.89
43 40.86 28.92 10.0 5.9 40.84 28.98 40.89 28.87
44 40.86 28.95 10.3 6.2 40.82 29.03 40.89 28.86
45 40.75 29.14 8.9 5.4 40.74 29.15 40.77 29.09
46 40.85 28.90 10.5 6.0 40.83 28.96 40.88 28.83
47 40.82 28.99 9.6 5.9 40.80 29.03 40.85 28.92
48 40.89 28.88 11.8 6.6 40.77 29.15 40.90 28.86
49 40.84 28.98 10.2 6.8 40.74 29.20 40.91 28.81
50 40.87 28.90 7.4 6.7 40.74 29.21 40.88 28.88
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Appendix B. Simulated Earthquakes in the Marmara Region

Synthetics SEGMENT 3
id. epi lat epi lon depth Mw start lat start lon end lat end lon

# ◦ N ◦ E [km] ◦ N ◦ E ◦ N ◦ E
1 40.86 27.69 6.0 5.9 40.87 27.73 40.86 27.61
2 40.89 28.32 10.2 6.8 40.90 28.51 40.87 28.05
3 40.84 27.76 8.1 7.1 40.87 28.23 40.82 27.55
4 40.87 28.15 10.6 6.3 40.89 28.34 40.87 28.13
5 40.82 27.43 8.7 5.6 40.83 27.50 40.82 27.42
6 40.91 28.51 5.9 6.2 40.91 28.63 40.90 28.45
7 40.86 28.44 12.0 6.6 40.86 28.46 40.84 28.10
8 40.83 27.45 8.6 5.9 40.83 27.55 40.83 27.44
9 40.80 27.63 11.1 6.4 40.80 27.70 40.78 27.43

10 40.82 27.64 5.1 4.6 40.82 27.64 40.82 27.63
11 40.85 28.15 14.5 7.1 40.87 28.43 40.82 27.71
12 40.90 28.38 8.5 6.2 40.92 28.55 40.90 28.36
13 40.85 27.78 8.0 7.1 40.87 28.15 40.83 27.49
14 40.86 27.93 6.6 6.1 40.86 27.94 40.85 27.78
15 40.83 27.80 10.8 7.0 40.87 28.37 40.83 27.77
16 40.85 28.03 8.7 6.2 40.86 28.16 40.85 27.96
17 40.87 27.81 7.5 6.8 40.89 28.03 40.86 27.59
18 40.86 28.07 10.3 6.8 40.89 28.50 40.85 28.03
19 40.85 27.88 11.2 6.4 40.86 28.08 40.84 27.81
20 40.84 27.85 10.5 6.3 40.84 27.90 40.83 27.69
21 40.88 28.25 14.7 7.2 40.90 28.64 40.85 27.87
22 40.85 27.94 7.2 5.1 40.85 27.95 40.84 27.92
23 40.84 27.88 10.5 6.9 40.87 28.25 40.83 27.73
24 40.88 28.30 15.3 7.2 40.91 28.63 40.85 27.77
25 40.82 27.59 8.5 5.4 40.83 27.60 40.82 27.54
26 40.90 28.45 5.9 6.3 40.92 28.62 40.90 28.41
27 40.87 28.14 5.2 4.7 40.87 28.15 40.87 28.13
28 40.92 28.57 11.0 7.0 40.92 28.61 40.87 27.96
29 40.88 28.34 7.2 7.2 40.89 28.38 40.83 27.57
30 40.85 28.09 7.3 7.3 40.88 28.48 40.82 27.61
31 40.86 27.98 12.2 6.7 40.88 28.28 40.85 27.90
32 40.84 27.81 11.1 7.1 40.87 28.33 40.83 27.67
33 40.85 28.09 7.5 5.6 40.86 28.16 40.85 28.07
34 40.91 28.64 10.4 6.2 40.92 28.70 40.90 28.50
35 40.86 28.10 8.4 5.7 40.87 28.17 40.86 28.07
36 40.84 27.93 14.4 7.1 40.86 28.28 40.82 27.57
37 40.86 28.38 5.8 4.5 40.86 28.38 40.86 28.37
38 40.90 28.68 9.0 6.4 40.90 28.70 40.88 28.44
39 40.90 28.49 14.2 7.1 40.91 28.70 40.87 28.03
40 40.81 27.45 6.5 5.9 40.81 27.50 40.80 27.38
41 40.87 28.11 11.3 7.1 40.91 28.69 40.86 27.97
42 40.82 27.67 7.0 6.3 40.82 27.77 40.81 27.53
43 40.84 27.60 5.2 4.5 40.84 27.61 40.84 27.60
44 40.87 27.94 8.8 5.4 40.87 27.99 40.87 27.93
45 40.84 27.79 9.9 6.7 40.86 28.15 40.84 27.76
46 40.81 27.69 9.7 6.0 40.82 27.77 40.81 27.63
47 40.87 27.93 11.3 6.5 40.88 28.09 40.86 27.81
48 40.88 28.18 15.4 7.1 40.91 28.56 40.86 27.86
49 40.83 27.50 7.1 6.5 40.84 27.72 40.82 27.43
50 40.91 28.68 15.6 7.3 40.91 28.73 40.85 27.80
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Synthetics SEGMENT 4
id. epi lat epi lon depth Mw start lat start lon end lat end lon

# ◦ N ◦ E [km] ◦ N ◦ E ◦ N ◦ E
1 40.74 29.17 12.1 7.3 40.74 29.22 40.86 28.29
2 40.88 28.24 7.3 7.3 40.79 28.91 40.91 28.01
3 40.85 28.44 6.5 6.5 40.83 28.63 40.87 28.33
4 40.83 28.82 10.9 7.0 40.81 28.95 40.89 28.34
5 40.83 28.74 7.9 7.0 40.77 29.22 40.85 28.62
6 40.85 28.51 14.5 7.1 40.78 29.03 40.88 28.31
7 40.86 28.20 10.6 6.9 40.80 28.61 40.87 28.08
8 40.84 28.41 10.5 6.9 40.82 28.60 40.89 28.08
9 40.81 28.74 10.6 6.9 40.80 28.83 40.87 28.30

10 40.80 28.65 6.1 6.6 40.79 28.75 40.83 28.41
11 40.84 28.63 8.4 7.2 40.78 29.04 40.89 28.22
12 40.82 28.61 6.7 6.8 40.81 28.63 40.87 28.20
13 40.86 28.43 10.3 6.8 40.86 28.47 40.92 28.00
14 40.81 28.76 14.4 7.1 40.80 28.88 40.89 28.18
15 40.83 28.62 13.2 6.7 40.80 28.84 40.85 28.45
16 40.83 28.66 10.6 6.9 40.82 28.78 40.89 28.24
17 40.85 28.37 16.9 7.5 40.73 29.27 40.89 28.07
18 40.79 28.88 12.7 7.4 40.74 29.20 40.89 28.07
19 40.82 28.79 8.0 7.0 40.78 29.07 40.86 28.44
20 40.72 29.32 6.5 6.6 40.71 29.38 40.75 29.06
21 40.88 28.30 10.4 6.9 40.82 28.76 40.89 28.27
22 40.76 29.13 8.2 7.1 40.72 29.41 40.81 28.68
23 40.76 29.13 14.5 6.9 40.74 29.23 40.82 28.67
24 40.81 28.51 7.8 6.9 40.78 28.74 40.85 28.22
25 40.77 29.03 8.8 7.4 40.72 29.40 40.86 28.33
26 40.82 28.60 12.2 7.3 40.75 29.08 40.88 28.12
27 40.84 28.53 12.9 6.7 40.81 28.78 40.86 28.41
28 40.84 28.83 7.5 6.7 40.80 29.09 40.86 28.69
29 40.88 28.24 16.4 7.4 40.76 29.17 40.90 28.08
30 40.83 28.63 11.6 7.2 40.78 29.02 40.88 28.24
31 40.81 28.84 12.5 7.4 40.73 29.50 40.86 28.43
32 40.82 28.87 13.2 7.5 40.74 29.46 40.91 28.15
33 40.83 28.67 15.6 7.3 40.77 29.13 40.88 28.21
34 40.82 28.66 12.6 7.4 40.76 29.14 40.90 28.04
35 40.81 28.89 12.4 7.4 40.73 29.51 40.86 28.49
36 40.85 28.54 10.0 6.7 40.81 28.78 40.87 28.37
37 40.74 29.42 12.2 6.7 40.74 29.45 40.79 29.07
38 40.81 28.76 7.9 7.0 40.80 28.87 40.88 28.29
39 40.84 28.71 7.6 6.8 40.84 28.75 40.90 28.28
40 40.80 28.81 15.3 7.1 40.74 29.30 40.83 28.63
41 40.86 28.46 14.1 7.0 40.80 28.91 40.89 28.26
42 40.86 28.45 7.8 6.9 40.83 28.69 40.90 28.15
43 40.84 28.72 14.0 7.0 40.78 29.15 40.86 28.52
44 40.79 29.09 18.3 7.5 40.74 29.47 40.89 28.26
45 40.90 28.17 16.1 7.4 40.78 29.14 40.91 28.12
46 40.86 28.48 17.0 7.5 40.73 29.52 40.89 28.30
47 40.84 28.49 10.5 6.9 40.84 28.52 40.90 28.02
48 40.85 28.41 8.7 6.7 40.83 28.57 40.89 28.16
49 40.79 28.95 14.3 7.4 40.73 29.42 40.86 28.39
50 40.89 28.39 12.7 7.4 40.78 29.20 40.93 28.07
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Appendix B. Simulated Earthquakes in the Marmara Region

Synthetics SEGMENT 5
id. epi lat epi lon depth Mw start lat start lon end lat end lon

# ◦ N ◦ E [km] ◦ N ◦ E ◦ N ◦ E
1 40.73 29.00 5.8 6.0 40.71 29.11 40.74 28.97
2 40.71 28.87 5.8 4.9 40.71 28.87 40.72 28.86
3 40.72 29.00 5.8 4.5 40.72 29.00 40.72 28.99
4 40.70 28.98 11.8 6.6 40.68 29.14 40.73 28.81
5 40.69 29.05 9.9 6.0 40.69 29.07 40.71 28.92
6 40.72 29.01 5.8 5.6 40.72 29.02 40.73 28.95
7 40.68 28.98 10.1 6.1 40.67 29.03 40.70 28.86
8 40.70 29.02 5.8 5.0 40.70 29.03 40.70 29.02
9 40.66 29.05 5.6 5.6 40.66 29.07 40.67 28.99

10 40.70 28.98 11.9 6.4 40.67 29.11 40.72 28.84
11 40.71 28.82 6.9 6.3 40.68 29.03 40.72 28.80
12 40.72 28.91 7.9 5.9 40.71 28.97 40.73 28.85
13 40.70 29.04 5.8 4.8 40.70 29.05 40.70 29.04
14 40.71 28.92 8.3 6.6 40.67 29.13 40.72 28.82
15 40.72 29.01 9.1 6.4 40.71 29.09 40.75 28.83
16 40.70 28.97 9.6 6.0 40.70 28.99 40.72 28.86
17 40.72 28.96 5.6 5.2 40.71 29.00 40.72 28.96
18 40.70 29.07 7.2 5.4 40.70 29.10 40.71 29.03
19 40.70 29.07 12.3 6.5 40.69 29.09 40.74 28.82
20 40.73 28.93 9.4 5.9 40.73 28.94 40.75 28.82
21 40.73 28.87 9.0 5.5 40.73 28.89 40.74 28.82
22 40.69 29.02 11.8 6.6 40.67 29.14 40.73 28.81
23 40.73 28.97 6.6 6.0 40.71 29.06 40.73 28.92
24 40.70 28.97 10.2 5.9 40.69 29.08 40.71 28.96
25 40.68 29.05 5.2 4.9 40.68 29.05 40.68 29.04
26 40.71 29.00 6.3 6.3 40.69 29.11 40.73 28.89
27 40.70 29.07 5.8 4.9 40.70 29.07 40.71 29.06
28 40.71 29.06 5.8 4.6 40.71 29.07 40.71 29.05
29 40.70 29.02 5.2 4.9 40.70 29.03 40.70 29.02
30 40.69 29.00 6.9 5.6 40.68 29.08 40.70 29.00
31 40.72 28.88 5.6 6.0 40.70 29.00 40.72 28.87
32 40.68 28.97 6.1 6.0 40.68 28.98 40.71 28.83
33 40.70 29.02 5.8 4.9 40.70 29.03 40.70 29.02
34 40.70 28.98 9.0 5.6 40.70 29.00 40.71 28.93
35 40.72 28.92 7.1 6.5 40.69 29.14 40.73 28.85
36 40.68 29.10 5.5 4.5 40.68 29.11 40.68 29.09
37 40.72 28.97 6.3 6.3 40.69 29.15 40.72 28.92
38 40.73 28.97 9.9 5.8 40.71 29.07 40.73 28.96
39 40.70 29.02 6.7 5.5 40.70 29.03 40.71 28.96
40 40.71 28.86 5.8 4.9 40.71 28.87 40.72 28.85
41 40.70 28.92 7.3 5.5 40.69 28.98 40.71 28.91
42 40.71 28.92 10.1 5.8 40.70 28.98 40.71 28.87
43 40.72 28.95 11.5 6.5 40.70 29.12 40.74 28.82
44 40.68 29.00 5.8 4.7 40.68 29.00 40.68 28.99
45 40.71 28.92 9.3 6.5 40.68 29.12 40.73 28.83
46 40.72 28.94 11.3 6.5 40.69 29.15 40.73 28.87
47 40.70 29.07 9.2 6.5 40.69 29.15 40.73 28.88
48 40.70 29.08 11.4 6.5 40.70 29.11 40.75 28.82
49 40.74 28.87 7.2 5.9 40.73 28.95 40.75 28.82
50 40.72 28.92 5.5 5.0 40.72 28.93 40.72 28.91

Table B.5:
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Synthetics SEGMENT 6
id. epi lat epi lon depth Mw start lat start lon end lat end lon

# ◦ N ◦ E [km] ◦ N ◦ E ◦ N ◦ E
1 41.14 29.53 5.8 4.7 41.14 29.53 41.14 29.54
2 41.04 29.62 5.8 4.5 41.04 29.61 41.04 29.62
3 40.99 28.05 5.8 4.8 41.00 28.04 40.99 28.05
4 40.68 28.68 5.8 4.7 40.68 28.68 40.68 28.69
5 40.66 29.14 5.5 4.8 40.66 29.13 40.66 29.15
6 40.84 28.76 5.8 4.7 40.85 28.75 40.84 28.76
7 40.76 28.65 5.2 5.0 40.75 28.66 40.76 28.65
8 40.73 27.98 5.2 4.7 40.73 27.99 40.73 27.98
9 40.89 28.19 5.2 4.9 40.89 28.19 40.90 28.18

10 41.02 29.52 5.8 4.7 41.02 29.53 41.02 29.52
11 41.00 28.26 5.5 4.8 41.00 28.27 41.00 28.25
12 40.99 29.86 5.6 4.5 40.99 29.87 40.99 29.86
13 41.04 29.65 5.2 4.9 41.04 29.65 41.03 29.65
14 40.69 29.46 5.2 4.7 40.69 29.46 40.70 29.47
15 41.21 29.16 5.5 5.0 41.21 29.15 41.20 29.16
16 40.84 28.30 5.8 4.7 40.83 28.30 40.84 28.29
17 40.78 28.04 5.5 4.7 40.77 28.04 40.78 28.03
18 40.69 29.10 5.5 4.6 40.69 29.10 40.70 29.09
19 40.68 29.39 5.5 4.6 40.68 29.39 40.69 29.38
20 40.69 28.81 5.2 4.9 40.69 28.81 40.68 28.80
21 40.82 28.67 5.2 4.7 40.82 28.67 40.82 28.68
22 40.91 28.14 5.8 4.8 40.91 28.14 40.91 28.13
23 41.06 28.46 5.5 4.6 41.06 28.47 41.06 28.46
24 40.84 28.56 5.2 4.9 40.84 28.56 40.84 28.56
25 41.09 28.26 5.2 4.7 41.09 28.26 41.09 28.25
26 40.93 29.33 5.2 4.7 40.93 29.33 40.94 29.32
27 41.03 29.17 5.5 4.9 41.03 29.17 41.02 29.18
28 40.76 28.64 5.5 4.9 40.76 28.65 40.76 28.64
29 41.08 28.75 5.2 4.9 41.07 28.75 41.08 28.75
30 41.02 28.10 5.5 4.5 41.02 28.09 41.01 28.10

Table B.6:
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Appendix C

Coefficients for the Attenuation Laws

The following coefficients refer to attenuation laws in Chapter 4.4 (for the stochastically simulated
database) and Chapter 4.4.1 (for observational data in other regions).

C.0.1 Stochastically simulated database

Coefficients C1...C5
PGA [g] PGV [cm/s] PGD [cm]

C1 7.4554 6.1717 -0.2532
C2 1.5051 1.7327 2.2179
C3 -4.5484 -3.7001 -3.3494
C4 8.0483 6.9512 6.4778
C5 0.0083 0.0009 -0.0026

PSA [g] PSA [g] PSA [g]
0.3 s 1.0 s 2.0 s

C1 8.6970 0.3557 -7.9564
C2 1.4696 1.6464 2.0683
C3 -4.5887 -3.0947 -2.1255
C4 8.2445 6.4643 4.9953
C5 0.0088 -0.0034 -0.0121

Intensity Arias [m/s] CAV [cm/s]
(FAS)

C1 0.8089 -8.9878 -2.6800
C2 0.2317 2.6357 1.5308
C3 -0.1073 -2.5273 -0.3360
C4 0.6000 2.8835 0.5841
C5 -0.0052 -0.0248 -0.0182

Table C.1: Coefficients C1 to C5 in (4.19) for amplitude, spectral and integrative ground motion
parameters derived from the stochastically simulated database described in Chapter 3.
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Appendix C. Coefficients for the Attenuation Laws

Coefficient C6
soil Mw = 5.0 Mw = 6.0 Mw = 7.0

PGA
NEHRP class B -0.0301 0.0733 -0.1447
NEHRP class C -0.0916 0.0695 -0.1201
NEHRP class D -0.0628 0.1911 0.0581

PGV
NEHRP class B -0.1894 -0.0442 -0.3447
NEHRP class C -0.1528 0.0805 -0.2148
NEHRP class D 0.0824 0.4585 0.2533

PGD
NEHRP class B -0.3126 -0.0153 -0.4234
NEHRP class C -0.2389 0.1145 -0.2650
NEHRP class D 0.1821 0.6218 0.2595

Table C.2: Magnitude- and site-dependent coefficient C6 in (4.19) for PGA, PGV, and PGD.

Coefficient C6
soil Mw = 5.0 Mw = 6.0 Mw = 7.0

PSA 0.3 s
NEHRP class B 0.0094 0.1176 -0.0551
NEHRP class C -0.0627 0.0651 -0.0728
NEHRP class D -0.1037 0.0831 -0.0466

PSA 1.0 s
NEHRP class B -0.2900 -0.0038 -0.3646
NEHRP class C -0.2057 0.1241 -0.2229
NEHRP class D 0.1589 0.5484 0.2120

PSA 2.0 s
NEHRP class B -0.4080 -0.0032 -0.4859
NEHRP class C -0.2837 0.1756 -0.2974
NEHRP class D 0.2333 0.7403 0.2604

Table C.3: Magnitude- and site-dependent coefficient C6 in (4.19) for PSA at 0.3 s, 1.0 s and 2.0 s.

Coefficient C6
soil Mw = 5.0 Mw = 6.0 Mw = 7.0

Intensity
NEHRP class B -0.0481 -0.0013 -0.0404
NEHRP class C -0.0422 0.0086 -0.0243
NEHRP class D -0.0117 0.0555 0.0238

Arias
NEHRP class B -0.1791 -0.2105 -0.3227
NEHRP class C -0.1460 -0.1048 -0.1781
NEHRP class D 0.1699 0.3677 0.3309

CAV
NEHRP class B -0.1092 -0.2118 -0.1418
NEHRP class C -0.0354 -0.1238 -0.0553
NEHRP class D 0.1902 0.1754 0.2425

Table C.4: Magnitude- and site-dependent coefficient C6 in (4.19) for seismic intensity, Arias, and
CAV.
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Unit standard deviation σln(IM)
soil Mw = 5.0 Mw = 6.0 Mw = 7.0

PGA
NEHRP class B 0.3064 0.3949 0.3409
NEHRP class C 0.3035 0.4051 0.3249
NEHRP class D 0.2925 0.3795 0.3234

PGV
NEHRP class B 0.2958 0.3644 0.3040
NEHRP class C 0.2676 0.3549 0.3182
NEHRP class D 0.2761 0.3487 0.3155

PGD
NEHRP class B 0.2828 0.3642 0.3307
NEHRP class C 0.2784 0.3643 0.3332
NEHRP class D 0.3109 0.3539 0.3200

Table C.5: Magnitude- and site-dependent σln(IM) in (4.19) for PGA, PGV, and PGD.

Unit standard deviation σln(IM)
soil Mw = 5.0 Mw = 6.0 Mw = 7.0

PSA 0.3 s
NEHRP class B 0.3163 0.3951 0.3299
NEHRP class C 0.3045 0.3987 0.3127
NEHRP class D 0.3058 0.3849 0.3141

PSA 1.0 s
NEHRP class B 0.2860 0.3918 0.3273
NEHRP class C 0.2790 0.3790 0.3137
NEHRP class D 0.2931 0.3629 0.3255

PSA 2.0 s
NEHRP class B 0.3078 0.3639 0.3223
NEHRP class C 0.3242 0.3800 0.3226
NEHRP class D 0.3289 0.3685 0.3189

Table C.6: Magnitude- and site-dependent σln(IM) in (4.19) for PSA at 0.3 s, 1.0 s, and 2.0 s.

Unit standard deviation σln(IM)
soil Mw = 5.0 Mw = 6.0 Mw = 7.0

Intensity
NEHRP class B 0.1063 0.0784 0.0751
NEHRP class C 0.1063 0.0773 0.0736
NEHRP class D 0.0981 0.0836 0.0869

Arias
NEHRP class B 0.5735 0.7629 0.5988
NEHRP class C 0.5325 0.7432 0.5756
NEHRP class D 0.5397 0.7307 0.5825

CAV
NEHRP class B 0.2852 0.3850 0.3075
NEHRP class C 0.2767 0.3698 0.2920
NEHRP class D 0.2800 0.3628 0.2904

Table C.7: Magnitude- and site-dependent σln(IM) in (4.19) for seismic intensity, Arias, and CAV.
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C.0.2 Common attenuation laws

Coefficients for M ≤ 6.5
PGA PSA 0.3 s PSA 1.0 s PSA 2.0 s

C1 -0.62400 -0.05700 -1.70500 -2.94500
C2 1.00000 1.00000 1.00000 1.00000
C3 0.00000 -0.01700 -0.05500 -0.07000
C4 -2.10000 -2.02800 -1.80000 -1.67000
C5 1.29649 1.29649 1.29649 1.29649
C6 0.25000 0.25000 0.25000 0.25000

Table C.8: Sadigh et al. (1997): Strong crustal earthquakes in California.

Coefficients for strike-slip
PGA PSA 0.3 s PSA 1.0 s PSA 2.0 s

C1 -0.313 0.598 -1.133 -1.699
C2 0.527 0.769 1.036 1.085
C3 0.000 -0.161 -0.032 -0.085
C4 -0.778 -0.893 -0.798 -0.812
C5 -0.371 -0.401 -0.698 -0.655
Va 1396. 2133. 1406. 1795.

h 5.570 5.940 2.900 5.850

Table C.9: Boore et al. (1997): PGA and PSA for earthquakes in Western North America.

Coefficients
PSA 0.3 s PSA 1.0 s PSA 2.0 s

C1 0.77000 -1.79000 -3.28000
C2 0.00000 1.59000 2.23000
C3 0.00000 0.66000 0.66000
C4 0.00350 0.00850 0.01000
C5 -0.00072 -0.00100 -0.00100
C6 -0.40000 -0.38000 -0.36000
C7 0.00000 0.57000 0.83000
C8 0.00000 0.62000 0.62000

Table C.10: Campbell (1997): PSA for near-source observations.
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Used Software

Stochastic simulations of seismic ground motions in this work were generated by usage of a modified
program version of FINSIM (Beresnev and Atkinson, 1997, 1998). For neural computations, statistics
as well as for visualization I have applied the mathematical program MATLAB (MathWorks Inc.) with
Neural Network, Statistics and Mapping Toolboxes.

This thesis was written with word processing package TEX, the macro package LATEX 2ε, and several
extensions. The bibliography was generated with BTEX.
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