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Abstract

The multi-depot vehicle routing problem (MDVRP) is a very challenging part of supply

chain optimization. We propose here a simple yet powerful heuristic for the MDVRP with

an integrated look-ahead. Compared to other state-of-the-art approaches, our heuristic

is significantly faster, but yields competitive results and even found several new best

solutions on a set of standard benchmark problems.

1 Introduction

The share of logistics and transportation in the overall cost of a product is increasing.

Subsequently, there is a growing pressure in the logistics industry for optimization and cost

reduction. In this paper, we look at the multi-depot vehicle routing problem as a typical

optimization problem in modern logistics: Given some customers and their demands,

three questions have to be answered:

1. From which depot a customer is served

2. On which route/truck a customer is served

3. The sequence in which the customers are served on the route.

All these aspects are interdependent. Nevertheless, many approaches split the problem

into two stages to reduce the complexity: first, customers are assigned to depots, and then

a classical vehicle routing problem (VRP) is solved for each depot.
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The heuristic we propose in this paper also works in stages. It uses a simple construc-

tion heuristic for assigning customers to depots, followed by a savings algorithm to solve

the resulting VRP for each depot. The savings algorithm uses a look-ahead procedure to

approximate the effect a decision has on the final solution quality. Finally, our method

applies some simple local improvement heuristics to fine-tune the solution. The overall

heuristic is not only competitive to other state-of-the-art heuristics and finds several new

best solutions, but it is also very fast.

The paper is structured as follows. First, we provide a more detailed definition of the

MDVRP in Section 2. A short overview of related work is provided in Section 3. Section 4

describes the proposed heuristic in detail. Empirical results are summarized in Section 5.

The paper concludes with a summary and some ideas for future work.

2 The multi-depot vehicle routing problem

The standard VRP is described as follows: n customers must be serviced from a unique

depot. Each customer i has a given demand di for goods. Vehicles used for delivery have

a maximal capacity C and can drive a maximal distance D before they have to be back

at the depot. The goal is to minimize the total transportation cost which is often equated

with the total distance driven. A solution to the VRP is a collection of tours starting and

ending at the depot, where each customer is assigned to exactly one tour, each tour has

length at most D, and the total demand for each tour is at most C.

The multi-depot vehicle routing problem (MDVRP) considered here differs from the

standard VRP by having several depots. Tours have to be assigned to depots, i.e. they

can start at any depot, but have to return to the same depot they started from. This

is a common scenario in logistics. The VRP as well as the MDVRP are NP-complete

problems [TV01].

Note that the benchmarks most commonly used in the literature [HEC] have an ad-

ditional constraint on maximal the number of vehicles per depot.
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3 Related work

Since the MDVRP is NP-complete, it is unlikely that exact polynomial time algorithms

exist. For this reason, we concentrate on heuristic approaches in this section. The heuris-

tics found in the literature can be roughly categorized into three groups: simple heuristics

that attempt to solve the whole problem simultaneously, and heuristics that first assign

customers to depots, and then solve a classical VRP problem for each depot in a second

stage. As a third group, metaheuristics are discussed.

3.1 Single stage methods

For single-depot VRPs, the savings method is one of the best fast heuristics available[CW64].

Several authors have adapted this method to multi-depot VRPs. In this case, savings ad-

ditionally depend on the depot the tour is assigned to. A particular difficulty is that the

savings values may change when tours are combined. Different authors have addressed

this problem either by only allowing combinations that do not change the savings val-

ues [Til69], or by re-calculating the savings values when necessary [Weu83, Mat78]. As

expected, the latter yields better results but requires more computational effort.

In [TH71], the multi-depot savings method is extended by a look-ahead procedure:

For every decision, all possible alternatives are considered on the first level, the 3 best

(according to savings values) for the second level, and the single best alternative for the

third level. Then the decision on the first level is fixed which allows to realize the highest

sum of savings values on the considered three levels. The authors conclude that the

improvements obtained by integrating the look-ahead “are marginal and these occur at

the expense of greatly increased computer times”.

3.2 Two-stage and multi-stage methods

The simplest two-stage procedure assigns each customer to the closest depot, and then

solves a VRP for each depot [Mat78]. Gillet and Johnson [GJ76] supplement this idea

with local improvement steps moving a customer from one depot to another. Ashour and

Bhatt [AB75] construct a minimum spanning tree over all depots and customers and use
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this to assign customers to depots.

Salhi and Sari [SS97] proposed a rather complex multi-stage heuristic. We discuss this

heuristic in more detail, as it is the basis for the assignment phase of our approach. First,

customers are divided into core customers and borderline customers by looking at the

ratio between the distance to their nearest depot and the distance to the second-nearest

depot. If this ratio is smaller than some parameter ε (i.e. the nearest depot is much closer

than the second-nearest), the customer is terminally assigned to the nearest depot as core

customer. Otherwise, the two closest depots have a similar distance, and the assignment

is left open. Note that by varying ε between 0 and 1, the percentage of customers assigned

to depots as core customers may be varied from 0% to 100%. In a second step, VRPs are

solved for each depot with the core customers only. In Step 3, borderline customers are

inserted one by one in the order of decreasing opportunity cost, where opportunity cost is

the absolute difference between inserting the customer into a tour starting at the closest

depot, and inserting the customer into a tour starting at the second closest depot (thereby,

the customer can be inserted into an existing tour or a new tour can be created to serve

the customer directly from the depot). The customer is inserted where the additional cost

is minimal, and the tours are updated. Note that only insertions are allowed that keep

the tour valid.

After all customers have been inserted, a multitude of local improvement heuristics

are applied, including the removal of tours and reinsertion of its customers elsewhere, the

move of a single customers from one tour to another, the swapping of customers between

tours etc.

3.3 Metaheuristics

The probably best methods for the MDVRP to date are Tabu Search (TS) metaheuristics

(for a general introduction to TS see e.g. [GL98]). The different variants mainly differ

in the neighborhood used: In [RLB96], a λ-interchange neighborhood is used. [CGL97]

move customers from one tour to another. This may result in infeasible solutions which

are then penalized. Finally, the variant proposed in [Sch04] allows to move or swap subsets

of customers from one tour to another. The last two variants are responsible for all of
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the best known solutions of the 23 standard benchmark problems from [HEC] ([CGL97]

found 17 best known solutions, [Sch04] found 6). Evolutionary algorithms have been used

in [TS01] and [OH04].

4 Look-ahead Assignment and Routing Heuristic

In this section, we present a new fast two-stage heuristic with look-ahead. In the following,

we denote this heuristic as Look-ahead Assignment and Routing (LAR).

The first stage is closely inspired by the complex multi-stage heuristic from Salhi

and Sari [SS97]. We start by dividing the customers into core customers and borderline

customers depending on the parameter ε as described in Section 3 and generate initial

tours with only the core customers. The insertion of the borderline customers differs in

two major ways: first, we not only consider the two closest depots as potential sources

for a customer, but all depots j with wc/wj > ε, where wc is the distance to the closest

depot, and wj is the distance to depot j. Second, and more importantly, we allow tours to

become infeasible with respect to tour length and/or capacity restrictions when greedily

inserting customers.

After all customers have been assigned to depots, we discard the constructed tours

and solve a VRP for each depot from scratch, using a savings algorithm with look-ahead.

The use of look-ahead is inspired by the use of look-ahead in the multi-depot savings

method proposed in [TH71].

In order to make a decision in the current iteration, the look-ahead procedure con-

structs a decision tree, looking several stages into the future for several alternative choices.

Our look-ahead procedure has four configuration parameters:

1. a1, the number of alternatives considered on the first level,

2. a2, the number of alternatives considered on the second level,

3. r, the decrease in the number of alternatives considered from one level to the next

after stage two. Together with a2, this determines the number of alternatives con-

sidered in level i, as ai = max{1, a2 − (i− 2)r}.
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4. m, the maximum number of levels considered.

So, while the standard savings algorithm in each iteration connects the two tours with the

largest savings value, the look-ahead savings algorithm considers the a1 alternatives with

the largest savings value. For each of these, it tries the a2 alternatives with then largest

savings value, and so on for m levels. Finally, out of the a1 alternatives, it selects the one

that allowed to achieve the largest total savings. An example is given in Figure 1.

After the VRPs are solved, we use three simple local improvement heuristics to gen-

erate the final solution. These improvement heuristics are 2-opt and 3-opt applied to

individual tours, and an inter-tour swap operator that attempts to swap some customers

between two tours. Thereby, all possible sub-tours of length at most 3 are examined and

it is tested, whether an insertion into any other tour at any possible location would be

feasible and better. These local improvement steps are iterated three times.

As mentioned above, the most commonly used MDVRP benchmark problems [HEC]

additional restrict the number of vehicles per depot. LAR can not handle such a con-

straint explicitly, because the assignment may assign more customers to a depot than can

be handled by the vehicles, and because the savings heuristic does not allow to restrict

the resulting number of vehicles. However, a simple twist allowed us to generate feasible

solutions for all cases: We simply limit the capacity of a depot in the assignment step to

a fraction p of its maximal capacity (i.e. the maximal number of vehicles times vehicle

capacity). Once the assigned customers reach the depot’s capacity, it is no longer consid-

ered as a potential source for the remaining customers. The fraction p is an additional

parameter, but a default setting of p = 0.975 seemed to work well in most cases.

5 Empirical results

5.1 Experimental setup

In order to evaluate the quality of our LAR procedure, we tested it on 33 standard

benchmarks from the literature, all publicly available at [HEC].

The first 23 test instances are classical benchmarks from the literature. Instances 1-7

are based on some single-depot VRPs described in [CE69], instances 8-11 are proposed in
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Figure 1: Decision tree for parameters a1 = 3, a2 = 3, r = 1, m = 3. The variable x

denotes the savings realized by certain choices, e.g., xij denotes the savings realized if the

ith highest savings value is selected in the first step, and the jth highest savings value is

selected in the second step.

417



[GJ76], and instances 12-23 are from [CGW93]. The last ten instances have been proposed

more recently in [CGL97]. Some characteristics of the test problems are summarized in

Table 1. All instances are based on Euclidean distances.

Our parameter settings for the algorithm were as follows: For parameter ε used during

assignment, all values in {0.4, 0.5, 0.6, . . . 1.0} were used (i.e. we ran the algorithm 7 times

and report on the best found value here). For look-ahead, we set a1 = 20, a2 = 1, r =

0, m = 50. To keep the number of vehicles within the allowed limits, we set p = 0.975.

5.2 Results on standard benchmarks

The results for the first 23 instances are summarized in Table 2, reporting on the running

time (T) and the deviation from the best known solution (∆) for different algorithms

from the literature. The last column (“Best”) reports on the quality of the best known

solution, and where this solution has been published. Note that [CGL97] report on two

types of results: The runs with default parameter setting listed in columns 4/5 of the

table, and results obtained by “playing around” with algorithm parameters, e.g. increasing

the number of iterations, often resulting in the best known solution listed in the last

column. Of all the approaches reported, only those from [CGL97, Sch04, TS01] take into

account the constraint on the number of vehicles per depot. In [RLB96, SS97, OH04],

this constraint is simply ignored.

As can be seen, the solution found by LAR is generally very close to the best known

solution. For problem instance 8, we even found a new best solution, which is quite

remarkable given that these problems have been thoroughly tested by many researchers.

Although a direct comparison of the runtimes of the different heuristics is difficult due to

differences in hardware (see footnote in Table 2 for underlying hardware specifications),

it is obvious that LAR is very fast (5 seconds runtime on average).
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Table 1: Characteristics of test instances.

Vehicle restrictions

Problem # Customers # Depots Capacity Distancea #Vehiclesb Utilizationc

1 50 4 80 ∞ 4 60,70%
2 50 4 160 ∞ 2 60,70%
3 75 2 140 ∞ 3 64,95%
4 100 2 100 ∞ 8 91,13%
5 100 2 200 ∞ 5 72,90%
6 100 3 100 ∞ 6 81,00%
7 100 4 100 ∞ 4 91,13%
8 249 2 500 310 14 86,47%
9 249 3 500 310 12 67,26%
10 249 4 500 310 8 75,66%
11 249 5 500 310 6 80,71%
12 80 2 60 ∞ 5 72,00%
13 80 2 60 200 5 72,00%
14 80 2 60 180 5 72,00%
15 160 4 60 ∞ 5 72,00%
16 160 4 60 200 5 72,00%
17 160 4 60 180 5 72,00%
18 240 6 60 ∞ 5 72,00%
19 240 6 60 200 5 72,00%
20 240 6 60 180 5 72,00%
21 360 9 60 ∞ 5 72,00%
22 360 9 60 200 5 72,00%
23 360 9 60 180 5 72,00%
24 48 4 200 500 1 82,13%
25 96 4 195 480 2 78,21%
26 144 4 190 460 3 78,42%
27 192 4 185 440 4 83,68%
28 240 4 180 420 5 93,08%
29 288 4 175 400 6 87,40%
30 72 6 200 500 1 79,00%
31 144 6 190 475 2 87,98%
32 216 6 180 450 3 84,44%
33 288 6 170 425 4 94,36%

a ∞: no tour length restriction
b max. number of vehicles per depot
c Utilisation = total demand of all customers

#Depots · #V ehicles · Capacity
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Table 3: Performance comparison of LAR with the Tabu search algorithm proposed by

Cordeau et al. [CGL97] on the benchmarks proposed there.

[CGL97] LAR

Problem c(s) c(s) ∆ T

24 861,32 861,319 0,00% 00:00
25 1307,61 1349,92 3,24% 00:01
26 1806,60 1805,7 -0,05% 00:02
27 2072,52 2172,05 4,80% 00:05
28 2385,77 2428,23 1,78% 00:09
29 2723,27 2710,39 -0,47% 00:13
30 1089,56 1116,19 2,44% 00:00
31 1666,60 1804,08 8,25% 00:01
32 2153,10 2217,94 3,01% 00:04
33 2921,85 3228,52 10,50% 00:08

Avg. 3,35% 00:04

The results for the 10 instances proposed in [CGL97] can be found in Table 3. On

these test problems, we improved on the best known solutions for 2 out of the 10 problem

instances. On average, LAR performed 3.35% worse than the Tabu search algorithm used

in [CGL97], which is mainly due to the bad performance on Problem 31 and 33.

Over all 33 test instances, LAR has a deviation from the best known solution of

2.11%. While this is worse than the 0.33% obtained by the TS used in [CGL97], LAR is

significantly faster (based on the running times observed in Table 2 – the running time

for Tabu search on problem instances 24-33 was not reported in [CGL97]).

5.3 Design choices

In this section, we examine for some algorithm design choices their effect on solution

quality. For this purpose, we compare three algorithmic variants:

1. Our proposed LAR

2. LAR where we require feasibility of tours when assigning borderline customers to

depots (as in the heuristic from Salhi and Sari [SS97])
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3. A method which requires feasibility of tours when assigning borderline customers to

depots, and then takes the resulting tours and applies local improvement. This is

similar to the heuristic proposed by Salhi and Sari [SS97], although they had some

more local improvement heuristics.

All these algorithms are followed by the usual three iterations of our local improvement

heuristics 2-opt, 3-opt and Swap.

As summarized above, in these tests, LAR achieved an average deviation from the best

known solution of 2.11%. If we insist on feasible tours during the assignment stage (as in

[SS97]), the deviation increases to 2.77%. If we additionally omit the re-planning of tours

with the look-ahead savings algorithm and only apply local improvement (as in [SS97]),

the deviation increases further to 5.27%. On the other hand, omitting the re-planning of

tours reduces the running time by approximately 50%.

5.4 Parameter sensitivity

In this subsection, we have a closer look at the influence of the parameter settings. Figure 2

looks at the influence of the number of first-level alternatives in the look-ahead procedure

on the solution quality. As can be seen, considering only slightly more than just the best

alternative improves performance significantly. After about 5 considered alternatives,

additional alternatives improve the results only slightly, while the running time keeps

increasing linearly.

Similarly, looking some stages ahead can help a lot, while after about 50 stages, the

additional effect becomes negligible, see Figure 3

Overall, the heuristic seems to be fairly robust with respect to parameter settings.

Also, note that we always used the same parameter settings for all 33 problems, which

differ significantly in size and structure.

We also tested what solution quality we could obtain by tuning the parameters for

each problem separately. To this end, we tested all combinations of the following pa-

rameter settings: a1 ∈ {1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100}, a2 ∈ {1, 2, 3, 4, 5}, m ∈
{1, 5, 10, 20, 30, 40, 50}, p ∈ {0.8, 0.9, 0.95, 0.975, 1.0}. The best parameter settings for
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Figure 2: Average deviation over all 33 test
problems depending on maximal number of
alternatives considered by look-ahead pro-
cedure on first level, a1. m = 50.

Figure 3: Average deviation over all 33 test
problems depending on maximal number of
levels for look-ahead, m. a1 = 20.

each problem, together with the best solution found, are summarized in Table 4. Pa-

rameter fine-tuning further improved performance from an average error of 2.11% with

standard parameter settings to an average error of 1.15%. Furthermore, in addition two

of the three new best solutions reported above could be further improved, and for two

more problems new best solutions were found (making a total of 5 new best solutions).
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Table 4: Best results obtained with different parameter settings

Best LAR

Problem c(s*) ε a1 a2 r m p c(s) ∆

1 576,87 C 0,5 10 1 1 20 0,80 577,46 0,10%

2 473,533 C 1,0 20 1 1 50 1,00 480,04 1,37%

3 641,186 C 0,9 20 1 1 50 1,00 651,479 1,61%

4 1001,47 S 0,4 100 5 1 50 1,00 1023,35 2,18%

5 750,029 C 0,3 100 5 1 50 1,00 762,58 1,67%

6 876,5 C 0,5 70 4 1 50 1,00 885,91 1,07%

7 884,664 S 0,8 100 1 1 100 0,98 912,198 3,11%

8 4433,31 S 1,0 20 1 1 50 1,00 4427,16 -0,14%

9 3877,37 S 0,8 100 1 1 100 0,98 3922,21 1,16%

10 3655,18 S 0,8 20 1 1 50 1,00 3749,17 2,57%

11 3554,18 C 0,8 5 3 1 50 1,00 3627,00 2,05%

12 1318,95 C 1,0 2 1 1 5 1,00 1318,95 0,00%

13 1318,95 C 1,0 2 1 1 5 1,00 1318,95 0,00%

14 1360,12 C 1,0 1 1 1 1 1,00 1365,69 0,41%

15 2505,42 C 1,0 2 1 1 5 1,00 2568,50 2,52%

16 2572,23 C 1,0 20 1 1 5 1,00 2577,12 0,19%

17 2709,09 C 1,0 1 1 1 1 1,00 2731,37 0,82%

18 3702,84 S 0,1 30 1 1 50 0,90 3818,05 3,11%

19 3827,06 C 1,0 2 1 1 2 1,00 3835,28 0,21%

20 4058,07 C 1,0 1 1 1 1 1,00 4097,05 0,96%

21 5474,83 C 0,4 20 1 1 50 1,00 5681,03 3,77%

22 5702,15 C 1,0 2 1 1 5 1,00 5710,38 0,14%

23 6095,46 C 1,0 1 1 1 1 1,00 6145,58 0,82% 1,29%a

24 861,32 C 0,4 100 1 1 100 0,98 861,32 0,00%

25 1307,61 C 0,1 150 1 1 150 0,98 1302,77 -0,37%

26 1806,6 C 0,7 100 1 1 100 0,98 1792,62 -0,77%

27 2072,52 C 0,6 100 1 1 100 0,95 2091,01 0,89%

28 2385,77 C 0,7 150 1 1 150 0,98 2374,41 -0,48%

29 2723,27 C 0,6 100 1 1 50 0,95 2697,85 -0,93%

30 1089,56 C 0,5 100 1 1 100 0,85 1102,45 1,18%

31 1666,6 C 0,6 100 1 1 100 0,98 1731,77 3,91%

32 2153,1 C 0,8 150 1 1 150 0,98 2165,64 0,58%

33 2921,85 C 0,8 150 1 1 150 0,98 3048,79 4,34%

1,15%b

a avg. deviation on problem instances 1 to 23
b avg. deviation over all 33 problem instances
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6 Conclusion

In this paper, we have considered the multi-depot vehicle routing problem (MDVRP),

which extends the standard vehicle routing problem (VRP) by allowing servicing a cus-

tomer from one of several depots, which is a common scenario in practical transportation

problems. To solve this problem, we have proposed a new heuristic which first assigns

customers to depots, and then uses a savings heuristic with integrated look-ahead to solve

the VRP for each depot. An extensive empirical comparison on 33 standard benchmark

problems showed that our method is not only competitive with other state-of-the-art pro-

cedures, but also much faster. For 5 out of the 33 benchmark problems, new best solutions

have been found.

Overall, we conclude that our proposed method is a very fast and simple yet very

effective heuristic for the MDVRP. As a next step, we are working on hybridizing this

heuristic with an evolutionary algorithm to obtain even better results.
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