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We present theoretical results on the interplay of magnetic and superconducting orders in diffu-
sive ferromagnet-superconductor-ferromagnet trilayers. The induced triplet superconducting corre-
lations throughout the trilayer lead to an induced spin magnetization. We include self-consistency
of the order parameter in the superconducting layer at arbitrary temperatures, arbitrary interface
transparency, and any relative orientation of the exchange fields in the two ferromagnets. We pro-
pose to use the torque on the trilayer in an external magnetic field as a probe of the presence of
triplet correlations in the superconducting phase.

The importance of triplet pairing correlations in the
interface region between a singlet superconductor and a
ferromagnet recently became the focus of research in the
field of spintronics [1, 2, 3, 4]. In contrast to clean triplet
p-wave superconductors and superfluids, for diffusive ma-
terials p-wave correlations are suppressed and triplet cor-
relations have s-wave orbital symmetry, but are odd in
frequency [1]. In the case of a homogeneous magnetiza-
tion of the ferromagnet, the spin projection of the triplet
correlations on the quantization axis of the exchange field
is zero. If, on the other hand, the distribution of the
exchange field in the ferromagnet is inhomogeneous in
space, then under suitable conditions [5] also triplet cor-
relations with non-zero spin projection (equal spin pairs)
are induced [1, 2, 3]. Triplet pairing correlations induce
in turn a spin magnetization both in the ferromagnet and
in the superconductor [6, 7].

An important question is how to experimentally find
good fingerprints of the triplet superconducting corre-
lations. Theoretical work has been focused on calcula-
tions of Tc [5, 8, 9], the local density of states (LDOS)
[4, 10, 11], or to search for unconventional Josephson cou-
plings [3, 12]. Experimentally, no smoking gun has been
found although recently magnetization changes were ob-
served through neutron reflectometry on multilayers of
YBa2Cu3O7 and La2/3Ca1/3MnO3 [13]. Various other
properties of FS heterostructures that could be influenced
by triplet superconducting correlations have been mea-
sured, as for example a negative Josephson coupling (π
junctions) [14], and LDOS modulations [15].

In the following we present results for the in-
duced triplet correlations and corresponding changes
of the magnetization in a ferromagnet-superconductor-
ferromagnet (FSF) trilayer with arbitrary misalignment
of the exchange fields in the two F layers. We put forward
signatures of triplet correlations that can be measured
experimentally.

The FSF trilayer we consider is sketched in Fig. 1. We
denote the layer thicknesses by dF1, dS , and dF2 respec-
tively. The x-axis is directed perpendicular to the layer
interfaces with the origin at the center of the supercon-
ductor. The z-axis is aligned with the exchange field ~J1

in the left ferromagnet. The angle between the exchange

fields ~J1 and ~J2 is denoted θJ . We also assume transla-
tional invariance in the y-z-plane.

We use the quasiclassical theory of superconductivity
for diffusive systems [16] that is formulated in terms of
momentum averaged Green functions. The Green func-
tion for the trilayer, ĝ(x, ǫn), depends on the x-coordinate
and on the Matsubara frequency ǫn = (2n + 1)πT (n in-
teger, T temperature). In standard notation (see e.g.
[5, 17]) the Green function is a 4× 4 matrix in combined
Nambu-Gor’kov (electron-hole) and spin space

ĝ =

(

gs + ~gt · ~σ (fs + ~ft · ~σ)iσy

(f∗

s + ~f∗

t · ~σ∗)iσy g∗s + ~g∗t · ~σ∗

)

, (1)

where fs and ~ft are singlet and triplet pairing amplitudes,
gs and ~gt are spin scalar and spin vector parts of the
diagonal Green function, and the vector ~σ = (σx, σy, σz)
is composed of Pauli spin matrices. The Green function
satisfy a Usadel-type equation [16, 18]

[

iǫnτ̂3 − ∆̂ − ~J · σ̂, ĝ
]

+
D

π
∂x(ĝ∂xĝ) = 0̂, (2)

where D denotes the diffusion constant (equal to DF in

F and to DS in S), [â, b̂] = âb̂ − b̂â, and σ̂ = diag(~σ, ~σ∗).
The quantities τ̂1, τ̂2, τ̂3 and 1̂ denote the Pauli matrices
and the unit matrix in electron-hole space. Eq. (2) is
supplemented by a normalization condition ĝ2 = −π21̂.
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FIG. 1: The trilayer consists of a superconductor of thickness
dS and two ferromagnets of thicknesses dF1 and dF2. The
exchange fields of the ferromagnets, ~J1 and ~J2, are confined
to the y-z-plane, but are misaligned by an angle θJ . For
torque measurements, a small magnetic field is applied in the
y-z-plane at an angle ϕ.
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The superconducting singlet order-parameter ∆̂ is de-
termined by the pairing interaction, which we assume to
be zero in the ferromagnetic parts of the trilayer. By
a proper gauge transformation, ∆̂ can be chosen real,
∆̂ = ∆iσy τ̂1, where ∆ satisfies the gap equation

∆(x) ln

(

T

Tc0

)

= πT
∑

n

[

fs(x, ǫn)

π
−

∆(x)

ǫn

]

. (3)

The pairing interaction and the frequency-sum cut-off
have been eliminated as usual in favor of the bulk su-
perconductor critical temperature Tc0. The trilayer crit-
ical temperature is lower Tc < Tc0, but we use Tc0 as a
parameter independent energy scale in our problem.

The interface boundary conditions have been formu-
lated by Nazarov [19] and consist of two equations. The
first is the condition of current conservation through the
interface σF ĝF ∂xĝF = σS ĝS∂xĝS, where ĝF and ĝS de-
note the values of the Green function at the F and S sides
of the interface, respectively. The normal state conduc-
tivities on either side are related to the corresponding
diffusion constants D and densities of states at the Fermi
level Nf by σ = 2Nfe2D, where e is the electron charge.
Note that Nf in the up and down spin bands are to qua-
siclassical accuracy equal in the weak ferromagnet regime
Tc < | ~J | ≪ Ef , where Ef is the Fermi energy. The sec-
ond boundary condition is written as [20]

σF ĝF ∂xĝF = ±
1

ARb

2π2 [ĝF , ĝS ]

2π2(2 − T ) − T {ĝF , ĝS}
, (4)

where Rb is the boundary resistance, A is the junction
area, and T is the junction transparency. The sign +(−)
refers to the left (right) interface. For simplicity we use
only two parameters: T and rb = ARbσF /(2π2ξS), where
ξS =

√

DS/2πTc0 is the coherence length in S. At the
outer F surfaces the boundary conditions are ∂xĝF = 0.

We have solved Eqs. (2)-(4) self-consistently with the
help of a parametrization of the Usadel Green function
in terms of Riccati amplitudes, as described in Ref. [21].
This method allows us to treat spatially inhomogeneous
(including non-collinear) spin magnetizations.

The magnetic order (exchange fields ~J1, ~J2) and the
superconducting order (∆) are spatially separated. How-
ever, due to quantum mechanical leakage of the supercon-
ducting correlations trough the interfaces both the sin-
glet fs and the triplet ~ft pair correlations are spread out
through the whole structure. As a result also the magne-
tization extends through the whole system, including the
superconductor. The induced spin magnetization below
Tc is defined as

δ ~M(x) = 2µBNfT
∑

n

~gt(x, ǫn), (5)

where µB is the Bohr magneton. In Fig. 2 we present the
induced magnetization within the trilayer for parallel and
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FIG. 2: Spatial dependence of the induced magnetization at
various T ∈ [0.05, 0.55]Tc0 in steps of 0.1Tc0 for (a) parallel

(θJ = 0, ~J1 ↑↑ ~J2) and (b) antiparallel (θJ = π, ~J1 ↑↓ ~J2)
configurations. The S region is shaded. (c) Dependence of
δMz on T at the left interface (in S) for both configurations.
(d) Spatial dependence of the normalized LDOS in F2 at ǫ = 0
and at ǫ = ∆(x = 0) = 1.16Tc0 for the parallel configuration.
Here, dF1 = dF2 = ξS, dS = 4ξS, J1 = J2 = 20Tc0, σF = σS ,
DF = DS , and both interfaces have rb = 0.1 and T = 1.

antiparallel orientations of the exchange fields. We see in
(a)-(b) that δ ~M extends into the superconductor over
the distance ∼ ξS , while decaying and oscillating on the
magnetic scale ξJ =

√

DF /J in the ferromagnets. There

is a large increase in the magnitude of δ ~M as the temper-
ature is lowered well below Tc, see Fig. 2(c). The corre-
sponding spatial variations of the LDOS [22] are shown
in Fig. 2(d). The LDOS is spin split as due to the pres-
ence of triplet correlations. The order of magnitude of
the LDOS modulations (1% effect) is in agreement with
experiments [15].

The singlet order parameter is suppressed at the in-
terface to the ferromagnets. At the same time, the sin-
glet correlations leak into the ferromagnets. For par-
allel or antiparallel orientations of the exchange fields,
triplet pairing correlations with zero spin projections are
induced. For other orientations equal spin pairs are also
induced. In Fig. 3(a)-(b) we show for perpendicular ori-
entation the spatial dependence of the order parameter
∆(x) and of the correlation functions defined as [23]

Φs(x) = 2T
∑

n>0

fs(ǫn, x), (6)

~Φt(x) = T
∑

n>0

~ft(ǫn, x). (7)

Note that because ~ft(−ǫn, x) = −~ft(ǫn, x), the total sum
over all frequencies in Eq. (7) would vanish. Since we
assume an energy-independent pairing interaction there
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FIG. 3: Spatial dependence (a) of the singlet (Φs) and triplet

(~Φt) pairing amplitudes, and (c) of the induced magnetization

δ ~M for perpendicular configuration ( ~J1 ⊥ ~J2, θJ = π/2).
Here, dF1 = 8ξS , dF2 = dS = 4ξS, and T = 0.1Tc0. The
other parameters are as in Fig. 2. The S region is shaded.
(a) The singlet Φs(x) (dotted line) leaks into the F regions
and oscillates and decays on a short length scale. The triplets
Φty(x) (full line) and Φtz(x) (dashed line) are short-range or

long-range depending on their respective projections on ~J1

or ~J2. Inset: spatial dependence of ∆(x) in the S region.
(c) There is an asymmetry in the oscillation period between
δMy (full line) and δMz (dashed line) in both F regions. (b)
and (d): The angles θΦ and θδM relative to the z-axis, that

quantify the directions of ~Φt and δ ~M in the y-z-plane.

is no triplet order parameter. The singlet component
is purely real, while the triplet components are purely
imaginary. The singlet component and the triplet com-
ponent with zero spin projection on the local exchange
field oscillate out of phase with respect to each other, and
decay fast in the ferromagnets on the magnetic length
scale ξJ [9, 24]. As can be seen in Fig. 3(a)-(b), there
are long-range triplet pairing correlations in both ferro-
magnetic layers. The component Φty is decaying slowly
in F1 while Φtz is decaying slowly in F2. Relative to
the local exchange fields, these components describe the
equal spin pairing correlations that decay on the coher-
ence length scale ξT =

√

DF /2πT but do not oscillate
[1, 2]. It should be noted, however, that these compo-
nents are already at the interfaces quite small since they
are induced non-locally in one ferromagnet by diffusion
from the other through the superconductor.

In Fig. 3(c)-(d) we show the spatial dependence of the
induced magnetization for perpendicular orientation of
the exchange fields. Again, δ ~M is spread out over the
large length scale ξS in the superconductor. But δ ~M
decays rapidly in the ferromagnet on the scale ξJ , be-
cause the spin-vector Green function ~gt is proportional
to the fast decaying spin singlet component fs through
the relation [5] gs~gt = fs

~ft. As a further consequence of
this relation, the oscillation periods are different for the
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FIG. 4: (a) Change in magnetic moment δ ~m of a trilayer as
function of the layer thickness dF1, for dS = 4ξS, dF2 = 0.1ξS ,
T = 0.1Tc, and J1 = J2 = 20Tc. The other parameters
are as in Fig. 2. (b) The temperature dependence of δ ~m for
parameters as in (a), but with dF1 = 0.2ξS . The vertical lines
in (a) are referred to in Fig. 5.

two components of δ ~M . For example, in F1 the oscilla-
tion period of δMy is twice that of δMz. The reason is
that δMy is determined by the product of the oscillat-
ing fs and the monotonic fty in Fig. 3(a), while δMz is
determined by the product of the oscillating fs and the
oscillating ftz. Note that deep in the ferromagnet (for
x < −5ξS in F1), the magnetization change is mainly

due to the long-range triplet correlations fty and δ ~M is
therefore directed along the y-axis. But the magnitude
of δ ~M is exponentially small in this region. An observa-
tion of the two oscillation periods of the two components
δMz and δMy, reflecting the different behavior of the
short-range oscillating ftz and the long-range monotonic
fty, would be a smoking gun for long-range triplet com-
ponents. Note that we have chosen a rather large value
J = 20Tc0 in order to clearly separate the length scales in
the problem. Smaller values of J might be more favorable
in order to experimentally resolve this effect.

Let us further address the issue of how to experimen-
tally find fingerprints of the triplet superconducting cor-
relations. We have seen that the local magnetization
change is rather small. But it is important to realize
that the integrated effect,

δ ~m = A

∫

dx δ ~M(x), (8)

can be large. To illustrate this, we show in Fig. 4 the
total magnetic moment of the trilayer, δ ~m, for various
orientations of the exchange fields, both as a function of
dF1 and of T . We suggest to exploit the largeness of the
integrated effect by measuring the torque on the trilayer
in a weak external magnetic field. We consider a field
~B in the y-z-plane, aligned at an angle ϕ relative to the
z-axis, as shown in Fig. 1(b). Since the magnetic mo-
ment ~m of the trilayer is also in the y-z-plane, the torque
~τ = ~m× ~B is directed along the x-axis. We assume that
the external field is very weak so that the moment can be
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FIG. 5: (a)-(c) The change in the torque relative to that in
the normal state for parallel (θJ = 0), antiparallel (θJ = π),
and perpendicular (θJ = π/2) orientations. The param-
eters are the same as in Fig. 4 with the three numbered
curves corresponding to the three layer thicknesses dF1 =
{0.01, 0.035, 0.21}ξS (indicated by dashed vertical lines in
Fig. 4). In (d) we compare the total torque in the normal
state (dashed line) with the one in the superconducting state
(solid line from curve 2 in (c)) within the itinerant ferromag-
net model.

computed at B = 0. In the normal state there is a torque
due to the magnetic moment of the ferromagnetic layers.
As the sample is cooled down through Tc, the magnetic
moment changes, and consequently the torque is modi-
fied. This is illustrated for the parallel and antiparallel
exchange field orientations in Fig. 5(a)-(b). In addition,
when the exchange fields are not collinear, for example
oriented perpendicular to each other as in Fig. 5(c), the
ϕ−dependence changes for asymmetric structures (here
the layer thicknesses are different, dF1 6= dF2). The shift
of the maxima in δτx(ϕ) when entering the superconduct-
ing state, as e.g. in curve 2 in Fig. 5(c), can be negative
or positive depending on the parameters of the trilayer.

In order to estimate the size of the change in the
torque between the normal and superconducting state,
we use the itinerant ferromagnet model. In this case
the magnetization in the normal state is directly re-
lated to the local exchange fields in the two layers as
~MN

1/2
= 2µBNf

~J1/2. The corresponding magnetic mo-

ments are ~mN
1/2

= 2µBNf
~JAdF1/2. The magnetic mo-

ments in the normal and superconducting states are then
~mN = ~mN

1
+ ~mN

2
and ~mS = ~mN + δ ~m, respectively.

In Fig. 5(d) we show how the torque is modified within
this model. In particular, the equilibrium orientation (ϕ

for which ~m ‖ ~B) is different in the normal and super-
conducting states and the maximum in τx(ϕ) shifts to
smaller ϕ by ∼10%. The magnitude of these effects in-
creases when parameters are such that the spin screening
is more efficient (e.g. smaller J or smaller dF1/2).

In summary, we have shown that superconducting
triplet correlations in FSF trilayers are much easier de-
tected by measurements of global properties of the sam-
ple rather than by local probes. As an example we have
studied the induced magnetic moment in the supercon-
ducting state. The induced magnetic moment is a direct
consequence of the presence of triplet pairing correlations
in the trilayer. In an external magnetic field, the torque
on the trilayer is modified in the superconducting state.
We have shown that this effect can be more than 10%
for exchange fields as large as | ~J | ∼ 20Tc0. The pro-
posed effect can be used to experimentally determine the
presence of triplet correlations.
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