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Zusammenfassung

Die Wechselwirkung von Licht mit Licht, die über die alltäglichen Effekte der linearen Optik
hinausgeht, wird als nichtlineare Optik bezeichnet und ist seit der Erfindung des Lasers im
Jahr 1960 experimentell zugänglich. Seitdem wird dieses Phänomen mit grundlagenphysika-
lischer Bedeutung unter verschiedensten Bedingungen untersucht. Der Laser hat außerdem
das Gebiet der Optik um die Photonik erweitert, also die Wissenschaft und Anwendung von
Photonen mit gezielten Eigenschaften. Die Photonik ist kürzlich von Wissenschaftlern und
Politikern gleichermaßen zu einer der Schlüsseltechnologien des 21. Jahrhunderts ausgeru-
fen worden. Die vorliegende Arbeit untersucht nichtlineare optische Effekte für zwei be-
stimmte Materialien, die zu den sogenannten photonischen Kristallen und photonischen Me-
tamaterialien gehören. In diesen Forschungsgebieten wurden in den letzten Jahren bahnbre-
chende Erfolge erzielt, wie die Herstellung von Materialien mit einer optischen Bandlücke
oder Magnetismus bei optischen Frequenzen. Diese Fortschritte sind unter anderem durch
den Einsatz von Methoden aus der Nanotechnologie erreicht worden.

Konkret werden in der vorliegenden Arbeit nichtlineare optische Eigenschaften von li-
thographisch hergestellten metallischen Nanostrukturen, nämlich von eindimensionalen plas-
monischen Kristallen und photonischen Metamaterialien, sowohl experimentell als auch
theoretisch untersucht. Bei diesen beiden Materialien wechselwirkt das starke elektromagne-
tische Feld eines fokussierten Laser-Lichtstrahls mit bestimmten metallischen Nanostruktu-
ren und verursacht so eine optische Frequenzverdopplung (abgekürzt SHG) und -verdrei-
fachung (THG).

Zu allen Experimenten wurden entsprechende Proben aus strukturierten Goldpartikeln
mit Hilfe der Elektronenstrahl-Lithographie hergestellt, wobei eine Polymer-Maske erzeugt
wird, durch die Gold aufgedampft wird. Das Aufbringen dünner Schichten aus Metall oder
dielektrischen Materialien wurde mit Elektronenstrahl-Verdampfen durchgeführt.

Bei einem eindimensionalen plasmonischen Kristall (MPCS) führt die periodische An-
ordnung von dünnen Drähten auf einem Schichtwellenleiter zur Kopplung einer photoni-
schen Resonanz an eine elektronische Resonanz. Die photonische Resonanz tritt auf, da
aufgrund der Gitterkonstante der Drähte nur Licht einer bestimmten Wellenlänge an die
Wellenleitermode gekoppelt werden kann. Wie bei Photonischen Kristallen üblich, muss
deshalb die Gitterkonstante die gleiche Größenordnung wie die Wellenlänge besitzen (et-
wa 1 µm oder kleiner). Die elektronische Resonanz stammt vom Partikelplasmon, einer kol-
lektiven Schwingung der Leitungsband-Elektronen in jeder metallischen Nanostruktur. Die-
se Schwingung wird durch das Lichtfeld und die Rückstellkraft angetrieben, welche durch
die auf den Metalloberflächen auftretenden Oberflächenladungen entsteht. Bei einem MPCS

vii



viii Zusammenfassung

sind diese beiden Resonanzen gekoppelt, da die jeweiligen Feldverteilungen sich räumlich
überlappen. Daher ist dieses System ideal geeignet für die Untersuchung einer starken Kopp-
lung zweier Resonanzen mit optischen Methoden.

Um nichtlineare optische Effekte interpretieren zu können, muss man üblicherweise
zuerst die linearen optischen Eigenschaften eines Systems verstanden haben. Für MPCSs
treten in gemessenen Extinktionsspektren (Extinktion=Absorption+Streuung) üblicherweise
ein ”anti-crossing“ und sogenannte Fano-Linienformen auf. Wir konnten zeigen, dass diese
beiden Beobachtungen sehr gut durch das von uns entwickeltes Modell beschrieben werden
können, das auf zwei gekoppelten Lorentz-Oszillatoren basiert. Unser einfaches, klassisches
Modell übertrifft sogar frühere Modelle, die auf phänomenologischen Parametern oder einer
von der Quantenmechanik inspirierten Beschreibung basieren. Beim Erweitern unseres Mo-
dells auf die nichtlineare Optik konnten wir den Bereich der ”moderaten Kopplung“ identifi-
zieren, in welchem entsprechende THG-Spektren Informationen über die zu Grunde liegende
Quelle der optischen Nichtlinearität liefern. Des Weiteren zeigen die nichtlinearen Spektren,
die für die Anregung mit zwei zeitversetzten Pulsen berechnet wurden, eine Schwebung in
den spektralen Mischprodukten der zwei in linearer Optik auftretenden Moden, jedoch keine
Schwebung in den dritten Harmonischen dieser Moden.

Für entsprechende Experimente zur THG-Untersuchung unserer MPCS-Proben werden
Laserimpulse von 5 Femtosekunden Dauer (aus einem Titan-Saphir-Oszillator) und ein In-
terferometer verwendet. Unsere Experimente gehen über bisherige Arbeiten dadurch hin-
aus, dass wir eine verbesserte Zeitauflösung erreichen und zusätzlich das interferometrische
THG-Signal spektral auflösen. Die Spektren zeigen ein unterschiedliches Verhalten der ver-
schiedenen spektralen Komponenten bezüglich der Zeitverzögerung. Einige spektrale Kom-
ponenten weisen eine Schwebung auf, andere nicht, was in Einklang steht mit unserer Theo-
rie. Des Weiteren hängen die Abfallzeiten der Einhüllenden stark von der spektralen Kompo-
nente ab. Die gemessenen Spektren stimmen qualitativ sehr gut mit den Voraussagen unseres
einfachen theoretischen Modells überein. Der Vergleich ermöglicht uns, die Schwingung des
Partikelplasmons als Hauptquelle der Nichtlinearität zu identifizieren.

Für den allgemeinen Fall von Ansammlungen von Nanopartikeln konnten wir ein histo-
risches Missverständnis aufklären: Wir zeigten analytisch and numerisch, dass der Vergleich
von zeitaufgelösten Femtosekunden SHG- oder THG-Experimenten in Kombination mit Ex-
tinktionsmessungen es nicht erlaubt, die homogenen and inhomogenen Beiträge zur Linien-
breite zu unterscheiden, was im krassen Gegensatz zur Behauptung einer früheren Arbeit
steht. Wir haben diesen Widerspruch eindeutig auf einen Rechenfehler in dieser früheren
Arbeit zurückgeführt. Als Ergebnis kann die Plasmon-Zerfallzeit, die mit der homogenen
Linienbreite zusammenhängt, nicht aus dem Vergleich von linear-optischen und SHG- oder
THG-Daten bestimmt werden.

Der zweite Teil dieser Arbeit bezieht sich auf photonische Metamaterialien, welche
ebenso künstliche optische Materialien sind, die jedoch aus reagierenden Bausteinen (”Ato-
men“) bestehen, die kleiner sind als die relevanten Wellenlängen. Ein Durchbruch in dem
jungen Gebiet der photonischen Metamaterialien ist die kürzliche Demonstration von Ma-
terialien mit einer bei optischen Frequenzen schwingenden Magnetisierung und sogar von
Materialien mit einem negativen Brechungsindex. Das bekannteste ”Atom“, das in diesem



ix

Gebiet gerne diskutiert wird, ist der Schlitz-Ring-Resonator (SRR), der vereinfacht als ein
kleiner LC-Schwingkreis angesehen werden kann, wobei der Ring eine Spule mit einer Win-
dung und der Schlitz im Ring einen Kondensator darstellt. Einfallendes Licht kann oszillie-
rende Ströme anregen, die in diesem Ring fließen. Die Ströme entsprechen der grundlegen-
den LC-Mode oder höheren Moden. Einige spezielle Moden eines SRRs besitzen bekannt-
lich magnetische Dipolmomente. Daher sind Metamaterialien ideal geeignet für Studien mit
Materialien, die möglicherweise auf die Magnetfeld-Komponente des Lichts reagieren.

Dies ist besonders interessant in der nichtlinearen Optik, in der das Magnetfeld durch den
magnetischen Anteil der Lorentz-Kraft ins Spiel kommen kann. Wenn ein SRR mit Licht an-
geregt wird, kann das lokale Magnetfeld im SRR oder nahe außerhalb in eine völlig andere
Richtung zeigen als das Magnetfeld der anregenden Lichtwelle. Darauf beruhend erklärten
wir, dass eine SHG-Abstrahlung, die auf dem magnetischen Anteil der Lorentzkraft basiert
und in der Vorwärtsrichtung detektiert wird, in Metamaterialien prinzipiell möglich ist. Da-
gegen ist diese Abstrahlung für viele natürliche Materialien aufgrund der Richtung dieser
Kraft bekanntlich ausgeschlossen. Diese neue Möglichkeit war die Motivation für unsere
nichtlinearen optischen Untersuchungen an Metamaterialien.

Unsere Experimente zur SHG und THG stellen die erste systematische Studie der nichtli-
nearen Optik von Metamaterialien überhaupt dar. Dazu verwendeten wir die optischen Pulse
von 170 fs Dauer eines optisch-parametrischen Oszillators, um die nichtlinearen Signale von
unterschiedlichen, planar angeordneten SRRs zu vergleichen, die mit verschiedenen Moden
(Resonanzen) assoziiert sind. Diese SRRs wurden mit senkrecht auf die Proben einfallen-
dem Licht der festen Wellenlänge von 1.5 µm angeregt. Die bei weitem stärksten SHG- und
THG-Signale werden für diejenigen Resonanzen beobachtet, die die größten magnetischen
Dipolmomente besitzen. Bei geringer Verstimmung der Resonanz (d.h. für eine Probe mit
leicht anderen Parametern als eine resonante Probe) sowie bei nichtresonanter Anregung
nehmen die Signale wie erwartet ab. Zusätzlich zeigen andere photonische Metamaterialien
ohne magnetische Dipolmomente, die als resonante ”Kontrollproben“ dienen, kein messba-
res SHG-Signal und ein sehr geringes THG-Signal.

Um den Charakter der nichtlinearen Signale genauer zu untersuchen, die wir für unsere
Metamaterial-Proben aus resonanten SRRs erhielten, wurden auch SHG-Experimente mit
schräg einfallendem Anregungslicht durchgeführt. Wir beobachten ein komplexes Verhal-
ten des SHG-Signals für ansteigenden Einfallswinkel (bezogen auf die Normalenrichtung
der Probenoberfläche). Das stärkste Signal wird immer noch für die Resonanz mit größtem
magnetischen Dipolmoment und senkrechtem Einfall erhalten, aber auch das mit zunehmen-
dem Winkel monoton abnehmende Signal dieser Probe ist größer als das Signal der anderen
untersuchten Proben mit kleineren magnetischen Dipolmomenten. Diese Proben wiederum
zeigen ein nicht-monotones Verhalten des SHG-Signals für zunehmenden Einfallswinkel.
Kleine Asymmetrien des SHG-Signals bezüglich der Verkippung der Probe in die eine oder
entgegengesetzte Richtung werden beobachtet. Diese Asymmetrien müssen auf geringe Ab-
weichungen von der Spiegelsymmetrie unserer hergestellten SRRs zurückgeführt werden.

Die linearen optischen Transmissionsspektren der SRR-Proben wurden mit entsprechen-
den numerischen Simulationen sehr gut reproduziert. Für diese Simulationen verwendeten
wir ein kommerzielles Softwarepaket, das wir auf den Fall von Metamaterialien anpassten.



x Zusammenfassung

Eine Finite-Elemente-Methode wurde benutzt, um die räumlich aufgelösten elektromagne-
tischen Felder in und um die SRRs herum für die lineare Optik zu berechnen. Die Finiten
Elemente wurden so gewählt und die Randbedingungen so programmiert, dass Simulationen
für senkrechten und schrägen Einfall möglich und einfach handhabbar gemacht wurden.

Leider sind wir aktuell nicht in der Lage, die Ergebnisse unserer nichtlinearen optischen
Experimente mit einer vollständigen mikroskopischen nichtlinearen Theorie für photonische
Metamaterialien zu vergleichen. Aufgrund unserer experimentellen Bedingungen kann man
erwarten, dass Quanteneffekte der Metallelektronen keine Rolle spielen. Daher kann man
annehmen, dass eine klassische Beschreibung der Nichtlinearitäten des Elektronen-Plasmas
ein adäquater Startpunkt ist: Man muss das Newtonsche Gesetz für Metallelektronen, also
mit einem elektrischen und magnetischen Anteil der Lorentzkraft, selbstkonsistent mit den
Maxwell-Gleichungen für die metallische Nanostruktur lösen. Eine entsprechende Theorie
wurde in den mit uns kooperierenden Arbeitsgruppen von S. W. Koch und J. V. Moloney
formuliert und ist in dieser Arbeit wiedergegeben. Dieselben Arbeitsgruppen untersuchen
aktuell auch entsprechende numerische (”finite-difference time-domain“) Simulationen mit
SRR-Metamaterialien, jedoch sind aufgrund von Problemen mit der Stabilität und Kon-
vergenz bisher keine belastbaren Ergebnisse erzielbar gewesen. In dieser Theorie ist der
magnetische Anteil der Lorentzkraft eine Größe, die im Volumen des Metalls auftritt. Im
Gegensatz dazu stammt eine SHG-Abstrahlung, die auf den elektrischen Anteil des Lichts
zurückzuführen ist, ausschließlich von der Oberfläche des Metalls, da die Ladungsdichte in
erster Störungsordnung im Metallvolumen konstant ist. Speziell diese Oberflächenbeiträge
sind bei numerischen Auswertungen kritisch.

Daher entwickelten wir für die beschriebene Theorie eine Näherung, die einfache Ab-
schätzungen ermöglicht. In der von uns eingeführten ”Angetriebener-Dipol-Näherung“
(DDA) werden die Kräfte, die auf die Leitungselektronen innerhalb jedes einzelnen SRRs
wirken, zu einer Nettokraft addiert und die Elektronen zu einer einzelnen beweglichen La-
dung zusammengefasst, auf die dann die Nettokraft wirkt. Die Anwendung dieser Näherung
und die Annahme, dass ausschließlich der magnetische Anteil der Lorentzkraft als Nicht-
linearität wirkt, ermöglichen uns, numerische Daten aus linearen optischen Simulationen
wiederzuverwenden. Entsprechende Ergebnisse sind konsistent zu unseren experimentel-
len SHG-Daten für senkrechten Einfall. Das ist jedoch noch kein Beweis dafür, dass die-
se Annahmen tatsächlich den dominanten Beitrag beschreiben. Deswegen verglichen wir
die zusätzlichen experimentellen SHG-Daten aus unseren winkelaufgelösten Untersuchun-
gen mit Ergebnissen einer analogen Rechnung für schräge SHG-Abstrahlung. Hier führt die
DDA zu einer Zweideutigkeit, d.h. zu zwei verschiedenen Ergebnissen. Keines der beiden
Ergebnisse passt jedoch vollständig zu den Experimenten, woraus wir schließen können, dass
mindestens eine unserer beiden Annahmen für die Theorie, die auf dem magnetischen An-
teil der Lorentzkraft und der DDA beruht, für schrägen Einfall zu hinterfragen ist. Folglich
ist zukünftig auf dem Gebiet der nichtlinearen optischen Metamaterialien vor allem mehr
theoretische Arbeit nötig. Solche Theorien können anhand der experimentellen Daten der
vorliegenden Arbeit umfassend überprüft werden.

Eine der Hauptideen innerhalb des sich entwickelnden Gebiets der photonischen Me-
tamaterialien ist, künstliche, maßgeschneiderte optische Materialien zu entwerfen und herzu-



xi

stellen, welche lineare und/oder nichtlineare optische Eigenschaften besitzen, die bei natürli-
chen Substanzen nicht auftreten. Bezüglich der nichtlinearen Optik ist ein offensichtliches
Ziel, die effektiven nichtlinearen optischen Koeffizienten um Größenordnungen zu steigern.
Für sehr dünne Filme übertreffen die in dieser Arbeit vorgestellten Metamaterialien mit ma-
gnetischen Dipolen bereits übliche SHG-Materialien um mehrere Zehnerpotenzen bezüglich
der Konversionseffizienz. Selbstverständlich liegt eine der zukünftigen Herausforderungen
darin, diesen Erfolg auf größere und vor allem dickere Metamaterial-Strukturen auszudeh-
nen, um für Anwendungen bedeutsam zu werden. Solche dreidimensionalen (anstatt plana-
ren) photonischen Metamaterialien befinden sich heute noch in den Anfängen. In diesem
Zusammenhang müssen außerdem die dann auftretenden Probleme der Absorption und Pha-
senanpassung gelöst werden.
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Chapter 1

Introduction

With the invention of the laser in the year 1960 [1], the field of optics has expanded into
the field of photonics: Intense coherent radiation consisting of photons with defined prop-
erties has become available as a tool in laboratories and beyond. Soon thereafter, the first
experiments on optical Second-Harmonic Generation (SHG) have been realized [2], form-
ing the first experiments in which light intentionally interacts with light (photons). This
has been the beginning of the field of nonlinear optics. In the following decades, various
nonlinear-optical effects have been investigated, including wavelength conversion, optical
harmonic generation, intensity-dependent material parameters as the refractive index, non-
linear quantum-optical effects and many more [3–5].

All these nonlinear effects generally require a certain material which mediates the inter-
action of light with light. To understand the physical processes leading to nonlinear phenom-
ena in such nonlinear-optical materials is of fundamental scientific importance. For semicon-
ductors, metals, and gases illuminated with intense light, often quantum-mechanical effects
are responsible for nonlinearities, but in many cases the reasons can be found in classical
physics, for example, in anharmonicities of potentials or relativistic effects [6]. Thus, in-
vestigating materials with methods such as optical Second- and Third-Harmonic Generation
(THG) gives insights into basic physical processes and relations.

Knowing the mechanisms of the nonlinearities also promises applications based on tai-
lored nonlinear effects. Here, the interaction of light with light is ambiguous: For exam-
ple, in optical data transmission, on one hand, one wants to suppress nonlinear processes
to avoid cross-talk and information loss, but, on the other hand, in order to manipulate light
(with light), strong nonlinearities of materials are desired for active elements such as the pro-
posed all-optical switches [7]. Optical telecommunication networks, providing the enormous
worldwide information transfer today, are only one recognized application of photonics. In
analogy to electronic data processing, which has lead to the development of a vast semicon-
ductor industry in the past century, photonics has been declared one of the key technologies
of the 21st century by scientific and political quarters [8, 9].

In this thesis, we investigate the fundamental nonlinear-optical effects of nanostructures
which are based on metallic constituents. At first sight, in optics, metals seem to be suitable
for mirrors but impractical for the use in transmissive media because of losses associated

1
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with the finite metal conductivity. However, metals are also connected to strong local field
enhancements and to high nonlinearities which are orders of magnitude larger than those
of typical dielectrics, rendering metals highly interesting for our studies. Even more, for
metallic particles with sizes on the sub-micrometer scale, specific plasmonic resonances ap-
pear, and provide additional field enhancements [10]. The character of these resonances
and their corresponding optical response, importantly, can be tailored by carefully design-
ing the metallic particles in terms of shape, size, type of metal, and dielectric environment.
We study such tailored material structures, which are fabricated on the nanometer scale by
methods known from the fast-growing field of nanotechnology.

In particular, we investigate the nonlinear-optical properties of Metallic Photonic Crystal
Slabs (MPCSs) and photonic Metamaterials. The former material belongs to a subclass of
Photonic Crystals (PCs) [11, 12], which are artificial materials possessing a photonic band
structure due to Bragg scattering. During the last two decades, the field of Photonic Crystals
has proposed and/or realized optical materials with various unprecedented properties such as
band-gap materials, high-Q microcavities, and enhanced phase-matching for nonlinear fre-
quency conversion. Beyond these fundamental aspects, corresponding applications (such as
PC-based optical fibers) have been developed. Metallic Photonic Crystal Slabs, consisting of
a slab waveguide and a periodic array of metallic nanowires, combine the idea of Photonic
Crystals with the outstanding optical properties of metallic nanoparticles. For MPCSs, we in-
vestigate the femtosecond dynamics of physical processes underlying their nonlinear-optical
response by time-resolved THG experiments with ultrashort laser pulses.

Photonic Metamaterials [13], in turn, are an even newer class of artificial optical materi-
als. They consist of responsive building blocks (“atoms”) smaller than relevant wavelengths
of light and have opened the door to the realization of materials with previously inconceiv-
able optical properties. For example, photonic Metamaterials have proven (in the year 2004)
the possibility of magnetism at optical frequencies [14]. With this aspect, many standard
textbooks of optics would have to be rewritten, because they usually assume a relative per-
meability of unity for electromagnetic waves in media. A negative index of refraction and
the idea of a “perfect lens” beating the diffraction limit are only two more of the numerous
aspects forming the motivation in this fascinating field. As to the nonlinear optics in photonic
Metamaterials, several effects (e.g., SHG in a negative-index material) have been discussed
only theoretically, always assuming given nonlinearity coefficients. We present the first ex-
periments on the nonlinear optics of photonic Metamaterials. In particular, we study and
compare SHG and THG from magnetic and non-magnetic photonic Metamaterials.

All experiments presented in this thesis are compared to corresponding calculations. For
a theoretical description, it is often helpful to apply an approximation: It can, on one hand,
help to clarify which are the essential mechanisms that, taken alone, can well explain ex-
perimental results, and on the other hand, an approximation is sometimes necessary to get
a grip on a quantitative evaluation of a complex system at all. For MPCSs, we develop a
simple model of two coupled Lorentz oscillators, which turns out to describe the observed
linear- and nonlinear-optical effects extremely well. For photonic Metamaterials, we apply
a finite-element method to describe the linear optics numerically. For their nonlinear op-
tics, an analytical microscopic theory, which explains a nonlinear mechanism and has been
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developed by our collaborating groups of S. W. Koch and J. V. Moloney, is reproduced in
this thesis. Additionally, we develop an approximation in which the response of a nanoscale
building block is contracted to a point charge, allowing to estimate the nonlinear-response
from the known linear fields. This model is consistent with a part of the experiments.

In the year 1959, R. P. Feynman said, “there is plenty of room at the bottom,” implying
that there is much to be discovered and employed from what the world at the nanoscale
offers. This is definitely true for the field of nanophotonics as well, promising the feasibility
of materials with linear- and nonlinear-optical properties tailored at will.

Outline of this thesis

In chapter 2, we review the fundamentals of linear and nonlinear optics, focussing on metals
at the nanoscale. Additionally, we introduce Metallic Photonic Crystal Slabs and photonic
Metamaterials, especially so-called Split-Ring Resonators (SRRs), and give an overview of
the current states of the research fields. Chapter 3 is devoted to the description of the ex-
perimental methods for the fabrication and linear- and nonlinear-optical characterization. In
chapter 4, we explain details of our numerical finite-element calculations, since the reliability
of corresponding results critically depends on specific factors.

The following chapters report our experimental and theoretical findings. In chapter 5,
we start by clarifying a historical mistake, from which we conclude that we do not want to
consider plasmonic decay times in detail later. For MPCSs, we develop a simple model and
derive its linear-optical and THG response theoretically in chapter 6. Corresponding exper-
iments are presented in chapter 7. The parameters discussed in these chapters are chosen to
be comparable and the results are displayed in the same format.

Chapters 8 and 9 describe the theory and experiments, respectively, for our photonic
Metamaterials. In the theory chapter, we discuss the detailed results of our linear-optical
numerical calculations. We then repeat the analytical nonlinear theory based on the electric
and magnetic part of the Lorentz force as a source of nonlinearity. Thereafter, we explain
our Driven-Dipole Approximation (DDA) and its analytical conclusions. The theory chapter
for Metamaterials finishes with our presentation of the nonlinear results of our calculations
based on the magnetic part of the Lorentz force and on the application of the DDA. Most of
our experiments presented in chapter 9 are performed with two principal samples consisting
of SRRs. Their linear-optical, SHG, and THG properties are discussed for normal-incidence
illumination and partially also for oblique-incidence illumination. Along the way, we discuss
results from several control samples. Finally, we conclude in chapter 10.
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Chapter 2

Principles of nanoscale optics

With the ability to structure materials on the scale of the wavelengths of visible light and
smaller, the field of nanoscale optics has emerged and developed during the last decades.
In this chapter, we introduce and describe properties of materials used in nanoscale optics,
restricted to aspects which are relevant within the framework of this thesis.

We start by introducing the basic quantities and relations of linear optics (section 2.1)
and nonlinear optics (section 2.2). The materials with key properties for this work are metals,
thus we address their optics in section 2.3. The remaining parts of this chapter are dedicated
to introduce the concepts and basic properties of the two classes of optical materials which
are investigated in this thesis: Metallic Photonic Crystal Slabs (section 2.4) and photonic
Metamaterials (section 2.5).

2.1 Linear optics

2.1.1 Maxwell equations, linear wave equation, Fresnel formulas
All electromagnetic effects are governed by the Maxwell equations [15]. In SI units, they
read

∇ · D = ρ , (2.1a)

∇ · B = 0 , (2.1b)

∇× E = −∂B

∂t
, (2.1c)

∇× H = +
∂D

∂t
+ j . (2.1d)

The electric charge density ρ and the electric current density j are related by the charge
conservation law

∇ · j +
∂ρ

∂t
= 0 . (2.2)

Inside a medium, the electric field E and the electric displacement D are related via the
polarization P ,

D = ε0E + P , (2.3)

5
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while the magnetic field H and the magnetic induction1 B are related via the magnetization
M ,

B = µ0(H + M) . (2.4)

Here, ε0 and µ0 are the vacuum permittivity and permeability, respectively.2

In linear optics, the polarization is simply proportional to the electric field

P = ε0χE , (2.5)

where χ is the linear susceptibility of the medium.3 Alternatively, the medium is described
by the relative permittivity ε = 1 + χ for which

D = ε0εE (2.6)

holds. The medium is additionally described by its relative permeability µ with

B = µ0µH . (2.7)

In general, ε and µ can be tensors, however, we will consider only isotropic media for which
ε and µ are scalars. For natural substances and optical frequencies, one exclusively finds
µ = 1. In section 2.5, we will briefly address the effect that photonic Metamaterials, being
composite materials, can possess an effective relative permeability µeff 6= 1. However, this
aspect has no relevance for all other parts of this thesis, where we will take the point of view
of the constituent, natural materials with µ = 1.

Taking these simplifications together with the Maxwell equations, one can derive the
wave equation for linear optics

∇×∇× E +
ε

c2
0

∂2

∂t2
E = 0 , (2.8)

where c0 = 1/
√

ε0 µ0 ≈ 3×108 m/s is the vacuum speed of light. Here, we additionally
assumed that no free charges or currents appear (ρ = 0, j = 0). This also holds whenever
metals are described by their permittivity (see section 2.3). We will only deviate from this
assumption when initially deriving optical properties of metals in section 2.3 and 8.2.

By introducing the traditional refractive index

n =
√

ε , (2.9)

and the speed of light c = c0/n in a corresponding medium, Eq. (2.8) can be simplified to

∇×∇× E +
1

c2

∂2

∂t2
E = 0 . (2.10)

One simple solution of Eq. (2.10) is a plane wave

E(r, t) = Ê0 cos(k · r − ω0t) , (2.11)
1To comply with general use, we will often use the term “magnetic field” also for B.
2ε0 = 8.8542×10−12 A s /(V m) and µ0 = 4π×10−7 V s /(A m)
3Equation (2.5) holds for an instantaneous response. Dispersive media are treated in section 2.1.2.
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with the wave vector k pointing in the direction of propagation. Equation (2.11) is a solution
of Eq. (2.10) if k · Ê0 = 0 and ω0 = c|k|. The direction of the amplitude Ê0 is called the
polarization of the electromagnetic wave.4 We will give values for light frequencies ω0 with
corresponding numbers in units of terahertz (THz), or alternatively photon energies ~ω0 in
electron-volts (eV), or state the vacuum wavelength 2πc0/ω0 in micrometers (µm). Finally,
the intensity of the wave is defined as

I =
1

2

√

ε0

µ0

nÊ
2

0 . (2.12)

Considering an interface between two media in the absence of free charges and currents,
the Maxwell equations (2.1) state which field components are continuous across this inter-
face: the tangential parts of the electric field, E‖, and magnetic field, H‖, as well as the
normal components of the electric displacement, D⊥, and the magnetic induction, B⊥.

As a consequence, a plane wave incident onto a flat interface between two media with
refractive indices n1 and n2 is partially reflected and partially transmitted (refracted). The
angle of incidence5 α1 of the incident wave determines the propagation direction of the
reflected wave, −α1, and the angle α2 into which the refracted wave travels, according to
Snell’s law

n1 sin α1 = n2 sin α2 . (2.13)

For the electric field amplitude Ê = ÊP + ÊS one must independently consider the com-
ponent ÊP = ÊPeP parallel to the plane which is spanned by the propagation direction
and the surface normal, and the component ÊS = ÊSeS perpendicular to this plane (|eP| =

|eS| = 1). If only one component is nonzero, we speak of P-polarization in the former and
S-polarization in the latter case. The magnitudes of the field components are described by
the Fresnel formulas [15]

ÊR,S

ÊI,S

= −sin(α1 − α2)

sin(α1 + α2)
, (2.14a)

ÊT,S

ÊI,S

= 1 − sin(α1 − α2)

sin(α1 + α2)
, (2.14b)

ÊR,P

ÊI,P

= −tan(α1 − α2)

tan(α1 + α2)
, (2.14c)

ÊT,P

ÊI,P

=

(

1 − tan(α1 − α2)

tan(α1 + α2)

)

cos α1

cos α2

. (2.14d)

Here, the indices I, R, and T correspond to the incident, reflected, and transmitted (refracted)
waves, respectively.

4In this thesis, the term “polarization” is used to describe both the density of electric dipoles, P , and the
direction of the electric field of an electromagnetic plane wave, Ê0, in agreement with general use.

5the angle between the propagation direction and the interface normal
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2.1.2 Frequency domain
In the Maxwell equations (2.1) above, we have described the electromagnetic fields as (space
and) time-dependent quantities. It is often advantageous to express equations in terms of
fields which depend on frequency rather than on time. When the electric field oscillates
harmonically with a specific frequency ω0 > 0, we can write

E(r, t) = Re
[

Ê(r) e−iω0t
]

. (2.15)

We will often be lax and only write

E(r, t) = Ê(r) e−iω0t (2.16)

and keep in mind that only the real part of the expression is physically relevant. In general,
the amplitude Ê can be complex-valued.

In the general non-harmonic case, and again using the “lax” formulation, the electric
field can be expressed as

E(r, t) =

∫ ∞

0

dω e−iωtẼ(r, ω) . (2.17)

Here and in the following we disregard negative frequencies. As a consequence, we can
relate a field E(t) = Ê0 cos(ω0t) with Ẽ(ω) = Ê0δ(ω − ω0), where δ is the Dirac function.

Using Eq. (2.17) in the Maxwell equations (2.1), one can simplify all time derivatives,
and the wave equation (2.8) becomes

∇×∇× Ẽ(r, ω) − ω2

c2
0

ε(r, ω)Ẽ(r, ω) = 0 . (2.18)

We anticipate that the permittivities of the different materials distributed in space can depend
on the light frequency, or wavelength.

2.2 Perturbative nonlinear optics
The previous section applies to linear media for which Eq. (2.5) holds. One step more gen-
erally, the polarization P can be a nonlinear function of the electric field E,

P /ε0 = χE + χ(2) : EE + χ(3) : EEE + . . . , (2.19)

where : denotes the product of the nonlinear susceptibility tensor χ(2,3,...) with the vector
fields [3]. The nonlinear susceptibilities depend on the microscopic structure of a medium
and the nonlinear physical processes taking place on this scale.

For the Taylor expansion (2.19) to be meaningful, the summands should become succes-
sively smaller in magnitude, which holds in the regime called perturbative nonlinear optics.
For the contrary case, [6] and [16] describe examples of the regime of extreme nonlinear
optics. Since the metal used for the samples to be described later interacts strongly with
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electromagnetic radiation, we are confined to moderate electric field strengths and to pertur-
bative nonlinear optics. Hence, the nonlinearities we investigate cause only small alterations
to the dominant linear-optical phenomena.

If we split the general polarization (2.19) into its linear and its nonlinear part

P = ε0χE + P NL(E) , (2.20)

we can write the nonlinear-optical wave equation as

∇×∇× E +
ε

c2
0

∂2

∂t2
E = −µ0

∂2

∂t2
P NL . (2.21)

Equation (2.21) allows to outline the procedure of describing nonlinear optics successively
according to the order of perturbation:

(i) The linear optics is described by (2.21) with P NL set to zero.

(ii) Using the linear electric field to determine P NL of certain polynomial order, the right-
hand side of the wave equation (2.21) describes the source of a nonlinear electric field.

(iii) The generated nonlinear electric field propagates self-consistently according to the
left-hand side of Eq. (2.21).

(iv) The self-consistent linear and nonlinear fields can potentially be used recursively to
determine fields of higher perturbative order.

Even more generally, the nonlinear source on the right-hand side of Eq. (2.21) does not
have to be related to an electric-dipole polarization, but can be the result of any particular
microscopic physical process.

2.2.1 Second- and Third-Harmonic Generation

Starting in linear optics with an electric field E (1) (omitting vectors temporarily), the second-
order susceptibility χ(2) causes, in conjunction with the wave equation, a second-order con-
tribution to the electric field, E(2). As an example, we choose a light pulse with Gaussian
temporal envelope (pulse length ∝ τ ) and carrier frequency ω0,

E(1)(t) = Ê0 e−(t/τ)2 cos(ω0t) . (2.22)

Neglecting propagation, the second-order field becomes

E(2)(t) ∝ χ(2)Ê2
0 e−2(t/τ)2 cos2(ω0t)

= χ(2)Ê2
0 e−2(t/τ)2 1

2
(1 + cos(2ω0t)) . (2.23)

The contribution with carrier frequency 2ω0 is called Second-Harmonic Generation (SHG).
The constant term in the brackets is called optical rectification and will mostly be ignored
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in this thesis. Furthermore, one can note from Eq. (2.23) that the generated SHG pulse is
shorter than the original pulse by a factor

√
2.

Second-Harmonic Generation is not possible for all materials. In a centrosymmetric
medium, when changing the coordinate system such that r → −r, all vector quantities
must also change sign, e.g., for the linear electric field vector E (1) → −E(1). However, the
second-order polarization cannot change sign since

P (2)

ε0

= χ(2) : E(1)E(1) → χ(2) :
(

−E(1)
)(

−E(1)
)

= +χ(2) : E(1)E(1) = +
P (2)

ε0

,

(2.24)
so the inversion symmetry is only fulfilled if P (2) = 0. In conclusion, SHG requires a
medium without centrosymmetry. An example for such a medium is a planar array of Split-
Ring Resonators (see section 2.5.1).

The Metallic Photonic Crystal Slabs introduced in section 2.4 are centrosymmetric, so
the lowest possible order for nonlinear optics is a third-order process, connected with χ(3).
Following the above example with the Gaussian pulse, the third-order electric field is

E(3)(t) ∝ χ(3)Ê3
0 e−3(t/τ)2 cos3(ω0t) (2.25)

= χ(3)Ê3
0 e−3(t/τ)2 1

4
(3 cos(ω0t) + cos(3ω0t)) .

The contribution with carrier frequency 3ω0 is called Third-Harmonic Generation (THG), the
term with carrier frequency ω0 is attributed to self-phase modulation which will be ignored
henceforth. The resulting pulses are shorter than the original pulse by a factor

√
3.

THG can appear in all media as a χ(3)-process. We note in passing that for non-centro-
symmetric media, THG can additionally arise due to a two-step, cascaded χ(2)-process [3]
with a third-order source term χ(2) : E(2)E(1).

From the above equations, and using Eq. (2.12), it follows that the SHG intensity I (2) is
proportional to the square of the linear intensity I (1),

I(2) ∝
[

I(1)
]2

, (2.26)

and similarly the THG intensity I (3) to the third power of the exciting intensity

I(3) ∝
[

I(1)
]3

. (2.27)

Perturbative SHG and THG as above can easily be formulated in the frequency domain:

∇×∇× Ẽ
(2) −

(

ω

c0

)2

εẼ
(2)

=

(

ω

c0

)2

χ(2) : Ẽ
(1) ∗ Ẽ

(1)
(2.28)

∇×∇× Ẽ
(3) −

(

ω

c0

)2

εẼ
(3)

=

(

ω

c0

)2

χ(3) : Ẽ
(1) ∗ Ẽ

(1) ∗ Ẽ
(1)

. (2.29)

The multiplication in the time domain is replaced by a convolution (denoted by ∗) here. The
Gaussian pulse from above transformed into the frequency domain [cf. Eq. (2.17)] leads to

Ẽ(1)(ω) = Ê0

√
πτ e−τ2(ω−ω0)2/4 , (2.30)
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which is a Gaussian-shaped spectrum peaked around ω ≈ ω0 > 0. The frequency spectrum
of the SHG field consequently corresponds to a convolution of Ẽ(1)(ω) with itself, which is
a Gaussian spectrum peaked around ω ≈ 2ω0 > 0 and with a spectral width which is broad-
ened by a factor

√
2 with respect to the linear-optical spectrum. The frequency spectrum of

the THG field in turn corresponds to a double convolution of Ẽ(1)(ω) with itself, delivering
a Gaussian spectrum around ω ≈ 3ω0 > 0 and even larger width. The larger spectral width
is directly related to the shorter pulse length of the nonlinear fields as stated earlier. We will
make use of our considerations about multiplications and convolutions in section 6.2 again.

2.2.2 The Lorentz force in nonlinear optics

In a medium (e.g., a semiconductor), the linear polarization P (1) = (−e)nex
(1) can be

related to electrons with charge (−e) and density ne being displaced by x(1) from their
equilibrium position. Illumination with an electromagnetic plane wave oscillating with a
single frequency ω0 thus results in an electron velocity v(1) = ∂x(1)/∂t. In the simplest
case, the velocity v(1), the polarization P (1) and the incident electric field E(1) will all point
into the same direction, which in turn is perpendicular to the wave vector k. Furthermore, if
the electrons can be viewed individually, the magnetic field B(1) at the position of an electron
corresponds to the value and orientation of the incident field, hence B (1) ∝ k × E(1).

It is obvious that such an electron feels the magnetic part of the Lorentz force F L,m =

(−e)v(1) ×B(1), which is of second order in perturbation. The second-order oscillation x(2)

at frequency 2ω0 resulting from this force can lead to SHG radiation. However, under the
conditions described above, the dipole oscillation (−e)x(2) is directed parallel to k. Thus, a
SHG wave cannot be radiated into the propagation direction of the exciting wave, nor into the
reflected direction, which makes the magnetic part of the Lorentz force irrelevant for most
nonlinear-optical experiments using solid-state samples. If the experimental setup allows,
SHG may be observed in a direction perpendicular to k. For free electrons, corresponding
non-relativistic and relativistic SHG experiments have been reported [17].

In chapters 8 and 9 we will investigate materials in which a SHG wave based on the
magnetic part of the Lorentz force can, in principle, radiate into the far-field forward direc-
tion. This new possibility arises because the “magnetic” Metamaterials used there can have
a local magnetic field B(1) which does not point into the same direction as the magnetic field
of the incident wave.

2.3 Optics of metals
We describe a metal by a free electron gas confined to a volume in which additionally the im-
mobile ion background resides [10]. The linear-optical properties are derived below, whereas
the nonlinear optics is presented in section 8.2.

In response to a local electric field E, the equation of motion of an electron with mass
me and charge (−e) is

ẍ + γcẋ =
−e

me

E . (2.31)
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Figure 2.1: The relative permittivity of gold. Experimental values (crosses) measured for thin films [18], and
the description by a Drude metal (solid lines), Eq. (2.33), as a fit to the experimental data around the frequency
200 THz. At frequencies higher than 550 THz (0.55 µm wavelength), the imaginary part of the permittivity and
thus the absorption is strongly increased by interband transitions, giving gold its yellowish color.

Here, x is the electron displacement and γc is the collision frequency of the Drude metal [10]
representing Ohmic damping. In the frequency domain, driving the electron with a harmonic
electric field with amplitude Ê0 and frequency ω results in the oscillation amplitude

x̂ = − 1

ω(ω + iγc)

−e

me

Ê0 . (2.32)

The electrons of density ne then make up a polarization P̂ = (−e)nex̂, and, since also
P̂

!
= ε0(εD − 1)Ê0, this allows to define a relative permittivity εD to describe the metal:

εD(ω) = 1 −
ω2

pl

ω(ω + iγc)
. (2.33)

Here, ωpl =
√

(nee2)/(ε0me) is the plasma frequency of the Drude metal.
Figure 2.1 shows the real and imaginary part of the permittivity of gold, as determined

by experiments [18], as well as a fit of the Drude formula (2.33): For the frequency part of
highest interest here, around ω = 2π×200 THz, gold is best described by a plasma frequency
ωpl = 2π × 2100 THz and a collision frequency γc = 2π × 20 THz. However, for the gold
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Figure 2.2: Particle plasmons. (a) All electrons (blue area) inside a spherical particle (gray shape) can oscillate
in parallel: The appearing surface charges create a depolarization field inside the particle, acting as a restoring
force for this harmonic oscillator. (b) In a flatter particle, the depolarization field is larger, increasing the
restoring force and the particle plasmon resonance frequency. (c) In a sharper particle, the depolarization field
extends to far outside the particle and is weaker inside, reducing the particle plasmon resonance frequency.

structures we fabricate (see section 3.1.1), a higher damping rate of γc = 2π × 50 THz is
used to better fit to the experimental results.

What happens if a plane wave with frequency ω is incident on a vacuum-metal interface?
Because of the high reflectivity of the metal and the phase jump of the reflected wave [see
Eqs. (2.14)], the field amplitude right at the interface resulting from superposition is very
small compared to the incident field. The resulting field, however, can enter the metal, since
its parallel component is conserved. Inside the metal, the field amplitude of the plane wave
decays exponentially because the refractive index n =

√
εD = nr + iκ and hence the wave

vector k = nω/c0 are mostly imaginary. The corresponding skin depth δ = c0/(ωκ) has a
value of 24 nm for gold at 200 THz. Since our gold structures have thicknesses of the same
order, the penetration of transverse electric fields is considerable.

A wave incident on a metal surface under oblique angles in P-polarization also has a
component of the electric field which is normal to the metal surface. This field component
is associated with a non-zero charge density ρ near the interface, and its magnitude decays
very fast inside the metal, approximately on the scale of a Thomas-Fermi screening length,
which is about 0.06 nm for gold [19].

2.3.1 Optics of metal nanoparticles

Metal nanoparticles (MNP) with a finite volume and highly curved surfaces have unique
optical properties [10] beyond flat metal surfaces discussed above. The simplest case is a
spherical particle [see Fig. 2.2(a)] with a size much smaller than relevant wavelengths, hence
it can be described in the electrostatic approximation where no retardation of fields is con-
sidered. At a particular time all conduction electrons of the metal particle shall be displaced
homogeneously by a small displacement x0. The electrons which are shifted beyond the
ionic background on one side, and the bare ions themselves on the other side, constitute
surface charges creating a homogeneous depolarization field E0 inside the sphere [10, 20].
This electric field accelerates the electrons against their displacement, subsequently making
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them swing over beyond their equilibrium position, continuing a harmonic oscillation called
particle plasmon.

The particle plasmon is hence an eigenmode of the collective oscillation of the conduc-
tion electrons. Its eigenfrequency is not primarily determined by particle size, but rather ma-
terial parameters like the density of electrons. For a sphere, the polarization P 0 = (−e)nex0

is connected with a depolarization field E0 = −1
3
P 0/ε0 [20]. Using E0 as the only driv-

ing force in Eq. (2.31) and neglecting damping, one obtains that the eigenfrequency of the
spherical particle plasmon is

Ωsphere =
1√
3

ωpl . (2.34)

For metal particles with ellipsoidal shape [see Fig. 2.2(b) and (c)], there is one particle
plasmon mode for each of the three main axes of the ellipsoid. Each axis (i = x, y, z) can
be assigned a depolarization factor Li for which E0 = −LiP 0/ε0 holds, while generally
Lx + Ly + Lz = 1 is fulfilled [10, 20]. Again, the eigenfrequencies depend on shape rather
than on size. For a sphere, Li = 1/3 holds for all directions. For an ellipsoid, the longer
axes are assigned smaller values of Li than the shorter axes. The corresponding particle
plasmon frequency ΩPP =

√
Liωpl is hence reduced when elongating a given particle along

the plasmon oscillation direction.
For larger particles with sizes approaching the order of particle plasmon resonance wave-

lengths, one has to consider retardation effects and higher-order oscillation modes. This is
possible in an analytical description for spherical particles within the framework of the Mie
theory [21]. For (nearly) ellipsoidal particles, one can still use the qualitative dependence de-
scribed above. We will make use of this fact in chapter 7 to experimentally tune the particle
plasmon frequency of gold nanowires.

Various other particle shapes can be considered. Among these are curved particles which
allow for a particle plasmon oscillation with a magnetic dipole moment. We will consider
such particles briefly in section 2.5.1 and in more detail in section 8.1. Generally, the exact
modes and field distributions for a metal nanoparticle of arbitrary shape can only be described
accurately with sophisticated numerical methods (see chapter 4).

An important aspect of a particle plasmon is that it generally comprises an electric dipole
moment. On one hand, this oscillating dipole radiates, and the associated energy loss sig-
nificantly broadens the linewidth of the emission spectrum. On the other hand, an incident
electromagnetic wave can couple to the dipole and excite the corresponding plasmon oscil-
lation. The electric field inside the metal is then a superposition, of a wave decaying on the
order of the skin depth and of the depolarization field. In the case of plasmons which also
comprise a magnetic dipole moment, the linear-optical coupling strength of the electric field
to the plasmon is usually stronger than that of the magnetic field [22].

It is clear from the above said that a particle plasmon oscillation, on an abstracted level,
can be described as a harmonic oscillator, with the abstract charge q, mass m, and displace-
ment x(t), driven by the electric field E(t), and the equation of motion

ẍ + 2γẋ + Ω2
0x =

q

m
E(t) . (2.35)
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This ansatz leads to a Lorentz oscillator resonance with the damped eigenfrequency Ω =
√

Ω2
0 − γ2 and the half-width-at-half-maximum (HWHM) γ = 1/T2 = 1/(2τ), which is the

homogeneous linewidth.6 Here, T2 is the dephasing time and τ is the plasmon decay time.
Recently, high-resolution experiments on single gold nanoparticles have revealed particle
plasmon decay times τ of 0.7–9 fs [23].

However, most other investigations have used samples consisting of ensembles of many
particles, in which the homogeneous linewidth is obscured in absorption spectra by inhomo-
geneous broadening. Much experimental effort [24–30] has been devoted to distinguish the
homogeneous and inhomogeneous contributions to particle plasmon linewidths. In partic-
ular, a combination of linear- and nonlinear-optical methods has been proposed [24]. Our
proof that the combination of SHG or THG and linear optics is, on the contrary, not suitable
to determine a homogeneous linewidth [31] is given in chapter 5.

The terms particle plasmon, particle plasmon resonance, and Mie resonance are often
used as synonyms. A surface plasmon polariton, to clarify the difference, only describes a
travelling electromagnetic wave at a (often) flat metal-dielectric interface.

2.3.2 Second-Harmonic Generation from metal surfaces
An electromagnetic wave incident onto an isotropic continuous metal surface at normal in-
cidence, or oblique incidence in S-polarization, cannot create a SHG wave because of sym-
metry reasons [32]. However, SHG in reflection is possible for oblique incidence and P-
polarization. First corresponding experiments [33] have been published in 1965, shortly
after the invention of the laser providing the necessary field strengths. Many more experi-
mental [34–36] as well as theoretical [37–41] investigations up to recent years have lined the
history of SHG at metal surfaces, including data and models that partially contradict each
other. Here, we want to trace the main discussion, restricted to the nanoscale. Thus we will
neglect much-discussed effects like interband transitions and crystal orientation of the metal.

Analytically, there are two second-order contributions to nonlinear optics:

(i) The incident wave is mainly reflected, which is caused by electronic currents j (1)

within the skin depth of the surface. Due to the penetrating magnetic field B (1), the
moving electrons feel the magnetic part of the Lorentz force, j (1) × B(1).

(ii) The mentioned currents are not divergence-free. From Eq. (2.2) it follows that a sur-
face charge density ρ(1) appears which diminishes the normal component of the electric
field E(1) inside the metal. The electric part of the Lorentz force, however, also has a
second-order contribution ρ(1)E(1).

The relative strengths of (i) and (ii) as contributions to SHG have been discussed widely in
the literature. Publications supporting a dominant role of (ii) over (i) can be found [33, 40],
as well as ones supporting an almost equal contribution [34, 38, 39]. To date, the final con-
clusion remains open [35, 36]. “Magnetic” Metamaterials (see chapters 8 and 9), although

6The homogeneous linewidth or damping constant of a general Lorentz oscillator, γ, is not to be confused
with the Drude metal collision frequency, γc.
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not being continuous metal films, may contribute to the mosaic of data and a broader under-
standing of SHG from metallic nanostructures.

2.4 Metallic Photonic Crystal Slabs
In order to introduce Metallic Photonic Crystal Slabs, we will briefly summarize the concept
and basic properties of Photonic Crystals and optical slab waveguides. For more information
on these two topics, we refer to the broad literature stated along the way.

General concept of Photonic Crystals

Photonic Crystals (PCs) [11, 12, 42–46] are tailored, composite materials with special optical
properties. They are usually made out of two or more dielectric (or metallic) materials with
different relative permittivities. These materials are structured periodically and arranged in a
lattice, in one, two, or three dimensions. The simplest 1D PC is the common dielectric mirror
[47], consisting of a periodic stack of alternating dielectric layers with different refractive
indices. By means of nanofabrication techniques, sophisticated designs of PCs have also
been realized experimentally in 2D and 3D (see [48–50] and references therein).

The most important physical mechanism in PCs is Bragg reflection of an electromag-
netic wave. Consequently, PCs must be periodic on a length scale similar to the involved
wavelengths of light (as opposed to Metamaterials, see section 2.5).

The key property of a PC is the appearance of a photonic band structure: Due to the
spatial periodicity of the permittivity ε(r, ω) in the wave equation (2.18), the solutions for the
electric field are Bloch-periodic (vector) functions. This stands in analogy to the electronic
wave functions and band structure in, e.g., semiconductors [20]. Similarly, a PC can exhibit a
flat photonic dispersion relation near the boundary of the Brillouin zone, and even a band gap
can appear, i.e., a band of optical frequencies for which no propagating waves exist inside the
PC. These properties make Photonic Crystals highly interesting materials for applications in
optics and telecommunication.

Optical slab waveguides

A slab waveguide [see Fig. 2.3(a)] [51–53] is a thin planar slab of optical material(s) permit-
ting the propagation of an electromagnetic wave in a direction within the plane. It consists of
a slab of a material with a high refractive index, the core, surrounded by materials with lower
refractive indices. Like in an optical fiber, total internal reflection leads to the formation of
a standing wave in the mode profile across the slab thickness, while the wave propagates in
direction parallel to the plane of the slab.

Outside the core, only evanescent parts of a mode exist, so a waveguide mode cannot
loose energy in a direction perpendicular to the slab waveguide. On the other hand, this
means that a mode cannot be excited from this direction either. Coupling of light from the
normal direction into a specific waveguide mode requires an arbitrary grating coupler pro-
viding the lateral photon momentum [see Fig. 2.3(b)] [54–56]. The grating lattice constant
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Figure 2.3: (a) A slab waveguide consists of a thin slab of dielectric material (gray) with high refractive index
compared to its environment. The intensity profile (red) of the guided wave, as well as the arrows symbolizing
the propagation and total internal reflection of the waveguide mode (“zigzag wave” [51]) are shown. (b) The
added grating coupler (green) allows to excite the specific waveguide mode by light from above (blue). (c) In
a Metallic Photonic Crystal Slab, the grating is implemented by metal wires (orange) stretching infinitely in
the direction perpendicular to the plane shown. The two resonances, the waveguide mode and the wire particle
plasmon, are coupled due to the overlap of the respective electric fields [cf. also Fig. 2.2(c)].

determines the propagation constant or effective wavelength of this waveguide mode and,
via the waveguide dispersion relation, the waveguide mode frequency. The waveguide mode
can be excited if the frequency of the incident light is resonant.

There are two possibilities for the polarization: (i) In a TE-mode, the electric field is par-
allel to the slab and perpendicular to the propagation direction, whereas (ii) in a TM-mode,
the magnetic field of the wave is parallel to the slab and perpendicular to the propagation di-
rection. The polarization of the incident light, in reference to the grating, determines whether
a TE or TM mode is excited. Certain conditions involving the refractive indices and slab
thickness must be fulfilled for the appearance of the ground modes (TE0 or TM0) [57].

Definition of Metallic Photonic Crystal Slabs

In a Metallic Photonic Crystal Slab (MPCS) [58–61], the grating coupler is implemented by
a set of identical metal nanowires [see Fig. 2.3(c)]. At first sight, it inherits properties from
both a slab waveguide and a particle plasmon.

Light can be coupled into the waveguide from the normal direction because of the effi-
cient grating coupler. Propagating inside the waveguide with an effective wavelength match-
ing the grating period, however, the waveguide mode also fulfills the condition for (partial)
Bragg reflection. This stands in analogy to a 1D Photonic Crystal (although the periodic
arrangement appears here in a direction perpendicular to the incident light direction).

If the electric field of the incident light is oriented across the wires [as in Fig. 2.3(c)], a
particle plasmon resonance can be excited (cf. section 2.3.1). In contrast, if the electric field
is directed along the infinite wires, the depolarization factor L is zero and a particle plasmon
resonance does not exist. Corresponding to the polarization of the excited waveguide mode,
the former case is called TM-polarization and the latter case is called TE-polarization. In
this thesis, we will only consider excitation in TM-polarization in which a particle plasmon
resonance can be excited if the frequency of the incident light matches.

Thus, two individual resonances appear: The waveguide mode resonance frequency Ωwg

is determined by the wires’ period, while the particle plasmon resonance frequency Ωpl is
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determined by the wire width (assuming a constant wire thickness). The electric field distri-
butions of the individual resonances, however, overlap spatially, which leads to a coupling
of the two resonances. The key feature of a MPCS, hence, is the coupling of a photonic res-
onance with an electronic resonance. The coupling leads to the formation of new resonances
or eigenmodes, which sometimes have been termed waveguide-plasmon polaritons [59].

While waveguide-plasmon polaritons can be described with high accuracy by micro-
scopic electromagnetic calculations (e.g., the scattering-matrix method [62, 63]), this de-
scription does not lead to a deeper understanding of the new eigenmodes. More insight
has been obtained from a semi-quantum mechanical Hamilton approach explained in [59],
which has proven to reproduce some of the optical properties of MPCSs known from the
experiments presented in the same work.

In section 6.1 we will take a different approach and describe MPCSs as two coupled
Lorentz oscillators. This purely classical approach is simple but can serve to explain most
of the important properties of MPCSs. Furthermore, and in contrast to other descriptions
[30], our theory can easily and consistently be extended to nonlinear optics (section 6.2).
Corresponding linear-optical experiments (section 7.2) and THG experiments (section 7.3)
agree very well with our theoretical description.

2.5 General concepts of photonic Metamaterials

During the last years, the field of photonic Metamaterials [13] has opened a new chapter
of optics. Photonic Metamaterials are artificial, composite materials with designed optical
properties. In contrast to Photonic Crystals (cf. section 2.4), however, Metamaterials are built
from structural elements which are (much) smaller than the light wavelengths of interest,
thus, Bragg reflection does not play a role. Rather, the optical properties of a Metamaterial
can be understood from the physics of each single responsive element.

The main idea of Metamaterials initially conceived by [64] is to build “artificial atoms”
which have a designed electric and/or magnetic dipole response. An electromagnetic wave
with a wavelength much longer than the size and arrangement of these “atoms” does not
“see” the individual parts, but averages over the response of many parts. This stands in anal-
ogy to an electromagnetic wave travelling through a natural substance consisting of many
real atoms. Whereas a natural atom and all dielectric materials only have an electric-dipole
response at optical frequencies, nanofabrication techniques also allow to design artificial
“atoms” with a magnetic response [14]. While a periodic arrangement of “atoms” in a Meta-
material is generally not necessary, it is often chosen nevertheless in order to ease the fabri-
cation process (see section 3.1.2 and [22, 65, 66]).

Figure 2.4 shows common examples of designs (partially explained below) which have
been realized or proposed as “magnetic atoms”. In all cases, metallic structures with a certain
geometry allow for circulating currents. Generally, a circulating current is connected with
a magnetic dipole moment, and magnetic moments of a certain density form an effective
magnetization M eff . If the circulating currents are induced by the external magnetic field
H of an electromagnetic wave, then the Metamaterial can be described with an effective
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Figure 2.4: Examples of designs for (a)-(h) “magnetic atoms” and (i)-(j) materials with a negative index of
refraction. (a) Doubled Split-Ring Resonator. (b), (c) and (d) Split-Ring Resonator with one, two, and four
slits, respectively. (e) U-shaped Split-Ring Resonator. (f) Ω-structure. (g) Cut-wire pairs. (h) Square-plate
pairs. (i) Crossed double-wires. (j) Cut-wire pairs as “magnetic atoms” combined with long-wire pairs as
“electric atoms”. Taken from [22] (for details, see there).

permeability µeff 6= 1, even at optical frequencies [14, 22].
Various conclusions follow from µeff 6= 1. Just to name a few: If both permittivity

εeff and permeability µeff of a Metamaterial are simultaneously negative, the Maxwell equa-
tions (2.1) describe refraction into negative angles [67]. According to Snell’s law, the tra-
ditional refractive index then has to be replaced by neff = −√

εeffµeff . Experiments have
supported this negative index of refraction [68]. Generally, the Fresnel formulas [47] and
other electromagnetic quantities have to be reformulated to account for µeff 6= 1. A large
part of the attraction Metamaterials receive stems for the idea of a perfect lens [69, 70] beat-
ing the diffraction limit of usual lenses, and the idea of electromagnetic cloaking [71–73].

Beyond these fascinating linear-optical effects, Metamaterials promise unprecedented
phenomena in nonlinear optics [64]. Most of the effects described above arise at light fre-
quencies matching a certain resonance of the “atoms” (similar to the particle plasmon reso-
nances discussed in section 2.3.1). The resonant behavior enhances the electromagnetic near
fields, which are already strong in the vicinity of the metallic structures with edges and bends
(lightning-rod effect). The so enhanced fields also favor nonlinear effects (cf. section 2.2).
In chapter 9, we describe the first nonlinear-optical experiments with Metamaterials in which
especially magnetic-dipole resonances show a prominent nonlinear signal [74].

We clarify that in the context of this thesis, negative refraction and the description of
Metamaterials by effective parameters εeff and µeff do not play a role. We will rather main-
tain the point of view of the constituent materials with their geometries and consider the
electromagnetic near fields within the “atoms”. For this purpose, it is sufficient to define
Metamaterials as to consist of “atoms” in “unit cells” which are just smaller than wave-
lengths of light, such that no diffraction appears, i.e., all diffraction orders beyond the zeroth
order are only evanescent waves.

Most of the theoretical papers published so far on nonlinear Metamaterials have focussed
on 3D bulk effects of a material with a negative effective index of refraction [75–77]. For our
planar 2D Metamaterials and and their microscopic physics, however, no published theory
exists, to the best of our knowledge, so we derive our own theory in chapter 8.
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2.5.1 Split-Ring Resonators
Historically the first [64], and conceptually the easiest design of a “magnetic atom” is the
Split-Ring Resonator (SRR) [78–80], which is shown in Fig. 2.4(a)-(f) in different modifica-
tions. Here, we will exclusively use the designs of Fig. 2.4(b) and (e). A SRR is basically
a single winding of a microscopic coil, with the ends of the SRR arms forming a capaci-
tance. Hence, it is a small LC-resonance circuit, with a resonance frequency scaling anti-
proportional with its size [81, 82] as long as this resonance frequency is far below the plasma
frequency [83–85] (cf. also section 2.3.1). The circulating current flowing in the coil results
in a magnetic moment directed perpendicular to the plane of the SRR.

During the last few years, the increasing miniaturization of SRRs has lead to tremendous
steps of their resonance wavelength, from 30 mm [68], via 300 µm [86], 50 µm [87], 3.2 µm
[14], 1.5 µm [88, 89], down to 900 nm [85], in work of others and of ourselves. In the last
case, the resonance frequency is already outside the size-scaling regime mentioned above,
and a further reduction of the SRR resonance wavelength will hardly be possible with the
chosen materials.

The LC-circuit resonance is only the ground mode of a SRR. Beyond, also higher modes
exist, similar to the modes on a straight antenna (see Fig. 2.5): A straight antenna has a
ground mode of which half the wavelength matches the length of the antenna [(a), one antin-
ode]. The next higher mode, (b), has two antinodes (and one node), and the third mode, (c),
has three antinodes (and two nodes). The three most important modes of a SRR [Fig. 2.5(d)-
(f)] can be understood when considering a SRR as a straight antenna with the two ends folded
up by 90 degrees, and corresponding current distributions.

The analogy between SRRs and antennas applies to the mode patterns, not necessarily
to the relative resonance frequencies. In the SRR samples discussed in chapters 8 and 9, the
SRR modes (e) and (f) are almost at the same frequency. This is obtained from experiments
and from numerical simulations taking into account the details of the SRR geometries (cf.
section 4.1.1). Also note that the resonant currents of nanoscale SRRs are dominantly volume
currents in the metal (cf. section 2.3.1).

The current patterns for the three SRR modes in Fig. 2.5(d)-(f) can all be related to
electric dipole moments: In (d) and (f), the electric dipole moment lies in the horizontal
direction (on this page), in (e) it is vertical. Moreover, two of the resonances can also be
related to magnetic dipole moments pointing perpendicular to this page: In (d), the magnetic
moment is stronger than in (f), where the currents partially counter-propagate. This clarifies
our naming convention to call the three important SRR modes the “magnetic resonance”, the
“vertical electric resonance”, and the “horizontal electric resonance”, respectively.

Because of their dipole moments, the SRR modes couple to electromagnetic waves,
either with the electric or magnetic field of the wave, or with both. However, coupling of the
electric field to a resonance is usually much stronger than the coupling of the magnetic field
of the same wave [89]. This aspect will be confirmed by our angle-resolved linear-optical
experiments in section 9.3.1. For normal incidence, i.e., a plane wave incident perpendicular
to the designs in Fig. 2.5, exclusively the electric field of the wave can couple to and excite
the three SRR resonances.
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Figure 2.5: Analogy of (a)-(c) the oscillation modes of a straight antenna and (d)-(f) the three important reso-
nances of a Split-Ring Resonator. The SRR modes are labelled according to our naming convention.
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Chapter 3

Experimental methods

During the last two decades, a broad range of methods for the fabrication and characterization
of Photonic Crystals, metal nanoparticles, and more recently also photonic Metamaterials has
been developed and applied (see, e.g., [30, 65, 90–95] on these vast topics). In this chapter,
we give the details of those methods that we use for the experiments presented in chapters 7
and 9.

The sample fabrication process, which applies to both Metallic Photonic Crystal Slabs
and photonic Metamaterials, is summarized in section 3.1, explaining for example how gold
is structured with 5-nanometer precision by electron-beam lithography. After the fabrica-
tion, we always investigate first the linear-optical properties of our samples, and later their
nonlinear properties. The setups for measuring the linear transmittance are described in sec-
tion 3.2. For the measurements of Second- and Third-Harmonic Generation, we use one of
two pulsed laser sources (see section 3.3) providing the required high intensities.

3.1 Sample fabrication

The fabrication of samples containing high-quality nanostructures requires high-resolution
methods [93, 94] which assure cleanness, purity and reproducibility. On top of a substrate,
structuring of materials is achieved in three dimensions: Layers of materials with thicknesses
between 5 nanometers and several micrometers are obtained by thin film deposition, whereas
lateral structuring is achieved by a lithographic step. The former process is performed by
electron-beam evaporation (section 3.1.1), and the latter by electron-beam lithography (sec-
tion 3.1.2). The complete sample preparation procedure is summarized in section 3.1.3.
Relevant material parameters are given along the way.

3.1.1 Thin-film evaporation

Thin films can be deposited on a substrate by various methods, including thermal evapora-
tion, electron-beam evaporation, sputtering, and chemical vapor deposition. Among these,
electron-beam evaporation is the most suitable method for our needs, since it is relatively

23
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simple, allows to deposit metals as well as dielectric materials, and produces very homo-
geneous films. The source material, residing in a cooled crucible, is heated locally by a
focussed electron beam, resulting in a directed beam of evaporated material consisting of
small clusters. On the substrate located in the direction of the material beam, an amorphous,
isotropic film is formed over time by condensation. In particular, the film is homogeneous
on scales of optical wavelengths. Its thickness can be controlled with Angstrom precision
by monitoring the material flux and by additionally controlling the flux to the substrate by a
shutter opened for a programmed time. The whole process takes place under high vacuum
conditions.

We use an electron-beam evaporation setup1 with a high vacuum of 1×10−6 mbar before
evaporation. A rotary holder with several crucibles allows to deposit a sequence of mate-
rials without breaking the vacuum. The substances which can be evaporated are, among
many others, gold (Au), magnesium fluoride (MgF2), indium-tin oxide (ITO), and hafnium
dioxide (HfO2). Typically, a deposition rate of 0.2, 1.0, 0.1, and 0.5 nm/s is used for the
four substances, respectively. The latter two substances, ITO and HfO2, are evaporated in an
oxygen atmosphere of 1.2×10−5 mbar and 1×10−4 mbar, respectively, to increase the oxy-
gen content within the layer. These two substances additionally require, directly after their
evaporation, to be tempered at 450 °C for 4 hours in a programmable oven2 under ambient
atmosphere to obtain the oxygen content for the right stoichiometry and final optical proper-
ties.

Gold is used primarily because it is a very good conductor up to optical frequencies,
and additionally does not degrade when the sample is exposed to air for months (as opposed
to, e.g., silver). Thus, the optical experiments have been highly reproducible with the same
sample over a long time range. The other three substances mentioned above are dielectrics
with different refractive indices (nMgF2

=1.38, nITO=1.9, nHfO2
=1.95) and are employed

because of this property, e.g., to form a waveguide (cf. section 2.4). ITO, which is transpar-
ent for optical wavelengths from the infrared to ultraviolet, peculiarly is conductive for DC
currents. Thus, ITO is perfectly suited for our purposes, since we need a conducting layer
for subsequent electron-beam lithography. For a typical layer thickness of 5 nm, it does not
impair the optical properties of the samples, which is crucial for our experiments. Addition-
ally, ITO serves as an adhesion promoter for gold, which does not stick to bare glass very
well. Furthermore, also HfO2 is transparent for optical wavelengths longer than 0.21 µm
(photon energies smaller than 5.9 eV). For completeness, the refractive index of the quartz
glass (suprasil) substrates is nglass=1.5, and we describe air by nair=1.

3.1.2 Electron-beam lithography

Electron-beam lithography (EBL) [96] is a versatile method to define a nanoscale 2D mask
pattern. The method is based on a scanning-electron microscope (SEM) of which the electron-
beam deflection unit is controlled by a computer providing the pattern from a CAD software.

1evaporation source e-vap 4000-UHV, MDC Vacuum Products Corp., USA, and deposition controller STC-
200/SQ, Sycon Instruments, USA

2MTF 12/38/400, Carbolite Co., Great Britain
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The beam is switched on and off and is moved to specific locations on the sample substrate
which shall be exposed with electrons. A thin layer of organic resist susceptible to irradia-
tion with electrons is located on the substrate, and the exposed areas of the resist can later be
selectively removed.

We use the EBL system3 at the Institute of Nanotechnology at the Forschungszentrum
Karlsruhe. The SEM4 is used with an acceleration voltage of 10 kV and an aperture of 20 µm
resulting in an average beam current of 90 pA. Moreover, the SEM is equipped with a fast
beam blanker allowing for minimal dot exposure times of 0.4 µs. Various simple shapes and
patterns as defined in the CAD software5 can be exposed: dots, lines, and rectangles (by a
meandering beam spot), as well as composites of these (three rectangles form a Split-Ring-
Resonator shape, cf. Fig. 2.5) and arrays consisting of many identical structures (e.g., a 1D
lattice of lines or a 2D lattice of SRRs). For each geometric element, the exposure dose or
dwell time can be assigned in the software. The magnification of the SEM determines both
scanning resolution and write-field size, i.e., the scale which can be addressed by deflecting
the electron beam alone, without moving the motorized sample stage. We mostly use a
magnification of 1800 resulting in a scanning resolution of 7.5 nm and a write-field size of
(100 µm)2.

Before exposure, the substrate has to be prepared. First, a 5-nm-thick film of conduc-
tive ITO is evaporated and tempered. Later, it drains the electrons of the writing beam and
avoids local charging of the sample. Second, a thin layer of the standard positive resist poly-
methyl-methacrylate (PMMA)6 is deposited from solution by spin-coating7 at 5000 rpm for
90 s. After 30 min of post-bake at 165 °C for polymerization, a PMMA film thickness of
about 150 nm results. Upon exposure with high-energy electrons, chemical bonds of the
long polymer chains break up. In all areas where the local charge dose exceeds the sensi-
tivity threshold of 175 µC/cm2, the resist can subsequently be removed, during 20 s in a wet
developer consisting of a mixture of methyl-isobutyl-ketone (MIBK) and isopropanol in a
volume ratio of 1:3.

The result is a polymer mask with holes at the exposed areas, the holes having certain
desired shapes and locations. The above mentioned lithography system allows to define
structures with minimal feature sizes of about 25 nm and with an accuracy of about 5 nm.
The resolution is not primarily determined by the beam spot size, but rather limited by elec-
trons scattered from the substrate, effectively exposing nearby regions as well (proximity
effect). However, electron-beam lithography yields reproducible and accurate results. The
disadvantage of the method is the sequential processing (one area is exposed after another)
leading to long exposure times of up to 5 hours.

3Raith GmbH, Germany
4LEO 1530, LEO Electron Microscopy Inc., now Carl Zeiss NTS GmbH, Germany
5ELPHY Plus version 1.233, and later, version 3.0 SP8, Raith GmbH, Germany
6PMMA 950k A4, MicroChem Corp., USA
7Spinner version 1.4, Reinraumtechnik Lanz, Germany
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Figure 3.1: Summary of the most important steps of sample fabrication (see text). Taken from [22].

3.1.3 Sample fabrication overview

While thin-film evaporation and electron-beam lithography are the key methods to fabricate
our nanoscale photonic materials, a lot of more aspects are relevant to obtain high-quality
samples. Here, we summarize the details.

We start with a bare glass substrate,8 which has a surface area of 10 mm× 10 mm and a
thickness of 1 mm. A specific scratch is applied to the back side of the substrate to distinguish
it from the prepared front side which by eye looks identical during many of the following
steps.

The substrate is cleaned mechanically with lens paper and acetone, is then rinsed with
acetone, and is subject to an ultrasonic bath in acetone for 3 min. After that, it is rinsed again
with acetone and resides in a sequence of an acetone bath and isopropanol bath for 30 s each.
The cleaning process is finished after dry-blowing with nitrogen, resulting in a surface which
is free of dust, dirt, and fat.

The next step is the evaporation of one or several dielectric layers. For the Metamate-
rial samples, only ITO is used. For the Metallic Photonic Crystal Slab samples (cf. also
section 7.1), a sequence of HfO2, MgF2, and ITO is used. After evaporating a layer which
requires further oxidation, the evaporation sequence is interrupted, the sample is tempered
and cleaned afterwards with the above procedure, before continuing with the next step. So
far, the intermediate result is a substrate with unstructured dielectric layers, ITO being on
top [see Fig. 3.1(a) for the case of Metamaterials].

8Suprasil 1, B. Halle GmbH, Germany
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Figure 3.2: Examples of fabricated structures with high and low quality. (a) Oblique-view scanning electron
micrograph of the smallest Split-Ring-Resonator structures we have fabricated. Note that all features of the
shape are rounded off, due to the fabrication processes. The inset shows a top-view micrograph. (b) Top-view
SEM image of gold structures with undesired defects, seen as the bright areas.

After spin-coating the substrate with PMMA [Fig. 3.1(b)], the sample is ready for elec-
tron-beam lithography, (c), and subsequent development, (d). After that, gold is evaporated
with a typical thickness of 15–50 nm, (e). Most of the gold remains on top of the resist,
but through the holes in the resist, gold is also deposited with the same thickness onto the
substrate. Then, the resist and the gold on top of it are removed by a lift-off process, (f), in a
hot acetone bath at 50 °C for 2 min and subsequent rinsing in acetone. Another cold acetone
bath and isopropanol bath for 30 s each and dry-blowing with nitrogen completes the sample
fabrication procedure. The result is a sample with several arrays consisting each of identical
gold nanoparticles, on top of a dielectric substrate.

It is crucial to test whether a fabricated sample is suitable for experiments at all, since
contaminations or failure of one of the above processes can render a sample useless. The ho-
mogeneity of the gold particle arrays and the cleanness are checked with a light microscope.
The actual geometry of the gold structures must be checked with an electron microscope.
For example, planar Split-Ring Resonators are shown in Fig. 3.2(a) in an oblique-view SEM
picture. From such oblique-view SEM pictures we know that in some cases (especially when
using an almost-too-low exposure dose during lithography), gold structures which stand off
the substrate, with spikes perpendicular to the surface, are produced in error. These are
probably caused by ripping off the gold from the substrate during lift-off. Such spikes or
other 3D structures can be seen in top-view SEM pictures as bright spots or areas [see,
e.g., Fig. 3.2(b)]. In linear-optical and, even more importantly, in nonlinear-optical exper-
iments, these 3D structures constitute “hot spots” of extremely high electromagnetic fields
(lightning-rod effect) and can result in systematic errors and misinterpretations. We empha-
size that our samples investigated in chapters 7 and 9 are accurate, planar gold structures
which do not contain systematic “hot spots.” Neither do we observe macroscopic or micro-
scopic inhomogeneities of the evaporated dielectric films.

We additionally point out that the oblique-view SEM picture in Fig. 3.2(a) also reveals
that the corners and edges of our fabricated gold structures are actually not straight, but
rounded off.
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3.2 Linear-optical characterization tools
Linear-optical spectroscopy of a given sample reveals whether resonances appear at certain
wavelengths. Usually, when light is incident on a sample in resonance, increased absorption
and reflection (and scattering) occurs, effectively decreasing the transmitted light, compared
to non-resonant radiation. Hence, measuring the transmittance gives us important informa-
tion about the linear-optical properties.

All transmittance measurement setups presented in the following have in common that
white light from a halogen lamp is transmitted through a sample and is then spectrally re-
solved. Since a single substrate often contains several sample areas, i.e., different 2D arrays
each consisting of identical nanoparticles, the detected light must be restricted to those rays
which traversed a certain limited area on the sample surface. This is achieved by focussing
the white light onto the substrate, and by using small apertures which effectively “cut out”
all undesired parts of the sample. The spectrum can be measured on one hand for light
transmitted through the gold structures, dielectric layers, and the glass substrate, and on the
other hand for light transmitted through the same dielectric layers and glass substrate without
gold. The ratio of the two, computed for each wavelength, is called the transmittance spec-
trum. Alternatively, the extinction can be specified, which is defined as the negative natural
logarithm of the transmittance.

Two powerful tools are presented here in detail: a commercial Fourier-transform infrared
spectrometer which allows for fast and simple transmittance measurements for visible and
up to mid-infrared wavelengths, and a home-built setup which allows to use wavelengths
up to the near infrared and to perform angle-resolved measurements with a small numerical
aperture.

3.2.1 Fourier-transform infrared spectrometer

The ready-at-hand solution for transmittance measurements is a Fourier-transform infrared
(FTIR) spectrometer9 with an attached optical microscope.10 It can operate for shorter wave-
lengths (0.4 – 1.2 µm) with a quartz beam splitter and a silicon detector, and for longer wave-
lengths (0.9 – 5.0 µm) with a calcium-fluoride beam splitter and a indium-antimonide detec-
tor cooled by liquid nitrogen. Small sample areas between 8 – 100 µm in diameter can be
investigated. A polarizer allows to excite the nanostructures with light of a defined linear
polarization.

Importantly, the light is focussed and collected with Cassegrain lenses (reflective mi-
croscope objectives) with a numerical aperture of 0.5, or more precisely, the sample is il-
luminated from all directions between 15° – 30° off the substrate normal [22]. Since most
of the resonant phenomena investigated in this thesis are (slightly) angle-sensitive, the use
of Cassegrain lenses results in transmittance spectra with slightly broadened and less pro-
nounced peaks and dips, compared to the other setups below.

This setup is used for the linear-optical measurements presented in section 9.2.

9Bruker Equinox 55, Bruker Optik GmbH, Germany
10Bruker Hyperion 1000, Bruker Optik GmbH, Germany
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Figure 3.3: Schematics of the setup for angle-resolved linear transmittance measurements. Adapted from [22].

3.2.2 Home-built transmittance setups

The first of our two home-built transmittance setups has a small numerical aperture of 0.088,
and additionally allows for angle-resolved measurements [48]. It is schematically shown in
Fig. 3.3. Light from a halogen lamp is sent through a Glan-Thomson polarizer and focussed
with a microscope objective onto the substrate, with an effective opening angle of ±5°. The
sample position can be adjusted by a 3D micrometer stage, and its angles (with respect to
the incident light) by two goniometers and a 360°-rotation stage. For rotation in the other
direction, the sample has to be turned by 90 degrees (and the polarizer correspondingly).
The light transmitted through the sample can be limited by a rectangular knife-edge aper-
ture (not shown) down to a size of about 10 µm and can either be viewed with a camera or
coupled into an optical fiber attached to a home-built FTIR spectrometer (a piezo-controlled
Michelson interferometer with a liquid-nitrogen-cooled indium-antimonide detector). Thus,
transmittance spectra can be measured for wavelengths between 0.5 – 2.2 µm and variable
angles of incidence of up to ±60°. All angle-resolved transmittance spectra are normalized
to the oblique substrate. This setup is used for the linear-optical measurements presented in
section 9.3.1.

The second home-built setup (chronologically the earlier one) used for the measurements
of section 7.2 works the same way but is slightly simpler. A commercial white light source11

is used, and the polarized light is focussed with a numerical aperture of 0.025 to a 50-µm spot
diameter, which is smaller than the investigated sample areas. The transmitted light is sent
through an optical fiber and detected by an optical spectrum analyzer12 in the wavelength
range 0.55 – 1.75 µm.

11Ando AQ-4303B, Ando Electric Co. Ltd., now Yokogawa Electric Corp., Japan
12Ando AQ-6315B, Ando Electric Co. Ltd., now Yokogawa Electric Corp., Japan
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Figure 3.4: Setup for the THG experiments with Metallic Photonic Crystal Slabs (section 7.3).

3.3 Nonlinear-optical characterization setups

Nonlinear-optical experiments require excitation with high electromagnetic fields to obtain
a detectable nonlinear signal strength (cf. section 2.2.1). High intensities are usually ob-
tained from pulsed lasers providing light pulses of a certain temporal length and repetition
frequency. For a certain average power, the lower the duty cycle, the higher the nonlinear
signals. We use two systems, a titanium-sapphire (Ti:Sa) laser providing 5-fs pulses (sec-
tion 3.3.1) and an optical parametric oscillator providing 170-fs pulses (section 3.3.2), each
at a repetition frequency of about 81 MHz (≈ 1/12 ns). The two systems differ not only
in pulse length and spectral width, but also in center wavelength and the ability for time-
resolved measurements of the Ti:Sa setup.

Additionally, high intensities are achieved by focussing. The sources described below
provide coherent and parallel light with a Gaussian lateral beam profile. Behind a lens or a
spherical mirror, the light wave converges according to Gaussian beam optics [97] to a small
area described by the beam waist (spot radius, 1/e2 radius of the Gaussian intensity profile).

3.3.1 5-fs titanium-sapphire laser setup

The Ti:Sa laser delivering pulses of 5 fs length is used for the time-resolved spectroscopy
experiments on THG presented in section 7.3. The laser shall only be described briefly
here, details can be found in [16, 98]. Essentially, it is a Kerr-lens mode-locked laser with a
broad-band-amplification Ti:Sa crystal and highly sophisticated methods to compensate for
the dispersion of all amplified frequencies. For this purpose, prisms and doubly-chirped (di-
electric) mirrors are used inside the laser cavity and externally. The laser delivers polarized
pulses with a duration corresponding to about two optical cycles, at a carrier wavelength of
about 0.8 µm (about 1.55 eV photon energy), and an average output power of around 170 mW
(during a pulse, the power is hence a factor of 12 ns / 5 fs ≈ 2×106 higher).
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The overall experimental setup is shown in Fig. 3.4. The pulses from the Ti:Sa laser are
sent into a piezo-controlled Michelson interferometer to obtain two identical pulse copies.
These can interfere, as long as the time delay T between them is not larger than the pulse
length. The copropagating pulses with 80 mW maximal average power are focussed [31]
with a spherical silver mirror (f=100 mm) onto the sample, guaranteeing a small numerical
aperture of 0.025 and normal incidence. The beam waist at the sample position (measured
with a knife-edge technique) is 13 µm and much smaller than the 60-µm-wide sample areas.
We estimate a peak pulse intensity on the samples of 4×1010 W/cm2 [31]. The transmitted
light is collected by a spherical aluminum mirror (f=100 mm) and the optical third har-
monic is separated from the overwhelming fundamental light by means of four fused-silica
Brewster-angle prisms. The THG is spectrally resolved using a grating spectrometer13 (with
a grating blazed at 0.25 µm wavelength), and detected by a UV-sensitive, liquid-nitrogen-
cooled CCD camera.14 The whole experiment is controlled by a LabView interface which
allows to automatically acquire many CCD spectra for a range of interferometric time de-
lays. With this method, we can investigate the different quasi-temporal behaviors of different
spectral components of THG from the sample (see section 7.3).

By means of the interferometer, also the laser pulses themselves can be characterized, ei-
ther at the sample position or at an equivalent position. Placing a phase-matched beta-barium
borate (BBO) crystal into the focus and detecting the SHG intensity by a photomultiplier tube
allows to measure the usual second-order interferometric autocorrelation (SHG-IAC) shown
in Fig. 3.5(a). Alternatively, replacing the sample by a sapphire plate and detecting the gen-
erated THG intensity yields the third-order interferometric autocorrelation (THG-IAC)[see
Fig. 3.5(b)]. The latter can be viewed as the apparatus function and shows the high temporal
resolution of our time-resolved THG measurements shown in detail in section 7.3.

In this context, the nth-order interferometric autocorrelation (IAC) function is the nth-
harmonic intensity measured by a slow detector averaging over the interfering pulses, thus
described as

I
(n)
IAC(T ) =

∫ ∞

−∞

dt

[

{

E(t) + E(t − T )
}2
]n ∣
∣

∣

∣

nth harmonic
. (3.1)

For large interferometric time delays T , the two pulse copies do not interfere, and I
(n)
IAC(T )

is a constant, which we normalize to 1. Is is easy to see that the values of I
(n)
IAC(T = 0)

for n=1, 2, and 3 must then be 2, 8, and 32. The ratio of 8:1 for the SHG-IAC can be
seen in Fig. 3.5(a), and that of 32:1 for the THG-IAC in Fig. 3.5(b), also confirming a good
alignment of the interferometer in the experiment.

Figure 3.5(c) shows the broad field spectrum of the laser pulses. Assuming a flat spectral
phase and taking the Fourier transform of (c) leads to a first approximation of the pulse
electric field E(t). The SHG-IAC and THG-IAC calculated from this field [thin lines in (a)
and (b), respectively] match very well the experimental IACs, proving that the pulses are
nearly transform-limited, i.e., have negligible residual chirp (see also [16]).

13HR460, Jobin-Yvon, France
14LN/CCD-1340/100EB, Roper Scientific, USA
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Figure 3.5: Characterization of the 5-fs laser pulses. (a) Second-order interferometric autocorrelation (SHG-
IAC) measured directly (thick line) and calculated (thin line) from the measured pulse spectrum under the
assumption of a flat spectral phase. (b) Third-order interferometric autocorrelation (THG-IAC) measured di-
rectly (thick line) and calculated (thin line) in analogy to (a). (c) The gray area depicts the electric field spectrum
(square root of measured intensity spectrum) of the pulses, the line is the fit of Eq. (3.2). (d) Temporal evolution
of the pulse electric field as computed from Eq. (3.3).

To describe a single laser pulse a little bit more analytically, we apply a second approxi-
mation by expressing the electric field spectrum in Fig. 3.5(c) with the sum of 3 Gaussians

Ẽ(ω) ∝
3
∑

i=1

Êi e−(ω−ωi)
2/σ2

i , (3.2)

where Ê2/Ê1=0.67, Ê3/Ê1=0.65, ~ω1=1.36 eV, ~ω2=1.67 eV, ~ω3=1.82 eV, ~σ1=0.11 eV,
~σ2=0.17 eV, and ~σ3=0.048 eV. In the time domain, this corresponds to

E(t) ∝
3
∑

i=1

Êiσi e−σ2
i
t2/4 cos(ωit) . (3.3)

This electric field pulse, depicted in Fig. 3.5(d), is used for the calculations in section 6.2.

3.3.2 170-fs optical parametric oscillator setup
The optical parametric oscillator (OPO) is used for the SHG and THG experiments presented
in chapter 9. It provides coherent Gaussian pulses at a center wavelength of 1.5 µm and a
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Figure 3.6: Setup for the SHG and THG experiments with photonic Metamaterials (chapter 9).

pulse length of about 170 fs, thus, each pulse contains many cycles of light. Compared to the
short decay time of plasmon oscillations of typically below 10 fs (cf. section 2.3.1), these
pulses can be considered as a harmonic (i.e., single-frequency) excitation for a certain time
span.

The OPO15 draws its optical power from a Ti:Sa laser16 which provides pulses of about
120 fs duration at 0.81 µm wavelength and 2.1 W average power. The Ti:Sa laser itself is
pumped by a power of 11 W from a frequency-doubled Nd:Vanadate laser.17 The OPO output
is filtered by a 5-mm-thick silicon crystal to suppress all optical products except the pulses
at 1.5 µm, yielding an average output power of about 180 mW.

The experimental setup is shown in Fig. 3.6. Since the OPO delivers linearly polarized
light pulses, a combination of a first half-wave plate18 and a polarizer19 is used to adjust the
excitation intensity and to assure the polarization at the entrance of the setup. The reflection
of the incident light at a oblique glass plate (not shown) is focussed onto a germanium diode
to measure the linear intensity for reference. The light transmitted through the glass plate
passes a second half-wave plate to adjust the polarization of the pulses without changing
the following beam path. Typically, 50 mW of average power (or 10 – 90 mW power for
intensity variations) are focussed onto the sample by a borosilicate lens (f=100 mm). The
focus beam waist is 32 µm, the Rayleigh length [97] is 1800 µm, and the numerical aperture
is 0.018, as measured with a knife-edge technique. For 50 mW average excitation power, we
estimate the pulse peak intensity and electric field strength on the sample to 4×107 W/cm2

and 2×107 V/m, respectively.
The sample position can be adjusted by a 3D translation stage, and two of its angles by

goniometers and the third by a 360°-rotation stage. The sample can be tilted in the other
direction after turning the sample by 90° and the second half-wave plate by 45° around the
optical axis of the setup. The samples investigated in chapter 9 have areas of (100 µm)2,
which is large compared to the beam diameter, even for angles of incidence of ±60° (the
tails of the Gaussian lateral intensity profile can be neglected, especially in nonlinear optics).
In the sample, the incident light pulses generate an optical second harmonic and/or third
harmonic. All light radiated into the forward direction (transmitted through the sample) is

15Opal, Spectra Physics, USA
16Tsunami, Spectra Physics, USA
17Verdi V18, Coherent Inc., USA
181450nm λ/2 Mica, B. Halle GmbH, Germany
19Glan-Laser 03PGL301, Melles Griot, USA
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spectrally filtered by means of optical glass filters and detected by a photo-multiplier tube20

(PMT). For measuring SHG, the optical filters are 6 mm of BG3 and 3 mm of RG715 (for
THG, only 6 mm of BG39), effectively suppressing all undesired optical frequencies, i.e.,
the fundamental and the other nonlinear products. Optionally, an analyzer can be placed into
the beam path in front of the PMT to determine the polarization of the emerging harmonic
wave. When measuring samples at increasing oblique angles, the 3D position of the sample
area is realigned, and also the collecting lens in front of the PMT is adjusted to correct for
the different beam path (caused by the 1-mm-thick glass substrate of the sample).

The PMT operated with a cathode voltage of 1.1 kV is connected to a resistor of 1 MΩ

and to a lock-in amplifier.21 The beam from the OPO is chopped by a 10-segment chopper
wheel (not shown) with a frequency of 400 Hz. This lock-in method dramatically increases
the signal-to-noise ratio. The lock-in amplifier is used with an integration constant of 1 s
and displays the final observable, i.e., a voltage in millivolts or microvolts, which is directly
proportional to the respective nonlinear intensity.

With the above values, and knowing that the quantum efficiency of the PMT for SHG
(THG) at 0.75 µm (0.5 µm) wavelength is 10 % (18 %), we will be able to estimate the abso-
lute conversion efficiency of linear intensity to nonlinear intensity in section 9.2.2 (9.2.4).

20R636-10, Hamamatsu Photonics, Japan
21SR830, Stanford Research Systems, USA
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Numerical methods

For the mathematical description of our optical materials, one has to solve the Maxwell equa-
tions and take into account the material permittivities (and maybe permeabilities) for linear
optics. In recent years, a variety of commercial software products has become available to
perform this task in detail for materials with a given geometry. We use the FEMLAB (now
Comsol Multiphysics)1 package to simulate photonic Metamaterials.

It is a central question of numerics whether numbers and other results calculated by such
software packages are accurate and significant at all; that is, whether the convergence of the
results has been achieved. Various issues can arise on the long way between the (often very
general) methods of a software package and a resulting number. Estimating the badness of
these issues requires profound knowledge of the methods and their limitations, knowledge
which often only specialists of numerics possess.

Although we are not specialists, we claim convergence for our numerical results pre-
sented in chapter 8. Thus, the present chapter describes how we have carefully considered
the numerical issues which can arise when solving the 3D vector Maxwell equations with
FEMLAB (section 4.1). Convergence is claimed not only for transmittance values in linear
optics, but also for values associated with nonlinear near-fields which are even more critical.
Especially the accurate description of electromagnetic near-fields in and around metals in
three dimensions turns out to be challenging.

We briefly note that in the other two theory chapters 5 and 6, we employ the MATLAB2

environment for relatively simple calculations in which the question of convergence is not
critical.

4.1 Solving the 3D Maxwell equations with FEMLAB
Since its start in 1986, FEMLAB has become an established solution for simulations in both
scientific and industrial applications. The software package solves partial differential equa-
tions of second order in one, two, or three spatial coordinates. The static or time-dependent
problems can include physical systems involving electromagnetics, structural mechanics,

1Comsol Multiphysics version 3.2a, Comsol AB, Sweden
2MATLAB version 7.1, The Mathworks Inc., USA
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fluid dynamics, thermodynamics, and many more. The numerical solution is computed using
the finite element method [99–101], which has been developed since the 1940s [102, 103].

We employ this software for the simulations of Metamaterials of which the results are
presented in chapter 8. Here, we give an (incomplete) overview of the methods FEMLAB
[104] uses to solve 3D electromagnetic wave problems in the frequency domain. Most im-
portantly, we discuss critical issues which potentially arise, and explain our procedures cir-
cumventing them. The following paragraphs are a more general description, while details
relevant for our calculations are given in section 4.1.1.

We anticipate to mention that we use FEMLAB first to solve for the linear-optical fields
only, whereas we compute nonlinear quantities subsequently within postevaluation (see be-
low) on the basis of the linear-optical fields.

Differential equations

For the time-harmonic case3 with the fixed frequency ω0, the electric field is Ẽ(r, ω) =

Ê(r)δ(ω − ω0), and the partial differential equations under consideration are [104]

∇×∇× Ê(r) − ω2
0

c2
0

ε(r)Ê(r) −∇Ψ̂(r) = 0 , (4.1a)

ε0∇ ·
{

ε(r)Ê(r)
}

= 0 , (4.1b)

which are the wave equation (2.18) appended by a Lagrange multiplier Ψ̂(r) and an addi-
tional equation requiring that the field ε(r)Ê(r) be divergence-free (i.e., we assume no free
charges). The variable Ψ̂(r) and the second equation are included as usual in order to en-
hance the numerical stability [104]. Both the independent variable, r, and the dependent
variables, Ê and Ψ̂, are subject to approximations described in the following.

Tetrahedral mesh

The wave propagation is only considered inside a finite 3D volume. For Metamaterials, this
calculation volume is a cuboid, and usually a part of the volume corresponds to air, another
part to the glass substrate, and third part to a metal structure of a certain 3D geometry. The
user has to define these geometry objects as the first step. (Later, these volumes can be
assigned material parameters like permittivities.)

The spatial coordinate r now needs to be discretized. This is done by filling the whole
calculation volume with irregular tetrahedra. Correspondingly, surfaces and interfaces are
discretized by triangles (see Fig. 4.1). The mesh generator of FEMLAB allows to define
regions of higher interest (e.g., the metallic structure) which can be filled with smaller tetra-
hedra than in other regions (e.g., in air far away from the metal), and a quasi-continuous size
transition of tetrahedra between regions. The possibility of a selective local resolution is one

3We note that FEMLAB assumes a time dependence e+iω0t of fields, in contrast to the usual description
in optics expressed by Eq. (2.16). Correspondingly, all values transferred between FEMLAB and equations of
this thesis are applied a complex conjugation.
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Figure 4.1: Mesh discretization. The example shows the air/metal interface mesh for a Split-Ring Resonator.
The shown triangles are connected to some of the tetrahedra filling the metal, as well as to tetrahedra in the
air volume (not shown for clarity). The straight edges approximate a geometric shape which is defined to be
completely rounded off to avoid sharp corners and locally divergent fields.

of the key advantages of using a tetrahedral mesh. Another advantage is that virtually all
geometric shapes can be approximated, in particular, round edges and surfaces. This avoids
sharp bends and corners of 90° which are always present in the usual rectangular cartesian
3D grids (e.g., the stair-step grid of the finite-difference time-domain method [105, 106]).
Sharp corners can lead to divergent local field strengths at metallic surfaces (lightning-rod
effect). This can be very important for nonlinear-optical simulations.

Finite elements

The dependent variables can then be approximated within each tetrahedron individually. In
the simplest case (called linear Lagrange element [99]), a scalar variable like Ψ̂ can be de-
scribed by a linear function of the space coordinates, e.g., Ψ̂(r) := â0 + â1 · r, with â0 and
â1 as coefficients for each tetrahedron. However, a different assignment of appearing coef-
ficients is favorable: Assigning each node in the complete mesh a certain value for Ψ̂, the
linear interpolation also guarantees the continuity of the variable Ψ̂(r) across tetrahedra. The
values of Ψ at all node points are then the coefficients. The generalization for approximation
with polynoms of higher order [99–101] is obvious.
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Vector elements

The trickier part is the approximation of the vector field Ê(r). We cannot describe each of
the three vector components Êx,Êy,Êz by Lagrange elements since this would force normal
components of Ê to be continuous across material interfaces, which is generally incorrect.

However, if the permittivity ε(r) is constant within each tetrahedron, a simple ansatz for
a divergence-free vector field Ê(r) is a field with a constant curl. In this case, the field can
be described by Ê(r) := b̂0+ b̂1×r, with the components of b̂0 and b̂1 comprising six scalar
coefficients in total. Again, a different assignment of coefficients is preferred: Each edge of
the complete mesh is assigned one scalar degree of freedom, namely, the constant tangential
part of the vector field along the direction of the edge. Inside each tetrahedron with its six
associated edges, the field can then be interpolated. These so-called edge elements [99, 100]
(or Whitney elements [107] or Nédélec elements [108–110]) assure from the ansatz functions
that tangential fields are continuous across material interfaces.

It is important to note that, in contrast, normal components of fields across any tetrahe-
dron boundary are subject to potential errors resulting from a poor space discretization or
numerical convergence (see below).

For 3D wave propagation, FEMLAB offers the linear vector elements just described,
or quadratic or cubic vector elements [108–110]. Note that (linear) vector elements are
divergence-free inside each tetrahedron, but not necessarily on the interface between any
two tetrahedra.

Direct and iterative solvers

With the fields Ê and Ψ̂ being described by many scalar coefficients distributed throughout
the mesh, the differential equations (4.1) can be translated into difference equations, forming
a large set of linear equations with the coefficients as unknowns. Typically, a 3D Metama-
terials problem consists of about 104–107 unknowns, so the sparse matrix describing the set
of linear equations cannot be inverted by simple methods but the set of equations has to be
solved by sophisticated, specific solvers. The development of such solvers is a current topic
of research in numerics (see, e.g., [111, 112]).

Solvers can be divided into two classes, direct ones and iterative ones. Direct solvers
always lead to numerical convergence (see below) and are fast for small models of up to about
5×104 unknowns, but become slow and extremely memory-consuming for larger models.
On our 8-gigabyte Linux machines,4 we are able to process at most 2.2×105 unknowns with
direct solvers. Iterative solvers, in contrast, use by far less memory and are often faster for
large models, but numerical convergence is not always guaranteed. Moreover, the FEMLAB
iterative solver best suited for 3D wave propagation problems requires a multigrid mesh
hierarchy, i.e., a coarse mesh and a refined mesh containing all edges of the coarse mesh, or
one mesh issued with vector elements of different orders. Defining such a mesh hierarchy
is, however, not always possible (see next section). We are able to process at most 2×106

unknowns with iterative solvers.
4Sun Fire V20z Server, Sun Microsystems Inc., USA
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Postevaluation

After solving, FEMLAB allows to use the computed coefficients to calculate the fields Ê

and Ψ̂ and virtually any analytic expression depending on them (magnetic field, intensity,
nonlinear quantities etc.). This can be done, e.g., to visualize the vector field in an arbitrary
plane, or integrate a derivative of the field over a certain volume, or integrate a nonlinear
field component at the outside of a certain surface etc.

Convergence

For the simulation results to be meaningful at all, convergence must be ensured. There are
two types of convergence. The first is the numerical convergence of solving the system of
linear equations by a solver. The success can be seen from a number provided by the solver,
and is always achieved for direct solvers. The second, more complicated type of convergence
is associated with the question if the approximations by the mesh and the ansatz functions
accurately describe the real continuum physics. For a mesh discretization with tetrahedra
which are larger than relevant wavelengths, this is obviously not the case. More subtle issues
and questions can appear, e.g., whether near fields or evanescent fields are well enough
discretized, or whether absorbing boundaries actually do what they are designed for. In most
cases, the second type of convergence cannot be put into a general number, and convergence
of smooth fields and a specific observable or end result must be checked for validity by using
a sequence of successively finer meshes and/or higher-order vector elements.

4.1.1 MKFEM: Modelling Metamaterials

While FEMLAB offers lots of tools to deal with numerical problems involving partial dif-
ferential equations, its wideness and generalization makes it sometimes impractical to work
with. Restricted to the most general case of 2D periodic Metamaterials, we have thus de-
veloped a set of our own library functions (called MKFEM, version 2.0) which enormously
simplify the handling and retraceability of simulations with FEMLAB in the MATLAB en-
vironment. Using our library, for example, allows to express a simple model of Split-Ring
Resonators excited with light under oblique incidence to simulate the transmittance with
only about ten lines of MATLAB code.

All MKFEM library functions are provided with a detailed documentation available
within the MATLAB Help context. Here, we summarize the most important parts of techni-
cal background on what is performed or assumed within the library functions, without going
into the details of their usage again. Rather, we explain which aspects of numerics have care-
fully been taken into account for the simulations of which the converged results are presented
within chapter 8.

Implementation of 2D periodic boundary conditions

The definition of 2D periodic boundary conditions in the x and y directions for both Ê

and Ψ̂ has to be expressed individually for each pair of corresponding surfaces, e.g., for
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two boundaries of the substrate with surface normal parallel to x, and for two with surface
normal parallel to y, the same for the air volume, for each perfectly matched layer (see
below), etc. For each corresponding pair, FEMLAB requires the linear mapping of one
surface onto the other, defined by specifying serval geometric points (FEMLAB numbers),
and other information. The data substructure which describes periodic boundary conditions
is a hierarchical, nested structure of different data types, consisting in total of 12 hierarchical
levels and up to several thousands of entries. It is automatically generated by a MKFEM
function after the user has defined all appearing geometry objects.

Moreover, the surface mesh on corresponding surfaces should be congruent (to avoid
interpolation as an additional approximation). Unfortunately, FEMLAB does not offer this
possibility since its version 3.0. Hence, we obtain the (coarsest) mesh from a combination
of the FEMLAB mesh generator and the publicly available TetGen5 mesh generator.

Realization of perfectly matched layers

For Metamaterials with small element-to-wavelength ratios and normal-incidence scenarios,
it is sufficient in most cases to let the evanescent near fields decay along the extent of the
substrate volume and air volume, respectively. For large ratios, or Photonic Crystals, as
well as for Metamaterials with oblique incidence, one has to use special absorbing bound-
ary conditions in the directions of transmission and reflection, namely so-called perfectly
matched layers (PMLs) [113]. A PML is an extension of the calculation volume that can be
described either as an anisotropic absorbing material [114], or alternatively as an extension
into complex-valued space coordinates [115], in which normally propagating waves decay
exponentially.

If the user sets a single flag, a MKFEM function automatically generates PMLs, in ad-
dition to already specified geometry objects. PMLs are defined with permittivities and per-
meabilities [omitted in Eq. (4.1a)] matching the corresponding adjacent physical volumes,
with an absorbing contribution increasing linearly with distance. Care must be taken when
using PMLs to adjust the absorption factor and PML lengths and discretization to assure con-
vergence. Also note that only propagating modes are treated specially this way, evanescent
modes entering a PML decay like in air or in the substrate. Due to the linear increase of
material parameters inside the PMLs, their use generally only makes sense in combination
with vector elements of quadratic or cubic order.

Plane-wave excitation

Excitation is always performed with a plane electromagnetic wave having a polarization
(linear, circular, or elliptical) which has to be specified. For normal incidence, the wave
propagates towards the −z direction.

If no PMLs are present, the boundary conditions at the surfaces with power inflow (z>0)
and outflow (z<0) do not only allow for the inward propagation of an exciting plane wave,
but also outward propagating plane waves are allowed (absorbed) without reflections [104].

5TetGen version 1.4.0, http://tetgen.berlios.de (January 14, 2006)
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Oblique incidence

Exciting the Metamaterial with a wave at oblique incidence is possible by specifying one
or two Euler angles of rotation. The polarization vector and the propagation direction (the
wave vector), specified for normal incidence, are both rotated as described by the angles.
This makes it very easy to specify S- or P-polarization.

The use of oblique incidence generally requires PMLs (see above) and, thus, second-
order elements. Internally, the tangential component of the electric field near the interface
from which the wave emerges is produced by an artificial interface current, while the normal
component in P-polarization stems from an artificial interface charge. Both these source
quantities then have to be included on the right-hand sides of Eqs. (4.1).

Generation of a multigrid mesh hierarchy

If the MKFEM user desires, not only a single mesh, but a multigrid mesh hierarchy is gen-
erated. For this purpose, a single geometric mesh can be issued several times, with vector
elements of increasing orders. Alternatively, a sequence of geometric meshes containing
each other can be obtained by generating a first, coarsest mesh, followed by subdividing
each tetrahedron into eight smaller tetrahedra (this subdivision is called mesh refinement),
and maybe continuing recursively. In the latter case, all meshes are issued with elements of
the same order. Also a combination is possible, the user just has to specify a list of numbers
corresponding to the element orders of the multigrid levels, and mesh a refinement is only
applied for each finer level which is assigned the same element order as the previous mesh
case. Note that mesh refinements do not work in connection with curved geometry objects.

Choice of solvers

The MKFEM library offers two solvers, a direct6 one and an iterative7 one. These include
the use of some parameters which have been chosen according to the experience and advice
of Comsol AB as well as our own experience. The iterative solver needs a multigrid mesh
hierarchy with at least two mesh cases, and solves for the finest one. Additional parameters
(tolerance, error estimate) can optionally be issued to overwrite our default values. The direct
solver does not need a mesh hierarchy, but can be used with such a mesh hierarchy to solve
for a single specified mesh case.

Simplified postevaluation

After solving, the intensity ratio of transmittance, reflectance and absorbance of the Meta-
material model can be calculated from the electric fields, by calling a MKFEM function.

Additionally, the nonlinear-optical quantities (source terms) as discussed in chapter 8 are
computed from the linear-optical fields.

6SPOOLES solver [104]
7GMRES solver, with Geometric Multigrid preconditioner [104]
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Achieving convergence

As mentioned in the previous section, two types of convergence have to be considered, and
are ensured for the simulations of chapter 8. On one hand, the numerical convergence is
provided by using the direct solver.

On the other hand, the convergence of numerics to physics is ensured by several pro-
cedures explained here. We always use curved geometries for metallic structures (e.g., see
Fig. 4.1). This is not only in accordance with experiments [cf. Fig. 3.2(a)] but also serves
to make the numbers of local fields, and especially nonlinear quantities, considerably more
stable and thus achieves a much better convergence. However, we have to use the direct
solver because no mesh refinements are possible, and we cannot use (respectively) higher-
order elements for a mesh hierarchy because of persisting memory limitations. It is also clear
that with curved geometries we cannot use mesh refinements to prove convergence (which
would be the mathematically correct proof), but we have to use a sequence of increasingly
finer meshes which do not contain each other. The nonlinear observables presented in chap-
ter 8 are exclusively connected with the metal structure, and usually the convergence of these
observables is investigated by varying the mesh discretization inside the metal (and on the
metal surface) by a factor of 1.5–2.0. We speak of converged results because the correspond-
ing numbers do not vary systematically (they do not increase or decrease monotonically) and
vary by less than 1–5 % of their relative values when using the different meshes.

For our normal-incidence simulations, we use linear vector elements and no PMLs.8

The evanescent fields prove to be well resolved, and they decay strongly before hitting the
boundary of the calculation volume, as checked by visualizing the fields and by computing
corresponding numbers.

For oblique incidence, PMLs and quadratical elements are used, and we always first
check the mesh and PMLs with a simple scenario. All geometry objects, i.e., the substrate,
air and gold geometry, are included for the mesh generation. However, the material pa-
rameters of the volume which later describes gold is temporarily set to the values of air,
resulting in a simple flat air/substrate interface. The reflection of this interface is simulated
and checked against the Fresnel formulas (2.14). Only after passing this check within less
than 1 % relative or 0.1 % absolute error, the mesh and PMLs are used for simulations of the
Metamaterial, including the gold parameters and further checks as described above.

In general, we always use a mesh discretization smaller than one tenth (one sixth) of
relevant wavelengths for linear (quadratic) elements [104].

8except when computing the transmittance for small wavelengths and large SRRs (section 8.1), where we
use “hand-made” PMLs with constant absorption and linear elements, for historical reasons



Chapter 5

The homogeneous linewidth and
nonlinear-optical methods

Both Metallic Photonic Crystal Slabs and photonic Metamaterials can be considered, more
generally, as arrays of Metal Nanoparticles (MNPs). In the field of MNPs (see, e.g., [90, 116–
121]), an important challenge has been the experimental determination of the plasmon decay
time τ . This chapter clarifies a historical misunderstanding and additionally explains why
we do not, in the remaining chapters, address decay times or linewidths in any more detail.

The plasmon decay time is difficult to determine because linear- and nonlinear-optical
methods usually average over several thousands of MNPs to obtain an acceptable signal
strength. Depending on the fabrication method (e.g., lithographic patterning [90], Volmer-
Weber growth [122]), a distribution of particle sizes, shapes, and hence plasmon resonance
frequencies results (cf. section 2.3.1). Thus, linear-optical spectroscopy on particle en-
sembles only delivers the total linewidth, resulting from both the homogeneous linewidth
γ=1/(2τ) (of the plasmon) and the inhomogeneous linewidth (from differences in particles).

It was first believed in error that (nonlinear) time-resolved femtosecond measurements
(similar to our experiments of chapter 7) could deliver the decay time directly [91], which
subsequently has been revoked. Later, it was claimed [24] that a combination of linear-
and nonlinear-optical methods could distinguish between homogeneous and inhomogeneous
contributions: The authors of [24] presented calculations which seemingly show a depen-
dence of the interferometric second-order autocorrelation signal (cf. section 3.3.1) on the
plasmon decay time, while keeping the total linear-optical linewidth fixed. That work has
been the basis of much if not most of the work that followed in this field [25–30, 123]. Here,
we identify a technical mistake in the calculations of [24] and prove that the authors’ idea is
not correct when employing SHG or THG. Since we use SHG and THG for the investiga-
tions of the remaining chapters of this thesis, we will consequently not investigate linewidths
in any more detail, and rather use damping constants as purely phenomenological quantities.

We begin by discussing analytic results for the limit of δ-pulses and Lorentzian inhomo-
geneous broadening (section 5.1), also stating which nonlinear methods indeed allow for the
determination of the homogeneous linewidth. We continue with numerical simulations for
pulses of finite duration and Gaussian inhomogeneous broadening (section 5.2).

43
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5.1 Analytic calculations
Following along the lines of [24] and repeating our equivalent ansatz of section 2.3.1, we
start by describing a particle plasmon by an oscillating particle with abstract charge q, mass
m, and displacement x(t), driven by an electric field E(t) via

ẍ + 2γẋ + Ω2
0x + (ξx2 + ηx3 + ...) =

q

m
E(t) . (5.1)

For the interferometric experiments to be described, E(t) corresponds to a pair of coprop-
agating pulses with time delay T . In linear optics, i.e., for ξ = η = ... = 0, this leads to
a Lorentz oscillator resonance at the damped eigenfrequency Ω =

√

Ω2
0 − γ2 with a half-

width-at-half-maximum (HWHM) homogeneous linewidth γ = 1/(2τ).
To first order in the laser electric field, the polarization P (1) ∝ x(1)(t) is given by

x(1)(t) ∝ Ω−1

t
∫

−∞

dt′ e−γ(t−t′) sin [Ω (t − t′)] E(t′) . (5.2)

Upon excitation with resonant pulses, P (1)(t) oscillates with frequencies around Ω. To sec-
ond order in the laser electric field, −ξ{x(1)(t)}2 is the driving term for the second-order
displacement x(2)(t) (cp. section 2.2). Provided that this driving term is off-resonant with
respect to Ω, we obtain the second-order polarization P (2)(t) ∝ x(2)(t) with

x(2)(t) ∝
[

x(1)(t)
]2

. (5.3)

As explained in section 2.2.1, this expression contains a second-harmonic (SHG) contribu-
tion with frequencies around 2Ω and additionally a contribution of optical rectification (OR)
around zero frequency, which plays a crucial role in this chapter. Furthermore, the authors
of [24] argued (see also formulas in [27, 91]) that the signal S measured by a slow detector
is given by the integral of the nonlinear intensity over time, i.e.,

S
(2)
SHG+ OR(T ) ∝

∫ ∞

−∞

dt
[

P (2)(t)
]2

. (5.4)

It is crucial to note that this expression comprises both SHG and OR. This, however, is in
contrast to what is actually measured in a second-order interferometric autocorrelation (IAC)
setup, where one exclusively detects the emitted SHG by means of a photomultiplier tube
behind carefully selected optical filters which suppress all contributions other than SHG.1

For reasons of simplicity and to allow for analytic results, we first discuss excitation with
a pair of δ-pulses, i.e.,

E(t) = Ê0 [δ(t) + δ(t − T )] . (5.5)

1The same problem associated with Eq. (5.4) can arise for a conventional interferometric autocorrelation
of laser pulses (compare [124]), where one has P (2)(t) ∝ χ(2) E2(t). There, however, the IAC remains
unaffected, provided that the negative-frequency part of the laser spectrum has negligible overlap with the
positive-frequency part.
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It is clear for symmetry reasons that the nonlinear signals only depend on |T |. Thus, we only
consider T ≥ 0 in what follows. For a single homogeneously broadened oscillator we obtain

P (1)(t) ∝ Ω−1
(

Θ(t) e−γt sin (Ωt)

+Θ(t − T ) e−γ(t−T ) sin [Ω(t − T )]
)

. (5.6)

This leads to the second-order polarization

P (2)(t) ∝ Ω−2
(

Θ(t) e−2γt[1 − cos (2Ωt) ]

+Θ(t − T ) e−2γ(t−T ){1 − cos [2Ω(t − T )] }
+2Θ(t − T ) e−γ(2t−T ){ cos (ΩT ) − cos [Ω(2t − T )] }

)

. (5.7)

Let us now consider an inhomogeneously broadened ensemble of oscillators with fixed
damping γ and a Lorentzian distribution of eigenfrequencies Ω with the distribution function

w(Ω) =
Γ/π

(Ω − Ω)2 + Γ2
, (5.8)

which is centered around frequency Ω. The HWHM of this inhomogeneous distribution is Γ.
To work out the convolution, we approximate the prefactor 1/Ω2 in Eq. (5.7) by 1/Ω

2
. This

approximation is justified in the limit Γ � Ω, which is usually well satisfied for lithographi-
cally fabricated particles. These two steps together lead to

P
(2)
inhom(t) ∝

∫ ∞

−∞

dΩ w(Ω)P (2)(t)

∝ +Θ(t) e−2γt

+Θ(t − T ) e−2γ(t−T )

+2Θ(t − T ) e−γ(2t−T )−ΓT cos
(

ΩT
)

−Θ(t) e−2(γ+Γ)t cos
(

2Ωt
)

−Θ(t − T ) e−2(γ+Γ)(t−T ) cos
[

2Ω(t − T )
]

−2Θ(t − T ) e−(γ+Γ)(2t−T ) cos
[

Ω(2t − T )
]

. (5.9)

The first three summands correspond to OR, the last three summands to SHG. Note that the
latter solely depends on the total width γ + Γ. In linear optics, the linewidth of the inho-
mogeneous ensemble results from the convolution of a Lorentzian with homogeneous width
γ with a Lorentzian of inhomogeneous width Γ. This leads to a total resonance linewidth
of γ + Γ in linear optics. Thus, both the linear response and the correctly calculated SHG
depend in the very same manner on the homogeneous and inhomogeneous linewidths, and a
distinction is strictly not possible.

In contrast, the contribution from OR does not simply depend on γ + Γ, potentially al-
lowing for a distinction between homogeneous and inhomogeneous linewidths. It is clear
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that by erroneously including OR in the calculated interferometric “SHG signal” [24], a sep-
aration of the homogeneous and inhomogeneous contributions to the linewidth erroneously
seems possible.

We have performed an analogous calculation for the third-order nonlinear-optical re-
sponse. For third-harmonic generation and T ≥ 0, we find that the ensemble THG polariza-
tion with a frequency around 3Ω is

P
(3)
THG, inhom(t) ∝ −Θ(t) e−3(γ+Γ)t cos

(

3Ωt
)

−Θ(t − T ) e−3(γ+Γ)(t−T ) cos
[

3Ω(t − T )
]

−3Θ(t − T ) e−(γ+Γ)(3t−T ) cos
[

Ω(3t − T )
]

−3Θ(t − T ) e−(γ+Γ)(3t−2T ) cos
[

Ω(3t − 2T )
]

. (5.10)

The THG again only depends on γ + Γ, and no information on the homogeneous linewidth
γ can be obtained. However, self-phase modulation (SPM) with a frequency around Ω (see
section 2.2.1) would provide such information. In a non-copropagating geometry, the latter
would give rise to a diffracted four-wave-mixing (FWM) signal. Corresponding calculations
have been presented in [125].

Broadly speaking, nonlinear-optical signals of the type ω+ω (SHG) or ω+ω+ω (THG),
etc. do not allow one to distinguish between homogeneous and inhomogeneous contributions
to the linewidth, whereas signals of the type ω − ω (OR) or ω + ω − ω (SPM or FWM), etc.
do allow for such distinction. The “−” sign in OR, SPM, FWM, etc., effectively reverses the
time axis in analogy to phase conjugation. For example in FWM, the “−” sign leads to the
well-known photon-echo response [125]. At this point, a decay of the ensemble polarization
due to inhomogeneous broadening (just interference) is reversed, whereas damping due to
homogeneous broadening (a dissipative process) cannot be reversed.

5.2 Numerical calculations
The presented analytical calculations for δ-pulses are appropriate if the (complex) laser elec-
tric field spectrum exhibits negligible variation on the scale of the homogeneous linewidth
γ. For longer pulses, we perform numerical simulations.2 As described above, the correct
way to calculate the SHG contribution is to spectrally filter the second-order response of the
oscillator ensemble. To obtain the final IAC signal as a function of the time delay T , the
square modulus of this filtered second-order polarization has to be integrated with respect
to frequency. To allow for a direct comparison with the results of [24], we also use sech2-
shaped 15 fs pulses with a center wavelength of 780 nm, resonantly exciting the ensemble.
The latter has a Gaussian distribution of resonances and is discretized in steps of 1 nm.

Figure 5.1 shows the resulting full-width-at-half-maximum (FWHM) of the interfero-
metric autocorrelation as a function of the plasmon decay time τ . The full symbols corre-
spond to the correct calculation, whereas the open symbols erroneously comprise the OR

2These simulations are performed within the MATLAB environment [126] which facilitates discrete Fourier
transforms, spectral filtering, convolutions, and interpolation of data vectors.
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Figure 5.1: Recalculated data of Fig. 2 of [24]. The dashed line describes the simulated FWHM of the second-
order interferometric autocorrelation (IAC) from one single resonant Lorentz oscillator (the particle plasmon),
versus plasmon decay time τ . The solid lines represent ensembles of many oscillators with eigenfrequencies
following a Gaussian distribution, for which the width is determined by fixing the total extinction linewidth ∆λ

(squares: ∆λ=70 nm; diamonds: ∆λ=80 nm; triangles: ∆λ=125 nm). The autocorrelation width is indicated
by the full symbols for considering exclusively the correct contribution of SHG. Corresponding results for
erroneously including both SHG and OR on trial are shown by the open symbols.

contribution and qualitatively reproduce the results of [24] (see their Fig. 2). For each of the
curves in our Fig. 5.1, the total linewidth of the linear-optical spectrum is fixed. The squares,
diamonds, and triangles correspond to a fixed extinction linewidth (FWHM) of ∆λ=70, 80,
and 125 nm, respectively (see parameters of Fig. 2 of [24]). The dashed curve corresponds to
a single (homogeneously broadened) oscillator for reference. The correct results and those
including the OR contribution differ strongly – as in our analytical calculations. In particular,
the slopes of the correct curves in our Fig. 5.1 are very nearly zero (within typical experimen-
tal error bars of 1 fs), while the incorrect simulations have a small positive slope. Thus, using
the correct curves one cannot infer the plasmon decay time from measured interferometric
autocorrelations, whereas the incorrect curves erroneously suggest this possibility [24]. We
conclude that, under inhomogeneous conditions, the homogeneous linewidth cannot be de-
termined by analyzing linewidths from linear optics and SHG (or THG) measurements. In
consequence, we refrain from making any quantitative statements about plasmon decay times
in any other part of this thesis.

We note in passing that the IAC acquires artificial “wings” [24] if the OR contribution
is erroneously included. Indeed, such wings are visible in Fig. 1a of [24]. They disappear in
the correct calculation (not shown).
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Chapter 6

Nonlinear optics of Metallic Photonic
Crystal Slabs: Theory

In section 2.4, we have introduced Metallic Photonic Crystal Slabs (MPCSs) and explained
their key feature, the coupling of a photonic resonance (the waveguide mode resonance)
with an electronic resonance (the particle plasmon resonance). In this chapter, we develop a
simple model describing MPCSs as two coupled Lorentz oscillators, and derive their optical
properties.

We discuss their linear optics in section 6.1. In contrast to frequent belief, two coupled
classical Lorentzian oscillators which include damping lead to an optical response which
does not correspond to that of two new effective Lorentzian oscillators. Instead, our model
generally leads to Fano-like lineshapes in the linear-optical absorption spectra. This aspect
is consistent with experiments on MPCSs [30, 58–61]. In section 6.2 we extend our model
to the nonlinear optics of two coupled oscillators. We show that signatures of interfero-
metric third-harmonic generation depend on the source of nonlinearity. The parameters of
the presented numerical calculations are chosen to allow for a direct comparison with our
experimental results, which are presented in chapter 7.

Our theoretical approach is thus distinct from earlier descriptions of the linear- and
nonlinear-optical properties of MPCSs. Those descriptions include either a semi-quantum
mechanical approach [59], or two independent Lorentz oscillators with ad-hoc decay times
[30] (also confer chapter 5). In comparison, our simple model gives a clearer picture of
the fundamental physical relations while explaining more findings of experiments, e.g., the
lineshapes appearing in linear as well as nonlinear optics.

6.1 Linear optics of two coupled Lorentz oscillators

In section 2.3.1 we have introduced an abstract harmonic oscillator as a system to describe
a particle plasmon oscillation. Now, we additionally apply the same idea to the oscillating
electric field of the waveguide mode. Then, the generalization of Eq. (2.35) to a system of
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two coupled, oscillating particles of equal mass m leads to the equations of motion

ẍpl + 2γplẋpl + Ω2
plxpl + (NL)pl − Ω2

cxwg =
qpl

m
E(t) , (6.1a)

ẍwg + 2γwgẋwg + Ω2
wgxwg + (NL)wg − Ω2

cxpl =
qwg

m
E(t) . (6.1b)

Here, xpl(t) and xwg(t) are the displacements representing the plasmon and waveguide os-
cillations, respectively. The resonance frequencies, the HWHMs, and the oscillator strengths
of the uncoupled system are denoted by Ωj , γj , and qj (j = pl, wg), respectively. Ω2

c rep-
resents the coupling strength between the oscillators. The nonlinear terms (denoted by NL)
are discussed in section 6.2 and ignored here.

In order to make the resulting formulas transparent, we immediately discuss a few pa-
rameters in terms of their experimentally relevant values. Since the uncoupled waveguide
resonance is extremely sharp [127] as compared to the plasmon width, we set the waveguide
damping γwg = 0. In the following, we derive formulae for an arbitrary waveguide oscillator
strength qwg, however, most aspects can already be understood in the simpler case qwg = 0.
For typical sample parameters, |qwg| � |qpl| holds, i.e., the area under the extinction curve
of the (uncoupled) waveguide mode is much smaller than that of the plasmon.

The differential equations (6.1) can easily be solved analytically in the frequency do-
main (cf. section 2.1.2), that is, after replacing each variable in Eqs. (6.1) by its transformed
variable (xpl → x̃pl etc.) and replacing each time derivative by the factor (−iω). Excitation
with the electric field Ẽ(ω) then leads to the first-order displacements x̃

(1)
j (ω) and the polar-

izations P̃
(1)
j (ω) = N qj x̃

(1)
j (ω). N is the density of the oscillators. Note that in the case

qwg = 0, only the plasmon oscillation x̃
(1)
pl (ω) contributes to the polarization. In general, the

total linear polarization P̃ (1)(ω) = P̃
(1)
pl (ω) + P̃

(1)
wg (ω) becomes

P̃ (1)(ω) =
N

m

q2
pl

(

−ω2 + Ω2
wg

)

+ 2qplqwgΩ
2
c + q2

wg

(

−ω2 − 2iωγpl + Ω2
pl

)

(

−ω2 − 2iωγpl + Ω2
pl

) (

−ω2 + Ω2
wg

)

− Ω4
c

Ẽ(ω) . (6.2)

The linear susceptibility χ(1)(ω) = P̃ (1)(ω)/[ε0Ẽ(ω)] and the absorption coefficient

α(ω) =
ω

c0

Im
[

χ(1)(ω)
]

= αpl

4γ2
plω

2
[

ω2 − Ω2
wg − (qwg/qpl) Ω2

c

]2

[(

ω2 − Ω2
pl

) (

ω2 − Ω2
wg

)

− Ω4
c

]2
+ 4γ2

plω
2
(

ω2 − Ω2
wg

)2 (6.3)

are independent of the excitation and immediately follow. αpl = Nq2
pl/(2mε0c0γpl) is the

maximum absorption coefficient of the uncoupled plasmon oscillation.
Examples of absorption spectra are shown in Fig. 6.1(a) for qwg/qpl=0 and in Fig. 6.1(b)

for qwg/qpl=+0.1. In both cases, one obtains the anticipated anti-crossing behavior. For
qwg=0, absorption maxima appear at the spectral positions

Ω2
a,b =

(

Ω2
pl + Ω2

wg

)

/2 ±
[

(

Ω2
pl − Ω2

wg

)2
/4 + Ω4

c

]1/2

. (6.4)
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Figure 6.1: Optical absorption spectra according to Eq. (6.3) (solid lines). One observes an anti-crossing
behavior when varying the waveguide resonance frequency, Ωwg, with respect to the fixed plasmon resonance
frequency, Ωpl. Note the highly asymmetric, Fano-like lineshape of the peaks. All curves are displayed on the
same scale. qwg/qpl equals 0 in (a) and +0.1 in (b). Common parameters are ~Ωpl=1.6 eV, ~Ωwg as denoted for
each curve, γpl=1/(2τ), τ=2.5 fs, and ~Ωc=0.5 eV. The dashed lines represent the pure plasmonic absorption
in the absence of coupling, i.e., for ~Ωc=0. Assuming |Ẽ(ω)| = const, the gray areas shown for ~Ωwg=1.6 eV
depict the square modulus of the waveguide amplitude spectrum, |x̃(1)

wg |2, each exhibiting a single peak. In (a),
the square modulus of the plasmon amplitude spectrum, |x̃(1)

pl |2, is roughly proportional to the corresponding
absorption spectrum. The vertical line is a guide to the eye.

These positions coincide with the normal mode frequencies of the coupled, but undamped
system. For small Ωc and for Ωpl=Ωwg, the corresponding Rabi splitting is given by Ω2

c/Ωpl.
Hence, the two oscillators can be considered as “resonant” if |Ωpl − Ωwg| � Ω2

c/Ωav with
Ωav=(Ωpl + Ωwg)/2, and as “nonresonant” otherwise.

In contrast to frequent belief, the lineshapes in Fig. 6.1 do not correspond to the sum of
two effective Lorentz oscillators. One rather gets a highly asymmetric, Fano-like lineshape.
Usually, a Fano resonance results from the coherent interaction of a discrete quantum me-
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chanical state with a continuum of states [128, 129]. In our purely classical model, a single
sharp oscillator coherently interacts with a strongly broadened second oscillator. The latter
replaces the continuum. One result of the Fano-like interaction is that one obtains zero ab-
sorption between the two absorption maxima. The position of this zero appears at the root
of the numerator of (6.3), i.e., at or near the spectral position of the (uncoupled) waveguide
mode Ωwg. Intuitively, this minimum is a result of destructive interference, which effectively
suppresses the response of the two absorption “channels,” of which the polarizations have
a phase difference near π. This phase difference will also be important in nonlinear optics
(see section 6.2). When qwg is changed from zero to a nonzero value, the positions of the
absorption extrema shift slightly, and the two peaks exhibit different heights as an additional
characteristic. For example, a reduced absorption of the more waveguide-like channel re-
sults, in the case qwg/qpl > 0 and Ωpl < Ωwg [see top curves in Fig. 6.1(b)]. Note that the
lineshapes in Fig. 6.1 describe very well the key experimental features of the linear optics of
MPCSs (see section 7.2 and [30, 58–61]).

We mention briefly that, for instance for qwg=0, the total absorption (6.3) can be rewrit-
ten as a sum of two “Lorentzians,” but with strongly frequency-dependent dampings. In
the time domain, these frequency-dependent dampings correspond to a non-Markovian (and
non-exponential) decay. For Ωa < Ωwg < Ωb, one solution can be described by the oscillator
a having a constant resonance frequency Ωa and a frequency-dependent damping

γa(ω) =











γplαpl

2α(ω)

(

1 +

[

1 − α2(ω)(ω2−Ω2
a)

2

α2
pl

γ2
pl

ω2

]1/2
)

, ω < Ωwg

∞ , ω ≥ Ωwg

(6.5)

and an analogous expression for the oscillator b.

6.2 Nonlinear optics of two coupled Lorentz oscillators
We now discuss the nonlinear-optical properties of two coupled Lorentz oscillators in terms
of third-harmonic generation, starting in the time domain. Our analysis allows for a di-
rect comparison with our interferometric experiments presented in section 7.3. We consider
an inversion-symmetric medium, hence all second-order nonlinear terms in Eqs. (6.1) are
zero. At first sight, one might only expect third-order nonlinear terms like (NL)pl ∝ x3

pl or
(NL)wg ∝ x3

wg in Eqs. (6.1). However, mathematically, the most general form is given by
the terms

ηj,k

(

xpl(t)
)3−k(

xwg(t)
)k

(6.6)

appearing in the differential equation for xj(t), respectively (j = pl, wg; k = 0, 1, 2, 3).
Here, we are only interested in THG, which is off-resonant. In a perturbational approach
(cp. section 2.2), the THG contributions to the third-order displacements are given by

x
(3)
j (t) ∝

3
∑

k=0

ηj,k

(

x
(1)
pl (t)

)3−k(

x(1)
wg(t)

)k

. (6.7)
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The eight parameters ηj,k can be reduced to four nonlinearity parameters ηk =
∑

j qjηj,k

with k = 0, 1, 2, 3, because the optical polarization is given by the weighted sum of the
displacements. This leads to the following general form for the THG contribution to the
third-order polarization:

P (3)(t) ∝
3
∑

k=0

ηk

(

x
(1)
pl (t)

)3−k(

x(1)
wg(t)

)k

. (6.8)

We note in passing that this form is generally different from the ansatz P (3)(t) ∝ [P (1)(t)]3

(in analogy to [30]), which leads to ηk ∝
(

3
k

)

q3−k
pl qk

wg.
For the numerical computation of THG spectra, we choose the electric field E(t) de-

picted in Fig. 3.5(d) in order to resemble the 5-fs laser pulses of the experiments. (Al-
ternatively, 5-fs Gaussian pulses deliver qualitatively similar results for all conditions dis-
cussed here.) Furthermore, we fix Ωpl=1.67 eV, Ωwg=1.56 eV, Ωc=0.66 eV, τ=1.06 fs, and
qwg/qpl=+0.085. These parameters correspond to the sample MPCS-A in chapter 7, which
can be considered as “resonant” according to the definition given in the previous section. The
integration1 of the equations of motion (6.1) yields the first-order displacements x

(1)
j (t) and,

with (6.8), the third-order polarization. The square modulus of its filtered Fourier transform
delivers the THG intensity spectrum. Spectra are calculated as functions of the spectrometer
photon energy and of the interferometric time delay T between the two excitation pulses.

We first discuss the case ηk ∝ δk,0 (δk,l is the Kronecker symbol) in which the nonlin-
earity is exclusively connected with the plasmon oscillation. The corresponding data set is
shown in Fig. 6.2(a). A cut at T=0 (not shown) reveals four broad but clearly distinct spectral
peaks in the THG spectrum. The appearance of four peaks can easily be understood in the
frequency domain (cp. example in section 2.2.1), since the third-order polarization for this
case is proportional to the twofold convolution of the displacement x̃

(1)
pl (ω) with itself, this

displacement containing two peaks [cp. Fig. 6.1(a)]. The relative weights of the four peaks
can be estimated by employing the time domain. Assuming δ-pulses, qwg=0, and neglecting
damping, the two effective oscillators (see previous section) have comparable amplitudes,
and the general form of the THG polarization is proportional to

(

cos(Ωat) + cos(Ωbt)
)3

∝ ...

+1 cos (3Ωat)

+3 cos [(2Ωa + Ωb)t]

+3 cos [(Ωa + 2Ωb)t]

+1 cos (3Ωbt) . (6.9)

The THG polarization contains terms at three times the normal mode frequencies Ωa and
Ωb as well as spectral mixing products. The relative amplitudes 1:3:3:1 of the frequency
components 3Ωa, 2Ωa + Ωb, Ωa + 2Ωb, and 3Ωb lead to the intensity ratios 1:9:9:1. This

1The Runge-Kutta integrator of MATLAB [126] needs to be able to evaluate the electric-field pulse E(t)

at arbitrary points of time t, which explains why we use an analytical formula, Eq. (3.3), to describe a single
pulse. Furthermore, MATLAB facilitates discrete Fourier transforms and spectral filtering of data vectors.
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Figure 6.2: (a) Optical THG intensity derived from the coupled nonlinear oscillators. The THG intensity
is shown on a saturated gray scale, versus spectrometer photon energy and time delay T between the two
excitation pulses. At T=0, the THG spectrum exhibits four distinct peaks (the high-energy peak is amplified
by a factor of 10 for the sake of clarity). The four peaks exhibit different temporal behaviors. Corresponding
cuts at the spectral peak positions indicated by the white arrows in (a) are shown in (b). For better comparison,
the curves are normalized to the same maximum and are vertically displaced. Obviously, the first and fourth
curves both have a smoothly decaying (upper) envelope, while only the second and third curves show an
envelope resulting from a beating. The nonlinearity parameters used are ηk ∝ δk,0. The other parameters are
quoted in the text. Compare with the corresponding experiment (Fig. 7.3).
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means that the two central frequency components are more prominent, in agreement with the
numerical findings in Fig. 6.2(a).

The pronounced dips between the four spectral peaks are closely related to the Fano-
like lineshapes discussed in section 6.1. In linear optics, the phase relation between the two
effective oscillators (absorption “channels”) leads to destructive interference, and hence to
zero absorption in the dip. The same destructive interference is also responsible for the deep
dips in the THG spectra.

The behavior of the THG intensity as a function of time delay T differs among the four
spectral peaks. Corresponding cuts at the spectral peak positions indicated by the white ar-
rows in Fig. 6.2(a) are shown in Fig. 6.2(b). The curves exhibit the usual oscillations with
the respective fundamental and harmonic frequencies, enclosed in the (upper) envelope of
interest. The first and fourth curves clearly show a smoothly decaying envelope for increas-
ing |T |. In contrast, the envelopes of the central two curves (which are associated with the
spectral mixing products) reveal a beating. In spectrally integrated measurements [30], this
distinction is not possible.

So far, we have only discussed the case ηk ∝ δk,0. Next, we calculate corresponding
THG spectra for different nonlinearity parameters (see Fig. 6.3). In each part of this figure,
all nonlinear parameters are zero except for a single one. The parts (a), (b), and (c) result from
a nonzero value of η1, η2, and η3, showing three peaks, two peaks, and one peak, respectively.
In the frequency domain, this can again be understood by the corresponding convolutions.
Remember that x̃

(1)
pl (ω) contains two peaks for the values chosen here, whereas x̃

(1)
wg(ω) only

contains one peak (compare to gray areas in Fig. 6.1).
In general, all parameters ηk can have nonzero values simultaneously. When adding up

the nonlinear contributions to the polarization, interference can result in a THG intensity
with amplified or suppressed spectral peaks and dips, spectrally shifted peak positions, or
even with new peaks or dips which are not present at all in Figs. 6.2(a) and 6.3. We will not
go into a detailed analysis. We only note that for η0 � η1 > η2 = η3 = 0, the tendency is to
suppress the high-energy peaks compared to the case η0 6= 0 and η1 = η2 = η3 = 0.

The key feature of the calculations presented so far is that the THG spectra depend on
the underlying source of the nonlinearity, i.e., they depend on which of the coefficients ηk is
nonzero. In other words, observing four, three, two, or just one peak in experimental THG
spectra allows one to learn something about the system by comparison with theory. This,
however, is only possible for a certain regime of coupling between the two oscillators, which
we shall refer to as the regime of “moderate coupling.” Obviously, for very small coupling
strengths (for small values of Ωc), the four spectral peaks in the THG spectrum of the case
ηk = δk,0 (discussed above) merge into a single peak. In the other limit (for large values
of Ωc), also x̃

(1)
wg(ω) exhibits several peaks (unlike the gray areas in Fig. 6.1), which can, for

example, lead to several spectral peaks in the THG spectrum for the case ηk = δk,3 as well.
By numerical calculations for the “resonant” case (i.e., Ωpl = Ωwg = Ωav), for qwg = 0,
and assuming δ-pulses, we can specify the regime of “moderate coupling” by the condition
0.15 < Ω2

c/(2γΩav) < 1.35. Thus, since we want to learn something about the source of
the optical nonlinearity from the comparison of experiment and theory, we have to tailor the
coupling parameter of samples correspondingly.
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Figure 6.3: As Fig. 6.2(a), but for different nonlinearity parameters. The shown THG contributions result from
a nonzero value of (a) η1, (b) η2, and (c) η3 while keeping the respectively other nonlinearity parameters zero.
At T=0, the number of spectral peaks is three, two, and one, respectively. (a), (b), and (c) are displayed on
individual gray scales.



Chapter 7

Nonlinear optics of Metallic Photonic
Crystal Slabs: Experiments

In this chapter, we present linear- and nonlinear-optical experiments on Metallic Photonic
Crystal Slabs (MPCSs) and compare the findings with our theory (chapter 6). A MPCS
constitutes a simple system to investigate the coupling of two resonances experimentally.
Tailoring the waveguide parameters allows one to easily control the coupling strength, since
the coupling arises from the spatial overlap of the plasmon and waveguide-mode fields.

The linear optics of MPCSs has first been discussed in [58] for 2D arrays of gold
nanoparticles and in [59] for 1D arrays of gold nanowires. More recently, first nonlinear-
optical experiments on MPCSs have been presented [30] which have been interpreted in
terms of Lorentz oscillators with ad-hoc decay times. We disregard decay times and rather
focus on lineshapes, which yield additional insights into the underlying physics. Moreover,
our experiments on Third-Harmonic Generation go beyond previous work in two aspects.
First, we use 5-fs optical pulses (instead of 13-fs pulses [30]) and thus achieve a better tempo-
ral resolution. Second, we do not only obtain indirect information on the temporal behavior
by exciting the sample with a pair of time-delayed pulses (as usual in “time-resolved spec-
troscopy”), but we spectrally resolve the emitted nonlinear signals simultaneously (unlike
[30]). Thus, we are able to observe in our experiments that the various spectral components
of the third-harmonic signal exhibit substantially different temporal dynamics. Finally, the
comparison of our experimental data with our simple theoretical model allows us to deter-
mine the dominant source of the underlying optical nonlinearity.

7.1 Description of samples

Metallic Photonic Crystal Slabs have been introduced in section 2.4. A more detailed scheme
of our samples is shown in Fig. 7.1(a). The dielectric layers and the gold nanowire arrays
are fabricated as described in section 3.1. Hafnium dioxide (HfO2) is used as the high-
index material forming the core of the slab waveguide between the quartz substrate and the
magnesium fluoride (MgF2) spacer layer. These dielectrics are best suited because of their
transparency in the total spectral range of interest and exhibit minimal intrinsic THG (as we

57
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Figure 7.1: Experimental realization of a Metallic Photonic Crystal Slab. (a) Scheme showing gold nanowires
on top of a set of dielectric layers forming the slab waveguide. HfO2 is used as a high-index material, while
MgF2 serves as a low-index spacer. The polarization of the normally incident white light or laser pulses is
perpendicular to the wires (TM-polarization) for the experiments shown in Figs. 7.2, 7.3, and 7.4. Samples
with different lattice constant a, wire width w, and spacer thickness d are investigated. (b) Scanning electron
micrograph of the gold nanowires (light gray) on top of the waveguide (dark gray).

investigated in independent experiments). The thin indium-tin oxide (ITO) layer is required
during fabrication.

The particle plasmon resonance and the waveguide mode resonance are coupled due
to the spatial overlap of their electric field distributions. The coupling strength (denoted
by Ω2

c in the theory chapter 6) between the two resonances can conveniently be tailored
by the spacer thickness d. It is clear that an increasing spacer thickness leads to decreasing
coupling. We experimentally find that when choosing d=30 nm, the samples described below
are within the regime of “moderate coupling” as defined in section 6.2 (for the values, see
next section).

Each of the fabricated gold nanowire arrays covers a total area of (60 µm)2. The electron
micrograph in Fig. 7.1(b) shows an enlarged view of a typical sample, revealing the high
quality of the resulting structures. Typically, we fabricate entire sets of arrays on one glass
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Figure 7.2: Extinction of the selected samples (a) MPCS-A and (b) MPCS-B. The thick curves show the extinc-
tion measured with a white-light source, referenced to the substrate without gold structures. The thin lines are
absorption spectra based on the model of coupled Lorentz oscillators, Eq. (6.3), and obtained by a nonlinear
least-squares fit to the corresponding experimental data. The gray area in (b) depicts again the electric field
spectrum of the laser pulses used for the nonlinear-optical experiments [see Fig. 3.5(c)].

substrate. In such a set, e.g., the lattice constant a is varied from 500 nm to 650 nm in steps of
25 nm, and the nominal wire width from around 120 nm to around 220 nm in steps of 20 nm.
In this fashion, we fabricate and investigate a total of 42 nanowire arrays on each substrate.

Out of this systematic study, we discuss a representative selection of two samples in
the following, as examples for the “resonant” and “nonresonant” cases, respectively (see
definition in section 6.1). The experimental parameters for sample MPCS-A are a=550 nm
and w=185±5 nm, and for sample MPCS-B a=625 nm and w=195±5 nm, hence, the wire
widths of the two samples are identical within experimental uncertainty, but their lattice
constant differs.

7.2 Linear-optical properties

Using the second setup described in section 3.2.2, we measure the extinction spectra of
sample MPCS-A and B (see thick curves in Fig. 7.2) for TM-polarization and for normal
incidence. The extinction dip would be even more pronounced if we used a yet smaller
numerical aperture [130].

To connect to the theory presented in chapter 6, we compare the measured extinction
spectra with theoretical absorption spectra, Eq. (6.3). We find a good qualitative agreement
of our simple model and the experiments. From a least-squares fit of the theory to the ex-
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periment (see thin lines in Fig. 7.2) we obtain all relevant linear-optical parameters, leaving
only the nonlinear coefficients ηk as free parameters for the nonlinear-optical experiments to
come. The fit parameters of sample MPCS-A (MPCS-B) are ~Ωpl=1.67 eV, ~Ωwg=1.56 eV,
~Ωc=0.66 eV, τ=1.06 fs, and qwg/qpl=+0.085 (~Ωpl=1.65 eV, ~Ωwg=1.39 eV, ~Ωc=0.54 eV,
τ=0.97 fs, and qwg/qpl=+0.049), where τ=1/(2γpl). The additional fit parameter αpl, to-
gether with the coefficients ηk, determines the absolute strength of the THG signals.

Hence, sample MPCS-A is “resonant,” i.e., ~|Ωpl −Ωwg|=0.11 eV < 0.27 eV=~Ω2
c/Ωav,

while sample MPCS-B is “nonresonant,” i.e., ~|Ωpl − Ωwg|=0.26 eV > 0.19 eV=~Ω2
c/Ωav,

according to the definition of section 6.1. Additionally, both samples are within the regime
of “moderate coupling” (see section 6.2), with a normalized coupling strength Ω2

c/(2γΩav)

of 0.43 for sample MPCS-A and 0.28 for sample MPCS-B.

7.3 Third-Harmonic Generation

In our THG experiments, we use the 5-fs pulses derived from the Ti:Sa laser setup described
in section 3.3.1. The interferometer delivers two identical, copropagating, time-delayed
copies of the linearly polarized pulses. These are focused onto a sample at normal incidence
and in TM-polarization, with a numerical aperture comparable to the linear-optical measure-
ments. Figure 3.5 characterizes the laser pulses, emphasizing the high temporal resolution.
The THG intensity is detected by the CCD camera attached to the spectrometer.

Figure 7.3 shows a typical data set of sample MPCS-A, containing 600 individual spec-
tra obtained in a total of about 8 minutes acquisition time. Here, the THG signal is plotted
on a linear gray scale as a function of spectrometer photon energy and interferometric time
delay. Exactly the same representation has already been employed in the theory section 6.2.
Indeed, the nonlinear data of Figs. 6.2 and 6.3 shown there are based on linear-optical param-
eters corresponding to those of sample MPCS-A here [compare also Fig. 7.2(a)]. Obviously,
the measured nonlinear-optical spectra in Fig. 7.3(a) are in very good agreement with those
in Fig. 6.2(a), much more than with any of the spectra in Fig. 6.3. In particular, four peaks
occur in the experimental spectra at zero time delay. Also, the dependencies of the differ-
ent spectral cuts versus time delay in Fig. 7.3(b) are in very good agreement with those in
Fig. 6.2(b). Again, the envelopes of the first and fourth cuts show hardly any beating, whereas
the envelopes of the second and third cuts reveal a pronounced beating behavior [note that
the very weak fourth peak in Fig. 7.3(a) spectrally overlaps with the wing of the third peak,
resulting in a small residual beating]. This comparison allows us to conclude that the nonlin-
ear model where only η0 is nonzero is the appropriate one. This means that the nonlinearity
predominantly originates from the particle plasmon, which is not a priori clear. This finding
is consistent with the experimental observation that the nonlinear signal decreases by a factor
of 19 (and the multi-peak features disappear) when going from TM-polarization used so far
to TE-polarization (effectively switching off the plasmonic response). It is also consistent
with the fact that the THG signals drop by a factor of about 20 when going from the gold
nanowire arrays to areas of the glass substrate where only the dielectric layers are present.

It is important for our interpretation that the experiments are performed in the third-
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order perturbation regime which is also assumed in the theoretical analysis. Higher-order
contributions would obviously modify the ratio of 32:1 between the THG signal at zero time
delay and that at large time delays. In the experiments, the ratio of 32:1 is reached within
experimental uncertainty: From analyzing the upper envelope of spectrally integrated data
similar to those shown in Fig. 7.3 but for time delays up to ±60 fs, we derive a ratio of 24:1,
from the corresponding lower envelope we obtain a ratio of 35:1. The actual ratio, which
refers to a comparison between zero and infinite time delay, must lie between these two
ratios.

In Fig. 7.4, we show the data set for the “nonresonant” sample MPCS-B. As for sample
MPCS-A, four spectral peaks are visible in the THG spectra. In contrast, however, the peaks
in Fig. 7.4(a) have rather different spectral widths. This can be understood from the fact that
the two effective extinction peaks [see Fig. 7.2(b)] exhibit rather different spectral widths and
from our discussion of section 6.2. The different spectral widths in Fig. 7.4(a) correspond to
strongly different decay times of the envelopes in Fig. 7.4(b). Again, only the envelopes of
the first and fourth cuts show a smooth decay, whereas the envelopes of the second and third
cuts exhibit a pronounced beating.

Hence, our experiments reveal that different spectral components of the third-harmonic
signal can exhibit substantially different temporal dynamics. This information would obvi-
ously not be available from a spectrally integrated experiment [30].
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Figure 7.3: (a) Measured THG intensity from sample MPCS-A. The THG intensity is shown on a saturated
gray scale, versus spectrometer photon energy and interferometric time delay. Near time delay T=0, the THG
spectrum exhibits four peaks (the weak high-energy peak is amplified by a factor of 40 to become visible). The
four peaks exhibit a different temporal behavior. Corresponding cuts at the spectral peak positions indicated by
the white arrows in (a) are shown in (b). For better comparison, the curves are normalized to the same maximum
and are vertically displaced. The appearance and absence of beating is discussed in the text. Compare with the
corresponding theory (Fig. 6.2).
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Figure 7.4: (a) Measured optical THG intensity from sample MPCS-B. Near T=0, the THG spectrum clearly
exhibits four peaks (the high-energy peak is amplified by a factor of 10). Normalized cuts at the spectral peak
positions indicated by the white arrows in (a) are shown in (b). Note the much slower, smooth decay of the
envelope of the cut at 4.00 eV as compared to the cut at 5.16 eV, and the beating, which only occurs in the other
two curves.
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Chapter 8

Nonlinear optics of planar
Metamaterials: Theory

During the last few years, various numerical calculations have confirmed that the linear (op-
tical) properties of Metamaterials working at frequencies ranging from the microwave to
optical frequencies can very well be described by the Maxwell equations (2.1) and the Drude
model for the metal permittivity (cf. section 2.3). Sometimes, the results have been inter-
preted in terms of effective material parameters of a Metamaterial, i.e., an effective permit-
tivity and permeability (cf. section 2.5). We do not follow this route for linear or nonlinear
optics.

So far, theoretical publications on nonlinear-optical Metamaterials have addressed new
options regarding optical bistability [75, 82], Second-Harmonic Generation [77, 131], para-
metric nonlinear processes [132, 133], and nonlinear sub-wavelength imaging [134]. Most
of these publications assume a given nonlinearity (nonlinear susceptibility) which is not dis-
cussed or motivated further. In contrast, we present here a theory containing a straightfor-
ward microscopic nonlinear mechanism. This theory is based on the Lorentz force acting on
the mobile metal electrons usually present in Metamaterials, and does not need any further
(unknown) parameters beyond those already fixed for linear optics. The theory has been
developed in the groups of S. W. Koch and J. V. Moloney [135, 136]. Corresponding numer-
ical simulations are under investigation in the latter group, but we additionally present own
simulation results here.

In this chapter, we present the theory and data to be compared with some of the experi-
ments on Metamaterials (see chapter 9). We start by describing the linear-optical properties
of planar Metamaterials consisting of Split-Ring Resonators (SRRs) in section 8.1. Next,
we derive our nonlinear theory analytically (section 8.2), with focus on perturbative Second-
Harmonic Generation. In preparation for our simulations, we develop an approximation for
normal and oblique incidence in section 8.3. The actual numerical results of the simulations,
based on the magnetic part of the Lorentz force, are presented in section 8.4.
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Figure 8.1: Geometric parameters of the simulated Split-Ring Resonators, for designs (a) META-A and (b)
META-B. In both cases, the SRR thickness is ∆z=25 nm and the radius of curvature is half the thickness.
(c) Scheme of the coordinate system we use. The “horizontal” (“vertical”) direction is parallel to the x-axis
(y-axis).

8.1 Linear optics of Split-Ring Resonators
The three fundamental resonances of SRRs have been introduced schematically in sec-
tion 2.5.1 [see Fig. 2.5(d)-(f)]. Here, we discuss the details of the linear-optical properties of
SRRs for two concrete examples, named designs META-A and META-B (these correspond to
the principal experimental samples in chapter 9). Each example consists of gold SRRs with
a certain geometry (see Fig. 8.1) arranged in an infinite 2D lattice (square grid). This planar
array with thickness ∆z=25 nm is located on top of a half-space of glass, the remaining vol-
ume is air. For gold, we use the Drude permittivity εD described in section 2.3, for the glass
substrate we use a refractive index of nsub=

√
εsub=1.5, and for air we use nair=

√
εair=1.

We employ the finite-element method described in chapter 4 to simulate the linear-optical
electric field Ê

(1)
(r) for the frequency domain and compute transmittance spectra.

Normal incidence

For normal incidence, calculated transmittance spectra are shown in Fig. 8.2 for design
META-A and META-B, and horizontal and vertical polarization of the exciting plane wave.
Each transmittance minimum corresponds to the excitation of a particular resonance [14, 89].
The parameters of the designs are chosen such that resonances of different types appear
around the particular wavelength of 1.5 µm (corresponding to the excitation wavelength in
our nonlinear-optical experiments, see chapter 9). The magnetic, horizontal electric, and
vertical electric resonances are thus connected with design META-A in horizontal, META-B
in horizontal, and META-B in vertical polarization, respectively. Design META-A in vertical
polarization is nonresonant at 1.5 µm wavelength.

These correspondences are supported by considering the metal electron velocity field
distributions inside the SRRs, shown in Fig. 8.3. Three of the field patterns shown there
can easily be related to the three fundamental resonances depicted in Fig. 2.5(d)-(f). The
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Figure 8.2: Simulated linear-optical transmittance spectra for normal incidence. The left (right) column corre-
sponds to design META-A (META-B), the top (bottom) row to excitation with horizontal (vertical) polarization,
as indicated by the red arrows in the insets depicting the SRRs. Because of the character of resonances (not)
appearing at 1.5 µm wavelength (dashed red line), we call these four cases, as denoted, the magnetic reso-
nance, the nonresonant case, the horizontal electric resonance, and the vertical electric resonance, respectively.
[Confer also Figs. 8.3 and 2.5(d)-(f).] Compare to the corresponding experiments (Fig. 9.2).

Figure 8.3: Snapshots of the metal electron velocity field Re[v̂(1)(r)] for the four cases discussed in the text.
The electric field and the current density inside the SRRs are also proportional to the shown fields. Each of the
field distributions is shown on its own scale of field strength. In the left column, the actually smaller SRRs are
shown on a larger scale, for better comparison of the field patterns.
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Figure 8.4: Snapshots of the magnetic field Re[B̂
(1)

(r)] inside the SRRs, shown in analogy to Fig. 8.3. The
local magnetic fields of the three resonant SRRs are mainly based on the electronic currents inside the SRRs:
The currents lead to magnetic fields with prominent components normal to the SRR plane. In contrast, the
magnetic field of the nonresonant SRR (bottom left) stems mainly from the incident wave. Again, each of the
field distributions is shown on its own scale of field strength. (In fact, the field in the nonresonant case is much
smaller in magnitude than for all other cases.)
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electron velocity v̂(1)(r) is computed from the electric field by v̂(1)(r) = −iωε0(εD −
1)Ê

(1)
(r)/[(−e)ne] (cf. section 2.3) for the frequency ω = 2πc0/(1.5 µm) = 2π×200 THz.

The nonresonant character of the remaining case (Fig. 8.3, bottom left) can be seen from the
magnetic field distributions (inside the SRRs), shown in Fig. 8.4. There, the nonresonant case
(bottom left) shows a magnetic field which mainly stems from the incident electromagnetic
wave, whereas in the other, resonant cases, the local magnetic field mainly stems from the
large local electronic currents. Note that for the resonances with magnetic dipole moment
(top row) the strongest magnetic field is directed perpendicular to the plane of the SRR.

Oblique incidence

For the three resonant cases, we show calculated linear transmittance spectra for oblique in-
cidence in Fig. 8.5. The left column is for P-polarization, the right column for S-polarization.
The schemes adjacent to the spectra show the corresponding configurations of the incident
fields (the directions of the wave vector k, the electric field E, and the magnetic field B).
In S-polarization, the normal component (with respect to the substrate) of the magnetic field
changes sign when going from positive angles of incidence (see schemes) to negative angles
with flipped k (not shown). This means that positive and negative angles of incidence do
not necessarily lead to equal results. The simulated transmittance spectra in Fig. 8.5 are thus
shown for positive angles (solid curves) as well as for negative angles (dots). We find, how-
ever, no significant differences for opposite angles. This means that the incident magnetic
field does not couple strongly to the SRRs and does not excite significant electronic currents
interfering with the prominent currents excited by the incident electric field.

In detail, the transmittance spectra of Fig. 8.5(a) are associated with the magnetic reso-
nance at 1.5 µm wavelength and show only a slight dependence on the angle of incidence. A
stronger dependence can be observed in (b) for the horizontal electric resonance at 1.5 µm
wavelength, which for increasing angle of incidence slightly shifts to longer wavelengths
for S-polarization, but shifts substantially and becomes less pronounced for P-polarization.
In (c), the vertical electric resonance at 1.5 µm wavelength also shifts substantially for P-
polarization, but not for S-polarization. In the latter case, however, the resonance splits into
two resonances (corresponding to two transmittance minima), as has been observed and ex-
plained in [89]: For normal incidence, the electronic currents in the two side arms of the
SRRs flow in parallel in the vertical direction (one resonance), but for S-polarization, the
currents in the two side arms can have a phase shift, and modes with predominantly parallel
and anti-parallel flow can be excited (two distinct resonances). In [89], also more data have
been shown which are similar to ours and confirm our results.

In order to allow for a direct comparison with the experiments, all shown transmittance
values are normalized to the transmittance through the bare substrate (both surfaces) for the
corresponding angle of incidence, by using the Fresnel formulas (2.14).

The transmittance values for zero angle of incidence in Fig. 8.5 match the corresponding
normal-incidence spectra of Fig. 8.2, although the employed numerical methods (regarding
perfectly matched layers and the order of vector elements, see chapter 4) are different. This
agreement confirms each calculation.
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Figure 8.5: Simulated linear-optical transmittance spectra for oblique incidence, for the cases with a resonance
near 1.5 µm wavelength: (a) magnetic resonance (design META-A and horizontal polarization), (b) horizon-
tal electric resonance (design META-B and horizontal polarization), (c) vertical electric resonance (design
META-B and vertical polarization). The left column is for P-polarization, the right column for S-polarization.
Transmittance spectra for positive angles (solid curves) and negative angles (dots) are shown, the angle of inci-
dence with respect to the surface normal is indicated by the color. The schemes adjacent to the spectra show the
configuration of the incident fields for positive angles of incidence. Compare to the corresponding experiments
(Fig. 9.10).
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8.2 Nonlinear optics of metals: The fluid-dynamic approach

In this section, we derive our general nonlinear theory for Metamaterials. This theory will
be the basis for our investigations in the later sections. The nonlinear theory is based on the
(nonlinear) Lorentz force acting on the metal electrons and is a natural extension of the linear
description of metals as explained in section 2.3. The theory has been formulated within the
groups of S. W. Koch and J. V. Moloney [135, 136] and follows an approach based on the
Vlasov-Maxwell equations in the classical limit [135, 137], similar to fluid dynamics. Here,
we will first trace the general time-domain formulation and then switch to the frequency
domain to describe the linear optics and the perturbative nonlinear optics.

Time domain

We start by considering the background permittivities of the half-spaces of the glass substrate
and air,

εbg(r) =

{

εsub , z < 0

1 , z > 0 .
(8.1)

Correspondingly, we regard the metal electrons (and the immobile ions) in terms of free
charges ρ and currents j appearing in the Maxwell equations (2.1). The metallic SRRs
residing in the half-space of air, just touching the substrate, enter with their detailed geometry
by defining a space-dependent, equilibrium, metal electron density

n0(r) =

{

ne , r inside SRRs

0 , else ,
(8.2)

where ne is the same as in section 2.3. At a time t, the actual electron density is n(r, t).
Defining q = −e, the total electronic charge density then becomes

qn(r, t) = qn0(r) + ρ(r, t) , (8.3)

where ρ is the net charge including both the electrons and the metal-ion background. In
the following, also all vector quantities are space- and time-dependent, and we omit these
dependencies for the sake of conciseness. The electronic current density j and the electron
velocity v are related via

j = qnv . (8.4)

Now we assume that each electron feels a force F , which consists of the electric and
magnetic part of the Lorentz force, and additionally the damping term in analogy to the
derivation in section 2.3,

F = q(E + v × B) − meγcv . (8.5)

We do not want to follow each electron on its trajectory but rather want to describe the
space-dependent flow field v, like in fluid dynamics, and consequently derive differential
equations describing the dynamics of continuum quantities. Thus, we introduce the force
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density f = nF . Then, the evolution of the current density is given by

∂t j =

[

d

dt
j

]

−
[

(v · ∇)j

]

=

[

qn
d

dt
v + v

(

d

dt
(qn)

)]

−
[

v(v · ∇)(qn) + qn(v · ∇)v

]

=

[

qn
F

me

+ v

(

∂t (qn) + (v · ∇)(qn)

)]

−
[

v(v · ∇)(qn) + (j · ∇)v

]

=

[

q
f

me

+ v

(

−∇ · j
)]

−
[

(j · ∇)v

]

=
q

me

f −
∑

k

∂k

(

vjk

)

=
q

me

f −
∑

k

∂k

(

jjk

qn0 + ρ

)

. (8.6)

Here, we have used the relation d/dt = ∂/∂t+(v ·∇) several times, and for the fourth equa-
tion, we have employed the charge conservation law Eq. (2.2). Inserting the force density f

based on Eq. (8.5) into Eq. (8.6) yields the time derivative of the current density

∂t j =
q

me

[

(qn0 + ρ)E + j × B
]

− γcj −
∑

k

∂k

(

jjk

qn0 + ρ

)

. (8.7)

Taking Eq. (8.7) together with the Maxwell equations (2.1) as well as the equations D =

ε0εbgE and B = µ0H forms the complete set of equations describing the dynamics of the
nonlinear system.

We will discuss different orders of nonlinearity below. Here, we state that the system is
nonlinear to any order because of several product terms appearing in Eq. (8.7). Hence, in the
time domain, e.g., SHG, THG, and higher-order harmonics can be investigated by simulating
the described set of equations. Using a finite-difference time-domain method [105, 106] and
normal-incidence conditions, this approach is followed in the ongoing Metamaterial simu-
lations of J. Förstner of the group of J. V. Moloney (Tucson, USA). However, convergence
issues have not permitted stable results so far [136].

Frequency domain

We now take a perturbative approach by switching to the frequency domain (cf. section 2.1.2).
Assuming a monochromatic excitation with frequency ω0, the first-order electric field is
E(1)(r, t) = Ê

(1)
(r) e−iω0t, and similarly for other fields. For linear optics, all nonlinearities

in Eq. (8.7) have to be neglected, leading to

(−iω0) ĵ
(1)

=
q

me

qn0Ê
(1) − γcĵ

(1)
(8.8)

or

ĵ
(1)

= iε0

ω2
pl(r)

ω0 + iγc

Ê
(1)

, (8.9)
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where ωpl(r) =
√

n0(r)e2/(ε0me) corresponds to the usual plasma frequency (cf. sec-
tion 2.3) inside the SRRs and to zero outside.

With ĵ
(1)

appearing as a free current density, the Maxwell equations (2.1) together with
µ = 1 lead to the linear wave equation

∇×∇× Ê
(1) − ω2

0

c2
0

εbgÊ
(1)

= iω0µ0ĵ
(1)

. (8.10)

Inserting Eq. (8.9) into Eq. (8.10) and defining the full permittivity

εfull(r, ω0) =







εsub , z < 0

1 , z > 0 and r not inside SRRs

εD(ω0) , r inside SRRs ,

(8.11)

allows to write the linear wave equation in its usual form:

∇×∇× Ê
(1) − ω2

0

c2
0

εfull(r, ω0)Ê
(1)

= 0 . (8.12)

The Drude permittivity εD(ω) for the metal has been introduced in section 2.3. Equa-
tion (8.12) shows that the ansatz of our theory, the force in Eq. (8.5), leads to the known
linear-optical relations.

We now turn to the case of Second-Harmonic Generation. As a preparation step, we
clarify the nature of multiplications which will appear. Let us consider three general physical
quantities A, B, and C which are related by some multiplication in the time domain, i.e.,
C(t) = A(t)•B(t). If A and B oscillate with frequency ω0, we can write A = Â(1) e−iω0t and
B = B̂(1) e−iω0t in the “lax” formulation (see section 2.1.2), however, we have to remember
that the physically relevant parts are only the real parts. Hence we can relate the complex-
valued quantities A, B, and C by

Re(C) = Re(A) • Re(B)

=
1

2
Re[A • B + A • B∗] , (8.13)

where B∗ is the complex-conjugate of B. It is important to note that the first summand in
Eq. (8.13) oscillates with the frequency 2ω0 and the second summand is constant in time.
Hence, the products leading to second-harmonic generation and those leading to optical
rectification can easily be distinguished. Here, we are only interested in the SHG term at
frequency 2ω0, and the amplitude of the SHG part of C is simply

Ĉ(SHG) =
1

2
Â(1) • B̂(1) . (8.14)

Note that the factor 1
2

is the same as in Eq. (2.23).
With this preparation, we are ready to express Eq. (8.7) for second-order amplitudes,

limited to the SHG parts:

(−2iω0) ĵ
(SHG)

=
q

me

[

qn0Ê
(SHG)

+
1

2
ρ̂(1)Ê

(1)
+

1

2
ĵ

(1) × B̂
(1)
]

−γcĵ
(SHG) −

∑

k

∂k

(

1

2

ĵ
(1)

ĵ
(1)
k

qn0

)

. (8.15)
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Applying a similar procedure as for linear optics, we obtain the wave equation for SHG

∇×∇× Ê
(SHG) − (2ω0)

2

c2
0

εfull(r, 2ω0)Ê
(SHG)

= −1

2

1

1 + iγc/(2ω0)

1

c2
0

Ŝ
(SHG)

(8.16)

with the total SHG source term

Ŝ
(SHG)

(r) =
q

ε0me

[

ρ̂(1)Ê
(1)

+ ĵ
(1) × B̂

(1)
]

−
∑

k

∂k

(

ĵ
(1)

ĵ
(1)
k

ε0qn0

)

. (8.17)

The total SHG source term Ŝ
(SHG)

contains three summands. The first source term
(which we call ρE-term) only has nonzero-values at the metal surfaces where charge accu-
mulation occurs in linear optics; it describes a second-order reaction of the surface charges
to their own electric field. The second term (j×B-term) is only nontrivial in the metal vol-
ume, and simply results from the magnetic part of the Lorentz force. We exemplarily show
this term in Fig. 8.7 for the four SRRs cases discussed earlier. Finally, the third source term
(jj-term) contains contributions both at the metal surfaces and the metal volume and stems
from the transformation to the continuum formulation. This term is related to the advection
appearing in fluid dynamics.

We briefly note that, by using the relations

ρ̂(1) = ε0∇ ·
(

εbgÊ
(1)
)

, (8.18a)

ĵ
(1)

= iε0

ω2
pl(r)

ω0 + iγc

Ê
(1)

, (8.18b)

B̂
(1)

=
1

iω0

∇× Ê
(1)

, (8.18c)

the source terms in Eq. (8.17) can be rewritten only in terms of the electric field,

Ŝ
(SHG)

=
q

me

[

Ê
(1)
(

∇ ·
{

εbgÊ
(1)
})

+
ω2

pl(r)

ω0(ω0+iγc)
Ê

(1) ×
(

∇× Ê
(1)
)

+
1

(ω0+iγc)2

∑

k

∂k

(

ω2
pl(r)Ê

(1)
Ê

(1)
k

)

]

. (8.19)

Here, it is not obvious whether one term dominates others in strength, because in the first
line, the strong electric fields outside the metallic SRRs are important, and for the volume
terms in the other lines, equally strong pre-factors appear.

In conclusion, Eqs. (8.16) and (8.17) describe a microscopic theory which constructively
explains a mechanism of Second-Harmonic Generation. We will investigate the sources in
more detail in the following. This includes numerical simulations based on the known linear
electric field Ê

(1)
(see section 8.1). Here, we additionally note that for Third-Harmonic

Generation based on Eq. (8.7), a total of seven source terms would have to be considered, six
of which depend on the self-consistent SHG fields like Ê

(SHG)
. The latter fields, however,

are not easily available.
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8.2.1 Symmetry considerations

Is this theory for SHG in agreement with the usual selection rules [32] known for SHG on
planar structures of certain symmetry and normal-incidence excitation? In order to investi-
gate this point, we pick a coordinate system as depicted in Fig. 8.1(c).

Let us first consider a centrosymmetric medium for which n0(−x,−y, z) = n0(x, y, z)

holds. The selection rules [32] would not allow for radiated SHG into the ±z directions in
this case. It is straightforward to derive, e.g., the following relations:

Ê(1)
x,y(−x,−y, z) = + Ê(1)

x,y(x, y, z) , (8.20a)

Ê(1)
z (−x,−y, z) = − Ê(1)

z (x, y, z) , (8.20b)

ρ̂(1)(−x,−y, z) = − ρ̂(1)(x, y, z) , (8.20c)

Ŝ(SHG)
x,y (−x,−y, z) = − Ŝ(SHG)

x,y (x, y, z) , (8.20d)

Ŝ(SHG)
z (−x,−y, z) = + Ŝ(SHG)

z (x, y, z) . (8.20e)

The sources Ŝ
(SHG)

(−x,−y, z) and Ŝ
(SHG)

(x, y, z), however, lead to radiation fields which
interfere. At a point within the far field in the (0, 0,±1) direction, the tangential (xy) parts
of the radiation fields interfere destructively to zero because of Eq. (8.20d). A longitudinal
component based on Ŝ

(SHG)
z , in turn, cannot be radiated into the forward or backward direc-

tions at all. Thus, no SHG radiation can be observed in the far-field forward or backward
directions for a centrosymmetric medium described by our theory, which agrees with the
selection rules.

Our SRR designs [see Fig. 8.1(a) and (b)] have a mirror symmetry (C1v) with respect
to the x-axis, hence, n0(−x, y, z) = n0(x, y, z) holds. Here, the considerations depend on
the incident polarization. Exciting with horizontal polarization (along the x-axis), one finds,
e.g., the following relations:

Ê(1)
x (−x, y, z) = + Ê(1)

x (x, y, z) , (8.21a)

Ê(1)
y,z(−x, y, z) = − Ê(1)

y,z(x, y, z) , (8.21b)

ρ̂(1)(−x, y, z) = − ρ̂(1)(x, y, z) , (8.21c)

Ŝ(SHG)
x (−x, y, z) = − Ŝ(SHG)

x (x, y, z) , (8.21d)

Ŝ(SHG)
y,z (−x, y, z) = + Ŝ(SHG)

y,z (x, y, z) . (8.21e)

In contrast, exciting the SRRs with vertical polarization (along the y-axis), one finds in
analogy:

Ê(1)
x (−x, y, z) = − Ê(1)

x (x, y, z) , (8.22a)

Ê(1)
y,z(−x, y, z) = + Ê(1)

y,z(x, y, z) , (8.22b)

ρ̂(1)(−x, y, z) = + ρ̂(1)(x, y, z) , (8.22c)

Ŝ(SHG)
x (−x, y, z) = − Ŝ(SHG)

x (x, y, z) , (8.22d)

Ŝ(SHG)
y,z (−x, y, z) = + Ŝ(SHG)

y,z (x, y, z) . (8.22e)
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Because of Eqs. (8.21d) and (8.22d), a SHG wave radiated into the far-field forward or back-
ward direction cannot have a polarization component in the x-direction. The only allowed
polarization of such a SHG wave must be parallel to the y-direction, due to Eqs. (8.21e)
and (8.22e). This again agrees with the selection rules [32]. We note that Eqs. (8.21d),
(8.21e), (8.22d), and (8.22e) do not only hold for the symmetry of Ŝ

(SHG)
, but in analogy

also for each of the three summands in Eq. (8.17), that is, for the ρE-term, the j×B-term,
and the jj-term individually. We do not discuss mixed (xy) excitation here.

8.3 Nonlinear radiation of planar Metamaterials

Our aim is the numerical investigation of perturbative SHG of the Metamaterial examples,
based on the theory presented in the preceding section. In principle, FEMLAB delivers the
linear-optical fields which enter in Eq. (8.17). First, however, the question of convergence
arises for linear and nonlinear fields individually. Second, for the exact description, the far-
field radiation has to be calculated self-consistently according to Eq. (8.16). We test and
ensure convergence (cf. chapter 4), but the self-consistent calculation of the radiated non-
linear field cannot easily be achieved with FEMLAB. Thus, we apply an approximation,
which we call Driven-Dipole Approximation (DDA) and which is based on expressions in-
volving only linear fields. We derive corresponding formulas for radiation into the normal
direction as well as oblique angles in the following sections and present numerical results in
section 8.4.

8.3.1 The Driven-Dipole Approximation

For our approximation, we remember that in section 2.3.1 we have introduced an abstract
harmonic oscillator to describe particle plasmon oscillations, and we remember that this
abstraction has proven very successful for the theory in chapter 6.

In the same spirit, we now consider a SRR as a single harmonic oscillator. It is driven
by a net force F̂

(SHG)
, equal to the (sum or) integral over all force contributions proportional

to Eq. (8.17). Provided that the driving terms at the SHG frequency are off-resonant, the
displacement r̂(SHG) of the oscillator will simply be proportional to the net driving force.
Since the oscillator is connected with an abstract charge (stemming from the oscillating
metal electrons), it is effectively an electric dipole, which (together with the other dipoles)
radiates a far-field SHG wave amplitude

Ê
(SHG)

(|z| → ∞) ∝ r̂(SHG)
xy ∝ F̂

(SHG)

xy ∝
∫

one SRR

d3r′ Ŝ
(SHG)

xy (r′) . (8.23)

Here, we have also taken care of the fact that only tangential (xy) components can radiate
into the far field. We additionally note that the SHG wave amplitude Ê

(SHG)
is proportional

to the density of the described dipoles, so the integral in Eq. (8.23) is effectively an average
over one unit cell of the periodic Metamaterial. Also note that, provided that the unit cell
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dimensions are smaller than the SHG wavelength, the radiated far-field SHG wave is simply
a plane wave (i.e., no diffraction orders other than the zeroth order appear).

The Driven-Dipole Approximation introduced this way gives a clear physical picture of
the simplification. Now, we discuss an equivalent, analytical approach. The approximation
is equivalent to modifying the SHG wave equation (8.16) by replacing the full permittivity
by the background permittivity

εfull(r, 2ω0) → εbg(r) . (8.24)

The loss of the frequency dependence is not critical since we will only compare results for the
same excitation frequency. After the above replacement, the SHG electric far-field radiated
into the ±z-directions can be computed analytically. To explain the main idea, we neglect
the substrate temporarily, because then Eq. (8.16) leads to the SHG electric far field

Ê
(SHG)

far field(z) = −i
1

4c0

1

2ω0 + iγc

e2iω0|z|/c0
1

axay

∫

one unit cell

d3r′ Ŝ
(SHG)

xy (r′) . (8.25)

Here, we have also neglected small phase factors due to the small SRR thickness ∆z (which
is much smaller than the SHG wavelength).

Since in the following we are only interested in relative SHG intensities I
(SHG)
far field ∝

|Ê(SHG)

far field|2, Eqs. (8.23) and (8.25) are similarly applicable. We have thus a method for ob-
taining relative SHG intensities from expressions depending on the linear-optical fields only.
At the same time, this method also delivers the polarization direction of the SHG wave.

8.3.2 Radiation into normal direction
During the introduction of the Driven-Dipole Approximation, we have given Eqs. (8.23)
and (8.25) to support the main idea. In fact, these equations assume radiation into the ±z-
directions, i.e., they apply for radiation into the direction normal to the planar Metamaterial.

Because of Eq. (8.25), it is clear that we can, without further approximation, replace the
sources by their spatial average

Ŝ
(SHG)

(r) → ˆ̄S
(SHG)

=
1

axay∆z

∫

one unit cell

d3r′ Ŝ
(SHG)

(r′) , (8.26)

where ˆ̄S
(SHG)

is constant and (presumably) nonzero within a slab of thickness ∆z. Equa-
tion (8.25) describes the radiated field without the substrate. Taking into account the sub-
strate or any other isotropic environment only results in an additional prefactor, which dis-
appears when we consider ratios of intensities. Hence, in detail, we can compute the relative
intensity of the radiated wave transmitted through the substrate (as in the experiments) as

I
(SHG)
far field ∝

∣

∣

∣

ˆ̄S
(SHG)

xy

∣

∣

∣

2

, and the polarization is simply the vectorial orientation of ˆ̄S
(SHG)

xy .
Additionally, we are now able to simplify the jj-term [see third line in Eq. (8.19)]. The

integration appearing in Eq. (8.23), (8.25), or (8.26) is performed over the volume V of one
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Figure 8.6: Nonlinear radiation emitted by the sources in the thin planar Metamaterial (blue line) into oblique
directions. The emerging plane waves are depicted in gray scale. Corresponding wave vectors Kair and Ksub

and their relation are shown by the arrows on the left, for the case of air and substrate. The arrows on the
right repeat our coordinate system. In linear optics (not shown) the exciting wave would be incident onto the
Metamaterial from the lower left corner of the picture.

unit cell of which the bounding surface ∂V completely lies in air and/or the substrate outside
all metal. The volume integral over the appearing generalized divergence can be rewritten
into a surface integral. For the l-component of the jj-term, this reads

∫

V

d3r′
(

Ŝ
(SHG)

jj,xy (r′)
)

l
∝

∫

V

d3r′
∑

k

∂k

(

ω2
pl(r

′)Ê
(1)
l Ê

(1)
k

)

=

∫

∂V

dA′ ω2
pl(r

′)Ê
(1)
l Ê

(1)

= 0 , (8.27)

because ω2
pl(r

′) ≡ 0 on the surface ∂V . This means that within the Driven-Dipole Approxi-
mation, the jj-term does not contribute at all to SHG radiation into the normal direction.

8.3.3 Radiation into arbitrary angles

Equations (8.23) and (8.25) apply for the Driven-Dipole Approximation and radiation into
±z-direction. When the Metamaterial is excited, in linear optics, with a plane wave at
oblique incidence, SHG waves with oblique radiation directions appear, and different equa-
tions have to be used. It is crucial to note that in nonlinear optics, i.e., for the SHG fields, no
incident waves exist. The SHG waves simply emerge from the layer containing the sources
Ŝ

(SHG)
(r). Adjacent to each side of the layer (assumed to be almost infinitely thin), a wave

emerges (see Fig. 8.6). Also note that in the oblique case, source components pointing nor-
mal to the plane of the Metamaterial can radiate into the far fields.
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Consequently, we have to derive different equations to formulate the DDA for arbitrary
angles. We first restrict our description to radiation directions in the xz-plane. For a Meta-
material, the radiated waves must be plane waves in the far field. We also only consider these
plane waves in the near field. The two SHG waves radiated from the planar Metamaterial into
the two half-spaces must have the same x-component of wave vector, Kx (see Fig. 8.6). This
component is fixed by linear optics, i.e., by the exciting wave with wave vector k incident
from air at the angle α, resulting in Kx = 2kx = 2|k| sin α.

Then, in contrast to Eqs. (8.23), (8.25), and (8.26), a different spatial Fourier component
of the source field Ŝ

(SHG)
(r) is relevant:

ˆ̄S
(SHG)

α =
1

axay∆z

∫

one unit cell

d3r′ e−iKxx Ŝ
(SHG)

(r′) , (8.28)

and we now apply the replacement

Ŝ
(SHG)

(r) → eiKxx ˆ̄S
(SHG)

α (8.29)

within the Metamaterial slab of small thickness ∆z. Equations (8.28) and (8.29) basically
extract from the Bloch-periodic function Ŝ

(SHG)
(r) the radiating dipole part while maintain-

ing the lateral wave vector Kx.
For describing the radiated SHG waves, we again start by considering two half-spaces

of free space only, i.e., air everywhere except for the thin slab of sources near z = 0. After
contracting the constant prefactors into

C = −i
∆z

2c0

1

2ω0 + iγc

, (8.30)

the electric field of the radiated SHG waves becomes

Ê
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)
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





.

(8.31)

Here, αair is the off-normal angle of the radiation into air (see Fig. 8.6), and K± is the SHG
wave vector for each half-space of air, i.e., K+ = Kair (sin αair, 0, cos αair)

T for z > 0 and
K− = Kair (sin αair, 0, − cos αair)

T for z < 0, where Kair = 2|k|. Note in Eq. (8.31) that

for the radiation in each direction, only the corresponding transverse components of ˆ̄S
(SHG)

α

are relevant, and that the ˆ̄S
(SHG)

α,z component can indeed radiate here.
In the corresponding experiments, we detect a SHG wave which is transmitted through

the substrate at varying angles. Hence, we cannot neglect the substrate as for normal radia-
tion (see previous section), but we have to take into account the Fresnel formulas (2.14).
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From now on, we will only consider the SHG field in the half space z < 0 corresponding
to describe the first part of the substrate. The sources reside in a (almost infinitely thin) layer
between the substrate and air. It is crucial to note that there can be a difference in the
radiation, depending on whether the sources reside just outside the substrate (in air) or just
inside the substrate – a question which is nontrivial to answer.

We consider first the case in which the sources are at z = +0 just outside the substrate
(corresponding to the scenario described by εbg). For this case, we can take the radiation ac-
cording to Eq. (8.31) (“−” case) and apply the Fresnel formulas for the air/substrate interface
to obtain the radiated wave transmitted to the substrate. Doing this, we obtain

Ê
(SHG)

sub (r) = C eiKsub·r









0

1

0


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+


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cos αsub

0

sin αsub





ˆ̄S
(SHG)

α,x cos αair + ˆ̄S
(SHG)

α,z sin αair

nsub cos αair + nair cos αsub



. (8.32)

Here, Ksub = nsubKair (sin αsub, 0, − cos αsub)
T and αsub are the wave vector inside the

substrate and the off-normal angle of the radiation direction, respectively (see Fig. 8.6). nair

and nsub are the refractive indices defined earlier.
The second case in which the sources reside just inside the substrate at z = −0 is

slightly more complicated. We have to start by the radiation to two half-spaces of glass, that
is described by Eq. (8.31) when replacing all occurrences of the subscript “air” by “sub”.
Then, taking the substrate/air interface into account, interference takes place of the partially
reflected wave with K+ and the normally propagating wave with K−. The result is
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







0

1

0





ˆ̄S
(SHG)

α,y

nsub cos αsub + nair cos αair

+





cos αsub

0

sin αsub





ˆ̄S
(SHG)

α,x cos αair + ˆ̄S
(SHG)

α,z (n2
air/n

2
sub) sin αair

nsub cos αair + nair cos αsub



.

(8.33)

Equation (8.33) is identical to Eq. (8.32) except for the factor (n2
air/n

2
sub) = 1/εsub

applied to ˆ̄S
(SHG)

α,z . This means that when taking the sources from just outside the substrate
to just inside, we effectively have to divide the normal component of the sources by the
substrate permittivity. We will show numerical results for both cases. We note in passing
that Eqs. (8.33) and (8.32) are consistent with much longer formulas presented in [138].

In the experiments, the wave is detected after being transmitted also through the back
side of the substrate, where the Fresnel formulas have to be applied again, but this part is not
critical. We have shown Eqs. (8.32) and (8.33) solely for the purpose to make evident that we

have to consider two cases, one with ˆ̄S
′(SHG)
α,z = ˆ̄S

(SHG)

α,z and one with ˆ̄S
′(SHG)
α,z = ˆ̄S

(SHG)

α,z /εsub.
Knowing this, we can express the SHG intensity transmitted through both surfaces of the
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substrate by the intensity radiated according to Eq. (8.31) for air and applying twice the
corresponding intensity transmittance factors according to the Fresnel formulas. Hence, the
experimentally detectable SHG intensity is proportional to
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(8.34)

for oblique radiation directions in the xz-plane and
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(8.35)

for oblique radiation directions in the yz-plane. Here, the intensity transmittance factors βS

and βP following from the Fresnel formulas (2.14) are

βS = 1 − sin2(αair − αsub)

sin2(αair + αsub)
, (8.36)

βP = 1 − tan2(αair − αsub)

tan2(αair + αsub)
. (8.37)

For radiation directions in the yz-plane, the relevant Fourier component of the sources must
be determined according to Eq. (8.28) with the replacement Kxx → Kyy.

In summary, we have a method of obtaining the relative SHG intensity for the Driven-
Dipole Approximation for oblique-incidence excitation and SHG radiation for various an-
gles. The description is valid for a fixed excitation frequency and contains an ambiguity
concerning the normal component of the sources.

We note that we have only considered the two cases in which the sources reside in
one of the two adjacent materials. One can think of a general case in which the sources
reside in a layer with its own, independent permittivity, however, this scenario leads to more
ambiguities, e.g., it alters also the influence of xy-components of the sources. The even
more general case of an independent non-isotropic layer permittivity (a tensor) will hardly
give physical insights in the comparison with experiments.

We additionally note that all above formulas describe plane waves with infinite extent.
In the experiments, no infinite waves are used, but rather light beams with Gaussian lateral
profiles, of which the widths (in linear and nonlinear optics) are much larger than corre-
sponding wavelengths, thus, diffraction because of finite beam width can be neglected near
the focus. Hence, no corrections are needed for relative intensities, since the SHG beam
width (behind the substrate) is independent of the angle of incidence, and all “plane waves”
in air are simply multiplied by the same (but tilted) profile envelope.

8.4 Second-Harmonic Generation based on the magnetic
part of the Lorentz force

Here, we present numerical results on the nonlinear optics of Metamaterials, described by our
theory of section 8.2 and numerically computed using FEMLAB (see chapter 4). Since we
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have no numerical tools to obtain the self-consistent SHG fields, we use the Driven-Dipole
Approximation (see previous section) for Second-Harmonic Generation. (Third-Harmonic
Generation cannot be computed with these methods.)

As discussed in section 8.2, the theory predicts SHG owing to three source terms. Here,
we present results for the j×B-term, i.e., the magnetic part of the Lorentz force. This term
seems most interesting in the context of magnetic Metamaterials, e.g., because of strong
local magnetic fields of particular direction (cf. section 8.1).

As to the other source terms, we have performed simulations based on the ρE-term, but
have not achieved convergence within our careful studies.1 Preliminary (unstable) results
have indicated that the ρE-term leads to SHG intensities smaller than for the j×B-term,
but we will not discuss this aspect nor this term further. For the jj-term, we have shown
in section 8.3.2 that it does not contribute at all to SHG for normal incidence. Additionally,
FEMLAB encounters the same principal problems for the surface terms of the jj-term as for
the ρE-term. Thus, our results presented here are based exclusively on the j×B-term. A
more systematic investigation is left to others possessing extended numerical and/or analyti-
cal possibilities.

We compute relative nonlinear intensities for the SRRs of which the linear-optical prop-
erties have been discussed in section 8.1. Among these are resonances with magnetic dipole
moments and cases without. As in the experiments, we always use an excitation at the fixed
frequency ω0 = 2πc0/(1.5 µm) = 2π × 200 THz, such that frequency dependencies do not
need to be discussed in following comparisons.

8.4.1 Radiation into normal direction

In Figs. 8.3 and 8.4, we have shown snapshots of the electron velocity field and the magnetic
field, respectively, for the four cases of interest. Now we discuss the j×B-term, and show
corresponding field distributions of this source term in Fig. 8.7. There, only the tangential
components (in the plane of the Metamaterial) leading to SHG are depicted, on individual
scales for each case. The fields which are radiated due to the source term v̂(1)(r) × B̂

(1)
(r)

from different locations r, interfere in the far field and partially cancel each other, when two
opposing contributions are present. This applies for the fields in the lower row in Fig. 8.7,
i.e., for the nonresonant case and the vertical electric resonance. For the other two cases, as-
sociated with a magnetic dipole moment, the horizontal components sum to zero (as expected
from our symmetry considerations of section 8.2.1), while a vertical component remains.

We note that in all cases, a strong longitudinal force component (not shown) appears.
However, this force leads to a longitudinal electron oscillation which cannot radiate into the
longitudinal, i.e., forward or backward direction. For our Metamaterials with a magnetic
dipole moment, the longitudinal component of the local magnetic field, however, gives rise
to a transverse component of the magnetic part of the Lorentz force, of which the vertical
component leads to radiation into the forward and backward directions.

In the Driven-Dipole Approximation, the source fields of Fig. 8.7 are averaged over the

1see chapter 4 on errors of the divergence of the electric field on surfaces and interfaces
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Figure 8.7: Snapshots of the magnetic component of the Lorentz force field (only the tangential SHG part) act-

ing on metal electrons, (−e)Re[v̂(1)(r)×B̂
(1)

(r)]xy . Compare Figs. 8.3 and 8.4. Each of the field distributions
is shown on its own scale of field strength.

Figure 8.8: Calculated SHG for the four cases under normal-incidence excitation, with a linear-optical polar-
ization indicated by the red arrows. The SHG source is the magnetic component of the Lorentz force on metal
electrons in the SRRs. The blue bars highlight the corresponding SHG intensities, normalized to 100 % for the
highest SHG intensity obtained from the magnetic resonance. The polarization of the SHG wave is indicated
by the blue arrows, for the cases with intensities far above the numerical noise. Compare to the corresponding
experiments (Fig. 9.3).
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corresponding unit cells. The relative SHG intensities calculated this way for the four cases
are depicted in Fig. 8.8, normalized to 100 % for the strongest intensity, which is obtained
for the magnetic resonance associated with a strong magnetic dipole moment. The second
strongest result is found for the horizontal electric resonance which also is connected with
a smaller, but finite magnetic dipole moment. The other two cases yield much weaker in-
tensities. The blue arrows in Fig. 8.8 depict the vertical polarization of the SHG wave for
the strong-intensity cases. The polarization corresponds to the remaining vertical component
after averaging the field distributions.

8.4.2 Radiation into arbitrary angles
For the three resonant cases, the linear-optical transmittance spectra for oblique angles of
incidence have been shown in Fig. 8.5. Applying the Driven-Dipole Approximation for arbi-
trary angles to these cases yields the angle-resolved relative SHG intensities shown in Fig. 8.9
for S- and P-polarization. Again, the intensities are normalized to 100 % for the magnetic
resonance at normal incidence. Note the different signal scales (bold numbers). The blue

and green curves depict the cases (i) ˆ̄S
′(SHG)
α,z = ˆ̄S

(SHG)

α,z and (ii) ˆ̄S
′(SHG)
α,z = ˆ̄S

(SHG)

α,z /εsub which
result from the ambiguity of the DDA for arbitrary angles as discussed in section 8.3.3. Ob-
viously, the two cases (i) and (ii) differ strongly for all configurations in Fig. 8.9, owing
to a strong z-component of the source term. Also, a considerable angle-dependence of the
SHG strength can be observed. Additionally, for S-polarization and case (i), the magnetic
resonance in Fig. 8.9(a) and the horizontal electric resonance in Fig. 8.9(b), which are both
connected with magnetic dipole moments, exhibit an asymmetric SHG intensity behavior
with respect to opposite angles of incidence. This asymmetry arises because of the normal
component of the magnetic field (confer discussion of oblique incidence in section 8.1).
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Figure 8.9: Calculated SHG intensities resulting from oblique-incidence excitation, for the cases with a reso-
nance near 1.5 µm wavelength (cf. transmittance spectra in Fig. 8.5). The SHG source is again the magnetic
component of the Lorentz force on metal electrons in the SRRs. The SHG intensity radiated into the for-
ward direction, transmitted through both surfaces of the substrate, is shown for different angles of incidence.
Intensities are normalized to 100 % for the magnetic resonance (a) at normal incidence (0°). Note the differ-
ent signal scales (bold numbers). The blue (green) curves depict the SHG intensity in the case in which the
nonlinear sources are located at the air/substrate interface just outside (inside) the substrate. Compare to the
corresponding experiments (Fig. 9.11).
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Chapter 9

Nonlinear optics of planar
Metamaterials: Experiments

The linear optics of Metamaterials has been investigated experimentally since a few years
ago (cf. section 2.5). While also “enhanced and novel nonlinear-optical properties” [64] have
already been predicted theoretically in 1999, the field of corresponding nonlinear-optical ex-
periments is still at its beginning. Our experiments are the first systematic study of the non-
linear optics of Metamaterials. In this chapter, we present corresponding results on Second-
(SHG) and Third-Harmonic Generation (THG) from planar Metamaterials. In addition, we
compare our findings to our theoretical results of chapter 8.

In section 9.1, we describe the details of our principal Metamaterial samples which con-
sist of planar arrays of Split-Ring Resonators (SRRs). For normal-incidence experiments
(section 9.2), we present the linear-optical properties and the SHG and THG results of these
samples, and additionally for several control samples characterized along the way. We find
a positive correlation of strong nonlinear signals and strong magnetic dipole moments of the
samples. For oblique-incidence experiments (section 9.3), we discuss the linear-optical and
SHG results for the principal samples.

9.1 Description of principal samples

Photonic Metamaterials have been defined in section 2.5 as artificial (usually periodic) op-
tical materials which do not exhibit diffraction and consist of responsive building blocks
(“atoms”). In particular, Split-Ring Resonators (cf. section 2.5.1) and their three fundamen-
tal resonances have been introduced there [see Fig. 2.5(d)-(f)]. Our two principal Metamate-
rial samples META-A and META-B (see Fig. 9.1) are planar arrays of gold SRRs arranged
in a square lattice. They are located on top of a 1-mm-thick quartz substrate with a 5-nm-
thick layer of ITO and are fabricated by the methods described in section 3.1. The SRRs of
sample META-A (sample META-B) have a side length of about 220 nm (480 nm) and lat-
tice constants ax=ay=305 nm (630 nm). The gold thickness of 25 nm and the footprint of
(100µm)2 are equal for all samples presented in this chapter. Hence, sample META-A and
META-B directly correspond to the examples META-A and META-B of the theory chapter 8.

87
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Figure 9.1: Scanning electron micrographs of samples (a) META-A and (b) META-B. Each sample consists
of gold Split-Ring Resonators (thickness 25 nm) arranged in a 2D square lattice which covers a total area of
(100 µm)2. The SRRs have been designed such that they exhibit a resonance at the aim wavelength of 1.5 µm
in linear optics (see text).

For frequencies far below the metal plasma frequency, the SRR resonance wavelengths
are simply proportional to the SRR size [85]. Using this relation, the geometrical parameters
of our principal samples are tailored such that the magnetic resonance of sample META-A
and the horizontal and vertical electric resonances of META-B are tuned to an aim wave-
length of 1.5 µm. We employ this “lithographic tuning” in order to use the laser setup of
section 3.3.2 exclusively at this aim wavelength, for resonant excitation of the samples. If, in
contrast, we tuned the wavelength of the laser (the OPO, cf. section 3.3.2) to excite different
resonances of the same sample at different wavelengths (which would hardly be possible
for the presented samples), the gold optical nonlinearities would likely change considerably,
and even interband transitions in gold would come into play at short wavelengths (cf. sec-
tion 2.3). We avoid these systematic but inestimable changes by applying the “lithographic
tuning.” Additionally, we fabricate all samples, which we want to compare later, in one fab-
rication run on the same glass substrate. These aspects ensure that it is really meaningful to
compare the nonlinear-optical signal strengths of different samples.

9.2 Experiments with normal incidence
We start our description of experiments with the configuration in which the samples are
excited by light at normal incidence. Here, only few parameters of the optical setups have to
be adjusted, making results highly reproducible.

9.2.1 Linear-optical properties
Figure 9.2 shows transmittance spectra of samples META-A and META-B, measured with
the optical setup described in section 3.2.1. The various observed transmittance dips corre-
spond to the resonances excited by the electric field of the incident light, causing resonantly
enhanced local fields. By counting the resonances from the long-wavelength side, and by
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Figure 9.2: Measured linear-optical transmittance spectra of samples META-A (left column) and META-B
(right column) located on the same substrate. Spectra are shown for horizontal (top row) and vertical (bottom
row) incident polarization and normal incidence. The insets repeat corresponding electron micrographs and
the incident polarization (red arrows). Because of the character of the resonances (not) appearing at the laser
(OPO) wavelength of 1.5 µm (dashed red line), we call the four cases, as denoted, the magnetic resonance, the
nonresonant case, the horizontal electric resonance, and the vertical electric resonance, respectively. Compare
to the corresponding calculations (Fig. 8.2).

comparing the transmittance spectra for horizontal and vertical incident polarization, we are
able to relate the dips at the aim wavelength of 1.5 µm to the magnetic, horizontal electric,
and vertical electric resonances, respectively, as labelled next to the spectra. One case (sam-
ple META-A and vertical incident polarization) does not exhibit a dip at this wavelength and
is consequently labelled nonresonant. Our measured spectra (Fig. 9.2) are in excellent agree-
ment with corresponding calculations (Fig. 8.2), further supporting our interpretation of the
resonances.

9.2.2 Second-Harmonic Generation for different resonances

Since the linear-optical electromagnetic fields of these resonances differ in character, one
also expects a differing behavior in nonlinear optics. Here, we present results for Second-
Harmonic Generation. The setup for measuring SHG and THG at the fixed excitation wave-
length of 1.5 µm has been described in section 3.3.2. Figure 9.3 shows corresponding SHG
signals measured for samples META-A and META-B and horizontal and vertical incident po-
larization (i.e., the four cases of which the linear-optical properties are depicted in Fig. 9.2).
While the linear-optical response of different resonances is similarly strong, we observe that
the SHG signal drastically depends on which resonance is excited. It is evident from Fig. 9.3
that the magnetic resonance (associated with a large magnetic-dipole moment) clearly leads
to the strongest SHG signal. We normalize this signal to 100 % and describe all other SHG
signals correspondingly (the noise level corresponds to about 0.3 %). This normalization
must not be confused with the absolute conversion efficiencies (see below).

In Fig. 9.3, the second strongest SHG signal strength of only 4 % is obtained from the
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Figure 9.3: Measured Second-Harmonic signal strength (represented by the blue bars) for the four cases (cp.
Fig. 9.2) under normal-incidence excitation, with a linear-optical polarization indicated by the red arrows in the
electron micrographs. The SHG signal strengths are normalized to 100 % for the strongest SHG signal obtained
from the magnetic resonance. The detection noise is about 0.2 %. The approximate polarization of the SHG
emission is indicated by the blue arrows, for the cases with appreciable signal strengths [see also Fig. 9.4(b)].
Compare to the corresponding calculations (Fig. 8.8).

horizontal electric resonance. Interestingly, this resonance is also associated with a small
magnetic-dipole moment (see section 2.5.1). The SHG signal is much lower than for the
magnetic resonance despite the fact that their oscillator strengths in the linear spectra are
comparable. For the vertical electric resonance, we find a small SHG signal just above the
noise level. For completeness, Fig. 9.3 also shows the nonresonant case for sample META-A
and vertical incident polarization.

As expected from Eq. (2.26), the SHG signal (e.g., from the magnetic resonance) closely
scales with the square of the incident power [see Fig. 9.4(a)]. The polarization of the SHG
emission from the magnetic resonance is nearly vertical [see Fig. 9.4(b)]. The small tilt
angle (about 15°) of the SHG polarization with respect to the vertical direction is due to de-
viations from perfect mirror symmetry of the SRRs [see electron micrographs in Fig. 9.1(a)],
as confirmed by the experiments described in the next section. For the horizontal electric
resonance, the SHG emission is again polarized nearly vertically.

For the SHG signal obtained from the magnetic resonance, we roughly estimate an abso-
lute conversion efficiency of 2×10−6, taking into account the measured signal, the specified
photomultiplier quantum efficiency, a correction for all optical components in the optical
pathway, and a typical average power of 50 mW (see section 3.3.2). A corresponding 25-
nm-thin film of a standard nonlinear-optical material would deliver a yet much smaller SHG
signal. For example, for potassium dideuterium phosphate (KDP) with χ(2)=1.0×10−12 m/V
[4], we estimate a SHG conversion efficiency on the order of 10−11 under these conditions.
From a closed gold film of the same thickness on the identical glass substrate we find no
SHG (as expected from symmetry). For the gold film, also no measurable SHG signal is
found for oblique incidence in P-polarization for angles up to 60° with respect to the surface
normal. For the latter case, symmetry would allow for SHG.
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Figure 9.4: (a) Normalized SHG signal strength versus normalized incident laser power on a log-log scale (for
the magnetic resonance in Fig. 9.3). The straight line has a slope of two, as expected for SHG. (b) Measured
polarization of the SHG emission from the magnetic resonance, represented in a polar diagram which is oriented
as the electron micrographs in Fig. 9.3.

Thus, much larger SHG signals are detected from our Metamaterials when magnetic-
dipole resonances are excited, as compared with purely electric-dipole resonances. These
experiments are consistent with our calculations (see Fig. 8.8) based on the magnetic com-
ponent of the Lorentz force exerted on metal electrons. However, these experiments are
no definite proof that our theory describes the dominating contribution. Hence, further ex-
perimental data (e.g., angle-resolved investigations, see section 9.3.2) are required for the
comparison with theory.

9.2.3 Second-Harmonic Generation: Symmetry investigations
From the selection rules of SHG [32] and our symmetry considerations of section 8.2.1, the
SHG emission of our Metamaterials based on (ideally mirror-symmetric) SRRs should be
strictly vertical. Consequently, the reason of the polarization tilt angle [see Fig. 9.4(b)] of the
SHG radiation emitted by the magnetic-resonance SRRs was a persisting puzzle for some
time. Here, we present further experiments to clarify the origin of this tilt angle.

In Fig. 9.5, we show data for three additional Metamaterial samples, again located on
one substrate. These samples consist of SRRs which are fabricated such that they contain
designed asymmetries (see the top-row electron micrographs in Fig. 9.5): In (a), the lower-
left sides of the SRRs are thicker than on their lower right, in (b), the SRRs are highly
symmetric, and in (c), the lower-right sides of the SRRs are systematically thicker. The
SHG polarizations (see second row) for parts (a) and (c) are tilted to opposite sides from
the vertical direction, and the polarization of part (b) is between those of (a) and (c) and is
closest to the vertical direction. Thus, we can expect an exactly vertical SHG polarization
for exactly symmetric SRRs. However, it is obvious that the SHG polarization tilt angle
delicately depends on details of the SRR geometry.

For completeness, the bottom row of Fig. 9.5 depicts the corresponding linear transmit-
tance spectra of the samples, confirming that these are equally resonant to the excitation at
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Figure 9.5: Depencence of the SHG polarization tilt [cp. Fig. 9.4(b)] on details of the Split-Ring Resonator
geometry. The three scanning electron micrographs in the top row show arrays of SRRs (a) of which the lower-
left sides are systematically thicker, (b) which are highly symmetric, and (c) of which the lower-right sides are
systematically thicker. The middle row shows the polarization of the SHG emission from the corresponding
magnetic resonances, in analogy to Fig. 9.4(b). The linear transmittance spectra in the bottom row confirm that
all these magnetic resonances are equally resonant to the excitation at 1.5 µm wavelength.
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Figure 9.6: Measured Third-Harmonic signal strength (represented by the purple bars) for the four cases (cf.
Figs. 9.2 and 9.3) under normal-incidence excitation, with a linear-optical polarization indicated by the red
arrows in the electron micrographs. The THG signal strengths are normalized to 100 % for the strongest THG
signal obtained from the magnetic resonance. The detection noise is about 0.4 %. The approximate polarization
of the THG emission is indicated by the purple arrows, for the cases with appreciable signal strengths.

1.5 µm wavelength.

9.2.4 Third-Harmonic Generation

In analogy to the SHG experiments described in section 9.2.2, we also perform THG in-
vestigations. Corresponding THG signal strengths are summarized in Fig. 9.6 for the four
cases related to our principal samples. Evidently, the magnetic resonance also leads to the
strongest THG signals. We normalize this THG signal strength to 100 % and relate other
THG signals to it (the noise level for THG then corresponds to about 0.4 %). We confirm
that the THG signal actually scales with the third power of the incident laser intensity (see
Fig. 9.7). For the THG signal obtained from the magnetic resonance and for the conditions
described in section 9.2.2, we estimate an absolute conversion efficiency of 3×10−7.

In Fig. 9.6, the second strongest THG signal strength of 40 % is obtained for the hor-
izontal electric resonance. For the vertical electric resonance (for which we observe no
significant SHG), a THG signal strength of 11 % is obtained. From the nonresonant case, as
well as from a closed gold film of the same thickness on the identical glass substrate, we find
no transmitted THG signal. Thus, THG is favored by the cases of resonant character and,
among these, by resonances associated with magnetic dipole moments.

9.2.5 Control experiments

This section is devoted to shed more light onto the remaining question about the reasons for
the enhancement of SHG and THG observed for particular Metamaterials.

We first discuss a sample (see Fig. 9.8) which is similar to sample META-A, but its
corresponding magnetic resonance of the SRRs is effectively detuned with respect to sample
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Figure 9.7: Normalized THG signal strength versus normalized incident laser power on a log-log scale. The
straight line has a slope of three, as expected for THG.

Figure 9.8: Nonlinear response of the detuned SRR control sample, for horizontal (top row) and vertical (bottom
row) incident linear polarization. The different columns (from left to right) show the electron micrograph, the
measured linear transmittance spectra, the measured SHG signal strength for excitation centered at 1.5 µm
wavelength, and the corresponding THG signal strength. The arrows indicate the incident linear polarization
(red), the polarization of the SHG emission (blue), and that of the THG emission (purple), if sufficiently large.
The nonlinear signals are again normalized to those of the magnetic resonance shown in Figs. 9.3 and 9.6.
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META-A by 0.25 µm in wavelength. This sample is also located on the same substrate as the
principal samples and compared correspondingly. It is clear from Fig. 9.8 that the detuning
leads to a decrease of the SHG signal from 100 % to 20 % for excitation with horizontal
incident polarization. Correspondingly, the THG signal decreases from 100 % to 7 %. This
comparison shows that the nonlinear signals are resonantly enhanced as expected. Again, no
significant SHG and THG signals are found for vertical incident polarization.

Is the observed enhancement of SHG and THG related to the magnetic-dipole character
of particular resonances? To address this question, we have fabricated an additional set of
samples (again, all fabricated in one run on one substrate), the results of which are summa-
rized in Fig. 9.9. Here, we compare excitation of an array of SRRs closely similar to sample
META-A (see Figs. 9.1, 9.2, 9.3, and 9.6) with two other structures. One control structure
[see Fig. 9.9(b)] consists of “T”-shaped structures without centrosymmetry, in principle al-
lowing for SHG. Nevertheless, the measured SHG signal is within the noise, even though a
resonance is excited. The second control sample [see Fig. 9.9(c)] is an array of straight cut
wires, which can be viewed as stretched-out versions of the SRRs in (a). From centrosymme-
try, no SHG is expected, and indeed no significant SHG is found. This observation indicates
that the measured nonlinear signals from our high-quality samples are not dominated by ex-
trinsic effects (see, e.g., our discussion in section 3.1.3). Clearly, both the “T”-structures
and the cut wires exhibit zero magnetic-dipole moment. The combination of these observa-
tions suggests that the measured large SHG signals from particular resonances of the SRRs
are connected to the magnetic-dipole character of these resonances. The THG signals from
these control samples are also shown in Fig. 9.9 for completeness.

9.3 Angle-resolved experiments

While our investigations with normally incident light already show many fundamental as-
pects of nonlinear Metamaterials, corresponding optical experiments with samples illumi-
nated under oblique incidence often provide additional information depending on the under-
lying physical processes, and thus deliver more input for a comparison with theory.

Here, we restrict our studies to the three resonant cases of the principal samples META-
A and META-B and omit the nonresonant case (cf. Fig. 9.2). We continue to call these three
cases the magnetic, horizontal electric, and vertical electric resonance, respectively (although
the resonant character may only be present for normal incidence).

Also, it is clear that positive and negative angles α with respect to the surface normal are
not always necessarily equivalent. This follows on one hand from our theoretical considera-
tion of section 8.1 concerning the change of sign of the normal component of the magnetic
field in S-polarization. On the other hand, positive and negative angles α can lead to different
experimental results simply because of a low symmetry of the SRRs. Thus, we perform all
measurements for both positive and negative angles.
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Figure 9.9: Experiments on additional control samples, for a Metamaterial composed of (a) Split-Ring Res-
onators closely similar (but not identical) to sample META-A (see Figs. 9.1, 9.2, 9.3, and 9.6), (b) “T”-shaped
structures, and (c) single cut wires. The representation for each sample is as in Fig. 9.8, the nonlinear signals
presented here are normalized to the SRRs in (a), top row, here.
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Figure 9.10: Measured linear-optical transmittance spectra for oblique incidence, for the cases with a resonance
near 1.5 µm wavelength: (a) magnetic resonance (sample META-A and horizontal polarization), (b) horizon-
tal electric resonance (sample META-B and horizontal polarization), (c) vertical electric resonance (sample
META-B and vertical polarization). The left column is for P-polarization, the right column for S-polarization.
Transmittance spectra for positive angles (solid curves) and negative angles (dots) are shown, the angle of in-
cidence with respect to the surface normal is indicated by the color. The schemes adjacent to the spectra show
the configuration of the incident fields for positive angles of incidence. The difference between the 0°-curves
here and the corresponding normal-incidence measurements of Fig. 9.2 is explained in the text. Compare to the
corresponding calculations (Fig. 8.5).
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9.3.1 Linear-optical properties

The transmittance spectra of the three cases are summarized in Fig. 9.10. The geometries
and field directions are illustrated by the nearby schemes. These spectra are measured with
the first setup described in section 3.2.2, allowing for oblique-incidence spectroscopy at an
opening angle of the incident light of about 5° (whereas the normal-incidence transmittance
spectra in Figs. 9.2, 9.5, 9.8, and 9.9 are recorded with the setup of section 3.2.1 with a
numerical aperture of 0.5, yielding broader spectral features). The spectra are normalized
with respect to the bare substrate for the same angle of incidence. The underlying physics
has been discussed in section 8.1 and [89]. Importantly, the linear-optical transmittance
spectra (Fig. 9.10) show no significant differences between positive and negative angles, re-
spectively.

9.3.2 Angle-resolved Second-Harmonic Generation

We now discuss the SHG signals obtained for the three resonances excited under oblique
incidence (using the same setup as for nonlinear normal-incidence experiments). Clearly,
the spot size on the sample increases with increasing angle α with respect to the surface
normal. Due to the finite sample size of (100µm)2, this effect limits the experimentally
accessible angles to a maximum of about |α|=60°. At 60°, the Gaussian spot diameter
increases from 60 µm to 120 µm, but for the SHG, the relevant squared Gaussian profile
(120 µm/

√
2≈85 µm, as the 1/e-diameter of the SHG electric field) is still smaller than the

sample size. Hence, the neglected Gaussian tails of the SHG intensity profile can safely be
ignored.

Results regarding SHG are summarized in Fig. 9.11. Obviously, the data are quite com-
plex and we are presently unable to explain them in detail. However, a few aspects are clear:

(i) The SHG signal from the magnetic resonance [see Fig. 9.11(a)] yielding the 100 %
signal at normal incidence, decreases with increasing angle |α|, while the resonance
can still be excited, as apparent from the linear transmittance spectra [see Fig. 9.10(a)].
In contrast, the SHG signals for the other two cases (b) and (c) increase with increasing
angle |α| up to about 40° and decrease only for yet larger angles.

(ii) The SHG signal from the magnetic resonance in Fig. 9.11(a) is, even for each angle,
always larger than the SHG signals for the resonances (geometries) in (b) and (c).

(iii) We do observe significant differences between positive and negative angles for the
SHG signals (Fig. 9.11) in some geometries, while for the corresponding linear trans-
mittance spectra (Fig. 9.10) we do not. However, only small deviations appear for
S-polarization, the largest deviations appear for P-polarization in Fig. 9.11(b). This
can only be explained by a low symmetry of the corresponding SRR sample.

(iv) Beyond this, a detailed interpretation of the SHG signals from the cases in (b) and (c)
is complicated by the fact that the resonance positions (see Fig. 9.10) shift and split
with increasing angle |α| with respect to the fixed excitation wavelength.
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Figure 9.11: Measured SHG signal strengths resulting from oblique-incidence excitation, for the cases with
a resonance near 1.5 µm wavelength (cf. transmittance spectra in Fig. 9.10). The signal strength of the SHG
transmitted through the Metamaterial and the substrate into the forward direction is shown for different angles
of incidence. Signal strengths are normalized to 100 % for the magnetic resonance in (a) at normal incidence
(0°). Note the different signal scales (bold numbers). The blue, green, and red curves show the SHG signal
strengths obtained in three independent experimental runs, the error bars depict the noise level (0.4 % here) of
the lock-in signal read-out. The schemes adjacent to the spectra show the configuration of the incident fields
for positive angles of incidence. Compare to the corresponding calculations (Fig. 8.9).
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In general, the angle dependencies of the SHG experiments (Fig. 9.11) are only vaguely
similar to our corresponding theory (Fig. 8.9). This means that at least one of our two as-
sumptions for the theory, which is based on the magnetic part of the Lorentz force and
the Driven-Dipole Approximation, becomes questionable for oblique incidence (whereas
the normal-incidence data are well reproduced). Beyond this aspect, however, our angle-
resolved SHG measurements again emphasize the outstanding role of the magnetic resonance
in connection with the most dominant SHG signal strengths.
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Conclusions

In this thesis, we have investigated the nonlinear-optical properties of lithographically fab-
ricated metallic nanostructures, in particular, of Metallic Photonic Crystal Slabs and planar
photonic Metamaterials, in both experiment and theory. In either of the two materials, the
electromagnetic field of a focussed laser light beam interacts significantly with the designed
metallic nanostructures, and gives rise to Second-Harmonic Generation (SHG) and Third-
Harmonic Generation (THG).

For all discussed experiments, corresponding high-quality samples with structured gold
particles have been fabricated by standard electron-beam lithography in which a polymer
mask with holes is created prior to the evaporation of gold. The deposition of metallic and
dielectric thin films has been performed by electron-beam evaporation.

In a Metallic Photonic Crystal Slab (MPCS), the periodic arrangement of thin wires lying
on top of a slab waveguide leads to the coupling of a photonic resonance with an electronic
resonance. The photonic resonance arises because the lattice constant of the wires only al-
lows light of a certain wavelength or frequency to be coupled to the waveguide mode. Hence,
as usual for Photonic Crystals, the lattice constant must be on the order of the wavelength
(about 1 µm or less). The electronic resonance stems from the particle plasmon, a collec-
tive oscillation of the conduction electrons within each metallic nanostructure, driven by the
light field and the restoring force of the surface charges appearing on the metal surface. In a
MPCS, these two resonances are coupled due to the overlap of their field distributions. Thus,
this system is an ideal candidate to study the strong coupling of two resonances by optical
methods.

In order to interpret nonlinear-optical effects, the linear-optical properties of a system
usually have to be understood first. For MPCSs, we have shown that the anti-crossing and
the Fano lineshapes appearing in measured extinction (=absorption+scattering) spectra can
very well be described by our model based on two coupled Lorentz oscillators. Our simple
classical model even outperforms earlier models based on phenomenological parameters or
a description inspired from quantum mechanics. Extending our model to nonlinear optics,
we have identified the regime of “moderate coupling” in which corresponding THG spectra
provide information on the underlying source of the optical nonlinearity. Furthermore, the
nonlinear spectra calculated for excitation with two time-delayed pulses reveal a beating

101
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in the spectral mixing products of the two peaks from linear optics, but not in the third
harmonics of the latter peaks.

For corresponding experiments, we have used 5-femtosecond laser pulses from a tita-
nium-sapphire oscillator and an interferometer to study the THG of our MPCS samples. Our
experiments go beyond previous work regarding an improved temporal resolution and the
fact that we spectrally resolve the interferometric third-harmonic signal. The spectra reveal
a distinct behavior of the various spectral components versus time delay. Some spectral
components exhibit a beating, others do not, as in our theory. Furthermore, the decay times
of the envelopes strongly depend on the spectral component. The measured spectra agree
qualitatively very well with the predictions of our simple theoretical model. The comparison
has allowed us to identify the particle plasmon oscillation as the main source of nonlinearity.

In general, for metal nanoparticle ensembles, we have clarified a historical misunder-
standing: We have shown analytically and numerically that the comparison of time-resolved
femtosecond SHG or THG experiments in combination with extinction measurements does
not allow one to distinguish between homogeneous and inhomogeneous contributions to the
linewidth, in sharp contrast to the claim of previous work. We have unambiguously traced
back this discrepancy to a technical mistake in that previous work. As a result, the plasmon
decay time related to the homogeneous linewidth can not be determined from the comparison
of linear-optical and SHG or THG data.

In the other part of our work, we investigate photonic Metamaterials which are also
artificial optical materials, however, with responsive building blocks (“atoms”) smaller than
relevant wavelengths of light. A breakthrough in the young field of photonic Metamaterials
has been the recent demonstration of materials with a magnetization oscillating at optical
frequencies and even materials with a negative index of refraction. The most prominent
“atom” appearing in this field is the Split-Ring Resonator (SRR), which can be considered
in simplification as a small LC-resonance circuit with the ring forming a coil (with one
winding) and the gap in the ring forming a capacitor. Incident light can excite oscillating
currents flowing in this ring, corresponding to the fundamental LC mode, or higher modes.
Particular modes of a SRR are known to possess oscillating magnetic dipole moments. Thus,
Metamaterials are ideally suited for studies of materials (possibly) reacting to the magnetic
field component of light.

This is especially interesting in nonlinear optics, in which the magnetic field can come
into play by means of the magnetic part of the Lorentz force. When exciting SRRs with
light, the local magnetic field near or in a SRR can point into a completely different direction
compared to the magnetic field of the exciting wave. Hence, we have explained that SHG
radiation, based on the magnetic part of the Lorentz force and detected in the forward di-
rection, can be possible in Metamaterials. In contrast, this radiation is impossible for many
natural materials because of the direction of this force. This new possibility has been the
motivation for our nonlinear-optical investigations on Metamaterials.

Our experiments on SHG and THG are the first systematic study of the nonlinear optics
of Metamaterials at all. Using 170-fs optical pulses from an optical parametric oscillator,
we have compared nonlinear signals from planar arrays of different SRRs associated with
different modes (resonances). These modes have been excited at the fixed wavelength of
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1.5 µm with light at normal incidence onto the samples. We have obtained by far the strongest
SHG and THG signals from those resonances associated with the strongest magnetic dipole
moments. For small detuning from resonance (i.e., for a sample with parameters slightly
different from those of a resonant sample) as well as for nonresonant excitation, the nonlinear
signals decrease in strength as expected. Additionally, other photonic Metamaterials without
magnetic dipole moments serving as resonant “control samples” have revealed no detectable
SHG signal within the noise and a very low THG signal strength.

In order to shed more light onto the nature of the nonlinear signals observed for our
Metamaterial samples with resonant SRRs, we have also performed SHG experiments at
oblique incidence of the exciting light. We have obtained a complex behavior of the SHG
signal strengths for increasing angle of incidence (with respect to the sample surface nor-
mal). The strongest signal is still obtained for the resonance with strongest magnetic dipole
moment and normal incidence, but also the monotonically decreasing signal for this sample
at increasing angle is larger than from the other investigated samples with weaker magnetic
dipole moments. These samples, in turn, show a non-monotonic behavior for increasing an-
gle of incidence. Small asymmetries of the SHG signal are observed with respect to tilting
the sample in one or the opposite direction. These asymmetries must be attributed to small
deviations from perfect mirror symmetry of our fabricated SRRs.

The linear-optical transmittance spectra of the SRR samples have been reproduced very
well by corresponding numerical simulations. For these simulations, we have employed a
commercial software package and have adapted it to the case of Metamaterials. A finite-
element method is used to calculate the spatially resolved electromagnetic fields in and
around the SRRs for linear optics. We have chosen the finite elements and have implemented
the boundary conditions such that the simulation of normal-incidence and oblique-incidence
scenarios has been made possible and simple.

Unfortunately, we are presently not in the position to compare the results of our nonlinear-
optical experiments to a complete microscopic nonlinear theory for photonic Metamaterials.
Under our conditions, quantum effects of metal electrons are not expected to be relevant.
Thus, one can assume that a classical description of plasma nonlinearities is an adequate
starting point: One has to solve self-consistently Newton’s law for metal electrons with an
electric and a magnetic component of the Lorentz force and the Maxwell equations for the
metallic nanostructure. A corresponding theory has been formulated by the collaborating
groups of S. W. Koch and J. V. Moloney, and has also been repeated in this thesis. The same
groups also investigate corresponding numerical (finite-difference time-domain) simulations
with Metamaterials consisting of SRRs, however, stability and convergence issues have not
permitted final results so far. In this theory, the magnetic component of the Lorentz force is a
term which appears in the volume of the metal. In contrast, SHG associated with the electric
component of light is always exclusively from the metal surface, since the first-order charge
density does not change in the volume of the metal. Especially the surface terms are critical
in numerical evaluations.

Thus, we have developed an approximation for the above theory allowing for simple
estimates. In our Driven-Dipole Approximation (DDA), the forces acting on the conduction
electrons of each SRR are summed into a net force and the electrons are contracted into
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a single mobile charge on which the net force is exerted. Using this approximation and
assuming exclusively the magnetic part of the Lorentz force as the nonlinearity, we have
been able to reuse numerical data from linear-optical simulations and have obtained results
which are consistent with our experimental SHG data for normal incidence. However, this
is no definite proof that these assumptions describe the dominating contribution. Hence, we
have compared the additional experimental SHG data from our angle-resolved investigations
with results derived from analog calculations for oblique SHG radiation. Here, the DDA
leads to an ambiguity allowing for two differing results. However, neither of the two results
completely matches the experiments, which allows to conclude that at least one of our two
assumptions for the theory, which is based on the magnetic part of the Lorentz force and
the DDA, becomes questionable for oblique incidence. Thus, especially more theoretical
work in the field of nonlinear-optical Metamaterials will be necessary. The experimental
data which we have presented here can provide a sensitive testground for such theories.

Broadly speaking, the spirit of the emerging field of photonic Metamaterials is to design
and fabricate artificial tailored optical materials exhibiting linear- and/or nonlinear-optical
properties that simply do not occur in natural substances. Regarding nonlinear optics, one
obvious concrete goal is to increase effective nonlinear-optical coefficients by orders of mag-
nitude. For very thin films, the magnetic-dipole Metamaterials which we have presented in
this thesis already outperform standard SHG materials by several orders of magnitude with
respect to conversion efficiency. Clearly, one of the future challenges is to extend this success
to larger and especially to thicker Metamaterial structures in order to become meaningful for
applications. Such three-dimensional (rather than planar) photonic Metamaterials are elusive
to date, while first steps in this direction have been taken [139]. In that context, the problems
of absorption and phase-matching would have to be solved.
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[98] O. D. Mücke, Extreme nonlinear optics in semiconductors with intense few-cycle laser pulses,
Ph.D. thesis, Universität Karlsruhe (TH) (2003).

[99] P. P. Silvester and R. L. Ferrari, Finite elements for electrical engineers (Cambridge University
Press, Cambridge, 1996).

[100] J. Jin, The finite element method in electromagnetics (Wiley, New York, 2002).



BIBLIOGRAPHY 111

[101] P. Monk, Finite element methods for Maxwell’s equations (Oxford Science Publications, Ox-
ford, 2003).

[102] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations,
Bull. Amer. Math. Soc. 49, 1 (1943).

[103] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp, Stiffness and deflection analysis of
complex structures, J. Aer. Sci. 23, 805 (1956).

[104] FEMLAB documentation is provided with the software, (2006).

[105] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equa-
tions in isotropic media, IEEE Trans. Antennas Propag. 14, 302 (1966).

[106] A. Taflove and S. C. Hagness, Computational electrodynamics: The finite-difference time-
domain method (Artech House, Norwood, 2005).

[107] H. Whitney, Geometric integration theory (Princeton University Press, Princeton, 1957).
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