
Automated Selection of Configurable Web Services

Steffen Lamparter, Anupriya Ankolekar

Institute AIFB
Universität Karlsruhe (TH)

Germany
{sla,aan}@aifb.uni-karlsruhe.de

Abstract

To bring service-oriented architectures to their full potential, automatic service discovery and

selection mechanisms are required. In this paper, a service selection component is presented that

supports offers providing multiple configurations of a service. The selection algorithm ranks

the offered services and their configurations according to the requester’s preferences and thus

facilitates personalized selection strategies. In addition, the approach leverages existing Web

standards to provide a maximal degree of interoperability between service providers and their

customers leading to significant efficiency gains. The approach is implemented prototypically

and the performance is evaluated by means of a simulation.

1 Introduction

Service-oriented architectures (SOA) as a paradigm where applications are built by composing

loosely coupled, highly interoperable, reusable services have become increasingly popular in

recent years. This flexible style of implementing applications promises cost savings in software

development and faster adaption of business processes to changing environments. Realizing

such a flexibility requires automatic as well as efficient Web service discovery and selection

mechanisms. These mechanisms depend heavily on the way services are described. Approaches

that are solely based on WSDL-descriptions are inadequate since XML and XMLSchema do

not provide sufficient expressivity to create and relate rich datatypes [MM03]. Therefore, these

mechanisms are not amenable to a high degree of automation. In order to tackle this problem

several mechanisms have been proposed that depend on much richer service descriptions. Most

of them describe services using formal ontologies (e.g. WSMO [KLP+04], OWL-S [SPAS03],

WSDL-S [AFJ+05]). However, none of these approaches address the fact that Web services are

highly configurable products that can be offered by multiple parties (providers) with different

attributes and under different conditions. This enables a high degree of product differentiation

allowing providers to customize their services according to the specific needs of their customers.

Clearly, this improves the utility of the transaction for both participants. Consider, for exam-

ple, a route planning web service, which offers the service of computing a road route between

441

two locations. Various configurations of the service may take into account the current traf-

fic situation or weather situation when computing the route, or the service may be configured

to compute the shortest or quickest route, one that avoids small roads and so on. Naturally,

each configuration may have a different price attached. Decision making in markets with such

complex services generally requires that both seller pricing functions as well as buyer scoring

(preference) functions be taken into account.

In [LAO+06] a general policy framework is described that can be used to express pricing and

scoring functions. The framework relies on existing or emerging internet standards and thus

provides a high degree of interoperability. In this paper, we extend the work in several di-

rections. First, it is shown how the policy framework can be applied to describe configurable

Web service offers and requests. Second, the framework is augmented with an abstract selec-

tion model, which is independent from specific formalisms and implementations. Third, we

present an approach to rank offers in scenarios where both requests and offers are configurable.

In this context, we also show how preferences can be expressed directly within a query. The

selection algorithm in the previous work deals only either with configurable requests or con-

figurable offers, which are both stored in the knowledge base. Finally, we present a concrete

implementation and initial performance evaluations of the system.

The paper is structured as follows. In Section 2 an abstract selection model is presented. In

Section 3 this model is formalized with the standardized Web languages OWL, SWRL and

SPARQL in order to provide interoperablity between Web service requesters and providers.

After presenting an implementation and evaluation in Section 4, we discuss related work in

Section 5 and conclude the work with a short outlook in Section 6.

2 Abstract Selection Model

First, a selection is defined as a decision for the best available alternative, i.e. the Web service

that is most appropriate to fulfill a certain task. In general, decisions require a choice and criteria

by which different choices are judged. Hence, a selection can be regarded as an optimization

problem with a certain objective function resulting in an understanding of “better” and “worse”.

In this section, we first introduce an abstract notation of the fundamental concepts in the domain

and then present the optimization problem that has to be solved in order to derive a preference

structure over the service offers.

Definition 1 (Web Service Configuration) Let S = {s1, . . . , s|S|} be the set of all Web services.

Then, a Web service si ∈ S is described by the tuple si = (Ii,Oi,Ci), where Ii represent the

set of input messages that are required by the service si and Oi the set of output messages that

are returned by the service si, respectively. Furthermore, a Web service is characterized by a

set of feasible configurations Ci with Ci ⊆ C, where C is the cartesian product of the discrete

442

service attributes A1, . . . ,An, i.e. C = ∏r∈{1,...,n} Ar. In this context, each c ∈ C is a vector

c = (a1k1 , . . . , ajk j , . . . , ankn), where a jk j represents the kth value of attribute j.

Recall the route planing example mentioned in section 1. Here the set Ii represents locations

and Oi the route between these locations. Moreover, we have three attributes: (i) The route type

which refers either to the quickest or cheapest route; (ii) one attribute that indicates whether

traffic information is taken into account; (iii) and one attribute that allows to include or ex-

clude weather information. These attributes are used to configure the service according to the

requesters preferences. For instance, one specific route service configuration is a routing func-

tionality that returns the quickest route including traffic and weather information. Note that

according to Definition 1, service functionality is solely defined by inputs as well as outputs

and attributes comprise only discrete and static non-functional service properties.

In order to enable Web service transactions between providers and customers, Web service

offers and requests have to be specified. Their main purpose is to attach prices as well as prefer-

ences to the service configurations. In the following, we formally define how offers and requests

can be specified for configurable services. More general approach (e.g. including discount rules)

see [BK05].

Definition 2 (Web Service Offer) Assume a set of providers P as well as a set of Web service

offers Θ. Then, p ∈ P is an arbitrary provider offering service op ∈ Θ. A Web service offer

is characterized by a vector op = (sp,Gp), where sp ∈ S represents the provided service and

Gp : Cp → R the pricing function that assigns a certain price to each configuration c ∈ Cp of

the service sp. We assume that the pricing function is described by an additive function, where

gp j represents the pricing function of provider p for attribute j. wg
j can be used to adjust the

influence of the different attributes on the price.

Gp(c) = Gp(a1k1 , . . . , ajk j , . . . , ankn) =
n∑

j=1

wg
jgp j(ajk j) with

n∑

j=1

wg
j = 1 (1)

That means an offer assigns an additive pricing function to a Web service description. The

pricing function maps the configurations contained in the service description to a certain price.

This approach allows for encoding pricing information in an efficient way. This is required

since adding price markup to each configuration would exhibit combinatorial features [BK05].

By means of Function 1, the provider has to define only n pricing functions instead of adding
∏

j=1,...,n |Aj| price markups. For instance, in the simple route planning example, pricing infor-

mation can be expressed via six attribute value/price-tuples instead of adding price markups to

eight configurations. Of course, for more complex services the efficiency gains are much higher.

In the following, a Web service request is defined analogously.

443

Definition 3 (Web Service Request) Given a set of customers B, a Web service request is de-

fined as a vector rb = (sb, Fb), where b ∈ B is the issuer of the request and sb ∈ S the requested

service. The preferences of the customer are defined by a standard additive scoring function

Fb : Cb → R that assigns a certain score to each requested configuration c ∈ Cb. A configu-

ration which is not requested leads to a score of zero. fb j is the scoring function of requester

b for attribute j. Attribute values that are forbidden a score of minus infinity is assigned, i.e.

fb j = −∞. w f
j is the relative importance of attribute j.

Fb(c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n
j=1 wf

j fb j(ajk j) if c ∈ Cb,

0 otherweise.
with

n∑

j=1

wf
j = 1 (2)

For the additive scoring function we have to assume mutual preferential independency between

the attributes [KR76]. However, as discussed in [LAO+06], from a technical perspective we can

express preferences over dependent attributes using a higher dimensional function. Of course,

specification of preferences is much harder for the requesters in this case.

In order to find the services that are suitable for a certain task, the inputs and outputs of the

requested service sb are compared with those of the offered services. This is done according to

the following matching rule.

Definition 4 (Functional Match) Let rb be a request for service sb with the corresponding

inputs Ib and outputs Ob. Analogously, op is a Web service offer containing the service sp with

the inputs Ip and outputs Op. Then, rb functionally matches op iff Ip ⊆ Ib and Ob ⊆ Op. A

functional match is indicated by the notation rb = f op. The set Θr ⊆ Θ contains the service

offers that functionally match a given request rb, i.e. Θr = {ob ∈ Θ|rb = f ob}

The intuition behind this approach is that only those Web service offers match that provide at

least the requested information while requiring at most the input specified in the request.

Finding the optimal service configuration involves two steps: selecting the best configuration

for each provider and choosing the best provider based on the optimal configurations. First,

we formulate the optimization problem that allows determining the best configuration c ∈ Cp

offered by a provider p ∈ P.

The objective function that has to be optimized represents the difference between the score

assigned to a certain configuration by the requester and the price of this configuration. The

corresponding optimization problem can be formulated as follows:

max
ci∈Cp

Fb(ci) −Gp(ci) (3)

A naive approach to solve this problem is to iterate over all configurations, calculate the in-

dividual utilities and rank the configurations accordingly. The overall complexity of such an

444

algorithm is given by |O|∑ j |A j|, where |O| is the number of offers and
∑

j |A j| the number of

possible configurations. Since the number of configurations is exponential in the number of

attributes this approach might be inefficient for very complex services. However, in a first step

such a naive approach seems to be appropriate, since current Web service descriptions usually

consider only relatively few non-functional properties.

Having determined the optimal configuration c∗o and utility u∗o for each offer o, we derive a

preference structure as follows:

Definition 5 (Preference Structure) A preference structure on O is defined by the complete,

transitive, and reflexive relation �, which defines a weak preference order over the alternatives

as follows: ∀o1, o2 ∈ O: o1 � o2 ⇔ o1 is preferred to o2. Consequently, a preference structure

can be constructed from the requester’s utility as follows: o1 � o2 ⇔ u∗o1
≥ u∗o2

.

Therefore, a reasonable selection rule would be to select o∗ ∈ O iff ∀o ∈ O : o∗ � o. Of course,

depending on the application also other matching approaches might be required. For example,

one might want to select the ten best services to invite them for further negotiations.

Based on the abstract selection model introduced above, the next section deals with implement-

ing this model in an open and heterogenous environment using existing standards and tools.

3 Ontology-based Representation

In this section, we show how the abstract selection model introduced above can be implemented

with a standardized logical formalism providing a common understanding between providers

and customers. We realize this by means of ontologies, which became an important technology

for knowledge sharing in distributed, heterogeneous environments, particularly in the context

of the Semantic Web.1

3.1 Ontology formalism

An ontology is a set of logical axioms that formally define a shared vocabulary [Gru93]. By

committing to a common ontology, software agents can make assertions or ask queries that are

understood by the other agents.

In order to guarantee that these formal definitions are understood by other parties (e.g. in the

web), the underlying logic has to be standardized. The Web Ontology Language (OWL) stan-

dardized by the World Wide Web Consortium (W3C) is a first effort in this direction [W3C04].

OWL-DL is a decidable fragment of OWL and is based on a family of knowledge represen-

tation formalisms called Description Logics (DL) [BCM+03]. Consequently, our notion of an

ontology is a DL knowledge base expressed via RDF/XML syntax to ensure compatibility with

1http://www.w3.org/2001/sw/

445

DL Syntax Semantics
� ΔI
⊥ ∅

C � D CI ∩ DI
C � D CI ∪ DI
∀R.C {a ∈ ΔI|∀b.(a, b) ∈ RI → b ∈ CI}
∃R.C {a ∈ ΔI|∃b.(a, b) ∈ RI ∧ b ∈ CI}
C � D CI ⊆ DI

Table 1: Selected DL constructs and their model theoretic semantics (for a full list see
[BCM+03]).

existing World Wide Web languages. The meaning of the modeling constructs provided by

OWL-DL like concepts, relations, datatypes, individuals and data values is formally defined via

a model theoretic semantics. The mapping for certain common DL axioms is shown in table

1. The meaning of an axiom defines certain constraints on the model. For example, we can

define that the concept Book is a subconcept of Product (i.e. Book � Product). In this case, the

interpretation of Book has to be a subset of the interpretation of Product, i.e. the set of objects

that are books is a subset of the set of objects that are products (BookI ⊆ ProductI). By means

of the interpretation I the model introduced in section 2 can be expressed using Description

Logics in a straightforward way as shown in the next sections.

However, we require additional modeling primitives not provided by OWL-DL. For exam-

ple, modeling triangle relations between concepts is required. In contrast to OWL, rule lan-

guages can be used to express such triangle relation. The Semantic Web Rule Language

(SWRL) [HPS04, HPSB+04] allows us to combine rule approaches with OWL. Since reasoning

with knowledge bases that contain arbitrary SWRL expression usually becomes undecidable

[HPS04], we restrict ourself to DL-safe rules [MSS05]. DL-safe rules keep the reasoning de-

cidable by placing constraints on the format of the rule, namely each variable occurring in the

rule must also occur in a non-DL-atom in the body of the rule. This means the identity of all

objects referred to in the rule has to be known explicitly. Since we deal only with known in-

stances in our application, this is no restriction to our apporach. To query and reason over a

knowledge base containing OWL-DL as well as DL-safe SWRL axioms we use the KAON2

inference engine2.

For the reader’s convenience we define DL axioms informally via UML class diagrams, where

UML classes correspond to OWL concepts, UML associations to object properties, UML in-

heritance to subconcept-relations and UML attributes to OWL datatype properties [BVEL04].

For representing rules we rely on the standard rule syntax as done in [HPSB+04, MSS05].

2available at http://kaon2.semanticweb.org/

446

-name:string(xsd)
-contactData:string(xsd)

Provider

Service

PricingFunctionOffer
definesisIssuedBy

contains
PointBasedFunction

PiecewiseLinearFunction

-patternIdentifier - xsd:string
-PatternParameter1 - xsd:Float
-...
-patternParameterN - >xd.Float

PatternBasedFunction

-value:datatype(xsd)
-price:float(xsd)

Point

constitutedBy

constitutedBy

next

IsAssignedTo

Input

Output

Attribute1 Attribute2 AttributeN

inputInformation

outputInformation

...
Configuration

refersTo

supports

-offeredValue:datatype(xsd)
-unit:string(xsd)

Attribute

-amount:float(xsd)
-currency:string(sxd)

Price

has
Price

providedConfiguration

Description of Web Service

Figure 1: Web Service Offer Ontology

3.2 Modeling Web Services

In this section, it is shown how the abstract Web service model specified in Definition 1 can

be formalized using OWL-DL. Note that some additional assumptions are required to derive a

formally sound model.

Figure 1 sketches the modeling approach. For modeling Web services the classes within the

dashed box are relevant. We introduce the concepts Service, Input, Output, Configuration and

Attribute referring to the sets S, I, O and A1 to An in Definition 1, respectively. A Service

is characterized by their Inputs, Outputs and Configurations involved. This is reflected by the

relations inputInformation, outputInformation, and supports, which are formally defined by the

following axiom:

Service � � � ∃inputInformation.Input � ∀inputInformation.Input �
∃outputInformation.Output � ∀outputInformation.Output �
∃supports.Configuration (4)

This axiom makes sure that each service has at least an Input and Output. In addition, each

service has to support at least one Configuration. Recall in our abstract model a configuration

ci ∈ C is a vector ci = (a11, . . . , ai j, . . . , anm) containing one value ai j for each attribute. Hence,

we introduce Configuration as those individuals that refer to exactly one individual of each

447

attribute. Assume the concepts Attribute1 � Attribute, . . . , AttributeN � Attribute which refer

to the setsA1 toAn Then a Configuration is defined as follows:

Configuration � � � =1 refersTo.Attribute1 � · · · � =1 refersTo.AttributeN (5)

Each Attribute has to have at least two datatype properties: one property representing the offered

value as well as one property defining the unit a certain attribute is measured.

This means in the route planning scenario a service would be described by the three object

properties start, destination and result, where start and destination are subproperties of in-

putInformation and result is a subproperty of outputInformation. 3 Then a route planing service

is defined as follows:

RoutePlanning � Service� =1 start.Location� =1 destination.Location � ∃result.Route (6)

Furthermore, the service is described by three Attributes: Weather � Attribute, Traffic �
Attribute and RouteType � Attribute. Each of them could be instantiated by two attribute values,

which leads to eight possible configurations that can be provided.

After introducing the primitives for modeling Web services in the next sections we show how

offers and requests for a certain Web service can be formalized.

3.3 Offer Specification

According to Definition 2 an offer o ∈ Θ is characterized by a provider p ∈ P offering a

service s ∈ S under a certain pricing policy Gp(ci), where ci represents an arbitrary service

configuration ci ∈ Cp. For modeling the set of offers Θ we introduce the concept Offer which

contains a Service and is issued by a Provider. These simple facts are visualized in Figure

1. Furthermore, prices are attached to the various Web service configurations by means of a

function Gp(ci). To capture this relations the concept Price is introduced that relates an Offer,

a Configuration and the corresponding amount. This is required since OWL does not support

tertiary relations. The datatype property amount is determined by function 1. Such functions

are modeled using the concept Pricing Function. A thorough discussion how such policies can

be modeled using OWL-DL and DL-safe SWRL rules is given in [LAO+06]. In the following

we focus one of the approaches - called Point Based Function.

In case of a Point Based Function the pricing function is modeled by specifying sets of points

in R2 that explicitly map attribute values to prices. This is particularly relevant for nominal

attributes. As depicted in Figure 1, Point Based Functions are Pricing Functions that are con-

stituted by a set of Points. Thus, the datatype property value refers to exactly one attribute

3Note that the examples given in this paper are simplified. To be precise one would have to model Input and
Output as roles that are played by information objects representing location or route information. For a more
detailed modeling approach based on the foundational ontology DOLCE see [LAO+06, OLG+06]

448

value ajk j and the datatype property price to exactly one price gj(ajk j) that is assigned to this

attribute value. OWL datatypes mainly rely on the non-list XML Schema datatypes. Depend-

ing on the attribute, value either points to a xsd:string, xsd:integer or xsd:float. A price is

represented by a xsd:float. The reference to the attribute j for a function gj is defined via the

isAssignedTo-relation. Having this information the overall price Gp(ci) a provider attaches to a

certain configuration ci can be calculated using formula 1, which can be formalized using the

following DL-safe rule:

amount(?p, ?pr) ← Offer(?o), hasPrice(?o, ?p), providedConfiguration(?p, ?c),∧

j∈{1,...,n}
(Attribute j(?a j), refersTo(?c, ?a j), offeredValue(?a j, ?av j),

assignedTo(? f j, ?a j), constitutedBy(f j, p j), value(?p j, ?v j),

equal(?v j, ?av j), price(?p j, ?pr j)), sum(?pr1, . . . , ?prn, ?pr) (7)

Note that rule 7 is not generic with respect to the number and types of the attributes used. How-

ever, a more general rule definition is not possible since this would require allquantification in

rule bodies, which is not possible using SWRL. Since the rule is generic with respect to the

offers, it is possible to generate the rule once for a certain service type. Hence, we believe that

this is no restriction in practice. To improve readability, the conversion of measurement units

that might be required is omitted in rule 7. Point Based Function thus allow to decrease the

number of required price specifications from
∏n

j=1 |A j| to∑n
j=1 |A j|. Using other function spec-

ifications, like Pattern-based Functions or Piecewise Linear Functions, further improvements

are possible.

Having shown how offers can be specified using OWL-DL and DL-safe SWRL rules, in the

next section we focus on formalizing request in a way that allows a customer to derive a set of

services ordered according to her preferences.

3.4 Request Specification

The aim of this step is to formalize the requester’s goals in a way that facilitates the discovery

of offers meeting these goals. According to Definition 3, a request defines the properties of an

object that is required by a customer in an abstract way, i.e. without referring to a concrete name

or identifier. In databases, queries are seen as such “intentional” denotations of objects [LL87].

For expressing queries we rely on the emerging standard SPARQL4, which provides a protocol

and query language for RDF and OWL-DL ontologies. SPARQL is supported by the reasoner

KAON2. The discovery of suitable offers has to be sound and complete, i.e. all relevant offers

are returned while no irrelevant offers are contained in the result set. In addition, a ranking

of the results according to the requesters preferences should be provided. In the following,

4SPARQL, W3C Candidate Recommendation (6 April 2006), available at http://www.w3.org/TR/
rdf-sparql-query/

449

we gradually show how a SPARQL-query is formulated that enables expressing a Web Service

Request (Definition 3).

In a first step, we determine the set of suitable services, i.e. those services that provide the

right functionality. In this context, we mainly implement the functional matching introduced

in Definition 4. A functional match is realized if Ip ⊆ Ib and Ob ⊆ Op. Consequently, in

DL this amounts to checking the entailment of concept subsumption, i.e. Inputp � Inputb and

Outputb � Outputp. This is a very common approach already used for service matching in

[PKPS02, NSDM03, LH03]. However, note that this is very restrictive and for some applica-

tions better solutions might exist (cf. [GMP04]). The following SPARQL-query formulates the

matching rule for our route planning service example.

PREFIX wsm: <http://ontoware.org/emo/1.1/>

SELECT ?offer

WHERE {

?offer contains ?service . ?start rdf:type wsm:Location .

?dest rdf:type wsm:Location . ?result rdf:type wsm:Route .

?service wsm:start ?start ; wsm:destination ?dest ; wsm:result ?result . }

In the second step, we add constraints to this query in order to reduce the number of returned

matches. For each attribute A j the subset Ā j = {ajk ∈ A j| fb j(ajk) = −∞} is determined for

which the utility function of a customer is zero. Based on the set Ā j SPARQL-filter conditions

are automatically added to the query. For example, assume a requester lives in a very busy

quarter of London and he thus mandatorily requires a route planner with traffic information. In

this case we would add the following filter condition:

SELECT ?offer, ?configuration

WHERE { ...

?configuration wsm:refersTo ?traffic .

?traffic rdf:type wsm:Traffic ; wsm:offeredValue ?trafficValue .

FILTER (?trafficValue = "yes") .

}...

A clause in the filter condition is added for all ajk ∈ Ā j and for all attributes j. Note that

from a functional point of view the filter conditions are not required since configurations, which

contain at least one attribute that is valued by −∞, are ranked very low and thus are neglected

in the selection process. However, by introducing the filter conditions the number of possible

configurations that have to be ranked is reduced. This might increase the ranking performance.

Finally, to facilitate the selection of a service with the corresponding configuration, we order the

set of matches according to the preferences of the user. This means we have to determine which

of the configurations c ∈ Cp offered by a provider p ∈ P is most advantageous according to the

requester’s preferences Fb(c). Technically there are two possibilities to realize this: First, the

query above is issued and the results are sent to the client, where a preference-based selection

is executed locally. Although this approach avoids revealing the customer’s preferences, it may

450

lead to a high communication overhead, where in the worst case the entire repository has to

be transferred to the requester. We thus opt for the second alternative. Here preferences are

included as part of the request and the ranking is done by the server. This allows deriving

only the best matches from a high number of suitable services in the repository. Methods

for adding rich preferences to a query language are well-known in literature [Kie02, LL87,

AW00]. Usually such queries are called preference queries and are implemented by database

built-ins as well as SQL syntax extensions. The KAON2 system enables preference queries by

allowing built-in predicates in the SPARQL query. Therefore, the SPARQL syntax is extended

by the “EVALUATE” keyword. Again we exemplify the approach using a Point Based Function

definition. But this time we encode the function as a String in the query rather than adding it

to the knowledge base (as done for offers in Section 3.3). In order to realize this approach the

predicate pbF is introduced. pbF takes a String representation of the tuples representing the

Point Based Function and an attribute value. The predicate evaluates the Point Based Function

and returns the score of the attribute value. The query below illustrates this approach using the

three attributes of our route planning example. Note that for simplicity reasons scaling as well

as weighting issues are omitted.

SELECT ?offer, ?configuration, ?u

WHERE { ...

?offer wsm:hasPrice ?price .

?price wsm:providedConfiguration ?configuration .

?configuration wsm:refersTo ?traffic ; ?weather ; ?routeType .

?traffic rdf:type wsm:Traffic ; wsm:offeredValue ?trafficValue .

EVALUATE ?val1 := pbF("(yes,1),(no,0.3)",?trafficValue).

?weather rdf:type wsm:Weather ; wsm:offeredValue ?weatherValue .

EVALUATE ?val1 := pbF("(yes,0.8),(no,0.6)",?wheaterValue).

?routeType rdf:type wsm:RouteType ; wsm:offeredValue ?routeTypeValue .

EVALUATE ?val1 := pbF("(quickest,0.5),(cheapest,0.5)",?routeTypeValue).

EVALUATE ?val := sum(?val1,?val2,?val3) .

EVALUATE ?u := sub(?val,?price) }

ORDER BY DESC(?u)

The result of this query is a set of matches ordered according to the preference structure intro-

duced in Definition 5. Thus, the corresponding selection rules can be applied.

In the next section, we present a concrete implementation of our selection algorithm. In addi-

tion, we discuss the performance of the algorithm.

4 Implementation

The algorithm presented in this paper is implemented within a larger framework consisting

of two components: A server component provides a repository for Web service offers. The

repository is a DL knowledge base that can be queried using the KAON2 reasoner. KAON2 is

451

Figure 2: Generation of SPARQL-query.

chosen because it supports the logical fragment required for our offer and request descriptions,

while being optimized for query answering [MS06], which is the main focus of the repository.

In addition, there are components that transform WSDL and HTML forms to ontology-based

descriptions and a Web crawler, which searches the Web for available service descriptions. The

second component is a client that facilitates the specification of Web service offers and requests.

Since the terminology used by participants might be different, mapping between ontologies can

be specified using the formalism presented in [HM05]. Generally, the framework supports more

expressive service descriptions than we use in this paper. For example, the service description

could include behavioral aspects as presented by Agarwal and Studer [AS06].

Figure 2 shows the request generator which is part of the client tool. It can be used to graphically

compose a query. Preferences can be added to all attributes in the query (visualized by a blue

circle with a ‘P’). By pressing this symbol a window pops up that allows for expressing Point

Based Functions, Piecewise Linear Functions and Pattern Based Functions. Once the search

button is pressed, the query is formalized using SPARQL and sent to the server. Ranked results

are shown and can be browsed using the windows below the search button.

In order to evaluate the performance of the algorithm we conducted a simulation. In this context,

offers and requests are randomly generated using a uniform distribution. The set of offers is

stored in the knowledge base and the requests are used to generate the queries. The time between

sending the query and receiving the result is measured. In order to avoid possible network delays

the simulation is done on a single machine. Several simulation runs are conducted with varying

452

 500 1000 1500 2000 50
 100

 150
 200

 0

 20000

 40000

 60000

query time in ms

number of offers in KB

number of
 configurations

query time in ms

Figure 3: Query time.

 500 1000 1500 2000 50
 100

 150
 200

 0

 20000

 40000

 60000

query time in ms

number of offers in KB

number of
 configurations

query time in ms

Figure 4: Query time using caching.

number of offers in the knowledge base and varying service complexity. For each setting the

average query time is determined based on ten simulation runs. We analyzed the worse case

scenario, where all offers functionally match the request, no hard constraints are defined, and

all offers provide all configurations. We evaluated two versions of the algorithm:

Algorithm 1: In the first algorithm we simply query the knowledge base and calculate the

price of an offer using Rule 7. This has to be done for every relevant configuration, i.e. |Θ||C|
configurations in the worst case.

Algorithm 2: To avoid unnecessary repetition of the same evaluations we introduce caching of

prices in algorithm 2. After calculating the price for a certain configuration according to the

pricing policies in the offer, we store this price as an instance in the knowledge base which

avoids additional evaluations for further requests. However, this approach increases the size of

the knowledge base by additional 5|Θ||C| − 4|Θ| axioms compared to Algorithm 1. In a first

step, we do not limit the cache size. However, in case of limited storage/memory capacity an

adequate caching replacement strategy has to be introduced.

Figure 3 and 4 show the interdependency between the number of offers, the number of config-

urations in an offer, and the query time for algorithm 1 and 2, respectively. For scenarios with

a low number of orders (< 500) or a low number of configurations (< 100) query answering

is realized under five second. However, query answering slows down to 70 seconds with 2500

orders and 250 configurations in the knowledge base, which is mainly due to the high number

of price calculations. Therefore, the caching of prices used in Algorithm 2 speeds up service

selection considerably. However, one should be aware that Algorithm 2 is significantly more

resource demanding.

Generally, the evaluation shows that our selection algorithm might be applicable in scenarios

where either the number of offers or the number of configurations per offer is moderate or where

the selection performance is not crucial. To improve the performance introducing an instance

for each configuration should be avoided and the optimization should be done directly based

on the pricing functions, possibly with a built-in predicate implementing a simplex algorithm.

453

Moreover, we could exploit the additive structure of pricing and scoring functions, perform the

maximization per attribute and aggregate the maximal values for all attributes. Thereby, the

complexity of the problem can be considerably reduced.

5 Related Work

First approaches addressing the configurability of services are policy languages like WS-Policy,

EPAL and WSPL. They allow to define which configuration are supported by a provider or

desired by a requestor, but no prices or preferences can be attached. WS-Agreement [Gri05]

extends WS-Policy in this direction and provides the means for attaching prices and preferences

to configurations. However, all these specifications are based purely on XML and thus lack

formal semantics. KAoS [UBJ04] and REI [Kag04] are ontology-based approach for expressing

policies. However, they also evaluate either to true or false and thus provide no ranking of the

alternatives.

In literature we can identify three major branches of work that strive for ranking of suitable

services. First, there are logic-based approaches (e.g., [PKPS02], [GMP04], [NSDM03]) that

allow for different degrees of matches based on partial or incomplete matches. However, such

rankings are typically rather coarse and one can argue that pure logical matchmaking without

value reasoning is not sufficient [SRT05, KFKS05]. Second, there are matchmaking approaches

purely based on information retrieval techniques like [BK06]. Here rankings are calculated by

defining similarity measures for service properties. Klusch and colleagues [KFKS05] extend

logic-based matchmaking with syntactic measures. This is similar to our approach, since we use

a logic-based approach for matchmaking of service functionality. In addition, similarity mea-

sures can be seen as special preference functions. However, our selection approach is not limited

to similarity-based preferences. It is also possible to specify the valuation of certain alternatives

explicitly. This is also possible in the system presented by Balke and Wagner [BW03]. They

use SQL-based preference queries introduced in [Kie02]. However, their work is not based on

semantic service annotations. A third branch of work relies on logical rule languages to specify

preferences (as in our case SWRL). Prominent examples are SweetDeal [GP03] and the work

by Oldham and colleagues [OVSH06]. Although these approaches show how preferences can

be formally represented, they currently lack a formal selection model as we presented in section

2.

All approaches above consider only the case of selecting a single service. Approaches beyond

this simple case are presented in [SNVW06] and [ZBN+04]. [SNVW06] presents an multi-

attribute combinatorial auction for grid service markets with multiple sellers and buyers bidding

on complex service bundles. Zeng and colleagues [ZBN+04] present two methods for selecting

a service based on several QoS-criteria. In this context, they consider not only one single ser-

vice, but optimize the utility for an entire composition of services using integer programming.

454

However, the problem of service selection for multiple service requests is beyond the scope of

this paper.

6 Conclusion

The work in this paper addresses a problem that arises with the increasing differentiation of

services in electronic markets. This requires mechanisms to describe configurable services

and algorithms to discover and select suitable services and configurations. It is shown, how

the abstract selection model can be implemented by leveraging standardized web languages,

such as OWL-DL, SWRL and SPARQL. This facilitates interoperability in heterogenous and

open environments. In a first step, a rather simple optimization algorithm is applied to rank

the service offers according to the preferences of a requester. The algorithm is evaluated by

means of a simulation. The evaluations indicate that, while being suitable for rather simple

service descriptions or small repositories, the system is not yet capable of selecting from a

large repository of complex services in run-time. We are currently working on the scalability

of the system and plan to add a built-in predicate which efficiently implements the optimization

problem. In doing this, iterating over all configurations can be avoided and the number of

instances in the repository can be reduced. Moreover, we plan to extend our approach in order

to allow specifying preferences also for functional, dynamic and continuous service properties.

Acknowledgments

This work was funded by the German Research Foundation (DFG) in scope of Graduate School

Information Management and Market Engineering.

References

[AFJ+05] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, A. Sheth, and

K. Verma. Web Service Semantics - WSDL-S, ” A joint UGA-IBM Technical

Note, version 1.0,. Technical report, April 2005.

[AS06] S. Agarwal and R. Studer. Automatic matchmaking of web services. In Int. Conf.

on Web Services (ICWS’06), Chicago, USA, 2006. IEEE Computer Society.

[AW00] R. Agrawal and E. L. Wimmers. A framework for expressing and combining pref-

erences. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international

conference on Management of data, pages 297–306, New York, NY, USA, 2000.

ACM Press.

455

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-

tors. The Description Logic Handbook: Theory Implemenation and Applications.

Cambridge University Press, 2003.

[BK05] M. Bichler and J. Kalagnanam. Configurable offers and winner determination in

multi-attribute auctions. European Journal of Operational Research, 160(2):380–

394, January 2005.

[BK06] A. Bernstein and C. Kiefer. Imprecise RDQL: Towards Generic Retrieval in On-

tologies Using Similarity Joins. In 21th Annual ACM Symposium on Applied Com-

puting (SAC), New York, NY, USA, 2006. ACM Press.

[BVEL04] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler. Visual modeling of OWL

DL ontologies using UML. In S. M. et al., editor, Proc. of the 3rd International

Semantic Web Conference, pages 198–213, Hiroshima, Japan, November 2004.

Springer LNCS.

[BW03] W.-T. Balke and M. Wagner. Towards personalized selection of web services. In

Proc. of the 12th Int. World Wide Web Conference, 2003.

[GMP04] S. Grimm, B. Motik, and C. Preist. Variance in e-business service discovery. In

Semantic Web Services: Preparing to Meet the World of Business Applications,

workshop at ISWC 2004, 2004.

[GP03] B. Grosof and T. Poon. SweetDeal: Representing agent contracts with exceptions

using XML rules, ontologies, and process descriptions. In Proc. of the 12th Int.

Conf. on the World Wide Web (WWW 2003), Budapest, Hungary, May 2003.

[Gri05] Grid Resource Allocation and Agreement Protocol Working Group. Web ser-

vices agreement specification. https://forge.gridforum.org/projects/

graap-wg/document/WS-AgreementSpecification/en/7, June 2005.

[Gru93] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisi-

tion, 5(2):199–220, 1993.

[HM05] P. Haase and B. Motik. A mapping system for the integration of owl-dl ontologies.

In A. Hahn, S. Abels, and L. Haak, editors, IHIS 05: Proceedings of the first

international workshop on Interoperability of heterogeneous information systems,

pages 9–16, 2005.

[HPS04] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. In

Proceedings of the 13th International Conference on the World Wide Web (WWW

2004), pages 723–731, New York, USA, 2004. ACM Press.

456

[HPSB+04] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A semantic web rule language combining OWL and RuleML. W3C Sub-

mission, avilable at http://www.w3.org/Submission/SWRL, May 2004.

[Kag04] L. Kagal. A Policy-Based Approach to Governing Autonomous Behavior in Dis-

tributed Environments. PhD thesis, University of Maryland Baltimore County,

Baltimore MD 21250, November 2004.

[KFKS05] M. Klusch, B. Fries, M. Khalid, and K. Sycara. Owls-mx: Hybrid semantic web

service retrieval. In Proceedings of 1st Intl. AAAI Fall Symposium on Agents and

the Semantic Web, Arlington VA, USA, 2005. AAAI Press.

[Kie02] W. Kießling. Foundations of preferences in database systems. In VLDB’02: Proc.

of the 13th Int. Conf. on Very Large Databases, pages 311–322, 2002.

[KLP+04] U. Keller, R. Lara, A. Pollers, I. Toma, M. Kifer, and D. Fensel. WSMO Web

Service Discovery, November 2004. http://www.wsmo.org/TR/d5/d5.1/v0.1.

[KR76] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and

Value Tradeoffs. J. Wiley, New York, 1976.

[LAO+06] S. Lamparter, A. Ankolekar, D. Oberle, R. Studer, and C. Weinhardt. A policy

framework for trading configurable goods and services in open electronic markets.

In Proceedings of the 8th Int. Conference on Electronic Commerce (ICEC’06),

New Brunswick, Frederiction, Canada, August 2006.

[LH03] L. Li and I. Horrocks. A software framework for matchmaking based on semantic

web technology. In WWW ’03: Proceedings of the twelfth international conference

on World Wide Web, pages 331–339. ACM Press, 2003.

[LL87] M. Lacroix and P. Lavency. Preferences; putting more knowledge into queries. In

VLDB ’87: Proceedings of the 13th International Conference on Very Large Data

Bases, pages 217–225, San Francisco, CA, USA, 1987.

[MM03] D. J. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic Web: The

Bottom-Up Approach to Web Service Interoperation. In D. Fensel, K. P. Sycara,

and J. Mylopoulos, editors, 2nd Int. Semantic Web Conference (ISWC), volume

2870 of LNCS, pages 227–247, Sanibel Island, FL, USA, 2003. Springer.

[MS06] B. Motik and U. Sattler. A comparison of reasoning techniques for querying large

description logic aboxes. In Proc. of the 13th International Conference on Logic

for Programming Artificial Intelligence and Reasoning (LPAR 2006), Phnom Penh,

Cambodia, November 2006.

457

[MSS05] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.

Journal of Web Semantics: Science, Services and Agents on the World Wide Web,

3(1):41–60, JUL 2005.

[NSDM03] T. D. Noia, E. D. Sciascio, F. M. Donini, and M. Mongiello. A system for princi-

pled matchmaking in an electronic marketplace. In WWW ’03: Proceedings of the

twelfth international conference on World Wide Web, pages 321–330. ACM Press,

2003.

[OLG+06] D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, and A. Gangemi.

Towards ontologies for formalizing modularization and communication in large

software systems. Journal of Applied Ontology, 1(2), 2006.

[OVSH06] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-Agreement

partner selection. In Proc. of the 15th Int. WWW Conference, Edinburgh,UK, 2006.

[PKPS02] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of

web services capabilities. In 1st International Semantic Web Conference (ISWC),

LNCS 2342, pages 333–347, 2002.

[SNVW06] B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt. Trading grid services -

a multi-attribute combinatorial approach. Forthcoming in European Journal of

Operational Research, 2006.

[SPAS03] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,

interaction and composition of semantic web services. Journal of Web Semantics,

1(1), 2003.

[SRT05] A. P. Sheth, C. Ramakrishnan, and C. Thomas. Semantics for the semantic web:

The implicit, the formal and the powerful. Int. J. Semantic Web Inf. Syst., 1(1):1–

18, 2005.

[UBJ04] A. Uszok, J. M. Bradshaw, and R. Jeffers. KAoS: A Policy and Domain Services

Framework for Grid Computing and Semantic Web Services. In Trust Manage-

ment: 2.d Int. Conference, iTrust 2004, Oxford, UK, volume 2995 of LNCS, pages

16–26. Springer, 2004.

[W3C04] W3C. Web ontology language (OWL). http://www.w3.org/2004/OWL/, 2004.

W3C Recommendation.

[ZBN+04] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS

- aware middleware for web services composition. IEEE Transactions on Software

Engineering, 30(5):311–327, 2004.

458

