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Introduction

In the Palace of the Vatican, on a wall of a room called stanza della segnatura,

the visitor encounters the fresco The School of Athens created by the famous re-

naissance painter Raphael around 1509. It shows renowned representatives of the

ancient artes liberales led by philosophy. Right in the center of this masterpiece,

one finds the certainly most brilliant Greek philosophers (besides Socrates): Plato

and Aristotle. While Plato points up indicating his belief in the primacy of ideas

situated in a higher world of forms, Aristotle holds his hand palm downwards

suggesting a more grounded epistemic view, where real world facts (or in modern

terms: the data) govern the way how concepts and classifications are formed.

These two perspectives can be traced through the entire occidental philosophy

occurring here and there in varying guises (cf. also the problem of universals or

the bipolar setting rationalism vs. empirism brought up in the 19th century).

These antagonistic approaches personified by the two philosophers seem also char-

acteristic for the underlying ways of thinking in two fields of knowledge processing

and representation, we want to deal with in our work: Formal Concept Analysis

(FCA) and Description Logic (DL).

The – more Aristotelian – mathematical theory of Formal Concept Analysis came

into being some twenty years ago as the attempt to model (hierarchies of) con-

cepts in terms of lattice theory. It is based on the dualistic understanding of

concepts as consisting of concept extent (i.e., all entities belonging to that con-

cept) and concept intent (i.e., all attributes characterizing it).

FCA has proven solid in theory but also quite intuitive in representing conceptual

knowledge, also for mathematically less skilled people. Thus, it has been success-

fully applied in various areas beyond mathematics. Besides this representational

capabilities, algorithms assisting knowledge acquisition have been developed, im-

plemented and used in practice.

In recent years, FCA has been developed further and extended by the project
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of contextual logic, widening the scope of interest from concepts to judgments.

In the course of these developments, the relational aspect has been increasingly

emphasized.

Description Logics being a collective term for a family of knowledge representation

formalisms are the result of a development starting in the 1970s with frame based

systems and semantic networks.

The common underlying idea is to characterize classes of entities (resp. objects)

of a domain and organize them hierarchically. In this, the similarities to FCA

become apparent. However – thus identifying this approach as a Platonic one –

for forming those hierarchies and characterizing classes by using so called termi-

nologies, DL does not presuppose any knowledge about concrete domain entities.

Moreover, from the very beginning, DL has put great emphasis on the relation-

ships between the described classes – beyond the subclass-superclass relationship

induced by the hierarchical ordering.

A guiding principle in this research was to combine logical expressiveness with

computationally effective automated reasoning (as a minimal demand, reasoning

should always be decidable).

In turn, this led to the development and implementation of computationally

optimized reasoning algorithms for highly expressive logics, which is certainly

one of the main reasons for the fact that DL formalisms are well established in

practice and constitute the foundations of nowadays Semantic Web standards

(cf. OWL – the web ontology language).

In this work, we want to exploit synergies between the two described research

areas and show how results from either field can be mutually fruitful for both dis-

ciplines. We use DL formalisms for defining FCA attributes and FCA exploration

techniques to obtain or refine DL Knowledge Representation specifications. More

generally, DL exploits FCA techniques for interactive knowledge acquisition and

FCA benefits from DL in terms of expressing relational knowledge.

Relational information can be found everywhere. Therefore, it is essential for

instances dealing with knowledge – be it human beings or knowledge processing

systems – not only to conceptually classify entities of a domain of discourse as

isolated objects, but also to describe the interrelationships among them. Conse-

quently, relational properties are commonly used in human conceptual thinking
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to define new concepts, as everyday terms like “wife”, “mother”, “son” (as well

as all terms describing relatives), “disciplinarian”, or “neighbor” demonstrate.

Consequently, relational information is also a considerable fraction of human back-

ground knowledge which constitutes the basis of human communication, knowl-

edge common to most people due to similar physical or sociocultural experiences.

Yet, obviously, this kind of knowledge can not be presupposed in any kind of

computer based knowledge processing system – it would have to be explicitly

specified. Respective attempts, first addressed within the scope of AI research,

anew gained importance as the Semantic Web idea evolved. In these areas, such

specifications are usually referred to as ontologies.

Clearly, the process of conceptually specifying a domain cannot dispense of hu-

man contribution. However, although all information needed in order to describe

a domain is in general implicitly present, its explicit formal specification may nev-

ertheless be tedious for the expert. Moreover, it might remain unclear, whether

a specification is complete, i.e., whether all specifiable information valid in the

considered domain is indeed contained in the specification.

Hence, it would be beneficial to dispose of a method that organizes and structures

the specification process by successively asking single questions to the domain

expert in a way which minimizes the expert’s effort (in particular, it does not

ask redundant questions) and guarantees that the resulting specification will be

complete in the sense stated above.

In our work, we present such an algorithm for relational exploration.

Chapter 1 introduces elementary notions of FCA with focus on attribute logic

and the technique of attribute exploration which will play a major role in our

further considerations.

Chapter 2 gives basic notions and definitions referring to a particular DL denoted

by FLE . Some of these notions are slightly adapted to a more FCA-apt point of

view, some even uncommon to DL, but useful for developing our results.

Chapter 3 – certainly containing the deepest mathematical results of our work

– deals with cumulated clauses, expressions commonly used in FCA to specify

background knowledge. We present a deduction calculus for cumulated clauses

on FLE and prove its soundness and completeness. Moreover, we show how the

corresponding results can be even used to define an algorithm to decide entailment

of this kind of cumulated clauses.

Chapter 4 introduces DL expressions as attributes into FCA and shows the cor-
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respondence between DL class inclusions and implications on special formal con-

texts. Thus, it justifies the goal to use FCA techniques to obtain DL shaped

axioms valid in an investigated domain. We provide the theoretical foundations

for a successive exploration on FLE .

Emerging from these results, a corresponding algorithm will be summarized and

explicitly described in Chapter 5.

Chapter 6 addresses the question whether the previously described knowledge

acquisition procedure terminates after finitely many steps. A necessary and suf-

ficient criterion for this case will be provided.

Chapter 7 gives a simple mathematical example, demonstrating how the algo-

rithm can be applied.

Chapter 8 tries to give an impression how the described methods and techniques

can be applied in practice, namely in the field of ontology creation and refinement,

by supplying a means for the structured search for domain axioms.

Chapter 9 finally sketches some possible ways how the results and methods

achieved in this work can be generalized and extended by future (resp. already

ongoing) research.

We try to give an intuitive understanding of our definitions, theorems, and proofs

wherever possible. Nevertheless, we wanted to be absolutely precise in our proofs.

Therefore, some passages might seem somewhat formal, technical, or too de-

tailed. So, we beg your understanding for our decision to favor accurateness

above smoothness.

Some last remarks concerning the layout of this work: As usual, Theorems and

Definitions are differentiated from the regular text by italics. Additionally, we

have put the proofs into a smaller font without serifs in order to assist orientation

in the text. So, it should be possible to identify the function of a paragraph on

the first glance and possibly skip passages that are obvious or too technical.



Chapter 1

Formal Concept Analysis and

Attribute Exploration: Basic

Notions

In Formal Concept Analysis (FCA), the terms concept and conceptual hierarchy

are mathematically formulated, based on the philosophical ideas of intension and

extension (as brought up by the Logic of Port-Royal, Pascal, and Leibniz). It

thereby develops conceptual thinking in terms of lattice theory (for the classical

representation, see [Bi67]). The results exert significant influence on the scientific

areas of conceptual data analysis and knowledge processing. Many of them can be

(and have been) implemented and used in practice. An especially useful technique

is the attribute exploration algorithm (see e.g. [Ga84] and [Ga87]).

In this chapter, we will briefly sketch the basic terminology of FCA as well as

known results that are important for our further work, mainly following the FCA

standard reference [GaWi99b].

1.1 Closure Operators

Closure operators are nearly ubiquitous in FCA and constitute a basic notion be-

ing extensively used throughout this work. The closure of a set can be understood

as a minimal extension of it in order to fulfill certain properties.

Definition 1.1 Let M be an arbitrary set. A function cl : P(M) → P(M) will

be called closure operator on M if it is



12 Chapter 1. FCA and Attribute Exploration

1. extensive, i.e., A ⊆ cl(A) for all A ⊆ M ,

2. monotone, i.e., A ⊆ B ⇒ cl(A) ⊆ cl(B) for all A,B ⊆ M , and

3. idempotent, i.e., cl(cl(A)) = cl(A) for all A ⊆ M .

A set A ⊆ M will be called closed (or cl-closed in case of ambiguity), if

cl(A) = A.

The set of all closed sets {A | A = cl(A) ⊆ M} will be called closure system.

❑

It is easy to show that for an arbitrary closure system S, the corresponding

closure operator cl can be reconstructed by

cl(A) =
⋂

B∈S,A⊆B

B.

So there is a one-to-one connection between a closure operator and the accordant

closure system.

1.2 Formal Contexts and Formal Concepts

Everything in Formal Concept Analysis starts from formal contexts. These math-

ematical structures are used in practice to describe various kinds of data. They

can be visualized and understood as so called cross tables. For given objects and

attributes, the cross table indicates which objects have which attributes. Mathe-

matically, this correspondency is expressed by a binary relation:

Definition 1.2 A formal context K is a triple (G,M, I) with

• an arbitrary set G called objects,

• an arbitrary set M called attributes,

• a relation I ⊆ G × M called incidence relation

We read gIm as: “object g has attribute m”. ❑
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This basic data structure now can be used to define operations on sets of objects

or attributes, respectively.

Definition 1.3 Let K = (G,M, I) be a formal context. We define a function

(.)I : P(G) → P(M) with

G̃I := {m | gIm for all g ∈ G̃}

for G̃ ⊆ G. Furthermore, we use the same notation to define the function (.)I :

P(M) → P(G) where

M̃ I := {g | gIm for all m ∈ M̃}

for M̃ ⊆ M .

For convenience, we sometimes write gI instead of {g}I and mI instead of {m}I .

❑

Applied to an object set, this function yields all attributes common to these

objects; by applying it to an attribute set we get the set of all objects having

those attributes. The following facts are consequences of the above definitions:

• (.)II is a closure operator on G as well as on M .

• For A ⊆ G, AI is a (.)II-closed set and dually

• for B ⊆ M , BI is a (.)II-closed set.

The next definition shows how a conceptual hierarchy can be built from a formal

context.

Definition 1.4 Given a formal context K = (G,M, I) a formal concept is

a pair (A,B) with A ⊆ G, B ⊆ M , A = BI , and B = AI .

We call the set A extent and the set B intent of the concept (A,B).

Let (A1, B1) and (A2, B2) be formal concepts of a formal context. We call (A1, B1)

a subconcept of (A2, B2) (written: (A1, B1) ≤ (A2, B2)) if A1 ⊆ A2. Then,

(A2, B2) will be called superconcept of (A1, B1). ❑
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It is well known from FCA that the set of all formal concepts of a formal context

together with the subconcept-superconcept-order form a complete lattice, the so

called concept lattice. Infimum and supremum therein can be calculated by

∧

t∈T

(At, Bt) =


⋂

t∈T

At,

(
⋃

t∈T

Bt

)II



∨

t∈T

(At, Bt) =




(
⋃

t∈T

At

)II

,
⋂

t∈T

Bt


 .

1.3 Implications

In this section, we will briefly introduce the basics of attribute logic. Given a set

of attributes, implications on that set are logical expressions that can be used

to describe certain attribute correspondencies which are valid for all objects of a

formal context.

Definition 1.5 Let M be an arbitrary set. An implication on M is a pair

(A,B) with A,B ⊆ M . To support intuition we write A_B instead of (A,B).

We say an implication A_B holds for an attribute set C (also: C respects

A_B), if A 6⊆ C or B ⊆ C. Moreover, an implication i holds (or: is valid)

in a formal context K = (G,M, I) if it holds for all sets gI with g ∈ G. We then

write K |= i.

The implicational theory Thimp(K) of a formal context K = (G,M, I) is the

set of all implications that hold in K.

Given a set A ⊆ M and a set I of implications on M , we write AI for the smallest

set that

• contains A and

• respects all implications from I.

(Since those two requirements are preserved under intersection, the existence of

a smallest such set is assured).1 ❑

1Note that this notation differs from that in [GaWi99b]. It has been chosen for better

readability.
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It is obvious that for any set I of implications on M , (.)I is a closure operator

on M . Furthermore, it can be easily shown that an implication A_B is valid in

a formal context K = (G,M, I) exactly if B ⊆ AII .

Definition 1.6 We say an implication i follows (semantically) from a set

I of implications on M , if any subset of M that respects all implications from I

also respects i. ❑

It is well known that an implication i follows semantically from an implication

set I exactly if i is derivable from I via the Armstrong rules (see [Ar74]).2

Definition 1.7 The Armstrong rules for implications on a set M are the

following:

X _X
identity

X _Y
X ∪ Z _Y

premise extension

X _Y Y ∪ Z _W
X ∪ Z _W

substitution

with W,X, Y, Z ⊆ M . ❑

In [DoGa84], it has been shown that semantical entailment of implications can

be decided in linear time with respect to the cardinality of I. This also enables

the fast calculation of AI for a given A ⊆ M . One natural question is that for a

minimal set of implications that generates (in terms of semantical entailment) a

given implicational theory (e.g. that of a formal context). The precise definition

of that notion will be given by the next definition.

Definition 1.8 An implication set I will be called non-redundant, if for any

i ∈ I we have that i does not follow semantically from I \ {i}.

An implication set I of a context K will be called complete if every implication

valid in K follows semantically from I.

I will be called an implicational base of a formal context K if it is non-

redundant and complete. ❑

2We assume the reader to be familiar with the notion and notation of deduction rules.
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In the sequel, a way to construct a canonical implicational base for a given formal

context is described. The notion of pseudo-intent is needed for this.

Definition 1.9 For a formal context K = (G,M, I), a set P ⊆ M will be called

pseudo-intent if P II 6= P and QII ⊆ P holds for every pseudo-intent Q ( P .

❑

Note that this definition is recursive. Since the set M is always assumed to be

finite in the sequel, it is nevertheless correct.3 With this notion, a canonical

implicational base can be easily described (see [GuDu86] or [Du87]).

Theorem 1.10 For a given formal context K, the set

L := {P _P II | P pseudo-intent}

is an implicational base.

This result justifies to call the implication set L stem base of K. This par-

ticular implicational base is successively constructed in the attribute exploration

algorithm which will be described in the next section. Before, we will cite some

results needed to justify this algorithm.

Lemma 1.11 The set of all intents and pseudo-intents of a formal context con-

stitutes a closure system.

The corresponding closure operator clQ for this closure system can be described

by

clQ(P ) :=
⋃

n∈N

Pn

with P0 := P and

Pn+1 := Pn ∪
⋃

Pseudointent Q⊂Pn

QII .

Definition 1.12 Let (M,≺) be an arbitrary linear strict order and cl a closure

operator on M . Then we define for A,B ⊆ M and m ∈ M :

A ⊕ m := cl((A ∩ {a | a ≺ m}) ∪ {m})

A <m B :⇔ m ∈ B \ A and A ∩ {a | a ≺ m} = B ∩ {a | a ≺ m}

A < B :⇔ A <m B for one m ∈ M

Obviously, (Pfin(M), <) is a linear strict order, which we will call the lectic

order. ❑

3However, for the applicability of this definition, also weaker conditions than finiteness are

sufficient.
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In the sequel, if we speak of the lectic order on subsets of M , we think of the

lectic order with respect to an arbitrary (but fixed) linear strict order on M .

Note that – irrespective of how ≺ is chosen – (Pfin(M), <) is always a linearization

of the strict order (Pfin(M),⊂), i.e., A ⊂ B implies A < B for any A,B ⊆ M .

The next lemma provides a way to enumerate all intents and pseudo-intents of a

formal context in lectic order using the closure operator defined above.

Lemma 1.13 The lectically smallest intent or pseudo-intent is ∅. Given a set P ,

the lectically next intent or pseudo-intent can be determined as follows: find the

(with respect to ≺) maximal m ∈ M such that P ∩ {a | a ≺ m} = (P ⊕m)∩ {a |

a ≺ m} (where ⊕ is defined with respect to clQ). If this exists, P ⊕ m is the

lectically next intent or pseudo-intent, otherwise there is no intent or pseudo-

intent lectically greater than P .

By defining the lectic order in the way we did, we ensure the following: When

a certain set A ∈ M is checked for clQ-closedness all pseudo-intents P ( A

have already been determined before. Thus the closedness checking can be done

without recursion, if all previously determined pseudo-intents are stored.

The following lemma is essential for the attribute exploration technique as a

means of acquiring information in an interactive process. It shows that the lecti-

cally first n pseudo-intents keep this property if the underlying context is modified

(namely: extended) in a certain way.

Lemma 1.14 Let K = (G,M, I) be a context and let P1, . . . , Pn be the lectically

first n pseudo-intents of K. If we set K̃ := (G ∪ {g},M, I ∪ (g × {M̃})) with

M̃ ⊆ M respecting all Pi _ P II
i with 1 ≤ i ≤ n then those Pi are the lectically

first n pseudo-intents of K̃.

1.4 Attribute Exploration

In this section, we describe the basic attribute exploration algorithm. The aim

of this algorithm is to completely determine the implicational knowledge about

a certain domain (also called the universe).

We presuppose an instance – called the expert – possessing complete knowledge

about the universe and hence able to answer all questions about it. The attribute

exploration algorithm can be seen as an organized way to acquire the knowledge

by asking as few questions to the expert as possible.
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Note that attribute exploration is based on a kind of closed world assumption:

the expert is supposed to know all entities of the universe. Consequently, an

entity added to the universe a posteriori could radically change its implicational

theory.

1.4.1 Plain Attribute Exploration

The domain to explore is formalized as a formal context K = (U,M, I). Usually,

it is not known completely in advance. However, possibly, some entities of the

universe g ∈ G0 ⊆ U are already known, as well as their associated attributes gI .

Let K := (G0,M, J0) with J0 = I ∩ (G0 × M).

Now, we start enumerating the intents and pseudo-intents of K as described in

Lemma 1.13 and present for every such set S with S 6= SJ0J0 the question “Does

the implication S _ SJ0J0 hold in the context K = (U,M, I)?” to the human

expert.

The expert might confirm this. In this case, S is a pseudo-intent of (U,M, I)

and therefore S _SJ0J0 is archived as part of K’s stem base L. We proceed the

enumeration with the pseudo-intent lectically next to S.

The other case would be that S _ SJ0J0 does not hold in (U,M, I). But then

there must exist a g ∈ U with S ∈ gI and SJ0J0 6∈ gI . The expert is asked to

input this g and gI , which is used to update the context K in the obvious way: we

set G1 := G0 ∪{g} and J1 := J0 ∪ ({g}× gI). We continue the enumeration with

S (and J1 instead of J0). Notice that - thank to Lemma 1.14 - all information

that has been explored so far remains valid.

This procedure terminates when all pseudo-intents and intents have been enumer-

ated. Then, the implicational knowledge of the universe is completely acquired,

i.e., the closure operator (.)II coincides with (.)JnJn and (.)L.

Figure 1.1 illustrates the interactive exploration process.

1.4.2 Background Knowledge

Now, we will describe how we can deal with background knowledge. In general,

the term background knowledge denotes any information putting constraints on

K. In particular, this information may be non-implicational, which would prevent

a direct incorporation into the stem base. Nevertheless, such knowledge can have

an impact on the implicational theory, inasmuch as it could make implications
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G0 M J0

Gn M Jn

L0

Lk

K |= A_B ?

Yes!

Li+1 = Li ∪ {A_B}

Gi+1 = Gi ∪ {g}

Ji+1 = Ji ∪ {g} × gI

No, because of g!

≡
implications
a posterioria posteriori

context

Exploration

Attribute

context
a priori a priori

implications

domain expert

Question:

Figure 1.1: Scheme of the attribute exploration algorithm

follow from other implications even if they are not derivable using the Armstrong

rules.

Example 1.15 Let K := (G,M, I) with M := {a, b, c, d} and let be additionally

known that for any g ∈ G with gIa, we have gIb or gIc. Then, from the implica-

tion set {b_d, c_d} follows semantically the implication a_d (since in every

formal context with the above property whenever b_d and c_d hold also a_d

holds).

To incorporate background knowledge we would need an instance that is capable

of deciding whether an implication is entailed by the background knowledge and

the implicational knowledge acquired so far. Any implication asked by the enu-

meration algorithm described above would then first be passed to this decision

procedure. If the validity of this implication can be confirmed, it is just “silently”

added to the stem base. Otherwise, the question will be directed to the expert.

So in a certain way, the decision procedure is used as a strainer; only questions

not decidable by means of the knowledge already specified are asked.

Now, we will present two different ways how this can be realized.
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Test contexts.

First, observe that for K1 = (G1,M, I1) and K2 = (G2,M, I2) from {gI1 | g ∈

G1} = {gI2 | g ∈ G2}, it directly follows that Thimp(K1) = Thimp(K2). Thus, the

set {(M,M,∋) | M ⊆ P(M)} comprises all contexts different with respect to

their attribute logic. Background knowledge then can be used to decide, whether

a certain context (M,M,∋) possibly represents the universe (i.e., whether there

is a K = (G,M, I) compatible with all our background knowledge and {gI | g ∈

G} = M). In this case, M will be called non-contradictory.

Example 1.16 Let M be a set of attributes with m1,m2 ∈ M and let m2 be

“designed” to be the negation of m1, i.e., an object g is stipulated to have an

attribute m2 exactly if it has not the attribute m1. If this is the only restriction,

{(M,M,∋)} is non-contradictory if and only if for every M̃ ∈ M either m1 ∈ M̃

or m2 ∈ M̃ .

Now, consider the test context

K := (
⋃

{M | M non-contradictory},M,∋).

Note that the object set of this context is not necessarily non-contradictory.

However, it is easy to see that an implication on M holds in this context if and

only if it holds in every context (M,M,∋) with non-contradictory M. Thus

we know Thimp(K) ⊆ Thimp(K). Every potential implication emerging from the

algorithm can then be checked against K and silently confirmed if found to be

valid therein.4

Note that, if the implicational knowledge about U increases (i.e., if the expert

confirms an implication during the exploration process), this influences the notion

of non-contradictoriness and therefore the test context has to be recalculated.

This way to decide background knowledge consequences can be seen as an ex-

tensional one: it takes into account all “possible worlds” with respect to a set of

constraints.

4On the first glance, this explanation may seem unnecessarily overcomplicated. In fact, if the

non-contradictoriness of a context can be decided object-wise (i.e., for every object we can say

whether it is “admissible” independently from the presence or absence of any other object), the

test context can be defined directly. However, if the background knowledge contains restrictions

as for instance “either all objects have the attribute m1 or all objects have the attribute m2”,

we have to proceed like this.
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Reasoning procedures.

Another – intensional – way is to use a procedure that (given the complete back-

ground knowledge specified in some logical formalism) is capable of deciding

whether this background knowledge together with the formerly acquired implica-

tions entails the asked implication. One common example for such a formalism

are the so called cumulated clauses (a decision procedure for their entailment has

been presented in [Kr98]). Depending on the interpretation of the attributes,

also other algorithms (DL-reasoners, theorem provers, model checkers or logic

programs to name just a few) could be used for this task. In Chapter 3, we will

elaborate a way to provide such a method for cumulated clauses on a special kind

of attributes.
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Chapter 2

The Description Logic FLE:

Basic Notions

In this chapter, we will introduce the Description Logic notions necessary for

our work – for a detailed and concise treatise see [Ba03]. In general, the term

Description Logic comprises an amount of different formalisms which vary in

expressiveness and decision procedure complexity. This allows to use a certain

logic “tailored” to one’s needs in practice. The common principle for DLs is

to form complex concept descriptions out of simple ones using so called concept

constructors.

DL formalisms are used to represent terminological knowledge of an application

domain. Such a representation is usually called knowledge base and normally

consists of two parts: a so called TBox introducing a terminology and an ABox

containing assertions.

In the TBox, we can specify how concept descriptions are related to each other.

This allows to define concepts by other concepts as well as to state constraints

valid in the considered domain. The used formalism to do so are general concept

inclusion axioms – rules that have to hold throughout the domain. Nevertheless,

in the TBox, no propositions are made about specific entities of the domain.

Contrary, in the ABox, individuals are introduced and named. Furthermore

one can specify, which concept descriptions they belong to. However, one basic

maxim in DL is the open world assumption: the ABox is by no means thought
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of containing all entities of the described domain. It just demands the existence

of some distinguished ones.

In our work, we focus on the rather simple description logic FLE which includes

conjunction, existential and universal quantification. The reason to use this DL

for our work (besides the necessity to keep expressiveness low for complexity

reasons) is mainly psychological: We aim at an application where questions for-

mulated in a DL are asked to a human expert. As has been shown by numerous

studies (summarized in [Bo66]) a human’s capability of learning and using a par-

ticular concept (this concept’s psychological complexity) depends on its logical

form. As a central result, conjunctive concepts have been found subjectively

simpler than disjunctive ones. Likewise, negation has shown unfavorable in this

regard. Hence, by using FLE , the questions asked to the expert consist of compar-

atively intuitive concepts and can therefore be answered more easily. Moreover,

they probably represent facts which are more “interesting” for humans.

Consequently, we use FLE concept descriptions to describe the entities of a certain

domain. More precisely, we will employ the FLE formalism to define attributes

from a given structure with unary and binary predicates. This is also the reason

why we define notions of subsumption and equivalence with respect to one fixed

interpretation. Apart from these special notions and the restricted language

FLEnorm introduced in Section 2.2, we just recall well known basic DL notions in

this chapter.

2.1 The Language FLE: Syntax and Semantics

In this section, we will present a way of constructing so called concept descriptions

from two given attribute sets, which yields us the FLE language.

Definition 2.1 Let MC and MR be arbitrary finite sets the elements of which we

will call concept names1 and role names, respectively. By FLE(MC,MR)

(or shortly: FLE if there can be no confusion) we denote the set of concept

1Whenever in this work we use the term concept, we refer to the notion used in Description

Logic. If we want to refer to the meaning used in Formal Concept Analysis we use formal

concept.
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descriptions being inductively defined as follows:2

MC ∪ {⊤,⊥} ⊆ FLE

C, D ∈ FLE ⇒ C ⊓ D ∈ FLE

C ∈ FLE , R ∈ MR ⇒

E

R.C ∈ FLE

C ∈ FLE , R ∈ MR ⇒

A

R.C ∈ FLE

❑

Note (since literature is not uniform in this regard) that our definition of FLE

contains the bottom concept.

The next step after having defined the language of concept descriptions is to pro-

vide a semantics. In order to do this, we first define interpretations. In our case,

an interpretation is formalized as binary power context family. Although not the

usual way of representing an interpretation in DL, it is just a trivial reformulation

and – in our point of view – facilitates definitions and aids conceptual thinking

in this work.

Definition 2.2 Let ∆ be an arbitrary nonempty set called the universe. The

elements of the universe will be called entities. A binary power context

family
−→
K on ∆ is a pair (KC, KR) consisting of the formal contexts KC :=

(GC,MC, IC) and KR := (GR,MR, IR) with GC = ∆ and GR = ∆ × ∆.

Moreover, we assume MC and MR to be finite.

If for δ1, δ2 ∈ ∆ we have (δ1, δ2)IRR for some R ∈ MR, we call δ2 the R-neighbor

of δ1. ❑

Note that our notion of binary power context family is a special case of the power

context families used in FCA to encode relational structures (see e.g. [Wi97]). In

binary power context families, only unary and binary relations can be expressed.3

2In DL terminology, it is usual to denote concept descriptions as well as role names by capital

letters. We decided to abide by this convention, but – in order to avoid possible confusion (with

other capital letters denoting sets) – we use typewriter font (A, B, C) for FLE concept descrip-

tions and calligraphic letters (A,B, C) for sets of concept descriptions. Furthermore, we use

the symbols

E

and

A

for “role quantification” to clearly distinguish them from the “ordinary”

quantifiers ∃ and ∀ occurring in some proofs and definitions.
3Nevertheless, it is possible to deal with relations of higher arity by an adequate redefinition

of concept and role names as well as the way models are interpreted. This technique is called

reification (see [Ba03]).
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Note that there is a trivial one-to-one correspondence to Kripke structures (being

used as the usual models for modal logic, see e.g. [Bla01]) or labelled transition

systems with attributes (LTSA, see [GaRu01]).

Next, we describe an extensional semantics for the above defined concept descrip-

tions: for a given binary power context family
−→
K = ((∆,MC, IC), (∆×∆,MR, IR))

we assign to each concept description C ∈ FLE(MC,MR) a set A ∈ P(∆) of

entities4 that “fulfill” this concept description.

Definition 2.3 The interpretation function [[.]]−→
K

: FLE(MC,MR) → P(∆)

for a binary power context family
−→
K on a universe ∆ with attribute sets MC and

MR is defined recursively as follows:

[[⊤]]−→
K

:= ∆

[[⊥]]−→
K

:= ∅

[[m]]−→
K

:= mIC for all m ∈ MC

[[C ⊓ D]]−→
K

:= [[C]]−→
K
∩ [[D]]−→

K

[[

E

R.C]]−→
K

:= {δ1 ∈ ∆ | ∃δ2 ∈ ∆ : (δ1, δ2) ∈ RIR ∧ δ2 ∈ [[C]]−→
K
} for R ∈ MR

[[

A

R.C]]−→
K

:= {δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ RIR → δ2 ∈ [[C]]−→
K
} for R ∈ MR.

For δ ∈ [[C]]−→
K

we will occasionally write δ |= C and say C is valid in δ. A whole

set C of concept descriptions is valid in δ (written: δ |= C) if δ |= C for all

C ∈ C.

A concept description D
−→
K-subsumes a concept description C (write: C ⊑−→

K
D) if

[[C]]−→
K
⊆ [[D]]−→

K
.

A concept description D subsumes a concept description C universally (write:

C ⊑ D) if C ⊑−→
K
D for all

−→
K with attribute sets MC and MR.

Two concept descriptions C and D are called
−→
K−equivalent (write: C ≡−→

K
D) if

C ⊑−→
K
D and D ⊑−→

K
C 5 and universally equivalent (write: C ≡ D) if this is the

case for all
−→
K with attribute sets MC and MR. ❑

Remark 2.4 It follows directly from the semantics definition that for any FLE

concept descriptions C, D, E the composed concept descriptions (C ⊓ D) ⊓ E and

C⊓ (D⊓ E) are universally equivalent. The same holds for C⊓ D and D⊓ C as well

as for C ⊓ C and C. In the sequel we will exploit these facts in several ways:

4Throughout this work, P will denote the powerset and Pfin the finite powerset.
5As an immediate consequence we have C ≡−→

K
D exactly if [[C]]−→

K
= [[D]]−→

K
.
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• We will omit all parentheses which are not necessary.

• We will make extensive use of the following abbreviation:

Let C = {C1, . . . , Cn} be a finite set of FLE concept descriptions. Then the

concept description C1 ⊓ . . . ⊓ Cn will be abbreviated by
d
C. We extend

this definition in an intuitive way for |C| < 2 by setting
d
{C} := C and

d
∅ := ⊤. This “syntactic sugar” could then be directly incorporated into

the semantics by adding

[[
l

C]]−→
K

:=
⋂

C∈C

[[C]]−→
K

to Definition 2.3.

• We will consider all concept descriptions which can be transformed into

each other by the equivalences mentioned above as syntactically equal6, i.e.

we write for instance

(C ⊓ D) ⊓ E = (E ⊓ C) ⊓ D =
l

{C, D, E}.

A notion we will need in the sequel is the maximal role depth of an FLE concept

description, indicating how deep the role quantifiers

A

and

E

are nested in that

concept description. The formal definition is as follows:

Definition 2.5 The maximal role depth of an FLE concept description is

given by the function rd : FLE → N recursively defined as follows:

rd(⊤) := 0

rd(⊥) := 0

rd(m) := 0 for all m ∈ MC

rd(C ⊓ D) := max(rd(C), rd(D))

rd(

E

R.C) := rd(C) + 1 for R ∈ MR

rd(

A

R.C) := rd(C) + 1 for R ∈ MR

For n ∈ N we define FLEn := {C | C ∈ FLE , rd(C) ≤ n}. ❑

6We are aware that this argumentation is a bit inaccurate. Actually, we would have to define

an equivalence relation, say ≈, on FLE capturing the universal equivalence of the concept de-

scriptions mentioned above and subsequently consider the elements of the factorized structure

FLE/≈ as actual concept descriptions.
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Remark 2.6 Due to the facts that we treat conjunctions as syntactically equal

as explained in Remark 2.4 and we demand MC and MR to be finite, we can

conclude that for any n ∈ N there are only finitely many concept descriptions

with maximal role depth ≤ n.

2.2 FLEnorm – Reduced, yet Complete

Consider a binary power context family
−→
K and let δ be an entity from

−→
K . Then,

knowing that the concept descriptions C and D are valid in δ, we automatically

know that C ⊓ D is valid in δ as well. Therefore, one could ask for a “test set”

S ⊂ FLE with the following property: Knowing for every concept description

from S whether it is valid in δ allows to conclude for an arbitrary FLE concept

description whether it is valid in δ. We will define a concept description set

FLEnorm and show in the next theorem that it has this desired property.

Definition 2.7 The set FLEnorm of normalized FLE concept descrip-

tions is an FLE subset defined in the following way:

MC ∪ {⊥} ⊆ FLEnorm

C ∈ Pfin(FLE
norm),⊥ 6∈ C, R ∈ MR ⇒

E

R.
d

C ∈ FLEnorm

C ∈ FLEnorm, R ∈ MR ⇒

A

R.C ∈ FLEnorm

Additionally, for any i ∈ N let FLEnorm
i = FLEnorm ∩ FLE i. ❑

Theorem 2.8 For every FLE concept description C, there is a set C of FLEnorm

concept descriptions such that

C ≡
l

C.

Proof:

We define a function n : FLE → P(FLEnorm) in a recursive manner by

n(⊤) = ∅

n(⊥) = {⊥}

n(C) = {C} for C ∈ MC

n(

A

R.C) = {

A

R.D | D ∈ n(C)}

n(

E

R.C) =

{
{⊥} if ⊥ ∈ n(C){ E

R.
d

n(C) otherwise

n(
d
C) =

⋃
C∈C n(C)

that calculates C from C. We will prove C ≡
d

n(C) via induction on the maximal role depth of C:
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• [[⊤]]−→
K

= ∆ =
⋂
∅ = [[

d
{∅}]]−→

K

• [[⊥]]−→
K

= ∅ =
⋂
{∅} =

⋂
[[⊥]]−→

K
= [[

d
{⊥}]]−→

K

• [[C]]−→
K

= [[
d
{C}]]−→

K
. (Remember that this was the reason, why we identified these expressions

even syntactically in Remark 2.4.)

• [[

A

R.C]]−→
K

= {δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR → δ2 ∈ [[C]]−→

K
}

= {δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR → δ2 ∈ [[

d
n(C)]]−→

K
}

= {δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR → δ2 ∈

⋂
D∈n(C) [[D]]−→

K
}

= {δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR →

∧
D∈n(C) δ2 ∈ [[D]]−→

K
}

= {δ1 ∈ ∆ | ∀δ2 ∈ ∆ :
∧

D∈n(C)(δ1, δ2) ∈ R
IR → δ2 ∈ [[D]]−→

K
}

= {δ1 ∈ ∆ |
∧

D∈n(C) ∀δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR → δ2 ∈ [[D]]−→

K
}

=
⋂

D∈n(C){δ1 ∈ ∆ | ∀δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR → δ2 ∈ [[D]]−→

K
}

=
⋂

D∈n(C) [[

A

R.D]]−→
K

= [[
d ⋃

C∈C{

A

R.D | D ∈ n(C)}]]−→
K

• [[

E

R.C]]−→
K

= {δ1 ∈ ∆ | ∃δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR ∧ δ2 ∈ [[C]]−→

K
}

Case 1: ⊥ 6∈
⋃

C∈C n(C)

= {δ1 ∈ ∆ | ∃δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR ∧ δ2 ∈ [[

d ⋃
C∈C n(C)]]−→

K
}

= [[

E

R.
d ⋃

C∈C n(C)]]−→
K

Case 2: ⊥ ∈
⋃

C∈C n(C)

= {δ1 ∈ ∆ | ∃δ2 ∈ ∆ : (δ1, δ2) ∈ R
IR ∧ δ2 ∈ ∅}

= ∅

= [[⊥]]−→
K

• [[
d
C]]−→

K

=
⋂

C∈C [[C]]−→
K

=
⋂

C∈C [[
d

n(C)]]−→
K

=
⋂

C∈C

⋂
{[[D]]−→

K
| D ∈ n(C)}

=
⋂
{
⋂
{[[D]]−→

K
| D ∈ n(C)} | C ∈ C}

=
⋂ ⋃

C∈C{[[D]]−→K | D ∈ n(C)}

= ∈
⋂
{[[χ]]−→

K
| χ ∈

⋃
C∈C n(C)}

= [[
d ⋃

C∈C n(C)]]−→
K

❑

Obviously, this theorem provides a way to check on the basis of the “test set”

FLEnorm whether δ |= C for any C ∈ FLE . This is the case exactly if n(C) ⊆

FLEnorm ∩ {D | δ |= D}.

This fact will prove helpful in the next sections since most of our considerations

and proofs will have to deal only with FLEnorm but will propagate to whole FLE .
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Chapter 3

Cumulated Clauses on FLEnorm

Cumulated clauses on attributes have been studied and used in FCA as a means of

specifying knowledge about interrelationships between attributes (see [GaWi99a]

and [Ga96]). A deduction calculus for cumulated clauses on logically opaque

attributes has been presented in [Kr98]. In particular, they have been used to

encode background knowledge for the attribute exploration process described in

Section 1.4. It can be easily shown that in the case of propositional logic any

logical formula can equivalently be expressed by a set of cumulated clauses on

the atomic propositions.

In this chapter, we will consider cumulated clauses on FLEnorm. The fact that

attributes of this kind have an internal logical structure exerts influence on the

corresponding clause logic. We will deal with these issues by presenting a sound

and complete deduction calculus as well as a decision procedure for the entailment

of cumulated clauses on FLEnorm.

3.1 Definition and Deduction Calculus

This section introduces the notion cumulated clause being a generalization of

implications as defined in Section 1.3. Furthermore, we will present a deduction

calculus for cumulated clauses on FLEnorm concept descriptions and show its

soundness and completeness.

Definition 3.1 Given an arbitrary set M , a cumulated clause on M is an

element from CC(M) := Pfin(M) × PfinPfin(M).

To support intuition, we write A ⊸ {B1, . . . ,Bn} instead of (A, {B1, . . . ,Bn}) for
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A,B1, . . . ,Bn ⊆ M and n ∈ N.

A set N ⊆ M is said to respect a cumulated clause A ⊸ {B1, . . . ,Bn} if

A 6⊆ N or Bi ⊆ N for some 1 ≤ i ≤ n.

A cumulated clause k on FLEnorm is said to be valid in a binary power context

family
−→
K (also:

−→
K respects k, written:

−→
K |= k), if for every δ ∈ ∆, the set

{C | δ ∈ [[C]]−→
K
} respects k.1

If a cumulated clause k is valid in every binary power context family that respects

all cumulated clauses from a certain set K, we say k follows semantically

from K (written K |= k). ❑

In words, the validity of the cumulated clause A ⊸ {B1, . . . ,Bn} in a power con-

text family means that for every entity δ ∈ ∆ with δ |= A, we have additionally

δ |= B1 or δ |= B2 ... or δ |= Bn. Obviously, for n = 1, the notion of a cumulated

clause coincides with that of an implication.

Fact 3.2 A cumulated clause A ⊸ {B1, . . . ,Bn} is valid in a binary power con-

text family
−→
K iff ⋂

A∈A

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K
.

Proof:

We start with the definition of validity and show the equivalence to the statement above:

∀δ ∈ ∆ : A 6⊆ {C | δ ∈ [[C]]−→
K
} ∨

∨
1≤i≤n Bi ⊆ {C | δ ∈ [[C]]−→

K
}

⇐⇒ ∀δ ∈ ∆ : δ 6∈
⋂

A∈A [[A]]−→
K
∨

∨
1≤i≤n δ ∈

⋂
B∈Bi

[[B]]−→
K

⇐⇒ ∀δ ∈ ∆ : δ ∈
⋂

A∈A [[A]]−→
K
→ δ ∈

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K

⇐⇒
⋂

A∈A [[A]]−→
K
⊆

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K
.

❑

In the next definition, we present a deduction calculus on CC(FLEnorm). Infor-

mally, we could call this rules the “logic of case distinction on FLE” – disjunction

is not allowed to construct new concepts but can be used to express alternative

conclusions.

Definition 3.3 The set DR of derivation rules consists of the following

rules (with A, B, C ∈ FLEnorm and A,B1, . . . ,Bn, C,D1, . . . ,Dk ∈ Pfin(FLE
norm))

{⊥} ⊸ {{A}}
contradiction (CONT)

1In the sequel, when using the term cumulated clause, we always mean cumulated clause on

FLEnorm.
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A ⊸ {A}
identity (ID)

A ⊸ {B1, . . . ,Bn}
A ∪ {C} ⊸ {B1, . . . ,Bn}

premise extension (PE)

A ⊸ {B1, . . . ,Bn}
A ⊸ {B1, . . . ,Bn, C}

conclusion extension (CE)

A ⊸ {B1, . . . ,Bn, C} A ∪ C ⊸ {D1, . . . ,Dk}
A ⊸ {B1, . . . ,Bn,D1, . . . ,Dk}

substitution (SUB)

A ⊸ {B1, . . . ,Bn}
[

E

R]A ⊸ {[

E

R]B1, . . . , [

E

R]Bn}

E

-lifting (EL)

[

E

R]A ∪ {

A

R.B} ⊸ {[

E

R](A ∪ {B})}

A

-propagation (AP)

A ⊸ {B1, . . . ,Bn, C}
[

A

R]A ⊸ {[

E

R]B1, . . . , [

E

R]Bn, [

A

R]C}

A

-lifting (AL)

where

[
A

R]A := {
A

R.A | A ∈ A}

and

[

E

R]A :=

{
{⊥}, if ⊥ ∈ A

{

E

R.
d

A} otherwise.2

Given a set K of cumulated clauses, we denote by DR(K) the smallest set of

cumulated clauses containing K and closed under the derivation rules above. For

k ∈ DR(K) we also write K ⊢ k. ❑

The rules ID, PE, CE and SUB have already been described in [Kr98] as deduction

rules for cumulated clauses on arbitrary sets. The CONT rule is valid in any

formal system, where “universal falsehood” can be expressed by an attribute. EL,

AP, and AL represent the interdependence of concept descriptions incorporating

A

R and

E

R. While the first two are quite intuitive, the last one takes a little

consideration.

2Note that in view of the semantics definition, we have
d

([

A

R]A) ≡

A

R.
d

A as well as
d

([

E

R]A) ≡

E

R.
d

A. Moreover, [

A

R]C and [

E

R]C are subsets of FLEnorm if C ⊆ FLEnorm.



34 Chapter 3. Cumulated Clauses on FLEnorm

3.1.1 Soundness

The following theorem states the soundness of the presented deduction calculus

with respect to the semantics defined above. As usual, proving soundness is much

easier than showing completeness.

Theorem 3.4 For K ⊆ CC(FLEnorm) and k ∈ CC(FLEnorm), we have

K ⊢ k =⇒ K |= k.

Proof:

We will prove this by showing that for every derivation rule

K

k
∈ DR

with K ⊆ CC(FLEnorm) and k ∈ CC(FLEnorm) holds that every binary power context family
−→
K

respecting all cumulated clauses from K also respects k.

• contradiction

Given an arbitrary
−→
K , because of [[⊥]]−→

K
= ∅, no δ ∈ ∆ fulfills δ |= ⊥. So, δ |= ⊥ ⇒ δ |= A

is trivially true for every A ∈ FLEnorm.

• identity

In every
−→
K trivially holds δ |= A ⇒ δ |= A.

• premise extension

Take a
−→
K that respects A ⊸ {B1, . . . ,Bn}, i.e., (due to Fact 3.2)

⋂

A∈A

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K
.

Obviously,
⋂

A∈A∪{C} [[A]]−→
K
⊆

⋂
A∈A [[A]]−→

K
and thus

⋂

A∈A∪{c}

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K

which means (again due to Fact 3.2) that A ∪ {C} ⊸ {B1, . . . ,Bn} is valid in
−→
K .

• conclusion extension

Take a
−→
K that respects A ⊸ {B1, . . . ,Bn}, i.e.,

⋂
A∈A [[A]]−→

K
⊆

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K
. Obvi-

ously
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
⊆

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

⋂
C∈C [[C]]−→

K
and thus

⋂

A∈A

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K
∪

⋂

C∈C

[[C]]−→
K

which means that A ⊸ {B1, . . . ,Bn, C} is valid in
−→
K .
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• substitution

If
−→
K respects A ⊸ {B1, . . . ,Bn, C} and A ∪ C ⊸ {D1, . . . ,Dk}, this can be expressed as

⋂

A∈A

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K
∪

⋂

C∈C

[[C]]−→
K

and ⋂

A∈A∪C

[[A]]−→
K
⊆

⋃

1≤i≤k

⋂

D∈Di

[[D]]−→
K
.

But then we can conclude:

⋂
A∈A [[A]]−→

K

⊆
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

( ⋂
C∈C [[C]]−→

K
∩

⋂
A∈A [[A]]−→

K

)

=
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

⋂
C∈A∪C [[C]]−→

K

⊆
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

⋃
1≤i≤k

⋂
D∈Di

[[D]]−→
K

which means that A ⊸ {B1, . . . ,Bn,D1, . . . ,Dk} is valid in
−→
K .

•

E

-lifting

Let
−→
K respect A ⊸ {B1, . . . ,Bn}, i.e.,

⋂

A∈A

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K
.

Then we have

[[

E

R.
d

A]]−→
K

= {δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

A∈A [[A]]−→
K
}

⊆ {δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
}

=
⋃

1≤i≤n{δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

B∈Bi
[[B]]−→

K
}

=
⋃

1≤i≤n [[

E

R.
d

Bi]]−→
K

which means that [

E

R]A ⊸ {[

E

R]B1, . . . , [

E

R]Bn}.

•

A

-propagation

For an arbitrary
−→
K holds

[[

E

R.
d

A]]−→
K
∩ [[

A

R.B]]−→
K

= {δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

A∈A [[A]]−→
K
} ∩ {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈ [[B]]−→

K
}

⊆ {δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

A∈A [[A]]−→
K
∧ δ̃ ∈ [[B]]−→

K
}

= {δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

A∈A∪{B} [[A]]−→
K
}

= [[

E

R.
d

A ∪ {B}]]−→
K

which means that [

E

R]A ∪ {

A

R.B} ⊸ {[

E

R](A ∪ {B})}.

•

A

-lifting

Assume in
−→
K holds A ⊸ {B1, . . . ,Bn, C} and therefore we have

⋂

A∈A

[[A]]−→
K
⊆

⋃

1≤i≤n

⋂

B∈Bi

[[B]]−→
K
∪

⋂

C∈C

[[C]]−→
K
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We now set ∆∗ := {δ | ∃δ̃ : (δ, δ̃)IRR∧
∨

1≤i≤n δ̃ ∈
⋂

B∈Bi
[[B]]−→

K
} and thereby get ∆ \∆∗ =

{δ | ∀δ̃ : (δ, δ̃)IRR →
∧

1≤i≤n δ̃ 6∈
⋂

B∈Bi
[[B]]−→

K
} Then also holds

⋂
A∈A [[

A

R.A]]−→
K

= {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈
⋂

A∈A [[A]]−→
K
}

⊆ {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

⋂
C∈C [[C]]−→

K
}

= (∆∗ ∪ (∆ \ ∆∗)) ∩ {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈
⋃

1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

⋂
C∈C [[C]]−→

K
}

⊆ ∆∗ ∪
(
(∆ \ ∆∗) ∩ {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈

⋃
1≤i≤n

⋂
B∈Bi

[[B]]−→
K
∪

⋂
C∈C [[C]]−→

K
}
)

⊆ ∆∗ ∪ {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈
⋂

C∈C [[C]]−→
K
}

=
⋃

1≤i≤n{δ | ∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

B∈Bi
[[B]]−→

K
} ∪ {δ | ∀δ̃ : (δ, δ̃)IRR → δ̃ ∈

⋂
C∈C [[C]]−→

K
}

which means that [

A

R]A ⊸ {[

E

R]B1, . . . , [

E

R]Bn, [

A

R]C}.

❑

3.1.2 Some Derivations

Lemma 3.5 The following derivation rules can be deduced from DR:

A ⊸ {B1, . . . ,Bn}
A ∪ C ⊸ {B1, . . . ,Bn}

cumulated premise extension (PE*)

A ⊸ {B1, . . . ,Bn, C} C ⊸ {D1, . . . ,Dk}
A ⊸ {B1, . . . ,Bn,D1, . . . ,Dk}

pure substitution (SUB*)

A ⊸ {B1, . . . ,Bn}
A ∪ C ⊸ {B1 ∪ C, . . . ,Bn ∪ C}

restriction (RES)

A ⊸ {B1, . . . ,Bn} C ⊸ {D1, . . . ,Dm}
A ∪ C ⊸ {Bi ∪ Dj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

distribution (D)

⊥ ⊸ {A}
cumulated contradiction (CONT*)

[

A

R]A ∪ [

E

R]B ⊸ {[

E

R](A ∪ B)}
cumulated

A

-propagation (AP*)

Proof:

The validity of these rules is proven by providing the DR proof trees that realize them.

1. cumulated premise extension

Let C = {C1, . . . , Ck}. Then we may iteratively add all elements of (the finite set) C to the

premise by PE:
A ⊸ {B1, . . . ,Bn}

A ∪ {C1} ⊸ {B1, . . . ,Bn}
PE

...

PE

A ∪ {C1, . . . , Ck} ⊸ {B1, . . . ,Bn}
PE
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2. pure substitution

A ⊸ {B1, . . . ,Bn, C}

C ⊸ {D1, . . . ,Dk}

A ∪ C ⊸ {D1, . . . ,Dk}
PE*

A ⊸ {B1, . . . ,Bn,D1, . . . ,Dk}
SUB

3. restriction

We start our derivation with

A ⊸ {B1, . . . ,Bn}

A ∪ C ⊸ {B1, . . . ,Bn}
PE*

C ∪ B1 ⊸ {C ∪ B1}
ID

A ∪ C ∪ B1 ⊸ {C ∪ B1}
PE*

A ∪ C ⊸ {B1 ∪ C,B2, . . . ,Bn}
SUB

and continue by successively “substituting” every Bi in the conclusion with Bi ∪ C, finishing

with

A ∪ C ⊸ {B1 ∪ C, . . . ,Bn−1 ∪ C,Bn}

C ∪ Bn ⊸ {C ∪ Bn}
ID

A ∪ C ∪ Bn ⊸ {C ∪ Bn}
PE*

A ∪ C ⊸ {B1 ∪ C, . . . ,Bn ∪ C}
SUB

4. distribution

We start the derivation with

A ⊸ {B1, . . . ,Bn}

A ∪ C ⊸ {B1 ∪ C, . . . ,Bn ∪ C}
RES

C ⊸ {D1, . . . ,Dm}

C ∪ B1 ⊸ {D1 ∪ B1, . . . ,Dm ∪ B1}
RES

A ∪ C ⊸ {B1 ∪ D1, . . . ,B1 ∪ Dm,B2 ∪ C, . . . ,Bn ∪ C}
SUB*

and in the same way, step by step substitute every Bi ∪ C in the conclusion with Bi ∪

D1, . . .Bi ∪ Dm. So indeed, we end up with

A ∪ C ⊸ {Bi ∪ Dj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

5. cumulated contradiction

Let A = {A1, . . . , An}. Then

{⊥} ⊸ {{A1}}
CONT

{⊥} ⊸ {{A2}}
CONT

{⊥} ⊸ {{A1, A2}}
...

{⊥} ⊸ {{A1, . . . , An−1}}
D

D

D

{⊥} ⊸ {{An}}
CONT

{⊥} ⊸ {{A1, . . . , An}}
D

6. cumulated

A

-propagation

Again, let A = {A1, . . . , An}. Furthermore, let Ai = {Ak | 1 ≤ k ≤ i} for i ≤ n. For any

i < n, we have the following valid derivation tree:

{

A

R.Ai+1} ∪ [

E

.R](B ∪ Ai) ⊸ {[

E

R](B ∪ Ai+1)}
AP

[

A

R](A \ Ai) ∪ [

E

R](B ∪ Ai) ⊸ {[

A

R](A \ Ai+1) ∪ [

E

R](B ∪ Ai+1)}
RES
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By setting Ci = [

A

R](A \ Ai) ∪ [

E

R](B ∪ Ai), the derivation tree mentioned above justifies

Ci ⊸ {Ci+1} for all 0 ≤ i < n. Now, we can successively apply pure substitution:

C0 ⊸ {C1} C1 ⊸ {C2}

C0 ⊸ {C2}
SUB*

...
C0 ⊸ {Cn−1}

SUB*
Cn−1 ⊸ {Cn}

C0 ⊸ {Cn}
SUB*

The conclusion of this derivation tree is just [

A

R]A ∪ [

E

R]B ⊸ {[

E

R](A ∪ B)}.

❑

Example 3.6 Let MC = ∅ and MR = {R}. Now, consider the proposition:

“Every entity has an R-neighbor or it has no R-neighbor.” This proposition is

clearly valid in any binary power context family. So, it should be the consequence

of the empty set, even if no additional cumulated clauses are known to hold.

Obviously, if an entity has an R-neighbor, it fulfills the FLE concept description

E

R.⊤ which is another notation for

E

R.
d

∅. By examining the definition, one

also finds that an entity fulfills

A

R.⊥ exactly if it has no R-neighbor.

So, we know

∅ |= ∅ ⊸ {{

E

R.
l

∅}, {

A

R.⊥}}.

Now, if DR is complete (which has not been shown yet, but will be on the next

pages), we should also have

∅ ⊢ ∅ ⊸ {{

E

R.
l

∅}, {

A

R.⊥}}.

And in fact, taking into account that [

A

R]∅ = ∅ by definition, we can do the

following derivation

∅ ⊸ {∅}
ID

∅ ⊸ {∅, {⊥}}
CE

∅ ⊸ {{

E

R.
l

∅}, {

A

R.⊥}}
AL

obtaining the expected result.

3.1.3 The Standard Model

After having shown the soundness of DR, it remains to prove its completeness.

This will be done in the following way: Given a set of cumulated clauses on

FLEnorm, we will define a particular binary power context family called the stan-

dard model which
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• respects all the given clauses and

• respects just those clauses being derivable from the given ones via DR.

As a consequence, the standard model can serve as a universal counterexample

against the claim that any non-DR-derivable clause holds in every binary power

context family respecting the given clauses.

Note that the usual proof techniques for completeness from modal logic (see

e.g. [Bla01] or [Po94]) using maximal consistent formula sets (also known as

ultrafilters) is not applicable here, since they require that the considered logic is

closed with respect to negation. This is not the case for FLE .

For the same reason, adapting other calculi (like that for the multi-modal logic

K(m) – see [Fi83]) and corresponding proofs to cumulated clauses on FLE cannot

be easily realized.

Definition 3.7 The standard model
−→
K(K) of a given set K of cumulated

clauses on FLEnorm is the binary power context family

−→
K = (KC, KR) = ((∆,MC, IC), (∆ × ∆,MR, IR))

defined as follows:

• First, we set
−→
K (0)(K) = ((∆(0),MC, I

(0)
C ), (∆(0) × ∆(0),MR, I

(0)
R )) with

◆ ∆(0) := {N ⊆ FLEnorm | N respects all k ∈ K,⊥ 6∈ N},

◆ δI
(0)
C C :⇔ C ∈ δ,

◆ (δ1, δ2)I
(0)
R R :⇔

E

R.
d
C ∈ δ1 for all finite C ⊆ δ2 and

C ∈ δ2 for all

A

R.C ∈ δ1.

• From
−→
K (n)(K), we determine

−→
K (n+1)(K) by

◆ ∆(n+1) :=
{

δ ∈ ∆(n) | {C |

A

R.C ∈ δ} =
⋂

(δ,δ̃)I
(n)
R

R
δ̃ and

{C |

E

R.
d

C ∈ δ} =
⋃

(δ,δ̃)I
(n)
R

R
Pfin(δ̃)

for all R ∈ MR

}
,

◆ I
(n+1)
C := I

(0)
C ∩ (∆(n+1) × MC),

◆ I
(n+1)
R := I

(0)
R ∩

(
(∆(n+1) × ∆(n+1)) × MR

)
.

• Finally, we set
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◆ ∆ :=
⋂

i∈N
∆(i),

◆ IC := I
(0)
C ∩ (∆ × MC),

◆ IR := I
(0)
R ∩ (∆2 × MR).

❑

Verbally: our standard model is approximated in a (possibly infinite) process,

starting by taking as entities all those sets of FLEnorm concept descriptions that

respect the given cumulated clauses K and that do not contain ⊥. The aim of the

construction is to achieve that every entity fulfills exactly those FLEnorm concept

descriptions from FLEnorm (semantically) that it contains (syntactically). To

reach that goal, we successively delete those entities not “compatible” with their

“role neighbors”.3 The final standard model can then be seen as the fixed point

of this process. In the sequel, we will show that this construction indeed fulfills

the intended purpose.

Lemma 3.8 Let K be a set of cumulated clauses on FLEnorm and
−→
K(K) the

corresponding standard model. Then we have for every D ∈ FLEnorm and every

δ ∈ ∆

D ∈ δ ⇐⇒ δ |= D.

Proof:

Obviously, for every δ ∈ ∆ from
−→
K(K) holds:

{C |

E

R.
l

C ∈ δ} =
⋃

{Pfin(δ̃) | (δ, δ̃)IRR} (∗)

as well as

{C |

A

R.C ∈ δ} =
⋂

{δ̃ | (δ, δ̃)IRR}. (∗∗)

We do now an induction over the maximal role depth of a concept description D:

• Induction anchor: D ∈ FLEnorm
0 .

Then we have either D ∈ MC or D = ⊥. In the first case, we have D ∈ δ iff δICD by definition

of the standard model. By the semantics definition, this is equivalent to δ |= D.

Considering the second case, we find that ⊥ ∈ δ does not occur (due to the explicit exclusion

of entities containing ⊥ in the standard model definition). Likewise, δ |= ⊥ is never the case

since [[⊥]]−→
K

= ∅. So, those both statements are trivially equivalent.

3This approach is related to Pratt’s type elimination technique (see [Pra79]), originally used

to decide satisfiability of modal formulae. However, contrary to his method, our standard model

construction process will in general not terminate after finitely many steps.
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• Induction step: D ∈ FLEnorm
n , n > 0.

Again, we have to distinguish two cases.

First, assume D =

E

R.
d

D with D ⊆ FLEnorm
n−1 . Then the statement

E

R.
d

D ∈ δ is obviously

equivalent to

D ∈ {C |

E

R.
l

C ∈ δ}

and this because of (*) to

D ∈
⋃

{Pfin(δ̃) | (δ, δ̃)IRR}.

So, we know that there exists an R-neighbor δ̃ of δ, which contains all concept descriptions

from D. Since D ⊆ FLEnorm
n−1 , we see by induction hypothesis that this is the case if and

only if δ̃ |= E for all E ∈ D. Subsequently, this is equivalent to

∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

E∈D

[[E]]−→
K

and this (by the semantics definition) to

∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈ [[
l

D]]−→
K

and finally to

δ ∈ [[

E

R.
l

D]]−→
K

which means just δ |=

E

R.
d

D.

It remains to consider the case D =

A

R.E with E ∈ FLEnorm
n−1 . Then

A

R.E ∈ δ can be written

as

E ∈ {C |

A

R.C ∈ δ}

which is due to (**) equivalent to

E ∈
⋂

{δ̃ | (δ, δ̃)IRR}.

Therefore knowing that all R-neighbors of δ contain E (which is an element of FLEnorm
n−1 ), we

conclude by the induction hypothesis that this is equivalent to

∀δ̃ : (δ, δ̃)IRR → δ̃ ∈ [[E]]−→
K

and by the semantics definition to

δ ∈ [[

A

R.E]]−→
K

which means just δ |=

A

R.E.

Note that all argumentations work in both directions. So indeed, the equivalence is assured.

❑
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In the sequel, we will define the notion of a homomorphism from one binary po-

wer context family to another, being a mapping on the corresponding universes

that preserves the (entity-wise) validity of all concept descriptions.

Definition 3.9 Given two binary power context families
−→
K 1 (with universe ∆1)

and
−→
K 2 (with universe ∆2) having identical sets of role and concept names, we

call a function f : ∆1 → ∆2 homomorphism from
−→
K 1 to

−→
K 2, if

1. for all δ ∈ ∆1 and C ∈ FLE we have δ |= C ⇐⇒ f(δ) |= C and

2. for all δ, δ̃ ∈ ∆1 and R ∈ MR we have (δ, δ̃)IR1R implies (f(δ), f(δ̃))IR2R.

❑

Essentially, the next theorem shows that the standard model of a set K of cumu-

lated clauses is the most universal one: every model4 respecting K is contained

in the standard model in a certain way. This “certain way” is formally captured

in terms of the above defined notion of homomorphism.

Theorem 3.10 Let K be a set of cumulated clauses and

−→
K(K) = ((∆, IC,MC), (∆

2, IR,MR))

the corresponding standard model with universe ∆. Let furthermore

−→
K = ((∆̃, ĨC,MC), (∆̃

2, ĨR,MR))

be a binary power context family that respects all cumulated clauses from K. Then

the function ϕ : ∆̃ → P(FLEnorm) with ϕ(δ) = {C ∈ FLEnorm | δ |= C} is a

homomorphism from
−→
K to

−→
K(K).

Proof:

There are three facts to be shown:

(I) ϕ(δ) ∈ ∆ for all δ ∈ ∆̃,

(II) for all δ ∈ ∆̃ and C ∈ FLE we have δ |= C ⇐⇒ ϕ(δ) |= C, and

(III) for all δ, δ̄ ∈ ∆̃ and R ∈ MR we have (δ, δ̄)ĨRR implies (ϕ(δ), ϕ(δ̄))IRR.

The proof of Fact I will be done by inductively showing that ϕ(δ) is contained in all ∆(i) occurring

in the construction of
−→
K(K) (and therefore also in ∆ =

⋂
i∈N

∆(i)).

4We use the term model synonymously for binary power context family.
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• induction anchor: ϕ(δ) ∈ ∆(0).

Since
−→
K respects K by assumption and [[⊥]]−→

K
= ∅, we have that ϕ(δ) = {C ∈ FLEnorm |

δ |= C} ∈ ∆(0).

Furthermore, notice that (δ1, δ2)ĨRR implies δ1 |=

E

R.
d

C for all finite C with δ2 |= C. It

also implies δ2 |= C for all C with δ1 |=

A

R.C. Due to the definition of ϕ, we then have

(ϕ(δ1), ϕ(δ2))I
(0)
R R. From this, we can conclude (ϕ(δ1), ϕ(δ2))I

(i)
R R for any i as long as

ϕ(δ1), ϕ(δ2) ∈ ∆(i) (*).

• induction step: ϕ(δ) ∈ ∆(i+1).

Let |≈ be the restriction of |= to FLEnorm, i.e., δ |≈ C :⇔ δ |= C and δ ∈ FLEnorm.

By induction hypothesis, we know that ϕ(δ̃) ∈ ∆(i) for all δ̃ ∈ ∆̃.

Note that then from (*), it follows that

(δ, δ̃)ĨRR ⇒ (ϕ(δ), ϕ(δ̃))I
(i)
R R

which in turn implies

{ϕ(δ̃) | (δ, δ̃)ĨRR} ⊆ {δ̄ | (ϕ(δ), δ̄)I
(i)
R R}

and therefore also

{Pfin(ϕ(δ̃)) | (δ, δ̃)ĨRR} ⊆ {Pfin(δ̄) | (ϕ(δ), δ̄)I
(i)
R R}.

Now, we will show that both conditions for ϕ(δ) being in ∆(i+1) are satisfied. First, we know
⋂

(ϕ(δ),δ̄)I
(i)
R

R
δ̄

⊆
⋂

(δ,δ̃)ĨRR
ϕ(δ̃)

=
⋂

(δ,δ̃)ĨRR
{C | δ̃ |≈ C}

= {C | ∀δ̃ : (δ, δ̃)ĨRR → δ̃ |≈ C}

= {C | δ |≈

A

R.C}

= {C |

A

R.C ∈ ϕ(δ)}.

Conversely, by construction of I
(i)
R , from

A

R.C ∈ ϕ(δ) it follows that (ϕ(δ), δ̄)I
(0)
R R ⇒ C ∈ δ̄.

Because of I
(i)
R ⊆ I

(0)
R , this implies (ϕ(δ), δ̄)I

(i)
R R ⇒ C ∈ δ̄, from which we can immediately

conclude C ∈
⋂

(ϕ(δ),δ̄)I
(i)
R

R
δ̄. Therefore, we have

{C |

A

R.C ∈ ϕ(δ)} ⊆
⋂

(ϕ(δ),δ̄)I
(i)
R

R

δ̄.

Hence, the first condition is fulfilled.

Moreover, we have

⋃
(ϕ(δ),δ̄)I

(i)
R

R
Pfin(δ̄)

⊇
⋃

(δ,δ̃)ĨRR
Pfin(ϕ(δ̃))

=
⋃

(δ,δ̃)ĨRR
{C | δ̃ |≈ C, C finite}

= {C | C finite, ∃δ̃ : (δ, δ̃)ĨRR ∧ δ̃ ∈
⋂

C∈C [[C]]−→
K
}

= {C | δ |≈

E

R.
d

C}

= {C |

E

R.
d

C ∈ ϕ(δ)}.
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Vice versa, assume C ∈
⋃

(ϕ(δ),δ̄)I
(i)
R

R
Pfin(δ̄). By I

(i)
R ⊆ I

(0)
R , we can deduce that C ∈

⋃
(ϕ(δ),δ̄)I

(0)
R

R
Pfin(δ̄). This just means C ⊆ δ̄ for some δ̄ ∈ ∆ with (ϕ(δ), δ̄)I

(0)
R R. By

definition of I
(0)
R , we know that then

E

R.
d

C must be in ϕ(δ). So, this gives us

⋃

(ϕ(δ),δ̄)I
(i)
R

R

Pfin(δ̄) ⊆ {C |

E

R.
l

C ∈ ϕ(δ)}.

Thus, also the second condition is fulfilled.

By the two equalities shown above, we can conclude that ϕ(δ) ∈ ∆(i+1).

Fact II can be shown in the following way: Let δ ∈ ∆̃ and C ∈ FLE . Then we know that δ |= C if

and only if δ |=
d

n(C) due to Theorem 2.8. Obviously, this is the case exactly if δ |= n(C) which

(since n(C) ⊆ FLEnorm and by the definition of ϕ) coincides with n(C) ⊆ ϕ(δ). Lemma 3.8 and

Fact I of this theorem yield the equivalence to ϕ(δ) |= n(C) in the standard model. This means

ϕ(δ) |=
d

n(C) and is equivalent to ϕ(δ) |= C. Since the argumentation works in both directions,

the equivalence has been shown.

Fact III is an immediate consequence of (*) as stated above, since we now know that ϕ(δ) ∈ ∆ for

all δ ∈ ∆̃. ❑

A nice consequence of the preceding theorem is the fact that in order to decide

whether a set of cumulated clauses entails another cumulated clause, one just has

to take a look on the according standard model. This is formally specified in the

following theorem.

Theorem 3.11 Let K be a set of cumulated clauses on FLEnorm and let k be a

cumulated clause. Then

K |= k ⇐⇒
−→
K(K) |= k.

Proof:

“=⇒”:

K |= k by definition means that every binary power context family respecting all cumulated clauses

also respects k. So, this in particular holds for
−→
K(K).

“⇐=”:

Assume the contrary, i.e., there were a binary power context family
−→
K with

−→
K |= K but

−→
K 6|= k.

However, this would imply that there is a δ in the universe of
−→
K such that {C | δ ∈ [[C]]−→

K
} does

not respect k. Using the preceding Theorem 3.10, we get that for the standard model entity ϕ(δ)

the concept description set {C | ϕ(δ) ∈ [[C]]−→
K (K)

} does not respect k either and therefore conclude
−→
K(K) 6|= k. This contradicts our assumption. ❑
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3.1.4 Realization Trees

Now, we will show that every cumulated clause k valid in the standard model can

be derived from K by using DR. This will be done in several steps:

First, we define a tree structure that – starting from a given set A ⊆ FLEnorm –

represents all “branching possibilities” of extending A in order to make it respect

all cumulated clauses derivable from K. The basic idea of this construction thus

resembles that of early tableau methods, originally used for deciding satisfiability

in propositional logic (see [Be59] and [Sm68]) and also applied to modal logics

(see [Kri63]). However, while finiteness of the tableau is essential for decidability

problems, in our case the structure will be infinite in general.

Definition 3.12 Given a set K of cumulated clauses and a set A ⊆ FLEnorm,

we call a structure TK

A = (N, r,≺, ǫ) realization tree of A if

• N is an arbitrary set (the elements of N will be called nodes),

r ∈ N (r will also be called the root),

≺⊆ N × N (≺ will be called the successor relation), and

ǫ is a function N → P(FLEnorm),

• (N,≺) is a tree with root r,

• ǫ(r) = A,

• a node ν ∈ N has successors (i.e., ν≺ := {ν̃ | ν ≺ ν̃} is nonempty), if

and only if ǫ(ν) does not respect all cumulated clauses from DR(K). In this

case, there is a cumulated clause k = B ⊸ {C1, . . . , Cn} ∈ DR(K) (called

witnessing clause of ν) with

◆ B ⊆ ǫ(ν) and Ci 6⊆ ǫ(ν) for some i ∈ {1 . . . , n} (i.e., ǫ(ν) does not

respect k),

◆ k is minimal with respect to the greatest role depth in C1, . . . , Cn, and

◆ among those cumulated clauses fulfilling the two conditions above, k’s

conclusion is minimal with respect to set inclusion,

such that ν≺ = {ν1, . . . , νn} with ǫ(νi) = ǫ(ν) ∪ Ci.

Given such a realization tree, we call
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• (νi)i∈{0,...,k} a finite path if νi ≺ νi+1 for all 0 ≤ i < k and νk has no

successors,

• (νi)i∈N an infinite path if νi ≺ νi+1 for all i ∈ N,

• a (finite ore infinite) path (νi) complete if ν0 = r,

• A ⊆ FLEnorm a leaf if A = ǫ(ν) for a ν ∈ Ñ that has no successors,

• A ⊆ FLEnorm a pseudoleaf if we have A =
⋃

i∈N
ǫ(νi) for some infinite

complete path (ni)i∈N, and

• A ⊆ FLEnorm a quasileaf if it is a leaf or pseudoleaf.

❑

Next, we define the term covering of a realization tree, being a transversal of all

complete paths in this tree.

Definition 3.13 Given a realization tree T = (N, r,≺, ǫ), a node set Ñ ⊆ N

will be called covering of T if every (finite or infinite) complete path r = ν0 ≺

ν1 ≺ . . . contains (at least) one element from Ñ . ❑

Using the fact that a realization tree is finitely branching, we can show that every

arbitrary covering contains a finite one.

Lemma 3.14 For every covering Ñ of a realization tree, there exists a finite

covering Nfin ⊆ Ñ .

Proof:

We let Nfin contain the minimal nodes from Ñ , i.e., all nodes ν fulfilling the condition that for the

path r = ν0 ≺ ν1 ≺ . . . ≺ νk ≺ ν (the uniqueness of which is assured by the tree structure), we

have ν0, ν1, . . . , νk 6∈ Ñ . We have to prove two propositions:

1. Nfin is a covering and

2. Nfin is finite.

1. Consider an arbitrary path r = ν0 ≺ ν1 ≺ . . . and suppose no node on it is in Nfin . But,

due to the assumption, it contains at least one node from Ñ . Now, the minimal one (in the

sense described above) of the nodes from Ñ lying on the path has to be in Nfin . This gives

a contradiction.
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2. For a ν ∈ N , let Nfin
ν be the set of all nodes from Nfin lying on paths going through ν.

Now suppose Nfin is infinite. Then we construct an infinite complete path ν0 ≺ ν1 ≺ . . . as

follows:

We start with ν0 = r. Note that Nfin
ν0

is infinite (since it is equal to Nfin).

For each νi (where we can presuppose that Nfin
νi

is infinite - therefore, νi must have successors

and cannot be in Nfin itself due to the definition of the latter via minimality), we consider

all successors. Since there are only finitely many (due to the definition every realization tree

is finitely branching), there must be (at least) one of them (say: ν̃) for which Nfin

ν̃ is infinite.

Then we set νi+1 := ν̃.

The path constructed in this way does not contain any element from Nfin . But, as we just

have proven in (1), Nfin is a covering. So, we have a contradiction.

❑

In the sequel, we will show that for any cumulated clause “readable” from a

realization tree endowed with a covering, we can construct a corresponding DR

proof tree.

Lemma 3.15 Let A ⊆ FLEnorm and let TK

A be a realization tree of A. Let fur-

thermore Ñ ⊆ N be a covering of TK

A.

Let now C1, . . . , Cn ⊆ FLEnorm be finite sets such that for every ν ∈ Ñ , there is

an i ∈ {1 . . . n} with Ci ⊆ ǫ(ν).

Then there is a finite B ⊆ A such that K ⊢ B ⊸ {C1, . . . , Cn}.

Proof:

W.l.o.g., we can assume Ñ to be finite due to Lemma 3.14.

We will prove the proposition by showing that for any node ν ∈ N where there is no ν̃ ∈ Ñ on the

path from r to ν, there is a finite Bν ⊆ ǫ(ν) such that Bν ⊸ {C1, . . . , Cn} is DR-derivable. (For

ν = r then follows the claimed result.)

(Note that every path starting from such a ν must contain an element from Ñ , for otherwise we

could construct a path starting from r and containing no element from Ñ , which would contradict

the precondition.)

Consider all paths starting from such a ν. For every such path ν = ν0 ≺ ν1 ≺ . . ., we can determine

the smallest index i such that νi ∈ Ñ . Among those path-wise smallest indices (there can be only

finitely many due to the finiteness of Ñ), we select the greatest one, call it the type of ν, and

denote it by τ(ν).

We will prove the proposition by induction over the type of the considered nodes.

• Induction anchor: τ(ν) = 0.

Then we have ν ∈ Ñ and thus Ck ⊆ ǫ(ν) for some k ∈ {1, . . . , n}. Clearly, K ⊢ Ck ⊸ {Ck}

due to the identity rule. By (n − 1)fold application of conclusion extension, we can derive

K ⊢ Ck ⊸ {C1, . . . , Cn}. Thus, we have found an appropriate Bν , namely Bν := Ck.
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• Induction step: τ(ν) > 0.

Then we have ν 6∈ Ñ and all successors ν1, . . . , νk of ν are of type less than τ(ν). Thus for

every νi holds by induction hypothesis that there is a finite Bνi
⊆ ǫ(νi) with K ⊢ Bνi

⊸

{C1, . . . , Cn}.

Let now be D ⊸ {E1, . . . , Ek} the witnessing clause of ν (and therefore in particular derivable

from K). Then we know that D ⊆ ǫ(ν) and ǫ(νi) = ǫ(ν) ∪ Ei for all i ∈ {1, . . . , k}. Now,

we can do the following for all νi:

We define B̃νi
:= Bνi

∩ ǫ(ν). Then the cumulated clause B̃νi
∪ Ei ⊸ {C1, . . . , Cn} is either

equal to Bνi
⊸ {C1, . . . , Cn} or can be derived from it by applying the cumulated premise

extension rule. Then we can derive (with setting B̃ :=
⋃

1≤j≤k B̃νj
):

B̃νi
∪ Ei ⊸ {C1, . . . , Cn}

B̃νi
∪ D ∪ Ei ⊸ {C1, . . . , Cn}

PE*

B̃ ∪ D ∪ Ei ⊸ {C1, . . . , Cn}
PE*

Using those clauses, we can do the following derivation (remember that the derivability of

D ⊸ {E1, ..., Ek} can be presumed, as it is a witnessing clause):

D ⊸ {E1, ..., Ek}

B̃ ∪ D ⊸ {E1, ..., Ek}
PE*

B̃ ∪ D ∪ E1 ⊸ {C1, ..., Cn}

B̃ ∪ D ⊸ {C1, ..., Cn, E2, ..., Ek}
...

B̃ ∪ D ⊸ {C1, ..., Cn, Ek}
SUB

SUB

SUB

B̃ ∪ D ∪ Ek ⊸ {C1, ..., Cn}

B̃ ∪ D ⊸ {C1, ..., Cn}
SUB

So, we have K ⊢ B̃ ∪D ⊸ {C1, . . . , Cn}. But by construction, B̃ ∪D is a subset of ǫ(ν) and

(as a union of finitely many finite sets) also finite. So, we can set Bν := B̃ ∪ D and we are

done.

❑

In the next lemma, we prove that any quasilieaf of a realization tree respects all

clauses from DR(K). The proof idea therein is to show that any such cumulated

clause – if not respected “by accident” – will sooner or later become a witnessing

clause in any path.

After this, we show that if A does not imply ⊥, none of the realization tree nodes

does contain it either.

Lemma 3.16 Let K be a set of cumulated clauses, A ⊆ FLEnorm and let TK

A =

(N, r,≺, ǫ) be a corresponding realization tree. Then for every quasileaf Q of TK

A,

we have that Q respects all clauses from DR(K).
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Proof:

Let Q be the quasileaf and k ∈ DR(K). We distinguish two cases:

• Q is a leaf with corresponding node ν. Suppose Q does not respect k. Then either k fulfills the

minimality conditions from the definition or there is a “smaller” k̃ ∈ DR(K) that does. Thus,

we have found a possible witnessing clause, which by definition forces ν to have successors.

This contradicts our assumption.

• Q is a pseudoleaf with corresponding path p := (νi)i∈N. Suppose Q does not respect k. Let

k be the maximal role depth occurring in k. Now, we set Q̃ = Q∩FLEnorm
k . We know that

Q̃ is finite, since FLEnorm
k is finite (see Remark 2.6). Thus, there must exist a node νi in

p, such that Q̃ ⊆ ǫ(νi). Since νi is contained in an infinite path, it must have successors.

But then, it has a witnessing clause k̃ = A ⊸ {B1, . . . ,Bn}. Let Bj be the set from the

conclusion for which ǫ(νi+1) = ǫ(νi) ∪ Bj .

The maximal role depth of Bj must be greater than k, since otherwise we had Bj ⊆ Q̃ ⊆ ǫ(νi)

and thus, k̃ would already be respected by ǫ(νi), hence, it could not be a witnessing clause.

Therefore, the maximal role depth of k̃’s whole conclusion is greater than k. But then, k̃ is

not minimal as demanded in the definition, since the maximal role depth of k’s conclusion

is less or equal k and thus definitely smaller. So, we have found a contradiction to the

assumption that there is a k ∈ DR(K) not respected by Q.

❑

Definition 3.17 Let K be a set of cumulated clauses. A set A ⊆ FLEnorm will

be called consistent with respect to K if there is no finite set A∗ ⊆ A such that

K ⊢ A∗ ⊸ {{⊥}}. ❑

Lemma 3.18 Let K be a set of cumulated clauses and A ⊆ FLEnorm be consistent

with respect to K. For any realization tree TK

A = (N, r,≺, ǫ) of A holds that ǫ(ν)

is consistent for all ν ∈ N .

Proof:

Assume the contrary.

By assumption, we have consistency of ǫ(r). So, if inconsistent nodes ν of TK

A exist, there must be

some among them, the predecessor ν̃ of which is still consistent. Assume ν to be such a minimal

inconsistent node. Now, let k = B ⊸ {C1, . . . , Cn} be the witnessing clause of ν̃.

First, note that K ⊢ Ci ⊸ {{⊥}} can not be true for all 1 ≤ i ≤ n, since otherwise, we could derive

B ⊸ {C1, . . . , Cn} C1 ⊸ {{⊥}}

B ⊸ {C1, . . . , Cn−1, {⊥}}
SUB*

...

B ⊸ {Cn, {⊥}} Cn ⊸ {{⊥}}

B ⊸ {{⊥}}
SUB*
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contradicting the assumption that ν is a minimal inconsistent node. So, there must at least be one

1 ≤ i ≤ n such that Ci ⊸ {{⊥}} is not valid. W.l.o.g., we assume i = 1.

Now, let Cn be the set with ǫ(ν) = ǫ(ν̃) ∪ Cn. So, due to our assumption, we have

K ⊢ B ⊸ {C1, . . . , Cn}

as well as

K ⊢ D ∪ Cn ⊸ {{⊥}}

for a finite D ∈ ǫ(ν̃).

Then we can do the following derivation:

B ⊸ {C1, . . . , Cn}

D ∪ B ⊸ {C1, . . . , Cn}
PE*

D ∪ Cn ⊸ {{⊥}}

D ∪ B ∪ Cn ⊸ {{⊥}}
PE*

D ∪ B ⊸ {C1, . . . , Cn−1, {⊥}}
SUB

{⊥} ⊸ {C1}
CONT*

D ∪ B ⊸ {C1, . . . , Cn−1}
SUB*

Yet, the maximal role depth of the conclusion of this new cumulated clause k̃ (the derivability of

which has just been shown) is less or equal to that of k and furthermore, k̃’s conclusion is contained

in that of k. Therefore, k cannot be the witnessing clause of ν̃ since the minimality conditions are

violated. So, we have a contradiction to the prior assumption. ❑

3.1.5 Completeness

Exploiting the two preceding propositions, we now show that any quasileaf of a

realization tree with consistent root is an entity of the corresponding standard

model. The basic idea of this proof is to show that any such quasileaf “survives”

all iterations done in the standard model construction.

Furthermore, we show that any standard model entity has a quasileaf as a subset

as well.

Lemma 3.19 Let K be a set of cumulated clauses and A ⊆ FLEnorm consistent,

let TK

A = (N, r,≺, ǫ) be a corresponding realization tree and
−→
K(K) the correspon-

ding standard model. Then the following two statements hold:

1. for all quasileafs Q of TK

A, we have Q ∈ ∆ and

2. for all δ ∈ ∆ containing A and being minimal with respect to set inclusion,

there is a quasileaf Q of TK

A with Q = δ.

Proof:

(1):

We will prove inductively that Q ∈ ∆(n) for all n ∈ N.
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Induction anchor: n = 0.

Obviously, Q ∈ ∆(0), since Q respects DR(K) (due to Lemma 3.16) and thus in particular K.

Additionally, we know that Q is consistent (and therefore in particular ⊥ 6∈ Q) due to Lemma 3.18.

Induction step: n > 0.

Considering Q, we have to show that

{C |

E

R.C ∈ Q} =
⋃

{Pfin(δ̃) | (Q, δ̃)I
(n−1)
R R} (*)

and

{C |

A

R.C ∈ Q} =
⋂

{δ̃ | (Q, δ̃)I
(n−1)
R R} (**)

(*):

”⊇” Let C be a finite subset of an R-neighbor δ̃ of Q in
−→
K (n−1). Since by construction we have

I
(n−1)
R ⊆ I

(0)
R , we also know that (Q, δ̃)I

(0)
R R. But in view of the definition of I

(0)
R , we know

that

E

R.
d

C has to be in Q.

”⊆” By induction hypothesis, we can assume that Q ∈ ∆(n−1). Let

E

R.
d

C ∈ Q. We now have

to show that (in
−→
K (n−1)) there is an R-neighbor of Q containing C. Suppose there is no

such successor. (+)

We set C̃ := C ∪{D |

A

R.D ∈ Q}. C̃ is consistent because otherwise, Q would be inconsistent

as the derivation

C̃ ⊸ {{⊥}}

[

E

R]C̃ ⊸ {{⊥}}
EL

[

E

R]C ∪ [

A

R]{D |

A

R.D ∈ Q} ⊸ {[

E

R]C̃}
AP*

[
E

R]C ∪ [
A

R]{D |
A

R.D ∈ Q} ⊸ {{⊥}}
SUB*

immediately shows.

Now consider a realization tree TK

C̃
of C̃ (whose quasileafs are all in ∆(n−1) by induction

hypothesis). Due to the assumption (+), no quasileaf of TK

C̃
is an R-neighbor of Q in

−→
K (n−1)

(since each of them contains C). But then (due to the definition of I
(n−1)
R ) no quasileaf of

TK

C̃
is an R-neighbor of Q in

−→
K (0). So each of these TK

C̃
-quasileafs must contradict one of

the conditions for being an R-neighbor of Q in
−→
K (0). Obviously, every quasileaf Q̃ of TK

C̃

fulfills the condition that C ∈ Q̃ for all

A

R.C ∈ Q, since already C̃ contains all such C. So, to

fulfill our assumption (+), every TK

C̃
-quasileaf Q̃ must violate the other condition: it has to

contain a finite set D
Q̃
∈ FLEnorm such that

E

R.
d

D
Q̃
6∈ Q. (++)

For every TK

C̃
-quasileaf Q̃, we find a node νp on each of its generating paths p with D

Q̃
⊆

ǫ(νp). Taking for all quasileafs Q̃ these nodes νp, we have found a covering N∗ of TK

C̃
. Due

to Lemma 3.14, we then also find a finite covering Ñ ⊆ N∗. For every ν̃ ∈ Ñ , we choose an

arbitrary path p̃ containing ν̃. Let p̃ generate Q̃. Now, we again assign a finite FLE subset

Dν̃ to each ν̃ by Dν̃ := D
Q̃

.

Now, let

{D1, . . . ,Dk} := {Dν̃ | ν̃ ∈ Ñ}.

Using Lemma 3.15, it follows

K ⊢ C∗
⊸ {D1, . . . ,Dk}
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for a finite C∗ ⊆ C̃.

Now, we can carry out the following derivation:

[

E

R]C ∪ [

A

R](C∗ \ C) ⊸ {[

E

R]C∗}
AP*

C∗
⊸ {D1, . . . ,Dk}

[

E

R]C∗
⊸ {[

E

R]D1, . . . , [

E

R]Dk}
EL

[

E

R]C ∪ [

A

R](C∗ \ C) ⊸ {[

E

R]D1, . . . , [

E

R]Dk}
SUB*

Due to the construction of C and C∗, Q contains the premise of this cumulated clause.

Furthermore, we know from Lemma 3.16 that Q has to respect all clauses from DR(K). So,

Q has to contain one element from {[

E

R]D1, . . . , [

E

R]Dk} which contradicts the way they

have been chosen in (++).

So, our prior assumption (+) must be false.

(**):

”⊆” Let C be a concept description for which

A

R.C ∈ Q. By definition of I
(0)
R , we know that

this implies C ∈ δ̃ if (Q, δ̃)I
(0)
R R. So, we also know that C ∈

⋂
{δ̃ | (Q, δ̃)I

(0)
R R}. From

I
(n−1)
R ⊆ I

(0)
R , we can conclude that

⋂
{δ̃ | (Q, δ̃)I

(0)
R R} ⊆

⋂
{δ̃ | (Q, δ̃)I

(n−1)
R R} and

therefore C ∈
⋂
{δ̃ | (Q, δ̃)I

(n−1)
R R}.

”⊇” Let C ∈
⋂
{δ̃ | (Q, δ̃)I

(n−1)
R R}. We have to show that

A

R.C ∈ Q.

Assume the contrary, i.e.,

A

R.C 6∈ Q. Let C := {D |

A

R.D ∈ Q}. If C were inconsistent, we

could immediately construct a contradiction by deriving

C ⊸ {{⊥}}

[

A

R]C ⊸ {{

A

R.⊥}}
AL

{⊥} ⊸ {{C}}
CONT

{

A

R.⊥} ⊸ {{

A

R.C}}
AL

[

A

R]C ∪ {

A

R.⊥} ⊸ {{

A

R.C}}
PE*

[

A

R]C ⊸ {{

A

R.C}}
SUB

which would force Q to contain

A

R.C. So, C has to be consistent.

Now, consider a realization tree TK

C of C (remember that by induction hypothesis, all its

quasileafs are in ∆(n−1)). We assign to each TK

C -quasileaf Q̃ a finite concept description set

D
Q̃
⊆ Q̃ in the following way:

◆ For each quasileaf Q̃ with (Q, Q̃)I
(n−1)
R R, we set D

Q̃
:= {C} (this is correct, since C

is contained in every R-neighbor of Q in
−→
K (n−1)).

◆ If a quasileaf Q̃ is not an R-neighbor of Q in
−→
K (n−1), it cannot be an R-neighbor of Q in

−→
K (0) as well. Hence, it must violate one of the two conditions in the definition of I

(0)
R .

Obviously, every quasileaf Q̃ of TK

C fulfills the condition that C ∈ Q̃ for all

A

R.C ∈ Q,

since already C contains all such C. So, the second condition must be violated and

thus there has to be a finite concept description set E ⊆ Q̃ with

E

R.
d

E 6∈ Q. Then

we set D
Q̃

:= E .

Now, since all those assigned concept description sets are finite, we find on every generating

path p of a quasileaf Q̃ a node νp for which already holds D
Q̃
⊆ ǫ(νp). Collecting all those

nodes, we get a covering N∗ of TK

C . Due to Lemma 3.14, we find a finite covering Ñ ⊆ N∗.
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For every ν̃ ∈ Ñ , we choose an arbitrary path p̃ containing ν̃. Let p̃ generate Q̃. Now, we

again assign a finite FLE subset Dν̃ to each ν̃ by Dν̃ := D
Q̃

Now, let

{D1, . . . ,Dk} := {Dν̃ | ν̃ ∈ Ñ}.

By using Lemma 3.15, it follows

K ⊢ C∗
⊸ {D1, . . . ,Dk}

for a finite C∗ ⊆ C. If {C} is not yet contained in {D1, . . . ,Dk}, we may easily include it by

one application of the conclusion extension rule. So, we get

K ⊢ C∗
⊸ {{C}, E1, . . . , Ej}

with

E

R.
d

Ei 6∈ Q (as the Ei have been chosen).

But now, a single application of the

A

-lifting rule yields

K ⊢ [

A

R]C∗
⊸ {{

A

R.C}, [

E

R]E1, . . . , [

E

R]Ej}.

Since Q as a quasileaf of TK

A has to respect all cumulated clauses of DR(K) (due to Lemma

3.16) and we have [

A

R]C∗ ⊆ Q by construction, Q has to contain either

A

R.C (which

contradicts our first assumption) or one [

E

R]Ei which contradicts the choice of the Ei. So

our assumption

A

R.C 6∈ Q must be false.

(2)

Since we know that ǫ(r) = A, we also know ǫ(r) ⊆ δ.

Now, we construct a complete path r = ν0 ≺ ν1 ≺ . . . in TK

A in the following way: If νi has no

successors, we are done and have constructed a complete finite path. Otherwise, we select the node

νi+1 as follows: We presuppose that for a νi we have ǫ(νi) ⊆ δ. Considering the witnessing clause

k = B ⊸ {C1, . . . , Cn} of νi in TK

A , we know that δ must respect k due to the soundness of DR.

Furthermore, Lemma 3.8 assures the correspondence of (syntactic) containment and (semantic)

validity of FLEnorm concept descriptions in the standard model. Hence, since the premise of the

witnessing clause is contained in ǫ(νi) which in turn is a subset of δ, we have δ |= B and therefore

we have δ |= Ck for some k ∈ {1, . . . , n}. Now, we choose νi+1 such that ǫ(νi+1) = ǫ(νi) ∪ Ck,

thereby assuring ǫ(νi+1) ⊆ δ.

Let Q be the quasileaf generated by the (finite or infinite) complete path ν0 ≺ ν1 ≺ . . .. Due to

the first part of this theorem, we know that Q ∈ ∆. By construction, we also know that A ⊆ Q

as well as Q ⊆ δ. However, since δ is minimal with respect to set inclusion by assumption, we can

conclude Q = δ. ❑

Having established this correspondence between the standard model and real-

ization trees, it is not difficult to prove that any cumulated clause valid in the

standard model is DR-derivable, which (as the subsequent corollary shows) gives

us the completeness of DR.

Theorem 3.20 Let K be a set of cumulated clauses and let k be a cumulated

clause. Then,
−→
K(K) |= k =⇒ K ⊢ k.
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Proof:

Let k = A ⊸ {B1, . . . ,Bn}. Consider a realization tree TK

A of A. From Theorem 3.19, we know

that for each quasileaf Q of TK

A holds Q ∈ ∆. From A ⊆ Q and using Lemma 3.16, we can conclude

Bi ⊆ Q for some i ∈ {1, . . . , n}.

Since all Bi are finite, we find on every complete path a node ν for which already holds Bi ⊆ ǫ(ν)

for some Bi. This means that we have found a covering N∗ of TK

A , that due to Lemma 3.14 can be

minimized to a finite covering Ñ ⊆ N∗. In view of Lemma 3.15 we then get K ⊢ A∗ ⊸ {B1, . . . ,Bn}

for some A∗ ⊆ A and consequently by cumulated premise extension K ⊢ A ⊸ {B1, . . . ,Bn}. ❑

Corollary 3.21 The deduction calculus DR for cumulated clauses on FLEnorm

is sound and complete.

Proof:

Soundness has been shown by Theorem 3.4. Completeness also follows directly from the preceding

theorem: If a cumulated clause k is valid in all power context families that respect a set K of

cumulated clauses, it is in particular valid in
−→
K(K). But then it is derivable. ❑

3.2 A Decision Procedure

In this section, we describe a way to decide whether a cumulated clause on

FLEnorm is a semantic consequence of a finite set of cumulated clauses. This

will be done by the construction of a “finite version” of the standard model

where the maximal role depth of the involved concept descriptions is restricted.

Hence, this model can be computed in finitely many steps.

Definition 3.22 Let K be a set of cumulated clauses on FLEnorm
k with k ∈ N.

The k-limited standard model
−→
K k(K) is the binary power context family

−→
Kk(K) = (KC, KR) = ((∆,MC, IC), (∆ × ∆,MR, IR)) defined as follows:

• First, we set
−→
K (0)(K) = ((∆(0),MC, I

(0)
C ), (∆(0) × ∆(0),MR, I

(0)
R )) with

◆ ∆(0) := {N ⊆ FLEnorm
k | N respects all k ∈ K,⊥ 6∈ N},

◆ δI
(0)
C C :⇔ C ∈ δ,

◆ (δ1, δ2)I
(0)
R R :⇔

E

R.
d
C ∈ δ1 for all C ⊆ δ2 ∩ FLEnorm

k−1 and

C ∈ δ2 for all

A

R.C ∈ δ1.

• From
−→
K

(n)
k (K), we determine

−→
K

(n+1)
k (K) by
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◆ ∆(n+1) :=
{

δ ∈ ∆(n) | {C |

A

R.C ∈ δ} = FLEnorm
k−1 ∩

⋂
(δ,δ̃)I

(n)
R

R
δ̃ and

{C |

E

R.
d
C ∈ δ} =

⋃
(δ,δ̃)I

(n)
R

R
P(δ̃ ∩ FLEnorm

k−1 )

for all R ∈ MR

}
,

◆ I
(n+1)
C := I

(0)
C ∩ ∆(n+1) × MC,

◆ I
(n+1)
R := I

(0)
R ∩ (∆(n+1) × ∆(n+1)) × MR.

• Now, we set

◆ ∆ :=
⋂

i∈N
∆(i),

◆ IC := I
(0)
C ∩ ∆ × MC, and

◆ IR := I
(0)
R ∩ ∆2 × MR.

❑

Note that due to the finiteness of ∆(0), the fact ∆(0) ⊇ ∆(1) ⊇ ∆(2) ⊇ . . ., and

knowing that from ∆(i) = ∆(i+1) directly follows ∆(i) = ∆(j) for any j ≥ i, we

know that

• ∆ = ∆(i) for some i as well as

• computing the sequence ∆(0), ∆(1), ∆(2), . . ., it can be decided when this i

has been reached.

This ensures that
−→
K k(K) is computable.

Lemma 3.23 Let K be a set of cumulated clauses on FLEnorm
k and

−→
K k(K) the

corresponding k-limited standard model. Then, we have for every D ∈ FLEnorm
k

and every δ ∈ ∆

D ∈ δ ⇐⇒ δ |= D.

Proof:

Obviously, for every δ ∈ ∆ from
−→
K(K) holds:

{C |

E

R.
l

C ∈ δ} =
⋃

{P(δ̃ ∩ FLEnorm
k−1 ) | (δ, δ̃)IRR} (*)

as well as

{C |

A

R.C ∈ δ} = FLEnorm
k−1 ∩

⋂
{δ̃ | (δ, δ̃)IRR}. (**)

We do now an induction over the maximal role depth of a concept description D:
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• Induction anchor: D ∈ FLEnorm
0 .

Then we have either D ∈ MC or D = ⊥. In the first case, we have D ∈ δ if and only if δICD

by definition of the standard model. In view of the semantics definition, this is equivalent to

δ |= D.

Considering the second case, we find that ⊥ ∈ δ does not occur (due to the explicit exclusion

of entities containing ⊥ in the standard model definition) as well as δ |= ⊥ is never the case

since [[⊥]]−→
K

= ∅. So, those both statements are trivially equivalent.

• Induction step: D ∈ FLEnorm
n , 0 < n ≤ k.

Again, we have to distinguish two cases.

First, assume D =

E

R.
d

D with D ⊆ FLEnorm
n−1 . Then, the statement

E

R.
d

D ∈ δ is

obviously equivalent to

D ∈ {C |

E

R.
l

C ∈ δ}

and this - because of (*) - to

D ∈
⋃

{P(δ̃ ∩ FLEnorm
k−1 ) | (δ, δ̃)IRR}.

So, we know that there exists an R-neighbor δ̃ of δ, which contains all concept descriptions

from D. Since D ⊆ FLEnorm
n−1 , we see by induction hypothesis that this is the case exactly if

δ̃ |= E for all E ∈ D. Subsequently, this is equivalent to

∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈
⋂

E∈D

[[E]]−→
K

and this (by the semantics definition) to

∃δ̃ : (δ, δ̃)IRR ∧ δ̃ ∈ [[
l

D]]−→
K

and finally to

δ ∈ [[

E

R.
l

D]]−→
K

which means just δ |=

E

R.
d

D.

It remains to consider the case D =

A

R.E with E ∈ FLEnorm
n−1 . Then,

A

R.E ∈ δ can be written

as

E ∈ {C |

A

R.C ∈ δ}

which is due to (**) equivalent to

E ∈
⋂

{δ̃ | (δ, δ̃)IRR}.

Therefore knowing that all R-neighbors of δ contain E (which is an element of FLEnorm
n−1 ), we

conclude by the induction hypothesis that this is equivalent to

∀δ̃ : (δ, δ̃)IRR → δ̃ ∈ [[E]]−→
K

and by the semantics definition to

δ ∈ [[

A

R.E]]−→
K

which means just δ |=

A

R.E.

Note that all argumentations work in both directions. So indeed, the equivalence is assured.

❑
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In the sequel, we will show a correspondence between the k-limited standard

model and the standard model from section 3.1.

Theorem 3.24 Let K be a set of cumulated clauses on FLEnorm
k for some k ∈ N.

Let
−→
K(K) = ((∆, IC,MC), (∆

2, IR,MR))

and
−→
K k(K) = ((∆̃, ĨC,MC), (∆̃

2, ĨR,MR)).

Then

∆̃ = {δ ∩ FLEk | δ ∈ ∆}.

Proof:

“⊆”
−→
Kk(K) respects all clauses from K due to the definition of ∆̃ (via ∆̃(0)) and Lemma 3.23. Hence,

Theorem 3.10 is applicable. So, we get for all δ̃ ∈ ∆̃

ϕ(δ̃) ∈ ∆

and therefore also

ϕ(δ̃) ∩ FLEnorm
k ∈ {δ ∩ FLEnorm

k | δ ∈ ∆}.

On the other hand, from the definition of ϕ and Lemma 3.23, it follows

ϕ(δ̃) ∩ FLEnorm
k = {C ∈ FLEnorm

k | δ̃ |= C} = {C ∈ FLEnorm
k | C ∈ δ̃} = δ̃.

This yields

δ̃ ∈ {δ ∩ FLEnorm
k | δ ∈ ∆}.

“⊇”

First, we will show two helpful facts:

• For all δ ∈ ∆, we have δ ∩ FLEnorm
k ∈ ∆̃(0).

By construction, we know that δ has to be in ∆(0). If so, it has to respect all cumulated

clauses from K and must not contain ⊥. Since K is taken from CC(FLEnorm
k ), we can

conclude that the same conditions hold for δ ∩ FLEnorm
k and hence δ ∩ FLEnorm

k ∈ ∆̃(0).

• For all δ, δ̃ ∈ ∆ with (δ, δ̃)IRR, we have (δ ∩ FLEnorm
k , δ̃ ∩ FLEnorm

k )Ĩ
(0)
R R.

From (δ, δ̃)IRR, it follows that

E

R.
d

C ∈ δ for all finite C ⊆ δ̃ as well as C ∈ δ̃ for all

A

R.C ∈ δ by definition. This obviously directly implies

E

R.
d

C ∈ δ ∩ FLEnorm
k for all

C ⊆ δ̃ ∩ FLEnorm
k−1 and C ∈ δ̃ ∩ FLEnorm

k for all

A

R.C ∈ δ ∩ FLEnorm
k . Since we also know

by the preceding fact that δ ∩ FLEnorm
k ∈ ∆̃(0) and δ̃ ∩ FLEnorm

k ∈ ∆̃(0), we can conclude

(δ ∩ FLEnorm
k , δ̃ ∩ FLEnorm

k )Ĩ
(0)
R R.
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Now, we consider the inclusion to show. Assume the contrary, i.e., for a certain δ ∈ ∆, there is

no counterpart in ∆̃ coinciding with δ on FLEnorm
k . However, certainly δ ∩ FLEnorm

k ∈ ∆̃(0), since

δ respects all clauses from K and ⊥ 6∈ δ (these are necessary conditions for δ ∈ ∆ by definition).

Then, δ ∩ FLEnorm
k ∈ ∆̃(h) and δ ∩ FLEnorm

k 6∈ ∆̃(h+1) for some h ∈ N. We consider a δ with

minimal h.

So, we know that {δ̄ ∩FLEnorm
k | δ̄ ∈ ∆} ⊆ ∆̃(h). By the second of the facts shown above and the

definition of Ĩ
(h)
R , we have also (δ ∩ FLEnorm

k , δ̃ ∩ FLEnorm
k )Ĩ

(h)
R R for all δ, δ̃ ∈ ∆ with (δ, δ̃)IRR.

Thus, we can conclude:

{C |

E

R
d

C ∈ δ ∩ FLEnorm
k }

= {C ∩ FLEnorm
k−1 |

E

R
d
C ∈ δ}

=
⋃

(δ,δ̃)IRR
Pfin(δ̃ ∩ FLEnorm

k−1 )

⊆
⋃

(δ,δ̃)Ĩ
(h)
R

R
Pfin(δ̃ ∩ FLEnorm

k−1 )

and by construction of Ĩ
(h)
R via Ĩ

(0)
R ,

⋃

(δ,δ̃)Ĩ
(h)
R

R

Pfin(δ̃ ∩ FLEnorm
k−1 ) ⊆ {C |

E

R

l
C ∈ δ ∩ FLEnorm

k }

as well as

{C |

A

R.C ∈ δ ∩ FLEnorm
k }

=
⋂

(δ,δ̃)IRR
δ̃ ∩ FLEnorm

k−1

⊇
⋂

(δ,δ̃)Ĩ
(h)
R

R
δ̃ ∩ FLEnorm

k−1

and by construction of Ĩ
(h)
R via Ĩ

(0)
R ,

{C |

A

R.C ∈ δ ∩ FLEnorm
k } ⊆

⋂

(δ,δ̃)Ĩ
(h)
R

R

δ̃ ∩ FLEnorm
k−1 .

But then, the facts

{C |

E

R

l
C ∈ δ ∩ FLEnorm

k } =
⋃

(δ,δ̃)Ĩ
(h)
R

R

Pfin(δ̃ ∩ FLEnorm
k−1 )

and

{C |

A

R.C ∈ δ ∩ FLEnorm
k } =

⋂

(δ,δ̃)Ĩ
(h)
R

R

δ̃ ∩ FLEnorm
k−1 .

imply by definition δ ∩ FLEnorm
k ∈ ∆̃(h+1). This contradicts our assumption. ❑

Corollary 3.25 Let K be a set of cumulated clauses on FLEnorm and let k be a

cumulated clause on FLEnorm. Let k ∈ N be a number equal or greater than the

greatest role depth occurring in K ∪ {k}. Then

K |= k ⇐⇒
−→
K k(K) |= k.



3.2 A Decision Procedure 59

Proof:

Let ∆ be the universe of
−→
K(K), let ∆̃ be the universe of

−→
Kk(K), and let k = A ⊸ {B1, . . . , Bk}.

Due to Theorem 3.11, we know that K |= k if and only if
−→
K(K) |= k. By definition, this is equivalent

to the statement A ⊆ {C | δ ∈ [[C]]−→
K (K)

} →
∨

1≤i≤n Bi ⊆ {C | δ ∈ [[C]]−→
K (K)

} for every δ ∈ ∆. From

Theorem 3.8, it follows that A ⊆ δ →
∨

1≤i≤n Bi ⊆ δ for every δ ∈ ∆, and due to Theorem 3.24

and the choice of k, this statement is valid for all δ ∈ ∆̃ as well. Now, from Lemma 3.23 follows

the equivalence to A ⊆ {C | δ ∈ [[C]]−→
K k(K)

} →
∨

1≤i≤n Bi ⊆ {C | δ ∈ [[C]]−→
K k(K)

} for every δ ∈ ∆̃

which by definition just means
−→
Kk(K) |= k. ❑

We are aware that a decision procedure based on the k-limited standard model will

be quite inefficient or even wholly infeasible in practice, at least if implemented

straightforward.

However, we consider this approach nevertheless interesting due to several (the-

oretical and practical) reasons:

• It seems to be “dual” (in an informal sense) to the well known tableau based

decision procedures. Both methods try to construct a model fulfilling all

desired properties. DL tableau algorithms start with what is absolutely

necessary and successively extend the model-to-be by individuals forced to

exist by the descriptions. They end up either with a clash (contradiction)

or a minimal model.

In contrast, the method presented in this section starts with virtually “ev-

erything” and prunes this structure by successively deleting “invalid” enti-

ties until nothing remains (in case of unsatisfiability) or a model is obtained.

The result is the maximal model in the sense elaborated in Theorem 3.10.

• In the scientific field of model checking, there have been achievements in

finding ways to economically specify large entity sets with attributes. One

promising approach are ordered binary decision diagrams (OBDDs) (see

[Br92] for a survey) which have already proven useful in applications (as

comprehensively described in [HR00]) even closely related to modal logic.

If it were possible to encode the k-limited standard model (resp. the in-

termediate structures used to construct it) as OBDD and to find a way

to execute the described construction steps implicitly on this OBBD, the

proposed method could turn out to be not as infeasible for practical cases.

However, this is speculative and according evidence has still to be supplied.

• If the above mentioned problems could be overcome, one advantage of this

approach in comparison to the ad-hoc-construction done in tableau algo-
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rithms is that the model for a fixed set of general concept inclusion axioms

has to be constructed only once (and used for all queries – for a bounded

(and a-priori known) maximal role depth).



Chapter 4

Complete Attribute Exploration

on FLE

In this chapter, we provide the theoretical background for an exploration algo-

rithm on FLE concept descriptions (a similar procedure for EL has been presented

in [Ru03] and the extension to FLE sketched in [Ru04]). The intended purpose is

to accumulate all information about a binary power context family necessary to

decide whether any FLE subsumption statement of a certain maximal role depth

is valid therein. Moreover, this should be done as efficient as possible. In more

detail, we will proceed as follows:

Given a binary power context family and a set of concept descriptions, we define

an FLE-context that mirrors the validity of these concept descriptions for all

entities of the binary power context family. We show that implications in the

FLE-context coincide with
−→
K -subsumption statements in the binary power con-

text family
−→
K . This motivates that attribute exploration on particular FLE-

contexts will be used to achieve the goal depicted above.

We propose to proceed stepwise, i.e., we collect all information expressible by

concept descriptions with role depth of at most i ∈ N and increment i thereafter.

As we will show, this gives the opportunity to reduce the set of attributes of the

context to explore. Additionally, we show how exactly the collected information

(actually consisting only of implications on a rather restricted FLE subset) can

be used to decide an arbitrary FLE subsumption.
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4.1 FLE-Contexts

On the basis of a binary power context family, we can define for an arbitrary

set of FLE concept descriptions a corresponding formal context which states for

every entity from the underlying universe which of the concept descriptions are

valid in it.1

Definition 4.1 Given a binary power context family
−→
K = (KC, KR) on a uni-

verse ∆ and a set M ⊆ FLE(MC,MR), the corresponding FLE-context is

defined in the following way:

KFLE(M) := (∆,M, I) with δIm :⇔ δ ∈ [[m]]−→
K
.

❑

The next theorem shows that implications in FLE-contexts coincide with
−→
K -

subsumption statements on the described binary power context family
−→
K .

Theorem 4.2 Let
−→
K be an arbitrary binary power context family and KFLE(M)

a corresponding FLE-context. Then for C,D ⊆ M , the implication

C_D

holds in KFLE if and only if
l

C ⊑−→
K

l
D.

Proof:

KFLE |= C_D

⇒ ∀δ ∈ ∆ : C ∈ δI → D ∈ δI

⇒ ∀δ ∈ ∆ :
∧

C∈C δIC →
∧

D∈D δID

⇒ ∀δ ∈ ∆ :
∧

C∈C δ ∈ [[C]]−→
K
→

∧
D∈D δ ∈ [[D]]−→

K

⇒ ∀δ ∈ ∆ : δ ∈
⋂

C∈C [[C]]−→
K
→ δ ∈

⋂
D∈D [[D]]−→

K

⇒ ∀δ ∈ ∆ : δ ∈ [[
d

C]]−→
K
→ δ ∈ [[

d
D]]−→

K

⇒ [[
d
C]]−→

K
⊆ [[

d
D]]−→

K

⇒
d
C ⊑−→

K

d
D

❑

1Of course, this kind of contexts can be constructed not only by taking FLE concept de-

scriptions as attributes. In principle, concept descriptions of any description logic can be used

(as it is done for ALC in [Pre00]; also in [Ba95] and [BS04], similar constructions have been

used). However in this work, we focus on FLE and the subsequent results are specific to that

formalism. The possibility of extending the results to more expressive description logics will be

briefly discussed in Section 9.5.
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Remark 4.3 Due to Definition 3.1, we additionally have for any binary power

context family
−→
K with a corresponding FLE-context KFLE(M) and C,D ∈ M

KFLE(M) |= C_D ⇐⇒
−→
K |= C ⊸ {D}

as a trivial consequence. Thus, when discussing semantic entailment in an FLE-

context, we can use appropriate results from Chapter 3.

In the sequel, we will exploit this correspondence in the following way: em-

ploying the FCA exploration method allows us to collect all information about a

(not explicitly given) binary power context family expressible by
−→
K -subsumption

statements on FLE i for a certain role depth i.

In order to achieve this, one could simply explore the context KFLE(FLE i). Yet,

the complexity of the exploration algorithm is exponential with respect to the

number of attributes and a lot of the FLE i concept descriptions are (even univer-

sally) equivalent to the conjunctions of others and therefore dispensable. Thus,

it is essential to see how the set of attributes can be reduced without losing the

above mentioned property.

Theorem 2.8 shows that FLEnorm
i would be such an attribute set: to check C ⊑−→

K

D with C, D ∈ FLE i one would just have to look whether n(C) _ n(D) is valid in

KFLE(FLE
norm
i ).

In the following, we will show that one can do still much better by proceeding

iteratively: Starting with role depth 0, explore an according context, and then

exploit the information gathered so far for defining a reduced set of attributes for

the next context with incremented role depth.

4.2 Empiric Attribute Reduction

Based on a binary power context family, we define a sequence of particular FLE-

contexts. The attribute set of a context in this sequence depends on the impli-

cational theory of the preceding context.
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Definition 4.4 Let
−→
K be a binary power context family. We define the sequence

(Ki) of formal contexts by

M0 := MC ∪ {⊥},

Ki := KFLE(Mi) = (∆,Mi, Ii),

Mi+1 := M0

∪{

A

R.C | R ∈ MR, C ∈ Mi}

∪{

E

R.
d

C | R ∈ MR, C concept intent of Ki,⊥ 6∈ C}

for i ≥ 0

❑

Now, we show a way how the validity of any
−→
K -subsumption statement on FLE i

can be checked by using just the attribute sets (Mi) as well as the corresponding

closure operators (.)IiIi on that sets (which could e.g. be represented by the

according stem bases). First, we will define functions that provide for any FLE i

concept description C a set of attributes C ⊆ Mi such that for any entity δ of the

underlying universe we have δ |= C iff δ |= C.

Definition 4.5 Let
−→
K be a binary power context family and the corresponding

sequences (Mi), (Ki) defined as above. Given the according sequence cl0, . . . , cln

of closure operators (i.e., cli(C) = CIiIi for C ⊆ Mi), we define two sequences of

functions τi : FLE i → P(FLE i) and τ̄i : FLE i → P(FLE i) recursively:

τ̄i(C) = cli(τi(C))

τi(C) = {C} for C ∈ M0

τi(
d
C) =

⋃
{τi(C) | C ∈ C}

τi(

A

R.C) = [

A

R]τ̄i−1(C) = {

A

R.C̃ | C̃ ∈ τ̄i−1(C)}

τi(

E

R.C) = [

E

R]τ̄i−1(C) =

{
{⊥} if ⊥ ∈ τ̄i−1(C),

{

E

R.
d

τ̄i−1(C)} otherwise.

❑

Note that by this definition, we also have τ̄i(⊤) = τ̄i(
d
∅) = cli(∅). Next, we have

to show that the functions just defined behave in the desired way. The following

lemma assures that τ̄i and τi indeed map to Mi.

Lemma 4.6 Suppose C ∈ FLE i. Then we have τi(C) ⊆ Mi and τ̄i(C) ⊆ Mi.
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Proof:

Obviously, τ̄i(C) ⊆ Mi whenever τi(C) ⊆ Mi. We show the latter by induction on the role depth

considering four cases:

• C ∈ MC ∪ {⊥}. Then by definition C ∈ Mi.

• C =

E

R.C̃. If ⊥ ∈ τ̄i−1(C̃), we get τi(

E

R.C̃) = [

E

R]τ̄i−1(C) = [

E

R]Mi−1 = {⊥} ⊆ Mi.

Now suppose ⊥ 6∈ τ̄i−1(C̃). As immediate consequence of the induction hypothesis we

have τ̄i−1(C̃) ⊆ Mi−1. Since τ̄i−1 gives a closed set with respect to cli−1, we have also

E

R.
d

τ̄i−1(C̃) ∈ Mi, as a look to the constructive definition of Mi immediately shows.

Therefore, τi(

E

R.C) = {

E

R.
d

τ̄i−1(C̃)} ⊆ Mi

• C =

A

R.C̃. Again, our induction hypothesis yields τ̄i−1(C̃) ⊆ Mi−1 which implies {

A

R.C̃ |

C̃ ∈ τ̄i−1(C)} ⊆ Mi due to the definition of Mi and therefore also τi(

A

R.C) = {

A

R.C̃ | C̃ ∈

τ̄i−1(C)} ⊆ Mi.

• C =
d
C̃. W.l.o.g., we presuppose that there is no conjunction outside the quantifier range

in any C̃ ∈ C̃. So we have τi(C̃) ⊆ Mi due to the three cases above, and subsequently also

τi(
d

C) =
( ⋃

{τi(C̃) | C ∈ C}
)
⊆ Mi. ❑

The next lemma and theorem show that in our fixed interpretation
−→
K , for any

concept description C ∈ FLE i, the entity sets fulfilling C on the one hand and

τ̄i(C) as well as τi(C) on the other hand coincide.

Lemma 4.7 For any C ⊆ Mi, we have
d

C ≡−→
K

d
cli(C).

Proof:

[[
d
C]]−→

K
=

⋂
{[[C]]−→

K
| C ∈ C} =

⋂
{CIi | C ∈ C} = CIi = CIiIiIi = cli(C)Ii =

⋂
{CIi | C ∈ cli(C)} =⋂

{[[C]]−→
K
| C ∈ cli(C)} = [[

d
cli(C)]]−→

K
. ❑

Theorem 4.8 Let C ∈ FLE i. Then C ≡−→
K

d
τi(C) ≡−→

K

d
τ̄i(C).

Proof:

The second equivalence is a direct consequence of Lemma 4.7. We show the first one again via

induction on the role depth:

• C ∈ MC ∪ {⊥}. Then, we trivially have [[C]]−→
K

= [[
d
{C}]]−→

K
.

• C =

E

R.C̃. By induction hypothesis, we get [[C̃]]−→
K

= [[
d

τ̄i−1(C̃)]]−→
K
, therefore [[

E

R.C̃]]−→
K

=

[[

E

R.
d

τ̄i−1(C̃)]]−→
K

which by definition equals [[
d

τi(

E

R.C̃)]]−→
K
.

• C =

A

R.C̃. Again, by induction hypothesis, we get [[C̃]]−→
K

= [[
d

τ̄i−1(C̃)]]−→
K

=
⋂
{[[D]]−→

K
|

D ∈ τ̄i−1(C̃)}. Now, observe that the statement (δ, δ̃)IRR → δ̃ ∈ [[C̃]]−→
K

is equivalent to∧
D∈τ̄i−1(C̃)

(
(δ, δ̃)IRR → δ̃ ∈ [[D]]−→

K

)
and thus [[

A

R.C̃]]−→
K

= {δ | (δ, δ̃)IRR → δ̃ ∈
⋂
{[[C̃]]−→

K
}} =

{δ |
∧

D∈τ̄i−1(C̃)
δ ∈ [[

A

R.D]]−→
K
} =

⋂
{[[

A

R.D]]−→
K
| D ∈ τ̄i−1(C̃)} = [[

d
{

A

R.D | D ∈ τ̄i−1(C̃)}]]−→
K

which by definition is just [[
d

τi(

A

R.C)]]−→
K
.
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• C =
d
C̃. Again, we can presume no conjunction outside the quantifier range in any C̃ ∈ C̃.

Then [[
d

C̃]]−→
K

=
⋂
{[[C̃]]−→

K
| C̃ ∈ C̃} =

⋂
{[[

d
τi(C̃)]]−→

K
| C̃ ∈ C̃} because of the cases shown

before. Now, this is obviously the same as
⋂
{[[D]]−→

K
| D ∈ τ̄i(C̃), C̃ ∈ C̃} = [[

d
(
⋃
{τ̄i(C̃) | C̃ ∈

C̃})]]−→
K

= τi(
d

C̃). ❑

Using these propositions, we can easily provide a method to check – using only

the closure operators cl0, . . . , cli – the validity of any
−→
K -subsumption statement

on FLE i with respect to a fixed (but not explicitly known) binary power context

family
−→
K . It suffices to apply τ̄i on both sides and then check for inclusion.

Corollary 4.9 Let C1, C2 ∈ FLE i. Then C1 ⊑−→
K
C2 if and only if τ̄i(C2) ⊆ τ̄i(C1).

Proof:

Due to Theorem 4.8, C1 ⊑−→
K
C2 is equivalent to

d
τ̄i(C1) ⊑−→

K

d
τ̄i(C2). According to Lemma 4.6, we

have τ̄i(C1) ⊆ Mi and τ̄i(C2) ⊆ Mi. In view of Theorem 4.2, this means the same as the validity

of the implication τ̄i(C1)_ τ̄i(C2) in Ki. Now, since the application of τ̄ always gives a closed set

with respect to Ki, this is equivalent to τ̄i(C2) ⊆ τ̄i(C1). ❑

Finally, consider the function τi from Definition 4.5. It is easy to see that for any

C ∈ Mi−1 by calculating τi(C) we get a singleton set {D} with D ∈ Mi. We then

have even C ≡−→
K
D. For the sake of readability we will just write D = (C)i. Roughly

spoken, D is just the “equivalent Mi-version” of C. Note that evaluating τi does

not need the closure operator cli but only cl0, . . . , cli−1.

4.3 Directly Derivable Implications

Aiming at a stepwise exploration process proceeding from role depth i to role

depth i + 1, we are now interested in which implications valid in Ki+1 can be

directly derived from those holding in Ki.

Lemma 4.10 Let
−→
K be a binary power context family, R ∈ MR, A1,A2,A,B ⊆

Mi, A = A1 ∪ A2, and let A_B be an implication that holds in Ki. Then the

following implications are valid in Ki+1:

1. {⊥}_Mi+1

2. {(A)i+1 | A ∈ A}_{(B)i+1 | B ∈ B}

3. [

E

R]cli(A)_ [

E

R]cli(B)

4. [

A

R]A_ [

A

R]B

5. [

A

R]A1 ∪ [

E

R]cli(A2)_ [

E

R]cli(B)
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Proof:

That all concept descriptions used in this description are in Mi is assured by their construction

(cf. Definition 4.4).

The soundness of (1) can be seen as an immediate consequence of the cumulated contradiction rule

in DR (see Lemma 3.5).

(2) is just the repetition of already known implications in terms of the new attribute set. Formally, it

can be justified as follows: Ki |= A_B implies
d
A ⊑−→

K

d
B due to Theorem 4.2. Furthermore, as

a consequence of Corollary 4.9 we have
d

A ≡−→
K

d
{(A)i+1 | A ∈ A} and

d
B ≡−→

K

d
{(B)i+1 | B ∈ B}.

This implies
d
{(A)i+1 | A ∈ A} ⊑−→

K

d
{(B)i+1 | B ∈ B} and (again by Theorem 4.2) consequently

Ki+1 |= {(A)i+1 | A ∈ A}_{(B)i+1 | B ∈ B}.

For showing (3), note that by Corollary 4.9, Ki |= A_B implies cli(B) = τ̄i(
d

B) ⊆ τ̄i(
d

A) =

cli(A). Therefore, we can derive

cli(B) ⊸ {cli(B)}
ID

cli(A) ⊸ {cli(B)}
PE

[

E

R]cli(A) ⊸ {[

E

R]cli(B)}
EL

and are done.

The validity of (4) is a one-step consequence of A_B by using the

A

-lifting deduction rule from

DR.

Now, consider (5). Let Ā2 := cli(A2) as well as B̄ := cli(B). Then we can deduce

[

A

.R]A1 ∪ [

E

.R]Ā2 ⊸ {[

E

.R](Ā2 ∪ A1)}
AP*

A2 ∪ A1 ⊸ {B̄}

Ā2 ∪ A1 ⊸ {B̄}
PE

[

E

.R](Ā2 ∪ A1) ⊸ {[

E

.R]B̄}
EL

[

A

.R]A1 ∪ [

E

.R]Ā2 ⊸ {[

E

.R]B̄}
SUB

❑

Naturally, we are interested in a small set of implications generating all those

implications stated above by the Armstrong rules. Here, we provide such a small

representation and prove that every implication from Lemma 4.10 can be derived

from it.

Definition 4.11 Let Li be the stem base of Ki. Then we define the implication

set λ(Li) as follows

λ(Li) :={
{⊥}_Mi+1

}

∪
{
{(A)i+1 | A ∈ A}_{(B)i+1 | B ∈ B} | A_B ∈ Li

}

∪
{
{

A

R.A | A ∈ A}_{

A

R.B | B ∈ B} | A_B ∈ Li

}

∪
{
{

E

R.
d
ALi}_{

E

R.
d

BLi} | BLi ( ALi ⊆ Mi, 6 ∃C
Li : ALi ( CLi ( BLi

}

∪
{
{

E

R.
d
A,

A

R.A}_{

E

R.
d

(A ∪ {A})Li} | A = ALi ⊆ Mi, A ∈ Mi\A
}

❑
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Lemma 4.12 Every implication from Lemma 4.10 can be derived from λ(Li)

using the Armstrong rules.

Proof:

1. The implication {⊥}_Mi+1 is contained in λ(Li).

2. If A_B is valid in Ki, it is also Armstrong-derivable from Li. If we take this derivation and

exchange every attribute C with (C)i, we obviously obtain a valid Armstrong-derivation of

{(A)i+1 | A ∈ A}_{(B)i+1 | B ∈ B} from λ(Li) because λ(Li) contains the “i + 1-version”

of Li.

3. From Ki |= A _ B follows BLi ⊆ ALi . If BLi = ALi , we can immediately Armstrong-

derive [

E

R]A _ [

E

R]B by the identity rule. If BLi ( ALi , we either have 6 ∃CLi : ALi (

CLi ( BLi , which would mean that [

E

R]ALi _ [

E

R]BLi is explicitly included in λ(Li).

Otherwise (remember that Mi is finite, therefore there are only finitely many Li-closed

sets), we can find a finite sequence ALi = C0 ( . . . ( Cn = BLi of Li-closed sets with

6 ∃CLi : Ck ( CLi ( Ck+1 for any k with 0 ≤ k < n. Then, all [

E

R]CLi

k _ [

E

R]CLi

k+1 are

contained in λ(Li) and can be successively combined via the Armstrong-substitution rule

which ends up with an Armstrong-derivation of [

E

R]ALi _ [

E

R]BLi from λ(Li).

4. This can be shown in an analogous manner to case 2. If A _ B is valid in Ki, it is also

Armstrong-derivable from Li. If we take this derivation and exchange every attribute C with

A
R.C, we obviously obtain a valid derivation of {

A
R.A | A ∈ A}_{

A
R.B | B ∈ B} because

λ(Li) contains the “

A

-version” of Li.

5. Due to the fact that (.)Li is a closure operator, we find

C ⊆ CLi extensive

⇒ C ∪D ⊆ CLi ∪ D

⇒ (C ∪ D)Li ⊆ (CLi ∪ D)Li monotone

and
D ⊆ (C ∪ D)Li extensive

⇒ (C ∪ D)Li ∪ D = (C ∪ D)Li (*)

C ⊆ C ∪ D

⇒ CLi ⊆ (C ∪ D)Li monotone

⇒ CLi ∪ D ⊆ (C ∪ D)Li ∪ D

⇒ CLi ∪ D ⊆ (C ∪ D)Li due to (*)

⇒ (CLi ∪ D)Li ⊆ (C ∪ D)LiLi monotone

⇒ (CLi ∪ D)Li ⊆ (C ∪ D)Li idempotent,

hence: (CLi ∪ D)Li = (C ∪ D)Li for all C,D ⊆ Mi (**).

Now, let A1 = {A1, . . . , An} and let Ck := A2 ∪ {Aj | j ≤ k} for 0 ≤ k ≤ n. Then, for all

k = 0, . . . , n − 1, the implication

ik := {

A

R.Ak+1} ∪ [

E

R]CLi

k _ [

E

R](CLi

k ∪ {Ak+1})
Li
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(where – due to (**) – the conclusion equals [

E

R]CLi

k+1) is either contained in λ(Li) or can

be directly Armstrong-derived using identity and premise extension (if Ak+1 ∈ CLi

k ). If we

iteratively combine those ik by Armstrong-substitution, we get

[

A

R]A1 ∪ [

E

R]ALi

2 _ [

E

R](A1 ∪ A2)
Li

Furthermore, we know from case 3 that for any A_B valid in Ki, [

E

R]ALi _ [

E

R]BLi is

derivable from λ(Li). Therefore a last single Armstrong substitution gives

[

A

R]A1 ∪ [

E

R]ALi

2 _ [

E

R]BLi .

❑

However, notice that this set λ(Li) of a-priori implications is not complete in the

sense that every implication on Mi+1 derivable from the implicational base Li on

Mi by using DR can be deduced from λ(Li) using the Armstrong rules.

Example 4.13 Let MC = {A, B, C}, MR = {R1, R2} and L1 consist of the follow-

ing implications:

i1 := {

E

R1.
d

∅,

E

R2.
d

∅} _ {A}

i2 := {

E

R1.
d

∅,

A

R2.⊥} _ {B}

i3 := {
E

R1.
d
A} _ {C}

i4 := {

E

R1.
d
B} _ {C}

Then, the implication {

E

R1.

E

R1.
d

∅} _ {C} is a semantic consequence of L1

justified by the derivation

∅ ⊸ {∅}
ID

∅ ⊸ {∅, {⊥}}
CE

∅ ⊸ {{

E

R2.
l

∅}, {

A

R2.⊥}}
AL

{

E

R1.
l

∅} ⊸ {{

E

R2.
l

∅,

E

R1.
l

∅}, {

A

R2.⊥,

E

R1.
l

∅}}
RES

i1

{

E

R1.
l

∅} ⊸ {{A}, {

A

R2.⊥,

E

R1.
l

∅}}
SUB*

i2

{

E

R1.
l

∅} ⊸ {{A}, {B}}
SUB*

{

E

R1.

E

R1.
l

∅} ⊸ {{

E

R1.A}, {

E

R1.B}}
EL

i3

{

E

R1.

E

R1.
l

∅} ⊸ {{C}, {

E

R1.B}}
SUB*

i4

{

E

R1.

E

R1.
l

∅} ⊸ {{C}}
SUB*

but not Armstrong-derivable from λ(L1).

This example emphasizes that a desirable property has not been achieved: while

exploring the formal context Ki+1, the attribute exploration algorithm might
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come up with potential implications that are necessarily valid in all binary power

context families that deliver Li as stem base of Ki, even if we provide λ(Li) as

a-priori implicational knowledge.

However, there are two reasons not to be too sad about this:

• Naturally, one could determine (a representation of) all Mi+1-implications

semantically entailed by Li: since Mi+1 is finite, the set of all implications is

finite as well. Hence, we could check in finite time, which ones are necessary

consequences of Li by applying the procedure described in Section 3.2 or a

DL reasoner. However, this approach is obviously “brute force” and would

be algorithmically costly (even if optimized). So λ(Li) contains just those

implications that can be calculated directly from Li with minimal effort.

• Furthermore, as we will point out in Chapter 5, in the intended application,

every potentially valid implication “asked” by the exploration algorithm will

first be passed to an automatic decision procedure, which would recognize

its derivability from Li and tacitly confirm it. Therefore, if the attribute

exploration method is supplemented by a decision algorithm for semantic

entailment of implications, no such redundant question will be presented to

the expert. Moreover, proceeding like this structures the way hypothetical

implications are brought up and thereby minimizes the number of calls to

the decision procedure (more than ever in comparison with the complete

“a-priori scan” sketched above).



Chapter 5

Algorithm Description

After all necessary theoretical considerations, we will now sketch the entire rela-

tional exploration algorithm.

Essentially, there are three instances involved:

1. The attribute exploration algorithm has been described in Section 1.4. It

organizes the question-and-answer process and makes sure that the impli-

cational theory on the used attributes is completely determined.

2. A decision procedure capable of deciding whether an FLEnorm subsumption

statement is valid in all binary power context families fulfilling a given set

of FLEnorm subsumption statements and possibly some additional prede-

termined restrictions (background knowledge).

This could be the decision procedure described in Section 3.2, in which case

the background knowledge would consist of cumulated clauses on FLEnorm.

This could as well be any DL reasoner – as e.g. FaCT (see [Ho99]) or

RACER (see [HM01]) – being the much more practical choice due to

• their high optimization with respect to time costs and

• the much greater variety of background knowledge that can be used

due to the greater expressiveness of the kind of DL most reasoners are

based on.

3. The expert knowing the universe which has to be explored and therefore

capable of answering all
−→
K -subsumption questions asked by the exploration

algorithm.
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As indicated before, it will be an iteratively organized process where the maximal

role depth of the considered concept descriptions will be successively incremented.

Every single step of this procedure is subdivided into three phases: attribute gen-

eration, background knowledge explication, and (semi-)interactive exploration.

5.1 Attribute Generation

In this phase, we stipulate the attribute set Mi ⊆ FLEnorm based on the in-

formation collected in the previous exploration steps. If i = 0, we simply set

M0 := MC ∪ {⊥}. Otherwise, we use the closure operator cli−1 represented by

the implicational base Li−1 explored in the previous step in order to generate an

empirically reduced set of attributes. The new set of attributes then comprises:

• all primitive concept descriptions MC as well as the ⊥-concept,

• for every concept description C ∈ Mi−1, the all-quantified versions

A

R.C for

every R ∈ MR, and

• for every set of concept descriptions C ⊆ Mi−1 that is closed with respect

to cli−1 and does not contain ⊥, the existentially quantified conjunction

E

R.
d

C for every R ∈ MR.

As Theorem 4.8 formally shows, this set is roughly spoken still sufficient to com-

prehensively “talk about” the considered binary power context family in FLE-

terms.

5.2 Background Knowledge Explication

After having stipulated the attribute set for the current exploration step, we can

determine the implications that can be added as a-priori knowledge. In order to

do that, we exploit the previous implicational base Li−1, and determine the set

of prior implications in the following way:

• add

{⊥}_Mi,

• for every implication A_B from Li−1, add

{Ã | τi(A) = {Ã}, A ∈ A}_{B̃ | τi(B) = {B̃}, B ∈ B},
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• for every implication A_B from Li−1, add

{

A

R.A | A ∈ A}_{

A

R.B | B ∈ B},

• for all cli−1-closed sets A,B ⊆ Mi−1 with A ( B where there is no cli−1-

closed set C with A ( C ( B, add

{

E

R.
d

A}_{

E

R.
d

B}, and

• for every cli-closed set A ⊆ Mi−1 \ A and every concept description A ∈

Mi−1, add

{

E

R.
d

A,

A

R.A}_{

E

R.
d

cli−1(A ∪ {A})}.

In doing this, we deliver implicational knowledge that trivially follows from for-

mer exploration steps prior to engaging in the next interactive exploration phase.

The “observable behavior” of the system (i.e., the questions asked to the human

expert) would be the same without that preparation, since the used decision pro-

cedure would automatically answer questions concerning this kind of knowledge.

However, providing this knowledge in advance obviously reduces the number of

calls to the decision procedure, which are assumed to be costly.

5.3 Interactive Exploration

After all these preparations, the actual exploration process as described in Section

1.4 takes place on the attribute set Mi.

Assume, the algorithm comes up with a hypothetical implication

A_B.

This question has to be interpreted in the following way:

“Does every entity δ from the universe ∆ of the considered binary

power context family that fulfills all concept descriptions from A

also fulfill every concept description from B?”

The first thing to do is to check this question against the facts already known.

For, if the implication in question would be valid in any model compatible with

all our predetermined background knowledge and the implicational knowledge

acquired so far, it would be valid also in the very considered model. This can

be decided by any subsumption decision algorithm for some description logic
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containing FLE and general concept inclusion axioms. So, we query the decision

algorithm whether
d
A ⊑

d
B can be inferred from the specified knowledge.

Now, assume that the decision algorithm can prove that A_B is a consequence

of the facts already known. In this case, the question of the exploration algo-

rithm is tacitly (i.e., without bothering the expert) answered with “yes” and the

exploration continues.

If the validity of the implication cannot be proven from the known facts, the

question will be passed to the domain expert. (S)he has to decide whether the

asked implication is true for all entities of the considered universe. If this is

the case, the implication is confirmed to the exploration algorithm and added

to the domain specification (the TBox, respectively). If not, (s)he provides a

counterexample δ with δ |= A but δ 6|= B (which could also be added to the

ABox) and the exploration process will be continued.

At the end of this phase, we have an implicational base Li for Mi and thus a

means to decide any
−→
K -subsumption statement on FLE i as we have shown in

Theorem 4.8. Furthermore, Li is a representation of the closure operator cli and

thus provides all information necessary for the next exploration step.
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Termination

Although the exploration process just described will have to be stopped after few

steps in most practical cases due to the drastic increase of time costs, at least

from the theoretical point of view the question emerges, whether and under which

circumstances the proposed algorithm terminates, i.e., all information necessary

to decide any
−→
K -subsumption statement on FLE (of arbitrary role depth) has

been acquired. We will show that this is the case precisely if the following property

is fulfilled:

Definition 6.1 Let
−→
K be a binary power context family and let (Ki) be the ac-

cording sequence of formal contexts as defined in Definition 4.4. Furthermore, let

(Li) be the corresponding sequence of implicational bases.
−→
K will be called finitely FLE-characterizable if there is an n ∈ N such

that the mapping Fn : {ALn | A ⊆ Mn} → {BLn+1 | B ⊆ Mn+1} with Fn(A) :=

τ̄n+1(
d

A) is a bijection between the Ln-closed subsets from Mn and the Ln+1-

closed subsets from Mn+1. ❑

In the subsequent theorems, we show that this criterion is sufficient by providing

a way to decide whether any
−→
K -subsumption statement on FLE holds by using

just the implicational bases L0, . . . ,Ln+1

Theorem 6.2 Let
−→
K be a finitely FLE-characterizable binary power context fa-

mily and n be the natural number for which Fn is a bijection. Then

1. For any B = BLn+1 ⊆ Mn+1 and A = F−1
n (B) we have

d
A ≡−→

K

d
B.

2. For any C ∈ FLEn+1 we have C ≡−→
K

d
F−1

n (τ̄n+1(C)).
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Proof:

Because A ⊆ Mn, we know
d
A ≡−→

K

d
τ̄n+1(

d
A) due to Theorem 4.8. By definition of Fn, we

see that the right hand side of the equivalence is just
d

Fn(A). Since Fn(A) = B, we are done.

The second proposition can then be proven as follows: We know C ≡−→
K

d
τ̄n+1(C) by Theorem 4.8.

From the first part of this theorem it follows that
d

(τ̄n+1(C)) ≡−→
K

d
F−1

n (τ̄n+1(C)). ❑

This theorem provides a way to “shrink” an FLEn+1 concept description to max-

imal role depth n preserving its semantics with respect to
−→
K . But – exploiting

this fact – we can do even more: for any concept description C ∈ FLE (i.e., of

arbitrary role depth), we find an “empirically equivalent”1 concept description

C̃ ∈ FLEn by applying the function π : FLE → FLEn with2

D 7→ D for all D ∈ MC ∪ {⊥}

E

R.D 7→

{ d
[

E

R](τ̄n−1(D)) if

E

R.D ∈ FLEn,
d

F−1
n ([

E

R](τ̄n(π(D))))Ln+1 otherwise.

A

R.D 7→

{ d
[

A

R]τ̄n−1(D) if

A

R.D ∈ FLEn,
d

F−1
n ([

A

R]τ̄n(π(D)))Ln+1 otherwise.
d
D 7→

d
{π(D) | D ∈ D}.

Theorem 6.3 Let
−→
K be a finitely FLE-characterizable binary power context fa-

mily. Then for any C ∈ FLE we have π(C) ∈ FLEn and π(C) ≡−→
K
C.

Proof:

Let n ∈ N be the smallest natural number for which Fn is a bijection. This proof will be done by

induction on the maximal role depth of C. We have to consider the following cases:

• C ∈ MC ∪ {⊥}.

This is trivial: C ≡−→
K
C = π(C).

• C =

E

R.D ∈ FLEn.

Applying Theorem 4.8 yields D ≡−→
K

d
τ̄n−1(D), directly implying

E

R.D ≡−→
K

d
[

E

R]τ̄n−1(D) =

π(C). Since τ̄n−1(D) ⊆ FLEn−1, we also have π(C) ∈ FLEn.

• C =

E

R.D 6∈ FLEn.

By induction hypothesis, D ≡−→
K
π(D) and π(D) ∈ FLEn. Theorem 4.8 gives us π(D) ≡−→

Kd
τ̄n(π(D)). From this, we conclude

E

R.D ≡−→
K

d
[

E

R]τ̄n(π(D)). Notice that the equivalence’s

right hand side is in Mn+1 due to Theorem 4.6 and the definition of Mn+1. By applying

Lemma 4.7, we get
d

[

E

R]τ̄n(π(D)) ≡−→
K

d
([

E

R]τ̄n(π(D)))Ln+1 and by Theorem 6.2 we have
d

([

E

R]τ̄n(π(D)))Ln+1 ≡−→
K

d
F−1

n ([

E

R]τ̄n(π(D)))Ln+1 = π(C). So we have shown C ≡−→
K
π(C).

The application of F−1
n assures π(C) ∈ FLEn.

1i.e.,
−→
K -equivalent

2In this notation, (.)L binds stronger than F−1
n , τ̄n, τ̄n−1, [

A

R], and [

E

R].
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• C =

A

R.D ∈ FLEn.

Applying Theorem 4.8 yields D ≡−→
K

d
τ̄n−1(D), directly implying

A

R.D ≡−→
K

d
[

A

R]τ̄n−1(D) =

π(C). Since τ̄n−1(D) ⊆ FLEn−1, we also have π(C) ∈ FLEn.

• C =

A

R.D 6∈ FLEn.

By induction hypothesis, D ≡−→
K
π(D) and π(D) ∈ FLEn. Theorem 4.8 gives us π(D) ≡−→

Kd
τ̄n(π(D)). From this, we conclude

A

R.D ≡−→
K

d
[

A

R]τ̄n(π(D)). Notice that [

A

R]τ̄n(π(D)) ⊆

Mn+1 due to Theorem 4.6 and the definition of Mn+1. By applying Lemma 4.7, we get
d

[

A

R]τ̄n(π(D)) ≡−→
K

d
([

A

R]τ̄n(π(D)))Ln+1 and by the first proposition of Theorem 6.2 we

have
d

([

A

R]τ̄n(π(D)))Ln+1 ≡−→
K

d
F−1

n ([

A

R]τ̄n(π(D)))Ln+1 = π(C). So we have shown C ≡−→
K

π(C). The application of F−1
n assures π(C) ∈ FLEn.

• C =
d

D.

W.l.o.g., we can assume that every D ∈ D has no conjunction outside the range of a quantifier,

thus, one of the cases above is applicable. Therefore, we know π(D) ∈ FLEn and D ≡−→
K
π(D)

for every D ∈ D. This implies
d
D ≡−→

K

d
{π(D) | D ∈ D} = π(C) as well as π(C) ∈ FLEn.

❑

In words, the π function just realizes the following transformation: beginning

from “inside” the concept expression C, subformulae having maximal role depth

of n + 1 are substituted by
−→
K -equivalent ones with smaller role depth. When

applied iteratively, this results in a concept description C̃ from FLEn that is
−→
K -

equivalent to the original one. The validity of this concept description can now

be checked by the method described in the preceding section.

It remains to show that the above mentioned bijection property is also a necessary

criterion. This is a direct consequence from the next lemma.

Lemma 6.4 Let
−→
K be a binary power context family that is not finitely FLE-

characterizable. Then there exists no n ∈ N such that the set of valid
−→
K -

subsumption statements on FLEn determines the validity for all
−→
K -subsumption

statements on whole FLE.

Proof:

Assume the contrary. Let then I be the set of all FLEn subsumption statements valid in
−→
K ,

coded as cumulated clauses on FLEnorm. Now, consider the n-limited standard model
−→
Kn(I) as

described in Definition 3.22. As a direct consequence of Lemma 3.23, it satisfies exactly those

subsumption statements from I. Furthermore, by construction,
−→
Kn(I) (precisely: the underlying

universe ∆−→
K n(I)

) is finite. We now consider the sequence (K̃k) defined for
−→
Kn(I) (as described

in Definition 4.4) and can conclude that for all k ∈ N, the number of formal concepts of any Kk

is bounded by 2
|∆−→

K n(I)
|
. On the other hand, for the sequence (Kk) defined for

−→
K , every concept

lattice has more formal concepts than its predecessor. Therefore, the concept lattices for K̃k and Kk

cannot be isomorphic for all k (in fact, they are certainly not isomorphic for every k > 2
|∆−→

K n(I)
|
).

Thus, the implicational theories of K̃k and Kk are not equal. So, we have found two models the
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implicational theories of which coincide on FLEn yet differ on FLE . This clearly contradicts the

assumption. ❑

It is easy to show that being finitely FLE-characterizable as termination criterion

is equivalent to the finiteness of FLE/≡−→
K
, which is trivially fulfilled, if ∆ is finite.
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A Small Example

After having presented the algorithm in theory, we will provide an easy example

for this method in order to show what type of information we can expect from it.

The advantage of choosing an example from mathematics is that the danger of

diverging opinions about the correct answer to a question is rather low – apart

from open problems.

So, let the considered universe ∆ be the natural numbers including zero. Fur-

thermore, let MC and MR be defined as shown in Figure 7.1 on the left. Carrying

out the exploration on K0 (where the attributes M0 are just the elements from

MC plus ⊥) we get the implicational base L0 shown in Figure 7.1 on the right.

This first exploration step is essentially “ordinary” attribute exploration, since no

interrelations between domain entities (mediated by roles or binary predicates,

respectively) have been taken into account by now. This changes now.

We generate the attribute set M1 for the next exploration step as follows: First,

we reuse all attributes from M0, second, we take the conjunction over any L0-

closed subset of M0 \ {⊥} preceded by an existential quantifier, and third, we

include all combinations of a universal quantifier and one attribute from M0.

Figure 7.2 lists the attributes from M1.

Then, we generate a-priori knowledge for the second exploration step. First, we

use the information collected so far. When proceeding from the first (i = 0) to

the second (i = 1) step, we simply can use L0 as additional a priori information

without further adaption because M0 ⊆ M1. Furthermore, applying the deduc-
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C ∈ MC name CIC

Ev even {2n | n ∈ N}

Od odd {2n + 1 | n ∈ N}

Pr prime {n ≥ 2 | kl = n ⇒ k ∈ {1, n}}

E0 equals zero {0}

E1 equals one {1}

E2 equals two {2}

G2 greater than two {n ∈ N | n ≥ 3}

R ∈ MR name RIR

s successor {(n, n + 1) | n ∈ N}

p predecessor {(n + 1, n) | n ∈ N}

d divisor {(m,n) | ∃k ∈ N : m = kn}

m multiple {(n,m) | ∃k ∈ N : m = kn}

{E0} _ {Ev}

{E1} _ {Od}

{E2} _ {Ev,Pr}

{Ev, Pr} _ {E2}

{Od, Pr} _ {G2}

{Pr, G2} _ {Od}

{Ev, Od} _ {⊥}

{G2, E0} _ {⊥}

{G2, E1} _ {⊥}

{E0, E2} _ {⊥}

Figure 7.1: Attributes MC, MR and definition of the incidence relations IC, IR

for the example and the implicational base L0 resulting from the first exploration

step.

G2 Pr Od Ev E1 E0 E2 ⊥

E

s.⊤

E

s.G2

E

s.Pr

E

s.Od

E

s.Ev

E

s.(Od ⊓ G2)

E

s.(Od ⊓ E1)

E

p.⊤

E

p.G2

E

p.Pr

E

p.Od

E

p.Ev

E

p.(Od ⊓ G2)

E

p.(Od ⊓ E1)

E

m.⊤

E

m.G2

E

m.Pr

E

m.Od

E

m.Ev

E

m.(Od ⊓ G2)

E

m.(Od ⊓ E1)

E

d.⊤

E

d.G2

E

d.Pr

E

d.Od

E

d.Ev

E

d.(Od ⊓ G2)

E

d.(Od ⊓ E1)

E

s.(Ev ⊓ G2)

E

s.(Ev ⊓ E0)

E

s.(Od ⊓ G2 ⊓ Pr)

E

s.(Ev ⊓ Pr ⊓ E2)

E

p.(Ev ⊓ G2)

E

p.(Ev ⊓ E0)

E

p.(Od ⊓ G2 ⊓ Pr)

E

p.(Ev ⊓ Pr ⊓ E2)

E

m.(Ev ⊓ G2)

E

m.(Ev ⊓ E0)

E

m.(Od ⊓ G2 ⊓ Pr)

E

m.(Ev ⊓ Pr ⊓ E2)

E

d.(Ev ⊓ G2)

E

d.(Ev ⊓ E0)

E

d.(Od ⊓ G2 ⊓ Pr)

E

d.(Ev ⊓ Pr ⊓ E2)

A

s.G2

A

s.Pr

A

s.Od

A

s.Ev

A

s.E1

A

s.E0

A

s.E2

A

s.⊥

A

p.G2

A

p.Pr

A

p.Od

A

p.Ev

A

p.E1

A

p.E0

A

p.E2

A

p.⊥

A

m.G2

A

m.Pr

A

m.Od

A

m.Ev

A

m.E1

A

m.E0

A

m.E2

A

m.⊥

A

d.G2
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d.Pr

A

d.Od

A

d.Ev

A

d.E1

A

d.E0

A

d.E2

A

d.⊥

Figure 7.2: Attributes M1 for the second exploration step.
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tion consequences mentioned in Section 4.3 we can add numerous implications

for instance:

• {⊥}_M1,

• {

E

s.(Od ⊓ G2 ⊓ Pr)}_{

E

s.(Od ⊓ G2)},

• {

E

s.Pr,

A

s.G2}_{

E

s.(Od ⊓ G2 ⊓ Pr)}, and

• {

A

p.Ev,

A

p.Od}_{

A

p.⊥}.

After these preparations, the next exploration step is invoked. We visualize its

result by the according concept lattice in Figure 7.3.

As an example, we will now demonstrate how to check the validity of the
−→
K -

subsumption statement

Pr ⊓

E

s.(Od ⊓ Pr) ⊑−→
K
E2,

verbally: “is two the only prime number having an odd prime successor?” Now,

we carry out the necessary calculations and find

τ1(Pr ⊓
E

s.(Od ⊓ Pr))

= τ1(Pr) ∪ τ1(

E

s.(Od ⊓ Pr))

= τ1(Pr) ∪ [

E

s](τ̄0(Od ⊓ Pr))

= τ1(Pr) ∪ [

E

s](τ0(Od ⊓ Pr))L0

= τ1(Pr) ∪ [

E

s](τ0(Od) ∪ τ0(Pr))
L0

= {Pr} ∪ [

E

s]{Od, Pr}L0

= {Pr} ∪ [

E

s]{Od, Pr, G2}

= {Pr,

E

s.(Od ⊓ Pr ⊓ G2)}

as well as

τ1(E2) = {E2}.

When applying the L1-closure to both sets to obtain the values for τ̄1 (the result is

to large to be displayed here but can be derived from the line diagram in Figure

7.3), we find the outcomes even identical. Thus, in view of Corollary 4.9, the

validity of our hypothetical
−→
K -subsumption statement can be confirmed.

Finally, we deal with the question whether the exploration algorithm terminates

in our case after some step. This has to be denied for the following reason.

Consider the infinite sequence E0,

E

p.E0,

E

p.

E

p.E0, . . .. Every concept descrip-

tion in this sequence is satisfied by exactly one natural number. Moreover, these
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Figure 7.3: Concept lattice from the second exploration step representing the

implicational knowledge in K1.
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numbers are all pairwise different. Therefore, every concept description of the

sequence is in another ≡−→
K
-equivalence class, thus FLE/≡−→

K
is infinite. Hence, the

algorithm does not terminate due to the concluding remark in Chapter 6.
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Chapter 8

Ontology Refinement

As already stated, we think the proposed algorithm could be very helpful in

designing conceptual descriptions of world aspects. Markup ontologies are a very

popular example for this. So, in this chapter, we will briefly introduce ontologies,

refer to the current standards, and describe how the proposed methods can be

helpful in this area.

8.1 On Ontologies

The Web provides a huge amount of documents and services and is still rapidly

increasing. But, due to its necessarily decentral and non-hierarchic organization,

the search for the desired piece of information has become a difficult and tedious

task for human users. Therefore, powerful tools for information retrieval on the

Web are indispensable to fully exploit its potential. However, the overwhelming

majority of Web documents has been designed for human consumers, i.e., amongst

others

• the information is given in natural language and

• it relies on background knowledge which is shared by (or even commonplace

to) most humans.

Thus, most of the information retrieval tools provided today (or at least those

most widely used) are restricted to keyword searches.

While one could try to overcome the first problem with natural language process-

ing technologies (which is in our opinion not developed enough to be successful in
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this task and would anyway leave the language-inherent ambiguities unresolved)

the second one would still persist.

One alternative would be to provide machine-readable descriptions of the content

and capabilities of Web resources and thus making the semantics of the data more

explicit and thus better accessible for non-human agents. This aim constitutes

the idea of the Semantic Web:

The Semantic Web is a vision for the future of the Web in which

information is given explicit meaning, making it easier for machines

to automatically process and integrate information available on the

Web. ([He04])

Due to [Gr93], an ontology is “an explicit specification of a conceptualization.”

Indeed, the basic ideas strongly resemble the conceptual thinking usual in DL

and FCA.

In [NoMG01], Noy and McGuinness enumerate purposes for developing an ontol-

ogy. Due to them, an ontology should assist

• sharing common understanding of the structure of information among peo-

ple or software agents,

• enabling reuse of domain knowledge,

• making domain assumptions explicit,

• separating domain knowledge from the operational knowledge, and

• analyzing domain knowledge.

To achieve these goals, a language is needed, wherein the meaning of the termi-

nology used in Web documents can be formally described. It must be able to

specify class hierarchies as well as information about relations between classes.

In recent years, Description Logics have been highly influential to the devel-

opment of logic standards for the semantic web (see e.g. [Sa03]). They have

been used as formal base for defining OWL – the web ontology language (see

[MGvH04]).

OWL has been designed to offer more facilities for expressing meaning and se-

mantics than previous standard content specification languages (as XML, RDF,

and RDF-S). Moreover, due to its close relationship to DL, well-tried optimized

DL reasoners can be used to deal with inference questions.
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8.2 Structured Search for New Ontology Ax-

ioms

We are confident that FCA can contribute to the development and refinement of

ontologies (see also [GaSt03] for another application of FCA to ontology related

problems). Here, we will describe how the algorithm proposed in the previous

chapters can be used to construct or refine an ontology by an organized search for

new general concept inclusion axioms of a certain shape (namely those expressible

by FLE concept constructors).

Clearly, the description logics OWL is based on are much more complex than

FLE . Nonetheless, our algorithm is still applicable as long as there are com-

plete reasoning algorithms for deciding subsumption (as for instance the FaCT

or RACER, both capable of reasoning in SHIQ(D) - see [HST00]). All infor-

mation beyond FLE is treated as background knowledge and “hidden” from the

exploration algorithm.

After stipulating the names of concepts and roles, the next step in designing or

refining an ontology would be to define axioms or rules stating how the specified

concepts (resp. classes) are interrelated. The exploration algorithm can support

this tedious and error-prone task by guiding the expert. Every potential axiom

the algorithm comes up with will first be passed to the employed reasoning al-

gorithm. If this axiom can be proven based on the knowledge already present

in the OWL domain specification, it will be confirmed to the algorithm, if not,

the human expert has to be asked. If (s)he judges the rule to be generally valid

in the considered domain, a genuinely new axiom1 has been found and can be

incorporated into the ontology description. Otherwise, the expert has to enter a

counterexample, which violates the hypothetical axiom. If the ontology descrip-

tion is meant to contain information about individuals, this counterexample can

be added to it as well.

One advantage of applying this technique is the guarantee that all axioms express-

ible as subsumption statements on FLE with a certain role depth will certainly

be found and specified.

In turn, we want to reply to a possible remark from the point of view of DL: one

could object that sometimes or even most times ontologies are designed for several

different domains, such that an expert would not want to commit himself to one

1i.e., one not already logically entailed by the present specification
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specific domain, as it seems necessary when applying this algorithm. However,

from the mathematical point of view, this is not a severe problem: we just take

the disjoint union of all domains we want to describe as reference domain of our

exploration. A rule would be valid in this “superdomain” if and only if it is valid

in all of the original domains.

Consequently, we are very confident that an implementation of this algorithm

could be a very helpful tool in order to build and refine domain descriptions –

not only for working with ontologies. As there is a strong relationship between DL

and modal logic (which in turn can be enriched by temporal and epistemic fea-

tures), describing discrete dynamic systems and multi agent systems are further

promising potential applications – see Chapter 9 for an outlook.



Chapter 9

Perspectives

In this chapter, we will briefly point out directions for further research and sketch

possible applications.

On one hand, several extensions or modifications of the presented exploration

algorithm itself appear possible. Sections 9.1 to 9.5 will discuss these theoretical

issues.

On the other hand, we will argue that possible applications of the described

technique are not restricted to ontologies. In Section 9.6, we sketch two further

scenarios where the algorithm could be used.

9.1 Exploiting Knowledge about Roles

Sometimes, certain properties of the roles are known in advance. This knowledge

can be used to state additional implications on Mi before starting exploration. In

the sequel, we state implications to be added for some “popular” role properties:

• If R is reflexive, the implications

{

A

R.C}_{(C)i}

for any C ∈ Mi−1 as well as

{(C)i | C ∈ C}_ [

E

R]C

for any cli−1-closed C ⊆ Mi−1 are valid in Ki.

• If R is symmetric, the implications

{(C)i | C ∈ C}_ [

A

R][

E

R]C
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for any cli−2-closed C ⊆ Mi−2 and

[

E

R]cli−1(

A

R.C)_{(C)i}

for any C ∈ Mi−2 hold in Ki.

• If R is transitive, the implications

{

A

R.(C)i−1}_{

A

R.

A

R.C}

for any C ∈ Mi−2 and

[

E

R]cli−1([

E

R]C)_ [

E

R]cli−1{(C)i−1 | C ∈ C}

for any cli−2-closed C ⊆ Mi−2 are valid in Ki.

• If R is functional1 the implications

[

A

R]C_ [

E

R]C

as well as

[

E

R]C_ [

A

R]C

for any cli−1-closed C ⊆ Mi−1 are valid in Ki.
2

The case of role inclusion can be treated similarly. If we know in advance that

for two roles R1, R2 ∈ MR we have RIR
1 ⊆ RIR

2 , we can obviously add

{

A

R2.C}_{

A

R1.C}

for any C ∈ Mi−1 as well as

{[

E

R1]C}_{[

E

R2]C}

for any cli−1-closed C ⊆ Mi−1 to the a-priori implications for Ki.

1A role R is called functional if for every δ ∈ ∆, there is exactly one δ̃ ∈ ∆ with (δ, δ̃)IRR.
2In this last case, we can even modify the way attributes are generated for the exploration

of Ki. Obviously, for a functional role R holds

A

R.C ≡

E

R.C for any concept description C. Thus

we can work without all the existentially quantified attributes and just use the universally

quantified ones (omitting

A

R.⊥ as well, since we have

A

R.⊥ ≡−→
K

E

R.⊥ ≡ ⊥).
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9.2 Alternative Ways of Coding

Certainly, FLE-contexts do not represent the only way to encode – and conse-

quently explore – (binary) relational information. Subsequently, we will sketch

some alternative ways to do so.

9.2.1 Role contexts

One of those possibilities has been described in [GaRu01]. We will shortly sketch

a generalized version of this approach.

Definition 9.1 Let
−→
K be a binary power context family, R ∈ MR, and C a set of

concept descriptions of some DL. The R-context, KR(C) is defined by

KR := ({(δ1, δ2) | (δ1, δ2)IRR}, C × {1, 2}, IR)

where

(δ1, δ2)IR(C, i) :⇔ δi |= C.

❑

In words, the object set of this formal context consists of those entity pairs (δ1, δ2)

that are “connected” by role R and for every concept description D ∈ C the context

states, whether D is valid in δ1 and whether it is valid in δ2.

It is rather easy to establish a direct correspondence between simple implications3

valid in an R-context and
−→
K -subsumption statements:

Lemma 9.2 Let
−→
K be a binary power context family, R ∈ MR, and C a set of

concept descriptions of some DL. Then for D, E ⊆ C and C ∈ C we have

D × {1} ∪ E × {2}_{(C, 1)} ⇐⇒
d

D ⊓

E

R.
d
E ⊑−→

K
C and

D × {1} ∪ E × {2}_{(C, 2)} ⇐⇒
d

D ⊓

E

R.
d

(E ∪ {¬C}) ⊑−→
K
⊥

provided, ¬C can be described in the DL used.

3An implication A_B is called simple, if |B| = 1. Trivially, an arbitrary implication A_B

can be equivalently expressed by |B| simple implications.
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9.2.2 Binary Rule Exploration

FLE is less expressive than the description logic ALC and ALC can be seen

as a fragment of first order logic with at most binary predicates and at most 2

variables (see [Ba03]). In FCA, there have been other approaches to deal with

first order logic fragments, e.g. rule exploration (see [Zi91]) where the Horn logic

of a domain is explored. So another alternative way for exploring a binary power

context family could be described as follows:

Definition 9.3 Let
−→
K be a binary power context family and X an arbitrary set,

called variables. We define the rule context :

KX := (∆X ,MX , IX)

with
MX := (MC × X) ∪ (MR × X2) ∪ {⊥},

fIX(A, x) ⇔ f(x)ICA,

fIX(R, x, y) ⇔ (f(x), f(y))IRR, and

(f,⊥) 6∈ IX .

❑

In words, the objects of our context are not entities from the universe but variable

assignments. The attributes represent predicate logic literals (where primitive

concepts are interpreted as unary predicates and primitive roles as binary predi-

cates). The incidence relation tells, whether a literal is true in
−→
K with respect to

the variable assignment. By exploring this context (where we can exploit natural

symmetries induced by permutations on the variable set), we get an implicational

base for the logic of Horn clauses (see [Zi91] for a thorough treatise).

This is a rather general approach. Depending on the cardinality of X, a lot

of different facts about the binary power context family can be expressed by

implications on MX , for instance (let x, y, z ∈ X):

• R is reflexive

∅_{(R, x, x)}

• R is symmetric

{(R, x, y)}_{(R, y, x)}
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• R is transitive

{(R, x, y), (R, y, z)}_{(R, x, z)}

• R1 ⊆ R2

{(R1, x, y)}_{(R2, x, y)}

• every statement expressible by any R-context: if

KR |= A× {1} ∪ B × {2}_C × {1} ∪ D × {2}

then
KX |=

{(R1, x, y)} ∪ {(C, x) | C ∈ A} ∪ {(C, y) | C ∈ B}

_{(C, x) | C ∈ C} ∪ {(C, y) | C ∈ D}.

Remark 9.4 While the relational exploration algorithm presented in this work

does not cover all kind of information collectable by rule exploration, the opposite

does not hold either: For instance, the KX-implication

{(R1, x, y), (R2, y, x)}_{⊥}

has no KFLE counterpart (one would need a much more expressive DL includ-

ing full Boolean role constructors for this). Vice versa, the KFLE implication

{

A

R.C} _ {

E

R.D} cannot be expressed in a rule context with arbitrary many

variables.

9.3 Partial or Uncertain Knowledge

Obviously, not in every case, the expert has complete knowledge about the uni-

verse. Many different approaches have been proposed to incorporate partial or

uncertain information into FCA (see [Bu91], [Ga96], [Ho01]). We will sketch an

approach related to [Ga96].

Definition 9.5 A partial formal context K? is a quadruple (G,M, I2, I3)

where (G,M, I2) and (G,M, I3) are formal contexts and I2 ⊆ I3. The operators

(.)I2

and (.)I3

are defined as usual. ❑
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The meaning of this definition is the following: gI2m means, it is certain that

object g has the attribute m, while gI3m means, it is possible that object g has

the attribute m or – in other words – it is not certain that object g does not have

the attribute m. An intuitive visualization would be a cross table having crosses

where gI2m, blanks where not gI3m and question marks anywhere else.

Definition 9.6 A formal context K = (G,M, I) will be called completion of

a partial formal context K? = (G,M, I2, I3), if I2 ⊆ I ⊆ I3. ❑

Note that every formal context in the original sense can be considered as a par-

ticular partial formal context with I2 = I3 = I.

Definition 9.7 Let G,M be arbitrary but fixed sets. We define the informa-

tion order on the set of all partial formal contexts with object set G and at-

tribute set M as follows:

K?
1 E K?

2 :⇐⇒ I2
1 ⊆ I2

2 ∧ I3
2 ⊆ I3

1

❑

It is obvious that this definition of the information order directly corresponds to

the notion of completion: if K?
1 E K?

2, then every completion of K?
2 is a completion

of K?
1.

Definition 9.8 An implication A_B with A,B ⊆ M is possibly valid (also

holds possibly) in a partial context K? if it is valid in (at least) one completion

of K?. ❑

Clearly, if we consider a partial formal context with I2 = I3, the notions of

validity and possible validity coincide.

Theorem 9.9 Let K? be a partial formal context. Then for all A,B ⊆ M , we

have that A_B holds possibly in K? exactly if B ⊆ AI2I3

.

Proof:

“⇒” If the implication A_B is possibly valid in K?, there is a completion K = (G,M, I), where

it is valid. But then in K we have also B ⊆ AII . So, it suffices to show that AII ⊆ AI2I3

.

Due to I2 ⊆ I we have AI2

⊆ AI and due to I ⊆ I3 this implies AII ⊆ AI2I3

. So we are

done.
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“⇐” Suppose B ⊆ AI2I3

. Obviously, K̂ := (G,M, IA) with IA = I2 ∪ (I3 ∩ (AI2

× M)) is a

completion of K?.

If we consider that

gIAa ⇔ gI2a ∨ (gI3a ∧ (∀ã ∈ A : gI2ã))

and additionally assume a ∈ A, we find the second part of the disjunction to be a special

case of the first and conclude gIAa ⇔ gI2a. This immediately implies AIA = AI2

.(*)

Again considering the equivalence above, now assuming g ∈ AI2

and a being arbitrary,

the second part of the conjunction in parentheses is true due to our assumption. Hence,

the first part of the disjunction implies the second one (because I2 ⊆ I3) and therefore

gIAa ⇔ gI3a. This in turn gives AI2IA = AI2I3

. Together with (*), this directly implies

AIAIA = AI2I3

which allows to conclude B ⊆ AIAIA . Therefore, A_B holds in K̂. Yet,

K̂ is a completion of K?, thus, A_B holds possibly in K?.

❑

By now, we have defined the formalization of the idea that some implication

“might hold” in a partial formal context. The contrary would be that an impli-

cation “does certainly not hold” – as a means to witness this, we introduce the

notion of a guaranteed counterexample.

Definition 9.10 Let K? = (G,M, I2, I3) be a partial formal context and i =

A_B an implication on the attribute set. We will call an object g ∈ G guar-

anteed counterexample for i if A ⊆ gI2

and B 6⊆ gI3

. ❑

Theorem 9.11 An implication i = A_B holds possibly in a partial formal con-

text K? = (G,M, I2, I3) if and only if K? contains no guaranteed counterexample

for i.

Proof:

By Theorem 9.9, we have that A_B holds possibly in a partial formal context exactly if B ⊆ AI2I3

.

Then we can conclude
B ⊆ AI2I3

⇔ AI2

⊆ BI3

⇔ ¬∃g ∈ G : g ∈ AI2

∧ g 6∈ BI3

⇔ ¬∃g ∈ G : A ⊆ gI2

∧ B 6⊆ gI3

which just means, that K? does not contain a guaranteed counterexample for A_B. ❑

Definition 9.12 A partial formal context K? = (G,M, I2, I3) will be called

consistent with an implication set I if it does not contain a guaranteed coun-

terexample for any of the implications from I. ❑
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Note that this property is equivalent to the existence of a completion of K? that

respects all implications from I.

Definition 9.13 Let K? = (G,M, I2, I3) be a partial formal context and I be a

set of implications on M . An object g ∈ G will be called I-revised, if

• gI2

= (gI2

)I and

• (gI2

∪ {m})I ⊆ gI3

for all m ∈ gI3

A partial formal context K? will be called I-revised if all its objects g ∈ G are

I-revised. ❑

Furthermore, it is not difficult to show that for every partial formal context K? =

(G,M, I2, I3) compatible with an implication set I, there is exactly one (with

respect to E) minimal I-revised partial formal context K?
I

with K? E K?
I
. Then,

every completion of K? respecting all implications from I is also a completion of

K?
I
.

In words, I-revising a context K?
I

is a way to make a partial context K? more spe-

cific using knowledge about valid implications while preserving all its “completion

potential”.

Having these notions at hand, the attribute exploration algorithm described in

Section 1.4 can be adapted to handle incomplete knowledge as follows:

• We operate on the partial context K?.

• The algorithm comes up with implications that are possibly valid in K?.

The expert knows, whether such an implication i is valid in the explored

universe or not.

◆ If (s)he confirms the implication, it is added to the implicational base L

and the partial context K? will be substituted by its L-revised version.

◆ If (s)he denies it, (s)he has to provide a counterexample g. However,

the counterexample does not need to be completely specified. It just

needs to be a guaranteed counterexample for i. The L-revised version

of g will be added to K?.
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This extension of the original algorithm gives some advantages for the relational

exploration proposed in this work: when proceeding from Ki to Ki+1 we can not

only “reuse” Li but also the counterexample set Gi entered while exploring Ki

(or already present before as a-priori knowledge). As described in Section 4.2,

for any attribute C ∈ Mi there exists an attribute (C)i+1 ∈ Mi+1 with C ≡ −→
K

(C)i+1. So we can use the set Gi with

• gI2
i+1 := {(m)i+1 | m ∈ gI2

i} and

• gI3
i+1 := Mi+1 \ {(m)i+1 | m ∈ (Mi \ gI3

i)}

(respectively their λ(Li)-revised versions) as a-priori objects for the exploration

of Ki+1. In fact, this is the way how we can make the algorithm “remember” the

denied implications from previous exploration steps.

A further notion worth considering in this regard would be that of a partial bi-

nary power context family where KC and KR are partial formal contexts. This

corresponds to databases with incomplete information. The connection of partial

binary power context family and partial FLE-contexts would have to be studied.

9.4 Permutations on Attributes

Sometimes, a domain of discourse is known to have symmetries that can be

expressed by permutations (resp. automorphisms) on the attributes. Consider

the following “toy example”:

Example 9.14 Imagine, we would like to build an ontology referring to terms

about genealogy. We might stipulate the following concept and role names:

MC = {Female, Male, Parent, Mother, Father,

Grandparent, Grandmother, Grandfather}

MR = {HasChild, HasSon, HasDaughter, HasParent}

Now, we would easily find the following true statements:

E

HasSon.⊤ ⊑

E

HasChild.Male

E

HasDaughter.⊤ ⊑

E

HasChild.Female
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Note that one of these statements can be constructed out of the other one by

substituting all male terms by female terms and vice versa. Formally, we could

define two permutations σC : MC → MC and σR : MR → MR with

σC :





Male 7→ Female

Female 7→ Male

Parent 7→ Parent

Mother 7→ Father

Father 7→ Mother

Grandparent 7→ Grandparent

Grandmother 7→ Grandfather

Grandfather 7→ Grandmother

and

σR :





HasChild 7→ HasChild

HasSon 7→ HasDaughter

HasDaughter 7→ HasSon

HasParent 7→ HasParent

that describe this substitution on the concept and role names. This can be

canonically extended to FLE by defining σ : FLE → FLE with:

σ(C) = σC(C) for C ∈ MC ∪ ⊥

σ(
d
C) =

⋃
{σ(C) | C ∈ C}

σ(

A

R.C) =

A

σR(R).σ(C)

σ(

E

R.C) =

E

σR(R).σ(C).

In general, there could be more than one such truth preserving permutation

on FLE . Knowing that the permutations σ1, . . . , σn behave in that way, the

same would be true for any element of the permutation group generated by

{σ1, . . . , σn}. In [Ga90] it has been described how such information (given as

generating set of the group of truth preserving permutations on the attribute set)

can be effectively incorporated in the exploration process resulting in a reduction

of questions asked to the expert. In our opinion, the example above substanti-

ates the idea that an integration of this feature into the relational exploration

algorithm presented in this work could be quite useful in practice.
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9.5 Using more Expressive DLs

As already mentioned in Section 8.2, if DL reasoners are employed, the utilizable

background knowledge is not restricted to FLE , but can be expressed in any

formalism the reasoner is able to deal with.

However, in some cases, it could be desirable to explore the complete knowledge

not only in terms of FLE subsumption statements but also of some more expres-

sive DL (as, say, ALE , ALC, or ALN ). The necessary adaptations respectively

the overall applicability of our approach depend significantly on the expressivity.

In ALE , atomic negation (written as ¬A for A ∈ MC) is allowed in addition to

the usual FLE syntax. An adaption to this case not to difficult. We just sketch

the changes to be made in the major definitions and theorems:

• For A ∈ MC, add the deduction rules

∅ ⊸ {{A}, {¬A}}
tertium non datur (TND)

and

{A,¬A} ⊸ {{⊥}}
exclusiveness (EXC)

to the deduction calculus DR in Definition 3.3.

• The standard model from Definition 3.7 has to be minimally changed by

setting

∆(0) := {N ⊆ FLEnorm | N respects all k ∈ K,

for every A ∈ MC, either A ∈ N or ¬A ∈ N ,

⊥ 6∈ N}.

Mark that the “or” in the second line has indeed to be exclusive. With this,

all results concerning the standard model and completeness from Chapter

3 do easily propagate to ALE .

• In Chapter 4, we have to change Definition 4.4 as follows:

M0 := {A,¬A | A ∈ MC} ∪ {⊥}.

Furthermore we can add

{A,¬A}_{⊥}

for A ∈ MC to the immediately valid implications in Lemma 4.10 and Defi-

nition 4.11, respectively.

With this minor changes, all results from Chapter 4 remain valid.
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• The algorithm description in Chapter 5 and the considerations with respect

to termination in Chapter 6 can stay unabridged for ALE .

As to DLs including disjunction (like ALC or ALN ), the case is different. In

particular, the distinction cumulated clause vs. implication would be futile in

such a DL, since any cumulated clause can be transformed into an implication

by incorporating the conclusion disjunction into the attributes.

In the case of ALN , we even lose the property described in 2.6: For every

i > 0, we have infinitely many semantically distinct ALN concept descriptions

of maximal role depth i. Thus, a stepwise procedure as presented in Chapter 4

would have to be based on another “measure” on the concept descriptions.

In general, DLs equally expressive as (or more expressive than) ALC would force

an even more drastical blowup in the attribute numbers from one exploration

step to the next. Moreover, an according exploration algorithm would present

questions to the expert that are mainly difficult to understand and cope with (see

the according remark at the beginning of Chapter 2).

Thus, we think that it might be a better strategy to stick to FLE as “explo-

ration language” and treat information of a more complicated structure as static

background knowledge.

9.6 Applications apart from Ontologies

Depending on how the roles are interpreted, various applications of the proposed

techniques seem possible also in areas hardly connected to ontologies. We will

name just two: process exploration and epistemic exploration.

9.6.1 Process Exploration

We could interpret the entities of our universe ∆ as possible states of a system.

MC could be interpreted as properties which those states can have or not. MR

could be seen as repertoire of actions. (δ1, δ2)IRR would mean that the system can

be transferred from state δ1 to δ2 by action R. Then,
−→
K -subsumption statements

in some DL would be just a description of the system’s dynamic behavior.
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Figure 9.1: Context K0 and according concept lattice.

Example 9.15 Imagine, we would like to specify a cassette recorder. Let

MC := {Playing, Silent, FastForward, FastRewind, NoMovement}

describe the possible attributes of a state and

MR := { ◮ , ◮◮ , ◭◭ , ¥ , }

be the actions to be taken by pressing a corresponding button or just waiting

some time. The formal context in Fig. 9.1 describes the directly “observable”

states the device can be in.

All actions except are functional. So, as explained in Section 9.1, we can work

without all existentially quantified attributes and

A

.⊥ (as we know

A

.⊥ ≡−→
K

E

.⊥ ≡ ⊥). The reduced set M1 is shown in Figure 9.2. In the sequel, we substi-

tute the attribute names

E

.(FastForward⊓Silent),

E

.(FastRewind⊓Silent),

and

E

.(NoMovement⊓ Silent) by their
−→
K -equivalent variants

E

.FastForward,

E

FastRewind, and

E

.NoMovement.4

Then, K1 has to be explored; see Figure 9.3 for the interactions taking place. For

better readability, the concept names have been abbreviated and some redundant

attributes deleted from the implications. Therefore, collecting the confirmed

implications does not yield a genuine stem base as described by Duquenne and

Gigue, nevertheless it is an implicational base.

4In general, in concept descriptions of the shape

E

R.
d

C, the set C could be substituted by

a subset D ⊆ C with
d
D ⊑−→

K

d
C for better readability.
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⊥ Playing Silent FastForward FastRewind NoMovement

◮ .Playing ◮ .Silent ◮ .FastForward ◮ .FastRewind ◮ .NoMovement

◮◮ .Playing ◮◮ .Silent ◮◮ .FastForward ◮◮ .FastRewind ◮◮ .NoMovement

◭◭ .Playing ◭◭ .Silent ◭◭ .FastForward ◭◭ .FastRewind ◭◭ .NoMovement

¥ .Playing ¥ .Silent ¥ .FastForward ¥ .FastRewind ¥ .NoMovement

A

.Playing

A

.Silent

A

.FastForward

A

.FastRewind

A

.NoMovement

A

.⊥

E

.⊤

E

.(FastForward⊓Silent)

E

.Playing

E

.(FastRewind⊓Silent)

E

.Silent

E

.(NoMovement⊓Silent)

Figure 9.2: Reduced attribute set M1.

Figure 9.4 shows the concept lattice generated by the acquired implicational

base. Many facts can be directly read therefrom, e.g. that in any case after

some waiting, the device will be silent (

E

.Silent ≡−→
K
⊤) or that, if the device is

silent, it will be so further on, if no action (except waiting) is taken (Silent ≡−→
K

A

.Silent).

Before continuing with greater role depths, note the following: Obviously, many

attributes are found to be redundant in the previous step (for instance all at-

tributes at the bottom of the diagram which are
−→
K -equivalent to ⊥). Thus, it is

possible to carry on with a set of attributes containing no attributes which are
−→
K -equivalent to a conjunction of others.5 Figure 9.5 shows the concept lattice

corresponding to the implicational base found in the exploration step belonging

to maximal role depth 2 with just the “relevant” attributes.

Summa summarum, this example shows that the proposed exploration technique

can also be used to describe discrete dynamic systems. In particular, it could

assist a system engineer to specify the dynamic behavior of a system that (s)he

is just developing.6 This might help avoiding that during specification certain

cases are not taken care of.

5This directly corresponds to column reducing the context K1 after finishing the according

exploration step and taking the reduced context’s attribute set as new set M1 for the generation

of M2.
6In fact, when the termination criterion from Chapter 6 is reached in step n, the corres-

ponding n-limited standard model corresponds to a – generally non-deterministic – automaton

with exactly the specified behavior.
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No asked implication answer

1 ∅_⊥ no: s1

2 ∅_{Pl, ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si, no: s2

E

.Pl,

E

.NM,

E

.Si,

E

.⊤}

3 ∅_{ ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si no: s3

E

.NM,

E

.Si,

E

.⊤}

4 ∅_{ ¥ .Si, ¥ .NM, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si,

E

.NM,

E

.Si,

E

.⊤} no: s4

5 ∅_{ ¥ .Si, ¥ .NM, ◮◮ .Si, ◭◭ .Si,

E

.NM,

E

.Si,

E

.⊤} yes

6 {Pl}_{ ◮ .Pl, ◮◮ .FF, ◭◭ .FR,

E

.Pl} yes

7 {Si}_{NM,

A

.NM,

A

.Si} no: s5

8 {Si}_{

A

.Si} yes

9 {FF}_{ ◮ .Pl, ◮◮ .FF, ◭◭ .FR,

E

.FF} yes

10 {FR}_{⊥} no: s6

11 {FR}_{FR, ◮ .Pl, ◮◮ .FF, ◭◭ .FR,

E

.FR} yes

12 {NM}_{

A

.NM} yes

13 { ¥ .Si, ◮ .Pl}_{ ◮◮ .FF} yes

14 { ◮ .Si}_{ ◮ .NM, ◮◮ .NM, ◭◭ .FR} yes

15 { ◮◮ .FF}_{ ◮ .Pl} yes

16 { ◮◮ .FR}_{⊥} yes

17 { ◮◮ .NM}_{ ◮ .NM, ◮ .Si, ◭◭ .FR} yes

18 { ◭◭ .FF}_{⊥} yes

19 { ◭◭ .NM}_{Si, NM, ◮ .Pl, ◮◮ .FF} yes

20 {

A

.⊥}_{⊥} yes

21 {

A

.Pl}_{⊥} yes

22 {

A

.Si}_{Si} yes

23 {

A

.FF}_{⊥} yes

24 {

A

.FR}_{⊥} yes

25 {

A

.NM}_{NM} yes

26 {

E

.Pl}_{Pl} yes

27 {

E

.FF}_{FF} yes

28 {

E

.FR}_{FR} yes

sI1
1 = {Pl, ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si,

E

.NM,

E

.Si,

E

.⊤}

sI1
2 = {Si, NM, ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si,

E

.NM,

E

.Si,

E

.⊤,

A

.Si}

sI1
3 = { ◮ .NM, ◮ .Si, ¥ .Si, ¥ .NM, ◮◮ .NM, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si,

E

.NM,

E

.Si,

E

.⊤}

sI1
4 = {Si, NM, ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .NM, ◭◭ .Si,

E

.NM,

E

.Si,

E

.⊤}

sI1
5 = {FF, ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si,

E

.FF,

E

.NM,

E

.Si,

E

.⊤}

sI1
6 = {FR, ◮ .Pl, ¥ .Si, ¥ .NM, ◮◮ .FF, ◮◮ .Si, ◭◭ .FR, ◭◭ .Si,

E

.FR,

E

.NM,

E

.Si,

E

.⊤}

Figure 9.3: Protocol of the exploration step for role depth 1.
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◮◮ .Silent

◭◭ .Silent

E

.⊤

E

.Silent

E

.NoMovement

Silent

A

.Silent ◭◭ .FastRewind

◮ .Playing

◮◮ .FastForward

NoMovement

◮ .Silent

◮ .NoMovement

◮◮ .NoMovement ◭◭ .NoMovement

FastForward

E

.FastForward

FastRewind

E

.FastRewind

Playing

E

.Playing

◭◭ .FastForward

◭◭ .Playing

◮◮ .Playing

◮◮ .FastRewind

◮ .FastRewind

◮ .FastForward

¥ .FastForward

¥ .Playing

¥ .FastRewind

⊥

A

.⊥

A

.Playing

A

.FastForward

A

.FastRewind

Figure 9.4: Concept lattice representing L1.

Silent

NoMovement

E

.(Silent ⊓ ◭◭ .FastRewind)

◭◭ .FastRewind ◮ .Playing

E

.(Silent ⊓ ◮ .Playing)

E

.(NoMovement ⊓ ◭◭ .FastRewind)

A

. ◭◭ .FastRewind

E

.(Silent ⊓ ◮ .Playing)

◮ .NoMovement

FastForward

Playing

E

.(NoMovement ⊓ ◮ .Playing ⊓ ◭◭ .FastRewind)

FastRewind

◭◭ .NoMovement

E

. ◭◭ .NoMovement

E

.(NoMovement ⊓ ◮ .Playing)

A

. ◮ .Playing

E

.( ◮ .Playing ⊓ ◭◭ .FastRewind)

E

.(Silent ⊓ ◮ .Playing ⊓ ◭◭ .FastRewind)

Figure 9.5: Concept lattice representing L2.
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9.6.2 Epistemic Exploration

It is well known that there is a tight connection between DL and modal logics

(see [Sch91]). (Multi-)modal logic has also been used to describe epistemic phe-

nomena, i.e., settings where we have agents that know something about their

environment or each other. Here, we will shortly explain the basic ideas for this

(formulated in DL-style notation).

Let A be a set of agents. In a binary power context family
−→
K , interpret

• ∆ as a set of states the world can be in,

• MC as a set of facts that might hold in a certain world state or not, and

• MR := A as the agents’ “indiscernibility” relations, connecting world states

that cannot be distinguished by the respective agent. Obviously, all role

names from MR then have to be interpreted as equivalence relations.

If we see
−→
K in this way, the composed concept descriptions would have to be

understood as follows:

A

A.C would be read as “agent A knows that C” and

E

A.C

would mean “agent A considers C possible”.

Hereby, it becomes apparent that the provided methods could also be applied to

cases where aspects of communication and belief of several agents are considered.

Again, relational exploration could help in specifying (resp. axiomatizing) such a

setting.
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partial, 93
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implication, 14
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for, 95
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semantical entailment, 15

validity of, 14

implication set

complete, 15

non-redundant, 15

implicational base, 15

implicational theory, 14

information order

on formal contexts, 94

intent, 13

interpretation function, 26

leaf, 45

lectic order, 16

maximal role depth, 27

neighbor, 25

non-contradictory, 20

normalized FLE concept

descriptions, 28

OWL, 86

partial formal context, 93

completion of, 94

partial knowledge, 93

path, 45

permutations, 97

possible validity, 94

characterization of, 94

primitive concept, 24

primitive role, 24

pseudo intent, 16

pseudoleaf, 45

quasileaf, 45

realization tree, 45
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standard model, 38, 39
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