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We analyze the effect of decoherence on the violation of the Clauser-Horne (CH) inequality for
the full electron counting statistics in a mesoscopic multiterminal conductor. Our setup consists of
an entangler that emits a flux of entangled electrons into two conductors characterized by a scat-
tering matrix and subject to decoherence. Loss of phase memory is modeled phenomenologically by
introducing fictitious extra leads. The outgoing electrons are detected using spin-sensitive electron
counters. Given a certain average number of incoming entangled electrons, the CH inequality is
evaluated as a function of the numbers of detected particles and on the various quantities character-
izing the scattering matrix. When decoherence is turned on, we show that the amount of violation
of the CH inequality is effectively reduced. Interestingly we find that, by adjusting the parameters
of the system, there exists a protected region of Q values for which violation holds for arbitrary
strong decoherence.

PACS numbers: 03.65.Ud, 03.65.Yz, 72.70.+m, 72.90.+y

I. INTRODUCTION

Entanglement [1] is probably the most important re-
source for the implementation of quantum computation
and quantum communication protocols [2]. Since re-
cently, most of the work on entanglement has been car-
ried out in optical systems using photons [3], cavity
QED systems [4], and ion traps [5]. Solid state sys-
tems, however, are a very attracting arena of research
in quantum information [6, 7, 8] because, in perspec-
tive of future applications, they should allow for scal-
ability and integration. In this light, a number of
different realizations of entangled electrons have since
been proposed: hybrid normal-superconducting struc-
tures [9, 10, 11, 12, 13, 14, 15, 16], superconductor-
carbon nanotubes systems [17, 18, 19], quantum dots in
the Coulomb blockade regime [6, 20, 21], chaotic quan-
tum dots [22], Kondo-like impurities [23], quantum Hall
bar systems [24, 25, 26, 27, 28], Coulomb scattering in
2D electron gas [29].

Besides its generation, a crucial issue is that of the de-
tection of entanglement. By means of a beam-splitter,
entanglement can be detected in transport through an
analysis of current noise [30] or higher cumulants [31].
Furthermore, the presence of entanglement can be re-
vealed by analyzing the Bell inequality and quantities
like concurrence [32], which have been expressed in
terms of zero-frequency charge and spin-current noise
[10, 11, 12, 24, 27, 33, 34]. Violation of a Bell inequality
implies that there exist quantum correlations between the
detected particles that cannot be described by any local
hidden variables theory. In the same spirit as it was done
for the noise, in Ref. 35 a Clauser-Horne(CH) inequal-
ity [37, 38] was derived for the Full Counting Statistics

(FCS) of electrons and its properties were discussed [39].
In particular, it was found that the maximum violation
of the CH inequality for electrons in the Bell state simply
scales as the inverse of the number of injected particles.
It was also found that the CH inequality is violated for
a superconducting hybrid structure and, more interest-
ingly, for a three terminal fully normal device.

In real systems electrons are unavoidably coupled to
the electromagnetic environment. As a result dephasing
takes place, thereby reducing and eventually destroying
entanglement. Understanding the consequences of de-
phasing is an important issue. In Refs. 12, 15, 25, 40
the effect of dephasing was mimicked by introducing
in the density matrix of the electronic entangled states
a phenomenological parameter which suppresses its off-
diagonal elements. By properly choosing the transmis-
sion probability of beam-splitters or tunnel barriers, vi-
olation of Bell inequality was found even for “strong”
dephasing. In Refs. 24, 41 dephasing was introduced
averaging over an uniform distribution of random phase
factors accumulated in each edge channel of the quan-
tum Hall bar. If the two edge channels are mixed by the
tunnel barrier, no violation was reported for “strong”
dephasing. The effect of decoherence and relaxation has
also been analyzed using a Bloch equation formalism in
Ref. 42.

In the present work we analyze the CH inequality for
the FCS [35] in the presence of dephasing. We consider
the prototype setup depicted in Fig. 1, consisting of a
generic entangler connected to two conducting wires. En-
tangled electrons injected in the two leads are detected
by performing spin-selective counting along a given local
quantization axis. The entangled electrons are subject
to decoherence while transversing the conductors (thus
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before reaching the detectors)[36]. Various phenomeno-
logical methods have been developed to treat dephasing
in transport through mesoscopic conductors. In Refs.
43, 44, which actually describes exactly nonequilibrium
radiation acting on the system, dephasing is induced by
a classical fluctuating potential. In Ref. 45, dephasing is
treated as random fluctuations of the phase of propagat-
ing modes through the conductor. Both methods have
been recently applied to FCS in Refs. 46, 47. In this
paper decoherence is introduced as due to the presence
of additional fictitious reservoirs along both wires. This
method, which mimics the effect of inelastic processes,
was introduced by Büttiker [48, 49] in terms of fictitious
extra leads [50]. The advantage of this model resides in
the fact that inelastic, phase randomization processes are
implemented within an elastic, time-independent scatter-
ing problem. In the rest of the paper we shall refer to
decoherence as to the effect produced by such fictitious
additional leads.

As expected, we find that decoherence suppresses the
violation of the CH inequality, though leaving unchanged
the range of angles for which violation occurs. In partic-
ular, the value of the maximum violation is suppressed
more rapidly as compared with the absence of decoher-
ence (exponentially with the square root of the number of
injected electrons instead of algebraically). Importantly,
by studying the CH inequality as a function of the num-
ber of transmitted electrons, there exist values of such
quantity that are more protected against decoherence.

The paper is organized as follows: In Section II we
described in detail the mesoscopic system we are consid-
ering to test the violation of the CH inequality together
with the phenomenological model of decoherence. Sec-
tion III is devoted to the formulation of the CH inequal-
ity for the FCS within the scattering approach and to
the analysis of the no-enhancement assumption (Section
III A). The results are presented in Section IV, where a
systematic analysis of the violation of the CH inequality
against all the parameters of the device is addressed. A
concluding summary is provided in Section V.

For completeness, we include in Appendix A the re-
sults relative to an asymmetric setup, whereby decoher-
ence occurs only in one of the two wires. In Appendix
B and C we collect, respectively, the expressions of the
expectation values and the different probability distribu-
tions.

II. DESCRIPTION OF THE SYSTEM

We consider the setup illustrated in Fig. 1. It con-
sists of an entangler, two conducting wires and two spin-
selective counters. The entangler, on the left-hand-side,
is a device that produces pairs of electrons, with energy
E < µL, in a maximally spin entangled state (Bell state).
On the right-hand-side of Fig. 1 the electron counting is
performed in leads 1 and 2 (at equal electrochemical po-
tential µR) for electrons with spin aligned along the local

FIG. 1: (Color online) Idealized setup for testing the CH
inequality for electrons in a solid-state environment in the
presence of decoherence. It consists of three parts: An en-
tangler that produces pairs of spin-entangled electrons exit-
ing from terminals 3 and 4. Two conductors that connect
these terminals with exiting leads 1 and 2, and two analyzers.
The conductors are described by the elastic scattering matri-
ces SLu, SRu, SLl and SRl, and the inelastic ones SPu and SPl.
These last ones can simulate phenomenologically the presence
of decoherence through the coupling via two leads (5, 6 and
7, 8) to two additional reservoirs of chemical potentials µ and
µ′. Electron counting is performed in leads 1 and 2. Finally,
θ1 and θ2 are the angles at which the spin-quantization axis
are oriented.

spin-quantization axis at angles θ1 and θ2 (spin-selective
counters). As a convention we say that the analyzer is
not present when the electron counting is spin-insensitive
(electrons are counted irrespective of their spin direc-
tion). Since we assume no back-scattering from coun-
ters to the entangler, the particles which are not counted
are lost and hence there is no communication between
the two detectors. Leads 3 and 4 of the entangler are
connected to exit leads 1 and 2 through two conductors,
where inelastic processes are introduced through the ficti-
tious lead model of Büttiker [52]. Let us analyze in detail
the upper wire (see Fig. 1) which connects the emitting
lead 3 with the exiting lead 1. The conductor consists of
three scattering regions. The elastic scatterer connecting
lead 3 to 3’ is described by the matrix

ŜLu =

(

ř ť′

ť ř′

)

=









r↑ 0 t′↑ 0
0 r↓ 0 t′↓
t↑ 0 r′↑ 0
0 t↓ 0 r′↓









. (1)

[The index L (R) stands for Left (Right) elastic scat-
terer, while P stands for Probe scatterer; u (l) refers to
the upper (lower) wire.] Here rσ (tσ) is the probabil-
ity amplitude for an incoming particle with spin σ from
lead 3 to be reflected (transmitted into lead 3’). For a
normal single-channel wire we set tσ = t′σ =

√
T0, and

rσ = r′σ = i
√

1 − T0, where T0 is the transmission prob-
ability. Inelastic scattering is introduced by plugging in
an additional reservoir of chemical potential µ with an
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energy- and spin-independent scattering matrix

S̄Pu =









0̌
√

1 − α 1̌
√
α 1̌ 0̌√

1 − α 1̌ 0̌ 0̌
√
α 1̌√

α 1̌ 0̌ 0̌ −
√

1 − α 1̌
0̌

√
α 1̌ −

√
1 − α 1̌ 0̌









,

(2)
represented by a triangle in Fig. 1. For the sake of clar-
ity, we have denoted by a check (̌ ), a caret (̂ ) and an
overbar (̄ ), respectively, (2×2), (4×4) and (8×8) matri-
ces. In Eq. (2) 1̌ and 0̌ are, respectively, unit and zero
(2×2)-matrices in the spin space, and (1−α) is the prob-
ability for transmitting a particle between leads 3’ and
1’. The coupling parameter ranges from α = 0, when no
particles are transmitted into leads 5 and 6 from leads 3’
and 1’, to α = 1, when no particles are transferred be-
tween leads 3’ and 1’. A third elastic scatterer, described
by a matrix ŜRu, connects lead 1’ to lead 1. The con-
ductor is therefore described by the matrix Ŝ13 defined
as Ŝ13 = ŜRu ⊗ S̄Pu ⊗ ŜLu, where the notation ⊗ stands
for the scattering matrix composition (elimination of in-
ternal current amplitudes) [53]. For simplicity, we shall

assume that ŜRu = ŜLu.
Due to the presence of the additional reservoir, parti-

cles propagating through lead 3 are transmitted partially
to lead 1 and partially to leads 5 and 6 (see Fig. 1). The
additional reservoir, however, can transfer itself particles
to lead 1 and 3. As a result, only a fraction of the parti-
cles arriving in lead 1 comes from coherently transmitted
ones sent in from lead 3, with probability

T13 =
T 2

0 (1 − α)

[1 + (1 − T0)(1 − α)]2
. (3)

Another fraction, the incoherent contribution, comes
from the additional reservoir through leads 5 and 6, with
probability

T15 + T16 =
T0α

1 + (1 − T0)(1 − α)
. (4)

The presence of the extra reservoir mimics the fact that
the current flowing through the conductor is partially
composed of particles (the incoherent fraction) which
have lost phase memory while traversing it. For α = 0 all
particles are coherently transmitted and T15 + T16 = 0,
while for α = 1 all particles are transferred incoher-
ently and T13 = 0. For α = 0, the overall trans-
mission probability through the conductors is given by
T = T 2

0 /(2 − T0)
2. In the rest of the paper we will refer

to α as to the decoherence rate.
The chemical potential µ of the additional reservoir is

set in such a way that no net current flows in or out of
the reservoir (I5 + I6 = 0). This constraint is enforced
only on average. An instantaneous current in or out the
additional reservoir is then allowed [48, 49, 54, 55], and
a non-fluctuating chemical potential µ is assumed (for
this reason the additional terminal does not behave as a
voltage probe).

A similar description applies to the lower wire connect-
ing lead 4 with lead 2, so that the scattering matrix of
the conductor is defined as Ŝ24 = ŜRl ⊗ S̄Pl ⊗ ŜLl, where,
for simplicity, we set ŜRl = ŜLl. If the angles θ1 and
θ2 of the analyzers are parallel to each other and in the
absence of spin mixing processes, the total matrix of the
system can be written as

S̄ =

(

Ŝ13 0̂

0̂ Ŝ24

)

. (5)

The general scattering matrix relative to non-collinear
angles S̄θ1,θ2

is obtained from S̄ by rotating the spin
quantization axis independently in the two conductors
(note that this is possible because the two wires are de-
coupled) [56]: S̄θ1,θ2

= Ū S̄Ū†, where Ū is the rotation
matrix given by

Ū =









1̌ 0̌ 0̌ 0̌
0̌ Ǔθ1

0̌ 0̌
0̌ 0̌ 1̌ 0̌
0̌ 0̌ 0̌ Ǔθ2









, (6)

and

Ǔθ =

(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)

. (7)

For simplicity, we further assume that the two conduc-
tors are equal and that they are subjected to the same
degree of decoherence, so that Ŝ13 = Ŝ24. For this reason
the chemical potentials of the additional reservoirs are
identical. It is interesting to notice that decoherence pro-
cesses in the two wires are, in some sense, ”uncorrelated”,
meaning that we have imposed that the currents flowing
through the fictitious leads vanish separately in the two
reservoirs. (Correlations can be introduced, for example,
by imposing I5 + I6 + I7 + I8 = 0.) In the symmetrical
setup we are considering here, µ = µR + (µL −µR)/2. In
the rest of the paper we consider the case in which all
the reservoirs are at zero temperature.

The incoming state of the system |ψ〉 depends on
whether the energy of electrons falls within the range
µR < E < µ or µ < E < µL:

|ψ〉 =

{

|ψB〉 µ < E < µL

|ψS〉 µR < E < µ
, (8)

where

|ψB〉 =
1√
2

[

a†3↑(E)a†4↓(E) ± a†3↓(E)a†4↑(E)
]

| 0〉 , (9)

and

|ψS〉 =
1√
2

[

a†3↑(E)a†4↓(E) ± a†3↓(E)a†4↑(E)
]

×
∏

n=5,6,7,8

a†n↑(E)a†n↓(E) | 0〉 . (10)
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In Eqs. (9) and (10) a†iσ(E) is the creation operator for
a propagating electron in lead i with spin σ at energy E.
The upper sign refers to the case in which the incoming
state is a spin triplet and the lower sign to the spin sin-
glet. Electrons with energy between µ and µL are exiting
leads 3 and 4 of the entangler in a superposition of spin
↑ and ↓ states. For energies between µR and µ electrons
are also injected from the additional leads (with indexes
5, 6, 7 and 8) in a factorized state. Note that this occurs
only in the presence of decoherence, i.e. for α 6= 0.

By setting µR = 0 and µL = eV , the total current
flowing in lead 1, calculated using the Landauer-Büttiker
formalism [57] in the linear response regime, is given by

I1 = e2V/h(T13 + T15 + T16). (11)

Although the coherent part of the current decreases with
α, the total current increases with it (except for T =
1, where it remains constant and equal to e2V/h). We
would like to mention that this is a special feature of the
model of decoherence we are using, not to be expected in
general.

III. CH INEQUALITY FOR THE FULL

COUNTING STATISTICS

The quantity employed in the formulation of the CH
inequality, as derived in Ref. 35, is the joint probability
P (Q1, Q2) for transferring a number of Q1 and Q2 elec-
tronic charges into leads 1 and 2 over an observation time
t. The CH inequality is based on the hypothesis that the
outcome of a measurement could be accounted for by a lo-
cal hidden variable theory. The test of the CH inequality
proceeds as follows. The entangler is switched on during
an observation time t (where the minimum t is the inverse
of the measuring device bandwidth) in which it emits an
average number M of pairs of entangled electrons. After
traversing the conductors (and being affected by inelastic
scattering) the electrons are counted in both terminals 1
and 2. The experiment is then repeated to get single ter-
minal and joint terminal probability distributions that
Q1 particles arrive into analyzer 1 and Q2 particles ar-
rive into analyzer 2 (along a local spin-quantization axis
or independently of it) with Q1 +Q2 ≤ 2M .

The CH inequality for the FCS reads [35]

SCH = P θ1,θ2(Q1, Q2) − P θ1,θ′
2(Q1, Q2) + P θ′

1
,θ2(Q1, Q2)

+P θ′
1
,θ′

2(Q1, Q2) − P θ′
1
,−(Q1, Q2)

−P−,θ2(Q1, Q2) ≤ 0. (12)

The possible violation, or the extent of it, also depends
on Q1 and Q2. P θ1,θ2(Q1, Q2) is the joint probability
in the presence of two analyzers, where Q1 electrons are
counted in lead 1 along θ1 direction and Q2 are counted
in lead 2 along θ2. P θ1,−(Q1, Q2) is the corresponding
joint probability when one of the two analyzers has been
removed. The same notation will be used for single termi-
nal probability distributions: P θi(Qi) in the presence of

an analyzer and P (Qi) if no analyzer is present. Eq. (12)
holds for all values of Q1 and Q2 which satisfy the no-

enhancement assumption:

P θi(Qi) ≤ P (Qi). (13)

The joint probability distribution for transferring Q1σ

electrons with spin σ in lead 1, Q2σ electrons with spin
σ in lead 2 and so on is given by

P (Q1↑, Q1↓, Q2↑, . . .)

=
1

(2π)2n

∫ +π

−π

dλ1↑dλ1↓dλ2↑ . . . χ( ~λ↑, ~λ↓)

× ei ~λ↑· ~Q↑ ei ~λ↓· ~Q↓ , (14)

where χ( ~λ↑, ~λ↓) is its characteristic function that can be
expressed within the scattering approach.

For long measurement times t, the total characteristic
function χ is the product of contributions from different
energies, so that

χ( ~λ↑, ~λ↓) = e
t
h

∫

dE log χE( ~λ↑, ~λ↓). (15)

The energy-resolved characteristic function for the trans-
fer of particles at a given energy E in a structure attached
to n leads can be written as [58, 59, 60]

χE( ~λ↑, ~λ↓) =

〈

∏

j=1,n

eiλj↑N̂j↑
I eλj↓N̂j↓

I

×
∏

j=1,n

e−iλj↑N̂j↑
O e−iλj↓N̂j↓

O

〉

, (16)

where the brackets 〈...〉 stand for the quantum statisti-
cal average over the thermal distributions in the leads.
Assuming a single channel per lead, N̂ jσ

O(I) is the number

operator for outgoing (incoming) particles with spin σ in

lead j and ~λ↑, ~λ↓ are vectors of n real numbers, one for
each open channel. In terms of outgoing (incoming) cre-

ation operator φ̂†jσ (â†jσ), which are linked by the total
scattering matrix of the system S, the number operators
can be expressed as

N̂ jσ
I = â†jσâjσ; N̂ jσ

O = φ̂†jσ φ̂jσ . (17)

At zero temperature, the statistical average over the
Fermi distribution function in Eq. (16) simplifies to the
expectation value calculated over the state |ψ〉 defined
in Eq. (8). The interval of integration in Eq. (15) can
be separated in two energy ranges, namely E < µ and
µ < E < eV . Since, in the limit of a small voltage bias V ,
χE is energy-independent, Eq. (15) can be approximated
to

χ( ~λ↑, ~λ↓) ≃
[

χS
0( ~λ↑, ~λ↓)

]Mµ
[

χB
0 ( ~λ↑, ~λ↓)

]M−Mµ

, (18)

where Mµ = µt/h and M = eV t/h.
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According to Eq. (14), both single terminal and joint
probability distributions require the computation of mul-
tidimensional integrals, which can only be performed nu-
merically. In Appendix C it is shown that the various
probability distributions needed to evaluate the CH in-
equality can be expressed in a differential form, more
suitable for numerical evaluation. All the expectation
values needed for the calculations are collected in Ap-
pendix B. Since the two wires are decoupled and there
are no spin-flip processes, the joint probabilities with a
single analyzer are factorized:

P θ1,−(Q1, Q2) = P θ1(Q1)P (Q2),

P−,θ2(Q1, Q2) = P (Q1)P
θ2(Q2). (19)

Rotational invariance makes P θ1,−(Q1, Q2) and
P−,θ2(Q1, Q2) independent of the angle of the analyzers,
while P θ1,θ2(Q1, Q2) depends on the angles only through
the combination θ1±θ2

2 (upper sign for triplet and lower

sign for singlet), so that we can define P
θ1±θ2

2

1,2 (Q1, Q2) ≡
P θ1,θ2(Q1, Q2) and P1,−(Q1, Q2) ≡ P θ1,−(Q1, Q2). As a
result, the CH inequality depends only on three angles
θa ≡ θ1±θ2, θb ≡ θ2±θ′1 and θc ≡ θ′1±θ′2 (θd = θ1±θ′2 is
a linear combination of the other three: θd = θa+θb+θc).
Since P θ1,θ2(Q1, Q2) is an even function of θ1±θ2

2 , in or-
der to find maximal violations we can restrict the evalu-
ation of the CH inequality to the following set of angles:
θa = θb = θc = θd/3 ≡ 2Θ. (This is found by im-
posing that positive contributions to SCH are maximum
while negative contributions are minimum.) The quan-
tity SCH, characterizing the CH inequality, will therefore
depend on a single angle Θ, on the decoherence strength
α and on the value of the transmitted charge Q1 and Q2.
As a result, the CH inequality takes the simplified form

SCH = 3PΘ
1,2(Q1, Q2) − P 3Θ

1,2 (Q1, Q2) − P1,−(Q1, Q2)

−P−,2(Q1, Q2) ≤ 0. (20)

Without loss of generality we can choose σ = σ′ =↑. The
other cases can be recovered by rotating the polarizers
an angle π.

A. No-enhancement assumption

As mentioned above, the CH inequality can be de-
rived under the no-enhancement assumption, Eq. (13).
Such a condition is trivially true when a single particle
is transmitted, Q = 1: The presence of an analyzer can
only decrease the counting probability [37]. However,
when many particles are transmitted, Q > 1, the no-
enhancement assumption is a relationship between dis-
tribution probabilities that is not, in general, satisfied
for all values of Q.

We remind that in the absence of decoherence [35],
for given M and Q, the no-enhancement assumption in
one of the two leads is satisfied only within a range of
values of T below certain threshold Tmax(M,Q). In the

FIG. 2: (Color online) a) Maximum value of the transmis-
sion, Tmax, allowed by the no-enhancement assumption as a
function of decoherence rate α for M = 20 emitted pairs and
for the different values of Q. b) Minimum allowed number of
transmitted particles Qmin for a fixed wire transmission as a
function of the decoherence rate.

case of different numbers of transmitted particles in lead
1 and 2 (Q1 6= Q2), the maximum allowed transmission
probability must be taken to be the minimum between
Tmax(M,Q1) and Tmax(M,Q2), according to our assump-
tion of identical wires.

The no-enhancement assumption is affected by deco-
herence as a consequence of the fact that single termi-
nal probabilities, with or without analyzer, depend on α.
More precisely, the no-enhancement assumption in one of
the two leads is satisfied for transmissions up to a thresh-
old value which is now a function of α: Tmax(α,M,Q).
Unlike the ideal case, for α 6= 0 it is not possible to find
an analytical expression for Tmax. In Fig. 2a Tmax is plot-
ted as a function of α for M = 20 and all values of Q
from 1 to 20. One can see that Tmax monotonically de-
creases with α for values of Q . M/2 and monotonically
increases for large values of Q. For intermediate values of
Q, Tmax decreases up to values of α close to one and then
rapidly increases reaching one when α = 1. This behavior
is specific of the fictitious lead model and reflects the fact
that both the average total current [Eq. (11)], related to
P (Q), and the average spin-polarized current, related to
P θ(Q), are increasing functions of α. Indeed, as a conse-
quence of a finite α, the two distributions shift to larger
values of Q, as it would happen for an enhanced effective
transmission probability. Its maximum allowed value by
the no enhancement assumption is therefore reached for a
smaller T . As a consequence Tmax must decrease with α.
This argument is not valid when Tmax ≃ 1 at α = 0, since
the average currents do not change appreciably with α
and only the peculiar shape of the distributions matters.
We define

Tmax(α,M,Q1, Q2)

= Min[Tmax(α,M,Q1), Tmax(α,M,Q2)]. (21)

Alternatively, given a wire with a fixed transmission T ,
the no-enhancement assumption is verified for values of
Q bigger than or equal to a certain value Qmin(α,M, T ).
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FIG. 3: (Color online) The quantity SCH is plotted as a func-
tion of Θ for M = 20, Q1 = Q2 = 8 and different decoher-
ence rates at the corresponding maximum allowed transmis-
sions. In particular, for α = 0 (solid line) Tmax = 0.54, for
α = 0.3 (dashed line) Tmax = 0.43 and for α = 0.5 (dot-
ted line) Tmax = 0.35. The amount of violation of the CH
inequality decreases with α, whereas the range of angles for
which violation occurs does not change. We call Θbest the
angle corresponding to the maximum violation.

For α 6= 0, the behavior of Qmin is shown in Fig. 2b
for M = 20 and for different transmissions. We observe
that it increases (step-wise, since only integer values of
the number of particles are permitted) as a function of
the decoherence rate for almost every transmission T ,
except for those close to unity, for which it decreases. The
behavior for small values of T can still be understood in
terms of the average current increase with α. For T = 1,
being Qmin = M at α = 0, decoherence can only cause a
decrease.

IV. RESULTS

In the present section we shall discuss how the CH
inequality of Eq. (20) is affected by the presence of de-
coherence. There are some general characteristics of the
behavior of SCH that were already found in the absence
of decoherence [35] that hold also for finite α [61]. The
most relevant are the following:

• SCH is always symmetric as a function of Θ around
Θ = π/2;

• for given M , Q1 and Q2 the maximum violation
always occurs for T = Tmax(α,M,Q1, Q2).

In Fig. 3, SCH is plotted as a function of the angle Θ
for M = 20 and Q1 = Q2 = 8. The three curves refer,
respectively, to α = 0 (solid line), α = 0.3 (dashed line)
and α = 0.5 (dotted line), each one calculated for the
corresponding T = Tmax reported in the label box. The
plot shows that the CH inequality is violated within a cer-
tain window of values of Θ. The violation is suppressed
with increasing decoherence rate, but occurs for the same

FIG. 4: Density plots of the maximum value of SCH, eval-
uated at T = Tmax(α, Q1, Q2) and Θ = Θbest(α, Q1, Q2), in
the (Q1, Q2) plane for M = 20 relative to four different val-
ues of decoherence (α = 0, 0.2, 0.4, 0.6). SCH ≃ 0.012 is
the maximum violation for M = 20 found in the absence of
decoherence.

range of angles. This is due to the following proper-
ties of the joint probabilities, which hold at T = Tmax

for all values of α: i) P
π/4
1,2 (Q1, Q2) = P

3π/4
1,2 (Q1, Q2) =

P1,−(Q1, Q2), as a consequence SCH(Θ = π/4, 3π/4) =
0; and ii) PΘ

1,2(Q1, Q2) ≥ P 3Θ
1,2 (Q1, Q2), P1,−(Q1, Q2),

P−,2(Q1, Q2) for π/4 ≤ Θ ≤ 3π/4. We checked that
by reducing T from Tmax, but keeping α constant, both
the window of angles where violation is present and its
amount are decreased. Note that between Θ = 0 and
π/2, there is always an angle for which SCH is maximum,
we shall denote it by Θbest(α,M,Q1, Q2). For given α,
M , Q1 and Q2, the maximum violation occurs at Tmax

and Θbest.

We now analyze the maximum violation of the CH in-
equality for a given M with T = Tmax and Θ = Θbest

as a function of Q1, Q2 and α. In Fig. 4 we show four
density plots of SCH in the (Q1, Q2) plane for different
values of decoherence rate and M = 20. In the gray scale
white corresponds to SCH = 0 and black to its maximum
value taken in the absence of decoherence. When α = 0,
the CH inequality is strongly violated for diagonal terms
of the distribution (where Q1 = Q2). However, some
weaker violations are also possible for Q1 6= Q2, though
they tend to disappear with increasing α. By increasing
the values of α the plots show that the maximum viola-
tion of the CH inequality decreases rapidly: for α = 0.6
we get only 16% of the largest value reached at α = 0.
The behavior of the CH inequality is symmetrical with
respect to the exchange of Q1 with Q2 for any rate of
decoherence. In Fig. 5 we report the section of the plots
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FIG. 5: (Color online) Maximum value of the quantity SCH

(T = Tmax and Θ = Θbest) as a function of Q for M = 20
and different values of decoherence: α = 0, 0.3, 0.5, 0.8. The
largest violation always occurs in the absence of decoherence
and, for a given Q, violation is reduced monotonically with
α. The position where the maximum occurs, Qbest, slightly
increases with α. At Q = Qbest, Tmax = 0.54 for α = 0,
Tmax = 0.59 for α = 0.3, Tmax = 0.52 for α = 0.5 and Tmax =
0.39 for α = 0.8.

in Fig. 4 along the diagonal of the (Q1, Q2)-plane. The
four curves are relative to α = 0, 0.3, 0.5 and 0.8 an
M = 20. Several observations are in order. If we denote
with Qbest the position of the maximum of a curve, for
all values of decoherence rate Qbest ∼ M/2, more pre-
cisely, Qbest = 8 for α = 0 and Qbest = 10 for all other
curves. This slight increase of Qbest with α is due to the
fact that an increase in decoherence is accompanied by a
slight enhancement of the average current [Eq. (11)] flow-
ing through the wires (as mentioned at the end of Section
II). This is, however, a specific feature of the model of
decoherence we are considering. Note furthermore that,
as decoherence gets stronger, the range of values of Q for
which violation takes place shrinks.

We now discuss the violation of the CH in-
equality as a function of α and M at T = Tmax,
Θ = Θbest and Q = Qbest. In Fig. 6 the ratio s ≡
SCH(α,M, Tmax,Θbest, Qbest)/SCH(0,M, Tmax,Θbest, Qbest)
(i. e. the quantity SCH normalized to its value in the ab-
sence of decoherence) is reported in a three-dimensional
plot as a function of α and the number of emitted
pairs M . The most interesting feature is that such a
ratio decays more rapidly with α as M is increased.
This means that decoherence is more disruptive, as
far as detection of entanglement is concerned, for long
measuring times (i.e. large M). As an example, for
M = 1000 the extent of the violation is reduced by 80%
at α = 0.1. More precisely, for values of M larger than
30, we find that the normalized SCH follows the law:

s ∼ sinh[K(1 − α)b
√

M ]

sinh(K)
, (22)

with K = 7.26 and b = 0.076.
Another interesting aspect is related to Qbest which,

as mentioned above, only slightly increases with α for

FIG. 6: (Color online) SCH, normalized to its value in the
absence of decoherence and calculated at T = Tmax, Θ =
Θbest and Q = Qbest, is plotted as a function of decoherence
rate α and number of injected entangled pairs M . Longer
measuring times (i.e. larger values of M) make decoherence
more effective, that is, make the detection of entanglement
more difficult.

FIG. 7: (Color online) Qbest is plotted as a function of M for
different values of decoherence rate (α = 0, 0.2, 0.5 and 0.8).
In the inset, curves are shown over an extended range, up to
M = 1000. For a given α, with increasing M the value of
Qbest increases very slowly remaining of the order of 10.

all values of M . As M is increased, the value of Qbest,
for a given α, does not increase proportionally to M ,
but very much slowly and surprisingly remains of the
order of 10 for M = 1000 (see Fig. 7). For α = 0 this
can be understood as follows. On the one hand, one
expects Qbest, corresponding to the largest SCH, to be
about the position of the maximum of joint probability
distributions, which can be assumed to be equal to the
product MT . On the other hand, Tmax is a decreasing
function of M , in fact it decays as 1/M [35]. The product
MTmax is therefore expected to be a constant. Indeed,
it is possible to show, in the large M expansion, that
Qbest ∼ MTmax for α = 0 and Qbest ∼ M

√
Tmax for

α 6= 0, while Tmax ∼ 1/M for α = 0 and Tmax ∼ 1/M2
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FIG. 8: (Color online) Maximum value (αmax) of the deco-
herence parameter for which there is still violation of the CH
inequality as a function of Q for M = 20. The line with �
represents αmax(Q) with Sth = 0: from Q = 1 to Q = 14 vi-
olation is found for any decoherence rate. The line with ⋆ is
instead computed using a threshold Sth which corresponds to
0.25% of the maximum violation value for α = 0, and the line
with � using Sth corresponding to 1%. The latter threshold
is used in the inset where αmax(Q) is plotted for M = 10, 20,
30 and 40. Interestingly we found that there is a value Q̄ that
is more robust against decoherence. In particular, Q̄ = 6 for
M = 10, Q̄ = 11 for M = 20, Q̄ = 13 for M = 30 and Q̄ = 14
for M = 40. With increasing M , αmax diminishes slowly.

for α 6= 0. As a result, Qbest is roughly constant as a
function of M and α [62].

The final point we address is the maximum deco-
herence rate, that we denote by αmax, for which there
is still violation of the CH inequality as a function of
Q ≡ Q1 = Q2. In Fig. 8 we plot αmax as a function of
Q for M = 20 at T = Tmax and Θ = Θbest. The line
with the symbol � shows that violation of the CH in-
equality is found for any rate of decoherence for Q = 1
to Q = 14 and thereafter αmax decreases sharply. Never-
theless, the extent of violation for α close to 1 is almost
negligible for most of 1 ≤ Q ≤ 14. One can therefore
introduce a small positive threshold Sth which defines
the violation as: SCH < Sth. The line with ⋆ refers to
a threshold of 0.25% of the maximum value of SCH at
α = 0 (Sth = 3 × 10−5 for M = 20), and the line with
� to a 1% (Sth = 1.2 × 10−4 for M = 20). The latter
percentage is used for the thresholds of the plots in the
inset of Fig. 8, where αmax is plotted for M = 10, 20, 30
and 40. It is shown that there are values of Q that are
more resistent to decoherence, i. e. for which violation
survives for larger decoherence rates. In the caption of
Fig. 8, the most protected value against decoherence is
denoted with Q̄ ≡ Qbest(αmax).

V. CONCLUSIONS

In this paper we have studied the effect of decoher-
ence on the violation of the CH inequality formulated
in terms of the FCS [35]. The system under investiga-

tion (Fig. 1) consists of an idealized entangler connected,
through a pair of identical mesoscopic wires, to spin-
selective counters. We have assumed that decoherence,
which occurs equally but independently in the two con-
ductors, is produced by the presence of additional ficti-
tious reservoirs according to the phenomenological model
of Büttiker [48, 49]. Decoherence is parameterized by the
rate α.

As expected, decoherence gives rise to suppression of
the violation of the CH inequality. The extent of such a
suppression has been analyzed as a function of the param-
eters which characterize the system, namely the trans-
mission T of the wires, the angle between analyzers Θ,
the number of injected entangled pairs M and the num-
ber of transmitted particles Q1 and Q2 in the counters.
First we have discussed the no-enhancement assumption,
a condition that needs to be satisfied in both leads 1 and
2 in order for the CH inequality to hold. We have found
that such condition, in a given lead, is verified for all
transmission T up to some maximum value Tmax which
depends on Q, M and, of course, α. In particular, Tmax

decreases with the decoherence rate up to some value
of Q and thereafter increases. The main results can be
summarized as follows:

• Maximal violation, even in the presence of deco-
herence, occurs at the largest allowed transmission
T = Tmax and for Q1 = Q2 (it disappears very
rapidly when Q1 6= Q2).

• As long as T = Tmax, the angle range of the analyz-
ers for which violation takes place does not depend
on the decoherence rate, though the extent of vio-
lation decreases with α.

• In the absence of decoherence, the maximum vio-
lation of the CH inequality was proved to decay as
1/M [35]. Here we have found that, for finite α, the

parameter SCH decreases exponentially with
√
M ,

more precisely as [f(α)]
√

M/M , i.e. decays both
with increasing M and α.

• The value ofQ for which maximum violation occurs
is virtually independent of M , which means that
the largest violations appear for relatively small
numbers of transmitted particles, even at large ob-
servation times.

• Interestingly, we have found that the largest de-
coherence rate for which the CH inequality is vi-
olated (within a given small tolerance) presents a
maximum as a function of Q. This means that
there exist numbers of transmitted charges which
are more protected against decoherence, i.e. the in-
fluence of the environment is less disruptive as far
as the violation of CH inequality is concerned.

Although, in this paper, dephasing is assumed to be
produced by the presence of additional reservoirs, other
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FIG. 9: (Color online) a) Idealized setup with a single ad-
ditional reservoir in the upper branch of the system. Scat-
tering matrices are chosen so that, in the absence of de-
coherence, the two conductors have equal transmission. b)
Density plot of the maximum value of SCH in the (Q1, Q2)-
plane for M = 20 and for α = 0.4 (left) and α = 0.6
(right). As decoherence increases, the maximum violation
is not achieved on the diagonal, but is shifted towards the
right-bottom part of the plane (Q1 > Q2). This occurs
because only the current flowing through the conductor af-
fected by decoherence is modified. Furthermore, the sup-
pression of the violation by α is less pronounced with re-
spect to the case with two additional reservoirs. For ex-
ample, for α = 0 we find Max[SCH] = 0.012 achieved at
(Q1 = 8, Q2 = 8). For α = 0.2 and one additional reservoir
we have Max[SCH] = 0.0089 reached at (8, 7), whereas for two
additional reservoirs we get Max[SCH] = 0.0074 at (9, 9). For
α = 0.4 and one additional reservoir, Max[SCH] = 0.0066 at
(9, 7), and with two additional reservoirs, Max[SCH] = 0.0042
at (10, 10). Finally, for α = 0.6 and one additional reser-
voir, Max[SCH] = 0.0046 at (10, 7), and with two additional
reservoirs, Max[SCH] = 0.0020 at (10, 10).

different sources of decoherence are possible in meso-
scopic systems. We believe that this model captures the
main effects of decoherence, as far as violations of the CH
inequality in a mesoscopic system is concerned, and that
the results found in this work may be useful to design
the best experimental conditions.

Since real systems cannot be perfectly shielded from
the environment, the issues analyzed in this work seem
adequate not only from a fundamental point of view, but
also in what it might contribute to the understanding of
the properties of lossy quantum channels. For the future
it would be interesting to apply our method to realistic
systems, like normal or superconducting beam splitters.
Of interest would also be the combined effects of the pres-
ence of spin-flipping processes and decoherence.

FIG. 10: (Color online) a) Idealized setup with no decoher-
ence but differently transmitting upper and lower conductors.
b) The density plot of the maximum value of the quantity SCH

is shown in the (Q1, Q2)-plane for M = 20.
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APPENDIX A: ASYMMETRIC SETUP: ONE

ADDITIONAL RESERVOIR

It is interesting to consider the case in which decoher-
ence affects the two wires differently. In this appendix we
study the case when decoherence affects only one of the
two conductors, i.e. in the presence of a single additional
probe, for example, in the upper branch, as depicted in
Fig. 9a. Being T0 the transmission of the elastic scatter-
ers in the upper conductor, we choose the transmission
of the lower conductor to be equal to T = T 2

0 /(2 − T0)
2,

in order for the two conductors to have the same con-
ductance in the absence of decoherence. Fig. 9b shows
the density plot of the maximum value of SCH (with
T = Tmax and Θ = Θbest) as a function of Q1 and Q2,
for M = 20, α = 0.4 (left) and α = 0.6 (right). In the
presence of decoherence the maximum violation is not
achieved on the diagonal (Q1 = Q2), i.e. the behavior
of SCH is not symmetrical anymore with respect to Q1

and Q2. This is due to the fact that, as we have seen
above, the overall current increases with α so that it is
more likely to transmit a larger number of particles in the
conductor subjected to decoherence. Another difference
with respect to the case with two additional reservoirs
is that the suppression of the violation by α is less pro-
nounced.

The asymmetry found in the behavior of the density
plots of Fig. 9b must not be confused with the asymme-
try we would obtain in a setup without decoherence but
with conductors of different resistance (system sketched
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in Fig. 10a). In this case, by applying separately the no
enhancement assumption to the two conductors, large vi-
olations occur in a vast region of the (Q1, Q2)-plane, as
shown in Fig. 10b. Interestingly, we note that one would

get large violations of the CH inequality for Q1 6= Q2.
However, this asymmetry would not come from the fact
that entanglement is weakened by dephasing in only one
wire.

APPENDIX B: EXPECTATION VALUES

The most general expression for the characteristic function when spin-σ electrons are counted in lead 1 and spin-σ′

electrons are counted in lead 2 is

χE(λ1σ, λ2σ′ ) = 1 +
(

e−iλ1σ − 1
)

〈N̂1σ
O 〉 +

(

e−iλ
2σ′ − 1

)

〈N̂2σ′

O 〉 +
(

e−iλ1σ − 1
) (

e−iλ
2σ′ − 1

)

〈N̂1σ
O N̂2σ′

O 〉 (B1)

for each relevant energy range: 0 < E < µ and µ < E < eV . When both spin species are counted in one of the
terminals, the characteristic function reads

χE(λ1, λ2σ′) = 1 +
(

e−iλ1 − 1
)

〈(N̂1↑
O + N̂1↓

O )〉 +
(

e−iλ
2σ′ − 1

)

〈N̂2σ′

O 〉 +
(

e−iλ1 − 1
) (

e−iλ
2σ′ − 1

)

〈(N̂1↑
O + N̂1↓

O )N̂2σ′

O 〉
+

(

e−iλ1 − 1
)2 〈N̂1↑

O N̂1↓
O 〉 +

(

e−iλ1 − 1
)2 (

e−iλ
2σ′ − 1

)

〈N̂1↑
O N̂1↓

O N̂2σ′

O 〉 (B2)

for counting both spins in terminal 1, where we have set λ1↑ = λ1↓ ≡ λ1.

Using Eqs. (14), (18) and (B1), at zero temperature, one can calculate the single terminal probability distribution:

P θ1(Q1σ) =
1

2π

∫ π

−π

dλ1σ

[

1 +
(

e−iλ1σ − 1
)

〈N̂1σ
O 〉S

]Mµ
[

1 +
(

e−iλ1σ − 1
)

〈N̂1σ
O 〉B

]M−Mµ

eiλ1σQ1σ , (B3)

where 〈N̂1σ
O 〉S,B ≡ 〈ψS,B | N̂1σ

O |ψS,B〉. After integration over λ1σ we get

P θ1(Q1σ) =
(

1 − 〈N̂1σ
O 〉S

)Mµ
(

1 − 〈N̂1σ
O 〉B

)M−Mµ−Q1σ
(

〈N̂1σ
O 〉B

)Q1σ

×
Min[Mµ,Q1σ ]

∑

n=Max[0,Q1σ−M+Mµ]

(

Mµ

n

) (

M −Mµ

Q1σ − n

)

[

〈N̂1σ
O 〉S(1 − 〈N̂1σ

O 〉B)

〈N̂1σ
O 〉B(1 − 〈N̂1σ

O 〉S)

]n

. (B4)

If one chooses µL = eV and µR = 0, one obtains µ = eV
2 and Mµ = M

2 . Therefore, in order for Mµ to be integer, M
must be an even number.

Using Eqs. (14), (18) and (B2), the single terminal probability distribution when both spin species are counted in
the terminal is

P (Q1) =
1

2π

∫ π

−π

[

1 +
(

e−iλ1 − 1
)

〈N̂1
O〉S +

(

e−iλ1 − 1
)2 〈N̂1↑

O N̂1↓
O 〉S

]Mµ

×
[

1 +
(

e−iλ1 − 1
)

〈N̂1
O〉B +

(

e−iλ1 − 1
)2 〈N̂1↑

O N̂1↓
O 〉B

]M−Mµ

eiλ1Q1dλ1, (B5)

where 〈N̂1
O〉S,B ≡ 〈

(

N̂1↑
O + N̂1↓

O

)

〉S,B.

In the following subsections we collect all the expectation values needed to work out the expressions for the proba-
bility distributions of Eq. (20).
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1. Setup with two additional reservoirs

Let us consider the setup depicted in Fig. 1, where two additional reservoirs are present. The expectation values
for energies 0 < E < µ as a function of transmission T , decoherence parameter α and analyzers’ angle Θ are

〈N̂1↑
O 〉S = 〈N̂2↑

O 〉S =
2
√
T [
√
T + α(2 −

√
T ) − α2(1 −

√
T )]

[2 − α(1 −
√
T )]2

, (B6)

〈N̂1
O〉S = 〈N̂2

O〉S =
4
√
T [
√
T + α(2 −

√
T ) − α2(1 −

√
T )]

[2 − α(1 −
√
T )]2

, (B7)

〈N̂1↑
O N̂1↓

O 〉S = 〈N̂2↑
O N̂2↓

O 〉S =
4Tα[2

√
T + 2α(1 −

√
T ) − α2(1 −

√
T )]

[2 − α(1 −
√
T )]3

, (B8)

〈N̂1↑
O N̂2↑

O 〉S =
4T {[α(2 − α) +

√
T (1 − α+ α2)]2 − T (1 − α)2 cosΘ}
[2 − α(1 −

√
T )]4

, (B9)

〈N̂1
ON̂

2↑
O 〉S = 〈N̂1↑

O N̂2
O〉S =

8T [
√
T + α(2 −

√
T ) − α2(1 −

√
T )]2

[2 − α(1 −
√
T )]4

, (B10)

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉S = 〈N̂1↑

O N̂2↑
O N̂2↓

O 〉S = 8
√
T 3α[2

√
T + 2α(1 −

√
T ) − α2(1 −

√
T )]

× [
√
T + α(2 −

√
T ) − α2(1 −

√
T )]

[2 − α(1 −
√
T )]5

. (B11)

The expectation values for energies µ < E < eV are

〈N̂1↑
O 〉B = 〈N̂2↑

O 〉B =
2T (1− α)

[2 − α(1 −
√
T )]2

, (B12)

〈N̂1
O〉B = 〈N̂2

O〉B =
4T (1 − α)

[2 − α(1 −
√
T )]2

, (B13)

〈N̂1↑
O N̂1↓

O 〉B = 〈N̂2↑
O N̂2↓

O 〉B = 0, (B14)

〈N̂1↑
O N̂2↑

O 〉B =
8T 2(1 − α)2 sin2(Θ/2)

[2 − α(1 −
√
T )]4

, (B15)

〈N̂1
ON̂

2↑
O 〉B = 〈N̂1↑

O N̂2
O〉B =

8T 2(1 − α)2

[2 − α(1 −
√
T )]4

, (B16)

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉B = 〈N̂1↑

O N̂2↑
O N̂2↓

O 〉B = 0. (B17)

2. Setup with one additional reservoir

Let us now consider the asymmetrical setup of Fig. 9, where there is only one additional reservoir. For energies

0 < E < µ we have that 〈N̂1↑
O 〉S , 〈N̂1

O〉S and 〈N̂1↑
O N̂1↓

O 〉S are equal to the case with two fictitious reservoirs. The other
expectation values are

〈N̂2↑
O 〉S =

T

2
, (B18)

〈N̂2
O〉S = T, (B19)

〈N̂2↑
O N̂2↓

O 〉S = 0, (B20)

〈N̂1↑
O N̂2↑

O 〉S =

√
T 3α(2 − α) + T 2[1 − α+ α2 − (1 − α) cos Θ]

[2 − α(1 −
√
T )]2

, (B21)

〈N̂1
ON̂

2↑
O 〉S = 〈N̂1↑

O N̂2
O〉S =

2
√
T 3[

√
T + α(2 −

√
T ) − α2(1 −

√
T )]

[2 − α(1 −
√
T )]4

, (B22)

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉S =

2T 2α[2
√
T + 2α(1 −

√
T ) − α2(1 −

√
T )]

[2 − α(1 −
√
T )]3

, (B23)

〈N̂1↑
O N̂2↑

O N̂2↓
O 〉S = 0. (B24)
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For energies µ < E < eV we have that 〈N̂1↑
O 〉B , 〈N̂1

O〉B, 〈N̂1↑
O N̂1↓

O 〉B , 〈N̂2↑
O N̂2↓

O 〉B, 〈N̂1↑
O N̂1↓

O N̂2↑
O 〉B and 〈N̂1↑

O N̂2↑
O N̂2↓

O 〉B
are equal to the case with two additional reservoirs. The other expectation values are

〈N̂2↑
O 〉B =

T

2
, (B25)

〈N̂2
O〉B = T, (B26)

〈N̂1↑
O N̂2↑

O 〉B =
2T 2(1 − α) sin2(Θ/2)

[2 − α(1 −
√
T )]2

, (B27)

〈N̂1
ON̂

2↑
O 〉B = 〈N̂1↑

O N̂2
O〉B =

2T 2(1 − α)

[2 − α(1 −
√
T )]2

. (B28)

APPENDIX C: PROBABILITY DISTRIBUTIONS

In order to calculate the various probabilities needed to evaluate the CH inequality, Eq. (12) and (20), it is necessary
to solve the integrals of Eq. (14), where the different characteristic functions are given in Eq. (B1) and Eq. (B2). As
we mentioned in Section III, explicit expressions of the probability distributions in terms of sums are lengthy and
complicated for practical calculations. It is possible, nevertheless, to express the result for the various probabilities
in a quite simple fashion, which makes them manageable for computational analysis. The point is to realize that the
characteristic functions are nothing but polynomial functions on the variables eiλi of different degrees. The effect of
each integral of Eq. (14), together with its accompanying complex exponential eiλiQi/(2π), is simply to select the
coefficient of the characteristic function polynomial which corresponds to the power equal to Qi. Consequently, the
result of the integrals for the various probabilities can be expressed in terms of Qi order derivatives of the characteristic
function, as we show below. Note that, whenever both analyzers are present, we will choose without loss of generality:
σ =↑ and σ′ =↑. For single terminal probability distributions we will also set σ =↑ for lead 1 and σ′ =↑ for lead 2,
although resulting expressions will not depend either on the direction of the spin or on the angle of the analyzer.

For the single terminal probability distribution with analyzer we have

P θ1(Q1↑) =
1

2π

∫ π

−π

dλ1↑e
iλ1↑Q1↑χ(λ1↑) =

1

Q1↑!

dQ1↑χ(λ1↑)

d(eiλ1↑)Q1↑

∣

∣

∣

∣

eiλ
1↑→0

, (C1)

where χ(λ1↑) can be extracted from Eq. (B1) making λ2↑ = 0 and using Eq. (18). Since µ = eV
2 , we have that

Mµ = M
2 , being M the total number of emitted particles per lead or per spin. The expectation values needed in

Eq. (B1) above and below energy µ are given in Appendix B. The single terminal probability distribution in the
absence of analyzer is

P (Q1) =
1

2π

∫ π

−π

dλ1e
iλ1Q1χ(λ1) =

1

Q1!

dQ1χ(λ1)

d(eiλ1 )Q1

∣

∣

∣

∣

eiλ1→0

, (C2)

where the characteristic function can be extracted now from Eq. (B2), setting again λ2↑ = 0. We can get similarly
the expressions for P θ2(Q2↑) and P (Q2).

The joint probability distribution when both analyzers are present gives

P θ1,θ2(Q1↑, Q2↑) =
1

(2π)2

∫ π

−π

dλ1↑e
iλ1↑Q1↑

∫ π

−π

dλ2↑e
iλ2↑Q2↑χ(λ1↑, λ2↑)

=
1

Q1↑!Q2↑!

dQ1↑dQ2↑χ(λ1↑, λ2↑)

d(eiλ1↑)Q1↑d(eiλ2↑)Q2↑

∣

∣

∣

∣

eiλ
1↑ ,eiλ

2↑→0

, (C3)

which only depends on the angle Θ ≡ (θ1 ± θ2)/2, as we showed in Section III. When there is only one analyzer we
have

P θ1,−(Q1↑, Q2) =
1

(2π)2

∫ π

−π

dλ1↑e
iλ1↑Q1↑

∫ π

−π

dλ2e
iλ2Q2χ(λ1↑, λ2) =

1

Q1↑!Q2!

dQ1↑dQ2χ(λ1↑, λ2)

d(eiλ1↑)Q1↑d(eiλ2)Q2

∣

∣

∣

∣

eiλ
1↑ ,eiλ2→0

(C4)

and

P−,θ2(Q1, Q2↑) =
1

(2π)2

∫ π

−π

dλ1e
iλ1Q1

∫ π

−π

dλ2↑e
iλ2↑Q2↑χ(λ1, λ2↑) =

1

Q1!Q2↑!

dQ1dQ2↑χ(λ1, λ2↑)

d(eiλ1 )Q1d(eiλ2↑)Q2↑

∣

∣

∣

∣

eiλ1 ,eiλ
2↑→0

.(C5)
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However, this two last expressions are not strictly needed since one can use the relations in Eq. (19). Again, all the
expectation values which are needed for evaluating these probabilities are given in Appendix B.
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(2000).

[56] A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Eur.
Phys. J. B 22, 99 (2001).

[57] R. Landauer, IBM J. Res. Dev. 1, 223 (1957); M.
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