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Superconducting Proximity Effect through a Magnetic Domain Wall
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We study the superconducting proximity effect in a superconductor-ferromagnet-superconductor
(SFS) heterostructure, containing a domain wall in the ferromagnetic region. For the ferromagnet
we assume an alloy with an exchange splitting of the conduction bands comparable to the super-
conducting gaps. We calculate the modification of the density of states in the center of the domain
wall as a result of the proximity effect. We show that the density of states is sensitive to do-
main wall parameters due to triplet-pairing correlations created in vicinity of the domain wall. We
present a theoretical tool which in a very effective way enables retaining the full spatially dependent
spin-space structure of the problem.

PACS numbers: 74.45.+c,74.50.+r

Introduction: Most promising candidates for meso-
scopic devices with novel functionality are hybrid struc-
tures containing superconducting elements. The key phe-
nomenon that controls the behavior of such systems is
the proximity effect. When a superconducting material is
placed in contact with a normal metal (N), the supercon-
ducting pair correlations leak over to the normal-metal
side, changing its conduction properties in the vicinity
of the separating interface. Quite similarly, the prop-
erties on the superconducting side are also changed (the
energy gap ∆0 is suppressed) due to the contact to a nor-
mal metal. An alternative but equivalent way of thinking
about the proximity effect is through Andreev-reflection1

processes: an incoming electron from the normal side
is transmitted together with another one as a Cooper
pair into the superconducting side. This phase-coherent
electron-hole conversion results in a nonzero pair ampli-
tude in the normal metal.

In the diffusive limit, the correlations relating to an
incident electron with an energy E (the range of energies
being set by the temperature T ) above the chemical po-

tential extend a characteristic distance of ξN =
√

D/E
into the normal metal;2 here D is the diffusion constant
in N. If the extent of the N region is finite, another en-
ergy scale, ET ∼ D/L2, enters the problem; L denotes
the width of N. This so-called Thouless energy has as-
sociated with it one of the generic features of diffusive
superconductor-normal metal heterostructures, the mini-
gap: the density of states in the normal metal develops
a gap around the chemical potential in a manner similar
to a superconductor (S) but with a smaller magnitude.

If the normal conductor is replaced by a fer-
romagnet (F), a multitude of new effects arise
due to the emergence of yet another energy scale,
that of the exchange splitting J of the two spin
bands. Both on the theoretical3,4,5,6,7,8,9,10,11 and on
the experimental,12,13,14,15,16,17,18,19,20 side interest has
grown recently in the rich physics of such systems. One
source for new behavior is that, in the case with a singlet
superconductor, the induced pair amplitude in the ferro-
magnet is oscillatory.21 However, the exchange splitting

also gives rise to dephasing which, in turn, results in the
decay of induced correlations over a characteristic dis-
tance ξJ =

√

D/(E + J).22 Unfortunately, since J is of
the order of the Fermi energy EF in typical ferromagnetic
metals, this distance is very short. Still, experimental in-
dication of the oscillatory behavior has been obtained
in thin ferromagnetic layers and, relevant to the present
paper, in weakly ferromagnetic alloys with J ≪ EF .12,13

Another question of current interest in SF proximity
systems is the role of equal-spin triplet correlations.23,24

If created, e.g. near magnetic inhomogeneities, such cor-
relations would not be affected by the exchange splitting
but could penetrate considerably longer distances into
F.23 Finally, the importance of domain walls has also
been stressed for the Andreev conductance.25,26.

In this paper we study an SFS structure, shown
schematically in Fig. 1, in equilibrium. The ferromag-
netic region consists of two domains with magnetizations
oriented in opposite directions. The domains are sepa-
rated by a domain wall, where the magnetization rotates
continuously between the asymptotic values. While vary-
ing in direction, the magnitude J is assumed constant
throughout the F region. We show, that the local den-
sity of states (LDOS) in the F region is strongly modified
by the presence of the domain wall. In particular, we
show that it can be very sensitive to the thickness of the
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FIG. 1: SFS structure with two magnetic domains oriented
along the z axis and separated by a domain wall of width dW ;
dF denotes the length of the F region and ξ =

√

D/∆0 is the
superconducting coherence length.
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domain wall in a certain parameter region.
Basic equations: Proximity effect is a spatially inho-

mogeneous phenomenon. An appropriate theoretical tool
to treat such a problem is the quasiclassical theory of
superconductivity,27,28 which in its diffusive version has
been formulated by Usadel.29 In equilibrium, the physical
information is contained in the retarded Green functions
Ĝ(z, E). Here, we assume spatial dependence in the co-
ordinate z only, and E denotes the energy as measured
from the chemical potential. The 4×4 matrix structure,
arising from particle-hole and spin degrees of freedom, is
denoted by the hat (ˆ) accent,

Ĝ =

(

G F

F̃ G̃

)

. (1)

The off-diagonal elements determine the superconduct-
ing pair amplitude. Quantities denoted with the “tilde”
are related to those without one through Ã(z, E) =
A(z,−E∗)∗. All the elements in Eq. (1) are 2×2 spin
matrices: e.g. G = Gαβ with α, β = {↑, ↓}. The Green
functions satisfy the Usadel equation,29

[

Eτ̂3 − ∆̂ − J · σ̂, Ĝ
]

⊗

+
D

π

d

dz

(

Ĝ⊗

d

dz
Ĝ

)

= 0̂, (2)

where the symbol ⊗ denotes matrix multiplication, and
[Â, B̂]⊗ = Â⊗ B̂−B̂ ⊗ Â. In writing Eq. (2) we have fol-
lowed the standard way to describe ferromagnetic mate-
rials through a spin-dependent energy shift,22 which has
the form Eτ̂3 → Eτ̂3 − J · σ̂. Here, τ3 denotes the third
Pauli-matrix in Nambu space, the vector J denotes the
effective exchange field of the ferromagnet, and ∆̂ is the
superconducting order parameter (appropriate for weak-
coupling spin-singlet pairing). The components of the
vector σ̂ and the order parameter are given by

σ̂i =

(

σi 0
0 σ∗

i

)

, ∆̂ =

(

0 ∆
∆∗ 0

)

(3)

where σi are Pauli spin matrices, i = x, y, z, and ∆ =
∆0iσy. The above procedure is appropriate for describ-
ing situations for which J ≪ EF , which holds e.g. for
the ferromagnetic alloys used in Refs. [12,13]. In writing
Eq. (2), we have chosen the normalization according to

Ĝ ⊗ Ĝ = −π21̂. (4)

Riccati parameterization: The spin-dependent na-
ture of SF proximity systems calls for a formulation
of the quasiclassical theory that retains the full spin-
space structure, especially in studying situations where
the exchange-field-orientation varies in space (such as
in a domain wall). Within the Eilenberger theory a
very convenient formulation already exists,30 employing
the so-called Riccati parameterization.31,32 The exten-
sion of this method to the Usadel theory was achieved
only recently,33 and has been applied to non-equilibrium
situations,34 and to FSF-systems with homogeneous
magnetizations.35 Here we demonstrate its usefulness by

applying it to a SFS system with a spatially changing
magnetization in a domain wall, a case where the con-
ventional so-called θ-parameterization36 is not applica-
ble. The spin-dependent Riccati parameterization,30

Ĝ = −iπN̂ ⊗

(

(1 + γ ⊗ γ̃) 2γ
−2γ̃ −(1 + γ̃ ⊗ γ)

)

, (5)

with

N̂ =

(

(1 − γ ⊗ γ̃)−1 0
0 (1 − γ̃ ⊗ γ)−1

)

(6)

automatically accounts for the normalization (4), which
is essential for practical numerical calculations. It is
enough to determine one 2×2 matrix in spin space, γ.
The other, γ̃, follows from the above-mentioned (funda-
mental) symmetry. The transport equation for γ follows
from Eq. (2), and reads33

d2γ

dz2
+

(

dγ

dz

)

⊗

F̃

iπ
⊗

(

dγ

dz

)

=
i

D

[

γ ⊗∆∗
⊗ γ

− (E − J · σ)⊗ γ − γ ⊗ (E + J · σ∗) − ∆

]

, (7)

Here, the expression for F̃ is obtained by comparing
Eq. (1) with Eqs. (5)–(6).

Boundary conditions: Additionally, boundary condi-
tions are required for the different interfaces of the
system. Such conditions have been formulated by
Nazarov.37 The outer surfaces (z = zo) of the supercon-
ductors are assumed to border to an insulating region,
and the appropriate condition is ∂zĜ(zo, E) = 0, i.e.

dγ

dz
(zo, E) = 0. (8)

On the other hand, the two inner SF interfaces (z = zS
i

for the S side, z = zF
i for the F side) are assumed in

the following transparent. The corresponding bound-
ary conditions are in this case Ĝ(zS

i , E) = Ĝ(zF
i , E),

σS∂zĜ(zS
i , E) = σF ∂zĜ(zF

i , E), leading to

γ(zS
i , E) = γ(zF

i , E),

σS

dγ

dz
(zS

i , E) = σF

dγ

dz
(zF

i , E), (9)

where σS and σF refer to the conductivities of S and F,
respectively. For simplicity, we have assumed σS = σF ,
implying the continuity of the derivative at the interface.
With the boundary conditions (8) and (9), we have solved
Eq. (7) numerically by an iterative procedure (relaxation
method) in the entire SFS system.

SFS system with domain wall: We apply the outlined
theory to study the SFS structure of Fig. 1 in equilib-
rium. Lengths are given in units of the superconducting
coherence length, ξ =

√

D/∆0. The spin-singlet super-
conductors are chosen to have the same gap magnitude.
The contact areas at the SF interfaces are assumed to
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FIG. 2: LDOS as a function of energy for the system of Fig. 1,
calculated in the middle of the F region for different widths
dW of the domain wall. Here, J = 0.5 ∆0, dF = 2.0 ξ. For
comparison, the dotted line shows the corresponding depen-
dence in the normal-metal case (J = 0). The inset shows for
J = 0.5 ∆0, the value of the LDOS at the chemical potential
(E = 0) as a function of the domain-wall width dW .

be small enough, so that any gap suppression can be
neglected. The two superconducting regions and the in-
termediate ferromagnet are taken to have fixed lengths
of dS = 5ξ and dF = 2ξ. We model the domain wall
by a varying direction of J = (Jx, Jy, Jz) (keeping the
magnitude J = |J| constant), with Jy = 0 and

(

Jx

Jz

)

= J

(

cos θ(z)
sin θ(z)

)

, θ(z) = − arctan
z − z0

dW

. (10)

Here, dW is an effective domain wall width parameter. In
the following we study the influence of the width dW of
a domain wall centered in F (z0 = dF /2) on the density
of states in the center of the domain wall (z = z0).

Knowing γ(z, E) from the solution of Eq. (7) with
boundary conditions (8) and (9), the quasiclassical Green
function and the (total) LDOS

Ntot(z, E) = −
N0

2π
Im Tr G(z, E), (11)

is determined via Eqs. (5)-(6); N0 is the normal-state
density of states, and Tr denotes the spin trace.

An important characteristic of the value of the LDOS
in superconductor-normal metal proximity systems is the
minigap: the density of states in the normal-metal region
shows a gap of width Eg < ∆0 induced by proximity to
a superconductor. The energy Eg can be thought of as
that of the lowest-energy Andreev bound state in a finite
normal-metal layer. This convenient physical picture can
easily be extended to single-domain ferromagnets. The
corresponding spin-dependent energy shift of the quasi-
particle and the Andreev-reflected quasihole by ±J leads
to a reduction of the energy of the lowest-lying bound
state, and correspondingly of the minigap, from the ex-
pression for a normal metal by J , vanishing altogether
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FIG. 3: LDOS as a function of energy for several phase differ-
ences φ between the superconductors, calculated in the middle
of F. Here, J = 0.5 ∆0, dF = 2.0 ξ. The width of the domain
wall is dW = 0.2 ξ. The inset shows the corresponding LDOS
at the chemical potential (E = 0) as a function of φ.

when J ≥ Eg,J=0. This picture is confirmed by our nu-
merical calculations.

In the inhomogeneously magnetized case of Fig. 1, the
above picture is modified. The effect of the domain wall
on the LDOS is summarized in Fig. 2, which shows Ntot

as a function of energy for different domain-wall widths
dW . Although the value of J = 0.5∆0 is here larger
than the value of the normal state minigap Eg ≈ 0.25∆0

(as seen from the dotted curve in Fig. 2 for J = 0),
the minigap is reduced to zero only for larger domain
wall widths dW ≈ 2ξ. For the smallest width dW =
0.2ξ the minigap is only reduced by about 40%. The
additional states which fill the minigap with increasing
domain wall width are due to spin triplet correlations,
which are sensitive to the direction of J. Our calculations
show that the influence of equal-spin pairing components
created by the domain wall increases. This is reflected by
the appearance of additional Andreev bound states inside
the gap, modifying the LDOS. The relative importance of
the triplet correlations depends on J and dW : as clearly
manifested by Fig. 2, the efficiency of the triplet-inducing
mechanism grows with increasing dW . The inset of Fig. 2
shows the value of the LDOS at E = 0 as a function of
dW . The interesting observation here is that the LDOS
at the chemical potential is very sensitive to the domain
wall width when the latter one is comparable to ξ.

Finally, with a view towards studying the possible ef-
fects of the domain walls on the supercurrent flowing in
an SFS structure, we have studied the LDOS in the case
where there is a phase difference φ between the two su-
perconductors. This phase difference adds to the one
accumulated by the quasiparticles and quasiholes in the
ferromagnetic region and, thus, modifies the spectrum of
Andreev bound states. Figures 3 and 4 present the LDOS
in the middle of the F region for three domain walls with
different widths. In the inset of Fig. 3 we also show the
zero-energy LDOS for a domain wall of width dW = 0.2ξ
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FIG. 4: LDOS as a function of energy for several phase differ-
ences φ between the superconductors, calculated in the mid-
dle of F, and for J = 0.5 ∆0, dF = 2.0 ξ. The width of the
domain wall is in (a) dW = 1.0 ξ, and in (b) dW = 2.0 ξ.

as a function of the phase difference. As can be seen in
Fig. 4, by a possible tuning of the domain wall width dW

one can always find a region of strongest sensitivity for
a given phase difference φ and vice versa. This increases
the possibilities of controlling the zero energy density of
states in the domain wall. The rich structure exhibited

by these results could easily result in highly nontrivial be-
havior of the transport current both in equilibrium and
nonequilibrium situations.

Conclusions: We have studied numerically the LDOS
in a heterostructure consisting of a ferromagnetic alloy
sandwiched between two singlet superconductors. We
find strong modifications of the LDOS caused by the
presence of a domain wall. As only triplet supercon-
ducting correlations are sensitive to the direction of the
exchange field, the strong variations in the LDOS result
from the presence of triplet correlations induced by the
spatially varying magnetization. We also find a strong
dependence of the density of states in the domain wall
on a possible phase difference between the superconduct-
ing order parameters, giving an additional tool to control
its value. This motivates future studies of the interplay
of a supercurrent and the domain wall (Josephson ef-
fect). We hope that the variety of features observed in
our calculations motivates further experimental research
on proximity systems involving weak ferromagnets.
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