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Abstract

In recent years we have seen a tremendous development of distributed information sys-
tems, both in terms of scale, as well as in terms of the types of distributed information
systems, where classical approaches such as distributed and federated databases are com-
plemented with Peer-to-Peer and Grid technology.

When building such distributed information systems, we are faced with three typi-
cal challenging characteristics: (1) the heterogeneity of nodes, i.e. discrepancies in the
way the data is modeled and represented, (2) dynamics, i.e. changes in the structure of
the system as well as changes in the information at the individual nodes, and (3) auton-
omy, i.e. the ability of nodes to take decisions independently, which poses additional
requirements on the coordination models to achieve scalability.

In this thesis we will show how semantic technologies � and in particular the use
of ontologies � can be employed to address these three challenges: First, we illustrate
how ontologies with their well-de�ned semantics allow to interpret the data consistently
across nodes and to describe mappings for heterogeneous models and thus provide the
means for information integration. Second, we show how ontology evolution allows us
to deal with changes in the information in a consistent manner. Third, we present a model
for ontology-based coordination to build semantic overlay networks for effective query
routing and processing in the absence of centralized control. Throughout the work, we
will refer to the implementation of the Bibster system � a Peer-to-Peer system for sharing
bibliographic metadata � to demonstrate the bene�ts of semantic technologies.
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Chapter 1

Introduction

1.1 Motivation
The effective management of information has become a key factor of many aspects of
our every day life. Over the past years, there has been tremendous growth in quantity
of data being produced. Recent studies indicate that the data production is growing at
around 50 percent compound annual growth rate [VL] with several exabytes (1018) of
data being generated each year. The management of large amounts of data, per se, is
not a very dif�cult problem anymore. Data warehouses tend to easily exceed one ter-
abyte (1012) in size. While we have the technology to store and access data, we seem
to lack the ability to transform data into useful information and extract knowledge from
them. In fact, today data consumption is slower than production. The problem thus lies
in the question of how to make use of the data: As long as no proper interpretation for
the data exists, the data is of no use � a situation commonly called information starva-
tion. Semantics is arguably the single most important ingredient in enabling information
systems to overcome this situation.

Another important aspect of today's information management is the increasing de-
gree of distribution: Data is no longer stored on one logical server (such as in a well-
architected warehouse), but is distributed across multiple nodes in different organiza-
tions, some within and some across enterprises. In recent years, we have seen a remark-
able development of distributed information systems, both in terms of quantity, i.e. the
scale of participating nodes and the amount of data that is being managed, as well as in
terms of the types of systems being realized.

Distributed information systems exhibit characteristics that pose particular chal-
lenges for their realization:

1. heterogeneity, i.e. discrepancies in the way the data is modeled and represented,

2. dynamics, i.e. changes in the structure of the system as well as changes in the
information at the individual nodes, and

3



4 1. Introduction

3. autonomy, i.e. the ability of nodes to take decisions independently.

The integration of heterogeneous data sources is a problem that has been investigated
for many years. However, the thorny question of semantic heterogeneity remains. Any
two schemas designed by different individuals will never be identical. They will have
different units (one price is in euros, another is in dollars), different semantic interpreta-
tions (one price is net, another is gross), and different names for the same thing (Alon Y.
Levy in one database, but Alon Halevy in another). A semantic heterogeneity solution
capable of deployment at large scale remains elusive.

Further, distributed information systems are subject to continuous change and evolu-
tion. Rarely will we �nd application scenarios that are �xed and static over their lifetime.
Reasons for such changes are manifold: In a world that is constantly changing, we need
to deal with changes in application environments, domain changes, changes in the con-
ceptualization of the domain, or the adaptation to different tasks. In order for the data to
remain useful, i.e. to consistently interpret the data in such dynamic settings, effective
means for change management and evolution support are required.

At the same time we are experiencing a drift from centralized to decentralized ar-
chitectures. This implies that in modern types of distributed information systems, we
need to deal with an increasing degree of autonomy of participating nodes. Traditional
approaches found, for example, in federated databases assumed a central instance of
control. While this may be a feasible approach within an enterprise with a few dozen
operational systems, traditional paradigms completely break if we need to perform in-
tegration among different enterprises, or on an ad hoc basis. Peer-to-Peer systems that
form large networks of nodes without centralized control and more recently Grid sys-
tems that allow to form virtual organizations promise new paradigms, but also provoke
new technical challenges.

Semantic technologies are expected to provide a suitable framework to deal with the
heterogeneity, dynamic nature and massive scale of autonomous resources in modern
distributed information systems. With semantic technologies we refer the application of
techniques that support and exploit semantics of information (as opposed to syntax and
structure) to enhance existing information systems. Ontologies play a particularly im-
portant role in the use of semantic technologies. An ontology characterizes a domain of
discourse by identifying concepts and relationships between them in a formal language.
As such, ontologies allow to interpret data consistently across heterogeneous nodes and
thus support information integration. Further, the techniques of ontology evolution pro-
vide the means to deal with the dynamics of information in a consistent manner. Finally,
semantic descriptions based on ontologies allow to coordinate autonomous resources in
large scale distributed information systems.
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1.2 Research Questions and Contributions
The main goal of this thesis is to answer the question:

Main Question How can the use of semantic technologies based on ontologies address
the challenges arising from the speci�c characteristics of distributed information
systems?

Answering this question requires a careful analysis of what exactly distributed infor-
mation systems are. By looking at speci�c classes of systems, including traditional ones
such as federated databases, but also more recent ones such as Peer-to-Peer and Grid
systems, we are able to identify common characteristics and resulting challenges.

Examining these challenges, we can re�ne the main question into more speci�c ques-
tions. As answers to these questions, we provide solutions that are integrated in a frame-
work of semantic technologies for distributed information systems. A main goal for this
framework is the adherence to emerging standards in the �eld of semantic technologies.
In particular, we base our entire work on the formal ontology model of OWL as the stan-
dard language for representing ontologies. The contributions of this work are thus made
directly applicable to a wide variety of application scenarios.

The speci�c research questions and contributions can be grouped by the characteris-
tics of heterogeneity, dynamics, and autonomy. To address the characteristics of hetero-
geneity, we ask the following questions:

Question I.1 How can we express the rich semantic relationships between heteroge-
neous data sources described using ontologies in the absence of a single, global
ontology?

The problem of data integration is arguably one of the most extensively studied prob-
lems in distributed information systems. The solution that we present falls into the line
of existing work in this area. The main contribution of our mapping system is its ex-
pressiveness in two important dimensions: �rst, the expressiveness of the ontologies that
are to be mapped, i.e. we support the rich ontology language OWL, and second the
expressiveness of the mappings themselves.

Question I.2 How can we formally grasp the problem of measuring similarity between
heterogeneous ontologies?

As answer to this question we present a similarity framework for ontologies that we
describe in terms of the OWL ontology language. The contribution of this framework
consists in its comprehensiveness and applicability to a broad range of purposes, in par-
ticular integration tasks.
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Further, we address two important questions regarding the dynamic nature of dis-
tributed information systems:
Question II.1 How can we guarantee a useful interpretation of information by ensuring

the consistent evolution of ontologies in a dynamic environment?

As ontologies in real-world distributed information systems are typically not static en-
tities, but change over time, one of the major problems is the potential introduction
of inconsistencies as a result of applying changes. While the problem of dealing with
evolution has been addressed in various related areas, including database schema evolu-
tion, the problem of evolving ontologies is largely unexplored. Our approach comprises
novel methods for the consistent evolution of OWL ontologies according to various con-
sistency conditions. Further, we compare the approach of consistent ontology evolution
within a framework for handling inconsistencies in changing ontologies.
Question II.2 Can we exploit the heterogeneity of individual nodes in a collaborative

scenario to pro-actively recommend adaptations to ontologies?

Dealing with ontology changes in a network of heterogeneous ontologies implies addi-
tional challenges. But in turn, we can see the very existence of the frequent changes
in such networks of ontologies not only as complication, but as a source for discover-
ing changes that might be useful for other nodes in the network. We demonstrate this
with a novel technique of adapting collaborative �ltering for change recommendations
in ontology evolution.

Finally, the following questions relate to the autonomy of resources in distributed
information systems:
Question III.1 How can we semantically describe autonomous resources in distributed

information systems in order to support coordination tasks?

Metadata ontologies to semantically describe resources have already been proven to be
useful in many applications. The contribution of our metadata ontology consists in the
coverage of characteristics of autonomous resources in open distributed information sys-
tems. We complement this work with a Peer-to-Peer application for the decentralized
management of metadata descriptions.
Question III.2 How can we use semantic descriptions of resources in order to solve the

coordination task of resource selection in a network of autonomous nodes?

The problem of resource discovery and selection is critical especially in the absence
of centralized control. As a solution to the problem, we present a novel approach of
building a semantic overlay network based on the semantic descriptions of resources,
which serves as the basis for an intelligent routing of requests. Extensive evaluations
demonstrate the bene�t compared to alternative approaches.
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The �nal contribution consists in the fact that most of the methods and algorithms pre-
sented in the work have been implemented in different applications and evaluated both in
in-vitro and real-life experiments to show the bene�t of the application of semantic tech-
nologies. Most notably, a large part of the work has been realized in the award-winning
Bibster system.

In the next section, we give an outline of the thesis that clari�es the relation between
the chosen structure and the motivation and contributions mentioned above.
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1.3 Reader's Guide
The book is organized into four main parts as shown in Figure 1.1. The arrows indi-
cate dependencies between the individuals parts and chapters. While Part I provides an
overview of important foundations for this thesis, the subsequent three parts each cover
solutions for the three main challenges identi�ed in distributed information systems.

Part I - Foundations In Chapter 2 we provide an overview of distributed information
systems. We introduce the reader to ontologies � in particular to the ontology language
OWL and related languages � in Chapter 3. In Chapter 4 we provide an overview of how
semantic technologies based on ontologies can be employed in distributed information
systems. In Chapter 5 we present one concrete system � Bibster � as application scenario
that serves as running example throughout this work to illustrate the importance and
applicability of the presented work.

Part II - Ontology-based Information Integration In this part we develop techniques
to deal with the problem of heterogeneity in distributed information systems. In Chapter
6 we develop a mapping system for distributed ontologies. This mapping system deals
with the representation of complex correspondences between OWL-based ontologies
and provides reasoning support for query answering against integrated ontologies. In
Chapter 7 we address a related problem, which can be seen as complementary to that
of mapping representation: We present a framework for measuring similarity in and
between heterogeneous ontologies.

Part III - Ontology Evolution In this part we turn to the second important aspect
of distributed information systems � their dynamic nature � and provide corresponding
solutions. In Chapter 8 we address the important issue of consistent evolution of OWL
ontologies. We consider the scenario of collaborative evolution in Chapter 9.

Part IV - Ontology-based Coordination In this �nal part we present speci�c solu-
tions for coordinating distributed systems consisting of autonomous nodes. In Chapter
10 we propose a metadata ontology for the purpose of describing resources in distributed
information systems. In Chapter 11 we turn to a speci�c coordination task, where we
rely on the semantic descriptions to form a semantic overlay network for peer selection
and query routing.

We conclude the thesis with a summary, an overview of open questions and an analysis
of interesting future directions in Chapter 12.
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1.4 Publications
Large parts of this thesis have been published before in a number of workshop and
conference papers, journal articles, and book chapters. The work is the result of fruitful
cooperations in the EU projects SWAP1 and SEKT2. In the following list we provide
references to relevant publications for the individual chapters of this thesis.

• Most of Chapter 5 has been published before in various publications about the
Bibster system [HBE+04, HSB+04] and the SWAP architecture [EHvH+03]. The
Bibster system was developed in collaboration with the project partners of the
SWAP project.

• The mapping system for the integration of OWL ontologies presented in Chapter
6 was �rst published in [HM05].

• A previous version of the similarity framework of Chapter 7 was presented in
[EHSH05].

• The methods for consistent evolution of OWL ontologies in Chapter 8 have �rst
been published in [HS05a]; the framework for comparing the alternative ap-
proaches for dealing with inconsistencies was originally presented in [HvHH+05].

• Chapter 9 is largely based on work on collaborative ontology evolution �rst pre-
sented in [HHSTS05].

• The work on ontology-based coordination in Chapter 10 is partially based on pub-
lications about the ontology metadata vocabulary OMV [HPS+05], [HSH+05] and
the Oyster system [PH05].

• Chapter 11 is based on two prior publications. The model of expertise based peer
selection along with simulation experiments was �rst published in [HSvH04]. The
results of the experiments with the Bibster system were presented in [HSB+04].

1http://swap.semanticweb.org/
2http://www.sekt-project.com/
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Chapter 2

Distributed Information Systems

In this chapter we discuss the concept of a Distributed Information System. In Section
2.1 we de�ne important terms for the discussion. We then analyze particular classes
of established and emerging Distributed Information Systems: Distributed and Feder-
ated Databases in Section 2.2, Peer-to-Peer systems in Section 2.3, and Grid systems in
Section 2.4. In Section 2.5 we identify three common characteristics along this catego-
rization that pose particular challenges when building distributed information systems:
heterogeneity, dynamics and autonomy.

2.1 Terminology
A serious obstacle to any in-depth discussion of distributed information systems is the
lack of an agreed terminology. As a wide spectrum of information systems is classi�ed
as distributed, a universally accepted de�nition is hard to provide. We therefore discuss
and de�ne the key concepts and terms associated with distributed information systems
as they are used throughout this work.

Before we talk about Distributed Information Systems, we will answer the question
what an Information System is. Inspired by Aberer [Abe06], we can de�ne it as follows:
�An information system is a system that manages facts about some domain for a speci�c
purpose.� This de�nition contains a number of concepts that require explanation:

• The facts refer to the actual data that is managed by the system. The data is
represented using some mathematical structure, called the data structure, which
describes how the data is organized.

• The domain refers to some universe of discourse, which is not necessarily our
physical real world.

• Managing means to maintain, i.e. to persistently store the data, as well as to
perform operations on the data, such as processing, presenting and disseminating

11
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the data. The amount of data that is stored is usually very large, which poses
serious problems for ef�ciency. This aspect of information systems is covered by
data management systems.

• The purpose refers to the fact that every information system has an entity � which
may be human or a computer � that makes use of it. The intention of that entity
is to perform a certain task related to some aspect of the real world, e.g. making
a decision, performing a computation etc. In order to do so, the entity performs
an interpretation of the data. The interpretation relates the data structure (also
called the syntax) with the semantics, i.e. it assigns a meaning to the data. This
interpretation can be a formalized relationship, or just exist informally.

There exists a lot of confusion between the notions of data and information manage-
ment. The reason is that the two issues are inherently connected and that the distinction
is mainly a matter of emphasis: Data management puts emphasis on ef�ciently and re-
liably managing large amounts of data and syntactic aspects. However, any database
management system can be used as an information system. Information management
puts emphasis on managing complex interpretations of data, semantic aspects. In turn,
any information system requires data management.

Distributed Information Systems refer to information systems where the data is phys-
ically distributed across multiple nodes, but is somehow logically related. There may be
many different reasons why data may be distributed. Some of these reasons are related
to the improved use of existing distributed physical resources. We might want to move
data close to the node where it is processed (locality of access), we might take advantage
of parallel processing of the data, and we might want to avoid bottlenecks in order to
improve scalability of the system. Thus, we want to distribute the data. In other cases it
may be that the data is already distributed to begin with, i.e. we want to enable the in-
teroperability of (pre-existing) information systems, or to allow different interpretations
of the same data for different needs and capabilities.

The term distributed is often mistaken to imply decentralized. However, this is not
the case. In fact, most distributed systems today are centralized systems: A typical
example are client/server architectures, which are distributed, but rely on a server as a
centralized node.

The difference between centralized and decentralized systems is essentially that of
their topology, i.e. how the nodes in the system are connected [Min01]. Figure 2.1 de-
picts a simple graphical representation of centralized vs. decentralized topologies. While
in centralized topologies there is one (or multiple) distinguished node to coordinate the
system, in decentralized topologies such a distinguished node does not exist. The Inter-
net itself is in its roots completely decentralized. However, most applications built on
this infrastructure follow the centralized client/server paradigm. The distinction between
centralized and decentralized topologies is not a crisp one. There are many degrees in
between, e.g. various forms of hybrid topologies [DNB05].
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Figure 2.1: Centralized and Decentralized Topologies

In the following we present three typical classes of distributed information systems.
By no means these classes are to be seen as disjoint classes of distributed information
systems. They rather represent different paradigms being researched and applied in par-
tially disjoint communities and areas, but share a large degree of overlap.

2.2 Federated Databases
The history of database systems is a prime example for the historic developments of dis-
tributed information systems. Looking at this history in some detail helps to understand
the characteristics of distributed information systems in general.

The roots of modern database systems date back to the early 1950s and 60s, where
the �rst ideas of storing data records in �les as part of a simple �le system and linking
data records to represent more complex data structures evolved [Sim96]. In the late
60s Tedd Codd developed the relational model [Cod70], which became the basis of
much of relational database theory and technology, and subsequently dominated over
competing models such as the hierarchical and network data model. While �rst database
systems assumed that all data is managed in a single database, the need for addressing
the challenges of managing distributed data became apparent rather early. Today, we
can look back to almost 30 years of distributed data management, but by no means all
problems related to distributed data management have been solved.

Generally, in database systems we can distinguish between several forms of distri-
bution. In the most simple form of distributed databases, the data is distributed � either
replicated or partitioned � across multiple nodes, but the schema is globally shared. The
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use of a global schema becomes possible, because in distributed database systems the
data typically is deliberately distributed, either for increased performance or reliability.

On the other end of the spectrum, federated databases allow heterogeneity of the
schema across the nodes and an increased degree of local autonomy. The term federated
database system has �rst been coined by Hammer and McLeod [HM78]. Since then the
term has been used for several different but related architectures of database manage-
ment systems. We here use term in its broader context and most prominent meaning as
presented by Sheth and Larson in [SL90]: A federated database system is a collection of
cooperating but autonomous component database systems. Federated database systems
can be characterized and classi�ed according to their heterogeneity and autonomy:

Heterogeneity in federated databases mainly arises from differences in the individ-
ual database management systems and in the semantics of the data. Differences in the
database management systems are called system heterogeneity and may include hetero-
geneity in the supported data models, data structures, and query languages, as well as in
system aspects, including differences in the transaction management and communication
capabilities. Semantic heterogeneity arises if there is disagreement about the meaning
and interpretation of the data. In the context of federated databases, semantic hetero-
geneity is often referred to as schema heterogeneity, i.e. differences in how the data is
modeled. However, addressing schema heterogeneity alone does not suf�ciently solve
the problem of semantic heterogeneity, as the schemas themselves often do not provide
enough semantics to interpret the data consistently.

Autonomy here refers to the fact that a node can continue its local operation and at
the same time participate in the federation. Often the entities managing the different
database management systems are under separate control. Design autonomy is the most
important form of autonomy in federated database systems, as it requires to deal with
the different capabilities of the participating data sources [LYV+98]. The autonomy
of database systems to freely join and leave the federation (association autonomy) is
typically restricted in the interest of manageability, as this would require the federated
database system to be designed such that its existence and operation are not dependent
on a single component. Dealing with the autonomy in federations becomes a signi�cant
challenge with a large number of data sources.

The component database systems may be integrated to various degrees. Depending
on whether a global schema is used for integrating the local schemas, we can further
distinguish between tightly coupled or loosely coupled federated database systems, re-
spectively. A reference architecture for tightly coupled federated databases based on a
global federated schema is described in [SL90]. Mediator architectures [Wie92] � as
an example for loosely coupled architectures � do not rely on a global schema. Instead
mediators form a distinct middle layer between user applications and data resources.
Mediators exploit speci�c knowledge about certain sets of data to be able to select ap-
propriate data resources, as well as to abstract and transform queries and resulting data.
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Figure 2.2: Mediator Architecture

A typical mediator architecture is presented in Figure 2.2. It shows the role of the medi-
ators as an intermediary layer between applications and data sources.

An additional problem that frequently occurs in federated database systems is that
of handling schema changes on the individual nodes of the federation. Schema evo-
lution and updates to databases are already challenging problems for single database
systems. In a federated database management the complexity increases as changes need
to be re�ected either in the mapping with the global federated schema (in the case of a
tightly coupled system) or in the logics of the mediator (in the case of a loosely coupled,
mediator based system).

Example Systems. Early examples of realizations of federated databases are surveyed
in [SL90], including MRDSM, OMNIBASE and CALIDA as examples for loosely cou-
pled systems and SIRIUS-DELTA and DDTS as examples for tightly integrated systems.
More recent systems include Garlic [RS97] and TSIMMIS [LYV+98]. Current develop-
ments include the InfoSphere project at IBM, whose goal is the automation of federations
of tens of thousand data sources [BHM+05].

Recently, Peer-to-Peer database systems have received increasing attention. In a
sense, they can be seen as the logical next step following loosely coupled federated
databases in terms of the degree of decentralization and local autonomy.
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2.3 Peer-to-Peer Systems
Peer-to-Peer systems have emerged as a new paradigm for distributed information sys-
tems, in which peers (or nodes) share data � or other resources � via the internet or
private networks. In these systems the nodes share resources in a way that every peer
can act as a client and server, i.e. requester and provider of resources. We can further
analyze the characteristics of Peer-to-Peer systems along three underlying principles, as
they have been introduced in [AH02]:

• The principle of sharing resources: All Peer-to-Peer systems involve an aspect of
resource sharing, where resources can be physical resources, such as disk space
or network bandwidth, as well as logical resources, such as services or different
forms of knowledge. By sharing resources applications can be realized which
could not be set up by a single node. The peers themselves decide when and
which resources are to be shared.

• The principle of decentralization: There typically exists no central node for coor-
dination. Instead, there is a direct communication between the individual nodes.
This principle is an immediate consequence of sharing resources. Decentralization
is in particular interesting in order to avoid a single point of failure or performance
bottlenecks in the system.

• The principle of self-organization: Due to the lack of a central node to coordinate
the activities of the system, nodes have to self-organize, based on whatever local
information is available and interacting with locally reachable nodes (neighbors).
The global behavior then emerges as the result of all the local behaviors that occur.

The terminology around Peer-to-Peer systems is sometimes confusing and often in-
consistent, as many famous �Peer-to-Peer�-systems such as Napster often have central-
ized or hybrid topologies. To further complicate things, the term Peer-to-Peer often
refers to different layers of interaction. [HS05b] introduces a three-layer model to de-
scribe the various types of possible interactions in Peer-to-Peer systems. According to
this model, the Peer-to-Peer paradigm can be applied to infrastructure, applications, and
communities:

1. Peer-to-Peer Infrastructure. This layer refers to systems that manage the commu-
nication, integration, transformation, identi�cation and discovery of resources in a
Peer-to-Peer fashion. The shared resources may for example be information items,
leading to Peer-to-Peer information management systems.

2. Peer-to-Peer Applications. Even if a system relies on a centralized infrastructure,
it may be possible that the Peer-to-Peer paradigm is applied at the application
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level. For example, message brokering systems often allow a direct communica-
tion between nodes on the application level (thus departing from the client/server
paradigm), while on the infrastructure level the communication is still realized
using centralized message brokers.

3. Peer-to-Peer Communities. Finally, systems may allow the users to interact in
Peer-to-Peer fashion. The ideas of Peer-to-Peer communities are increasingly
found in what is informally called Web 2.0 [O'R05], embracing the power of the
web to harness collective intelligence of online communities: Wikipedia1, an on-
line encyclopedia based on the notion that an entry can be added by any web
user, and edited by any other, is one such approach to content creation. Sites like
del.icio.us2 and Flickr3 have pioneered a concept called �folksonomy� (in contrast
to taxonomy), a style of collaborative categorization of sites using freely chosen
keywords, often referred to as tags.

The application of the Peer-to-Peer paradigm to distributed information systems mainly
concerns the infrastructure layer. The advantages of such Peer-to-Peer infrastructures
over centralized approaches are manifold:

• The distribution allows scalability both in data volumes and the number of con-
nected parties.

• The costs for starting and maintaining such systems are generally low, which im-
plies a low entrance barrier.

• The decentralized and often self-organized coordination holds the potential of fail-
ure tolerance, i.e. robustness against failure of any single component and inten-
tional attacks, avoiding a bottleneck for both computational performance and in-
formation update.

• New resources can be dynamically integrated.

• Finally, new application scenarios are realizable which were not possible with
centralized architectures.

However, these advantages do not come for free: The large degree of distribution of
Peer-to-Peer systems is also the cause of a number of new problems: As there typically
exists no central node for coordination and instead there is a direct communication be-
tween the individual nodes, one of the biggest challenges is enabling nodes to �nd one
another, to construct a network topology, and to ef�ciently route requests in a scalable

1http://www.wikipedia.org/
2http://del.icio.us/
3http://www.flickr.com/



18 2. Distributed Information Systems

manner. Further, peers can freely leave and join the network, which poses challenges for
the availability and reliability of the system.

The �rst successful Peer-to-Peer information systems were systems whose primary
focus was that of very simple resource sharing. These resources typically were �les,
and search for resources was restricted to simple keywords or �le names. As Peer-to-
Peer systems evolve from simple �le sharing systems to support structured and semanti-
cally rich data, several additional information management issues need to be addressed.
Speci�cally, Peer-to-Peer systems need to deal with the location of information, infor-
mation integration, query processing, and consistency issues [SAB+05]. In particular,
the lack of a single coherent schema for organizing information sources across the Peer-
to-Peer network hampers the formulation of search queries. Duplication of information
across the network results in many duplicate answers to a single query, and answers to
a single query often require the integration of information residing at different, indepen-
dent and uncoordinated peers.

Additionally, we are faced with the issue of dealing with the dynamics of chang-
ing schemas and information at the individual peers. The problem here is considerably
harder than for example in federated database systems because of the higher degree of
decentralization: While in federated databases the problem can be addressed on the level
of global schema or the mediator, these concepts are typically not present in Peer-to-Peer
systems, such that changes need to be propagated in a decentralized way.

Example Systems. The term Peer-to-Peer has become famous with large-scale �le
sharing systems such as Napster, Gnutella [Kan99], and Freenet [CMH+02]. A more
detailed overview of these speci�c systems can also be found in [AH02]. These systems
are fairly simple in terms of the descriptions of their resources. They typically limit
the search to �lenames. Instead, most effort has been taken to achieve scalable solu-
tions. The issue of decentralized coordination schemes for robust and ef�cient routing
of queries is the topic of a number of Peer-to-Peer systems in the research community,
including CAN [RFH+01], Chord [SMK+01], Pastry [RD01], and P-Grid [ACMD+03].
A more detailed discussion of these systems follows in Chapter 11.

Besides the question of the organization of the network and ef�cient query routing,
there are several systems that concentrate on other aspects of Peer-to-Peer information
management. For example, Piazza [TIM+03] focuses on the issue of representing local
mappings between heterogeneous peers. DBGlobe [PAP+03] aims at developing a Peer-
to-Peer data management system for modeling, indexing and querying data hosted by
massively distributed, autonomous and possibly mobile peers. DBGlobe is centered
around managing XML data; it provides (1) infrastructure support, including mobile
peers and the creation of context-dependent communities, (2) metadata management for
services and peers, (3) �lters for ef�ciently routing path queries on hierarchical data,
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and (4) querying using the AXML language, an XML query language that incorporates
service calls.

Finally, there are general purpose Peer-to-Peer infrastructure projects. JXTA
[TAD+02] � being the most prominent one � attempts to provide a uniform interface
to Peer-to-Peer systems and to facilitate interoperability. JXTA de�nes a three layer
Peer-to-Peer software architecture (applications, services, core), a set of XML-based
protocols, and a number of abstractions and concepts such as peer groups, pipes and
advertisements.

2.4 Grid Systems
Grid systems have their roots in distributed computing, rather than distributed informa-
tion systems. In distributed computing, the focus traditionally is on the computational
complexity rather than data complexity. However, Grid computing has emerged as an
important new �eld, distinguished from conventional distributed computing by its focus
on standardized, large-scale resource sharing. Grid systems can be thought of in analogy
to the power grid: Just as a power grid provides us with power to our homes and busi-
nesses, a Grid system provides us with computational resources on demand. In the same
utility-fashion, a Grid system is capable of integrating an arbitrary number of computing
devices, adding to the computing capabilities and problem resolution task.

A prominent de�nition of the Grid originates from Foster [FKT01], which states that
the Grid is about ��exible, secure, coordinated resource sharing among dynamic collec-
tions of individuals, institutions, and resources.� At the heart of Grid is the concept of
virtual organization. A virtual organization is a dynamic collection of individuals, insti-
tutions and resources bundled together in order to share resources as they tackle common
goals. This resource sharing is not primarily �le exchange, but rather direct, controlled
access to computing resources (CPU cycles, disk storage, data, software, peripherals), as
is required by a range of collaborative problem-solving and resource-brokering strategies
emerging in industry, science and engineering.

While the application domains for the Grid are manifold, the Grid has gained par-
ticular popularity in a domain called eScience, which subsumes a range of applica-
tions in a variety of scienti�c disciplines including high-energy physics, global climate
change, and life sciences. Common to these application domains is that they produce
immense amounts of data, which need to be accessed and analyzed by communities of
researchers that are typically geographically distributed. Further, the application do-
mains of eScience evolve very quickly, and so does the terminology of the �eld.

While traditionally many Grid systems concentrate on the utilization of distributed
computational resources, informational resources are of paramount importance. In fact,
an entire class of Grid systems, called Data Grids [CFK+01], addresses the topic of large
amounts of data in Grid environments. Initially, the focus of Data Grids was on providing
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scalable and performant storage systems for managing large data sets, including aspects
such as high-speed data movement, scalable query processing, etc. However, storage
systems constitute just one aspect of Data Grids: The other important aspect is that
of managing the data about data that is stored in storage systems, i.e. the metadata
management. In modern Data Grid architectures we �nd data storage and metadata as
the fundamental services.

The importance of metadata management in Grid systems is a direct implication of
the core goal of the Grid, i.e. coordinated resource sharing. There are a number of
problems associated with resource sharing among a set of individuals or groups:

• Integration. A Grid involves a multiplicity of resources that are heterogeneous and
might span multiple administrative domains. It thus requires the ability to integrate
multiple distributed, heterogeneous, and independently managed data sources.

• Resource Discovery. Grid applications require that Grid systems should enable
new capabilities to be constructed dynamically and transparently from distributed
services. In order to engineer new Grid applications it is desirable to be able to
reuse existing components and information resources and to assemble and coor-
dinate these components in a �exible manner. This requires the ability to provide
resource discovery mechanisms, which allow the user to �nd resources based on
their characteristics.

• Decentralization. The nature of the Grid prohibits building systems with a cen-
tralized control. Instead one must provide the necessary infrastructure for coor-
dination among the resources that re�ects the autonomy of entities in the virtual
organization. This also includes that in a Grid the availability of resources may be
limited, and resource failures may be the rule rather than exception.

Further, open standard protocols and frameworks are essential for the realization of the
Grid. The use of open standards provides interoperability and integration facilities.
These standards must be applied for resource discovery, resource access and resource
coordination. In order to achieve true interoperability, recent initiatives aim at aligning
Grid technologies with other computing technologies that address similar problems. As
a consequence, the Grid has moved away from a collection of protocols and is converg-
ing with service-oriented architectures (SOA) [JEF04].

Example Systems. There is now a growing number of existing Grid-related projects,
ranging from infrastructure, such as Globus [FK97], OGSA [FKNT02], to speci�c ap-
plications and systems, such as DataGrid [HJMS+00].

The Open Grid Services Architecture (OGSA) is the result of the alignment of exist-
ing Grid standards with emerging service-oriented architectures; it unites Web Services
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with Grid requirements and techniques. OGSA provides a uniform way to describe Grid
services and de�ne a common pattern of behavior for these services.

In 2002, IBM launched the On Demand initiative [Fel04], which relies on Grid tech-
nology as one of its core technical pillars. There are three essential capabilities that
support the fundamental concept of an On Demand Business: (1) Integration based on
service-oriented architectures, realized with Web services and open standards, (2) Vir-
tualization based on Grid computing that allows distributed computing resources to be
shared and managed as if they were a single, large, virtual computer, and (3) Autonomic
Computing, a set of technologies with the goal to enable computer systems ability to
manage, repair, and protect themselves. It is expected that initiatives such as the On
Demand initiative will expedite the advance of Grid technologies in industry.

2.5 Characteristics of Distributed Information Systems
In the previous sections we have discussed three classes of distributed information sys-
tems: federated databases, Peer-to-Peer systems, and Grid systems. While each of them
pursues speci�c goals and puts emphasis on different aspects, they all share common
characteristics that pose particular challenges that need to be addressed when realizing
such systems. These challenging characteristics can be classi�ed along the following
three dimensions: (1) the heterogeneity of nodes, i.e. discrepancies in the way the data
is modeled and represented, (2) dynamics, i.e. changes in the structure of the system as
well as changes in the information at the individual nodes, and (3) autonomy, i.e. the
ability of nodes to take decisions independently, which poses additional requirements on
the coordination models to achieve scalability. In the following subsections we discuss
each of the dimensions in more detail.

2.5.1 Heterogeneity
In distributed information systems we are faced with a multitude of data sources of het-
erogeneous nature. This heterogeneity is a major barrier to interoperability between
resources. Heterogeneity refers to discrepancies in the way that data is modeled, repre-
sented, and interpreted. Here we can distinguish heterogeneity on three levels: the data
model level, the schema level, and the data level.

• The �rst discrepancy at the level of the data model occurs if nodes rely on different
underlying models to describe their data structures and constraints. For example,
one node may rely on the relational data model, while another node uses a hierar-
chical data model.

• The second form of heterogeneity at the schema level refers to differences in the
way how a domain is modeled. Here we can further distinguish between struc-
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tural and semantic differences. Structural heterogeneity exists if elements have the
same meaning, are modeled with the same data model, but structured in a differ-
ent way, e.g. if attributes are grouped into different tables. Semantic heterogeneity
occurs when there is disagreement about the intended meaning, interpretation, or
intended use of the data. Semantic heterogeneity is especially a challenge, since
the schemas used to describe the data often do not provide enough semantics to
interpret the data consistently. Orthogonal to the distinction between structural
and semantic differences is the problem that the schemas of two nodes may model
different domains that share only limited overlap, but still these correspondences
need to be related.

• The third form of heterogeneity at the data level may occur if data values are
represented differently. For example, the data value of a temperature may be given
in Celsius or in Fahrenheit. Heterogeneity on the data level often arises due to
missing conventions for representation, abbreviations, but possibly also syntactic
errors.

For readers familiar with Model Driven Architectures (MDA), it may be noted that
the above levels � data model-, schema-, and data level � directly correspond to the met-
alevels M2 (metamodel), M1 (model), and M0 (data) of the Meta Object Facility (MOF)
[Gro03]. In the literature we �nd many other possible classi�cations of heterogeneity
on different levels of detail. For example, [SvH05] distinguishes the three categories of
syntax, structure, and semantics.

Of course, there may also be heterogeneity on additional dimensions that require in-
tegration on a system, process and application level. However, these aspects are beyond
the focus of this work.

2.5.2 Dynamics
The second common characteristic shared by distributed information systems is that of
dynamics: distributed information systems are subject to continuous change and evolu-
tion. Changes may occur for a number of different reasons. For an in-depth discussion
of these reasons we recall the de�nition of an information system: An information sys-
tem is a system that manages facts � or data � about some domain for a speci�c purpose.
Thus it may be that:

• The data that is managed in the system changes, as new facts are added, deleted or
modi�ed.

• The domain itself about which data is managed undergoes changes. Such changes
are rather natural, as the domain refers to some aspect of the real world, which
is constantly changing. Often such changes in the domain require changes to the
data structure, e.g. the schema, used to represent the data.
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• The purpose for which the data is managed changes, or in other words, the in-
tended use of the data changes. This may happen if the application environment
or the requirements of the entity that makes use of the data change after the dis-
tributed information system has been built.

The �rst type of change is well supported by data management systems, which are able
to ef�ciently handle updates to the data. The other two types require changes to the
interpretation of the data and are in this sense considerably harder and typically not well
supported.

An additional aspect of change is introduced by the distribution of the data. In a
distributed information system the data is physically distributed across multiple nodes,
but is logically related. This distribution and these relations may be dynamic. As a
consequence, the structure, i.e. the topology of the system, may change. New nodes
may join or leave the system, new data sources may appear. In a decentralized system
there may not even be control over this process.

Capturing changes can occur either from explicit requirements or from the result
of change discovery methods, which induce changes from patterns in data and usage.
Explicit requirements are generated, for example, by a user who wants to adapt the
information system to new requirements or by the end-users who provide the explicit
feedback about the usability of the information system. The changes resulting from such
requirements are called top-down changes. Implicit requirements leading to bottom-up
changes are re�ected in the behavior of the system and can be discovered only through
the analysis of this behavior.

A very important problem in change management is that of maintaining consistency
in order to allow a meaningful interpretation of the data. The consistent management of
changes is already a challenge in the absence of distribution, as it needs to be ensured
that the changes are performed in a way consistent with given constraints of integrity, e.g.
de�ned by a schema. In the presence of distribution, changes will need to be propagated
across nodes to ensure that the interoperability is maintained in a consistent manner.

2.5.3 Autonomy
Autonomy refers to the fact that nodes can take decisions independently. It is thus closely
related to the degree of decentralization. In the case of completely centralized topologies,
one node has complete control over all other nodes, whereas in completely decentralized
topologies, there is no central control and all nodes act autonomously.

Autonomy of nodes is a key property of distributed information systems. As we
have seen in the discussion of the three classes of distributed information systems, it is a
desirable property for a number of reasons, which we can summarize along the following
dimensions according to [GMK88]:
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• Organizational Issues. In a distributed information system used by a large orga-
nization, node autonomy is a natural extension of departmental autonomy. In a
virtual organization, a similar situation exists where participants are in control of
different nodes. Here, the degree of required autonomy may be even higher.

• Diversity of Local Needs. Having autonomous nodes, the system can be more
easily tailored to the needs of local users. This is an important aspect as many
distributed information systems are characterized by a diversity of functionality
and performance requirements.

• Data Security. Autonomy further allows local control of the nodes over the data,
which is essential in systems sensitive to unauthorized data access.

• Failure Tolerance. Node autonomy supports the containment of the effects of a
local failure at a given node in the system: Independent nodes can continue to
function despite such a failure.

• Lower Costs. The ability of nodes to perform local operations autonomously al-
lows reducing the number of messages to be sent between nodes and thus decreas-
ing the cost of operation.

To gain a better understanding of the concept of autonomy it is useful to classify
it into several types, each one covering a different aspect. [VPZ88] distinguishes three
types of autonomy:

• Design autonomy, which refers to the fact that nodes choose their own design
(for example with respect to data being managed, data models, functionality and
implementation),

• Communication autonomy, which refers to the ability to decide what information
to provide to other components of the system and to decide whether to communi-
cate with other nodes, and

• Execution autonomy, which refers to the ability to execute local operations without
external interference from other nodes.

Of course, autonomy does not come for free. In particular, the autonomy of nodes poses
special requirements on the coordination models of the system: While in centralized
systems we may assume one (or many) nodes to centrally coordinate the system, this
assumption does not hold in decentralized systems and thus requires new coordination
models that scale in the presence of autonomous nodes and in the absence of centralized
control.

According to the different types of autonomy, we can also distinguish corresponding
aspects of coordination: Existing approaches of distributed information access almost
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always assume a setting where information providers agree on some global model or
schema that is used to access the information. In a decentralized setting with autonomous
nodes, this assumption does not longer hold. Therefore, one has to �nd a way to deal
with the existence of multiple, distributed and frequently changing views on the domain.
What is required are models for meaning coordination that operate without centralized
control.

Communication autonomy means that nodes are free to decide what information to
provide and which other nodes to communicate with. Again, this decision is a purely lo-
cal one without centralized control. This has consequences for the network organization
and the coordination to direct requests to the nodes able to respond to the request.

Execution autonomy requires nodes in a distributed information system to be able
to perform local operations without the interference from other nodes. This means that
while interoperation with other nodes is desired, there must be no dependence on other
nodes. The coordination models for distributed operations such as query processing
must take this fact into account. Execution autonomy has a great impact on transaction
processing, which is an important problem in distributed data management, but less
related to the interpretation of the data and therefore beyond the scope of this work.

Further, we need to take the degree of distribution in terms of the number of nodes
into account, which poses additional requirements on the coordination models to achieve
scalability.

2.6 Conclusions
In this chapter we have discussed distributed information systems as systems that man-
age and allow to interpret data that is physically distributed, but logically related. Further
we have identi�ed three common characteristics of distributed information system: het-
erogeneity, dynamics, and the autonomy of nodes. These three characteristics are valid
across different kinds of distributed information systems, as we have seen in the analy-
sis of federated databases, Peer-to-Peer, and Grid systems. Similar classi�cations have
been proposed for example in [SL90] with the dimensions of autonomy, heterogeneity,
and distribution. As in our work we focus explicitly on distributed information systems,
we have not considered distribution as a separate characteristic. The aspect of dynamics
has been included especially in more recent classi�cations, e.g. [BKLW99] has intro-
duced evolvability as additional characteristic.

In the next chapter we present an overview of how ontologies can be used to address
the challenges arising from the heterogeneity, dynamics, and autonomy in distributed
information systems. In the subsequent parts of this thesis we develop speci�c semantic
technologies for solving particular problems in distributed information systems.
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Chapter 3

Ontologies

In this chapter we introduce the reader to the ontology model that will serve as founda-
tion throughout this work. In Section 3.1 we provide a general introduction to ontologies
as a means to explicitly and formally specify conceptual models with well-de�ned se-
mantics. In Section 3.2 we present the particular ontology language which we base our
work on: the Web Ontology Language OWL. Speci�cally, we rely on OWL DL, a par-
ticular species of OWL that is grounded in an expressive, well-understood description
logic.

In order to access the information represented using an ontology, we require a query
language. Thus far, no query languages for OWL have been standardized. Several pro-
posals for such query languages exist. While they differ in detail, all of them are able to
express conjunctive queries, which have been found useful as query language in practice.
In Section 3.3 we introduce conjunctive queries as a formalism to query description logic
ontologies. We also discuss SPARQL, a proposal for a Semantic Web query language,
as a means to express such conjunctive queries.

While OWL is a very expressive ontology language by itself, there are certain tasks
that cannot be accomplished within description logics. Rules are of particular impor-
tance, especially in the context of information integration. In Section 3.4, we present
a brief overview of so called DL-safe rules, a decidable fragment of the Semantic Web
Rule Language (SWRL).

3.1 A Short Introduction to Ontologies
The word �ontology� comes from philosophy, where it is used to describe the existence
of being. It was �rst introduced by Aristotle in his metaphysics [Ari08]. The term has
been taken up by the AI community, where ontologies have been studied since the early
1990s in areas such as knowledge engineering [SBF98], natural language processing
[NR04], and knowledge representation [DFvH+00]. Various de�nitions have been pro-
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posed to assign to the term �ontology� a computational meaning. The most prominent
one stems from Gruber [Gru93]: �An ontology is an explicit speci�cation of a conceptu-
alization.� [Bor97] extended the de�nition, requiring the speci�cation to be formal and
the conceptualization to be shared. According to Studer [SBF98], a conceptualization
refers to an abstract model of some phenomenon, explicit means that the concepts and
the constraints on their use are explicitly de�ned, formal refers to the fact that the ontol-
ogy should be machine-readable, and shared re�ects the notion that an ontology captures
consensual knowledge.

As such, ontologies provide a shared and common understanding of a domain, an
understanding that can be communicated across people and application systems. These
promises are the reason for the recent spread and success of ontologies in application
areas such as intelligent information integration, cooperative information systems, infor-
mation retrieval, electronic commerce, Semantic Web Services and knowledge manage-
ment.

With such wide spread application areas and a de�nition of an ontology as generic
as the one by Gruber [Gru93], it is not surprising that nowadays a wide range of models
are called ontology. Instead of restricting the de�nition of an ontology at this point and
thus excluding particular models from being considered an ontology, we rather present
a classi�cation of different types of ontologies.

Classi�cation of Ontologies We introduce a classi�cation that has been inspired by
[Obe05], and [Gua98]. Ontologies can be classi�ed along two dimensions:

• the level of formality and

• the level of generality.

According to the level of formality, we can distinguish the following:

• An informal ontology is the simplest type that comprises a set of concept names
organized in a hierarchy, possibly with de�nitions in natural language.

• A formal ontology further includes axioms and de�nitions stated in a formal lan-
guage.

A similar classi�cation is given by Gruber [Gru04], where he additionally distinguishes
semi-formal ontologies. A semi-formal ontology in this de�nition is a partially formal,
but largely informal ontology, which still allows useful computations on the formal part.

According to the level of generality, ontologies can be classi�ed into the following
types:

• A top-level ontology de�nes very general concepts such as space, time, object,
event, etc., which are independent of a particular domain. Commonly, top-level
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ontologies are also called upper level or foundational ontologies. Popular exam-
ples include DOLCE [GGM+02] and SUMO [NP01].

• A core ontology is more speci�c than a top-level ontology, but still de�nes con-
cepts which are common across various domains. An example is the Core Ontol-
ogy of Services, which specializes the DOLCE ontology to model aspects related
to the management of services [Obe05]. A core ontology can provide the basis for
specialization into task- or domain-speci�c concepts.

• A domain ontology de�nes concepts associated with a speci�c domain. For ex-
ample, the SWRC ontology [SBH+05], which we will use as a running example
throughout this work, models the domain of a research community.

• A task ontology de�nes concepts related to the execution of a particular task or
activity, e.g. planning, scheduling, or problem solving [vHSW97].

• An application ontology de�nes concepts essential for a particular application,
often depending both on a particular domain and task.

A further classi�cation of ontologies would be possible along the knowledge repre-
sentation formalism and the corresponding inference mechanisms used or provided by
these formalisms. Common to all ontology languages is that the conceptualization takes
the form of a de�nition of the properties of important concepts and relationships. We
refrain from providing an introduction to all of these formalisms, and instead refer the
reader to [SS04] for an overview of ontology representation formalisms and languages.

3.2 The Family of OWL Languages
Traditionally, a number of different knowledge representation paradigms have competed
to provide languages for representing ontologies, including most notably description log-
ics and frame logics. With the advent of the OWL Web Ontology Language, developed
by the Web Ontology Working Group and recommended by World Wide Web Consor-
tium (W3C), a standard for the representation of ontologies has been created. Adhering
to this standard, we base our work on the OWL language (in particular OWL DL, as
discussed below) and describe the developed formalisms in its terms.

In this section we introduce the OWL ontology language and description logics as
its logical foundations. This introduction is to a great extent inspired by [HPSvH03]
and [BHS04]. The OWL ontology language is based on a family of description logics
languages. Within this family, three members have been standardized as sublanguages
of OWL: OWL Full, OWL DL, and OWL Lite. These sublanguages differ in expressive-
ness, i.e. in their provided constructs and the allowed combinations of these constructs.
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• OWL Full is the most expressive of the members of the OWL family. It has mainly
been de�ned for compatibility with existing standards such as RDF (Resource
Description Framework, [MM04]). OWL Full is undecidable and thus impractical
for applications that require complete reasoning procedures.

• OWL DL is a sublanguage that was designed to regain computational ef�ciency.
It directly corresponds to the SHOIN (D) description logic, a decidable logic
with NEXPTIME complexity. For SHOIN (D), practical reasoning algorithms
are known, and increasingly more tools support this or slightly less expressive
languages.

• OWL Lite corresponds to the less expressive SHIF(D) description logic. Its
complexity is known to be EXPTIME, which means that reasoning with OWL
Lite is still intractable. However, the restricted expressiveness makes OWL Lite
conceptually easier to grasp and thus interesting for applications that require a
light-weight ontology language.

The respective species are subspecies of one another, which means that every OWL
Lite ontology is an OWL DL ontology, and every OWL DL ontology is an OWL Full
ontology. Thus, if in the following we rely on OWL DL as ontology language, this
includes all subspecies of OWL DL as well. In addition to these species, further relevant
subspecies have been identi�ed. For example, OWL DLP is a proper subspecies of
OWL Lite [GHVD03, HHK+05]. Although it is only marginally less expressive than
OWL Lite, it enjoys polynomial complexity.

Several different syntaxes for OWL DL have been de�ned, including an abstract syn-
tax as well as XML and RDF-based syntaxes. For our presentation, we use the traditional
description logic notation since it is more compact. For the correspondence between this
notation and various OWL DL syntaxes, see [HPS04b].

Before we discuss the description logic underlying OWL DL in detail, we provide a
brief overview of description logics in general.

3.2.1 OWL as Description Logics
Description logics are a family of class-based knowledge representation formalisms. In
description logics, the important notions of a domain are described by concept descrip-
tions that are built from concepts (unary predicates) and roles (binary predicates) by the
use of various concept and role constructors. In addition to these concept descriptions, it
is possible to state facts about the domain in the form of axioms. Terminological axioms
make statements about how concepts or roles are related to each other, assertional facts
make statements about the properties of individuals of the domain.

In the design of description logics, emphasis is put on retaining decidability of key
reasoning problems and the provision of sound and complete reasoning algorithms. As
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the name suggests, Description Logics are logics, i.e. they are formal logics with well-
de�ned semantics. Typically, the semantics of a description logics is speci�ed via model
theoretic semantics, which explicates the relationship between the language syntax and
the models of a domain.

An interpretation consists of a domain and an interpretation function, which maps
from individuals, concepts and roles to elements of the domain, subsets of the domain
and binary relations on the domain, respectively. A description logic knowledge base
consists of a set of axioms, which act as constraints on the interpretations. The meaning
of a knowledge base derives from features and relationships that are common in all pos-
sible interpretations. An interpretation is said to satisfy a knowledge base, if it satis�es
each axiom in the knowledge base. If there are no possible interpretations, the knowl-
edge base is said to be inconsistent. If the relationship speci�ed by an axiom holds in
all possible interpretations of a knowledge base, the axiom is said to be entailed by the
knowledge base.

Before we formally de�ne the syntax and semantics of the description logics un-
derlying OWL, we here informally introduce the language constructs of the description
logics SHOIN . In particular we can build complex classes from atomic ones using the
following constructors:

• C u D (intersection), denoting the concept of individuals that belong to both C
and D,

• C tD (union), denoting the concept of individuals that belong to either C or D,

• ¬C (complement), denoting the concept of individuals that do not belong to C,

• ∀R.C (universal restriction), denoting the concept of individuals that are related
via the role R only with individuals belonging to the concept C,

• ∃R.C (existential restriction), denoting the concept of individuals that are related
via the role R with some individual belonging to the concept C,

• ≥ nR , ≤ nR (quali�ed number restriction), denoting the concept of individuals
that are related with at least (at most) n individuals via the role R.

• {c1, . . . , cn} (enumeration), denoting the concept of individuals explicitly enumer-
ated.

Based on these class descriptions, axioms of the following types can be formed:

• concept inclusion axioms C v D, stating that the concept C is a subconcept of
the concept D,

• transitivity axioms Trans(R), stating that the role R is transitive,
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• role inclusion axioms R v S stating that the role R is a subrole of the role S,

• concept assertions C(a) stating that the individual a is in the extension of the
concept C,

• role assertions R(a, b) stating that the individuals a, b are in the extension of the
role R,

• individual (in)equalities a ≈ b, and a 6≈ b, respectively, stating that a and b denote
the same (different) individuals.

Datatypes In addition to the �abstract� classes considered so far, the SHOIN (D)
description logic further supports reasoning with concrete datatypes, such as strings or
integers. For example, it is possible to de�ne a minor as a person whose age is less than
or equal to 18 in the following way: Minor ≡ Personu∃age. ≤18. The interpretation
of datatypes and values in SHOIN (D) includes an additional interpretation domain
for data values (concrete domain), which is disjoint from the domain of individuals.
Further, roles are divided into abstract roles, which are interpreted as binary relations on
the domain of individuals and concrete roles which are interpreted as binary relations
between the domain of individuals and the concrete domain.

Example 1 In this example we build a small terminology about the bibliographic do-
main (based on a fragment of the SWRC ontology [SBH+05]. Consider the atomic
concepts Person, Publication, Article and Book, as well as the abstract role
author and the concrete role title. We can build a terminology stating that

• Article v Publication, every article is a publication,

• Book v Publication, every book is a publication,

• Article v ¬Book, articles and books are disjoint, and

• Publication v ∀author.Person, the author of every publication is a per-
son.

Further we can assert facts about individuals, codd and relational model, stating
that

• Article(relational model), the individual relational model be-
longs to the concept Article,

• title(relational model, �The Capabilities of Relational DatabaseManagement Systems�),
the title of relational model,

• Person(codd), the individual codd belongs to the concept Person,
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• author(relational model,codd), codd is the author of
relational model,

• relational model 6≈ codd, the individuals codd and
relational model are two different individuals1.

3.2.2 OWL as a �Web� Ontology Language
There are several features of the OWL language that distinguish it from pure classical
description logic, but make it a true ontology language for the web. In fact, these ad-
ditional characteristics make OWL practically applicable not only for the web, but for
open distributed information systems in general.

The main characteristic to be mentioned is the tight integration with existing stan-
dards in general, and web standards in particular. These standards include the use of the
namespace concept to organize its vocabulary and the use of URI references as names
to uniquely identify ontology elements. Last not least, several XML-based syntaxes for
OWL have been de�ned to enable an easy interchange of ontologies. OWL also reuses
the facilities of XML Schema [BM04] to provide datatypes and data values.

The following example shows a fragment of the SWRC ontology in OWL/RDF syn-
tax that demonstrates the use of some of the above mentioned features:

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<owl:Ontology rdf:about="http://swrc.ontoware.org/ontology#"/>
<owl:Class rdf:about="http://swrc.ontoware.org/ontology#Article">

<rdfs:label>Article</rdfs:label>
<rdfs:subClassOf>

<owl:Class
rdf:about="http://swrc.ontoware.org/ontology#Publication"/>

</rdfs:subClassOf>
...
<owl:Class

...
</rdf:RDF>

Additionally, for OWL DL and OWL Lite, an abstract syntax has been de�ned, which
due to its frame-like compact representation is most suitable for consumption by humans
unfamiliar with the classical DL-based syntax.

Furthermore, OWL allows to attach annotations to ontology elements. Even
though these annotations do not carry a logical meaning, they are important

1Please note that this fact is not trivial, as OWL does not take the unique names assumption.
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for representing human readable descriptions (e.g. rdfs:label), versioning
information (e.g. owl:versionInfo), etc. Finally, ontology properties al-
low to describe the relationships with other ontologies, namely owl:imports,
owl:backwardCompatibleWith, owl:incompatibleWith, and
priorVersion. These ontology properties do not carry a logical meaning,
with the exception of owl:imports, where the meaning of the imported ontology is
considered to be part of the meaning of the importing ontology. The owl:imports
primitive thus provides an effective � albeit simple � means for modularization.

3.3 Query Languages
Query languages are an important tool in information management. They provide the
means to access data that is managed using a particular data model. Surprisingly, de-
spite the advance of OWL as an ontology language, the work on adequate query lan-
guages for OWL is still in its infancy. This is partly due to the fact that traditionally the
focus of Description Logics has not been on managing large sets of assertional facts, but
rather on reasoning over the terminological knowledge. Recently, there have proposals
for query answering over description logics that are based on a reduction to standard de-
scription logic reasoning problems. While this is theoretically elegant, it is impractical,
as effectively for every individual in the knowledge base one needs to check whether it
satis�es the query. On the other hand, there is a large body of work on query languages
in database management. Some attempts have been made to build on this work in the
context of query languages for RDF.

In [HBEV04] we have presented a comparative analysis for six RDF query lan-
guages. While some of these query languages are used in many systems as OWL query
languages (simply treating OWL as an extension of RDF), such an approach has major
drawbacks. The main problem lies in the fact that the semantics of RDF query languages
is typically de�ned via a pattern matching over a particular RDF graph or a set of RDF
triples, which corresponds to one particular model of the RDF knowledge base. Such a
semantics is incompatible with that of description logics in the sense that an answer over
a description logic knowledge base is supposed to hold in any model, of which there
may be in�nitely many.

A query language of particular importance is SPARQL, which is currently being
standardized by the W3C as the standard query language for the Semantic Web. While
SPARQL in principle follows the same pattern matching approach as other RDF query
languages, in essence it only standardizes the syntax of a query language, but leaves the
semantics up to the implementation. Although the lack of a well-de�ned semantics can
be seen as a de�ciency, it can also be seen as a feature, as it allows us to use SPARQL
merely as a syntax carrier and to separately assign it a well-de�ned meaning based on
grounding in descriptions logics. In the following we thus present the semantics of
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conjunctive queries over OWL DL ontologies and afterwards show how SPARQL can
be used to encode such conjunctive queries. In our discussion we will further analyze
how these formalisms meet generic criteria desired for any query language. We here
review these criteria from [HBEV04]:

• Expressiveness. Expressiveness indicates how powerful queries can be formulated
in a given language. Typically, a language should at least provide the means of-
fered by relational algebra, i.e. be relationally complete. Usually, expressiveness
is restricted to maintain other properties such as safety and to allow an ef�cient
(and optimizable) execution of queries.

• Closure. The closure property requires that the results of an operation are again
elements of the data model. This means that if a query language operates on the
graph data model, the query results would again have to be graphs.

• Adequacy. A query language is called adequate if it uses all concepts of the un-
derlying data model. This property therefore complements the closure property:
For the closure, a query result must not be outside the data model, whereas for
adequacy the entire data model needs to be exploited.

• Orthogonality. The orthogonality of a query language requires that all operations
may be used independently of the usage context.

• Safety. A query language is considered safe, if every query that is syntactically
correct returns a �nite set of results (on a �nite data set). Typical concepts that
cause query languages to be unsafe are recursion, negation and built-in functions.

3.3.1 Conjunctive Queries
Conjunctive queries are a popular formalism, well explored in database theory, capable
of expressing the class of selection/projection/join/renaming relational queries. The vast
majority of query languages for many data models used in practice fall into this fragment.
Because conjunctive queries have been found useful in diverse practical applications, it
is natural to use them as an expressive formalism for querying ontologies.

When talking about conjunctive queries, we need to distinguish between the query
as a syntactic object and the query mapping, i.e. the function de�ned by a query un-
der a speci�c semantics. Informally, a conjunctive query Q(x,y), is a conjunction of
DL-atoms, i.e. atoms over DL-concepts and roles. x and y denote sets of distinguished
and non-distinguished variables, respectively. Intuitively, the semantics of a conjunc-
tive query is to ask for concrete individuals that are valid �llers for the distinguished
variables, with the non-distinguished variables existentially bound. A more formal de�-
nition of the semantics of conjunctive queries over SHOIN (D) ontologies is given in
Chapter 6.2.
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Example 2 The following conjunctive query asks for the title of articles written by the
individual codd:

Q(t, x) : Publication(x) ∧ title(x, t) ∧ author(x, codd)

3.3.2 SPARQL
SPARQL was originally designed as RDF query language. As every OWL ontology can
be encoded in an RDF graph, SPARQL can serve � at least syntactically � as an OWL
query language.

The SPARQL query language is based on matching graph patterns. The simplest
graph pattern is the triple pattern. In terms of OWL, every unary assertion C(a) can be
represented as a triple (a rdf:type C) and every role assertion R(a, b) can be represented
as a triple (aR b). Triple patterns in queries additionally may contain variables in the
subject, predicate or object positions. Combining triples gives a basic graph pattern,
where an exact match to a graph is needed to ful�ll a pattern.

Queries are composed of two main building blocks, the SELECT or CONSTRUCT
clause and the WHERE clause. The SELECT or CONSTRUCT clause identi�es the vari-
ables to appear in the query results, they thus correspond to the distinguished variables
of a conjunctive query. The WHERE clause identi�es the triple pattern to match. Let us
look at an example:
PREFIX swrc: <http://swrc.ontoware.org/ontology#>

SELECT ?book WHERE {
?book rdf:type swrc:Book

}

The PREFIX clause simply allows to declare namespace abbreviations, in this case
for the SWRC ontology. The SELECT clause speci�es that the ?book variable should
be returned. An optional FILTER clause further allows to �lter variable bindings, as in
the following query that restricts the bindings of books to those that were published after
the year 2000:
PREFIX swrc: <http://swrc.ontoware.org/ontology#>

CONSTRUCT { ?book swrc:year ?year } WHERE {
?book rdf:type swrc:Book .
?book swrc:year ?year . FILTER (?year > 2000)

}

This query also demonstrates the use of the CONSTRUCT clause, which unlike the
SELECT queries does not return tuples of variable bindings, but allows to specify triples
that should be returned.

Multiple patterns can be joined with the UNION clause, as in the following query
that asks for all publications that are either a book or a part of a book:
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PREFIX swrc: <http://swrc.ontoware.org/ontology#>

SELECT ?x WHERE {
?x rdf:type swrc:Book
UNION
?x rdf:type swrc:InBook

}

Expressiveness. In terms of expressiveness, an important criterion is relational com-
pleteness, which requires that certain basic algebraic operations are supported, i.e. (i)
selection, (ii) projection, (iii) cartesian product, (iv) difference and (v) union. These
operations can be combined to express other operations such as set intersection, sev-
eral forms of joins, etc. SPARQL is not relationally complete. It does support the
relational operations of selection (FILTER clause), projection (SELECT clause) and
cartesian product (combination of triple patterns in the WHERE clause) as well as union
(joining patterns with the UNION clause). However, it does not support difference, as
there is no notion of negation in SPARQL. For example, it is thus not possible to ask for
all publications that are not books.

Closure. The SPARQL language is closed, if one considers CONSTRUCT queries:
The queries operate in triples, and also return triples as results. This is an important
feature that allows to compose queries on the one hand, and to directly exchange query
results as ontologies on the other hand.

Adequacy. As mentioned above, SPARQL is only partially adequate for querying
OWL DL ontologies: SPARQL supports all elements of the OWL DL data model that are
relevant for querying, but it also provides many features, which have not been presented
above, that are not applicable to OWL DL ontologies (e.g. rei�cation).

Orthogonality. Unfortunately, SPARQL is orthogonal only to a limited extent, as
most of the operators have a very narrow scope of usage. For example, the FILTER
operator can only be used inside of a WHERE clause.

Safety. The safety of the language is obviously obviously depends on the semantics
that is given to it. So far, SPARQL only de�nes the syntax of a query language. For the
semantics of conjunctive queries over description logics knowledge bases, a sound and
complete decision procedure exists, which implies safety.

Concluding, one can say that SPARQL at this time is an acceptable compromise
for querying OWL ontologies, provided that is used as a syntax carrier for conjunctive
queries, whose semantics is adequately de�ned separately using model theory.

3.4 Rule Languages for OWL
Although the description logics underlying OWL are very expressive ontology lan-
guages, they cannot be used for modeling particular forms of axioms. Speci�cally, de-
scription logic axioms are restricted to a tree-structure that disallows to model rule-like
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axioms commonly needed for complex data integration tasks that involve queries, views
and transformations. This situation has lead to several proposals for the combination of
ontology languages such as OWL with rule-based languages, which are currently con-
troversially discussed [W3C05]. Just recently the W3C has chartered a working group
for the de�nition of a standardized Rule Interchange Format (RIF)2. The Semantic Web
Rule Language (SWRL, [HPS04a]) is currently the most prominent proposal for an ex-
tension of OWL DL with rules. From the Description Logics perspective, a main goal in
the de�nition of a rule language for OWL is to retain decidability of the main reasoning
problems. Unfortunately, SWRL is known to be undecidable. Recently, DL-safe rules,
which can be seen as a syntactic fragment of SWRL, have been proposed as a decidable
rule extension.

3.4.1 SWRL - Semantic Web Rule Language
SWRL allows the use of datalog-like horn rules together with OWL axioms. These rules
are of the form of an implication between an antecedent (body) and consequent (head).
The intuitive meaning of a rule is that whenever the conditions speci�ed in the antecedent
hold, then the conditions speci�ed in the consequent must also hold. Both the antecedent
(body) and consequent (head) of a rule consist of zero or more atoms. Atoms can be of
the form C(x), R(x, y), x ≈ y or x 6≈ y, where C is an OWL DL concept, R is a role,
and x,y are either variables, individuals or data values.

Example 3 The fact that a person is an expert on a topic if he has authored a publication
on that topic, can be asserted with the following rule:

expertOn(z, y) ← Publication(x) ∧ isAbout(x, y) ∧ author(x, z)

A great advantage of SWRL is the tight integration with the existing OWL stan-
dards: A high-level abstract syntax is provided that directly extends the OWL abstract
syntax. Further, an XML based syntax has been de�ned An extension of the OWL
model-theoretic semantics provides a formal meaning for SWRL ontologies.

Example 4 The rule from Example 3 stating that a person is an expert on a topic if
he has authored a publication on that topic, can be expressed in SWRL syntax in the
following way:

<swrlx:Ontology swrlx:name=""
xmlns:owlx="http://www.w3.org/2003/05/owl-xml#"
xmlns:ruleml="http://www.w3.org/2003/11/ruleml#"
xmlns:swrlx="http://www.w3.org/2003/11/swrlx#">

<ruleml:imp>

2http://www.w3.org/2005/rules/wg/charter
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<ruleml:_head>
<swrlx:individualPropertyAtom swrlx:property="expertOn">

<ruleml:var>Z</ruleml:var>
<ruleml:var>Y</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_head>
<ruleml:_body>

<swrlx:classAtom>
<owlx:Class owlx:name="Publication" />
<ruleml:var>X</ruleml:var>

</swrlx:classAtom>
<swrlx:individualPropertyAtom swrlx:property="isAbout">

<ruleml:var>X</ruleml:var>
<ruleml:var>Y</ruleml:var>

</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="author">

<ruleml:var>X</ruleml:var>
<ruleml:var>Z</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_body>

</ruleml:imp>
</swrlx:Ontology>

3.4.2 DL-safe Rules
An unrestricted combination of description logics with rules leads to undecidability. In-
tuitively, the undecidability arises because adding rules to description logics causes the
loss of any form of tree model property. DL-safe rules [MSS04] have been proposed as
a subset of SWRL that allows to regain decidability. In DL-safe rules, the decidability
is retained by restricting the interchange of consequences between the component lan-
guages, without restricting the component languages themselves. Speci�cally, concepts
(roles) are allowed to occur in both rule bodies and heads as unary (binary) predicates in
atoms, but each variable in a rule is required to occur in a body literal whose predicate
is neither a DL-concept nor a DL-role. Intuitively, this restriction makes the logic de-
cidable because the rules are applicable only to individuals explicitly introduced in the
ABox. In Chapter 6 we discuss the consequences of this restriction in further detail.

3.5 Conclusions
In this chapter we have introduced the reader to ontologies as explicit speci�cations of a
conceptualization. We have presented the OWL ontology language that will serve as the
formal model for the work in the subsequent chapters. Further we have discussed query
languages for ontologies, including SPARQL, as means to access data represented using
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ontologies, as well as rule extensions, including SWRL and DL-safe rules as decidable
fragment to increase the expressive power of the OWL ontology language.

In the next chapter we discuss the role of ontologies in distributed information sys-
tems and how their application can address the particular challenges of heterogeneity,
dynamics and autonomy identi�ed in the previous chapter.



Chapter 4

Ontologies in Distributed Information
Systems

In Chapter 2 we have de�ned and discussed distributed information systems. We have
seen that an important aspect is to be able to interpret data from heterogeneous sources
in order for the data to be useful. In this chapter we show how ontologies as conceptual
models can be used to formalize the semantics of information in distributed information
systems.

The speci�c role of ontologies in distributed information systems is discussed in
Section 4.1. In Section 4.2 we analyze how semantic technologies based on ontologies
can be used in distributed systems to address the challenges elaborated on in the previous
chapter: We discuss ontology-based information integration as a solution to address
heterogeneity, ontology evolution as a possible way to address dynamics, and ontology-
based coordination to deal with the autonomy of nodes. We also point out which speci�c
aspects of these semantic technologies will be addressed by the contributions presented
in the subsequent part of this thesis. In Sections 4.3�4.5 we show how the speci�c
classes of distributed information systems presented in the previous chapter can bene�t
from these semantic technologies.

4.1 The Role of Ontologies in Distributed Information
Systems

In this section we discuss the role of ontologies in distributed information systems. In
order to do so, we come back to our de�nition of an information system: An information
system is a system that manages facts about some domain for a speci�c purpose. The
important aspect here is the purpose, i.e. that either a human or a computer makes use
of the data to perform a certain task. This requires an interpretation of the data, relating
the data structure with its semantics. In other words, we require a conceptualization as a
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structured interpretation of the domain. This conceptualization may be speci�ed using an
ontology. The ontology can thus be used to formalize the relationship between the data
and its meaning. The advantage of using an ontology for this speci�cation is obvious:
The speci�cation is explicit and formal � i.e. provided in an unambiguous language �
allowing for a clear interpretation by both humans and machines.

The aspect of providing a shared understanding becomes especially important in
the context of distribution. In a distributed information system we have data distributed
across multiple nodes and possibly different entities making use of the data. The shared
understanding is thus essential for a consistent interpretation of the data and interop-
erability across nodes. However, this does not necessarily mean that all nodes in the
distributed information system have to rely on the same global shared ontology. It does
allow individual nodes to rely on local ontologies, provided that there are means to relate
the local ontology to those of other nodes, as discussed in more detail in Section 4.2.1.

Of course, not only the domain of the information system can be speci�ed using an
ontology, but also the application aspect of the system. Using an application ontology
we can specify how the application's functionality is to be implemented and which do-
main knowledge is required [Bor97]. The bene�t of ontologies is that they are well suited
for a modular speci�cation of complex structured domain knowledge and that they are
independent of the application's implementation language. Sharing and reuse of ontolo-
gies across different domains and applications can therefore improve the development
of information systems.

A major bene�t of the grounding of ontologies in logics is the support for reasoning.
Reasoning can be used in different phases of the lifecycle of a distributed information
system.

Using ontologies at development time. During the design and speci�cation phase
it can be used to check whether the conceptual model is non-contradictory, i.e. free
of inconsistencies. Computing the concept hierarchy � to see whether which concepts
are specializations or equivalent � helps to assess whether the model has the intended
consequences or not [BHS04]. The same holds for the case when multiple ontologies
are to be related or change over time.

Using ontologies at runtime. The use of reasoning at runtime, i.e. after the infor-
mation system is deployed, is of considerably different nature, although pre-computed
concept hierarchies can still be useful for many runtime tasks. However, the focus typ-
ically is on reasoning tasks such as query answering over integrated data sources or the
rewriting of queries.

�A little semantics goes a long way.� As the use of reasoning requires the use of
formal ontologies, formal ontologies play an important role in distributed information
systems. However, there is a very large body of work that can and needs to be done us-
ing semi-formal ontologies [SR03]. The reasons lie in the ease with which semi-formal
ontologies can be built to a scale that is useful in distributed information systems: First,
semi-formal ontologies are typically easier to develop and reuse. The second reason is
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related to the trade-off between expressive power and computational complexity: Semi-
formal ontologies may be based on limited expressive power, are computationally less
expensive and as a consequence often turn out to be more scalable and practically more
useful. The observation of the usefulness of less expressive ontology languages also
resonates with the so-called Hendler hypothesis [Hen03]: �A little semantics goes a
long way.� Gruber [Gru04] even claims that �all practical ontologies are semi-formal.�
Prominent examples, where already informal and semi-formal ontologies can provide
bene�ts for distributed information systems, include exploiting hypernym/synonym rela-
tionships in information retrieval, classi�cation of information [BH04], query re�nement
[Sto04b], presentation and visualization of information [FSvH04], and natural language
interfaces to information systems [Cim04].

4.2 Semantic Technologies
In this section we present an overview of how semantic technologies can be used to ad-
dress the speci�c challenges we are faced with in distributed information systems. We
discuss ontology-based information integration as a solution to address heterogeneity,
ontology evolution as a possible way to address dynamics, and ontology-based coordi-
nation to deal with the autonomy of nodes.

4.2.1 Ontology-based Information Integration
Dealing with disparate heterogeneous data sources in distributed information sources
requires solving many problems of integration. Ontologies have been proposed as a key
technology to support integration: A number of disparate data sources can be integrated
through a shared understanding of the terminology in their respective ontology.

In Section 2.5.1, we have identi�ed three levels of heterogeneity: the data model
level, the schema level, and the data level. In the following we discuss, how ontology-
based information integration can serve as solution addressing all three forms of hetero-
geneity.

Integration on the data model level Regarding the integration on the data model
level, the choice of a data model to be used for the integration is an important problem.
Ontologies have been proven appropriate as common data model for this task. They
have the required expressiveness to capture many data models such as the relational
model [BLR03], object-oriented models [FGM00], UML [BCG05], and other models
[CLN99]. Further, ontologies are useful to enrich semantics of available schemata,
which typically do not provide enough semantics themselves to allow consistent inter-
pretation. Here, ontologies provide a clear semantics by grounding in logics, such that
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an unambiguous and precise interpretation of the data is guaranteed. Finally, the ground-
ing in logics enables inference and query support to deduce new facts and more accurate
results in response to a given query. The reasoning techniques available in the logical
framework provide valuable support for the data modeling activity. For example, they
allow to check the consistency of the entire model.

With OWL being approved as a standard for representing ontologies on the Web
[HPSvH03], an important step on the road to interoperability has been taken. In its
few years of existence, the OWL language has gained popularity across research and
industry. In this spirit, the models and methods developed in this thesis build on the
OWL data model.

Integration on the schema level Semantic integration on the schema level involves
a number of several steps: (1) identifying correspondences between heterogeneous
schemas, (2) representing these correspondences in an appropriate mapping formalism,
and (3) using these mappings for a given integration task.

The �rst important problem in semantic integration is that of discovering seman-
tic correspondences � or mappings � between the vocabularies of different data sources.
Mapping discovery is a very active research topic. There exists a multitude of approaches
to (semi-)automatically identify correspondences by applying various techniques, in-
cluding for example linguistic analysis, use of heuristics, machine learning, or graph-
based techniques. In the end, most of these techniques rely on a notion of similarity
to identify corresponding concepts. In Chapter 7 we present a similarity framework for
ontologies that allows to combine different notions of similarity relevant for integrating
heterogeneous sources.

Once the correspondences between data sources are known, the next important prob-
lem is that of representing the mappings using an appropriate formalism and using them
for some speci�c integration tasks, such as data transformation or query answering over
heterogeneous data sources. A common approach in data integration is to represent map-
pings as views over data sources, often using the notion of a global ontology to provide
an integrated view over the heterogeneous data sources. If the global ontology is de�ned
as a view over the local sources, we speak of the Global-as-View (GAV) approach, if the
local sources are de�ned as a view over the global ontology, we speak of the Local-As-
View (LAV) approach. However, in decentralized distributed information systems, the
integration of data sources poses a particular challenge because of the autonomy of the
nodes, which often prohibits the de�nition of a global ontology. Here, direct mappings
in both directions between the individual data sources are required. A formalism to rep-
resent such mappings for OWL ontologies along with an algorithm for query answering
is presented in Chapter 6.



4.2 Semantic Technologies 45

Integration on the data level A similar step as for the mapping discovery on the
schema level must be carried out on the data level. Heterogeneity on the data level often
arises due to abbreviations, syntactic errors, and missing conventions for representation.
We thus need to identify data values that represent the same real-world entity. Popular
examples include matching citations of research papers, authors, and institutions. Here
again, ontologies can provide the required background knowledge for integration.

Most efforts in semantic integration focus on structured artifacts, but even in the case
where no structured data models are used, e.g. for �le sharing of unstructured docu-
ments, ontologies can help to annotate data sets and to de�ne relationships among het-
erogeneous data sets.

4.2.2 Ontology Evolution
In distributed information systems, domain knowledge evolves continually. These
changes include accounting for the modi�cation in the application domain, incorporating
additional functionality according to changes in the user needs, organizing information
in a better way, etc. Ontology evolution can be de�ned as the timely adaptation of an
ontology to such changes and the consistent management of these changes [Sto04a]. In
[SMMS02] the authors identify a possible six-phase evolution process. As shown in Fig-
ure 4.1 the phases are: (1) change capturing, (2) change representation, (3) semantics of
change, (4) change propagation, (5) change implementation, and (6) change validation.
In the following, we use this evolution process as the basis for an overview of the area.
For a more detailed overview we refer the reader to [HVS05].

 

Implementation Representation Propagation Validation Capturing 
Semantics 

of change 

Core component 

Figure 4.1: Ontology Evolution Process

Change Capturing The process of ontology evolution starts with capturing changes
either from explicit requirements or from the result of change discovery methods, which
induce changes from existing data. Explicit requirements are generated, for example,
by ontology engineers who want to adapt the ontology to new requirements or by the
end-users who provide the explicit feedback about the usability of ontology entities.



46 4. Ontologies in Distributed Information Systems

The changes resulting from this kind of requirements are called top-down changes. Im-
plicit requirements leading to bottom-up changes are re�ected in the behavior of the
system and can be discovered through the analysis of this behavior. [Sto04a] de�nes
three types of change discovery: structure-driven, usage-driven and data-driven. Data-
driven changes are generated by modi�cations to the underlying dataset, such as text
documents or a database, representing the knowledge modeled by an ontology. Whereas
structure-driven changes can be deduced from the ontology structure itself, usage-driven
changes result from the usage patterns created over a period of time. In Chapter 9 we
present a novel technique to capture recommendations for ontology changes from the
usage behavior in a community of users based on methods from collaborative �ltering.

Change Representation To resolve changes, they have to be identi�ed and repre-
sented in a suitable format. That means, the change representation needs to be de�ned
for a given ontology model. Changes can be represented on various levels of granularity,
e.g. as elementary or complex changes. A common practice is to provide a taxonomy or
ontology of changes for a given ontology model.

In Chapter 8, we de�ne a form of change representation for OWL, where we fol-
low an ontology model in�uenced by Description Logics, which treats an ontology as a
knowledge base consisting of a set of axioms. Accordingly, we allow the atomic change
operations of adding and removing axioms. Obviously, representing changes at the level
of axioms is very �ne-grained. However, based on this minimal set of atomic change
operations, it is possible to de�ne more complex, higher-level descriptions of ontology
changes. Composite ontology change operations can be expressed as a sequence of
atomic ontology change operations. The semantics of the sequence is the chaining of the
corresponding functions.

Semantics of Change The semantics of change refers to the effects of the change on
the ontology itself and in particular checking and maintaining ontology consistency af-
ter the change application. The meaning of consistency much depends on the underlying
ontology model. It can for example be de�ned using a set of constraints, as in the KAON
ontology model in [Sto04a], or it can be given a model-theoretic de�nition. In Chapter
8 we describe the semantics of change for the consistent evolution of OWL ontologies,
considering structural, logical, and user-de�ned consistency conditions. Here, resolution
strategies map each consistency condition to a resolution function, which returns for a
given ontology and an ontology change operation an additional change operation, which
� applied to the ontology � results in an ontology that satis�es the consistency condition.
The semantics of OWL ontologies is de�ned via a model theory: An interpretation satis-
�es an ontology, if it satis�es each axiom in the ontology. Axioms thus result in semantic
conditions on the interpretations. Consequently, contradictory axioms will allow no pos-
sible interpretations. The goal of the resolution function is to determine a set of axioms



4.2 Semantic Technologies 47

to remove, in order to obtain a logically consistent ontology with �minimal impact� on
the existing ontology. Obviously, the de�nition of minimal impact may depend on the
particular user requirements.

Finally, it should be noted that there exist other approaches to deal with inconsis-
tencies: In Chapter 8.6 we compare consistent evolution of OWL ontologies with other
approaches in a framework for dealing with inconsistencies in changing ontologies.

Change Propagation Ontologies often reuse and extend other ontologies. The task of
the change propagation phase of the ontology evolution process is to ensure consistency
of dependent artefacts after an ontology update has been performed. These artefacts
may include dependent ontologies, instances, as well as application programs running
against the ontology.

[MMS03a] present an approach for evolution in the context of dependent and dis-
tributed ontologies. The authors de�ne the notion of Dependent Ontology Consistency
and Replication Ontology Consistency for the case of multiple ontologies distributed
over multiple nodes. Further, the authors contrast Push-based and Pull-based approaches
for the synchronization of dependent ontologies are compared.

Change Implementation The role of the change implementation phase of the ontol-
ogy evolution process is (1) to inform an ontology engineer about all consequences of a
change request, (2) to apply all the (required and derived) changes and (3) to keep track
about performed changes.

Change Noti�cation. In order to avoid performing undesired changes, a list of all
implications for the ontology and dependent artefacts should be generated and presented
to the ontology engineer, who is then able to accept or abort these changes.

Change Application. The application of a change should have transactional proper-
ties, i.e. (A) Atomicity, (C) Consistency, (I) Isolation, and (D) Durability. The approach
of [Sto04a] realizes this requirement by the strict separation between the request speci-
�cation and the change implementation. This allows the set of change operations to be
easily treated as one atomic transaction, since all the changes are applied at once.

Change Logging. A typical way to keep track of the performed changes is using an
evolution log. [Sto04a] proposes an evolution log based on an evolution ontology. The
evolution ontology covers the various types of changes, dependencies between changes
(causal dependencies as well as ordering), as well as the decision making process.

Change Validation There are numerous circumstances where it can be desirable to
reverse the effects of the ontology evolution, as for example in the following cases:

• The ontology engineer may fail to understand the actual effect of the change and
approve a change which should not be performed;
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• It may be desired to change the ontology for experimental purposes;

• When working on an ontology collaboratively, different ontology engineers may
have different ideas about how the ontology should be changed.

It is the task of the change validation phase to recover from these situations. Change
validation enables justi�cation of performed changes or undoing them at user's request.
Consequently, the usability of the ontology evolution system is increased.

4.2.3 Ontology-based Coordination
As we have seen in Section 2.5.3, the autonomy of nodes in distributed information
systems is a prime challenge for the coordination of such systems. Decentralized ar-
chitectures prohibit to pre-impose top-down coordination models. However, recent ad-
vances show that decentralization is not necessarily a threat, but can be exploited as a
new opportunity to achieve coordination. Central to these advances is the idea of self-
organization. In the following we show how the paradigm of self-organization can be
complemented with the use of ontologies to address design- and communication auton-
omy in distributed information systems.

Self-Organization. The idea of self-organization is based on the principle that global
structures in a complex system can emerge from only local interactions, information
and decisions. A self-organizing system functions through contextual local interactions,
without any central control. Components aim to individually achieve simple tasks, but a
complex collective behavior emerges from their mutual interactions. The system modi-
�es its structure and functionality to adapt to requirements and to the environment based
on previous experience. Despite the absence of central control, global information or
an external in�uence, a self-organizing system evolves towards displaying global sys-
tem behaviors and structures that are more than an aggregation of the properties of its
component parts. These global structures are not prede�ned in advance, instead they
are emergent phenomenons. Self-organizing systems typically enjoy failure resilience
and scalability, as the coordination is completely decentralized. Nature provides many
examples for self organizing processes, including the creation of structures by social an-
imals, such as social insects, or �ocking behavior, such as the formation of �ocks by
birds [CFS+01].

The interest for self organization as a foundation for distributed information systems
originates from the fact that these systems need to cope with requirements and con-
straints stemming from the increased dynamics, autonomy and decentralization � the
same or similar characteristics that can be observed in natural systems exhibiting self
organization.
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Design Autonomy � Emergent Semantics and Meaning Coordination. A key chal-
lenge in the development of open distributed information systems is the coordination of
meaningful information exchange across nodes that exhibit design autonomy, i.e. au-
tonomously de�ne their schemas to organize their local data. Existing approaches of
ontology-based information access almost always assume a setting where information
providers share an ontology that is used to access the information. In a decentralized
setting with autonomous nodes, this assumption does no longer hold. We rather face
the situation where individual nodes maintain their own view of the domain in terms of
the organization of the local �le system and other information sources. Enforcing the
use of a global ontology in such a setting would mean to give up the bene�ts of the
decentralized approach. Recently, a variety of methods have been developed to obtain
semantic interoperability in a bottom-up manner, without pre-imposing global models
for meaning coordination. In [ACCM+04], the term emergent semantics has been used
as an umbrella for decentralized approaches to semantic interoperability exploiting the
effects of self-organization. The core idea of emergent semantics is that coordination
and agreement are emergent phenomenons that arise from interactions. According to
[ACCM+04], emergent semantic systems can be characterized by �ve principles:

1. Agreements as a semantic handshake protocol. Meaningful exchanges occur on
the basis of mutually accepted propositions. The set of mutual beliefs constitutes
the agreements between interacting agents. It is the semantic handshake upon
which shared, emerging and dynamic ontologies can be established.

2. Dynamic agreements emerge from negotiations. Information exchange is neces-
sary to negotiate new agreements or to verify existing ones. Interaction is required
to resolve semantic con�icts, to negotiate and establish consensus on the data in-
terpretation and to verify whether a consensus leads to the expected result.

3. Agreements emerge from local interactions. The complexity of emergent seman-
tics and communication costs preclude the option for a node to seek agreements
simultaneously with a large number of other nodes; instead communication is kept
local. Global agreements are obtained through aggregations of local agreements.
As a result, even if a node is only aware of a small fractions of nodes in the sys-
tem, it will nevertheless be able to interoperate over the whole network indirectly
by exploiting aggregate information.

4. Agreements are dynamic and self-referential approximations. Since agreements
rely on the context of interaction, their boundaries are also fuzzy. Two interacting
nodes may achieve an agreement in one application and fail in another, even if the
semantic con�icts are the same. Interpretations depend on the context. In turn,
agreements are dynamic. Local consensus will be in�uenced by the context of
existing global agreements, thus the process of establishing agreements is self-
referential.
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5. Agreements induce semantic self-organization. In an emergent semantic system,
the state space consists of all local communication states reached in consensus
building. The attractor, which embodies the global semantic agreement, is ob-
tained when agents locally reach acceptable agreements that are as consistent as
possible with the information they receive.

A well-known example in the category of emergent semantic systems is �The Chatty
Web� [ACMH03]. The problem of establishing semantic interoperability is viewed as a
self-organizing process in which agreements on the interpretation of data are established
in a localized, and incremental manner: Nodes provide translations between schemas
that are relevant for them and can learn about other translations by routing queries, which
is called gossiping. Nodes assess the quality of translations based on three syntactic and
semantic criteria: (1) a syntactic analysis of queries after mappings have been applied
in order to determine the potential information loss incurred through the transformation,
(2) a semantic analysis of composite mappings along cycles in the mapping graph in
order to determine the level of agreement that nodes achieve throughout the cycle, and
(3) a semantic analysis of search results obtained through composite mappings based on
the preservation of data dependencies. The assessment process is incremental and the
quality ratings are adjusted along with the operation of the system. In this way, semantic
interoperability is increased and semantic agreement at a global level is achieved.

Communication Autonomy � Semantic Network Organization. Due to the commu-
nication autonomy of nodes, network organization is a critical problem for the coordina-
tion of directing requests to the relevant nodes in a distributed information system. This
problem has received particular attention in recent years especially in the Peer-to-Peer
community, where a multitude of approaches to network organization have been devel-
oped. Generally speaking, all of these approaches rely on building overlay networks on
top of an existing network infrastructure to organize and coordinate the communication
between nodes, but they vary signi�cantly in their degree of centralization. For example,
Distributed Hash Tables (DHTs) allow to ef�ciently locate data items in large networks
based on key-value lookups. Unstructured approaches rely on constrained or uncon-
strained broadcasting mechanisms to route requests to nodes in the overlay network.

In ontology-based distributed information systems, we have additional knowledge
that can be used to further improve the performance of the network organization: Based
on the ontology, semantic overlay networks can be established, in which links between
nodes can be created based on semantic relationships. Such overlays allow to place data
nodes semantically together. In general, the idea of placing data nodes close to where
relevant queries originate from was already used in early distributed databases [Kos00].
However, these early approaches were based on the assumption that there is a small
number of stable nodes, and that there is central control over the organization. Build-
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ing semantic overlay networks on top of highly scalable networks without centralized
control, opens completely new opportunities.

Edutella [NWS+03] realizes an ontology-based network organization by building
concept clusters into a hypercube network topology: Nodes with identical or similar
interest are grouped in concept clusters, i.e. speci�c logical combinations of ontology
concepts. Super nodes establish and maintain speci�c concept clusters. Based on such a
topology, queries can be ef�ciently routed to relevant nodes in the network.

In Chapter 11 we present a more detailed overview of approaches to network orga-
nization and develop a new approach for a semantic overlay network that operates in a
completely decentralized manner.

4.3 Semantics in Federated Databases
In this and the following sections we show how semantic technologies are applied in the
speci�c classes of distributed information systems and how they address the particular
characteristics we identi�ed.

The use of semantics and metadata has a long history in federated database systems.
The focus has traditionally been on addressing the heterogeneity of databases. Depend-
ing on the respective architecture and the corresponding degree of autonomy, we �nd
three main alternatives to mediate metadata and ontologies across database boundaries
[AM99]: In the global approach, component databases agree on a common, federa-
tion wide ontology beforehand, and any information sharing and exchange takes place
via this global ontology. An approach that allows for more autonomy is based on the
use of semantic dictionaries or ontologies, where components agree on a pool of real-
world concepts and relationships between concepts. Each component is responsible for
expressing the sharable portion of its conceptual schema in terms of the common vocab-
ulary.

As with an increasing number of databases in a federation establishing the corre-
spondences between the sources manually becomes an expensive task, there has been a
considerable amount of work on automated schema matching exploiting semantics (c.f.
[DLD+04]). The situation becomes even more challenging, if the data sources to be fed-
erated do not carry a �xed schema at all. Recent developments such as the InfoSphere
project [BHM+05] address this problem by exploiting domain ontologies describing def-
initions of data classes to be able to classify the data provided by a data source based
solely on the properties of their data values.



52 4. Ontologies in Distributed Information Systems

4.4 Semantics-based Peer-to-Peer Systems
The �rst successful Peer-to-Peer information systems were systems whose primary focus
was that of very simple resource sharing. These resources typically were �les, and search
for resources was restricted to simple keywords or �le names. Ef�cient algorithms, for
example based on DHTs, have been developed to ef�ciently support key-value lookups.
However, it soon turned out that resource descriptions based on keywords and simple
key-value lookups were not appropriate to support data sharing beyond simple �le shar-
ing.

On the other hand, the Peer-to-Peer paradigm was taken up in the database com-
munity, where Peer-to-Peer databases were seen as the natural evolution of federated
databases with an increased number of nodes, higher autonomy and higher degree of
decentralization. Naturally, the advantages of Peer-to-Peer came with signi�cant chal-
lenges for the scalability and interoperability, as many methods developed for federated
databases assumed a signi�cant amount of manual design and control.

In Peer-to-Peer systems we are thus again faced with a trade-off between scala-
bility and complexity of the data source descriptions and query languages. Much of
the current research thus focuses on pushing the boundaries of this trade-off. It has
turned out that semantic technologies are a promising candidate for achieving this goal
(c.f. [EHvH+03], [NWQ+02]). In semantics-based Peer-to-Peer systems the shared
data itself is represented using ontologies to allow more expressive queries than simple-
keyword based queries. The use of semantic descriptions of data sources stored by peers
and indeed of semantic descriptions of peers themselves helps in formulating queries
such that they can be understood by other peers. The ontologies provide the shared un-
derstanding for the communication. Often, these ontologies are not globally imposed,
but can be autonomously de�ned by the individual peers. Mapping formalisms speci�-
cally developed for Peer-to-Peer integration allow to express mappings without the use
of a global ontology. With the use of emergent semantics it is even possible to deal with
changing interpretations. Further, ontologies help to address heterogeneity on the data
level, i.e. the problem of dealing with duplicate information, which is a very common
problem in Peer-to-Peer information systems.

Besides enabling interoperability, the second place where Peer-to-Peer systems can
bene�t from semantics is in the network organization: Semantic representation of peer
pro�les allow to build semantic overlay networks, where the neighborhood mirrors se-
mantic relationships between the peers. In these overlay networks, queries can be ef�-
ciently routed to relevant peers.
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4.5 Semantic Grid
The Semantic Grid can be seen as a natural evolution of the current Grid towards a
knowledge-centric and metadata-driven computing paradigm. The prime driver behind
the Semantic Grid effort is the use of explicit semantics for application and informa-
tion integration as well as describing Grid resources to enable resource discovery tasks
([RBJS03], [DRJS03]). The ability to make meaningful queries over disparate data
sources, and to make use of the data in ways which may or may not have been antic-
ipated, requires interoperability of information. For example, this may involve mapping
between terminologies used in different domains [RJS05]. This is the classical role of
semantic technologies. In the Semantic Grid, ontologies are used for the elaboration,
enrichment and annotation of Grid resources, which include users' tasks and needs, data
sources, as well as computational resources.

The advance of the Semantic Grid is accelerated by the fact that ontologies, the
backbone of semantic technologies, already exist in many application domains, such as
bioinformatics. Many semantic technologies can thus be directly applied to the Grid.
Yet to achieve full interoperability, semantic technologies need to be applied inside the
Grid middleware [RH04].

In e-Science, which is the main application area of the Semantic Grid, much fo-
cus is on knowledge discovery and related processes that produce knowledge. Many of
these processes involve operations that go beyond the management of information, but
instead constitute complex work�ows. As a result, next generation Grid architectures
introduce a new layer for the management of knowledge to re�ect the shift in the focus
from managing information to managing knowledge [RBJS03]. The Knowledge Grid
is concerned with the way that knowledge is acquired, used, retrieved, published and
maintained. Related to this shift is the tendency towards service-oriented architectures,
where such knowledge producing processes can be managed as �rst-class objects. Also
here semantic technologies provide useful solutions: Semantic Web Services including
techniques for service discovery and composition are directly applicable to the next gen-
eration Semantic Grid [TDK03].

4.6 Conclusions
In this chapter we have discussed the role of ontologies and semantic technologies in dis-
tributed information systems. We have introduced ontologies as explicit speci�cations of
conceptualizations that provide a common and shared understanding of a domain. In dis-
tributed information systems, ontologies can be used to formally specify the relationship
between the data and its meaning, allowing for a clear and unambiguous interpretation
of the data distributed across multiple nodes. We have further analyzed how the use of
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ontologies addresses the challenges arising from the characteristics heterogeneity, dy-
namics and autonomy of nodes:

• Ontology-based information integration allows to realize integrated access to het-
erogeneous data sources.

• Ontology evolution allows to manage changes in distributed information systems
in a consistent manner.

• Ontology-based coordination allows to organize the interactions of autonomous
nodes in a decentralized and to an increasing extent self-organizing manner.

Finally, we have shown how the use of these semantic technologies is relevant in feder-
ated databases, Peer-to-Peer systems and the Grid.

While in this chapter we have provided a compact overview of the �eld of seman-
tic technologies in distributed information systems, in the course of this thesis we will
develop and present particular novel methods in detail. In the next chapter we will intro-
duce a speci�c application scenario of distributed information management, which will
serve as a further motivation and running example throughout the thesis.



Chapter 5

Scenario: Bibster - Sharing
Bibliographic Metadata

In this chapter we present one concrete application scenario to motivate and illustrate
the use of semantic technologies in distributed information systems. The application
scenario addresses the daily life of a researcher, who regularly has to search for publica-
tions or their correct bibliographic metadata. The scenario that we envision here is that
researchers in a community share bibliographic metadata via a Peer-to-Peer system. The
data may have been obtained from BibTeX �les or from a bibliography server such as
the DBLP database1. As one may easily recognize, this scenario exhibits the character-
istics that strongly require the use of a decentralized information system: A centralized
solution does not exist and cannot exist, because of the multitude of informal workshops
that researchers refer to, but that do not show up in centralized resources such as DBLP.
Any such centralized resource will only cover a limited scienti�c community. For exam-
ple, DBLP covers a lot of Arti�cial Intelligence, but almost no Knowledge Management,
whereas a lot of work is being done in the overlap of these two �elds. At the same time,
many individual researchers are willing to share their resources, provided they do not
have to invest work in doing so.

Furthermore, the scenario exhibits the characteristics we identi�ed for distributed in-
formation systems: We are faced with heterogeneity of different forms; while a small
common-core ontology of bibliographic information exists (title, author/editor, etc),
much of this information is very volatile and users de�ne arbitrary add-ons, for example
to include URLs of publications. Because of the semi-structured nature of bibliographic
data, there may be many different representations of the same bibliographic entries, de-
tecting duplicates thus is a problem.

The scenario is dynamic in the sense that both the domain (e.g. that of Computer Sci-
ence literature) as well as the interests of the users in that domain change over time. New

1http://dblp.uni-trier.de/
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concepts (or topics) may become important, others may disappear, and these changes
need to be incorporated accordingly.

Finally, in our scenario we �nd a strong degree of autonomy: While the researchers
are typically willing to share their data, they only do so as long as they are able to
maintain local control over that data and the sharing does not interfere with their local
operations.

This application scenario has been realized and implemented in the Bibster system
[HBE+04]. Based on this system, we have performed several evaluation studies to show
the bene�t of the use of semantic technologies.

This chapter is structured as follows. In Section 5.1 we present major use cases
for the Bibster system, in Section 5.2 we illustrate the design of Bibster as a semantics-
based Peer-to-Peer system. We demonstrate the use of ontologies and particular semantic
technologies in Section 5.3.

5.1 Major Use Cases for Bibster
Bibster is aimed at researchers that share bibliographic metadata. Requirements for
Bibster includes capabilities that support their daily work. Researchers may want to

1. query a single speci�c peer (e.g. their own computer, because it is sometimes
hard to �nd the right entry there), a speci�c set of peers (e.g. all colleagues at an
institute) or the entire network of peers.

2. search for bibliographic entries using simple keyword searches, but also more ad-
vanced, semantic searches, e.g. for publications of a special type, with speci�c
attribute values, or about a certain topic.

3. integrate results of a query into a local repository for future use. Such data may
in turn be used to answer queries by other peers. They may also be interested in
updating items that are already locally stored with additional information about
these items obtained from other peers.

The screenshot in Figure 5.1 partially indicates how these use cases are realized in
Bibster. The Scope widget allows for de�ning the targeted peers, the Search and Search
Details widgets allow for keyword and semantic search; Results Table and BibtexView
widgets allow for browsing and re-using query results. The query results are visualized
in a list grouped by duplicates. They may be integrated into the local repository or
exported into formats such as BibTeX and HTML.



5.2 Design of Bibster 57

Figure 5.1: Bibster Screenshot

5.2 Design of Bibster
The Bibster system has been implemented as an instance of the Swapster System archi-
tecture as introduced in [EHvH+03]. Swapster was developed in the SWAP project as a
generic platform to account for the general need of sharing semantics-based information
in a Peer-to-Peer fashion. Figure 5.2 shows a high-level design of the architecture of a
single node in the Peer-to-Peer system.

Communication Adapter: This component is responsible for the network communi-
cation between peers. It serves as a transport layer for other parts of the system, for
sending and forwarding queries. It hides and encapsulates all low-level communication
details from the rest of the system. In the speci�c implementation of the Bibster system
we use JXTA [TAD+02] as the communication platform.
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Figure 5.2: SWAP System Architecture

Knowledge Sources: The knowledge sources in the Bibster system are sources of bib-
liographic metadata, such as BibTeX �les stored locally in the �le system of the user. In
our terminology of distributed information systems, the knowledge sources in the SWAP
architecture actually correspond to data sources. The term knowledge sources has been
chosen due to the focus of SWAP on knowledge management applications. In this sense,
the data sources in fact are the original �source of the knowledge�.

Knowledge Source Integrator: The Knowledge Source Integrator is responsible for
the extraction and integration of internal and external knowledge sources into the Local
Node Repository. In Section 5.3.1 we describe the process of ontology-based integration
of local and remote sources in Bibster and how different aspects of heterogeneity are
addressed, for example how duplicate query results are detected.

Local Node Repository: In order to manage its local information as well as infor-
mation acquired from remote sources, each peer maintains a Local Node Repository
providing the following functionality: (1) Mediate between different information mod-
els, (2) support query formulation and processing, (3) specify the peer's interface to the
network, and (4) provide the basis for peer selection. In the Bibster system, the Local
Node Repository is based on the Sesame Repository [BKvH01].
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Informer: The task of the Informer is to pro-actively advertise the available informa-
tion of a peer in the Peer-to-Peer network and to discover peers with information that
may be relevant for answering the user's queries. This is realized by sending advertise-
ments about the expertise of a peer. In the Bibster system, these expertise descriptions
contain a set of topics that the peer is an expert on. Peers may accept � i.e. remember
� these advertisements, thus creating a semantic link to the other peer. These semantic
links form a semantic overlay network, which is the basis for intelligent query routing.

Query Replier: The Query Replier is the coordinating component controlling the pro-
cess of distributing queries. It receives queries from the User Interface or from other
peers. In both cases it tries to answer the query or distribute it further according to the
content of the query. The decision to which peers a query should be sent is based on the
knowledge about the expertise of other peers.

User Interface: The User Interface (Figure 5.1) allows the user to import, create and
edit bibliographic metadata as well as to easily formulate queries.

5.3 Ontologies in Bibster
Ontologies are crucial throughout the usage of Bibster, namely for importing data, for-
mulating queries, routing queries, and processing answers.

First, the system enables users to import their own bibliographic metadata into a local
repository. Bibliographic entries made available to Bibster by a user are automatically
aligned to two ontologies: The �rst ontology (SWRC [SBH+05]) describes different
generic aspects of bibliographic metadata (and would be valid across many different
research domains), the second ontology (ACM Topic Ontology2) describes speci�c cat-
egories of literature for the Computer Science domain.

Second, queries are formulated in terms of the two ontologies: Queries may con-
cern �elds like author, publication type, etc. (using terms from the SWRC ontology) or
queries may concern speci�c Computer Science terms (using the ACM Topic Ontology).

Third, queries are routed through the network depending on the expertise models of
the peers describing which concepts from the ACM ontology a peer can answer queries
on. A matching function determines how closely the semantic content of a query matches
the expertise model of a peer. Routing is then done on the basis of this semantic ranking.

Last, answers are returned for a query. Due to the distributed nature and potentially
large size of the Peer-to-Peer network, this answer set might be very large and contain
many duplicate answers. Because of the semi-structured nature of bibliographic meta-
data, such duplicates are often not exactly identical copies. Ontologies help to measure

2http://www.acm.org/class/1998/
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the semantic similarity between the different answers and to remove apparent duplicates
as identi�ed by the similarity function.

In the following, we will present the use of ontologies in Bibster and corresponding
semantic technologies along the dimensions of ontology-based information integration,
ontology evolution and ontology-based coordination.

5.3.1 Integrating Bibliographic Metadata
Representation of Bibliographic Metadata with the SWRC Ontology Many re-
searchers have accumulated extensive collections of BibTeX �les for their bibliographic
references. However, these �les are semi-structured and thus single attributes may be
missing or may not be interpreted correctly.

To enable interoperability between nodes in the Peer-to-Peer system, the biblio-
graphic metadata is represented using an ontology. We here follow a transformation-
based approach: Plain BibTeX �les are lifted into an ontology-based representation with
BibToOnto3. The target ontology is the Semantic Web Research Community Ontology
(SWRC), which models among others a research community, its researchers, topics,
publications, tools, and properties between them. The SWRC ontology de�nes a shared
and common domain theory, which helps users and machines to communicate concisely,
and supports the exchange of semantics-based metadata.

The SWRC ontology generically models key entities relevant for typical research
communities and the relations between them. The current version of the ontology com-
prises a total of 53 concepts in a taxonomy and 42 object properties, 20 of which are
participating in 10 pairs of inverse object properties. All entities are enriched with addi-
tional annotation information.

The SWRC ontology comprises at total of six top level concepts, namely the
Person, Publication, Event, Organization, Topic and Project
concepts. Figure 5.3 shows a small portion of the SWRC ontology with its main
top-level concepts and relations4. The Person concept models any kind of human
person, and a large number of properties restrict their domain or range to individuals
of this concept like worksAtProject or author, respectively. The Person
concept is specialized by a large number of � not necessarily disjoint � subconcepts,
e.g. Employee, Student and the like. The Event concept is meant to model
different types of events and is thus specialized by a wide range of concepts includ-
ing events like Lecture or Conference. The Publication concept sub-
sumes all different types of research publications modeled in close correspondence with
the well known BibTeX publication types like Article or Proceedings. The

3http://bibtoonto.sourceforge.net/
4The ontology is visualized according to the UML Pro�le of the OWL Ontology De�nition Metamodel

originally presented in [BVEL04] and extended in [BHHS06].
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Organization and Project concepts model more abstract concepts like the sub-
concepts Department or SoftwareProject, respectively. The Topic cap-
tures arbitrary topics of interest, as explained in the following.

Figure 5.3: Main Concepts of the SWRC Ontology

Representation of Topic Classi�cation. A key feature of bibliographic metadata is
the classi�cation against established topic hierarchies. In a sense, topic hierarchies can
be seen as light-weight ontologies by themselves that complement the SWRC ontology
with domain speci�c models of particular research domains. One example is the ACM
topic ontology for the Computer Science domain. Further, many other topic hierarchies
for other domains exist, for which an integration with the SWRC ontology is desirable.

In alignment with the choice of our ontology language, which requires a strict
separation between concepts and instances, we model topics as instances of the con-
cept Topic. The instances of Topic are arranged hierarchically by means of the
subtopic relation. The relation between publications and a topic is established via
the isAbout property. To link a speci�c topic ontology with the SWRC ontology,
the topic concept of the topic ontology, e.g. for the ACM topic ontology: ACMTopic,
specializes the Topic concept of the SWRC ontology Topic.

BibToOnto automatically classi�es bibliographic entries according to the ACM topic
ontology using a simple keyword based approach [HSvH04]. Additionally, it is possi-
ble to reclassify the entries manually in the user interface of Bibster. The ACM topic
ontology is a standard schema for describing and categorizing computer science litera-
ture. It covers 1287 topics of the computer science domain. In addition to the sub- and
supertopic relations, it also provides information about related topics.
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The following example shows a transformation of a BibTeX entry to an SWRC
ontology-based item. The result5 is shown in Figure 5.4.

Example 5 @ARTICLE{codd70relational
author = "Edgar F. Codd",
year = "1970",
title = "A relational model for

large shared data banks",
journal = "Communications of ACM",
volume = "13",
number = "6",
pages = "377--387"}

Figure 5.4: SWRC Sample Metadata

Semantic Querying Each peer node in the Bibster system manages a local repository
with bibliographic data extracted by BibToOnto or integrated from other peers. This
repository provides an interface for query answering against the data with the semantics
provided by the ontology.

In our running example, a researcher is querying for publications written by the
author Codd about database management. Let us look at the corresponding query in
SPARQL6:

Example 6 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX acm:<http://daml.umbc.edu/ontologies/topic-ont#>
PREFIX topic: <http://daml.umbc.edu/ontologies/classification#>

CONSTRUCT {?pub swrc:title ?title; swrc:author ?author }

5For better readability we used a concatenation of the author name and the title of the publication as
identi�ers in this example. In the Bibster system however we calculate hash codes over all attribute values
to guarantee the uniqueness of URIs.

6In the implementation of the original Bibster system, we used SeRQL [Bro05] � a predecessor of
SPARQL � as a query language. For consistency of this work, we provide examples in SPARQL. For the
matter of the queries under consideration, this is a purely syntactic difference.
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FROM { ?pub rdf:type swrc:Publication;
swrc:title ?title;
acm:topic <topic:ACMTopic/Information_Systems/Database_Management>
swrc:author ?author . ?author swrc:lastName "Codd"

}

This query demonstrates several characteristics of semantic query languages that are
required in the context of Bibster. We here brie�y outline the importance of some of the
properties of ontology query languages as analyzed in Chapter 3.3:

1. The combination of different ontologies: The user is able to formulate queries
against multiple ontologies in this case the combination of SWRC and ACM topic
ontology.

2. The use of the semantics de�ned by the ontology: The query takes the semantics
of the underlying ontologies into account. As a very simple example, the ontology
de�nes the concept Article to be a subconcept of Publication, the query
will therefore return the article of Example 5.

3. The closure of the query language: Closure here refers to the fact that the query
operates on an ontology and returns an ontology as a result (as de�ned by the
CONSTRUCT pattern), which may be integrated into the local repository, sent to
other peers, or queried again.

Semantic Duplicate Detection When querying the Bibster network one receives a
large number of results with an often high number of duplicates. This is due to the fact
that no centralized but many distributed local repositories have been used. Furthermore,
the representation of the metadata is very heterogeneous and possibly even contradicting.
To enable an ef�cient and easily usable system, Bibster presents query results grouping
duplicates together. Duplicates in Bibster are bibliographic entries which refer to the
same publication, person, or organization in the real world, but are modeled as different
resources. Bibster uses speci�c similarity functions to recognize two resources as being
duplicates. For the calculation of the similarity we apply the framework for similarity in
ontologies, which will be presented in Chapter 7.

For each resource type (publication, person, organization), a set of speci�c features
used to assess the similarity between two of its instances has been compiled. For in-
stance, publications are assessed based on their titles, publication types, authors, years,
ACM topics, etc. For each of the features we use different individual similarity functions,
which are grouped as follows:

Individual similarity functions have been used on a data value level, an ontology
level, and background knowledge about the bibliographic domain as described in de-
tail in Chapter 7. From the variety of individual similarity functions, an overall value
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is obtained with an aggregated similarity function, using a weighted average over the
individual functions.

For Bibster, the weights have been assigned based on experiments with sample data.
More precisely, several duplicates were detected manually. From these training dupli-
cates the weights were adjusted to achieve a maximal f-measure (combination of preci-
sion and recall) value.

Those pairs of resources are considered as duplicates, whose similarity is larger than
a certain threshold. Instead of presenting all individual resources of the query result,
duplicates are visualized as one, merged, resource. The merged resources comprise the
union of statements of the individuals identi�ed as duplicates. In the case of con�icting
property values, heuristics for the merging of resources are applied (e.g. for book titles
to select the most detailed value with the least abbreviations).

5.3.2 Collaborative Ontology Evolution
In the initial Bibster system we assumed a globally shared and static ontology. While
such an assumption is practical for the domain ontology part modeled by the SWRC
ontology, it poses a serious restriction for the topic ontology that is used to classify the
bibliographic metadata. Already the sheer size of the ACM topic ontology makes it
quite dif�cult for users to easily locate topics which are relevant for them. We therefore
extended the Bibster system to alleviate this situation and allow for personal ontologies
that can be adapted and changed over time by the user.

Evolution of Personal Ontologies These personal ontologies re�ect the interests of
users at certain times. Interests might change as well as the available data, therefore the
personalization requires quite naturally support for the evolution of personal ontologies.
For example, a particular user might become interested in the topic of Heterogeneous
Databases and decide to add it to his personal ontology as a subtopic of Database Man-
agement. Such changes obviously require additional coordination in the system, but in
turn, we can also bene�t from the changes performed by the community of users by
recommending relevant ontology elements to other users with similar interests. For ex-
ample, the topic of Heterogeneous Databases might potentially be relevant to users who
have previously asked queries about similar topics.

Collaborative Filtering for Ontology Evolution Of particular interest are therefore
collaborative �ltering systems which can produce personal recommendations by com-
puting the similarity between own preferences and the one of other peers. In Bibster,
we therefore adapted a collaborative �ltering recommender system to assist users in the
management and evolution of their personal ontology by providing detailed suggestions



5.3 Ontologies in Bibster 65

of ontology changes. The approach has been thoroughly evaluated with very promising
results, as we show in detail in Chapter 9.

5.3.3 Coordination with Expertise-Based Peer Selection
The scalability of a Peer-to-Peer network is essentially determined by the way how
queries are propagated in the network. Peer-to-Peer networks that broadcast all queries
to all peers do not scale � intelligent query routing and network topologies are required
to be able to route queries to a relevant subset of peers that are able to answer the queries.
Here we give an overview of the model of expertise based peer selection and how it is
used in the Bibster system. A detailed description can be found in Chapter 11.

In this model, peers use an ontology to advertise semantic descriptions of their ex-
pertise in the Peer-to-Peer network. The knowledge about the expertise of other peers
forms a semantic overlay network, independent of the underlying network topology. If
the peer receives a query, it can decide to forward it to peers about which it knows that
their expertise is similar to the subject of the query.

Semantic Description of Expertise. The Peer-to-Peer network consists of a set of
peers. Every peer has a Local Node Repository, which stores the bibliographic metadata.
The peers use a topic ontology to describe the expertise of peers and the subject of
queries. An expertise description is an abstract, semantic description of the Local Node
Repository of a peer based on this ontology. The expertise of a peer is thus a set of
topics, for which a peer provides classi�ed instances.

Advertisements are used to promote descriptions of the expertise of peers in the net-
work. An advertisement associates a peer with its expertise. Peers decide autonomously
� without central control � whom to promote advertisements to and which advertise-
ments to accept. This decision is based on the semantic similarity between expertise
descriptions.

Matching and Peer Selection. Queries are posed by a user and are evaluated against
the local node repositories of the peers. First a peer evaluates the query against its local
node repository and then decides which peers the query should be forwarded to. A
subject is an abstraction of a given query expressed in terms of the common ontology.
The subject speci�es the required expertise to answer the query. In our scenario, the
subjects of queries are the set of topics that are referenced in the query. For instance,
the extracted subject of the query in Example 6 would be Information Systems/Database
Management.

Again, a similarity function yields the semantic similarity between a subject and an
expertise description. The similarity is used for determining to which peers a query
should be forwarded. In Bibster, the similarity function is based on the idea that topics
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which are close according to their positions in the topic ontology are more similar than
topics that have a larger distance. For example, an expert on the topic Information Sys-
tems/Information Storage and Retrieval has a higher chance of giving a correct answer
on a query about Information Systems/Database Management than an expert on a less
similar topic like Hardware/Memory Structures.

The peer selection algorithm returns a ranked set of peers, where the rank value is
equal to the similarity value provided by the similarity function. Therefore, peers that
have an expertise more similar to that of the subject of the query will have a higher rank.

Semantic Overlay Network. The knowledge of the peers about the expertise of other
peers is the basis for a semantic overlay network that is built on top of the initially
unstructured underlying network. The acquaintances between peers are established by
the selection of which peers a peer sends its advertisements to. Furthermore peers can
decide to accept an advertisement, e.g. to include it in their registries, or to discard the
advertisement. The semantic overlay network in combination with the expertise based
peer selection is the basis for intelligent query routing.

5.4 Conclusions
In this chapter, we have introduced the application scenario of exchanging bibliographic
metadata to motivate and illustrate the use of semantic technologies in distributed in-
formation systems. We further described the design and implementation of Bibster, a
semantics-based Peer-to-Peer that implements this application scenario. Bibster exploits
lightweight ontologies in all its crucial aspects: data-organization, query formulation,
query routing, and duplicate detection. Bibster constitutes the �rst ontology-based Peer-
to-Peer systems deployed in the �eld.

The Bibster system has been evaluated by means of a public �eld experiment (June
to August 2004). The user actions and system events were continuously logged and an-
alyzed to evaluate the user behavior and system performance. We will report on various
aspects of the evaluation results in the respective subsequent chapters.

Summarizing some experiences gained from the development and application of Bib-
ster, it is obvious that for Bibster and similar applications the usage of semantic tech-
nologies and ontologies provide an added value. Semantic structures serve important
user concerns like high quality duplicate detection or comprehensive searching capabil-
ities.Unsurprisingly, in small networks with small user groups, intelligent query routing
is not a major issue. While it is bene�cial to direct queries to speci�c peers known to
the user, advanced routing algorithms may only be bene�cial for a much larger number
of users in a network.

Based on the SWAP system architecture, several other instantiations have been built.
These include Oyster [PH05], a Peer-to-Peer system for sharing metadata about ontolo-
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gies with the goal to foster ontology re-use in communities and Xarop [TEF+04], a
knowledge sharing system for virtual organizations.
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Chapter 6

A Mapping System for Distributed
Ontologies

To enable interoperability between nodes in large distributed information systems based
on heterogeneous ontologies, it is necessary to specify how the data residing at a par-
ticular node corresponds to data residing at another node. This is formally done using
the notion of a mapping. There are three lines of work connected to the problem of
mapping: (1) identifying correspondences between heterogeneous data sources, (2) rep-
resenting these correspondences in an appropriate mapping formalism, and (3) using the
mappings for a given integration task.

In this chapter, we focus on the latter two important problems once the correspon-
dences between data sources are known: those of representing the mappings using an
appropriate formalism and using them for some speci�c integration tasks, such as data
transformation or query answering over heterogeneous data sources. An immediate
question is whether the OWL language itself provides the solutions to these problems,
as OWL already allows to express simple mappings between ontology elements. We
argue that the OWL ontology language itself is not suf�cient for expressing mappings
in distributed information systems. In many scenarios, different ontologies are built by
different individuals for different purposes. We must thus expect the same information
to be represented in different forms and with different levels of abstraction in the various
ontologies. When mapping elements in the various ontologies to each other, it may hap-
pen that an element in one ontology corresponds to a view (i.e., a query) over the other
ontologies. In our work, we follow the general framework of [Len02] to formalize the
notion of a mapping system for OWL DL ontologies, where mappings are expressed as
correspondences between queries over ontologies. It is easy to see that query answering
within such a mapping system is undecidable. To obtain an alternative more suitable for
practical applications, we introduce restrictions required to attain decidability. These re-
stricted, but still very expressive mappings, can be expressed in OWL DL extended with
the so-called DL-safe subset of the Semantic Web Rule Language (SWRL) [MSS04].
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Furthermore, we note that these restrictions can be relaxed for so-called tree-like map-
pings using query roll-up techniques from [HT02].

In Section 6.1 we present an overview of existing approaches for representing map-
pings, their application for particular integration tasks and their limitations with respect
to ontology-based information integration. Based on the ontology model formally in-
troduced in Section 6.2, we present the formalization of our mapping system in Section
6.3. We demonstrate the expressiveness of the mapping system with a practical exam-
ple from our bibliographic domain. While possible applications of the mapping system
are manifold, including for example data transformation and data exchange [FKMP03],
we show in Section 6.4 how our proposed mapping system can be applied for the task
of ontology integration, which addresses the problem of integrating a set of local on-
tologies. Queries are expressed against a global, integrated ontology, which provides a
uni�ed view of the local ontologies. Query answering in the ontology integration system
(using conjunctive queries) is based on a novel technique for reducing description logic
knowledge bases to disjunctive datalog programs [HMS04, Mot06]. After a discussion
of related work in Section 6.5, we summarize and conclude in Section 6.6.

6.1 An Overview of Mapping Formalisms
Mappings provide the foundations for many applications that require some sort of inte-
gration of heterogeneous data sources. In this section we analyze different applications
of mappings, present a mapping formalism that allows a representation suitable for all
of these tasks and �nally discuss approaches to one of the applications, that of data
integration � in more detail.

6.1.1 Mapping Applications
Data Integration Data integration is the problem of combining data residing at differ-
ent sources, and providing the user with a uni�ed view of the data [Len02]. The process
of creating this view is called schema integration. Typical data integration systems are
characterized by an architecture based on a set of sources that contain the data and a
global schema that provides a reconciled and integrated view of the underlying sources.
The mapping is used to specify the correspondences between the sources and the global
schema.

Data Exchange In alignment with [FKMP03], we de�ne data exchange as the problem
of taking data structured under a source ontology, and creating an instance of a target on-
tology that re�ects the source as accurately as possible. Similarly to data integration, the
relation between source and target schema can be described using mappings. However,
there are certain differences: [FKMP03] compares data integration with data exchange
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and shows how a data exchange setting can be thought of as a data integration setting
in terms of the notation of [Len02]. The major difference pointed out is that in a data
exchange setting, a �nite target instance that best re�ects the given source instance needs
to be materialized, whereas in data integration no such exchange of data is required. For
query answering in data integration, the queries against the global schema are evaluated
using the source instances, in data exchange, queries are evaluated using the materialized
target instances.

6.1.2 Mapping System
We consider a very general form of mapping that subsumes virtually all existing mapping
formalisms used for a variety of applications:

De�nition 1 (Mapping System) A mapping system is a triple (S, T ,M), where S and
T are the source and target schema and M is a set of mapping assertions between S
and T of the form qS Ã qT , where qS and qT are queries over S and T .

At this point, we do not make any further assumptions about the representation of the
source and target schema. Classically, they are represented as relational schemas. Fur-
ther, the queries are usually restricted to queries that return sets of tuples, and the Ã
relation is either a subset (⊆, ⊇) or equals (=) relation.

6.1.3 Data Integration using the Mapping System
One of the most important design decisions for data integration systems is the way how
the correspondences between the schemas of the source schemas and the global schema �
i.e. the target schema � are speci�ed. In general, there are two main approaches to model
these relationships: Global-As-View (GAV) requires that the global schema is expressed
in terms of the data sources. Local-As-View (LAV) requires the global schema to be
speci�ed independently from the sources, while every source is de�ned as a view over
the global schema.

Local-As-View. In a LAV data integration system, the mapping M associates to each
element s of S a query qT over T . That means, the mapping M contains a set of
assertions (one for each s) of the form

s Ã qT

Obviously, the LAV-approach is favorable, if the global schema is stable and well-
established (e.g. a shared ontology). The LAV-approach also favors extensibility, as
adding a new source simply requires adding the new corresponding assertions, without
other changes.
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Query processing in LAV systems is dif�cult, as the answer to a query is to be com-
puted over a set of views (view based query processing), instead of over the data it-
self. Two approaches are view-based query rewriting and view-based query answering.
[Len02], [AD98] present complexity results for query answering under certain assump-
tions (e.g. CWA vs. OWA) and for certain languages (e.g. conjunctive queries, positive
queries, Datalog). [BLR97] presents theoretical results for the problem of query rewrit-
ing.

Global-As-View. In a GAV data integration system, the mappingM associates to each
element t of T a query qS over S. That means, the mapping M contains a set of asser-
tions (one for each t) of the form

t Ã qS

Obviously, the GAV-approach is favorable, if the set of sources is stable. As the as-
sertions already de�ne how to retrieve the data, query processing in GAV is straight
forward. On the other hand, adding new sources to the system may be complicated, as
the new source may have impact on the existing de�nitions.

6.1.4 Limitations of Existing Mapping Formalisms
The tasks of data integration, data translation etc have long been studied in the database
community. Many of the �ndings are directly applicable to ontology-based information
integration. However, there are certain differences with classical data integration that
need to be considered in the context of ontology-based information systems:

Representation of source and target The main difference between classical data in-
tegration in databases and ontology-based information integration lies in the character-
istics of the structures that are being mapped: In databases, typically source and target
are described as simple relational schemas, in the most simple case a �nite collection of
relation symbols. In some cases, these relational schemas carry additional constraints,
e.g. in the form of dependencies over the schemas. In ontology-based information inte-
gration, the structures that are being mapped are themselves ontologies, i.e. sentences in
rich Description Logics.

Representation of mappings Most mapping formalisms rely on the notion of a global
schema that is used to provide a uni�ed view over a set of sources. In decentralized
settings, such a global schema may not exist, instead we require the ability to express
mappings in arbitrary directions in a network of ontologies. In the literature, some
approaches combining features of GAV and LAV have been proposed. For example,
[FLM99] presents the Global-and-Local-As-View approach (GLAV), which allow asser-
tions of the form qS Ã qT , where qS and qT are conjunctive queries over S and T . An
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approach to Peer-to-Peer data integration based on epistemic logic has been described in
[KAM03]. However, mappings that go beyond GAV or LAV are not well established so
far.

A further issue regarding the representation of mappings is whether they can be
treated as ��rst-class citizens� with a proper representation language that allows map-
pings to be exchanged just as any other information.

6.2 Formal Ontology Model
In this section we formally de�ne the syntax and semantics of the SHOIN (D) de-
scription logics as well as conjunctive queries and rule extensions over SHOIN (D)
description logics. While we have already informally introduced the concepts in Chap-
ter 3, this formalization is required for the de�nition of the semantics of the mapping
system.

6.2.1 SHOIN (D) Description Logic
We now formally de�ne the syntax and semantics of the SHOIN (D) description logic:

De�nition 2 Let NC be a set of concept names, NRa and NRc sets of abstract and con-
crete role names, respectively, and NIa and NIc sets of abstract and concrete individuals,
respectively. An abstract role is an abstract role name or the inverse S− of an abstract
role name S (concrete roles do not have inverses). Finally, let D be an admissible con-
crete domain.

An RBox KBR is a �nite set of transitivity axioms Trans(R), and role inclusion
axioms of the form R v S and T v U , where R and S are abstract roles, and T and
U are concrete roles. The re�exive-transitive closure of the role inclusion relationship is
denoted with v∗. A role not having transitive subroles (w.r.t. v∗, for a full de�nition see
[HST00]) is called a simple role.

The set of SHOIN (D) concepts is de�ned by the following syntactic rules, where A
is an atomic concept, R is an abstract role, S is an abstract simple role, T(i) are concrete
roles, d is a concrete domain predicate, ai and ci are abstract and concrete individuals,
respectively, and n is a non-negative integer:

C → A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C |
≥ nS | ≤ nS | {a1, . . . , an} | ≥ n T | ≤ nT |
∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}
A TBox KBT is a �nite set of concept inclusion axioms C v D, for C and D

concepts; an ABox KBA is a �nite set of concept and role assertions and individual
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Table 6.1: Translation of SHOIN (D) into FOL

Mapping Concepts to FOL
πy(>, X)=> πy(⊥, X)=⊥
πy(A, X)=A(X) πy(¬C, X)=¬πy(C, X)

πy(C uD, X)=πy(C, X) ∧ πy(D, X) πy(C tD, X)=πy(C, X) ∨ πy(D, X)
πy(∀R.C, X)=∀y : R(X, y) → πx(C, y) πy(∃R.C, X)=∃y : R(X, y) ∧ πx(C, y)

πy({a1 . . . , an}, X)=X ≈ a1 ∨ . . . ∨X ≈ an πy({cc
1, . . . , cc

n}, X)=X ≈D cc
1 ∨ . . . ∨X ≈D cc

n
πy(d, X1, . . . , Xm)= d(X1, . . . , Xm)

πy(≤ n R.C, X)= ∀y1, . . . , yn+1 :
V

R(X, yi) ∧
V

πx(C, yi) →
W

yi ≈ yj

πy(≥ n R.C, X)= ∃y1, . . . , yn :
V

R(X, yi) ∧
V

πx(C, yi) ∧
V

yi 6≈ yj

πy(∀T1, . . . , Tm.D, X)= ∀yc
1, . . . , yc

m :
V

Ti(X, yc
i) → πx(D, yc

1, . . . , yc
m)

πy(∃T1, . . . , Tm.D, X)= ∃yc
1, . . . , yc

m :
V

Ti(X, yc
i) ∧ πx(D, yc

1, . . . , yc
m)

πy(≤ n T , X)= ∀yc
1, . . . , yc

n+1 :
V

T (X, yc
i) →

W
yc

i ≈D yc
j

πy(≥ n T , X)= ∃yc
1, . . . , yc

n :
V

T (X, yc
i) ∧

V
yc

i 6≈D yc
j

Mapping Axioms and KB to FOL
π(C v D)= ∀x : πy(C, x) → πy(D, x)
π(R v S)= ∀x, y : R(x, y) → S(x, y)

π(Trans(R))= ∀x, y, z : R(x, y) ∧R(y, z) → R(x, z)
π(C(a))= πy(C, a)

π(R(a, b))= R(a, b)

π(a(c) ◦ b(c))=a ◦(D) b for ◦ ∈ {≈, 6≈}
π(KB)=

V
R∈NR

∀x, y : R(x, y) ↔ R−(y, x) ∧Vα∈KBR∪KBT ∪KBA π(α)

X is a meta variable and is substituted with the actual variable. πx is obtained from πy

by simultaneously substituting all y(i) with x(i) and πy with πx, and vice versa.

(in)equalities C(a), R(a, b), a ≈ b and a 6≈ b, respectively. A SHOIN (D) knowledge
base KB is a triple (KBT ,KBR,KBA).

The semantics of a SHOIN (D) knowledge base KB is de�ned by the mapping π that
translates KB into a �rst-order formula as speci�ed in Table 6.1.

The SHIQ(D) description logic is obtained from SHOIN (D) by disallowing
nominals and introducing quali�ed number restrictions.

6.2.2 Rules and Conjunctive Queries
We now introduce the notion of conjunctive queries over a SHOIN (D) knowledge
base KB . This notion is used in Section 6.3 to de�ne the mapping formalism.

De�nition 3 (Conjunctive Queries) Let KB be a SHOIN (D) knowledge base, and
let NP be a set of predicate symbols, such that all SHOIN (D) concepts and all ab-
stract and concrete roles are in NP . An atom has the form P (s1, . . . , sn), often denoted
as P (s), where P ∈ NP , and si are either variables or individuals from KB . An atom
is called a DL-atom if P is a SHOIN (D) concept, or an abstract or a concrete role;
it is called non-DL-atom otherwise.

Let x1, . . . , xn and y1, . . . , ym be sets of distinguished and non-distinguished vari-
ables, denoted as x and y, respectively. A conjunctive query over KB , written as
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Q(x,y), is a conjunction of atoms
∧

Pi(si), where the variables in si are contained
in either x or y.

A conjunctive query Q(x,y) is DL-safe if each variable occurring in a DL-atom also
occurs in a non-DL-atom in Q(x,y).

We extend the operator π from Section 6.2.1 to translate Q(x,y) into a �rst-order
formula with free variables x as follows:

π(Q(x,y)) = ∃y :
∧

π(Pi(si))

For Q1(x,y1) and Q2(x,y2) conjunctive queries, a query containment axiom
Q2(x,y2) v Q1(x,y1) has the following semantics:

π(Q2(x,y2) v Q1(x,y1)) =
∀x : π(Q1(x,y1)) ← π(Q2(x,y2))

The main inferences for conjunctive queries are:

• Query answering. An answer of a conjunctive query Q(x,y) w.r.t. KB is an
assignment θ of individuals to distinguished variables, such that π(KB) |=
π(Q(xθ,y)).

• Checking query containment. A query Q2(x,y2) is contained in a query Q1(x,y1)
w.r.t. KB , if π(KB) |= π(Q2(x,y2) v Q1(x,y1)).

We now de�ne the notion of rules and combined knowledge bases extended with
rules.

De�nition 4 (Rules) A rule over a SHOIN (D) knowledge base KB has the form
H ← Q(x,y) where H is an atom and Q(x,y) a query over KB . As usual, we as-
sume rules to be safe, i.e. that each variable from H occurs in x as well. A rule is
DL-safe if and only if Q(x,y) is DL-safe. We extend the operator π to translate rules
into �rst-order formulas as follows:

π(H ← Q(x,y)) = ∀x : π(H) ← π(Q(x,y))

A program P is a �nite set of rules; P is DL-safe if all rules are DL-safe. A combined
knowledge base is a pair (KB , P ); we de�ne π((KB , P )) = π(KB) ∪ π(P ). The main
inference in (KB , P ) is query answering, i.e. deciding whether π((KB , P )) |= A for a
ground atom A.

To simplify the presentation, in the above de�nition we assume that H is a single
atom, and not a conjunction of atoms. This is without loss of generality: it is well-
known that a rule of the form A1 ∧ . . .∧An ← B1 ∧ . . . ∧Bm is equivalent to the set of
rules Ai ← B1 ∧ . . . ∧Bm, for 1 ≤ i ≤ n.
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Notice that without DL-safety, the above de�nition matches that of the SWRL rules
[HPS04a]. Intuitively, DL-safety restricts the applicability of a query or a rule only to
individuals explicitly named in a knowledge base KB . To automatically convert a non-
DL-safe query into a DL-safe one, we assume a special non-DL-predicate O such that,
for each individual α occurring in KB , it contains a fact O(α). Then, a non-DL-safe
conjunctive query Q(x,y) can be easily converted into a DL-safe query by appending to
it an atom of the formO(z), for each variable z occurring only in a DL-atom of Q(x,y).
For an in-depth discussion about the consequences that this transformation has on the
semantics, please refer to [MSS04].

6.3 A Mapping System for OWL DL
Based on the de�nitions from [Len02], we now introduce the notion of an OWL DL
mapping system. The components of this mapping system are the source ontology, the
target ontology, and the mapping between the two.

De�nition 5 (OWL DL Mapping System) An OWL DL mapping system MS is a
triple (S, T ,M), where

• S is the source OWL DL ontology,

• T is the target OWL DL ontology,

• M is the mapping between S and T , i.e. a set of assertions qS Ã qT , where qS

and qT are conjunctive queries over S and T , respectively, with the same set of
distinguished variables x, and Ã ∈ {v,w,≡}.

An assertion qS v qT is called a sound mapping, requiring that qS is contained by
qT w.r.t. S ∪ T ; an assertion qS w qT is called a complete mapping, requiring that qT

is contained by qS w.r.t. S ∪ T ; and an assertion qS ≡ qT is called an exact mapping,
requiring it to be sound and complete.

A sound mapping qS v qT is equivalent to an axiom ∀x : qT (x,yT ) ← qS(x,yS),
while a complete mapping qT v qS is equivalent to an axiom ∀x : qS(x,yS) ←
qT (x,yT ). We call these assertions general implication mappings to distinguish them
from special types of mappings that we de�ne later.

The generality of the above de�nition captures a broad class of approaches for map-
ping systems. Let us discuss the expressiveness in terms of the ontology language, the
query language and the assertions. The source and target ontology are SHOIN (D)
ontologies, i.e. logical theories that can have multiple models. In contrast, mapping sys-
tems in databases typically rely on simple relational schemas to describe the source and
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Figure 6.1: Example Mapping

target, and each source is assumed to be one database (with a single model). The expres-
siveness of conjunctive queries corresponds to that of the well-known select-project-join
queries in relational databases. Two typical approaches to specify mappings are the
global-as-view (GAV) approach, where elements of the target are described in terms
of queries over source, and the local-as-view (LAV) approach, where elements of the
source are described in terms of queries over target. Our mapping system subsumes the
approaches of GAV, LAV. In fact, it corresponds to the GLAV approach, which is more
expressive than GAV and LAV combined [FLM99]. We now present an example of a
mapping system. We will continue the example in the subsequent parts of the section for
illustration of the rather formal de�nitions.

Example 7 Let us assume that we need to establish semantic correspondences between
two heterogeneous ontologies modeling the bibliography domain. Table 6.2 shows the
de�nition of the source ontology S , and the target ontology T . Figure 6.1 shows a
visualization of the two ontologies along with the correspondences between them. The
corresponding mappings M are shown in Table 6.3 in terms of our mappings system.

We now de�ne the semantics of the mapping system by translation into �rst-order
logic, based on our de�nitions from Section 6.2:

De�nition 6 (Mapping System Semantics) For a mapping system MS = (S, T ,M),
let

π(MS) = π(S) ∪ π(T ) ∪ π(M).
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Table 6.2: Source Ontology S and Target Ontology T
Source Ontology Target Ontology
Person v > Author v >
Publication v > Entry v >
Article v Publication Article v Entry
Thesis v Publication MasterThesis v Entry

PhDThesis v Entry
Topic v >
Person v ∀name.String Author v ∀name.String
Topic v ∀name.String
> v ∀author.Person > v ∀author.Author
Publication v ∀title.String Entry v ∀title.String
Publication v
∀isAbout.Topic

Entry v ∀subject.String

The main inference for MS is computing answers of Q(x,y) w.r.t. MS , for Q(x,y) a
conjunctive query.

To understand the intuition of computing answers, we brie�y recall the the seman-
tics of query answering as de�ned in De�nition 3: An answer of a conjunctive query
Q(x,y) w.r.t. KB is an assignment θ of individuals to distinguished variables, such that
π(KB) |= π(Q(xθ,y)). Thus, the intuitive reading of this semantics is that an answer
of a query needs to be entailed by the source ontology S, the target ontology T and the
mappings M. This semantics is equivalent to the usual model theoretic semantics (e.g.
in [CGL01]) based on local and global models, where a query answer must be an answer
in every global model.

Query answering in such a mapping system of this general form is undecidable and
requires a theorem prover. In the following we introduce special types of mappings that
lead to decidable query answering and for which practical query answering algorithms
exist.

6.3.1 Full Implication Mappings
The �rst class of mappings captures the mappings that can be directly expressed in OWL
DL. This is the case if qs and qt are of the form Ps(x) and Pt(x), where Ps and Pt are
DL predicates:

Role Mappings. If qs and qt are of the form Ps(x1, x2) and Pt(x1, x2), with Ps and Pt

are abstract or concrete roles, the mapping corresponds to the equivalent role inclusion
axiom.

Concept Mappings. If qs and qt are of the form Ps(x) and Pt(x) and Ps, Pt are DL
concepts, the mapping corresponds to the equivalent concept inclusion axiom.
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Table 6.3: Mapping M
Correspondences
Qs,1(x, y) : s:author(x, y)
Qt,1(x, y) : t:author(x, y)
m1 : Qs,1 v Qt,1

Qs,2(x) : s:Article(x)
Qt,2(x) : t:Article(x)
m2 : Qs,2 v Qt,2

Qt,3(x) : s:Thesis(x)
Qs,3(x) : (t:MasterThesis t t:PhDThesis)(x)
m3 : Qs,3 v Qt,3

Qs,4(x, t) : s:Publication(x) ∧ s:title(x, t)
Qt,4(x, t) : t:Entry(x) ∧ t:title(x, t)
m1 : Qs,4 v Qt,4

Qs,5(x) : s:Person(x) ∧ s:author(y, x)
Qt,5(x) : t:Author(x)
m5 : Qs,5 v Qt,5

Qs,6(x, z) : s:Publication(x) ∧ s:isAbout(x, y) ∧ s:name(y, z)
Qt,6(x, z) : t:Entry(x) ∧ t:subject(x, z)
m6 : Qs,6 v Qt,6

Example 7 (continued) Mapping m1 simply maps the author property of the source
ontology to that of the target ontology. It can be expressed with a simple role mapping:

s:author v t:author

Mapping m2 maps the articles in the source ontology to articles in the target ontol-
ogy, which can be expressed with a simple concept mapping:

s:Article v t:Article

Mappings m3 demonstrates the use of complex concepts in a concept mapping; it
maps the concept Thesis in the source ontology to the union of the concepts PhDThesis
and MasterThesis:

s:Thesis v (t:MasterThesis t t:PhDThesis)

It shows that because of the expressiveness of the ontology language, we are able to
express disjunctions in mappings (despite the fact that the query language only allows
conjunctive queries).

6.3.2 Restricted Implication Mappings
It is well-known that query answering for general implication mappings is undecidable
due to the unrestricted use of non-distinguished (i.e. existentially bound) variables in
either qS or qT . In the following, we de�ne restrictions that reduce the expressivity of
the mappings, but provide for a decidable query answering procedure.
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DL-safe Mappings. Let us consider a sound mapping qS v qT
1 with the assertion

∀x : qT (x,yT ) ← qS(x,yS). In order to avoid introducing new objects in the inter-
pretation domain, we disallow the use of non-distinguished variables in the query qT ,
i.e. restrict the assertions to the form ∀x : qT (x) ← qS(x,yS). Please note that these
assertions directly corresponds to SWRL rules. Analogously to safe rules, we call these
mappings safe mappings. Query answering with such mappings is still undecidable in
the general case. Therefore, we require the query qS to be DL-safe (c.f. De�nition 3),
thus limiting the applicability of the rules to known individuals. Thus obtained map-
pings correspond to (one or more) DL-safe rules from De�nition 4, for which ef�cient
algorithms for query answering are known [MSS04].

Example 7 (continued) Mapping m4 maps publications from the source ontology along
with their title to the corresponding entries of the target ontology. The sound mapping is
expressed via the assertion2:

∀x, y : t:Entry(x) ∧ t:title(x, y) ←
s:Publication(x) ∧ s:title(x, y)

This general implication mapping contains no non-distinguished variable in Qt,4, so it
can be expressed in a SWRL rule. However, the mapping is not DL-safe, as both x and
y do not occur in non-DL predicates in Qs,4. The mapping can be made DL-safe (as
explained previously) by binding these variables with the special non-DL predicateO to
individuals that actually occur in the source ontology:

∀x, y : t:Entry(x) ∧ t:title(x, y) ←
s:Publication(x) ∧ s:title(x, y) ∧ O(x) ∧ O(y)

Mappings with Tree-like Query Parts. The restrictions introduced by DL-safety may
appear rather strong. In the following we show how to relax the above restriction for
a certain class of so-called tree-like queries. Using the query roll-up technique from
[HT02], we can eliminate non-distinguished variables by reducing a tree-like part of a
query to a concept, without loosing semantic consequences.

De�nition 7 (Tree-Like Query Parts) For a set of unary and binary literals S, the co-
incidence graph of S is a directed graph with the following structure:

• Each variable from S is associated with a unique node.

• Each occurrence of a constant in S is associated with a unique node, i.e. occur-
rences of the same constant are associated with distinct nodes.

1For a complete mapping qS w qT , the situation is analogous, with the roles of qS and qT reversed.
2In the mappings we use the namespace pre�xes s: and t: to denote elements of the source and target

ontology, respectively.
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• For each literal C(s) ∈ S, the node s is labeled with C.

• For each literal R(s, t) ∈ S, the nodes s and t are connected with a directed arc
labeled R.

The subset Γ of DL-atoms of a conjunctive query Q(x,y) is called a tree-like part of
Q(x,y) with a root s if

• no variable from Γ occurs in Q(x,y) \ Γ,

• the coincidence graph of Γ is a connected tree with a root s,

• all nodes apart from s are non-distinguished variables of Q(x,y).

For details of the roll-up technique for tree-like queries, please refer to [HT02]; here
we explain this technique on the following conjunctive query:

∃y, z, w : R(x, y) ∧ A(y) ∧ S(y, z) ∧B(z) ∧ T (y, w) ∧ C(w)

Since the entire query is tree-like with the root x, the existential quanti�ers over z and w
can be moved to the atoms where z and w �rst occur, yielding

∃y : R(x, y) ∧ A(y)∧ [∃z : S(y, z) ∧B(z)]∧
[∃w : T (y, w) ∧ C(w)]

which is obviously equivalent to

∃y : R(x, y) ∧ A(y) ∧ ∃S.B(y) ∧ ∃T.C(y).

Now the same procedure can be applied again, yielding the formula

∃R.[A ∧ ∃S.B ∧ ∃T.C](x).

By these transformations we have eliminated the non-distinguished variables, i.e. we
have �pushed them into description logic.�

Example 7 (continued) Mapping m5 maps persons that are authors of a publication
in the source ontology to authors in the target ontology. For the query Qs,5 we can
apply the query roll-up technique. Qs,5(x) : s:Person(x) ∧ s:author(y, x) is a tree-
like query with the distinguished variable x as its root. It can thus be rolled-up to the
semantically equivalent query Qs,5(x) : (∃s:author−.s:Person)(x). We can therefore
express the mapping as a concept mapping:

∃s:author−.s:Person v t:Author
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Let us compare this mapping with a DL-safe mapping obtained without query roll-up:

∀x : t:Author(x) ←
s:Person(x) ∧ s:author(y, x) ∧ O(x) ∧ O(y)

With the latter assertion, only those persons whose publications are explicitly named in
the source ontology will be mapped to authors of the target ontology, whereas the prior
mapping only requires a publication to exist, but it does not require it to be explicitly
named. To illustrate the difference, consider the following ABox of the source ontology
as example:

s:Person(peter), s:Person(boris),
(∃s:author−)(peter), s:author(pub, boris)

A query against the target ontology qt(x) : t:Author(x) would return both individuals
peter and boris as result for the mapping obtained with query roll-up, as for both in-
dividuals authored publications are known to exist. The same query, but evaluated with
the latter mapping, would return only the individual boris as query result, as the the
publication of which peter is an author, is not explicitly named in the ontology.

Finally, mapping m6 maps the topic classi�cation of the publications. Please note
that the topics in the source ontology are modeled as a separate concept, whereas in the
target ontology the entries carry the name of the topic as a property: The name of the
topic in the source ontology maps to the subject of the entry in the target ontology. The
mapping can be expressed with the following assertion:

∀x, z : t:Entry(x) ∧ t:subject(x, z) ←
s:Publication(x) ∧ s:isAbout(x, y) ∧ s:name(y, z)

This mapping is again not DL-safe. Also, neither Qs,6 nor Qt,6 are tree-like queries, so
query roll-up can not be applied. To make the mapping DL-safe, we again require the
variables to be bound to explicitly named individuals:

∀x, z : t:Entry(x) ∧ t:subject(x, z) ←
s:Publication(x) ∧ s:isAbout(x, y) ∧ s:name(y, z)
∧O(x) ∧ O(y) ∧ O(z)

6.4 Query Answering in an Ontology Integration Sys-
tem

In this section we show how to use an OWL DL mapping system from Section 6.3 for
query answering in an ontology integration system, whose main task is to provide inte-
grated access to a set of information sources, each expressed with a local source ontol-
ogy. The integration is realized via a mediated target ontology through which we can
query the local ontologies.
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The algorithm is based on the correspondence between description logics and dis-
junctive datalog from [HMS04]. Given a SHIQ(D) knowledge base KB , this algorithm
produces a positive disjunctive datalog program DD(KB) which entails exactly the same
set of ground facts as KB , i.e. KB |= A if and only if DD(KB) |= A, for A a ground
fact. Thus, query answering in KB is reduced to query answering in DD(KB), which
can be performed ef�ciently using the techniques of (disjunctive) deductive databases.
For example, the magic sets transformation [BR87] or various statistics-based join-order
optimizations can be applied to DD(KB) to optimize query answering.

Due to some technical particularities, this algorithm requires KB to be a SHIQ(D)
knowledge base; all OWL DL constructs apart from nominals are supported. Another
restriction is that the ground fact A is not allowed to contain complex roles (i.e. roles
with transitive subroles). This is due to the approach used to handle transitivity axioms;
for details, refer to [HMS04].

In [MSS04] it was shown that the above algorithm can be used to answer queries in
a combined knowledge base (KB , P ), where P is a DL-safe program: (KB , P ) |= A if
and only if DD(KB) ∪ P |= A, for A a ground atom. Assuming a bound on the arity of
the predicates in P , query answering can be performed in time exponential in the size of
KB and P . Furthermore, as shown in [HMS05], the data complexity of these algorithms
(i.e. the complexity assuming the size of the schema is �xed) is NP-complete, or even
P-complete if disjunctions are not used.

For a set of local source ontologies S1, . . . ,Sn, a target ontology T and correspond-
ing mapping systems MS1, . . . ,MSn with MS i = (Si, T ,Mi), an ontology inte-
gration system IS is again a mapping system (S, T ,M) with S =

⋃
i∈{1...n} Si and

M =
⋃

i∈{1...n}Mi. The main inference task for IS is to compute answers of Q(x,y)

w.r.t. S∪T ∪M, for Q(x,y) a conjunctive query over T . Please note that because of the
absence of a global ontology, this form of ontology integration system can be directly
applied to decentralized integration: Assume we have a set of autonomous nodes, each
relying on a local ontology, and a set of mapping systems that relate the local ontology
to those of other nodes. An ontology integration system IS = (S, T ,M) can easily be
constructed for each individual node, where S consists of the ontologies of the remote
node to be integrated, T is the ontology of local node, and M consists of the individ-
ual mappings systems describing the correspondences between the local ontology with
remote ontologies.

Algorithm 1 shows how to compute answers to a conjunctive query Q(x,y) in an
ontology integration system IS . It is based on the algorithm for reducing description
logics to disjunctive datalog outlined above, from which it inherits certain limitations:
IS is required to be based on SHIQ(D) knowledge bases, and the conjunctive query
Q(x,y) and the queries in mappings are not allowed to contain transitive roles. The algo-
rithm starts by eliminating non-distinguished variables from Q(x,y) and the mappings
using the query roll-up technique. After roll-up, the obtained mappings and queries are
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Algorithm 1 Algorithm for Answering Queries in an Ontology Integration System
Require: ontology integration system IS and a conjunctive query Q(x,y)

1: Roll-up tree-like parts of Q(x,y)
2: Roll-up tree-like parts of query mappings in M
3: Stop if Q(x,y) or some mapping from M is not DL-safe
4: Γ ← DD(S ∪ T ∪M)
5: Compute the answer of Q(x,y) in Γ

required to be DL-safe, which is needed for decidable query answering. If this precondi-
tion is ful�lled, then the source ontology, target ontology and the mappings are converted
into a disjunctive datalog program, and the original query is answered in the obtained
program. By the results from [HMS04, MSS04], it is easy to see that the algorithm
exactly computes the answer of Q(x,y) in IS .

Let us contrast our approach to query answering with typical approaches in GAV
and LAV data integration with respect to how queries against the target are reformulated
to queries against the sources. In GAV systems, the problem reduces to simple view
unfolding, as the reformulation is explicit in the mappings. In LAV, the problem requires
more complex reasoning steps. In contrast, our approach does not require an explicit
reformulation step. Instead, query answering here operates on a combined knowledge
base consisting of source ontology, target ontology and mappings between them.

From the above de�nition, one might get the impression that the above algorithm
requires that all source and target ontologies must be physically integrated into one map-
ping system in order to answer queries. This is, of course, not the case. More concretely,
to compute DD(S ∪ T ∪M), it is necessary to physically integrate the TBox and the
RBox part of S, T and M. Since the TBox and RBox are typically much smaller than
the data, this does not pose practical problems. Accessing actual data sources (i.e. the
ABoxes) is then governed by the chosen strategy for evaluating the disjunctive program.

6.5 Related Work
Our work is based on the formalization of a mapping system introduced in [Len02],
which, because of its generality, subsumes a large class of mapping representations.
Aspects that are not captured by this model include probabilistic or fuzzy mappings
such as in the [BEE+04] and the notion of context as for example introduced in C-
OWL [BGH+03]. [SSW05] provides a comparison of the approaches of Description
Logics for information integration [CGL02], ontology integration systems [CGL01], C-
OWL [BGH+03], and e-connections [GPS04] by an encoding in distributed �rst order
logic (DFOL). Inspired by the dimensions considered in [SSW05], we brie�y discuss
and compare these formalisms for mapping representations in terms of (1) the type of
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supported mappings, (2) the relationship of the mapped domains, (3) the arity of the
mappings, (4) how inconsistencies are dealt with, and (5) their applicability and intended
use.

Description Logics for Data Integration. The task of ontology integration as appli-
cation of the mapping system is very related to that of data integration in databases.
In [Len02] the author introduces a general framework for data integration and com-
pares existing approaches to data integration (GAV, LAV) along this framework. He
also discusses query processing approaches for GAV and LAV, as well as the topic of
inconsistencies between sources, and reasoning on queries. In [Hal03] Halevy gives a
status report on data integration, describing the recent progress on (i) schema mediation
languages (LAV, GAV, GLAV), (ii) query answering algorithms (view unfolding in GAV,
answering queries using views in LAV), (iii) query optimization, (iv) query execution ,
and (v) industry development. [CGL02] presents a description logic based approach to
data integration. In this framework, the sources are described using views over a me-
diated schema (LAV). The Description Logic DLR is used to model the components
of the data integration system. As query expressions, non-recursive datalog queries are
allowed. Views are de�ned based on these query expressions. A query answering al-
gorithm based on reduction of answering queries using views to unsatis�ability is pre-
sented.

Ontology Integration. The work on data integration has been extended and re-applied
to ontology integration in [CGL01]. Here the authors follow the classical distinction
between LAV and GAV approaches and outline query answering algorithms for these
speci�c settings. In contrast to this work, query answering in our ontology integration
system is not bound to these restricted forms of mappings. The main distinction between
ontology integration and the existing approaches in data integration in databases is that
in data integration one assumes that the sources basically are one database, whereas in
ontology integration a source ontology is an arbitrary logical theory, which can have
multiple models. Further, in data integration the languages to describe the sources and
targets are typically very restricted (e.g. express the schemas as plain relations). Fi-
nally, the approaches are often limited to either LAV or GAV, whereas we do not make
restrictions here.

C-OWL. In C-OWL [BGH+03], which is based on Distributed Description Logics
(DDL, [BS02]), bridge axioms are used to semantically relate concepts and properties
of different ontologies. A bridge axiom is an expression of one of the following forms:

Ci
v−→ Cj ; Ci

w−→ Cj ; ai −→ aj

where Ci, Cj are concepts, and ai, aj are individuals in the ontologies Oi, Oj , respec-
tively. These bridge axioms establish directional subsumption relations between classes
and correspondences between individuals in different ontologies. It is obvious from the
type of primitives that C-OWL is adequate for relating different ontologies that model the
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same or at least overlapping domains. It is a characteristic of C-OWL that inconsisten-
cies do not propagate in general, which can be seen as a feature, if mutually inconsistent
viewpoints (contexts) are to be modeled, but also as a �aw, if inconsistencies accross
distributed ontologies cannot be detected.

E-connections. An E-Connection is a knowledge representation language de�ned as
a combination of other logical formalisms. E-Connections were originally introduced
in [KLWZ04] as a way to go beyond the expressivity of each of the component logics,
while preserving the decidability of the reasoning services. An E-Connection language
is a formalism, strictly more expressive than any of its component logics, and which
is decidable, provided that each of its components is decidable. Hence, E-Connections
provide a trade-off between the expressivity gained and the computational robustness
of the combination. In [GPS04] E-Connections have been proposed as a language for
de�ning and instantiating combinations of OWL DL ontologies, i.e. as a way of combin-
ing knowledge bases in one logical formalism, rather than combining different logical
formalisms.

E-Connections introduce the notion of link properties that allow to link concepts in
different ontologies without the need to import one ontology into the other, following
a local model semantics, where there is no overlap in the domains. In other words,
link properties allow to create classes in a certain ontology based on information from
a different ontology, provided that the domains of the ontology are disjoint, both from
a logical and a modeling perspective. E-Connections are therefore especially adequate
for the purpose of modularization, but less suited for integrating ontologies that describe
the same or largely overlapping domain in heterogeneous ways. In an E-Connection, for
every pair of ontologies Oi and Oj , there exists a set of link properties eij , which are
interpreted as binary relations between the domains of the ontologies Oi and Oj . A link
from Oi to Oj can be used to de�ne concepts in Oi in a way that is analogous to how
roles are used to de�ne concepts, e.g. Ci v ∃E.Cj , with Ci and Cj concepts in Oi and
Oj , and E a link property.

Summarizing one can say that ontology integration is useful for �nding a globally
shared model for one domain, contexts are useful for relating models of the same domain
(or overlapping domains), where a globally consistent model cannot be found and instead
local model semantics is suitable, and �nally E-Connections are adequate for relating
models of disjoint domains.

A �nal related problem is that of ontology matching and ontology alignment in
the line of [DMDH02], [Noy04] and [Ehr06], where the goal is to manually or (semi-
)automatically identify correspondences between ontologies, which �nally result in map-
pings expressed in some formalism. Our work can be seen as complementary in the sense
that the identi�ed correspondences can be expressed in our mapping system and applied
for tasks such as ontology integration.
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6.6 Conclusions
In this chapter we have presented the formalization of a general mapping system for the
integration of heterogeneous OWL DL ontologies. In this mapping system, the mappings
between source and target ontology are speci�ed as correspondences between conjunc-
tive queries against the ontologies. The expressiveness of the mapping system is embod-
ied in the ontology language (SHOIN (D)), the supported query language (conjunctive
queries), and the �exibility of assertions (GLAV approach). We have further identi�ed a
decidable fragment of mappings and a practical query answering algorithm for the task
of ontology integration. All components of the mapping system can be fully expressed
in OWL DL extended with DL-safe rules. It thus integrates well with current efforts
for rule extensions to OWL. The presented algorithms are implemented based on the
KAON2 ontology management system3.

A problem not discussed in this chapter is the question of how the correspondences
between elements of the ontologies are found in the �rst place. In the following chapter
we present a similarity framework for ontologies, which can be used as basis for the dis-
covery of mappings, as well as other tasks requiring similarity measures for ontologies.

3http://kaon2.semanticweb.org/
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Chapter 7

Similarity for Ontologies

As we have seen in the previous chapters, integration of information is an important
problem to address in distributed information systems in order to deal with the character-
istic of heterogeneity. In the previous chapter, we have presented a mapping formalism
for the integration of distributed OWL ontologies. We discussed how these mappings
can be represented and used for reasoning tasks. We also discussed that an important,
complementary task is the discovery of such mappings, i.e. the identi�cation of corre-
spondences between data sources. Currently, similarity based approaches are the most
powerful technique for solving this problem, both for identifying correspondences on
the schema level [Ehr06], but also for establishing correspondences between data values
on the data level. Besides the problem of discovering correspondences, in distributed
information systems there is a multitude of other tasks that rely on similarity based tech-
niques. These include for example correlation measures between data objects as used
in collaborative �ltering and recommender systems, matching resources against requests
as in capability-based matching and information retrieval. In many cases, similarity
measures exploit the structure and semantics of an underlying ontology to improve their
effectiveness. In this chapter we present a comprehensive framework for measuring
similarity within and between ontologies as a formal and integrated foundation for the
different tasks relying on ontology based similarity.

The similarity framework was initially presented in [EHSH05], where we based our
work on an abstract ontology model [BEH+02] that � due to its generality � allows to
abstract from the particularities of speci�c existing ontology languages. This generality
comes at the cost of limited applicability for speci�c applications. Here, however, we
present the similarity framework for the OWL ontology model. In doing so, we increase
the applicability of the framework for applications adhering to the OWL ontology lan-
guage, taking the speci�c syntax and semantics of the underlying description logic into
account.

In Section 7.1 we illustrate the use of the similarity framework within the Bibster
system to demonstrate the variety of usages of ontology-based similarity and the result-
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ing need for the similarity framework. In Section 7.2 then introduce a formal model
of similarity in ontologies. The main characteristics of the similarity framework is its
layered structure, which we present in detail in Section 7.3. We de�ne three layers on
which the similarity between two ontology elements can be measured: data layer, ontol-
ogy layer, and context layer, that cope with the data representation, ontological meaning
and contextual information about ontology elements, respectively. In that way, different
layers consider different characteristics of elements which are then combined using an
aggregation of the individual similarity measures. Moreover, in each layer correspond-
ing background information is used in order to de�ne the similarity more precisely. We
present speci�c similarity measures in Section 7.4. After a discussion of related work in
Section 7.5 we summarize the main ideas in Section 7.6.

Parts of this chapter are based prior publications. We initially presented the similar-
ity framework in [EHSH05]. Applications of ontology-based similarity in the Bibster
system have been described in [HSvH04], [HHSTS05], [HEHS04], and [HBE+04].

7.1 Applications of Similarity in the Bibster System
In this section we illustrate a variety of different applications of similarity in the bibli-
ographic application scenario and the Bibster system. Ontology-based similarity mea-
sures are used to realize a number of functionalities in the Bibster system:

Duplicate detection Due to the distributed nature and potentially large size of the
Peer-to-Peer network, the returned result set for a query might be large and contain
duplicate answers. Furthermore, because of the heterogeneous and possibly even con-
tradicting representation, such duplicates are often not exactly identical copies. Ontol-
ogy based similarity functions allows us to effectively determine the similarity between
the different answers and to remove apparent duplicate results based on the intuition
that answers with a similarity above a de�ned threshold are duplicates. Instead of con-
fronting the user with a list of all individual results, we are able to present query results
grouped by semantic duplicates. The most important source of heterogeneity is that due
to differences in spelling. In the de�nition of the similarity measures we can additional
background information about the domain into account, e.g. that often the �rst names of
authors are abbreviated.

Collaborative Ontology Evolution In Bibster we initially assumed both the applica-
tion (SWRC) and domain (ACM) ontologies to be globally shared and static. This ba-
sically holds for the application ontology, but users want to adapt the domain ontology
continuously to their needs. This is largely motivated by the sheer size of the ACM topic
ontology which makes browsing, and therefore also querying and manual classi�cation,
dif�cult for users.
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To be able to adapt the ontologies of the users to the changing needs, we recommend
potentially relevant changes based on the changes that other users with similar contexts
have performed. The basic idea is as follows: Assume that for a target ontology we
know similar ontologies called neighbors for short, then we would like to spot patterns
in similar ontologies that are absent in our target ontology and recommend them to the
target ontology. Another wording of the same idea is that we would like to extract
ontology change operations that applied to the target ontology increases the similarity
with its neighbors. We here rely on methods from Collaborative Filtering, as we will
explain in detail in Chapter 9. Collaborative Filtering relies on correlation measures
between rated elements and/or users. In our application scenario, the rated elements are
the elements of the ontology. As correlation measure, we here need a similarity function
that takes the ratings of ontology elements as contextual information into account. We
consider a membership rating which asserts that a user wants to have a particular element
as part of his ontology or not. We obtain a usage-based rating by counting queries issued
by the user and instances in his knowledge base that reference a given concept.

Peer Selection with Semantic Overlay Networks As already introduced in Section
5.3.3, in the Bibster system we apply the model of expertise based peer selection as
proposed in [HSvH04]. Based on this model, peers advertise semantic descriptions of
their expertise speci�ed in terms of the ACM topic ontology. The knowledge about the
expertise of other peers forms a semantic overlay network, in which peers with a similar
expertise are clustered. That means, a semantic link between two peers is established, if
their expertise is similar. To select an appropriate set of peers to forward a query to, we
need to determine how closely the semantic content of a query that references an ACM
topic matches the expertise of a peer. We thus need a similarity function to compare
subjects with expertise descriptions and expertise descriptions with each other.

7.2 De�nition of Similarity
In this section we introduce basic de�nitions of similarity, upon which we build our
framework for similarity in ontologies. In order to do so, we �rst discuss the notion of
a similarity. Generally, similarity can be seen as a special form of relatedness [Res95]:
Objects � or elements of some domain � are considered similar if they have common
characteristics or share features that are the same. [Lin98] has elaborated on this obser-
vation in three intuitions of similarity:

• Intuition 1: The similarity between two objects is related to their commonality.
The more commonality they share, the more similar they are.

• Intuition 2: The similarity between two objects is related to the differences be-
tween them. The more differences they have, the less similar they are.



94 7. Similarity for Ontologies

• Intuition 3: The maximum similarity between two objects is reached when the
objects are identical.

There have been different attempts to formalize these intuitions mathematically using the
notion of a similarity function, or similarity measure. [Ric92] has de�ned a similarity
measure as follows:

De�nition 8 (Similarity Measure) A similarity measure is a real-valued function
sim(x, y) : U2 → [0, 1] on a set U � the universe of objects � measuring the degree
of similarity between x and y.

A similarity measure can often be de�ned inverse to a distance function, measuring
the differences between two objects. A distance function, δ, is a scale that assigns to ev-
ery pair of objects a non-negative number, called their distance, satisfying the following
the following axioms:

1. Non-negativity: δ(x, y) ≥ 0

2. Identity of Indiscernibles: δ(x, y) = 0 ⇐⇒ x = y

3. Symmetry: δ(x, y) = δ(y, x)

4. Triangle Inequality: δ(x, y) + δ(y, z) ≥ δ(x, z)

However, this geometric approach is not unconditionally adequate for all similarity mea-
sures, as shown in [Tve03]. In particular, the triangle inequality does not always hold.
Informally stated, the triangle inequality implies that if x is similar to y, and y is similar
to z, then x and z cannot be very dissimilar from each other. [Tve03] mentions a simple
counter example: While Jamaica is similar to Cuba (because of geographical proximity)
and Cuba is similar to Russia (because of political proximity), Jamaica and Russia are
not similar at all.

Therefore, we do not generally demand all the (analogous) properties of a distance
function, as this would disqualify a number of useful measures for which these properties
do not hold. However, it is generally agreed that sim ought to be maximal for identical
objects (according to Intuition 3) and symmetric, i.e.

∀x, y ∈ U it holds 1. sim(x, x) = 1 (maximality)
2. sim(x, y) = sim(y, x) (symmetry)

Please note that with maximality we do also not require sim(x, y) = 1 ⇐⇒ x = y.
The reason lies in the fact that we want to allow objects have a maximal similarity even
if they have distinct identities. For example, in the OWL ontology language � which
does not apply the Unique Name Assumption � the same objects can be referred to via
different identi�ers.
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Figure 7.1: Layer Model of the Similarity Framework

Similarity for Ontologies

In the following we apply the generic de�nition of a similarity function to ontologies.
Here, our universe of objects to compare consists of the elements of ontologies.

In particular, this means for our OWL ontology model that we consider as the uni-
verse the set of (atomic) concepts NC , the sets of abstract and concrete roles NRa and
NRc , and the sets of abstract and concrete individuals NIa and NIc , respectively. In the
following, we simply write N to denote either of the ontology elements, if the distinction
is not required to prevent ambiguity.

In the comparison however, we do not treat the elements as isolated entities, but
consider the semantics of the ontology and the context they are being used in. These
considerations are introduced in the following section.

7.3 Similarity Layer Model
Since an ontology represents a conceptualization of a domain, comparing two ontology
elements goes far beyond the syntactic representation of these elements. Rather, it should
take into account their relation to the real world entities they are referencing, i.e. their
meaning, as well as their purpose in the real world, i.e. their usage. In order to achieve
such a comprehensive comparison, we de�ne our framework for similarity in three lay-
ers, as shown in Figure 7.1: Data-, Ontology-, and Context Layer. We further enhance
these by an additional orthogonal dimension representing speci�c domain knowledge. A
similar division into layers can be found for example in [MS02], where we �nd a lexical
and conceptual layer.
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7.3.1 Data Layer
On this �rst layer we compare elements simply based on their syntactic representation.
This means for our OWL ontology model, when comparing concepts, roles and abstract
individuals, the comparison is restricted to their symbolic name. In the case of con-
crete individuals, we consider their data values of the corresponding data types, such as
integers and strings. Generally, we can de�ne:

De�nition 9 (Similarity on the Data Layer) Let N denote the set of possible ontology
elements, then a similarity function

simdata : (N)2 → [0, 1]

computes the similarity of elements based on the corresponding symbolic representation.

7.3.2 Ontology Layer
In the second layer, the ontology layer, we consider the semantics of the elements as
de�ned by the ontology. This means we analyze how elements of the ontology are con-
ceptually similar. Important conceptual structures to base similarity measures on include
for example the subsumption hierarchy of the ontology, which allows to determine the
taxonomic similarity based on the number of is-a edges separating two concepts. Besides
intensional features we can also rely on the extensional dimension i.e. assess concepts to
be the same, if their instances are similar. The similarity measures of the ontology layer
can rely on similarity measures of the data layer to determine the basic similarities.

An important aspect is that we want to be able to compare ontology elements within
single ontologies as well as across heterogeneous ontologies. Thus, in the similarity
function we do not consider the elements as isolated entities, but considering the seman-
tics of the ontology they are being used in.

We can thus de�ne:

De�nition 10 (Similarity on the Ontology Layer) Let N denote the set of possible on-
tology elements and O the set of possible ontologies over N , then a similarity function

simontology : (N,O)2 → [0, 1]

computes the similarity of elements based on the semantics de�ned by their respective
ontology.

7.3.3 Context Layer
On this layer we consider how the ontology elements are used in some external context.
This implies that we use information external to the ontology itself. Our ontology model
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so far describes the actual state of an ontology as an isolated entity. Now we need
to consider contextual information about the ontology. The term �context� has many
different connotations depending on the �eld it is being used in. In general, the context
of an entity includes the circumstances and conditions which �surround� it. [Dey01]
has de�ned context as: Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves. Applied to ontologies this means that we consider any information that is
external to the ontology itself, but relevant for determining the similarity of the elements
of the ontology. Typical examples of contextual information include � as we will later
elaborate � usage information, provenance, etc.

To capture such contextual information about ontologies, we introduce the notion
of contextual annotations, which are used to relate the context to the elements of the
ontology:

De�nition 11 Let N denote the set of possible ontology elements and X be a suitable
representation of a context space, then a contextual annotation is a partial function r :
N → X .

The context space X is kept as general as possible in this de�nition, to allow to attach
essentially arbitrary information external to the ontology. We will later instantiate X for
the speci�c contexts we consider.

We can now de�ne:

De�nition 12 (Similarity on the Context Layer) Let N denote the set of possible on-
tology elements, O the set of possible ontologies over N and R the set of contextual
annotations, then a similarity function

simcontext : (N,O,R)2 → [0, 1]

computes the similarity of ontology elements based on the contextual information about
the ontology elements.

7.3.4 Domain Knowledge
Most of the aspects so far concerned aspects of similarity that are valid across domains.
This means that corresponding similarity measures can be de�ned independently of the
domain described by the ontology. However, speci�c domains have their own additional
characteristics that may be exploited in determining similarity. The right part of Figure
7.1 therefore covers domain-speci�c aspects. As this domain-speci�c knowledge can be
situated at any of the above layers, it is presented as a box across all of them. Just like
we use general similarity features to compare ontologies we can also do so with domain
speci�c features.
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7.3.5 Similarity Aggregation
In general, the computation of the similarity of ontology elements will be based on a
number of different individual similarity measures from the three layers that take dif-
ferent characteristics into consideration. For the computation of the overall similar-
ity between two elements we use an aggregation function (referred to as amalgamation
function in [EHSH05] and [Ric92]) that combines the results of the individual similarity
functions of the layers described above:

De�nition 13 (Aggregation of similarity functions) LetA be a functionA : [0, 1]n →
[0, 1], n ≥ 1. We call A a similarity aggregation function if it satis�es the following
axioms:

1. A(0, · · · , 0) = 0 and A(1, · · · , 1) = 1

2. A is monotone, i.e. x1 ≤ y1, · · · , xn ≤ yn =⇒ A(x1, · · · , xn) ≤ A(y1, · · · , yn)

3. A is symmetric, i.e. for every permutation i1, · · · , in from 1, · · · , n it holds:
A(x1, · · · , xn) = A(xi1 , · · · , xin)

An aggregated similarity value sim = A(sim1, · · · , simn) is obtained by applying
the aggregation function A to the individual similarities simi (i ∈ {1, · · · , n}).

7.4 Speci�c Similarity Functions
After having presented a general framework for similarity, we now show speci�c mea-
sures which �t the framework. They are formally de�ned according to our ontology
model. The list of measures is not intended to be exhaustive, but provides overview of
important individual measures. This section contains both general similarity measures
for ontologies and measures which �t only special domain ontologies. We also show
approaches to aggregate the individual similarity measures. Most of the measures are
not new, but rather constitute well established measures. The novelty rather constitutes
in the description of these measures with our framework tailored to the OWL ontology
model. We now describe speci�c measures applied in the framework grouped by the
layers Data Layer, Ontology Layer, and Context Layer. We also show how we exploit
Domain Knowledge in the individual layers.

7.4.1 Data Layer
On this layer we compare the symbolic representations of names of ontology elements,
or data values in the case of concrete individuals, on a purely syntactic level. There exist
several approaches to de�ne the similarity on this level, a selection of which we present
in the following.
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Equality For some application scenarios it is appropriate to require equality of data
values for elements to be considered similar:

(7.1) simequality(n1, n2) :=

{
1, if n1 = n2,

0, otherwise

This is without doubt the simplest similarity function satisfying the properties character-
ized in De�nition 8. Such a de�nition is for example useful for data values that are used
as uniquely identifying keys of elements.

Syntactic Similarity To cope with the heterogeneity of syntactic representations, for
example due to differences in spelling, [Lev66] introduced a measure to compare two
strings, the so called edit distance. For our purposes of similarity we rely on the syntactic
similarity of [MS02] which is inverse to the edit distance measure:

(7.2) simsyntactic(v1, v2) := max(0,
min(|v1|, |v2|)− ed(v1, v2)

min(|v1|, |v2|) )

The idea behind this measure is to take two strings and determine how many atomic ac-
tions are required to transform one string into the other one. Atomic actions are addition,
deletion, and replacement of characters, but also moving their position. This measure is
useful to handle spelling errors or mismatches in capitalization. Such discrepancies are
frequently found in our application scenario of the Bibster system Consequently, we
rely on the syntactic similarity function to detect these differences in the bibliographic
metadata.

Further, domain speci�c background knowledge can be used to de�ne more mean-
ingful similarity measures. For example, for bibliographic metadata we know that at-
tributes such as �rst and middle names are often abbreviated: In these cases it is possible
to compare only the characters in front of the abbreviation dot.

Distance-Based Similarity for Numeric Values For numeric datatypes with a limited
range (e.g. subsets of integer or double) it is advisable to use a similarity measure that
assigns the similarity between two numerical values on the basis of their arithmetical
difference. A generic example of such a distance-based similarity function is

(7.3) simdiff (v1, v2) := 1−
( |v1 − v2|

Vmax − Vmin

)γ

where v1, v2 ∈ V = [Vmin, . . . , Vmax] ⊂ R for a numeric datatype V . The parameter
γ ∈ R may be used to scale the in�uence of increasing differences between the values
on the similarity.
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7.4.2 Ontology Layer
We now turn to speci�c similarity functions that take the semantics of the ontology into
account. We do so by stating the similarity functions in terms of reasoning problems.
This allows us to talk about similarity in terms of facts entailed by the ontology, in-
stead of in terms of explicitly asserted data structures as done in prior approaches, e.g.
[MS02]. For example, when talking about equivalence of elements, we can test whether
our ontology entails that two elements are equivalent.

Equivalence and Equality In the previous Equation 7.1 we relied on the identity of
symbols to assert that elements with identical names are maximally similar, and dis-
similar otherwise. Such a de�nition is inline with the unique name assumption, which
however, does not hold in OWL ontologies. Taking the ontology into account, we can
de�ne the similarity for two concepts C1 and C2 in an ontology O as

(7.4) simequivalence((C1, O), (C2, O)) :=

{
1, if O |= C1 ≡ C2,

0, otherwise

A similar function can be de�ned for the equivalence of roles and equality of individuals.
Please note that the function above is de�ned for the case that elements of the same
ontology are compared. There are various ways to extend the de�nition to compare
elements of different ontologies. In the simplest case, we could de�ne:

(7.5) simequivalence((C1, O1), (C2, O2)) :=

{
1, if O1 ∪O2 |= C1 ≡ C2,

0, otherwise

In this case, we consider a global interpretation for both ontologies. It would also be
possible to de�ne the entailment in terms of local interpretations, e.g. in the style of
C-OWL [BGH+03].

Taxonomic Similarity An important source of information for determining similarity
is the concept hierarchy of an ontology. Computing the concept hierarchy for an on-
tology is a standard reasoning task for description logics based ontologies. The main
intuition behind using the concept hierarchy is that concepts that are close in the hierar-
chy are similar.

There has been a long history of research related to taxonomic similarity that is
directly relevant. The traditional edge based approach determines the distance length
between nodes in the hierarchy. The shorter the path from one node to the other, the more
similar they are. [LBM03] have compared different similarity measures and have shown
that for measuring the similarity between two concepts C1 and C2 in a hierarchically
structured semantic network (in this case the concept hierarchy) the following similarity
measure yields the best results (evaluated against human ratings):
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Figure 7.2: Taxonomic Similarity

(7.6) simtaxonomic((C1, O), (C2, O)) :=

{
e−αl · eβh−e−βh

eβh+e−βh , if C1 6= C2,

1, otherwise

α ≥ 0 and β ≥ 0 are parameters scaling the contribution of shortest path length l and
depth h of the deepest common super concept in the concept hierarchy of the ontology O,
respectively. Again, for the case of comparing concepts from two different ontologies O1

and O2 it is possible to de�ne the metric against the concept hierarchy of the combined
ontology O1 ∪ O2. The shortest path length is a metric for measuring the conceptual
distance of C1 and C2. The intuition behind using the depth of the direct common super
concept in the calculation is that concepts at upper layers of the concept hierarchy are
more general and are semantically less similar than concepts at lower levels. The effect
of path length l and depth h are shown in Figure 7.2.

Using the same intuitions, the taxonomic similarity can not only be applied to con-
cept hierarchies, but also to individuals that are organized in a hierarchy using special
roles, such as instances of a Topic concept that are organized using a subtopic rela-
tion.

In the Bibster system we rely on the taxonomic similarity in various places: In the
process of expertise-based peer selection, we need to determine how closely the semantic
content of a query that references an ACM topic matches the expertise of a peer. We here
rely on the taxonomic similarity, which we apply to the ACM topic ontology to compare
subjects with expertise descriptions and expertise descriptions with each other. Further,
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we rely on the taxonomic similarity to compare the classi�cation of publications against
the ACM topic ontology in the process of duplicate detection.

Taxonomic Overlap Another measure that relies on the concept hierarchy is the taxo-
nomic overlap as proposed by Maedche and Staab [MS02]. It compares concepts based
on their intensional semantics as de�ned by the semantic cotopy. Here, the semantic
cotopy of a concept C in an ontology O is the set of all super- and subconcepts of C:

SC(C,O) := {Ci | O |= C v Ci ∨O |= Ci v C}
While the original measure for taxonomic overlap in [MS02] was de�ned to deter-

mine the similarity of entire hierarchies, it can also be adopted to calculate the similarity
of single concepts in heterogeneous ontologies:

(7.7) simcotopy((C1, O1), (C2, O2)) :=
|SC(C1, O1) u SC(C2, O2)|
|SC(C1, O1) t SC(C2, O2)|

Extensional Concept Similarity In contrast to the intensionally de�ned taxonomic
similarity, extensional concept similarity measures consider to which extent the concepts
share individuals. Two concepts are similar, if their instances are similar. We here rely on
the reasoning task of instance retrieval to determine the extension of a particular concept.
We denote C(x) as the extension of a concept as a shorthand for {x | O |= C(x)}.

(7.8) simextension((C1, O), (C2, O)) :=
|C1 u C2(x)|
|C1 t C2(x)|

This function resembles the Jacquard Coef�cient, which determines the fraction of over-
lapping elements in relation to the number of all elements in the two extensions. There
are other functions to compute the similarity of sets of elements, including for example
the Dice and cosine measure. As the individual entities have various and very different
features, it is dif�cult to create a vector representing whole sets of individuals. Therefore
we use a technique known from statistics as multidimensional scaling [CC94]. Multidi-
mensional scaling encompasses methods which allow to gain insight in the underlying
structure of relations between entities by providing a geometrical representation of these
relations. Applied to determining the similarity of sets of ontology elements, we de-
scribe each element through a vector representing the similarity to any other element
contained in the two sets. This can easily be done, as we rely on other measures which
already did the calculation of similarity values [0..1] between single elements. For both
sets a representative vector can now be created by calculating an average vector over all
elements. Finally we determine the cosine between the two set vectors through the scalar
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product as the similarity value.

(7.9) simset(E,F ) :=

∑
e∈E ~e

|E| ·
∑

f∈F
~f

|F |
with element set E = {e1, e2, . . .}, ~e = (sim(e, e1), sim(e, e2), . . . sim(e, f1), . . .);
F and f are de�ned analogously. The intuition of this measure is that the scalar product
will be large for similar vectors and small for orthogonal (dissimilar) vectors.

Role Similarity based on Domain and Range Restrictions We can de�ne a similar-
ity measure for roles based on their domain and range restrictions. We again rely on
the subsumption hierarchy of an ontology O and compare the most speci�c concepts
occurring as the domain or range in a role restriction. We de�ne the domain dom(R, O)
as the most speci�c atomic concept C for which O |= ∀R.> v C. Speci�cally, with
most speci�c concept C we mean that there may exist no other concept D that is sub-
sumed by C with O |= ∀R.> v D. Analogously, we de�ne the range range(R, O) as
the most speci�c atomic concept C for which O |= ∀R−1.> v C. We can now reduce
the comparison of roles based on their domain and range restrictions by reduction to a
comparison of the corresponding concepts using some concept similarity measure:

simdom((R1, O1), (R2, O2)) := simconcept(dom(R1, O1), dom(R2, O2))

(7.10)
simrange((R1, O1), (R2, O2)) := simconcept(range(R1, O1), range(R2, O2))

(7.11)

Similar de�nitions would be possible using existential role restrictions.

Concept Similarity of Individuals The concept hierarchy and the corresponding tax-
onomic similarity can also be used to de�ne the similarity of individuals based on their
most speci�c concepts. We here rely on the reasoning task of realization, i.e. the task of
computing the most speci�c atomic concepts that are instantiated by a given individual,
which can be reduced to a combination of retrieval and classi�cation: For an individual
a and an atomic concept C, C realizes a, if a is an instance of C and there is no atomic
concept D, such that a is an instance of D, and C subsumes D. Correspondingly, the
similarity of two individuals can be de�ned in terms of the similarity of the concepts
they realize.

Individual Relation Similarity A further way of comparing individuals is based on
considering how the individuals are related with other individuals via a given role R.
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We denote R(a, x) w.r.t. O as a query with x as a distinguished variable and a as an
individual, i.e. a shorthand for {x | O |= R(a, x)}. Based on the answer set of such
queries we can de�ne:

(7.12) simR((a1, O1), (a2, O2)) := simset(R(a1, x), R(a2, x))

For example, in the Bibster system we use this function to compare two publications
on the basis of the similarity of the sets of authors.

7.4.3 Context Layer
On the context layer, we extend the de�nition of similarity with the contextual informa-
tion about ontology elements, in the sense that similar elements are used in a similar
context.

Usage Context A very typical example of context information is the usage context.
The intention of modeling usage context is to capture the users' behavioral patterns,
which can in turn be used to assess the similarity based on the interaction with the ontol-
ogy. We here use the contextual annotations to indicate the importance or relevance of
particular elements. For example, if users interested in knowledge management (as ob-
tained from the usage pro�le) are also interested in the topic Information Systems, one
can derive the similarity between these two topics. Often such similarity calculations
can be augmented with techniques from machine learning, in particular usage mining.

Generally, we can distinguish between explicit and implicit user feedback from usage
information. We talk about explicit feedback if we allow that a user (i) can directly ex-
press how important a certain ontology element is for him, and that he (ii) can explicitly
express negative ratings for ontology elements that he does not want to be part of his
ontology.

We can obtain implicit feedback from log information that indirectly indicate the
importance of ontology elements. For example, we can use an implicit usage context
called ru : N → N, which indicates the relevance of the elements based on how they
have been used, e.g. counts the number of queries issued by the user and instances in his
knowledge base that reference a given symbol name. This information is available in a
wide range of application scenarios. Of course, in speci�c scenarios further information
may be available and thus additional contextual annotations can be de�ned.

Based on the contextual annotations, it is now possible to de�ne similarity functions
for ontology elements based on the contextual annotations of the elements:

(7.13) simcontext((n1, O1, rO1), (n2, O2, rO2)) := sim(rO1(n1), rO2(n2))

The de�nition of the speci�c function to compare the contextual annotations depends on
the context space under consideration. For example, for the case of the usage context rU ,
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where the context space is that of the natural numbers, we can rely on the corresponding
similarity.

The de�nition of similarity of context can be extended to compare entire ontologies.
We can choose a simple correlation measure (vector/cosine similarity) to compute sim-
ilarities between ontologies of two users based on their contextual annotations of the
ontology elements, assuming a shared space of elements N for both ontologies:

(7.14) simr(O1, O2) :=

∑
s∈N rO1(s) rO2(s)√∑

s∈N rO1(s)
2
√∑

s∈N rO2(s)
2

Such a correlation measure is useful for the case of comparing personal ontologies of
users with their own usage context.

A very powerful tool for using usage context comes from information theory. The
information theory-based method for semantic similarity was �rst proposed by Resnik
[Res95]. He de�nes the similarity of two concepts as the maximum of the information
content of the concept that subsumes them in the concept hierarchy. The information
content of a concept depends on the probability of encountering an instance of a concept,
where encountering an instance may refer to any form of usage of that concept. That is,
the probability of a concept is determined by the frequency of occurrence of the concept
and its subconcept. The information content is then de�ned as the negative log likelihood
of the probability.

Assume we have a special contextual annotation p capturing the probability of en-
countering an instance of concept C, denoted with p(C). Then the information content
of concept C is quanti�ed by following the notation of information theory as

IC(C) = −log(p(C))

As probability increases, the information content decreases, so the more abstract a con-
cept, the lower its information content. The information content of the root concept is 0.
This quantitative characterization of information provides a new way to measure seman-
tic similarity. The more information two concepts share in common, the more similar
they are, and the information shared by two concepts is indicated by the information
content of the concepts that subsume them in the taxonomy. Formally, we can de�ne:
For two concepts C1 and C2 in an ontology O, the similarity measure is determined by
the ratio between the information content of the subsumers in the concept hierarchy and
the information content of the compared concepts:

(7.15) simIC((C1, O, p), (C2, O, p)) = max
C0∈sub(C1,C2)

2× log(p(C0))

log(p(C1)) + log(p(C2))

where sub(C1, C2) is the set of concepts that subsume both C1 and C2 in O.
In a sense, this intuition is analogous to that of the taxonomic similarity, where an

increasing depth in the hierarchy increases the similarity between two concepts.
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7.4.4 Aggregation of Similarities
In the previous section we have listed a large number of possible measures�distributed
over the three layers of our framework�to assess the similarity between certain ele-
ments. Without any doubt, that enumeration does not assert a claim on completeness.
The crucial question arising is how to combine several similarity measures, e.g. when
comparing elements based on a number of different characteristics.

Intending to aggregate several individual similarities as described in Section 7.4, one
can think of various realizations of the aggregation function A. However, it is plausible
to claim thatA is monotonous in each of its arguments and that it holdsA(0, . . . , 0) = 0
and A(1, . . . , 1) = 1.

The probably most common approach to aggregate a number of individual similari-
ties is to form the global similarity sim by assigning weights wi to all involved individual
similarities and compute sim as a weighted sum:

(7.16) A(sim1, . . . , simn) =

∑n
i=1 wi · simi∑n

i=1 wi

The weighted average allows a very �exible de�nition of what similar means in a certain
context. For example, for the duplicate detection in the Bibster system, we aggregate
the individual similarities using a weighted sum, where the weights have been assigned
manually on the basis of experiments. Here, the similarity based on the title has a high
weight, and in order for two publications to be considered as duplicates, the global sim-
ilarity needs to be close to 1.

However, recent results also show that the weights can also be effectively assigned
using Machine Learning techniques [ESS05]. Alternatively, one might de�ne A to se-
lect the minimum/maximum of its parameters or calculate any appropriate, application-
speci�c combination of the local similarities. Another alternative is described in
[JLQB06], where the authors propose an ordered weighting aggregation operator, which
does not associate a weight is with a particular measure simi, but with with a particular
ordered position. This allows to de�ne aggregations based on linguistic quanti�ers, such
as most or as many as possible individual similarities.

7.5 Related Work
Similarity measures for ontological structures have been widely researched, e.g. in cog-
nitive science, databases, software engineering, linguistics, and AI. Though this research
covers many areas and application possibilities, most applications have restricted their
attention to the determination of the similarity of the lexicon, concepts, and relations
within one ontology.

The nearest to our approach of comparing elements across ontologies come [Bis92]
and [WB99]. In [Bis92] the attention is restricted to the conceptual comparison level.
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In contrast to our work the new concept is described in terms of the existing ontology.
Furthermore, the author does not distinguish relations into taxonomic relations and other
ones, thus ignoring the semantics of inheritance. [WB99] computes description compat-
ibility in order to answer queries that are formulated with a conceptual structure that is
different from the one of the information system. In contrast to our approach their mea-
sures depend to a very large extent on a shared ontology that mediates between locally
extended ontologies. Their algorithm also seems less suited to evaluate similarities of
sets of lexical entries, taxonomies, and other relations.

Much research on similarity has been carried out since the beginning of the 1980s
in the area of database schema integration. Schema comparison analyzes and compares
schema in order to determine correspondences and comes therefore near to our approach.
The most relevant to our framework is the classi�cation of schema matching approaches
given in [RB01]. The authors distinguish three levels of abstraction. The highest level
differs between schemata- and instance-based information. The second level distin-
guishes the similarity among elements and among structures. On the third level the
calculation can be based on linguistic or information about a model's constraints. On the
other hand our approach uses a conceptual decomposition: if the similarity of entities
can be discovered on the data representation level (e.g. two strings are similar), then it
can be expanded to the semantic level (e.g. if these strings are label for two concepts,
then it can be an evidence that the concepts are similar) and �nally this information can
be propagated on the level of the usage of these concepts (e.g. if they are used simi-
larly, then there is more evidence for their similarity). In that context our framework
is more comprehensive, whereas all methods mentioned in [RB01] can be found in our
framework. Moreover, we use background information about the given domain and not
only �auxiliary� linguistic information (like synonyms, hypernyms) in all layers. The
idea of measuring similarities between ontologies at different semiotic levels has also
been applied by Maedche and Staab [MS02], who consider measures at the lexical and
conceptual level, which roughly correspond to our data and ontology layer, respectively.

7.6 Conclusions
In this chapter we have presented a general framework for calculating similarity among
elements in ontologies. We have extended the work of [EHSH05] and de�ned the frame-
work in terms of the OWL ontology model. The main characteristic of the framework is
its layered structure: We have de�ned three levels on which the similarity between two
elements can be measured: data layer, ontology layer, and context layer, which cope with
the data representation, ontological meaning, and contextual information about these el-
ements, respectively. Our intention was not only to develop a collection of existing
methods for measuring similarity, but rather to de�ne a framework that will enable their
effective systematization. For the individual layers we have further presented a number
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of speci�c similarity measures. The measures on the data layer and ontology layer are
directly de�ned in terms of the OWL ontology model. For the de�nition of similarity on
the context layer we have additionally introduced the notion of contextual annotations.
On the ontology layer we have de�ned speci�c measures based on standard descrip-
tion logic reasoning tasks, including computing concept hierarchies, instance retrieval,
and realization of concepts. We have also shown how particular similarity functions are
applied for different purposes in our motivating application scenario of the Bibster sys-
tem. Throughout the work, we will refer to the similarity framework to explain these
particular tasks in more detail.
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Chapter 8

Consistent Evolution of OWL
Ontologies

In the preceding part of this work we dealt with the heterogeneity in distributed informa-
tion systems and presented ontology-based information integration as a solution to the
challenges arising from heterogeneity. In this part we turn to the second important char-
acteristic, that of dynamics. Most of the work conducted so far in the �eld of ontologies
has focused on ontology construction issues, which assumes that domain knowledge en-
capsulated in an ontology does not change over time. However, ontologies in real-world
distributed information systems are typically not static entities, they change over time.
These changes may be related to modi�cations in the application domain, incorporating
additional functionality according to changes in the users' needs, organizing information
in a better way, etc. In this part, we present methods for ontology evolution as solutions
for managing changes to ontologies.

One of the major problems of evolving ontologies is the potential introduction of
inconsistencies as a result of applying changes. Ontology evolution can be de�ned as the
timely adaptation of an ontology to requested changes and the consistent management of
these changes. It is not a trivial process, due to the variety of sources and consequences
of changes, it thus cannot be left as manual work to the users of the information system.
Therefore, explicit support for this process is required within distributed information
systems. In this chapter we present an approach for the consistent evolution of OWL
DL ontologies building on and extending the evolution process originally de�ned in
[SMMS02]. We present a general overview of this process in Section 8.1. An important
aspect in the evolution process is to guarantee the consistency of the ontology when
changes occur, considering the semantics of the ontology change. A formalization of the
semantics of change requires a de�nition of the ontology model together with its change
operations, the consistency conditions and rules to enforce these conditions. We provide
these formalizations in Section 8.2, where we de�ne the notions of ontology change
operations, the semantics of change, and the consistency of an ontology. We introduce
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resolution strategies to ensure that consistency is maintained as the ontology evolves. We
further de�ne methods for detecting and resolving inconsistencies in an OWL ontology
after the application of a change. Finally, as for some changes there may be several
different consistent states of the ontology, we de�ne resolution strategies allowing the
user to control the evolution. We exemplarily present resolution strategies to detect and
resolve structural inconsistency, logical inconsistency and user-de�ned inconsistency in
Sections 8.3, 8.4, and 8.5, respectively.

The approach of consistent ontology evolution imposes certain requirements with
respect to its applicability. For examples, it requires that the ontology is consistent in
the �rst place and that changes to the ontology can be controlled. In certain application
scenarios, these requirements may not hold, and consequently, other means for dealing
with inconsistencies in changing ontologies may be required. In Section 8.6 we therefore
compare alternative approaches to deal with inconsistencies in changing ontologies in
terms of a common framework. Finally, we discuss related work in Section 8.7 and
summarize the main �ndings in Section 8.8.

8.1 Evolution process
Ontology evolution can be de�ned as the timely adaptation of an ontology and consistent
management of changes. The complexity of ontology evolution increases as ontologies
grow in size, so a structured ontology evolution process is required. We follow the
process described in [Sto04a]. The process starts with capturing changes either from ex-
plicit requirements or from the result of change discovery methods. Next, in the change
representation phase, changes are represented formally and explicitly. The semantics of
change phase prevents inconsistencies by computing additional changes that guarantee
the transition of the ontology into a consistent state. In the change propagation phase all
dependent artifacts (ontology instances on the Web, dependent ontologies and applica-
tion programs using the changed ontology) are updated. During the change implemen-
tation phase required and induced changes are applied to the ontology in a transactional
manner. In the change validation phase the user evaluates the results and restarts the
cycle if necessary.

In this chapter we focus on the semantics of change phase. Its role is to enable the
resolution of a given ontology change in a systematic manner by ensuring the consistency
of the whole ontology. It is realized through two steps:

• Inconsistency Detection: This step is responsible for checking the consistency of
an ontology with the respect to the ontology consistency de�nition. Its goal is to
�nd �parts� in the ontology that do not meet consistency conditions;

• Change Generation: This step is responsible for ensuring the consistency of the
ontology by generating additional changes that resolve detected inconsistencies.
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Figure 8.1: Semantics of Change Phase

The semantics of change phase of the ontology evolution process is shown in Figure
8.1. Changes are applied to an ontology in a consistent state (c.f. Change Application in
Figure 8.1), and after all the changes are performed, the ontology must remain consistent
(c.f. Change Resolution in Figure 8.1). This is done by �nding inconsistencies in the
ontology and completing required changes with additional changes, which guarantee the
consistency. Indeed, the updated ontology is not de�ned directly by applying a requested
change. Instead, it is de�ned as an ontology that satis�es the user's requirement for a
change and is at the same time a consistent ontology.

In our work we speci�cally consider the semantics of change phase for OWL DL on-
tologies. Ontology consistency in general is de�ned as a set of conditions that must hold
for every ontology [Sto04a]. Here, we have to distinguish various notions of consistency:

• Structural Consistency: First, we have to consider the structural consistency,
which ensures that the ontology obeys the constraints of the ontology language
with respect to how the constructs of the ontology language are used.

• Logical Consistency: Then, we need to consider the formal semantics of the on-
tology: Viewing the ontology as a logical theory, we consider an ontology as log-
ically consistent if it is satis�able, meaning that it does not contain contradicting
information.

• User-de�ned Consistency: Finally, there may be de�nitions of consistency that are
not captured by the underlying ontology language itself, but rather given by some
application or usage context. The conditions are explicitly de�ned by the user and
they must be met in order for the ontology to be considered consistent.

We note that most of the existing evolution systems (including the schema evolu-
tion systems as well) consider only the structural consistency. The role of an ontology
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evolution system is not only to �nd inconsistencies in an ontology and to alert an on-
tology engineer about them. Helping ontology engineers notice the inconsistencies only
partially addresses the issue. Ideally, an ontology evolution system should be able to
support ontology engineers in resolving problems at least by making suggestions how to
do that.

Moreover, an inconsistency may be resolved in many ways. In order to help the
user to control and customize this process, we have introduced the so-called resolution
strategies. Resolution strategies are developed as a method of ��nding� a consistent
ontology that meets the needs of the ontology engineer. A resolution strategy is the
policy for the evolution with respect to his requirements. It unambiguously de�nes the
way in which a change will be resolved, i.e. which additional changes will be generated.

In the remainder of this chapter we formally de�ne different types of consistency and
elaborate on how corresponding inconsistencies can be detected and resolved.

8.2 Change Representation and Semantics of Change
The goal of ontology evolution is to guarantee the correct semantics of ontology changes,
i.e. ensuring that they produce an ontology conforming to a set of consistency conditions.
The set of ontology change operations � and thus the consistency conditions � depends
heavily on the underlying ontology model. Most existing work on ontology evolution
builds on frame-like or object models, centered around classes, properties, etc. However,
as in this work we focus on the evolution of OWL DL ontologies. We therefore follow
the ontology model de�ned in Section 3.2, treating the ontology as a set of axioms.
In this section, we de�ne change operations for this ontology model and describe the
semantics of change.

Example 8 We consider a small fragment of our running example � the SWRC ontology
� modeling a small research domain, consisting of the following axioms:
Employee v Person, Student v Person (students and employees are persons),
Article v Publication (articles are publications),
Article v ∀author.Person (authors of an article are persons),
Article(anArticle) (anArticle is an article),
Employee(peter), Employee(paul) (peter and paul are employees),
author(anArticle, peter), author(anArticle, paul) (peter and paul are authors of
anArticle).

Based on the ontology model, we can de�ne ontology change operations.

De�nition 14 (Ontology Change Operations) An ontology change operation oco ∈
OCO is a function oco : O → O. Here OCO denotes the set of all change operations.
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An obvious essential question is what we count as a change in an ontology. Do we
count every syntactic modi�cation to an ontology, or only those syntactic modi�cations
that affect the semantics of the ontology. A simple example to illustrate the difference is
to consider the ontology:

C1 v C2, C1(x), C2(x)

Removing the third axiom is clearly a syntactic change, but not a semantic one (the
set of models of the ontology does not change, since the removed axiom is also implied
by the remaining two). This choice boils down to that of treating an ontology as a set of
axioms, or as a set of models. In our work, we have chosen to de�ne an ontology as a set
of axioms, allowing us to capture any syntactic modi�cation to an ontology. We consider
this approach most suitable as the same logical theory can be encoded by different sets
of axioms that have different computational properties (e.g. many ontologies that are
formally in OWL Full can be rephrased into an equivalent ontology in OWL DL). The
axiom-based approach enables us to distinguish between these two encodings. This
choice is in line with other studies of changing ontologies, e.g. [Kle04, Noy05, Sto04a].

For the ontology model of SHOIN (D), we thus allow the atomic change opera-
tions of adding and removing axioms, which we denote with O+̇α and O−̇α, respec-
tively. Accordingly, we de�ne the semantics of the change operations: O+̇α := O∪{α}
and O−̇α := O \ {α}. Obviously, representing changes at the level of axioms is
very �ne-grained. However, based on this minimal set of atomic change operations,
it is possible to de�ne more complex, higher-level descriptions of ontology changes.
Composite ontology change operations can be expressed as a sequence of atomic on-
tology change operations. The semantics of the sequence is the chaining of the corre-
sponding functions: For some atomic change operations oco1, ..., ocon we can de�ne
ococomposite(x) = ocon ◦ ... ◦ oco1(x) := ocon(...(oco1))(x).

The semantics of change refers to the effect of the ontology change operations and
the consistent management of these changes. The consistency of an ontology is de�ned
in terms of consistency conditions, or invariants that must be satis�ed by the ontology.
We then de�ne rules for maintaining these consistency conditions by generating addi-
tional changes.

De�nition 15 (Consistency of an Ontology) We call an ontology O consistent with re-
spect to a set of consistency conditions K iff for all κ ∈ K, O satis�es the consistency
condition κ(O).

At this point, we do not make any restriction with respect to the representation of the
consistency conditions. They may be expressed for example as logical formulas or func-
tions. In the following, we will further distinguish between structural, logical and user-
de�ned consistency conditions: KS , KL, and KU , respectively. We will call an ontology
structurally consistent, logically consistent and user-de�ned consistent, if the respective
consistency conditions are satis�ed for the ontology.
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Change Generation If we have discovered that an ontology is inconsistent, i.e. some
consistency condition is not satis�ed, we need to resolve these inconsistencies by gener-
ating additional changes that lead to a consistent state. These changes are generated by
resolution functions:

De�nition 16 (Resolution Function) A resolution function % ∈ P is a function
% : O × OCO → OCO for a consistency condition κ that returns for any given ontology
OinO and any ontology change operation oco ∈ OCO an additional change operation
(which may be composite) oco′ = %(O, oco), which � applied to the ontology O � results
in an ontology oco′(O) that satis�es the consistency condition κ.

A trivial resolution function would be a function which for a given ontology and change
operation simply returns the inverse operation, which effectively means a rejection of
the change. Obviously, for a consistent input ontology, applying a change followed by
the inverse change will result in a consistent ontology.

In general, there may be many different ways to resolve a particular inconsistency,
i.e. different resolution functions may exist. We can imagine a resolution function that
initially generates a set of alternative potential change operations, which may be pre-
sented to the user who decides for one of the alternatives. Such a resolution function
that depends on some external input is compatible with our de�nition of a resolution
function.

We can now de�ne the notion of a resolution strategy that assigns resolution func-
tions to consistency conditions:

De�nition 17 (Resolution Strategy) A resolution strategy RS is a total function RS :
K → P , such that for all κ ∈ K, % = RS(κ) is a resolution function for κ.

The resolution strategy is applied for each ontology change operation in straight-
forward manner: As long as there are inconsistencies with respect to a consistency con-
dition, we apply the corresponding resolution function.

Please note that a resolution function may generate changes that violate other con-
sistency conditions (resulting in further changes that in turn may violate the previous
consistency condition). When de�ning a resolution strategy, one therefore has to make
sure that the application of the resolution strategy terminates, either by prohibiting that
a resolution function introduces inconsistencies with respect to any de�ned consistency
condition, or by other means, such as cycle detection.

In the following sections we will introduce various evolution strategies to maintain
the structural, logical and user-de�ned consistency of an ontology.
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8.3 Structural Consistency
Structural consistency considers constraints that are de�ned for the ontology model with
respect to the constructs that are allowed to form the elements of the ontology (in our
case the axioms). Often this property is also called validity with respect to set of con-
straints. In the context of OWL ontologies, there exist various sublanguages (sometimes
also called species), such as OWL DL, OWL Lite, OWL DLP [Vol04]. These sublan-
guages differ with respect to the constructs that are allowed and can be de�ned in terms
of constraints on the available constructs. The role of these sublanguages is to be able to
de�ne ontologies that are �easier to handle�, either on a syntactic level to for example al-
low easier parsing, or on a semantic level to trade some of the expressivity for decreased
reasoning complexity. It is thus important that the ontology evolution process provides
support for dealing with de�ned sublanguages: When an ontology evolves, we need to
make sure that an ontology does �not leave its sublanguage�.

Because of the variety of the sublanguages, it is not possible to operate with a pre-
de�ned and �xed set of structural consistency conditions. Instead, we allow to de�ne
sublanguages in terms of arbitrary structural consistency conditions along with the cor-
responding resolution functions that ensure that an ontology change operation does not
lead out of the de�ned sublanguage. Please note that because of the de�nition of the on-
tology model, we do not allow to construct ontologies outside of the OWL DL language.

8.3.1 De�nition of Structural Consistency
In the following we de�ne what it means for an ontology to be structurally consistent
with respect to a certain ontology sublanguage. A sublanguage is de�ned by a set of
constraints on the axioms. Typically, these constraints disallow the use of certain con-
structs or the way these constructs are used.

Some constraints can be de�ned on a �per-axiom-basis�, i.e. they can be validated
for the axioms individually. Other constraints restrict the way that axioms are used in
combination. In the following we exemplarily show how such consistency conditions
can be de�ned for a particular sublanguage.

Consistency Condition for the OWL Lite sublanguage OWL Lite is a sublanguage
of OWL DL that supports only a subset of the OWL language constructs [BvHH+04].
We will now show how it can be de�ned in terms of a set of structural consistency
conditions KS

1:

• κS,1 disallows the use of disjunction C tD,
1Please note that the constraints for the OWL DL language are already directly incorporated into the

ontology model itself.
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• κS,2 disallows the use of negation ¬C,

• κS,3 restricts the use of the concept C uD such that C and D be concept names or
restrictions,

• κS,4 restricts the use of the restriction constructors ∃R.C, ∀R.C such that C must
be a concept name,

• κS,5 limits the values of stated cardinalities to 0 or 1, i.e. n ∈ {0, 1} for all
restrictions ≥ nR, ≤ nR,

• κS,6 disallows the usage of the oneOf constructor {a1, . . . , an}.

8.3.2 Resolving Structural Inconsistencies
Once we have discovered inconsistencies with respect to the de�ned sublanguage, we
have to resolve them. An extreme solution would be to simply remove the axioms that
violate the constraints of the sublanguage. This would certainly not meet the expected
requirements. A more advanced option is to try to express the invalid axiom(s) in a way
that is compatible with the de�ned sublanguage. In some cases, it may be possible to
retain the semantics of the original axioms.

Resolution Strategies for OWL Lite In the following we will present a possible res-
olution strategy for the OWL Lite sublanguage by de�ning one resolution function for
each of the above consistency conditions inKS . Although OWL Lite poses many syntac-
tic constraints on the syntax of OWL DL, it is still possible to express complex descrip-
tions using syntactic workarounds, e.g. introducing new concept names and exploiting
the implicit negation introduced by disjointness axioms. In fact, using these techniques,
OWL Lite can fully capture OWL DL descriptions, except for those containing individ-
ual names and cardinality restrictions greater than 1 [HPSvH03].

• %s,1 replaces all references to a concept C t D with references to a new concept
name CorD, and adds the following axiom: CorD ≡ ¬(¬C u ¬D),

• %s,2 replaces all references to a concept ¬C in an added axiom with references to
a new concept name NotC, and adds the following two axioms: C ≡ ∃R.> and
NotC ≡ ∀R.⊥, where R is a newly introduced role name,

• %s,3 replaces all references to a concept C (or D), where C (or D) is not a concept
name or restriction, in concepts C uD with references to a new concept name aC
(or aD), and adds the following axiom: aC ≡ C (or aD ≡ D),
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• %s,4 replaces all references to a concept C (where C is not a concept name) in
restrictions ∃R.C or ∀R.C with references to a new concept name aC, and adds
the following axiom: aC ≡ C.

While these �rst four resolution functions simply apply syntactic tricks while preserving
the semantics, there exist no semantics-preserving resolution functions for the consis-
tency conditions κS,5 and κS,6.

However, we can either try to approximate the axioms, or in the worst case, simply
remove them to ensure structural consistency. We can thus de�ne:

• %s,5 replaces all cardinality restrictions≥ nR with restrictions≥ 1 R and removes
all axioms containing cardinality restrictions ≤ nR, as these cannot be properly
approximated,

• %s,6 replaces all occurrences of the concept {a1, . . . , an} with a new concept D
and adds assertions D(a1), ..., D(an).

Example 9 Suppose we want to add to the ontology from Example 8 the axiom
Publication v ∃author.¬Student, i.e. stating that all publications must have an au-
thor who is not a student. As this axiom violates consistency condition κS,2, resolution
function %s,2 would generate a composite change that adds the following semantically
equivalent axioms instead: Publication v ∃author.NotStudent, Student ≡ ∃R.>,
NotStudent ≡ ∀R.⊥, resulting in a structurally consistent ontology.

8.4 Logical Consistency
While the structural consistency is only concerned about whether the ontology conforms
to certain structural constraints, the logical consistency addresses the question whether
the ontology is �semantically correct�, i.e. does not contain contradicting information.

8.4.1 De�nition of Logical Consistency
The semantics of the SHOIN (D) description logic is classically de�ned via a model-
theoretic semantics, which explicates the relationship between the language syntax and
the model of a domain: An interpretation I = (4I , ·I) consists of a domain set 4I

and an interpretation function ·I , which maps from individuals, concepts and roles to
elements of the domain, subsets of the domain and binary relations on the domain, re-
spectively. An interpretation I satis�es an ontology O, if it satis�es each axiom in O.
Axioms thus result in semantic conditions on the interpretations. Consequently, contra-
dicting axioms will allow no possible interpretation.

We can thus de�ne a consistency condition for logical consistency κL that is satis�ed
for an ontology O if O is satis�able, i.e. if O has a model.
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Please note that because of the monotonicity of the considered logic, an ontology can
only become logically inconsistent by adding axioms: If a set of axioms is satis�able, it
will still be satis�able when any axiom is deleted. Therefore, we only need to check the
consistency for ontology change operations that add axioms to the ontology.

Effectively, if O ∪ {α} is inconsistent, in order to keep the resulting ontology con-
sistent some of the axioms in the ontology O have to be removed. In this sense, the
add-operation and the remove-operation are similar to the belief revision operation and
the belief contraction operation in the theories of belief revision [FPA05]. However, note
that the main difference between our approach here and the belief revision approach is
that the belief revision is a model-based approach, where a change operation is de�ned
in terms of logical consequences, whereas our approach is axiom-based (c.f. discussion
following De�nition 14).

Example 10 Suppose, we start out with the initial ontology from Example 8 extended
with the axiom Student v ¬Employee (Students and Employees are disjoint). This
ontology is logically consistent.

Suppose we now want to add the axiom Student(peter), stating that the individual
peter is a student. Obviously, this ontology change operation would result in an incon-
sistent ontology, as we have stated that students and employees are disjoint on the one
hand, and that peter is a student and a employee on the other hand.

Now, there may be many ways how to resolve this inconsistency. One possibility
would be to reject the change Student(peter). Alternatively, we could also remove the
assertion Employee(peter). However, if both of these assertions are correct, the user
may not be happy with either decision. The most intuitive one may be to retract the
axiom Student v ¬Employee, but also this may not satisfy the user. A further, more
complex change, would be to introduce a new concept PhdStudent, which need not be
disjoint with employees.

8.4.2 Resolving Logical Inconsistencies
In the following, we present resolution functions that allow us to de�ne resolution strate-
gies to ensure logical consistency. The goal of these resolution functions is to determine
a set of axioms to remove in order to obtain a logically consistent ontology with �mini-
mal impact� on the existing ontology. Obviously, the de�nition of minimal impact may
depend on the particular user requirements. A very simple de�nition could be that the
number of axioms to be removed should be minimized. More advanced de�nitions could
include a notion of con�dence or relevance of the axioms. Based on this notion of �min-
imal impact� we can de�ne an algorithm that generates a minimal number of changes
that result in a maximal consistent subontology.

However, in many cases it will not be feasible to resolve logical inconsistencies in
a fully automated manner. We therefore also present a second, alternative approach
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for resolving inconsistencies that allows the interaction of the user to determine which
changes should be generated. Unlike the �rst approach, this approach tries to localize
the inconsistencies by determining a minimal inconsistent subontology.

Alternative 1: Finding a consistent subontology

In our model we assume that the ontology change operations should lead from one con-
sistent ontology to another consistent ontology. If an ontology change operation (adding
an axiom, O+̇α) would lead to an inconsistent ontology, we need to resolve the incon-
sistency by �nding an appropriate subontology O′ ⊂ O (with α ∈ O′) that is consistent.
We do this by �nding a maximal consistent subontology:

De�nition 18 (Maximal consistent subontology) An ontology O′ is a maximal consis-
tent subontology of O, if O′ ⊂ O and O′ is logically consistent and every O′′ with
O′ ⊂ O′′ ⊆ O is logically inconsistent.

Intuitively, this de�nition states that no axiom from O can be added to O′ without losing
consistency. In general, there may be many maximal consistent subontologies O′. It is
up to the resolution strategy and the user to determine the appropriate subontology to be
chosen.

The main idea is that we start out with the inconsistent ontology O ∪ {α} and iter-
atively remove axioms until we obtain a consistent ontology. Here, it is important how
we determine which axioms should be removed. This can be realized using a selection
function. The quality of the selection function is critical for two reasons: First, as we
potentially have to search all possible subsets of axioms in O for the maximal consistent
ontology, we need to prune the search space by trying to �nd the relevant axioms that
cause the inconsistency. Second, we need to make sure that we remove the dispensable
axioms. (Please note that a more advanced strategy could consider to only remove parts
of the axiom.)

The �rst problem of �nding the axioms that cause the inconsistency can be targeted
by considering that there must be some �connection� between these problematic axioms.
We formalize this notion using a connectedness relation between pairs of axioms.

De�nition 19 (Connection relation) A connection relation C is a set of axiom pairs,
namely, C ⊆ O ×O.

A very simple, but useful connection is that of the direct structural connection relation,
as �rst proposed in [CPW01]:

De�nition 20 (Direct Structural Connection) Two axioms α and β are directly struc-
turally connected � denoted with connected(α, β) �, if there exists an ontology entity
e ∈ NC ∪NIa ∪NIc ∪NRa ∪NRc that occurs in both α and β.
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The second problem of only removing dispensable axioms requires more semantic
selection functions. These semantic selection functions can for example exploit infor-
mation about the con�dence in the axioms that allows us to remove less probable ax-
ioms. Such information is for example available in probabilistic ontology models, such
as [DP04].

In the following, we present an algorithm (c.f. Algorithm 2) for �nding (at least) one
maximal consistent subontology using the de�nition of structural connectedness (c.f.
De�nition 20):

Algorithm 2 Determine consistent subontology for adding axiom α to ontology O

1: Ω := {O ∪ {α}}
2: repeat
3: Ω′ := ∅
4: for all O′ ∈ Ω do
5: for all β1 ∈ O′ \ {α} do
6: if there is a β2 ∈ ({α} ∪ (O \O′)) such that connected(β1, β2) then
7: Ω′ := Ω′ ∪ {O′ \ {β1}}
8: end if
9: end for

10: end for
11: Ω := Ω′

12: until there exists an O′ ∈ Ω such that O′ is consistent

We maintain a set of possible candidate subontologies Ω, which initially contains
only O ∪ {α} (c.f. line 1), i.e. the consistent ontology O before the change and the
added axiom α. In every iteration, we generate a new set of candidate ontologies (line
3) by removing one axiom β1 from each candidate ontology (line 7) that is structurally
connected with α or an already removed axiom (in O \ O′, line 6), until at least one of
the candidate ontologies is a consistent subontology (line 12).

The properties of the algorithm (ef�ciency, completeness) will depend on the prop-
erties of the connectedness relation. The above de�nition of structural connectedness
provides good heuristics to ef�ciently �nd a maximal consistent subontology, but is not
complete for the case where axioms causing an inconsistency are not structurally con-
nected at all.

Example 11 We now show how Algorithm 2 can be used to maintain consistency. Con-
sider a change operation oco1 that adds the axiom α = PhDStudent v Employee.
Then oco1(O1) results in an inconsistent ontology.

Algorithm 2 starts with O1 +̇α as element of the set of potential ontologies. In the
�rst iteration, a set of new potential ontologies is created by removing one of the axioms
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that are structurally connected with the α. These axioms are: PhDStudent(peter),
Employee v ¬Student, PhDStudent v Student and Employee v Person.

The removal of either PhDStudent(peter), PhDStudent v Student or
Employee v ¬Student will result in a maximal consistent subontology. For the de-
cision which axiom should be removed from the ontology, one can rely on further back-
ground information indicating the relevance of the axioms, or on interaction with the
user. For the following examples, we assume that the resulting ontology O2 is created
by removing the axiom Student v ¬Employee, i.e. O2 = O1 +̇ PhDStudent v
Employee −̇ Student v ¬Employee.

Alternative 2: Localizing the inconsistency

In the second alternative, we do not try to �nd a consistent subontology, instead we try to
�nd a minimal inconsistent subontology, i.e. a minimal set of contradicting axiom. We
call this process Localizing the inconsistency. Once we have localized this minimal set,
we present it to the user. Typically, this set is considerably smaller than the entire ontol-
ogy, such that it will be easier for the user to decide how to resolve the inconsistency.

De�nition 21 (Minimal inconsistent subontology) An ontology O′ is a minimal incon-
sistent subontology of O, if O′ ⊆ O and O′ is inconsistent and for all O′′ with O′′ ⊂ O′,
O′′ is consistent.

Intuitively, this de�nition states that the removal of any axiom from O′ will result in a
consistent ontology.

Again using the de�nition of connectedness, we can realize an algorithm (c.f. Algo-
rithm 3) to �nd a minimal inconsistent ontology: We maintain a set Ω with candidate
ontologies, which initially only consists of the added axiom {α} (c.f. line 1). As long
as we have not found an inconsistent subontology, we add one structurally connected
axiom (line 6) to each candidate ontology (line 7).

Because of the minimality of the obtained inconsistent ontology, it is suf�cient to re-
move any of the axioms to resolve the inconsistency. The minimal inconsistent ontology
can be presented to the user, who can select the appropriate axiom to remove. It may
be possible that one added axiom introduced multiple inconsistencies. For this case, the
above algorithm has to be applied iteratively.

Example 12 We now show how Algorithm 3 can be used to localize the incon-
sistency in our running example, which has been introduced by adding the ax-
iom Student(peter). Applying the algorithm, we start out with the candidate
ontology Ω := {{Student(peter)}}. Adding the structurally connected ax-
ioms, we obtain: Ω := {{Student(peter), Employee(peter)}, {Student(peter),
Student v Person}, {Student(peter), Student v ¬Employee}, {Student(peter),
Employee(ljiljana)}, {Student(peter), author(anArticle, peter)}}.
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Algorithm 3 Localize inconsistency introduced by adding axiom α to ontology O

1: Ω := {{α}}
2: repeat
3: Ω′ := ∅
4: for all O′ ∈ Ω do
5: for all β1 ∈ O \O′ do
6: if there is a β2 ∈ O′ such that connected(β1, β2) then
7: Ω′ := Ω′ ∪ {O′ ∪ {β1}}
8: end if
9: end for

10: end for
11: Ω := Ω′

12: until there exists an O′ ∈ Ω such that O′ is inconsistent

All of these candidate ontologies are still consistent. In the next iteration, adding
the structurally connected axiom Student v ¬Employee to the candidate ontology
{Student(peter), Employee(peter)} will result in the minimal inconsistent subontol-
ogy {Student(peter), Employee(peter), Student v ¬Employee}.

The removal of any of these axioms (which one is to be decided by the user), will
lead to a consistent ontology.

Using contextual information for the resolution of changes. Instead of leaving the
�nal choice of how to resolve the inconsistency to the user, we can alternatively rely on
contextual information, e.g. about the certainty or importance of axioms, to automate the
selection of axioms. For example, in [HV05] we show how the algorithm can be applied
for the evolution task of incremental ontology learning. We here apply ontology learning
algorithms to generate ontologies based on a Learned Ontology Model. The ontology
learning algorithms are largely based on heuristics and statistics; it is thus inherent in the
ontology learning process that the acquired ontologies represent uncertain and possibly
contradicting knowledge. In the Learned Ontology Model, we represent uncertainty as
contextual annotations capturing the con�dence about the correctness of the ontology
elements. In the learning process, as new ontology elements are learned and added to
the ontology, we apply the methods of consistent ontology evolution, in particular we
apply Alternative 2 to localize inconsistencies as they are introduced. In the resolution
of the changes we remove the axioms that have the lowest con�dence, i.e. those axioms
that are most likely incorrect. We are thus able to incrementally evolve an ontology that
is (1) consistent and (2) captures the information with the highest con�dence. For details
of this process and evaluation results, we refer the reader to [HV05].
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8.5 User-de�ned Consistency
The user-de�ned consistency takes into account particular user requirements that need
to be expressed �outside� of the ontology language itself. While an ontology may be
structurally consistent (e.g. be a syntactically correct ontology according to a particular
OWL sublanguage) and may be logically consistent, it may still violate some user re-
quirements. With the term user-de�ned consistency conditions we here subsume a num-
ber of different properties of an ontology that are sometimes more speci�cally called
constraints or validity conditions. We can identify two types of user-de�ned consistency
conditions: generic and domain dependent.

Generic consistency conditions are applicable across domains and represent e.g. best
design practice or modeling quality criteria. For example, OntoClean [WG01] formal-
izes a set of meta-properties representing the philosophical notions of rigidity, identity,
unity, and dependence. These meta-properties are assigned to properties (corresponding
to concepts in DL terminology) of the ontology. Constraints on the taxonomic relation-
ships de�ne the consistency of the ontology, e.g. a non-rigid property cannot subsume a
rigid property.

Domain dependent consistency conditions take into account the semantics of a par-
ticular formalism of the domain. An example are consistency conditions for the OWL-S
process model [SASS04] to verify web service descriptions.

In the following we exemplarily show how user-de�ned consistency conditions and
corresponding resolution functions can be described to ensure modeling quality condi-
tions. Such modeling quality conditions cover redundancy, misplaced properties, miss-
ing properties, etc. We refer the reader to [Sto04a] for a complete reference.

One example of redundancy is concept hierarchy redundancy. If a direct super-
concept of a concept can be reached through a non-direct path, then the direct link is
redundant. We can thus de�ne a consistency condition that disallows concept hierarchy
redundancy: κU,1 is satis�ed if for all axioms C1 v Cn in O there exist no axioms in
O with C1 v C2, ..., Cn−1 v Cn. We can further de�ne a corresponding resolution
function %U,1 that ensures this consistency condition by generating a change operation
that removes the redundant axiom C1 v Cn.

Example 13 Suppose, we start out with the ontology from our Example 8, i.e. the initial
example extended with the axiom Professor v Person (a professor is a person). This
ontology is consistent with respect to the consistency de�nition κU,1.

Suppose we now want to add the axiom Professor v Employee, stating that the
professor is an employee. Obviously, this ontology change operation would result in
an ontology that is inconsistent with respect to κU,1 since there is an alternative path
(through the concept Employee) between the concept Professor and its direct super-
concept Person. The resolution function %U,1 would generate a change operation that
removes the axiom Professor v Person.
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8.6 Alternatives in Dealing with Inconsistencies
The approach of consistent ontology evolution presented in the previous sections ad-
dresses the use case, where changing an initially consistent ontology potentially in-
troduces inconsistencies. This typically occurs in settings where one is in control of
changes and needs support for maintaining consistency during evolution.

However, we can identify other use cases that require dealing with inconsistencies in
changing ontologies. For example, re-using ontologies in open settings such as the Web
might include the retrieval of inconsistent ontologies that should be �xed before usage.
In some cases consistency cannot be guaranteed at all and inconsistencies cannot be re-
paired, still one wants to derive meaningful answers when reasoning. Often this is the
case when the schema-level and the instance-level of an ontology are evolved separately
without synchronizing the changes continuously. Finally, when applying an ontology
one faces the challenge to decide whether the usage of other, e.g. newer, versions of this
ontology might lead to inconsistencies in an application, or, in other words, whether the
versions are compatible with respect to certain aspects. While the former use cases typ-
ically occur during the development of ontologies, the latter ones illustrate the handling
of inconsistencies during the runtime of ontology-based applications.

In this section we compare different approaches to address these use cases within
a framework for combining currently separate methods for inconsistency-handling in
changing ontologies. This framework was �rst presented in [HvHH+05] and builds on
common de�nitions of ontology change and consistency. In particular, we focus on
logical consistency. To meet the requirements of the above mentioned use cases our
framework consists of the following main components:

Consistent Ontology Evolution is the process of managing ontology changes by pre-
serving the consistency of the ontology with respect to a given notion of consistency. The
consistency of an ontology is de�ned in terms of consistency conditions, or invariants
that must be satis�ed by the ontology.

Repairing Inconsistencies involves a process of diagnosis and repair: �rst the cause
(or: a set of potential causes) of the inconsistency needs to be determined, which can
subsequently be repaired.

Reasoning with Inconsistent Ontologies does not try to avoid or repair the inconsis-
tency (as in the previous two approaches), but simply tries to �live with it� by trying to
return meaningful answers to queries, even though the ontology is inconsistent.

Ontology Versioning manages the relations between different versions of an ontol-
ogy, and a notion of compatibility with such versions. One such compatibility relation
is inconsistency: even though two versions of an ontology may each be consistent in
themselves, they might derive some opposite conclusions, and would then be mutually
inconsistent.
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Consistent ontology evolution has already been described in detail in the previous
sections. In the following, we describe the remaining three alternative strategies in terms
of the notions introduced in the previous section and provide a comparison.

8.6.1 Repairing Inconsistencies
The most straightforward approach to inconsistencies is to repair them when they are
detected [SC03]. Repairing an inconsistency actually consists of two tasks: Locating
Inconsistencies and Resolving Inconsistency. The task of repairing inconsistencies can
thus be de�ned as: For an inconsistent ontology O we generate a change operation oco
such that O′ = oco(O) results in a consistent ontology O′.

Locating Inconsistencies As a �rst step, the source of the inconsistency has to be
detected. Normally, the source is a set of axioms that when being part of the model at
the same time make it inconsistent.

An algorithm to �nd a subontology which leads to an unsatis�able concept (adopted
from [SC03]) can use similar ideas like those for consistent ontology evolution. The
main difference is that the latter assumes that the intended minimal inconsistent on-
tology would contain an added axiom α, whereas the former has no such requirement
but starting with an unsatis�able concept C for the connection checking2. Algorithm 4
uses the increment-reduction strategy to �nd a minimal subontology for an unsatis�able
concept. Namely, the algorithm �nds a subset of the ontology in which the concept is
unsatis�able �rst (lines 2 to 8), then reduces the redundant axioms from the subset (lines
9-13).

Based on those detected subsets for all unsatis�able concepts, we can �nd minimal
subsets of the ontology O which leads to all unsatis�able concepts[SC03]. That can be
used by an ontology engineer to repair the ontology in order to avoid all unsatis�able
concepts.

Resolving Inconsistency Once the source of an inconsistency has been found, the
con�ict between the identi�ed set of axioms has be to resolved. This task again is dif-
�cult, because in most cases there is no unique way of resolving a con�ict but a set of
alternatives. Often, there are no logical criteria selecting the best resolution. A common
approach is to let the user resolve the con�ict after it has been located.

Example 14 We again use the running example introduced in Example 11. Assume that
we start out with the inconsistent ontology O3 = {Employee v Person, Student v

2In order to do so, we extend the direct structural connection relation on concept sets, so that we can
say something like an axiom β is connected with a concept C, i.e., connected(β,C). It is easy to see that
it does not change the de�nition.
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Algorithm 4 Localize a minimal subset of O in which a concept C is unsatis�able
1: Ω := ∅
2: repeat
3: for all β1 ∈ O \ Ω do
4: if there is a β2 ∈ Ω such that connected(β1, β2) or connected(β1, C) then
5: Ω := Ω ∪ {β1}
6: end if
7: end for
8: until C is unsatis�able in Ω
9: for all β ∈ Ω do

10: if C is unsatis�able in Ω− {β} then
11: Ω := Ω− {β}
12: end if
13: end for

Person, PhDStudent v Student, Employee v ¬Student, PhDStudent v
Employee, PhDStudent(peter)}.

In this example the concept PhDStudent is unsatis�able. Starting with this unsatis-
�able concept the algorithm �nds the connected set O31 = {PhDStudent v Student,
PhDStudent v Employee, PhDStudent(peter)}. The concept PhDStudent is still
satis�able in O31. Extending O31 with the connection relation the algorithm gets O3.
Reducing the redundant axioms, the algorithm �nds the set O32 = {PhDStudent v
Student, Employee v ¬Student, PhDStudent v Employee}. Since PhdStudent
is the only unsatis�able concept in this example, the ontology engineer can focus on the
set O32 to repair O3.

There is a relatively well studied method for diagnosis, with a straightforward def-
initions: diagnosis is the smallest set of axioms that need to be removed to make the
ontology consistent. These diagnoses can be calculated relatively easily on the basis
of the minimal inconsistent subontologies. So, this covers the two parts of localizing
and repairing inconsistencies (repairing an incoherent model by removing the minimal
diagnoses).

8.6.2 Reasoning with Inconsistent Ontologies
In some cases it is unavoidable to live with inconsistencies, if consistency cannot be
guaranteed and inconsistencies cannot be repaired. Nevertheless, there is still a need
to reason about ontologies in order to support information access and integration of
new information. We can summarize the task of reasoning with inconsistent ontologies:
For a possibly inconsistent ontology O and a boolean query, the task of inconsistency
reasoning is to return a meaningful query answer. A query answer to a boolean query
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O |≈ α? is obtained by the evaluation of the entailment relation |≈, which classically
may be either yes (O |≈ α), or no (O 6|≈ α).

De�nition 22 (Consistent Query Answer) For an ontology O and an entailment rela-
tion |≈, an answer 'O |≈ α' is said to be consistent if O 6|≈ ¬α.

For a consistent ontology O, its query answer is always consistent under a standard
entailment. Namely, the consequence set {α : O |= α} is consistent.

As shown above, the standard entailment is explosive: Any formula is a logical con-
sequence of an inconsistent ontology. Therefore, conclusions drawn from an inconsistent
ontology by classical inference may be completely meaningless. For an inconsistency
reasoner it is expected that it is able to return meaningful answers to queries, given an in-
consistent ontology. In the case of a consistent ontology O, classical reasoning is sound,
i.e., a formula φ deduced from O holds in every model of O. This de�nition is not
preferable for an inconsistent ontology O as every formula is a consequence of O using
a standard entailment |=. However, often only a small part of O has been incorrectly
constructed or modeled, while the remainder of O is correct. Therefore, in [HvHtT05]
the following de�nition of meaningfulness has been proposed:

De�nition 23 (Meaningfulness) A query answer to a query O |≈ α? is meaningful iff
the following two conditions are satis�ed:

1. soundness: the answer is a consequence of a consistent subontology of O under
the standard entailment |=,

2. consistency: the answer is a consistent query answer under the entailment |≈.

The general strategy for processing inconsistent ontologies is: given a connec-
tion/relevance relation (c.f. De�nition 19), we select some consistent subontology from
an inconsistent ontology. Then we apply standard reasoning on the selected subontol-
ogy to �nd meaningful answers. If a meaningful answer cannot be found, the relevance
degree of the selection function is made less restrictive thereby extending the consistent
subontology for further reasoning. If an inconsistent subset is selected, we call the over-
determined processing (ODP)[HvHtT05]. One of the ODP strategies is to �nd the set
of the maximal consistent subontologies of the selected set. A linear extension strategy
with an ODP for the evaluation of a query 'O |≈ α?' is described in Algorithm 5: We
start with an empty ontology Ω in line 1. We incrementally add structurally connected
axioms (line 3) until we have identi�ed a consistent subontology from which we can de-
rive the query answer (line 15). The consistency of the subontology is ensured with the
over-determined processing in lines 8 to 14. In [HvHtT05] it is proven that the answers
which are obtained by the linear extension strategy are meaningful.
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Algorithm 5 Linear extension strategy for the evaluation of query O |≈ α?

1: Ω := ∅
2: repeat
3: Ω′ := {β1 ∈ O \ Ω : there exists a β2 ∈ Ω ∪ {α} such that connected(β1, β2)}
4: if Ω′ = ∅ then
5: return O 6|≈ α
6: end if
7: Ω := Ω ∪ Ω′

8: if Ω inconsistent then
9: Ω′′ := maximal consistent subontology(Ω)

10: if Ω′′ |= α then
11: return O |≈ α
12: else return O 6|≈ α
13: end if
14: end if
15: until Ω |= α
16: return O |≈ α

Example 15 Consider the inconsistent ontology O3 = {Employee v Person,
Student v Person, PhDStudent v Student, PhDStudent v Employee,
Employee v ¬Student, PhDStudent(peter)}

Assume we want to ask the query O3 |≈ Student(peter)?. Using standard entail-
ment we would obtain no meaningful answer, as both Student(peter) and
¬Student(peter) are entailed by the ontology. By the linear extension on the con-
nection relation with Student(peter), the algorithm will construct the ontology Ω =
{PhDStudent(peter), PhDStudent v Employee, PhDStudent v Student}. This
ontology Ω is consistent, and Ω |= α. Thus, the algorithm concludes that O3 |≈
Student(peter).

8.6.3 Multi-Version Reasoning
Multi-version reasoning is an approach that tries to cope with possible inconsistencies
in changing ontologies by considering not only the latest version of an ontology, but
all previous versions as well. We consider the sequence of ontologies O1 ≺ · · · ≺ On

where the ordering relation is de�ned as:

Oi ≺ Oj ⇔ ∃ococomposite : ococomposite(Oi) = Oj

Intuitively, On is the current version of the ontology. O1, · · · , On−1 are older ver-
sions of the same ontology that have been created from the respective previous ontology
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in terms of a composite change action. We can assume that each of the ontologies is
consistent. Further, we assume that an application expresses its requirements for com-
patibility as an expectation α, for which there is an ontology Oi in the sequence such
that Oi ∪ {α} is consistent. Expectations can thus be thought of as statements that are
expected to hold in an ontology.

Based on these assumptions, the task of ensuring consistency reduces to the task of
�nding the right version Oi of the ontology in the sequence of versions. This task re-
quires the ability to determine the satis�ability of certain expressions across the different
versions of the ontology. This can be done using an extension of the ontology language
called L+ with the operator PreviousVersionφ, which is read as 'φ holds in the pre-
vious version', the operator AllPriorVersionsφ, which is read as 'φ holds in all prior
versions', and the operator SomePriorVersionφ, which is read as 'φ holds in some
prior versions'.

Using these basic operators, we can de�ne a rich set of query operators for asking
speci�c questions about speci�c versions of the ontology and relations between them. In
the case where On∪{α} is inconsistent, we can for example check whether the previous
version can be used (PreviousVersionα) and whether there is a version at all that can
be used instead (SomePriorVersionα). For the formal semantics of these operators
we refer the reader to [HS05c].

Example 16 Consider we have an ordered relation of ontologies O1 ≺ O2, using the
ontologies from Example 11. Now assume a compatibility criteria that has to be ful�lled
for compatibility: α = Employee(peter), i.e. a knowledge base in which Peter is
an employee. The latest version O2 is compatible with the compatibility criteria α as
O2 ∪ {α} is consistent. However, O1 does not meet the compatibility requirements, as
O1 ∪ {α} is inconsistent (It still contained the axiom stating the disjointness of students
and employees). In fact, it holds that AllPriorVersions¬Employee(peter).

8.6.4 Comparison and Evaluation
We are going to compare the four approaches dealing with inconsistency, and make an
evaluation on them. By the evaluation, we want to suggest several guidelines for system
developers to know under which circumstance which approach is more appropriate.

A �rst major difference that is revealed by the formal analysis in the previous section
is the fact that the different methods for dealing with inconsistent ontologies actually
have very different functionality (their input/output-relations are rather different). Con-
sequently, they solve rather different tasks, and are suited for different use-cases. The
situation is summarized in Table 8.1.

Dependence on query. First, this table shows that two of the methods depend on
which user-query is given to the ontology (reasoning with inconsistency and multi-
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Approach Input Output
Consistent Evolution Consistent Ontology, Change Consistent Ontology
Inconsistency Repair Inconsistent Ontology Consistent Ontology

Inconsistency Reasoning Inconsistent Ontology, Query Meaningful Answer
Multi-version Reasoning Versions of Ontologies, Query Consistent Answer

Table 8.1: Comparison of Approaches to Dealing with Inconsistencies

version reasoning). Consequently, these two methods are only applicable at runtime,
when a user interacts with the ontology. The other two methods (ontology evolution and
inconsistency repair) are independent of user-queries, and can thus already be applied at
ontology development time.

Known or unknown change. The two methods that are applicable at ontology devel-
opment time are actually very similar (as is apparent from sections 8.4 and 8.6.1). A
crucial difference is that the �rst of these (ontology evolution) requires knowledge of
the change that caused the ontology to become inconsistent: algorithm 2 requires the
change α to be known, which is not the case with 4. This is clearly a restriction on the
applicability of ontology evolution, which comes in exchange for the bene�t of a simpler
algorithm.

Known or unknown history. The two query-dependent approaches also differ in their
respective input-requirements: multi-version reasoning requires a history of ontology-
versions to be available, which is a very strong demand, often not feasible in many
settings, in particular in combination with its runtime usage.

Heuristics. Another difference between the various approaches is the extent to which
they employ heuristics: in reasoning with inconsistency, one heuristically chooses a
consistent subontology that is good enough to answer the query (it need not be minimal,
just small enough to be consistent, and large enough to answer the query). In contrast,
both Evolution and Repair aim at the smallest impact on the inconsistent ontology.

Ef�ciency. Finally, one would expect the various approaches to differ drastically in
their computational ef�ciency. Some observations can be made immediately: the Evo-
lutionary approach exploits the knowledge about the cause of the inconsistency, and can
therefore be more ef�cient than Repair, which does not have access to this information.
However, the cost of all of the algorithms described here are dominated by untractable
operations such as checking the unsatis�ability of a concept or the inconsistency of an
entire ontology. Consequently, worst-case complexity analysis is not going to tell us
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anything interesting here. Instead, work will have to be done on average-case complex-
ity analysis and experiments with realistic datasets to gain more insight into the relative
costs of each of the approaches.

Knowledge Requirements. Finally, the approaches differ in the knowledge that is
required to operate them:

• the repair approach requires the ontology developers to have suf�cient domain
knowledge to decide which part of the ontology should be removed to recover
consistency. On the other hand, once done, it needs no additional expertise from
the ontology users.

• Reasoning with inconsistencies on the other hand imposes no knowledge require-
ments on the developers, but requires some (weak) knowledge from the users to
determine whether a query answer is acceptable.

• Ontology versioning places again a heavy knowledge requirement on the user in
order to decide which version is most suitable for their application.

8.7 Related Work
In the last decade there has been very active research in the area of ontology engineer-
ing. The majority of research studies in this area are focused on construction issues.
However, coping with the changes and providing maintenance facilities require a dedi-
cated approach for ontology evolution. The evolution of ontologies has been addressed
by different researchers by de�ning change operations and change representations for
ontology languages.

Change operations have been proposed for speci�c ontology languages. In particu-
lar change operations have been de�ned for OKBC, OWL [Kle04] and for the KAON
ontology language [Sto04a]. All approaches distinguish between atomic and complex
changes. Different ways of representing ontological changes have been proposed: be-
sides the obvious representation as a change log that contains a sequence of operations,
authors have proposed to represent changes in terms of mappings between two ver-
sions of an ontology [NM03]. [Sto04a] de�nes an ontology evolution process which
we have adapted for our work. However, the semantics of change in [Sto04a] focuses on
the KAON ontology model, which is fundamentally different from the OWL ontology
model, as described earlier. A taxonomy of ontology changes for the OWL ontologies
can be found in [Kle04]. However, in [Kle04] the ontology model follows a more object-
oriented view, whereas we follow the axiomatic ontology model of [PSHH04].

While there exist signi�cant differences between schema evolution and ontology evo-
lution, as elaborated in [NK02], particular aspects of schema evolution in databases are
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relevant for our work. [Rod95] provides an excellent survey of the main issues con-
cerned. A sound and complete axiomatic model for dynamic schema evolution in object-
based systems is described in [PÖ97]. This is the �rst effort in developing a formal basis
for the schema evolution research. The authors de�ne consistency of a schema with a
�xed set of invariants or consistency conditions that are tailored to the data model.

However, in the context of OWL ontologies, the notion of consistency is much more
multifaceted. First, the existing work only considers structural consistency. Not only is
the set of structural constraints different due to the difference in the underlying models.
We further support the evolution of various fragments (sublanguages) of OWL that are
de�ned using different structural constraints. Furthermore, we consider the notions of
logical and user-de�ned consistency.

The problem of preserving integrity in the case of changes is also present for on-
tology evolution. On the one hand the problem is harder here as ontologies are often
encoded using a logical language where changes can quickly lead to logical inconsis-
tency that cannot directly be determined by looking at the change operation. On the
other hand, there are logical reasoners that can be used to detect inconsistencies both
within the ontology and with respect to instance data. As this kind of reasoning is
often costly, heuristic approaches for determining inconsistencies have been proposed
[Kle04, SK03]. While deciding whether an ontology is consistent or not can easily be
done using existing technologies, repairing inconsistencies in ontologies is a dif�cult
problem. However, the problem of diagnosing inconsistent ontologies has received in-
creased attention, which is a prerequisite for a successful repair. For example, Schlobach
and colleagues [SC03, Sch05] propose a diagnosis based on identifying MIPS (Minimal
Incoherence Preserving Sub-TBoxes) and MUPS (Minimal Unsatis�ability Preserving
Sub-TBoxes), which are used to generate explanations for unsatis�able concepts.

[PT06] presents an approach to locating and resolving inconsistencies that in princi-
ple follows our idea of consistent ontology evolution, but it does so by extending existing
tableaux algorithms to determine the axioms causing an inconsistency. The advantage is
that the tableaux can be exploited in the resolution of the inconsistency. The disadvan-
tage obviously is that it is bound to a speci�c reasoner and requires access to the internal
data structures of that reasoner. It is therefore referred to as a �glass-box� approach. A
similar glass-box approach is also taken by the Pellet reasoner within the SWOOP ontol-
ogy editor [PSK05, KPSCG06], which offers a debugging mode in which explanations
of inconsistencies are provided as a result of the reasoning process. In contrast, our work
follows a black-box approach that requires no insights into the reasoning process.

Regarding the notion of logical consistency, the research done in belief revision is
of interest: Here, the revision problem is concerned about resolving contradictions by
minimal mutilation of a set of beliefs. The combination of classical approaches with
description logics is subject of ongoing research: In [FPA05, FPA06] the authors have
shown that the AGM postulates [AGM85], which are the foundations of most work in
belief revision, cannot be directly applied, as their underlying assumptions generally fail
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for DLs. In [QLB06] the authors generalize the AGM postulates to DLs and propose
speci�c revision operators.

Finally, there are several tools that support species validation (corresponding to
our structural consistency) or localizing inconsistencies in ontologies. For example,
the OWL Protege Plugin [KFNM04] provides species validation including explanations
where certain problems occurred. The OWL Protege Plugin also provides explanations
on ontology changes, i.e. new subsumptions that have been inferred, logical inconsis-
tencies that have been introduced (based on RACER reasoning services). [BMK+04]
presents a �symptom� ontology describing inconsistencies and errors in ontologies. It
provides a classi�cation of inconsistencies according to various levels of severity. How-
ever, there is no support for preserving consistency in the case that consistency condi-
tions are violated in the presence of ontology changes.

8.8 Conclusions
Knowledge intensive applications in distributed information systems will not be able to
ignore the issue of inconsistent knowledge in general, and of inconsistent ontologies in
particular. In this chapter we have presented an approach to formalize the semantics of
change for the OWL ontology language (for OWL DL and sublanguages in particular),
embedded in a generic process for ontology evolution. Our formalization of the seman-
tics of change allows to de�ne various consistency conditions � grouped in structural,
logical, and user-de�ned consistency � and to de�ne resolution strategies that assign res-
olution functions to that ensure these consistency conditions are satis�ed as the ontology
evolves. We have shown exemplarily, how such resolution strategies can be realized
for various purposes. Finally, we have compared our approach of consistent ontology
evolution with other approaches to deal with inconsistencies in evolving ontologies.
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Chapter 9

Collaborative Evolution of Personal
Ontologies

In the previous chapter we have addressed the semantics of change to guarantee the con-
sistent evolution of ontologies as an important phase of the ontology evolution process.
In this chapter we turn to another important aspect of evolution in distributed informa-
tion systems: the existence of multiple, distributed and frequently changing views on
the domain. Existing approaches of ontology-based information access almost always
assume a setting where information providers share an ontology that is used to access the
information. In a decentralized setting, this assumption does no longer hold. We rather
face the situation, where individual nodes maintain their own view of the domain in the
form of personal ontologies.

A typical application scenario is an information system for a community of users
that relies on ontologies to structure its contents and facilitate browsing and searching
(e.g., ACM Topic Hierarchy for computer science literature, Amazon product taxonomy,
etc.). As in heterogenous communities users typically will use different parts of such
ontologies with varying intensity, customization and personalization of the ontologies
is desirable. The sheer size of e.g. the ACM Topic Hierarchy makes it quite dif�cult
for users to easily locate topics which are relevant for them. Here, personal ontologies
allow to re�ect the interests of users at certain times. Interests might change as well as
the available data, therefore the personalization requires quite naturally support for the
evolution of personal ontologies.

Obviously, the dimension of dealing with multiple ontologies poses new challenges
for the evolution, but as we will show, we can also bene�t from this situation by exploit-
ing collaborative effects and pro�t from changes that have occurred at other nodes in
the system. Often one can bene�t from having a community of users which allows for
recommending relevant concepts according to similar interests. Of particular interest are
therefore collaborative �ltering systems which can produce personal recommendations
by computing the similarity between own preferences and the ones of other people.

137
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In our work we adapt a collaborative �ltering recommender system to assist users in
the management and evolution of their personal ontology by providing detailed sugges-
tions of ontology changes. We illustrate the model for recommending ontology changes,
the recommender method itself and its functionality in Section 9.1. The approach has
been implemented as an extension of the Bibster application. We describe these exten-
sions in Section 9.2. The evaluation of the approach was performed as an experiment
within the Bibster community and shows very promising results, which we present in
Section 9.3. In Section 9.4 we present related work in the areas of work in recommender
systems, work in using taxonomies in recommender systems, and work in learning tax-
onomies and ontology evolution in general. Finally, we conclude and summarize in
Section 9.5.

9.1 A Model for Recommending Ontology Changes
In this section we introduce our formal model for recommending ontology changes.
This model directly builds on the de�nitions of the OWL ontology language presented
in De�nition 2 from Section 6.2 and the de�nitions of ontology change operations in
De�nition 14 from Section 8.2. Recall that we de�ned an ontology change operation
oco ∈ OCO as a function oco : O → O, where OCO denotes the set of all change
operations.

A recommender system for ontology changes tries to suggest ontology changes to
the user based on some information about him and potential other users. Formally, an
ontology recommender then is a function

(9.1) % : X → 2OCO

where X contains suitable descriptions of the target ontology and user.
For example, let recommendations depend only on the actual state of a user's ontol-

ogy, i.e., X = O, where O denotes the set of possible ontologies. A simple ontology
evolution recommender can be built by just evaluating some heuristics on the actual state
of the ontology, e.g., if the number of instances of a concept exceeds a given threshold, it
recommends to add subconcepts to this concept. But without any additional information,
this is hardly very useful, as we would not be able to give any semantics to these subcon-
cepts: we could recommend to further subdivide the concept, but not how, i.e., neither
be able to suggest a suitable label for these subconcepts nor assertions of instances to
them. We will call such an approach content-based to distinguish it from more complex
ones.

Recommendation quality eventually can be improved by taking into account other
users' ontologies and thereby establishing some kind of collaborative ontology evolution
scenario, where each user keeps his personal ontology but still pro�ts from changes of
other users. Collaborative �ltering tries to make automatic predictions about the interests
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of a user based interests of other users. The interest is measured in terms of items that
are being rated. The basic assumption is that users that have rated items similarly in the
past, will also agree on ratings in the future. Predictions are calculated based either on
correlation measures between users or between the items that are being rated.

Applied to the task of recommending ontology changes, the ontology elements are
the items that are being rated by the user. The ratings, i.e. user feedback about ontol-
ogy elements, are captured by the contextual annotations as introduced in De�nition 11.
Generally, we can distinguish between explicit and implicit user feedback from usage
information. We talk about explicit feedback if we allow that a user (i) can directly ex-
press how important a certain ontology element is for him, and that he (ii) can explicitly
express negative ratings for ontology elements that he does not want to be part of his
ontology.

We can obtain implicit feedback from log information that indirectly indicate the
importance of ontology elements based on how they have been used. For example, we
can use an implicit usage context called ru : N → N, which indicates the relevance
of the elements based on how they have been used, e.g. counts the number of queries
issued by the user and instances in his knowledge base that reference a given symbol
name. This information is available in a wide range of application scenarios. Of course,
in speci�c scenarios further information may be available and thus additional contextual
annotations can be de�ned.

In particular, we de�ne the following two contextual annotations:

1. We use an explicit rating, called the membership-rating rm with taboos, for which
(i) all symbols and axioms actually part of the ontology have rating +1, (ii) all
symbols and axioms not actually part of the ontology can be explicitly marked
taboo by the user and then get a rating -1.

2. We use an implicit, usage-based rating called ru, which indicates the relevance of
the elements based on how it has been used. This relevance can be obtained from
the percentage of queries issued by the user and instances in his knowledge base
that reference a given symbol name.

As a correlation measure, we rely on the similarity between the users' ontologies.
The basic idea is as follows: assume that for a target ontology we know similar ontolo-
gies called neighbors for short, then we would like to spot patterns in similar ontologies
that are absent in our target ontology and recommend them to the target ontology. An-
other wording of the same idea is that we would like to extract ontology change opera-
tions that applied to the target ontology increases the similarity with its neighbors.

Let

(9.2) sim : O ×O → [0, 1]
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be such a similarity measure � as introduced in the similarity framework in Chapter 7 �
where sim(O,P ) is large for similar ontologies O and P and small for dissimilar ontolo-
gies. Recall that ontologies in our scenario may have additional contextual annotations
that are valuable information to consider in similarity measures suitable for recommen-
dation tasks.

We can choose a simple correlation measure1 (vector similarity) to compute simi-
larities between ontologies of two users based on their ratings of the elements in the
ontology:

(9.3) simr(O,P ) :=

∑
s∈N rO(s) rP (s)√∑

s∈N rO(s)2
√∑

s∈N rP (s)2

Similarities for the two different rating annotations rm and ru are computed separately
and then linearly combined with equal weights:

(9.4) sim(O,P ) :=
1

2
simrm(O, P ) +

1

2
simru(O,P )

Finally, as in standard user-based collaborative �ltering, ratings of all neighbors Ω
are aggregated using the similarity-weighted sum of their membership ratings rm for a
given concept c, allowing for a personalized recommender function:

(9.5) rpersonalized(O, Ω, c) :=

∑
P∈Ω sim(O, P ) rm

P (c)∑
P∈Ω | sim(O,P )|

The recommendations are obtained directly from the rating: Elements with a posi-
tive rating are recommended to be added to the ontology, elements with a negative rat-
ing are recommended to be removed. Disregarding the similarity measure between the
users' ontologies, we can build a naive recommender that does not provide personalized
recommendations, but instead simply identi�es �most popular� operations based on an
unweighted average of the membership ratings:

(9.6) rbaseline(O, Ω, c) =

∑
P∈Ω rm

P (c)

|Ω|

9.2 Recommending Ontology Changes in the Bibster
System

In this section we will �rst describe the role of personalized ontologies in our biblio-
graphic application scenario. We will then describe how the recommender functionality
is applied in the system to support the users in evolving their personalized ontologies.

1Please note that depending on the range of the rating annotations in question, the correlation measure
may need to be normalized to [0,1].
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Extensions for Evolution and Recommendations. In Bibster we initially assumed
both the application (SWRC) and domain (ACM) ontologies to be globally shared and
static. This basically holds for the application ontology, but users want to adapt the
domain ontology continuously to their needs. This is largely motivated by the sheer size
of the ACM Topic Hierarchy which makes browsing, and therefore also querying and
manual classi�cation, dif�cult for users.

As part of this work we implemented extensions as described in the previous Sec-
tion 9.1 to Bibster which support the evolution � i.e. the continuous adaptation � of the
domain ontology by the users. A basic assumption here is that all users agree in general
on the ACM Topic Hierarchy as domain ontology, but each user is only interested in
seeing those parts of it which are relevant for him at a certain point of time.

In the application, we have separated the interaction with the ontology in two modes:
a usage mode and an evolution mode. The usage mode is active for the management
of the bibliographic metadata itself, i.e. creating and searching for the bibliographic
metadata. This mode only shows the current view on the ontology consisting of the
topics that the user has explicitly included in his ontology. The evolution mode allows
for the adaptation of the ontology. In this mode also the possible extensions along with
the corresponding recommendations are shown.

Ontology Change Operations To keep things simple and trying to separate effects
from different sources as much as possible, we allow as change operations the addi-
tion and removal of topics from the personal ontology. More speci�cally, this addi-
tion/removal corresponds to the addition/removal of the individual assertion axiom (e.g.
Topic(Knowledge Representation Formalisms) and the role assertion axiom that
�xes the position in the topic hierarchy (e.g.
SubTopic(Artificial Intelligence, Knowledge Representation Formalisms)).
The addition of topics is restricted to those topics that are prede�ned in the ACM Topic
Hierarchy. Also, the position of the topics is �xed globally by the background ontology.

Ontology Ratings To elicit as much information as possible from users' work with the
application, we gather various ontology rating annotations in the different modes.

We obtain the membership-rating rm in the evolution mode from the explicit user
actions (c.f. Figure 9.2): The user can either add a topic in the taxonomy, which will
assigning a rating +1 for the topic, or he can exclude (taboo) the topic from the taxonomy,
which will assign -1 for the explicitly taboo-ed topic.

We obtain the usage-based rating ru in the usage mode by counting the percentage
of queries issued by the user and instances in his knowledge base that reference a given
topic. (For this, references to all topics are retained, especially also to topics not con-
tained in the ontology of the user.)
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The ontology ratings of the individual users are propagated together with peer pro-
�le descriptions as advertisements in the Peer-to-Peer network, such that every peers is
informed about the usage of the ontology in the network. For the details of this process,
we refer the reader to [HBE+04].

Recommending Ontology Changes For the recommendations of topics we rely on
the rating function rpersonalized presented in the previous section. From the ratings of the
topics, we can directly obtain the recommendations: Topics with a positive rating are rec-
ommended to be added to the ontology, topics with a negative rating are recommended
to be removed. (Please note that adding a topic actually means adding the corresponding
axioms, as described above.)

Topics in the topic hierarchy are visualized depending on the current rating rm of
the topic and on the recommendation for the topic using a the coding scheme shown in
Figure 9.1. Intuitively, + and − denote recommendations to add and remove a topic,

Recommendation
Rating Remove Neutral Add

Taboo-ed X topicname X topicname + topicname
Unrated - topicname ? topicname + topicname

Accepted - topicname √ topicname √ topicname

Figure 9.1: Visualization of Topics in Evolution Mode

respectively, √ and X denote already accepted or taboo-ed topics, where no opposite
recommendation is present, and ? denotes an undetermined case. Figure 9.2 shows a
screenshot of the ontology in the evolution mode.

9.3 Evaluation
For our evaluation, we wanted to study two questions: (i) do users accept recommenda-
tions for ontology changes at all? (ii) is a personalized recommender better suited for
the task than a naive, non-personalized recommender?

To answer these questions, we have performed a user experiment in an in-situ setting
using the Bibster system, in which we compared the baseline (non-personalized) and the
personalized recommender, as de�ned in the previous section. In the following we will
describe the setup of the experiment, evaluation measures, and the results.
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Figure 9.2: Screenshot of Recommended Topics

9.3.1 Design of the Experiment
The experiment was performed within three Computer Science departments at different
locations. For a pre-arranged period of one hour, 23 users were actively using the system.
The recommender strategy (baseline or personalized) was chosen randomly for each user
at the �rst start of the Bibster application. The users were not aware of the existence of
the different recommendation strategies.

During the experiment, the users performed the following activities (in no particular
order), which are typical for the everyday use of the system:

• Import data: The users need to load their personal bibliography as initial dataset.
This data should also re�ect their research interest. As described before, the clas-
si�cation information of the bibliographic instances is part of the ontology rating
and thus used to compute the similarity between the peers.

• Perform queries: The users were asked to search for bibliographic entries of their
interest by performing queries in the Peer-to-Peer system. These queries might re-
fer to speci�c topics in the ontology, and were thus again used as ontology ratings.

• Adapt ontology: Finally the users were asked to adapt their ontology to their per-
sonal needs and interests by adding or removing topics. This process was guided
by the recommendations of the respective recommender function. The recommen-
dations were updated (recalculated) after every ontology change operation.
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The user actions were logged at every peer for later analysis. The logged information
included: The type of the action (e.g. user query, ontology change operations), the
provided recommendations, and a timestamp.

9.3.2 Evaluation Measures
We base our evaluation on the collected usage information in the form of events E ⊆
OCO × 2OCO. An event is a tuple (e, Ê) that consists of the actual user action e ∈
OCO, i.e., the speci�c ontology change operation performed, and the set Ê ⊆ OCO of
recommendations at that point in time.

We observe a successful recommendation or a hit, when e ∈ Ê, which means that
the user performed an action that was recommended at that time. For non-hits, we distin-
guish two situations: (i) If the actual recommendation was exactly the opposite action,
e.g., we recommended to add a topic but the user taboo-ed it, then we call this an error.
(ii) If there was no recommendation for this action neither for its opposite, we call this
restraint. Based on these counts, we can compute the following performance measures.

recall(E) := |{(e,Ê)∈E | e∈Ê}|
|E|(9.7)

error(E) := |{(e,Ê)∈E | opp(e)∈Ê}|
|E|(9.8)

restraint(E) := |{(e,Ê)∈E | opp(e)/∈Ê∧e/∈Ê}|
|E|(9.9)

where opp denotes the respective opposite operation, e.g., opp(e+) := e− and
opp(e−) := e+. Higher recall and lower error and restraint are better.

For a higher level of detail, we do so not only for all user actions, but also for some
classes of user actions, such as all add - and all remove/taboo-operations.

As each of the measures alone can be optimized by a trivial strategy2, we also com-
puted the pro�t of the recommenders w.r.t. the pro�t matrix in Table 9.1:

(9.10) pro�t(E) :=

∑
(e,Ê)∈E

∑
ê∈Ê pro�t(e, ê)
|E| = recall(E)− error(E)

An intuitive reading of the pro�t is: The higher the pro�t, the better the performance
of the recommender. In the best case (profit = 1), all user actions were correctly
recommended by the system, in the worst case (profit = −1), all user actions were
opposite of the recommendation.
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pro�t(E) Recommendation
User Action Remove None Add

Remove 1 0 -1
None 0 0 0
Add -1 0 1

Table 9.1: Evaluation Pro�t Matrix

ACM Topic # Add
Actions

Information Systems 23
Computing Methodologies 15
Data 14
Computing Methodologies/Arti�cial Intelligence 12
Information Systems/Database Management 12
Software 11
Mathematics Of Computing 10
Computer Systems Organization 10
Computer Systems Organization/Computer Communication Networks 10
Computing Methodologies/Arti�cial Intelligence/ 10

Knowledge Representation Formalisms And Methods

Table 9.2: Most Popular Topics
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9.3.3 Evaluation Results
For the 23 participating users in the experiment, the baseline recommender was active
for 10 users, the personalized recommender was active for the other 13 users. The partic-
ipants performed a total of 669 user actions (452 add topic and 217 remove topic), 335
of these action were performed by users with the baseline strategy, 334 by users with
the personalized recommender. Table 9.2 shows the number of add-topic-actions for the
most popular topics. Figure 9.3 shows the cumulative results of the performance mea-
sures de�ned above for the baseline and the personalized recommender. The diagrams
show the results for Add and Remove operations separately, as well as combined for all
change operations.
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Figure 9.3: Performance Measures of the Recommender

As we can see in Figure 9.3 (upper right), overall the personalized recommender cor-
rectly recommended more than 55% of the user actions, while the baseline achieved less
than 30%. The error rate of the baseline algorithm is considerably higher: We observed
an error = 17% and 9% for the baseline and the personalized approach, respectively.
Further we observed a very large amount of restraint operations with restraint = 67%
for users with the baseline strategy. Probably this is the result of a large number of rec-
ommendations irrelevant to the user given by the system with the baseline strategy. In

2For example, to maximize the recall of add operations, one would trivially recommend to add all
topics.
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such a case the user would not like to follow the system and constructs the ontology
mainly by themselves. Only from time to time he takes some of the recommendations
into account.

By comparing add and remove operations we observe a higher amount of error rec-
ommendations for remove operations in comparison to the a really small amount of it for
the add recommendations while the correct recommendations are comparable for both
operations (cf. Figure 9.3, left side). We think that this observation is based on the fact
that a user is more likely to follow an add operation without a �substantiated� reason or
explanation than a remove operation. While adding something to his �collection� and
following the idea of having more the remove operation forces the feeling of �loosing�
something, so typically users are more reluctant to remove topics.

Calculating the overall pro�t of the two recommender functions, we obtain
pro�t(E) = 0.11 for the baseline recommender. For the collaborative recommender,
we obtain a signi�cantly better value of pro�t(E) = 0.47. Concluding we can state that
the personalized recommender function provides substantially more useful recommen-
dations.

9.4 Related Work
Related work exists in three different aspects: work in recommender systems, especially
collaborative �ltering in general, work in using taxonomies in recommender systems,
and work in learning taxonomies and ontology evolution in general.

Recommender systems have their roots in relevance feedback in information re-
trieval [Sal71], i.e., adding terms to (query expansion) or re-weighting terms of (term
re-weighting) a query to a document repository based on terms in documents in the re-
sult set of the original query that have been marked relevant or non-relevant by the user,
as well as adaptive hypertext and hypermedia [SF91], i.e., the automatic adaptation of
the link structure of a document repository based on previous link usage by users.

Although most recommender systems research meanwhile focuses on more complex
models treating the task as a learning or classi�cation problem, collaborative �ltering
models still are under active investigation [HKTR04, DK04] due to their simplicity and
comparable fair quality.

Taxonomies are used in recommender systems to improve recommendation quality
for items, e.g., in [MSR04] and [ZSTL04], where ontological inference is shown to im-
prove user pro�ling, external ontological knowledge is used to successfully bootstrap
a recommender system and pro�le visualization is employed to improve pro�ling ac-
curacy. But to our knowledge there is no former approach for the inverse task, to use
recommender systems for the personalization of the taxonomy or more generally of an
ontology.
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Change discovery as an important aspect of ontology evolution has been addressed
for example in [SMMS02]. One approach for usage-driven change discovery in ontol-
ogy management systems has been explored in [SS02], where the user's behavior during
the knowledge providing and searching phase is analyzed. [SHG03] describes a tool for
guiding ontology managers through the modi�cation of an ontology based on the anal-
ysis of end-users' interactions with ontology-based applications, which are tracked in a
usage-log. These approaches are based on the identi�cation of problems or anomalies
in an existing ontology. On the contrary, in our work we identify positive parts in on-
tologies, which might be useful to introduce in the ontologies of other users. Further,
the prior existing work only addressed the evolution of a single ontology in a central-
ized scenario. In our work we are extending the idea of applying usage-information to
a multi-ontology model by using collaborative �ltering to recommend ontology changes
based on the usage of the personal ontologies.

9.5 Conclusions
We have presented an approach to recommend ontology change operations to a person-
alized ontology based on the usage information of the individual ontologies in a user
community. We have adapted a collaborative �ltering algorithm to determine the rel-
evance of ontology change operations based on the similarity of the users' ontologies.
The virtue of this approach lies in the fact that the characteristics of changes to multiple,
distributed ontologies are exploited, such that an individual user can pro�t from changes
other users have made.

In our experimental evaluation with the Peer-to-Peer system Bibster we have seen
that the users actually accept recommendations of the system for the evolution of their
personal ontologies. The results further show the bene�t of exploiting the similarity
between the users' ontologies in a personalized recommender compared with a simple,
non-personalized baseline recommender.

In our experiment we have made various simplifying assumptions. Their relaxation
will open fruitful directions for future work: We assumed a �xed background ontology
which limits the space of change operations. Relaxing this assumption will introduce
challenges related to aligning heterogeneous ontologies. Further, the recommendation
of adding or removing concepts in a given concept hierarchy can only be a �rst step.
Next steps will therefore also include recommendations of richer change operations.
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Chapter 10

A Metadata Ontology for Peer-to-Peer
Coordination

Coordination is the fundamental problem in distributed information systems that arises
from the autonomy of nodes. The coordination problem is that of managing the or-
ganization of the interaction between nodes. In the case of completely centralized ar-
chitectures, one node has complete control over all other nodes, whereas in completely
decentralized architectures there is no central control and all nodes act autonomously. As
a result of this autonomy, new coordination models are required that scale with the size
of the distributed information system in terms of the number of interacting nodes. These
coordination models need to take into account the various aspects and dimensions of
autonomy: Design autonomy requires to coordinate heterogeneous information models,
communication autonomy involves resource discovery and selection as well as routing
of requests, and �nally execution autonomy calls for coordination models that allow the
execution of local operations without external interference from other nodes.

One important concept to deal with the coordination of a distributed information
system is the concept of metadata. Metadata is explicitly managed data about the system
elements to support their interoperation and coordination. In the absence of centralized
control it is critical that resources to be managed are self-descriptive such that their
properties, capabilities, and requirements can be interpreted consistently. In this chapter
we present an ontology for the representation of such metadata. We also show how
the various aspects of coordination can be addressed using this metadata ontology. In
this approach, nodes � or peers � advertise descriptions of their resources and can thus
establish acquaintances with other nodes. Acquainted peers can then share data and
coordinate their interaction.

This chapter is organized as follows: In Section 10.1 we analyze the dimensions of
autonomy and their consequences for coordination. In the subsequent sections we intro-
duce the individual modules of the metadata ontology for Peer-to-Peer coordination: We
discuss ontology metadata in Section 10.2 and peer metadata in Section 10.3. We then
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present applications for the decentralized management of ontology metadata in Section
10.4. Finally, we discuss related work in Section 10.5 and conclude in Section 10.6.

10.1 Peer-to-Peer Coordination
In this section, we analyze the different types of autonomy in distributed information
systems and resulting requirements for a metadata ontology for Peer-to-Peer coordina-
tion.

Design autonomy Existing approaches of ontology-based information access almost
always assume a setting where information providers share an ontology that is used to ac-
cess the information. In a Peer-to-Peer setting, this assumption does no longer hold. We
rather face the situation, where individual peers maintain their own view of the domain
in terms of the organization of the local �le system and other information sources. En-
forcing the use of a global ontology in such a setting would mean to give up the bene�ts
of the Peer-to-Peer approach. Therefore, one has to �nd a way to deal with the existence
of multiple, distributed and frequently changing views on the domain. Consequently,
peers need to be able to describe the data they provide as well as the ontologies used to
represent that data. Additionally, the semantic relationships and inter-dependencies be-
tween different ontologies need to be represented. Typically such coordination formulas
rely on some mapping language, such as the one already presented in Chapter 6. Data
coordination then involves the reconciliation and integration of data at query time or the
maintenance of consistency in data contained within different peers.

Communication autonomy Communication autonomy means that peers are fully au-
tonomous in choosing their acquaintances. Moreover, it is usually assumed that there
is no global control in the form of a global registry to manage acquaintances. As a
consequence, acquaintances need to be managed in a decentralized manner, i.e. by the
individual peer. It is rather obvious that for a scalable coordination model it is critical
how the acquaintances are established. While in an extreme case all peers are acquainted
with either none or all other peers, an intelligent coordination model would establish ac-
quaintances with �relevant� peers. An important question here is how to determine �rel-
evance�: A possible useful approach can base this de�nition on coverage of the shared
data and ontologies as well as the expertise of peers. Communication autonomy also
includes the freedom of peers to choose which information to provide to other peers:
Some information may be of private nature and should not be visible to other peers.

Execution autonomy Execution autonomy refers to the ability of peers to perform lo-
cal queries without the interference from other peers. An important assumption is that
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a query is always de�ned with respect to the ontology of a single peer. Thus an indi-
vidual peer needs only be aware, and knowledgeable, of the local ontology. In terms of
execution, however, queries are classi�ed into two categories. A local query is executed
using only the data in the local peer, while a global query uses the Peer-to-Peer network
to complement or reconcile locally retrieved data with data that resides in other peers.
This requires the selection of relevant peer data sources as well as the establishment of
the corresponding semantic relationships with the possibly heterogeneous data sources.
Within Peer-to-Peer systems the availability of other peers is not always guaranteed.
Moreover, some peers may have better connectivity, in terms of bandwidth, to the rest of
the network than other peers. To improve network ef�ciency, data and ontologies may be
duplicated on multiple local peers. The mechanisms for locating relevant replicas needs
to be transparent to the user, but must be captured by the metadata model.

The metadata model we will introduce needs to re�ect these requirements. The above
analysis shows that the main entities of interest are the actors in the network, i.e. the
peers, and the resources they provide, i.e. the ontologies. Correspondingly, we present in
the following the two parts of the metadata model: ontology metadata and peer metadata.

10.2 Ontology Metadata
Ontology metadata is used to describe the primary informational resources being man-
aged in a distributed information system. While it was already indicated in the prior
section that we rely on metadata about ontologies, this choice for the granularity of
the descriptions of the informational resources is not self-evident. For example, in the
SWAP metadata model [EHvH+03] the granularity was chosen to be on the level of RDF
statements. The major reason why that level of granularity was chosen was that the RDF
ontology model does not provide any other model of granularity or modularization. It
has turned out that this approach was too �ne grained, the overhead of managing meta-
data on the level of single statements was too high, and as consequence it was rarely
used. However, the OWL ontology model � which this work is based on � does pro-
vide a modularization model, in which ontologies are �rst class objects, which can be
versioned, can import each other, etc. Consequently, we provide metadata on that level1.

In order for metadata to be practically useful, two further aspects need to be consid-
ered.

1. The metadata needs to be agreed upon by the participating actors. It therefore
is essential to agree on a standard for the representation of the metadata. Con-

1It should also be noted that this does still allow to provide metadata on the level of axioms if modules
simply contain single axioms.
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sequently we rely on OMV2, the Ontology Metadata Vocabulary. OMV is the
a proposed standard for ontology metadata that has been in�uenced by existing
models such as the SWAP metamodel [EHvH+03] and OMO (Ontology Meta-
Ontology) [MMS+03b]. It is currently being used in systems such as KAONp2p3,
Oyster [PH05] and Onthology [HPS+05] and is the agreed metadata standard in
the Knowledge Web project4.

2. While the ontology metadata vocabulary is meant to be applicable to a variety
of applications, it needs to allow proprietary extensions and re�nements for par-
ticular application scenarios. We therefore decided to design the OMV scheme
modularly: OMV distinguishes between the OMV Core and various OMV Ex-
tensions. The former captures information which is relevant across application
scenarios, whereas OMV extension modules are applicable to speci�c applica-
tions. One such extension is P-OMV for the description of peers providing the
ontologies, which will be presented in the subsequent section.

In the following we provide an overview of the main properties of the OMV ontology
with a focus on the properties relevant for the coordination problem in distributed infor-
mation systems. The main classes and properties of the OMV ontology are illustrated
in Figure 10.1. In the following we present a compact overview of the main properties
of the class Ontology. For a complete reference and the complete ontology we refer the
reader to http://omv.ontoware.org/.

As we have seen in the previous section, various types of metadata of ontologies
need to be modeled in order to address the coordination problem, which we can classify
as Descriptive metadata, Provenance metadata, Dependency metadata, and Statistical
metadata.

Descriptive metadata Descriptive metadata relates to the domain modeled in the on-
tology in form of keywords, topic classi�cations, textual descriptions of the ontology
contents etc. This type of metadata plays a crucial role in the discovery and selection of
ontologies.

• name: The name by which the ontology is formally known. Typically the name is
used for human interpretation.

• language: The language here refers to the natural language of the ontology,
which is relevant for the applicability of the ontology as well as for the purpose of
ontology mapping.

2http://ontoware.org/projects/omv/
3http://ontoware.org/projects/kaonp2p/
4http://knowledgeweb.semanticweb.org/



10.2 Ontology Metadata 155

Figure 10.1: General OMV overview

• type: Ontologies may be categorized by different types of ontologies. This cat-
egorization can for example be based on the types identi�ed in Section 3.1, i.e.
top-level, core, task, domain, and application ontology.

• subject: The subject of an ontology provides a classi�cation in terms of the
domain. Typically, the subject is expressed as a classi�cation against established
topic hierarchies such as the general purpose topic hierarchy DMOZ5 or the do-
main speci�c ACM topic hierarchy6 for the computer science domain. The topics
themselves may be organized in a topic ontology organized with relations such as
subTopicOf.

Provenance metadata Provenance metadata provides information about the entities
contributing to the creation of the ontology, as well as information about changes since
its creation that are signi�cant for its authenticity, integrity and interpretation.

• creator: The creator is the entity primarily responsible for producing the con-
tent of the ontology. The creator may be a party that is either a person or an
organization.

5http://dmoz.org/
6http://www.acm.org/class/
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• creationDate and modificationDate indicate when the ontology was
�rst created and modi�ed. The latter is especially important for the realization of
caching and replication.

Dependency metadata Dependency metadata provides information to support man-
aging relationships with other ontologies, such as dependencies on other ontologies,
version compatibility, etc.

• imports: An imports statement references another ontology containing def-
initions, whose meaning is considered to be part of the meaning of the importing
ontology. Importing another ontology brings the entire set of assertions provided
by that ontology into the current ontology. Note that �imports� property is tran-
sitive; importing another ontology will also import all of the ontologies that the
ontology imports.

• backwardCompatibleWith: A backwardCompatibleWith statement
contains a reference to another ontology, which identi�es the speci�ed ontology
as a prior version of a given ontology, and further indicates that it is backward
compatible with it. In particular, this indicates that all identi�ers from the previous
version have the same intended interpretations in the new version.

• incompatibleWith: An incompatibleWith statement contains a refer-
ence to another ontology, which indicates that the given ontology is a later version
of the referenced ontology, but is not backward compatible with it. Essentially,
this means that the given ontology cannot be used in place of the referenced one
without checking whether changes are required.

• priorVersion: A priorVersion statement contains a reference to another
ontology, which identi�es the speci�ed ontology as a prior version of the contain-
ing ontology.

The reader may have noticed that the last four properties, which describe the dependency
relationship with other ontologies, also exist as ontology properties in the OWL ontology
model [BvHH+04]. These ontology properties constitute non-logical information, and
certain constraints are put on their use that limit their applicability. In contrast, OMV
metadata constitutes logical information. Furthermore, OMV also allows to describe
ontologies in languages other than OWL. It is however desirable that the ontology meta-
data of OMV is extracted automatically from OWL annotation properties and ontology
properties, if present.

Statistical metadata Statistical metadata relates to the size and type of the ontol-
ogy. In particular we mention the number of speci�c ontological primitives (number
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Figure 10.2: Overview of the P-OMV Ontology

of classes, properties, individuals, axioms). The availability of such metadata is impor-
tant for assessing the quantity of information provided, as well as the type of information
(e.g. large ABoxes vs. TBoxes), which can for example serve as rough indicators of the
costs of processing the ontology.

10.3 Peer Metadata
Besides the ontology themselves, the second important resources to describe are the
peers managing and providing these informational resources. The extensions required
to model metadata of peers are realized as an extension to the OMV ontology, called
P-OMV. Figure 10.2 shows an overview of the P-OMV ontology.

Peer The metadata required to describe peers include descriptive information about
the peers themselves, their relationship with other peers, as well as information about
the resources they provide:

• UID: Each peer has a unique ID to be identi�ed. Depending on the underlying
communication infrastructure, different addressing schemes may be applied. For
example, in the Swapster architecure [EHvH+03], the JXTA UID is used to iden-
tify peers, as it relies on JXTA as the underlying communication infrastructure.
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• name: In addition to the unique identi�er, each peer carries a name for identi�ca-
tion. In contrast to the UID, the name needs not to be unique in the network, as it
is primarily used for human interpretation.

• expertise: The expertise is an abstract description of the peer in terms of some
topic ontology. The expertise descriptions provide important information for the
organization of the network and peer selection. Depending on the application
scenario, the expertise of the peer can be the subjects of the ontologies that the
peer provides, or a more generic description of expertise.

• acquaintedWith: This property describes the acquaintances of a peer with
other peers. The Peer-to-Peer network then consists of local peers, each with a set
of acquaintances, which de�ne the Peer-to-Peer network topology. This topology
may be dynamic, i.e. peers may be able to establish and modify acquaintances.

• providesOntology: This property describes the relationship between the peer
and the ontologies provided by the peer. It is essential for locating relevant infor-
mation resources in the network.

• providesMapping: This property is used to describe which mappings between
ontologies a peer provides. The details of the Mapping class will be explained
subsequently.

Mapping Mappings are used to describe the correspondences between different on-
tologies provided by the peers.

• sourceOntology and targetOntology: These properties specify the on-
tologies that are being mapped. In general, mappings need not be symmetric, a
distinction between mapping source and target is therefore required.

• mappingLanguage: This property is used to indicate the language that is used
to express the mapping. In Chapter 6 we have presented one particular formal-
ism for ontology mappings, which can be expressed in SWRL. However, other
languages may be used for the representation of ontology mappings.

Example 17 Figure 10.3 shows a small example of the usage of P-OMV metadata. It
depicts two acquainted peers that have an expertise in Database Management and Infor-
mation Systems. They both provide an ontology about the bibliographic domain (SWRC
and Proton7), which are related via a mapping provided by one of the peers.

7http://proton.semanticweb.org/
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Figure 10.3: P-OMV Example Metadata

10.4 Managing Ontology Metadata in Distributed Infor-
mation Systems

In the prior sections we have seen how resources in a distributed information system can
be described with the OMV and P-OMV ontology. In order for the nodes to be able
to act autonomously, it is essential for the nodes to be aware of the available resources
in the system and to discover relevant resources as they become available. This in turn
requires (1) registries for the management of the metadata descriptions and (2) a model
for the propagation of metadata descriptions. Depending on the intended architecture
of the distributed information system, there may be various solutions for a metadata
registry with different degrees of decentralization. A completely centralized solution
based on OMV has for example been developed in Onthology [HPS+05], where the
entire metadata is managed on a single server. The model for propagation is simple,
as all metadata descriptions are advertised to a single registry. Despite their simplicity,
such completely centralized solutions are not applicable � or desirable � in all scenarios.
In more decentralized environments, e.g. in true Peer-to-Peer applications, we require
means to manage the acquaintances between peers without centralized control. We have
developed such a completely decentralized solution with the Peer-to-Peer system Oyster,
which we will explain in the following.
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Oyster Oyster8 [PH05] provides an infrastructure for storing, sharing and discovering
ontologies in a decentralized manner. It can serve as a metadata registry that allows to
access local metadata as well as metadata of remote peers in an integrated manner. Due
to the lack of centralized control, there are only minimal administration efforts. The
Oyster system has been implemented as an instance of the Swapster system architecture,
which has already been introduced in Chapter 5. In addition to the infrastructure func-
tionalities, Oyster provides a user interface, as shown in the screenshot in Figure 10.4.
Oyster provides the relevant functionalities required for effective metadata management.

Figure 10.4: Oyster Screenshot

Creating and importing metadata: Oyster enables users to create metadata about
ontologies manually, as well as to import ontology �les and to automatically extract the
ontology metadata available, letting the user �ll in missing values. For the automatic
extraction, Oyster supports the OWL, DAML+OIL and RDF-S ontology languages. The

8http://oyster.ontoware.org



10.5 Related Work 161

ontology metadata entries are aligned and formally represented according to two ontolo-
gies: (1) the proposal for a metadata standard P-OMV which describes the properties
of the ontology, (2) a topic ontology (e.g. the DMOZ topic hierarchy), which describes
speci�c categories of subjects to de�ne the domain of the ontology.

Searching for Ontologies: As shown in the left pane of the screenshot, the user can
search for ontologies using simple keyword searches, or using more advanced, semantic
searches. Here, queries are formulated in terms of the two ontologies (P-OMV and
DMOZ). This means queries can refer to �elds like name, acronym, ontology language,
etc. (using the ontology document metadata ontology) or queries may refer to speci�c
topic terms (using the topic hierarchy i.e. DMOZ).

Processing results: Finally, the results matching the query are presented in a result
list (c.f. upper right pane in the screenshot). The details of particular results are shown in
the lower right of the screenshot. The user can integrate results of a query into his local
repository for future use. This information may in turn be used later to answer queries
by other peers.

As we have mentioned above, the registry functionality for the management of meta-
data descriptions provided by Oyster is just one aspect relevant for the coordination of
nodes in a distributed information system. The other important aspect is the model of
how to propagate metadata descriptions and to automatically establish acquaintances
between peers for an ef�cient organization of the network. These aspects of network
organization will be discussed in detail in Chapter 11.

10.5 Related Work
The use of metadata for addressing coordination problems has a history in different
communities. We discuss related work along the following categories: Metadata for
ontologies, database coordination, and multi-agent coordination.

Metadata for ontologies In the past, there have been various proposals for model-
ing metadata of ontologies. Unfortunately, in the past neither has been accepted as a
standard, some proposals, such as Dublin Core, were too general, others were limited
in applicability. The Dublin Core (DC) metadata standard9 is a simple yet effective el-
ement set for describing a wide range of networked resources. It includes two levels:
Simple and Quali�ed. Simple DC comprises �fteen elements; Quali�ed DC includes an
additional element as well as a group of element re�nements (or quali�ers) that re�ne the
semantics of the elements in ways that may be useful in resource discovery. [MMS+03b]

9http://dublincore.org/
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has proposed an ontology meta-ontology (OMO) for a distributed ontology registry. Un-
fortunately, its use was limited to the KAON ontology model. The Semantic Web search
engine SWOOGLE [DFJ+04] uses in particular the metadata that can be extracted auto-
matically. Our approach includes and extends this metadata vocabulary. Ideally, future
versions of SWOOGLE would also take into account the additional vocabulary de�ned
in OMV. There exist some similar approaches to our proposed solution to share ontolo-
gies, but in general they are limited in scope. E.g. the DAML ontology library10 provides
a catalog of DAML ontologies that can be browsed by different properties.

Database Coordination The problem of database coordination has initially been stud-
ied in the context of database federations and more recently in the context of peer
database management systems (PDBMS).

[SGMB03] introduces the Local Relation Model (LRM) as a data model speci�cally
designed for Peer-to-Peer data management. LRM assumes that the set of all data in a
Peer-to-Peer network consists of local (relational) databases, each with a set of acquain-
tances, which de�nes the Peer-to-Peer network topology. For each acquaintance link,
domain relations de�ne translation rules between data items, and coordination formulas
de�ning semantic dependencies between the two databases. As such, LRM especially
addresses the design autonomy, allowing for inconsistent databases and supporting se-
mantic interoperability in the absence of a global schema.

In the Hyperion project [AKK+03], a PDBMS is envisioned as conventional DBMS
augmented with a Peer-to-Peer interoperability layer, where this layer implements the
functionality required for peers to share and coordinate data without compromising their
own autonomy. The authors make use of different coordination rules for database co-
ordination addressing different aspects of autonomy. The �rst set of coordination rules
includes ones that manage consistency between the data of two peers by establishing se-
mantic relationships between the schemas of peers, addressing the design autonomy. The
second set of rules is created at query time, after an acquaintance has been established.
They de�ne the distributed execution model of the queries, respecting the execution au-
tonomy of peers.

While in a sense these coordination rules specify the logical metadata that enables
data sharing and coordination between independent, autonomous peers, there currently
exist no proposals for a standard of such metadata that would allow consistent interpre-
tation across applications.

Multi-Agent Coordination The coordination problem is one of the major problems
studied in multi-agent systems. In contrast to distributed information systems, where the
central concept is that of information, in agent systems the focus clearly is on coordi-
nating activities. Nevertheless, the need for ontological approaches to describe agents,

10http://www.daml.org/ontologies/
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their activities and resources has been recognized. A recent proposal of an ontology for
dynamic coordination in multi-agent systems has been presented in [TAM+05]. This
ontology focuses on agents, resources and activities as the main entities and the rela-
tionships and interdependencies between them. On the other hand, also in distributed
information systems we see a gradual shift from concentrating on information-oriented
approaches to service-oriented approaches. While these service-oriented aspects are not
the focus of this work, �rst initial steps to modeling peers along with the services they
provide have been presented in [HAS04].

10.6 Conclusions
The completely distributed nature and the high degree of autonomy of individual nodes
comes with new challenges for the coordination of distributed information systems. Co-
ordination models need to take into account the design-, communication-, and execution
autonomy of nodes. In this chapter, we have presented a metadata ontology for semantic
descriptions of resources in distributed information systems to support their interoper-
ation and coordination. The metadata model we have described combines features of
ontologies with rich metadata about the origin of the information. The metadata ontol-
ogy builds on the core of the Ontology Metadata Vocabulary OMV, and extends it with
the module P-OMV to describe peers as the providers of information.

A fundamental problem for the successful application of metadata is the question of
how the metadata is generated. While certain metadata can be extracted from informa-
tion sources automatically, some information may also have to be provided manually. It
therefore is critical to support the creation, management and use of ontology metadata
throughout the ontology lifecycle with the proper tools.

We have further presented Oyster, an application for the decentralized creation and
management of ontology metadata. Oyster provides a registry for metadata descriptions
based on OMV that allows to store, share and discover ontologies without any central-
ized control.

A key issue for the acceptance of using ontology metadata standards of course is a
careful evaluation of the bene�ts of its use in general and in concrete applications. So far,
OMV has proven to be useful in a variety of applications, including Oyster, Onthology
and KAONp2p. In developing OMV we further relied on successful experiences with
its predecessors, such as the SWAP metadata model, which has been applied in various
applications of the SWAP system, including Bibster and Xarop. In the following chapter,
we show the bene�t of using the presented metadata model for a particular coordination
problem: the problem of peer selection and query routing.
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Chapter 11

Semantic Overlay Networks for Peer
Selection

In the previous chapter we have identi�ed different aspects of coordination problems in
distributed information systems. In this chapter, we address one particular coordination
problem, the one of resource discovery and selection. Resource discovery and selection
is a well-known problem also in other forms of distributed systems and architectures,
such as multi-agent systems, web services, etc. However, in this chapter we focus on
Peer-to-Peer information sharing systems. In these systems, the problem amounts to
that of peer discovery and peer selection: How do you �nd the right peers that are able
to respond to your request in a large Peer-to-Peer system in a scalable manner without
any centralized servers or hierarchy? This problem is at the heart of any Peer-to-Peer
system. Peer-to-Peer networks that broadcast all queries to all peers do not scale �
intelligent query routing and network topologies are required to be able to route queries
to a relevant subset of peers. In particular, our approach of expertise based peer selection,
relies on uses semantic overlay networks for ef�cient network organization.

In Section 11.1 we provide an overview of the landscape of existing approaches to
network organization in Peer-to-Peer systems. In Section 11.2 we present our model of
expertise based peer selection. In this model, peers use metadata descriptions � as intro-
duced in the previous chapter � to advertise their expertise in the Peer-to-Peer network.
Peers can thus establish acquaintances. The knowledge about the expertise of other peers
forms a semantic overlay network, independent of the underlying network topology. If a
peer receives a query, it can decide to forward it to acquainted peers whose expertise is
similar to the subject of the query. The advantage of this approach is that queries will not
be forwarded to all or a random set of known peers, but only to potentially relevant ones.
We instantiate this model for the bibliographic scenario of the Bibster system in Section
11.3. In Section 11.4 we de�ne evaluation criteria for our simulation experiments and
a real-world �eld experiment. The results of the simulation experiments presented in
Section 11.5 show how (1) the proposed model of expertise based peer selection consid-
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erably improves the performance of the Peer-to-Peer system, (2) ontology-based match-
ing with a similarity measure will improve the system compared with an approach that
relies on exact matches, such as a simple keyword based approach, (3) the performance
of the system can be improved further, if the semantic overlay network is built according
to the semantic similarity of the expertise of the peers, (4) a �perfect� semantic overlay
network imposed on the network using global knowledge yields ideal results. In Section
11.6 we present results from the �eld experiment with the Bibster system that validate
the applicability and performance of the model for real-world systems. We discuss re-
lated work in Section 11.7 and conclude with some directions for future work in Section
11.8.

11.1 Approaches to Network Organization in Peer-to-
Peer Systems

Peer-to-Peer systems are typically characterized by the absence of a single central in-
stance of control. This has consequences for the network organization and the coordina-
tion to route requests to the peers able to respond to the request.

There exists a variety of approaches to network organization and peer coordination
that stem from different communities, use different terminologies, but share similar con-
cepts. This situation makes a crisp classi�cation dif�cult. While we discuss speci�c ap-
proaches as part of the related work in Section 11.7, we here provide a general overview
of Peer-to-Peer coordination that allows a placement of our approach. Figure 11.1 shows
a tree-based view of the classi�cation. It combines ideas of previous attempts to classi-
�cations of Peer-to-Peer systems [SAB+05, AH02].

Generally speaking, Peer-to-Peer networks are organized using so-called overlay net-
works (c.f. Figure 11.2) that serve as an abstraction layer over the underlying physical
network, which is typically the Internet, i.e. TCP/IP based. In this overlay network peers
connect with other peers according to some criteria. Here the most general distinction
can be made according to the structure of the network into structured and unstructured
networks. Structured networks are also referred to as Distributed Hash Tables (DHT)
[SAB+05]. If the links in the network are created according to semantic relationships
between the nodes, we speak of a semantic overlay network.

The approaches to the organization of the network and their indexing structure have
a direct implication on the types of data structures and types of queries they support.
For example, DHT-based approaches are limited to simple key-value lookups and do
not support any more complex queries. On the other hand, completely unstructured
approaches based on �ooding can trivially broadcast arbitrary queries.

In the following we will discuss the classes of structured and unstructured networks
as well as semantic overlay networks in more detail.
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Figure 11.1: A classi�cation of approaches to Peer-to-Peer network organization

11.1.1 Structured Networks
Distributed Hash Tables address a problem that is at the heart of many Peer-to-Peer
systems � the lookup problem: How do you �nd any given data item in a large Peer-to-
Peer system in a scalable manner, without any centralized servers or hierarchy? DHTs
partition the ownership of a set of keys among participating nodes, and can ef�ciently
route messages to the unique owner of any given key. Each node is analogous to a bucket
in a hash table. DHTs are typically designed to scale to large numbers of nodes and to
handle continual node arrivals and failures. In DHTs the nodes collectively form the
system without any central coordination.

DHTs consist of two components: the keyspace partitioning scheme splits ownership
of the keys among the nodes, and the overlay network connects the nodes and allows
them to �nd the owner of a given key.

For the keyspace partitioning, most DHTs use some variant of consistent hashing
to map keys to nodes. This technique relies on a function d(k1, k2) which de�nes the
distance from key k1 to key k2. Each node is assigned a single key called its identi�er
(ID). A node with ID i owns � that means it is responsible for � all the keys for which
i is the closest ID, measured according to the distance function. Each node maintains a
set of links to other nodes (its neighbors or routing table). Together these links form the
overlay network, called the network topology. For any key k, a node either owns k or
has a link to a node that is closer to k in terms of the keyspace distance de�ned above.
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“Physical“ Layer
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Figure 11.2: Overlay Networks

It is then easy to route a message to the owner of any key k using the following greedy
algorithm: At each step, forward the message to the neighbor whose ID is closest to k.
When there is no such neighbor, we have arrived at the closest node, which must be the
owner of k as de�ned above. This style of routing is sometimes called key based routing.

Depending on the type of topology, we can further distinguish the different DHT
approaches: In the tree-approach, the leaf nodes of the tree correspond to the node iden-
ti�ers that store the keys to be searched. A popular DHT implementation that falls
into this category is Tapestry [ZKJ02]. Chord [SMK+01] maintains a ring topology
that resembles a skiplist. Hybrid topologies combine multiple of the above mentioned
approaches, for example Pastry [RD01] uses a combination of a tree- and ring geome-
try. CAN [RFH+01] and HyperCup [SSDN02] support lookups in multiple dimensions:
They use a d-dimensional Cartesian coordinate space to implement the DHT abstrac-
tion. The coordinate space is partitioned into hypercubes, called zones. Each node in the
system is responsible for a zone, and a node is identi�ed by the boundaries of its zone.

Typical DHTs allow to route content and queries in O(log(n)) steps to the right peers,
where n is the number of peers in the network. Due to their deterministic structure and
simple key-values mappings, they allow for perfect precision and recall. As DHTs es-
sentially only provide a lookup operation, an inherent drawback is that they only directly
support exact-match search: Objects that are not hashed cannot be found. However, ad-
ditional functionality can be layered on top of a DHT. It is also important to note that
the assigned responsibility of keys limits the autonomy of nodes in the sense that the
assignment is beyond their decision and control.

Recently there have been proposals for the combination of the advantages of DHT-
based approaches with those of unstructured networks, which will be explained subse-
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quently. P-Grid [ACMD+03] is a Peer-to-Peer search system based on a virtual dis-
tributed search tree, similarly structured as standard Distributed Hash Tables. However,
the structured overlay is constructed in a completely decentralized manner, just as in
unstructured Peer-to-Peer networks. P-Grid is based on randomized algorithms for con-
structing the access structure, updating the data and performing search. At the same
time, probabilistic estimates can be given for the success of search requests, and search
is more robust than the previously described DHT approaches against failures of nodes.
[ADHS05] presents recent results on a parallel and decentralized algorithm to construct
structured overlays completely from scratch. This algorithm has been evaluated based
on P-Grid, but is claimed to be applicable to any DHT approach.

11.1.2 Unstructured Networks
In our classi�cation, we call unstructured networks those networks, that do not pre-
impose a deterministic structure as in the case of DHTs. While this characterization is
generally accepted [SAB+05], there also exist other characterizations, especially since
many non-DHT based approaches also exhibit some kind of structure. In reality, there
are varying degrees of structure, and it is a matter of perspective whether to call a sys-
tem structured or not. For example, Aberer states in [ACMD+03]: �In unstructured
P2P systems in principle peers are unaware of the resources that neighboring peers in
the overlay networks maintain. Typically they resolve search requests by �ooding tech-
niques. Gnutella is the most prominent example of this class. In contrast, in structured
P2P systems peers maintain information about what resources neighboring peers offer.�
According to this perspective, only the right-most path of the classi�cation in Figure
11.1 would be considered unstructured.

However, for consistency we refer to DHT-based systems as structured networks, that
pre-impose a deterministic structure, while in unstructured networks a possible structure
is an emergent property.

In unstructured networks, we can also further classify along their topology, i.e. along
the degree of central coordination or global knowledge. In the one extreme case, the co-
ordination is managed with a centralized node, as for example in the case of Napster. In
a hybrid case, there may be multiple of these centralized nodes. In a network with super
nodes, the organization of the network is decentralized, but some nodes take over addi-
tional tasks. In the other extreme of a pure Peer-to-Peer system, no centralized or super
nodes exist at all. Here we can further distinguish whether some sort of overlay network
is built to route search requests, or whether simple �ooding / broadcasting mechanisms
are used.

Centralized / Hybrid Approaches An easy but not very robust approach is to have
a centralized registry where peers can advertise their expertise descriptions or to have
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the registry itself search the network for expertise descriptions. The most prominent
example is Napster, a �le-sharing application that relies on a centralized server with a
directory of shared �les stored on the individual peers. Such a repository can be seen as
yellow pages, where each member in the network can look up the entity that ful�lls its
needs. In small organizations, approaches based on a single centralized registry could
work very well because the network is small and stable, so that the registry does not have
to do much query processing and updates. Often such approaches are called hybrid, as
the lookup is performed in a centralized manner, whereas the actual data exchange is
performed from peer to peer.

Super Nodes The approach based on super nodes (sometimes also called super peers)
makes use of the different capacities of the nodes in a Peer-to-Peer network: Peers that
have more processing power, memory or network bandwidth than other peers are as-
signed additional tasks in the network. One example of this approach that crosses cen-
tralized and decentralized topologies is FastTrack [SAB+05]. Its technology uses two
tiers of control in the network. The �rst tier is made up of clusters of ordinary nodes that
log onto super nodes with high speed connection. The second tier consists of only super
nodes connected to one another in a decentralized fashion. The super nodes maintain
routing tables, i.e. distributed indexes, which are used for resource discovery: When a
node from the �rst tier makes a query, it is �rst directed to its own super node, who will
in turn broadcast the query to all super nodes it is connected to. This is done repeatedly
until a maximum number of hops is reached. FastTrack powers several successful Peer-
to-Peer search engines, among them KaZaa client [SAB+05], a system which lets peers
voluntarily act as super nodes.

Pure Peer-to-Peer Pure unstructured Peer-to-Peer systems abandon any sort of cen-
tralized control. In the simplest case, peers connect randomly with other peers, i.e. there
is no additional overlay network used, and messages (or queries) are routed via broad-
casting. Although a very simple technique, broadcasting has already proven its useful-
ness in small networks and in larger Peer-to-Peer �le-sharing systems such as Gnutella
[Kan99]. The Gnutella network uses a �at network of peers called servants (as they act as
servers and clients) to maintain the index directory of all the content in the system. Ser-
vants are connected to each other in a �at ad-hoc topology that is dynamically kept alive
by pinging known neighbors to discover new servants. When querying, a node simply
broadcasts the query to its neighbors that keep forwarding the query to their neighbors
until a suf�cient number of answers is found or until maximum number of forwards
(hops) are reached. In general, broadcasting approaches are not very scalable, because a
query can result in a large number of messages which consumes an unacceptable usage
of network capacity. Also it is possible that even if the data is somewhere in the network
it will not be found due to the maximum number of hops. The main advantage of broad-
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casting approaches is the low maintenance cost and dependency, meaning that almost
no messages are needed to keep the network alive and that the network is very robust to
frequent peer drops and joins (network dynamics).

To improve the performance of query routing, more advanced pure Peer-to-Peer ap-
proaches rely on overlay networks that allow to forward queries to peers based on some
notion of relevance. The overlay network resembles a distributed index that is managed
in a completely decentralized manner. The most prominent approch in this category is
Freenet [CMH+02]. Freenet uses a key based routing mechanism: Each node maintains
a data store containing documents associated with keys, and a routing table associating
nodes with records of their performance in retrieving different keys. Queries are then
routed to the peer with a key that is most similar to the requested one. In this sense,
it is similar to key based routing in DHTs, but functions completely decentralized and
non-deterministically. It is important to note that the similarity function operates on the
keys, which are hash values over the content of the data, and therefore carries no notion
of semantic closeness.

11.1.3 Semantic Overlay Networks
In contrast to approaches to network organization presented so far, Semantic Overlay
Networks (SONs) are based on the idea that links between peers should be created based
on semantic relationships. For example, an overlay could be formed in which peers
maintain pointers to other peers with similar content. As such, similar nodes are clus-
tered together, therefore SONs are sometimes also called Semantic Overlay Clusters,
e.g. in [NWS+03]. As the name suggest, Semantic Overlay Networks are created on top
of an underlying network layer, where peers are either connected randomly in the case of
unstructured networks or based on the respective network topology in the case of struc-
tured networks. In a sense, the Semantic Overlay Network provides an additional layer
of abstraction for an improved coordination of the peer system: It provides a �exible net-
work organization that may improve query performance, while maintaining a high node
autonomy. To our knowledge, the term Semantic Overlay Network has �rst been coined
in [CGM02], however, the underlying ideas can be found in a variety of approaches.

Also the approach that we present in this chapter in the following sections falls into
the category of Semantic Overlay Networks. As it does not require any form of cen-
tralization (pure Peer-to-Peer), i.e. we do not make any assumptions with respect to the
structure of the underlying topology, it can theoretically be combined with any of the
above introduced network structures.

Semantic overlay networks can be built with two different purposes: In one case,
they can be used to impose a structure onto an initially unstructured network in order to
organize the network and for example improve the performance of query routing. In a
second case, they can be used ontop of existing structured networks, which already pro-
vide an ef�cient organization, in order to provide additional functionality beyond that
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provided by the underlying layer. For example, in the case of DHTs, the only func-
tionality provided is that of key-value lookups, which are performed in a very ef�cient
manner. Additional functionality to support more complex queries and to deal with het-
erogeneous nodes can be built ontop.

11.2 A Model for Expertise Based Peer Selection
In the model we propose, peers advertise their expertise in the network to form acquain-
tances. The peer selection is based on matching the subject of a query and the expertise
according to their semantic similarity. Figure 11.3 below shows the idea of the model in
one picture.

Knowledge Base
 Query


Expertise
 Subject

Similarity


Abstraction


Matching


Figure 11.3: Expertise Based Matching for Peer Selection

In this section we �rst discuss how peers and their expertise are described and how
peers promote their expertise as advertisement messages in the network. Second, we
describe how the received advertisements allow a peer to select other peers for a given
query based on a semantic matching of query subjects against expertise descriptions.
The third part describes how a semantic overlay network can be formed by advertising
expertise.

11.2.1 Semantic Description of Peers and their Expertise
For the semantic description of peers and their expertise we rely on the metadata ontol-
ogy P-OMV presented in the previous chapter in Section 10.3. We here recapitulate the
elements relevant for the process of peer selection.

Peers The Peer-to-Peer network consists of a set of peers P (captured by the P-OMV
class Peer). Every peer p ∈ P has a knowledge base described with an ontology
that contains the knowledge that it wants to share (captured by the P-OMV property
providesOntology).
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Common Ontology The peers share a distinguished ontology O, which provides a
common conceptualization of their domain by de�ning a set of concepts and the relations
between them. The ontology is used for describing the expertise of peers and the subject
of queries. In P-OMV, this common ontology amounts to the topic ontology, consisting
of a set of topics T (corresponding to the P-OMV class Topic) and binary relations
such as subTopicOf ⊆ T × T .

Expertise An expertise description e ∈ E is an abstract, semantic description of the
knowledge base of a peer based on a set of terms of the common ontology O. Specif-
ically, the expertise descriptions of P-OMV relate the peers with the terms of the topic
ontology, which they are knowledgeable about via the property expertise. This
expertise can either be extracted from the knowledge base automatically or speci�ed in
some other manner.

Advertisements Advertisements A ⊆ P × E are used to promote metadata descrip-
tions of the peers and their expertise in the network. An advertisement a ∈ A associates
a peer p with an expertise description e. Peers decide autonomously, without central
control, whom to promote advertisements to and which advertisements to accept. This
decision can be based on the semantic similarity between expertise descriptions.

11.2.2 Matching and Peer Selection
We now turn to the discussion how peers are selected based on a given query using a
similarity function to rank peers.

Queries Queries q ∈ Q are posed by a user and are evaluated against the knowledge
bases of the peers. First a peer evaluates the query against its local knowledge base and
then decides which peers the query should be forwarded to. Query results are returned
to the peer that originally initiated the query.

Subjects A subject s ∈ S is an abstraction of a given query q expressed in a set of
terms from the common ontology O. The subject can be seen as a complement to an
expertise description, as it speci�es the required expertise to answer the query.

Similarity Function We rely on the notion of a similarity function as de�ned in De�-
nition 8 in the similarity framework for ontologies of Chapter 7: The similarity function
simS : S × E 7→ [0, 1] is a symmetric function that determines the semantic similarity
between a subject s ∈ S and an expertise description e ∈ E. As such, an increasing value
indicates increasing similarity. If the value is 0, s and e are not similar at all; if the value
is 1, they match exactly. simS is used for determining to which peers a query should be
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forwarded. Analogously, the same kind of similarity function simE : E × E 7→ [0, 1]
can be de�ned to determine the similarity between the expertise of two peers. The simi-
larity function may be appropriately de�ned according to the semantics of the expertise
and subject descriptions under consideration.

Peer Selection Algorithm The peer selection algorithm as shown in Algorithm 6 re-
turns a ranked set of peers. The rank value is equal to the similarity value provided by
the similarity function. From this set of ranked peers one can, for example, select the

Algorithm 6 Peer Selection
let A be the advertisements that are available on the peer
let γ be the minimal similarity between the expertise of a peer and the subject of the
query.
subject := ExtractSubject(query)
rankedPeers := ∅
for all ad ∈ A do

peer := Peer(ad)
rank := simS(Expertise(ad), subject)
if rank > γ then

rankedPeers := (peer, rank) ∪ rankedPeers
end if

end for
return rankedPeers

best n peers, or all peers whose rank value is above a certain threshold.

11.2.3 Building a Semantic Overlay Network
The semantic overlay network is formed by establishing acquaintances between peers.
These acquaintances essentially resemble the knowledge of the peers about the expertise
of other peers in the network. It is important to state that this semantic overlay network is
independent of the underlying network topology. At this point, we make no assumptions
about the topology of the network.
The semantic overlay network can be described as a directed graph

(P, acquaintedWith)

where P is the set of nodes � or peers � and the edges are given by the following relation
acquaintedWith:

acquaintedWith ⊆ P×P , where acquaintedWith(p1, p2) means that p1 knows about
the expertise of p2.
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The relation acquaintedWith is established by the selection of which peers a peer sends
its advertisements to and from which peers a peer accepts advertisements. The semantic
overlay network in combination with the expertise based peer selection is the basis for
intelligent query routing. The intuition of the overlay network is to establish acquain-
tances between peers with similar expertise in order to be able to route queries along a
short path of increasing similarity between the subject of the query and the expertise of
the peers. Different strategies for establishing such acquaintances will be presented and
evaluated in the following sections.

11.2.4 Consequences of the Model
An important value of the model described above is that it dictates which design deci-
sions must be made when introducing expertise based peer selection into a Peer-to-Peer
network. The decisions are as follows:

• We must de�ne the common ontology as a set of concepts and a set of relations
between them.

• We must de�ne two abstraction functions: one to abstract the contents of peers
to expertise descriptions (sets of concepts from the ontology), and one to abstract
queries to subjects (again sets of concepts from the ontology).

• We must de�ne two advertisement policies: to which peers to send advertisements,
and which advertisements to accept.

• We must de�ne two similarity functions: one to compare subjects with expertise
descriptions, and one to compare expertise descriptions with each other.

• We must de�ne a peer selection algorithm to decide to which peers queries must
be routed.

We believe this model to be of general value in understanding Peer-to-Peer models
with semantic query routing. In the following section we instantiate this general model
for our speci�c application scenario.

11.3 Peer Selection in the Bibster System
In this section we instantiate the general model for expertise based peer selection from
the previous section for our bibliographic application scenario.
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Peers A researcher is represented by a peer p ∈ P . Each peer provides a knowledge
base, which consists of a set of bibliographic metadata items that are classi�ed according
to the ACM topic hierarchy1.

Common Ontology The ontology O that is shared by all the peers is the ACM topic
hierarchy. The topic hierarchy contains a set, T , of 1287 topics in the computer science
domain and relations (T × T ) between them: subTopic and seeAlso.

Expertise The ACM topic hierarchy is the basis for our expertise model. Expertise E
is de�ned as E ⊆ 2T , where each e ∈ E denotes a set of ACM topics, for which a peer
provides classi�ed instances.

Advertisements Advertisements associate peers with their expertise: A ⊆ P × E. A
single advertisement therefore consists of a set of ACM topics to which the peer is an
expert.

Queries We use conjunctive queries as de�ned in Section 3.3 to express queries against
knowledge bases of a peer. The following sample query asks for the titles of publications
whose ACM topic is Information Systems / Database Management:

PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX acm: <http://daml.umbc.edu/ontologies/topic-ont#>
PREFIX topic: <http://daml.umbc.edu/ontologies/classification#>

CONSTRUCT {?pub <swrc:title> ?title} FROM
{?pub rdf:type swrc:Publication;

swrc:title ?title;
acm:topic <topic:ACMTopic/Information_Systems/Database_Management>}

Subjects Analogously to the expertise, a subject s ∈ S is an abstraction of a query q.
In our scenario � where S ⊆ 2T � each s is a set of ACM topics, thus s ⊆ T . For exam-
ple, the extracted subject of the query above would be { Information Systems/Database
Management}.

Similarity Function In this scenario, we use one similarity function sim (sim =
simE = simS), which is based on the idea that topics which are close according to
their positions in the topic hierarchy are more similar than topics that have a larger dis-
tance. For example, an expert on ACM topic Information Systems/Information Storage

1http://daml.umbc.edu/ontologies/classification
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and Retrieval has a higher chance of giving a correct answer on a query about Infor-
mation Systems/Database Management than an expert on a less similar topic like Hard-
ware/Memory Structures.

To be able to de�ne the similarity of a peer's expertise and a query subject, which
are both represented as a set of topics, we �rst de�ne the similarity for individual topics.
[LBM03] have compared different similarity measures and have shown that for measur-
ing the similarity between concepts in a hierarchically structured semantic network, like
the ACM topic hierarchy, the taxonomic similarity (as introduced in Section 7) yields
the best results:

(11.1) S(t1, t2) =

{
e−αl · eβh−e−βh

eβh+e−βh if t1 6= t2,

1 otherwise

Here l is the length of the shortest path between topic t1 and t2 in the graph spanned
by the SubTopic relation. h is the level in the tree of the lowest common subsumer from
t1 and t2; α ≥ 0 and β ≥ 0 are parameters scaling the contribution of shortest path
length l and depth h, respectively. Based on benchmark data from [LBM03], the optimal
values are: α = 0.2, β = 0.6. Using the shortest path between two topics is a measure
for similarity, as Rada and colleagues [RMBB89] have proven that the minimum number
of edges separating topics t1 and t2 is a metric for measuring the conceptual distance of
t1 and t2. The intuition behind using the depth of the direct common subsumer in the
calculation is that topics at upper layers of hierarchical semantic nets are more general
and are semantically less similar than topics at lower levels.

Now that we have a function for calculating the similarity between two individual
topics, we de�ne sim as:

(11.2) sim(s, e) =
1

|s|
∑
ti∈s

max
tj∈e

S(ti, tj)

This function iterates over all topics ti of the subject s and average their similarities with
the most similar topic of the expertise e.

Peer Selection Algorithm The peer selection algorithm ranks the known peers
according to the similarity function described above. Therefore, peers that have an
expertise more similar to that of the subject of the query will have a higher rank. From
the set of ranked peers, we now only consider a selection algorithm that selects the best
n peers.

We have now made a decision on many of the points dictated by the general model
from the previous section: a common ontology, expertise and query-subject descriptions,
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advertisement-contents, and similarity functions. Still missing are the advertisement
policy and the abstraction functions. These are experimental variables because we test
different policies, and therefore will be discussed in Sections 11.5 and 11.6, where we
describe the details of our experiments.

11.4 Evaluation Criteria
In this section we de�ne a number of criteria for a Peer-to-Peer system, which will be
the basis for the evaluation of our proposed model for peer selection. These criteria are
mainly based on those described in [ESS+03]. We distinguish between input parameters
that affect the performance of the system, and output parameters that are affected and
serve as measures for the performance of the system.

11.4.1 Input parameters
The following input parameters are important criteria that affect the performance of a
Peer-to-Peer system:

Number of Peers The size of the Peer-to-Peer network is represented by this number.
Typically the scalability of the system is measured in terms of the number of peers.

Number of Documents The scalability of a Peer-to-Peer system can also be expressed
in terms of the number of shared resource items, e.g. documents.

Document Distribution The document distribution in Peer-to-Peer networks is rarely
completely random, but often has certain properties. With this input parameter we want
to evaluate how the proposed model behaves with different document distributions.

Network Topology The performance of a Peer-to-Peer system is strongly in�uenced
by the network topology and its characteristics. Possible topologies could for example
be super-peer based, star or ring-shaped, or simply a random graph.

Advertisement Policy The advertisements are responsible for building the semantic
overlay network. There are various variables involved, e.g. whom to send the advertis-
ments to and which received advertisements to include based on the semantic similarity
between the own expertise and that of the advertisement.
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Peer Selection Algorithm The peer selection algorithm determines which peers a
query should be forwarded to. This could be a naive algorithm, which simply broad-
casts a query, or a more advanced one, as the proposed expertise based peer selection.

Maximum Number of Hops The maximum number of hops determines how many
times a query is allowed to be forwarded. It determines how much the network will be
�ooded by a single query.

11.4.2 Output parameters
To evaluate a Peer-to-Peer system, we use precision and recall measures known from
classical Information Retrieval. Here we distinguish measures on the document level
(query answering) and the peer level (peer selection). These measures are de�ned as
follows:

Document Level (Query Answering).

PrecisionDoc = |ATB|
|B|

indicates how many of the returned documents are relevant, with A being the set
of relevant documents in the network and B being the set of returned documents.
In our model we work with exact queries, therefore only relevant documents are
returned. The precision will therefore always be one:
PrecisionDoc = |B|

|B| = 1.

RecallInf = |ATB|
|A| = |B|

|A|
The recall on the document level states how many of the relevant documents are
returned.

Peer Level (Peer Selection).

PrecisionPeer = |ATB|
|B|

For a given query, how many of the peers that were selected had relevant infor-
mation. Here A is the set of peers that had relevant documents and B is the set of
peers that were reached.

RecallPeer = |ATB|
|A|

indicates for a given query, how many of the peers that had relevant information
were reached.
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Further Parameters. Another important output parameters is:

NumberMessages

This output parameter indicates with how many messages the network is �ooded
by one query. The number of messages does not only affect the network traf�c,
but also CPU consumption, such as for the processing of the queries in the case of
query messages.

There are many other output parameters that we could have used as additional eval-
uation criteria. Examples are the size of messages between peers, the response times
on queries to the network, CPU load of individual peers etc. However, we do not re-
port on these as they are not relevant to our evaluation hypotheses and therefore also not
captured by our simulation software.

11.5 Simulation Experiments
In this section we describe the simulation of the bibliographic scenario presented in
Section 11.3. The evaluations are based on the criteria de�ned in Section 11.4. With the
experiments we validate the following hypotheses:

• H1 - Expertise based selection: The proposed approach of expertise based peer
selection yields better results than a naive approach based on random selection.
The higher precision of the expertise based selection results in a higher recall of
peers and documents, while reducing the number of messages per query.

• H2 - Ontology based matching: Using a shared ontology with a metric for se-
mantic similarity improves the recall rate of the system compared with an approach
that relies on exact matches, such as a simple keyword based approach.

• H3 - Semantic overlay network: The performance of the system can be improved
further, if the semantic overlay network is built according to the semantic similar-
ity of the expertise of the peers. This can be realized, for example, by accepting
advertisements that are semantically similar to the own expertise.

• H4 - The �Perfect� overlay network: Perfect results in terms of precision and re-
call can be achieved, if the semantic overlay network coincides with a distribution
of the documents according to the expertise model.

11.5.1 Setup of the Simulation Experiments
In the following we describe the setup of the simulation experiments performed: the data
sets used, the distribution of the data, the simulation environment, and the individual
experimental settings.
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Data Set To obtain a critical mass of bibliographic data, we used the DBLP data set,
which consists of metadata for 380440 publications in the computer science domain (in
the version from August 2003).

We have classi�ed the publications of the DBLP data set according to the ACM topic
hierarchy using a simple classi�cation scheme based on lexical analysis: A publication
is said to be about a topic, if the label of the topic occurs in the title of the publica-
tion. For example, a publication with the title �The Capabilities of Relational Database
Management Systems.� is classi�ed into the topic Database Management.Topics with
labels that are not unique (e.g. General is a subtopic of both General Literature and
Hardware) have been excluded from the classi�cation, because typically these labels are
too general and would result in publications classi�ed into multiple, distant topics in the
hierarchy. Obviously, this method of classi�cation is not as precise as a sophisticated or
manual classi�cation. However, a high precision of the classi�cation is not required for
the purpose of our simulations. As a result of the classi�cation, about one third of the
DBLP publications (126247 out of 380440) have been classi�ed, against 553 out of the
1287 ACM topics. The classi�ed DBLP subset has been used for our simulations.

Distribution of the Data We have simulated and evaluated the scenario with two dif-
ferent distributions, which we describe in the following. Note that for the simulation
of the scenario we disregard the actual documents and only distribute the bibliographic
metadata of the publications.

Topic Distribution: In the �rst distribution, the bibliographic metadata are dis-
tributed according to their topic classi�cation. There is one dedicated peer for each
of the 1287 ACM topics. The distribution is directly correlated with the expertise model,
each peer is an expert on exactly one ACM topic and contains all the corresponding pub-
lications. This also implies that there are peers that do not contain publications, because
not all topics have classi�ed instances.

Proceedings Distribution: In the second distribution, the bibliographic metadata
are distributed according to conference proceedings and journals in which the accord-
ing publications were published. For each of the conference proceedings and journals
covered in DBLP there is a dedicated peer that contains all the associated publication
descriptions (in the case of the 328 journals) or inproceedings (in the case of the 2006
conference proceedings). Publications that are published neither in a journal nor in con-
ference proceedings are contained by one separate peer. The total number of peers there-
fore is 2335 (=328+2006+1). With this distribution one peer can be an expert on multiple
topics, as a journal or conference typically covers multiple ACM topics. Note that there
is still a correlation between the distribution and the expertise, as a conference or journal
typically covers a coherent set of topics.
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Simulation Environment To simulate the scenario we have developed and used a con-
trolled, con�gurable Peer-to-Peer simulation environment. A single simulation experi-
ment consists of the following sequence of operations:

1. Setup network topology: In the �rst step we create the peers with their knowl-
edge bases according to the document distribution and arrange them in a random
network topology, where every peer knows 10 random peers. We have �xed this
number in our simulations to keep the number of different variable tractable, and
have chosen this value to simulate a realistic sparse topology. We do not make any
further assumptions about the network topology.

2. Advertising Knowledge: In the second step, the semantic overlay network is cre-
ated. Every peer sends an advertisement of its expertise to all other peers it knows
based on the network topology. When a peer receives an advertisement, it may
decide to store all or only selected advertisements, e.g. if the advertised expertise
is semantically similar to its own expertise. After this step the semantic overlay
network is static and will not change anymore.

3. Query Processing: The peers randomly initiate queries from a set of randomly
created 12870 queries, 10 for each of the 1287 ACM topics. The peers �rst eval-
uate the queries against their local knowledge base and then propagate the query
according to their peer selection algorithms described below.

Experimental Settings In our experiments we have systematically simulated various
settings with different values of input variables. In the following we will describe an
interesting selected subset of the settings to prove the validity of our hypotheses.

Setting 1 In the �rst setting we use a naive peer selection algorithm, which selects
n random peers from the set of peers that are known from advertisements received, but
disregarding the content of the advertisement. In the experiments, we have used n=2 in
every setting, as a rather arbitrary choice.

Setting 2 In the second setting we apply the expertise based selection algorithm.
The best n (n=2) peers are selected for query forwarding. Here the peer selection algo-
rithm only considers exact matches of topics.

Setting 3 In the third setting we modify the peer selection algorithm to use the
ontology based similarity measure, instead of only exact matches. The peer selection
only selects peers whose expertise is equally or more similar to the subject of the query
than the expertise of the forwarding peer.
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Table 11.1: Experimental Settings for Simulation of Expertise Based Peer Selection

Setting # Peer Selection Advertisements Topology
Setting 1 random accept all random
Setting 2 exact match accept all random
Setting 3 ontology based match accept all random
Setting 4 ontology based match accept similar random
Setting 5 ontology based match accept similar perfect

Setting 4 In the fourth setting we modify the peer to only accept advertisements
that are semantically similar to its own expertise. The threshold for accepting advertise-
ments was set to accept on average half of the incoming advertisements.

Setting 5 In this setting we assume global knowledge to impose a perfect overlay
network on the peer network. In this perfect overlay network the acquaintances coincide
with the ACM topic hierarchy: Every peer is acquainted with exactly those peers that
are experts on the neighboring topics of its own expertise. This setting is only applicable
for the distribution of the publications according to their topics, as it assumes exactly
one expert per topic.

Table 11.1 summarizes the values of the input variables for the described settings.

11.5.2 Results
Figures 11.4 through 11.6 show the results for the different settings and distributions.
The simulations have been run with a varying number of allowed hops. In the results
we show the performance for a maximum of up to eight hops. Zero hops means that
the query is processed locally and not forwarded. Please note that the diagrams for
the recall and the number of messages per query (i.e. Figures 11.5, 11.6, 11.7) present
cumulative values, i.e. they include the sum of the results for up to n hops. The diagram
for the precision (Figure 11.4) of the peer selection displays the precision for a particular
number of hops.

In the following, we interpret the results of the experiments for the various settings
described above with respect to our hypotheses H1 through H4.

R1 - Expertise based selection The results of Figure 11.4, Setting 1, show that the
naive approach of random peer selection gives a constant low precision of 0.03% for
the topic distribution and 1.3% for the proceedings distribution. This results in a fairly
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Figure 11.4: PrecisionPeers of Expertise Based Peer Selection

low recall of peers and documents despite a high number of messages, as shown in
Figures 11.5, 11.6, 11.7, respectively. With the expertise based selection, either exact
or similarity based matching, the precision can be improved considerably by about one
order of magnitude. For example, with the expertise based selection in Setting 3, the
precision of the peer selection (Figure 11.4) can be improved from 0.03% to 0.15% for
the topic distribution and from 1.3% to 15% for the proceedings distribution. With the
precision, also the recall of peers and documents rises (Figures 11.5, 11.6). At the same
time, the number of messages per query can be reduced. The number of messages sent
is in�uenced by two effects. The �rst effect is message redundancy: The more precise
the peer selection, the higher is the chance of a peer receiving a query multiple times on
different routes. This redundancy is detected by the receiving peer, which will forward
the query only once, thus resulting in a decreasing number of queries sent across the
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Figure 11.5: RecallPeers of Expertise Based Peer Selection

network. The other effect is caused by the selectivity of the peer selection: It only
forwards the query to peers whose expertise is semantically more or equally similar
to the query than that of the own expertise. With an increasing number of hops, the
semantic similarity of the expertise of the peer and the query increases, thus the chance
of knowing a qualifying peer decreases, which results in a decrease of messages.

R2 - Ontology based matching The result of Figure 11.4, Setting 2, shows that the
exact match approach results in a maximum precision already after one hop, which is
obvious because it only selects peers that match exactly with the query's subject. How-
ever, Figure 11.5 shows that the recall in this case is very low in the case of the topic
distribution. This can be explained as follows: For every query subject, there is only
one peer that exactly matches in the entire network. In a sparse topology, the chance of
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Figure 11.6: RecallDocuments of Expertise Based Peer Selection

knowing that relevant peer is very low. Thus the query cannot spread effectively across
the network, resulting in a document recall of only 1%. In contrary, Setting 3 shows that
when semantically similar peers are selected, it is possible to improve the recall of peers
and documents, to 62% after eight hops. Also in the case of the proceedings distribution,
where multiple exact matches are possible, we see an improvement from 49% in the case
of exact matches (Setting 2), to 54% in the case of ontology based matches (Setting 3).
Naturally, this approach requires to send more messages per query and also results in a
lower precision.

R3 - Semantic Overlay Network In Setting 4 the peers only accept semantically sim-
ilar advertisements. This has proven to be a simple, but effective way for creating a
semantic overlay network that correlates with the expertise of the peers. This allows to



11.5 Simulation Experiments 187

Topic Distribution

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8

Number of Hops

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s

Setting 1

Setting 2

Setting 3

Setting 4

Setting 5

Proceedings Distribution

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8

Number of Hops

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s

Setting 1

Setting 2

Setting 3

Setting 4

Figure 11.7: NumberMessages of Expertise Based Peer Selection

forward queries along the gradient of increasing semantic similarity. When we compare
this approach with that of Setting 3, the precision of the peer selection can be improved
from 0.15% to 0.4% for the topic distribution and from 14% to 20% for the proceedings
distribution. The recall of documents can thus be improved from 62% to 83% for the
topic distribution and from 54% to 72% for the proceedings distribution.

It is also interesting to note that the precision of the peer selection for the similarity
based matching decreases slightly after seven hops (Figure 11.4). The reason is that after
seven hops the majority of the relevant peers has already been reached. Thus the chance
of �nding relevant peers decreases, resulting in a lower precision of the peer selection.

R4 - The �Perfect� Overlay Network The results for Setting 5 show how one could
obtain the maximum recall and precision, if it were possible to impose an ideal seman-
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tic overlay network. All relevant peers and thus all bibliographic descriptions can be
found in a deterministic manner, as the query is simply routed along the route which
corresponds to the shortest path in the ACM topic hierarchy. At each hop the query is
forwarded to exactly one peer until the relevant peer is reached. The number of messages
required per query is therefore the length of the shortest path from the topic of expertise
of the originating peer to that of the topic of the query subject. The precision of the
peer selection increases to the maximum when arriving at the eighth hop, which is the
maximum possible length of a shortest path in the ACM topic hierarchy. Accordingly,
the maximum number of messages (Figure 11.7) required is also eight.

11.6 The Bibster Field Experiment
In addition to the simulation experiments, we have evaluated the methods of expertise
based peer selection in a realistic �eld experiment, as part of the Bibster system. We
have implemented the methods for expertise based peer selection in the Bibster system,
and performed a public �eld experiment to evaluate the model in a real-world setting.

11.6.1 Setup of the Field Experiment
The Bibster system was made publicly available for download2and advertised to re-
searchers in the Computer Science domain. The evaluation was based on the analysis
of system activity that was automatically logged to log �les on the individual Bibster
clients. In Bibster two different peer selection algorithms ran at the same time, namely
our expertise based peer selection and a random query forwarding algorithm. We have
analyzed the results for a period of three months (June - August 2004).

398 peers spread across multiple organizations mainly from Europe and North Amer-
ica participated in the �eld experiment and used the Bibster system.

A total of 98872 bibliographic entries were shared by the 398 peers, with an aver-
age of 248 entries per peer. However, the distribution had a high variance (cf. Figure
11.8): While 62% (248 peers) were free-riding3 and shared no content, 6% (24 peers)
shared at least 1000 entries each, accounting for 79% of the total shared content. With
respect to the variance, the distribution is similar to that of the topic distribution from the
simulation experiments, where many peers provided no entries (those whose topic had
no classi�ed instances) and few peers provided many entries (those with popular topics
such as �Database Management�). The users performed a total of 3319 queries. With
respect to the scope of the queries, Figure 11.9 shows that the users mainly performed

2http://bibster.semanticweb.org/
3In many Peer-To-Peer systems (e.g. Naptser, Gnutella) users are mainly interested in their own ad-

vantage and conserve their resources (i.e. bandwidth) by sharing no �les. In the common literature this
phenomena is called Free-Rider problem. Users do not have a direct incentive to share �les.
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queries on their local peers and automatic search across the entire network. Only in few
cases the queries were directed to a manually selected peer. This con�rms the need for
ef�cient peer selection algorithms. For the 3319 queries, the users received a total of
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Figure 11.9: Scope of Queries

36960 result entries, i.e. around 11 result entries per query. Result entries were actively
used 801 times, i.e. copied or stored locally.

11.6.2 Results
With respect to query routing and the use of the expertise based peer selection, we were
able to reduce the number of query messages by more than 50 percent, while retaining
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the same recall of documents compared with a naive broadcasting approach. Figure
11.10 shows the precision of the peer selection (the percentage of the reached peers that
actually provided answers to a given query): While the expertise based peer selection
results in an almost constant high precision of 28%, the naive algorithm results in a
lower precision decreasing from 22% after 1 hop to 14% after 4 hops4.
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Figure 11.11: NumberMessages in the Field Experiment

Figure 11.11 shows the number of forwarded query messages sent per query. It can
be seen that with an increasing number of hops, the number of messages sent with the

4The decrease is due the redundancy of relevant peers found on different message paths: Only distinct
relevant peers are considered.
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expertise based peer selection is considerably lower than with the naive algorithm. Al-
though we have shown an improvement in the performance, the results also show that
with a network of the size as in the �eld experiment, a naive approach is also acceptable.
On the other hand, with a growing number of peers, query routing and peer selection
becomes critical. In the previous discussed simulation experiments, networks with thou-
sands of peers improve in the order of one magnitude in terms of recall of documents
and relevant peers.

11.6.3 Comparison with Results from Simulation Experiments
Overall, the results of the simulation experiments have been validated: We were able
to improve the precision of the peer selection and thus reduce the number of sent mes-
sages. However, the performance gain by using the expertise based peer selection was
not as signi�cant as in the simulation experiments5. This is mainly due to the following
reasons:

• Size of the network The size of the network in the �eld experiment was consid-
erably smaller than in the simulation experiments. While the total number of
participating peers was already fairly large (398), the number of peers online at
any point in time was fairly small (order of tens).

• Network topology In the �eld experiment we built the semantic overlay network
on-top of the JXTA network topology. Again, because of the small size of the
network, the JXTA topology degenerates to a fully connected graph in most cases.
Obviously, for these topologies, a naive algorithm yields acceptable results.

• Distribution of the content In the simulation experiments, we distributed the shared
content according to certain assumptions (based on topics, conferences, journals).
In real-world experiments, the distribution is much more heterogeneous, both in
terms of the expertise of the peers and the amount of shared content.

11.7 Related Work
In Section 11.1 we have already provided a general overview of approaches to coordina-
tion in Peer-to-Peer systems and classi�ed the most prominent systems and technologies.
In this section we analyze in more detail speci�c approaches that relate to semantics
based coordination and show how they relate to our proposed approach.

Because of the focus of our own work on semantic overlay networks, we look closer
at approaches that are based on some sort of overlay network. Freenet [CMH+02] is one

5In terms of recall, there were no improvements at all, as even the naive algorithm generally was able
to reach all relevant peers.
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approach that builds an overlay network in a completely decentralized network topology
and is with this respect very similar to our proposed approach. Freenet uses a key based
routing mechanism: Each node maintains a data store containing documents associated
with keys, and a routing table associating nodes with records of their performance in
retrieving different keys. The routing table is dynamically updated as searches and in-
sertions of data occur. To �nd a document in the network given a key, the peer will
�rst try to �nd it in the local data store. If this lookup fails it will forward the query to
the peer with the most similar key. The same path �nding process is applied to insert a
document into the network: a request for the new document is made, and once it fails,
the document is sent along the same path as the request. This ensures that documents
are inserted into the network in the same place as requests will look for it. Initially, each
peer has no information about the performance of the other peers, therefore routing of
requests will be essentially random. As more documents are inserted, they will begin to
cluster with data items whose keys are similar, because the same routing rules are used
for all of them. Further, as data items and requests from different nodes cross paths,
they will begin to share clustering information as well. The result is that the network
will self organize into a distributed, clustered structure where peers tend to hold data
items that are close together in key space. In difference to Freenet, where the clustering
of documents is achieved by re-distributing the documents in the network (notably only
based on hash keys), our approach does not re-distribute data, but instead tries to cluster
peers with similar expertise, where every peer maintains local control over its data, i.e.
the distribution of data is �xed. It is important to note that the similarity function used
for the peer selection and placement of data simply operates on the keys, which are hash
values over the content of the data, and therefore carries no notion of semantic closeness.
Further, queries are restricted to key lookups.

On the other hand, there are several approaches that try to establish more seman-
tic overlay networks, based on different assumptions about the underlying network.
[NWS+03] presents schema based Peer-to-Peer networks and the use of super peer based
topologies for these networks, in which super peers are organized in hypercubes and
peers with similar content connect to the same super peer. [LWSN03] shows how this
schema based approach can be used to create Semantic Overlay Clusters in a scienti�c
Peer-to-Peer network with a small set of metadata attributes that describe the documents
in the network. In contrast, the approach in our system is completely decentralized in
the sense that it does not rely on super peers.

Gridvine [ACMHP04] uses the semantic overlay for managing and mapping data
and metadata schemas, on top of a physical layer consisting of a structured Peer-to-Peer
overlay network, namely P-Grid, for ef�cient routing of messages. Here, the semantic
overlay network is not used for the ef�ciency of query routing, but instead to realize a
more semantic search than the simple key-value lookups of the underlying DHT.

Much research has focused on the problem of how to identify and describe the se-
mantic similarity of shared content and how to build according semantic overlay net-
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works. One approach to this is to classify the content of a peer into a shared topic vector
where each element in the vector contains the relevance of that given peer for the re-
spective topic. pSearch [TXD03], is such an example where documents in the network
are organized around their vector representations (based on modern document ranking
algorithms) such that the search space for a given query is organized around related
documents, achieving both ef�ciency and accuracy. In pSearch each peer has the re-
sponsibility for a range for each element in the topic vector, e.g. ([0.2−0.4], [0.1−0.3]).
Now all expertise vectors that fall in that range are routed to that peer, meaning that, fol-
lowing the example vector, the expertise vector [0.23, 0.19] would be routed to this peer
and [0.13, 0.19] not. Besides the responsibility for a vector range, a peer also knows the
list of neighbors which are responsible to vector ranges close to itself. The characteristic
of pSearch is that the way that peers know about close neighbors is very ef�cient. A
disadvantage of pSearch is that all documents have to be mapped into the same (low di-
mensional) semantic search space and that the dimensionality on the overlay is strongly
dependent of the dimensionality of the vector, with the result that each peer has to know
many neighbors when the vectors have high a dimension.

Recent works as described [RGL05] propose algorithms for decentralized node clus-
tering that identify clusters of similar nodes in Peer-to-Peer networks. Emphasis is put
in particular on maintaining the node clusters in the presence of highly dynamic nodes.
These approaches could very well complement our work in building and maintaining
the semantic overlay network. Interestingly, the evaluation results in [RGL05] show that
very good clustering results can already be obtained with simple models, e.g. where mes-
sages are forwarded only once (as in our simulation experiments, where advertisements
are only forwarded to direct neighbors). In fact, further forwarding is rather detrimental
due to the higher message load.

REMINDIN' [TSW04], [Tem06] is a further interesting approach to building seman-
tic overlay networks based on social metaphors. In contrast to our approach it does not
rely on building the overlay beforehand by advertising expertise descriptions. Instead,
it creates an index in a lazy manner: Peers create semantic links based on what queries
other peers have asked and what answers they have provided. As the authors recognize,
a combination of the lazy approach with the advertisement-based approach of our work
might lead to further improvements in search ef�ciency. Comparing the applicability of
the lazy and pro-active approaches, one can state as a general rule of thumb that lazy ap-
proaches like REMINDIN' are better suitable if index structures cannot be constructed
in advance. This may be the case if the participating peers are not willing or not able to
publicize their descriptions.
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11.8 Conclusions
In this chapter we have presented a model for expertise based peer selection, in which
a semantic overlay network among the peers is created by advertising the expertise of
the peers. We have shown how the model can be applied in a bibliographic scenario.
Simulation experiments that we performed with this bibliographic scenario show the
following results:

• Using expertise based peer selection can increase the performance of the peer
selection by an order of magnitude (result R1).

• However, if expertise based peer selection uses simple exact matching, the recall
drops to unacceptable levels. It is necessary to use an ontology based similarity
measure as the basis for expertise based matching (result R2).

• An advertising strategy where peers only accept advertisements that are semanti-
cally close to their own pro�le (i.e. that are in their semantic neighborhood) is a
simple and effective way of creating a semantic overlay network. This semantic
overlay network allows to forward queries along the gradient of increasing seman-
tic similarity (result R3).

• The above results depend on how closely the semantic overlay network mirrors
the structure of the ontology. All relevant performance measures reach their opti-
mal value when the network is organized exactly according to the structure of the
topology (result R4). Although this situation is idealized and it will in practice not
be achievable, the experiment serves to con�rm our intuitions on this.

The �eld experiment showed that we were able to improve the precision of the peer
selection and thus reduce the number of sent messages. However, the performance
gained by using the expertise based peer selection was not as signi�cant as in the sim-
ulation experiments. Summarizing, in both the simulation experiments and the �eld ex-
periments, we have shown that expertise based peer selection combined with ontology-
based matching outperforms both random peer selection and selection based on exact
matches, and that this performance increase grows when the semantic overlay network
more closely mirrors the domain ontology.

We have made a number of simplifying assumptions in our experiments, such as the
assumption that all peers agree on the use of a single ontology, which is not realistic in
all cases, as we have shown for example in Chapter 9 for the use of personal ontologies.
The similarity framework presented in Chapter 7 provides the required basis for similar-
ity functions across heterogeneous ontologies. However, we expect that differences in
ontologies used by different peers will lower our results, since the computation of the
semantic distance between peers becomes less reliable across different ontologies.
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In our simulation experiments, the semantic overlay network was determined once,
during an initial advertising round, and was not adapted any further during the lifetime
of one experiment. In our �eld experiment this assumption was not made and also the
work in [TSW04] shows how the topology can be adjusted based on the exchange of
queries and answers. The conjecture is that such a self-adjusting network will improve
the results. We think this will be the case since the semantic overlay network will con-
verge better towards the structure of the underlying ontology than our current one-shot
advertising allows.
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Chapter 12

Conclusions and Outlook

12.1 Summary
In this thesis we have posed the question: How can the use of semantic technologies
based on ontologies address the challenges arising from the speci�c characteristics of
distributed information systems?

In order to answer this question, we have started the work with an in-depth analysis
of distributed information systems. We have discussed distributed information systems
as systems that manage and allow to interpret data that is physically distributed, but
logically related. Further we have identi�ed three common characteristics of distributed
information system: heterogeneity, dynamics, and the autonomy of nodes. These three
characteristics are valid across different kinds of distributed information systems, as we
have seen in the analysis of federated databases, Peer-to-Peer, and Grid systems.

We have then introduced ontologies as explicit speci�cations of a conceptualization.
In particular, we have presented the OWL ontology language � together with extensions
for rules and queries � that has provided the formal foundations for the work in the
subsequent chapters. We have then shown how ontologies can be used in distributed in-
formation systems to formally specify the relationship between the data and its meaning,
allowing for a clear and unambiguous interpretation of the data distributed across multi-
ple nodes. We have further analyzed how the use of ontologies addresses the challenges
arising from the characteristics heterogeneity, dynamics and autonomy of nodes:

• Ontology-based information integration allows to realize integrated access to het-
erogeneous data sources.

• Ontology evolution allows to manage changes in distributed information systems
in a consistent manner.

• Ontology-based coordination allows to organize the interactions of autonomous
nodes in a decentralized and to an increasing extent self-organizing manner.

197
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The main contribution is a framework of novel semantic technologies supporting
these three pillars that � put together � provide the solutions to the identi�ed challenges
and allow the realization of semantic applications.

How this can be done in practice, we have shown with the Bibster application, a
semantics-based Peer-to-Peer system for the exchange of bibliographic metadata be-
tween researchers. Bibster exploits lightweight ontologies in all its crucial aspects: data-
organization, query formulation, query routing, and duplicate detection. It implements
many of the methods presented in this work and has thus served as a running sample
scenario throughout this work.

Concluding, we now summarize the main �ndings this work along the three pillars
Ontology-based Information Integration, Ontology Evolution, and Ontology-based Co-
ordination.

Ontology-based Information Integration The �rst question we have addressed in
this context was: How can we express the rich semantic relationships between heteroge-
neous data sources described using ontologies in the absence of a single, global ontol-
ogy? As a solution, we have presented the formalization of a general mapping system
for OWL DL ontologies. In this mapping system, the mappings between source and
target ontology are speci�ed as correspondences between conjunctive queries against
the ontologies. The expressiveness of the mapping system is embodied in the ontology
language (SHOIN (D)), the supported query language (conjunctive queries), and the
�exibility of assertions (GLAV approach) that do not require the use of a distinguished,
global schema. We have further identi�ed a decidable fragment of mappings and a prac-
tical query answering algorithm for the task of ontology integration. All components of
the mapping system can be fully expressed in OWL DL extended with DL-safe rules. It
thus integrates well with current efforts for rule extensions to OWL.

Being able to express and reason with mappings is just one aspect of integration. A
second problem is that of identifying correspondences between heterogeneous sources.
As this problem � as well as other integration problems � often requires the notion of
similarity, we have looked at the question: How can we formally grasp the problem of
measuring similarity between heterogeneous ontologies? We have presented a general
framework for calculating similarity among elements in OWL-based ontologies. The
main characteristic of the framework is its layered structure: We have de�ned three lev-
els on which the similarity between two elements can be measured: data layer, ontology
layer, and context layer, which cope with the data representation, ontological meaning,
and contextual information about these elements, respectively. For the individual layers
we have further presented a number of speci�c similarity measures. The measures on the
data layer and ontology layer are directly de�ned in terms of the OWL ontology model.
For the de�nition of similarity on the context layer we have additionally introduced the
notion of contextual annotations. On the ontology layer we have de�ned speci�c mea-
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sures based on standard description logic reasoning tasks, including computing concept
hierarchies, instance retrieval, and realization of concepts. Finally, we have shown how
similarity framework has been applied for different purposes in our motivating applica-
tion scenario of the Bibster system.

Ontology Evolution As we have seen, an important aspect in information systems is
the notion of consistency in order to allow useful interpretations. In the context of the dy-
namic characteristics of distributed information systems, we have therefore looked at the
question: How can we guarantee a useful interpretation of information by ensuring the
consistent evolution of ontologies in a dynamic environment? The solution we presented
is an approach to formalize the semantics of change for the OWL ontology language (for
OWL DL and sublanguages in particular), embedded in a generic process for ontology
evolution. Our formalization of the semantics of change allows to de�ne arbitrary con-
sistency conditions � grouped in structural, logical, and user-de�ned consistency � and
to de�ne resolution strategies that assign resolution functions to ensure these consistency
conditions are satis�ed as the ontology evolves. We have shown exemplarily, how such
resolution strategies can be realized for various purposes.

The existence of multiple dynamic ontologies in particular environments has lead
us to the question: Can we exploit the heterogeneity of individual nodes in a collab-
orative scenario to pro-actively recommend adaptations to ontologies? Here we have
presented an approach to recommend ontology change operations to a personalized on-
tology based on the usage information of the individual ontologies in a user community.
We have adapted a collaborative �ltering algorithm to determine the relevance of ontol-
ogy change operations based on the similarity of the users' ontologies. The virtue of
this approach lies in the fact that the characteristics of changes to multiple, distributed
ontologies are exploited, such that an individual user can pro�t from changes other users
have made. In our experimental evaluation with the Bibster system we have seen that
the users actually accept recommendations of the system for the evolution of their per-
sonal ontologies. The results further show the bene�t of exploiting the similarity be-
tween the users' ontologies in a personalized recommender compared with a simple,
non-personalized baseline recommender.

Ontology-based Coordination We have seen that the completely distributed nature
and the high degree of autonomy of individual nodes comes with new challenges for
the coordination of distributed information systems. As a consequence, we have posed
the question: How can we semantically describe autonomous resources in distributed
information systems in order to support coordination tasks? As a response, we have
developed a metadata ontology for semantic descriptions of resources in distributed in-
formation systems to support their interoperation and coordination. The metadata model
we have described combines features of ontologies with rich metadata about the origin of
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the information. The metadata ontology builds on the core of the Ontology Metadata Vo-
cabulary OMV, and extends it with the module P-OMV to describe peers as the providers
of information. To support the creation, management and use of ontology metadata in a
decentralized manner throughout the ontology lifecycle, we have further presented Oys-
ter - a registry for metadata descriptions based on OMV that allows to store, share and
discover ontologies without any centralized control.

Finally, we have looked at a speci�c coordination task and asked: How can we use
these semantic descriptions in order to solve the coordination task of resource selec-
tion in a network of autonomous nodes? As a solution we have presented a model for
expertise based peer selection, in which a semantic overlay network among the peers is
created by advertising semantic descriptions of the peers' expertise. We have shown how
the model can be applied in the bibliographic scenario of the Bibster system. In simu-
lation experiments complemented with a real-life �eld experiment that we performed
with this bibliographic scenario, we have shown how the performance of a Peer-to-Peer
system can be improved with respect to precision, recall and the number of messages.
Summarizing, in both the simulation experiments and the �eld experiments, we have
demonstrated that expertise based peer selection combined with ontology-based match-
ing outperforms both random peer selection and selection based on exact matches, and
that this performance increase grows when the semantic overlay network more closely
mirrors the domain ontology.

With the implementations and evaluations we have demonstrated the practicability of
our proposed semantic technologies. Building on the established OWL ontology lan-
guage and related emerging standards will hopefully foster the acceptance of these tech-
nologies. Semantic technologies are continuing to mature and we expect that they will
play a signi�cant role in the development of future information systems. We hope that
this thesis can serve as one building block in this exciting development.

12.2 Open Questions and Future Directions
While in our work we have addressed a wide variety of problems, several issues leave
room for future work, others have been intentionally left out of scope of this thesis. In-
spired by visionaries like [AAB+05], on the following remaining pages we discuss some
interesting aspects as possible future research directions. We organize these according
to two dimensions: Aspects related to the architecture of distributed information sys-
tems on the one hand, and aspects related to knowledge representation formalisms on
the other hand.
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12.2.1 Architectural Aspects
Service-oriented Architectures In the development of our methods, we have largely
abstracted from architectural aspects of speci�c target platforms. Instead, we have fo-
cused on common characteristics of distributed information systems. A basic assumption
was that the central object in such systems to be managed is that of information. How-
ever, during the last years, we have seen a move along another important dimension: that
of service orientation. So called service-oriented architectures (SOAs) are beginning to
gain importance. In SOAs, the central objects are services rather than information ob-
jects. Web Services are the main new paradigm for communication between nodes in
distributed systems. However, the current state of the art in SOAs and Web Services
lacks in the degree of use of explicit semantics and decentralization [MS03]. While
much effort has been invested into languages for the semantic description if Web Ser-
vices, including OWL-S [MPM+04] and WSML [dBLPF06], large scale deployments
of Semantic Web Services with automated discovery, composition and execution have
not yet been realized.

We have taken initial steps towards the realization of service-oriented semantics-
based Peer-to-Peer systems for example with [AH04] and [HAS04], yet a true embed-
ding of service-oriented aspects will require more work. A road map for such work can
be found for example in [BBdB+05].

Model Driven Architectures A similar paradigm shift as for service oriented architec-
tures can be observed in the context of Model Driven Architectures (MDA) [MKUW04].
The goal of MDA is to abstract from platform speci�c aspects and to achieve interoper-
ability via an integrated model for data and metadata management. The Uni�ed Model-
ing Language (UML) and the Meta-Object Facility (MOF) play a central role in MDA. In
general, the ideas of MDA are compatible with ontology-based development in terms of
goals and view of the world. For example, MDA and ontologies essentially distinguish
the same metalevels of data and metadata. Brie�y put, the differences are that MDA still
lacks formal semantics, while ontology-based development is not as well integrated with
latest advances in software modeling and engineering. As such, the technologies are in
a sense complementary, and it makes sense to integrate the two, as our recent work on
Ontology De�nition Metamodels show [BHHS06], [BHS06]. The bene�ts are in both
directions: MDA technologies including UML are already very well accepted and pro-
vide extensive tool support. On the other hand, ontology-based development provides
formal semantics and reasoning capabilities that MDA is lacking.

Trust, Security, and Privacy The dimensions of trust, security and privacy have been
left out of scope of this thesis. However, they do constitute important aspects of dis-
tributed information systems. With trustworthy systems we refer to systems that safely
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store data, protect it from unauthorized disclosure, protect it from loss, and make it al-
ways available to authorized users.

Naturally the realization of a trustworthy system becomes more dif�cult with an in-
creasing degree of decentralization and openness, as we may need to deal with faulty
and unreliable data sources and participants. One dimension of trust includes techniques
for ensuring the correctness of query results and data-intensive computations, which is a
growing concern in many applications areas. Here, semantic technology, especially log-
ical inferencing, may be helpful in validating correctness. Privacy is a �nal aspect of the
broader issue of trustworthy systems we want to mention: The integration of pieces of
previously unrelated information about individuals also holds signi�cant risks as it may
allow to entail information that violates the privacy rights of the individual. [AKSX02]
has coined the term of a �Hippocratic Database� for a database that includes privacy
as a central concern. In analogy and referring back to our de�nition of an information
system as a system that manages facts about some domain for a speci�c purpose, we can
imagine a �Hippocratic Information System� that does so for a bene�cial purpose.

12.2.2 Knowledge Representation Aspects
Ontology Models We have based our work on the formal ontology model underly-
ing the Web Ontology Language OWL. While OWL itself is a very expressive ontology
language, there are certain aspects that can not be dealt within this language directly.
These speci�cally include means to deal with networked ontologies (as opposed to sin-
gle, isolated ontologies). We have discussed ontology mappings that often require an ex-
pressiveness beyond that of OWL. Besides mappings, there are other important relations
in networks of ontologies, including modularization and other forms of dependencies,
version spaces, etc. Supporting these networked ontologies in distributed information
systems are the focus of recent research projects such as NeOn [DMS+05].

Context Awareness In many applications, the interpretation of data is context depen-
dent, i.e. there is not one �xed purpose, but instead the task at hand, situation, location,
preferences or viewpoints are part of the purpose. This is especially true for distributed
settings, where ontologies and corresponding data are produced and consumed by au-
tonomous individuals or groups in certain settings for speci�c purposes. Contextualiza-
tion can further be supplemented by personalization, taking into the experience, inter-
ests, personal needs. Context models are currently an active research area [GMF04],
[BGH+03]. As context sensitivity of applications will be a key concept for future infor-
mation systems, infrastructures for semantics-based applications are expected to support
contexts as �rst class citizens [DMS+05].
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Unstructured Data In this thesis we have focused very much on dealing with struc-
tured data. However, much � if not most � of available data is only available in unstruc-
tured form, e.g. in the case of text, temporal, spatial, sound, image, or video data. The
importance of these more sophisticated data types has increased dramatically in the last
decade, and with computational resources increasing in power and decreasing in cost,
their management becomes more feasible. Yet, we are far away from an intelligent man-
agement of multimedia content. In most cases, multimedia data is managed as raw data
in the form of BLOBs (binary large objects). Search and retrieval is currently limited
to meager structured metadata, if at all available. In the future, ontologies and semantic
annotations are expected to play the key role supporting integration and fusion of infor-
mation derived from different media types, be they unstructured or structured [PBS+06].
Research projects such as X-Media1 currently investigate open problems along these
lines. Based on the Bibster system, we have had �rst encouraging experiences in the
integration of structured and unstructured textual data, which we have reported on in
[HSSV05].

Natural Language Understanding Closely related to the management of text as un-
structured data is the problem of natural language understanding: In order for a machine
to be able to interpret natural language text and process it based on its meaning, we re-
quire techniques to transform textual data into more formal representations. Ontologies
seem to provide the adequate formalisms, as recent results in the young research �eld of
ontology learning from text indicate [CV05]. The same holds not only for understanding
textual data itself, but also on the side of the user interface: It is fairly clear that end
users will not learn SPARQL or any other query language for the Semantic Web that
may become standardized in the future; such query languages will always be notations
for professional programmers. The information-retrieval community has used keyword-
based querying for decades. Recent results show that ontologies can help in answering
such queries, e.g. by query disambiguation or query re�nement [Sto04b]. However,
what seems more promising is question answering using structured natural language
queries, whose semantics is unambiguous in the �rst place and that additionally provide
more expressiveness. We have been able to demonstrate results of �rst steps in these
directions for example in [CHS+06].

Imperfect Information: Imprecision, Inconsistency and Uncertainty In traditional
information systems, information is assumed to of �perfect� nature, meaning that it is
correct and we know how to interpret it. In many application areas, such as business
data processing, this assumption is useful (and often practically unavoidable). However,
real-world data is very often af�icted with different forms of imperfection, e.g. if data
is obtained from sensory input, or using image recognition or data mining techniques.

1http://www.x-media-project.org/
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According to [MS97] imperfection can be due to imprecision, inconsistency or uncer-
tainty. Imprecision and inconsistency are properties of the information itself - either
more than one world (in the case of ambiguous, vague or approximate information) or
no world (if contradictory conclusions can be derived from the information) is compat-
ible with the given information. Uncertainty refers to a situation where we have only
partial knowledge about the truth value of a given piece of information.

While in this thesis we have discussed methods for dealing with inconsistency in
the presence of changes, dealing with imprecision and uncertainty requires different
techniques. For example, in [HV05] we have reported on an approach to deal with
imperfection in ontology learning, where the acquired ontologies inherently represent
uncertain and possibly contradicting information. However, much more work is needed
in order to incorporate other aspects of imperfection. Probabilistic and fuzzy extensions
to underlying representation formalism [Str05, DP04] are possible options. Another
useful concept in dealing with imperfect data is the notion of provenance: If we know
where the data came from and what cleaning, rescaling, remodeling, etc. was done
subsequently to arrive at the data, we may be better able to interpret it afterwards.
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and Julius Stuller, editors, SOFSEM, volume 3831 of Lecture Notes in
Computer Science, pages 14�29. Springer, 2006.

[FSM03] D. Fensel, K. P. Sycara, and J. Mylopoulos, editors. The Semantic Web
- ISWC 2003, Second International Semantic Web Conference, Sanibel
Island, FL, USA, October 20-23, 2003, Proceedings, volume 2870 of Lec-
ture Notes in Computer Science. Springer, 2003.

[FSvH04] C. Fluit, M. Sabou, and F. van Harmelen. Supporting user tasks through
visualisation of light-weight ontologies. In Staab and Studer [SS04], pages
415�434.

[GGM+02] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider.
Sweetening ontologies with dolce. In EKAW '02: Proceedings of the
13th International Conference on Knowledge Engineering and Knowledge
Management. Ontologies and the Semantic Web, pages 166�181, London,
UK, 2002. Springer-Verlag.

[GHVD03] B. Grossof, I. Horrocks, R. Volz, and S. Decker. Description logic pro-
grams: Combining logic programs with description logic. In Proceedings
of WWW 2003, Budapest, Hungary, May 2003.

[GMBM05] Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors. The Seman-
tic Web - ISWC 2005, 4th International Semantic Web Conference, ISWC
2005, Galway, Ireland, November 6-10, 2005, Proceedings, volume 3729
of Lecture Notes in Computer Science. Springer, 2005.

[GMF04] R. V. Guha, R. McCool, and R. Fikes. Contexts for the semantic web. In
McIlraith et al. [MPvH04], pages 32�46.

[GMK88] H. Garcia-Molina and B. Kogan. Node autonomy in distributed systems.
In Proceedings of the International Symposium on Databases in Parallel
and Distributed Systems, DPDS, pages 158�166, 1988.
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horst, and A. Löser. Super-peer-based routing and clustering strategies
for RDF-based peer-to-peer networks. In Proceedings of the 12th Inter-
national World Wide Web Conference, Budapest, Hungary, May 2003.,
2003.

[Obe05] D. Oberle. Semantic Management of Middleware. Semantic Web and
Beyond. Springer, 2005.

[O'R05] Tim O'Reilly. What is web 2.0 � design patterns and business models
for the next generation of software. Technical report, O'Reilly, 2005.
http://www.oreillynet.com/lpt/a/6228.

[PAP+03] E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, and M. Vazirgiannis. Db-
globe: a service-oriented p2p system for global computing. SIGMOD
Record, 32(3):77�82, 2003.



REFERENCES 221

[PBS+06] K. Petridis, S. Bloehdorn, C. Saathoff, N. Simou, S. Dasiopoulou,
V. Tzouvaras, S. Handschuh, Y. Avrithis, Yi. Kompatsiaris, and S. Staab.
Knowledge representation and semantic annotation of multimedia con-
tent. IEE Proceedings on Vision, Image and Signal Processing - Special
issue on the Integration of Knowledge, Semantics and Digital Media Tech-
nology, 153(3):255�262, JUN 2006.

[PH05] R. Palma and P. Haase. Oyster - sharing and re-using ontologies in a peer-
to-peer community. In Gil et al. [GMBM05], pages 1059�1062.
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