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Abstract

Decoherence in quantum bit circuits is presently a major limitation to their use for quantum
computing purposes. We present experiments, inspired from NMR, that characterise decoherence
in a particular superconducting quantum bit circuit, the quantronium. We introduce a general
framework for the analysis of decoherence, based on the spectral densities of the noise sources
coupled to the qubit. Analysis of our measurements within this framework indicates a simple

model for the noise sources acting on the qubit. We discuss various methods to fight decoherence.



I. INTRODUCTION

It has been demonstrated that several types of superconducting circuits based on Joseph-
son junctions are sufficiently quantum that simple manipulations of their quantum state' ’
can be performed. These circuits are candidates for implementing quantum bits (qubits),
which are the basic building blocks of a quantum processor. The coherence time of the quan-
tum state is an important figure of merit, being related to the number of qubit operations
that can be performed without error. Despite significant advances in coherence times during
recent years, with coherence times of order 0.5 us reached, decoherence due to the coupling
between the quantum circuit and the degrees of freedom of the environment still severely

8 even with a small

hinders using these circuits for the development of a quantum processor
number of qubits. Thus the quantitative characterization and understanding of decoherence
processes is presently a central issue for the development of qubit circuits. In this work,
we present experiments that characterize the sources of decoherence in a particular qubit
circuit, the quantronium. We also develop a general framework for the theoretical analysis
of such data, a framework that can be adapted to other circuits. We address the problem
of decoherence both during the free evolution of the qubit and during its driven evolution
when coupled to a small AC excitation. For these two situations, we also consider particular
control sequences that aim at maintaining quantum coherence. The analysis of our data
leads to a simple model for the spectral densities of the noise sources coupled to the qubit.

The paper is organized as follows: In Section II, the quantronium device is introduced
and manipulation and readout of its quantum state are described; the experimental setup
is presented, and the principal noise sources responsible for decoherence are discussed. In
section III, a general framework is introduced for the description of decoherence processes
in the two situations of free and driven evolutions, for both linear and quadratic coupling
of the qubit to variations in the control parameters. In sections IV and V, we report

experimental results on the measurement of decoherence in all these situations, and analyze

them within the theoretical framework of section III. We introduce methods inspired from



Nuclear Magnetic Resonance (NMR), such as spin echoes and spin locking, which probe
the spectral density of the noise sources responsible for decoherence. From this we invoke
constraints on the spectral density of the noise sources and develop a simple model of
environmental noise. We also discuss how to improve the quantum coherence time of a qubit.
Then, section VI summarizes what has been learnt with the quantronium on decoherence

processes in Josephson qubits, and how to suppress decoherence.

II. THE QUANTRONIUM CIRCUIT

A Principles

The quantronium circuit’, described in Fig. 1, combines a split Cooper Pair Box
(CPB)!12 that plays the role of a qubit, and a hysteretic current biased Josephson junc-
tion for readout. It consists of a superconducting loop interrupted by two adjacent tunnel
junctions with Josephson energies E;/2(1 £ d), where d is an asymmetry coefficient made
as small as possible, and by the readout junction with a Josephson energy £; > E;. The
two small junctions define the superconducting island of the box, whose total capacitance to
ground is Csx, and Cooper pair Coulomb energy E¢ = (2¢)?/2Cs. The island is coupled to
a voltage source U through a gate capacitance C,, and an external magnetic flux ® can be
applied to the loop. The biasing parameters are thus the reduced gate charge N, = C,U/2e,
and the reduced flux ¢ = 27®/Py (P9 = 2mp, = h/2e). The latter determines, together
with the bias current [, the phase difference 6 across the small junctions. Quantum me-
chanically, the number N of excess Cooper pairs on the island, and the superconducting
phase difference 4 across the readout junction form a set of degrees of freedom that fully

characterize the system. Using also their respective conjugate variables § and q, together



with the phase relation 5= ~ + ¢, the Hamiltonian H of the CPB and readout parts reads

H = Hopp + H,, (1)
Hepp = Ec(N — N,)? — E; cos(5/2) cos + d E; sin(6/2) sin 0, (2)
H. =& > — EycosH — oIy 7. (3)

Here £&c = (2¢)?/2C; and C; are the Cooper pair Coulomb energy and the capacitance of
the readout junction respectively. The coupling between both subsystems results from the
phase constraint given above. Except at readout, when the bias current [, is extremely
close to the critical current Z, = £;/¢, of the readout junction, a full quantum calculation
using H shows that the quantum nature of 4 can be ignored and that the approximation
~ ~ « =~ arcsin (I /Zy) that neglects the contribution of the current <?> in the quantronium
loop to the current in the readout junction is excellent. The CPB eigenstates are then
determined only by N, and S~ b= 7+¢. For a large range of N, and 6, the energy spectrum
of Hepp is anharmonic and its two lowest energy eigenstates |0) and |1) define a qubit with
energy splitting hwo (6, V,). The Hamiltonian ﬁqb of this qubit, i.e. the restriction of HCP B
to the manifold {|0),|1)}, is that of a fictitious spin 1/2 particle G G,y + 6,7 in an
effective magnetic field ﬁo,
. 1

qu - —51:’0?: (4)

in an eigenbasis that depends on the working point (6, Ny) Hy = hwoZ. At the point
Py=(6=0,N, =1/2), wy is stationary with respect to small variations of all the control
parameters (see Fig. 1), which makes the quantronium almost immune to decoherence, as
previously demonstrated®?. Py is therefore an optimal point for manipulating the quantro-

nium state in a coherent way.

1 Manipulation of the quantum state

The manipulation of the quantronium state is achieved by varying the control parameters

N, and/or I, either in a resonant way at a microwave angular frequency w,,, close to the



transition frequency wgi, or adiabatically. In the resonant scheme, a microwave pulse is
applied to the gate and induces the variation AN, cos(w,.,t + X), where x is the phase of the
microwave with respect to a reference carrier. The qubit dynamics is conveniently described
using the Bloch sphere in a frame rotating at w,,, (see Fig. 1), where the effective magnetic
field becomes Hy = hAw 74 hw go [ cos x + y/sin x|, with Aw = wy —w,,, being the detuning
and wry = 2EcAN,

(1| N |0>‘ /I the Rabi frequency. At Aw = 0, pure Rabi precession takes
place around an axis lying in the equatorial plane and making an angle y with respect to the
X axis. Then, any single-qubit operation can be performed by combining three rotations
around the X and Y axes®!3. The sequences used to characterize decoherence in this work
involve principally two types of pulses, namely 7/2 and 7 rotations around the X or Y axes.
Between microwave pulses, the free evolution of the spin corresponds to a rotation around the
Z axis at frequency —Aw. Such Z rotations can also be induced with the adiabatic method'?,
that is by adiabatically varying the transition frequency. This can be achieved by applying a
pulse that satisfies the adiabaticity criterion |d\/dt (1] dHg/ON|0)| /(hwor) < wor'* to one

of the reduced parameters A = N, or A = /2.

2  Readout

For readout, the quantronium state is projected onto the |0) and |1) states, which are then
discriminated through the difference in their supercurrents <;> in the loop?. The readout
junction is actually used to transfer adiabatically the information about the quantum state
of the qubit onto the phase 7, in analogy with the Stern & Gerlach experiment, in which
the spin state of a silver atom is entangled with its transverse position. For this transfer, a
trapezoidal bias current pulse I,(t) with a maximum value Iy slightly below Z, is applied
to the circuit. Starting from 6 = 0, the phases v and ¢ grow during the current pulse and
the state-dependent supercurrent <;> develops in the loop. This current adds algebraically
to I, in the large junction and thus modifies its switching rate I'. By precisely adjusting I,

and the duration of the pulse, the large junction switches during the pulse to a finite voltage



state with a large probability p; for state |1) and with a small probability p, for state |0)°.
A switching or non switching event is detected by measuring the voltage across the readout
junction with a room temperature amplifier, and the switching probability p is determined
by repeating the experiment. Note that at the temperature used in this work, and for the
readout junction parameters, switching occurs by Macroscopic Quantum Tunneling (MQT)

of the phase ~!%16,

The theoretical error rate in discriminating the two qubit states is
expected to be lower than 5 % at temperature 7' < 40 mK for the parameters of our
experiment’. Note than the present readout scheme does not implement a quantum non
demolition (QND) measurement since the quantronium quantum states are fully destroyed

when the readout junction switches. An alternative quantronium readout designed to be

QND has been developed!'” after this work.

B Experimental implementation

The quantronium sample used for this work was fabricated using standard e-beam litho-
graphy and double angle shadow evaporation of aluminum. Scanning electron micrographs
of its whole loop (with area ~ 6 um?) and of the island region are shown in Fig. 2 with
the schematic experimental setup. The quantronium loop was deposited on top of four gold
pads designed to trap spurious quasiparticles in the superconductor, including those gener-
ated by the switching of the readout junction. This junction was also connected in parallel
to an on-chip interdigitated gold capacitor C; ~ 0.6 pF, designed to lower its bare plasma
frequency to approximately 7 or 8 GHz. Separate gates with capacitances 40 and 80 aF
were used for the DC and microwave N, signals, respectively. The sample was mounted in
a copper shielding box thermally anchored to the mixing chamber of a dilution refrigerator
with base temperature 15 mK. The impedance of the microwave gate line as seen from the
qubit was defined by a 50 2 attenuator placed at 600 mK. That of the DC gate line was
defined below 100 MHz by a 1 k{2 resistor at 4 K, and its real part was measured to be

close to 80 €2 in the 6 — 17 GHz range explored by the qubit frequency. The bias resistor of



the readout junction, R, = 4.1 k2, was placed at the lowest temperature. Both the current
biasing line and the voltage measurement lines were shunted above a few 100 MHz by two
surface mounted 150 2 — 47 pF RC shunts located a few millimeters away from the chip.
These shunts define the quality factor @) of the readout junction. The external magnetic flux
® was produced by a superconducting coil with a self-inductance L = 0.12 H, placed 3 mm
from the chip, and whose mutual inductance with the quantronium loop was M = 0.14 pH.
To filter current noise in this coil, a 50 2 shunt resistor was placed at 1 K. The sample
holder and its coil were magnetically shielded by a 3 mm-thick superconducting aluminum
cylinder open at one end and supported by a screw from the sample-holder. The whole
assembly is placed in a second copper box also attached to the mixing chamber.

The microwave gate pulses used to manipulate the qubit were generated by mixing con-
tinuous microwaves with 1 ns rise time trapezoidal pulses with variable duration 7, defined
here as the width at half maximum. With the 60 dB attenuation of the microwave gate line,
the range of Rabi frequencies wgy that was explored extends up to 250 MHz. The switching
probability p was averaged over 25 000 —60 000 events, chosen to obtain good statistics, with
a repetition rate in the 10 — 60 kHz range, slow enough to allow quasiparticle retrapping.
The electronic temperature during operation, 7. ~ 40 mK, and the relevant parameters
E; =087 kg K, Ec = 0.66 kp K, wo1(FPy)/2m = 16.41 GHz, d ~ 3 — 4 %, Zy = 427 nA,
and Q ~ 3 were measured as reported in a previous work!'® by fitting spectroscopic data,
such as that shown in Fig. 11. Figure 3 shows a typical gate pulse, Rabi oscillations of the
switching probability p, and a check of the proportionality between the Rabi frequency wgg
and AN,. The loop currents iy and ¢; of the two qubit states, calculated using these values
of E;, E¢, and d are shown in Figure 4.

The readout was performed with 100 ns wide pulses (Fig. 4) giving a switching probability
in the 10 % — 90 % range at 7y,, ~ 72 °. At the top of the readout pulse, the phase 6 was
close to 6y >~ 0.37 x 2w ~ 130 °, where the difference between the loop currents for the two
qubit states is the largest, and where the sensitivity was experimentally maximal. To reach

this 0 value starting from any value 6,, where the qubit was operated, we had to set I; and



® at the values I, and ®,, such that 6., = @, +7,, and dyr = P, +7,,. The corresponding
bias current I, pulse when the quantronium is operated at the optimal point F, is shown in
the top panels of Fig. 4: A negative ‘pre-bias’ current I,, is used to compensate a positive
flux. The fidelity n of the measurement, i.e. the largest value of p; —pg, was n = 0.3 —0.4 in
the present series of experiments, as shown in the bottom-right panel of Figure 4. Although
n is larger than in our previous work?, this fidelity is nevertheless much smaller than the 0.95
expected. This loss, also observed in other Josephson qubits e.g.?, is attributed to spurious
relaxation during the adiabatic ramp used to switch the readout on. Indeed, the signal
loss after three adjacent short microwave 7 pulses is approximately the same as after one.
Moreover, it was found in some Josephson qubit experiments®'® that the fidelity is improved
when increasing the readout speed. The shape of the p(Iy) curve after a 7 pulse (see Fig.
4) also shows that the fidelity loss increases with p, which leads to a slight asymmetry of p
oscillations in most of the experiments presented here (see for instance the lack of signal at
the top of the oscillations on Figs. 8 and 16). This asymmetry limits the accuracy of our
decoherence rate measurements. In order to minimize its effect, we have chosen to use the

bottom of the envelopes of the p oscillations to quantify decoherence.

C Decoherence sources

Like any other quantum object, the quantronium qubit is subject to decoherence due
to its interaction with uncontrolled degrees of freedom in its environment, including those
in the device itself. These degrees of freedom appear as noise induced in the parameters
entering the qubit Hamiltonian (2), i.e. the Josephson energy E;, the gate charge N, or
the superconducting phase difference 6. Using dimensionless parameters A = F;/Ejq (E o
being the nominal E;), A = N,, or A = ¢/(27), each noise source is conveniently described
by its quantum spectral density Sy(w) =1/(27) [ dt(ﬁ(O)ﬁ(t}>e‘i‘“t, where 8\ is regarded
here as an operator acting on environmental variables. This function quantifies the ability

of the source to absorb and to emit an energy quantum h|w|, at positive and negative w,



respectively. The symmetrized spectral density Ssy(w) = 1/2[Sy(—w) + Sx(w)] and its clas-
sical limit Scy(w) at kgT' > hw will be also used. Decoherence of the qubit will be described
here in terms of energy exchange with a noise source on one hand, and in terms of random
dephasing between states |0) and |1) due to adiabatic variations of the transition frequency,
on the other hand. Taking into account that kT < hwg; in our experiment, we distinguish
relaxation processes involving Sy (+wg;) and dephasing processes involving Scy(|w| < woy).
The main noise sources acting in the quantronium are schematically depicted in Fig. 5,
and their spectral densities are discussed below. Since ‘pure’ dephasing (see section III)

dominates decoherence, special attention is paid to the low frequency part Scy(w = 0).

1 Noise in Ej: Two level fluctuators in the tunnel barriers

A first source of decoherence arises from the fluctuations of the Josephson energy E; of
the two small junctions. The associated critical current noise, which has not been measured
in our sample, has been characterized, at frequencies f up to 10 kHz and at temperatures

19,20 made of different materials

T between 100 mK and 4 K, in various Josephson devices
and with different technologies, including those used in this work. The Josephson energy
noise is empirically described, for a single junction with critical current Zy, by a 1/ f spectral
density that scales with Z2, T, and with the inverse of the junction area. Extrapolating the
results reported in Refs.!??! to the maximum electronic temperature 7, of the quantronium
during its operation, i.e. 40 mK, leads to an estimate for the spectral density of relative F;
fluctuations: Scsg, /g, (|Jw] < 27 x 10 kHz) ~ (0.5 x 107%)?/|w|. The critical current noise is
presently attributed to atomic defects located in the oxide of the tunnel junctions. A simple
model assumes that these defects are Two-Level Fluctuators (TLF) switching between two
states that correspond to an open and to a closed tunneling channel through the junction.
The distribution in the energy splitting of these TLFs is thought to be very broad and to

extend above the transition energies of Josephson qubits. This picture is supported by the

observation of a coherent coupling between a phase qubit and uncontrolled TLFs randomly
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distributed in frequency??. With the quantronium sample used in this work, the authors have
also observed in one of the experimental runs an avoided level crossing in the spectroscopic
data, which demonstrated a strong coupling between the qubit and an unknown TLF that
was later eliminated by annealing the sample at room temperature. These observations
suggest that TLFs located in the tunnel barriers not only generate low frequency E; noise,

but can also play an important role in the relaxation of Josephson qubits.

2 Noise in Ny: Background charged two-level fluctuators and gate line impedance

A second source of decoherence is the noise on the gate charge N,. Like any Coulomb
blockade device, the quantronium is subject to Background Charge Noise (BCN) due to
microscopic charged TLF's acting as uncontrolled additional N, sources. Although the whole
collection of TLFs produces a noise whose spectral density approximately follows a 1/f
law?3 2% telegraph noise due to some well coupled TLF can be observed as well'’. These
well coupled TLFs are, for instance, responsible for the substructure of the quantronium
resonance line recorded at N, # 1/2 (see Fig. 11). Complementary works?® have shown that
the charged TLFs are partly located in the substrate, partly in the oxide layer covering all the
electrodes, and partly in the oxide barriers of the tunnel junctions themselves. It has been
suggested that some TLFs contribute both to the critical current noise and to the charge
noise*”. The typical amplitude A of the spectral density ScyS™ (lw| < 2w x 100 kHz) = A/|w|
depends on temperature, on junction size and on the screening of the island by the other
electrodes. Its value is commonly found in the range [1076,1077] for the parameters of our
experiment. The amount and the energy splitting distribution of charged TLF's in Josephson
devices is still unknown at frequencies of the order of wg;, and their role in the relaxation
of a Josephson qubit has not been clearly established. Note that a recent work on a CPB

t28 suggests that they might contribute significantly to relaxation.

qubi
Another cause of charge noise is the finite impedance Z, (see Fig. 5) of the Gate Line

(GL), which can be treated as a set of harmonic oscillators coupled to N. As seen from the
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pure Josephson element of the CPB (junction capacitance not included), the gate circuit
is equivalent® to an effective impedance Z, in series with a voltage source k,V,, with
kg = Cy/Cx. In the weak coupling limit k, < 1 and for all relevant frequencies, one
has Re[Ze,] ~ k2Re[Z,]. At thermal equilibrium, the contribution of the gate line to N,

fluctuations is characterized by the spectral density

ShE(w) ~ mﬁi—%%ﬁw [1 + coth (QZ:T)] , (5)
where Ry = h/e® ~ 26 kQ. Using the parameters previously mentioned, we find Sc{k(|w| <
21 x 10 MHz) ~ (30 x10~?)?/(rad/s) at low frequency, and S§}(w) ~ (1-3x107?)?/(rad/s)
in the 6 — 17 GHz frequency range. Finally, the out-of-equilibrium noise generated by the
DC gate voltage source is fully filtered by the line and does not contribute to decoherence.
The conclusion of this analysis is that the background charge noise dominates Sﬁg (w) at

low frequency.

8 Noise in 6: Magnetic flux noise and readout circuitry.

The last source of decoherence encountered is the noise of the superconducting phase 6.
One contribution to this noise source is the magnetic flux noise threading the quantronium
loop. It is however negligible because the external flux is shielded by a superconducting
aluminum cylinder surrounding the sample-holder, and because the coupling to the flux coil
is weak K, = M Ej /@8 < 1.

A second phase noise source arises from the magnetic vortices moving in the super-
conducting electrodes of the device. Taking the width ¢ of the aluminum lines used in
this work, the depinning field of these vortices®?® B,, = ®/¢* is of order 50 mT,
a value two orders of magnitude larger than the maximum field we apply, which sug-
gests that vortices should be pinned. Nevertheless, many experiments on SQUIDs have
shown that an extra flux noise whose origin is unknown, and which does not depend

on the temperature below a few 100 mK?", is always present with a spectral density
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ch’}i;;o(|w| <27 x 1 kHz) ~ (10 x 107%)2/ |w|.

Finally, the readout circuitry also induces phase fluctuations, due to the admittance Yz
(see Fig. 5) in parallel with the pure Josephson element of the readout junction, and due
to the out-of-equilibrium noise of the Arbitrary Waveform Generator (AWG) used. More
precisely, when a bias current I, < Z; is applied to the quantronium, the effective inductance
Ly~ (¢o/T0)/1/1 — (I,/To)* of the readout junction converts the current noise produced
by Yr into phase fluctuations characterized by the spectral density

2
STE (w) = @n%%—;Re[%(w)] Ry [1 + coth (QZ‘:TN , (6)

where Ys(w) = Yg (w) / [1—L;Crw?+jLrwYg (w)\2 and k; = E;/E;. Using the

parameters mentioned in the previous section, we find Scéy/%ﬁ(|w| < 21 x 10 MHz) ~
(2 x 107%)?/(rad/s) and S35 (w) ~ (20 — 80 x 107°)?/(rad/s) in the 6 — 17 GHz frequency
range. Then, the noise spectrum of our AWG is flat up to 200 MHz, and corresponds to
a spectral density Scf/grc(\w\) ~ (15 x 1079/ cos)?/(rad/s) that depends on the average
phase v across the readout junction. The conclusion of this analysis is that the phase noise
is dominated at low frequency by local sources close to the junction loop, and at the qubit

frequency by the contribution of the biasing circuitry.

IIT. THEORETICAL DESCRIPTION OF DECOHERENCE

We now consider the dynamics of a qubit from a general point of view in two situations:
the free evolution and the evolution driven by a sinusoidal excitation.

In the first case, after initial preparation in a coherent superposition of the two qubit
states, the effective spin precesses freely under the influence of the static field FIO, set by
the control parameters )\, and of its classical and quantum fluctuations, set by the fluc-
tuations 6A. One distinguishes two time scales, the depolarization time 7; (dominated at
low temperatures by the relaxation to the ground state) for the decay of the diagonal Z

component of the spin density matrix, and the decay time 75 of the off-diagonal part, which
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is the qubit coherence time. As described in the experimental section IV, the time T3 is
inferred from the decay of Ramsey oscillations in a two /2 pulse experiment. These Ramsey
oscillations are the equivalent of the free induction decay in NMR?!. Note that this decay
can be non-exponential, the time 75 being then defined by a decay by the factor exp(—1).
In a modified version of the Ramsey experiment, an extra m pulse is applied in the middle
of the sequence in order to perform a Hahn echo experiment?!. The decay time Tgc, of this
echo is longer than 75, and the enhancement factor provides important information on the
spectral density of the noise mechanisms.

In the second case of driven evolution, the decay of the spin density matrix is investigated
in the rotating frame. Experimentally, this decay is obtained from spin-locking signals®*' and
from Rabi oscillations. It is shown that time scales T 1 and T. 5, similar to T and 75, describe
the dynamics in the rotating frame3!.

We first start by expanding the Hamiltonian }AIqb of Eq. (4) to second order in the per-
turbation O A:

1
»= "3 HO(AO)+W<SA+ N 2 +..| 0. (7)

Q)

)

Introducing the notations Dy = (1/h) 9Hy/dA and Dy, = (1/h) 8%Hy/ON?, one finds in the

=
5

cigenbasis of Hy(Xo)
~ 1 — ~ ~
Hy, = —§h (W10, + bw,0, + bw T, ) (8)

where fiwo; = [Ho(Mo)|, 6ws = Dy 0A + Do, 63%/2+ ..., and dw, = Dy 16\ + ... Here o
denotes the transverse spin components [i.e., the last term in Eq. (8) may include both o,
and o,]. We write explicitly only the terms in the expansion that dominate decoherence (as

will become clear below). These coefficients D are related to the derivatives of wgi()\):

and
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As discussed below, dwg;/OX and %wq,;/ OX? are sufficient to treat the low-frequency noise
whereas the calculation of the depolarization rates involves D, | .

The Bloch-Redfield theory?*3* describes the dynamics of two-level systems (spins) in
terms of two rates (times): the longitudinal relaxation (depolarization) rate ' = T} !,
and the transverse relaxation (dephasing) rate I'; = T, !. The dephasing process is a
combination of effects of the depolarization (I'1) and of the so called ‘pure’ dephasing. The
‘pure’ dephasing is usually associated with the inhomogeneous broadening in ensembles of
spins, but occurs also for a single spin due to the longitudinal low-frequency noise. It is
characterized by the rate I',. These two processes combine to a rate

1
Fp=3+ T, (11)

The Bloch-Redfield approach applies only if the noise is short-correlated (e.g., white noise)
and weak®'. In more general situations the decay is non-exponential. In particular, when the
‘pure’ dephasing is dominated by a noise singular near w ~ 0, the decay law exp(—I',t) is
replaced by other decay functions which we denote as f, (¢) (additional indices ... describe
the particular experiment). It can be shown®! that the decays due to the depolarization
and the ‘pure’ dephasing processes factorize, provided the high frequency noise responsible

ot

for the depolarization is regular. Ie., instead of the exponential decay e !2! with I'y from

Eq. (11), one obtains the decay law f. (t)exp(—I1t/2).

A Depolarization (7})

The depolarization rate I'y = T, ! is given by the sum,
I'y = I're + I'ea, (12)
of the relaxation rate I'g.; and the excitation rate I'g,. The Golden rule gives

T T
LRe = 5 Ssw. (wWo1) = 5 D3 Sa(wor) (13)
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T T
FEI = 5 S&UL(—wm) = 5 DiJ_SA(—wm) . (14)
Thus
'y = 7885, (wo1) = ﬂDiﬁLSs)\(wm) ) (15)

This result holds irrespective of the statistics of the fluctuations; in lowest order of the
perturbation theory in D) | the rates are expressed through the correlator Sy. This approx-
imation is sufficient when the noise is weak enough with a smooth spectrum at the transition
frequency wp; on the scale of the relaxation rate I';. At low temperatures kgT < hwp; the

excitation rate ['g is exponentially suppressed and I'y ~ I'g.

B ‘Pure’ dephasing
1 Linear coupling

First, we analyze a noise source coupled linearly (and longitudinally) to the qubit, i.e.

Owo1/0X\ = D, , # 0. The Bloch-Redfield theory gives for the ‘pure’ dephasing rate
'y = 7Ss, (w=0) = 7TD§7Z Syw=0)= 7TD§7Z Sex(w = 0). (16)

This result is of the Golden Rule type [similar to Eq. (15)] and is meaningful if the noise
power Scy is regular near w ~ 0 up to frequencies of order I'y.

A more elaborate analysis is needed when the noise spectral density is singular at low
frequencies. In this subsection we consider Gaussian noise. The random phase accumulated

at time ¢: .

Aé = Dy. / A SN(E)
0
is then Gaussian-distributed, and one can calculate the decay law of the free induction

(Ramsey signal) as f. z(t) = (exp(iA¢)) = exp(—(1/2)(A¢?)). This gives

t2 —+o00 CUt
f2r(t) =exp l_E D?\’z/ dwS)(w) sinc27 : (17)
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where sincz = sinz/x.

In an echo experiment, the phase acquired is the difference between the two free evolution

periods:
t/2 t
App = —A¢; + Mgy = — Dy / d'SA(t') + D / dt8A(t), (18)
0 t/2
so that
fop(t) = exp [—g D3, /+OO dwSy(w) sin® wzt sinc? wzt} (19)

1/f spectrum: Here and below in the analysis of noise with 1/ f spectrum we assume that
the 1/f law extends in a wide range of frequencies limited by an infrared cut-off w;, and an
ultraviolet cut-off w,:

Sa(w) = A/|w|, wir < |w| < we. (20)

The infrared cutoff w;, is usually determined by the measurement protocol, as discussed
further below. The decay rates typically depend only logarithmically on w;,, and the details
of the behavior of the noise power below w;, are irrelevant to logarithmic accuracy. For most
part of our analysis, the same remark applies to the ultra-violet cut-off w.. However, for
some specific questions considered below, frequency integrals may be dominated by w 2 we,
and thus the detailed behavior near and above w, (‘shape’ of the cut-off) is relevant. We
will refer to an abrupt suppression above w,. (S(w) x #(w. — |w|)) as a ‘sharp cut-off’, and
to a crossover at w ~ w, to a faster decay 1/w — 1/w? (motivated by modelling of the noise
via a set of bistable fluctuators, see below), as a ‘soft cut-off’.

For 1/f noise, at times ¢ < 1/wj,, the free induction (Ramsey) decay is dominated by

the frequencies w < 1/t, i.e., by the quasistatic contribution®, and ref. (17) reduces to:

f2.r(t) = exp {—ﬁ D; A (111 + 0(1))} : (21)

wirt
The infrared cutoff w;, ensures the convergence of the integral.

For the echo decay we obtain

f2p(t) = exp [—t2 Diz A-ln 2} ) (22)
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The echo method thus only increases the decay time by a logarithmic factor. This limited
echo efficiency is due to the high frequency tail of the 1/ f noise.

Static case: In many cases, the contribution of low frequencies w < 1/t dominates the
‘pure’ dephasing. This happens when the noise spectrum is strongly peaked at low frequen-
cies [cf. Eq. (21)], in particular when it has a sufficiently low ultraviolet cutoff frequency w..
This simple regime pertains to the quantronium.

To fix the terminology we use here: under certain conditions we use the ‘static approxima-
tion’ characterized by an effective distribution P(6\), for which the noisy control parameter
A is considered as constant during each pulse sequence. This approach allows for a direct
evaluation of the Ramsey decay function f, (t). In the relevant cases of linear or quadratic
coupling to the fluctuations, the decay function f, g(t) is the Fourier or Fresnel-type trans-
form of the distribution P(6)\), respectively. Since the static approximation would yield no
decay for the echoes, the calculation of the echo decay function f, () requires a ‘quasistatic
approximation’ that takes into account variations within each pulse sequence. A noise with
an ultraviolet cutoff frequency w. can be considered as quasistatic on time scales shorter

35737 are given below.

than w_!. The relevant results obtained in refs.
In the static approximation, the contribution of low frequencies w < 1/t to the integral
in Eq. (17) is evaluated using the asymptotic value sinc(wt/2) ~ 1:
2

t
250 = o | -5 D803 (23)

where 03 = [ dwS)(w) is the dispersion of §).

For 1/ f noise, S\ = (A/|w])f(w. — |w|), we obtain 03 = 2AIn(w./w;). The result is only
logarithmically sensitive to the value of the ultraviolet cutoff w. and to the specific functional
form of the suppression of noise at high w 2 w.. The static approximation is sufficient for
the evaluation of the dephasing rate if, e.g., the latter indeed exceeds the ultraviolet cutoff
We, i.e., D3, A In(we/wir) > w?.

In the opposite limit, for the wide-band 1/f noise at ¢ > 1/w., the contribution of

frequencies w < 1/t is also given by Eq. (23) [cf. Egs.(17) and (21)]. In this case, however,
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03 in Eq. (23) depends logarithmically on time: o3 = D3 , Aln(1/wt). This contribution
dominates the decay of f. g(t).
In general, for (quasi-)static noise with distribution function P(6\) the ‘static’ approxi-

mation yields the Ramsey decay,
S50 = [ denPEN P, (24)

which is the Fourier transform of P(6]).

Let us now analyze the echo decay. For 1/ f noise with a low w, the integral in Eq. (19) over
the interval w < w, is dominated by the upper limit. This indicates that the specific behavior
at w 2 w. is crucial. For instance, in the case of a sharp cutoff (S = (A/|w|)f(w. —w)) we

obtain

1
Fe(®) = oxp (~35 D3 A2t (25)

However, if the 1/f behavior for w < w, crosses over to a faster decay o 1/w? at w > w,
(as one would expect when the noise is produced by a collection of bistable fluctuators
with Lorentzian spectra, cf.?33%41) then the integral in Eq. (19) is dominated by frequencies
we <w < 1/t, and we find: In f, g(t) Diz Aw,.t3. In either case, one finds that the decay
is slower than for 1/f noise with a high cutoff w, > D,\yzAl/ 2: the exponent involved in the

decay function is indeed reduced by a factor ~ (w.t)? or w.t, respectively.

2 Quadratic coupling

At the optimal working point, the first-order longitudinal coupling D) , vanishes. Thus, to
first order, the decay of the coherent oscillations are determined by the relaxation processes
and one expects I'y = I'; /2 from Eq. (11). However, it turns out that due to a singularity at
low frequencies the second-order contribution of the longitudinal noise can be comparable,

or even dominate over I'y /2. To evaluate this contribution, one has to calculate

1 %wgy

£.t) = <exp i

5 o8 [xnsxmar > (26)

0
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Equation (26) can be used for the analysis of the free induction decay (Ramsey signal) if
one sets x(7) = 1, and for the investigation of the echo-signal decay using x (7 < t/2) = —1
and x(7 >1/2) = 1.

1/f noise: The free induction decay for the 1/f noise with a high cutoff w. (the highest
energy scale in the problem) has been analyzed in Ref.**. The decay law can be approxi-
mated*’ by the product of the low-frequency (w < 1/t, quasi-static) and the high-frequency
(w > 1/t) contributions: f, r(t) = f¥g(t) - f2%(t). The contribution of low frequencies is

given by (cf.3537):
I () 1

z,R(t> - .
V1—iZe o3t

For 1/f noise with variance of the low-frequency fluctuations 03 = 2A1In(1/w;t), this con-

(27)

tribution is

1
Ta(t) = ——— 1 (28)
J1-20%8 e Am

It dominates at short times ¢ < [(9%wq1/0A*) A/2] ~'. At longer times, the high-frequency

contribution

T ON?

~1/t

o0 2
In zh%@> ~ —t / ;l_w In (1 — 27 O wor SA(‘”)) ’ (29)

takes over: when ¢t > [(0%wg1/0N*) A/2] ~' we obtain asymptotically In Ma(t) =~
—(7/2)(8%wo1 /ON?) At (provided w, > 7 (0%wo1/ON?) A). Otherwise the quasistatic result
(27) is valid at all relevant times. One can also evaluate the pre-exponential factor in the
long-time decay. This pre-exponent decays very slowly (algebraically) but differs from 1 and
thus shifts the level of f, r(t)**.

Note that the experimentally monitored quantity is a spin component, say (o), in the
rotating frame which evolves according to (o,) = Re|f. r(t) e*!], where Aw is the detun-
ing frequency. In a typical situation of interest f, r(¢) changes slower than the period of
oscillations, and thus the envelope of the decaying oscillations is given by |f, r(¢)|, the phase

of f. r(t) shifting the phase of the oscillations. In the opposite limit Aw = 0, the measured
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decay curve reproduces the real part of f, z(t) (the imaginary part corresponds to o, and
can also be measured).

Static case: In the quasi-static case, i.e., when the cutoff w. is lower than 1/t for all
relevant times, the Ramsey decay is simply given by the static contribution (27). At all
relevant times the decay is algebraic and the crossover to the exponential law is not observed.
More generally, in the static approximation with a distribution P(6A), the dephasing law is

given by the Fresnel-type integral transform:

alt) = [ (3 Pox) T 30

which reduces to Eq. (27) for a Gaussian P(6X) o< exp (—6A?/20%). In general, any distrib-
ution P(8)), finite at 6X = 0, yields a t~'/? decay for f5'; at long times.
For the echo decay and Gaussian quasi-static noise in A we obtain
1
T R AT ) S

where we assumed that the frequency integral converges at |w| < 1/t. This is the case,

g., if S\(w) has a sharp cut-off at w. < 1/t. For 1/f noise, S\ = (A/|w|)8(w. — |w|) with
we < 1/t, Eq. (31) yields

1
fz E > : (32)
\/1 + 6 666;31 )" oA AWt

Note that this result is sensitive to the precise form of the cut-off.

C 1/f noise, one fluctuator versus many

The background charge fluctuations are induced by random redistributions of charge near,
e.g., trapping and release of electrons or by random rearrangements of charged impurities.
Many groups have observed this noise with a smooth 1/f spectrum in the frequency range
from 1 Hz to 1 MHz. Occasionally, single fluctuators have been observed, with a significant

fraction of the total charge noise!’. If individual fluctuators play an important part the noise
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statistics is non-Gaussian®?*?. We summarize here some of the obtained results relevant to
our work.

The noise §A(t) contains contributions from all TLFs:

SA(t) = vnon:(D). (33)

Every fluctuator switches randomly between two positions, denoted by o, ., = +1 with rate
7v,, (for simplicity, we assume equal rates in both directions for relevant TLFs) and thus

contributes to the noise power Sy = > Sy:

n:

1 ¥ (34)
T w?+ 77%

For a (longitudinally coupled to the qubit) single fluctuator the free induction (Ramsey) and

the echo decays are given by

Foaea(®) = e (cospnt+ 22 sint ) (35)
Ko
and
v "
fomnt)=e " [ 1+ Lsinp t+—2(1—cosp,t)]| , 36
=y n 2 n
n Hy,

where 1, = /(D .v,)? — 2. Finally, the decay produced by all the fluctuators is just the
product of the individual contributions, i.e., f, r(t) = II,, f. rn(t) and f, g(t) = IL, f. 5. ().
If the noise is produced or dominated by a few fluctuators, the distribution of é\(¢) may be
strongly non-Gaussian, and the simple relation between decoherence and noise power does
not hold. In this case the conditions of the central limit theorem are not satisfied. In Ref.*3,
a continuous distribution of v,,’s and +,,’s was considered, with a long tail of the distribution
of the coupling strengths v,, such that rare configurations with very large v, dominate the

ensemble properties. The distribution P(v,~) considered in Ref.?? is defined in the domain

[Umin7 OO] X [7mz‘n7 mea;t]:
§

yo?

P(v,7) = (37)

Let us introduce the parameter v¥® = Nuvy,;,, which gives the typical value of the strongest

(closest) fluctuator. Normalization to N fluctuators requires that & = v®P /In(7y,,00/Vmin)-
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For this distribution any quantity whose average value (that is integrals over v’s and +’s) is
dominated by TLFs with v > v%P 13 is not self averaging, i.e. has considerable sample-to-

sample fluctuations. The ensemble-averaged free induction decay described by*3

In ’fz,R(t)‘ X _DA,Z gt 1n<7maw/7mm> - _DA,Z Urtr}l?;xt (38)

is dominated by the fluctuators with strength of order v ~ v¥P and is thus not self-averaging.
Consequently, it does not apply quantitatively to a specific sample.

Similarly, the ensemble-averaged echo signal is given by*?

In|fep(t)] o =Daz &6t [In(Ypneet) +O(1)] for >0, . (39)

The situation depends on whether Dy .& > 7., O Dx.€ < Yo In the former the
dephasing is ‘static’ (i.e., it happens on a time scale shorter than the flip time of the fastest
fluctuators, 1/7,,,,) and first line of Eq. (39) applies. The decay is self-averaging because
it is dominated by many fluctuators with strength v ~ m < & < v . In the
opposite regime D) . { < 7,,,. the dephasing is due to multiple flips of the fluctuators and
the the second line of Eq. (39) applies. In this case, the decay is dominated by a small
number of fluctuators with strength v & &, which is smaller than v®P only by a logarithmic

factor, and sample-to-sample fluctuations are strong.

D Decoherence during driven evolution
In the presence of a harmonic drive 2wpgg cos(wt)d,, the Hamiltonian reads
~ 1 . . . .
H = _§h (w10, + 6w,0, + bw 0| + 2wr cos(wt)T,] . (40)

The qubit dynamics is conveniently described in the frame rotating with the driving fre-

quency w, and a new eigenbasis {‘6> , ‘T>} is defined by the total static fictitious field
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composed of the vertical component given by the detuning Aw = wp; —w and the horizontal

(x) component wgg. Le., the static part of the Hamiltonian in the rotating frame reads
1 ~ ~
Hy = —§h[Asz + WRO ] - (41)

The length of the total field is wr = \/W and it makes an angle n with the z-axis:
Aw = wgrcosn, wry = wgsinn. The evolution of the spin is a rotation around the field at the
Rabi precession frequency wg. Like in the case of free evolution, decoherence during driven
evolution involves the phenomena of relaxation and dephasing: one defines a relaxation
time Tl and a coherence time Tg analogous to T} and T5, which correpond to the decay of
the longitudinal and of the transverse part of the density matrix®' in the new eigenbasis,
respectively. First, as a reference point, we present the Golden-Rule-type results which are
valid if all the noises are smooth at frequencies near w = 0, wg, and wp;. Analyzing which
parts of the fluctuating fields dw, and déw, are longitudinal and transverse with respect to
the total field wg in the rotating frame, and taking into account the frequency shifts due to
the transformation to the rotating frame we obtain

1 2
+ cos nrl,

f‘l :sin277F,,+ 5

(42)

where I'), = 755, (wg) is the spectral density at the Rabi frequency. We have disregarded
the difference in the noise power Ss,, at frequencies wp; and wg; £ wg, which allows us to
use the depolarization rate I'; from Eq. (15). We do, however, distinguish between I', and
I', = 7Ss,. (w = 0) in order to, later, analyze a noise spectrum singular at w ~ 0.

For the dephasing rate we again have the relation

- 1~  ~
FQ - §F1 + F(p; (43)
where
. 1
r,=T, cos?n + §F1 sin’7) . (44)
As a result we obtain
~ 3 — cos? 1
5 = %Fl + Ty 008277+ §FV sin277 ) (45)



24

The derivation of these expressions is simplified if one notes that due to the fast rotation the
high frequency transverse noise Ss,  (w & wp1) is effectively mixed to low frequencies < wp.
In the rotating frame it effectively reduces to ‘independent’ white noises both in the x and y
directions with amplitudes éw, /v/2 and corresponding noise powers Ss,, (w =~ wer)/2. Only
the noise along the x axis (its longitudinal component with factor sin?7n) contributes to fgo
(the noise along the y axis is purely transverse).

Note the limiting behavior of the rates: at zero detuning, one has cosn = 0 and I'y =
%Fl + %F,,, whereas at large detuning compared to the Rabi frequency, cosn = 1, and
[y = %Fl + I'y: one recovers thus the decoherence rate I'y of the free evolution.

For a noise spectrum which is singular at w = 0 (1/f noise) we no longer find the
exponential decay. The simplest case is when the Rabi frequency is high enough so that
one still can use the rate I', and the associated exponential decay. We consider here only
this regime. Then one should combine the exponential decay associated with the rates I'y
and I', with the non-exponential one substituting the rate I',. For the decay of the Rabi

oscillations we obtain

3 — cos? 1 ,
fRabi(t) = fz,cosn(t) - €Xp <_T7]Flt - 5 FV Sln2 nt) ) (46)

where f, cos5(t) is given by one of the decay laws derived in the preceding sections (depending
on whether the coupling is linear or quadratic, and whether the statistics is Gaussian or not)
with the noise dw, substituted by cosn dw,. That is, in the linear case, we have to substitute

Dy, — cosn Dy ., while in the quadratic case (0%wo; /OA?) — cosn (0%wo1/ON?).

E Application to the Quantronium sample used in this work

As already mentioned in section IIB, the parameters of the qubit F; = 0.87 kg K,
Ec = 0.66 kg K were measured by fitting the spectroscopic data wgi(Ng,6) (see Fig. 11)
with a numerical diagonalization of the Hamiltonian .E[CPB . This fit gives an upper limit

for the asymmetry of the qubit junctions, d < 13 %. By using another property'® this value
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was estimated as d ~ 4 %. From E;, Ec, and d, the numerical values of the Dy’s introduced
above were calculable exactly, as a function of the working point (6, N;). Nevertheless,
since we have characterized decoherence only along the two segments 6/(27) € [—0.3,+0.3],
Ny=1/2and 6 =0, N, —1/2 € [-0.1,+0.1] in the (6, N,;) plane, we only give below simple
expressions that approximate wg;, Dy and 0%wq;/ OX? with a +3 % accuracy in the range of

parameters explored experimentally. We have thus for the transition frequency

wor (8, Ny = 1/2) ~ [103 — 425 (§/27)*] x 10%rad/s, (47)
wo1(6 = 0, Ny) > [103 + 145 (N, — 1/2)?] x 10° rad/s, (48)

which lead for the longitudinal coefficients to:

1 o
Disjon (6 =00r Ny =1/2) = 2—6@1 — 1) =~ —850 7 X 107 rad/s, (49)
™
82(4)01 9
—— ~ — 1
25 /27)? 850 x 10° rad/s, (50)
2E¢ -~ -~ 1 9
Dig.(6 = 0 or Ny =1/2) = ==E((1|N|1) = (0] N [0)) = 290 (N, — 5) x 10° rad/s,
(51)
82(4}01 9
onz = +290 x 107 rad/s, (52)

where 7y and i; are the average currents <?> in the two states. Note that Dy, . vanishes
at N, = 1/2 for all ¢ so that a gate microwave pulse corresponds to a purely transverse
perturbation of the Hamiltonian. Consequently, the perturbed Hamiltonian of Eq. 40 does
apply exactly to the quantronium at N, = 1/2, where the measurements were performed.
At other values of Ny, Eq. 40 would nevertheless be a good approximation. For critical

current noise, the coupling coefficient

DzSEJ/EJ,z((S = 0) ~ 485 X 109 rad/s (53)

D&EJ/EJ,Z<NQ = 1/2) =

2
+85 — 240 (;) ] x 10° rad/s (54)
m



26

is maximal at the optimal working point F,. Expressed in the same way, the transverse

coefficients D) , are

1), - 5
Do, (6= 0 or Ny =1/2) = = ‘<0| i |1>‘ ~ 380 d [1+6.0 (;-)°) x 10° rad/s,  (55)
4F¢c

Divg(8 =0 0r Ny =1/2) = =< | (0| N \1)‘ — 193 x 10° rad/s, (56)
and
E 2 ~ 1
Dsp, /5,0 (6 =0 0r N, =1/2) = %W) ‘<0| cos 0 |1>‘ —54|N, — 5‘ % 10° rad/s.

(57)
Finally, note that the cross derivative 8%wq; /060N, was found to be equal to zero along the

two segments mentioned above.

IV. EXPERIMENTAL CHARACTERIZATION OF DECOHERENCE DURING

FREE EVOLUTION

In order to characterize decoherence in our quantronium sample and to compare with the
theoretical predictions, we have measured the characteristic decay times of the diagonal (77)
and non diagonal (75, Tx) parts of the density matrix of the qubit during its free evolution.
These measurements were repeated at different working points P located along the lines
6 =0 and N, = 1/2, as mentioned above. We describe the different experimental protocols

that were used, the results, and their interpretation.

A Longitudinal relaxation time, T;.

Relaxation of the longitudinal polarization is inferred from the decay of the switching
probability p after a 7 pulse has brought the qubit to state |1). More precisely, a sequence

that consists of a 7 pulse, a variable delay ¢, and a readout pulse is repeated to determine
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p(t). An example of the relaxation curve, measured at the working point P, is shown in
the inset of Fig. 6. As predicted, the relaxation is exponential, with an absolute discrepancy
between p(t) and the fit being always smaller than 2 %. The relaxation time T}, varies with
the working point as shown in Fig. 6: 7} is about 0.5 us in the vicinity of Py (which is 3 times
shorter than in a previous experiment?) and shows rapid variations away from P in the phase
direction. Now, it is interesting to note that in the parameter range explored, the matrix
element Dy, of Eq. (56) is approximately constant and that the matrix element Dys/ox | of
Eq. (55) varies smoothly by a factor of only 2 with §. Consequently, the measured variation of
T reflects quite directly the variation with frequency of the density of environmental modes
available for absorbing one photon Awg; from the qubit through the é and N, channels.
Noting from Eq. (57) that the noise on E; cannot induce relaxation of the qubit along
the line N, = 1/2, a natural question arises: can the measured relaxation rates be fully
accounted for by the circuit alone, i.e. by Z,; and Yy (see Fig. 5)7 We have calculated from
Eq. (15) and from the noise spectra (5,6) of Z, and Yg, values of T; at Fy of about 2 us and
3 —6 us, respectively. The combined effect of the two sub-circuits gives thus 7} ~ 1 —1.5 us,
which is approximately 2-3 times longer that the measured value. We conclude that if
our estimates of the circuit impedances above 14 GHz and of the asymmetry coefficient
d ~ 3 —4 % are correct, a large part of the relaxation has to be attributed to microscopic
environmental modes, non uniformly distributed in frequency. Note however that estimating
the impedances as seen from the qubit above 14 GHz with an accuracy better than a factor

2, is difficult.

B Transversal relaxation time or coherence time, Ts.

1 Ty measurement from Ramsey fringes

Characterizing decoherence during the free evolution of a qubit can be done directly by

measuring the temporal decay of the average transverse polarization of its effective spin.
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With a projective readout, this information can only be obtained by repeating a sequence
which consists in preparing first a particular state with a non zero transverse polarization,
letting the spin evolve freely during a time At, and then reading one of its transverse
components. Starting from state |0), the simplest experiment would consist in applying
a 7/2 pulse to align the spin along the X axis of the Bloch sphere, and for measurement
projecting it onto X after the desired free evolution. Such an experiment is not possible with
the quantronium, which is projected onto the Z axis at readout. The phase ¢ accumulated
during the free precession has thus to be converted into a polarization along Z, which can
be done by applying a second 7/2 pulse. The two 7/2 pulses form the so-called Ramsey
sequence?, which gives an oscillation of the Z polarization with At at the detuning frequency
Aw/27. Although choosing Aw = 0 gives a simple non oscillatory signal that decays in
principle as (1 + e 114%2Re [f, r(At)])/2 (see section III), this choice is inconvenient since
any residual detuning would induce a very slow oscillation that could be misinterpreted as
an intrinsic decay. For that reason, we use here a Aw of several tens of MHz, which is chosen
because it is much larger than the decoherence rate. The rotation axis of the spin during
the /2 pulses makes an angle o = arctan(Aw/wpgo) with the equatorial plane of the Bloch
sphere. The rotation angle of the so-called 7/2 pulses is more exactly 7/2(1 + ¢€), where
€ is a small positive or negative correction due to two effects: First, the pulse duration is
optimized at zero detuning, by maximizing the switching probability of the readout junction
immediately after two adjacent /2 pulses. This duration is then kept constant for a Ramsey
experiment at finite detuning, so that ideally, 0 < ¢ = \/14—Tm(04)2 —1 <1072, Second,
the optimization procedure is done with a finite accuracy and e can be different from this

ideal value. The Ramsey oscillation pg is given by

1—a

o — +ae B+ (14a) ¢ | fn(An)]cos (AwAt+Q)] . (58)

where a = sin® @ — sin€(1 — sin® @) and ¢ = arctan [sina (1 + sin€) / cos €] are geometrical
corrections. Note that, at large At, the envelope of the oscillations has an amplitude and a

saturation value that depends on Aw.
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Figure 7 shows two typical Ramsey signals measured at the optimal working point F,
with wgrg = 106 MHz and Aw = 50 MHz. These two signals differ significantly although
they were recorded the same day with the same experimental protocol: N, is first tuned
so that the central frequency of the spectroscopic line is minimum and the Ramsey fringes
are then recorded at a speed of 1 point per second, the longest record (middle frame of
Fig. 7) taking thus 17 minutes. The relative non reproducibility between the two records is
typical of what we have observed during several months of experimentation. It is attributed
to the frequency drift induced by the 1/f charge noise. This drift is partly continuous and
partly due to sudden jumps attributed to few strongly coupled charged TLFs, as mentioned
in sections II and III. These sudden jumps are reversible and induce correlated phase and
amplitude jumps of the Ramsey fringes, as shown by the arrows in the bottom panels of
Fig. 7. The figure also shows a fit of the external envelope of the fringes to Egs. (58) and
(27), valid for a quadratic coupling to a static charge noise (this choice will be explained
in section IV D). The values of T} and of the sensitivity to noise Eq. (52) being known, the
fitting parameters are the amplitude and saturation value of the fringes, and the variance
o3 of the noise. The corresponding effective Ty time is 300 & 50 ns for this record, but it is
found to vary in the range 200 — 300 ns (see for instance top panel of Fig. 10) depending on
our ability to set the working point precisely at Fy and on the probability that the system
stays at that point during a full record.

A series of Ramsey oscillations measured at different working points P is shown in Fig. 8.
Since wy; and therefore wgy (at constant microwave amplitude) vary with P, the microwave
frequency was varied in order to keep Aw between 40 MHz and 100 MHz and the pulse
duration was varied to maintain the rotation angle close to 7/2. Note that the mean level
and the amplitude of the oscillations vary due to these Aw changes. A direct comparison
between the Ramsey patterns shows that 75 decreases dramatically when P is moved away
from P,. More precisely, each curve gives a value T5(P) with an uncertainty of about 30%,

which is plotted on Fig. 15.
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2 Ty measurement with the ‘detuning pulse’ method

Probing decoherence at different working points P with the Ramsey method presented
above requires recalibrating for each P the frequency and duration of the two 7/2 pulses.
Now, the 7/2 pulses and the free evolution period probing decoherence, do not have to be
performed at the same working point. It is thus experimentally more efficient to perform
the /2 rotations always at the optimal point P, with fixed optimized microwave pulses,
and to move adiabatically to any point P where decoherence is to be measured, between
these pulses. This scheme, which leads also to the coherence time T5(P), is referred in
the following as ‘the detuning pulse method’. It has been demonstrated by moving back
and forth the working point from F, to P with a trapezoidal N, or ¢ pulse of duration At
inserted in the middle of a Ramsey sequence. Since the qubit frequency is not the same at P,
the switching probability oscillates with Aty at a new detuning frequency Aws(P) different
from Aw. These oscillations decay with the characteristic time T5(P). The adiabaticity
criterion mentioned in section II A1 is easily fulfilled even with a rate of change 0\/0t as
fast as 0.1/ns. In our experiment the shortest rise/fall times ¢, were 10 ns and 60 ns for
N, and 0, respectively. This method, which is of course limited to working points P where
T5(P) 2 t,, has been used in the ranges [6| < 0.1 and |N, —1/2| < 0.05. Examples of
experimental curves are shown on Figs. 9 and 10. Each curve leads to a T(P) value with a

50% total uncertainty, these are also shown on Fig. 15.

8 Ty measurement from resonance line shape

When the decoherence rate becomes comparable to the Rabi frequency, time domain
experiments using resonant pulses can no longer be performed and one has to operate in
the frequency domain. In the linear response regime, i.e. at low microwave power, the
shape of the resonance line recorded during continuous microwave excitation is simply the

Fourier transform of the envelope of the free evolution decay (i.e. the Ramsey signal). One
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has Ty = k/(7W) with W the resonance full width at half maximum (FWHM) and % a
numerical coefficient that depends on the line shape: & = 1 for a Lorentzian, £k = 1.6 for
a Gaussian, etc. In order to reach the linear regime, the lineshape is recorded at different
decreasing microwave powers until its width saturates at the lower value. At that stage,
the signal to noise ratio is usually small and the lineshape has to be averaged over a few
minutes. A series of resonance lines is shown on Fig. 11, together with their positions
as a function of the working point (which leads to E; and Es as previously mentioned).
The rapid broadening of the line when departing from P, is clearly visible. Lineshapes at
Ny # 1/2 are structured with several sub-peaks that are stable only on timescales of a few
minutes. We take this again to be due to the presence of large individual charged TLF’s.
At 6 # 0, the lines are smoother but the low signal to noise in the linear regime does not
really allow a discrimination between a Lorentzian or a Gaussian shape. We thus calculated
a T»(P) using an intermediate value £ = 1.3 and with an extra 30% uncertainty. These
Ty’s with typical uncertainty 50% are also added to Fig. 15. Finally, the lineshape at P, is
averaged over 10 minutes and is shown on Fig. 11. Its exact shape is discussed in subsection

IV D.

C Coherence time of spin echoes -Tg-

In NMR?!, the spin-echo technique is a standard way to cancel the lineshape broadening
of an ensemble of spins due to the spatial inhomogeneity of the magnetic field. In our case,
there is a single spin (i.e. the quantronium) measured repetitively and the echo technique can
compensate for a drift of the transition frequency during the time needed (about 1 s) for the
repeated measurement to obtain a probability p. The method thus cancels a low frequency
temporal inhomogeneity and leads to a more intrinsic coherence time Tx > T independent
of the measurement time of p. In practice, the spin echo sequence is a modified Ramsey
sequence with an extra 7 pulse placed symmetrically between the two 7/2 pulses. This 7

rotation around the same axis as that of the w/2 pulses makes the spin trajectory along the
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equator longer or shorter depending on whether vy, increases or decreases. Consequently,
the random phases accumulated before and after the m pulse compensate exactly if the
frequency does not change on the time scale of a sequence.

In Fig. 12, we show a series of echo signals recorded at Py by sweeping the delay At
between the two 7/2 pulses while keeping constant the delay Ats between the 7 and second
7/2 pulses. This protocol results in an oscillation p(At) whose amplitude first decays as
the usual Ramsey signal, and has then a second maximum at At = 2At;. Note that at
this precise echo time, the value of p is an oscillation minimum. By taking advantage of
the time stability of our pulse sequencer, it was possible to map directly this minimum
pe by sweeping At while keeping the 7 pulse precisely in the middle of the sequence, as
shown in Fig. 13. Ideally, at zero detuning, this mapping of pg is expected to increase
as [1 — e 182 f, p(At)]/2 (see section IIT). In practise, one has once again to take into
account geometric corrections due to the finite detuning, to the finite duration of the 7/2 and
7 pulses, and to the inaccuracy of their rotation angles. Using a generalized Bloch-Redfield

approach, we find

At
2pp = {1 — (a1 + age_rlT + age_rlAt)} —

_TiA¢ _i(AwAt+E])

e 2 {(1—a4) f-,p(At) 4 asRe [e ffz,R(At)] i

1At 1At wAt At
(aﬁe_% + a7e+%> Re |:€_A ER fz,R(?)]} , (59)

where the a;’s are small geometrical coefficients that depend only on the angle o and on the
errors in the microwave pulse durations. The latter terms of Eq. (59) show that on top of
the expected increase of pr mentioned above, pulse imperfections induce small oscillations
of pr whose damping is given by the Ramsey function f, r rather than by the echo function
foE.

Experimental pg(At) curves recorded at Py and at different working points are shown

on Figs. 13 and 14, respectively. A fit using Eq. (59) is shown on Fig. 13 and leads to
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Tg(Py) ~ 550 ns > Ty, which shows that part of the noise occurs at low frequency and is
efficiently removed by the echo technique. Note that a naive exponential fit of the bottom
envelope of pg(At) would have given about the same Tg. Then, Tg(P) values with a 30%
uncertainty are extracted from each curve of Fig. 14 and reported on Fig. 15. A quantitative

analysis of Tg(P) is given below.

D Discussion of coherence times

A summary of all the coherence times (T3, Tg) measured during free evolution using the
various methods described above is given on Fig. 15. These results are in good agreement
with each other and are comparable with those of our previous work®. As expected, T is
maximum at 4 and decays by more than two orders of magnitude for N, or ¢ variations of
0.1 Cooper pairs or 0.3 phase turns, respectively. This result clearly validates the concept
of the optimal working point. Moreover, while T, decreases rapidly when departing from F,,
the estimated sensitivity to E; noise given by Eq. (54) either decreases or stays constant,
we thus conclude that E; noise has a negligible contribution to decoherence in this device
at all working points except possibly at F,. Figure 15 also shows that the improvement
Tg/T; provided by the echo technique decreases from a factor of about 2 to about 1 when
moving away from Fp in the phase direction, and increases from about 2 to about 50 when
moving in the charge direction. We try below to provide a quantitative understanding of
these T5(P) and Ty (P) variations, using simple model Sy(w) noise spectra for A = §, N,.
Then, we discuss the decay of Ramsey fringes, pr(At), and of echo signals, pg(At), away

from Fy. Finally, we discuss what might limit decoherence at F,.

1 Noise spectral densities and T g(P) dependences

The fit to theory of the experimental T5(P) and Tr(P) curves of Fig. 15 is performed in

the following way. The dephasing factors f, are computed numerically according to the the-
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oretical expressions of section IIT and multiplied by the relaxation term exp[—At/2T;(P)],
which is known from the independent measurements of Fig. 6 ; the coherence times corre-
spond to a decay of these products by a factor exp(—1). First, we compute only the first
order contribution of A noises (considered here as Gaussian) by numerical integration of
Egs. (17,19), using Egs. (49, 51) for the D, ,’s. Microscopic charge and phase noises being
characterized by 1/f spectra at low frequency and noises due to the driving and readout
sub-circuits being characterized by white spectra below 10 MHz (see section II C), we start
the fit using for Scyg(w) and Scsjar(w) linear combinations of 1/f and white spectral den-
sities. Due to the divergence of the 1/f contributions as w — 0, we introduce an infrared
cutoff in the integration, wi. = 1/tmeas, Where teqs = 1 s is the measurement time of a single
data point in a Ramsey or echo signal. Note that although this cutoff could be defined more
rigorously by taking into account the exact measuring protocols?, this complication is of no
benefit here because the computed coherence times depend only logarithmically on w;,. At
this stage, the fit (not shown) captures the T5(P) dependencies but does not capture the
large gain g = T /T5 observed far from N, = 1/2. This problem was expected since the echo

technique is inefficient in the presence of high frequency noise and because the gain deduced

from Egs. (21,22) in the case of a 1/f mnoise is g ~ \/In(timeas/T,)/In(2) < 5 over the
explored range of T5. Consequently, Sy,(w) has to decrease faster than 1/ f above a certain
frequency. We thus introduce a high frequency sharp cutoff w, in the spectrum Sey,(w) as
a new fitting parameter. The new fit (not shown) is then in fair agreement with the data
except in the vicinity of Fy where computed coherence times diverge due to the cancella-
tion of the D, ,’s. Therefore, second order contributions have now to be included at this
point using the 9w /OA*’s given by Egs. (50,52). For the sake of simplicity, A* noises are
first treated as Gaussian noises characterized only by their spectral densities Sy2 estimated
from the auto-convolution of Sy. This rough approximation leads to dephasing times at F,
correct within a factor better than 2. We show in this way that the contribution of % is com-

pletely negligible with respect to that of N, gz. The calculation is then redone properly using
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Egs. (27, 31). Finally, the dephasing factors associated with N,, 6, and N, 5 are multiplied
together. This procedure neglects the effect of correlations between A and A%, which are
relevant only when both contributions are of same order, namely in a very narrow range in
the vicinity of 5. Moreover, our results are not affected by correlations between Ny and 0,
which would exist if both noises were to be due to the same underlying mechanism, since the
coupling coefficient 92wg; /ON,06 for the cross noise Scy,—s(w) is zero along (6, N, = 1/2)
and (6 = 0, N,) lines. The final fit shown on Fig. 15 leads to Scyy(w) = 1.6 1075/|w| for
|w| < we =27x 0.4 MHz and to Scsjar(w) = 0.9 x 107%/|w| 4+ 6 x 1071%/(rad/s).

First we discuss the charge noise. The amplitude coefficient for the 1/f charge noise
is in the range expected for a background charge noise ScﬁgN of microscopic origin (see
section IIC). The high frequency cutoff w., necessary to provide even a qualitative fit, is
an important result that had not been anticipated and that calls for a direct measurement
of charge noise in the MHz range, perhaps using an rf-SET electrometer**. The white
noise contribution to charge noise due to the gate impedance Z,;, deduced from Egs. (5,16),
provides a very large T, ~ 300 ms, this is compatible with our assumption of a high frequency
cutoff. Note that this cutoff is only related to the classical part of the charge noise and does
not preclude the possibility that charge TLFs might absorb energy at high frequencies, and
thus relax the qubit®®.

We now turn to the phase noise. The presence of 1/f phase noise is similar to the unex-
plained flux noise found in SQUIDS (see section IIC), although its amplitude corresponds
here to a standard deviation ¢ /50 about 10 times larger (spectral density 100 times larger)
than that usually reported®”. The value of the white phase noise of ~ 6 x 107'%/(rad/s)
is about twice the estimated out-of-equilibrium noise expected from the AWG, whereas the
impedance Yy is expected to contribute only a few percent more to this white spectrum.
This white phase noise contribution is responsible for the low efficiency of echoes at 6 # 0,

N, =1/2.
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2 Temporal decays of Ramsey and echo signals

The phase and charge noises spectra mentioned above imply precise shapes for the tem-
poral variations of Ramsey and echo signals. For § # 0, the dominant contribution to
decoherence arises from the first order contribution of the phase noise Scs/o,. The numer-
ical integration of Eqgs. (17,19) predicts that the Ramsey function f, zr(At) involved in pg
should be close to a Gaussian at small |§| and should evolve towards an exponential at
larger |6|, whereas the echo decay function f, g(At) is expected to be almost exponential
at all points. However, the contribution of the relaxation and of the second order noise
at small 6 on the first hand, and the contribution of the geometrical corrections included
in Egs. (58,59) on the second hand, favor exponential variations at short times At < T .
Consequently, we find that the Ramsey signals are expected to decay more or less exponen-
tially, as we observe on the left panels of Fig. 8, where the data were phenomenologically
fitted by exponentially damped sinusoids. The echo variations shown on the left panels of
Fig. 14 are exponential as expected, and are fitted accordingly. For N, # 1/2, the dominant
contribution to decoherence has been found to be a first order 1/f charge noise truncated
at 0.4 MHz, which is actually ‘quasistatic’ according to section IIC, since w.Th p << 1.
Consequently, if this noise is really Gaussian, f, r should be given by Eq. (23), i.e. purely
Gaussian. The decay should fit to Eq. (58), which includes the relaxation contribution and
geometrical errors. Now, it was found that this equation does not fit the data well, even
with unreasonably large geometrical errors, because oscillations survive much too strongly
at large time At > T,. Consequently, Fig. 8 shows an empirical fit with exponentials. This
mismatch between the simple theory and the experiment might be attributed to the non
Gaussian character of the 1/f charge noise, which is known to contain large discrete TLF’s
as already mentioned and as observed in the lineshapes. Depending on the distribution of
these large fluctuators, Eq. (38) might be applicable. But such a formula gives an expo-
nential decay for the ensemble average over all possible distributions of TLFs and is not

supposed to describe quantitatively the non self averaging decay of single Ramsey samples
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(like those we have measured), for which a few TLFs are expected to dominate. Our experi-
mental pgr’s could be compatible with a model which includes a dominant TLF inducing an
initial Gaussian-like decay at small times At < T, and a large collection of further TLEF’s
responsible for the exponential-like tail of the decay. In the same way, f, g is expected to
decay as exp[—(At/Tg)"] with n > 3 if the quasistatic 1/f noise is Gaussian. The rather
exponential character of the measured pg’s (see the right hand panels of Fig.14) also suggest
that the non Gaussian character of the noise lowers the exponent n, as predicted by Eq. (39).
On the other hand, the higher sensitivity of pg to geometrical errors (compared to pr) also
favors an exponential decay. To summarize, the decay times 75 g are well explained, but the
temporal dependence of the functions f, () is not fully accounted for, possibly due to the

non Gaussian character of the charge noise.

3 Decoherence at the optimal point Py

Figure 15 shows that the best fit away from P, automatically leads to correct T5  values
at Py. Knowing from the fitting procedure that the phase noise gives a negligible contribution
to decoherence at this point, the following question arises: Can the quasistatic 1/f charge
noise explain quantitatively the Ramsey decay shape at Fy? To answer this question, we
plot on Fig. 7 the theoretical decay exp [—At/2T7] {1+ [7.3 (At/T¢)]2}_1/4 where the second
term is a simple rewriting of Eq. (27), with T,, = 620 ns calculated from the fitted noise
spectrum Scyg(w). This curve is seen to be in good agreement with the envelope of the
best experimental pr(At) records. Whereas it is close to exponential at At < Ty, it predicts
a significantly larger signal at long times, as we always observe. These results suggest that
decoherence at the optimal working point F, is limited by second order microscopic static
charge noise. Do the data in the frequency domain also support this conclusion? First, we
observe on Fig. 11 that the resonance line at P, is asymmetric, which is a key feature of
decoherence due to a second order noise at an optimal point. The line has indeed a tail on

its higher frequency side because N, noise can only increase v¢;, which is minimum at F.
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More precisely, the intrinsic theoretical lineshape, i.e. the Fourier transform of Eq. (27), is
non zero only at Av = v—vq; > 0, is proportional to Av~Y/2 exp [-2rAvT,/7.3] and is to be
convolved with the Lorentzian lineshape due to relaxation. A subtle point already mentioned
for 1/f noise is that decoherence data are actually dependent on the exact experimental
protocol used to average them. In particular, 7, depends on the averaging time through
the infrared cut-off introduced in the calculation of oy, [see Eq. (27)]. The 1Hz cut-off used
for interpreting pr is no longer relevant for interpreting the lineshape, which was averaged
over several records of 10 minutes each, with a precise tuning of N, before each record.
The corresponding cut-off is of order of 1/(600 s) and the new T, value analogous to the
620 ns used in the time domain is now 415 ns. Figure 11 shows the corresponding theoretical
lineshape, which takes into account this T, and 7;. This line is significantly narrower than
the experimental one. This mismatch cannot be reduced by changing T, (i.e. the infrared
cut-off or the noise amplitude) since the line would be broadened only on its right side.
Once more, this discrepancy might be attributed to the non Gaussian character of charge
noise. To quantify the mismatch, we empirically fit the experimental line to the theoretical
one convoluted with an additional Lorentzian. The width of this Lorentzian leading to the
best fit corresponds to a characteristic decay time of 600 ns. This characteristic time can be
used to place an upper bound for the E; noise. Indeed, attributing part of the additional
contribution to this noise, assuming Scsg,/p, = A/|w|, and applying Eq. (17) with the

2 a value to be compared to the

same infrared cut-off as above, leads to A < (3 x1079)
(0.5 x107%)? mentioned in section (IIC). In conclusion, decoherence at Py is dominated by
microscopic charge noise at second order, the E; noise contributing at most for 40% and
probably much less. Finally, we point out that pure dephasing is efficiently suppressed at
Py with the echo technique, due to the ultra-violet cut-off of Scy,(w). Indeed, the measured

Tr = 550 ns corresponds to a dephasing time T, r = 1.3 ps, partially hidden here by the

short T} of the sample. A summary of these results is provided in Table I.
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V. DECOHERENCE DURING DRIVEN EVOLUTION

In the presence of a microwave driving voltage, the quantronium dynamics is best de-
scribed in the rotating frame, as already mentioned in section IITD. Due to decoherence,
the precession of the effective spin is progressively dephased after a characteristic coherence
time Ty and, after some time 77, the spin is almost depolarized because hwp < kT in our
experiment. In this section, we will describe the measurements of Ty and T} at the opti-
mal point Fy. We will compare them to the results of section III D and see if they can be

understood from the noise spectra introduced in the preceding section.

A Coherence time T 5 determined from Rabi oscillations

The coherence time during driven evolution is directly obtained from the decay of Rabi
oscillations since the ground state |0) = (‘6> + ‘I>) /V/2 is a coherent superposition of
the eigenstates under driven evolution. A series of Rabi experiments performed at the
optimal point Py on resonance (Aw = 0) is shown in Fig. 16. These decays can be fit with
exponentially damped sinusoids oscillating at w gy, whose corresponding decay times Th are
reported in Fig. 17 as a function of the Rabi frequency wgo/27, in the range 1 — 100 MHz.
The decay time T, is found to be almost constant at 480 ns under these conditions. This
value being significantly shorter than 47}/3, it gives access to T, = I';! = 1.540.5 us using
Eq. (45) [y = 311 /4+T,/2. Then, one deduces from I', = 7S¢s,,. (wro) that Scs,. (w) is, at
Py, constant at about 1.5 —3 x 10° rad/s in the whole 1 — 100 MHz range. Being obtained at
the optimal point, the latter value should be explained either by the first order noise of E;
or by second order noises IV, 92 and 6°. The Ej noise, being of the 1/f type, cannot explain
the constant Scg,_(w). Then, assuming that the classical noise on Ng is negligible at all
frequencies above the low frequency cutoff of 0.4 MHz found in the previous section, the
autoconvolution of Scy,(w) has a negligible weight in the frequency range considered here

and Scs,, (w) can only be due the 6 noise, whose spectral density is essentially given by the



40

autoconvolution of the white ¢ noise introduced previously. Using a high frequency cutoff
much higher than 100 MHz indeed leads to a constant Scs,.(w) as observed. Nevertheless,
we have not found a plausible phase noise spectrum Sc(s/ox)(w) that could account for the
measured value of Scg,, (w) using Eq. (50).

In order to test the f‘g(n) dependence predicted by Eq. (45), a series of Rabi precession
experiments was also performed at P, as a function of the detuning Aw/27, using a fixed
microwave power corresponding to a Rabi frequency of wgo/2m = 15.4 MHz on resonance.
The data are also presented on Fig. 17 together with the T’y expression given by Eq. (45),

plotted using the T, T, and T, values determined previously.

B Relaxation time T determined from spin-locking experiments

The relaxation time 7 can be obtained using the spin-locking technique developed in
NMR. After having prepared the fictitious spin along an axis in the equatorial plane of
the Bloch Sphere, the effective field is immediately oriented parallel or antiparallel to the
spin. Experimentally, the spin is prepared along the Y axis using a resonant (Aw = 0) 7/2
pulse around the X axis. A microwave gate voltage with a phase shifted by +m/2 is then
applied so that the driving field is parallel (or antiparallel) to the prepared spin state, which
) or

decays exponentially with a decay time T} called in NMR the relaxation time in the rotating

1

becomes either >, respectively. The polarization along the prepared direction then
frame®!. A second 7/2 or a 37/2 pulse is then applied around the X axis after a variable
delay in order to measure the remaining polarization in the rotating frame. This decay
measured with a locking microwave field of wpry/2m = 24 MHz is shown in Fig. 18, together
with the envelope of a Ramsey signal measured at Aw/2m = 8 MHz and a relaxation signal
recorded during free evolution. The evolution of the spin-locking signals towards equilibrium
follows an exponential law with 7} &~ 550 + 50 ns, irrespective of whether the spin is parallel
or antiparallel to the locking field. This is because the energy splitting hwgro of the levels
‘6> and ‘T> in the rotating frame is small, hwpry < kgT'. Using Eq. (42) [, =C,+ %Fl, one
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obtains again T, = 1.5 + 0.5 us, in agreement with the analysis of Rabi oscillations.

VI. DECOHERENCE MECHANISMS IN THE QUANTRONIUM,

PERSPECTIVES, AND CONCLUSIONS

A Summary of decoherence mechanisms in the quantronium

We have characterized decoherence in a superconducting qubit circuit, the quantron-
ium, using techniques adapted from NMR. We have presented a general framework that
describes these experiments. As expected, we have found that quantum coherence of the
quantronium is minimum at the so-called optimal point F,, where the decay laws of the
transverse polarization can be significantly non-exponential, particularly in the presence of
1/ f noise. Similar and complementary analyses of decoherence have now been performed in
other Josephson qubits?®45 47, We have also derived the noise spectra that characterize the
sources leading to decoherence of the quantronium, at and away from F. We have shown
that coherence is mainly limited by dephasing due to charge and phase noises of microscopic
origin; and that relaxation also contributes. An important feature of our analysis is the
introduction of a high-frequency cutoff at about 0.5 MHz for the classical part of the charge
noise spectrum. Finally, it was shown that in our qubit with E; ~ E¢, second order charge
noise is dominant at F,.

Although our semi-empirical approach obviously did not aim at providing any definite
clues about the exact nature of the microscopic defects responsible for the noise spectra
invoked to explain decoherence, the subject is very important and deserves further studies.
To improve our understanding, more refined models could be built including a finite set of
strongly coupled slow TLFs, with a close-to-continuous background of weakly coupled ones,
including the non-Gaussian nature of their noise (see**?).

Finally, we point out that some of the NMR methods that we have used to characterize

decoherence in our circuit provide tools for improving coherence in a qubit. We now discuss



42

the interest of maintaining quantum coherence with these methods, and how far we are from

meeting the requirements for elementary quantum computing.

B Does driving the qubit enhance its coherence?

The observation that Ty > T, suggests that the coherence is improved by driving the
qubit. But what are the reason and the meaning of this observation? The gain is actually
due to the divergence of the noise spectral density Scs,(w) at low frequency. Indeed, when
the Rabi frequency is large enough, the low frequency fluctuations éw are not effective
because the eigenstates ‘6> and ‘T> follow adiabatically the fluctuations of the effective
driving field, as predicted by Eq. (42). Consider now that a coherent superposition of the
two eigenstates in the rotating frame, o ‘6> + 0 ‘T>, has been prepared and that a Rabi
field is applied. The superposition then evolves at the Rabi frequency, and the initial state
is retrieved periodically with a coherence time T > T By encoding the qubit in the
basis <‘6> , ‘T>>, quantum coherence is thus maintained during a longer time than for free
evolution. Rabi precession provides a direct test of this result because the ground state is
an equal weight superposition |0) = ‘6> + ‘T> When a coherent superposition of these
eigenstates is prepared, and a locking field applied afterwards, the initial state is frozen with
coherence time 7. 5 > T, and mixing time T 1 > T7. Although these two examples show that
a qubit state can indeed be stored during a longer time by driving it, it is clear that the
qubit cannot be used at will during its driven evolution.

The echo technique can also be regarded as a ‘soft’ driving of the qubit aiming at reducing
decoherence. As shown in section IV C, it indeed removes the effect of the low frequency
fluctuations of dw. It can be figured as a time-reversal operation that compensates frequency
changes that are almost static over the duration of the pulse sequence. This method is in
fact more general, and the repeated application of 7 pulses can compensate for frequency
fluctuations over longer durations. This so-called bang-bang technique in NMR could be

used for qubits provided that the coherence loss due to the pulses is small enough?®7.
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C Coherence and quantum computing

Although the simple methods mentioned above could help in reducing qubit decoherence,
real quantum error correcting codes are mandatory for quantum computing. These codes
are known to require error rates smaller than about 10~* depending on the nature of the
errors for each logic gate. Presently, the gate error rate can be estimated at a few % for
single qubit gates (e.g. the quantronium), and significantly more for two qubit gates such as
coupled Cooper pair boxes*®. The coherence time is about a few hundreds times longer than
the duration of a single qubit gate operation in the quantronium, and would be at best a
few tens times the duration of a two qubit gate. Since decoherence is equivalent to making
errors, the quantronium requires an improvement of coherence time by two or three orders
of magnitude. The operation of a quantum processor based on this qubit circuit, or on any
other one presently developed, thus appears to be a significant challenge.

This is, however, not a reason to give up because conceptual and technical breakthroughs
are to be expected in the rather new field of quantum circuits. Progress in junction fab-
rication might in particular lead to a significant increase of coherence times in Josephson
qubit circuits. Furthermore, it is already close to possible to run simple algorithms such
as Grover’s search algorithm, and to address important questions in quantum mechanics.
The extension of quantum entanglement from the microscopic to the macroscopic world,
and the location and nature of the frontier between the quantum and classical worlds, are
two essential issues. For instance, the accurate measurement of the correlations between
two coupled qubits in order to test the violation of Bell’s inequalities could indeed probe
whether or not the collective variables of qubit circuits follow quantum mechanics. Such
an experiment will become possible as soon as a high fidelity readout is available, which is

clearly an important step to pass.
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FIG. 1: (a): circuit diagram of the quantronium. The Hamiltonian of this circuit is controlled
by the gate-charge IV, oc U on the island between the two small Josephson junctions and by
the phase 6 across their series combination. This phase is determined by the flux ¢ imposed
through the loop by an external coil, and by the bias-current I,. The two lowest energy
eigenstates form a quantum bit whose state is read out by inducing the switching of the
larger readout junction to a finite voltage V with a bias-current pulse [,(¢) approaching its
critical current. (b): qubit transition frequency v¢; as a function of § and N,. The saddle
point P, indicated by the arrow is optimal for a coherent manipulation of the qubit. (c):
Bloch sphere representation in the rotating frame. The quantum state is manipulated by
applying resonant microwave gate pulses N,(t) with frequency v,, and phase x, and/or
adiabatic trapezoidal N, or I,(t) pulses. Microwave pulses induce a rotation of the effective
spin S representing the qubit around an axis in the equatorial plane making an angle x with

X, whereas adiabatic pulses induce rotations around Z.
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Coil DCgate pW gate Readoutbias Readout output

FIG. 2: (a): Schematics of the experimental setup used in this work with temperatures
indicated on the left. Rectangles labelled in dB are 50 €2 attenuators whereas rectangle
labelled 7:10” is a high impedance voltage divider by 10. Squares labelled Fcp and Fu are
copper powder filters and microfabricated distributed RC filters, respectively. Single lines,
double lines and twisted pairs are 50 ) coaxes, lossy coaxes made of a manganin wire in a
stainless steel tube, and shielded lossy manganin twisted pairs, respectively. (b): Scanning
Electron Microscope (SEM) pictures of the sample. The whole aluminum loop (left) of
about 5.6 um? is defined by 200 nm wide lines and includes a 890 nm x 410 nm island
(right) delimited by two 160 nm x 160 nm junctions, and a 1.6 pm x 500 nm readout

junction. Note also the presence of gold quasiparticle traps (bright pads).
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FIG. 3: Top: oscillogram of a typical microwave gate pulse, measured at the top of the
cryostat. The arrow indicates the effective duration 7 of the pulse. Bottom: the Rabi
precession of the qubit state during a microwave pulse results in oscillations of the switching
probability p with the pulse length 7, at a frequency vgry = wgro/27 proportional to the
reduced microwave amplitude AN, (right). The two arrows in the left panel correspond to
the so-called m and 7/2 pulses used throughout this work. The arrow in the right panel

indicates the point that corresponds to the data shown in the left panel.



51

time (us)
0 1 2 3 4 3.2 3.4 3.6

400 | 4

200 - -

bias current I (nA)

-1 1.0

+40.8

—40.6

—40.4

U ,/
40.2
1 ’ ;
VS :
410
1 1 1 00

0.00 025  0.50 410 420
&/2n bias peak current (nA)

loop current (nA)
e@ecl‘ed
""-TP.“_/Se
ho Hw

switching probability p

FIG. 4: Readout of the quantronium. Top left: full I;(¢) variation measured at the top of
the cryostat, when the qubit is operated at the optimal point (see text) and read out with
maximum sensitivity. The current is first kept at zero to avoid heating in the bias resistor,
then pre-biased at a negative value that corresponds to 6 = 0, then increased in about 50 ns
to a value close to the critical current of the readout junction, and maintained at this value
during about 100 ns, a time period over which the switching of the junction may occur. I, is
then slightly lowered and maintained at this lower value to let the voltage develop along the
measuring line if the junction has switched. Finally it is set back to zero. Top right: detail of
readout pulse (but without negative pre-bias), measured at room temperature at the bottom
of the bias line, before cooling the cryostat. Bottom left: persistent currents in the loop for
the |0) (solid line) and |1) (dashed line) states, computed at Ny, = 0 as a function of §, using
the measured sample parameters. The vertical dotted-dashed line indicates the readout
point 8, where the experimental difference i; — iy was found to be maximum. Bottom right:
variation of the switching probability p with respect to the peak current, measured without
microwave (solid line), measured after a 7 microwave pulse (dotted line), and calculated from
the sample parameters for state |1) (dashed line). The vertical dotted-dashed line indicates
a maximum fidelity of 0.4 ( instead of the expected 0.95), obtained with the pulse shown
in the top panels. The two arrows of the upper and lower left panels indicate the adiabatic

displacement in 6 between operation and readout of the qubit.
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FIG. 5: Schematic drawing of the noise sources responsible for decoherence in the quantro-
nium. These sources are either coupled to E;, Ny or 6. In part they are of microscopic
nature like the two-level fluctuators (TLF) inside the junction that induce Ej variations, like
charged TLF (represented as a minus sign in a small double arrow) coupled to N, or like
moving vortices (Ppicro) in the vicinity of the loop. The macroscopic part of the decoherence
sources is the circuitry, which is represented here as an equivalent circuit as seen from the
qubit. The relevant resistances and temperature of the dissipative elements are indicated.
Capacitance with no label represent a shunt at the qubit frequency and an open circuit at

frequencies below 200 MHz.
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FIG. 6: Experimental 77 values measured at N, = 1/2 as a function of ¢ (left panel), and
at 6 = 0 as a function of N, (right panel). The vertical line separating the two panels
corresponds to the optimal point Py = (N, = 1/2,6 = 0). The dashed line joining the
points is a guide for the eye. The correspondence between 6, N, and vg; is given by the
upper horizontal axis. Inset: Example of 77 measurement. The switching probability p
(dots) is measured as a a function of the delay ¢ between a 7 pulse and the readout pulse.

The fit by an exponential (full line) leads to T} (0.5 us at Py in this example).
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FIG. 7: Ramsey signals at the optimal point Py for wge/27m = 106 MHz and Av =~ 50 MHz,
as a function of the delay At between the two /2 pulses. Top and middle panels: solid lines
are two successive records showing the partial irreproducibility of the experiment. Dashed
lines are a fit of the envelope of the oscillations in the middle panel (see text) leading to
T, = 300 ns. The dotted line shows for comparison an exponential decay with the same T5.
Bottom panels: zoom windows of the middle panel. The dots represent now the experimental
points whereas the solid line is a fit of the whole oscillation with Aw/27m = 50.8 MHz. Arrows
point out a few sudden jumps of the phase and amplitude of the oscillation, attributed to

strongly coupled charged TLFs.
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column). The Rabi frequency is wgo/2m = 162 MHz for all curves. The nominal detunings
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Dots are experimental points whereas full lines are exponentially damped sinusoids fitting

the experimental results and leading to the T, values reported on Fig. 15.
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FIG. 9: Phase ”detuning pulse technique” for measuring 7;. Top: Ramsey signal at the
optimal point Py, with Av ~ 50 MHz, when no detuning dc pulse is applied. The dashed line
corresponds to an exponential decay with T5(Fy) = 200 ns. Bottom: signal obtained with
a delay At = 275 ns between the two 7/2 pulses (corresponding to the dashed vertical line
of the upper panel) and with an adiabatic current pulse maintaining 6/27 = 0.063 during a
time Ats. The oscillation of the signal with Aty decays with a characteristic time of about
70 ns (note the different horizontal scales on the two graphs). The pictograms on the right

illustrate the two /2 microwave pulses and the [,(¢) signal.
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FIG. 11: Top panels: lineshape (thin lines) and central position (dots) of the resonance
lines as a function of § at N, = 1/2 (left) and as a function of N, at 6 = 0 (right). The
optimal point F, corresponds to the double-arrow in the center of the graph. Note the two
different vertical scales and the occasional sub-structure of resonance lines pointed out by
small arrows. Bold lines are fits of the peak positions leading to E; = 0.87 kg K, Ec = 0.66
kp K and d < 13%. Bottom panel: asymmetric lineshape recorded (dots) at P, with a
microwave power small enough to desaturate the line. The dashed line is the theory, with a
T'¢ that corresponds to that of Fig. 7. The solid line is the convolution of this theoretical

line and of a Lorentzian corresponding to a decay time of 600 ns (see text).
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At = 2At3 for which the echo amplitude is expected to be maximal and where p = pg is

minimum. For a sake of comparison, the corresponding Ramsey signal (thin lines) is shown
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FIG. 13: Echo signal pg (linked big dots) measured at the optimal point Py by keeping a
7 pulse precisely in the middle of the sequence while sweeping the sequence duration At
(pictogram). The Rabi frequency is wgo/2m = 130 MHz and the detuning Av = 20 MHz.
For comparison, the Ramsey signal (oscillating line) and its envelope (dashed line leading
to T, = 450 ns) are also shown. The dotted line is a fit of pg that leads to the characteristic
decay time of f, g, 1.2us, and that shows that the m/2 pulses were actually 15% too short
whereas the 7 pulse was correct. The resulting echo time is Ty ~ 600 ns. Inset: comparison
between pg (linked dots) and the echo signal recorded with a fixed 7 pulse (solid line), as

presented in Fig. 12).
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FIG. 14: Echo signals pg (At) measured (dots) at different working points indicated in

each panel, with a Rabi frequency wgo/2m = 140 MHz and Av ~ 50 MHz. Full lines are

exponential fits leading to Tg values reported on Fig. 15. Note that the amplitude of the

signal depends on the working point.
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FIG. 15: Echo times Tg (open circles) and coherence times 75 measured from the resonance
linewidth (solid dots), from the decay of Ramsey signals (triangles), and from the detuning
pulse method (squares), at Ny, = 1/2 as a function of ¢ (left panel) and at 6 = 0 as a function
of Ny (right panel). The full and dashed lines are best fits (see text) of T and 75 times,
respectively, leading to the phase and charge noise spectral densities depicted at the bottom.

The spectra are even functions of w.
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FIG. 16: Decay of the Rabi signals at the optimal point F, for different Rabi frequencies
Vro = Wro/2m (i.e. different microwave powers). The full lines are exponential fits of the

lower envelopes leading to the Ty values reported in Fig. 17.
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FIG. 17: Characteristic decay times Ty of the Rabi oscillations at the optimal point Fy, as
a function of the Rabi frequency vgy (left panel) at zero detuning Av, and as a function of
Av (right panel) at vgo = 15.4 MHz (dotted vertical line). Ty(vgo, Av = 0) turns out to be
a constant of order 0.48 s (left solid line). The difference with 4/37} leads to an estimate
for T,, = 1/T",. The right solid line corresponds to Eq. 45 plotted using the experimentally

determined values of T,,, T, and T,,.
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FIG. 18: Spin locking signals (oscillatory lines) obtained at the optimal point Py, using a
detuning Arv = 8 MHz, a locking microwave power corresponding to 24 MHz, and a final
microwave pulse of 7/2 (top) or 37/2 (bottom). The bold solid lines are exponential fits
corresponding to T « 580 ns. For comparison, the Ramsey envelope (dotted line with

T, « 250 ns) and the longitudinal relaxation (dashed line with T} «~ 450 ns) are shown.



Ny noise 6 noise FE j noise Total Measured

Gate circuit TLF's Readout circuit Micro Micro
Sxa(wo1) (s/rad) [[(1 —3 1079)2 ? (80 —201079)2 ? ?
Dy, 1 (10! rad/s) 1.93 3.8d =~ 0.12 0.54|Ny — 2|
T 15— 2 pus ? 3—6 us ? oo 7 < 1.5-5 psf|0.5-1 us
Sex(Jw|) (30 1079)2 | (1.31073)2/|w| ||AWG £ (30 109)2|(1 107%)2/|w|||< (3 1076)2/|w|
(s/rad) |w/27| < 0.4 MHz
Sensitivity
Dy, (10 rad/s) 0 0 0.85
0%wo1/0N2 2.9 -8.5 -
T, (Po) ~ 300 ms 0.6 us ~ T us ~ 50 us > 0.7 ps < 0.6 us 0.6 us T> =0.3 us
Ty, (Po) irrelevant 1.3 us ~ 7 us irrelevant ? 1.3 ps 1.3 us |||Tg = 0.55 pus
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TABLE I: Summary of the relevant spectral densities and characteristic times characterizing decoherence at the optimal

point Fy. Units are indicated in the left column for angular frequencies w expressed in rad/s.



