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Preface

Over the last years, Photonic Crystals (PC) have generated a lot of interest [1–7] due
to both, exciting challenges they pose for basic and materials science and promising
optical properties for numerous applications. Most of the fascinating aspects are
based on the Photonic Band Gap (PBG) caused by the periodicity of certain PC
structures, in which the vanishing density of states in certain frequencies ranges
suppresses the propagation of light exponentially1.

PCs were first suggested in 1987 by E. Yablonovitch [8] and S. John [9] in different
contexts. E. Yablonovitch proposed changes in the spontaneous emission properties
of atoms in these structures, whereas S. John discussed the strong localization of
(non-interacting) photons. The general public became aware of PCs after the the
presentation of the “Photonic Micropolis” by J. Joannopoulos [10], which created
a vision to the community. The main idea was to create functional elements to
replace the electronic systems used in information processing by integrated optical
circuits. Todays electronic technologies are based on the band gap for electrons in
semiconductors caused by the periodic arrangement of atoms. The possible analogies
in the electronic and photonic systems suggested a wide range of applications for
this new class of optical materials called PBG materials.

Until now, several optical functional elements have been proposed and created in
various experimental groups around the world. This includes standard devices such
as waveguides and cavities [5, 7] as well as add/drop filters [11] or de-multiplexer
[12, 13]. So far, these elements only exist as single elements or as design proposals
(“blueprints”) but they have not yet been combined into an integrated circuit. For
the theoretical description of optical circuits, a method has been presented lately
[14, 15], combining the simulation of individual elements with a scattering-matrix
(S-matrix) approach to couple them and form a circuit. Besides these optical ele-
ments, a few more exotic applications of PCs were presented, such as suppressing
higher order modes in electron accelerators [16] and guiding Bose-Einstein conden-
sates in the evanescent fields of a PC waveguide [17].

Except for the structures produced in laboratories, only two representations of
PCs are commercially available on larger scales. 1D PCs (Bragg reflectors)2 [19],

1For ideal, infinite structures the density of states is equal to zero and the propagation is not only
suppressed but impossible.

2Fiber-Bragg-gratings are another 1D example with very impressive applications, e. g. as fre-
quency selective mirrors embedded in a 75km long glass fiber allowing a standing wave pattern
which can then enhance signals at lower frequencies by subsequent Raman scattering [18].
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Preface

which were known long before the field of PC research was established. Quasi-2D
systems are the foundation of the second commercially successful PC system, Pho-
tonic Crystal Fibers [20, 21]. For some applications, e. g. near field enhancement
for Surface Enhanced Raman Scattering [22] or polarizers [23], PC are also sold by
companies but these products are not very prominent.

Although PCs are always mentioned as a prime example of artificial materials,
periodic dielectric arrangements are common in nature as well, mostly as structural
colors, e.g. in opals or on the wings of insects [24]. In other cases they are used for
heat regulations [25]. The natural counterparts usually do not exhibit a PBG due
to the small index contrast of the constituent materials. Still, initial attempts are
made to copy nature [26] or to use natural structures as fabrication templates [27]
for bulk PCs.

The fabrication of reliable bulk structures on a large scale is still one of the prob-
lems which limits the PC to laboratory environments, especially in three dimensions.
Therefore, it is not only necessary to study defect modes (e. g. cavity or waveguide
modes) but also the bulk material. In addition, bulk material is interesting by itself
and can also exhibit functional properties, e. g. polarization beam splitters can be
created without defect structures [28] or superrefractive effects making an improve-
ment of the bulk a worthwhile aim.

In this context, it is important to have tools available which allow for an accurate
description of experiments to be able to determine the quality of the sample and
whether the fabricated crystal corresponds to the desired structure. Consequently,
finite, but eventually large crystals have to be simulated. For these structures a large
number of parameters is needed to describe the distribution of dielectric material.
Recently the term 3 + 1 integrated optics has been introduced, with the frequency
as the 4th parameter [29] beside the three spatial dimensions. In the spirit of this
nomenclature, the problems considered in this work relates to light propagation
through 3+X-dimensional PCs with X describing e.g. frequency, angle of incidence,
surface termination, deviations in structural parameters, etc.

As a consequence, a tool for studying these aspects has to be flexible and fast. In
this work such a tool has been implemented based on the Rigorous Coupled Wave
Method (RCWA) combined with a scattering-matrix (S-matrix) approach to calcu-
late the transmittance through finite 2D and 3D periodic structures. The numerical
method is presented in Chapter 2 and details of the implementation and optimiza-
tion of the code with respect to memory and/or computation time requirements are
given in Chapter 3.

The possibilities of the program are demonstrated with three selected projects.
Firstly, a 2D structure of air pores in silicon is studied on a conceptual level in
Chapter 4. The impact of different parameters, such as surface termination and
material absorption on the transmittance in different regions of the band structure
are studied in this chapter. For this structure, disorder simulations for varying pore
sizes are presented using a finite size scaling approach which is possible due to the
high efficiency and flexibility of the S-matrix approach. The analysis of the full
transmittance distributions gives insight into the validity of using averaged values

x



for the description of the transmittance in the disordered case. In addition, the
robustness of the device performance in different frequency regions can be estimated
from these distributions. The main question of this chapter is how to reduce the
number of quantities which have to be analyzed to draw conclusions about the
structure and how to find the most informative way of looking at large data to
extract trends and characteristics.

In the second project (Chapter 5), a finite 3D system is studied. The structure
consists of a corrugated substrate onto which an optical active polymer is coated to
form a waveguide in which lasing occurs due to distributed feedback. In this case the
structure is assumed to be well-known and the coupling strength to the quasi-guided
waveguide modes is determined. This parameter is needed to describe the resulting
lasing lasing action within an effective theory which will be summarized to motivate
the calculations.

The final project (Chapter 6), deals with a 3D PC template which is produced
using holographic lithography. The fabrication of a perfect sample is very tedious
since many structural changes happen during the development of the photoresist and
the final structure cannot be determined using isodose surfaces. In this case, the
effects of deviations in different parameters on the transmittance spectra are studied
to determine which of them lead to significant changes in the measured spectra from
that of the perfect structure. Comparing with experimental data allows to identify
the parameters and compensate the distortion to produce samples for which the
transmittance corresponds to that of the idealized theoretical simulations.

It should be mentioned that this work can be read in parts. The reader only
interested in the basic ideas of the simulation can skip to the results of individual
projects (Chapters 4–6) after the overview of the method in Sec. 2.1. People that
are familiar with the method and would like to know implementation details can
immediately skip to Chapter 3, whereas persons only interested in the results can
start reading in Sec. 4. Due to this approach, some content is repeated, e. g. the
representation of the incoming mode in Sec. 2.1.1 and Sec. 3.2.
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1 Introduction to Photonic Crystals

In this chapter, a short introduction to Photonic Crystals (PCs) is given and some
important concepts, such as the direct and reciprocal lattice (Sec. 1.2), are presented.
Generally speaking, PCs represent a particular class of periodic materials. The
implemented simulation tools are suited for all dielectric structures which exhibit
a 2D periodicity and other systems than PCs, such as surface relief gratings, are
simulated as well. Therefore the discussion of PCs is limited to their main features.
For a more detailed discussion of PCs, the reader is referred to [1–7].

In the results section (Chapters 4–6), three different systems are considered. The
details of the individual structures and an introduction to the physical relevant
quantities for these systems is given in the corresponding chapters.

1.1 Basic Properties of Photonic Crystals

Photonic Crystals consist of a periodic arrangement of constitutive materials with
different optical properties. Due to the periodicity the photonic states inside a PC
can be significantly altered as compared to homogeneous materials. For this to
happen, the periodicity has to be on the length scale of the wavelength of the light.
The occurring effects are quite similar to the case of electrons in a periodic atomic
potential. In our case, the photonic counterpart of the atomic potential is given
by the spatially dependent permittivity of the constituent materials1. Examples
of PCs of different dimensions are shown in Fig. 1.1. The 1D realization is also
known as a Bragg stack. In two dimensions, model systems are represented by pores
in a substrate as discussed in Chapter 4. The 3D system depicted in Fig. 1.1(c)
shows an arrangement of spheres. An artificial opal can be created by arranging
them in a close-packed FCC structure [32]. Other 3D structures involve layer-by-
layer structures, e. g. the woodpile [33], or ones created by holographic lithography
(Chapter 6).

In periodic media, multiple scattering of light may result in the opening of a Pho-
tonic Band Gap (PBG). PBGs are resulting in frequency regions, in which propa-
gation of light is prohibited, or, in other words, in which the density of photonic
states is equal to zero for a perfect, infinite system. Photonic systems exhibiting
this property are called PBG materials. However, not all PCs are PBG materi-
als, since additional constraints are imposed on e. g. the minimum difference in the
permittivity of the constituent materials. For instance, the known PBG materials

1The magnetic permeability is assumed to be unity throughout this work, and meta-materials [30,
31], which exhibit a magnetic response at optical frequencies, are excluded from the discussion.

1



1 Introduction to Photonic Crystals

(a) 1D (b) 2D (c) 3D

Figure 1.1: Schematical representation of PCs in different dimensions. In 2D and
3D a number of other realizations are possible.

in three spatial dimensions require a minimun contrast (n1

n2
) in the refractive index

(n =
√

ε) of more than 2.0 [33, 34]. In a 1D structure, a PBG can open for any
index difference greater then zero. But even in this case, some PBG can disappear
for specific distributions of the constituent materials in the unit cell. A common
property of all periodic systems is a strong modification of the dispersion relation,
describing the dependence of the frequency ω (energy) on the wave vector ~k (mo-
mentum). The dispersion relation of a specific crystal can be visualized using a band
structure diagram in which the frequency is plotted over the wave vector running
along high-symmetry directions in the irreducible Brillouin zone (Fig. 1.2).

Due to the vectorial character of the electromagnetic fields, the description is
more complicated than for the scalar electronic wave function. The occurrence of
two different polarizations in the 2D band structure depicted in Fig. 1.2 is one of the
features which is different as compared to the electronic case.

Since the electromagnetic wave propagates through the crystal in a certain direc-
tion, different gap types can be distinguished. If the propagation is only prohibited
in a certain direction, e. g. only in the ΓX part of the band structure diagram, it is
referred to as a stop band. If the propagation is impossible in all directions of ~k,
the frequency range is called PBG. In this case the lines in the diagram exhibit a
gap in the frequency region, where they vanish completely. If the band gap occurs
for both polarization in 2D, it is referred to as a complete PBG.
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1.2 Direct Lattice and Reciprocal Lattice
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Figure 1.2: Band structure for a system of air pores (ε = 1.0) with radius r = 0.4a
in silicon (ε = 11.9) on a square lattice with lattice constant a. On the right the
Brillouin zone is shown. The band structure for the 2 polarizations is plotted for
wave vectors along the high symmetry lines (dark-green lines) marking the edges of
the irreducible Brillouin zone depicted in light green. [35]

1.2 Direct Lattice and Reciprocal Lattice

The fundamental property of all PCs is their periodicity. The crystal is described by
a lattice, defining the translational symmetry, and a basis, giving the distribution
of the dielectric material in a unit cell.

In d dimensions, the lattice can be described by d linearly independent lattice vec-
tors ~Ri. The permittivity at the positions in space which differ by any combination
of the lattice vectors is identical due to the periodicity

ε(~r) = ε(~r + ~R) with ~R =
d∑

i=1

ni
~Ri, ni ∈ Z . (1.1)

It is sufficient to define the dielectric material in the Wigner-Seitz cell (WSC) of
the lattice, which is the smallest unit cell containing all the information (spatial
distribution, symmetries) about the lattice. By translating the WSC by lattice
vectors, the entire d-dimensional space can be filled. The WSC about a lattice point
can be constructed by connecting this point with all surrounding lattice points and
bisecting each line. The smallest enclosed part around the center point defines the
Wigner-Seitz cell [36].

Each direct lattice is accompanied by a reciprocal lattice, given by reciprocal
lattice vectors ~Gi corresponding to wave vectors of plane waves reproducing the
real-space periodicity. The product of a lattice vector ~R and a reciprocal lattice
vector ~G =

∑d
i=1 mi

~Gi; mi ∈ Z is always given as

~G · ~R = 2πl l = 0,±1,±2, . . . (1.2)

3



1 Introduction to Photonic Crystals

(a) Lattice vectors (b) Wigner-Seitz cells (c) Reciprocal Space

Figure 1.3: Triangular lattice in real and reciprocal space. (a) Lattice and lattice
vectors. (b) Wigner-Seitz cell: the primitive unit cell retaining all symmetries of the
lattice (c) Reciprocal lattice and Brillouin zone (WSC of reciprocal lattice, yellow).

The WSC of the reciprocal lattice is the Brillouin zone (BZ). For a triangular lattice
of rods the Brillouin zone is shown on the right in Fig. 1.3. The BZ of a square
lattice corresponds to the square shown on the right in Fig. 1.2. As in the case of
the direct lattice the wave vectors contained in the BZ are sufficient to describe
physical properties for all wave vectors. However, the number of required ~k can be
limited to a smaller range. Using symmetries of the structure, e. g. rotation and
inversion symmetries, the area of the BZ used to describe physical properties can be
reduced even further to the irreducible BZ. This is the part, which can reproduce
the BZ by applying all symmetry operations to it. The symmetry operations are
defined by the smallest number of common symmetries of the lattice and the basis.
Consequently, the irreducible BZ depends on the lattice and the basis, whereas
the BZ only depends on the lattice. For band structure calculations, i. e. calculating
ω(~k), the wave vector ~k is usually restricted to the high symmetry directions forming
the edges of the irreducible BZ by assuming that extremes of the band structure are
found along these lines.

Anticipating later discussions, it should be mentioned that, although the lattices
and unit cells are not unique, the WSZ/BZ or compatible unit cells should always
be chosen, since these are the only ones representing the symmetries of the structure
correctly2.

The reciprocal lattice can be used to understand the existence of a PBG concep-
tually within a simple picture. Waves with wave vectors at the boundary of the BZ
fulfill the Laue condition ~k ~G = 1

2
|~G|2. The interference of the initial and reflected

waves then create a standing wave pattern with a zero group velocity vg = 0 and,
thus, a vanishing slope in the dispersion. This is only possible if the dispersion
relation exhibits a gap.

2In the numerical method, a finite 3D crystal is simulated. The finite size in one direction does not
allow for the definition of a 3D lattice. As a consequence, different types of “unit cells” will be
introduced. One corresponds to the 2D in-plane periodicity of the crystal. The second describes
the repetition of structural units in the direction of finite size. The latter is required for an
efficient implementation of the numerics in the case of long crystals and does not represent
physical properties of the system (Sec. 3.4.4).

4



1.3 Wave Propagation in Media

1.3 Wave Propagation in Media

The description of electromagnetic waves is based on the Maxwell equations. In a
source-free (ρ = 0) and current-free (~j = 0) environment they are given by3

∇ · ~D(~r, t)
ρ=0
= 0, ∇× ~E(~r, t) = −∂ ~B(~r, t)

∂t
, (1.3)

∇ · ~B(~r, t) = 0, ∇× ~H(~r, t)
~j=0
= +

∂ ~D(~r, t)

∂t
. (1.4)

In addition, the constitutive relations are required which relate the electric field ~E
to the displacement ~D and the magnetic field ~H to the magnetic induction ~B

~D(~r, t) = ε0ε(~r) ~E(~r, t), ~B(~r, t)
µr=1
= µ0

~H(~r, t) . (1.5)

The above representation assumes that only linear polarization (~P = χ~E) effects are
present and that the constituent materials are isotropic (no tensorial permittivity)
and non-magnetic (µr = 1).

The time dependent wave equation for the electric field can be obtained by elim-
inating the magnetic field ~H. This is done using the curl equation for the electric
field, applying a second curl operation and inserting a time derivative of the curl
equation of the magnetic field together with the constitutive relations

~∇× ~∇× ~E(~r, t) = −ε(~r)
1

c2
0

∂

∂t2
~E(~r, t) . (1.6)

For the magnetic field the corresponding transformations yield

~∇× 1

ε(~r)
~∇× ~H(~r, t) = − 1

c2
0

∂

∂t2
. ~H(~r, t) (1.7)

The vacuum permittivity and permeability give the vacuum speed of light according
to c0 = 1/

√
ε0µ0. A time independent form of the wave equations can be derived by

assuming a harmonic time dependence for the fields ~E(~r, t) = ~E(~r)eiωt

1

ε(~r)
~∇× ~∇× ~E(~r) =

ω2

c2
0

~E(~r) , (1.8)

~∇×
(

1

ε(~r)
~∇× ~H(~r)

)
=

ω2

c2
0

~H(~r) . (1.9)

These equations, together with appropriate boundary conditions, correspond to
eigenvalue problems with the eigen-operators defined by the differential operator
on the left hand side and the eigenvalues ω2

c2
. Since the electric and magnetic fields

are related to each other by the Maxwell equations, it is sufficient to solve the equa-
tion for either one of the fields. The solutions of the eigenvalue problem give the
field distributions in eigenmodes at the corresponding eigenvalue frequencies. The
wave vector ~k is a parameter entering the equations and the eigenvalue problem has
to be solved for each ~k.

3In SI units. For different unit systems see appendix of [37].
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1 Introduction to Photonic Crystals

1.3.1 Wave Propagation in Periodic Media

In the wave equations (1.8) and (1.9) the permittivity is space dependent, but the
periodicity has not been introduced yet. As a consequence of the periodicity of
coefficients in the differential wave equation, the solutions have to obey the Bloch-
Floquet theorem. It states that the eigenmodes are described by the product of

a lattice periodic function un,~k and a plane wave ei~k~r, where the wave vector ~k is
restricted to the first BZ. A translation of the fields by a lattice vector introduces a
phase, keeping the modulus constant [36]

~Hn,~k(~r + ~R, t) = un,~k(~r + ~R, t) ei~k(~r+~R)

= un,~k(~r, t) ei~k(~r) ei~k ~R

= ~Hn,~k(~r, t)e
i~k ~R . (1.10)

The same holds for the electric field. For a complete description, two indices are
required: ~k for the wave vector and n for the band index. The band index comes
about by restricting the wave vector ~k to the first Brillouin zone. With the use of
the Bloch functions in the eigenvalue problem, the eigenvalues inherit the indices
and are given by ωn,~k which leads to a band structure such as in Fig. 1.2. Although
band structure calculations are not needed in the following, the calculation method
known as Plane Wave Method (PWM) is summarized below [38]. The eigenvalue
problem can then be compared to the eigenvalue problem used for the transmittance
calculations (Chapter 2). An overview of different computational methods for solving
the band structure problem can be found in [39].

Because of the periodicity of the problem, an expansion of the fields and the space
dependent permittivity in Fourier series is a well suited approach

~H~k(~r, t) =
∑

~G

C
~k
~G

ei(~k+ ~G)~r , (1.11)

1

ε(~r)
=

∑

~G

η ~G ei ~G~r . (1.12)

From the divergence equation for the magnetic field it follows that ~H~k is perpendic-

ular to ~k and that two independent polarizations have to be considered. The index
~k is omitted and the polarizations are labeled using λ = 1, 2

C
~k
~G

= h1
~G
ê1

~G
+ h2

~G
ê2

~G
=

∑

λ

hλ
~G
êλ

~G
(1.13)

with the set {ê1
~G
, ê2

~G
, ~k + ~G} being orthogonal to each other. By inserting this into

the wave equation the following eigenvalue problem can be derived

∑

~G′

|~k + ~G| |~k + ~G ′| η ~G− ~G′

(
+ê2

~G
· ê2

~G′
−ê2

~G
· ê1

~G′

−ê1
~G
· ê2

~G′
+ê1

~G
· ê1

~G′

) (
h1

~G′

h2
~G′

)
=

(
ω~k

c0

)2 (
h1

~G

h2
~G

)
(1.14)
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1.3 Wave Propagation in Media

In this equation the wave vector ~k with all its components is a parameter which is
varied along the high symmetry lines. For each ~k the eigenfrequencies and eigen-
modes can be calculated. The frequency ranges which do not occur as eigenvalue
form the PBG. For the actual calculations the Fourier series has to be truncated.
A similar procedure (solving for kz instead of ω) is discussed in the next chapter
in detail. It should be mentioned that the correct calculation of η ~G− ~G′ is very im-
portant for the convergence behavior [34, 40]. The Ho-Chan-Soukoulis method does
not compute the Fourier coefficients of η directly but rather calculates the Fourier
transform of ε(~r)

ε ~G =
1

V

∫

WSC

d2r ε(~r) e−i ~G~r . (1.15)

The matrix ε ~G~G′ ≡ ε ~G− ~G′ is then inverted and η ~G− ~G′ is taken to be the (~G, ~G′)
element of the inverted matrix.

1.3.2 2D Crystal

A system which is uniform in the z-direction, e. g. infinite rods or pores, can be
treated in a 2D formalism. In this case, the electric and magnetic fields decouple
and two different scalar eigenvalue problems for the z-component of the fields (Hz,
Ez) can be derived. E- and H-polarization are defined as having the electric and
magnetic, respectively, field oriented parallel to the rods (Fig. 1.4).

Physically the decoupling is caused by the different behavior of the magnetic and
electric field upon inversion at the x-y-plane. In the calculation, decoupling is caused
by the vanishing derivatives with respect to the homogeneous z-direction. Without
giving a derivation the equations read as

∑

~G′

|~k + ~G| |~k + ~G′|η ~G− ~G′|~k + ~G′|E~k
~G′

=
ω2

~k

c2
0

|~k + ~G|E~k
~G
, (1.16)

∑

~G′

(
~k + ~G

)
·
(
~k + ~G′

)
η ~G− ~G′ H

~k
~G′

=
ω2

~k

c2
0

H
~k
~G′

. (1.17)

In this case E and H correspond to the z-component and all vectors (~G, ~G′, ~k) only
have x- and y-components. Since the standard eigenvalue problem for the electric
field is not symmetric, it has been turned into a symmetric generalized eigenvalue
problem by introducing the factor |~k + ~G| on both sides of the equation.

An example for a 2D band structure is shown in Fig. 1.2 for a 2D system of air
pores (ε = 1.0) with radius r = 0.4a in silicon (ε = 11.9) on a square lattice with
lattice constant a.
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1 Introduction to Photonic Crystals

E-Pol.

H-Pol.

~E

~H

~E

~H

Figure 1.4: E-Polarization and H-Polarization for a 2D crystal with rods on a
square lattice, which is homogeneous in the vertical (z-) direction. For E-(H-) po-
larization the electric (magnetic) field has only a component parallel to the rods.
For each polarization a scalar eigenvalue problem can be derived.

1.3.3 Scaling Properties

A very useful property of the Maxwell equations is the absence of a length scale.
By rescaling all physical quantities with the lattice constant a, they can be made
dimensionless. All PCs with the same lattice and size ratios can be described by the
same band structure. This was especially useful in the early days of the field, when
nanostructuring was hardly available. The early experiments were all done using
microwaves with a wavelength of several cm but the results are all valid for optical
wavelengths as well, provided the sample can be scaled accordingly.

The dimensionless quantities are given by

ω′ =
ωa

2πc0

=
a

λ
, ~k′ = ~ka , λ′ =

λ

a
, ~r ′ =

~r

a
. (1.18)

It should be mentioned here, that this property is usually lost in real samples with
dispersive permittivities4. A dispersion relation for the permittivity relates the
dielectric constant to a frequency, e. g. through a Drude model. In this case a
frequency scale is introduced into the system. Rescaling the structure by changing
the lattice constant a would not change the dimensionless frequency, but the regular
frequency would scale with the inverse of the lattice constant ω = 2πc0ω′

a
and, hence,

the permittivity of the dispersive material would have to be changed. This can only

4Modeling dispersion in band structure calculations is not straightforward since the frequency is
calculated as a solution of the eigenvalue problem. Iterative solutions are, however, possible
[35, 41].
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1.4 Band Structures and Finite Samples

be avoided if the permittivity depends only on the dimensionless frequency, e. g.
in the two-level model discussed in Sec. 3.5.5 where the resonance frequency can be
defined in terms of the dimensionless frequency. However, this is a purely theoretical
model and in a real experiment, a material must be found for which the resonance
frequency can be tuned so that the system exhibits the properties assumed in the
model. For realistic modeling, simulation tools capable of dispersive material are
required to manage both systems, dimensionless and regular units.

1.4 Band Structures and Finite Samples

The properties discussed above are related to infinite and perfectly periodic crystals.
In the following chapters, the transmittance through finite structures is calculated
and discussed in detail.

The calculation of transmittance is a frequency domain problem, since in trans-
mittance experiments, the frequency is defined by the incoming probe beam. The
magnitude of the wave vector is fixed and only its orientation can change. Although
the wave vectors and frequencies are related by the same dispersion relation, solving
for the wave vector instead of the frequency leads to major differences. Whereas the
physical interpretation of a complex frequency is difficult, a complex wave vector
can be easily related to the experiment. In a finite structure propagation will occur
even in the PBG, however, this propagation is exponentially damped. The PBGs
then appear as strong dips in the transmittance and show a distinct (exponential)
length dependence.

Beside the fact that small transmittance can occur in the PBG, a finite structure
can also show a very low transmittance, even if photonic bands are available for this
frequency range. In Fig. 4.3 this can be seen in the regions of the dashed bands.
Although a band exists, the transmittance is very low. The reason for this is a
symmetry mismatch of the incoming wave and the Bloch mode inside the crystal.
The parity of the incoming mode is always even across the slab surface. If the Bloch
mode for the considered band exhibits an odd parity, the incompatible symmetries
prevent coupling of the incoming wave to the crystal modes.

Another “finite” structure that is of great importance are the Photonic Crystal
Fibers (PCF) [20]. The cross section of these fibers consists of a 2D system with a
defect in the center. This pattern is constant along the fiber and propagation takes
place in the direction normal to the 2D system. If the defect is ignored and the 2D
periodic structure is extended infinitely, the 2D band structure can be calculated.
In first approximation this gives the frequency ranges in which the fiber can guide
light due to the PBG.

The PCF is not a 2D system, for which the wave vector parallel to the pores would
be zero, since, for a 2D system, the derivatives with respect to the z-coordinate have
to vanish. In the case of PCFs, the the modeling has to include the wave vector
component kz in the propagation direction as additional parameter, making a full
3D treatment necessary. In the presented calculations a similar situation occurs.
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1 Introduction to Photonic Crystals

In all cases the periodic system is parallel to the propagation direction, as in the
case of PCFs. Whereas in calculations of the PCF, the propagation constant and
the in-plane wave vector are considered as parameters and the possible frequencies
are determined, the transmittance calculations presented in the following, use the
frequency and in-plane wave vector as parameters and solve for the propagation
constant perpendicular to the periodic system.
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2 Numerical Method

In this chapter, the numerical method which is used to model the photonic systems
based on an approach by Whittaker et al. [42] is described without any implemen-
tation details. These details, together with the concepts used for code optimization,
is the topic of the following chapter.

At the beginning (Sec. 2.1) an overview about the ideas and concepts of the sim-
ulation will be given as an introduction to the following calculations. Readers only
interested in the results may skip ahead to Chapter 4 after this section without
missing any parts necessary for a general understanding.

Starting in Sec. 2.2 until the end of the chapter the calculations will be discussed
in detail, including the calculation of basis functions for the fields (Sec. 2.2), the
propagation of the fields through the crystal (Secs. 2.3–2.6), the determination of
fields inside the crystal (Sec. 2.5) and the introduction of dipole sources (Sec. 2.7).
At the end improvements and alternative approaches are mentioned Sec. 2.8.

2.1 Basic Principles

In this section, the method is outlined to allow for an understanding of the individual
steps presented later in the context of a broader picture.

The aim in the simulation is to connect the incoming wave to all outgoing (trans-
mitted or reflected) waves. For this the wave has to be propagated through the
structure and correct expressions for the fields have to be found in all regions. This
is done by dividing the structure into several layers, expressing the fields in each
layer using eigenmodes and matching (propagating) them across layer boundaries.
Methods of this type are known as Multilayer Modal Method (MMM) [43]. The
modes are calculated using a Fourier expansion in the reciprocal lattice vectors in-
troduced as the Rigorous Coupled Wave Analysis method (RCWA) by Moharam et
al. [44].

2.1.1 Quantities of Interest

Before describing the simulation, its goal should be defined. In this work, the focus
is on calculating the complex amplitudes of reflected and transmitted waves for
a plane wave impinging with oblique incidence on a periodic photonic structures1.
From these amplitudes, further quantities can be calculated, e.g. total transmittance

1The term photonic structure is chosen, since not only PCs can be studied with this method, but
also periodic surface relief gratings used in distributed feedback lasing, etc.
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2 Numerical Method

and reflectance or scattering phases. In addition, the fields inside a structure should
be accessible.

Periodic Structures and Bragg-orders

As a first step, a coordinate system has to be introduced. For each system, the
surface2 of the structure defines the x-y-directions, also called in-plane later on,
whereas the perpendicular z-direction is called propagation direction3. The structure
is finite in the z-direction and has to be periodic in the x-y-direction to allow for the
definition of a unit cell and an in-plane lattice. This periodicity has to be constant
with z, however the distribution of materials inside the unit cell (basis) can change
arbitrarily with z.

As a consequence of the periodicity, the structure can be considered as a 2D
diffraction grating. An incoming plane wave will be reflected, respectively transmit-
ted, into several diffraction orders. The incoming wave is defined by the frequency
ω, the angle to the surface normal θ, and the angle φ between the x-axis and the
projection of the wave vector onto the surface. The propagation direction follows as

(
~kq,in

kz,in

)
= k0,in




sin θ cos φ
sin θ sin φ

cos θ


 . (2.1)

A schematic representation using a 1D grating for simplicity is shown in Fig. 2.1. The
dark blue arrows indicate the incoming and the 0th-order reflected/transmitted wave.
The other arrows represent diffraction-/Bragg-orders. The wave vector components

parallel to the surface ~kq := ~k obey crystal momentum conservation, i. e. for different
Bragg-orders a combination of the two reciprocal lattice vectors is added to them

~knm = ~kin + n~G1 + m~G2 . (2.2)

In Fig. 2.1 this is illustrated for a 1D system, where the parallel component is given
by kx and only one reciprocal lattice “vector” Gx = 2π

a
exists. In homogeneous

materials the component in the (vertical) propagation direction can immediately be
calculated by the dispersion relation

k2
z,nm =

(ω

c

)2

− k2
x,nm − k2

y,nm , (2.3)

with the speed of light in the surrounding media given by the the vacuum speed
of light divided by the index of refraction c = c0

nin
. Depending on the Bragg-order,

kz can be imaginary and non-propagating order occur, which are depicted by the
dashed arrows in the illustration. The representation of the field as sum of Bragg

2This surface is assumed to be flat in the description given here, but it can be structured, e. g.
a surface relief grating. The only constraint is the periodicity, making e. g. a tilted surface
impossible.

3Strictly spoken this is only the propagation direction of a wave with perpendicular incidence.
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2.1 Basic Principles

orders4 is commonly known as Rayleigh expansion. In the homogeneous regions, dif-
ferent orders decouple and hence the energy transport for each mode is given by the
corresponding Poynting vector, allowing to calculate the transmittance/reflectance
for each mode individually. In the periodic areas, the above description has to be
modified and the plane waves have to be replaced by other modes as is shown later.

Top

Bottom

θ

z

periodic x−y−plane

Figure 2.1: Example for a grating system. The incoming and 0th-orders are de-
picted in dark blue. Solid light blue arrows represent propagating Bragg orders,
dashed arrows non-propagating orders. In the 1D system only the azimuthal angle
θ to the surface normal and the frequency are needed to describe the incoming wave.
The side of the incoming/reflected(outgoing/transmitted) wave will be referred to
as top/bottom.

Changes in the z-direction are modeled using a staircase approximation [45] as
illustrated in Fig. 2.2. Again, for simplicity the layers are 1D in this illustration,
creating a finite 2D crystal. In this approach, the crystal is sliced into layers par-
allel to the surface and each layer is considered as an individual grating which is
homogeneous in the z-direction. For a finite 3D structure, the layers are 2D periodic
systems.

In structured layers, the Rayleigh expansion turns into a Fourier expansion in
the reciprocal lattice vectors for the fields and the permittivity. After inserting into
Maxwell equations, this leads to an eigenvalue problem for the eigenmodes and the
propagation constant in z-direction, instead of a differential equation.

Relating fields in different parts of the crystal

Once the fields in each layer are expressed in the corresponding eigenmodes, the
question arises how to relate them in different layers. For this, the boundary condi-
tions of the tangential fields between adjacent layers are used. More than two layers
can then be related by an appropriate matrix formalism. The simplest possible ap-
proach is the transfer-matrix (T -matrix) formalism, which directly relates fields in

4For a full description the forward(incoming) and backward(reflected) waves have to be included
in the Rayleigh expansion.
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2 Numerical Method

z
Figure 2.2: Example for a grating system with a z-dependence modeled by a
staircase approximation by replacing the structure layers which, individually, are
constant in the z-direction. The periodicity has to be the same in all layers for this
approach to be applicable.

different layers. However, this is known to be numerically unstable [46, 47]. Another
possibility is the more complex scattering-matrix (S-matrix), which is used in this
work and is discussed in more detail later. Further possibilities include the (only
conditionally stable) R-matrix method5 [48, 49] or the enhanced T -matrix method
[50]. It has been shown by L. Li that the S-matrix is the most efficient method for
most cases [49].

2.2 Fields in Individual Layers

In each layer of the staircase approximation a suitable description of the electromag-
netic fields is required. By using a Fourier expansion in reciprocal lattice vectors the
electromagnetic fields in the Maxwell equations can be expressed in terms of eigen-
modes. Before starting with the actual calculations a few notations and quantities
have to be defined:

• The vector symbol ~v is used for two types of quantities:

– 2D vectors within the layers (~r, ~G, ~k) with in-plane-components (x, y)

– field vectors ( ~H, ~E) and differential operators (~∇) with x-, y- and z-
components.

• A tilde t̃ is used for Fourier transformed quantities.

• A hat ĥ is used for matrices (k̂x, k̂y) containing NxN elements for Fourier
series truncated at order N . If these matrices contain Fourier transformed
quantities, the tilde is omitted.

5The layer thickness has to be chosen so that the growing exponential is smaller than a threshold
defined by the precision of the computer.

14



2.2 Fields in Individual Layers

• The widehat ŵh is used for matrices containing 2Nx2N elements which involve
combinations of the above.

• Capital letters are used for matrices containing 4Nx4N elements for all fields
(S-matrices, T -matrices,...)

Determination of Eigenmodes

The governing equations of motion in electrodynamics are the Maxwell equations.
Although they are already presented in Chapter 1, they are repeated here to start the
calculations at a basic point. In contrast to the previous discussion, the dependencies
are split into in-plane (~r) and vertical (z) components:

~∇ · ~D(~r, z, t) = ρ0 , (2.4)

~∇ · ~H(~r, z, t) = 0 , (2.5)

~∇× ~E(~r, z, t) = −∂t
~B(~r, z, t) , (2.6)

~∇× ~H(~r, z, t) = ~j0 + ∂t
~D(~r, z, t) . (2.7)

For spatially varying but isotropic and non-magnetic material with a linear polar-
ization, the constitutive relations are given by

~D(~r, z, t) = ε0ε(~r) ~E(~r, z, t) , ~B(~r, z, t) = µ0
~H(~r, z, t) . (2.8)

The staircase approximation requires that, within each layer, the electric permittiv-
ity ε(~r) only depends on the in-plane spatial vector ~r. In addition, the dielectric
function in different layers is restricted to the same periodicity6. To distinguish
different layers, the dielectric function is labeled with the layer number l. However,
in this section the calculations are restricted to one layer and the index is dropped.
For the fields a time-harmonic dependence is used

~E(~r, z, t) = ~E(~r, z)e−iωt , ~H(~r, z, t) = ~H(~r, z)e−iωt . (2.9)

In the following situations without free charges (ρ0 = 0) and currents (~j0 = 0) are
assumed. The variables are replaced by the dimensionless ones from Sec. 1.3.3.

ω′ =
ωa

2πc0

=
a

λ
, ~k′ = ~ka , λ′ =

λ

a
, ~r′ =

~r

a
. (2.10)

6This requirement can be relaxed slightly if one uses supercells. In this case their periodicities
only have to be integer multiples of each other.
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2 Numerical Method

In subsequent calculations the prime is omitted and, consequently, Maxwell equa-
tions7read as

~∇ε0ε(~r) ~E(~r, z) = 0 , (2.11)

~∇ ~H(~r, z) = 0 , (2.12)

~∇× ~E(~r, z) = 2πc0 i ω µ0
~H(~r, z) , (2.13)

~∇× ~H(~r, z) = −2πc0 i ω ε0ε(~r) ~E(~r, z) . (2.14)

The periodicity in x- and y-direction is ideally suited for a plane wave expansion
(Fourier expansion) using the reciprocal lattice vectors as a basis. Since oblique
incidence is of special interest, the expansion has to be centered around an arbitrary
in-plane wave vector ~k0

~H(x, y, z) =
∑

m

~̃Hm(z)ei( ~k0+ ~Gm)~r , (2.15)

~E(x, y, z) =
∑

n

~̃En(z)ei( ~k0+ ~Gn)~r . (2.16)

The composite index m(n) is an abbreviation for a pair of integers (m1,m2) defining

the vector ~G = m1
~G1 + m2

~G2 as a linear combination of reciprocal lattice vectors
~G1 and ~G2, which depend on the 2D in-plane lattice of the crystal. In the incoming
(outgoing) region above (below) the crystal, the individual orders correspond to the
Bragg-orders of the crystal defined by the 2D periodicity in the layers, reproducing
the Rayleigh expansion automatically. The dielectric function can be expressed
using the same expansion

ε(x, y) =
∑

n

ε̃n′ ei ~Gn′~r , ε̃n′ =
1

V

∫
d2r ε(~r) e−i ~Gn′~r . (2.17)

In the following, the ensuing manipulation of eq. (2.14) is considered as an example.
For simplicity the dependencies are dropped

∂

∂y
Hz −

∂

∂z
Hy = −2πc0 i ω ε0ε Ex , (2.18)

∂

∂z
Hx −

∂

∂x
Hz = −2πc0 i ω ε0ε Ey , (2.19)

∂

∂x
Hy −

∂

∂y
Hx = −2πc0 i ω ε0ε Ez . (2.20)

7With a = 1 in dimensionless units. Using ~k′ =
~ka
2π

would avoid dealing with the factor 2π,

however then one would have to use ~G′ =
~G
2π

and rescale the Fourier transform or the real
space unit cell, which would contradict solid state textbooks and possibly lead to confusions.
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2.2 Fields in Individual Layers

Since the calculations are straightforward, the individual steps will only be presented
for the first of the 3 above equations. Inserting the expansions leads to

∂

∂y

∑

m

H̃z,m(z) ei( ~k0+ ~Gm)~r − ∂

∂z

∑

m

H̃y,m(z) ei( ~k0+ ~Gm)~r

= −2πc0 i ω ε0

∑

n′

ε̃n′ ei ~Gn~r
∑

n

Ẽx,n(z) ei( ~k0+ ~Gn)~r . (2.21)

Keeping in mind that ~k0 is fixed throughout the system, the index “0” is dropped
now. Differentiating and collecting terms then gives

∑

m

[
i(ky + Gy,m)H̃z,m(z) − ∂

∂z
H̃y,m(z)

]
ei(~k+ ~Gm)~r

= −2πc0 i ω ε0

∑

n,n′

ε̃n′Ẽx,n(z) ei(~k+ ~Gn+n′)~r . (2.22)

The double summation on the right side couples different orders due to the periodic-
ity of the system8. A comparison of the exponential factors leads to the requirement
m = n+n′ for the orders of the expansion of the dielectric function n′ respectively the
electric field n whose products show the same spatial behavior as the magnetic field
with order m. Therefore, the summation of all combinations of n and n′ fulfilling
this requirement contribute to the corresponding magnetic field order.

Due to the linearity of the Maxwell equations, each order of the magnetic field can
be treated separately leading to a set of equations (one for each order m) instead of
the summation over all orders

i(ky + Gy,m)H̃z,m(z) − ∂

∂z
H̃y,m(z) = −2πc0 i ω ε0

∑

n, n′

n + n′ = m

ε̃n′Ẽx,n(z) . (2.23)

All Fourier coefficients of one of the field components are now combined into a
Fourier vector, which has to be truncated for actual computation. This truncation
could be implemented differently (see Sec. 2.8.1) in case that convergence is not
good enough, e. g. for metallic structures, but for the systems studied in this work
convergence was always achieved using the presented way

hi(z) = (H̃i,m=−∞(z), . . . , H̃i,m=∞(z))T , i = x, y, z . (2.24)

In addition, diagonal matrices containing the in-plane wave vector components re-
lated to corresponding modes are required (k̂i)mm′ = (k0,i + Gi,m)δmm′ , i = x, y. To
be consistent, the Fourier coefficients of the permittivity function have to be written
in a form which guarantees that the sum on the right side is correctly reproduced

8In a homogeneous system all coefficients of the expansion of the dielectric function would be zero
except the 0th-order one and the summation over n′ collapses into one term and the coupling
vanishes.
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when multiplying with the Fourier vector of the electric field. This is facilitated by a
Toeplitz-matrix with matrix elements (ε̂)nn′ = ε̃n−n′ . Products of Toeplitz-matrices
preserve the order in all elements, whereas products of Toepliz-matrices with Fourier
vectors preserve the order in the Fourier vectors.

Using these expressions, a more compact representation of the curl equations
(2.13) and (2.14) can be obtained:

ik̂yez(z) − ∂

∂z
ey(z) = 2π i ω µ0 c0 hx(z) , (2.25)

∂

∂z
ex(z) − ik̂xez(z) = 2π i ω µ0 c0 hy(z) , (2.26)

ik̂xey(z) − ik̂yex(z) = 2π i ω µ0 c0 hz(z) , (2.27)

ik̂yhz(z) − ∂

∂z
hy(z) = −2π i ω c0 ε0ε̂ ex(z) , (2.28)

∂

∂z
hx(z) − ik̂xhz(z) = −2π i ω c0 ε0ε̂ ey(z) , (2.29)

ik̂xhy(z) − ik̂yhx(z) = −2π i ω c0 ε0ε̂ ez(z) . (2.30)

Due to the homogeneity in the z-direction, each mode will propagate as a plane wave
eiqz with a propagation constant9 q and a separation of the z-dependence from the
lateral dependence is possible. If these dependencies are combined and used in the

divergence equation for ~H eq. (2.5), an expression for ~̃H in eq. (2.15) can be found

~H(~r, z) =
∑

~G




Φx, ~G

Φy, ~G

−1
q
(kx + Gx) Φx − 1

q
(ky + Gy) Φy


 ei(~k+ ~G)·~reiqz . (2.31)

The only unknown variables are the propagation constants q and the space-independent
Fourier coefficients10 Φx and Φy. The reciprocal lattice vectors ~G are determined

by the lattice and the in-plane wave vector ~k is given by the incoming wave. In
the incoming region the Fourier coefficients Φi are also completely defined by the
incoming wave and only the 0th-order is present11. Re-writing the magnetic field
Ansatz using the concept of Fourier vectors eq. (2.24) for Φ leads to

h(~r, z) =




φx

φy

−1
q

(
k̂xφx + k̂yφy

)


 eiqz . (2.32)

9This is not labeled kz to avoid confusion with the in-plane wave vector ~k
10They however still differ from layer to layer.
11In some cases a different order than the 0th-order is used to describe the incoming wave for

convergence reasons (Sec. 3.2.1).
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2.2 Fields in Individual Layers

This matches the notations in eq. (2.25) to eq. (2.30) and allows for a formulation of

the curl-equations for the electric field with an Ansatz fulfilling ~∇ · ~H = 0:

ik̂y

(
−1

q
k̂xφx −

1

q
k̂yφy

)
− iqφy = −2π i ω c0 ε0ε̂ exe

−iqz , (2.33)

iqφx − ik̂x

(
−1

q
k̂xφx −

1

q
k̂yφy

)
= −2π i ω c0 ε0ε̂ eye

−iqz , (2.34)

ik̂xφy − ik̂yφx = −2π i ω c0 ε0ε̂ eze
−iqz . (2.35)

This equation relates the Fourier coefficients of the electric field to the ones used
in the expansion of the magnetic field. During this transformation, it is necessary
to invert the Toeplitz-matrix of the dielectric function ε̂. The inverted matrix is
labeled η̂ = ε̂−1. The validity of this transformation requires that the elements of η̂
are not calculated by a Fourier transform of 1/ε(x, y). The inversion must be done
numerically, so that ε̂η̂ = 1 is always true. The inverse Fourier transform of η̂ does
not reproduce the inverse of the permittivity in real space 1/ε(x, y), except for an
infinity number of modes. As a consequence, the product of the permittivity and
and its inverse in real space is not unity (ε(x, y)η(x, y) 6= 1) if both quantities are
calculated by an inverse Fourier transform of ε̂ and η̂. The final expression for the
electric field in terms of the coefficients of the magnetic field is

e(~r, z) =
1

2π ω c0 ε0 q




η̂k̂yk̂xφx +
(
η̂q2 + η̂k̂yk̂y

)
φy

−
(
η̂q2 + η̂k̂xk̂x

)
φx − η̂k̂xk̂yφy

η̂q
(
k̂yφx − k̂xφy

)


 eiqz . (2.36)

This expression can be inserted into eqs. (2.25)–(2.27). In this step most of the
coefficients cancel out

k̂yη̂
(
k̂yφx − k̂xφy

)
+ η̂

[(
q2 + k̂xk̂x

)
φx + k̂xk̂yφy

]
= (2π ω)2φx , (2.37)

η̂k̂yk̂xφx +
(
ηq2 + η̂k̂yk̂y

)
φy − k̂xη̂

(
k̂yφx − k̂xφy

)
= (2π ω)2φy . (2.38)

The third of the resulting equations is linearly dependent on the others and can be
neglected

−k̂x

[(
η̂q2 + η̂k̂xk̂x

)
φx + η̂k̂xk̂yφy

]
− k̂y

[
η̂k̂yk̂xφx +

(
η̂q2 + η̂k̂yk̂y

)
φy

]

= (2πω)2
(
k̂xφx + k̂yφy

)
. (2.39)

Simplifying the equations leads to an eigenvalue problem for ω2. This however
is not a band structure eigenvalue problem since it depends not only on the in
the plane-components of the wave vector ~k and the reciprocal lattice vectors ~G
(which would be the case for a 2D band structure calculation) but also on the out-of
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plane component q of the wave vector. The 2D band structure would be calculated
with scalar fields for both polarizations (E-Pol, H-Pol) by taking advantage of the
symmetry [4, 38](Sec. 1.3.2)

[
k̂yη̂k̂y + η̂

(
q2 + k̂xk̂x

)]
φx +

[
η̂k̂xk̂y − k̂yη̂k̂x

]
φy = (2πω)2φx, (2.40)

[
η̂k̂yk̂x − k̂xη̂k̂y

]
φx +

[
k̂xη̂k̂x + η̂

(
q2 + k̂yk̂y

)]
φy = (2πω)2φy . (2.41)

Combining φx and φy into a vector ~φ 12 leads to the final eigenvalue problem for ω2

and ~φ

[(
η̂ 0
0 η̂

) [
q2 +

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)]
+

(
k̂yη̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)]
~φ = (2πω)2~φ .

(2.42)

For simplicity in notation the following 2Nx2N matrices are introduced

k̂k =

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)
, k̂nk =

(
k̂yη̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)
, η̂ =

(
η̂ 0
0 η̂

)
.

(2.43)

The product of the two matrices containing the wave vector (k̂k, k̂nk) vanishes.
Remembering that the k̂i-matrices are diagonal and can be commuted in front of
the η̂ matrix, it is easy to prove

k̂k k̂nk =

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)(
k̂yη̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)

=

(
k̂xk̂xk̂yη̂k̂y − k̂xk̂yk̂xη̂k̂y −k̂xk̂xk̂yη̂k̂x + k̂xk̂yk̂xη̂k̂x

k̂yk̂xk̂yη̂k̂y − k̂yk̂yk̂xη̂k̂y −k̂yk̂xk̂yη̂k̂x + k̂yk̂yk̂xη̂k̂x

)

=

(
0 0
0 0

)
. (2.44)

In this notation, the equation reduces to

[
η̂

[
q2 + k̂k

]
+ k̂nk

]
~φ = (2πω)2~φ . (2.45)

Solving for the eigenvalue of interest q2 leads to the final eigenvalue problem for the
expression of the fields in an individual layer

[
ε̂
(
(2πω)2 − k̂nk

)
− k̂k

]
~φ = q2~φ . (2.46)

12The vector symbol is used to describe the in-plane character. It contains 2N components (Fourier
coefficients for the x- and y-components.)
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2.2 Fields in Individual Layers

The total number of 2N (double the number of orders kept in the Fourier expan-

sion) eigenvectors ~φn form the new basis for expanding the fields. Each eigenvector
contains N Fourier coefficients of each of the the Fourier vectors hx and hy in this
order. ex and ey can be determined using eq. (2.36).

The eigenvalue q2
n is the square of the propagation constant in z-direction of the

corresponding nth eigenmode. The propagation is described by a simple exponential
plane-wave propagation due to the homogeneity in the z-direction within this layer.

Since the product of a diagonal and a full matrix does not commute the matrix
k̂nk is non-symmetric due to the product of k̂iη̂k̂j and the eigenvalue problem is
non-symmetric as well. In addition, the dielectric function can be complex if there
is absorption in the system. It can still be solved but the eigenvectors in general do
not exhibit special properties.

The problem can be made symmetric by multiplying with (ω2 − k̂nk) and then

using the relation between k̂k and k̂nk (eq. (2.44))

[(
(2πω)2 − k̂nk

)
η−1

(
(2πω)2 − k̂nk

)
− (2πω)2k̂k

]
~φ = q2

(
(2πω)2 − k̂nk

)
~φ .

(2.47)

The eigenvectors of such a generalized eigenvalue problem fulfill a generalized orthog-
onality relation with the matrix ((2πω)2− k̂nk) sandwiched between the eigenvector

~φT
n

(
(2πω)2 − k̂nk

)
~φn′ = δnn′ . (2.48)

Using this orthogonality relation later on, a matrix inversion of a 4Nx4N matrix can
be done analytically but it is not needed otherwise. The computational advantage
is lower than expected, since the general eigenvalue problem takes longer than a
regular one and, in addition, one has to make sure that eigenvectors for degenerate
eigenvalues are orthogonalized as well.

Expressing the fields in eigenmodes

Knowing the eigenmodes in an individual layer, they can be used as a basis to
express the fields. As mentioned before, the entries in eigenvectors determine the
Fourier components of the field pattern, which moves in z-direction as a plane wave
with propagation constant q(= kz).

This makes is possible to express the field as a superposition of all N eigenmodes,
each occurring twice, once propagating forward and once propagating backward.
The unknows are the amplitudes an and bn associated with each mode

(
hx(z)
hy(z)

)
=

∑

n

(
φx,n

φy,n

) (
eiqnzan + e−iqn(z−d)bn

)
. (2.49)

The two different exponentials for the forward (eiqnz) and backward (e−iqn(z−d)) prop-
agating wave are needed for better numerical stability.
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The result of the eigenvalue problem is not the propagation constant q but the
square of it. When taking the root, there are two different possibilities. If one takes
the root with the positive imaginary part of q the forward propagating wave will
decay so that it has its biggest amplitude at z = 0 (top of the layer). By introducing
the additional phase eiqnd, the biggest amplitude of the backward propagating wave
at the bottom of the layer (z = d) is on the order of 1 and not exponentially larger
than the one of the forward propagating wave. Therefore, the coefficients an an bn

are of the same order too, which is numerically preferable. As a consequence, the
coefficient an describes the forward propagating wave at the top of the layer, whereas
bn describes the backward propagating wave at the bottom. These phases will be
present in the S-matrix later on, but their introduction avoids a layer T -matrix
which propagates the fields through the layer [49].

Simplifying the expression using the 2Nx2N matrix φ̂ containing all eigenvectors
in the columns, the 2Nx2N diagonal matrix f̂(z) containing the phases (f̂(z))nn =
e−iqnz and the 2N -dimensional vectors a and b containing the coefficients leads to

~hq = φ̂
(
f̂(z)a + f̂(z − d)b

)
. (2.50)

Doing the same for the electric field starting from eq. (2.36) yields

(
−ey

ex

)
=

∑

n

(
η̂ 0
0 η̂

)[
q2
n +

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)](
φx,n

φy,n

)
×

× 1

qn

(
eiqnzan − e−iqn(z−d)bn

)
(2.51)

which can be brought into the more compact form

~eq =
∑

n

η̂
(
k̂k + q2

n

)
φn

(
eiqnzan − e−iqn(z−d)bn

)
. (2.52)

This can be cast into a similar form as eq. (2.50) by using the matrix φ̂ for the

eigenvectors as well as a diagonal matrix q̂−1 with the inverse of the eigenvalues

(q̂−1)nn′ = 1
qn

δnn′ . In addition, one has to use eq. (2.45) to replace13 η̂
(
k̂k + q2

n

)
by

(
ω2 − k̂nk

)

~eq =
(
(2πω)2 − k̂nk

)
φ̂q̂−1

(
f̂(z)a − f̂(z − d)b

)
. (2.53)

Combining eq. (2.50) and eq. (2.53) into one equation, gives the final expression for

13This requires again that ε̂η̂ = 1 because, in the other case, the eigenvalue problem in eq. (2.45)
would not provide the required relation, even if it was valid.
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2.2 Fields in Individual Layers

the tangential fields in a layer

(
~eq

~hq

)
=

( (
(2πω)2 − k̂nk

)
φ̂q̂−1 −

(
(2πω)2 − k̂nk

)
φ̂q̂−1

φ̂ φ̂

) (
f̂(z)a

f̂(d − z)b

)

= M

(
f̂(z)a

f̂(d − z)b

)
.

(2.54)

The signs in the M -matrix are a general property of these matrices [51]. In order
to match the fields in adjacent layers one has to determine the relation between the
coefficients a and b in both layers (Sec. 2.3). Using the inverse of the M -matrix,
which can be calculated easily using the orthogonality relation eq. (2.48), this gives

M−1 =
1

2


 φT φT

(
(2πω)2 − k̂nk

)

−φT φT
(
(2πω)2 − k̂nk

)

 . (2.55)

As mentioned before, this is not necessary and can also be done numerically. Oth-
erwise the orthogonality for equal eigenvalues has to be checked and eventually
corrected. Inverting numerically avoids any problems related to similar but not
exactly the same eigenvalues and their treatment.

Homogeneous Layer

The homogeneous problem in case with 2D layers cannot be written in a straight-
forward and simple way for several modes but already taking into account only the
0th-order is instructive to understand the nature of the eigenvalue problem.

For the 0th-order, the matrices in the eigenvalue problem eq. (2.46) reduce to 2x2
matrices and the Toeplitz-matrix reduces to the value of the dielectric constant

[(
ε 0
0 ε

)(
(2πω)2 − ky

1
ε
ky ky

1
ε
kx

kx
1
ε
ky (2πω)2 − kx

1
ε
kx

)
−

(
kxkx kxky

kykx kyky

)](
φx

φy

)

= q2

(
φx

φy

)
. (2.56)

Solving this equations leads to a diagonal eigenvalue problem with two orthogonal
eigenvectors, each having only one component (φx 6= 0, respectively φy 6= 0), cor-
responding to a different orientation of the magnetic and, hence, the electric field.
The two equations for those eigenvalues and eigenvectors then are

(ε (2πω)2 − kyky − kxkx)φx = q2
1φx , (2.57)

(ε (2πω)2 − kyky − kxkx)φy = q2
2φy .
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If q is identified as kz this corresponds to the regular dispersion relation of a plane
wave. The two eigenvalues are identical, since the dispersion is independent of the
orientation of the electric field in a homogeneous medium

q = kz = ±
√(wn

c

)2

− (k2
x + k2

y) . (2.58)

The generalization to more modes is straightforward. The orders differ in the re-
ciprocal lattice vector added to the in-plane wave vector. The eigenvalue for the
lth-mode then reads as

ql = ±
√(wn

c

)2

− (~k + ~Gl)2 . (2.59)

2.3 Matching Fields in Adjoining Layers

The in-plane field components described by eq. (2.53) are tangential with respect to
boundaries and hence continuous across them

(
~eq

~hq

)

l

=

(
~eq

~hq

)

l+1

. (2.60)

If the coefficients a and b in the lth layer are known, they can easily be related to the
ones in the l+1st layer. The coordinate system in which each layer is solved starts
with z = 0 at the top of an individual layer and ranges to z = d at the bottom, with
d being the thickness. Therefore, the lth layer must be considered at the end z = d
and the l+1st layer at z = 0. The phase prefactor matrices f̂i(z) can be ignored if
their argument is 0 since the exponential of 0 is always 1. As a consequence, these
matrices only occur with the layer thickness as their argument and the argument
can be suppressed in what follows

(
al+1

f̂l+1(dl+1)bl+1

)
= M−1

l+1Ml

(
f̂l(dl)al

bl

)
= Il,l+1

(
f̂l(dl)al

bl

)
. (2.61)

The interface matrix Il,l+1 = M−1
l+1Ml is a regular T -matrix. For simple systems

the T -matrix can be used but for more complex systems which involves evanescent
modes, the T -matrix is numerically instable.

The primary reason for this is the coexistence of very large values from the grow-
ing waves together with very small values for the decaying waves. This leads to
numerical errors as was shown in several articles for electronic and photonic systems
[46, 47, 52]. The problem is caused by the repetitive multiplication of the expo-
nentially growing wave. In the calculations, modes with large amplitudes have to
be subtracted from each other and in this case the number of significant digits is
insufficient [43, 49].
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2.4 Solving for All Layers

2.4 Solving for All Layers

Since the T -matrix is unstable, another approach is needed which avoids the simul-
taneous occurrence of exponentially growing and decaying waves.

Relating the incoming to the outgoing waves by using S-matrices circumvents the
above problem. For decaying modes, the outgoing waves will always have a smaller
amplitude than the incoming ones. The matrix relating the incoming modes onto of
the structure to the outgoing waves behind the structure is defined as14 (compare
Fig. 2.3)

(
aout

bin

)
= S(in, out)

(
ain

bout

)
=

(
S11 S12

S21 S22

)(
ain

bout

)
. (2.62)

outb
out

a

b a
in in

Figure 2.3: Schematical representation of a S-matrix. The black box contains an
arbitrary structure.

The corresponding T -matrix is defined as

(
aout

bout

)
= T (in, out)

(
ain

bin

)
=

(
T11 T12

T21 T22

)(
ain

bin

)
. (2.63)

In general, due to the phase factor introduced in eq. (2.49) we have to take into
account that the forward propagating wave is taken at the top of a layer and the
backward propagating wave is taken at the bottom, so that the correct situation
in this case is represented in Fig. 2.4. The box denotes the structure divided into
N layers and the S-matrix relates the fields in the top (0th-) layer to those in the
bottom (N th-) layer (compare Fig. 2.4). The 0th- and N th-layer could correspond to
the incoming and outgoing region or to the first and last layer in the structure at
the moment. At the moment it is only important to discuss the occurrence of the

14To derive this we set the thickness of the air layer above and below the crystal to be zero, leading
to f̂(0) = 1. How to handle non propagating orders in this case will be discussed in Sec. 3.3.
Changing the thickness will only introduce a phase in the propagating orders.
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phase factor f̂ in the amplitudes for a given layer width(
aN

b0

)
= S(0, N)

(
a0

bN

)
=

(
S11 S12

S21 S22

)(
a0

bN

)
. (2.64)

0b
0

a

N
a

Nb
��
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0

N

Figure 2.4: Schematical representation of a S-matrix. The box represents the
structure in the z- (propagation) direction. 0 and N refer to the first respective last
layer in the structure. The beginning of the arrows indicates at which position the
fields are taken.

2.4.1 Scattering Matrix Recursion

Now that the S-matrix is defined, it has to be solved for a given structure composed
of N layers, each with thickness dl.

The beginning is rather simple - the first S-matrix relates the 0th layer with itself
and is given by the unit matrix

S(0, 0) =

(
1 0
0 1

)
. (2.65)

Relating the mth layer with the next (m+1st ) needs evaluation of the boundary
conditions at the interface, which define the interface matrix eq. (2.3). The phase
matrix f̂(dm) also has to be taken into account. Starting with eq. (2.62) for layers 0
and m and eq. (2.63) for layers m ands m + 1 yields

(
am

b0

)
= S(0,m)

(
a0

bm

)

=

(
S11 S12

S21 S22

)(
a0

bm

)
, (2.66)

(
f̂(dm)am

bm

)
= I(m,m + 1)

(
am+1

f̂(dm+1)bm+1

)

=

(
I11 I12

I21 I22

)(
am+1

f̂(dm+1)bm+1

)
. (2.67)
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This can be rewritten as

am = S11a0 + S12bm, (2.68)

b0 = S21a0 + S22bm, (2.69)

am = f̂(dm)−1
[
I11am+1 + I12f̂(dm+1)bm+1

]
, (2.70)

bm = I21am+1 + I22f̂(dm+1)bm+1 , (2.71)

Equating eq. (2.68) and eq. (2.70), and inserting eq. (2.71) for bm leads to:

f̂(dm)−1
[
I11am+1 + I12f̂(dm+1)bm+1

]
= S11a0 + S12

[
I21am+1 + I22f̂(dm+1)bm+1

]
,

(2.72)

b0 = S21a0 + S22

[
I21am+1 + I22f̂(dm+1)bm+1

]
.

(2.73)

Then, am+1 can be calculated using eq. (2.72)

am+1 =
(
I11 − f̂(dm)S12I21

)−1 [
f̂(dm)S11a0 +

(
f̂(dm)S12I22 − I12

)
f̂(dm+1)bm+1

]
.

(2.74)

Comparing with the definition of the S-matrix allows for determination of S11(0,m + 1)
and S12(0,m + 1). Inserting this into eq. (2.73), with S̄ij labeling components for
the new matrix S(0,m + 1) yields

b0 =
[
S21 + S22I21S̄11

]
a0 +

[
S22I22f̂(dm+1) + S22I21S̄12

]
bm+1 . (2.75)

The prefactors for a0 respectively bm+1 correspond to S21(0,m + 1) respectively
S22(0,m + 1), so that the final form of the matrix S̄(0,m + 1) can be determined

S11(0,m + 1) =
[
I11 − f̂(dm)S12(0,m)I21

]−1

f̂(dm)S11(0,m) , (2.76)

S12(0,m + 1) =
[
I11 − f̂(dm)S12(0,m)I21

]−1 [
f̂(dm)S12(0,m)I22 − I12

]
f̂(dm+1) ,

(2.77)

S21(0,m + 1) = S21(0,m) + S22(0,m)I21S11(0,m + 1) , (2.78)

S22(0,m + 1) = S22(0,m)I22f̂(dm+1) + S22(0,m)I21S12(0,m + 1) . (2.79)

By repeating this step the matrix for a complete crystal consisting of N layers
S(0, N) can be calculated recursively.

2.4.2 Multiplication of Scattering-Matrices

As in the case of the T -matrix, long crystals can be calculated by “multiplying”
several S-matrices together. This “multiplication” is not a regular matrix multipli-
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cation but it can be derived by starting with two S-matrices S(0, l) and S(l, N).
(

al

b0

)
= S(0, l)

(
a0

bl

)

=

(
S11 S12

S21 S22

)(
a0

bl

)
, (2.80)

(
aN

bl

)
= S(l, N)

(
al

bN

)

=

(
S̃11 S̃12

S̃21 S̃22

)(
al

bN

)
(2.81)

or in form of the corresponding linear equations

al = S11a0 + S12bl , (2.82)

b0 = S21a0 + S22bl (2.83)

aN = S̃11al + S̃12bN , (2.84)

bl = S̃21al + S̃22bN . (2.85)

Inserting eq. (2.85) into eq. (2.82), and solving for al yields

al =
(
1 − S12S̃21

)−1 (
S11a0 + S12S̃22bN

)
. (2.86)

This can be used to solve eq. (2.84) for aN

aN =

[
S̃11

(
1 − S12S̃21

)−1

S11

]
a0 +

[
S̃11

(
1 − S12S̃21

)−1

S12S̃22 + S̃12

]
bN . (2.87)

The prefactors for a0 and bN now correspond to S(0, N)11 and S(0, N)12. The two
missing matrix elements can be derived using eq. (2.85) and eq. (2.83)

b0 = S21a0 + S22

(
S̃21al + S̃22bN

)
(2.88)

in conjunction with eq. (2.86) the final formula for b0 follows as

b0 =

[
S21 + S22S̃21

(
1 − S12S̃21

)−1

S11

]
a0 +

[
S22S̃21

(
1 − S12S̃21

)−1

S12S̃22 + S22S̃22

]
bN .

(2.89)

Again the prefactors to a0 and bN correspond to the matrix elements of S(0, N).
Summarizing all information defines the multiplication rules for S-matrices

S11(0, N) = S11(l, N) [1 − S12(0, l)S21(l, N)]−1 S11(0, l) ,

S12(0, N) = S12(l, N) + S11(l, N) [1 − S12(0, l)S21(l, N)]−1 S12(0, l)S22(l, N) ,

S21(0, N) = S21(0, l) + S22(0, l)S21(l, N) (1 − S12 (0, l) S21 (l, N))−1 S11(0, l) ,

S22(0, N) = S22(0, l)S22(l, N) + S22(0, l)S21(l, N) (1 − S12 (0, l) S21 (l, N))−1 S12(0, l)S22(l, N) .
(2.90)
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2.5 Fields Inside the Structure

Despite the complicated form, the S-matrix-multiplication is associative [49], a prop-
erty which can be helpful during the implementation.

2.5 Fields Inside the Structure

In order to calculate the fields in the lth layer, the S-matrix which relates these fields
with the first layer S(0, l) and the last layer S(l, N) the structure is required

(
al

b0

)
= S(0, l)

(
a0

bl

)
=

(
S11 S12

S21 S22

)(
a0

bl

)
, (2.91)

(
aN

bl

)
= S(l, N)

(
al

bN

)
=

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)(
al

bN

)
. (2.92)

Without matrices this can be cast into the following set of linear equations

al = S11a0 + S12bl , (2.93)

b0 = S21a0 + S22bl , (2.94)

aN = Ŝ11al + Ŝ12bN , (2.95)

bl = Ŝ21al + Ŝ22bN . (2.96)

Using eq. (2.96), and eq. (2.93) and inserting them into each other yields the equation
for the coefficients al and bl which are necessary to describe the fields inside the
structure

al =
(
1 − S12Ŝ21

)−1 [
S11a0 + S12Ŝ22bN

]
,

bl =
(
1 − Ŝ21S12

)−1 [
Ŝ21S11a0 + Ŝ22bN

]
. (2.97)

In experiments, one usually has only a single wave impinging from the top so that
the coefficient for the backward propagating wave below the system can be set to
zero (bN = 0). The fields can then be calculated using the M -matrix (eq. (2.54)).

2.6 Reflected and Transmitted Modes

Once the S-matrix is known, the calculation of the reflectance, respectively, trans-
mittance is done by setting the amplitude of the correct expansion order m of the
incoming wave to the required value am,in in the homogeneous incoming region15.
The amplitudes of the backward propagating mode at the bottom is set to zero,

15The Rayleigh expansion is only valid in a homogeneous region. In periodic regions, the eigen-
modes would have to be calculated and only those could be excited. Any other field configura-
tion, e. g. a Bloch-mode, would have to be expanded in the eigenmodes and the amplitudes of
the individual modes would have to be set accordingly.
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assuming no wave impinging on the system from below. The amplitudes of the
outgoing modes are then given by

bin = S21(in, out)ain , (2.98)

aout = S11(in, out)ain . (2.99)

In this case “in” and “out” label the region in which the amplitude is considered and
S(in, out) relates the incoming region via the structure to the outgoing region. A
more detailed definition is given in Sec. 3.4.4. Given these amplitudes, the fields in
these regions can be calculated using the M -matrix in eq. (2.54). The value for z in
these layers can be chosen arbitrary since it is only adding a phase to the amplitudes,
but when accessing the phase from the amplitudes it should be the same for ain and
bin. If only the far field pattern is required, the non-propagating modes have to be
excluded in the calculation of the fields (see Sec. 3.3).

2.7 Dipole Emission

The emission of a dipole inside the structure requires a reformulation of the problem.
So far, an incoming wave from the top 16 without any additional sources inside the
crystal, was considered.

Introducing a dipole can be done by changing the boundary conditions for adjoin-
ing layers. Since it will not be used it in the following only a brief description will
be given here. A more detailed description can be found in [42].

In what follows a harmonic time dependence e−iωt is assumed for the dipole which
is located at position (~r0, z0). The coupling of the dipole to the fields is supposed
to be weak, so that its amplitude is independent of the electric and magnetic at the
position of the dipole. The dipole can then be described by a current density

~J(~r, z) = J0 δ(~r − ~r0) δ(z − z0) (2.100)

=
∑

~k, ~G

Jk, ~G ei(~k+ ~G)(~r−~r0) δ(z − z0) (2.101)

=
∑

~k, ~G

J ′
k, ~G

ei(~k+ ~G)~r δ(z − z0) . (2.102)

In order to represent a point-like dipole all values of ~k inside the Brillouin zone in
the summation are needed. Using only one value for ~k leads to a current throughout
the unit cell. A single ~k describes the emission into all diffraction orders with an
in-plane wave vector given by ~k + ~Gn. Intuitively, a periodically arranged dipole
leads to an emitted plane wave, and only the superposition of several dipoles with
different ~k can create a more structured emission pattern. In the simulations all

16In the formulas presented an incoming wave from the bottom was also considered. In realistic
simulation this wave described by bN is set to zero.

30



2.7 Dipole Emission

values of ~k for the dipoles have to be calculated in separate runs, and, in the end,
the complex fields have to be added up of to study the emission of a localized dipole.

Implementing the current into Maxwell equations eqs. (2.28)–(2.30) is done by
defining the Fourier vector for the current density in the same way as before

ik̂yhz(z) − ∂

∂z
hy(z) = jx δ(z − z0) − 2π i ω c ε̂ ex(z) , (2.103)

∂

∂z
hx(z) − ik̂xhz(z) = jy δ(z − z0) − 2π i ω c ε̂ ey(z) , (2.104)

ik̂xhy(z) − ik̂yhx(z) = jz δ(z − z0) − 2π i ω c ε̂ ez(z) . (2.105)

The current density can be related to a charge density by ~∇ ~J = iωρ. This guarantees
that Maxwell equations are always fulfilled. These additional terms give rise to
discontinuities of the parallel fields at z0

eq(z
+
0 ) − eq(z

−
0 ) = pz , hq(z

+
0 ) − hq(z

−
0 ) = pq . (2.106)

The component pz respectively pq is due to a dipole oriented in the z-direction
respectively a dipole oriented parallel to the layers. Their values are given by17:

pq =

(
−jy

−jz

)
, pz =

(
−k̂yη̂

jz

ε0ω

k̂xη̂
jz

ε0ω

)
. (2.107)

In the S-matrix approach the dipole will be included in between two layers, so that
one of the fields corresponds to the field at the end of the lth layer, eq(z

−
0 ) = eq,l(z =

dl), and the other to the field at the beginning of the l+1st layer eq(z
+
0 ) = eq,l+1(z =

0). Using the previous definitions for the M and f̂ matrices the discontinuity con-
dition can be written as:

Ml+1

(
al+1

fl+1bl+1

)
− Ml

(
flal

bl

)
=

(
pz

pq

)
. (2.108)

Since there are no incoming waves in this example (a0 = 0 and bN = 0) the fields in
the lth and l + 1st layer are related to the fields in the first and last layer18

al = S12(0, l)bl , (2.109)

b0 = S22(0, l)bl , (2.110)

aN = S11(l + 1, N)al+1 , (2.111)

bl+1 = S21(l + 1, N)al+1 . (2.112)

17Since η̂ usually is different in adjacent layers of the structure, it should be calculated by an
interpolation or averaging process to describe the situation between the layers.

18The coupling to the regions above and below would still have to done by appropriate matrices
(Sec. 3.4.5).
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Inserting eq. (2.109) and eq. (2.112) into eq. (2.108) leads to a set of linear equations
which can be solved for al+1 and bl.

Ml+1

(
al+1

fl+1S21(l + 1, N)al+1

)
− Ml

(
flS12(0, l)bl

bl

)
=

(
pz

pq

)
. (2.113)

Inserting al+1 and bl into eq. (2.111), respectively eq. (2.110) then solves the full

emission problem for a fixed direction ~k and frequency ω for all diffraction orders.

2.8 Alternative Approaches

Beside the method presented here, conceptually similar implementations of the
RCWA are known, which might even lead to better convergence in some of the
cases. For these implementations, most of the optimization and implementation
details in the following chapter hold as well. In addition to conceptually similar
approaches, conceptually completely different methods can also be used to model
transmittance and reflectance.

2.8.1 Conceptually Similar Approaches and Improvements

Tikhodeev et al. presented a method, which is based on the expansion of the electric
field [53]. Their Ansatz does not fulfill the divergence equations and one has to use

−∆ ~E + ~∇(~∇ ~E) =
ω2

c2
ε ~E (2.114)

as the basic equation, consequently leading to a more complicated eigenvalue prob-
lem. In their formulation, the Toeplitz-matrix has never to be inverted directly,
making the requirement ε̂η̂ = 1 obsolete. For dielectric structures, as discussed in
this work, they found convergence using the regular Fourier transform of ε(x, y)
used in this work as well. For other materials, e. g. metals, the convergence of both
implementations, the one by Tikhodeev and the one presented here, is very slow.
This is based on the use of truncated Fourier expansions and the folding of ε̃ with
~E.

L. Li pointed out that the folding of the Fourier transform of two functions,
which have concurrent jumps, has to be adjusted [54, 55]. This is the case for the
permittivity and only the normal component of the electric field. Therefore one
should use the inverse rule to ensure convergence

∑

n′,n

ε̃n′E⊥,n →
∑

n′,n

η̃−1
n′ E⊥,n , η̃ =

˜[
1

ε

]
. (2.115)

These two representation are only equivalent in the case of an infinite number of
orders. The implementation for a lattice other than a square lattice is complicated
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[56] and requires several Fourier transforms of the dielectric function, depending on

whether the component of ~E is tangential or perpendicular. Therefore, the structure
has to be approximated by lines parallel to the two grating vectors. David et al.[57]
showed for band structure calculations that this only works well for square holes
(parallel to the lattice vectors of the square lattice used) and that for other pore
shapes the “simple” version suggested by Ho et al. [34] works better. For this work,
the straightforward approach would correspond to the method of calculating ε̃ and
inverting to achieve η̃. They also provide a solution for arbitrary hole shape, for
which the contour of the hole needs to be known. For the structures discussed in
Chapter 5 and Chapter 6, these contours are unknown and obtaining them would
require difficult calculations. Li also showed that even the improved method fails
for 1D metallic gratings in TM polarization [58] although he claimed before that it
works even for 2D metallic crossed-gratings [56]. From the large amount of papers,
also by others groups, it is evident, that the perfect method does not exist and that
convergence has to be checked in each case.

2.8.2 Conceptually Different Approaches

In this section, only a brief summary of different methods will be given as an
overview. Some of them might be used to reformulate parts of the method (e. g.
Finite Elements or Finite Differences to determine the modes).

2.8.3 Finite Differences and Finite Elements

Finite Differences (FD) use a grid of points to discretize the derivatives resulting in
a sparse matrix relating points to their neighboring points. Depending on the order
(number of neighboring points used in the discretization) the sparsity changes. Each
entry in the eigenvector corresponds to the field at a point in space, which allows
for a simple matching procedure between layers. A poor convergence is observed if
any of the material parameters, e.g. dielectric constant, has discontinuities although
a number of improvements have been suggested in the literature. FD could be used
to calculate the eigenmodes in the individual layers and then apply the S-matrix
formalism or it could be used to model the entire 3D crystal. However, Silberstein et
al. found that the expansion in Fourier series offers a better convergence performance
than the FD approach for diffraction problem that involve dielectric or metallic
gratings [59].

The approach using Finite Elements (FE) [60] offers the same possibilities. For
2D FE, the crystal is divided into smaller areas of special shapes, e.g. triangles.
For this purpose mesh generators exist which approximate any geometry by smaller
polygons. Within the smaller sections the material properties are constant, so that
discontinuities only occur on boundaries of these segments. The fields are then
represented by several vector elements in each of the polygons chosen to ease the
matching (e.g. Whitney Elements only have parallel or perpendicular components
along the edges). Matching of the fields at boundaries leads to an eigenvalue problem
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whose eigenvectors are the coefficients of all functions in the smaller areas. Since
the discontinuities never occur inside the smaller segments, they can be incorporated
easily by the boundary conditions.

It could also be used in 3D with volume elements representing the complete 3D
photonic structure. The disadvantage is the resulting very large eigenvalue problem.

However using the method in conjunction with the S-matrix is more difficult since
changes in the geometry from layer to layer lead to different meshes. Consequently
the coefficients of the vector functions can not be matched from layer to layer. A
possible (however costly) solution to that introduces a fixed grid, interpolates the
values for the field at the grid points and then solves for the coefficients in the
adjoining layer using these standardized grid points.

The disadvantage of these two methods, if one wants to model transmittance and
reflectance experiments is that it is not straightforward to extract transmittance
coefficients. The result of these methods are field distributions above and below the
crystal expressed in spatial modes. Extracting diffraction orders from these fields
can only be done by an additional Fourier transformation.

2.8.4 Finite-Differences Time-Domain (FDTD)

FDTD [61] models the complete 3D unit cell or crystal. Since the solutions depend
numerically on space and time, an extraction of modes is difficult in contrast to
FD and FE, which could also be used to model the complete crystal without using
layers and a S-matrix. All geometries can be simulated, although discontinuities also
represent a challenge. On the plus side, all frequencies can be calculated at once
using a pulsed excitation. The results for individual frequencies are then obtained
by a Fourier transformation in time. However, the frequency range is limited by
the validity of analytical models used for the material dispersion. This advantage
is partly destroyed by the large computational domain leading to memory- and
time-consuming calculations. The large computational domain is caused by the
constraint that the entire structure has to be represented in contrast to slicing in
layers. Large structures in the propagating direction hence require a large number of
grid points. In addition, long simulations have to be done since contributions close
to stop bands move slowly through the PC and require a long time for stabilization.
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This chapter contains information about the details of the implementation. It can
be divided into three sections: The first describes approaches necessary for the
correct computation and convergence of the results (Secs. 3.1–3.3). In the second
(Sec. 3.4) remarks are given on structuring the program so that it can be optimized
for memory and/or CPU-time consumption. The last bigger part describes differ-
ent implemented options for modeling a variety of systems (Sec. 3.5) together with
the implementation of disorder calculations (Sec. 3.7). At the end a small section
concerned with testing the simulation tool is included (Sec. 3.8).

Most parts of this chapter might be too technical and only be interesting to readers
who wish to implement the method themselves. The parts of more general interests
are probably the implementation of long crystals (Sec. 3.4.4), due to the definition of
the numerical unit cell, a term which is often used in the following and the discussion
of the implementation of disorder (Sec. 3.7).

3.1 Fourier Expansion

In the previous chapter, it was mentioned that the Fourier Expansion correspond
to the diffraction orders in the homogeneous area. This statement adds physical
meaning to the mathematical method of Fourier expansion. However, this is only
true if one does the Fourier expansion correctly.

3.1.1 Definition of Diffraction Orders

The basic Bragg-diffraction from a periodic structure can be found in any standard
textbook of solid state physics, such as Ashcroft/Mermin [36]. The difference in
the incoming and diffracted wave vector corresponds to a vector of the reciprocal
lattice. In the problem of finite PCs the lattice is defined in the x-y-plane and this
argument holds for the in-plane components of the wave vector. The kz-component
of the diffracted orders outside the crystal is then given by the dispersion of a plane
wave

kz =

√
k2

0 − (kx,0 + Gx)
2 − (ky,0 + Gy)

2 . (3.1)

As a consequence the Fourier expansion can only be interpreted physically if the cho-
sen expansion orders contain the correct reciprocal lattice vectors ~G. The choice of a
unit cell is however not unique in 2D. For the Fourier transformation, unit cells could
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be chosen for which the corresponding vectors in reciprocal space do not correspond
to the physically relevant reciprocal lattice vectors ~G. In this case the formulation is
still mathematically correct, in the sense that the inverse transformation reproduces
the correct fields and lattices but not the diffraction pattern. In this case the effi-
ciency of the individual orders cannot be extracted from the expansion coefficients.
If for a high enough frequency, respectively short enough wavelength, several prop-
agating modes exist, even the 0th-order is wrong since the energy transmitted into
higher order modes is not described correctly. As an example, a triangular lattice is
discussed in the following.

3.1.2 Triangular Example

The lattice vectors and the Wigner-Seitz cell as well as the reciprocal lattice for a 2D
triangular lattice are shown in the chapter about basic properties of PCs (Fig. 1.3).

The Wigner-Seitz cell is the smallest possible unit cell that retains the symmetry
of the lattice[36]. However, other unit cells can reproduce the 2D periodic pattern as
well (Fig. 3.1). The corresponding lattice vectors and reciprocal lattice vectors1 here
are listed in Tab. 3.1. The unit cell can be shifted arbitrarily without changing the
lattice vectors as shown in Fig. 3.1(a) and Fig. 3.1(b) leading to different distributions
of dielectric material inside.

(a) Rectangle type 1 (b) Rectangle type 2 (c) Parallelogram

Figure 3.1: Different unit cells for a triangular lattice. (a) and (b) contain more
than 1 cylinder and are no primitive unit cells.

An expansion in both reciprocal lattice vectors is possible, however it is obvious
that only the (reciprocal) lattice vectors associated with the parallelogram corre-

1The term (reciprocal) lattice vector is basically used incorrectly here. The lattice is defined by
the arrangement of pores and hence the lattice vectors are unique. In the Fourier expansion
all periodic unit cells could be used and in this section the (reciprocal) lattice vectors are
generalized to the periodic cell used in this expansion to show the differences. This corresponds
to assuming that the (translational) lattice is defined by the unit cell.
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Type Real Space Modulus Reciprocal Space Modulus

Rectangular

(
a
0

)
,

(
0√
3a

)
a,
√

3a

(
2π
a

0

)
,

(
0
2π√
3a

)
2π
a

, 2π√
3a

Parallelogram

(
a
0

)
,

( a
2√
3

2
a

)
a, a

( 2π
a

− 2π√
3a

)
,

(
0
4π√
3a

)
4π√
3a

, 4π√
3a

Table 3.1: Lattice vectors and reciprocal lattice vectors for different unit cells
discussed in Fig. 3.1. The lattice vectors for the parallelogram correspond to the
ones in Fig. 1.3.

sponds to the physical diffraction orders. In addition only those fulfill the sixfold
rotation symmetry of the triangular lattice.

Consequently the rectangular unit cell exhibits problems. Since the rectangular
real space unit cell is bigger than the parallelogram, the reciprocal lattice vectors
are shorter and are more propagating orders occur. In other words, the propagation
constant for expansions orders

krect
z,i =

√
k2

0 − (kx,0 + Grect
x,i )2 − (ky,0 + Grect

y,i )2 ~Grect
i = mi

~Grect
1 + ni

~Grect
2 (3.2)

can be real for more orders than in the description of the parallelogram. Propagating
orders also appear at different frequencies, whether one adds ~Grect

1 or ~Grect
2 due to

their different modulus. Therefore, the transmittance or reflectance can only be
calculated from the superposition of all expansion orders (fields for all Grect

i ) and
not be determined from the coefficients of each individual mode i. This is already
true for the 0th-order and extracting transmittance and reflectance fails. In general
one always has to take the smallest possible unit cell for a correct representation
[56].

The physical meaning of the parallelogram is immediately visible if one compares it
with the Wigner-Seitz cell. The two correspond to each other if the non-overlapping
parts are translated by a lattice vector as illustrated in Fig. 3.2.

In any Fourier expansion, they correspond exactly to each other due to the relation
of real space lattice vectors ~R and reciprocal space lattice vectors ~G

ei(~k+~R) ~G = ei~k ~G ei ~R ~G = ei~k ~G . (3.3)

Now that the link between the parallelogram and the WSC is established, the ques-
tion arises how to implement the Fourier transformation. Fortunately this can be
done very easily. For a square Fourier transformation equally spaced points in space
are used. They can be written in terms of lattice vectors

~r(i, j) =
i

N

(
a
0

)
+

j

N

(
0
a

)
=

i

N
~R1 +

j

N
~R2 i, j = 0, 1, . . . , N − 1 . (3.4)

37



3 Implementation and Optimization

→ ←
Figure 3.2: Translating parts of the Wigner-Seitz cell using lattice vectors leads
to a parallelogram of the same area and same physical properties.

For the Fourier transformation of the parallelogram the lattice vectors have to be
replaces by the ones in table 3.1 [62, 63]. Then any standard Fast Fourier Transform
package can be used. In the present work FFTW [64, 65] was used which was pro-
grammed as a tool for the MIT band structure package [66], which heavily depends
on Fast Fourier Transforms.

3.1.3 Correct Choice of Expansion Orders

Knowing the correct expansion vectors, it is important to know how many and which
ones are needed. The answer to “How many ?” can only be found by increasing
them until the result converges. Convergence can be checked by either looking at
the differences when increasing the number of orders used or by plotting the results
over the inverse number of modes 1/N and extrapolating the value for N → ∞.
Increasing the modes by adding a few modes more is usually not sufficient and the
comparison should be done with a significantly larger number of modes.

The truncation scheme for the expansion orders (or expansion vectors) ~G = m~G1 + n~G2

with ~Gi taken from the third column for the parallelogram in table 3.1 can be se-
lected in two different ways. In this discussion perpendicular incidence is assumed
and, therefore, the in-plane wave vector ~k used in the previous chapter (for a defini-
tion see eq. (2.15) or eq. (2.16)) is set to zero. However, all statements are still valid

for ~k 6= 0.

In the first case the expansion vectors are chosen in the range m = −N, . . . , N
and n = −N, . . . , N . The resulting vectors are all located within a parallelogram.
In Fig. 3.3, the expansion vectors, coefficients m and n as well as the modulus of
the resulting vectors is shown. All vectors with the same magnitude are located
on a circle. For a given frequency all orders inside the circle correspond to modes
propagating in the z-direction, whereas all modes outside have an imaginary kz.
Assuming that modes which are further away from the center contribute less, since
they strongly decay, the parallelogram is not a perfect choice. It includes many
modes far from the center in the upper left and lower right corner in Fig. 3.3(b) but
none of the closer modes in the upper left and lower right corner. As a consequence,
each horizontal line in Fig. 3.3(c) (depicting vectors with equal modulus) may gain
additional points if more orders are added.
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Figure 3.3: Selection of 49 modes in a parallelogram. Increasing m,n adds orders
with different modulus of the expansion vector since they are not symmetric with
respect to the origin, hence the horizontal lines in (c) can exhibit many different
number of points.

This can be avoided by choosing the expansion vectors based on their modulus.
The result for a similar number of expansion orders (55 instead of 49) as in the
previous case is shown in Fig. 3.4. Each circle corresponds to a closed shell. In each
shell, an integer multiples of 6 expansion vectors are added. This also ensures the
correct implementation of the six-fold symmetry of a hexagonal lattice.

Determining the coefficients needed is not straightforward in this case. In addition
the number of expansion orders can only be guessed as long as the numbers for each
shell are not known. In the program the expansion vectors are determined iteratively
by setting up a large array of vectors, then defining the radius of a circle and counting
the number of modes therein. If this number is more than 10% off of the guessed
(requested) number of expansion orders, the circle is resized and the calculation is
redone.

For most calculations, this is the best method for choosing the expansion orders.
However, if the symmetry of the lattice is broken, because the unit cell itself has a
lower symmetry, then the parallelogramic truncation is better in the one case when
the lower symmetry corresponds to the parallelogram (no circular holes but holes in
the shape and alignment of the parallelogram) [56]. This is caused by the fact that
all orders along the edges of the parallelogram are needed to reproduce the unit cell
in real space. The convergence in terms of propagating modes would still be better
in the circular truncation scheme but this would not reproduce the symmetry of the
structure and, therefore, violate more important principles. In all other cases, the
circular truncation is preferable.

Although it is not discussed here in detail, the same holds for the square lattice.
The truncation scheme based on the circular arrangement is also preferable as long
as the unit cell does not have the symmetry of a square.
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Figure 3.4: Selection of 55 modes in a circular array. The biggest shell corresponds
to the circle in Fig. 3.3. New orders can only be added in multiples of 6. Compare
the difference to Fig. 3.3(c) in the number of points for a modulus of ≈ 25.

3.2 Representation of the Incoming Wave

The representation of the incoming wave is another important topic. In the simplest
case, it can be represented by a plane wave having a frequency/wavelength, a direc-
tion defined by two angles and a polarization of the electric field. This is usually
a good enough approximation for simulating the experiment2. All required param-
eters are easily adjustable in the experiment making the comparison of theoretical
and experimental spectra straightforward.

The angles correspond to a spherical coordinate system with the zenith angle θ
and φ being the azimuthal angle. In other words, θ is the angle with respect to
the surface normal and describes the tilting from perpendicular incidence, whereas
φ describes alignment with respect to the x-axis of the in-plane unit cell. Knowing
these angles and the frequency, all components of the incoming wave vector are

2A finite beam width can be simulated by creating a superposition of waves with different ~k.
Using Gaussian quadratures [67] for choosing the wave vectors and corresponding amplitudes
allows a correct representation of a finite (Gaussian) beam width with a small number of plane
waves. This is, however, not a Gaussian beam since it’s width is constant but it is suited to
model e. g. a finite spot size. The transmittance/reflectance has to be calculated for each ~k
and summed up with the amplitudes as weight factors. The resulting fields can be plotted as a
superposition of all complex fields. This approach has been implemented but is not discussed
further in this work.
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defined3

(
~kq,in

kz,in

)
= k0,in




sin θ cos φ
sin θ sin φ

cos θ


 , kin = 2π ω

√
εin . (3.5)

Once the wave vector is known, the spatial dependence is completely described by
a plane wave expression

~E(x, y, z) = ~E ei ~kin ~r ei kz,in z , ~H(x, y, z) = ~H ei ~kin ~r ei kz,in z . (3.6)

Please keep in mind that the ~x sign describes a 2D object in case of the fields but
only an in-plane(x-y) object in the case of the spatial and the wave vector.

3.2.1 Correct Choice of Diffraction Orders

These fields can now easily be introduced into the calculation by inspecting equations
(2.16) and (2.15) and replacing the wave vector around which the expansion is

centered ~k with ~kin. If the incoming layer is homogeneous, e.g. air surrounding the
sample, the modes of the eigenvalue problem are plane waves and kz,0 corresponds
to q0 in eq. (2.59).

As a consequence, it is not necessary to solve the full expansion for the electric
and magnetic field defined in eqs. (2.49) and (2.52) for the coefficients. All the

coefficients will be zero, except the the 0th-mode with ~k = ~kin (~G0 = 0).
However, is not always the best choice to center the expansion around the wave

vector of the incoming wave. If the parallel component of the incoming plane-
wave ~kin is outside the Brillouin zone it is then better to chose the wave vector
~k for the center of the expansion inside the Brillouin zone and use the mth mode
with ~k + ~Gm = ~kin (~Gm 6= 0) to describe the incoming plane-wave. Therefore,
all coefficients except the one of the mth mode will be zero. The expansion is
then centered around the origin, since the 0th-mode is inside the Brillouin-zone.
Together with the circular truncation discussed in the previous section, this makes
sure that the considered modes are the ones closest to the origin and, therefore,
the propagating ones in z-direction or at least the ones with the smallest imaginary
kz. This makes them the most important ones for energy transport through the
structure. Fig. 3.5 illustrates this with a small number of modes. In the presented
case even a propagating mode is lost by choosing the wrong center for the expansion.

3.2.2 Polarizations

Beside the wave vector, the amplitudes ~Ein of the incoming modes have to be de-
scribed. For the orientation of the incoming electric and magnetic fields, two po-

3εin usually describes the air in the incoming are and is set to 1.0. Incorporating it allows to
simulate experiments in a different environment, e.g. a solution. The difference in prefactors
compared to eq. (2.3) is due to the use of rescaled variables.
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Figure 3.5: Expansion orders ei(~k+ ~G)~r used with the two possibilities to chose the

order m and ~k of the incoming wave. The square represents the ~kin, the star shows
the center of the expansion (0th-mode) and the “X”s correspond to expansion orders.
The hexagon is the Brillouin-zone and the circle defines the propagating modes. On
the left side the expansion is centered around the wave vector of the incoming wave
~kin = ~k, on the right the center of the expansion ~k is located in the Brillouin-zone
and the mth-mode with ~kin = ~k + ~Gm corresponds to the incoming wave. Only in
the second case does the expansion include all propagating modes.

larizations are possible. In the homogeneous part, they remain decoupled and each
wave can be described as either one or the other. The difference between the two
possibilities is the alignment of the fields relative to the plane of incidence. The
plane of incidence is perpendicular to the surface and includes the wave vector of
the incoming wave. The angle φ defines the orientation with respect to the x-axis.
The other important reference plane is the surface, respectively the layers obtained
by the slicing process. Depending on which of these reference planes is chosen, the
nomenclature for the polarization is chosen differently, although the result is the
same.

If one uses the plane of incidence as reference (as usually done in spectroscopy
experiments) s- or p-polarization is chosen. In the numerics one prefers the layers
as a natural reference system and speaks of transverse-electric (TE) or transverse-
magnetic (TM) modes. The latter description is also used in the terminology of slab
waveguides.

For s-type(TE) the electric field is in the plane parallel to the surface, respectively
the layers used in the simulation, and perpendicular to the plane of incidence. For
p-type(TM) the electric field is in the plane of incidence and the magnetic field is
parallel to the surface, respectively layers. In the following, the surface/layers will
be used as the reference system and TE respective TM will be employed4. The

4Inside the crystal a classification into TE and TM is not always possible, since the required
inversion symmetry discussed in Sec. 1.3.2 is missing. In most cases it is, however, possible
to characterize a mode as TE-like or TM-like, depending on the ratio of the in-plane field
components to the out-of-plane components.
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incoming field components for TE polarization are given by:

Ex = 2π ω

√
Z

µ0 c0

sin φ Hx =
1√
Z

cos φ cos θ (3.7)

Ey = −2π ω

√
Z

µ0 c0

cos φ Hy =
1√
Z

sin φ cos θ (3.8)

Ez = 0 Hz = − 1√
Z

sin θ (3.9)

and the same for TM polarization:

Ex = 2π ω

√
Z

µ0 c0

cos φ cos θ Hx = − 1√
Z

sin φ (3.10)

Ey = 2π ω

√
Z

µ0 c0

sin φ cos θ Hy =
1√
Z

cos φ (3.11)

Ez = − sin θ Hz = 0 (3.12)

The impedance Z also depends on the material above the structure and is defined

as Z =
√

µ0

ε0εin
.

For determining the reflectance and transmittance coefficients, the absolute value
of the incoming amplitude is not of importance but the relative amplitudes between
the electric and magnetic field, given by the Maxwell equations in rescaled units
(eqs. (2.11)–(2.14)), must be correct.

Since the expansion of both fields is done with the same expansion coefficients
an (compare eq. (2.49) and eq. (2.52)) setting the coefficient to 1.0 for the correct
order/expansion mode insures the correct ratio.

However, the sorting of eigenmodes is not unique in the numerics and, therefore,
it is not obvious, which eigenvector corresponds to the correct eigenmode5. As a
consequence, one can not set the coefficient of a specific mode but has to solve either
problem eq. (2.50) or eq. (2.52) for the coefficient vector a at the top (z = 0) of the
structure or determine the mode in a different way.

So far, only linearly polarized light has been considered. Using superposition,
other polarization can be used as well, e.g. circular polarized light can be achieved
by adding a TM-polarized wave with amplitude A and a TE-polarized wave with
the same amplitude and a phase factor Aei π

2 . Inserting the superposition in the
complex input amplitudes returns the corresponding transmittance and reflectance
coefficients.

5For the 0th-order the mode can still be extracted but any other mode depends on the sorting of
the eigenmodes. For perpendicular it is obvious since all eigenvalues of the 6 first order modes
are the same and no sorting criterion exists.

43



3 Implementation and Optimization

3.3 Transmittance and Reflectance Coefficients

For the calculation of the reflectance and transmittance coefficients, the energy flux
perpendicular to the surface is required. This quantity is given by the z-component
of the Poynting vector in the far field without the contributions of the evanescent
diffraction orders

~S =
1

2
~E × ~H∗ ⇒ Sz =

1

2
Ex · H∗

y − Ey · H∗
x . (3.13)

From the Poynting-vector in eq. (3.13) it is evident that the z-component depends
only on the in-plane components of the fields, which are readily available in the
calculations, so that no additional calculations are necessary.

Using the scattering matrix, the amplitudes of the backward propagating modes
in the input region (reflected) and the forward propagating in the output region
(transmitted) can be calculated using eq. (2.99). Inserting these amplitudes into
the field representation eq. (2.54) leads to the final vector containing the amplitudes
for each Fourier expansion order for arbitrary values of the z-coordinate. However,
several aspects have to be considered in this step.

A nice feature of the homogeneity in these areas is the decoupling of all modes and
the resulting simple eigenvectors, which each only contain a single entry, correspond-
ing to a plane wave as discussed in Sec. 2.2. This allows for an easy interpretation
and makes it possible to compare the transmittance/reflectance for each order indi-
vidually. The cross-product can, therefore, be evaluated by multiplying the electric
and magnetic field using the corresponding entries in the Fourier-vectors. As a con-
sequence one obtains a vector in which the entries correspond to the z-components
of the Poynting vector for individual diffraction orders.

It is not even necessary to solve for all the fields in eq. (2.99). Since the incoming
wave consists of only one mode in general, the Poynting vector is known. Assuming
no incoming wave from the back, the backwards propagating mode in the output
region is known to be zero as well. The only required components are the reflected
wave, with the electric field components given by the product of f̂in(din − z)bin with
the upper right submatrix of the M -matrix using the quantities in the incoming
region. The magnetic field is given by using the lower right submatrix. Analogously
the transmitted modes are given by the product of f̂out(z)aout with the upper, re-
spectively lower, left submatrix of the M -matrix in the outgoing region.

So far the value for z is not specified. For the far field, z should be as small
as possible in the incoming region and as big as possible in the outgoing region.
Although these layer have a finite width in the calculation, which limits the range
of z in principle, any value for z can be used, since this thickness is only needed
to fix a coordinate system for the layers in the calculations. The far field can be
represented better by suppressing all evanescent modes in the construction of the
M -matrix from the beginning. This can be done by setting all eigenvectors with an
imaginary part in the eigenvalue (propagation constant in z-direction) to zero. The
resulting M -matrix is sparse and the multiplication with the amplitudes results only
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3.3 Transmittance and Reflectance Coefficients

in non-zero values in the Fourier-vector of the fields if the corresponding order in the
Rayleigh expansion is propagating. The value for z can then be chosen arbitrarily
and leads only to a phase in the field amplitudes but does not change transmittance
or reflectance.

At this stage, the vector containing the z-component of the Poynting-vector for
the different orders is known for the incoming, reflected and transmitted wave. All
components still have to be normalized to the incoming energy flux. The resulting
vector of transmittance and reflectance coefficients does by itself not provide enough
information for interpreting the results since the ordering of the reciprocal lattice
vectors and thus the corresponding modes are not known. It is not even known
which lattice vectors were chosen in the selection process described in Sec. 3.1.3. In
addition, the incoming mode might have been folded back as described in Sec. 3.2.1.

During the calculation of the incoming wave representation, the position of it
in the Fourier-vector is saved and the transmittance and reflectance of it can be
identified immediately. All other modes need to be characterized now.

There are two possible approaches. Either the results for a specific mode is re-
quired. In this case, the reciprocal lattice vector for this mode is known and the
transmittance and reflectance can be found by comparing the lattice vector with the
list of the vectors used in the expansion giving the position in the Fourier-vector of
the resulting fields.

Alternatively, the diffraction pattern in real space should be calculated. In this
case, it is possible to calculate the ~k for all propagating modes using the list of
reciprocal lattice vectors and use the eigenvalues q = kz for each mode to calculate
the diffraction angles φ and θ for each mode to add them to the output. This is also
necessary if a detector with a solid-angle for detection should be modeled. In this
case, only modes entering the cone defined by the detector are measured. Comparing
the direction of the diffracted wave with the detector position allows for ruling out
the wrong ones.

Additional information about the transmittance properties can be gained by look-
ing at the fields instead of the Poynting-vector. Since the Poynting-vector is the
product of the transposed magnetic field and the electric field and both fields expe-
rience the same scattering, their phases cancel each other in the propagating case.6

Therefore, all phase information is lost and can only be obtained using the fields. If
the incoming modes are chosen with real amplitudes the phase shift is given by

Φ = arctan

(
ImEi

ReEi

)
= arctan

(
ImHi

ReHi

)
, i = x, y . (3.14)

.

6The imaginary part of the propagation constant of the evanescent modes would enter twice into
the Poynting-vector.
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3.4 Optimization

In the previous sections of this chapter, the correct representation of the physi-
cal system was discussed without taking into account efficiency. Of course using,
the correct expansion reduces the number of modes needed for convergence and,
therefore, enhances efficiency.

Beside choosing the correct expansion, several strategies can be used to optimize
the method for speed or minimal memory consumption. Solving standard numerical
problems, e.g. the eigenvalue problems, is not discussed here, since for all matrix
operations efficient standard libraries are used. Matrix multiplications and other
linear algebraic operations are done using LAPACK [68] and fast Fourier transforms
using FFTW [64, 65].

Beside the optimization of the numerical methods, the structure of the program
can be adjusted to save memory for calculations that require many modes or layers,
or to avoid doing the same calculations twice. The different options will be discussed
for one numerical unit cell of the crystal in the z-direction. Calculation of crystals
with a length of several of these unit cells will be discussed later. In addition,
the parameters for the incoming wave (angles, frequency) are fixed to one set of
parameters, although remarks will highlight (dis-)advantages if, for example, the
frequency is changed. For changing any other property, such as angles, the remarks
hold as well.

3.4.1 The Simple Approach

The conceptually easiest approach is based on doing the calculations of all interme-
diate steps for each layers. This is very easy to do, since all steps can be placed into
one function and arbitrary layers can be treated very easily. All subtleties could be
hidden in a class for the layers.

for all layers

{
calculate ε̂
set up eigenproblem

solve eigenproblem

create M-matrix

create inverse M-matrix

}

calculate S-matrix using stored Ml, Minv,l and eigenvalues

of all layers l

In a second step the S-matrix can be calculated easily using the stored M -matrices,
their inverse and the eigenvalues of all layers. However this needs tremendous mem-
ory, since the two matrices and the eigenvalues and eigenvectors need to be stored.
In addition ε̂ would be recalculated each time, although it is independent of the

46



3.4 Optimization

frequency of the incoming wave, as long as the material is not dispersive. Clearly
this method is simple but requires a lot of memory.

The same is true for a setup in which each operation is done for all layers:

calculate ε̂ for all layers

set up eigenproblem for all layers

solve eigenproblem for all layers

create M-matrix for all layers

create inverse M-matrix for all layers

calculate S-matrix using stored Ml, Minv,l and eigenvalues

of all layers l

Again this would lead to a very easy implementation that requires a lot of mem-
ory. However, the frequency independent ε̂ could be calculated once and only the
following steps would have to be redone, if the frequency is changed.

3.4.2 Avoiding Large Memory Requirements

The large amount of memory can be reduced by executing the operations in a specific
order. In each step of the loop over the layers only one ε̂, one η̂, one M -matrix and
one inverse M -matrix is needed at a time. Only the eigenvalues are needed for two
layers. For reasons discussed in the next chapter, it is still preferable to store the ε̂-
and η̂-matrices for all layers.

Assuming that layer l has been solved and the inverse M -matrix and the eigen-
values, as well as S(0, l) are available, the S-matrix can be advanced to S(0, l + 1)
by the following steps7:

set up eigenproblem for layer l+1

solve eigenproblem for layer l+1

create M-matrix for layer l+1

calculate I-matrix using Minv,l and Ml+1

advance to S(0,l+1) using I-matrix, S(0,l), eigenvaluel and

eigenvaluel+1

create inverse M-matrix for layer l+1

Now the step can be repeated for layer l + 2 and the memory usage is minimized.
Only one minor problem is still existing.

The routine for the calculation of the S-matrix requires the following arguments
which in the function call have to be listed exactly in this sequence

• old S-matrix S(0, l) (on output: new S-matrix S(0, l + 1))

7The calculation of ε̂ is ignored in this section. At the moment it is assumed that it is either
known (stored) or calculated during the setup of the eigenvalue problem
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• I-matrix

• eigenvalues of layer l

• eigenvalues of layer l + 1

and this is placed inside a loop over all layers, the eigenvalues have to be treated
with care. In each step of the loop, the 4th argument has to be the eigenvalues of
the current layer and the 5th argument has to be the eigenvalues of the next layer.
In addition, the other variables also have to correspond to the correct layers in each
step of the loop.

For the M -matrix this poses no problem, since the inversion of Ml+1 is done after
advancing the S-matrix, when the previous Minv,l is not required anymore. Also
Ml+1 is not needed in the next step and can be overwritten by Ml+2 upon solving
the next eigenvalue problem. For the eigenvalues this is not the case since they
need to swap positions in subsequent steps of the layer loop. The eigenvalues, which
were the 4th argument in the current step have to be the 5th argument in the next
step. Inside a loop the variables can, however, not be renamed, since the function
call always uses the same variables. A simple approach to this problem would be to
copy the eigenvalues at the end of each recurrence step. The copying process can
be avoided by using pointers and decoupling the physical position of the eigenvalues
in the memory from the name of the variable pointing to it as illustrates in the
following boxes. The terms “memA” and “memB” correspond to the positions in
memory and “point1” and “point2”, respectively, are pointers to these positions in
memory. The man aspect in the following is that the positions to which the pointers
are pointing can be changed without changing the content in the physical memory.
The brackets combine pairs of associated position in memory with the pointer for
the depicted eigenvalue.

In the lth-layer, the following quantities are known: S(0, l), Minv,l

and the known eigenvalue is given by: eigenvaluesl (memA, point1)
The pair (memB, point2) contains no required information and can be used in the
next eigenvalue problem.

set up eigenproblem for layer l+1

solve eigenproblem for layer l+1

→ eigenvaluesl+1 (memB, point2)

create Ml+1

calculate I(l,l+1) using Minv,l and Ml+1

advance to S(0,l+1) using I-matrix, S(0,l), point1, point2

create Minv,l+1

swap pointers → eigenvaluesl+1 (memB, point1)

Now the following quantities known: S(0,l+1), Minv,l+1

and the known eigenvalues is given by: eigenvaluesl+1(memB, point1).
The pair (memA, point2) contains no required information and can be used in the
next eigenvalue problem.
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set up eigenproblem for layer l+1

solve for layer l+1

→ eigenvaluesl+2 (memA, point2)

create Ml+2

calculate I(l+1,l+2) using Minv,l+1 and Ml+2

advance to S(0,l+2) using I-matrix, S(0,l+1), point1, point2

create Minv,l+2

swap pointers → eigenvaluesl+2 (memA, point1)

Giving: S(0,l+2), Minv,l+2, eigenvaluesl+2 (memB, point1)
and the position of the eigenvalues is given by: memA (point1) eigenvaluesl+2 and
memB (point2) free.

The ongoing use of this recursion always keeps the pointers used in advancing the
S-matrix fixed, so that the function call can be implemented in a simple loop over
all layers. In each step the eigenvalues of the current layer (l+1 in the 2nd box) are
kept and eigenvalues of the previous layer (l in the 2nd box) are overwritten by the
eigenvalue of the next layer (l+2 in the 2nd box), reducing the required memory to
a minimum and avoiding copying large matrices.

For the M-matrices the same situation occurs. At all points in time, only the
two required matrices (Ml+2 and Minv,l+1 in the 2nd box) are stored, and the inver-
sion after calculating the next S-matrix avoids copying again, since Minv,l+1 can be
discarded as well as Ml+2.

3.4.3 Storage of ε̂/η̂

In the previous, section the dielectric Toeplitz-matrices ε̂ and η̂ did not appear
because they need some special thought as well. If one does calculations for several
frequencies (or angles) these matrices are the only quantities that don’t change.
Therefore, it would make sense to calculate them once and then re-use for each
frequency. This, however, requires more memory since they have to be stored for all
layers.

To be flexible, these matrices have been implemented into the layer class but
are usually not initialized and are only a pointer to NULL space. In the routine
for calculating the S-matrix the Toeplitz-matrices are required. They can now be
calculated for each layer during the recursion or be copied from the layer class if
they have been set before. Hence, it is possible to chose between faster calculation
for systems using only a few layers, or for memory saving for computers with limited
memory and/or large systems.

Adaption to Dispersive Constituent Material

Even for dispersive materials, the usage of ε̂ and η̂ can be optimized. On first sight,
the Fourier expansion has to be done for each frequency, since the transform of
a composite system, e.g. holes in a substrate, can not be manipulated to reflect
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changes in the dielectric material, except if the dielectric material change by the
same factor α in all regions of a layer

α · ε̃(n′) =

∫
d~r α · ε(x, y) e−i ~Gn′~r . (3.15)

Fourier transforms can, however, be added, since they are linear

ε̃1(n
′) + ε̃2(n

′) =

∫
d~r (ε1(x, y) + ε2(x, y)) e−i ~Gn′~r . (3.16)

This property can be used to avoid the re-calculation of the Toeplitz-matrices in the
case of dispersive material.

Fig 3.6 illustrates the idea for a hole (ε = εb) in a dispersive substrate with εa(ω).
First the unit cell is separated in a homogeneous unit cell with the dielectric constant

(a) Correct unit cell (b) Homogeneous
background

(c) Unit cell with sub-
tracted background

Figure 3.6: Representation of a unit cell with 2 materials εa(blue) and εb(yellow)
(a). This unit cell can be represented by the sum of a homogeneous background (b)
and the unit cell with subtracted background (c). In (c) the values for the dielectric
constants are εc = 0.0(white) and εd = εa − εb(green). If the Fourier transform of
(c) is calculated with εd = 1.0 it can be scaled to arbitrary values for the dielectric
constant of the substrate. The Toeplitz-matrix of (b) is a diagonal matrix containing
only εb.

of the hole (background). Using eq. (3.16), a unit cell representing the difference to
the original one has to be added. This is a very suitable unit cell for scaling. Since
the dielectric constant in the area of the hole is 0.0 now, the scaling in eq. (3.15) can
be applied to the entire unit cell and the Fourier expansion of Fig. 3.6(c) for arbitrary
values of εd can be calculated once it is done for an example, e.g. εd = 1.0. The
Toeplitz-matrix of the homogeneous unit cell can be written down immediately since
it is a diagonal matrix only containing εb. Therefore, this approach does not add any
significant calculation time for dispersive materials. In this form, the approach can
be used for arbitrary shaped unit cells, which contain two materials with one being
frequency independent (e.g. air holes). For more complicated layers, the original
unit cell has to be broken down into individual unit cells, which only contain one
material or regions with ε = 0.0 for the scaling to work.
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3.4.4 Long Structures Using a Numerical Unit Cell

In the previous sections, the structures have been described by a number of layers,
which provided a discretization in the z-direction. Using this staircase approxima-
tion, any structure can be represented. However, in most cases it is not necessary
to slice the complete crystal. Often recurrent parts in the z-direction exist, which
define a 3D numerical unit cell, given by the in-plane unit cell of the lattice and
the repeating section in the vertical direction. This unit cell usually does not cor-
respond to a crystallographic unit cell. Correspondence can only be achieved if the
ends of the crystallographic unit cell correspond to numerical layers. Whether this
is possible depends not only of the unit cell itself but also on the alignment of it with
respect to the z-direction. For example, even for a simple cubic unit cell, alignment
of the z-axis along the diagonals of the cube leads to a crystallographic unit cell
which does not end parallel to the layers. However, the numerical unit cell can still
be used.

In order to simulate a long crystal with many repeating identical unit cells in the
vertical direction, only the S-matrix of a numerical unit cell is needed, which from
now on will be called SUnit. This S-matrix connects the fields in the first layer of
the numerical unit cell (labeled 1) with the last layer (N).

The crystal can then be simulated by “multiplying” several of these matrices
together. As always with S-matrices, this multiplication is only meant conceptually.
Comparing with eq. (2.90) shows that in order to multiply two S-matrices, they have
to be in the same layer (l in the discussed case in Sec. 2.4.2). This is not the case
for SUnit, so another matrix is needed to connect the N th-layer with the 1st . This
matrix is called SLoop. Using a combination of these two makes it possible to built
long crystals by using the S-matrix multiplication. Further improvement can be
achieved by exponentiating the matrix. Since by exponentiating only powers of two
can be achieved (S · S = S2 → S2 · S2 = S4 → · · · ) a better scheme is needed.

In the implementation 3 variables are used to create arbitrary length with only a
few multiplications. The total length and S-matrix multiplications are given by

L = a · 2b + c , (3.17)

SL = (S · S̃ · · · S̃︸ ︷︷ ︸
a

)b · (S̃ · S̃ · · · S̃︸ ︷︷ ︸
c

) (3.18)

with S̃ representing the combination of SLoop and SUnit(S̃ =SUnit·SLoop).

The number of total operations is then given by a + b + c. In most simulations
L is known and a,b and c can be optimized and placed in a list to chose from
automatically. For the general case a,b and c need to be determined. This has been
done by choosing c so that L−c can be divided by 4, then determining b and, finally,
c. Depending on the length ranges the 4 should be increased for better results.

In comparison with straightforward slicing, the method of multiplying unit cell
has one big disadvantage. The beginning(top) of the crystal and the end(bottom)
are fixed by the unit cell boundaries. In addition, the unit cell does not incorporate
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Beginning (top):
air to first layer unit cell

Unit cell

Loop:
Last to first layer in unit cell

Unit cell

End (bottom):
last layer in unit cell via 2 sub-
strates to air

Figure 3.7: Representation of a crystal with finite length using SBegin, SUnit, SLoop

and SEnd. On the left the crystal is shown and the right shows the corresponding
partition into different units. Since the multiplication of S-matrices requires them
to be in the same layer, all end layers occur in two S-matrices. The black boxes
represent a unit cell made out of 4 layers, e.g. a woodpile structure. The dashed
lines indicate unit cell boundaries. The different colors illustrate the ordering of the
layers in the unit cell. The two last layers can represent a adhesion layer and a glass
substrate. The length of the crystal can be increased by inserting pairs of SLoop and
SUnit. For optimization SLoop and SUnit should be combined into one matrix.

the air above and below the crystal as well as possible adhesion layers or glass
substrates.

Therefore, beside SUnit and SLoop two more building blocks for arbitrary crystals
are needed: SBegin and SEnd. These matrices relate the modes in the incoming,
respectively outgoing, area with the unit cell.

In both cases, additional layers can be included to model e.g. parts of a unit cell on
top or additional layers on top of the bottom. If the crystal only contains complete
unit cells, SBegin and SEnd are still needed to couple from the air region above to the
crystal or from the crystal to the region below. Fig. 3.7 shows an example for an
entire crystal containing all four S-matrices.

If the top, respectively bottom part is the same as the unit cell and only contains
parts of it SBegin (SEnd) can be calculated parallel to SUnit by using only parts of the
layer loop. In general it is necessary to decide individually for each problem what
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approach is the best depending on the number of unit cells, length of the crystal
and surface termination.

3.4.5 Fields

In order to calculate the fields inside the crystal, eq. (2.97) has to be solved for the
amplitudes al and bl of the modes in the lth-layer. Before solving the amplitudes,
the scattering matrices S(in, l) and S(l, out) have to be calculated. If the crystal is
composed of several unit cells, one has to do a similar calculation as discussed in
the section about long crystals (Sec. 3.4.4), but this time the incoming area has to
be related to the lth-layer in the unit cell, in which the fields are calculated.

For the fields in the mth-unit cell of a crystal with a total Length of L unit cells,
the following S-matrix-multiplications are needed

S(in, l) = SBegin (SUnit SLoop)
m−1 S(0, l) , (3.19)

S(l, out) = S(l, N) (SLoop SUnit)
L−m SEnd . (3.20)

The scheme is illustrated for L = 2, m = 2 in Fig. 3.8 and Fig. 3.9.

Beginning (top):
air to first layer unit cell

Unit cell

Loop:
Last to first layer in unit cell

S(0, l)

Figure 3.8: Using SBegin, SUnit, SLoop and the matrix S(0, l), relating the lth layer
with the beginning of the unit cell to calculate the scattering matrix relating the
incoming area with the layer l in which the fields are determined. For longer crystals
additional combinations of SUnit and SLoop must be inserted to propagate the fields
to the correct unit cell.

Using the S-matrices and eq. (2.97) one can obtain the Fourier components of the
in-plane components of the electric and magnetic field by inserting the coefficients
in the equations for the fields (2.54). The corresponding fields at each point in
space can then be calculated by summing up the Fourier expansion with the correct
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S(l, N)

End (bottom):
last layer in unit cell via 2 sub-
strates to air

Figure 3.9: Using SEnd and the matrix S(l, N), relating the lth-layer with the last
layer of the unit cell, to calculate the scattering matrix relating the lth-layer in which
the fields are determined with the region below the structure. If the fields are not
calculated in the last unit cell of the crystal, additional combinations of SUnit and
SLoop must be inserted.

exponential factors

Hq(l,m)(~r, z) =
∑

~G

hq(l,m)(z, ~G) ei(~k+ ~G)~r . (3.21)

The z-component of the magnetic field can then be calculated by using eq. (2.31)
with the eigenmodes, coefficients and eigenvalues of the corresponding layer. The
indices for the layer (l,m) are dropped for simplification.

Hz(~r, z) =
∑

~G

[
(Kx + Gx)hz,x(z, ~G) + (Ky + Gy)hz,y(z, ~G)

]
ei(~k+ ~G)~r (3.22)

with

hz,x(z) = −
∑

n

1

qn

Φx

(
eiqnzan + e−iqn(z−d)bn

)
, (3.23)

hz,x(z) = −
∑

n

1

qn

Φy

(
eiqnzan + e−iqn(z−d)bn

)
. (3.24)

Alternatively, the Fourier components can be calculated using equation (2.27)

hz, ~G = − 1

2π ωµ0 c

(
k̂xey(z, ~G) − k̂yex(z, ~G)

)
(3.25)

with ex, ey being the components of eq and k̂x, k̂y the diagonal matrices defined
in Chapter 2. The field is then given by eq. (3.21) with hq replaced by hz. Using
eq. (2.30) or eq. (2.36) the same can be done for the electric field.

54



3.4 Optimization

3.4.6 Implementation of the Fourier Transform

Beside the physical aspect of the Fourier transform discussed before, its implemen-
tation is another important part.

FFTW is very efficient, because it adapts the Fourier-transform to the available
hardware. This adaption requires some time and needs to be done every time a
program is started if the underlying hardware is not consistent. The simulations
presented later are done on two different Clusters at the Universität Karlsruhe (Ger-
many) and University of Central Florida in Orlando,FL (USA) containing several
different types of computational nodes and on several desktops, so that the under-
lying hardware is very diverse.

One of the requirements of FFTW is a constant position in the physical memory
for the array containing the points in real space and for the array with the values
of the Fourier-transform. As a consequence, this array has to be created in the
beginning and cannot be changed throughout the execution of the program or the
optimization has to be done again. Using a class, this can be implemented easily.
However there are some other things to look at using FFTW. Although the claim
of the authors is that there are no restrictions on the number of points in real
space8, some differences are found. In addition, the real space points have to be
selected on a suitable grid. As a test, a symmetric unit cell containing only real
dielectric functions can be implemented. For this setup, the Fourier-coefficients can
be completely real and for specific geometries they can be calculated analytically.
In case of holes on a hexagonal lattice (εh with radius ρ) in a substrate (εs) they are
given by

ε(~G) = 2(εh − εs) f
J1(Gρ)

Gρ)
~G 6= 0 ,

ε(~G = 0) = εh f + εs(1 − f) (3.26)

with the filling fraction f = 2
3

√
(3)π ρ2

a2 .
Especially the canceling of the imaginary part is a suitable measure for the correct-

ness of the Fourier transform. With a Monkhorst-Pack mesh [69] or a mesh which
includes points at all boundaries of the unit cell, a purely real Fourier-coefficient
can not be obtained, except if a very large number of real space points is used. For
a grid, for which the points start at the lower left corner of the 2D lattice unit cell
and end one point before the end the unit cell, so that the points on the edge of
the unit cell don’t enter twice through periodicity, the imaginary parts of Fourier
coefficients are zero with numerical accuracy (10−15).

In all three cases, the inverse Fast Fourier transform, using all reciprocal points
in FFTW, leads to an exact reproduction of the previously used real space points.
Also the reconstruction using only a limited number, e.g. the number of orders kept
in the expansion of the fields, does not show significant differences. But only in the

8The results is supposed to be unaffected but the required computation time strongly depends
on the number of used points.
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third case above, the Fourier coefficients fulfill the expectations for a symmetric unit
cell.

The difference can be explained by looking at the Monkhorst-Pack mesh compared
to the grid starting at the edge. They are shifted by half the distance of the points
in real space. A shift by ~r0 leads to a phase e−i 2π ~G~r0 which would explain why the
coefficients are not purely real and why the difference decreases with the number of
real space points used in the transform.

Also the total number of real space points used should be carefully checked and
in principle as many points as possible should be taken. The most efficient number
of real space points for FFT would be an exponential of 2 but to achieve purely real
values, an odd number of points had to be taken. An oversampling of 2 (twice as
many points in real space as expansion orders needed) as required as a minimum
by the sampling theorem (see e.g. [67]) is not good enough for convergence. Good
results were achieved with five times more points in real space than total modes
in each direction, corresponding to a total of roughly 25 times more points in real
space than total modes in the field expansion. In the Toeplitz-matrix, twice the
number of modes of the fields occurs (−2N, · · · , +2N), so that the oversampling is
only about 10 times.

It should also be noted that the FFTW transformation is not normalized, so that
a forward- followed by a backward-transformation yields a factor of x-dimension ·
y-dimension, so that this normalization has to be included in the implementation of
the transform.

3.4.7 Homogeneous Eigenvalue Problem

For faster calculations, the parts of the problem which can be solved analytically,
should be implemented using the analytical solution.

This is the case for all homogeneous layers, which were solved in Sec. 2.2. Incoming
and outgoing layers as well as e.g. glass substrate layers can be implemented using
the analytical solution and the solution of the eigenvalue problem can be avoided.
All the matrices are diagonal in this case, and, even without knowing the ordering,
can be solved row by row, yielding the eigenvalues and eigenvectors with only one
entry in the corresponding row.

Layers in the numerical unit cell have to be treated with more care. Since the
number of layers might change it is not straightforward to say that the nth-layer
is homogeneous. During the setup of the layers, the program package has to mark
layers as being homogeneous or not by a flag in the layer class, so that eigenvalue
problem solver can use the regular version or the optimized one for homogeneous
layers. For many structures for which the distribution of the constituent material is
given implicitly by e. g. a threshold formula as in Chapter 6, this cannot be done9

and the full routine has to be used.

9It could, of course, be done by analyzing the Fourier coefficients but since most layers will not be
homogeneous, this has been omitted and only known homogeneous layers are treated as such.
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3.5 Implemented Options

The second part of this chapter illustrates the possibilities of the program package by
listing most of the implemented options. Since the only limit on the structure is its
periodicity in the x-y-plane, many structures are possible, each requiring parameter
to describe the size, distribution of material, etc. They depend on the individual
structure and are not discussed here. The discussion is limited to general parameters
and their handling.

3.5.1 Frequency and Wavelength

In theoretical studies, one always uses dimensionless units as introduced in Sec. 1.3.3
and all quantities are scaled, so that the lattice parameter represents the unit
of length. In the experiment this is not the case and often the lattice parame-
ter is one of the parameters which are studied. The measurements are also not
done at dimensionless (rescaled) frequencies ω[1] but at ’real’ frequencies ν [Hz],
wavelengths λ [nm], energies [eV] or wave numbers [1/cm].

One can still conduct all calculations in dimensionless units and post-process
the data to reflect the properties of the system under study. It is, however, more
convenient to provide output that directly matches the experimental data. In some
parts of the code, e.g. the definition of the crystal, it is also more convenient to use
units instead of rescaled quantities to ease communication10.

Another aspect to consider in this context, is the scanning of frequencies/wave-
lengths. In principle. this is done in a simple loop over the dimensionless frequency
starting at ωstart ending at ωend and using a step size of ωstep. This creates equally
spaced points in frequency which are not consistent with equally spaced steps in
wavelengths due to the reciprocal relation between them. For the determination of
other quantities, e.g. the dielectric constant from a Drude model, the frequency is
needed in Hz again.

To avoid confusion during the use of the program all these conversions are done
automatically and it only has to be specified whether the in/output is in wavelengths
or other quantities. The program then uses the information available about the
crystal to adjust all parameters, e.g. step size, in/output units, ..., internally. The
calculations are always done using dimensionless units.

3.5.2 Parameters

In this section a list of general parameters will be given, mostly without many
details, since they have been introduced before. For most of these parameters, e. g.
frequency, a range has to be calculated. This is usually done by using a for-loop,
which can be controlled by a scheme using 6 parameters:

10Anything that can ease the communication should always be implemented. Different, for each
group “obvious” definitions can be a rather tricky source of misunderstandings.
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• starting value of e. g. ω, angles, surface, etc.

• ending value of e. g. ω, angles, surface, etc.

• number of steps used in the loop to go from the starting to the ending value

• starting index of the loop

• ending index of loop

• step size used in the loop

The first two correspond to actual parameters values, the following three are integers
which govern the execution of the loop and the last one calculated by

ending value − starting value

number of steps − 1
. (3.27)

On first sight this looks very complicated and some parameters seem to be re-
dundant, e.g. starting value and starting index of the loop. The reason for this
complicated structure is to define the step size independent of the range used in
the loop. The starting and ending frequencies can for example be set to describe
the experiment. Together with the number of steps the resolution is fixed and the
jth-frequency steps always corresponds to exactly the same value. By choosing the
starting and ending value of the loop, the calculation can be split up into several
tasks in a very convenient way using integer command line arguments. They can
then easily be implemented in a shell script which is very convenient for using the
program on different clusters without having to worry about specific implementation
of parallelization. Especially for large computation, it is very helpful, if the details
are set and one only has to worry about integer ranges when starting the job.

Beside these variables a number of variables are set but they are fixed for each
project and do not fit the approach above. They might have to be determined
for convergence, e.g. number of layer, number of modes. For the field plots, the
resolutions and the size of the plots has to be controlled.

3.5.3 Parameters Describing the Measurement

In total there are 3 parameters that fit the scheme presented above and one param-
eter which can only take two values if one uses plane waves as incoming mode. The
three parameters consist of the two angles θ and φ and the frequency. The frequency
has the added complexity that for this parameter two sets of starting and ending
value exist, one for the dimensionless frequency and one set for the wavelength,
which can be set independently. In the loop only the rescaled frequency occurs but
the starting and ending values as well as the step size are chosen automatically so
that the requested quantity (ω or λ) is spaced equidistantly. Which of the two is
chosen is determined by a flag.

The parameter which does not obey the outlined scheme is the polarization. Either
TE or TM is used and set by a flag.
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3.5.4 Crystal Parameters

The second class of parameters using the loop-scheme are determining the crystal.
The first is describing the surface by shifting the numerical unit cell in the z-

direction. Shifting the unit cell up and down corresponds to shifting layers in the
staircase approximation (Fig. 3.10). By default the beginning value here is 0.0 and

Figure 3.10: Changing the surface/bottom termination by shifting the layers in
the numerical unit cell. On the right, the unit cell is shifted. The surface is now
defined by the green layer and the red layer re-enters at the bottom, due to the
periodicity of the unit cell in the z-direction. For the entire setup of the structure
compare Fig. 3.7.

the ending value is the end of the unit cell in the z-direction. Shifting the unit cell
corresponds to changing the top and the bottom simultaneously if only connect the
top (bottom) layer of the crystal with the input(output) area. For changing both
terminations independently, SBegin (SEnd) (Sec. 3.4.4) have to be changed to include
several layers. In this case the shift of the unit cell becomes obsolete.

Another parameter built in using this scheme is setting the length of the crystal
in number of numerical unit cells for length dependent calculations.

3.5.5 Dispersive Permittivity

As already discussed in the optimization section (Sec. 3.4.3), dispersive material can
be simulated as well. Since all calculations are done separately for each frequency,
any dispersion can be used as long as ε(ω), ε(λ) or ε(ν) are known. The following
models are already implemented.

Spline Interpolation

The most general method uses tabulated values for the complex index of refraction
for given wavelengths. For wavelengths in between the listed ones a cubic spline
interpolation following Chapter 3.3 in Numerical Recipes [67] is used.

This allows for simulation of all possible behavior of the dielectric function. The
values can also be taken from experimental measurements. Using frequency/wave-
length conversion tools also listings containing dielectric constant/frequency pairs
can be used.

Drude Modell

Beside the use of data for the dielectric constant, the Drude model can be used
(see e.g. [70]). The two required parameters are the plasma frequency ωp and
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the relaxation time τ . Given these two the real respective imaginary parts of the
dielectric function are given by

Re ε = 1 −
ω2

p τ 2

1 + ν2 τ 2
, Im ε =

ω2
p τ

ω(1 + ν2 τ 2)
. (3.28)

Alternatively the complex value can be calculated directly

ε = 1 −
ω2

p

ω(ω + i 1
τ
)
. (3.29)

The Drude formula can be used for noble metals in the far infrared, e.g. good values
are obtained for gold in the range from 2µm up to 30µm. For higher energies in the
visible or near-ultraviolet, the free electron approximation is not possible any more
and, for example, inter band transitions have to be taken into account [71, 72]. An
example for gold is given in Fig. 3.11(a). In the long wavelength limit the correspon-
dence with experimental data is very good but in the range below 1µm deviations
occur. In the literature the values for the index of refraction as well as the plasma
frequency and the relaxation rate vary over large scales, depending on the measure-
ment setup, quality of the sample and method. A listing of different values can for
example be found in volume 15 of Landolt-Börnstein [73]. It should be mentioned
however that in several small projects which were using the Drude formula for the
dielectric constant of gold in the (far)infrared region no convergence of the results
was achieved. Since the focus was on the main project using dielectric materials the
implementation has never been adapted to the ideas discussed in Sec. 2.8.1, which
could eventually solve this problem.

Maxwell-Garnett for Embedded Two-Level Systems

A mixture of two-level systems embedded in host material with εm can be described
using the Maxwell-Garnett formula [74, 75]. The two-level systems are described by
a concentration ρ, a resonance frequency ω0, an oscillator strength ωp and a damping
(line width) γ. For the dielectric constant of the composite structure it follows:

ε(ω) = εm

[
1 +

3ρα(ω)

1 − ρα(ω)

]
(3.30)

with the polarizability

α(ω) =
εtl(ω) − εm

εtl(ω) + 2εm

(3.31)

and the dielectric constant of the two-level system

εtl(ω) = 1 +
ω2

p

ω2
o − ω2 − iγω

. (3.32)

An example is shown in Fig. 3.11(b).
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Figure 3.11: (a) Index of refraction n calculated using the Drude model with ωp =
1.6 · 1016 and τ = 2.5 · 10−14. The solid(dashed) line shows the real(imaginary) part.
The circles in the large graph are experimental data taken from [72]. The Drude
model reproduces the general behavior, although the exact values differ slightly. The
inset shows good agreement for long wavelengths in the far infrared. (b)Dielectric
constant ε for a two-level system embedded in a host material. The parameters in
dimensionless units are: εm = 2.4, ρ = 0.05, ω0 = 0.24, ωp = 0.7ω0 and γ = 0.01ω0.

3.5.6 Smoothing

In most approaches, the dielectric function is assumed to be a step function which
jumps at the boundaries of different regions from the pore value (e.g. air ε = 1.0)
to the surrounding substrate (e.g. silica ε = 11.9). In simple cases, such as round
pores the Fourier transformation can be carried out analytically.

Numerically, however jumps are always hard to simulate and cause problems. To
avoid (smoothen) these problems, the value of the dielectric function at boundaries
can be smeared out.

The main idea of smoothing is to use a function of a scalar f(d) which turns from
0 to 1 as d passed through zero. The dielectric constant can then be described by

ε(d) = εs + (εp − εs) f(d) . (3.33)

If d is the distance from the boundary, e.g. the radius of a pore, r − r0, then εp

is dielectric constant of the pore (inside, d < 0) and εs belongs to the substrate
(outside, d > 0). To adjust the smoothing d should be scaled using a width ∆r.

Using a hyperbolic tangent this can be done by rescaling it according to:

f(r, r0, ∆r) = 0.5 + 0.5 tanh

(
4.95

r − r0

∆r

)
. (3.34)

The hyperbolic tangent ranges from −1 at −∞ to +1 at ∞ and reaches values of
−0.9999 at −4.95 and 0.9999 at 4.95. The factor of 4.95 together with the prefactors
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leads to a function which returns 10−4 at r = r0 −∆r and 1− 10−4 at r = r0 + ∆r.
Fig. 3.12 shows only the behavior of the rescaled tangent.

-1.5 -1 -0.5 0 0.5 1 1.5
(r-r0)/∆r
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1

Figure 3.12: Rescaled hyperbolic tangent according to eq. (3.34).

In most cases a 1D smoothing can be used for one parameter. In addition, smooth-
ing based on the distance from a point in 2D is implemented using a circle around
that point with r0 as radius as well as using an ellipse with two axis a and b and a
angle defining its orientation of it.

There are several possible alternatives to the hyperbolic tangent, e.g. supergaus-
sians, which have not been implemented. For a quadratic smoothing within a certain
range, analytical coefficients can be calculated [76], which take rather complicated
forms and are not needed if fast Fourier transform is used. For a lot of crystals, e.g.
all holographic structures discussed in Chapter 6, these boundaries can not be deter-
mined directly, so that smoothing using one parameter, e.g. a smoothed threshold
for the cross-linking, is the more suitable approach.

It should be mentioned that smoothing can help to improve the representation of
the spatial dependence of the permittivity. In the Fourier transform of step functions
usually the Gibbs phenomenon lead to oscillations in the inverse transform which
increase the jump in real space by 18%. Introducing smoothing can avoid this and
reproduce a smooth function. The inverse transformation of the inverse dielectric
function using η̂ is not improved significantly by this and still shows strong oscilla-
tions and even negative values. For the convergence also no general improvement
has been found using smoothing.

3.5.7 Concluding Remarks on Parameters

From the above listing of different options and systems under study, it is obvious
that the parameter space is basically unbound. Therefore, the control and setting of
parameters is a complicated issue and often several aspects have to be considered.
For example the change of some specific parameter, e.g. lattice constant, will change
other parameters, e.g. the layer thickness, as well. Each new photonic system
will add more parameters needed to describe the specifics of the unit cell and/or
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crystal. Therefore, all-purpose routines, especially for the crystal parameters, are
very difficult to implement due to the possible dependencies on each other.

For the main parameters, which occur in all problems (angles, frequency range,...)
routines have been developed to store the parameters to a file and read them back
in. For project specific parameters, interfaces have been created to pass their listing
of parameters to the routines which control the storage and retrieval of them via
class objects using specified methods.

Some routines, however, can not be generalized for all systems. A general all-
purpose command line tool is basically impossible to implement and no attempt
was done to do so. Of course, all possible parameters could be added to a command
line interpreter but that would make the system very complex and hard to work
with. Also with each added system the inter-dependencies would become more
incomprehensible. This problem has been circumvented by using classes for the
program parameters and crystal parameters which can be passed to a general routine
to handle command line arguments. The detailed implementation of these routines
must then be carried out individually for each project.

The other part of the code which has to be generated for each project is the setup
of the layers. In principle, it would be possible to take the number of layers as a
parameter and then specify a function for the dielectric constant depending on all
coordinates ε(x, y, z). Slicing the unit cell then in equidistant layers would work but
would be highly inefficient. For example homogeneous parts should not be sliced but
represented by one layer independent of their thickness. In addition, the definition
of SUnit, SLoop, ,SBegin and SEnd in Sec. 3.4.4 is only symbolic and has to be used more
flexible. Consider for example a structure made of bars in one direction followed by a
spacer and again followed by bars rotated by 90◦. In general such a structure would
be terminated by bars on top and on the bottom. However, to add several unit cell
an additional spacer layer has to be placed between the bar layer at the bottom of
a unit cell and the one on top. This layer can be implemented in SLoop which then
connects the last layer in the unit cell to the first via the spacer. Also SBegin and
SEnd cannot be set up in general. In some cases, additional layers should be added
there, e.g. to model half a unit cell with broken pores on top or several substrates
below. During the implementation this flexibility has always been one of the key
points. As a consequence, in some cases preference was given to routines which
allow easy setting up of arbitrary systems over saving memory. Creating only one
program version capable of all adjustments needed to model the options mentioned
above would be possible, e.g. by defining three unit cells, one for SBegin, SUnit and
SEnd respectively. In some cases all of them would be needed, in some cases the top
and bottom unit cell would only contain an air layer and in some cases the top and
bottom unit cell would in principle be the same as the regular unit cell, except that
only a part of it is included. In all cases, however, the additional overhead would
require additional memory and the handling would be very complicated and even
small changes would be very difficult to implement.

For the 2D code a version exists in which the program decides when to use 1,2 or
3 unit cells depending on the input but setting up the parameters for each systems
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takes as long as creating a new program with the tools provided in the 3D program.

3.6 Lattices Classes and Crystal Symmetries

Since the list of possible 2D lattices is limited they should be listed here. Firstly,
it is important to remember that the lattice is always connected to the layers. The
diffraction orders are a direct result of the 2D in-plane periodicity introduced by
this lattice and the lattice describes the arrangements of the unit cells. Although
symmetry considerations are usually connected to a lattice this is not correct. The
primitive cells might have less internal symmetries than the lattice and in is this
case the symmetry of the structure is only given by the symmetry common to both
of them. This is also the reason why in Sec. 3.1.3 the circular choice is usually better
most of the times but not always. In most practical cases the symmetry is based
on the lattice, (e.g. pores or other object with continuous rotation symmetry) and
then the circular choice reproduces the lattice symmetries. If the unit cell shows
different symmetries and other choices are better suited to model these symmetries
they might converge better.

Beside the lattice and the basis of the 2D layers, the third dimension has to
be included in symmetry considerations as well. If the symmetry of the unit cell
changes in different layers, then the symmetry of the entire structure corresponds
to the smallest common symmetry.

Since symmetries are a very important phenomena, they are a very important
property to check. A simulation which fails to reproduce the symmetries of the
crystal is violating a strong physical requirement.

In two dimensions, there exist three major arrangements of lattice points of exper-
imental relevance. They can be described by the square lattice (as a specific case of
a rectangular lattice), the triangular lattice (as a specific case of an oblique) and the
honeycomb lattice. All three are depicted in Fig. 3.13. In all lattices, a rectangular
unit cell could be chosen as well (compare Sec. 3.1) but this cell would have a larger
area and not exhibit the correct symmetries. Only the first two of them are Bravais
lattices, meaning that the crystal looks the same from each point. The honeycomb
can be described as a triangular lattice with a two point basis, as can be seen in
Fig. 3.13(c). Beside the square and triangular lattice, three other Bravais lattices
exist in 2D11, which are not implemented at the moment. Following the implemen-
tation presented in Sec. 3.1.2, they can be simulated by using the appropriate lattice
vectors in the Fourier transform. Fig. 3.13(c)

In the code for 2D structures, the layers are one-dimensional and the lattice
defining the diffraction orders is fixed. The crystal structure is then defined by z-
dependence of the layers. This is discussed in detail in previous work [77] and will
be omitted here. The parameters of the lattice used Chapter 4 are given there.

11I. Generalized cases of the square lattice with different lengths of the lattice vector; II. same as
I. but with an additional lattice point in the center; III. generalized case of the triangular with
an arbitrary angle and side lengths of the parallelogram.
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Figure 3.13: The three main experimental realization of lattices in two dimensions.
(a) and (b) are also Bravais lattices. The Bravais lattice for (c) is a hexagonal lattice
with a two point basis. This can be seen from the red(dotted) and blue(dashed)
lines.

3.7 Disorder

Another interesting problem is the impact of fluctuations in the parameters intro-
duced during the fabrication process. This requires a statistical description of the
transmittance and reflectance coefficients and the calculation of many realizations
with different values for the parameters, e.g. the pore radius.

The disorder calculations are not based on the code for 3D structures but on an
improved version of an older code for 2D structures. The underlying principle is
the same instead that a 2D crystal is sliced into 1D layers. The main difference is
that due to the decoupling of the TE and TM modes in 2D, two different eigenvalue
problems arise, depending whether the electric field is perpendicular to the 1D layers
or not. Details of the calculations can be found in previous works [77, 78].

The calculation of transmittance or reflectance has not been changed for the most
parts but the code was extended to allow for automated disorder calculations. The
system under consideration is a 2D system of pores in silicon and will be discussed
in greater detail in Chapter 4.

3.7.1 Database

For a crystal with a given length defined by the number of cylinders in propagation
direction, fluctuations e. g. in the radius could be introduced by slicing the entire
crystal. For the radii, values drawn from a distribution, would have to be used and
statistics had to be done. Each crystal would consist of a large number of layers
that have to be solved for each realization. Since in this approach, the calculation
of each representation would take very long, an alternative is needed. A suitable
way is not to calculate the S-matrix for the entire crystal but to use a database of
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S-matrices corresponding to different radii and multiply them to build the crystal as
in the case for long crystals Sec. 3.4.4 but in this case, each SUnit would correspond
to a different radius.

The different S-matrices, each describing a unit cell with a specific value for the
radius, are pre-calculated once and stored. A disordered crystal is then generated
by drawing the radius from a distribution. In the next step, the S-matrix for the
closest radius is taken from the database and used to build the crystal. In the
database only a finite number of matrices can be stored. Consequently, the possible
choices for the radii are limited to the values in the database. To avoid that the
individual representations are just permutations of each other, the database requires
a substantial size, at least several times bigger than the crystal length studied.

Using this approach, a lot of realizations can be calculated quickly by simple
S-matrices multiplications, once the database is set up. In addition the length can
be varied easily by adjusting the number of multiplications.

Another advantage of the database is the re-usability if the S-matrices are stored
in a file. During the calculations the database should be stored in the physical
memory to avoid the costly opening of thousands of files. On most clusters these
files would be accessed from several nodes and, consequently, an enormous amount
of network traffic would be created. A local storage would lower the traffic but new
calculations would require the same node. Copying the database prior to calculations
to a local node should be done if the database is too big to be kept in memory. In the
calculations the database was always stored, which limited the number of available
nodes for the supercell calculations mentioned below.

3.7.2 Supercell and Finite-Size Scaling

The approach mentioned in the previous section is only a quasi-disordered system.
Since the method relies on a Fourier expansion in each layer and any changes in
radii are periodic in the in-plane direction and all pores in one row perpendicular
to the propagation direction are equal.

For a correct disorder calculation, one would have to model all pores individually,
so that the in-plane periodicity vanishes. This can, however, only be done in a Finite-
Difference-Time-Domain simulation or using Multiple-Multipole method. In both
simulations the total computation time would be too long for simulating thousands of
realizations for several frequencies and lengths. To make use of the advantage of the
RCWA method and overcome the limitations of the periodic in-plane arrangement,
a supercell method and finite-size scaling was used. Finite-size scaling is used in
various methods, where calculation based on a unit cell need to be extended to
bigger systems, e.g. DFT [79] or study of localization in electronic systems [80, 81].

In the supercell calculations, the numerical unit cell extends several lattice con-
stants in the in-plane direction. The number of layers and length in the z-direction
is kept constant. Since an increase of the in-plane lattice constant leads to a smaller
unit cell in the reciprocal space and, therefore, to smaller reciprocal lattice vectors,
more expansion orders are needed. In the 2D code with 1D layers, the number of re-
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quired modes scales linearly with the number of supercells. This can be understood
by looking at the diffraction orders.

Describing a perfect crystal with a unit cell containing 2 pores has to lead to
the same results for the diffracted orders as a simple unit cell. Since the reciprocal
lattice vectors are given by 2π

a
for the simple case, respectively 2π

2a
for the supercell,

every odd order in the supercell only exists in the numerics and all reflectance and
transmittance coefficients must be zero for these orders. For disordered structures
this does not hold anymore.

Beside finite size scaling, the supercell can also be used to introduce linear de-
fects into the structure, e. g. the W1-waveguide in Fig. 3.14. The coupling between
neighboring waveguides can be studied using unit cells of different sizes leading to
different separations of the waveguides.

(a) W0 (b) W1 (c) W3

Figure 3.14: 5 lattice constant wide supercell containing a perfect lattice (left), W1
waveguide with a missing cylinder (middle) and W3 waveguide with three missing
cylinders (right).

3.8 Test Systems

A very important part during the development of a program and its adaption to dif-
ferent structures and unit cells is testing. In general, all systems should be compared
with previous calculations but most of the times this is not possible for a specific
structure. Therefore, more general testing methods have to be used to ensure correct
calculations. A few simple ideas will be outlined in the following.

3.8.1 Analytical Systems

In principle only very simple systems for which the behavior is known analytically
can be used for testing if no numerical results are available.

The easiest is an interface between two homogeneous materials. This allows to
test for 2 important aspects

• energy conservation / normalization

• polarization / angular dependence

From the Fresnel formulas, the transmittance and reflectance coefficients are known
and can be used as a comparison. Since the incoming and outgoing region are in
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Figure 3.15: Calculation of the transmittance and reflectance at an interface of
two homogeneous materials with n1 = 1.0 and n2 = 1.6. The solid(dashed) black
curves show the analytical results for TM(TE) polarization. The symbols are results
of calculations with the dielectric function of the pores equal to the substrate. The
calculations show now φ dependence (not shown).

two different materials, also the normalization of the Poynting vector is being tested.
Fig. 3.15 shows the result for reflectance and transmittance at an interface between
two materials with n1 = 1.0 and n2 = 1.6. The Brewster angle for TM polarization
is given by arctan n2

n1
→ θ ≈ 57.9◦ independent of the in-plane angle φ.

Another easy to handle test systems are homogeneous slabs. They should demon-
strate Fabry-Perot resonances and allow for testing of geometries, e.g. unit cell
length, scaling, as well as for testing the multiplication of S-matrices. Fig. 3.16
shows a comparison of the calculation (circles) with the analytic formula (solid line)
for a system with a thickness of 180µm and n =

√
2. The plot in the middle shows

only the calculated Fabry-Perot resonances. Although the plots seems strange they
are correct. The unusual behavior around 500nm is a sampling artifact, which also
does not disappear if the transmittance is plotted over frequency. Comparing the
results with the analytical Fabry-Perot formula in the left plot shows the exact cor-
respondence. The strange behavior is due to the very thick layer as compared to
the wavelength. Although the example seems to be an extreme case, glass plates of
roughly this thickness are used in the experiments. In Chapter 6 it will be shown
that these Fabry-Perot resonances can be measured. It is, therefore, important to
be aware of such effects, which seem to be strange at first sight.

In crystals with several substrates, several configurations have to be checked to
make sure all layers are incorporated correctly in the corresponding S-matrices
(SBegin,SUnit,SLoop,SEnd).
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Figure 3.16: Fabry-Perot resonances of a 180µm thick plate with n =
√

2. On the
left the analytical formula (solid line) is compared with the simulation. The middle
shows only the simulation. The unusual behavior around 500nm is a sampling
artifact, which becomes clear if parts are blown-up and compared with the formula
(solid line) as is shown on the right side.

3.8.2 Physical Expectations

Other methods to check the code are not based on comparing with formulas or
previous calculation but to check, whether the results fulfill physical expectations,
e.g. symmetry.

For a unit cell with a triangular symmetry (six-fold rotation symmetry, inversion
symmetry for the axis through the M and K points the transmittance and reflectance
have to reflect this symmetry, e.g same values for changing φ by multiples of π

3
or

changing θ → −θ for φ perpendicular any of the inversion axis. As discussed above,
not only the lattice has to be considered in this case but also the symmetry of the
unit cell. In Chapter 6 an example will be shown, where this property is important.

Other methods to test the code using physical expectation is introducing a modu-
lation of the dielectric function which only contains one Fourier order. Consequently,
only this order should occur in the reflectance and transmittance even if several prop-
agating orders could exist. In the case of PCs with a stop band, the position of the
stop band can be used to test the correct implementation.

Depending on the structure, additional tests might be possible, e.g. length de-
pendence if absorption is present and should be introduced based on the system.

3.8.3 In-Code Testing

Beside using the results as testing criteria, the numerical implementation and ac-
curacy can be tested by inserting the results for the eigenvalue problem in q2 = k2

z

(eq. (2.46)) into the eigenvalue problem for ω (eq. (2.45)) or the generalized eigen-
value problem (eq. (2.47)).

Errors in the multiplication of S-matrices during setting up the crystal leads to
a violation of energy conservation, so that this is another possibility to check the
outcome as long as absorption-free materials are used.

Only if all of the above criteria are met, can the program be used for simulation
of realistic experiments. Failing any of the expectations mentioned above makes the

69



3 Implementation and Optimization

program unusable. However, failing is not uniquely defined but most of the test
should be passed with numerical precision (e.g. 10−12, · · · , 10−15 for double preci-
sion). In the case of eigenvalue problems the error might also be larger, especially
if a lot of modes are used, and the eigenvalues q have a large imaginary part. Using
the obtained eigenvalues q and eigenvectors for a fixed frequency ω and inserting
them into the eigenvalue problem for ω as discussed at the beginning of this section
can lead to errors on the order of 10−8 for individual eigenvectors.
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In this chapter, results are presented for a PC consisting of air pore arrays in a
silicon substrate. Since this is a 2D system, the implementation of the code is
slightly different (simpler) than presented in the previous chapter. It has been
discussed in detail before [77] and the differences to the implementation for finite
three-dimensional structures are pointed out in Sec. 4.1. After defining the crystal
parameters (Sec. 4.2), the fabrication (Sec. 4.3) as well as previous results (Sec. 4.4)
are summarized. In the following, certain aspects which cannot be accessed di-
rectly in the experiments, are discussed, such as length-dependence (Sec. 4.5) and
the impact of surface termination (Sec. 4.7). After discussing spectra of very long
crystals (Sec. 4.8), the main part of this chapter deals with radius fluctuations and
the resulting transmittance distributions (Sec. 4.9).

4.1 Implementation Differences for Finite

Two-Dimensional Structures

The simulation of a finite 2D system is based on simpler equations than the ones
presented in Chapter 2. Nevertheless, the simulation principles are the same. The in-
dividual layers are one-dimensional, corresponding to the schematical figures shown
previously. The structure is supposed to be periodic in x and homogeneous in the y-
direction1. Propagation takes place in the z-direction perpendicular to the cylinders
(Fig. 4.2) with an angle θ to the surface normal.

As a consequence of this setup, ky = 0 is always true and the expansion in y-
direction vanishes due to this homogeneity. All terms containing either ky or Gy

are dropped in the equations and the angle φ can be omitted leading to a simplified
version of the problem. For such a strictly 2D problem two polarizations exist:

• E-polarization: electric field parallel to the pores ~E = (0, Ey, 0), magnetic field

in propagation plane ~H = (Hx, 0, Hz)

• H-polarization: magnetic field parallel to the pores ~H = (0, Hy, 0), electric

field in propagation plane ~E = (Ex, 0, Ez)

These two polarizations decouple in the simulation and two different independent
eigenvalue problems for the scalar in-plane component of the field, one for each
polarization, can be derived [77]. For a conical mounting, allowing for a rotation

1This is assuming that the pores are infinite in the y-direction
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Figure 4.1: (Numerical) Unit cells of different 2D systems with a hexagonal/square
lattice. The label describes the high symmetry direction in the reciprocal lattice
along which a wave with perpendicular incidence is traveling given by the orientation
of the sample. The lines indicate layers used in the simulation with the black boxes
representing the staircase approximation. About 100 layers are needed to discretize
one unit cell.

of the incoming wave with respect to the cylinder orientation, the full equations in
Chapter 2 can be used to model the occurring ky 6= 0, limiting Gy to the 0th-order

and, hence, ~Gm = (m2π
a

, 0)T .

4.2 Numerical Unit Cell

For a periodic 2D arrangement of cylinders, two types of lattices (hexagonal and
square) are considered in the following. Their numerical unit cells are depicted in
Fig. 4.1.

For each lattice type, two main orientations of the crystal exist, for which an
incoming wave with perpendicular incidence is traveling along one of the high sym-
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Figure 4.2: Left: Relation between different diffraction orders. The parallel com-
ponent of the wave vector kx differs by multiples of the 1D reciprocal lattice vector.
For propagating modes the magnitude is constant. For non-propagating modes the
magnitude of the in-plane component is higher than the total modulus of the wave
vector and kz has to be imaginary. Right: Different surface cuts (in units of the
radius) lead to different pore openings at the top of the structure. This can be
achieved by moving the blue numerical unit cell in Fig. 4.1 vertically (see text).

metry lines through the Γ-point2. Both setups are shown for each lattice.

In total, 4 experimentally relevant crystal setups with differing 1D grating period-
icity and, therefore, different diffraction orders exist for the pore arrays. In addition,
the surface termination can be altered by shifting the unit cell vertically leading to
different pore openings at the top (Fig. 4.2). In the numerics this is done by shifting
the cylinders inside the numerical unit cell presented in Fig. 4.1. The presented unit
cell for the hexagonal lattice in ΓK orientation has a pore which is broken in the
middle at the top and bottom. Shifting the numerical unit cell up in the lattice on
the right of Fig. 4.1(a) or the cylinders down in the unit cell, leads to a pore with a
smaller opening at the top and the bottom. This would correspond to samples with
different surface terminations. Other surface termination could also be achieved by
rotating the lattice and cutting along arbitrary crystallographic planes but these
termination are not present in samples and omitted.

The presented studies, except the disorder for reasons discussed there, are re-
stricted to the hexagonal lattice as an example system.

4.3 Fabrication

The PC studied in this chapter is based on Silicon which is a very promising mate-
rial heavily used in electronics. Sophisticated processing technology is available for
this material making nanostructuring possible. It also exhibits good optical prop-
erties and even active optical components, e. g. an electrically pumped laser [82],
were presented recently. This allowed for the integration of both, electronic and
photonic systems, using one material. It is one of the most used materials for nano-

2Using oblique incidence corresponds to propagation along arbitrary directions in the Brillouin
zone with a fixed surface.
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Figure 4.3: Transmittance (left) and band structure (right) for a hexagonal lattice
of air pores (ε = 1.0) with radius r = 0.4a in silicon (εSi = 11.9) for a wave
in H-polarization propagating in ΓM direction [77]. The dashed lines correspond
to non-coupling bands (Sec. 1.4) for which transmittance is impossible since the
incoming wave exhibits different symmetries than the Bloch mode in the crystal.
The yellow parts mark the stop bands for comparison of the two plots. Strong dips
in the transmittance occur in these regions.

structuring. The macropores in silicon which are discussed in this chapter actually
represented the first model system for PCs [83, 84].

The pores are defined by photolithographic prepatterning with a very high preci-
sion and then electrochemically etched [85]. In these structures high aspect ratios
[86] as well as three-dimensional structures by changing the pore diameter [87] with
depth are possible.

4.4 Previous Studies

In previous works a hexagonal lattice of air pores (ε = 1.0) with radius r = 0.4a
in silicon (ε = 11.9) has been studied to characterize samples by comparing exper-
imental and theoretical data for angle resolved transmittance spectra [77, 78]. A
band structure comparison for propagation in ΓM direction with H-polarization can
be found in Fig. 4.3.

In the experiments and simulations the anti-parallel reflection into the direction
of the incoming wave was measured3 using a detector with an opening angle of 1.5◦.
A reflected Bragg-order only contributed if the angle to the surface was within the
opening cone of the detector. By comparing spectra as the one in Fig. 4.4, e. g. the
radius in rescaled units r/a with a being the lattice constant could be determined
with an accuracy of 0.025, showing the quality of the samples and the simulation.

Having tested the program successfully in simulating the experiment it can be
used to study transmittance for situations which can not easily be accessed experi-
mentally, e. g. very long samples or different surface terminations. In addition, the

3In the case of the first order being anti-parallel to the incoming wave this setup is called Littrow
mount.
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Figure 4.4: Left: Angle resolved reflectance spectra showing reflection anti-parallel
to the incoming wave into a cone with an opening angle of 1.5◦. Comparison with
experimental data revealed a radius of 0.375. The spectra is reduced to lines for
which the reflected Bragg-order enters the detector. Right: Absolute value of the in-
plane components of the magnetic/electric field for ω = 0.435 for a crystal consisting
of 20 pores in propagation direction. The interplay of (quasi) Bloch modes with a
standing wave pattern due to the finite size can be seen [77].
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tools can be used to study a large amount of “numerical samples” for the statis-
tical analysis of fluctuations, e. g. in the pore diameter, and the determination of
fabrication tolerances. These results of these calculations are presented in the fol-
lowing. By using some extreme examples, specific points which are important in
interpreting the data are discussed. As compared to the version of the code used
in [77], significant adjustments following the presented implementation schemes in
Chapter 3 had to be implemented to increase the efficiency of the program and to
simulate and analyze disorder in these structures.

4.5 Length Dependence in Crystals with Absorption

In this section, the transmittance or reflectance for a crystal with small material
absorption is divided into a surface and length dependent part. The structure is
the same as introduced before (hexagonal lattice of air pores r

a
= 0.4 in silicon

εSi = 11.9, orientation in ΓM, H-Polarization).
To allow for an efficient computation, S-matrix multiplication is used and only

complete numerical unit cells such as those depicted in Fig. 4.1(b) can be taken into
account. The resulting discrete length changes lead to a non-trivial length depen-
dence of the transmittance. The aim of this section is to compress the information
of a large number of transmittance values into fewer quantities, allowing to separate
the impact of different parameters.

From a simple picture, a finite structure leads to Fabry-Perot resonances due to
the resonances caused by the reflection at the two ends [19]. Since the length varies
discontinuously, not all resonance conditions can be fulfilled and the transmittance
shows a rather complex behavior as shown in Figs. 4.5–4.9, where transmittance is
plotted over length for different frequencies. The black curves show the transmit-
tance without absorption, whereas the red curves show the transmittance using a
small imaginary part 4 in the index of refraction of silicon (Im n = 0.001). For
short crystals, the two curves are close to identical although the transmittance with
absorption is slightly smaller than expected. Narrow features such as the resonance
peaks in Fig. 4.8 are not reproduced with absorption. For longer crystals, the ab-
sorption leads to a reduction of the oscillations and an overall exponential decay of
the transmittance. The frequencies are chosen in the lowest band (Fig. 4.5), at the
upper (Fig. 4.6) and lower band edge (Fig. 4.8), in the stop band (Fig. 4.7) and in
the second band (Fig. 4.9). As is shown later, the effect of absorption is enhanced
with increasing frequency. At the stop band edges the group velocities are very low
and the effect of absorption is also enhanced. In the stop band the attenuation due
to the stop band is typically magnitudes stronger than the effect of absorption.

It is possible to approximate the transmittance in the case with absorption by
T (N) = Ae−B·N which allows to study the behavior of a length independent coef-
ficient A independent of the length dependence given by B. In the beginning, this

4This absorption describes out-of plane losses due to the finite height of the pores caused by
scattering at imperfections such as pore roughness as well as material absorption[88].
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Figure 4.5: Transmittance over length in unit cells for ω = 0.1 (lowest band -
compare Fig. 4.3). The black curve shows the transmittance without absorption,
the red curve corresponds to small imaginary part in the index of refraction for
silicon (Im n = 0.001). The left plots enlarge the results for a short/long crystal.
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Figure 4.6: Left/Middle: Same as Fig. 4.5 with ω = 0.224 (lower band edge -
compare Fig. 4.3) using a logarithmic scale on the left. Right: Plot of the reflectance.

seems to be a very crude approximation but since all crystals show a small absorp-
tion [88], e.g. by pore roughness, all the oscillations are damped out in real systems.
This approach is a compromise which allows to reduce the otherwise too big data set
of length dependent transmittance spectra to a smaller number of parameters which
can then be analyzed. The alternative would be to plot the transmittance T (N) for
each frequency and scanned parameter, e.g. surface, and compare all curves which
is not very promising.

This Ansatz does however not allow to study the Fabry-Perot type length behav-
ior. The transmittance is mainly determined by the absorption, except for cases in
the stop band, but it can give insight into the dependence on the surface termination
as well as into the impact of absorption strength in different regions of the crystal,
e.g. pores or substrate, and different frequency regions. Due to the absorption, the
coupling from the back side is strongly suppressed and the reflectance stabilizes at
a constant value as can been seen in the right figure of Fig. 4.6. Although it is not
discussed here, this approach has been used to estimate the attenuation length for
a crystal containing dispersive material based on two-level systems embedded in a
dielectric material and compared to results calculated with the Wannier function
approach [89]. A description of the Fabry-Perot resonances using discrete length
steps can be found in [90] for 1D PCs.

In the stop band this method can be applied to study the length dependence and
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Figure 4.7: Same as Fig. 4.5 with ω = 0.35 (stop band - compare Fig. 4.3). No
enlargement is necessary in this case.
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Figure 4.8: Same as Fig. 4.5 with ω = 0.405 (stop band edge - compare Fig. 4.3).
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Figure 4.9: Same as Fig. 4.5 with ω = 0.466 (second band).
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4.5 Length Dependence in Crystals with Absorption
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(a) Upper Band Edge (ω = 0.405)
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Figure 4.10: (a) Transmittance at the upper band edge (ω = 0.405). The colored
lines show different fits. blue line: exponential fit T = 0.03 e−0.20 N , green line:
power law fit T = 0.37N−2.01 and red: combination of both T = 0.36N−1.47 e−0.15 N .
(b) Parameter for fitting at different frequencies at the lower band edge with the
combined Ansatz using a prefactor (black circles), power law exponent (red squares),
attenuations factor in exponent (green triangles). For a power law exponent of 1.0,
this Ansatz would turn into a Yukawa potential. The parameters of the structure
correspond to the ones given in Fig. 4.3

determine the attenuation length once the stop band is formed. This approxima-
tion is, however, not valid for short crystals at frequencies close to the band edge.
Fig. 4.10(a) shows the transmittance over the number of unit cells at the upper
band edge and different fits. The blue line shows an exponential fit (T = AeBN),
the green line a fit using powers of Ns (T = ANB and the red line shows a fit
using a combination of both (T = ANCeBN). The last Ansatz would turn into the
well-known Yukawa potential for a power law exponent of C = −1.0 (see caption
for fit parameters). The power law fit is only applied to the first 10 unit cells. It
strongly deviates for larger crystals. None of these fits can be used to describe all
parts of the curve. For most other frequencies the agreement becomes even worse.
A study for a series of frequencies at the lower band edge shows that the fit param-
eters vary strongly with frequency. Fig. 4.10(b) shows the results for the fitting to
the Yukawa-like Ansatz at different frequencies. The two lowest frequencies are too
close to the band to show a clear decrease of transmittance and the power law as
well as the attenuation factor are close to zero. For the other frequencies, it can
be seen that the prefactor (black curve, circles) stays approximately constant. The
power law exponent becomes smaller, whereas the attenuation factor in the expo-
nential becomes larger. In the stop band (Fig. 4.7) the simulation shows a purely
exponential decay as expected. In all cases the curves for long crystals are better
represented by the exponentials. A power law fitting has also been tried and in
general represents the decay for short crystals better, but fails for more than 10
unit cells. The exponent starts at roughly -1 and decreases to -3.5 expressing the
stronger decay for frequencies deeper in the stop band.
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0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
ωa/2πc

0
1
2

3
4

P
re

fa
ct

or
 A

E
xp

on
en

t 
B

0

0.002

0.004
E

xp
on

en
t 

B

(a) Im ε = 0.001 (sub-
strate)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
ωa/2πc

0
1
2

3
4

P
re

fa
ct

or
 A

E
xp

on
en

t 
B

0

0.01

0.02

0.03

0.04

E
xp

on
en

t 
B

(b) Im ε = 0.01 (substrate)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
ωa/2πc

0
1
2

3
4

P
re

fa
ct

or
 A

E
xp

on
en

t 
B

0

0.05

0.1

0.15

E
xp

on
en

t 
B

(c) Im ε = 0.01 (air)

Figure 4.11: Results for the prefactor A and the attenuation factor B in the
exponent describing the length dependence T (N) = A e−BN obtained by fitting for
different frequencies. The length was varied from 1 to 300 in steps of 10 unit cells,
which is good enough to determine the exponential decay but no finer structure
of the length dependence. In the left plot the imaginary part of the substrate is
Im ε = 0.001, in the middle Im ε = 0.01 and on the right Im ε = 0.01 but inside the
air pores instead of the substrate. The upper plots enlarge B for the area in the
bands.

4.6 Attenuation Length

The attenuation length describes the decay of the transmittance with length. In the
stop bands this decay is due to the multiple scattering in a PC. Outside the stop
bands the attenuation length would be non applicable for a finite crystal without
absorption and the length dependence would have to be described using a Fabry-
Perot Ansatz. As discussed before, losses allow for the introduction of an imaginary
part to the permittivity.

In this section, the effect of absorption introduced either in the air pores in or
the dielectric substrate for a range of frequencies is studied. For the absorption two
different imaginary parts (Im ε = 0.001/0.01), are introduced in the permittivity of
either the pores or the substrate in the previously presented structure.

Fig. 4.11 shows the results up to the (very narrow) second stop band5 obtained
by fitting the length dependent transmittance for each frequency using lengths from
1 to 301 numerical unit cells as depicted in Fig. 4.1(b) with a step size of 10. The
prefactor A is only listed for completeness and the attenuation factor B is studied
in the following. For a small absorption, especially in the short wavelength regions,
the oscillations in the transmittance with length are still visible over the complete

5It is not resolved in the plots due to the limited number of frequency points. The peak in the
attenuation factor B in the lower plots with absorption close to a frequency of 0.5 shows the
position. The slight shift caused by the higher absorption moved one frequency point close
enough to the stop band to resolve it.
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4.7 Surface Termination

length and the decay depends on the sampling points in the length N . The first two
data points use sampling points at the bottom of the oscillations, which explains
the large absorption in this area. Therefore, the results with higher absorption
are better suited for analysis since the absorption effect becomes more pronounced.
In Fig. 4.11(b) the absorption has been increased by a factor of 10 compared to
Fig. 4.11(a). In the middle of the stop band the attenuation is unchanged and
only small changes occur at the edges, showing that the structural contribution due
to multiple scattering is dominating. In the bands the impact, of the oscillations
is diminished and especially in the first band the absorption is nearly constant,
due to the linear dispersion and the resulting constant group velocity, except for a
strong increase at the stop band edge. In the second band, the increase is much
stronger. This can be explained with the low group velocity of the flat second band,
compared to the first band. The increased matter-light interaction time increases
the attenuation. Introducing the imaginary part in the air pores leads to another
large increase of a factor of about 3 in the first and about 5 in the second band.
This effect cannot be explained with the air filling factor, which is only about f =

πr2

0.5·
√

3
≈ 58.04%. It could be nicely explained if the second band was concentrated in

air, which unfortunately is not the case in this system. Very often a generalization
of 1D results [7] is used and the first (second) band is described as dielectric (air)
band. However generally this is only true in the 1D case. For 2D systems e.g. square
lattice of air pores in silicon with r

a
= 0.4 in E- and H-polarization [35] or hexagonal

lattice of air pores in silicon with r
a

= 0.475 in H-polarization [91], the first air band
occurs at much higher frequencies than the ones considered in this work 6.

4.7 Surface Termination

Another interesting parameter for finite structures is the termination at the top and
the bottom of the crystal. The unit cell in Fig. 4.1(b) shows the situation in which the
sample cleavage corresponds to the position with the smallest substrate thickness
at the surface. Changing the top and the bottom simultaneously corresponds to
breaking at different points and is simulated by shifting the numerical unit cell as
illustrated in Fig. 4.12. If both terminations should be changed independently, the
matrices SBegin and SEnd have to be adjusted (compare Fig. 3.7). In order to study
the surface termination, only the upper half of the numerical unit cell has to be
considered. This can be seen from Fig. 4.12. Shifting the unit cell about half its
length in the z-direction corresponds to a shift in x about ax

2
. For 1D layers, this shift

results in a phase in the 1D Fourier transform of the permittivity of e−iGxax/2 = −1
in all orders. Due to the periodicity in x, the position of the numerical unit cell in
x is not uniquely defined. If the inversion symmetry about the center is required,
the cylinders have to be either in the middle or on the sides which is still the case
after shifting by ax

2
. Therefore, this shift does not change the transmittance and

6The inverse system (silicon cylinders in air) can however have an air band in this frequency
range.
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4 Two-Dimensional Pore System

Figure 4.12: Left: Changing both terminations by shifting the numerical unit cell
vertically. Right: A vertical shift of half a unit cell corresponds to a horizontal shift
of half a unit cell and leads to the same transmittance as the phase shift introduced
into the Fourier expansion of the permittivity is given by e−iGxax/2 = −1.
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Figure 4.13: Left: Transmittance over length for ω = 0.466 for different surface
terminations. Each data point consists of all terminations marked with the same
color on the right. They are listed in Tab. 4.1.Right: Definitions of surface termina-
tion using correct scaling of the unit cell. The color coding on the left corresponds
to the surface cuts along the lines with same color on the right. For longer crystals
the four curves become parallel but shifted with respect to each other. The same
transmittance (color) occurs for terminations symmetric around the termination at
maximum pore size (black line).

termination in the second half of the numerical unit cell corresponds to the first.
The impact of surface termination is illustrated in Fig. 4.13. Each set of data

points on the left represents different surface terminations corresponding to a sur-
face cut marked by a line with the corresponding color in the right plot. The surface
cut influences the oscillation strength and the mean value around which the trans-
mittance oscillates with length. For long crystals, the curves become parallel, but
shifted with respect to each other, in a logarithmic plot. From this plot one could
conclude that the surface dependence is only based on the interface between air and
the structure, since, for instance the 2nd and 7th cut yield the same result although
in one case the pore becomes smaller and in the other larger with depth. Tab. 4.1
lists the surface cuts and values for the shift of the unit cell in z-direction for which
the transmittances are equal.

For the determination of A and B, crystals with 1 to 2501 numerical unit cells
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4.7 Surface Termination

Cut number z shift of unit cell
0, 7, 14 0.0, 0.866025, 1.73205

1, 6, 8, 13 0.123718, 0.742307, 0.989743, 1.60833
2, 5, 9, 12 0.247436, 0.61859, 1.11346, 1.48461
3, 4, 10, 11 0.371154, 0.494872, 1.23718, 1.3609

Table 4.1: List of surface cuts and the required shift of the unit cell. All values
in the same row lead to the same transmittance behavior. Colors correspond to the
ones used in Fig. 4.13.

were calculated with a step size of 10 unit cells. As imaginary part of the silicon
Im ε = 0.001 was chosen. Fig. 4.14 shows the result for several frequencies. The
upper plots in Figs. 4.14(a)–4.14(e) show the attenuation factor B, which does not
change if the surface termination is changed, since it is related to absorption.

In the middle graphs of Figs. 4.14(a)–4.14(e), the prefactor A is plotted using black
dots. As a comparison, the transmittance through one unit cell is plotted in red
on the same scale, except for the frequency in the stop band. The two curves show
a similar behavior for most cases. In the stop band (Fig. 4.14(b)), the prefactor is
significantly higher reflecting the non-exponential drop of the transmittance in the
first numerical unit cells as discussed in Sec. 4.5. Therefore, the prefactor has to push
up the transmittance for short crystals to compensate the exponential decay which
is stronger for longer crystals. The similarities are not always so strong, a weaker
similarity can i. e. be found in Fig. 4.14(d) and Fig. 4.14(e). However, the trends
are still visible. The lowest plot in Figs. 4.14(a)–4.14(e) shows the transmittance
coefficient Teff across a boundary of two homogeneous materials using the Fresnel
formula for perpendicular incidence, with nair and neff in the crystal, which is based
on filling factor of the first layer in the staircase approximation. This clearly is
not a feasible way to discuss the surface termination, even in the long wavelength
limit (In Fig. 4.14(a) λ = 5.55a) although the previous plot Fig. 4.13 might suggest
such a simple dependence. The observation that the transmittance is equivalent
for all crystals with the same surface termination in the first layer is not caused
by the termination but by the reciprocity of the crystal. The symmetry of the
transmittance around a vertical shift of 0.0 (black line) corresponds to propagation
through the crystal from the two different sides, since the symmetric cases, e. g.
up/down shift of the red lines with respect to the black, correspond to an inversion
of the crystal. If the numerical unit cell is shifted up by ∆z with a wave impinging
from the top, it corresponds to a (down) shift of −∆z and a wave impinging from
the bottom or back since the two surfaces are shifted simultaneously by the choice
of the unit cell. This behavior is a consequency of the reciprocity of the device. This
symmetry could be broken by adapting SBegin and/or SEnd so that only one of the
crystal terminations is changed.
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(f) ω = 0.48

Figure 4.14: (a-e)Results of the exponential fit for the length dependent trans-
mittance using 1–2501 numerical unit cells in steps of 10 unit cells. The upper plot
shows the attenuation factor B, the middle plot shows the prefactor A (black) as
well as the transmittance through 1 numerical unit cell for a comparison. The lowest
plot shows transmittance across a boundary of two homogeneous materials using neff

in the crystal based on the filling factor of first layer used in slicing the crystal. The
vertical lines indicate the region in which the surface is not broken by air pores. A
vertical shift of 0.0 corresponds to a surface with a maximum opening of the pore
(black line in Fig. 4.13). (f) Transmittance for ω = 0.48 over length for different
termination, showing the parallel behavior of the transmittance for long crystals.
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Figure 4.15: Spectra for a long crystal (4096 numerical unit cells), showing two
interesting spectral features around ω = 0.184 and ω = 0.208 due to a low frequency
resolution.

4.8 Sampling Problem For Long Crystals

Previously (e. g. Fig. 4.8), it was mentioned that the length dependent transmittance
can show some interesting features which one would not expect initially due to the
discrete step size.

Similarly, on first sight surprising, transmittance features can be found in fre-
quency dependent spectra for long crystals. Fig. 4.15 shows the spectra for an ex-
tremely long crystal7 (N=4096) where this problem can be studied very well although
it already appears in shorter crystals as well. There seem to be two interesting spec-
tral features around ω = 0.184 and ω = 0.208. In Fig. 4.16 close-ups of these regions
are plotted together with an improved frequency resolution in green from which it
follows that these are sampling artifacts, which disappear if the resolution is in-
creased. Although the structure is very long for illustration purposes, similar effect
can occur at higher frequencies for shorter crystals. Typical crystals in experiments
are only a few tens of unit cells long and these features cannot be found. In addition
occurring oscillations usually are damped by to imperfections or are not resolved in
the measurement process. Similar signatures can be found, if the crystal is fabricated
on top of thick glass substrate. In this case, very narrow Fabry-Perot resonances
occur. In Fig. 6.6 calculations of an example are shown for a glass plate (170µm)
with an adhesion layer (10µm) as used in the experiment in Chapter 6. With the
measurement setup used during regular characterization, these oscillation are not re-
solved, but by changing the experimental setup they were also found experimentally.

Fig. 4.16(f) shows a close up of the area at the stop band. Here, even the increased
frequency resolution is not capable of resolving the resonances due to the very flat

7This number has been chosen since any multiple of two can be calculated very fast by exponen-
tiating S-matrices.
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(b) close-up of (a)
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(c) close-up of (a)
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(f) band edge

Figure 4.16: Transmittance spectra and close-ups for selected regions for a very
long crystal (4096 numerical unit cells). Increasing the frequency resolution exposes
the transmittance features as sampling problems and not as a physical effect. The
refinement was only done for certain regions and the flat green lines connect these
regions but do not show actual data.

bands. From this plot it is also visible that increasing the length of a crystal is
a possible way to determine the stop band edge more precisely. In some of the
following spectra we will see that for short crystals the first significant increase of
the transmittance can be away from the stop band edge (compare e. g. Fig. 4.19(b)
and Fig. 4.19(c)).

In general one analyzes these Fabry-Perot resonances by plotting the transmit-
tance over the frequency and obtains equidistant resonances. This is only true for
structures without dispersion, since it depends on a constant optical path length.
The effects of a PC are based on changing the dispersion relation, so that this can’t
be expected and the behavior for finite structures will exhibit many features, which
can not be described by simple analytical methods. In comparing theory with exper-
iment one should always be aware that this sampling problem exist and might change
the spectra significantly if not enough care is taken during the interpretation.
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4.9 Radius Fluctuations

4.9 Radius Fluctuations

In previous chapters, the influence of structural parameters on the transmittance
and reflectance properties of 2D Photonic Crystal were studied. The main idea
was to reduce the large information available in spectra to easier accessible and
analyzable quantities to find general properties of PCs.

In all the cases the parameters varied in a determined way and changes of the
optical properties were analyzed. In this chapter, the influence of unwanted but
unavoidable parameter fluctuations are studied for pore size fluctuations. The idea
is to analyze the entire spectra for several lengths by reducing the large amount of
data from a lot of disorder spectra to a few descriptive parameters.

The radius has been chosen as fluctuating parameter, because, in most PC systems
the periodicity is defined much better than the actual structure of the unit cell, e.g
the radius in a pore array. In the macroporous silicon system, for example the pore
locations are defined by lithography, which is very precise. A constant pore thickness
and shape is harder to achieve during electrochemical etching, since this depends on
the distance to neighboring pores, the uniformity of the electric voltage, etc. For a
rod system it is shown by Asatryan et al. that disorder in the refractive index or
radius have the most influence on the averaged logarithmic transmittance [92].

In holographic structures a similar situation occurs. The periodicity is given by
the wavelength of the incident exposure beams and the angles in between them.
During the development, several processes such as shrinking, diffusion, etc. lead
to a distortion of the pattern and might change the global lattice constant of the
sample but it does not fluctuate locally. The structural details of individual unit
cells are one order smaller and, therefore, effected stronger by distortions [93].

Fig. 4.17(a) shows the radius disorder in the chosen model system (square lattice in
ΓX orientation as depicted in Fig. 4.1(d)). In this case, only the radius is allowed to
fluctuate with a Gaussian distribution around a mean value r0 with a given standard
deviation of σr. Displacement disorder (Fig. 4.17(b)) requires two parameters. The
coordinates of the position vector (x, y)T can fluctuate around a mean value x0,
respective y0. Alternatively, the displacement can exhibit Gaussian fluctuations
around 0.0 (center) together with the direction of it given by an uniformly distributed
angle in the range [0, π]8.

The reason for a square model system becomes clear from Fig. 4.17(c). As dis-
cussed in Sec. 3.7 an efficient method to calculate many realizations depends on the
calculation of a database containing S-matrices for different radii and building up
crystals by multiplying them picking the radius from a distribution. In the hexag-
onal structure the cylinders are not always confined to one numerical unit cell for
which the S-matrix can be calculated. For larger radii the situation depicted in
Fig. 4.17(c) occurs. The cylinder rows overlap and the red part in the upper unit
cell differs from the yellow in the lower, leading to a radius mismatch in adjoining

8This covers the complete 2D unit cell, since the displacement can take positive and negative
values

87



4 Two-Dimensional Pore System

(a) (b) (c)

Figure 4.17: Definition of radius fluctuation, using one parameter, (a) and dis-
placement disorder requiring two parameters (b). In (c) two adjoining unit cells for
a hexagonal system in ΓM orientation are shown. The cylinders spread over two
numerical unit cells and the corresponding S-matrices can not be multiplied due
to the radius mismatch indicated by the differences in the red and yellow areas in
adjoining layers.

unit cells. This makes the S-matrix multiplication impossible. Hence, the efficient
implementation using the S-matrix methods with the database approach cannot be
used. This poses no problem for perfect structures since the radius is equal in all
unit cells.

In the following discussion a Gaussian distribution is used for the radius. The
standard deviation of it is given by σ = ro p

W
with the radius of the perfect structure

r0, the percentage deviation p and the scaling factor W allowing to set the minimum
and maximum values independent of the width of the distributions. The maximum
and minimum radii are given by rmax,min = r0 ± p r0. The minimal and maximal
radii correspond to a distance of Wσ from the the center. Typically W is chosen as
3.

In Fig. 4.18, the band structure for the model system of air pores in silicon is
shown on the left for a structure with a radius of r = 0.4. The propagation is along
ΓX-direction and H-polarization is used. On the right it is repeated and the band
structures for a radius of +5% (rmax = 0.42) and −5% (rmin = 0.38) are included as
well. Below the first stop band only small differences in the three band structures are
visible. For higher frequencies the differences become larger and starting at roughly
ω = 0.5, different bands start to overlap (5th band for r = 0.38 with the 3rd and 4th

for r = 0.42). One would therefore expect a higher sensitivity to fluctuations in the
upper region.
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Figure 4.18: Left: Band Structure for a square lattice of air pores with radius
r = 0.4 in silicon in ΓX direction for H-polarization. Right: Same but including
band structure for r = 0.38(dashed,red) and r = 0.42(dashed, green), corresponding
to values of r = r0±5%. At ω = 0.5 different band start to overlap (5th for r = 0.38
with the 3rd and 4th for r = 0.42).

4.9.1 Statistical Approaches

Since the idea is to analyze the impact of fluctuations in the pore radius on trans-
mittance, one has to look at entire distributions of transmittance data calculated
with fluctuating parameters.

In previous works, this was mostly done for frequencies close to the first stop band
and only the (logarithm of the) transmittance has been studied [92, 94–96]. The
main goal of these papers was to determine the localization length l given as

l = − lim
N→∞

2N

< lnT >
. (4.1)

By an analogy to the insulating regime in electron transport theory, a log-normal
distribution is expected in this region. In the stop band no propagation is possible,
so the transmittance is expected to decay exponentially. Therefore, transmittance
through each unit cell can be described by an exponential. Transmittance through
several unit cells can be described by multiplying the exponential factors, leading to
an addition of the factor in the exponentials9 . As a consequence the transmittance
shows a log-normal distribution. This log-normal distribution is always expected
as long as there is only one channel, even if this channel is propagating. In the
stop band all channels are exponentially damped, so one can conclude that all other
channels are exponentially weaker than the least damped one and one effectively
has the situation of only one propagating channel (e−αz = e−δαz e−αminz). However,
as soon as several channels interact, more complicated descriptions are required.

9This picture is not entirely correct, since the occurrence of a stop band in a PC is an effect
of the periodic arrangement of the unit cell. A single unit cell can, therefore, not lead to an
exponential decay. In a longer crystal, each unit cell will, however, decrease the transmittance
exponentially
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In the region with many propagating channels (metallic regime), electronic sys-
tems exhibit a Gaussian distribution, due to the contribution of all channels in a
continuum approximation. Recently, deviations from the log-normal were found in
the crossover regime between the metallic and deeply insulating limit, leading to
“one-sided” log normal distributions with a cut-off [97, 98]. These distributions oc-
cur, if one channel is treated independently, as in the insulating regime, and all the
others are treated as a continuum.

For photonic systems in the band, the description is more complicated and the in-
terplay of the ordered Bragg-scattering at the periodic structures and the scattering
from disorder is difficult to describe. In a PC, disorder disturbs an otherwise periodic
system, which is not the case for an electronic system, where usually impurities are
regarded as perturbing the free propagation in a otherwise homogeneous medium.
Markos et al. [99] mapped transport through a system of dielectric cylinders onto
an electronic system, however, the cylinders are not ordered periodically and their
number stays rather small (filling factor of 0.1–0.2).

For photonic systems, most publications so far are focused on the stability of the
band gap [94, 100, 101]. Other papers limit their calculation to a few cylinders,
e. g. using a supercell [102] or a Multiple Multipole expansion [103]. A lot of work
has been done in opals, where a lot of stacking faults and size fluctuations occur
[104–106]. All these papers have in common that not too many realizations (ranging
from a few to a few hundred) were used and no statistical analysis of the data has
been carried out. It is, therefore, not certain, whether the discussed quantities,
usually the averaged logarithm of the transmittance, describe the transmittance
properly. Also the correspondence to electronic systems, except in the stop band, is
not as straightforward. Beside the simulation of propagation in bulk PCs, disorder
in functional elements, e. g. waveguides, and losses due to fabrication tolerances is
studied often using only a few realizations in FDTD simulations.

In this work, transmittance distributions and their correct description in several
regions of the spectra will be studied. This makes it possible to determine possible
parameter ranges, for which a PC can be used in applications. The calculation of
a database of S-matrices and the assembling of a crystal by the efficient S-matrix
multiplication allows for the calculations of many realizations. The length can in
principle be chosen arbitrarily without adding a lot of computational time by mul-
tiplying a longer sequence of S-matrices.

From the above discussion, one problematic aspect becomes clear already. Phys-
ically, a description using log-normal distributions might be favorable but on the
other hand, in the consideration of the robustness of device performance narrow dis-
tributions in the transmittance (which are limited to values between 0.0 and 1.0) on
a normal scale are required. One, therefore, always has to check both distributions
to be able to comment on the properties of the PC and the possibilities to use it in
a device.
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4.9.2 Analysis of Distributions

One of the problems is how to study the distributions for several parameters in
an efficient way and how to characterize them. This means determining the type
(normal distribution, log-normal distribution or distributions following e.g. Levy-
statistics, for which large changes in the quantity are more likely than in the other
distributions and the tails become more important).

The most straightforward way is to calculate the distributions and then compare
them with sample distributions having the same properties, e. g. mean and standard
deviation. For this purpose two main tests are used: Kolmogorov-Smirnov and
Anderson-Darling10 [67, 107]. Strictly speaking these tests do not show whether two
distributions are the same but they rather tell, whether they are different. Both
these test rely on comparing the cumulated probability distribution using different
methods, with the Anderson-Darling test giving more power to the tails. The well-
known Chi-Square test should not be used for un-grouped data sets such as the
continuous transmittance.

Since the mean and standard deviation of the distribution are determined from
the data itself, the Kolmogorov-Smirnov test cannot be used and Anderson-Darling
becomes the method of choice [67, 107]. For the implementation, Chapter 4.8 of
[107](Empirical Distribution Function tests for the normal distribution with un-
known parameter) in the case in which mean and standard deviation are determined
from the sample has been employed. For comparison, the Kolmogorov-Smirnov test
has been implemented as well following Chapter 14.3 in [67] although it is not rec-
ommended. The principal aim was to use the results of these tests to create a map
describing what reference distribution is best suited to describe the transmittance
fluctuations in the 2D parameter space given by frequency and length. Together
with the mean and standard deviation this data can be used to determine ranges
in which the crystal can be used in applications. Adaption had to be made since
the transmittance and, therefore, the distributions are limited to the range from
0.0 to 1.0. Consequently, the cumulated distribution was adapted to reflect these
limitations.

Unfortunately, this approach failed due to the uncertainty in the results of the sta-
tistical test. Testing the tools with distributions generated using routines in [67] by
creating “meta-distributions” failed. In this context, meta-distributions mean that a
number of M distributions each containing N random numbers has been produced.
For each of these M distributions, the Kolmogorov-Smirnov and Anderson-Darling
test has been performed, giving a significance of pM . These M numbers have then
been analyzed to yield an average result and a standard deviation for the two meth-
ods comparing numbers created with the same random number generator. Even for
N = 107 points in the distribution, these tests return all possible results for the
significance p if more than M = 100 presumably equal distributions are compared
with a reference. Therefore, an automated analysis in the frequency-length plane is

10Other statistical tests, which only allow to compare selected properties, such as the Student’s
t-test (mean) or F-test (variance), are not considered.
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not possible. For completeness the Chi-Squared test has been tested as well with
equally bad results.

4.9.3 Manual Selection of Distributions

Since an automatic distribution analysis is impossible, a manual procedure has to be
used. For practicability, the number of analyzed distributions has to be limited and
some representative points have to be chosen. For this the perfect transmittance was
calculated for a number of lengths and specific points selected from corresponding
spectra. Fig. 4.19 shows these points for 3 different lengths (N = 1, 5, 10) which
will be discussed later. Other values (N = 3, 20) show similar results and are are
not included discussed here. The frequencies were selected to represent minima and
maxima of the transmittance as well as points on the edge and the middle of the
stop band. In addition, 300 equidistant points in the range of 0.1 and 0.7 are used
to give an impression of the behavior in all parts of the spectra.

4.9.4 Distributions

In the following, the transmittance distributions are discussed using a crystal with
a length of N = 5 and radius fluctuations of ±5% as an example. In later sections
the result for different lengths and fluctuations strengths is presented. A length of 5
unit cells corresponds to the length scale which is mostly used in applications, e. g.
as separation between elements. This length is chosen because it corresponds to the
length after which the transmittance is assumed to be inhibited in a stop band. For
each setup (frequency, length, disorder strength) 1000 realizations are computed.
Testing some of the distributions with larger numbers showed that changes occur
until about 500 realizations and that the key quantities, including tails, vary little for
a larger number of realizations. The calculation of realizations using the database
is a lot faster than setting up the database, so that 1000 realization can easily be
calculated to be sure that the distributions converged although a smaller number
would have been sufficient.

Since an automated analysis is not possible and not all distributions can be an-
alyzed in detail, other parameters allowing to access the distributions qualitatively
are introduced and only sample transmittance histograms will be shown. The his-
tograms are produced by binning the data11 in 100 bins ranging from −3σ to +3σ.
Data points outside of this range are counted in the bins corresponding the lowest-
/highes values. In all histograms, the actual data is shown in red, whereas the black
curve corresponds to the theoretical distribution with the average and standard
deviation of the actual data to allow for a comparison.

11All other parameters and the statistical test are calculated using un-binned data.

92



4.9 Radius Fluctuations

0.1 0.2 0.3 0.4 0.5 0.6 0.7
ωa/2πc

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

it
ta

nc
e

(a) N=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7
ωa/2πc

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

it
ta

nc
e

(b) N=5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
ωa/2πc

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

it
ta

nc
e

(c) N=10

0.28 0.3 0.32 0.34 0.36 0.38
ωa/2πc

0.2

0.4

0.6

0.8

1

T
ra

ns
m

it
ta

nc
e

(d) Uniform

Figure 4.19: (a)-(c)Selected frequencies at special points (minima, maxima or mid-
points of Fabry-Perot resonances or at the edge/middle of the stop bands) shown
as dots. N describes the number of the unit cells used. The black line belongs to
the transmittance through a perfect structure and the red dots indicate the band
structure. The increase of the transmittance does not always start at the upper
band edge (ω ≈ 0.26) which is due to the finite length. With increasing length,
the transmittance starts at the band edge. (d) Parts of the uniformly distributed
frequencies shown as red dots for the second band. The transmittance curve belongs
to N = 10.
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Figure 4.20: Distribution of the transmittance and the logarithm of it for a 5 unit
cell long crystal at ω = 0.12163 (a)+(b) and ω = 0.30949 (c)+(d). The red curve
shows actual data, the black curve the theoretical distribution with the average and
standard deviation calculated from the actual data.

Normal and Log-normal Distributions

Fig. 4.20 and Fig. 4.21 show normal and log-normal distributions for four frequen-
cies. The lowest frequency (Fig. 4.20 a,b ) is below the first stop band and both
distributions seem to be equally good. However, in the second band (Fig. 4.20 c,d)
the normal distribution is not fitting as was motivated in the beginning of this sec-
tion. In the narrow 3rd stop band (Fig. 4.21 a,b), which closes in the band structure
with several radii (Fig. 4.9) the same situation occurs. For even higher frequencies,
the normal distribution consists of a narrow peak close to a zero transmittance with
a very wide tail spanning the entire region 0.0 – 1.0 (Fig. 4.21 c,d).

This will be shown again in the plots that analyze the distributions. These pic-
tures already show the best correspondence for the normal case in each part of the
band structure. It is obvious that one cannot use the terms average and standard
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Figure 4.21: Same as Fig. 4.20 at ω = 0.51004 (a)+(b) and ω = 0.65825 (c)+(d).

deviation to describe the normal distribution of transmittance in a PC with fluc-
tuating parameters. Using the average and standard deviation for the log-normal
distribution seems so far to be valid in these examples.

Typical Log-normal Distributions

For a more detailed study, representations of log-normal distributions are shown in
Fig. 4.22. The frequency ranges for which these distributions are typical are listed
in Tab. 4.2.

From the distributions it is immediately clear that also a log-normal distribution
fails to describe the actual data for many frequency ranges.

It can, however, be used for most parts of the first band, excluding the maxima of
the Fabry-Perot resonances. At the maxima the distribution is peaked at ln(T ) = 0
corresponding to T = 1.0 with a long tail as in Fig. 4.22(a). Comparing the black
distribution with the average and standard deviation determined from the data and
the actual data, a correspondence can only be found for stop bands 1–3, although the
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(f) ω = 0.65825

Figure 4.22: Representations of log-normal distribution at different frequencies
above the first stop band. Tab. 4.2 lists the frequency ranges for which these types
of distributions are typical.
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Figure Frequency ω Description of typical situation
Min/Mid/Max := Minimun/Middle/Maximum of Resonances

Fig. 4.20(b) 0.12163 Min & Mid of 1st band incl. Mid of band edge,
1st stop band

Fig. 4.20(d) 0.30949 Min 2nd band
Fig. 4.21(b) 0.51004 3rd stop band
Fig. 4.21(d) 0.65825 All frequencies in the 5th band
Fig. 4.22(a) 0.32247 Mid & Max 2nd band,

Max 1st band with a narrower distribution
Fig. 4.22(b) 0.41 2nd stop band
Fig. 4.22(c) 0.46348 All frequencies in the 4th band,
Fig. 4.22(d) 0.53347 All frequencies 3th band with

a narrower width but same shape
Fig. 4.22(e) 0.565l5 4th stop band
Fig. 4.22(f) 0.65825 All frequencies in the 5th band

(same as row 4)

Table 4.2: Description of the log-normal distributions shown in different figures
with the typical frequencies for which distribution with the same shape and width
appear. This table is not valid for the normal distributions in Fig. 4.20 and Fig. 4.21.
See text for more detail.

distributions are not perfectly symmetric and higher transmittance is more likely
than described by the black distributions with the opposite being true for lower
transmittance. For the 3rd stop band (Fig. 4.21(b)) this is surprising, since the band
structures for the different radii occurring in the distribution overlap.

The 3rd differs from 1st and 2nd stop band in the average transmittance. Whereas
the average values for stop bands 1–2 correspond to the values of the perfect struc-
ture, in the 3rd stop band this value is magnitudes larger and it is shown later that
the stop band disappears on a non-logarithmic scale. In contrast, the 4th stop band
(Fig. 4.22(e)), which is much wider, has an average around the value of the per-
fect structure but the distribution exhibits wide tails on both sides. The different
behavior of the 3rd and 4th stop band can be explained by their different width.

The 3rd stop band is very narrow and can be closed already by small deviations,
leading to an increased transmittance compared to the perfect structure. The wide
log-normal is then caused by those parts in the crystal, where the deviation is very
small and the stop band is still present. In the 4th, much wider stop band, most
configuration will have exponential decaying modes, leading to a narrow peak at
low transmittance. Only the rare configuration with significant radii fluctuation
throughout the crystal will, however, show a strong deviation of this value, giving
rise to tails. Comparing Fig. 4.21(b) and Fig. 4.22(e) shows that the plotted range
has the same width but the peak width is different and it is centered at different
values of ln(T ) in accordance with the above interpretation.
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Taking into consideration the rest of the plots, frequencies for which the log-
normal distribution is not suited can be identified. This includes the maxima of
the Fabry-Perot resonances in any band as well as mid-points of these starting from
the 2nd and any distribution for any frequency in and above the 3rd band. Looking
more carefully at the total width of the distribution shows that they become wider
with higher bands. In the 2nd , the logarithm for the maximum and middle values
ranges from approximately -3.0 – 0.0. At the edges of the 2nd stop band as well
as in the entire 3rd band they span a range from -6.0 – 0.0. For higher bands
the minimal transmittance value decreases from -6.0 to -12.0 in the 4th band and
higher up in frequency all the distributions look alike as the one in Fig. 4.22(f).
Some of these distributions show a slightly better comparison to the log-normal,
but their width stays constant. Since the range -3.0 – 0.0 in the logarithm already
corresponds to 0.05 – 1.0 for the normal transmittance, these structures cannot
be turned into devices at these frequencies since the distribution spans the whole
range of available transmittance values. All analyzed distributions are shown in the
appendix (Chapter A) to ease the understanding of the presented summary of their
behavior.

Authors of previous works were mostly looking only at the averaged logarithm of
the transmittance and in very few cases the standard deviation was included as well.
Since in addition, a small number of realizations (a few up to a few hundreds) were
used which will not allow for the formation of significant tails, these results need
to be interpreted taking into account that the description of the distribution only
by the 1st moment (average) is inaccurate. Even adding the standard deviation,
or equivalently the 2nd moment, is not improving the results if the distribution can
not be described (reproduced) using these parameters. Therefore, in the following,
other figures of merit will be used to discuss the distributions.

4.9.5 Description of Distributions

In order to access the characteristics of the distributions several quantities, are
introduced and studied in this section. The aim is to formulate conclusions about
the properties without inspecting each distribution in detail.

As a model system a crystal with a length of 5 unit cells and 5% radius fluctuations
is used in the beginning and 1000 realizations are studied for selected frequencies
at special points in the transmittance (minima, maxima,...) as shown in Fig. 4.19.
In addition, 300 equidistant frequency points in the range ω = 0.1, . . . , 0.7 are used
and the impact of length variation and percentage variation is discussed at the end.

The following plots always look similar to the one presented in Fig. 4.23. At the
top the band structure and the transmittance through the perfect structure is shown
for comparison. In the main part of the plot, the quantity of interest is plotted. They
are discussed using a normal distribution, which is important for devices, and the
log-normal, which is better suited to describe the distributions and corresponds to
the physical more meaningful quantity.
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(a) Normal (b) Log-normal

Figure 4.23: Top: Band structure (red dots) and transmittance for a perfect
structure with a length of 5 unit cells used as a marker in all plots in this section.
Bottom: Transmittance through a perfect structure (solid black curve), average
of transmittance of the individual distributions (blue dots), all 1000 transmittance
values per frequency (cyan dots) as an overview over the occurring transmittance
values.

Fig. 4.23 shows all occurring transmittance values on a log and on a linear scale
and several things are noticeable. The average is plotted as well but is discussed
later.

The first observation is that the width of the distribution is in general increasing
with increasing frequencies, since the system becomes more and more sensitive to
deviations as the wavelength decreases.

In the log-plot of the first two stop bands, the short wavelength side is more
sensitive. The least sensitive frequency can be found in the middle of the stop band,
not at position of the smallest transmittance. On the right side of each stop band,
significant broadening can be seen as compared to the left. Asastryan et al. [92]
reported the opposite in systems of rods in air in which they studied fluctuations
in the refractive index. They found a higher sensitivity at the low frequency band
edge. However, their interpretation can not be used here and does not contradict
the findings. They stated that the field is concentrated in the cylinders at the lower
band edge and in the low index (air) area at the upper band edge and attributed
the stronger effect to the concentration of the field in the disordered cylinders at
the more sensitive side. This statement is, however, not true in the case discussed
here, because all considered bands are dielectric bands. An explanation for the
higher sensitivity to disorder at higher frequencies could be the higher resolution
associated with a shorter wavelength. Small deviations can be resolved better at
the upper band edge and cause stronger deviations.

Outside the stop band, the distributions follow the perfect structure closely in
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Figure 4.24: Bottom: Transmittance through a perfect structure (solid black
curve), average of transmittance of the individual distributions (blue dots).

the 1st band as well as the 1st and 2nd stop band. The features of the 2nd band
can still be estimated from the distributions but any structure in the transmittance
for frequencies higher than the 2nd stop band is completely washed out, except for
the 4th stop band, which can be identified at the center frequency. Especially the
3rd stop band and the isolated band above do not exhibit distinct features in the
transmittance distributions. Although the distributions at the maxima of the Fabry-
Perot resonances can not be described by the normal or log-normal distribution they
are at least as narrow as the well described ones in their vicinity. Their deviation
from a well-behaved distribution can be explained by the very high transmittance
of approximately 1.0, which does not allow for higher transmittance values to occur
and, consequently, leads to an asymmetric distribution.

Omitting the realizations, one can look at the average of the two distributions in
more detail (Fig. 4.24). It qualitatively follows most of the main features as can be
seen from the log-plot. In general, the minima are reproduced quite well, although
the transmittance is slightly higher. The resonances are strongly reduced. From the
high frequency resolution it is also clear, that smaller features are not reproduced.

In previous results, it was concluded that the PC is surprisingly stable with dis-
order based on the averaged logarithm of the transmittance. A detailed analysis
of the Fabry-Perot peaks has never been done. Even for Fabry-Perot resonances,
the conclusion based on the average transmittance would be, that the maxima are
only slightly reduced. Comparing with the actual transmittance values in Fig. 4.23
leads to a different conclusion. The structural features of the transmittance spectra,
including the 3rd stop band are washed out completely due to the wide distributions.
Despite the fact that the average stays surprisingly stable, the PC generates a very
wide distribution of transmittance values. Each individual representation of the PC
is therefore very sensitive to disorder.
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Figure 4.25: Median of the distribution divided by the average. For a symmetric
distribution the two values are equal. In non-symmetric cases the median gives more
weight to the area in the tails (number of realizations), whereas the mean gives more
weight to the length of the tails (distance).

To characterize the symmetry of a distribution the mean and the median can be
compared. For a symmetric distribution the two values are equal. In other cases the
median gives more weight to the area in the tails (number of realizations), whereas
the mean gives more weight to the length of the tails (distance). A median higher
than the mean is caused by having only a few points points in the lower tail which
are spread out far. Looking at Fig. 4.25 one can immediately see that for the normal
distribution these values differ substantially with the median usually being smaller
than the mean value. For the log-normal distribution all maxima can be identified
by dips in the curve. This means that many points are below the average but still
close to it, in accordance with the above statement that the distribution is not log-
normal but narrow. It is also visible in the log-plot that at the band edges the mean
is smaller than the median, showing that many points are above the average but
some points are far below.

The 3rd stop band, which vanishes completely, shows this effect very strongly and
in the 4th the ratio of mean devided by average reaches 1.0 only in the middle. For
values in the 3rd and 4th band the two values differ for all frequencies.

From the standard deviation and the standard deviation divided by the average
plotted in Fig. 4.26 in green and magenta, respectively, one can estimate the width
of the distribution12. If the standard deviation becomes larger than the average
the description with the given distribution fails. In these cases the one-sigma-range
around the mean would already contain negative (positive) values for the (logarithm)

12The term “estimate” is used on purpose here, since the standard deviation is only defined for
(log-)normal distributions. In this case this quantity can, consequently only be used as an
indicator for comparison.
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Figure 4.26: Standard deviation (green) and standard deviation divided by the
average (magenta).

of the transmittance, which cannot occur. For the normal distribution this is the
case at the upper band edge of the 1st stop band and for higher frequencies. For the
log-normal distributions this happens already at the maxima in the first band, but
this is caused by the very high transmittance which has a very low logarithmic value
close to 0.013. Together with the asymmetric distribution, the peak occurs although
the standard deviation is very small. It is a consequence of the description of a non
log-normal distribution by an average of the logarithm and a standard deviation.
For the log-normal the ratio is smaller than 1.0 in most areas, however a value of
0.5 already states that ±σ covers a very large transmittance range.

The standard deviation and the normalized standard deviation show the same
peaks as the transmittance and they are especially strong at the edges of the stop
bands. Again the high-frequency side has a higher standard deviation due to the
wider distribution.

Using the 4 quantities (realizations, average, median, and standard deviation)
above together with the distribution histograms presented before, a clearer picture
can be developed for disorder in PCs. None of these parameters by itself can describe
the distributions, since they are not normal or log-normal in most of the cases, but
together they can be used as an indicator for the distribution even if the exact type
is unknown. Further quantities that could be studied are the difference between the
minimum and the maximum of the distributions giving the total width. This width
can also be identified from the plots of all the realizations (Fig. 4.23). An additional
remark on a possible improvement regarding the distribution will be made in the
outlook section, since studies for other distributions than normal and log-normal are

13Dividing by it always leads to high values for the normalized transmittance. Compare also the
discussion of these points in the previous paragraphs.
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not included here.

4.9.6 Impact of Absorption

Now that 4 quantities for describing the distributions without examining all his-
tograms are identified, parameters and their impact on the transmittance distri-
butions can be studied. In the first case, absorption is added to the substrate by
introducing an imaginary part into the permittivity of silicon ε = 11.9 + i0.01.

From Fig. 4.27 one can see that the transmittance reduction due to absorption is
very small. This is owed to the short crystal length. For longer crystals, absorp-
tion might become more important and the transmittance distributions might be
dominated by the exponential decay14.

The small reduction in the overall transmittance “improves” the transmittance
distribution at the maxima in the log-normal description, since the modulus of
logarithmic average becomes larger and values of ln(T ) ≈ 0.0 are avoided. This is
visible in the plots of the median divided by the average (Fig. 4.27(d)). Especially in
the lowest band this is also visible in the standard deviation divided by the average
(Fig. 4.27(c)).

It can be concluded that small material absorption improves the quality of the
distribution in terms of getting them closer to a log-normal distribution by lowering
the impact of the Fabry-Perot resonances.

Length Dependence

For the use of PCs the length dependence of the transmittance is an important
quantity. In Fig. 4.28 several of the indicators are plotted for 4 different lengths
(3,5,10 and 20 unit cells). There a no major changes in the behavior but some aspects
need to be looked at in more detail. For longer crystals the Fabry-Perot resonances
become closer and their maximum values drop with the length for frequencies higher
than the 2nd band. Also the transmittance in the stop bands drops and the band
edge becomes sharper. The average still follows the values of the perfect structure
for the first band. In the second band for longer crystals the average values at
the minima are increased more compared to the perfect structure than for shorter
crystals so that the resonances show smaller oscillations. At the stop band edge the
Fabry-Perot peaks disappear and the curve is smeared out, starting to decrease into
the stop band earlier than in the perfect case. For higher bands (3rd and up) the
average approximately follows the minima of the resonances and no other structural
features of the transmittance are reproduced. The realizations are scattered as in
the case discussed before.

The standard deviation increases with length, especially at the stop band edges.
In addition, more and more peaks are visible. The middle of the stop bands is only
weakly affected, but the region of small standard deviation becomes narrower. In

14This situation has not been studied since it would be uninteresting for experiments or applications
because of the high losses.
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Figure 4.27: Impact of absorption in the substrate (ε = 11.9 + i0.01) on the log-
normal distribution. The red curve is without absorption, the green has absorption
included. For the absorption only distributions at the selected frequency points
Fig. 4.19 are used.
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Figure 4.28: Length dependence for several lengths (black=3 unit cells, red=5
(as before), green=10, blue=20). The corresponding transmittance spectra for the
perfect crystals can be found in Fig. 4.19.
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other words, although the stop band edges becomes sharper in the perfect structure,
the opposite is the case for the distribution of the disordered structure. This is
especially visible in the plot of the normalized standard deviation (σ/average in
Fig. 4.28(e)). The appearance of the slightly disturbed Fabry-Perot peaks in the
first band leads to many peaks in the normalized standard deviation and median.
Although the height of the peaks of these indicators does not increase, they become
closer (Distance between two peaks is expected to scale with 1

N
, N being the length),

leading to large fluctuation of the indicators outside the stop bands.

As a summary, one can conclude that building longer structures makes the trans-
mittance in the bands more complicated due to closely spaced resonances. The stop
band edges and the distributions in these areas become much wider, whereas the
transmittance in the middle of the stop band drops significantly with the distribu-
tions staying centered and having a small width. In the parameter range studied,
no significant drop in the transmittance with length, which could be attributed
to localization, can be identified. Around ω ≈ 0.65 is the only region, where a
monotonic drop of transmittance with length is visible. For a detailed analysis the
simulation of length dependent systems (Sec. 4.5) would have to be combined with
the database approach to determine a localization length, if such a description is
possible. Increasing the fluctuation in this approach should reveal different regions
of transmittance from weakly disordered to strongly localized.

Different Disorder Strengths

The last parameter in this work is the disorder strength, or the distribution of the
radius. The results for 3 different percentage values (p = 2%, 5%, 10%) are plotted
in Fig. 4.29.

For low frequencies in the first band no significant changes are visible. The stan-
dard deviation is increased slightly with a higher percentage but the peaks in the
normalized standard deviation and the mean stay approximately identical. For
higher bands the transmittance peaks decrease with increasing disorder strength
and the structure of the transmittance spectra disappears. The clearest signal of
the increase can be found in the plots of the standard deviation. It is obvious from
Fig. 4.29(d) that the band edges and higher bands are very sensitive to the increase
of disorder. The same is true for the 4th stop band, in which the transmittance in-
creases significantly at higher disorder. In general, however, higher disorder reduces
transmittance.

4.9.7 Finite Size Scaling Using Supercells

The limitation of the above method is the assumption that all cylinders in one row
are the same. In a disordered system this of course will not be the case. The validity
of the approach can be tested using a supercell calculation and compare the results
for different supercell sizes. Each supercell includes several of the unit cells for the
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Figure 4.29: Dependence of the transmittance distribution of different disorder
strength.(rot=2%, green=5%(as before), blue=10%).
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Figure 4.30: Used frequencies for the supercell calculation. Green squares - up
to 4 cylinders, Red Dots - up to 3 cylinders used in supercell. Due to the required
computational time only a few frequency points could be selected. (b) shows the
transmittance values of all realizations for the supercells calculations. The narrowing
of the transmittance distribution with increasing size of the supercell can be seen
from the spread of the transmittance values. (c) Same as (b) but on logarithmic
scale.

lattice (1D layers in this case) in the horizontal direction, as shown in Fig. 3.14. In
contrast to the waveguide shown there, no cylinder is missing in this approach.

Since the number of required modes M scales linearly with the supercell size C
and the computational time of the most expensive calculations scales as M3, the
frequencies for which the supercells can be tested is limited. The calculation for a
supercell of size 2(3,4) required about 14(38,112) hours. In addition memory scales
with M2 as well, so that only a limited number of machines was available for these
calculations. For the larger supercell, the focus has been on the area of the spectra,
where the transmittance can be described by a log-normal distribution, to test the
results in these regions. For supercells with 2 cylinders the simulation was done for
all frequencies. The distributions are included together with the available ones for
supercells with 3 cylinders in the list of distributions shown in the appendix A. All
supercell distributions can be found in the appendix B.

Fig. 4.30 shows the frequencies for which up to 4 (green squares) respectively 3
(red dots) cylinders were used in the supercell calculation. On the right side of the
plot the transmittance values of all realizations are plotted. It is already visible that
the distributions become narrower. In this frequency range, the wavelength is longer
than 5 lattice constants, so that it samples several cylinders. If all of these cylinders
are fluctuating around the nominal value, an averaging occurs, explaining why the
supercell results tend to give better results in terms of narrow distributions. In
Fig. 4.30(b) two distinct points for ω = 0.16671 are visible, which do not fit into this
pattern. Unfortunately, no further study could be done to explain their occurrence.
Their large deviation from the rest of the distribution is also visible, if one looks at
some quantities of the distributions vs. the size of the supercell.
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Fig. 4.31 shows the scaling behavior of the average, minima and maxima of the
distributions together with the standard deviation and the normalized standard
deviation as a function of the inverse of the supercell size C.

For convergence, the values should stabilize for 1
C
→ 0 (C → ∞). As before the

average remains very constant but the minimum and maximum still exhibit some
changes. The general behavior is a narrowing of the distribution together with a
decrease of the standard deviation. The shape of the distribution is approximately
constant and the descriptive parameters also exhibit only minor changes, if the
number of cylinders in the supercell is increased. Therefore, the description of
disorder in the PC using the S-matrix approach is feasible for the studied frequencies.
The distributions for higher frequencies shown in the appendix A also show a close
correspondence between the simulations using a regular and a supercell with 2 and 3,
respectively, cylinders, although a detailed study has not been conducted. Since the
distributions are very wide for higher frequencies, only substantial changes would
be detectable.

4.10 Conclusion and Outlook

The main conclusion of this chapter is, that a PC, even without any included func-
tional element, is already a very complex structure, whose behavior is determined
by many different factors. The lower stop bands are the only characteristic features
which are stable to some extend to possible parameter changes. This includes de-
terministic parameters such as surface termination as well as pore size fluctuations.
Higher bands are very sensitive to fluctuations and individual samples might show
all allowed transmittance values in the range [0, 1] on a normal scale. For appli-
cations these areas, including higher stop bands, are, therefore, uninteresting. In
the process of characterizing PCs by comparing experimental data with theoretical
simulations, one has to focus on the low frequency areas and consider all parameters
including, but not being limited to, the ones studied in this chapter in detail (length,
surface termination, etc.).

The same considerations have to be included, if one wants to draw conclusions
from calculated data. Calculations of a localization length by using the fit to an
exponential as discussed in Sec. 4.5 in combination with disorder calculations need
to be aware of the large amount of parameters which determine the distribution. If
the length is changed for a fixed frequency, the transmittance might change from a
minimum of a Fabry-Perot resonance to a maximum. This would result in a different
sensitivity to radius fluctuations especially for very long localization length, when
the Fabry-Perot oscillations are dominating the transmittance behavior. For the
calculation of the localization length it is, therefore, not enough to insert results for
a few length steps into eq. (4.1). This will very likely produce strongly fluctuating
values, except for cases where the localization length is very short and no other
effects, such as the Fabry-Perot resonances, are present in the length dependent
transmittance. Reliable results can only be obtained by using a fitting technique
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Figure 4.31: Scaling behavior of characteristic quantities. The median is skipped
here, since it is always very close to 1.0 in this frequency range, except for ω =
0.16671, where two strongly deviating points complicate the analysis.
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(regression) and analyzing more indicators than the average to test assumptions
on the distributions. In addition, all parameters discussed in this chapter (surface,
absorption, etc.) change the observed spectra, and e.g. the localization length, in
different ways depending on the frequency range. Any analysis has, therefore, to be
done with great care, taking into consideration all points mentioned in this work.

The combination of the length dependent calculations with disorder, which could
be easily facilitated through the S-matrix multiplication, would be a perfect tool to
study the localization length for different frequencies and, hence, would be a very
interesting combination of the individual questions addressed in this chapter.

Of course, the present results are limited to one system and one specific type of
disorder as well as one polarization and can therefore only be taken as an example
for studies concerning other systems. Disorder in the position would probably have
a greater impact on the resonances, since the periodicity would be disturbed. This
would be a challenging problem because the disorder has to include two parameter
and a reasonable database would require an appropriate choice of positions.

For simulating experimentally realizable structures, this approach could be varied
to calculate the spectra using one fixed disorder configuration for all frequencies,
instead of calculating them independently for all frequencies. By calculating several
of these disordered structures and comparing the spectra, the impact on a single
measurement could be estimated, allowing for a better comparison between theory
and experiment. There are various other possible studies, e.g. the analysis of each
diffraction order individually, which could be done using the approach presented
above. All of them have in common that a large set of data has to be reduced to
some significant quantities to describe the properties of the PC.
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5 2D Distributed Feedback Lasing

The first 3D structure is discussed in this chapter. Although it is not a PBG material
it can be considered as a PC since the dielectric material is periodically structured.

The main goal of this project is the determination of the coupling to the quasi-
guided modes of a corrugated waveguide to identify possible laser modes of the
distributed feedback laser created by this structure. The laser itself has been fabri-
cated and studied by Karen Forberich at the Fraunhofer Institute for Solar Energy
Systems (ISE) in Freiburg [108]. In this chapter, the experimental work (Sec. 5.1.1)
as well as the underlying effective laser theory (Sec. 5.2) are briefly summarized
as a motivation for the simulations and characterizations. The parameters for the
hexagonal system are introduced in Sec. 5.3 together with a comment on the effec-
tive parameters needed in the laser theory. Finally the presented method is used
to estimate two of these parameters using the resonances of the waveguide. The
findings explain the lasing under an oblique angle.

More detailed information about the experimental aspects of the project can be
found in the dissertation of Karen Forberich [108] or Chapter 13 in [6].

5.1 Photonic System

The distributed feedback laser consists of an active polymer on top of a corrugated
(height-modulated) substrate, which can, in principle, have a 1D or 2D pattern. In
this study, only a 2D hexagonal patterning will be considered although a square
pattern has also been used previously [109]. In Fig. 5.1 the structure is illustrated
schematically. The shown profile corresponds to the simulated structure and the
analytical form of the height profile used in the simulation will be given later.

The polymer area, including the corrugated part, is forming a waveguide and
confines the light in the vertical direction. The periodic structure leads to coherent
Bragg-scattering of the waves, with the first Bragg-order being coupled out vertically
and the second order giving the in-plane distributed feedback needed for the laser.
In the simulation the structure is terminated in the substrate. This is possible since
the interesting effects happen in the waveguiding region. To simulate transmittance
through such a structure, the deep but finite substrate would have to be considered,
leading to changes in the absolute value of the transmittance. The aim of the work
presented here is to determine the coupling strength to the quasi-guided modes of
the optical active waveguide system. Consequently, only the resonances due to the
waveguide are of interest and these are well described by this setup. A corresponding
experimental realization is shown in Fig. 5.2.
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Figure 5.1: Left: Cut through the x-z-plane of the structure as used in the simu-
lation showing the substrate and the active polymer. d0 defines the thickness of the
homogeneous top layer and dmax corresponds to the depth of the corrugated area.
The structure is terminated in the substrate on the back side. Right: 3D surface
plot of the structure showing the corrugation using values between 0.0 (blue) and
1.0 (red).

5.1.1 Fabrication

The laser is fabricated in several steps. Firstly, the periodic pattern is created
in a photoresist using interference lithography (Fig. 5.3). For this, the beam of an
Argon-ion laser (λ = 364nm) is split into two coherent beams. These beams are then
widened and directed onto the photoresist. The lattice constant a of the periodic
pattern depends on the angle ϑ between them

a =
λ

sin ϑ
. (5.1)

A 1D periodic pattern can be created by a single exposure. For a 2D pattern at
least two consecutive exposures steps are needed. Rotating the sample about 90◦ in

Figure 5.2: Side and top view of experimental realizations of the structure. Cour-
tesy of Karen Forberich [108].
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between the two exposures leads to a square lattice, whereas three exposure steps,
each rotated by 60◦, define a hexagonal lattice1. The photoresist is developed in
areas, where the sum of the intensities of all exposure steps exceeds a threshold.
The undeveloped part is then removed in a subsequent step. At the Fraunhofer ISE
samples with up to 1m2 with periodicities of a few hundred nm can be fabricated.

Figure 5.3: Schematic picture of the lithographic setup, showing the splitting of a
coherent beam, the broadening and subsequent interference in the large photoresist
plate. The periodicity depends on the angle between the two beams. For a 1D
pattern, a single exposure with two beams is sufficient, for 2D pattern two or three
exposure steps are needed. Copied from Chapter 13 in [6].

After the processing of the photoresist one ends up with a modulated 2D surface
relief grating. Using this as a template, a nickel stamp can be produced to emboss
the periodicity into a substrate (Fig. 5.4). Alternatively the substrate can be pat-
terned directly using the photoresist structure, resulting in an inverse height profile.
Patterning the substrate with the mask corresponds to a double inversion process,
so the corrugation is the same as in the photoresist.

Figure 5.4: Illustration of the replication process for low-cost mass production
using a nickel stamp. Copied from Chapter 13 in [6].

1The phase of the 3rd -exposure, which determines the position and shape of corrugation, cannot
be controlled precisely in the experiment (Fig. 5.5).
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The production of the grating is followed by spin-coating a laser active material,
e. g. MeLPPP 2(methyl-substituted latter type poly(paraphenylene)) onto the sub-
strate [110, 111]. The combined substrate-polymer system can now support quasi-
guided waveguide modes in the polymer layer. For more details on the fabrication
process and materials see [108].

This manufacturing process allows for the fabrication of large areas. The ability to
use the nano-imprint technology with the nickel mask is another step toward a cheap,
large scale mass production making this approach very interesting for applications.

5.1.2 Description of Corrugation

Although the corrugation is given by the interference pattern in first approximation,
the analytical description is more complicated. Due to nonlinear processes during the
exposure and the post-processing, the photoresist does not reproduce the intensity
profiles exactly. In principle, numerical simulations allow for a computation of the
resulting profile if all parameters of the resist are known [112]. However the results
are not very accurate, since the determination of all parameters of the resist is not
straightforward and the details of subsequent processing steps are difficult to model.

Therefore, the profile is described by functions determined from scanning electron
microscopy pictures in the following. Depending on the phase of the 3rd exposure,
two main patterns exist3, which are described by (Fig. 5.5)
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ftria,2 = dmax
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5.2 Basic Aspects of Lasing in Corrugated Structures

In this section, the basic ideas of lasing in periodic structures is summarized, showing
how the results obtained with the developed code help to understand the lasing
behavior. Due to the strong periodic patterning, the modes in the laser are Bloch-
modes instead of plane waves. Therefore, standard coupled-wave theory [113], which
requires that the index variation is weak, cannot be used.

In an alternative approach, it is possible to describe the lasing in PCs in a semi-
classical way as lasing in a homogeneous material with effective parameters [114]

2This is a π-conjugated polymer with a high quantum yield often used is such systems.
3In the studies ftria,1 was used.
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Figure 5.5: Surface relief structure defined by ftria,1 (Left) and ftria,2 (Right). Only
the height of the corrugated part is plotted, ranging from 0.0 (blue) to 1.0(red).

using Laser-rate equations in conjunction with information about the mode structure
of the underlying PC. In this context the field is described as a classical field, based
on the assumptions that many photons are present in one dominating mode of the
2D PC.

Distributed Feedback

In regular lasers, the coherent feedback required for stimulated emission is created
by mirrors defining a cavity. In distributed feedback lasers it is caused by the
scattering of the wave at many distributed scatterers. Coherent scattering occurs
if a fixed (constant) phase relation between the scatterers is given. The periodic
patterning of the substrate-polymer interface provides the scattering elements in
this case. Due to the periodicity, the wave vector can pick up a reciprocal lattice
vector at each scattering event, leading to coherent backscattering. This feedback is
facilitated by the second diffracted order, whereas first order is coupled out through
the surface (surface-emitting laser). For lasing, a 1D structured substrate would be
enough, but in the 2D case, the beam exiting the structure is confined to a smaller
solid angle and, in addition, has a lower threshold [115].

Semi-classical Theory of Lasing

The semi-classical theory of lasing has been developed previously by Busch et al.
[114]. They introduce effective parameters to describe lasing in a periodically struc-
tured material in an approach formally equivalent to lasing in a homogeneous ma-
terial.

For the combined atom field system the Laser-rate equations are used in the semi-
classical approximation for a large number of photons. The basic equation for the
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5 2D Distributed Feedback Lasing

electric field in a nonlinear-medium is given by the scalar wave equation

∇2E(~x, t) − ε(~x)

c2

∂2 E(~x, t)

∂t2
− 4πσ̃(~x)

c2

∂E(~x, t)

∂t
=

4π

c2

∂2P̃ atoms
nl (~x, t)

∂t2
, (5.4)

with the periodic dielectric function ε(~x) incorporating the linear polarization ef-
fects. Losses caused by background absorption resulting from non-resonant atoms
are introduced via the phenomenological conductivity4 σ̃. The nonlinear macro-
scopic polarization due to the active material, modeled by resonant two-level atoms,
is represented by P atoms

nl . The polarization is created by the sum of single-atom
polarizations, which can be described by

d2Pα(t)

dt2
+ 2γ̃⊥

dPα(t)

dt
+ ω2

αPα(t) = −2ωαΩ̃ , | ~d12|∆Nα(t) (5.5)

with the change of the atomic population ∆Nα inversion given by:

d∆Nα(t)

dt
= γ̃q [∆Neq,α − ∆Nα(t)] + 2

Ω̃

ωα

1

|~d12|
dPα(t)

dt
. (5.6)

In these equations, γ̃⊥ corresponds to the dephasing rate of the atomic dipole having

a resonance frequency of ωα and a dipole matrix element ~d12. Ω̃ = | ~d12|E(~x,t)
~

defines
the Rabi frequency, giving the interaction strength of the dipole and the driving
field. Finally, γ̃q corresponds to the decay rate of the atomic upper level and ∆Neq,α

is the steady state equilibrium inversion. This description requires the local density
of states to vary slowly5 on the scale of γ−1

q .
A slowly varying envelope formalism, which allows to discard the second deriva-

tives [116], is used to solve these coupled equations for standard lasers. In structured
lasers, such as the system under consideration, this is not possible. However the char-
acteristic parameters for the laser such as polarization, decay rate and dephasing
rates, i. e. all quantities depicted with a tilde ˜ above, can be assumed to be small
compared to the electric field and the optical frequency respectively. This allows for
the introduction of a small parameter µ and the expansion of all physical quantities,
e. g. the electric field ~E(~x.t), the polarization ~P (~x, t) and the population inversion
∆N , as well as the derivatives in time and space in orders of this small parameter.

This expansion introduces several scales in space and time, each of which can be
analyzed individually. The smallest of them are on the order of the wavelength and
the frequency of the optical transition. This multi-scale analysis can be regarded as
a generalized slowly varying envelope approximation.

4Losses due to the finite pumping area or due to coupling out of the structure can also be modeled
by adjusting this parameter.

5This is not fulfilled near a 3D band edge. In this case the photon is emitted, interacts with
the PC and is being reflected and re-absorbed. As a consequence, the photon is in a dressed
state formed by the atom and the surrounding crystal. The state of the system then depends
on previous moments in time and the Markovian approximation breaks down, rendering the
description inaccurate.
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5.2 Basic Aspects of Lasing in Corrugated Structures

The electric field and the polarization vary on all spatial and temporal scales,
whereas the population inversion does not vary on the fastest time scale but on all
spatial scales. The crystal properties, given by the dielectric function, conductivity
and density of two-level atoms, on the other hand vary only on the smallest spatial
scale. As a consequence the fastest scale only depends on the linear properties and
the fields. For the linear part of the atomic polarization a slowly varying envelope
approximation with a carrier wave holds. Nonlinear parts only contribute on longer
timescales. In contrast to regular lasers, this carrier wave is not a plane wave but an
eigenmode of the periodic system, i. e. a Blochmode of the PC. This Ansatz limits
the possible transition frequencies to the eigenfrequencies of the used Blochmode.
The underlying photonic systems enters the description via the Blochmode. The
surface relief grating discussed in this chapter constitutes a 2D periodic system and
the 2D Blochmodes are required in the laser theory. The description of a corrugated
3D structure in an effective 2D model, taking into account the waveguide properties,
is discussed in the next section.

The physically relevant envelope functions can be obtained by solving the equa-
tions on the next larger scale. In these equations, the above mentioned effective
parameters play an important role. They connect the changes on the fast and small
scale with the resulting changes for the envelope function. They are the result of
an averaging process over the unit cell. The two most important ones describe gain
enhancement and losses in these structures and are given by:

αm =

∫

cell

|Φm(~x0)|2n(~x0)dx2
0 (5.7)

for the field enhancement factor which is a measure for the overlap of the strong
fields of the Blochmode Φm with the gain material and

σm =

∫

cell

|Φm(~x0)|2σ(~x0)dx2
0 (5.8)

for the losses due to background absorption. The quantities not mentioned here
involve the group velocity of the carrier wave, the effective population inversion and
the nonlinear coupling enhancement factor responsible for the enhancement of the
nonlinear saturation. The first is a property which can be derived from the band
structure, and the latter two are integrals similar to the above ones. For plane waves
as carrier waves, these expressions simplify to the regular laser expressions.

For an accurate description, the absorption term, until now only describing ma-
terial losses, has to be modified to incorporate additional losses due to the finite
sample or pumping spot (κq

m) or due to coupling out of the waveguide (κ⊥
m) so that

the total loss is then given by:

σm,total = σm + κq

m + κ⊥
m . (5.9)

κq

m describes the in-plane losses (cavity leakage) and is proportional to the group
velocity. The relative magnitude of the out-of-plane losses κ⊥

m can be estimated from
the resonances in the transmittance spectra.
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5 2D Distributed Feedback Lasing

Waveguide Properties

The knowledge of the band structure and Blochmodes of the PC is a necessity for the
effective lasing theory. For the distributed feedback laser these cannot be calculated
directly due to the height dependence of the 2D periodic pattern.

The height dependence can, however, be turned into an effective space dependent
dielectric function (d(x, y) → ε(x, y)). For this purpose, the polymer layer is consid-
ered as a planar waveguide with a space-dependent thickness. For the quasi-guided
modes of this waveguide, the dispersion can be calculated at each point (x, y). In
a next step the group velocity vg(x, y) = ∂ω

∂k
can be determined, which then allows

the definition of an effective, space-dependent index of refraction neff(x, y) = c0
vg(x,y)

.

This effective index then defines a periodic 2D system, for which the band structure
and Blochmodes can be determined.

In this Ansatz the TE-like and TM-like modes are then replaced by purely TE,
respectively TM modes [108]. There are only deviations for the case of a very thin
waveguide. An asymmetric, planar waveguide has a minimal thickness below which
no mode exists. In a corrugated waveguide modes can exist although the minimal
thickness in the thinnest polymer region is smaller than that of the cut-off thickness.
However, in the effective index model no result could be obtained in these regions.

Another approach to determine the dispersion, respectively, band structure, of the
3D structure is examining the grating resonances. Sending in a wave under oblique
incidence will give strong dips in the transmittance, each time the wave can couple
to a quasi-guided waveguide mode. From this data, it is possible to determine the
position and the width of the resonance. The position determines the frequency of
the quasi-guided modes and the different widths can be used to compare the quality
factor of individual modes. A narrow resonance corresponds to a high quality factor
and, hence, the losses due to coupling out in the vertical direction are low. Plotting
all the resulting resonances over the in-plane wave vector, respectively, angle yields
the band structure.

5.3 Determination of Lasing Modes

The previously presented model is now used to identify relevant laser modes in
a hexagonal structure. Comparing them with experimental observations in the far
field (Fig. 5.6) helps to understand the lasing behavior of such a distributed feedback
PC laser.

Beside the center spot, corresponding to a vertical emission with ~kq = 0, several
symmetric laser spots, radiating with an angle of a few degrees with respect to the
surface-normal, can be identified in the hexagonal lattice. These are not present
in the square lattice [108, 109]. In the work of Karen Forberich, the lasing from a
hexagonal structure with the following parameters is studied:

• Lattice constant a = 346nm
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5.3 Determination of Lasing Modes

Figure 5.6: Experimental observation of the laser mode in the far field. Beside a

bright spot in the middle (corresponding to ~kq = 0) additional emission occurs with
an angle of a few degrees to the surface normal. The oblique modes start lasing at
a lower threshold than the center mode.

• Thickness of homogeneous polymer layer d0 = 150nm

• Thickness of corrugated area dmax = 300nm

• Index of the substrate nsubstrate = 1.5

• Index of the active polymer layer npolymer = 1.7

The parameters identified in the effective laser theory are discussed in the following.
For two of them (κq and κ⊥) regions which are suitable for lasing are identified in
the simulation, complementing the work of Karen Forberich. Before discussing these
two, results for the other parameters are repeated. The square lattice will not be
discussed although similar studies have been conducted [109].

Based on the above approximations in the lasing theory and waveguide description
it is obvious that no quantitative results can be expected. However a qualitative
understanding of the processes determining the laser behavior can be achieved and
an explanation for the oblique lasing mode can be found.

Effective field enhancement/effective population inversion

The first parameter characterizes the overlap of the fields with the active material,
which is needed for the field enhancement and the effective population inversion.
For the evaluation of these overlap integrals, the Blochmodes of the band structure
calculations have been used and weighted with the thickness at that position to give
an estimate. A more sophisticated way could include the shape of the waveguide
mode in the z-direction. Since the overall difference of the effective overlap found
by Karen Forberich is less than 10% this parameter can be discarded as a significant
factor for the selection of the lasing mode [108, 109, 117]. For the onset of lasing,
another parameter, e. g. losses, must be more important as selection criterion.
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5 2D Distributed Feedback Lasing

Losses

Many different loss terms contribute to the effective conductivity term eq. (5.9).
Some of them, e. g. the material losses σm, vary very little for different modes similar
to the effective overlap/gain discussed above. Therefore, the focus is on losses due
to the finite pump region κq and out of plane losses κ⊥ in eq. (5.9), which strongly
depend on the properties of the PC and exhibit a strong dispersion.

At this point, the method presented in this dissertation is very helpful. As dis-
cussed before, from the transmittance spectra the individual resonances from cou-
pling to a quasi-guided waveguide mode can be determined and a band structure
can be obtained from the resonance frequencies.

The slope of the band structure can then be used to determine modes with small

in-plane losses (small slope
!
= small group velocity) and the width of the individual

resonances represents a comparison for the quality factor of the modes and, therefore,

out-of-plane losses (narrow resonance
!
= high quality

!
= low losses).

5.4 Estimates of Coupling Strength

The most promising lasing modes are determined qualitatively in this section, using
the method presented in previous chapters. For this purpose, transmittance spectra
in the wavelength region of interest (420nm - 500nm) have to be determined with a
high frequency resolution to identify all resonance peaks (compare Fig. 5.8). These
peaks then have to be analyzed one by one.

Different Layers and Modes0.915

0.920

0.925

0.930

0.935

0.940

0.945

601
201
101

51 2531 215575

0.9424

0.9426

0.9428

0.943

0.9432 1/Layers
1/Modes

Figure 5.7: Convergence of the TM results for λ=400nm, 428.571nm, 461.538nm
and 500nm (bottom to top). Left: Transmittance for several configurations (λ =
500nm). Each dot belongs to a layer (21,51,101,201,301,401,601) and mode (55, 75,
100, 150) combination. The strongly deviating points have been optained using a
very small number of layers. Right: Transmittance over 1

Layers
(black circles) and

over 1
Modes

(red squares). For a fixed number of layers all different values for the
mode are plotted and vice versa leading to several points. The importance of the
number of layers is clearly visible.
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5.4 Estimates of Coupling Strength

Prior to starting the simulations, some test have to be done. The convergence for
TM polarization is shown in Fig. 5.7 for 4 frequencies distributed over the complete
range using several combinations of expansion orders and slicing layers. One can
see that many layers are needed and that the number of modes plays a minor role
in the convergence. For the following calculations, 61 modes and 501 layers have
been used. Especially the large number of layers needed shows why the correct and
efficient implementation of the recursion algorithm is important. Unfortunately, it
is not possible to fully test the convergence in the peak area. Beside the total value
of the transmittance, the peak position shifts a tiny bit with the number of modes.
Since the peaks are very narrow, this results in larger changes of the transmittance
for a fixed frequency. Testing the peak width rigorously would require to calculate
the peak with a very high frequency resolution. This would then have to be done
using different layer/mode configurations, followed by a detailed study of the shift.
This approach is impractical. Looking at wider peaks with for several mode/layer
combination shows only minor changes, so that the convergence can be assumed
with a good enough confidence for these parameters. For TE polarization the same
number can be used and the convergence plots exhibit the same behavior.

Others tests that were done in this structure include rotation about 60◦ as well
as transmittance through a structure where εpolymer and εsubstrate are set to the same
value and comparing with regular Fresnel equations. The implementation of the
structure was tested by reproducing the it from the Fourier expansion. These test
only prove that the layers have been implemented correctly. With tests, such as
comparison to band structures, the program itself had been tested before so that
this is the only part which needs to be tested each time the structure changes.

5.4.1 Determination of Peaks

For a first calculation of the spectra the following parameters were used

• Wavelength: λ = 420nm - 500nm in 6000 steps (∆λ = 0.013nm)

• Angle to surface normal θ: 0.0◦-1.0◦ (0.1◦ steps), 1.2◦-2.0◦ (0.2◦), 2.5◦-5.0◦

(0.5◦)

• Polarization of incoming wave: TE/TM

• Orientation of electric field along y-axis (tilt in x-z plane)6

In Fig. 5.8 all peaks as well as an example spectra (TM, 0.6◦) are shown to give
an idea about the amount of data available. In the next step each peak had to be
re-calculated again with a refined frequency resolution to find the minima and exact
width. Some of the very narrow peaks could only be found by comparing spectra
of several close angles and looking for the missing ones. The final dataset contains
about 350.000 transmittance values.

6This corresponds to the detected emission in ΓK direction.
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5 2D Distributed Feedback Lasing
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Figure 5.8: Left(Middle) all peaks for 17 different angles for TE(TM) polarization
of the incoming wave. At the higher wavelength end the peaks shift to higher
wavelength with increase of the angle. For TM there is also a more stable peak
around 468nm. Right: Typical example of a spectra (TM, θ = 0.6◦). Around the
peaks the frequency resolution has been increase in several steps to resolve the very
small peaks. These intention of these plots is to give an idea about the amount of
data. The total number of transmittance values in these plots is about 350.000.

From these data about 670 peaks can be identified and their center frequency and
width can be determined. Since the refining of the transmittance in frequency space
had to be done manually anyway, this can be done during this process.

In a next step, the main polarization of the fields inside the structure have to
be determined to assign the resonance to a TE-like or TM-like mode of the band
structure. For this the field is calculated for the center frequency of each peak inside
one layer in the middle of the corrugated area. Since the calculation of the field
inside one layer takes approximately as long as the calculation of one transmittance
value, the calculation in all layers (501) would take too long and has been omitted.
From the in-plane and out-of-plane components of the electric respectively magnetic
field the characteristics of the mode can be determined in most cases7. In several
cases, the answer is not straightforward. The reason for this might be, for example,
that it was not exactly the center frequency of the resonance or that the layer
chosen was having a node in one of the fields for that frequency. In these cases the
characteristics is marked as unclear. However from the angle-dependent data the
different band structures for TE-like and TM-like modes can be identified with great
confidence. The peaks below 460nm are not identified since they are not overlapping
with the frequency range of the active material. In Fig. 5.9 all peaks are shown with
their corresponding properties.

Losses from Band Structure and Width of Resonance

Knowing all peaks, the losses of individual modes can be compared. As discussed
above, the two indicators are the group velocity, proportional to the slope of the

7Since there is no symmetry present in the structure which avoids polarization conversion, an
incoming TE mode can be turned into a TM-like mode.
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5.5 Conclusion and Outlook
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Figure 5.9: Band Structure obtained from the resonances and blow-up in the
interesting frequency regime. Black: TE-like, Green: TM-like, Red: Ambiguous,
Cyan: not analyzed.

band structure, and the in- and out-coupling losses, estimated by the width of the
peaks.

Since thin polymer layers exhibit an anisotropy [118], which lead to a higher
index for TE-like modes, it is expected that they are preferred for lasing over TM-
like modes, due to the better confinement in the waveguide structure. In Fig. 5.10
only the TE-like modes are shown, with a bar indicating the width of the resonance.

It is noticeable that, beside the region close to perpendicular incidence, there are
additional regions in the band structure with a vanishing or very low group velocity
for oblique incidence. For the resonances around 469nm marked by the box, the peak
width also becomes very small compared to the other peaks. With these properties
these modes would be ideal candidates for lasing.

Comparing the results obtained from the resonance spectra with the experimen-
tal finding in Fig. 5.6 shows good qualitative agreement. The laser mode emitting
perpendicular to the surface cannot be clearly identified in the band structure but
it is assumed that it belongs to one of the higher modes with a narrow width e.g.
the one around 471.2nm [117].

It should be mentioned that the wavelength cannot be directly compared with the
measurement since the exact shape of the corrugation had to be estimated from the
SEM measurements. The effective band structure and effective laser theory cannot
determine the exact shape of the band structure due to the approximations in the
3D-to-2D mapping. Therefore, the explanation has to stay semi-quantitative.

5.5 Conclusion and Outlook

In this project significant contributions were provided to Karen Forberich which
made it possible to identify the lasing modes of a hexagonal distributed feedback
laser and to obtain a qualitative picture of the lasing mechanism. Using transmit-
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Figure 5.10: Modes with a TE-like characteristics with plotted width of the reso-
nances. The horizontal bars indicate the center frequency. The vertical bars indicate
the width of the resonance. They are terminated at the frequencies for which T=0.5
(asymmetric). For illustration purpose the length is scaled by a factor of 5. The
box marks a group of resonances corresponding to oblique incidence, which exhibit
low group velocity and narrow peak width, making them ideal candidates for lasing
modes.

tance calculations the resonances from coupling in and out of such a laser could
be determined and characterized. From this data the band structure of the waveg-
uide for TE- and TM-like modes as well as the quality factor could be determined.
The knowledge of these properties allowed to compare the losses of different modes
qualitatively and to identify the most promising candidates for lasing modes, which
,again qualitatively, fit well to the experimental observation.

Additional work could improve the determination of the effective field enhance-
ment by calculating the fields throughout the structure and determining the overlap
integrals in more detail for more realistic structures than the approximated effective
planar waveguide. It would also be possible to model the losses in greater detail by
implementing dipoles into the structure and study their emission behavior.

Since this work shows that the losses are the determining factor for the selec-
tion of the laser modes it would also be possible to study different structures, e.g.
honeycomb lattices, and compare the parameters. For larger studies, a more autom-
atized analysis of the peaks would have to be implemented to detect the promising
candidates more efficiently.
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6 Holography

In the two previous chapters, the structure of the system under study was assumed
to be well known and the optical response of the systems was studied. In this chapter
the desired structure is known but the realized structure is (strongly) deviating from
the designed case. This is commonly true for holographically produced samples. In
these structures, the developing process leads to deviations in the final structure
from the isodose surfaces that define the nominal structure. The present work is a
collaboration with Daniel Meisel at the Institute for Applied Physics (Universität
Karlsruhe) who designed and fabricated the samples [119].

The theoretical simulations allow to study the changes in the angular dependent
transmittance spectra1 caused by deviations in different parameters. Once the most
influential parameters are identified, the distortions can be compensated during
fabrication to achieve the desired transmittance characteristic.

After presenting the photonic system and giving a description of the ideal struc-
ture, the possible changes in the parameters are introduced in Sec. 6.1. The following
section (Sec. 6.2) describes aspects of the structure, e. g. symmetries, which have to
be fulfilled and are used to tests the implementation. Using a model system, the im-
pact of the parameters is studied and some of the spectral features will be explained
(Sec. 6.3). Finally, real experimental samples are characterized (Sec. 6.4).

6.1 Photonic System

The photonic system studied in this chapter consists of a 3D PC created in a pho-
toresist by holographic lithography. The PC is located on top of a glass plate with
a homogeneous polymer adhesion layer [120] in between (Fig. 6.1). The PC consists
of a few unit cells in the vertical direction, corresponding to a height of several µm.
The polymer substrate has a height of about 10–20µm and the glass plate is about
170–180µm thick. For the explanation of the spectra, these layers and their imple-
mentation are very important.

Using a chromium mask, the sample is divided into areas of about 100µm by
100µm surrounded by roughly 60µm wide walls used as markers and for stabiliza-
tion (Fig. 6.2). The PCs are then created inside the smaller areas and can be studied
individually. Their lattice constant is on the order of 600nm and the in-plane transla-
tional symmetries required for the numerical simulation is described by a hexagonal
lattice. The exact shape of the unit cell is given later.

1Only the 0th order transmittance is used for characterization, however, all orders are calculated
and some higher orders are required in the analysis.
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Figure 6.1: Left: A typical structure created using holographic lithography.
Right: The entire system consists of the PC with a height of about 1µm per unit cell,
a polymer layer (10–20µm) on top of a glass plate (170–180µm). In the simulation
the structure is periodic in the direction parallel to the surface. Left image courtesy
of Daniel Meisel [119].
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Figure 6.2: SEM pictures of sample #1 in Sec. 6.4 at different scales showing the
patterned fields surrounded by 60µm thick walls. The in-plane lattice constant and
the vertical lattice constant can be measured by averaging over several periods. The
upper images on the right indicate that the patterned region shrunk significantly
in the z-direction compared to the surrounding walls. The rectangular shape of
the patterned area is preserved. The vertical period can only be determined after
destroying the sample using Focus Ion Beam (FIB). Courtesy of Daniel Meisel [119].
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6.1 Photonic System

6.1.1 Fabrication

3Dholographic structures inside a photoresist can be created by either interfering 4
laser beams simultaneously or 3 times 2 beams in consecutive steps. In both cases
this is followed by a chemical development process. During the processing, the pho-
toresist exhibits a threshold behavior, which means that areas in which the exposure
dose is below (above) a certain value are dissolved during the subsequent chemical
processing in a negative (positive) photoresist [121, 122]. In principle, the structure
is then defined by an isodose surface. However, there are many deviations which
are discussed later. For a one step exposure, the deposited energy is proportional
to the square of the electric field of the interference pattern, for several steps the
individual doses (intensities) have to be added up. For the creation of a suitable
interference pattern many details have to be taken into account, such as refraction
at the air photoresist [123] but their discussion is beyond this work [119].

The translational symmetry is given by the orientation of the exposure beams,
more precisely, the difference in the wave vectors define the reciprocal lattice vectors
of the resulting crystal ~Gij = ~ki − ~kj. The distribution of the photoresist inside the
unit cell, also called motif, depends on the details of the interference pattern of
the beams, such as relative phase, amplitude and polarization. The final symmetry
is determined by both, lattice and motif, and the design of a realizable structure
with good optical properties is a tedious task [124, 125]. The samples considered in
this chapter have all been produced by Daniel Meisel [119] with a 2 beam setup as
depicted in Fig. 6.3.

6.1.2 Dose formula

The distribution of the dielectric material inside a unit cell is based on the deposited
energy dose. To a good approximation, this can be described by the interference
pattern of plane waves. In the case of a 4-beam setup the intensity formula contains
only 4 parameters [126]:

• Prefactor P , describing the filling fraction (nonlinear)

• Offset O, describing the spatially homogeneous part of the dose

• Lattice constant of the 3D structure2 a3D

• γ corresponding to the opening angle of an umbrella configuration in a 4-beam
setup

Since the 3-times-2-beams and the 4-beam setup lead to identical results for an
appropriate choice of beam parameters [119], this description is valid for both ex-

2This is not the relevant lattice constant in the simulation. In the numerics, all quantities have
to be expressed in terms of the in-plane lattice constant of the hexagonal lattice ahex.

129



6 Holography

Figure 6.3: Left: Fabrication of the structure using a 2 beam interference setup.
Each individual step would, if developed, create a set of parallel planes, which are
rotated by 120◦ with respect to each other. Right: The resulting 3D PC if all three
exposure steps are done before developing corresponds to the summation over the
individually deposited doses. Courtesy of Daniel Meisel [119].

perimental setups. The dose formula is then given by

D(~r) = P

[
O+ cos

(
2π

a3D

(
− 2

3 sin γ
y − 1

3 cos γ
z
))

+ cos

(
2π

a3D

( 1√
3 sin γ

x +
1

3 sin γ
y − 1

3 cos γ
z
))

+ cos

(
2π

a3D

(
− 1√

3 sin γ
x +

1

3 sin γ
y − 1

3 cos γ
z
))]

. (6.1)

Each cosine-term can be interpreted as one of the lamellas in Fig. 6.3. In the nu-
merics, the hexagonal lattice constant and the vertical lattice constant are needed,
which are related to the above quantities via

ahex ≡ ax = a3D

√
3 sin γ , ay = a3D3 sin γ , az = a3D3 cos γ . (6.2)

The ratio of ax to ay corresponds to the ratios of the sides in the numerical unit cell
of the hexagonal lattice in Fig. 4.1. For the comparison of data, it is also important
to use the correct rescaled units, e. g. 3D band structures would be scaled in terms of
the 3D lattice constant a3D, the transmittance however in terms of in-plane lattice
constant ahex. The required conversion reads as

az,hex =
az

ahex

=
3 cos γ√
3 sin γ

, ω3D =
ωhex√
3 sin γ

. (6.3)
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6.1 Photonic System

Parameter sc fcc bcc
γ arccos 1√

3
≈ 55◦ arccos 2√

6
≈ 35◦ arccos 1

3
≈ 71◦

sin γ
√

2
3

1√
3

8
9

cos γ 1√
3

√
2
3

1
3

ahex = ax

√
2asc afcc

√
8
3
abcc

ay

√
6asc =

√
3ahex

√
3afcc =

√
3ahex

√
8abcc =

√
3ahex

az

√
3asc =

√
3√
2
ahex

√
6afcc =

√
6ahex abcc =

√
3
8
ahex

ωhex

√
2ωsc ωfcc

√
8
3
ωbcc

Table 6.1: Parameters for different crystal structures. The relevant lattice con-
stants in the experiment are asc, afcc and abcc. In the simulation ahex is used as refer-
ence. Rescaled frequencies are, therefore, not comparable ωhex = ωahex

2πc
6= ω3D = ωa3D

2πc

and the data has to be adjusted. ax and ay are not required and just given for com-
pleteness.

For the three main crystal lattices in the experiment, i. e. simple-cubic (SC), face-
centered-cubic (FCC) and body-centered-cubic (BCC), the values for γ and the
lattice constants are listed in Tab. 6.1.

Examples for individual layers of a simple-cubic crystal are plotted in Fig. 6.4
using an offset of O = 4.0, a prefactor P = 1.6, corresponding to a filling factor
of 60%, and a threshold of Dthres=7.0. Above the threshold the polymer (εp=2.56,
respectively np=1.6) develops and stays, below it is washed out and an air pore
(εair=nair=1.0) forms. The threshold and the permittivities are used throughout the
rest of this chapter.

Figure 6.4: Examples of the dielectric distribution in individual layers (black:
polymer, white: air pore). The hexagonal translational symmetry is clearly visible.
The red lines on the left define the angle φ for the orientation of the incoming
wave with respect to the hexagonal lattice. The basis of the unit cell reduces the
symmetry to C3v in accordance with the 3 intersecting planes. The layers are chosen
to illustrate different situations and are not equidistant. Throughout the crystal
layers with interconnected air as well as resist regions exist. For parameters see
text.
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6 Holography

Isodose and Motif

The distribution of dielectric material inside one of the unit cells, also called motif, is
in general related to the isodose surface at the threshold of the photoresist calculated
using eq. (6.1). However, for realistic simulations this model has to be improved.

The developing of the structure is a complicated process and does not exactly
reproduce the isodose surface [93, 127]. The occurring deviations can be divided
into two groups.

There will be “microscopic” aspects based on the local chemical process, e. g.
diffusion or different concentration of the solvent, which lead to a transition region
instead of a sharp threshold. Beside these effects, “macroscopic” effects change the
properties of the entire crystal. This includes a change of the structure with depth
due to absorption of the exposure beams in the upper regions of the photoresist.
In addition, the whole crystal exhibits a shrinkage during the developing process3.
Consequently, the fabrication of samples has to be adjusted to yield PCs, whose
transmittance spectra correspond to the ones of the nominal structure. Or, looking
at it from the other side, the isodose description has to be modified to achieve
transmittance spectra which match the experiment. The determination of important
factors for this process is the aim of the rest of this chapter.

6.2 Testing of the Simulation

Before moving on to the parameter studies, some of the tests done for the structure
that show some interesting aspects, will be mentioned. In this chapter, simple
test, e.g. Brewster angle, homogeneous structures and reproducing the sample by
reconstructing the dielectric distribution from the Toeplitz-matrix, are excluded.

The convergence has been checked analogous to Fig. 5.7, however the required
accuracy is less, since only structural changes in the transmittance are studied. In
addition, the very long glass plate leads to very narrow Fabry-Perot resonances,
which will always exhibit some shifts leading to changes in the transmittance. Since
the experimental resolution is much smaller than the width of the Fabry-Perot reso-
nances, averaging over a suitable window is done, and these shifts can be ignored. To
allow for faster computation and more parameter studies, the transmittance values
are only converged up to about 1%. Since, in addition the unit cell has larger fea-
ture sizes than the narrow tips at the top of the corrugated structure in the previous
chapter, 85 layers and 45 modes are sufficient in these simulations.

Lamellas

A correct implementation has to reproduce the symmetries of the structure. The
individual lamellas can be used for a simple test. Each lamella is rotated by 120◦ with

3Because of their impact on the overall crystal structure, the last deviations are called macro-
scopic. Their reason, however, is still microscopic, e. g. cross-linking of individual molecules.
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6.3 Impact of Parameters on Transmittance Spectra

respect to each other4. For perpendicular incidence, the same transmittance should
be obtained if the incoming wave is rotated by 180◦. For the fields perpendicular or
parallel to the lamellas, 2 angles correspond to the same physical situation, otherwise
4 orientations of the incoming beam are equivalent, since the field can be mirrored at
a plane perpendicular to the lamellas. The following table summarizes the results.
The first column shows the orientation of the electric field in TE polarization with
respect to the lamellas and the others list the angles φ for which the same results
occur.

~E orientation lamella 1 lamella 2 cc lamella 3 ##

⊥ 0◦,180◦ 120◦,300◦ 60◦,240◦

±60◦ 30◦,150◦,210◦,330◦ 90◦,150◦,270◦,330◦ 30◦,90◦,210◦,270◦

±30◦ 60◦,120◦,240◦,300◦ 0◦,60◦,180◦,240◦ 0◦,120◦,180◦,300◦

‖ 90◦,270◦ 30◦,210◦ 150◦,330◦

Scaling of Vertical Lattice Constant

Rescaling the crystal in the z-direction by replacing z by z′ = z
s

and changing the
lattice constant changes the lattice properties. A BCC lattice can be represented
by a squeezed5 SC lattice and a FCC crystal can be given by a stretched SC lattice.
Fig. 6.5 shows the parameters for an example and the transmittance. Rescaling the
lattice constant in z-directions has implications on several parameters, e. g. the z-
values of the individual layers have to be chosen differently, since the ratio of az

and ahex changes and all values are given in units of ahex. In addition, all quantities
related to the termination of the crystal, e. g. surface, have to be adjusted since the
length of the numerical unit cell changes. Therefore, these tests are important to
make sure that no aspect is missed.

Diamond lattice

Adding − cos
(

2π
a3D

(
1

cos γ
z
))

to the dose formula eq. (6.1) and using the FCC param-

eters leads to a diamond lattice, which cannot be produced experimentally but has
a stop band in the 111 direction which can be seen in the theoretical transmittance
spectra.

6.3 Impact of Parameters on Transmittance Spectra

The simple dose formula describes the interference pattern of the laser beams during
the exposure. This, however, does not correspond to the distribution of the polymer
after processing due to many distortions. Before comparing actual samples, the

4From eq. (6.1) it follows that lamella 1 is parallel to (independent of) x, lamella 2 is then pointing
along φ = 120◦(300◦) and lamella 3 along φ = 240◦(60◦).

5Only along the z-direction. All other dimensions are still given by eq. (6.1) with the new lattice
constant.
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Figure 6.5: Test of the correct implementation of vertical shrinking. Plotted are
the (identical) transmittance for BCC and scaled SC(red dots), respectively FCC
and scaled SC(green squares). Parameters for the different structures can be found
in the table on the right. s corresponds to the change of the lattice constant in
z-direction compared to the regular SC structure. For the BCC and FCC structure
the lattice constant of the 3D structure has to be adjusted as well.

impact of distortion in individual parameters on the transmittance spectra of the
0th order has to be studied. Based on the obtained results, the important parameters
can be studied in more detail and compensated during fabrication to reach the
nominal structure.

In the simulations, microscopic aspects can not be treated since they would require
a number of different simulations as done by Rumpf et al. [93]. For the transmittance
spectra, the macroscopic distortions which can be modeled by modifying the dose
formula seem to be more important. Microscopic differences might be treated in a
disorder framework, as discussed in Sec. 4.9 by smoothing the transition region with
a random width. The presented results show that an accurate description of the
experiment is possible and that the distortions can be compensated. Extrapolating
the disorder results in Sec. 4.9, one can argue that small and unavoidable deviations
lead to very wide transmittance distributions for wavelength on the order of or
smaller than the lattice constant. In this case, a deterministic microscopic method
might fail as well.

The presented studies are done for a model system corresponding to the nominal
SC structure which should be fabricated in the end with a lattice constant of about
a3D = 600nm (ahex = 848nm). The parameters in the regular dose formula are given
as offset O = 4.0, prefactor of P = 1.75 and threshold Dthres = 7.0. The resulting
filling factor is about 50%. The spectra ranges from 600nm to 1600nm.

For a complete PBG a refractive index of around 2.0 is needed [33, 34, 128]. The
index n = 1.6 of the polymer is not sufficient and no stop bands are visible for
perpendicular incidence along the sample normal6.

6The polymer crystal will be used as template. Using chemical vapor deposition the structure can
be (double) inverted and high index crystals with a complete PBG can be produced [129–131].
These template could still be enhanced by using two-photon direct laser writing to introduce
defects in an otherwise perfect structure [132–134], once the template has a high quality.
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Figure 6.6: Left: Transmittance through the polymer and glass layer without
crystal. Right: Transmittance through a 5 unit cell long crystal including polymer
and glass layer. The very closely spaced resonances are clearly visible. The red
curve corresponds to an infinite glass half-space.

Therefore, not only perpendicular incidence is considered but angle resolved trans-
mittance spectroscopy is used with the angle θ to the surface normal varying from
−60◦ to 60◦ in accordance with the experimental setup. This will introduce addi-
tional features based on diffraction. In all the color plots red(blue) corresponds to
a high(low) transmittance of 1.0 (0.0) on a linear scale.

6.3.1 Frequency Resolution (Folding with Apparatus Function)

Before comparing spectra, the required frequency resolution has to be determined.
Due to the large polymer and glass layers below the crystal, narrow Fabry-Perot
resonances occur (compare to discussion of long crystals in Sec. 4.8) which can also
be seen in the theoretical transmittance spectra (Fig. 6.6) and vanish if the structure
is terminated in a glass half space instead.

The period of the Fabry-Perot resonances is significantly smaller than the reso-
lution of the experimental setup. Due to the flat curve in the measurement of the
line width of a HeNe-laser (Fig. 6.7), folding with the apparatus function can be
done by simple averaging over about ±6nm. The entire width of 15nm is not used
since the plot is logarithmic to present the noise as well. In a separate experiment
(not shown) the resolution of the spectrometer was changed and the Fabry-Perot
resonances could be measured, confirming the thicknesses of the polymer layer and
glass plate. The averaged result is very close to the result for termination in a
glass half-space in the presented case. A more detailed discussion of glass and air
termination effects can be found in Sec. 6.3.7.

The averaging process does not lead to significant changes in the transmittance
spectra even if the averaging is done for about twice the laser line width (Fig. 6.8).
In the following spectra, the system has been terminated in a glass half-space to be
able to reduce the frequency resolution and avoid the averaging process for shorter
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Figure 6.7: Left: Measurement of the HeNe laser line width using the resolution
of the experimental setup. The peak on the right indicates the noise level. Right:
Transmittance spectra averaged over λ0 ± 6nm (black) and transmittance through
structure terminated in glass half-space (red). Termination effect are discussed in
detail later.

computational time. For the experimental comparison averaging a the correct (finite-
glass) setup has been used.

6.3.2 Rotation of the Sample

Another important aspect in the experiment is the orientation of the probe beam
with respect to the sample. In the simulation, this can be studied by changing the
angle φ between the wave vector of the incoming wave and the x-axis (Fig. 6.4). For
multiples of φ = 60◦, the spectra is symmetric in the angle θ to the surface normal.
In this case, the electric fields are perpendicular (TE) or parallel (TM) (eq. (3.9)) to
the lamellas forming the structure and inversion symmetry is present. In between,
the spectra are asymmetric and the spectra for φ ∈ (0◦, 60◦) can be obtained from
the spectra φ ∈ (60◦, 120◦) by inverting the angle θ representing the C3v symmetry
of the structure7 (Fig. 6.9). For the experiment φ = 90◦ is chosen, since alignment is
easy for 0◦ respectively 90◦ and the asymmetry in the latter case spectra has more
features for comparison due to the different dispersion for positive and negative θ.

In order to test the stability of the analysis, the impact of small misalignments
has been tested and found to be negligible.

6.3.3 Surface Termination

Surface termination is another aspect, which possibly has an important impact
on the transmittance spectra, as already discussed for a 2D system in Chapter 4.

70◦, 60◦ and 120◦ could be included in the intervals since the spectra are symmetric and the
inversion of θ is without consequences
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6.3 Impact of Parameters on Transmittance Spectra

(a) No Avg. (b) ±2.5nm (c) ±10nm

Figure 6.8: Transmittance spectra for different averaging lengths as indicated in
the individual captions. All 3 structures are terminated in a glass half-space. In
all color plots red(blue) corresponds to a high(low) transmittance of 1.0 (0.0) on a
linear scale. The horizontal axis represents the angle θ to the surface normal.

(a) φ = 0◦ (b) φ = 30◦ (c) φ = 90◦

Figure 6.9: Spectra for different orientations of the incoming wave with respect to
the lamellas. The horizontal axis corresponds to the angle θ to the surface normal.
For φ = 0◦ (60◦, 120◦, 180◦, 240◦, 300◦) the electric field is perpendicular to one
of the layers and symmetric spectra occur due to mirror symmetries. Due to the
combination with the 120◦ symmetry the spectra for φ ∈ (0◦, 60◦) correspond to the
ones for φ ∈ (60◦, 120◦) if the angle to the surface θ is reversed. For the analysis
φ = 90◦ was chosen to have two different dispersion for positive and negative θ.
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6 Holography

Different surface terminations are introduced into the isodose formula eq. (6.1) by
replacing the z-coordinate by z′ = z−z̄ and changing z̄ between 0.0 and az. This shift
in the z-direction has to be implemented consistently with all the other parameters
which also change az, e. g. shrinkage.

For the holographic structure, no significant changes in the spectra are observable
in contrast to the 2D PC. This could be based on the low index contrast of the
polymer which leads to smaller changes in the effective index if the filling factor in the
surface layer changes. In addition, the filing factor only exhibits small differences for
different layers/terminations (compare Fig. 6.4). In the 2D structure the termination
can be a homogeneous substrate layer or a layer with 20% substrate and 80% (r =
0.4) air pore.

6.3.4 Absorption of Exposure Beam

One of the parameters suggested by Rumpf et al. [93] with an impact on the
structure of the unit cell is the absorption of the exposure beam in the photoresist.
Consequently, more energy is deposited in the upper regions than in the lower part.
This has to be modeled by adjusting the prefactor P with depth

P (z) = P (0) · exp−α z
az (6.4)

The implementation of a depth dependent prefactor requires significant changes,
since the periodicity in the vertical direction is broken. The S-matrix multiplication
cannot be used any more and the entire structure has to be modeled. The experi-
mental samples consist of 5 unit cells and hence this length is used in the simulation.
Consequently, the number of discretization layers has to increase by the same fac-
tor and so does the computational time. The new numerical unit cell as a length
of 5az reflecting the number of vertical unit cells modeled individually. Again, all
interdependent variables (surface, shrinking,. . . ) are also scaled accordingly.

The impact of the absorption is less than expected. For reasonable absorptions
(in between Fig. 6.10(a) and Fig. 6.10(b)), the transmittance spectra is only changed
at short wavelengths, where disorder very likely plays a more important role than
structural deviations of this kind (Chapter 4.9). For high values the crystal loses the
periodicity in the unit cell and strong oscillations are visible. The experiments did
not show any signatures of this effect. This parameter has, therefore, been kept at a
very low level throughout the simulations and not considered as a fitting parameter.

6.3.5 Prefactor/Filling Fraction

One of the most important parameters is the filling factor represented by the pref-
actor P in the dose formula (6.1). Fig. 6.11 illustrates this for 3 different values.
The low transmittance regions at long wavelength shift significantly to longer wave-
lengths with increasing filling factor in accordance with the higher effective index of
the structure. The relation of the prefactor and the filling factor is nonlinear [119]
and in the following both values will always be listed.
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6.3 Impact of Parameters on Transmittance Spectra

(a) α=0.02 (90%)) (b) α=0.04 (82%) (c) α=0.08 (68%)

Figure 6.10: Effect of the absorption during exposure on the transmittance spectra.
The listed values in the brackets give the intensity reduction at the end of 5 unit
cells. Very high absorption rates have to occur before distortions are visible which
are caused by losing the periodicity in the z-direction. For even higher absorption
(not shown) the structure exhibits oscillations as in (c) for all regions of the spectra
and all features are lost. The value estimated by Rumpf is in between (a) and (b).

(a) 1.75 (50%) (b) 1.95 (60%) (c) 2.12 (70%)

Figure 6.11: Impact of the prefactor P in the dose formula (eq. (6.1)) which defines
the filling fraction in a non-linear way. For higher prefactors (filling fractions), the
low transmittance bands at longer wavelengths red-shift as expected from an effective
index model.
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Figure 6.12: The darker insets show simulated surfaces with different values for
the filling factor. From a comparison the filing factor can be estimated to be ap-
proximately 50% in this case. The upper row of pores cannot be used since the
exact termination, e. g. at the maximum of pore radius or not, is unknown and the
deviations are stronger there. Comparing the spectra with theoretical ones allows
for an improvement of the estimate. Courtesy of Daniel Meisel [119].

The importance of theoretical simulations can be seen from Fig. 6.12. The insets
in the SEM picture show theoretical surfaces for different filling factors by Daniel
Meisel. From comparing them with the experimental data the filling factor cannot be
determined very accurately. It has to be estimated using the second or third row of
pores since for the first row it is unclear, whether the pores are cut at their maximum
radius or not. The surface is also different from the inside, since the concentration
of chemicals during the processing is higher and the structural stability is smaller
due to missing neighboring structures.

6.3.6 Shrinkage in the Vertical Direction

Shrinkage of the structure because of cross-linking of the polymer during processing
can be identified as the most important parameter for the deviations in the spectra.
In principle, the shrinkage occurs in all directions but in the experimental setup the
glass substrate and the side walls prohibit the in-plane shrinkage. This is also visible
in Fig. 6.2 where the rectangular shape is preserved but the height changes in the
patterned area. The vertical shrinkage is implemented by rescaling the z-coordinate

z − z̄

s
. (6.5)

z̄ is used to model the surface termination. Vertical shrinkage modifies the verti-
cal lattice constant az and, hence, the z value of individual layers as well as the
implementation of surface termination.

Comparing theoretical calculation with first measurements showed that shrink-
age is indeed the most important parameter. Moreover it became clear that the
structures shrunk as much as 60%, much more than listed in the literature, e. g. 5%

140



6.3 Impact of Parameters on Transmittance Spectra

(a) 60% (b) 80% (c) 100%

Figure 6.13: Transmittance spectra for different values of the shrinkage in z-
direction given by the value below the plots. The shrinkage factor determines how
much smaller the structure is in the vertical direction compared to the nominal
one. For different shrinkage, low transmittance bands occur or disappear and the
transmittance patterns changes drastically. Typical values for the shrinkage found
in the experiment later on are 60%.

in [135] or 7.5% in [136], even if one takes into account that the shrinkage in the
presented case is only vertical and in all directions in the literature. Using FIB it
can be confirmed that the shrinkage is about 58% up to 66%.

6.3.7 Finite Glass and Substrate

Another important aspect of understanding the transmittance properties is the ter-
mination of the sample. In most simulations, a glass half-space is used, although
the experimental situation with a glass plate of large but finite width is different
(compare Sec. 6.3.1). Fig. 6.14 shows the spectra for terminating in air with a finite
glass layer (a), the same with a small imaginary part in the dielectric constant of
the glass and in an infinite glass half-space for a high resolution without averaging.

For the finite glass plate used in the experiment, the features at longer wavelength
and larger angles disappear. To avoid that decaying crystal modes are enhanced
again by resonances in the glass, the crystal size was increased to 30, respectively
50 unit cells without observing changes in the spectra. The line spectra for 60◦ in
Fig. 6.15 shows that not all of the dips are associated with low transmittance ranges
through the bulk crystal but that in all transmittance dips the absorption due to the
glass is greatly enhanced compared to other parts of the spectra. Consequently, the
low transmittance bands which vanish are due to crystal/glass interactions and cor-
respond to modes which interact strongly with the glass, hence the high absorption.

Looking at the spectra in more detail by including additional diffraction orders,
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(a) Finite Glass (b) With Absorption (c) Glass Half-space

Figure 6.14: Effect of different terminations spectra without averaging. (a) Finite
glass plate (thickness 170µm), termination in air. The features at higher wavelengths
disappear. (b) Finite glass plate with a very small absorption (Im εGlass = 0.0005).
In both cases oscillations are visible, although they are damped in the second case.
(c) Termination in a glass half-space with the same absorption as in (b). In all three
cases the length of the crystal has been increased to 30 unit cell making sure that
decaying modes in the crystal are completely damped and cannot be enhanced again
due to resonances in the glass plate.

500 750 1000 1250 1500
λ [nm]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ra

ns
m

it
ta

nc
e

(a) Isolated Glass
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(b) Glass Half-space
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(c) Finite Glass

Figure 6.15: Comparing the frequency averaged (±7nm) line spectra for 60◦ for
different cases. The black curve always corresponds to the experimental measure-
ment. (a) Transmittance through the bulk crystal without glass/polymer layer (red).
(b) Transmittance using infinite glass half-space (blue). (c) Transmittance using fi-
nite glass plate (blue) and finite glass plate with different absorption (red, solid
Im ε = 0.001 dashed Im ε = 0.0005). For the plots with absorption, the averaged
curve corresponds to the one without averaging. The impact of absorption is in-
creased in the areas with low transmittance.
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(a) Glass Half-space
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(b) Finite Glass

Figure 6.16: Transmittance 0th order (black) and 1st order modes. At 670nm and
495nm additional modes occur without significant changes in the transmittance of
the others. Only one of the 6 first order modes is not excited over the spectra.
None of the peaks are however related to the occurrence of an additional mode.
All modes are present at higher and lower wavelengths around the peaks, only the
energy distribution between the modes is changed.

one can see that all dips (which occur in the measured 0th order) are connected
to peaks in other orders. In the total transmittance these peaks show up much
weaker. An explanation can be given in Fig. 6.17 by comparing the situation in the
simulation with the experiment.

The experimental situation can be understood from the picture, the theoretical
however requires more explanations. Compared to the experimental situation, where
energy can get lost to the sides of the sample or glass plate, in the periodic system
used for the simulation this is not possible.

Since the S-matrix is energy conserving, the sum of all transmitted and reflected
orders in the air region above and below the crystal is 1.0. If some of the energy
is coupled to modes in the glass which undergo a total internal reflection, they are
returning into the crystal since also the polymer layer and the crystal are periodic,
thus, infinite in the in-plane direction. Since the polymer layer has a lower index than
the glass, but higher than neff of he crystal, and all modes coming from the crystal
have to pass through the polymer, the impact of the polymer can be ignored in first
approximation since all modes exiting the crystal will propagate in the polymer and
the glass. In addition, the polymer thickness is small compared to the glass. It can,
therefore, be looked at as a kind of “index matching” material.

In the crystal these modes exchange their energy again with all the modes due to
the coupling of the periodic system and parts of it leave the crystal through modes
propagating in the detection (air) region. The other fraction of the energy couples
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6 Holography

PC

Polymer

Glas

Polymer

Glas

PC

Figure 6.17: In the experiment (left), modes which can propagate in the glass but
not in air propagate to the side and are lost since the crystal is finite and scattering
at surface roughness occurs as well as the total internal reflection does not occur
at the sides. In the simulation (right) with periodic boundary conditions for the
crystal, polymer layer and glass substrate, the modes in the substrate cannot escape
but return periodically on the left, and couple back into the crystal (shown here in
the next unit cell to the rigth instead) where the energy is transferred completely to
the propagating modes in the detection(air) region and the low transmittance bands
vanish.

back to modes propagating in the glass and the cycle repeats. This explains why
the absorption effect is drastically increased for these modes. They are restricted to
this cycle of going back and forth between the glass and the crystal until they can
exit via a propagating mode. In between energy is absorbed each time they pass
through the glass.

These dips in the transmittance are often referred to as Wood anomalies [137, 138].
However, strictly speaking this is not the case. Wood anomalies are related to the
onset of new propagating modes, or as often stated, the tangentially diffraction of
a mode. In the present case the mode is present at higher and lower wavelengths
but the energy is redistributed at the dips. One could argue that the tangential
diffraction takes place at the pore surface. In this case the effect would have to be
surface dependent, since the pores shift with surface termination, which is not the
case. In addition, the modes in the polymer and the glass never change during pa-
rameter changes of the crystal since these modes depend only on the homogeneous
dielectric constant in these layers and the orientation of the incoming wave (see
the solution for a homogeneous layer in Sec. 2.2). Especially the propagation angle
and the profile of each individual plane wave eigenmode is the same for all crystal
realization, as long as the angle and frequencies are the same. Only the coupling
to these modes from the crystal changes. The low transmittance bands, however,
change their position with prefactor and shrinking, so they depend on crystal prop-
erties and not on the number of propagating modes in the polymer or glass layer.
Consequently the low transmittance bands are a good measure for the properties of
the sample.This information can only be obtained by a detailed comparison of both
cases as presented above.
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6.4 Characterization of Samples

6.4 Characterization of Samples

After studying the parameters individually, the results are used to help fabricating
a sample with the desired properties [139] by iteratively adjusting the fabrication
process to compensate for the distortions caused by the most important factor, the
shrinkage [119].

In this section, a comparison of an experimental sample and a calculated trans-
mittance spectra is given. This is in contrast to most of the papers of holographic
structures where only structures are proposed [140, 141] or SEM pictures are shown
[142, 143]. Although lately some papers showed transmittance measurements, they
are not compared to calculated spectra [135, 144, 145].

In this work a total of 4 samples was characterized in great detail for two polar-
izations but their spectra are given in the appendix only (Sec. C), since for the aim
of this chapter one example is sufficient. The final isodose formula contained all the
parameters discussed in the previous section8 and is given by

D(~r) = P (z)

[
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. (6.6)

The aim was to produce a simple-cubic sample which shows the nominal transmit-
tance spectra. To obtain this, the exposure beams have been adjusted to create an
elongated crystal, with the shrinkage compensating the elongation resulting in the
desired structures. For this, 4 samples have been fabricated, which differ slightly
in lattice constant and prefactor due to the adjustments of the setup. Tab. 6.4
summarizes the results.

8Polarization and orientation are introduced via the incoming wave though.
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6 Holography

(a) TE (b) TE exp.

(c) TM (d) TM exp.

Figure 6.18: Spectra for sample #3. Black describes low transmittance (0.0) and
white large transmittance (1.0). More spectra can be found in Chapter C of the
appendix.
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6.4 Characterization of Samples

Probe #1 #2 #3 #4
Number D841 D925 D974 D961
ahex (nm) 805 863 932 929
az (nm) 603 817 1045 1270
elongation factor 1.00 1.33 1.60 1.70
ratio sample/nominal-SC 0.61 0.77 0.91 1.12
processing shrinkage 0.61 0.58 0.56 0.66
asc (nm) 569 610 659 657
f (%) 65 70 50 50

Table 6.2: Parameters for the 4 characterized samples. ahex, az and asc correspond
to the hexagonal, vertical and simple-cubic (3D) lattice constant. The elongation
factor describes how strongly the isodose has been stretched by adjusting the ex-
posure beam. The ratio of the sample (az) to the nominal az,sc shows how close
the sample is to the desired simple-cubic structure and is the value used for shrink-
ing in the simulation. It was guessed using simulations and confirmed with higher
precision after FIB cutting. The processing shrinkage is the ratio of the elongation
factor and the final sample shrinkage. This is the factor the sample shrunk during
the processing. For all samples this value is roughly constant around 60%. The
filling factor f has been determined by SEM pictures and refined by comparing with
spectra.
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7 Conclusions and Outlook

In the previous chapters, the basics and the implementation of a versatile, numer-
ically stable and efficient method for the simulation of periodic dielectric photonic
systems has been presented and the results for three completely different systems
have been reported. In each project, different properties were studied, showing
the flexibility and versatility of the method. The common property of all systems
which can be modeled is their finite size in one direction (z), also called propagation
direction, and the periodicity in the other directions1 (x,y).

The primary aim of the simulation is to determine transmittance and reflectance
for individual diffraction orders as well as the electromagnetic fields inside the struc-
ture. The implementation is based on the Rigorous Coupled Wave Analysis method
in conjunction with a scattering matrix approach, leading to a Multilayer (Fourier)
Modal Method.

The main concept is to facilitate the numerical mode propagation by slicing the
photonic structure into thin layers which are assumed to be homogeneous in the
propagation direction and then propagating the fields from layer to layer using
boundary conditions. This staircase approximation of the real structure motivates
the word “Multilayer”. In each of these layers the permittivity as well as the fields
can be represented by Fourier expansions using reciprocal lattice vectors in the
periodic lateral direction with a plane wave propagation in the homogeneous prop-
agation direction. The different Fourier orders are coupled through the Maxwell
equations, hence the term “Coupled Wave”. By using the Fourier expansion all
spatial variables only occur in the exponential, which turns the differential equation
into an algebraic equation for which the eigenmodes (lateral field distributions) and
eigenvalues (propagation constants of the corresponding field distribution in the z-
direction) can be calculated. This leads to an expansion of the fields in modes, which
themselves are expanded in a Fourier series (“Fourier Modal Method”). In a homo-
geneous layer this expansion corresponds to the Rayleigh expansion of plane waves
reflected or transmitted by a grating. The energy transport of individual, uncou-
pled plane-waves is easily calculated via the Poynting vector, allowing to determine
the reflectance and transmittance for each individual diffraction-/Bragg order in the
homogeneous (air) regions surrounding the structure. It should be mentioned that
non-propagating modes have to be identified beforehand and have to be excluded
from the transmittance calculation of the far field to obtain energy conservation.

The incoming/outgoing waves are related to the field expansion in the structure
by matching the tangential fields at the layer boundaries. This is done by using a

1Periodicity in this case can also mean homogeneity.
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7 Conclusions and Outlook

scattering matrix formulation for better numerical stability although the implemen-
tation of a scattering matrix is more complicated than that of a transfer matrix.

Details on the implementation, e. g. how to choose unit cells and expansion orders
or how to express the incoming wave correctly, were discussed in the implementation
chapter (Chapter 3). Besides correct choices for convergence, optimization possibil-
ities of the program for computational time and/or memory requirements were also
discussed as well as possibilities to calculate long crystals with arbitrary surface ter-
mination efficiently. In addition technical details were discussed using the hexagonal
lattice as an example. There the major issue was the relation of diffraction orders
to the chosen in-plane expansion. Finally, the simulation was used to study several
systems (Chapters 4–6).

The first system consisted of air pores in macroporous silicon and represents a
two-dimensional system. In this chapter structures which can not be produced due
to experimental restrictions, e. g. very long crystals, were studied showing how to
extract attenuation lengths for crystals with absorption and how to reduce large
amounts of data in length dependent spectra to fewer quantities in order to study
different aspects of transmittance and reflectance. It was shown that the length
dependence at the edge of a stop band cannot be described by a power law, expo-
nential or Yukawa-like function and that an exponential decay for short crystals can
only be found in the middle of the stop band. Studies of the surface termination re-
vealed the same transmittance for cuts at different positions in the vertical position
which corresponded to inverting the sample due to the choice of the unit cell. The
final part of this chapter addressed radius fluctuations with emphasis on the full
transmittance distributions for finite structures including the impact of Fabry-Perot
resonances. The distributions could not be analyzed automatically, hence simula-
tions were done for selected points (minima, maxima,. . .) in the frequency spectra
and suitable indicators for the distribution properties were introduced. The main
conclusion was that a description in terms of an average transmittance is only pos-
sible in the first band, excluding the maximum of the Fabry-Perot resonances, and
at some frequency points in the second band. In all other regions the distributions
become asymmetric and wide and cannot be describes by a normal/log-normal dis-
tribution. These simulations were done by multiplying S-matrices corresponding to
unit cells with different radii and checked by a finite size scaling approach using
supercells.

A more applied study was done in the second project, during which a structure
used for distributed feedback lasing (Chapter 5) consisting of an active polymer
layer on top of a corrugated surface relief grating was simulated. For a semi-classical
approach, a number of effective parameters taking into account the field distribution
in a periodic system are required. Two of them, which turn out to be the important
ones, namely in-plane and out-of-plane losses can be estimated by analyzing the
resonance peaks that occur if an incoming wave couples to the quasi-guided modes
of the waveguide. The in-plane losses depend on the group velocity and can be
estimated from the band diagram, which is given by the position of the resonances.
The out-of-plane losses depend on the coupling strength and can be compared using
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the width of the resonances. In the simulation, modes with a low group-velocity
and narrow peaks could be found in parameter regions where the lasing occurs in
the experiment. This explained the non-perpendicular emission of the laser.

The last project is again closely related to an experiment, but this time the struc-
ture is not well defined and the aim was to study the impact of the parameters on
the angle resolved transmittance spectra. The three-dimensional PC was created
using lithographic holography in a photoresist. During the processing of the resist,
strong deviations of the final structure from its nominal parameters, defined by the
isodose surface during exposure, occur. The aim of the study was to characterize
the impact of several parameters on the transmittance spectra and to identify the
most important parameters causing the distortion. The results were then used to
support the experimentalists in compensating the distortion. The study of a model
system revealed that surface termination, absorption during the exposure and small
misalignments can be ignored. The most important parameter was identified to be
shrinkage of up to 60% in the vertical direction. During this study the reason for the
spectral signatures at higher wavelength was also studied and found to be caused
by the interplay of the substrate and the crystal. Therefore, the termination behind
the crystal (air or glass half-space) plays an important role, which has been studied
in detail. Finally, real samples were simulated and theory and experiment showed a
very good agreement. The determination of the filling factor could be improved by
comparing the spectra in comparison to the use of SEM pictures only.

In conclusion it was shown in these three selected projects, that the method is
suitable for studying concepts and general aspects of light propagation in Photonic
Crystals as well as for modeling realistic experiments either by simulating the re-
sponse of a crystal and analyzing the spectra or by using a reference spectra and
analyzing the structure by changing individual parameters determining their impact
on the spectra. All three aspects are important in understanding light propagation
in PCs and in improving fabrication processes to achieve better host structures in
which later functional elements can be created.

All these systems are based on dielectric materials and unfortunately for metallic
structure, e. g. described by a Drude formula, the current implementation fails to
converge. The adaptation of the program to metallic structures is, therefore, a main
task for future improvement to the code. Especially with respect to the growing
sector of metamaterials, e. g. negative index materials in which a magnetic response
is possible as well [30, 31, 146–148], this is a very interesting task. Experimen-
tal realizations of these structures have already been presented [149–151]. Metallic
structures are also needed for large field enhancements in Surface Enhanced Raman
Scattering (SERS) [152]. Some ideas and concepts for improving the code were
previously mentioned at the end of Chapter 2. Since the bad convergence in the
metallic case is based on the folding of Fourier functions in the eigenvalue problem,
changing this part to the more complex and more memory consuming approach
proposed by Li [49] could be a first step, allowing to reuse most of the ideas of the
implementation and optimization chapter (Chapter 3). Alternatively, the replace-
ment of the Fourier-expansion by a real-space method, e. g. Finite Differences (FD)
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7 Conclusions and Outlook

or Finite Elements(FE), keeping the concept of a Multilayer Modal Method could
avoid the problem of Fourier Factorization completely. However, these methods are
more time consuming and the very convenient expression in diffraction orders us-
ing the Rayleigh expansion in homogeneous layers would have to be abolished or
introduced via a Fourier transformation of the fields. The efficiency of the com-
bined (FE/FD with S-matrix-approach) methods would then have to be compared
to three-dimensional implementation of the FE/FD solvers.

For the individual projects, future tasks were mentioned at the end of the individ-
ual sections. However, some interesting general questions relating to light propaga-
tion in photonic systems should be mentioned here. The results for the holographic
structure showed that the investigation of the interplay of PCs and the substrate
on which they are produced is a topic that is rarely addressed, since simulations
tend to end in a glass half space. The correct modeling of these systems could be
studied in more detail, especially if experimental measurements with a very high
frequency/wavelength resolution could be obtained2 as a comparison. Although
already mentioned in the corresponding chapter (Chapter 4), the combination of
length dependent calculations with disorder would add an interesting dimension to
the simulations done so far, which could be compared to the work of Asatryan et
al. [153], in which they identified different regimes (diffusive, anomalous diffusive
and localized) of light propagation based on Greens tensor calculations for a finite
numbers of cylinders.

Besides the more conceptual work mentioned above, the simulation of experi-
mental structures can always be continued offering a large number of more applied
projects.

2Technically this is no problem, however these measurements are time consuming and not very
interesting from an experimental point of view and, therefore, they are hard to obtain for a
theoretician.
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A Distributions for Selected
Frequencies

The following graphs show the transmittance distribution for the frequencies corre-
sponding to selected points in the spectra (minima, maxima, . . . ) for a structure
with a length of 5 numerical unit cells (5 cylinders) as discussed in Sec. 4.9. The
radius fluctuates by ±5%, using a Gaussian distribution truncated at rmin = 0.38
and rmax = 0.42, with these values corresponding to a 3σ distance from r0 = 0.4.
The frequency points are shown in Fig. A.1.
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Figure A.1: Transmittance of a perfect structure with a length of 5 numerical unit
cells (5 cylinders). The parameters are r0 = 0.4, εpore = 1.0, εsub = 11.9, orientation
in ΓX (Fig. 4.1). Each color depicts the frequencies plotted on one of the following
pages. The red dots indicate the band structure.

The distributions for 1000 realizations are ordered with increasing frequency. On
the left side, the normal distribution is shown followed to the right by the log-
normal distribution, log-normal with a supercell containing 2 and 3 cylinders in
the horizontal direction. For higher frequencies, no data for the larger supercell is
available. The analysis can be found in Sec. 4.9 and the distributions are presented
to give an overview about the agreement of the data (red) with the theoretical
distributions using the average and standard variance determined from the data
(black). In addition, the distributions can be compared to supercell calculations.
In contrast to the next appendix, each plot is scaled to fit the distribution best,
so that the x-axis giving the (width of the) transmittance can change in a row.
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A Distributions for Selected Frequencies

The supercell distributions generally become narrower, if the number of cylinders is
increased, keeping the characteristic form of the distribution constant.

Figure A.2: Black diamonds in Fig. A.1: Normal, Log-normal, 2 and 3 Supercells
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Figure A.3: Red diamonds in Fig. A.1: Normal, Log-normal, 2 and 3 Supercells
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A Distributions for Selected Frequencies

Figure A.4: Green diamonds in Fig. A.1: Normal, Log-normal, 2 and 3 Supercells

156



Figure A.5: Blue diamonds in Fig. A.1: Normal, Log-normal, 2 and 3 Supercells
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Figure A.6: Orange diamonds in Fig. A.1: Normal, Log-normal, 2 Supercells
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Figure A.7: Cyan diamonds in Fig. A.1: Normal, Log-normal, 2 Supercells
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Figure A.8: Magenta diamonds in Fig. A.1: Normal, Log-normal, 2 Supercells
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B Transmittance Distributions for
Supercells

The change of the distribution with the supercell size is illustrated using supercells
containing 1 through 4 cylinders perpendicular to the propagation direction. Details
are discussed in Sec. 4.9. The radius fluctuates by ±5%, using a Gaussian distibution
truncated at rmin = 0.38 and rmax = 0.42, with these values corresponding to a 3σ
distance from r0 = 0.4. The parameters of the crystal are given by r0 = 0.4,
εpore = 1.0, εsub = 11.9, orientation in ΓX and a length of 5 unit cells. For a
definition see Fig. 4.1. The used frequency points are shown in Fig. B.1.
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Figure B.1: Left: Selected Frequencies for supercell calculations. The color cor-
respond to different maximal sizes of the supercell (Green=4, Red=3, Black=2).
Middle: All transmittance values for 1-4 supercells at the green points (Normal).
Right: Same in log-normal.

In the following figures the full distributions, each containing 1000 realizations,
are plotted as a supplement to Sec. 4.9.7. The axis in each row are constant, so that
the distributions can be compared directly.
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B Transmittance Distributions for Supercells
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Figure B.2: 1-4 supercells shown on same scale for the frequencies depicted in
Fig. B.1.
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C Comparison of Experiment and
Theory for Holographic Structures

Using the approach described in Chapter 6, a series of samples was characterized
[139]. This was done with the intention to compensate for the distortions of the
structure during the fabrication to achieve the nominal simple-cubic crystal with
the desired optical properties.

In contrast to the simple dose formula eq. (6.1) in Sec. 6.1.2 changes in all struc-
tural parameters are incorporated in a more complex dose formula (compare discus-
sion in Sec. 6.3)
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(C.1)

with the prefactor P defining the filling fraction of the structure, the lattice constant
a3D of the 3D lattice and the shift of the unit cell z̄ used to model different surface
termination. The absorption of the exposure beam is incorporated into the prefac-
tor as an exponential decrease. Including this parameter has the additional effect,
that the entire crystal has to be modeled, since the periodicity in the z-direction
is lost. Consequently the same number of vertical unit cells has to be used as in
the experiment and the prefactor has to be changed through the complete struc-
ture. Since 5 unit cells had to be calculated this also required 5 times as many
layers in the discretization and, therefore, 5 times as much memory if the dielec-
tric Toeplitz-matrices were to be stored and roughly a 5 time longer computation
time, requiring an efficient implementation of the method. The prefactor has been
adjusted according to

P (z) = P (0) e−α z
az , (C.2)

and the different surface termination, as well as vertical shrinkage in the factor in
the rescales z-coordinate

z − z̄

s
. (C.3)
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For doses higher than a threshold Dthres the polymer is kept (εp = 2.56), in all other
cases the permittivity as assumed to be the one of air (εair = 1.0).

Parameters which are not included in the dose formula are the orientation of the
sample/probe beam, averaging of the transmittance over several frequencies and
the lattice constant. Adjusting these parameters the theoretical and experimental
spectra could be compared. The correct values of the individual parameters could
be measured in SEM pictures (ahex), estimated from SEM pictures and fine-tuned
by comparing with theoretical spectra (P ), respectively estimated from theoretical
spectra and determined by destroying the sample using focused ion beam (az). Other
parameters could already be excluded during the simulation because of their minor
impact (surface, misalignments, absorption of the exposure beam).

On the following pages the theoretical and experimental spectra are shown for
four samples with the properties listed in Tab. C. The first page lists the theoretical
spectra for the two polarizations1, the following the experimental. In both figures the
samples are ordered vertically, starting with sample #1 at the top. The left column
belongs to TE polarization and the right depicts TM polarization. This setup has
been chosen because it allows the printing on transparencies and overlaying of the
plots to compare the results.

1The caption use TE/TM describing the field which has no out-of-plane component. Experi-
mentalist prefer the plane of incidence as reference. In this nomenclature the polarizations are
given by s/p.
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Probe #1 #2 #3 #4
Number D841 D925 D974 D961
ahex (nm) 805 863 932 929
az (nm) 603 817 1045 1270
elongation factor 1.00 1.33 1.60 1.70
ratio sample/nominal-SC s 0.61 0.77 0.91 1.12
processing shrinkage 0.61 0.58 0.56 0.66
asc (nm) 569 610 659 657
f (%) 65 70 50 50
prefactor P (0) 2.02 2.12 1.75 1.75
α 0.0
averaging ± 6nm
absorption in glass Im εglass = 0.001
surface termination z̄ 0.0

Table C.1: Parameters for the 4 characterized samples. ahex, az and asc correspond
to the hexagonal, vertical and simple-cubic(3D) lattice constant. The elongation fac-
tor describes how strongly the isodose has been stretched by adjusting the exposure
beam. The ratio of the sample (az) to the nominal ac,sc shows how close the sample
is to the desired simple-cubic structure and is the value used for shrinking in the
simulation and determined by measurements after focus ion beam cutting. The pro-
cessing shrinkage is the ratio of the elongation factor and the final sample shrinkage.
This is the factor the sample shrunk during the processing. For all samples this value
is roughly constant. The filling factor f has been determined by SEM pictures and
refined by comparing with spectra. The corresponding prefactor is used in eq. (C.1).
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Figure C.1: Theoretical spectra: TE - sample #1 (top left), TM-sample #4 (bot-
tom right)
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Figure C.2: Experimental spectra: TE - sample #1 (top left), TM-sample #4
(bottom right)
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Acronyms

BZ Brillouin Zone
FD Finite Differences
FDTD Finite Difference Time Domain
FE Finite Elements
FIB Focused Ion Beam
FMM Fourier Modal Method
I-matrix Interface-matrix (T-matrix across the boundary of two layers)
M-matrix Modal-matrix (containing the eigenmodes of the in-plane field components)
MMM Multilayer Modal Method
PBG Photonic Band Gap2

PC Photonic Crystal
1D one-dimensional
2D two-dimensional
3D three-dimensional
RCWA Rigorous Coupled Wave Analysis
S-matrix Scattering-matrix
SEM Scanning Electron Microscope
SERS Surface Enhanced Raman Scattering
T-matrix Transfer-matrix
WSC Wigner-Seitz Cell
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