
ar
X

iv
:c

on
d-

m
at

/0
41

15
62

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

2 
N

ov
 2

00
4

Spin current through a tunnel junction
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Abstract

We derive an expression for the spin-current through a tunnel barrier in terms of
many-body Green’s functions. The spin current has two contributions. One can
be associated with angular-momentum transfer by spin-polarized charge currents
crossing the junction. If there are magnetic moments on both sides of the tunnel
junction, due to spin accumulation or ferromagnetic ordering, then there is a second
contribution related to the exchange coupling between the moments.
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1 Introduction

In recent years spintronics and magneto-electronic devices have been a major
research topic, biased in part by the prospect of new technological applications
in information processing based on the simultaneous use both the electron’s
spin and charge degree of freedom [1]. All spintronic devices depend on driven
spin currents between different subsystems, which is why a deep understanding
of these spin-currents is essential for this field of research.

A naive identification of total transfer of angular momentum with the spin-
polarized charge current passed through a junction, Ispin = I↑−I↓, neglects the
possibility of spin transfer due to exchange couplings. The aim of this paper
is to derive an expression for the spin current through a tunnel junction, that
is suitable to describe interacting electron systems, such as quantum dots,
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and that explicitly demonstrates the two different contributions to the spin
current.

2 Derivation of the spin current through a tunnel barrier

We start our discussion with the calculation of the spin current between a
ferromagnetic lead L and an island I via a tunnel contact. In this first section,
we do not specify the electronic structure of the island yet, i.e., any kind of
many-body effects or couplings of the island to other leads are included. The
Hamiltonian of such a tunnel system is given by

H =
∑

kα

εkαc†kαckα + Hint({d
†
pγ}; {dpγ}) +

∑

kα,pγ

(

Vkα,pγc
†
kαdpγ + h.c.

)

, (1)

where c†k,α are the fermion creation operators in the lead and d†
p,γ are the corre-

sponding operator for the island. In the lead (island) we label the momentum
states of the electrons with k (p) and the spin with α and β (γ and δ).

other leads /
enviroment

mL mR
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/
/ dd
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Fig. 1. A tunnel junction connecting a ferromagnetic lead to an island.

Starting from this Hamiltonian we calculate the spin current in close analogy
to the derivation of the charge current by Meir and Wingreen for interacting
electron systems [2]. If the spin is a conserved quantity, the time derivative of
the total spin in the lead equals the spin current through the tunnel barrier
JL =< ṠL >. In the Heisenberg picture, the time evolution of the spin operator
SL = (~/2)

∑

kαβ c†kασαβckβ is given by i~ṠL = [SL, H ], which yields

JL =
−i

2

∑

k,p

(

Vkα,pγσ
⋆
αβ 〈c

†
kβ dpγ〉 − V ⋆

kα,pγσαβ 〈ckβ d†
pγ〉
)

(2)

=
−1

2

∑

k,p

∫

dω

2π

(

Vkα,pγσ
⋆
αβ G<

pγ,kβ(ω) − V ⋆
kα,pγσαβ G<

kβ,pγ(ω)
)

,
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where we introduced the Keldysh Green’s functions G<
pγ,kβ(t) = i〈c†kβ(0) dpγ(t)〉.

By use of a Dyson equation [2] we can replace the latter with (free) Green’s
functions gkβ(ω) of the lead and Green’s functions G<

qδ,pγ(t) = i〈d†
pγ dqδ(t)〉 of

the island. By choosing the magnetization direction m̂L as spin-quantization
axis, the lead Green‘s functions gkσ are diagonal in the spin index. The lead
Green’s functions are then g<

kσ = 2πif+
L (ω)δ(ω − εkσ), g>

kσ = −2πif−
L (ω)δ(ω−

εkσ), gret
kσ = 1/(ω − εkσ + i0+), and gadv

kσ = (gret
kσ )

⋆
. There f+

L stands for the
Fermi distribution function in the lead L and f−

L = 1 − f+
L .

Assuming, furthermore, that tunnel events conserve the spin of the electrons,
we substitute the tunnel matrix elements by Vkα,pγ = tk,p · δαγ, and define the
spin-dependent transition rates Γγ

q,p =
∑

k tk,qt
⋆
k,pδ(ω − εkγ). After a lengthy

but straightforward calculation, the spin current can be written as

JL =
−2πi

4

∑

p,q

∫

dω

2π
σγδ(Γ

γ
q,p + Γδ

q,p)
[

f+
L (ω) G>

qδ,pγ + f−
L (ω) G<

qδ,pγ

]

+σγδ(Γ
γ
q,p − Γδ

q,p)

[

f+
L (ω) (Gret

qδ,pγ + Gadv
qδ,pγ) +

1

iπ

∫ ′

dE
G<

qδ,pγ(E)

E − ω

]

. (3)

This is the central most general result of our calculation. Since we did not
specify the Green’s functions Gqδ,pγ of the island yet, the expression for the
spin current can be used for many situation, including strongly-correlated
systems such as quantum dots [3].

By comparison with the expression of the charge current derived by Meir and
Wingreen [2] for nonmagnetic systems, we identify the first line of Eq. (3) with
a spin-polarized charge current. The origin of the spin-current contribution in
the second line of Eq. (3) is the exchange interaction between lead and island.
If the island does posses a magnetic moment, due to spin accumulation or
ferromagnetic order, this moment couples to the magnetization of the lead
and both precess around each other [4]. This exchange coupling changes the
average spin on each side of the tunnel junction, and therefore it must also
appear as contribution to the spin current crossing the tunnel barrier. In the
latter case, the transfered angular moment is perpendicular to the magnetic
moments of lead and island, which is sometimes described by “spin mixing
conductances” [5].

3 Application to a FM-FM junction

For concreteness, we restrict the following discussion to the special case, that
the island is an itinerant ferromagnet. Thereby the direction of magnetization
m̂I of the island encloses a finite angle φ with the lead magnetization direction.
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We further assume, that the island is large, to be also described as a reservoir
in thermal equilibrium. Due to the non-collinear magnetization directions,
the Green’s function of the island is non-diagonal in the spin space Ǧp,p =
Ǔ(φ) diag(gp↑, gp↓) Ǔ−1(φ) with the SU(2) rotations Ǔ(φ).

To simplify the result further, we assume that the absolute value of the tunnel
matrix elements |tk,p| = |t| is independent of the momentum index. Then
we can replace the transition rates Γγ

q,p =
∑

k tk,qt
⋆
k,pδ(ω − εk,γ) by the spin-

resolved density of states ρL,α =
∑

k δ(ω−εk,α) and ρI,γ =
∑

p δ(ω−εp,γ). After
performing all spin summations, we get in lowest-order in the tunnel coupling

JL =
π

2

∫

dω |t|2
(

Λ1(ω)m̂L + Λ2(ω)m̂I + Λ3(ω)m̂L × m̂I

)

(4)

with Λ1(ω) = [f−
L (ω)f+

I (ω) − f+
L (ω)f−

I (ω)]χL(ω)ρI(ω)

Λ2(ω) = [f−
L (ω)f+

I (ω) − f+
L (ω)f−

I (ω)]ρL(ω)χI(ω)

Λ3(ω) =
1

π

∫ ′

dE
f+

L (ω) − f+
I (E)

ω − E
χI(E)χL(ω) (5)

with the full density of states ρI = ρI↑ + ρI↓ and the spin-polarization density
χI = ρI↑ − ρI↓, and analogue definitions for the lead L.

In the first and second term we can recognize the spin current contribution of
the charge transfer between the two reservoirs. With the cross product m̂I×m̂L

the third term shows the typical structure for a precession movement. In the
approach of spin dependent circuit theory [5] this spin current contribution
corresponds to the imaginary part of the spin-mixing conductance.

4 Effect of exchange-coupling contribution

A very pronounced effect of a spin current is current-induced magnetization
reversal [6]. However, there it is difficult to selectively address the spin-current
contribution arising from the exchange interaction. The latter goal can be
achieved, e.g., in measuring the charge current through a single-level quantum
dot connected to two ferromagnetic leads. A current forced through such a
quantum-dot spin valve will accumulate a non-equilibrium spin on the dot.
This spin is sensitive to the exchange field generated by the leads. Its precession
is predicted to be visible in the magneto-resistance of the device [3].
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