KIT | KIT-Bibliothek | Impressum | Datenschutz

Sequence Mining for Customer Behaviour Predictions in Telecommunications

Eichinger, Frank; Nauck, Detlef D.; Klawonn, Frank

Abstract:

Predicting the behaviour of customers is challenging, but important for service oriented businesses. Data mining techniques are used to make such predictions, typically using only recent static data. In this paper, a sequence mining approach is proposed, which allows taking historic data and temporal developments into account as well. In order to form a combined classifier, sequence mining is combined with decision tree analysis. In the area of sequence mining, a tree data structure is extended with hashing techniques and a variation of a classic algorithm is presented. The combined classifier is applied to real customer data and produces promising results.


Volltext §
DOI: 10.5445/IR/1000005948
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2006
Sprache Englisch
Identifikator urn:nbn:de:swb:90-59480
KITopen-ID: 1000005948
Erschienen in Proceedings of the ECML/PKDD Workshop on Practical Data Mining. Hrsg.: Markus Ackermann
Seiten 3-10
Externe Relationen Siehe auch
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page