Syntheses and Structures of new P／S and P／Se Metal Complexes

（Synthese und Strukturaufklärung neuer P／S－und P／Se－Metallkomplexe）

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
（Dr．rer．nat．）
der Fakultät für Chemie und Biowissenschaften der Universität Fridericiana zu Karlsruhe（TH）
vorgelegte
Dissertation
von
Weifeng Shi（施卫峰）
aus Jiangsu／China（江苏／中国）

Dekan：Prof．Dr．H．Puchta
Referent：Prof．Dr．D．Fenske
Korreferent：Priv．－Doz．Dr．A．Schnepf
Tag der mündlichen Prüfung：12．02．2007，14．02．2007 und 15．02．2007

I. Abbreviation

1. For Chemicals

Me	Methyl	$-\mathrm{CH}_{3}$
Et	Ethyl	$-\mathrm{C}_{2} \mathrm{H}_{5}$
'Pr	iso-Propyl	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
${ }^{\text {s Bu }}$	sec-Butyl	- $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
${ }^{t} \mathrm{Bu}$	tert-Butyl	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
- $\mathrm{O}^{t} \mathrm{Bu}$	tert-Butoxy	$-\mathrm{OC}_{4} \mathrm{H}_{9}$
-OMe	Methoxy	$-\mathrm{OCH}_{3}$
-OAc	Acetoxy	$-\mathrm{OCOCH}_{3}$
THF	Tetrahydrofuran	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
$\mathrm{Et}_{2} \mathrm{O}$	Diethylether	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
DME	Dimethoxyethane	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
DCM	Dichloromethane	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
DMSO	Dimethylsulfoxide	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$
PPh_{3}	Triphenylphosphine	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$

2. Spectrum

NMR	Nuclear Magnetic Resonance
δ	Chemical Shift
s	Singlet
d	Doublet
t	Triplet
q	Quadruplet
m	Multiplet
IR	Infra-red
GC-MS	Gas Chromatography-Mass Spectrum

II. List of New Complexes

$1\left[\mathrm{Cu}_{2}\left(\mathrm{o}-\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)(\mathrm{dppm})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1)$
$2\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (2)
$3\left[\mathrm{Cu}_{4}\left\{\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (3)
$4\left[\mathrm{Cu}_{2}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (4)
$5 \quad\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{Ar}=4$-anisyl $)(5)$
$6 \quad 1 / \infty\left[\mathrm{Na}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\} \text { (thf) }\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (6)
$7 \quad\left[\mathrm{Na}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right](\mathrm{Ar}=4$-anisyl $)(7)$
$8 \quad 1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{thf})_{2}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (8)
$9 \quad 1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (9)
$101 / \infty\left[\mathrm{K}_{4}\left\{\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}(\text { thf })_{4}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (10)
$\left.11\left[\mathrm{Cu}_{14}\left(\mu_{6}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\mathrm{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right)\right] \cdot 8 \mathrm{THF}(\mathrm{Ar}=4-\mathrm{anisyl})$ (11)
$12\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{THF}(\mathrm{Ar}=4-$ anisyl $)(12)$
$13\left[\mathrm{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 13 \mathrm{THF}(\mathrm{Ar}=4$-anisyl $)(13)$
$14\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\mathrm{thf})_{4}\right]$ ($\mathrm{Ar}=4$-anisyl) (14)
$15\left[\mathrm{Ni}_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\text { thf })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathrm{Ar}=4$-anisyl) (15)
$16\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}\right](\mathrm{Ar}=4$-anisyl) (16)
$17\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\mathrm{thf})_{4}\right]$ ($\mathrm{Ar}=4$-anisyl) (17)
$18\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\mathrm{thf})_{2}\right](\mathrm{Ar}=4-\mathrm{anisyl})(18)$
$191 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right\}_{2} \text { (thf) }\right]_{\infty}$ (19)
$201 / \infty\left[\mathrm{PhPSe}_{3} \mathrm{Na}_{2}(\mathrm{thf})_{3}\right]_{\infty}$ (20)
$211 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{K}_{2}(\text { thf })_{4}\right]_{\infty}$ (21)
$221 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{Rb}_{2}(\text { (thf })_{4}\right]_{\infty}$ (22)
$231 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right\}(\mathrm{thf})_{3}\right]_{\infty}(23)$
$241 / \infty\left[\mathrm{K}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}-\mathrm{SeSe}_{2} \mathrm{PPh}\right)(\text { thf })_{4}\right]_{\infty}$ (24)
$251 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { thf })\right]_{\infty}(25)$
$26\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](26)$

```
27 [Ni{PhP(OH)Se2}_(thf) 2] (27)
28[Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)}\mp@subsup{)}{4}{}(\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mp@subsup{)}{2}{}]\cdot[\textrm{Mg}{\textrm{PhP}(\textrm{Se},\textrm{O})\textrm{Se}-\textrm{Se}(\textrm{O},\textrm{Se})PP\textrm{Ph}
    (thf)}\mp@subsup{)}{3}{}(\mp@subsup{\textrm{H}}{2}{}\textrm{O})](28
29 [Mg{PhP(Se,O)Se-Se(O,Se)PPh}(thf)3 (H2O)] (29)
30 [Mn{PhP(Se,O)Se-Se(O,Se)PPh}(thf)3(H2O)] (30)
31[{PhPSe 2 ( }\mp@subsup{\mu}{2}{}-\textrm{Se})\textrm{Na}(\textrm{thf}\mp@subsup{)}{3}{}\mp@subsup{}}{2}{}\textrm{Ni]}\mathrm{ (31)
32 1/\infty[Ni{Na(PhPSe3)(thf)2]\infty (32)
```



```
34[Cu44}{\mp@subsup{\mu}{3}{}-\textrm{P}(\mp@subsup{\textrm{O}}{}{t}\textrm{Bu})\mp@subsup{\textrm{S}}{3}{}\mp@subsup{}}{2}{}(\mp@subsup{\textrm{PPh}}{3}{}\mp@subsup{)}{4}{}] (34a,b
35 1/\propto[ Na (S (S3 PS Bu)(dme)].\infty (35)
36[Ni{P(OH)}\mp@subsup{2}{2}{2}\mp@subsup{}}{2}{2}(thf)\mp@subsup{)}{2}{}] (36
37 [ArPS( }\mu-\textrm{S})(\mu-NPh)SPAr] (Ar = 4-anisyl) (37)
```


Contents

1 Introduction 1
1.1 P/S ligands and their compounds 1
1.2 P/Se ligands and their compounds 9
2 Aims and Objections 13
3 Results and Discussions 15
4 Experimental Section 68
4.1 Synthesis of starting materials 68
4.1.1 Synthesis of $\mathrm{CuO}^{t} \mathrm{Bu}$ 68
4.1.2 Synthesis of CuSR $\left(R={ }^{t} B u\right.$, Et and Cyclohexyl) 69
4.1.3 Synthesis of dppa 69
4.1.4 Synthesis of Woollins' reagent 70
4.1.5 Synthesis of $\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ 70
4.1.6 Synthesis of $\mathrm{PhP}(\mathrm{Se})\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ 70
4.2 Synthesis of new complexes 71
4.2.1 Synthesis of $\left[\mathrm{Cu}_{2}\left(o-\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)(\mathrm{dppm})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1) 71
4.2.2 Synthesis of $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (2) 71
4.2.3 Synthesis of $\left[\mathrm{Cu}_{4}\left\{\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \operatorname{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (3) 72
4.2.4 Synthesis of $\left[\mathrm{Cu}_{2}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (4) 72
4.2.5 Synthesis of $\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{Ar}=4$-anisyl) (5) 73
4.2.6 Synthesis of $1 / \infty\left[\mathrm{Na}\left\{\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\}(\text { thf })\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (6) 73
4.2.7 Synthesis of $\left[\mathrm{Na}_{2}\left\{\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right](\mathrm{Ar}=4$-anisyl $)(7)$ 74
4.2.8 Synthesis of $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\text { thf })_{2}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) $)(8)$ 74
4.2.9 Synthesis of $1 / \infty\left[\mathrm{K}_{2}\left\{\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right]_{\infty}(\mathrm{Ar}=4$-anisyl $)(9)$ 74
4.2.10 Synthesis of $1 / \infty\left[K_{4}\left\{\operatorname{ArP}\left(S^{t} B u\right)(\mu-S) S\right\}_{4}(\text { thf })_{4}\right]_{\infty}(\operatorname{Ar}=4-$ anisyl $)(10)$ 75
4.2.11 Synthesis of $\left[\mathrm{Cu}_{14}\left(\mu_{6}-\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\operatorname{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right)\right] \cdot 8 \mathrm{THF}(\mathrm{Ar}=4-\mathrm{anisyl})$ (11) 75
4.2.12 Synthesis of $\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{THF}(\mathrm{Ar}=4$-anisyl $)(12)$ 75
4.2.13 Synthesis of $\left[\mathrm{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 13 \mathrm{THF}(\mathrm{Ar}=4$-anisyl) (13) 76
4.2.14 Synthesis of $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\text { thf })_{4}\right](\mathrm{Ar}=4$-anisyl) (14) 76
4.2.15 Synthesis of $\left[\mathrm{Ni}_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{thf})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathrm{Ar}=4$-anisyl) (15) 76
4.2.16 Synthesis of $\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}_{4}\right](\mathrm{Ar}=4\right.$-anisyl $)(16)$ 77
4.2.17 Synthesis of $\left[\mathrm{Fe}_{2}\left(\mu\right.\right.$ - $\left.\left.\mathrm{ArPS}_{3}\right)(\text { thf })_{4}\right](\mathrm{Ar}=4$-anisyl $)(17)$ 77
4.2.18 Synthesis of $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\operatorname{thf})_{2}\right](\mathrm{Ar}=4$-anisyl) (18) 77
4.2.19 Synthesis of $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right\}_{2}(\text { (thf })\right]_{\infty}$ (19) 78
4.2.20 Synthesis of $1 / \infty\left[\mathrm{PhPSe}_{3} \mathrm{Na}_{2}(\text { thf })_{3}\right]_{\infty}(20)$ 78
4.2.21 Synthesis of $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{\left.\left.-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{K}_{2}(\text { thf })_{4}\right]_{\infty}(21)}\right.\right.$ 79
 79
4.2.23 Synthesis of $1 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}{ }_{2} \mathrm{Ph}\right\}(\text { (thf })_{3}\right]_{\infty}$ (23) 80
4.2.24 Synthesis of $1 / \infty\left[\mathrm{K}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right)(\text { thf })_{4}\right]_{\infty}(24)$ 80
4.2.25 Synthesis of $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{thf})\right]_{\infty}(25)$ 80
4.2.26 Synthesis of $\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](26)$ 81
4.2.27 Synthesis of $\left[\mathrm{Ni}\left\{\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\text { (thf })_{2}\right]$ (27) 81
4.2.28 Synthesis of
$\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](28)$ 81
4.2.29 Synthesis of $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (29) 82
4.2.30 Synthesis of $\left[\mathrm{Mn}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](30)$ 82
4.2.31 Synthesis of $\left[\left\{\mathrm{PhPSe}_{2}\left(\mu_{2}-\mathrm{Se}\right) \mathrm{Na}(\mathrm{thf})_{3}\right\}_{2} \mathrm{Ni}\right]$ (31) 83
4.2.32 Synthesis of $1 / \infty\left[\mathrm{Ni}\left\{\mathrm{Na}\left(\mathrm{PhPSe}_{3}\right)(\text { thf })_{2}\right]_{\infty}\right.$ (32) 83
4.2.33 Synthesis of $\left[\mathrm{Cu}_{3}\left\{\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (33) 83
4.2.34 Synthesis of $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](34 \mathrm{a}, \mathrm{b})$ 84
4.2.35 Synthesis of $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{~S}_{3} \mathrm{PS}^{t} \mathrm{Bu}\right)(\mathrm{dme})\right]_{\infty}(35)$ 84
4.2.36 Synthesis of $\left[\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right\}_{2}(\text { thf })_{2}\right]$ (36) 84
4.2.37 Synthesis of $[\operatorname{ArPS}(\mu-\mathrm{S})(\mu$-NPh $) \operatorname{SPAr}](\operatorname{Ar}=4-$ anisyl $)(37)$ 85
5 Crystallographic Data 86
5.1 General information 86
5.2 Crystallographic data 87
5.2.1 Data for $\left[\mathrm{Cu}_{2}\left(o-\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)(\mathrm{dppm})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1)$ 87
5.2.2 Data for $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (2) 90
5.2.3 Data for $\left[\mathrm{Cu}_{4}\left\{\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \operatorname{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4-$ anisyl) (3) 91
5,2.4 Data for $\left[\mathrm{Cu}_{2}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl $)(4)$ 92
5.2.5 Data for $\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{Ar}=4$-anisyl) (5) 93
5.2.6 Data for $1 / \infty\left[\mathrm{Na}\left\{\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\}(\text { thf })\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (6) 94
5.2.7 Data for $\left[\mathrm{Na}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}_{2}(\mathrm{dme})_{2}\right](\mathrm{Ar}=4\right.$-anisyl $)(7)$ 95
5.2.8 Data for $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{thf})_{2}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (8) 96
5.2.9 Data for $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) $)(9)$ 97
5.2.10 Data for $1 / \infty\left[\mathrm{K}_{4}\left\{\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}(\mathrm{thf})_{4}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (10) 98
5.2.11 Data for $\left.\left[\mathrm{Cu}_{14}\left(\mu_{6}-\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\operatorname{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right)\right] \cdot 8 \mathrm{THF}(\mathrm{Ar}=4-$ anisyl $)(11)$ 99
5.2.12 Data for $\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{THF}(\mathrm{Ar}=4$-anisyl) (12) 100
5.2.13 Data for $\left[\mathrm{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 13 \mathrm{THF}(\mathrm{Ar}=4$-anisyl) (13) 101
5.2.14 Data for $\left.\left[\mathrm{Fe}_{2}\left(\mu \text { - } \mathrm{ArPS}_{3}\right) \text { (thf) }\right)_{4}\right](\mathrm{Ar}=4$-anisyl) (14) 102
5.2.15 Data for $\left[\mathrm{Ni}_{2}\left\{\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{thf})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathrm{Ar}=4$-anisyl) (15) 103
5.2.16 Data for $\left[\mathrm{Cd}_{2}\left\{\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}\right](\mathrm{Ar}=4$-anisyl) (16) 104
5.2.17 Data for $\left[\mathrm{Fe}_{2}\left(\mu\right.\right.$ - $\left.\left.\mathrm{ArPS}_{3}\right)(\text { thf })_{4}\right](\mathrm{Ar}=4$-anisyl $)(17)$ 105
5.2.18 Data for $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\text { (thf })_{2}\right](\mathrm{Ar}=4$-anisyl) $)(18)$ 108
5.2.19 Data for $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}^{2}\right) \mathrm{Se}_{2}\right\}_{2} \text { (thf) }\right]_{\infty}$ (19) 109
5.2.20 Data for $1 / \infty\left[\mathrm{PhPSe}_{3} \mathrm{Na}_{2}(\text { thf })_{3}\right]_{\infty}(20)$ 110
5.2.21 Data for $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{K}_{2}(\text { (thf })_{4}\right]_{\infty}(21)$ 111
5.2.22 Data for $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{\left.\left.-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{Rb}_{2}(\mathrm{thf})_{4}\right]_{\infty} \text { (22) }}\right.\right.$ 112
5.2.23 Data for $1 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe} \mathrm{P}_{2} \mathrm{Ph}\right\}(\text { (thf })_{3}\right]_{\infty}(23)$ 113
5.2.24 Data for $1 / \infty\left[\mathrm{K}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{\left.\left.-\mathrm{SeSe}_{2} \mathrm{PPh}\right)(\mathrm{thf})_{4}\right]_{\infty}(24)}\right.\right.$ 114
5.2.25 Data for $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { thf })\right]_{\infty}(25)$ 115
5.2.26 Data for $\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](26)$ 116
5.2.27 Data for $\left[\mathrm{Ni}\left\{\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\text { thf })_{2}\right]$ (27) 117
5.2.28 Data for $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\text { thf })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}$ (thf) $\left.{ }_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (28) 118
5.2.29 Data for $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](29)$ 119
5.2.30 Data for $\left[\mathrm{Mn}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](30)$ 120
5.2.31 Data for $\left[\left\{\mathrm{PhPSe}_{2}\left(\mu_{2}-\mathrm{Se}\right) \mathrm{Na}(\mathrm{thf})_{3}\right\}_{2} \mathrm{Ni}\right]$ (31) 121
5.2.32 Data for $1 / \infty\left[\mathrm{Ni}\left\{\mathrm{Na}\left(\mathrm{PhPSe}_{3}\right)(\text { thf })_{2}\right]_{\infty}\right.$ (32) 122
5.2.33 Data for $\left[\mathrm{Cu}_{3}\left\{\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (33) 123
5.2.34a Data for $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (34a) 124
5.2.34b Data for $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (34b) 125
5.2.35 Data for $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{~S}_{3} \mathrm{PS}^{t} \mathrm{Bu}\right)(\mathrm{dme})\right]_{\infty}(35)$ 126
5.2.36 Data for $\left[\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right\}_{2}(\text { (thf })_{2}\right]$ (36) 127
5.2.37 Data for $[\operatorname{ArPS}(\mu-\mathrm{S})(\mu$-NPh $) \mathrm{SPAr}](\operatorname{Ar}=4$-anisyl) (37) 128
6 Conclusion 129
7 Literature 132
8 Publication List 141

1. Introduction

The generation of metal complexes with phosphorus- and sulfur- or selenium-containing ligands is a very active area of research. It is hoped that as a result of these efforts, materials with novel features will emerge. ${ }^{[1,2]}$ Motivated by the enormous progress made on the synthesis and application of metal phosphonates, ${ }^{[3-6]}$ a wide variety of complexes has been reported, where oxygen atoms of $\left[\mathrm{RPO}_{3}\right]^{2-}$ anions were formally replaced with other functional groups, e.g., RO, RS, S, etc. The coordination chemistry of resulting sulfur-analogs to known [P/O]-anions has been investigated intensively and some recent work is now directed towards the development of metal complexes containing [P/Se]-anions. ${ }^{[7-15]}$

1.1 P/S ligands and their compounds

Thiophophorus ligands, including dithiophosphates, dithiophosphinates, and mixed thio-oxo analogues, have been in the center of interest in many labs. ${ }^{[2,7,16-34]}$ The monothiophosphinato groups are ambident ligands, able to form primary bonds either through sulfur or oxygen (1a and 1b) (Scheme 1.1.1). Primary bonding through sulfur was observed in the 'soft' metal derivatives, e.g. mercury, thallium, lead, whereas germanium and tin are bonded to oxygen.

1a

1b

Scheme 1.1.1 Coordination modes of monothiophosphinato groups

As a result, these dithio-compounds can be found in the literature under various names (Scheme 1.1.2). ${ }^{[35]}$

dithiophosphoric acid O,O-diesters
phosphorodithioic acid O,O-diesters

bis(thiophosphoryl)disulfane [disulfide]
bis(phosphorothioyl)disulfane [disulfide]

dithiophosphoric acids
phosphorodithioic acids

bis(thiophosphoryl)disulfane [disulfide]
bis(phosphorothioyl)disulfane [disulfide]

dithiophosphoric acid O-esters
phosphorodithioic acid O-esters

bis(thiophosphoryl)disulfane [disulfide]
bis(phosphorothioyl)disulfane [disulfide]

Scheme 1.1.2 Various names of different dithiophosphorus compounds

The dithiophosphorus compounds are versatile ligands, and can exhibit various coordination patterns, mainly monodentate (2) (rare), bidentate chelating (3) and bridging (4). Coordination mode (3) and (4) can lead to inorganic ring formation (Scheme 1.1.3).

2

3

4

Scheme 1.1.3 Coordination modes of dithiophosphorus compounds

The coordination patterns of dithiophosphorus ligands are diverse, since the S-P-S group can behave as isobidentate (symmetrical) or anisobidentate (asymmetrical), both in chelating and bridging mode (Scheme 1.1.4). ${ }^{[7,24,36-41]}$

3a

3b

4b

3c

Scheme 1.1.4 Diverse coordination modes of dithiophosphorus ligands

For compounds based upon the $=P(S) S S P(S)=$ skeleton, at least four types of reactions can be expected (Scheme 1.1.5): a. adduct formation resulting in ring closure through chelation; b. metal insertion--involving homolytic cleavage of the S-S bond and oxidative addition of the metal species; c. redistribution between M-M and S-S bonds, involving homolytic cleavage of both S-S and M-M bonds and oxidation of the metals; d. addition to metal-metal multiple bonds, but this kind of reaction is not well-documented. ${ }^{[35]}$

a: adduct formation (chelation)

c: redistribution

Scheme 1.1.5 Different reaction types of $=P(S) S S P(S)=$ compounds

Organodithio-derivatives of phosphorus are relevant for a number of industrial and agricultural applications, e.g., as antioxidant and antiwear additives in lubricant oils, insecticides and pesticides. ${ }^{[42-61]}$ The most important route to dialkyl dithiophosphoric acids $\left[(\mathrm{RO})_{2} \mathrm{PS}(\mathrm{SH})(\mathrm{R}=\right.$ organic groups $\left.)\right]$ is the alcoholysis of $\mathrm{P}_{4} \mathrm{~S}_{10}(\text { Scheme 1.1.6) })^{[62-64]}$

$$
4 \mathrm{ROH}+\mathrm{P}_{2} \mathrm{~S}_{5} \longrightarrow 2(\mathrm{RO})_{2} \mathrm{PS}(\mathrm{SH})+\mathrm{H}_{2} \mathrm{~S}
$$

Scheme 1.1.6 The alcoholysis of $\mathrm{P}_{4} \mathrm{~S}_{10}$

The alkali metal salts $(\mathrm{RO})_{2} \mathrm{P}(\mathrm{S}) \mathrm{SM}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K})$ can react with lots of transition metal salts to afford many new complexes. ${ }^{[2,19,24,26,32,37,41,65-67]}$ For example, $\left[R u\left\{\mathrm{~S}_{2} \mathrm{P}(\mathrm{OEt})\right\}_{2}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (5) could be obtained from the reaction of $\mathrm{K}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]$ with $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}\right]$ (Figure 1.1.1). ${ }^{[26]}$

Fgure 1.1.1 Structure of $\left[\operatorname{Ru}\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$
There are a variety of ways to synthesize bis(thiophosphoryl)-disulfanes, ${ }^{[68-69]}$ among those, the most common method used for the preparation is based upon the oxidation of alkali metal salts of dithiophosphoric acids with iodine dissolved in potassium iodide aqueous solution (Scheme 1.1.7).

$2 \mathrm{MS}_{2} \mathrm{P}(\mathrm{OR})_{2}+\mathrm{I}_{2} \longrightarrow(\mathrm{RO})_{2} \mathrm{P}(\mathrm{S}) \mathrm{SSP}(\mathrm{S})(\mathrm{OR})_{2}+2 \mathrm{MI}$

Scheme 1.1.7 Synthesis of bis(thiophosphoryl)-disulfanes

The method is very general and used for all common alkyl and aryl derivatives. Thus, $(\mathrm{RO})_{2} \mathrm{P}(\mathrm{S}) \mathrm{SSP}(\mathrm{S})(\mathrm{OR})_{2}$ with $\mathrm{R}=$ alkyl, aryl and similar mixed disulfanes were prepared in $61-81 \%$ yields from $\mathrm{KS}_{2} \mathrm{P}(\mathrm{OR})_{2}$ and iodine. In the reactions of bis(thiophosphoryl)disulfanes with metal compounds, various metal complexes were obtained (Scheme 1.1.8). ${ }^{[77-72]}$

Scheme 1.1.8 Metal complexes from bis(thiophosphoryl)disulfanes

Among the neutral P/S ligands precursors, 2,4-bis(p-methoxyphenyl)-1,3-dithiadiphos-phetane-2,4-disulfide, also named as Lawesson's reagent (L.R.) (Scheme 1.1.9), was widely used in thionation reactions at first as well as dialkyl dithiophosphoric acids, which are especially applied in organic synthesis (Scheme 1.1.10). ${ }^{[73-82]}$

Scheme 1.1.9 Resonant structures of Lawesson's reagent

Scheme 1.1.10 Thionation reactions with Lawesson's reagent

In 1952, Fay and Lankelma synthesized the dimeric thioanhydride of Δ^{2}-cyclo-hexenetrithio-phosphonic acid-analogue of Lawesson's reagent for the first time, ${ }^{[83]}$ and then Lecher et al. prepared L.R. in 1956. ${ }^{[84]}$ After that, a series of alkyl- and arylphosphonotrithioic dianhydrosulfides $\left(\mathrm{RPS}_{2}\right)_{2}\left(\mathrm{R}=\right.$ cyclo, $\left.{ }^{s} \mathrm{Bu},{ }^{t} \mathrm{Bu}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{ClC}_{6} \mathrm{H}_{10}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ were documented, but because of their poor solubility and high sensitivity to moisture and other solvent impurities, those compounds were only confirmed by element and spectrum
analysis. ${ }^{[85,86]}$ The first crystallographic studies for the solvent-free crystals and the toluene solvate crystals were reported in 1992 and 1995 separately (Figure 1.1.2). ${ }^{[87,88]}$

Figure 1.1.2 Structure of Lawesson's reagent

In the past decade, a great deal of work which focused on metal complexes containing P/S-ligands derivated from L.R. has been reported, especially by Woollins' group. ${ }^{[9-11,89-92]}$ In these work, sodium phosphonodithioate salts were generated first from the dimeric ring-cleavage reactions of L.R. and $\mathrm{NaOR}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et},{ }^{\prime} \mathrm{Pr}\right)$ in the corresponding alcohols, and then reacted with transition metal halides (e.g., NiCl_{2}) or acetates (e.g., $\left.\mathrm{Cd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ to yield the metal complexes (Scheme 1.1.11, Figure 1.1.3).

Scheme 1.1.11 Metathesis reactions of Lawesson's reagent $\left(R=M e, E t,{ }^{\prime} \operatorname{Pr}\right)$

Figure 1.1.3 Top: Structure of $\left[\mathrm{Ni}\left\{\mathrm{ArP}\left(\mathrm{OCH}_{3}\right) \mathrm{S}_{2}\right\}_{2}\right]$

$$
\text { Bottom: Structure of }\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right) \mathrm{S}_{2}\right\}_{4}\right](\mathrm{Ar}=\text { anisyl })
$$

Zhang et al. also reported the decomposition of L.R. by heating it in alcohol, and the formation of $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{II})$ complexes with P/S ligands. ${ }^{[92]}$ The different organic group (2,4-dinitro- phenyl, benzyl and Ferrocenyl) on the phosphorus of P/S ligands were studies by Woollins, and the similar metal complexes to L.R. were obtained.

Figure 1.1.4 Structure of Ferrocenyl Lawesson's reagent (FcLR)

Here, Ferrocenyl Lawesson's reagent (FcLR) was received more attention since it was synthesized in 1996 (Figure 1.1.4). ${ }^{[93]}$ The cleavage of the dimeric ring of FcLR gave stable phosphonodithioate salts for ligation to various metals (e.g., Ni and Zn) (Scheme 1.1.12, Figure 1.1.5). ${ }^{[94-98]}$

Scheme 1.1.12 Metathesis reactions of Ferrocenyl Lawesson's reagent ($\mathrm{R}=\mathrm{Me}$, Et, ${ }^{\text {' } P r \text { r }) ~}$

Figure 1.1.5 Top: Structure of $\left[\mathrm{Ni}\left\{\mathrm{FcP}\left(\mathrm{OCH}_{3}\right) \mathrm{S}_{2}\right\}_{2}\right]$. Bottom: Structure of $\left[\mathrm{Zn}_{2}\left\{\mathrm{FcP}\left(\mathrm{OCH}_{3}\right) \mathrm{S}_{2}\right\}_{4}\right]$

1.2 P/Se ligands and their compounds

In the area of phosphorus-chalcogenide coordination chemistry, L.R. offers an approach to P/S-organometallic complexes, whilst 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4diselenide ($[\mathrm{PhP}(\mathrm{Se})(\mu-\mathrm{Se})]_{2}$, also named as Woollins' reagent, W.R.) offers an alternative route to complexes containing P/Se-based anionic ligands.

Woollins' reagent was first synthesized in 1988 by treating $(\mathrm{PhP})_{5}$ with ten equivalents of elemental selenium, ${ }^{[99-101]}$ and then in 2001, its x-ray structure and NMR spectrum were reported (Figure 1.2.1). ${ }^{[102,103]}$

Figure 1.2.1 Structure of Woollins' reagent

After that, the chemistry of W.R. has been the subject of a few reports. Baxter et al., ${ }^{[104]}$ Bhattacharyya et al. ${ }^{[105]}$ and Bethke et al. ${ }^{[106]}$ have reported the selenation reactions of W.R. in the synthesis of selenoketenyl complexes and a range of selenoamides and selenoaldehydes, and Knapp et al. described its use for the selenation of carboxylic acids. ${ }^{[107]}$ Meanwhile, Woollins reported the use of W.R. in the preparation of novel phosphorus-selenium heterocycles by the reaction with several organic substrates containing reactive unsaturated $\mathrm{C}=\mathrm{C}$ double bonds, $\mathrm{C} \equiv \mathrm{C}$ triple bonds and $\mathrm{C} \equiv \mathrm{N}$ triple bonds. ${ }^{[102, ~ 108-111]}$

Just like the preparations involving L.R., the phosphonodiselenoate salts can be prepared by reaction of W.R. with sodium alkoxides in corresponding alcohols, and subsequently reacted with transition metal halides (e.g., NiCl_{2}) or acetates (e.g., $\mathrm{Cd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) to generate metal complexes (Scheme 1.2.1, Figure 1.2.2). ${ }^{[15,112]}$

Scheme 1.2.1 Metathesis reactions of Woollins' reagent ($\mathrm{R}=\mathrm{Me}$, Et, ${ }^{\text {'Pr }}$)

Figure 1.2.2 Top: Structure of $\left[\mathrm{Ni}\left\{\mathrm{PhP}\left(\mathrm{OCH}_{3}\right) \mathrm{Se}_{2}\right\}_{2}\right]$. Bottom: Structure of $\left[\mathrm{Cd}_{2}\left\{\mathrm{PhP}\left(\mathrm{OCH}_{3}\right) \mathrm{Se}_{2}\right\}_{4}\right]$

Some other methods to create metal complexes containing P / Se ligands were demonstrated by Davies et al. ${ }^{[113-114]}$, Liu et al. ${ }^{[115]}$ and Kabir et al. ${ }^{[116]}$.

Within this thesis routes to generate new P / S and $P / S e$ (together with their derivatives--As and Te) ligands for metal coordination chemistry from available readily starting material (e.g. L.R. and W.R.) is further explored.

2. Aims and Objectives

Copper(I)-tert-butoxide ($\mathrm{CuO}^{t} \mathrm{Bu}$) is a versatile reagent in coordination chemistry. ${ }^{[117]}$ In 1972, Saegusa et al. used the reaction of CuCl and $\mathrm{LiO}^{t} \mathrm{Bu}$ to produce CuO ${ }^{t} \mathrm{Bu} .{ }^{[118,119]}$ From this route, a fine powder of air and light sensitive $\mathrm{CuO}^{t} \mathrm{Bu}$ decomposes more easily due to the increased surface and limits the use of it as a starting material for further investigations. In our group, the previously investigations of reactions between alkali metal alkoxides and copper(I) halides have shown that the reaction of Potassium-tert-butoxide with Copper(I) bromide in THF represents a useful method for the preparation of larger amounts of crystalline $\mathrm{CuO}^{t} \mathrm{Bu}^{[120]}$

Since the crystalline $\mathrm{CuO}^{t} \mathrm{Bu}$ can be easily prepared, the reactions of $\mathrm{CuO}^{t} \mathrm{Bu}$ with carboxylic acid anhydride were investigated. The simple model reaction of $\mathrm{CuO}^{t} \mathrm{Bu}$ with benzoic acid anhydride which was carried out in THF produced the solvated $\mathrm{Cu}(\mathrm{I})$-benzoate (Scheme 2.1, Figure 2.1). ${ }^{[121]}$
$\mathrm{CuO}^{t} \mathrm{Bu}+$
 THF $\left.\left[\mathrm{Cu}_{8} \text { (benzoate) }\right)_{8}(\text { thf })_{6}\right]$

Scheme 2.1 Reaction of CuO^{t} Bu with benzoic acid anhydride

Figure 2.1 Structure of $\left[\mathrm{Cu}_{8}(\text { benzoate })_{8}(\text { thf })_{6}\right]$

The structure showed that the anhydride bonds CO-O-CO was broken by $\mathrm{CuO}^{t} \mathrm{Bu}$, and an acentric structure consisting of two copper(I) benzoate tetramers held together by μ_{2}-bridging THF molecules was formed. Meanwhile, the insertion reaction of maleic anhydride into the $\mathrm{Cu}-\mathrm{O}$ bond in $\mathrm{CuO}^{t} \mathrm{Bu}$ produced the complex $\left[\mathrm{Cu}_{2}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{2}\right.\right.$ $\left.\left.\mathrm{CO}_{2}{ }^{\mathrm{B}} \mathrm{Bu}\right)_{4}(\mathrm{dme})\right]$ (Scheme 2.2, Figure 2.2). ${ }^{[122,123]}$

Scheme 2.2 Reaction of $\mathrm{CuO}^{t} \mathrm{Bu}$ with maleic anhydride

Figure 2.2 Structure of $\left[\mathrm{Cu}_{2}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)_{4}(\mathrm{dme})\right]$

Here, five-membered ring is opened and the maleic anhydride is transformed into the monoanionic tert-butoxymaleato ligand. It consists of dicopper(II) tetracarboxylate 'paddlewheel' units linked by dme into a one-dimensional coordination polymer (Figure 2.2).

So, the original thought was to find out other hybrid anhydrides, Lawesson's reagent and Woollins' reagent would react with alkoxides, thiolates and selenolates?

3. Results and Discussions

Initially, 2-Sulfobenzoic acid cyclic anhydride was employed in the reaction, and the structure is showed as follows (Scheme 3.1, Figure 3.1, Table 3.1),

Scheme 3.1 Reaction of $\mathrm{CuO}^{t} \mathrm{Bu}$ and 2-Sulfobenzoic acid cyclic anhydride

Figure 3.1 Structure of 1 (The phenyl groups of dppm are omitted)

Table 3.1 Selected ranges of bond lengths (\mathbb{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths								
S1-O1	$1.448(3)$	S1-O2	$1.451(3)$	S1-O3	$1.462(3)$			
Cu1-O3	$2.085(3)$	Cu1-O4	$2.130(3)$	Cu1-P1	$2.2251(13)$			
Cu1-P3	$2.2460(13)$	Cu2-O4	$2.025(3)$	Cu2-P4	$2.2263(13)$			
Cu2-P2	$2.2357(13)$	angles						
O3-Cu1-O4	$91.84(11)$	O3-Cu1-P1	$116.37(9)$	O3-Cu1-P3	$103.48(9)$			
P1-Cu1-P3	$126.98(5)$	O4-Cu2-P4	$105.53(10)$	O4-Cu2-P2	$107.84(10)$			
P4-Cu2-P2	$145.56(5)$	S1-O3-Cu1	$121.60(15)$	C7-O4-Cu2	$124.5(2)$			
C7-O4-Cu1	$150.9(3)$							

this result is different as the previously studies, that is, O 3 and O 4 directly coordinated with copper atoms which are held by two dppm, and the $\mathrm{O}^{t} \mathrm{Bu}$ group is missing. Is 2-Sulfobenzoic acid cyclic anhydride not dried, or is there some special mechanism inside the reaction? That is what we need to find out and because of that, Lawesson's reagent is employed in the reactions with $\mathrm{CuO}^{t} \mathrm{Bu}$.

When Lawesson's reagent was heated with 2 equivalents of $\mathrm{CuO}^{t}{ }^{\mathrm{B}}$ u in different solvents, and with different phosphorus ligands, different results were obtained (Scheme 3.2).

Scheme 3.2 Reactions of CuOtBu and Lawesson's reagent in different solvents

First, the reaction was carried out in toluene, a yellow precipitate was formed which dissolved upon addition of PPh_{3}. Crystallization from a mixture of dichloromethane and pentane gave, to our surprise, no phosphane-stabilised copper(I) phosphonodithioate, which could have been regarded as analogous compound to the sodium phosphono-dithioate salts prepared by Woollins et al.. Instead, the $\mathrm{Cu}(\mathrm{I})$ pyrophosphonodithioate $\left[\mathrm{Cu}_{2}\left(\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (2) $\left(\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ was obtained in 80% yield. The structure of 2 was initially determined by x-ray analysis (Figure 3.2, Table 3.2).

Figure 3.2 Structure of $\left[\mathrm{Cu}_{2}\left(\mathrm{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (2)

Table 3.2 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths							
Cu1-P3	$2.3181(15)$	Cu1-P2	$2.3193(14)$	Cu1-S1	$2.3643(16)$		
Cu1-S2A	$2.3749(15)$	P1-O1	$1.640(2)$	P1-S2	$1.9909(17)$		
P1-S1	$1.9927(16)$						
angles							
O1-P1-S2	$110.33(12)$	O1-P1-S1	$110.01(7)$	S2-P1-S1	$117.41(8)$		
P1A-O1-P1	$130.3(3)$						

The dianionic ligand $\left[\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right]^{2-}$ generated in the reaction of $\mathrm{CuO}^{t} \mathrm{Bu}$ with Lawesson's reagent bridges two $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$ions. Compound 2 consists of two puckered annulated six-membered $\left[\mathrm{CuS}_{2} \mathrm{P}_{2} \mathrm{O}\right]$ rings and an organic shell of phenyl rings of the PPh_{3} ligands (each one disordered over two positions; 50:50) and anisyl groups from Lawesson's reagent. The $\mathrm{Cu}(\mathrm{I})$ centers show a distorted tetrahedral coordination environment. The P-O and P-S distances in 2 are in good agreement with values observed in $\left[\mathrm{K}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{6}\right) \mathrm{PS}_{2}(\mu-\mathrm{O}) \mathrm{PS}_{2}\right]$, which is the closest related compound to $2 .{ }^{[124]}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was recorded from crystals of 2 dissolved in CDCl_{3} (verified by redetermination of the unit cell). Resonances at $\delta=$ 91.5 ppm for the generated $\left[\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right]^{2-}$ dianion and at $\delta=-3.6 \mathrm{ppm}$ for coordinated PPh_{3} ligands were observed and the IR spectrum showed a strong band at $v_{\text {as }}(P-O-P)=841 \mathrm{~cm}^{-1}$. In order to know more about the mechanism, the reaction was therefore performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ and all volatile products were distilled out and the NMR measurement afforded a sample containing ${ }^{t} \mathrm{Bu}_{2} \mathrm{O}$ formed in the reaction.

Figure 3.3 NMR spectra of by-product (${ }^{(} \mathrm{Bu}_{2} \mathrm{O}$)

Resonances at $\delta=1.1 \mathrm{ppm}$ from the ${ }^{1} \mathrm{H}$ NMR spectrum and at $\delta=32.1\left(\mathrm{C}\left(\underline{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right.\right.$), $69.0\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ ppm from the ${ }^{13} \mathrm{C}$ NMR spectrum for the tert-butyl groups which match the values in the literature very well were observed (Figure 3.3). ${ }^{[125,126]}$

Reactions of $\mathrm{CuO}^{t} \mathrm{Bu}$ with Lawesson's reagent in the presence of the different
phosphane ligand--dppa (dppa $=\mathrm{Ph}_{2} \mathrm{PNHPPh}_{2}$) were also performed and afforded the tetranuclear complex $\left[\mathrm{Cu}_{4}\left\{\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \operatorname{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right]$ (3) (Scheme 3.2, Figure 3.4, Table 3.3). In the solid state 3 consists of two fused adamantane cage frameworks in which two $\left[\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right]^{2-}$ dianions coordinate the Cu atoms $\mathrm{Cu}(1$, $2,2 A) . C u(3)$ is located in the periphery of the cluster and the P atoms of the two dppa ligands complete the remaining coordination sites of $\mathrm{Cu}(2,2 \mathrm{~A}, 3)$. Like in $2, \mathrm{Cu}$ atoms in 3 exhibit distorted tetrahedral coordination environments but the new ligand $\left[\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS} \mathrm{S}_{2} \mathrm{Ar}\right]^{2-}$ now bridges two Cu atoms via the S atoms $\mathrm{S}(3,3 \mathrm{~A}, 4,4 \mathrm{~A})$, whilst the remaining S atoms $S(1,1 A, 2,2 A)$ are coordinated to one $C u$ atom each.

Figure 3.4 Structure of $\left[\mathrm{Cu}_{4}\left\{\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right](3)$

Table 3.3 Selected ranges of bond lengths (\mathbb{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths								
Cu1-S1	$2.2958(16)$	Cu1-S3	$2.3394(19)$	Cu2-P3	$2.2209(19)$			
Cu2-S3	$2.3178(16)$	Cu2-S4	$2.337(2)$	Cu2-S2	$2.3570(17)$			
Cu3-P4	$2.3318(18)$	Cu3-S4	$2.3641(16)$	S1-P1	$1.994(2)$			
S2-P1	$1.990(3)$	S3-P2	$2.011(2)$	S4-P2A	$2.027(2)$			
P1-O3A	$1.662(5)$	P2-O3	$1.613(4)$	P2-S4A	$2.027(2)$			
P3-N1	$1.707(6)$	P4-N1	$1.709(5)$					
Angles							S2-P1-S1	$118.99(12)$
O3A-P1-S2	$109.66(19)$	O3A-P1-S1	$110.14(17)$	P3-N1-P4	$127.3(3)$			
O3-P2-S3	$108.20(18)$	S3-P2-S4A	$119.43(10)$					
P2-O3-P1A	$136.3(3)$							

Spectroscopic data and observed bond lengths in 3 verify the uniform composition of crystals of $\mathbf{3}$ and can be compared with $\mathbf{2}$ or $\left[\mathrm{K}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{6}\right) \mathrm{PS}_{2}(\mu-\mathrm{O}) \mathrm{PS}_{2}\right]$.

The further outcome of the reaction is remarkably different when ethereal solvents are used. In the presence of DME $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](4)$ is formed by asymmetric cleavage of Lawesson's reagent together with tris-1,3,5-Aryl-2,4,6-trioxatriphos-phinane-2,4,6-trisulfide $\left[\mathrm{ArP}(\mathrm{S}) \mathrm{O}_{3}\right.$ (Scheme 3.2, Figure 3.5, Table 3.4). The formation of $\left[\operatorname{ArP}(S) \mathrm{O}_{3}\right.$, which could be regarded as a decomposition product of a hypothetical intermediate $\left[\operatorname{ArP}(\mathrm{S})\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right]$, was confirmed by ${ }^{31} \mathrm{P}$ NMR ($\delta_{\mathrm{P}} 75 \mathrm{ppm}$, lit. $72 \mathrm{ppm}{ }^{[127]}$). In the solid state 4 exists as a crystallographically centrosymmetric dimer of two $\left[\mathrm{Cu}_{2}\left(\mathrm{ArPS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ units. The Cu atoms exhibit tetrahedral coordination environments and are coordinated by S atoms of $\left[\mathrm{ArPS}_{3}\right]^{2-}$ and P atoms of PPh_{3} ligands.

Figure 3.5 Structure of $\left[\mathrm{Cu}_{4}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](4)$

Table 3.4 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths							
Cu1-P2	$2.2369(8)$	Cu2-P3	$2.2257(9)$	Cu1-S1	$2.3958(9)$		
Cu1-S2	$2.5585(13)$	Cu1-S3	$2.2990(9)$	Cu2-S2	$2.2672(8)$		
Cu2-S1A	$2.3465(9)$	Cu2-S3	$2.7115(14)$	S1-P1	$2.0450(13)$		
S2-P1	$2.0345(10)$	P1-S3A	$2.0328(10)$				
Angles							
P-Cu-S	$110.74(3)-116.96(4)$	S-Cu-S	$82.56(3)-119.17(3)$	S3A-P1-S2	$116.92(5)$		
S3A-P1-S1	$110.38(4)$	S2-P1-S1	$109.04(5)$	P-S-Cu	$78.39(3)-115.38(4)$		
Cu2A-S1-Cu1	$109.84(3)$	Cu2-S2-Cu1	$69.47(2)$	Cu1-S3-Cu2	$66.26(2)$		

According to the results, the possible mechanism is given as follows (Scheme 3.3). The P-S four-membered ring of L.R. is opened by one equivalent $\mathrm{CuO}^{t} \mathrm{Bu}$, and the intermediate $\left[\mathrm{ArSP}(\mathrm{SCu})-\mathrm{S}-\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{PSAr}\right]$ is formed. When the second $\mathrm{CuO}^{t} \mathrm{Bu}$ reacts with the intermediate, there are two possibilities. Symmetric way (a) will produce only one kind of species-[ArSP($\left.\left.\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{SCu}\right]$, then after one tert-butyl ether is eliminated from two $\left[\mathrm{ArSP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{SCu}\right.$ and phosphorous ligands $\left(\mathrm{PPh}_{3}\right.$ and dppa) are added, 2 and 3 will be obtained. On the other hand, from asymmetric way (b), $\left[\operatorname{ArSP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right]$ and $\left[\operatorname{ArSP}(\mathrm{SCu})_{2}\right]$ will produce $[\mathrm{ArP}(\mathrm{S}) \mathrm{O}]_{3}$ and $\mathbf{4}$ separately.

Scheme 3.3 Possible mechanism for the reactions of $\mathrm{CuO}^{t} \mathrm{Bu}$ and Lawesson's reagent

Since $O^{t} B u$ is unstable as a substituent on phosphorus atoms, the reactions of $\mathrm{Cu}(\mathrm{I})$ thiolates and L.R. were investigated and it turned out that they just worked as well as the reactions between alkoxides and L.R.. Moderate yield of $\mathbf{4}$ is obtained when
refluxing THF or toluene is used, that is to say, $\left[P-S^{t} B u\right]$ is also not stable under elevated temperature. When the reaction was carried out at room temperature in THF, $\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](5)$, the first structurally characterised example of a metal complex containing ligands of the type $\left[R P\left(S R^{\prime}\right) S_{2}\right]^{-}\left(R, R^{\prime}=\right.$ organic group $)$, was obtained in moderate yield (Scheme 3.4, Figure 3.6, Table 3.5).

Scheme 3.4 Reactions of $\mathrm{CuS}^{t} \mathrm{Bu}$ and Lawesson's reagent (with different solvents and temperature)

Figure 3.6 Structure of $\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](5)$

Table 3.5 Selected ranges of bond lengths (\mathbf{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths							
Cu1-P3	$2.2659(5)$	Cu1-P2	$2.2698(5)$	Cu1-S1	$2.4538(5)$		
Cu1-S2	$2.4675(6)$	P1-S1	$1.9903(7)$	P1-S2	$1.9978(7)$		
P1-S3	$2.1033(7)$						
Angles							
P3-Cu1-P2	$122.69(2)$	P-Cu-S	$102.08(2)-120.83(2)$	S1-Cu1-S2	$84.288(18)$		
S1-P1-S2	$111.79(3)$	S1-P1-S3	$117.09(3)$	S2-P1-S3	$100.89(3)$		

In the solid state 5 exhibits a simple arrangement of one $\left[\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$ligand chelating $\mathrm{Cu}(1)$ via S atoms (Figure 3.6). Tetrahedrally surrounded $\mathrm{Cu}(1)$ is in addition coordinated by two P atoms of PPh_{3} groups. In this case the formation of larger aggregates is hindered by the steric requirements of PPh_{3}. This product can also be regarded as a proof for the mechanism showed before.

A different approach overcoming the solubility problems of coinage metal complexes was the use of alkali metal alkoxides or thiolates in reactions with L.R.. For alkoxides, alkali metal phosphonodithioate salts are generated, which are commonly prepared in situ and used in subsequent metathesis reactions. Up until now, however, no structural evidence for alkali metal phosphonodithioate salts exists. In that sense the synthesis and characterization of 6-10 form the basis of a potentially emerging supramolecular chemistry of alkali metal phosphonodithioate salts (Scheme 3.5, 3.6).

Scheme 3.5 Reactions of $\mathrm{MO}^{t} \mathrm{Bu}$ and Lawesson's reagent ($\mathrm{M}=\mathrm{Na}, \mathrm{K}$)

The generated dithiophosphonato anion in these reactions contains four donor centers which could all be involved in metal bonding. In previously examples of metal complexes with similar PS anions, S atoms are commonly chelating metal ions, whereas coordination of $\mathrm{O}^{t} \mathrm{Bu}$ or methoxy groups to metal atoms has not been detected. A reason for these previous observations might be the rotation of the alkoxy-substituents in solution, their involvement in hydrogen bonding to solvent molecules or a preference of the metal ion for softer donor atoms. ${ }^{[128]}$

In the solid state 6 exists as a polymer of $\left[\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$ions held together by Na cations (Figure 3.7, top). The anion and $[\mathrm{Na} \text { (thf) }]^{+}$cation are topologically different (e.g., $\left[\mathrm{ArP}(\text { donor-center) })_{3}\right]^{-}$and $\left.\left[(\text {thf }) \mathrm{Na}(\text { empty coordinationsite })_{4}\right]^{+}\right)$. In the extended solid-state structure they are arranged in alternating cis/trans orientation of neighbouring aromatic and thf rings along the polymer. 7 was obtained from a hexane -DME solution and the structural consequence of the increase of Na coordination

OC
$\circ \mathrm{O}$
0 P
$\otimes \mathrm{S}$
$\theta \mathrm{Na}$

Figure 3.7 Top: Structure of 6. Bottom: Structure of 7

Table 3.6 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 6

Bond lengths							
Na1-O3	$2.345(5)$	Na1-O1A	$2.445(3)$	Na-S	2.772(2)-2.874(2)		
P1-O1	$1.609(3)$	P1-C1	$1.799(4)$	P1-S2	$1.9688(16)$		
P1-S1	$1.9973(14)$						
Angles							
O3-Na1-O1A	$102.59(13)$	O-Na-S	$65.12(9)-151.04(12)$	S1A-Na1-S1	$139.26(9)$		
S1A-Na1-S2	$97.31(7)$	S1-Na1-S2	$72.85(5)$	O1-P1-S2	$113.98(13)$		
O1-P1-S1	$102.39(11)$	S2-P1-S1	$116.01(7)$				

numbers from five in 6 to six in 7 is displayed in Figure 3.7. In the solid state $\mathbf{7}$ consists of a centrosymmetric arrangement of two $\left[\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\} \mathrm{Na}(\mathrm{dme})\right]$ units with bond lengths similar to those listed for 6 (Table 3.6). The observation of deaggregation by change of solvents seems trivial at first sight. It is assumed, however, that the use of topologically different ions represents a potentially useful concept for the design of alkali metal containing polymers. As a consequence alkali metal ions of different size should result in a variety of alkali metal dithiophosphonate arrangements in the solid state. In the case of the Li^{+}ion only oily residues were obtained despite various attempts in a range of solvents. Larger K^{+}ions, however, turned out to have a significant influence on the design of polymeric alkali metal phosphonodithioates. Akin to 7 (Fig 3.7, bottom) the coordination number of the alkali metal ion in 8 (Figure 3.8a) is six hence a similar centrosymmetric arrangement now of two $\left[\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\} \mathrm{K}(\right.$ thf $\left.)\right]$ units is formed. The main difference between 7 and $\mathbf{8}$, however are increased bond distances of potassium ions to neighboring atoms in comparison to sodium ions in $\mathbf{6}$ and 7 . As a consequence a higher ordered structure held together by more and weaker electrostatic interactions

Figure 3.8a Structure of 8

Figure 3.8b Structure of 9

Table 3.7 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of 8

Bond lengths								
K1-O3	$2.635(2)$	K1-O1A	$2.8715(15)$	O2-K	$2.7934(16)$			
K1-S1	$3.2164(8)$	K1-S2A	$3.1632(13)$	K1-S2	$3.2015(8)$			
P1-O1	$1.6226(17)$	P1-C1	$1.816(2)$	P1-S1	$1.9742(8)$			
P1-S2	$1.9830(10)$	Angles						
O1-P1-S1	$113.00(7)$	O1-P1-S2	$103.07(7)$	S1-P1-S2	$117.64(3)$			
S-K-S	$63.67(2)-106.24(3)$	O-K-O	$69.03-108.86(4)$	O3-K1-S2A	$160.81(5)$			
O-K-S	$55.72(4)-155.23(4)$							

is found in $\mathbf{8}$ and the DME solvate 9 (Figure 3.8). A striking feature of $\mathbf{8}$ and $\mathbf{9}$ is the fact that coordination of $\left[\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$ions to the alkali metal involves all donor centers (Scheme 3.5) resulting in $\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\text { thf })_{2}\right]$ constitutional units linked into a polymetallacyclophane by coordination of O atoms of 4-anisyl substituents to potassium ions. The use of DME during the synthesis of $\mathbf{9}$ imposed no major structural changes and bond lengths are similar to those reported for 8 (Table 3.7). At the same time, trithiophosphonates containing $\left[\operatorname{ArP}\left(S^{t} B u\right) S_{2}\right]^{-}$or related anions is another aspect of current interest. The application of synthetic concepts developed from the first structurally characterized alkali metal phosphonodithioates 6-9 prompted the investigations of solid-state structures of alkali metal trithiophosphonates. It was hoped to achieve the preparation of this new class of compounds with all the ingredients necessary for unusual supramolecular architectures, e.g., a heavier alkali metal and weak electrostatic interactions to S-donor centers in $\left[\operatorname{ArP}\left(S^{t} \mathrm{Bu}^{2}\right) \mathrm{S}_{2}\right]^{-}$anions (Scheme 3.6, Figure 3.9, Table 3.8).

Scheme 3.6 Reaction of $\mathrm{KS}^{t} \mathrm{Bu}$ and Lawesson's reagent

Figure 3.9 Left: Structure of a tetrameric building block of 10
Right: Arrangement of units in the polymer (only a-C atoms of $S^{t} \mathrm{Bu}$ groups and O atoms of THF are displayed).

Table 3.8 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths								
P1-C1	$1.814(5)$	P1-S1	$1.982(2)$	P1-S2	$1.985(2)$			
P1-S3	$2.123(2)$	K1-O	$2.758(6), 2.896(4)$	K1-S1	$3.238(2)$			
K1-S	$3.333(2), 3.370(2), 3.437(2)$		K1-S2	$3.679(2)$				
K1-S3	$3.785(2)$	S3-C8	$1.877(8)$					
Angles							S1-P1-S2	$115.07(9)$
C1-P1-S1	$109.13(19)$	C1-P1-S2	$111.4(2)$	S2-P1-S3	$99.26(9)$			
C1-P1-S3	$105.7(2)$	S1-P1-S3	$115.60(10)$					

In the solid state 10 consists of a tetrameric arrangement of $\left[\mathrm{ArP}\left(S^{t} B u\right) S_{2} K\right]$ units in which $\mathrm{K}(1), \mathrm{S}(1)$ and symmetry equivalent atoms form a distorted cubic arrangement (Figure 3.9, left) with imposed $\overline{4}$ symmetry held together by coordination of O atoms of methoxy groups to K atoms. Potassium atoms in 10 are seven-coordinated by S and O atoms with rather large distances to O and S atoms. The $\left[\operatorname{ArP}\left(S^{t} B u\right) S_{2} K\right]_{4}$ building block in 10 represents a repeating unit with electron donor/acceptor properties.

Till now, the study of the nucleophilic ring-opening of Lawesson's reagent with alkoxides under different conditions showed that metal complexes containing the anionic ligands $\left[\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right]^{2-},\left[\mathrm{ArPS}_{3}\right]^{2^{-}},\left[\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$or $\left[\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$can be produced selectively by careful selection of the reaction conditions. This study pointed towards a more general approach, in which metal salts with oxygen-containing anions could be used for the similar ring-opening reactions. Hereby $\mathrm{CuOAc}, \mathrm{AgOAc}$, $\mathrm{Fe}(\mathrm{OAc})_{2}$ and $\left[\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]$ are submitted into the reactions with Lawesson's reagent.

When CuOAc is reacted with Lawesson's reagent (and PPh_{3}) in DME or toluene at elevated temperatures (reflux 4h), $\left[\mathrm{Cu}_{2}\left(\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (2) (Scheme 3.2) is formed in yields of 68% together with acetic anhydride ($\delta_{\mathrm{C}} 167,22 \mathrm{ppm}$, lit., ${ }^{[129]}$ 166, 21 ppm$)$. At room temperature, however, $\left[\mathrm{Cu}_{14}\left(\mu_{6}-\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\operatorname{ArP}(\mathrm{O})\right.\right.$ $\left.(\mathrm{OAc}) \mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right]$ (11) was isolated in good yield (Scheme 3.7).

Scheme 3.7 Reactions of CuOAc and Lawesson's reagent

Although NMR investigations of 11 were precluded by its poor solubility, the compound could be unequivocally characterized by IR spectroscopy in combination with x-ray analysis and elemental analysis. The formation of 11 could be rationalized by the nucleophilic addition of four equivalents of CuOAc to Lawesson's reagent, followed by the elimination of acetic anhydride (verified by ${ }^{13} \mathrm{C}$ NMR of the mother liquor) and copper(I) thioacetate $\left[\mathrm{Cu}(\mathrm{I}) \mathrm{SOCCH}_{3}\right]$ (Scheme 3.8). The latter elimination product, however, is formed in low yield and it was impossible to obtain direct

Scheme 3.8 Possible mechanism for the reactions of CuOAc and Lawesson's reagent
evidence for its formation by IR or NMR studies. In the solid state 11 consists of a crystallographically-centrosymmetric arrangement of fourteen Cu^{+}ions, six $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$, two $[\operatorname{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}]^{-}$anions and six PPh_{3} ligands (Figure 3.10, Table 3.9).

Figure 3.10 Structure of $\left[\mathrm{Cu}_{14}\left(\mu_{6}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\mathrm{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right](11)$

Table 3.9 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths							
Cu-O	$2.020(6)-2.153(5)$	Cu-P	$2.218(2)-2.229(2)$	Cu-S	$2.2287(18)-2.4144(18)$		
P-O	$1.497(5)-1.505(5)$	P4-O9	$1.642(8)$	P-S	$2.076(2)-2.090(2)$		
P4-S7	$1.982(3)$						
Angles							
S-Cu-S $^{\text {a }}$	$110.55(7)-128.56(7)$	S-Cu-S $^{\text {b }}$	$100.04(8)-132.05(7)$	O-Cu-P	97.88(15)-113.3(2)		
O-Cu-S	$95.29(16)-123.26(16)$	P-Cu-S	$104.28(8)-126.00(9)$	O7-P4-O9	$102.3(5)$		
O7-P4-S7	$120.1(3)$	O9-P4-S7	$107.7(3)$				

${ }^{a} \mathrm{Cu}$ coordination number three; ${ }^{\mathrm{b}} \mathrm{Cu}$ coordination number four.

Above the six faces of the central distorted cubic arrangement (indicated by open dashed connections between Cu atoms in Figure 3.10) six $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ anions are located. The S atoms of each $\left[\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ ligand coordinate four Cu atoms of one of the cubic faces in μ_{2}-mode. One of the S atoms is coordinated to an additional Cu atom (located to the right and left of the central cubic [Cu_{8}] arrangement). In figure 3.10 the coordination of the $\left[\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ anions can best be rationalised by looking at $\mathrm{P}(2)$ or $\mathrm{P}(3)$. In the periphery of $\mathbf{1 1}$, two $[\mathrm{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}]^{-}$anions are coordinated to three Cu atoms. In contrast to the inner eight three-coordinate Cu atoms the outer Cu atoms $\mathrm{Cu}(4,6,7)$ and symmetry equivalents are tetrahedrally surrounded by O and S atoms and additional PPh_{3} ligands. Bond lengths and angles found in 11 are not unusual and can be compared with those reported for other metal complexes containing P/S ligands. ${ }^{[8-12]}$ A remarkable feature of 11, however, is the formation of the $[\operatorname{ArP}(O)(O A c) S]^{-}$anion. It is the first time that such a substitution pattern is observed for P atoms in an anionic fragment. The long $\mathrm{P}(4)-\mathrm{O}(9)$ distance of 1.642(8) \AA is typical for P-O(carboxylate) bonds [lit., ${ }^{[130,131]} 1.643(5)$ and $1.662(7) \AA$] and indicates the lability of this bond. Other P-O distances in 11 are considerably shorter (ca. $1.5 \AA$).

These investigations prompted the synthesis of larger cluster complexes with P/S ligands, so for this purpose the reaction of AgOAc and L.R. was investigated. Initially, a grey precipitate is formed when the reaction is performed in THF. The infra-red spectrum of this insoluble precipitate showed the presence of a carboxylate band at $1777 \mathrm{~cm}^{-1}$ and P -S vibrations at ca. $530 \mathrm{~cm}^{-1}$. Mass spectrometric investigations (FAB) of the precipitate failed but elemental analysis points towards the composition $\left[\operatorname{ArP}(\mathrm{SAg})_{2}(\mathrm{OAc})_{2}\right]$. The solid residue dissolved upon addition of the tertiary phosphine dppm. Slow diffusion of chilled $\left(0^{\circ} \mathrm{C}\right)$ diethyl ether into the filtered reaction mixture within a double Schlenck tube produced crystals of $\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right.$
(Ar = 4-anisyl) (Scheme 3.9).

Scheme 3.9 Reactions of AgOAc and Lawesson's reagent

In the solid state 12 exists as a dimer of $\left[\mathrm{Ag}_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}(\mathrm{dppm})_{2}\right]$ units (Figure 3.11, Table 3.10). Both $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ anions in 12 are coordinated to the four Ag atoms forming an adamantane-like core of P, S and Ag atoms in which the remaining coordination sites at Ag atoms are occupied by dppm ligands. Bond lengths and angles in 12 are similar to those observed in $\left[\mathrm{Ag}_{12}\left(\mathrm{PhS}_{2} \mathrm{P}-\mathrm{PS}_{2} \mathrm{Ph}\right)_{6}(\mathrm{dppeS})_{6}\right]$ [dppeS $=$ $\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right] .{ }^{[132]}$

Figure 3.11 Structure of $\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right]$ (12)
(Ph groups of dppm are omitted)

Table 3.10 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths						
Ag-S	$2.5603(7)-2.5889(6)$	Ag-P	$2.5102(7)-2.5499(7)$	P1-S1	$2.0533(9)$	
P1-S2	$2.0521(9)$	P1-O1	$1.5038(18)$			
angles						
S2-P1-S1	$116.00(4)$	S-Ag-S	$109.65(3)-114.58(2)$	S-Ag-P	$102.20(2)-111.55(2)$	
P-Ag-P	$113.01(4)-118.23(3)$					

In a separate attempt PPh_{3} was used to dissolve the precipitate obtained from the reaction of L.R. and AgOAc. X-ray analysis of the orange product of this reaction gave to our surprise $\left[\mathrm{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right]$ (13), the largest cluster so far containing $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ ligands (Scheme 2.2.9). The key structural features of 13 are the two central $\mu_{6}-\mathrm{S}$ atoms (Ag-S(1) distances 2.4729(17)-2.764(3) \AA) coordinating the 10 inner Ag atoms. This arrangement is surrounded by an outer layer of 12 $\left[\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ ligands and the remaining 18 Ag atoms. A closer look at the structure of 13 (Figure 3.12, Table 3.11) reveals a variety of coordination modes of $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$

Figure 3.12 Structure of $\left[\operatorname{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right](13)$
(disordered components and phenyl groups are omitted)

Table 3.11 Selected ranges of bond lengths (A)

Ag-S	$2.212(3)-2.925(2)$	$\mathrm{Ag}-\mathrm{P}$	$2.4077(19)-2.4153(16)$	$\mathrm{Ag}-\mathrm{O}$	$2.426(5)-2.503(4)$
$\mathrm{P}-\mathrm{S}$	$2.037(3)-2.087(2)$	$\mathrm{P}-\mathrm{O}$	$1.489(4)-1.506(4)$	$\mathrm{Ag} \cdot \cdot \mathrm{Ag}$	$2.7632(3)-3.3670(18)$

ligands, which coordinate Ag^{+}ions via S - and O -donor centers or just via S atoms. Whilst tripodal $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ ligands tend to form cage complexes with metal ions such as 12, sulfido ligands tend to form large three-dimensional arrangements with Ag^{+} ions (e.g., $\left[\mathrm{Ag}_{344} \mathrm{~S}_{124}\left(\mathrm{~S}^{t} \mathrm{Bu}\right)_{96}{ }^{[133]}\right)$. The longest nonbonding distances between symmetry-related Ag atoms in the core of 13 are 1.3 nm . The composition and molecular architecture of 13 reflect the features of both ligand types and also the phenomenon of disordered Ag positions characteristic for larger Ag-S clusters $[\mathrm{Ag}(1)$ is disordered over three positions with the occupancy $\mathrm{Ag}(1): \mathrm{Ag}(1 \mathrm{~A}): \mathrm{Ag}(1 \mathrm{~B})$ of 60 : 20: 20; the inversion center in 13 generates the other three Ag atoms] (Figure 3.13). This illustrates the difficulties involved in the structure determination of larger Ag-S

Figure 3.13 The threefold disorder of Ag 1 and Ag 1 ' within the central eight S atoms
clusters, where Ag-S cores are sometimes treated as ionic liquids and average compositions have to be estimated on the basis of atomic volumes and charge-balance. ${ }^{[133]}$ The generation of both S^{2-} and $\left[\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}$ ligands in the course of the reaction between AgOAc and L. R. is observed for the first time. The occurrence of two different anions could be explained by competing decomposition reactions of $\left[\mathrm{ArP}(\mathrm{SAg})_{2}(\mathrm{OAc})_{2}\right]$ in the presence of tertiary phosphines (Scheme 3.10).

AgOAc \downarrow THF

Scheme 3.10 Possible mechanism for the reactions of AgOAc and Lawesson's reagent

Further reactions with other transition-metal carboxylates and Lawesson's reagent were carried out in order to demonstrate the general applicability of this synthetic route for the synthesis of tripodal P/S ligands. In the case of $\mathrm{Fe}(\mathrm{OAc})_{2}$ these efforts resulted in the formation of $\left.\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right) \text { (thf) }\right)_{4}\right]$ (14) (Scheme 3.11, Figure 3.14, Table 3.12).

Scheme 3.11 Reaction of $\mathrm{Fe}(\mathrm{OAc})_{2}$ and Lawesson's reagent

Figure 3.14 Structure of $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\text { thf })_{4}\right]$ (14)

Table 3.12 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths							
P1-S1	$2.015(3)$	P1-S3A	$2.024(3)$	P1-S2	$2.047(3)$		
Fe1-O2	$2.138(6)$	Fe1-O3	$2.145(7)$	Fe1-S3	$2.512(3)$		
Fe1-S1	$2.524(3)$	Fe1-S2	$2.548(2)$	Fe1-S2A	$2.599(2)$		
angles							
O2-Fe1-O3	$87.3(3)$	O2-Fe1-S3	$95.91(19)$	O2-Fe1-S2A	$91.1(2)$		
O2-Fe1-S2	$170.23(19)$	S3-Fe1-S1	$172.75(10)$	S3-Fe1-S2A	$79.83(8)$		
S1-P1-S3A	$115.65(13)$	S1-P1-S2	$107.03(14)$	S3A-P1-S2	$107.34(14)$		

In the solid state 14 exists as a centrosymmetric dimer. All the sulfur atoms are involved in metal bonding. The $\mathrm{P}-\mathrm{S}$ bond to $\mathrm{S}(2)$ is slightly longer $[\mathrm{P}(1)-\mathrm{S}(2)$ 2.047(3) \AA] than $P-S$ bonds to non-bridging S atoms $[P(1)-S(1) 2.015(3), P(1)-S(3 A) 2.024(3)]$. The geometry at iron is distorted octahedral, with $\mathrm{Fe}-\mathrm{S}$ bond lengths of $2.512(3)-2.599(2) \AA$ and $\mathrm{Fe}-\mathrm{O}$ bond distances to the cis THFs of 2.138(6) and $2.145(7) \AA$. The generation of the $\left[\mathrm{ArPS}_{3}\right]^{2-}$ anion follows the reaction mechanism outlined for 4 with the only difference being the formation of the leaving group $\mathrm{Ac}_{2} \mathrm{O}$ instead of ${ }^{t} \mathrm{Bu}_{2} \mathrm{O}$.

It was important to probe the sensitivity of the reactions to water by employing hydrated metal carboxylates as starting materials in ring-opening reactions of Lawesson's reagent. As a first result of these efforts $\left[\mathrm{Ni}_{2}\left\{\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{thf})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(15)$ was obtained using $\left[\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]$ as starting material. Although crystals of $\mathbf{1 5}$ were generally twinned and of poor quality, it was possible to establish the basic connectivity by x-ray crystallographic analysis (Scheme 3.12, Figure 3.15, Table 3.13).

Scheme 3.12 Reaction of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and Lawesson's reagent

Figure 3.15 Structure of $\left[\mathrm{Ni}_{2}\left\{\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\text { thf })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(15)$

Table 3.13 Selected ranges of bond lengths (A) and angles (${ }^{\circ}$)

Bond lengths									
Ni-S	$2.213(5)-2.269(4)$	Ni-O(ligand)	$1.993(13)-2.086(14)$	$\mathrm{Ni}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2.036(15)-2.103(12)$				
Ni-O(thf)	$2.093(14)-2.115(12)$	P-S	$2.037(6)-2.096(6)$	$\mathrm{P}-\mathrm{O}$	$1.482(12)-1.556(12)$				
$\mathrm{S} \cdot \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right.$ ligands O13-O16)							ca.2.5		
angles									
S3-Ni1-S2	$176.6(2)$	S3-Ni1-S1	$93.39(17)$	S1-Ni1-S4	$177.5(2)$				
S8-Ni2-S6	$92.07(18)$	S8-Ni2-S5	$179.4(2)$	S6-Ni2-S7	$177.3(2)$				
O5-Ni3-O1	$177.7(5)$	O13-Ni3-O10	$177.0(6)$	O14-Ni3-O9	$177.0(6)$				
O7-Ni4-O3	$179.0(5)$	O15-Ni4-O12	$179.3(6)$	O16-Ni4-O11	$176.8(5)$				
O-P-S	$114.0(5)-117.5(6)$	S-P-S	$96.7(3)-97.7(2)$						

In the solid state 15 exists as a dimer of a square-planar and an octahedrally coordinated Ni^{2+} ion held together by two $\left[\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{-}$ions. Inside the cyclic arrangement four molecules of water are located, coordinating the octahedral Ni^{2+}-centers. Similar $\mathrm{Ni}-\mathrm{O}(\mathrm{P})$ bond distances of ca. $2.0 \AA$ to the ones found in 15 have been observed in related methyldiphosphonato and organophosphato Ni-complexes.
${ }^{[134,135]}$ Weak hydrogen bonds to all S atoms are observed with $\mathrm{H} \cdots \mathrm{S}$ distances of ca . $2.5 \AA .{ }^{[136]}$ Remarkably, 15 is not sensitive to HOAc formed in the course of the reaction ($\delta_{\mathrm{C}} 172,20 \mathrm{ppm}$, lit., ${ }^{[137]} 175,20 \mathrm{ppm}$) and water. This complex represents the first example of a mixed high-spin/low-spin $\mathrm{d}^{8}-\mathrm{Ni}^{2+}$ complex stabilised by a tripodal P/S ligand. The formation of such a high-spin/ low-spin complex has been favored by the hybrid nature of the ligand, with both hard and soft functionalities. Similar arrangements of tetranuclear square-planar/octahedral Ni^{2+} complexes have so far only proved accessible by ligand design involving multiple reaction steps. ${ }^{[138-140]}$

As that is mentioned before, initially sodium phosphonodithioate alkali metal salts are formed in situ and subsequently reacted with transition metal salts. The generated $\left[\mathrm{RP}\left(\mathrm{OR}^{\prime}\right) \mathrm{S}_{2}\right]^{-}$ligands are bidentate and chelate metal atoms via S atoms to yield complexes of the type $\mathrm{ML}_{2}\left(\mathrm{~L}=\left[(4-\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}\{\mathrm{OR}\} \mathrm{PS}_{2}\right]\right) .{ }^{[15,89]}$ And little is known about thermal properties of metal phosphonodithioates. In a pilot study following up the previously described ether or acid anhydride elimination during the preparation of $\left[\mathrm{Cu}_{2}\left(\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \operatorname{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (2) (Scheme 3.2 and 3.7) a metathesis reaction with CdCl_{2} was used to study the thermolysis of $\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}\right]$ (Scheme 3.13, Figure 3.16, Table 3.14).

Scheme 3.13 Metathesis reaction with CdCl_{2}

Figure 3.16 Structure of $\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}\right]$ (16)

Table 3.14 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths						
Cd-S	$2.5160(7)-2.9877(7)$	P1-O1	$1.5804(19)$	P2-O3	$1.5860(19)$	
P-S	$1.9973(9)-2.0424(8)$					
angles						
S4-Cd1-S1	$134.00(2)$	S4-Cd1-S3	$79.16(2)$	S-Cd1-S3	$106.97(2)$	
S2-P1-S1	$111.75(4)$	S3-P2-S4	$111.38(4)$			

In the solid state 16 exists as a centrosymmetric dimer, a structural motif commonly found in similar Cd complexes. ${ }^{[89,141]}$ A differential thermal analysis of 16 showed that from $126^{\circ} \mathrm{C}$ on a weight loss of 18.2% occurs which is in fairly good agreement for the expected weight loss of 19.6% for $16-2^{t} \mathrm{Bu}_{2} \mathrm{O}$ (Figure 3.17). Similar observations were

Figure 3.17 DTA of $\left[\mathrm{Cd}_{2}\left\{\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}_{4}\right]\right.$ (16)
made for 6-9 but investigations of their thermal behavior and the characterization of thermolysis products are ongoing.

Since $\left[\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$can be obtained in the metathesis reaction by using alkoxide, would $\left[\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$be synthesized if thiolates are used? In the metathesis reaction of L.R., $\mathrm{NaS}^{t} \mathrm{Bu}$ and $\mathrm{FeCl}_{2},\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\mathrm{thf})_{4}\right]$ (17), the same molecule but in a different crystal space group to compound $\mathbf{1 4}$, was prepared (Scheme 3.14).

Scheme 3.14 Metathesis reaction with FeCl_{2}

To probe the sensitivity of the reactions to water, metathesis reactions with hydrated $\mathrm{Ni}(I I)$ salts were subsequently used for controlled hydrolysis of P -chalcogenido anions. The results of these efforts are summarized in scheme 3.15.

Scheme 3.15 Metathesis reaction with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Figure 3.18 Structure of $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\text { (hff })_{2}\right]$ (18)

Table 3.15 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths					
Ni1-S1	2.2301(8)	Ni1-S2	2.2273(7)	P1-01	1.569(2)
P1-C1	1.789(3)	P1-S1	2.0099(10)	P1-S2	2.0039(10)
O1. O3	2.514(3)				
angles					
S-Ni1-S	87.94(3), 92.06(3)			O1-P1-S2	116.39(10)
C1-P1-S2	112.32(10)	O1-P1-S1	113.07(9)	C1-P1-S1	113.15(10)
S2-P1-S1	100.89(4)				

In the solid state 18 consists of a $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}\right]$ structural motif which has been observed earlier. ${ }^{[11]}$ In 18 THF is strongly hydrogen-bonded to hydroxy groups of the central $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}\right]$ moiety forming an overall monometallic entity (Figure 2.2.18, Table 2.2.15). In d_{6}-DMSO solutions, evidence for the P-OH fragment was found in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 3.81$ indicating that H -bonds are cleaved. In the solid state the P-O bond distance found in the $\left[\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right]^{-}$anion in $18[\mathrm{P}-\mathrm{O}$ 1.569(2) \AA] is slightly longer than P-O distances found in the related anion $\left[\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-}[\mathrm{P}-\mathrm{O}$ $1.497(5)-1.505(5) \AA$] before. 18 could be used in future as a building block for supramolecular assembly reactions but at this stage it serves as an example to illustrate how easy P/S precursors like L.R. can be converted when reacted with an alkali metal salt and, in a second reaction step, with a hydrated transition metal salt (here $\left[\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]$).

The results presented here show that, in the reactions of L.R. with metal alkoxides or carboxylates and also in the metathesis reactions, metal complexes containing the anionic ligands $\left[\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}^{2-}\right]^{2-}\left[\mathrm{ArPS}_{3}\right]^{2-},\left[\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-},\left[\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-}$or $\left[\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right]^{-}$can be produced selectively. Besides studying the coordination chemistry of P/S-containing anions, the chemistry of complexes containing P-Se functional groups is also studied intensively. ${ }^{[15,109,110,142-151]}$ In order to further develop this area, the availability of P -Se-containing starting materials is a key issue. For the synthesis of Woollins' reagent (W.R.) $\left[\mathrm{PhP}(\mathrm{Se})(\mu \text {-Se) }]_{2}\right.$ (which is commercially available), (PhP) $)_{5}$ was prepared and subsequently reacted with elemental selenium. ${ }^{[101,103]}$ Similarly to the fragmentation of L.R. in reactions with metal alkoxides or carboxylates, a new approach to the coordination chemistry of P-Se based ligands is described here.

First, alkali metal alkoxides and thiolates are employed in the reaction with W.R.. By reacting KOtBu with W.R. in THF, single crystals of potassium phosphonodiselenolate $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right\}_{2}(\mathrm{thf})\right]_{\infty}$ (19) were obtained by diffusion of hexane into the reaction mixture (Scheme 3.16).

Scheme 3.16 Reaction of $\mathrm{KO}^{t} \mathrm{Bu}$ and Woollins' reagent

In the solid state, 19 consists of a polymeric arrangement, for which the asymmetric unit contains two independent $\left[\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right]^{2-}$ anions held together by two K^{+}ions. A closer look at the structure reveals that $\left[\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right]^{2-}$ anions bridge the K^{+} cations in different modes (Figure 3.19, Table 3.16). A $\left[\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\left(\mu_{2}-\mathrm{Se}\right)_{2}\right]^{2-}$ anion (containing $\mathrm{P}(1)$) bridges $\mathrm{K}(1)$ and $\mathrm{K}(2)$ through Se -donor centers. The $\mathrm{O}^{t} \mathrm{Bu}$ group of this anion is not involved in metal coordination. In contrast, in the $\left[\mathrm{PhP}\left(\mu_{4}-\mathrm{O}^{t} \mathrm{Bu}\right)\left(\mu_{4}-\mathrm{Se}\right)\left(\mu_{2}-\mathrm{Se}\right)\right]^{2-}$ anion (containing $\left.\mathrm{P}(2)\right)$, both O - and Se-donor centers are involved in metal coordination. K-Se distances in 19 span a broad range of $3.2847(19)-3.8982(18) \AA$ and indicate that the highly ordered arrangement in 19 is

Table 3.16 Selected ranges of bond lengths (A) and angles (${ }^{\circ}$)

Bond lengths						
Se-P	$2.1240(18)-2.1565(16)$	K-Se	$3.2847(19)-3.8982(18)$	P1-O1	1.601(4)	
P2-O2	$1.616(4)$	K1-O2	$3.074(5)$	K2-O3	$2.764(7)$	
K2 \cdots C16	$3.235(7)$					
angles						
K1-Se3-K1A	$167.48(4)$	Se2-K2-Se3A	$147.47(5)$			

held together by electrostatic interactions of various strengths. Similar coordination has not yet been observed for $\left[\mathrm{PhP}(\mathrm{OR}) \mathrm{Se}_{2}\right]^{-}$ligands ($\mathrm{R}=\mathrm{Et}$, ${ }^{\mathrm{i}} \mathrm{Pr}$), which commonly
are bidentate and chelate metal atoms through chalcogen atoms, while the introduced alkoxide group is not involved in metal coordination. ${ }^{[15]} \operatorname{In} 19, \mathrm{~K}(1)$ and $\mathrm{K}(2)$ are six-coordinated by five Se atoms and an oxygen atom belonging to a $\left[\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}^{2}\right) \mathrm{Se}_{2}\right]^{2-}$ anion $[K(1)]$ or the auxiliary ligand THF $[K(2)]$. Another difference in the coordination environments of the potassium ions is the close contact between $\mathrm{K}(2)$ and $\mathrm{C}(16)$. Similar contacts are not observed for $\mathrm{K}(1)$.

When $\mathrm{NaS}^{t} \mathrm{Bu}$ is reacted with W.R., $1 / \infty\left[\mathrm{PhPSe}_{3} \mathrm{Na}_{2}(\text { (thf })_{3}\right]_{\infty}$ (20) is obtained in moderate yield as colourless crystals together with $\mathrm{PhPSe}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ (Scheme 3.17). The asymmetric cleavage of W.R. by $\mathrm{NaS}^{t} \mathrm{Bu}$ and the formation of $\mathrm{PhPSe}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ was observed by GC-MS and NMR of the mother liquor ($\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2} \mathrm{~m} / \mathrm{z} 286$, loss of Se because of high injection temperatures, $\delta_{\mathrm{se}}=-51 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=801 \mathrm{~Hz}$). Unusually, however, is the structure of $\mathbf{2 0}$ in the solid state (Figure 3.20).

Scheme 3.17 Reaction of $\mathrm{NaS}^{t} \mathrm{Bu}$ and Woollins' reagent

Figure 3.20a The asymmetric unit in 20, thf at O 3 is disordered over two sites.

Figure 3.20b 1-D polymeric structure of $\mathbf{2 0}, \mathrm{C}$ and H are omitted.

In figure 3.20a, the building block for polymeric 20 is displayed. It consists of two $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ anions, forming a cage arrangement with the sodium ions bridging the tripodal ligands. $\mathrm{Na}(4)$ is not accommodated within the cage and is coordinated by $\mathrm{Se}(4)$ and two thf molecules. The consequence of this arrangement is that 'outer-cage' Na^{+}-ions act as templates for the arrangement of cages in the extended solid-state structure of $\mathbf{2 0}$ (Figure 3.20 b). $\mathrm{Na}(4)$ is surrounded by three Se atoms of two different cages and two thf ligands in a distorted square-pyramidal coordination geometry. In addition to $\mathrm{Na}(4)$, cage units are held together by coordination of $\mathrm{Na}(2)$, $\mathrm{Se}(1)$ and $\mathrm{Se}(3)$ to symmetry related atoms of a neighboring cage, resulting in a 1-D polymeric arrangement of the asymmetric unit $\left[\mathrm{Na}_{2}(\mathrm{thf})_{3} \mathrm{Se}_{3} \mathrm{PPh}\right]$ found in 20. This result is to the best of our knowledge the first example, in which tripodal cage complex units are connected by alkali-metal ions to a one dimensional polymer. In the solid state $\mathbf{2 0}$ is composed of an inner sodium-triseleno- phosphonate polymer stabilized by an organic layer consisting of phenyl groups and coordinated thf solvent. In a d_{8}-thf solution of crystals of 20, two resonances in the ${ }^{31} \mathrm{P}$ NMR and ${ }^{77} \mathrm{Se}$ satellites indicate that the cage structure of $\mathbf{2 0}$ with two different environments for P atoms in $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ anions is retained. It is noteworthy in this context that a general feature of $\left[\mathrm{PhPSe}_{3}\right]^{2-}$
ligands is the fact that due to the low abundance of the ${ }^{77}$ Se isotope ($I=1 / 2,7.63 \%$), the isotopomeric anion observed in prolonged NMR experiments is of the type $\left[\mathrm{PhPSe}_{2}\left({ }^{77} \mathrm{Se}\right)\right]^{2-}$.

Now, the aim was to synthesize a series of alkali-metal complexes analogous to 20 using Li, K and Rb cations and thereby study the influence of the cation size on the dimensionality of the resulting alkali metal triselenophosphonate polymers. Whilst reactions of W.R. with Lis'Bu so far did not yield any product that could be fully characterized, a reaction with $\mathrm{KS}^{t} \mathrm{Bu}$, followed by solvent diffusion of hexane into the reaction mixture, afforded yellow crystals of $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{K}_{2}(\text { (thf })_{4}\right]_{\infty}(\mathbf{2 1})$ (Scheme 3.18). In the solid state 21 consists of the new dianion $\left[\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2}\right.$ $\mathrm{PPh}]^{2-}$, which is coordinated to two K^{+}ions (Figure 3.21 top). The thf completes the

Scheme 3.18 Reactions of $\mathrm{KS}^{t} \mathrm{Bu}$ or $\mathrm{RbO}^{t} \mathrm{Bu}$ and Woollins' reagent
coordination sphere of the potassium ions. The extended solid-state structure of $\mathbf{2 1}$ can be described as a ladder of two dimerized KSe-strands (indicated by bonds shown as solid lines; Figure 3.21 bottom, Table 3.17). Inner-strand K-Se distances are slightly shorter than K-Se distances between strands and anions are located on both sides of the ladder arrangement in an alternating fashion. This ligand orientation results in a corrugated K-Se ladder in the one dimensional polymer 21. In addition to x-ray crystallographic characterization of 21 investigations of the reaction mechanism likely to be involved in the formation of 21 included a ${ }^{31} \mathrm{P}$ NMR study and GC-MS of the mother liquor. Both $\mathrm{PhP}(\mathrm{Se})\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ and $\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ were identified as soluble by-products and their identity checked by separate targeted synthesis (Scheme 3.18). The solid residue of the reaction consists of 21 and a colourless precipitate of possibly amorphous potassium selenides, $\mathrm{K}_{2} \mathrm{Se}$ and/or $\mathrm{K}_{2} \mathrm{Se}_{2}$, which immediately turns red upon exposure to air. Based on these results it is assumed that reactions of W.R. with heavier alkali-metal thiolates initially led to the formation of $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ anions,

Figure 3.21 Top: the asymmetric unit in 21, thf at $O(2)$ is disordered over two sites.
Bottom: the polymeric arrangement of 21 (C and H atoms were omitted).

Table 3.17 Selected ranges of bond lengths (\mathbb{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths					
K1-Se1A	3.3051(16)	K1-Se5	3.3443(16)	K2-Se1	3.3403(16)
K2-Se5B	3.3074(16)	other K-Se distances are longer			3.4365(18)-3.8402(18)
P1-Se1,2	2.1233(19) and 2.1283(18)			P1-Se3	2.285(2)
P2-Se5,6	2.1192(19) and 2.1283(18)			P2-Se4	2.2889(18)
Se3-Se4	2.3364(10)	K-O	2.716(6)-2.834(16)		
Angles					
Se1A-K1-Se5	148.14(6)	K1A-Se1-K2	160.47(5)	Se5B-K2-Se1	148.98(6)
K2B-Se5-K1	161.00(4)				

which are then oxidized by $\mathrm{PhPSe}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ in the presence of potassium ions. The different outcome of the reactions leading to the formation of 20 and $\mathbf{2 1}$ is possibly caused by increased Se-metal distances (Na-Se: 2.929(2)-3.227(2) A, K-Se 3.3051(16)-3.8402(18) \AA) for the larger cations, which apparently do not form cage architectures such as $\mathbf{2 0}$ with $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ anions. A similar observation was made in the presence of Rb^{+}ions which resulted in the formation of $\left[\mathrm{Rb}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}-\right.\right.$ $\mathrm{SeSe}_{2} \mathrm{PPh}$)(thf) $)_{4}$ (22) (Scheme 3.18, Figure 3.22). Compound 22 (in space group $C 2 / c$) is isostructural with compound $\mathbf{2 1}$ (in space group $P 2_{1} / C$) and the structure won't be discussed.

Figure 3.22 Structure of $\left[\mathrm{Rb}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{\left.\left.-\mathrm{SeSe}_{2} \mathrm{PPh}\right)(\text { (thf })_{4}\right](22)}\right.\right.$

Just like using $\mathrm{NaS}^{t} \mathrm{Bu}$ to react with L.R., $\mathrm{NaSe}^{t} \mathrm{Bu}$ was also used in the reaction with W.R.. Surprisingly In the case of $\mathrm{NaSe}^{t} \mathrm{Bu}$, this resulted in the formation of $1 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right\}(\mathrm{thf})_{3}\right]_{\infty}(23)$, which was obtained as single crystals by solvent-diffusion methods (Scheme 3.19). Although the reaction mechanism leading

Scheme 3.19 Reaction of $\mathrm{NaSe}^{t} \mathrm{Bu}$ and Woollins' reagent
to the formation of $\mathbf{2 3}$ has not been investigated in detail, it seems likely that mixtures of W.R. and $\mathrm{NaSe}^{t} \mathrm{Bu}$ initially form Na complexes containing a $\left[\mathrm{PhP}\left(\mathrm{Se}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right]^{-}$anion that decomposes into $\left({ }^{t} \mathrm{BuSe}\right)_{2}$ and the $\left[\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right]^{2-}$ anion observed in 23. A decomposition reaction with a similar outcome was observed in the reaction of $\operatorname{PhPS}\left(\mathrm{SSiMe}_{3}\right)_{2}$ with $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$, in which $1 / \infty\left[\mathrm{Ag}_{2}\left(\mathrm{PhS}_{2} \mathrm{P}-\mathrm{PS}{ }_{2} \mathrm{Ph}\right)(\mathrm{dppe})_{2}\right]_{\infty}$ was formed (dppe=1,2-bis(diphenylphosphino)ethane). ${ }^{[132]}$ Compound 23 is soluble in THF or dimethylsulfoxide (DMSO) and the anion remains intact, allowing characterization

Figure $3.23{ }^{77}$ Se satellites in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of 23 (top) and simulation (middle). Section of polymeric 23 in the solid state (bottom).

Table 3.18 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths								
Se1-P1	$2.1461(13)$	Se-Na	$3.0221(19)-3.284(2)$	Se2-P1	$2.1500(12)$			
Se3-P2	$2.1544(12)$	Se4-P2	$2.1459(13)$	P1-P2	$2.2625(16)$			
O1-Na1	$2.378(4)$	O2-Na1	$2.395(4)$	O3-Na2	$2.291(4)$			
angles							Se2-P1-P2	$106.90(6)$
Se1-P1-Se2	$117.01(6)$	Se1-P1-P2	$109.21(6)$	Se3-P2-P1	$107.43(6)$			
Se4-P2-Se3	$113.61(5)$	Se4-P2-P1	$108.89(6)$					

by NMR. Figure 3.23 (top) shows the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 23 in which a singlet resonance is observed at $\delta=46.8 \mathrm{ppm}$. Upon prolonged recording times centered around this singlet, eight satellite lines become visible, indicating the presence of an $A B X$ three-spin system, which is in good agreement with an optimized simulated ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Figure 3.23, middle) ($\mathrm{Ph}\left({ }^{77} \mathrm{Se}\right) \mathrm{SeP}-\mathrm{PSe}{ }_{2} \mathrm{Ph} ;{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=-146 \mathrm{~Hz}$, ${ }^{1} J_{P-S e}=-659 \mathrm{~Hz},{ }^{2} J_{P-S e}=9 \mathrm{~Hz} ;{ }^{1} J_{P-S e}$ and ${ }^{2} J_{P-S e}$ coupling constants have opposite signs). ${ }^{[152,153]}$ Other isotopomeric compounds present in solution cannot be detected. In the solid state, 23 consists of a one-dimensional polymeric arrangement of $\left[\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right]^{2-}$ anions held together by penta- $\left.\mathrm{Na}(2)\right]$ and hexacoordinated [$\mathrm{Na}(1)$] alkali-metal ions (bottom). The P-P backbone of dianions is located in an alternating fashion above and below a band of two corrugated one-dimensional $\mathrm{Na}-\mathrm{Se}(2)$ and $\mathrm{Na}-\mathrm{Se}(3)$ strands, with $\mathrm{Se}(1)$ and $\mathrm{Se}(4)$ bridging the Na ions. The gauche conformation of phenyl groups in $\left[\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right]^{2-}$ anions apparently favours this arrangement and the NMR study indicates that rotation of the P-P bond in solutions of $\mathbf{2 3}$ at room temperature is hindered.

Having shown that reactions of W.R. and alkali-metal alkoxides, thiolates and selenolates produce a range of novel complexes containing the anions
 efforts were directed towards exploration of reactions between the P-Se precursor W.R. and metal carboxylates. Initial attempts with coinage metal acetates, same as copper alkoxides, often produced amorphous precipitates of metal selenides which terminated the reaction to form other new metal complexes containing P/Se ligands. Optimized reaction conditions finally yielded crystals of $1 / \infty\left[\mathrm{K}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}-\mathrm{SeSe}_{2}\right.\right.$ PPh $\left.)(\text { thf })_{2}\right]_{\infty}(\mathbf{2 4})$ from a reaction mixture of W.R. and KOAc in THF (Scheme 3.20).

Scheme 3.20 Reaction of KOAc and Woollins' reagent

In the solid state, 24 exists as a one-dimensional polymeric ladder of two dimerised [KSe] strands isostructural to a compound obtained from reactions of W.R. and KS ${ }^{t}$ Bu (Figure 3.24, top). The one-dimensional polymeric strands in 24 exhibit an orientation relative to each other in which close contacts between phenyl carbon atoms and potassium centers result in densely packed polymers (Figure 3.24, bottom). The mechanism likely to be involved in the formation of $\mathbf{2 4}$ was investigated for similar reactions of L.R. by conducting GC/MS and ${ }^{31} \mathrm{P}$ NMR spectroscopy. To investigate potentially broader applications of nucleophilic ring-opening reactions of W.R. in organometallic-polymer synthesis, hydrated metal salts were employed for combined nucleophilic ring-opening/hydrolysis of W.R..

Figure 3.24 Top: Section of polymeric $\mathbf{2 4}$ in the solid state. Bottom: Arrangements of one-dimensional coordination polymeric strands of $\mathbf{2 4}$ in the solid state.

Table 3.19 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths					
Se-P	$2.1296(8)-2.2996(8)$	Se4-Se3	$2.3369(4)$	K-Se	$3.2282(8)-3.6150(7)$
K1-O1	$2.698(3)$	K2-O2	$2.661(3)$	K1 \cdots C10B	$3.463(3)$
angles					
P2-Se4-Se3	$102.56(2)$	P1-Se3-Se4	$107.23(2)$	Se5-P2-Se6	$117.69(3)$
Se5-P2-Se4	$111.49(3)$	Se6-P2-Se4	$99.28(3)$	Se2-P1-Se1	$118.54(4)$
Se2-P1-Se3	$114.61(3)$	Se1-P1-Se3	$97.56(3)$		

In the case of $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, crystals of $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { thf })\right]_{\infty}$ (25) were obtained (Scheme 3.21). Once isolated, 25 was then insoluble in d_{8}-THF and $D_{2} \mathrm{O}$, preventing characterization by NMR. The solid-state structure of a building block in 25 (Figure 3.25a, Table 3.20) consists of two crystallographically independent Na atoms

Scheme 3.21 Reaction of $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and Woollins' reagent

Figure 3.25a Structure of a building block of 25 in the solid state.

Figure 3.25b Packing diagram of 25.

Table 3.20 Selected ranges of bond lengths (\mathbb{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths					
$\mathrm{Na}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2.27(2)-2.443(6)$	$\mathrm{Na} 1-\mathrm{O} 5$	$2.29(3)$	$\mathrm{Na}-\mathrm{Se}$	$3.023(3)-3.057(3)$
$\mathrm{P} 1-\mathrm{O} 6$	$1.525(5)$	$\mathrm{P} 1-\mathrm{Se} 2$	$2.1592(18)$	$\mathrm{P} 1-\mathrm{Se} 1$	$2.1651(18)$
angles					
$\mathrm{Na} 2 \mathrm{~A}-\mathrm{O} 3-\mathrm{Na} 2$	$92.1(2)$	O6-P1-Se2	$111.5(2)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Se} 2$	$105.0(2)$
$\mathrm{O} 6-\mathrm{P} 1-\mathrm{Se} 1$	$111.5(2)$	C1-P1-Se1	$107.3(3)$	$\mathrm{Se} 2-\mathrm{P} 1-\mathrm{Se} 1$	$113.59(8)$

and symmetry-equivalent Na atoms held together by an elaborate arrangement of $\left[\mathrm{PhP}(\mathrm{O}) \mathrm{Se}_{2}\right]^{2-}$ anions and hydrogen-bonded water. $\mathrm{Na}(1)$ is coordinated by Se-donor centers and O atoms of THF and water. As part of a one-dimensional polymeric strand, $\mathrm{Na}(1)$ is in an environment similar to that of the alkali-metal atoms in compounds 19, 23 and 24. Perpendicular to this arrangement $\mathrm{Na}(2), \mathrm{Na}(2 \mathrm{~A})$ and symmetry-equivalent atoms are arranged by bridging $\mu-\mathrm{H}_{2} \mathrm{O}$ ligands into another one-dimensional polymeric motif observed in 25. Altogether, this results in a self assembled layer-sandwich structure of lipophilic surface groups (topologically similar, but electronically inverse $[\mathrm{Na}(\text { thf })]^{+}$and $\left[\mathrm{PhP}(\mathrm{O}) \mathrm{Se}_{2}\right]^{-{ }^{-}}$ions) held together by an inner polar arrangement of Na^{+}and $\mathrm{H}_{2} \mathrm{O}$ (Figure 3.25b).

The investigations in which tetrahedrally and octahedrally surrounded metal atoms are incorporated to give crosslinked organometallic polymers based on P-Se anions are still at an early stage. With the successful experiences of alkali metal salts, somewhat unpredictable results have been observed when other transition metal salts are used in the reaction with W.R. under optimized conditions, as shown in the
following example. The reaction of CuOAc with W.R. and successive treatment with PPh_{3} afforded the crystalline compound $\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](26)$ besides the huge amount of copper selenide (Scheme 3.22). In the solid state, 26 exhibits a cage arrangement of four distorted-tetrahedrally coordinated Cu^{+}ions and the

Scheme 3.22 Reaction of CuOAc and Woollins' reagent

Figure 3.26 Structure of $\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](\mathbf{2 6})$

Table 3.21 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths					
Se-Cu	$2.4353(9)-2.5077(9)$	Cu1-P1	$2.2643(15)$	Cu2-P2	$2.2573(17)$
Cu3-P4	$2.2466(17)$	Cu4-P3	$2.2407(15)$	Cu-P(PPh $\left.)_{3}\right)$	$2.2331(16)-2.2462(16)$
Se1-P1	$2.2363(17)$	Se2-P2	$2.2380(14)$	Se3-P3	$2.2394(15)$
Se4-P4	$2.2414(16)$	P1-O1	$1.662(5)$	P2-O1	$1.658(4)$
P3-O2	$1.657(4)$	P4-O2	$1.676(4)$		
angles					
O1-P1-Se1	$103.67(15)$	O1-P1-Cu1	$103.70(16)$	Se1-P1-Cu1	$113.68(7)$
O1-P2-Se2	$103.34(14)$	O1-P2-Cu2	$103.63(17)$	Se2-P2-Cu2	$114.71(6)$
O2-P3-C13	$97.94(19)$	O2-P3-Se3	$103.70(16)$	O2-P3-Cu4	$104.00(15)$
Se3-P3-Cu4	$115.26(6)$	O2-P4-Se4	$103.41(16)$	O2-P4-Cu3	$103.09(15)$
Se4-P4-Cu3	$115.27(7)$	P2-O1-P1	$114.8(2)$	P3-O2-P4	$113.6(2)$

dianion [PhSeP-O-P SePh] ${ }^{2-}$ (Figure 3.26, Table 3.21). The formation of this anion indicates that reduction of P atoms has occurred during the reaction. It is likely that intermediates of the type $\left[\mathrm{Cu}_{2}\left(\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PSe}_{2} \mathrm{Ph}\right)\right]$ are formed initially, together with $\mathrm{Ac}_{2} \mathrm{O}$. Subsequently, the PPh_{3} present in solution acts both as ligand and reducing agent to give 26 and $\mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{3}$. Reduction of W.R. in the presence of phosphines was also encountered in other investigations.

Similar to reactivity studies of Lawesson's reagent, hydrated metal carboxylates are also employed as starting materials in ring-opening reactions of Woollins' reagent. The synthetic route was applied for the synthesis of the Se compound $\left[\mathrm{Ni}\left\{\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\mathrm{thf})_{2}\right] \quad(27)$ (Scheme 3.23, Figure 3.27, Table 3.22) which is isostructural to 18 (Figure 3.18). $\left[\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right]^{-}$anions were formed during the course of the reaction. The substitution pattern at the phosphorus atom in 27 is rare and only few examples of P-based ligands are known which both contain hydroxyl groups and Se atoms. ${ }^{[154]}$ Crystals of 27 were soluble in d_{8}-THF and a proton resonance of the hydroxyl group in the P-O-H‥O(thf) fragment was observed at 812.19. The P-O bond distances found in the $\left[\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right]^{-}$anions in 27 [$\mathrm{P}-\mathrm{O}$ 1.561 (5) and $1.565(6) \AA$] are slightly longer than the P -O distance found in the related anion $\left[\mathrm{PhP}(\mathrm{O}) \mathrm{Se}_{2}\right]^{2-}$ in $25[\mathrm{P}-\mathrm{O} 1.525(5) \AA$].

Scheme 3.23 Reaction of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and Woollins' reagent

Figure 3.27 Top: Molecular structure of 27 (50\% probability ellipsoids) Bottom: Pseudodimeric arrangement of two molecules of 27

Table 3.22 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths					
Se1-Ni1	2.3498(11)	Se2-Ni1	2.3509(11)	Se3-Ni1	2.3307(11)
Se4-Ni1	2.3507(11)	Se1-P1	2.1610(18)	Se2-P1	2.1592(18)
Se3-P2	2.1619(17)	Se4-P2	2.1716(19)	P1-01	1.561(5)
P2-O2	1.565(6)	O1‥03	2.549(9)	O2 \cdots O4	2.527(9)
Se1 \cdots Se4A	ca. 3.8				
Angles					
Se1-Ni1-Se2	90.32(4)	Se1-Ni1-Se4	91.02(4)	Se3-Ni1-Se1	177.04(6)
Se3-Ni1-Se4	89.60(4)	Se3-Ni1-Se2	89.16(4)	Se4-Ni1-Se2	177.58(5)
Se2-P1-Se1	100.98(7)	Se3-P2-Se4	99.15(7)	$\mathrm{P}-\mathrm{Se}-\mathrm{Ni}$	83.78(5)-85.27(5)
O-P-Se	114.6(2)-115.7(2)	C-P-Se	111.0(2)-113.7(2)		

In the solid-state molecules of $\mathbf{2 7}$ form pseudo dimeric arrangements with nonbonding Se \cdots Se distances of ca. $3.8 \AA$ (Figure 3.27 bottom).

The reactions of $[\mathrm{PhPSe}(\mu-\mathrm{Se})]_{2}$ (W.R.) with the hydrated metal carboxylate $[\mathrm{NaOAc}$ $3 \mathrm{H}_{2} \mathrm{O}$] and $\left[\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]$ were shown that the presence of water played a crucial role in the formation of the resulting coordination polymer $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}($ thf $\left.)\right]_{\infty}(\mathbf{2 5})$ and $\left[\mathrm{Ni}\left\{\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\text { thf })_{2}\right]$ (27). As an extension of this initial report, more hydrated metal carboxylates were reacted with W.R., compounds $28-\mathbf{3 0}$ with a new kind of dianion $[\mathrm{PhP}(\mathrm{O}, \mathrm{Se}) \mathrm{Se}-\mathrm{Se}(\mathrm{Se}, \mathrm{O}) \mathrm{PPh}]^{2-}$ were produced (Scheme 3.24).

Scheme 3.24 Reaction of $M(O A c)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and Woollins' reagent $(M=M g, M n)$

28 crystallizes in the orthorhombic space group $\mathrm{Pca} 2_{1}$ with two differently-coordinated Mg atoms in the asymmetric unit. The constituting magnesium complexes $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}$ $(\text { thf })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] in 28 exhibit an octahedral metal coordination environment (Figure 3.28, Table 3.23). The new generated ligand $[\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}]^{2-}$ chelates the magnesium atoms and coordinates in a similar fashion like the neutral related ligand 1,2-bis-diphenylphosphine-oxide. ${ }^{[155,156]}$ The two isolated units are connected by a weak hydrogen bond between $\mathrm{Se}(5)$ and $\mathrm{O}(6)$ (distance $\mathrm{Se} 5 \cdots \mathrm{O}$ ca. 3.35 Å). ${ }^{[157]}$

Figure 3.28 Structure of $\left[\mathrm{Mg}_{2}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}_{2}(\text { thf })_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](\mathbf{2 8)}$

Table 3.23 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths					
Se-P	2.113(2)-2.261(2)	Se2-Se3	2.3302(12)	Se6-Se7	2.3360(12)
P1-01	1.503(5)	P2-O2	1.499(5)	P3-07	1.493(6)
P4-O8	1.485(6)	Mg1-01	2.008(6)	Mg1-O2	1.986(6)
Mg2-O8	2.025(6)	Mg2-07	2.036(6)	$\mathrm{Mg}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$	2.057(6)-2.091(6)
$\mathrm{Mg}-\mathrm{O}(3,4,5,9,11$; thf)		2.089(6)-2.151(6)		Se5..06	ca. 3.35
Se1…06	ca. 3.43	O12 $\cdots 013$	ca. 2.68	O12 \cdots O14	ca. 2.69
Angles					
P1-Se2-Se3	99.35(6)	P2-Se3-Se2	99.62(6)	P3-Se6-Se7	103.44(6)
P4-Se7-Se6	100.38(6)	O1-P1-Se1	118.2(2)	O1-P1-Se2	110.3(2)
Se1-P1-Se2	101.40(8)	O2-P2-Se4	119.3(2)	O2-P2-Se3	110.4(2)
Se4-P2-Se3	102.20(8)	O7-P3-Se5	120.3(2)	O7-P3-Se6	113.0(2)
Se5-P3-Se6	98.27(8)	O8-P4-Se8	118.3(2)	O8-P4-Se7	111.1(2)
Se8-P4-Se7	100.99(9)	O2-Mg1-O1	93.7(2)	O8-Mg2-07	91.5(2)

Other hydrogen bonds present include the strongly bound THF at $\mathrm{O}(12)$ and a weak H-bond between $\mathrm{Se}(1)$ and $\mathrm{O}(6) .29$ is almost identical to 28 . Slightly modified experimental conditions, however have led to a slight change in the substitution pattern of the magnesium atom in $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (29) (Figure 3.29, Table 3.24).

Figure 3.29 Structure of $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](29)$

Table 3.24 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths									
Se-P	$2.127(4)-2.329(2)$	P1-O1	$1.496(10)$	P2-O2	$1.519(8)$				
Mg1-O1	$1.996(11)$	Mg1-O2	$2.016(9)$	Mg1-O6	$2.090(9)$				
Mg1-O(3,4,5; thf)							$2.02(2)-2.190(16)$		
Angles									
P1-Se2-Se3	$98.54(11)$	P2-Se3-Se2	$100.11(11)$	O1-P1-Se1	$118.6(4)$				
O1-P1-Se2	$111.0(4)$	Se1-P1-Se2	$102.48(16)$	O2-P2-Se4	$117.8(4)$				
O2-P2-Se3	$111.1(4)$	Se4-P2-Se3	$99.73(14)$	O1-Mg1-O2	$93.1(4)$				

29 crystallizes in the monoclinic space group $P 2_{1} / c$ with two crystallographically independent molecules in the asymmetric unit. Attempts to characterize the new anion spectroscopically were also made and indicated that 29 slowly decomposes in d_{6}-DMSO. It was, however, possible to dissolve 29 by stirring crystals in d_{8}-THF overnight. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR a singlet resonance for the $[\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se})$ PPh $]^{2-}$ dianion was observed together with two satellite sets, which can be ascribed to ${ }^{1} \mathrm{~J}_{\mathrm{P} \text {-Se }}$ coupling to chemically inequivalent terminal and 'inner' Se atoms. ${ }^{[114]}$ In the ${ }^{77} \mathrm{Se}$ NMR of 28 and 29, however, one weak resonance at ca. $\delta 40 \mathrm{ppm}$ was detected, whilst at $\delta 131 \mathrm{ppm}$ a further resonance could be ascribed to the different Se
environments present. Generally, NMR investigations are complicated by low solubility of 28 and 29.

The incorporation of paramagnetic metal ions into the new ligand framework was finally exemplified by treating W.R. with $\left[\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$] and x-ray analysis of crystals of 30 (Figure 3.30, Table 3.25).

Figure 3.30 Structure of $\left[\mathrm{Mn}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](30)$

Table 3.25 Selected ranges of bond lengths (\mathbb{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths					
Se-P	2.118(2)-2.264(2)	Mn1-O1	2.078(6)	Mn1-O2	2.124(6),
Mn2-O7	2.138(6)	Mn2-O8	2.096(6)	Mn1-O6	2.206(6)
Mn2-O12	2.186(7)	Se2-Se3	2.3353(12)	Se6-Se7	2.3306(14)
$\mathrm{Mn}-\mathrm{O}(3,4,5,9,10,11$; thf)		2.188(6)-2.284(6)		P1-01	1.497(6)
P2-O2	1.517(6)	P3-07	1.505(6)	P4-O8	1.502(6)
Se1 \cdots O12A	ca. 3.36				
Angles					
O1-Mn1-O2	95.9(2)	O8-Mn2-O7	94.6(2)	P-Se-Se	98.46(7)-102.02(6)
O-P-Se	110.2(3)-120.8(3)	Se-P-Se	98.13(9)-102.23(9)		

30 crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ with two crystallographically independent but chemically equivalent $\left[\mathrm{Mn}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (30) complexes in the asymmetric unit. In the extended solid-state structure $\mathbf{3 0}$ forms a 1D polymeric arrangement held together by weak hydrogen bonds (Se1‥012A ca. $3.36 \AA$ Å).

The formation of the $[\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}]^{2-}$ dianion represents a new development in P-Se chemistry. The new ligand can be regarded as the product of an oxidation of the recently reported $\left[\mathrm{PhP}(\mathrm{O}) \mathrm{Se}_{2}\right]^{2-}$ anion. During the ring-opening reactions of Woollins' reagent, metathesis reaction is also one kind of very important reaction. Here, the reactions with Ni salts were investigated (Scheme 3.25).

Scheme 3.25 Metathesis reactions of $\mathrm{Ni}(\mathrm{II})$ salts.

In the metathesis reaction with NiCl_{2}, thiolate ($\mathrm{NaS}^{t} \mathrm{Bu}$) and senelonate ($\mathrm{NaSe}^{t} \mathrm{Bu}$) produced the same crystal $\left[\left\{\mathrm{PhPSe}_{2}\left(\mu_{2}-\mathrm{Se}\right) \mathrm{Na}(\mathrm{thf})_{3}\right\}_{2} \mathrm{Ni}\right](31)$. In the solid state 31 consists of a centrosymmetric arrangement of two $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ ligands chelating square- planar coordinated $\mathrm{Ni}(1)$, which is located on the inversion center (Figure 3.31, Table 3.26).

Figure 3.31 Structure of $\left[\left\{\mathrm{PhPSe}_{2}\left(\mu_{2}-\mathrm{Se}\right) \mathrm{Na}(\mathrm{thf})_{3}\right\}_{2} \mathrm{Nij}\right](31)$

Table 3.26 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths							
Ni1-Se1	$2.3430(11)$	Ni1-Se2	$2.3254(10)$	P1-Se1	$2.212(2)$		
P1-Se2	$2.225(3)$	P1-Se3	$2.113(3)$	Na1-Se1	$3.074(4)$		
Na1-Se3	$3.128(4)$	Na-O	$2.274(8)-2.431(14)$				
Angles							
Se3-P1-Se1	$116.17(11)$	Se3-P1-Se2	$116.91(12)$	Se1-P1-Se2	$94.13(9)$		
Se1-Ni1-Se2	$88.18(4)$						

Two thf-solvated Na^{+}ions are located above and under the plane defined by the NiSe_{4} unit and are coordinated by chelating triselenophosphonato anions. The different chemical environments of the Se donor centers are reflected in the ${ }^{31} \mathrm{P}$ NMR by ${ }^{77} \mathrm{Se}$ satellites showing ${ }^{1} \mathrm{~J}_{\mathrm{P} \text {-se }}$ coupling constants of 390 and 350 Hz . Both P-Se bond distances and ${ }^{1} J_{\text {P-Se }}$ coupling constants are in good agreement with previously reported values for RPSe_{3}-dianions ($\mathrm{R}=$ cyclohexyl, phenyl). ${ }^{[113,158]}$ When $\mathrm{Ni}(\mathrm{OAc})_{2}$ was used in stead of NiCl_{2}, the polymeric $1 / \infty\left[\mathrm{Ni}\left\{\mathrm{Na}\left(\mathrm{PhPSe}_{3}\right)(\text { thf })\right\}_{2}\right]_{\infty}$ (32) was isolated together with previously 31 (Scheme 3.25). Although crystals of 32 were generally of poor quality, the solid-state structure could be established (Figure 3.32).

Figure 3.32 Section of polymeric 32 in the solid state

As showed in 19, 23 and 24, the alkali-metal ions in 32 form a one-dimensional polymer with $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ anions, however, these are now linked by the square-planar coordinated $\mathrm{Ni}(1)$ into a two-dimensional sheet. The Se atoms in the $\left[\mathrm{PhPSe}_{3}\right]^{2-}$ anions bridge between Na atoms, whereas $\mathrm{Ni}(1)$ is chelated by two Se atoms belonging to anions of different one-dimensional polymeric strands.

Metathesis reactions with hydrated $\mathrm{Ni}(\mathrm{II})$ salts were subsequently used for controlled hydrolysis of P -Se anions as same as P -S anions. In the case of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\mathrm{thf})_{2}\right]$ (27) (Figure 3.27, Table 3.22) was obtained, as the same result in the reaction of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and W.R..

Based on the results from the reactions of metal alkoxides, carboxylates and thiolates with P/S ligand precursors (L.R.) and P/Se ligand precursors (W.R.), another type of P/S ligand precursors--Phosphorus trisulfide $\left(\mathrm{P}_{4} \mathrm{~S}_{6}\right)$ and Phosphorus pentasulfide ($\mathrm{P}_{4} \mathrm{~S}_{10}$) was investigated. It is well-known that the alcoholysis of $\mathrm{P}_{4} \mathrm{~S}_{\mathrm{n}}(\mathrm{n}=6$ or 10) is an important chemical process but reactions with coinage metal alkoxides or carboxylates have to the best of our knowledge not been described. ${ }^{[64]} P_{4} S_{n}(n=6$ or 10) is, like L.R., a strong sulfur transfer reagent and reactions with metal salts often give amorphous precipitates of metal sulfides. In the reaction of $\mathrm{CuO}^{t} \mathrm{Bu}$ with $\mathrm{P}_{4} \mathrm{~S}_{(\mathrm{n}=6}$, ${ }^{10}$), however, some new complexes containing P/S ligands were produced (Scheme 3.26).

Scheme 3.26 Reactions of $\mathrm{CuO}^{t} \mathrm{Bu}$ and $\mathrm{P}_{4} \mathrm{~S}_{\mathrm{n}}(\mathrm{n}=6$ or 10)

The formation of $\left[\mathrm{Cu}_{3}\left\{\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (33) proceeds via alkoxide-induced cage fragmentation of $\mathrm{P}_{4} \mathrm{~S}_{10}$. In the solid state the $\left[\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right]^{3-}$ anion chelates three Cu^{+}ions. The conformation of the anion is fixed by $\mathrm{Cu}(1)$, which is coordinated to $S(3-5) . \mathrm{Cu}(2,3)$ are coordinated by S atoms of the central dithiophosphato group

Figure 3.33 Structure of $\left[\mathrm{Cu}_{3}\left\{\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (33)
(The phenyl groups of PPh_{3} are omitted)

Table 3.27 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths					
Cu-P	$2.2139(9)-2.2981(8)$	Cu-S	$2.2334(9)-2.4223(8)$	P1-O1	$1.605(2)$
P1-O2	$1.601(2)$	P2-O2	$1.653(2)$	P2-O4	1.622(2)
P3-O1	$1.645(2)$	P3-O3	$1.585(3)$	P-S	$1.9611(11)-2.0155(11)$
Angles					
S-P-S	$116.30(5)-118.75(6)$	O2-P1-O1	$99.37(11)$	O4-P2-O2	$101.05(12)$
O3-P3-O1	$101.34(12)$				

and the peripheral S atoms $S(2,6)$. The tetrahedral $[\mathrm{Cu}(1)$ and $\mathrm{Cu}(3)]$ and trigonal $[\mathrm{Cu}(2)]$ coordination spheres are completed by triphenylphosphine ligands (Figure 3.33 , Table 3.27). The thermal instability of 33 and the insolubility of amorphous by-products (e.g., $\left[\mathrm{Cu}_{3} \mathrm{PS}_{4}\right]$) once formed, prevented a more detailed reaction study. The formation of P-O-P bonds in 33 is likely to occur via ether elimination connecting $\mathrm{P}-\mathrm{O}^{t} \mathrm{Bu}$ groups to $\mathrm{P}-\mathrm{O}-\mathrm{P}$ structural motifs.

When a mixture of $\mathrm{CuO}^{t} \mathrm{Bu}$ and $\mathrm{P}_{4} \mathrm{~S}_{6}$ (or $\mathrm{P}_{4} \mathrm{~S}_{10}$ sometimes) are dissolved in THF or toluene, crystals of $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}^{2} \mathrm{~S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](34 \mathbf{a}, 34 b)\right.$ were obtained after addition of the auxiliary ligand PPh_{3} (Figure 3.34, Table 3.28). In the unit cell of 34a there are two independent molecules lying about inversion centers, and in the polymorph 34b there is one molecule in the unit cell, also lying about an inversion center (bond lengths in both compounds are similar). 34a consists of a centrosymmetric distorted hexagonal prismatic arrangement of two $\left[\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right]^{2-}$ anions and four $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right]^{+}$units. Each of the S-donor atoms bridges two Cu atoms resulting in tetrahedral coordination environments for Cu atoms with $\mathrm{Cu}-\mathrm{S}$ and $\mathrm{Cu}-\mathrm{P}$ bond distances in commonly observed ranges. The most striking feature of $34 \mathbf{a}$ is the formation of $\left[\text { t } \mathrm{BuOPS}_{3}\right]^{2-}$ ligands which is mechanistically difficult to rationalize. The moderate yield in which 34a is formed indicates the complexity of the reaction.

Figure 3.34 Structure of $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (34)

Table 3.28 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths								
Cu-P	$2.2264(9)-2.2467(10)$	Cu-S	$2.2739(9)-2.7390(12)$	P3-O1	$1.601(2)$			
P3-S1	$2.0302(12)$	P3-S2	$2.0304(13)$	P3-S3	$2.0416(11)$			
Angles							O1-P3-S2	$113.32(10)$
P-Cu-S	$99.75(4)-121.99(3)$	S-Cu-S	$81.62(3)-125.52(3)$	S1-P3-S3	$117.19(5)$			
S1-P3-S2	$109.47(5)$	O1-P3-S3	$97.72(10)$					
S2-P3-S3	$108.73(5)$							

Attempts to gain a mechanistic insight by NMR experiments in a variety of solvents failed. So far reactions of $\mathrm{CuO}^{t} \mathrm{Bu}$ with $\mathrm{P}_{4} \mathrm{~S}_{6}$ and $\mathrm{P}_{4} \mathrm{~S}_{10}$ are of limited practical value despite the fact that the novel compounds 33 and 34 were obtained.

In the following, another attempt to generate further example of P/S anions is described, which potentially opens up new synthetic routes to sulfur analogs of known metal phosphates and phosphonates. ${ }^{[3,159-161]}$ The reaction of $\mathrm{P}_{4} \mathrm{~S}_{10}$ with $\mathrm{NaS}^{t} \mathrm{Bu}$ was
performed. Layering of the reaction mixture with hexane resulted in the formation of the 2D-polymer $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{~S}_{3} \mathrm{PS}^{t} \mathrm{Bu}\right)(\mathrm{dme})\right]_{\infty} 35$ (Scheme 3.27 , Figures 3.35, Table 3.29).

$$
\begin{equation*}
\mathrm{P}_{2} \mathrm{~S}_{5}+\mathrm{NaS}^{t} \mathrm{Bu} \xrightarrow[\text { r.t. }]{\mathrm{DME}} 1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{~S}_{3} \mathrm{PS}{ }^{t} \mathrm{Bu}\right)(\mathrm{dme})\right]_{\infty} \tag{35}
\end{equation*}
$$

Scheme 3.27 Reaction of $\mathrm{NaS}^{t} \mathrm{Bu}$ and $\mathrm{P}_{4} \mathrm{~S}_{10}$

Figure 3.35a Top: Environments of S and O donor centers to Na . (dashed bonds)
Bottom: Coordination environment of Na^{+}to donor centers of adjacent units. (dashed bonds)

Figure 3.35b Packing diagram of 35 (C, H and O atoms have been omitted).

Table 3.29 Selected ranges of bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Bond lengths							
Na-S	$2.8150(7)-3.2191(8)$	Na-O	$2.3453(12)-2.5157(14)$	S4-P1	$2.1347(6)$		
S8-P2	$2.1291(6)$	S-P	$2.0187(6)-2.0228(6)$	S4-C	$1.8636(16)$		
S8-C	$1.8626(16)$						
angles							
O-Na-O	$72.35(4)-72.31(4)$	O-Na-S	$77.08(3)-161.84(4)$	S-Na-S	$59.031(16)-171.53(2)$		
S3-P1-S4	$96.33(2)$	S5-P2-S8	$96.48(2)$	S-P-S	$109.00(2)-113.56(2)$		

In the solid state, the generated $\left[{ }^{t} \mathrm{BuSPS}_{3}\right]^{2-}$ anions in $\mathbf{3 5}$ coordinate metal atoms via three edges and one face of a PS_{4}-tetrahedral building block. The auxiliary ligand DME coordinates in the common chelating mode but $\mathrm{O}(1)$ and $\mathrm{O}(3)$ are additionally bridging Na atoms (Figure 3.35a top). ${ }^{[162]}$ The Na atoms are six-coordinated (Figure 3.35 a bottom) and act as flexible multiacceptor centers in the extended solid-state structure of 35 . A section of the aesthetic arrangement of polymeric 35 is displayed in figure 3.35b. A close look reveals a honeycomb-like architecture consisting of six $\left[{ }^{t} \mathrm{BuSPS}_{3}\right]^{2-}$ anions held together by Na^{+}ions. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ of a $\mathrm{d}_{8}-\mathrm{THF}$ solution, a single resonance at $\delta 93.3$ for the P atom in the $\left[{ }^{t} \mathrm{BuSPS}_{3}\right]^{2-}$ anion was observed.

And similar to the former investigation, an metathesis reaction of $\mathrm{P}_{4} \mathrm{~S}_{10}$ with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was performed and $\left[\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right\}_{2}(\text { (thf })_{4}\right]$ (36) was obtained in moderate yield (Scheme 3.28, Figure 3.36, Table 3.30). In the solid state 36 consists of two $\left[\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right]^{-}$anions coordinating $\mathrm{Ni}(1)$ via the soft S donor centers whilst hydroxyl
groups are involved in hydrogen-bonding. So far the closest related compound to 3 represents sodium dithiophosphate $\mathrm{Na}_{3} \mathrm{PO}_{2} \mathrm{~S}_{2}$ by Jansen et al., which was synthesized to investigate its ionic conducting properties. ${ }^{[63-165]}$ Currently, the mechanistic investigations of the fragmentation of P/S-cage molecules were in the present case hindered by the poor solubility of byproducts.

$$
\begin{equation*}
\mathrm{P}_{2} \mathrm{~S}_{5}+\mathrm{NaS}^{t} \mathrm{Bu} \xrightarrow[\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}]{\mathrm{THF}}\left[\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right\}_{2}(\text { thf })_{4}\right] \tag{36}
\end{equation*}
$$

Scheme 3.28 Metathesis reaction of $\mathrm{P}_{4} \mathrm{~S}_{10}$ with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

OH
OC
$\bigcirc \mathrm{O}$
O
$\otimes \mathrm{S}$
0 Ni

Figure 3.36 Structure of $\left[\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right\}_{2}(\text { thf })_{4}\right]$ (36)
(Hydrogen bonds are shown as dashed lines)

Table 2.2.30 Selected ranges of bond lengths (\mathbb{A}) and angles $\left({ }^{\circ}\right)$

Bond lengths								
Ni1-S1	$2.2187(11)$	Ni1-S2	$2.2368(16)$	P1-S1	$2.0140(16)$			
P1-S2	$2.0002(14)$	P1-O1	$1.549(3)$	P1-O2	$1.555(2)$			
Angles								
S-Ni-S	87.98(6), 92.02(6), 179.999(2)						O1 \cdots O3	$2.507(4)$
O2 \cdots O4	$2.527(4)$	O1-P1-O2	$99.41(14)$	O1-P1-S1	$114.69(11)$			
O1-P1-S2	$115.34(11)$	O2-P1-S1	$114.25(11)$	O2-P1-S2	$112.99(12)$			
S2-P1-S1	$100.87(6)$							

Till now, an amount of metal complexes containing P/S or P/Se ligands were abtained. According to the literatures, one of the two bridging S atoms can be easily replaced by O or N atom. ${ }^{[166-169]}$ That thiazadiphosphetanes could be given in the reaction of L.R. and phenyl isocyanate helps to solve the key issue-the synthesis of starting materials (Scheme 3.29, Figure 3.37, Table 3.31).

Scheme 3.29 Synthesis of [ArPS $(\mu-\mathrm{S})(\mu-\mathrm{NPh}) \mathrm{SPAr}]$ (37)

Figure 3.37 Structure of $[\operatorname{ArPS}(\mu-\mathrm{S})(\mu$-NPh $) \mathrm{SPAr}]$ (37)

Table 3.31 Selected ranges of bond lengths (\AA) and angles (${ }^{\circ}$)

Bond lengths							
N1-P1	$1.690(4)$	N1-P2	$1.685(4)$	P1-C1	$1.796(5)$		
P1-S1	$1.926(2)$	P1-S2	$2.1159(17)$	P2-C8	$1.791(5)$		
P2-S3	$1.9320(19)$	P2-S2	$2.1264(17)$				
Angles							
P2-N1-P1	$106.5(2)$	N1-P1-S1	$115.13(15)$	N1-P1-S2	$87.14(14)$		
N1-P2-S3	$117.17(15)$	N1-P2-S2	$86.93(15)$	P1-S2-P2	$79.17(6)$		

In the solid state, the angle of $\mathrm{P}(1)-\mathrm{S}(2)-\mathrm{P}(2)$ is $79.17(6)^{\circ}$, a little smaller than that in Lawesson's reagent $\left(87.15^{\circ}\right)$. The bond length of $P(1)$ and the bridging S atom changes from $2.1238(12)$ to $2.1159(17) \AA \AA^{[88]}$ So the ring-opening reactions would be a little more difficult than L.R., but a new kind of complexes containing P/S/N ligands would be obtained if the four-membered ring is opened successfully in future!

4. Experimental Section

All operations were carried out under purified dinitrogen. All solvents were dried over the appropriate drying agent and freshly distilled prior to use. Toluene was dried with sodium, dichloromethane was dried with CaH_{2}, pentane, hexane, DME (dimethoxyethane) were dried with sodium, diethyl ether was dried with molecular sieves $4 \AA$ and freshly distilled.

Chemicals (Lawesson's reagent, $\mathrm{P}_{2} \mathrm{~S}_{5}, \mathrm{P}_{2} \mathrm{~S}_{3}, \mathrm{PPh}_{3}, \mathrm{dppm}, \mathrm{NaO}^{t} \mathrm{Bu}, \mathrm{KO}^{t} \mathrm{Bu}, \mathrm{FeCl}_{2}$, $\mathrm{CdCl}_{2}, \mathrm{NiCl}_{2}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{KOAc}, \mathrm{AgOAc}, \mathrm{Ni}(\mathrm{OAc})_{2}, \mathrm{Fe}(\mathrm{OAc})_{2}, \mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Mg}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\left.\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ were purchased from Aldrich, Fluka or Merck and used without further purification. $\mathrm{CuO}^{t} \mathrm{Bu}, \mathrm{CuOAc}, \mathrm{CuSR}(\mathrm{R}=\mathrm{Et}$, ${ }^{t} \mathrm{Bu}$ and Cyclohexyl$), \mathrm{KS}^{t} \mathrm{Bu}, \mathrm{NaS}^{t} \mathrm{Bu}, \mathrm{NaSe}^{t} \mathrm{Bu}, \mathrm{RbO}^{t} \mathrm{Bu}, \mathrm{dppa}$ (1,2-Bis-diphenylphosphinoamine) and Woollins' reagent were synthesized according to published procedures. ${ }^{[101,103,119,120,170,171]}$

Elemental analysis was obtained on a Vario elemental analyser. NMR spectra were recorded on a BRUKER AMX300WB-Spectrometer. For ${ }^{31} \mathrm{P} \mathrm{NMR} 65 \,% \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is used as an internal standard. Infra-red spectra were measured on a BRUKER XIFS 28-Spectrometer. GC-MS was measured by HP-5890, and GC Conditions: analyzed by a flame ionization detector (FID) and a HP-5 analytical column (30-m fused silica column with an internal diameter of 0.32 mm and a film thickness of $0.25 \mu \mathrm{~m}$). The initial oven temperature was $70^{\circ} \mathrm{C}$, which was ramped by $10 \mathrm{~K} / \mathrm{min}$ to the final temperature of $270^{\circ} \mathrm{C}$.

4.1 Syntheses of starting materials

The synthetic procedures of $\mathrm{CuO}^{t} \mathrm{Bu}, \mathrm{CuSR}\left(\mathrm{R}=\mathrm{Et}\right.$, ${ }^{t} \mathrm{Bu}$ and Cyclohexyl), dppa, Woollins' reagent, $\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ and $\mathrm{PhP}(\mathrm{Se})\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ are as follows:

4.1.1 $\mathrm{CuO}^{t} \mathrm{Bu}^{[120]}$

A three-necked 250 mL flask equipped with a 100 mL dropping funnel, a nitrogen inlet and a magnetic stirrer bar is charged with 34.0 g (237 mmol) $\mathrm{CuBr} . \mathrm{CuBr}$ is suspended in 100 mL THF. In a 100 mL flask 24.0 g (214 mmol) KO'Bu are dissolved in 80 mL THF and the solution is transferred into the dropping funnel. The CuBr
suspension is cooled using an ice-bath and the $\mathrm{KO}^{t} \mathrm{Bu}$ solution is added to the suspension dropwise. After the addition is complete the mixture is allowed to warm to room temperature and the dropping funnel is replaced by a stopper. The mixture is stirred for 14 hours to give a pale yellow suspension. The solvent is carefully removed under reduced pressure and the solid residue is transferred to an extractor equipped with a nitrogen inlet. The charged extractor replaces the a stopper of a three-nacked 250 mL flask with 200 mL hexane, equipped with a nitrogen inlet. In a counter current of inert gas a reflux condenser with a nitrogen inlet is placed on the extractor. The hexane is stirred and heated with a heating mantel distilling ca. 60 mL hexane via the sidearm of the extractor onto the solid residue (caution: Teflon tap is open). The heating mantel is removed and the Teflon tap closed. After filtration the Teflon tap is opened and hexane is distilled onto the solid residue again. This procedure is repeated for about 3 h . Stop heating and the flask is cooled down to room temperature overnight allowing the product to crystallize. Yield 18 g (61\%) yellow crystals of $\mathrm{CuO}^{t} \mathrm{Bu}$.

4.1.2 CuSR ($\mathrm{R}={ }^{t} \mathrm{Bu}$, Et and Cyclohexyl)

To an ice-cold mixture of 50 mL conc. NH_{3} (aq.) and $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} 12.6 \mathrm{~g}(50.4 \mathrm{mmol})$ forming a royal blue solution. Over a period of 90 minutes, solid $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl} 7.9 \mathrm{~g}(56.0 \mathrm{mmol})$ was added. Stirring overnight at room temperature under nitrogen purge produced a colourless solution. Then a solution of ${ }^{\text {t }}$ BuSH ($4.65 \mathrm{~g}, 51.7 \mathrm{mmol}$) in 250 EtOH was added dropwise. A pale yellow solid formed immediately. The solid product was collected via filtration and washed with $\mathrm{H}_{2} \mathrm{O}$, EtOH and ether in succession and vacuum-dried ($5.7 \mathrm{~g}, 37.4 \mathrm{mmol}, 74.2 \%$). Other $\mathrm{Cu}(\mathrm{I})$ thiolates were prepared similarly. Found: $\mathrm{C}, 31.10 ; \mathrm{H}, 5.82 . \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CuS}$ (152.7) requires C, 31.46; H, 5.94%.

4.1.3 dppa (1,2-Bis-diphenyphosphinoamine)

$2.12 \mathrm{~mL}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)_{2} \mathrm{NH}$ was dissolved in 30 mL toluene and the solution was heated with a heating mantel to $50^{\circ} \mathrm{C}$ for 40 minutes. Then the temperature was raised to $70^{\circ} \mathrm{C}$ and $3.6 \mathrm{~mL} \mathrm{Ph}_{2} \mathrm{PCI}$ was added dropwise. The resulting yellow solution was stirred at $70^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the solid residue was washed with hexane and vacuum-dried.

4.1.4 Woollins' reagent ${ }^{\text {[101,103] }}$

a. $(\mathrm{PPh})_{5}$

To a suspension of 20 g (2.5 mol) LiH in 500 mL THF, $137 \mathrm{~mL} \mathrm{PhPCl}_{2}$ was added dropwise under nitrogen. The mixture was heated to reflux for 1 h , and then filtered. The solvent was removed under reduced pressure and 150 mL toluene was added to the residue. The resulting yellow solution was heated to reflux and the filtration was cooled down to room temperature overnight allowing the product to crystallize. Yield $40 \mathrm{~g}(37 \%)$ yellow crystals of $(\mathrm{PPh})_{5}$. In order to improve the purity one can use benzene to recrystallize the product.

b. Woollins' reagent

Woollins' reagent was prepared according to published procedures. A mixture of (PPh) ${ }_{5}$ and ten equivalents of Se powder in toluene was refluxed for 5 h, during this time the formation of a red precipitate was observed. The mixture was filtered and the residue was washed with cold toluene and vacuum-dried, yield 90%. Found: C, 26.72; H, 1.92. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{P}_{2} \mathrm{Se}_{4}$ requires C, 27.09; $\mathrm{H}, 1.89 \%$.

4.1.5 $\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$

$1.12 \mathrm{~g}(10.0 \mathrm{mmol}) \mathrm{NaS}^{t}$ Bu was suspended in 15 mL THF, and a solution of $0.90 \mathrm{~g}(5.0$ mmol) PhPCl_{2} in 5 mL THF was added dropwise. The mixture was stirred for 4 h at room temperature, then THF was removed and 20 mL toluene was added. The precipitate was filtered off, and the solution was concentrated to obtain a colourless oil. 1.08 g , yield 76%. (For NMR and GC-MS studies) $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.55(18 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$ 40.3; GC-MS retention time (min) 16.43; m / z (relative intensity) 286 (11, M^{+}), 230 (34, $\left.-\mathrm{C}_{4} \mathrm{H}_{8}\right), 174\left(100,-\mathrm{C}_{4} \mathrm{H}_{8}\right), 141\left(29, \mathrm{M}_{1}{ }^{+},-\mathrm{SH}\right), 107\left(34, \mathrm{M}_{1}{ }^{+}-\mathrm{SH}_{2}\right), 77\left(8, \mathrm{M}_{1}{ }^{+}\right.$-PSH) (M = $\left.\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}, \mathrm{M}_{1}=\mathrm{PhPSH}\right)$.

4.1.6 $\mathrm{PhP}(\mathrm{Se})\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$

0.16 g (2.0 mmol) Se powder was suspended in 10 mL toluene, and a solution of 0.57 g $(2.0 \mathrm{mmol}) \mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}$ was added dropwise. The mixture was refluxed for 4 h and then filtered. The remaining yellow solution was concentrated to obtain a yellow solid. (For

NMR and GC-MS studies) $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.55\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.51(3 \mathrm{H}$, m, ArH), $8.28(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 43.6$ ($\mathrm{s}+\mathrm{d}$ satellites, $\left.{ }^{1} J_{\text {p-se }}=-801 \mathrm{~Hz}\right) ; \delta_{\text {se }}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)-50.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{p}-\mathrm{se}}=-801 \mathrm{~Hz}\right)$; GC-MS retention time (min) 16.42; m/z (relative intensity) 286 ($6, \mathrm{M}^{+}-80$), 230 (21, $\left.-\mathrm{C}_{4} \mathrm{H}_{8}\right), 174\left(77,-\mathrm{C}_{4} \mathrm{H}_{8}\right), 141\left(26, \mathrm{M}_{1}{ }^{+},-\mathrm{SH}\right), 107\left(17, \mathrm{M}_{1}{ }^{+}-\mathrm{SH}_{2}\right), 77\left(9, \mathrm{M}_{1}{ }^{+}\right.$-PSH), 57 (100) $\left(\mathrm{M}=\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}, \mathrm{M}_{1}=\mathrm{PhPSH}\right)$.

4.2 Syntheses of new complexes

4.2.1 $\left[\mathrm{Cu}_{2}\left(\mathrm{o}-\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)(\mathrm{dppm})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1)$

To a solution of $184 \mathrm{mg}(1.0 \mathrm{mmol})$ 2-Sulfo-benzoesäureanhydrid in toluene (or DME) $(10 \mathrm{~mL})$ was added dropwise a solution of $136 \mathrm{mg}(1.0 \mathrm{mmol}) \mathrm{CuO}^{t} \mathrm{Bu}$ in 5 mL toluene (or DME). The resulting yellow solution was heated for about 5 minutes, and then a solution of $384 \mathrm{mg}(1.0 \mathrm{mmol}) \mathrm{dppm}$ in 5 mL toluene (or DME) was added. The solvent was removed under reduced pressure after 1 h . Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and pentane (5 mL) and storage of the solution at room temperature for 3 days produced colourless crystals. 0.30 g , yield 44%.

4.2.2 $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4-\mathrm{anisyl})(2)$

a) To a solution of 202 mg (0.5 mmol) Lawesson's reagent in toluene (12 mL) was added dropwise a solution of 136 mg (1.0 mmol) CuOtBu in 10 mL toluene. The resulting yellow solution was refluxed for about 5 hours during which time a colour change to brown and the formation of a yellow precipitate was observed. The precipitate was dissolved upon addition of a solution of $524 \mathrm{mg}\left(2.0 \mathrm{mmol}^{2}\right) \mathrm{PPh}_{3}$ in 10 mL toluene. The solvent was removed under reduced pressure. Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and pentane (5 mL) and storage of the solution at room temperature for one day produced colourless crystals. 0.68 g , yield 81%; m.p. $194^{\circ} \mathrm{C}$; found: $\mathrm{C}, 64.4 ; \mathrm{H}, 4.6 . \mathrm{C}_{86} \mathrm{H}_{74} \mathrm{Cu}_{2} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{~S}_{4}(\mathrm{M}=1594.2)$ requires $\mathrm{C}, 64.6 ; \mathrm{H}$, 4.6%; $v_{\text {max }} / \mathrm{cm}^{-1}$ (KBr) 3046w, 1593s, 1431 (P-C), 1250s, 1105s, 841s (P-O-P), $657 \mathrm{~s}(\mathrm{P}=\mathrm{S}) . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 7.9-6.7$ (19H, m, ArH), $3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) 161.5-113.1 (ar. C), 55.3 (s, OCH_{3}); $\delta_{\mathrm{P}}(162 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 91.2 (s, $\mathrm{ArPS}_{2} \mathrm{O}$), -3.6 (s, CuPPh_{3}).
b) A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and CuOAc ($123 \mathrm{mg}, 1.0$ mmol) was dissolved in 15 mL toluene (or DME). The resulting yellow solution was refluxed for about 4 h during which time a yellow precipitate was observed. The precipitate was dissolved upon addition of a solution of $524 \mathrm{mg}(2.0 \mathrm{mmol}) \mathrm{PPh}_{3}$ in 8 mL toluene (or DME). The solvent was removed under reduced pressure. Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and pentane (5 mL) and storage of the solution at room temperature for 3 days produced colourless crystals. 0.54 g , yield 68%.

4.2.3 $\left[\mathrm{Cu}_{4}\left\{\operatorname{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (3)

To a solution of 202 mg (0.5 mmol) Lawesson's reagent in toluene $(12 \mathrm{~mL})$ was added dropwise a solution of 136 mg (1.0 mmol) $\mathrm{CuO}^{t} \mathrm{Bu}$ in 10 mL toluene. The resulting yellow solution was refluxed for about 5 hours during this time a colour change to brown and the formation of a yellow precipitate was observed. The precipitate was dissolved upon addition of a solution of $385 \mathrm{mg}(1.0 \mathrm{mmol})$ dppa in 10 mL toluene. The solvent was removed under reduced pressure. Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and pentane (5 mL) and storage of the solution at room temperature for one day produced colourless crystals. 0.42 g , yield 79%; m.p. $201{ }^{\circ} \mathrm{C}$; found: C, $49.3 ; \mathrm{H}, 3.8$. $\mathrm{C}_{76} \mathrm{H}_{68} \mathrm{Cu}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{8} \mathrm{~S}_{8}(\mathrm{M}=1859.8)$ requires $\mathrm{C}, 48.9 ; \mathrm{H}, 3.7 \% ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3297 \mathrm{w}$ (N-H), 3051w, 1596s, 1435s (P-C), 1258s, 1107s, 880bs (P-O-P), 694s (P=S); $\delta_{H}(400$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ 8.1-6.9 $(24 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.4\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right.$, next to peak for $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, 3.9-3.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$: 162.2-113.5 (10 C, ar. C), 55.8 (1C, s, OCH_{3}); $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right.$): 89.1 (s, $\mathrm{ArPS}_{2} \mathrm{O}$), 38.3 (br. s, $\mathrm{N} P \mathrm{Ph}_{2}$).

4.2.4 $\left[\mathrm{Cu}_{2}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl $)(4)$

a) A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{CuO}^{\mathrm{t}} \mathrm{Bu}(136 \mathrm{mg}, 1.0$ mmol) was dissolved in 15 mL DME. The yellow-brown solution was heated to reflux for 4 hours during which time the formation of a yellow precipitate was observed. The precipitate dissolved upon addition of a solution of $\mathrm{PPh}_{3}(524 \mathrm{mg}$, 2.0 mmol) in 8 mL DME. The solvent was removed under reduced pressure. Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and pentane (4 mL) and storage of the solution at room temperature for 2 days produced colourless crystals. 0.35 g , yield 79%; m.p. $197^{\circ} \mathrm{C}$; found: $\mathrm{C}, 53.8$; $\mathrm{H}, 3.9 . \mathrm{C}_{88} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \mathrm{P}_{6} \mathrm{~S}_{6}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 4.0 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3051 \mathrm{w}, 1589 \mathrm{~s}$, 1430s (P-C), 1246s, 689s (P=S); $\delta_{H}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) 8.0-7.9 (4H, dd, J = 7.6Hz, ArH), 7.4-7.3 (60H, m, ArH), 6.7 ($4 \mathrm{H}, \mathrm{d}, \mathrm{J}$
$=7.6 \mathrm{~Hz}, \mathrm{ArH})$, $3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ 161.6-113.0 (8C, ar. C), $55.3\left(1 \mathrm{C}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 91.0$ (s, ArPS_{3}), -3.37 (s, $P \mathrm{Ph}_{3}$).
b) A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{CuS}^{t} \mathrm{Bu}(153 \mathrm{mg}, 1.0$ mmol) was dissolved in 15 mL toluene (or THF). The yellow solution was heated to reflux for 4 hours during which time the formation of a yellow precipitate was observed. The precipitate dissolved upon addition of a solution of $\mathrm{PPh}_{3}(524 \mathrm{mg}$, 2.0 mmol) in 6 mL toluene (or THF). The solvent was removed under reduced pressure. Addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and pentane (4 mL) and storage of the solution at room temperature for 2 days produced colourless crystals.

4.2.5 $\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{Ar}=4$-anisyl $)(5)$

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and CuS ${ }^{t} \mathrm{Bu}$ ($306 \mathrm{mg}, 2.0 \mathrm{mmol}$) was dissolved in 8 mL THF. The yellow solution was stirred for about 3 hours at room temperature. The solvent was removed under reduced pressure, and the residue was redissolved by addition of a solution of $\mathrm{PPh}_{3}(0.57 \mathrm{M}$ in THF, 4 mL). The solution was layered with 50 mL hexane and storage of the solution at room temperature for 3 weeks produced colourless crystals. 0.25 g , yield 29%; m.p. $185-187^{\circ} \mathrm{C}$; found: C , 64.00; $\mathrm{H}, 5.11 . \mathrm{C}_{47} \mathrm{H}_{46} \mathrm{CuOP}_{3} \mathrm{~S}_{3}$ requires $\mathrm{C}, 64.18 ; \mathrm{H}, 5.27 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3053 \mathrm{~m}$, 2957m, 2835w ($\mathrm{CH}_{3} \mathrm{O}$), 1592s, 1495s (P-C), 1249s, 692s (P=S); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right) 1.28\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30(30 \mathrm{H}, \mathrm{m}$, PPh_{3}), $8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 32.0,52.4,55.3,128.2,128.3$, 129.2, 132.4, 132.6, 133.8, 133.9, 134.1; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 74.9$, -4.8 (br, s, $P \mathrm{Ph}_{3}$).

4.2.6 $\quad 1 / \infty\left[\mathrm{Na}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\}(\text { thf })\right]_{\infty}(\mathrm{Ar}=4$-anisyl $)(6)$

A mixture of Lawesson's reagent ($606 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathrm{NaO}^{t} \mathrm{Bu}$ ($288 \mathrm{mg}, 3.0 \mathrm{mmol}$) was dissolved in 10 mL THF. The light yellow (almost colourless) solution was stirred overnight at room temperature and then the solution was layered with 50 mL hexane. Storage of the solution at room temperature for 5 days produced colourless crystals. 0.79 g, yield 71%; m.p. ${ }^{\sim 120^{\circ} \mathrm{C}}$ (decomposition); found: C, 48.40; H, 6.31. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{PS}_{2}$ requires C, 48.63; H, 6.53\%; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 2973 \mathrm{~s}$, 2873s $\left(\mathrm{OCH}_{3}\right)$, 1592s, 1496s (P-C), 1237s, 1102s, 683s br (P=S); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.53$
($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.80\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.63\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.78$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.78(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \%\right.$ $\mathrm{H}_{3} \mathrm{PO}_{4}$) 96.7.

4.2.7 $\left[\mathrm{Na}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right](\mathrm{Ar}=4-\mathrm{anisyl})(7)$

A mixture of Lawesson's reagent ($606 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathrm{NaO}^{t} \mathrm{Bu}(288 \mathrm{mg}, 3.0 \mathrm{mmol})$ was dissolved in 10 mL DME. The light yellow (almost colourless) solution was stirred overnight at room temperature and then the solution was layered with 80 mL hexane. Storage of the solution at room temperature for 2 weeks produced colourless crystals. 0.4 g, yield 34%; m.p. $127^{\circ} \mathrm{C}$; found: C, 46.20; $\mathrm{H}, 6.69 . \mathrm{C}_{30} \mathrm{H}_{52} \mathrm{Na}_{2} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{~S}_{4}$ requires C , 46.38; H, 6.75\%; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 2924 \mathrm{~s}$ br, 2822s $\left(\mathrm{OCH}_{3}\right), 1590 \mathrm{~s}$, 1492s (P-C), 1231s, 1090s, 683s br ($\mathrm{P}=\mathrm{S}$).

4.2.8 $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{thf})_{2}\right]_{\infty}(\mathrm{Ar}=4-\mathrm{anisyl})(8)$

A mixture of Lawesson's reagent ($606 \mathrm{mg}, 1.5 \mathrm{mmol}$) and KOtBu ($336 \mathrm{mg}, 3.0 \mathrm{mmol}$) was dissolved in 10 mL THF. The light yellow (almost colourless) solution was stirred overnight at room temperature and then the solution was layered with 50 mL hexane. Storage of the solution at room temperature for 4 days produced colourless crystals. 0.84 g , yield 72%; m.p. ${ }^{\sim} 120^{\circ} \mathrm{C}$ (decomposition); found: C, $46.35 ; \mathrm{H}, 6.02$. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{KO}_{3} \mathrm{PS}_{2}$ requires $\mathrm{C}, 46.61 ; \mathrm{H}, 6.26 \%$; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 2970 \mathrm{~s}$, 2840s $\left(\mathrm{OCH}_{3}\right)$, 1591s, 1493s (P-C), 1230s, 1096s, 678s br (P=S); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.49$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.79\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.64\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.77$ (3H, s, OCH_{3}), 6.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \%\right.$ $\mathrm{H}_{3} \mathrm{PO}_{4}$) 96.6.

4.2.9 $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right]_{\infty}(\mathrm{Ar}=4-\mathrm{anisyl})(9)$

A mixture of Lawesson's reagent ($606 \mathrm{mg}, 1.5 \mathrm{mmol}$) and KOtBu ($336 \mathrm{mg}, 3.0 \mathrm{mmol}$) was dissolved in 10 mL DME. The light yellow (almost colourless) solution was stirred overnight at room temperature and then the solution was layered with 60 mL hexane. Storage of the solution at room temperature for 5 days produced colourless crystals. 0.93 g , yield 77%; m.p. $\sim^{\sim 115^{\circ} \mathrm{C}}$ (decomposition); found: C, 44.14; H, 6.22. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{KO}_{4} \mathrm{PS}_{2}$ requires C, 44.53; H, 6.48\%; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 2970 \mathrm{~s}$, $2840 \mathrm{~m}\left(\mathrm{OCH}_{3}\right)$, 1592s, 1496s (P-C), 1235s, 1101s, 677s ($\mathrm{P}=\mathrm{S}$).

4.2.10 $1 / \infty\left[\mathrm{K}_{4}\left\{\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}(\mathrm{thf})_{4}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (10)

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{KS}^{t} \mathrm{Bu}(128 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in 8 mL THF. The colourless solution was stirred overnight at room temperature and then the solution was layered with 70 mL hexane. Storage of the solution at room temperature for 2 weeks produced colourless crystals. 0.32 g , yield 80%; m.p. $115^{\circ} \mathrm{C}$ (decomposed); found: C , 44.33; $\mathrm{H}, 5.78$. $\mathrm{C}_{60} \mathrm{H}_{96} \mathrm{~K}_{4} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{12}$ requires C, 44.75; H, 6.01\%; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 2955 \mathrm{~s}, 2836 \mathrm{~m}\left(\mathrm{OCH}_{3}\right)$, 1590s, 1494s (P-C), 1238s, 1095s , 664s br (P=S).

4.2.11 $\left.\left[\mathrm{Cu}_{14}\left(\mu_{6}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\mathrm{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right)\right] \cdot 8 \mathrm{THF}(\mathrm{Ar}=4-\mathrm{anisyl})$ (11)

A mixture of Lawesson's reagent (202 mg, 0.5 mmol) and CuOAc ($246 \mathrm{mg}, 2.0 \mathrm{mmol}$) was dissolved in 8 mL THF. The mixture was stirred for about 2 hours at room temperature, during which time the formation of a yellow precipitate was observed. The mixture was filtered and the residue dissolved by addition of a solution of PPh_{3} (0.4 M in thf, 2.5 mL). Solvent diffusion within a double-Schlenck tube of $\mathrm{Et}_{2} \mathrm{O}\left(0^{\circ} \mathrm{C}\right)$ into the reaction mixture (room temperature) produced light yellow crystals after 4 days. 0.32 g , yield 60%; m.p. $193^{\circ} \mathrm{C}$ (decomposition); found: $\mathrm{C}, 47.1 ; \mathrm{H}, 3.6$. $\mathrm{C}_{168} \mathrm{H}_{152} \mathrm{Cu}_{14} \mathrm{O}_{20} \mathrm{P}_{14} \mathrm{~S}_{14}$ requires $\mathrm{C}, 47.3 ; \mathrm{H}, 3.6 \%$; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3047 \mathrm{w}, 1755 \mathrm{~m}$ ($\mathrm{C}=\mathrm{O}$), 1591s, 1433s (P-C), 1173s, 1094bs, 691s ($\mathrm{P}=\mathrm{S}$).

4.2.12 $\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{THF}(\mathrm{Ar}=4-\mathrm{anisyl})(12)$

A mixture of Lawesson's reagent (202 mg, 0.5 mmol) and AgOAc (334 mg, 2.0 mmol) was dissolved in 10 mL THF. The mixture was stirred for about 3 hours at room temperature, during which time the formation of a grey-yellow precipitate was observed. The mixture was filtered and the residue was dissolved by addition of a solution of dppm (0.26 M in thf, 7.2 mL). Solvent diffusion within a double-Schlenck tube of $\mathrm{Et}_{2} \mathrm{O}\left(0^{\circ} \mathrm{C}\right)$ into the reaction mixture (room temperature) produced orange crystals after 7 days. 0.58 g , yield 51%; m.p. $149^{\circ} \mathrm{C}$ (decomposed, black solid); found: $\mathrm{C}, 56.87 ; \mathrm{H}, 4.63 . \mathrm{C}_{114} \mathrm{H}_{102} \mathrm{Ag}_{4} \mathrm{O}_{4} \mathrm{P}_{10} \mathrm{~S}_{4}$ requires $\mathrm{C}, 56.92 ; \mathrm{H}, 4.27 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr})$ 3051s, 2859s $\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 1592s, 1431s (P-C), 1241s, 1090s and 692s $(\mathrm{P}=\mathrm{S})$; $\delta_{H}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.25\left(14 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4.7 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.90(14 \mathrm{H}, \mathrm{m}, 3.5 \mathrm{x}$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.52\left(17 \mathrm{H}, \mathrm{t}\right.$ and $\mathrm{br}, \mathrm{s}, \mathrm{J}=7.2 \mathrm{~Hz}, 4.7 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\left.4 \times \mathrm{P}-\mathrm{CH}_{2}-\mathrm{P}\right)$,
$3.77-3.80\left(14 \mathrm{H}, \mathrm{m}, 3.5 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 6.90-7.05(84 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.54(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{P}}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 66.7, -6.5 (br, s, dppm).

4.2.13 $\left[\mathrm{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 13 \mathrm{THF}(\mathrm{Ar}=4$-anisyl) (13)

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{AgOAc}(334 \mathrm{mg}, 2.0 \mathrm{mmol})$ was dissolved in 10 mL THF. The mixture was stirred for about 3 hours at room temperature, during which time the formation of a grey-yellow precipitate was observed. The mixture was filtered and the residue was dissolved by addition of a solution of PPh_{3} (0.4 M in thf, 6 mL). Solvent diffusion within a double-Schlenck tube of $\mathrm{Et}_{2} \mathrm{O}\left(0^{\circ} \mathrm{C}\right)$ into the reaction mixture (room temperature) produced orange crystals after 7 days. 0.33 g , yield 52; m.p. $140^{\circ} \mathrm{C}$ (decomposed, black solid); found: C, $40.18 ; \mathrm{H}, 2.95$. $\mathrm{C}_{300} \mathrm{H}_{264} \mathrm{Ag}_{28} \mathrm{O}_{24} \mathrm{P}_{24} \mathrm{~S}_{26}$ requires $\mathrm{C}, 40.71 ; \mathrm{H}, 3.01 \% ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3043 \mathrm{~m}, 2830 \mathrm{w}$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 1592 \mathrm{~s}, 1433 \mathrm{~s}(\mathrm{P}-\mathrm{C}), 1245 \mathrm{~s}$, 1093s and $691 \mathrm{~s}(\mathrm{P}=\mathrm{S}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ $1.25\left(15 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 5 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.90\left(20 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.52(12 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, 5 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.67-3.85\left(56 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.12 \times \mathrm{OCH}_{3}\right), 6.79-6.92$ (24H, m, ArH), 7.26 ($180 \mathrm{H}, \mathrm{br}, \mathrm{PPh}_{3}$) and $7.80-7.93(24 \mathrm{H}, \mathrm{m}, ~ \mathrm{ArH})$; $\delta_{\mathrm{P}}(162 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 72.1, 68.7, 2.4 (br, s, PPh_{3}).

Byproducts like $\mathrm{Ac}_{2} \mathrm{O}$ or $\left[\mathrm{ArPOS}_{3}\right.$ were found and characterised in similar reactions.

4.2.14 $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\mathrm{thf})_{4}\right](\mathrm{Ar}=4$-anisyl) (14)

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and anhydrous $\mathrm{Fe}(\mathrm{OAc})_{2}$ (174 $\mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL THF. The brown solution was stirred for 5 hours at room temperature. The slightly cloudy solution was filtered and the filtrate layered with $15 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. Storage of the solution at room temperature for 4 days produced yellow crystals. 0.18 g , yield 83%; m.p. $>300^{\circ} \mathrm{C}$; found: C, $39.5 ; \mathrm{H}, 4.0$. $\left[\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}\left(-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$ requires $\mathrm{C}, 39.2 ; \mathrm{H}, 4.8 \% ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 2936 \mathrm{w}$, 1597s, 1439s (P-C), 1258s, 915bs, 658s (P=S).

4.2.15 $\left[\mathrm{Ni}_{2}\left\{\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{thf})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathrm{Ar}=4$-anisyl) (15)

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and [$\left.\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right](250 \mathrm{mg}$, 1.0 mmol) was dissolved in 8 mL THF. The resulting purple solution was stirred for about 5 hours at room temperature. The solution was layered with $15 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and stored at room temperature for 3 days producing purple crystals. 0.20 g, yield 54%;
m.p. > $300^{\circ} \mathrm{C}$ (decomposition); found: C, 35.9; $\mathrm{H}, 4.5 . \mathrm{C}_{44} \mathrm{H}_{68} \mathrm{Ni}_{4} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{~S}_{8}$ requires C, 36.0; H, 4.7\%; UV (Nujol mull) $\lambda_{\text {max }} / \mathrm{nm} 253,340,652 ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3374 \mathrm{~s}$ br $\left(\mathrm{H}_{2} \mathrm{O}\right)$, 2962w, 1594s, 1440s (P-C), 878bw, 654s (P=S); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $\left.25^{\circ} \mathrm{C}\right) 8.3$ $(8 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{ArH}), 6.9(8 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{ArH}), 3.8\left(12 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.6(16 \mathrm{H}, \mathrm{s}, \mathrm{THF}), 2.5(16 \mathrm{H}$, s , THF), $1.7\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $\left.25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 56.1$ (s, $\mathrm{ArPS}_{2} \mathrm{O}$).

4.2.16 $\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}\right](\mathrm{Ar}=4$-anisyl) (16)

To a mixture of $\mathrm{KO}^{t} \mathrm{Bu}(224 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CdCl}_{2}(184 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added 10 mL DME. After the yellow cloudy solution was heated at $50^{\circ} \mathrm{C}$ for 3 hours Lawesson's reagent $202 \mathrm{mg}(0.50 \mathrm{mmol})$ was added. The precipitate was filtered off and the colourless solution layered with 25 mL hexane. Storage of mixture at room temperature for 2 weeks produced colourless crystals. 0.21 g, yield 63%; m.p. $126^{\circ} \mathrm{C}$ (decomposed, mass change (differential thermal analysis) found -18.2%; mass change expected for $\left.\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{Cd}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{8}-2^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{O}:-19.6 \%\right)$; found: C, 40.57 ; $\mathrm{H}, 4.57$. $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{Cd}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{8}$ requires $\mathrm{C}, 39.85 ; \mathrm{H}, 4.86 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 2976 \mathrm{~s}$, 2834m $\left(\mathrm{OCH}_{3}\right)$, 1591s, 1497s (P-C), 1249s, 1106s, 672s ($\mathrm{P}=\mathrm{S}$).

4.2.17 $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\text { thf })_{4}\right](\mathrm{Ar}=4$-anisyl $)(17)$

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}$ ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 8 mL THF. The colourless solution was stirred for about 4 hours at room temperature, and then added to $\mathrm{FeCl}_{2} 64 \mathrm{mg}$ (0.5 mmol). The filtrate was layered with 20 mL hexane. Storage of the solution at room temperature for 5 days produced yellow crystals. 0.13 g, yield 65%. Found: $\mathrm{C}, 39.2$; $\mathrm{H}, 4.5 .\left[\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}\left(-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]_{2}$ requires $\mathrm{C}, 39.2 ; \mathrm{H}, 4.8 \%$.

4.2.18 $\left[\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\text { thf })_{2}\right](\mathrm{Ar}=4$-anisyl) (18)

A mixture of Lawesson's reagent ($202 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}$ ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 8 mL THF. The colourless solution was stirred for about 5 hours at room temperature, and then added to $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} 119 \mathrm{mg}(0.5 \mathrm{mmol})$. The filtrate was layered with 20 mL hexane. Storage of the solution at room temperature for 2 weeks produced purple crystals. 0.19 g , yield 63%; m.p. $195^{\circ} \mathrm{C}$ (decomposition); found: C , 39.56; $\mathrm{H}, 4.71$. $\left[\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NiO}_{6} \mathrm{P}_{2} \mathrm{~S}_{4}\right)_{2}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right]$ requires $\mathrm{C}, 39.68 ; \mathrm{H}, 4.66 \%$; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr})$,

2880w ($\mathrm{CH}_{3} \mathrm{O}$), 2293br, 1591m, 1497s (P-C), 1256s, 657s (P=S); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}\right) 1.65\left(8 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.53\left(8 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.73(6 \mathrm{H}, \mathrm{s}$, OCH_{3}), $3.81(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.87 \sim 7.11(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.21 \sim 8.31(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{P}}(162$ $\mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 42.3, 56.9 (br).

4.2.19 $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right\}_{2}(\mathrm{thf})\right]_{\infty}$ (19)

A mixture of Woollins' reagent ($798 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(336 \mathrm{mg}, 3.0 \mathrm{mmol})$ was dissolved in 15 mL THF. The yellow solution was stirred overnight at room temperature and then layered with 80 mL hexane. Storage of the solution at room temperature for 2 weeks produced yellow crystals. 0.43 g , yield 35%; m.p. $131^{\circ} \mathrm{C}$ (decomposed); found: C, 34.69; $\mathrm{H}, 4.40 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~K}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Se}_{4}$ (828.52) requires $\mathrm{C}, 34.79$; H, 4.38\%; $v_{\text {max }} / \mathrm{cm}^{-1}$ (KBr) 3047m, 2970s, br, 1433s (P-C), 1304s, 1162s, 1091s, 928 s br and 692s; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 1.60(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}(\mathrm{CH} 3) 3), 1.78(\mathrm{~m}, 4 \mathrm{H}), 3.64$ (m, 4H), 7.22 (m, 6H, ArH), 8.26 (m, 4H, ArH); $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 30.09$, 30.14, 125.84, 125.97, 127.79, 129.70, 129.82, 147.48, 148.38; δ_{P} (162 MHz , d $\mathrm{d}_{8}-\mathrm{THF}$, $25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$): 60.37 (s+d satellites, ${ }^{1} \mathrm{~J}_{\mathrm{p}-\mathrm{se}}=675 \mathrm{~Hz} ; \delta_{\text {se }}\left(76 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right)$ $151.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{p}-\mathrm{Se}}=675 \mathrm{~Hz}\right)$.

4.2.20 $1 / \infty\left[\mathrm{PhPSe}_{3} \mathrm{Na}_{2}(\mathrm{thf})_{3}\right]_{\infty}(20)$

A mixture of Woollins' reagent ($133 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}(56 \mathrm{mg}, 0.5 \mathrm{mmol})$ was dissolved in 10 mL THF. The yellow solution was stirred for 4 h at room temperature. The slightly cloudy solution was filtered and the filtrate was layered with 40 mL hexane. Storage of this solution at room temperature for 4 weeks produced light yellow (almost colourless) crystals. 0.055 g , yield 44%; m.p. $90 \sim 92^{\circ} \mathrm{C}\left(>100^{\circ} \mathrm{C}\right.$ decomposed); found: C, 28.76; $\mathrm{H}, 3.43 . \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{Na}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Se}_{6}$ requires $\mathrm{C}, 28.88 ; \mathrm{H}$, $3.43 \% ; v_{\text {max }} / \mathrm{cm}^{-1}$ (KBr) 3044m, 1606s, 1432s (P-C), 1083s, 691s and 501s br; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 1.80\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.64\left(12 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, 7.06-7.21 (6H, m, ArH), 8.54 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right.$) 53.6, $-29.4\left(\mathrm{~s}+\mathrm{d}\right.$ satellites, $\left.{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-504 \mathrm{~Hz}\right) ; \delta_{\mathrm{se}}\left(76 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 363.8(\mathrm{~d}$, ${ }^{1} J_{\mathrm{p}-\mathrm{se}}=-504 \mathrm{~Hz}$). Analysis of the mother liquor: All solvents were removed under reduced pressure. The yellow solid residue was redissolved in 0.8 mL deuterated chloroform and filtered. The filtrate was used for NMR and GC-MS studies. δ_{H} (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) 1.56 (18H, s, $\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~ 7.38-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.28(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; ~}^{\text {2 }}$ $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 43.7\left(\mathrm{~s}+\mathrm{d}\right.$ satellites, $\left.{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{se}}=-801 \mathrm{~Hz}\right) ; \delta_{\mathrm{se}}(76$
$\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $-51.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-801 \mathrm{~Hz}\right)$; GC-MS retention time $(\mathrm{min}) 16.42 ; \mathrm{m} / \mathrm{z}$ (relative intensity) $286\left(5, \mathrm{M}^{+}-80\right), 230\left(16,-\mathrm{C}_{4} \mathrm{H}_{8}\right), 174\left(54,-\mathrm{C}_{4} \mathrm{H}_{8}\right), 141\left(\mathrm{M}_{1}{ }^{+}, 20,-\mathrm{SH}\right)$, 107 (16, $\left.\mathrm{M}_{1}{ }^{+}-\mathrm{SH}_{2}\right), 77\left(8, \mathrm{M}_{1}{ }^{+}-\mathrm{PSH}\right), 57(100)\left(\mathrm{M}=\mathrm{PhP}\left(\mathrm{S}^{\dagger} \mathrm{Bu}\right)_{2}, \mathrm{M}_{1}=\mathrm{PhPSH}\right)$.

4.2.21 $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{K}_{2}(\mathrm{thf})_{4}\right]_{\infty}(21)$

A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{KS}^{t} \mathrm{Bu}(128 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL THF. The yellow solution was stirred for 5 h at room temperature. The slightly cloudy solution was filtered and the filtrate was layered with 35 mL hexane. Storage of this solution at room temperature for 3 weeks produced yellow crystals. 0.06 g, yield 24%; m.p. > $100^{\circ} \mathrm{C}$ (decomposed, orange-red solid); found: C, $28.59 ; \mathrm{H}, 3.28$. $\left[\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{KO}_{2} \mathrm{PSe}_{3}\right)_{8}-5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right]$ requires C, 28.58; H,3.34\%; $v_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol, selected) 1463 s (P-C), 1376s, 1039 w , 685 s and $537 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 1.81(8 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.64\left(8 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 7.11-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.44(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{P}}(162$ $\mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) -27.7. Analysis of the mother liquor: All solvents were removed under reduced pressure. The yellow solid residue was redissolved in 0.8 mL deuterated chloroform and filtered. The filtrate was used for NMR and GC-MS studies. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) 1.55\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.28(2 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 43.7$ ($\mathrm{s}+\mathrm{d}$ satellites, ${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{se}}=-801 \mathrm{~Hz}$), 40.3; $\delta_{\text {se }}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)-50.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-801 \mathrm{~Hz}\right)$; GC-MS retention time (min) 16.41; m / z (relative intensity) $286\left(5, \mathrm{M}^{+}-80\right), 230\left(16,-\mathrm{C}_{4} \mathrm{H}_{8}\right), 174\left(68,-\mathrm{C}_{4} \mathrm{H}_{8}\right), 141\left(\mathrm{M}_{1}{ }^{+}\right.$, 23, -SH), $107\left(17, \mathrm{M}_{1}^{+}-\mathrm{SH}_{2}\right), 77\left(9, \mathrm{M}_{1}^{+}-\mathrm{PSH}\right), 57(100)\left(\mathrm{M}=\mathrm{PhP}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{2}, \mathrm{M}_{1}=\mathrm{PhPSH}\right)$.

A mixture of Woollins' reagent ($133 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{RbO}^{t} \mathrm{Bu}$ ($79 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in 10 mL THF. The yellow solution was stirred for 5 hours at room temperature. The slightly cloudy solution was filtered and the filtrate was layered with 40 mL hexane. Storage of this solution at room temperature for 3 weeks produced yellow crystals. 0.05 g, yield 43%; m.p. $>90^{\circ} \mathrm{C}$ (decomposition); found: C, 20.68; H, 1.82. $\left[\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{RbO}_{2} \mathrm{PSe}_{3}\right)_{2}-3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right]$ requires $\mathrm{C}, 20.60 ; \mathrm{H}, 1.94 \% ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3045 \mathrm{~m}$, 2959m, 1597m, 1432s (P-C), 1090s and 688s (P=Se), 530s; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}\right.$, $\left.25^{\circ} \mathrm{C}\right) 1.80\left(8 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.64\left(8 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 7.21-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.31$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 11.6$.

4.2.23 $1 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right\}(\mathrm{thf})_{3}\right]_{\infty}(23)$

To a mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaSe}^{t} \mathrm{Bu}$ ($159 \mathrm{mg}, 1.0$ mmol) was added 10 mL THF. The mixture was stirred at room temperature overnight. The reaction was filtered and the filtrate (yellow solution) was layered with 40 mL hexane. Storage of the solution at room temperature for 1 week produced yellow crystals. 0.1 g , yield 28%; m.p. $190^{\circ} \mathrm{C}$ (grey), $215^{\circ} \mathrm{C}$ (orange-brown); found: $\mathrm{C}, 33.19$; $\mathrm{H}, 3.52 .\left[\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{Na}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Se}_{4}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right]$ requires $\mathrm{C}, 33.26 ; \mathrm{H}, 3.63 \% ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr})$ $3047 \mathrm{~m}, 2958 \mathrm{~m}, 1434 \mathrm{~s}(\mathrm{P}-\mathrm{C}), 1084 \mathrm{~s}$, 689 s and $523 \mathrm{~s} ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF} ; 25^{\circ} \mathrm{C}\right)$ 1.76 (m, 8H), 3.60 (m, 8H), 7.10 (m, 6H, ArH), 8.16 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}$); δ_{C} ($100 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}$, $25^{\circ} \mathrm{C}$) 25.13, 67.02, 124.39, 126.34, 126.78, 127.64, 130.14, 134.76; $\delta_{\mathrm{P}}(162 \mathrm{MHz}$, $\left.\mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, \mathrm{H}_{3} \mathrm{PO}_{4}\right) 46.8\left(\mathrm{~s}+\mathrm{m},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{se}}=-659 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{se}}=9 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=146 \mathrm{~Hz}\right) ; \delta_{\mathrm{se}}$ $\left(76 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right)-20.8\left(\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-658 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=9 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{p}}=144 \mathrm{~Hz}\right.$).

4.2.24 $1 / \infty\left[\mathrm{K}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right)(\text { thf })_{2}\right]_{\infty}(24)$

To a mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and KOAc ($98 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added 8 mL THF. The mixture was heated to reflux for 5 hours. The reaction was filtered and the filtrate (yellow solution) was layered with 20 mL hexane. Storage of the solution at room temperature for 4 weeks produced orange crystals. 0.17 g yield 75%; m.p. 148- $150^{\circ} \mathrm{C}$ (decomposed); found: C, 26.39; H 2.81. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~K}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Se}_{6}$ requires C, 26.33; H 2.87\%; $v_{\text {max }} / \mathrm{cm}^{-1}$ (KBr) 3045m, 2964m, 1433s (P-C), 1048s, 688s and 535 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 1.80(\mathrm{~m}, 8 \mathrm{H}), 3.64(\mathrm{~m}, 8 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH})$, 8.22 (m, 4H, ArH); $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 25.41,67.24,126.12,126.26,128.75$, 130.27, 145.78; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 12.7\left(\mathrm{~s}+\mathrm{d}\right.$ satellites, ${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{se}}=$ $655 \mathrm{~Hz}) ; \delta_{\mathrm{se}}\left(76 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 138.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=655 \mathrm{~Hz}\right)$.

4.2.25 $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { thf })\right]_{\infty}(25)$

To a mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and [$\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}$] (136 mg , 1.0 mmol) was added 8 mL THF. The mixture was heated for about 5 hours, and then the filtrate (yellow solution) was layered with 25 mL hexane. Storage of the solution at room temperature for 4 weeks produced colourless crystals. 0.2 g , yield 50%; m.p. $95-98^{\circ} \mathrm{C}$ (decomposed); found: C, 23.81; H 3.32. $\left[\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{Na}_{4} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Se}_{4}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}-4 \mathrm{H}_{2} \mathrm{O}\right]$
requires C, 24.02; H, 3.28\%. $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3349 \mathrm{~s}$, br $\left(\mathrm{H}_{2} \mathrm{O}\right), 3052 \mathrm{~m}, 2968 \mathrm{~m}, 1433 \mathrm{~s}$ (P-C), 1040s and 689s.

4.2.26 $\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](26)$

A mixture of Woollins' reagent ($177 \mathrm{mg}, 0.33 \mathrm{mmol}$) and CuOAc ($164 \mathrm{mg}, 1.33 \mathrm{mmol}$) was dissolved in 10 mL THF. The mixture was stirred for 3 hours at room temperature, during which time the formation of a brown precipitate was observed. The mixture was filtered and the residue was added a solution of $\mathrm{PPh}_{3}(0.57 \mathrm{M}$ in THF, 5 mL). Solvent diffusion within a double-Schlenck tube of $\mathrm{Et}_{2} \mathrm{O}$ into the filtrate produced brown crystals after 5 weeks. 0.04 g , yield 10%; despite repeated attempts correct analysis could not be obtained.

4.2.27 $\left[\mathrm{Ni}\left\{\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\text { (thf })_{2}\right]$ (27)

A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}(112 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in 10 mL THF. The colourless solution was stirred for about 5 hours at room temperature, and then added to $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} 119 \mathrm{mg}$ (0.5 mmol). The filtrate was layered with 20 mL hexane. Storage of the solution at room temperature for 2 weeks produced brown crystals. (or: A mixture of Woollins' reagent $266 \mathrm{mg}(0.5 \mathrm{mmol})$ and $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} 125 \mathrm{mg}(0.5 \mathrm{mmol})$ was dissolved in 8 mL THF. The brown solution was stirred overnight at room temperature, and then the filtrate was layered with 40 mL hexane. Storage of the solution at room temperature for 2 weeks produced brown crystals. 0.23 g , yield 60%; m.p. $180^{\circ} \mathrm{C}$ (decomposition); found: C, 30.88 ; H, 3.49. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NiO}_{4} \mathrm{P}_{2} \mathrm{Se}_{4}$ requires $\mathrm{C}, 31.24 ; \mathrm{H}, 3.67 \% ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3129 \mathrm{br}, 1478 \mathrm{~m}$ (P-C), 1434s, 1110s, 900s br, 685s (P=S); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{d}_{8}\right.$-THF, $25^{\circ} \mathrm{C}$) $1.80(8 \mathrm{H}, \mathrm{s}, 4 \mathrm{x}$ $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.65\left(8 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 7.54(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.17(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 12.19$ ($2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{OH}$); $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 37.9$ ($\mathrm{s}+\mathrm{d}$ satellites, $\mathrm{J}_{\mathrm{P}-\mathrm{se}}$ $=520 \mathrm{~Hz}$).

4.2.28 $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}$ (O,Se)PPh\}(thf) $\mathbf{3}^{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]}(\mathbf{2 8)}$

A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Mg}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(107 \mathrm{mg}, 0.5$ mmol) was dissolved in 8 mL THF. The yellow solution was heated to about $50^{\circ} \mathrm{C}$ for 5 hours and stirred overnight at room temperature, and then the filtrate was layered with 50 mL hexane. Storage of the solution at room temperature for 4 weeks produced
yellow crystals. 0.26 g , yield 60% (based on $\left[\mathrm{Mg}(\mathrm{OAc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ supplied); m.p. $130^{\circ} \mathrm{C}$ (decomposition); found: $\mathrm{C}, 32.79 ; \mathrm{H}, 4.17 . \mathrm{C}_{44} \mathrm{H}_{66} \mathrm{Mg}_{2} \mathrm{O}_{12} \mathrm{P}_{4} \mathrm{Se}_{8}$ requires $\mathrm{C}, 33.21 ; \mathrm{H}$, 4.18%; $v_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol, NaCl) 3321br ($\mathrm{H}_{2} \mathrm{O}$), 1608m, 1430s (P-C), 1036m, 880m, $692 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $25^{\circ} \mathrm{C}$) 8.1 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.4 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 3.6 ($10 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.3 (s, $\mathrm{H}_{2} \mathrm{O}$), 1.8 ($10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}\right)$ 130.9, 130.8, 129.8, 126.8, 126.7, 67.0, 25.2; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $25^{\circ} \mathrm{C}, 65 \%$ $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right) 32.9\left(\mathrm{~s}+2 \mathrm{~d}\right.$ satellites, $\left.{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-396 \mathrm{~Hz},-698 \mathrm{~Hz}\right) ; \delta_{\text {se }}\left(76 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{Me}_{2} \mathrm{Se}\right) 40.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-698 \mathrm{~Hz}\right)$.

4.2.29 $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](29)$

A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Mg}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(107 \mathrm{mg}, 0.5$ mmol) was dissolved in 8 mL THF. The yellow solution was stirred overnight at room temperature, and then the filtrate was layered with 50 mL hexane. Storage of the solution at room temperature for 4 weeks produced yellow crystals. 0.25 g, yield 60%; m.p. $125-128^{\circ} \mathrm{C}$ (decomposition); found: $\mathrm{C}, 35.94 ; \mathrm{H}, 4.41 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{MgO}_{6} \mathrm{P}_{2} \mathrm{Se}_{4}$ requires C, 35.04; H, 4.41\%; $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3306 \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right), 2970 \mathrm{~m}$, 1610s, 1436s (P-C), 1036s, 888s br, 690s. $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $25^{\circ} \mathrm{C}$) 8.1-6.9 (10H, $6 \times \mathrm{m}, \mathrm{ArH}$), 3.6 ($10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.3 (s, H2O), 1.7 ($10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{c}}(100 \mathrm{MHz}$, d_{6}-DMSO, $25^{\circ} \mathrm{C}$) 126.2-130.9 (8C, ar. C), 67.0, 25.2; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $25^{\circ} \mathrm{C}$, $65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 32.9 ($\mathrm{s}+2 \mathrm{~d}$ satellites, ${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{se}}=-395 \mathrm{~Hz},-697 \mathrm{~Hz}$), 43.6 (m, slow decomposition in d_{6}-DMSO into a yet unknown compound); δ_{P} ($162 \mathrm{MHz}, \mathrm{d}_{8}$-THF, $25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 37.3 ($\mathrm{s}+2 \mathrm{~d}$ satellites, ${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-392 \mathrm{~Hz},-704 \mathrm{~Hz}$); $\delta_{\text {se }}(76 \mathrm{MHz}$, $\left.\mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{Se}\right) 40.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=698 \mathrm{~Hz}\right), 131.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-710 \mathrm{~Hz}\right)$.

4.2.30 $\left[\mathrm{Mn}\{\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](30)$

A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(123 \mathrm{mg}, 0.5$ mmol) was dissolved in 8 mL THF. The yellow solution was stirred overnight at room temperature, and then the filtrate was layered with 60 mL hexane. Storage of the solution at room temperature for 2 weeks produced yellow crystals. 0.28 g, yield 60%; m.p. $105^{\circ} \mathrm{C}$ (decomposition); found: $\mathrm{C}, 33.25 ; \mathrm{H}, 4.18 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{MnO}_{6} \mathrm{P}_{2} \mathrm{Se}_{4}$ requires C , 33.78; H, 4.25\%; $v_{\text {max }} / \mathrm{cm}^{-1}$ (KBr) 3306br ($\mathrm{H}_{2} \mathrm{O}$), 2973m, 1601m, 1435s (P-C), 1027s, 870s br, 687s.

4.2.31 $\left[\left\{\mathrm{PhPSe}_{2}\left(\mu_{2}-\mathrm{Se}\right) \mathrm{Na}(\text { thf })_{3}\right\}_{2} \mathrm{Ni}\right](31)$

a) A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaSe}^{t} \mathrm{Bu}(159 \mathrm{mg}, 1.0$ mmol) was dissolved in 10 mL THF. The yellow solution was stirred for about 3 h at room temperature and then added to $\mathrm{NiCl}_{2} 65 \mathrm{mg}$ (0.5 mmol). The resulting mixture was heated to $60^{\circ} \mathrm{C}$ for about 3 h . The filtrate was layered with 20 mL hexane. Storage of this solution at room temperature for 3 weeks produced brown crystals. 0.17 g , yield 70%; m.p. $>300^{\circ} \mathrm{C}$ (decomposed, black solid); found: C, 25.55; H, 2.64. $\left[\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{Na}_{2} \mathrm{NiO}_{6} \mathrm{P}_{2} \mathrm{Se}_{6}(-4\right.$ thf)] requires $\mathrm{C}, 25.59 ; \mathrm{H}, 2.79 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}) 3040 \mathrm{~m}, 2957 \mathrm{~m}, 1601 \mathrm{~m}$, 1433s (P-C), 1083s, 683s and 520s; δ_{H} ($400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}$) $1.64\left(24 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.48\left(24 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, 7.11-7.20 (6H, m, ArH), 8.32 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{P}}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \%\right.$ $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right)-12.73\left(\mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=-350 \mathrm{~Hz},-390 \mathrm{~Hz}\right)$.
b) A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}$ ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 8 mL THF. The yellow solution was stirred for about 4h at room temperature and then added to $\mathrm{NiCl}_{2} 65 \mathrm{mg}(0.5 \mathrm{mmol})$. The resulting mixture was stirred overnight at room temperature. The filtrate was layered with 25 mL hexane. Storage of this solution at room temperature for 3 weeks produced brown crystals. 0.10 g , yield 41%.

4.2.32 $1 / \infty\left[\mathrm{Ni}\left\{\mathrm{Na}\left(\mathrm{PhPSe}_{3}\right)(\text { (thf })_{2}\right]_{\infty}\right.$ (32)

A mixture of Woollins' reagent ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}(112 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in THF (10 mL). The yellow, cloudy solution was stirred for about 5 h at room temperature, and then added to $\mathrm{Ni}(\mathrm{OAc})_{2}(177 \mathrm{mg}, 1.0 \mathrm{mmol})$. The mixture was stirred overnight and the filtrate was layered with 40 mL hexane. Storage of this solution at room temperature for 2 weeks produced brown crystals. Spectroscopic and analytical data are same as 3.2.31.

4.2.33 $\left[\mathrm{Cu}_{3}\left\{\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{4}\right](33)$

A mixture of $\mathrm{P}_{2} \mathrm{~S}_{5}$ ($111 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{CuO}^{t} \mathrm{Bu}(137 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(524 \mathrm{mg}$, 2.0 mmol) was dissolved in 10 mL toluene. The resulting yellow solution was heated to $40 \sim 50^{\circ} \mathrm{C}$ for about 3 hours. Storage of the yellow solution at $0^{\circ} \mathrm{C}$ for 4 weeks produced
colourless crystals. 0.05 g , yield 17%; m.p. $134^{\circ} \mathrm{C}$ (decomposed, brown solid); found: C , 58.01; $\mathrm{H}, 4.65 .\left[\mathrm{C}_{80} \mathrm{H}_{78} \mathrm{Cu}_{3} \mathrm{O}_{4} \mathrm{P}_{7} \mathrm{~S}_{6}\left(+\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right)\right]$ requires $\mathrm{C}, 57.68 ; \mathrm{H}, 4.79 \% ; v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr})$ 3047m, 2970w, 1584w, 1433s (P-C), 1093s, 868s (P-O-P) and 689s (P=S); $\delta_{H}(400$ MHz , d8-toluene, $25^{\circ} \mathrm{C}$) 1.60 (18H, s, $\left.2 \times \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 6.96-7.46 (60H, m, ArH); $\delta_{\mathrm{P}}(162$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) 59.9, 42.6, -2.9 (br, s, PPh_{3}).

4.2.34 $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](34 \mathrm{a}, \mathrm{b})$

A mixture of $\mathrm{CuO}^{t} \mathrm{Bu}(137 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{P}_{2} \mathrm{~S}_{3}(79 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(524 \mathrm{mg}$, 2.0 mmol) was dissolved in 15 mL toluene. The mixture was stirred for 7 h . Solvent concentration within a double-Schlenk tube produced very light yellow (almost colourless) crystals after 4 days together with a colourless amorphous precipitate. 0.08 g , yield 19%; m.p. $175^{\circ} \mathrm{C}$ (decomposed, brown solid); found: C, 55.52; H, 4.52. $\mathrm{C}_{80} \mathrm{H}_{78} \mathrm{Cu}_{4} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{~S}_{6}$ requires $\mathrm{C}, 56.39 ; \mathrm{H}, 4.61 \%$ (despite repeated attempts a more accurate analysis could not be obtained, indicating that solid samples are contaminated by amorphous byproducts); $v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}) 3049 \mathrm{~m}, 2971 \mathrm{~m}, 1434 \mathrm{~s}$ (P-C), 1241s, 1092s, 692s (P=S).
b was synthesized by using 15 mL THF instead of 15 mL toluene. 0.2 g , yield 47%.

4.2.35 $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{~S}_{3} \mathrm{PS}^{t} \mathrm{Bu}\right)(\mathrm{dme})\right]_{\infty}(35)$

A mixture of $\mathrm{P}_{2} \mathrm{~S}_{5}$ ($222 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}(448 \mathrm{mg}, 4.0 \mathrm{mmol})$ was dissolved in DME (12 mL). The mixture was stirred overnight and the filtrate was layered with 60 mL hexane. Storage of this solution at room temperature for one week produced colourless crystals. 0.48 g , yield 68% (based on $\mathrm{NaS}^{t} \mathrm{Bu}$ supplied); m.p. $>120^{\circ} \mathrm{C}$ (decomposition) > $220^{\circ} \mathrm{C}$ (black); found: C, 25.70; $\mathrm{H}, 4.89$. [2($\left.\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{Na}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{8}\right)$ $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$] requires $\mathrm{C}, 25.48$; $\mathrm{H}, 5.04 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol) 1456s, $1377 \mathrm{~s}, 1034 \mathrm{~m}, 855 \mathrm{~m}$, $722 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 1.63\left(9 \mathrm{H}, \mathrm{s}+\mathrm{s}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.31(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.46\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}\right) 31.48,31.52$, 49.21, 49.27, 57.98, 71.76; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 65 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 93.3$.

4.2.36 $\left[\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH})_{2} \mathrm{~S}_{2}\right\}_{2}(\text { thf })_{2}\right](36)$

A mixture of $\mathrm{P}_{2} \mathrm{~S}_{5}$ ($111 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaS}^{t} \mathrm{Bu}$ ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 7 mL THF. The yellow solution was stirred for about 5 hours at room temperature, and then added to $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} 119 \mathrm{mg}$ (0.5 mmol). The filtrate was layered with 20 mL
hexane. Storage of the solution at room temperature for 2 weeks produced purple crystals. 0.09 g , yield 39% (based on NaS^{t} Bu supplied); m.p. $250^{\circ} \mathrm{C}$ (decomposition); found: C, 20.62; H, 4.17. $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NiO}_{6} \mathrm{P}_{2} \mathrm{~S}_{4}$ requires $\mathrm{C}, 20.84 ; \mathrm{H}, 4.37 \%$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, d_{6}-DMSO, $25^{\circ} \mathrm{C}$) $1.75\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.59\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.91(4 \mathrm{H}, \mathrm{br}$, $4 \mathrm{x} \mathrm{OH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}\right) 25.1,67.0 ; \delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}, 25^{\circ} \mathrm{C}, 65 \%\right.$ $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right)$-0.8.

4.2.37 [ArPS $(\mu-\mathrm{S})(\mu-\mathrm{NPh}) \mathrm{SPAr}]$ (Ar $=4$-anisyl) (37)

Lawesson's reagent ($5.0 \mathrm{~g}, 12.4 \mathrm{mmol}$) and phenyl isocyanate ($2.0 \mathrm{~g}, 16.8 \mathrm{mmol}$) are heated in 50 mL xylene for 2 h , and then the xylene and excess of phenyl isocyanate are subsequently distilled off. The colourless substance that crystallizes is filtered off from the distillation residue and recrystallized from the mixture of THF and hexane. Found: C, 50.56; $\mathrm{H}, 4.07 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 51.82$; $\mathrm{H}, 4.13 \%$.

5. Crystallographic Data

5.1 General Information

Crystallographic data were collected with a STOE IPDS II diffractometer using graphite-monochromated Mo- K_{α} radiation ($\lambda=0.71073 \AA \AA$) or STOE STADI diffractometer with CCD-detector. The structures were solved by direct methods and refined by full-matrix least squares on F^{2} (all data) using the SHELXTL program package. ${ }^{[172-175]}$ Data reduction used the software supplied by the diffractometer manufacturers with $R_{\text {int }}$ values defined as:

$$
R_{\text {int }}=\sqrt{\frac{\sum \mid \mathrm{F}_{0}^{2}-\mathrm{F}_{0}^{2}(\text { mean }) \mid}{\sum \mathrm{F}_{0}^{2}}}
$$

The equations for the R -factors and goodness of fit S used in the structure refinement are:

$$
w R_{2}=\sqrt{\frac{\sum w\left(F_{0}^{2}-F_{C}^{2}\right)^{2}}{\sum w\left(F_{0}^{2}\right)^{2}}} ; \quad S=\sqrt{\frac{\sum w\left(F_{0}^{2}-F_{c}^{2}\right)^{2}}{(n-p)}} ; \quad R_{1}=\frac{\sum\left|F_{0}\right|-\left|F_{c}\right| \mid}{\sum\left|F_{0}\right|}
$$

When F_{o} and F_{c} are the observed and calculated structure factors for each reflection, while n and p are the number of unique reflections (omitting systematic absences) and the total number of parameters, respectively. The weighting factor, w, is defined as

$$
\frac{1}{w}=\sigma^{2} F_{0}^{2}+(a P)^{2}+b P
$$

Where

$$
P=\frac{\max \left(F_{0}^{2}, 0\right)+2 F_{c}^{2}}{3}
$$

$w R_{2}$ is the function minimized during the refinement process, and all reflections (except those having large negative values or that have been flagged manually using OMIT as "bad reflections") were used in the refinement, and for the calculation of S. R_{1} was only calculated after the refinement process, and only used the stronger reflections with $F_{0} \geqslant 4 \sigma\left(F_{0}\right)$, which corresponds to $I \geqslant 2 \sigma(I)$, for comparison with R-factors for structures refined against F_{0}.

5.2 Crystallographic Data

5.2.1 $\left[\mathrm{Cu}_{2}\left(\mathrm{o}-\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)(\mathrm{dppm})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1)$

Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{54} \mathrm{Cl}_{6} \mathrm{Cu}_{2} \mathrm{O}_{5} \mathrm{P}_{4} \mathrm{~S}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	1350.75
Temperature /[K]	200(2)
$\lambda /[\AA]$	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{C}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=12.861(3) \\ & b=20.043(4) \quad \beta=100.65(3) \\ & c=23.815(5) \end{aligned}$
Volume /[\AA^{3}]	6033(2)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	4, 1.487
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.159
F(000)	2760
2θ range	7.54-63.54
Reflections collected / unique	12873 / 10218; $\left[\mathrm{R}_{\text {int }}=0.0188\right]$
parameters	703
$R_{1}[1>2 \sigma(1)]$	0.0513
$w R_{2}$ (all data)	0.1721
Largest diff. peak and hole / $\left[\mathrm{e}^{\left.\AA^{-3}\right]}\right.$	0.719 / -0.884

Atomic coordinates $\left(x 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(A^{2} \times 10^{3}\right)$

Atom	x	y	z	U(eq)
S (1)	-607 (1)	2897 (1)	7164 (1)	30 (1)
$\mathrm{Cu}(1)$	474 (1)	4286 (1)	7161 (1)	25 (1)
$\mathrm{Cu}(2)$	2328(1)	4354 (1)	7946 (1)	27 (1)
P (1)	-23 (1)	5305 (1)	7370 (1)	25 (1)
P (2)	2096 (1)	5421 (1)	8168 (1)	25 (1)
P (3)	1617 (1)	4020 (1)	6588 (1)	27 (1)
P (4)	3328 (1)	3637 (1)	7568 (1)	29 (1)
C1 (1)	2665 (1)	1676 (1)	5174 (1)	89 (1)
C1 (2)	3959 (1)	2853 (1)	5174 (1)	85 (1)
C1 (3)	6700 (2)	1147 (1)	10638 (1)	110 (1)
C1 (4)	7005 (1)	2419 (1)	10125 (1)	90 (1)
C1 (5)	6324 (2)	4042 (2)	9501 (1)	138 (1)
C1 (6)	4176 (2)	4436 (2)	9243 (2)	140 (1)
0(1)	468 (2)	2650 (2)	7237 (2)	40 (1)
0 (2)	-1384 (2)	2455 (2)	6837 (2)	47 (1)
0 (3)	-729 (2)	3582 (2)	6950 (1)	31 (1)
0 (4)	971 (2)	3857 (2)	7985 (1)	33 (1)
0 (5)	1576 (2)	3251 (2)	8742 (2)	45 (1)
C (1)	-924 (3)	2929 (2)	7853 (2)	28 (1)
C (2)	-1946 (3)	2704 (3)	7913 (3)	45 (1)
C (3)	-2274 (4)	2739 (3)	8426 (3)	57 (2)
C (4)	-1603 (4)	2984 (3)	8914 (3)	55 (2)
C (5)	-581 (4)	3190 (3)	8858 (2)	42 (1)
C (6)	-236 (3)	3162 (2)	8345 (2)	29 (1)
C (7)	875 (3)	3428 (2)	8358 (2)	27 (1)
C (8)	-897 (3)	5415 (2)	7894 (2)	29 (1)
C (9)	-1248 (3)	4870 (3)	8134 (2)	40 (1)
C (10)	-1900 (4)	4937 (3)	8522 (3)	55 (2)
C (11)	-2212 (4)	5549 (3)	8673 (3)	54 (2)
C (12)	-1863 (4)	6106 (3)	8425 (3)	53 (1)
C (13)	-1208 (3)	6046 (3)	8037 (2)	42 (1)
C (14)	-717 (3)	5704 (2)	6724 (2)	26 (1)
C (15)	-630 (3)	6374 (2)	6591 (2)	32 (1)
C (16)	-1151 (3)	6625 (3)	6070 (2)	40 (1)
C (17)	-1759 (3)	6204 (3)	5687 (2)	43 (1)
C (18)	-1864 (3)	5540 (3)	5815 (2)	43 (1)
C (19)	-1347 (3)	5284 (2)	6334 (2)	33 (1)
C (20)	3237 (3)	5984 (2)	8238 (2)	31 (1)
C (21)	3754 (4)	6179 (3)	8774 (3)	58 (2)
C (22)	4691 (5)	6544 (4)	8821 (3)	79 (2)
C (23)	5089 (4)	6715 (4)	8352 (4)	72 (2)

Atom	x	y	z	U(eq)
C (24)	4571 (4)	6530 (3)	7814 (3)	62 (2)
C (25)	3646 (3)	6152 (3)	7765 (2)	45 (1)
C (26)	1632 (3)	5504 (2)	8835 (2)	31 (1)
C (27)	1627 (3)	4944 (3)	9183 (2)	38 (1)
C (28)	1294(4)	5005 (3)	9709 (2)	54 (1)
C (29)	990 (4)	5606 (3)	9887 (2)	55 (2)
C (30)	984 (4)	6164 (3)	9541 (2)	53 (1)
C (31)	1297 (3)	6117 (3)	9025 (2)	43 (1)
C (32)	1109 (3)	5860 (2)	7629 (2)	26 (1)
C (33)	877 (3)	3698 (3)	5917 (2)	35 (1)
C (34)	955 (4)	3055 (3)	5722 (2)	47 (1)
C (35)	322 (5)	2864 (4)	5211 (3)	64 (2)
C (36)	-378 (4)	3297 (4)	4899 (3)	62 (2)
C (37)	-466 (4)	3939 (4)	5091 (3)	68 (2)
C(38)	171 (4)	4139 (3)	5594 (3)	56 (2)
C (39)	2419 (3)	4653 (3)	6321 (2)	35 (1)
C (40)	2110 (4)	5309 (3)	6331 (2)	44 (1)
C(41)	2662 (5)	5811 (3)	6097 (3)	65 (2)
C (42)	3535 (5)	5636 (4)	5851 (3)	76 (2)
C(43)	3830 (5)	4983 (5)	5834 (3)	75 (2)
C (44)	3268 (4)	4476 (3)	6070 (3)	57 (2)
C (45)	4573 (3)	3937 (3)	7403 (2)	39 (1)
C (46)	5262 (4)	3519 (3)	7184 (3)	55 (2)
C (47)	6192 (4)	3787 (5)	7052 (3)	72 (2)
C(48)	6423 (4)	4447 (5)	7138 (3)	75 (2)
C (49)	5768 (5)	4851 (4)	7369 (3)	77 (2)
C (50)	4833 (4)	4596 (3)	7502 (3)	53 (2)
C (51)	3688 (3)	2858 (2)	7951 (2)	31 (1)
C (52)	4636 (3)	2827 (3)	8351 (2)	45 (1)
C (53)	4872 (3)	2255 (3)	8684 (3)	51 (1)
C (54)	4199 (4)	1711 (3)	8608 (3)	53 (2)
C (55)	3266 (4)	1730 (3)	8210 (3)	51 (2)
C (56)	3016 (3)	2305 (3)	7895 (2)	42 (1)
C (57)	2543 (3)	3364 (2)	6883 (2)	33 (1)
C (58)	3277 (5)	2202 (3)	4769 (3)	68 (2)
C (59)	7419 (7)	1910 (5)	10706 (4)	104 (3)
C (60)	5413 (6)	4617 (5)	9167 (5)	111 (3)

5.2.2 $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{ArS}_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}\right)\left(\mathrm{PPh}_{3}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4-\mathrm{anisyl})(2)$

Empirical formula	$\mathrm{C}_{87} \mathrm{H}_{76} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{~S}_{4}$
Molecular weight /[g• mol^{-1}]	1681.52
Temperature /[K]	100(2)
$\lambda /[\AA]$	0.71073
Crystal system	Monoclinic
space group	C2/c
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=22.431(5) \\ & b=13.711(3) \quad \beta=104.20(3) \\ & c=26.435(5) \end{aligned}$
Volume / $\left[\AA^{3}\right]$	7882(3)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	4, 1.417
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.886
F(000)	3472
2θ range	3.18-54.04
Reflections collected / unique	29604 / 8548; [$\left.\mathrm{R}_{\text {int }}=0.0485\right]$
parameters	238
$R_{1}[1>2 \sigma(1)]$	0.0742
$w R_{2}$ (all data)	0.2063
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	2.446 / -1.145
CCDC number	263199

5.2.3 $\left[\mathrm{Cu}_{4}\left\{\mathrm{Ar}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{P}-\mathrm{O}-\mathrm{P}\left(\mu_{2}-\mathrm{S}\right)_{2} \mathrm{Ar}\right\}_{2}(\mathrm{dppa})_{2}\right] \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (3)

Empirical formula	$\mathrm{C}_{79} \mathrm{H}_{74} \mathrm{Cl}_{6} \mathrm{Cu}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{8} \mathrm{~S}_{8}$
Molecular weight /[g• mol^{-1}]	2118.65
Temperature /[K]	100(2)
$\lambda /[\AA]$	0.71073
Crystal system	Monoclinic
space group	C2/c
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=18.457(4) \\ & b=19.747(4) \quad \beta=93.66(3) \\ & c=24.311(5) \end{aligned}$
Volume /[\AA^{3}]	8843(3)
Z, Calculated density / $\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	4, 1.600
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.516
F(000)	4328
2θ range	3.36-53.86
Reflections collected / unique	13293 / 7876; [$\left.\mathrm{R}_{\text {int }}=0.0460\right]$
parameters	509
$R_{1}[1>2 \sigma(1)]$	0.0682
$w R_{2}$ (all data)	0.2042
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	0.995 / -1.633
CCDC number	263200

5.2.4 $\left[\mathrm{Cu}_{2}\left(\mu_{4}-\mathrm{ArPS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{Ar}=4$-anisyl) (4)

Empirical formula	$\mathrm{C}_{88} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{~S}_{6}$
Molecular weight /[g• mol^{-1}]	1941.64
Temperature /[K]	173(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{C}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=12.960(3) \\ & b=22.853(5) \quad \beta=113.02(3) \\ & c=15.976(3) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	4354.9(15)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	2, 1.481
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.387
F(000)	1984
2θ range	7.50-63.64
Reflections collected / unique	$28160 / 10288 ;\left[\mathrm{R}_{\text {int }}=0.0364\right]$
parameters	506
$R_{1}[1>2 \sigma(1)]$	0.0437
$w R_{2}$ (all data)	0.1555
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	1.165 / -0.827
CCDC number	276586

5.2.5 $\left[\mathrm{Cu}\left(\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{Ar}=4$-anisyl) (5)

Empirical formula	$\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{CuOP}_{3} \mathrm{~S}_{3}$
Molecular weight /[g• mol^{-1}]	879.47
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P ${ }^{-1}$
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=11.4902(4) & \alpha=74.107(3) \\ b=13.0272(5) & \beta=71.686(3) \\ c=15.6664(5) & \gamma=83.651(3) \\ \hline \end{array}$
Volume /[\AA^{3}]	2140.38(13)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	2, 1.365
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.804
F(000)	916
2θ range	5.78-63.58
Reflections collected / unique	$17126 / 9353 ;{ }^{\text {int }}$ = 0.0282]
parameters	496
$R_{1}[1>2 \sigma(1)]$	0.0398
$w R_{2}$ (all data)	0.1452
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	1.079 / -1.021
CCDC number	601694

5.2.6 $1 / \infty\left[\mathrm{Na}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right\}(\text { thf })\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (6)

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{3} \mathrm{PS}_{2}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	370.42
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / n$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=13.0592(11) \\ & b=8.7781(9) \quad \beta=102.117(7) \\ & c=16.8189(15) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	1885.1(3)
Z, Calculated density /[g cm^{-3}]	4, 1.305
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.398
F(000)	784
2θ range	7.90-63.50
Reflections collected / unique	$10946 / 4416 ;\left[\mathrm{R}_{\text {int }}=0.0570\right]$
Parameters	195
$R_{1}[1>2 \sigma(1)]$	0.0957
$w R_{2}$ (all data)	0.3278
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	1.538 / -1.040
CCDC number	601695

5.2.7 $\left[\mathrm{Na}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right](\mathrm{Ar}=4$-anisyl) (7)

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{Na}_{2} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{~S}_{4}$
Molecular weight /[g• mol^{-1}]	776.88
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{C}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=8.2730(17) \\ & b=11.841(2) \quad \beta=98.61(3) \\ & c=20.614(4) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	1996.6(7)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	2, 1.292
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.382
F(000)	824
2θ range	6.88-63.62
Reflections collected / unique	15549 / 4733; [$\left.\mathrm{R}_{\text {int }}=0.0588\right]$
Parameters	202
$R_{1}[1>2 \sigma(1)]$	0.0651
$w R_{2}$ (all data)	0.2077
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	1.103 / -0.651
CCDC number	601696

5.2.8 $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{thf})_{2}\right]_{\infty}(\mathrm{Ar}=4-\mathrm{anisyl})(8)$

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{KO}_{3} \mathrm{PS}_{2}$
Molecular weight /[g• mol^{-1}]	386.53
Temperature /[K]	150(2)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=8.264(6) & \alpha=96.849(6) \\ b=11.2990(9) & \beta=102.612(6) \\ c=11.3100(8) & \gamma=111.286(7) \\ \hline \end{array}$
Volume /[${ }^{3}$]	937.1(7)
Z, Calculated density /[g cm^{-3}]	2, 1.370
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.600
F(000)	408
2θ range	7.72-63.66
Reflections collected / unique	$7578 / 4099 ;\left[\mathrm{R}_{\text {int }}=0.0314\right]$
parameters	203
$R_{1}[1>2 \sigma(1)]$	0.0327
$w R_{2}$ (all data)	0.1430
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	0.777 / -0.734
CCDC number	601697

5.2.9 $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{2}(\mathrm{dme})_{2}\right]_{\infty}(\mathrm{Ar}=4-\mathrm{anisyl})(9)$

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{KO}_{4} \mathrm{PS}_{2}$
Molecular weight /[g•$\left.\cdot \mathrm{mol}^{-1}\right]$	404.55
Temperature $/[\mathrm{K}]$	$150(2)$
$\lambda /[\AA \AA]$	0.71073
Crystal system	Monoclinic
space group	$\mathrm{P} 2_{1} / n$
Unit cell /[A]; [deg.]	$\mathrm{a}=10.6833(9) \quad \mathrm{b}=10.9392(8) \quad \beta=106.174(7)$ $\mathrm{c}=17.6404(14)$
Volume /[$\left.\AA^{3}\right]$	$1980.0(3)$
Z, Calculated density /[g•cm $\left.{ }^{-3}\right]$	$4,1.357$
$\mu /\left[\mathrm{mm}{ }^{-1}\right]$	0.574
$\mathrm{~F}(000)$	856
2θ range	$7.46-64.10$
Reflections collected / unique	$15474 / 4755 ;\left[\mathrm{R}_{\text {int }}=0.0885\right]$
parameters	214
$R_{1}[I>2 \sigma(\mathrm{I})]$	0.0488
$w R_{2}$ (all data)	0.1637
Largest diff. peak and hole /[eA $\left.{ }^{-3}\right]$	$1.289 /-0.737$
CCDC number	601698

5.2.10 $1 / \infty\left[K_{4}\left\{\operatorname{ArP}\left(\mathrm{~S}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}(\mathrm{thf})_{4}\right]_{\infty}(\mathrm{Ar}=4$-anisyl) (10)

Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{96} \mathrm{~K}_{4} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{12}$
Molecular weight /[g•$\left.\cdot \mathrm{mol}^{-1}\right]$	1610.37
Temperature /[K]	$110(2)$
$\lambda /[\AA \AA]$	0.71073
Crystal system	Tetragonal
space group	$144_{1} / a$
Unit cell /[A]; [deg.]	$\mathrm{a}=26.4622(16)$ $\mathrm{b}=26.4622(16)$ $\mathrm{c}=11.2432(6)$
Volume /[$\left.\AA^{3}\right]$	$7873.0(8)$
Z, Calculated density /[g•cm $\left.{ }^{-3}\right]$	$4,1.359$
$\mu /\left[\mathrm{mm}{ }^{-1}\right]$	0.672
F(000)	3392
2θ range	$3.94-54.04$
Reflections collected / unique	$11638 / 4276 ;\left[\mathrm{R}_{\text {int }}=0.0827\right]$
parameters	199
$R_{1}[I>2 \sigma(\mathrm{I})]$	0.0917
$w R_{2}($ all data $)$	0.2778
Largest diff. peak and hole /[eA $\left.{ }^{-3}\right]$	$2.100 /-0.468$
CCDC number	601700

5.2.11 $\left.\left[\mathrm{Cu}_{14}\left(\mu_{6}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right)_{6}\left(\mu_{3}-\mathrm{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{6}\right)\right] \cdot 8 \mathrm{THF}(\mathrm{Ar}=4$-anisyl) (11)

Empirical formula	$\mathrm{C}_{200} \mathrm{H}_{216} \mathrm{Cu}_{14} \mathrm{O}_{28} \mathrm{P}_{14} \mathrm{~S}_{14}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	4839.71
Temperature /[K]	120(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[\AA]; [deg.]	$\begin{array}{ll} a=17.1353(9) & \alpha=95.756(4) \\ b=19.6186(10) & \beta=111.961(4) \\ c=20.0847(20) & y=113.646(4) \end{array}$
Volume /[\AA^{3}]	5481.6(5)
Z, Calculated density /[g cm^{-3}]	1,1.466
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.625
F(000)	2480
2θ range	3.74-54.32
Reflections collected / unique	$42933 / 21979 ;\left[\mathrm{R}_{\text {int }}=0.0589\right]$
parameters	1098
$R_{1}[1>2 \sigma(1)]$	0.0799
$w R_{2}$ (all data)	0.2526
Largest diff. peak and hole $/\left[\mathrm{e}^{-3}\right]$	2.970 / -1.089
CCDC number	276587

5.2.12 $\left[\mathrm{Ag}_{4}\left\{\mu_{4}-\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\mathrm{dppm})_{4}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{THF}(\mathrm{Ar}=4-\mathrm{anisyl})(12)$

Empirical formula	$\mathrm{C}_{130} \mathrm{H}_{138} \mathrm{Ag}_{4} \mathrm{O}_{8} \mathrm{P}_{10} \mathrm{~S}_{4}$
Molecular weight /[g• mol^{-1}]	2697.82
Temperature /[K]	100(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	C2/c
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=25.1473(9) \\ & b=20.5188(4) \quad \beta=113.361(3) \\ & c=26.3469(10) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	12480.4(7)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	4, 1.449
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.869
F(000)	5636
2θ range	2.74-55.72
Reflections collected / unique	48865 / 13532; [$\left.\mathrm{R}_{\text {int }}=0.0363\right]$
parameters	705
$R_{1}[1>2 \sigma(1)]$	0.0408
$w R_{2}$ (all data)	0.1186
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	0.646/-1.063
CCDC number	283238

5.2.13 $\left[\mathrm{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 13 \mathrm{THF}(\mathrm{Ar}=4$-anisyl) (13)

Empirical formula	$\mathrm{C}_{360} \mathrm{H}_{388} \mathrm{Ag}_{28} \mathrm{O}_{39} \mathrm{P}_{24} \mathrm{~S}_{26}$
Molecular weight /[g• mol^{-1}]	9935.90
Temperature /[K]	100(3)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[Å]; [deg.]	$\begin{array}{ll} \mathrm{a}=22.8410(6) & \alpha=118.290(2) \\ b=23.4102(7) & \beta=96.031(2) \\ c=23.8337(6) & \gamma=113.295(2) \\ \hline \end{array}$
Volume /[\AA^{3}]	9609.6(5)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	1,1.730
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.692
F(000)	4996
2θ range	2.62-54.30
Reflections collected / unique	77691 / 39248; $\left[\mathrm{R}_{\text {int }}=0.0458\right]$
parameters	1943
$R_{1}[1>2 \sigma(1)]$	0.0630
$w R_{2}$ (all data)	0.1946
Largest diff. peak and hole / $\left[\mathrm{e}^{\left.\AA^{-3}\right]}\right.$	2.651 / -2.750
CCDC number	283239

5.2.14 $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\text { thf })_{4}\right](\mathrm{Ar}=4$-anisyl $)(14)$

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{6}$
Molecular weight /[g• mol^{-1}]	868.67
Temperature /[K]	205(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2{ }_{1} / \mathrm{C}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=10.760(1) \\ & b=17.020(2) \quad \beta=109.91(1) \\ & c=11.300(1) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	1945.7(1)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	2,1.483
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.188
F(000)	904
2θ range	4.68-51.76
Reflections collected / unique	8829 / 3680; [$\left.\mathrm{R}_{\text {int }}=0.1237\right]$
parameters	208
$R_{1}[1>2 \sigma(1)]$	0.0687
$w R_{2}$ (all data)	0.2225
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	0.617 / -0.739
CCDC number	276588

5.2.15 $\left[\mathrm{Ni}_{2}\left\{\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{2}(\text { thf })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathrm{Ar}=4$-anisyl $)(15)$

Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{68} \mathrm{Ni}_{4} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{~S}_{8}$
Molecular weight /[g• mol^{-1}]	1468.18
Temperature /[K]	120(2)
$\lambda /[\AA$]	0.71073
Crystal system	Orthorhombic
space group	Pna2 1_{1}
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=26.921(5) \\ & b=13.001(3) \\ & c=18.206(4) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	6372(2)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	4, 1.530
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.585
F(000)	3040
2θ range	3.02-54.08
Reflections collected / unique	$35061 / 13469$; $\left.\mathrm{R}_{\text {int }}=0.1692\right]$
parameters	657
$R_{1}[1>2 \sigma(1)]$	0.1262
$w R_{2}$ (all data)	0.3167
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	3.370 / -0.871
CCDC number	276589

5.2.16 $\left[\mathrm{Cd}_{2}\left\{\mathrm{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right)(\mu-\mathrm{S}) \mathrm{S}\right\}_{4}\right](\mathrm{Ar}=4-$ anisyl $)(16)$

Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{Cd}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{8}$
Molecular weight /[g• mol^{-1}]	1326.11
Temperature /[K]	120(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P 1
Unit cell /[\AA]; [deg.]	$\begin{array}{ll} a=11.3883(9) & \alpha=74.356(6) \\ b=11.8699(9) & \beta=65.181(5) \\ c=12.2242(9) & Y=77.253(6) \end{array}$
Volume /[\AA^{3}]	1433.30(19)
Z, Calculated density /[g cm^{-3}]	1,1.536
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.190
F(000)	676
2θ range	3.60-56.46
Reflections collected / unique	12818 / 6527; [$\left.\mathrm{R}_{\text {int }}=0.0408\right]$
parameters	291
$R_{1}[1>2 \sigma(1)]$	0.0313
$w R_{2}$ (all data)	0.0763
Largest diff. peak and hole /[e \AA^{-3}]	1.038 / -0.543
CCDC number	601699

5.2.17 $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{ArPS}_{3}\right)(\mathrm{thf})_{4}\right]_{2}(\mathrm{Ar}=4-\mathrm{anisyl})(17)$

Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{92} \mathrm{Fe}_{4} \mathrm{O}_{12} \mathrm{P}_{4} \mathrm{~S}_{12}$
Molecular weight /[g• mol^{-1}]	1737.34
Temperature /[K]	293(2)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=10.829(2) & \alpha=91.71(3) \\ b=11.275(2) & \beta=96.53(3) \\ c=16.737(3) & y=110.24(3) \end{array}$
Volume /[\AA^{3}]	1899.7(7)
Z, Calculated density /[$9 \cdot \mathrm{~cm}^{-3}$]	1,1.519
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.217
F(000)	904
2θ range	3.86-56.24
Reflections collected / unique	$11260 / 7920 ;\left[\mathrm{R}_{\text {int }}=0.0578\right]$
parameters	410
$R_{1}[1>2 \sigma(1)]$	0.0855
$w R_{2}$ (all data)	0.2721
Largest diff. peak and hole /[e \AA^{-3}]	1.805 / -1.020

Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$

Atom	X	y	z	U(eq)
Fe (1)	5225 (1)	5421 (1)	3958 (1)	32 (1)
Fe (2)	5193 (1)	10308 (1)	1103 (1)	30 (1)
P (1)	4091 (2)	6745 (2)	5186 (1)	29 (1)
P (2)	5930 (2)	8260 (2)	182 (1)	30 (1)
S (1)	5246 (2)	7625 (2)	4359 (1)	38 (1)
S (2)	3261 (2)	4856 (2)	4801 (1)	33 (1)
S (3)	5057 (2)	6859 (2)	6312 (1)	36 (1)
S (4)	6739 (2)	10179 (2)	65 (1)	30 (1)
S (5)	5049 (2)	8020 (2)	1195 (1)	34 (1)
S (6)	4704 (2)	7471 (2)	-855 (1)	35 (1)
0(1)	67 (6)	9117 (6)	5730 (4)	42 (1)
0 (2)	4046 (9)	5397 (9)	2828 (4)	63 (2)
0 (3)	6948 (7)	6225 (6)	3346 (5)	50 (2)
0 (4)	10148 (7)	5968 (7)	722 (8)	84 (3)
0 (5)	3895 (6)	10052 (6)	2001 (3)	38 (1)
0 (6)	6821 (6)	10947 (6)	2083 (3)	37 (1)
C (1)	2794 (8)	7418 (7)	5253 (4)	30 (1)
C (2)	1472 (8)	6656 (7)	5250 (5)	37 (2)
C (3)	522 (8)	7197 (8)	5388 (5)	36 (2)
C (4)	900 (8)	8493 (8)	5548 (5)	34 (2)
C (5)	2226 (8)	9272 (7)	5539 (5)	34 (2)
C (6)	3179 (8)	8744 (7)	5393 (4)	32 (2)
C(7)	-1317 (9)	8387 (9)	5641 (6)	48 (2)
C (8)	3018 (15)	5909 (15)	2701 (9)	28 (3)
C (9)	1880 (17)	4656 (16)	2405 (10)	37 (3)
C (10)	2538 (17)	3852 (18)	1967 (11)	41 (3)
$\mathrm{C}(11)$	3910 (20)	4580 (20)	2115 (15)	37 (2)
C (8A)	2500 (30)	5280 (30)	2796 (15)	65 (6)
C (9A)	2090 (30)	5310 (30)	1940 (16)	69 (6)
C (10A)	2690 (30)	4370 (30)	1582 (16)	66 (6)
C (11A)	4120 (20)	4800 (20)	2075 (15)	37 (2)
C (12)	7273 (11)	7368 (11)	2979 (8)	59 (3)
C(13)	8579 (12)	7680 (11)	2713 (9)	64 (3)
C (14)	9051 (13)	6592 (13)	2943 (9)	67 (3)
C (15)	7781 (16)	5560 (12)	3105 (10)	86 (5)
C (16)	7255 (8)	7607 (7)	313 (5)	33 (2)
C(17)	6938 (8)	6340 (8)	524 (7)	45 (2)
C (18)	7920 (11)	5831 (10)	641 (9)	63 (3)
C (19)	9235 (10)	6557 (9)	553 (8)	57 (3)
C (20)	9561 (10)	7795 (9)	332 (6)	46 (2)

Atom	x	y	\boldsymbol{z}	$\mathrm{U}(\mathrm{eq})$
C (21)	$8560(8)$	$8305(8)$	$220(5)$	$37(2)$
C (22)	$11474(11)$	$6639(11)$	$528(14)$	$107(7)$
C(23)	$2816(10)$	$10507(11)$	$2003(6)$	$51(2)$
C(24)	$2010(13)$	$9764(17)$	$2593(8)$	$78(4)$
C(25)	$2903(13)$	$9394(13)$	$3173(7)$	$63(3)$
C(26)	$4091(12)$	$9503(11)$	$2765(5)$	$52(2)$
C(27)	$7253(9)$	$12203(9)$	$2503(5)$	$43(2)$
C(28)	$8576(11)$	$12883(10)$	$2225(7)$	$55(2)$
C(29)	$9140(10)$	$11819(10)$	$2087(7)$	$52(2)$
C(30)	$8002(9)$	$10605(9)$	$2166(5)$	$38(2)$

5.2.18 [$\left.\mathrm{Ni}\left\{\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\text { thf })_{2}\right](\mathrm{Ar}=4-\mathrm{anisyl})(18)$

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NiO}_{6} \mathrm{P}_{2} \mathrm{~S}_{4}$
Molecular weight /[g• mol^{-1}]	641.37
Temperature /[K]	173(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[Å]; [deg.]	$\begin{array}{\|ll} a=8.3593(6) & \alpha=64.376(13) \\ b=9.4774(12) & \beta=75.010(9) \\ c=10.4564(14) & \gamma=71.497(9) \\ \hline \end{array}$
Volume /[\AA^{3}]	701.14(14)
Z, Calculated density / $\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right.$]	1,1.519
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.139
F(000)	334
2θ range	7.72-62.88
Reflections collected / unique	$\left.5271 / 3044 ; \mathrm{R}_{\text {int }}=0.0302\right]$
parameters	161
$R_{1}[1>2 \sigma(1)]$	0.0419
$w R_{2}$ (all data)	0.1653
Largest diff. peak and hole /[e \AA^{-3}]	1.067 / -1.294
CCDC number	614760

5.2.19 $1 / \infty\left[\mathrm{K}_{2}\left\{\mathrm{PhP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{Se}_{2}\right\}_{2}(\mathrm{thf})\right]_{\infty}(19)$

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~K}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Se}_{4}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	828.51
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / n$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=17.0055(10) \\ & b=10.0063(3) \quad \beta=101.019(4) \\ & c=19.1984(11) \end{aligned}$
Volume /[\AA^{3}]	3206.6(3)
Z, Calculated density /[g cm^{-3}]	4, 1.716
$\mu /\left[\mathrm{mm}^{-1}\right]$	4.959
F(000)	1632
2θ range	3.56-56.48
Reflections collected / unique	14199 / 7442; [$\left.\mathrm{R}_{\text {int }}=0.0751\right]$
parameters	316
$R_{1}[1>2 \sigma(1)]$	0.0634
$w R_{2}$ (all data)	0.1874
Largest diff. peak and hole $/\left[\mathrm{e}^{-3}\right]$	1.484 / -1.403
CCDC number	603361

5.2.20 $1 / \infty\left[\mathrm{PhPSe}_{3} \mathrm{Na}_{2}(\text { thf })_{3}\right]_{\infty}(20)$

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{Na}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Se}_{6}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	998.17
Temperature /[K]	100(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[\AA]; [deg.]	$\begin{array}{ll} a=9.7746(8) & \alpha=71.905(6) \\ b=11.4669(10) & \beta=78.473(6) \\ c=16.7949(14) & Y=85.510(7) \end{array}$
Volume / $\left[\AA^{3}\right.$]	1753.0(3)
Z, Calculated density /[g cm^{-3}]	2, 1.891
$\mu /\left[\mathrm{mm}^{-1}\right]$	6.428
F(000)	960
2θ range	3.74-56.36
Reflections collected / unique	15513 / 7931; [$\left.\mathrm{R}_{\text {int }}=0.0472\right]$
parameters	345
$R_{1}[1>2 \sigma(1)]$	0.0386
$w R_{2}$ (all data)	0.1026
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	1.991 / -1.440
CCDC number	292989

5.2.21 $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{\left.\left(-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{K}_{2}(\text { (thf })_{4}\right]_{\infty}(21)}\right.\right.$

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~K}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Se}_{6}$
Molecular weight /[g•$\left.\cdot \mathrm{mol}^{-1}\right]$	1056.52
Temperature $/[\mathrm{K}]$	$150(2)$
$\lambda /[\AA \AA]$	0.71073
Crystal system	Monoclinic
space group	$\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell /[A]; [deg.]	$\mathrm{a}=12.6326(7) \quad \mathrm{b}=19.9940(10) \quad \beta=93.654(5)$ $\mathrm{c}=15.4290(10)$
Volume /[$\left.\AA^{3}\right]$	$3889.1(4)$
Z, Calculated density /[g•cm $\left.{ }^{-3}\right]$	$4,1.804$
$\mu /\left[\mathrm{mm}{ }^{-1}\right]$	5.971
F(000)	2056
2θ range	$7.56-63.68$
Reflections collected / unique	$29272 / 8957 ;\left[\mathrm{R}_{\text {int }}=0.0804\right]$
parameters	373
$R_{1}[I>2 \sigma(\mathrm{I})]$	0.0519
$w R_{2}($ all data $)$	0.1743
Largest diff. peak and hole /[eA $\left.{ }^{-3}\right]$	$1.528 /-1.221$
CCDC number	292992

5.2.22 $1 / \infty\left[\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{\left.\left.-\mathrm{SeSe}_{2} \mathrm{PPh}\right) \mathrm{Rb}_{2}(\text { (thf })_{4}\right]_{\infty}(22)}\right.\right.$

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{Rb}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Se}_{6}$
Molecular weight /[g•$\left.\cdot \mathrm{mol}^{-1}\right]$	1149.26
Temperature /[K]	$173(2)$
$\lambda /[\AA \AA]$	0.71073
Crystal system	Monoclinic
space group	$\mathrm{C} 2 / \mathrm{c}$ Unit cell /[A]; [deg.] $\mathrm{b}=23.1403(15) \quad \beta=112.154(6)$ $\mathrm{c}=13.4145(10)$
Volume /[$\left.\AA^{3}\right]$	$4042.2(5)$
Z, Calculated density /[g•cm $\left.{ }^{-3}\right]$	$4,1.888$
$\mu /\left[\mathrm{mm}{ }^{-1}\right]$	7.932
F(000)	2200
2θ range	$3.52-54.16$
Reflections collected / unique	$13034 / 4419 ;\left[\mathrm{R}_{\text {int }}=0.0609\right]$
parameters	159
$R_{1}[I>2 \sigma(\mathrm{I})]$	0.0490
$w R_{2}($ all data $)$	0.1196
Largest diff. peak and hole /[eA $\left.{ }^{-3}\right]$	$0.674 /-0.624$
CCDC number	292993

5.2.23 $1 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{PhSe}_{2} \mathrm{P}-\mathrm{PSe}_{2} \mathrm{Ph}\right\}(\text { thf })_{3}\right]_{\infty}(23)$

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{Na}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Se}_{4}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	794.27
Temperature /[K]	120(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / n$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=11.5501(8) \\ & b=24.8978(15) \quad \beta=116.901(5) \\ & c=11.7555(9) \end{aligned}$
Volume /[\AA^{3}]	3014.7(4)
Z, Calculated density /[g cm^{-3}]	4, 1.750
$\mu /\left[\mathrm{mm}^{-1}\right]$	5.027
F(000)	1560
2θ range	3.28-54.14
Reflections collected / unique	23625 / 6591; [$\left.\mathrm{R}_{\text {int }}=0.0664\right]$
parameters	316
$R_{1}[1>2 \sigma(1)]$	0.0424
$w R_{2}$ (all data)	0.1036
Largest diff. peak and hole $/\left[\mathrm{e}^{-3}\right]$	0.758 / -1.042
CCDC number	603362

5.2.24 $1 / \infty\left[\mathrm{K}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{Se}^{2}-\mathrm{SeSe}_{2} \mathrm{PPh}\right)(\text { thf })_{2}\right]_{\infty}(24)$

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~K}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Se}_{6}$
Molecular weight /[g•$\left.\cdot \mathrm{mol}^{-1}\right]$	912.31
Temperature $/[\mathrm{K}]$	$100(2)$
$\lambda /[\AA \AA]$	0.71073
Crystal system	Monoclinic
space group	$\mathrm{P} 2_{1} / n$
Unit cell /[A]; [deg.]	$\mathrm{a}=12.0394(6)$ $\mathrm{b}=23.4696(10) \quad \beta=116.301(4)$ $\mathrm{c}=12.0063(6)$
Volume /[$\left.\AA^{3}\right]$	$3041.3(3)$
Z, Calculated density /[g•cm $\left.{ }^{-3}\right]$	$4,1.992$
$\mu /\left[\mathrm{mm}{ }^{-1}\right]$	7.614
F(000)	1736
2θ range	$3.48-56.56$
Reflections collected / unique	$26890 / 7497 ;\left[\mathrm{R}_{\text {int }}=0.0431\right]$
parameters	289
$R_{1}[I>2 \sigma(\mathrm{I})]$	0.0293
$w R_{2}($ all data $)$	0.0701
Largest diff. peak and hole /[eA $\left.{ }^{-3}\right]$	$0.615 /-0.909$
CCDC number	603363

5.2.25 $1 / \infty\left[\mathrm{Na}_{2}\left(\mathrm{PhPSe}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { thf })\right]_{\infty}(25)$

Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Na}_{2} \mathrm{O}_{6} \mathrm{PSe}_{2}$
Molecular weight /[g• mol^{-1}]	472.14
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P ${ }^{-1}$
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=6.839(1) & \alpha=101.55(1) \\ b=7.748(1) & \beta=93.41(1) \\ c=18.691(3) & \gamma=103.92(1) \end{array}$
Volume /[\AA^{3}]	935.8(2)
Z, Calculated density /[g cm^{-3}]	2, 1.676
$\mu /\left[\mathrm{mm}^{-1}\right]$	4.100
F(000)	468
2θ range	8.16-52.00
Reflections collected / unique	$6604 / 3591 ;{ }^{\text {int }}$ = 0.0703]
parameters	209
$R_{1}[1>2 \sigma(1)]$	0.0792
$w R_{2}$ (all data)	0.2344
Largest diff. peak and hole $/\left[\mathrm{e}^{-3}\right]$	2.906 / -2.136
CCDC number	603364

5.2.26 $\left[\mathrm{Cu}_{4}(\mathrm{PhSeP}-\mathrm{O}-\mathrm{PSePh})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](26)$

Empirical formula	$\mathrm{C}_{104} \mathrm{H}_{96} \mathrm{Cu}_{4} \mathrm{O}_{4} \mathrm{P}_{8} \mathrm{Se}_{4}$
Molecular weight /[g• mol^{-1}]	2227.57
Temperature /[K]	100(2)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[\AA]; [deg.]	$\begin{array}{ll} a=14.0222(6) & \alpha=78.144(3) \\ b=14.2408(6) & \beta=87.007(3) \\ c=24.6917(11) & \gamma=82.187(3) \end{array}$
Volume /[\AA^{3}]	4779.1(4)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	2, 1.548
$\mu /\left[\mathrm{mm}^{-1}\right]$	2.587
F(000)	2248
2θ range	3.34-56.42
Reflections collected / unique	$42640 / 21721 ;\left[\mathrm{R}_{\text {int }}=0.0439\right]$
parameters	486
$R_{1}[1>2 \sigma(1)]$	0.0626
$w R_{2}$ (all data)	0.1738
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	1.344 / -1.036
CCDC number	603365

5.2.27 $\left[\mathrm{Ni}\left\{\mathrm{PhP}(\mathrm{OH}) \mathrm{Se}_{2}\right\}_{2}(\text { (thf })_{2}\right](27)$

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NiO}_{4} \mathrm{P}_{2} \mathrm{Se}_{4}$
Molecular weight /[g• mol^{-1}]	768.91
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{C}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=9.905(2) \\ & b=22.466(3) \quad \beta=92.90(2) \\ & c=11.906(4) \end{aligned}$
Volume / $\left[\AA^{3}\right.$]	2646.2(2)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	4, 1.930
$\mu /\left[\mathrm{mm}^{-1}\right]$	6.380
F(000)	1496
2θ range	3.88-53.92
Reflections collected / unique	$\left.7506 / 5157 ; \mathrm{R}_{\text {int }}=0.0577\right]$
parameters	280
$R_{1}[1>2 \sigma(1)]$	0.0486
$w R_{2}$ (all data)	0.1053
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	1.147 / -0.678
CCDC number	614761

5.2.28 $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{O}, \mathrm{Se}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\text { thf })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right][\mathrm{Mg}\{\mathrm{PhP}(\mathrm{O}, \mathrm{Se}) \mathrm{Se}-\mathrm{Se}$ (O,Se)PPh\}(thf) $\mathbf{3}^{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]}$ (28)

Empirical formula	$\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{Mg}_{2} \mathrm{O}_{14} \mathrm{P}_{4} \mathrm{Se}_{8}$
Molecular weight /[g•$\left.\cdot \mathrm{mol}^{-1}\right]$	1735.36
Temperature /[K]	$170(2)$
$\lambda /[\AA \AA]$	0.71073
Crystal system	Orthorhombic
space group	$\mathrm{Pca} 2_{1}$ $\mathrm{a}=42.900(9)$ $\mathrm{b}=15.650(3)$ $\mathrm{c}=10.115(2)$
Unit cell /[A]; [deg.]	$6791(2)$
Volume /[$\left.\AA^{3}\right]$	$4,1.653$
Z, Calculated density /[g•cm $\left.{ }^{-3}\right]$	4.474
$\mu /\left[\mathrm{mm}{ }^{-1}\right]$	3448
F(000)	$7.44-63.86$
2θ range	$45508 / 15777 ;\left[\mathrm{R}_{\text {int }}=0.0843\right]$
Reflections collected / unique	739
parameters	0.0661
$R_{1}[I>2 \sigma(\mathrm{I})]$	0.1928
$w R_{2}($ all data $)$	$1.508 /-2.661$
Largest diff. peak and hole /[eA $\left.{ }^{-3}\right]$	624864
CCDC number	

5.2.29 $\left[\mathrm{Mg}\{\mathrm{PhP}(\mathrm{O}, \mathrm{Se}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](29)$

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{MgO}_{6} \mathrm{P}_{2} \mathrm{Se}_{4}$
Molecular weight /[g• mol^{-1}]	822.62
Temperature /[K]	150(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{c}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=15.527(3) \\ & b=41.777(8) \quad \beta=91.38(3) \\ & c=9.782(2) \end{aligned}$
Volume /[$\left.{ }^{3}{ }^{3}\right]$	6343(2)
Z, Calculated density $/\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	8, 1.769
$\mu /\left[\mathrm{mm}^{-1}\right]$	4.893
F(000)	3264
2θ range	2.62-52.10
Reflections collected / unique	19615 / 10383; [$\left.\mathrm{R}_{\text {int }}=0.0684\right]$
parameters	651
$R_{1}[1>2 \sigma(1)]$	0.0997
$w R_{2}$ (all data)	0.2967
Largest diff. peak and hole / $\mathrm{e}^{\left.\AA^{-3}\right]}$	2.513 / -1.229
CCDC number	624865

5.2.30 $\left[\mathrm{Mn}\{\mathrm{PhP}(\mathrm{O}, \mathrm{Se}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}\}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right](30)$

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{MnO}_{6} \mathrm{P}_{2} \mathrm{Se}_{4}$
Molecular weight /[g $\cdot \mathrm{mol}^{-1}$]	853.25
Temperature /[K]	105(2)
$\lambda /[\AA]$	0.71073
Crystal system	Monoclinic
space group	$P 2{ }_{1} / \mathrm{c}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=9.6810(19) \\ & b=15.539(3) \quad \beta=95.33(3) \\ & c=42.003(8) \end{aligned}$
Volume /[$\left.{ }^{3}{ }^{3}\right]$	6291(2)
Z, Calculated density / $\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	8, 1.802
$\mu /\left[\mathrm{mm}^{-1}\right]$	5.185
F(000)	3352
2θ range	2.80-52.16
Reflections collected / unique	$38688 / 12175 ;\left[\mathrm{R}_{\text {int }}=0.0968\right]$
parameters	673
$R_{1}[1>2 \sigma(1)]$	0.0660
$w R_{2}$ (all data)	0.1901
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	1.157 / -1.346
CCDC number	624866

5.2.31 [\{PhPSe $\left.\left.{ }_{2}\left(\mu_{2}-\mathrm{Se}\right) \mathrm{Na}(\text { thf })_{3}\right\}_{2} \mathrm{Ni}\right](31)$

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{Na}_{2} \mathrm{NiO}_{6} \mathrm{P}_{2} \mathrm{Se}_{6}$
Molecular weight /[g $\cdot \mathrm{mol}^{-1}$]	1227.21
Temperature /[K]	203(2)
$\lambda /[\AA]$	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / n$
Unit cell /[Å]; [deg.]	$\begin{aligned} & a=15.440(6) \\ & b=10.313(3) \quad \beta=116.31(4) \\ & c=16.676(6) \end{aligned}$
Volume /[\AA^{3}]	2380.2(14)
Z, Calculated density / $\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right.$]	2, 1.712
$\mu /\left[\mathrm{mm}^{-1}\right]$	5.119
F(000)	1212
2θ range	4.96-51.94
Reflections collected / unique	11125 / 4458; [$\left.\mathrm{R}_{\text {int }}=0.0864\right]$
parameters	230
$R_{1}[1>2 \sigma(1)]$	0.0566
$w R_{2}$ (all data)	0.1651
Largest diff. peak and hole /[$\mathrm{e}^{\left.\AA^{-3}\right]}$	0.658 / -0.803
CCDC number	292991

5.2.32 $1 / \infty\left[\mathrm{Ni}\left\{\mathrm{Na}\left(\mathrm{PhPSe}_{3}\right)(\text { (thf })_{2}\right]_{\infty}(32)\right.$

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{Na}_{2} \mathrm{NiO}_{2} \mathrm{P}_{2} \mathrm{Se}_{6}$
Molecular weight /[g• mol^{-1}]	938.80
Temperature /[K]	120(2)
$\lambda /[\AA$]	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{C}$
Unit cell /[\AA]; [deg.]	$\begin{aligned} & a=7.6892(9) \\ & b=24.398(3) \quad \beta=91.937(10) \\ & c=7.8155(9) \end{aligned}$
Volume / $\left[\AA^{3}\right]$	1465.3(3)
Z, Calculated density /[g cm^{-3}]	2, 2.128
$\mu /\left[\mathrm{mm}^{-1}\right]$	8.270
F(000)	892
2θ range	3.34-54.08
Reflections collected / unique	8354 / 3175; [$\left.\mathrm{R}_{\text {int }}=0.1196\right]$
parameters	134
$R_{1}[1>2 \sigma(1)]$	0.1345
$w R_{2}$ (all data)	0.4385
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	4.822 / -1.941
CCDC number	606341

5.2.33 $\left[\mathrm{Cu}_{3}\left\{\mathrm{PS}_{2}\left(\mathrm{OPS}_{2} \mathrm{O}^{t} \mathrm{Bu}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{4}\right](33)$

Empirical formula	$\mathrm{C}_{122} \mathrm{H}_{126} \mathrm{Cu}_{3} \mathrm{O}_{4} \mathrm{P}_{7} \mathrm{~S}_{6}$
Molecular weight /[g• mol^{-1}]	2256.00
Temperature /[K]	100(3)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=14.0332(4) & \alpha=106.226(2) \\ b=16.4359(5) & \beta=102.598(2) \\ c=26.1064(8) & Y=91.228(3) \\ \hline \end{array}$
Volume /[${ }^{3}$]	5620.5(3)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	2, 1.333
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.826
F(000)	2356
2θ range	2.98-54.12
Reflections collected / unique	$45184 / 22875 ;\left[\mathrm{R}_{\text {int }}=0.0389\right]$
parameters	1285
$R_{1}[1>2 \sigma(1)]$	0.0446
$w R_{2}$ (all data)	0.1118
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right.$]	0.532 / -0.493
CCDC number	283240

5.2.34a $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (34a)

Empirical formula	$\mathrm{C}_{80} \mathrm{H}_{78} \mathrm{Cu}_{4} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{~S}_{6}$
Molecular weight /[g $\cdot \mathrm{mol}^{-1}$]	1703.76
Temperature /[K]	100(2)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=13.420(2) & \alpha=78.256(16) \\ b=16.052(3) & \beta=86.306(15) \\ c=19.785(4) & y=65.845(14) \end{array}$
Volume /[\AA^{3}]	3806.7(13)
Z, Calculated density / $\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right.$]	2, 1.486
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.440
F(000)	1752
2θ range	2.84-56.54
Reflections collected / unique	34222 / 17354; [$\left.\mathrm{R}_{\text {int }}=0.0483\right]$
parameters	883
$R_{1}[1>2 \sigma(1)]$	0.0488
$w R_{2}$ (all data)	0.1445
Largest diff. peak and hole /[$\mathrm{e}^{\left.\AA^{-3}\right]}$	1.387 / -0.949
CCDC number	601692

5.2.34b $\left[\mathrm{Cu}_{4}\left\{\mu_{3}-\mathrm{P}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (34b)

Empirical formula	$\mathrm{C}_{80} \mathrm{H}_{78} \mathrm{Cu}_{4} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{~S}_{6}$
Molecular weight /[g• mol^{-1}]	1703.76
Temperature /[K]	150(2)
$\lambda /[\AA]$	0.71073
Crystal system	Triclinic
space group	P ${ }_{1}$
Unit cell /[Å]; [deg.]	$\begin{array}{ll} a=11.8442(10) & \alpha=101.538(7) \\ b=13.4796(12) & \beta=101.470(7) \\ c=13.6857(12) & \gamma=109.779(6) \\ \hline \end{array}$
Volume /[\AA^{3}]	1928.5(3)
Z, Calculated density / $\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	1,1.467
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.421
F(000)	876
2θ range	3.18-56.32
Reflections collected / unique	$16967 / 8709 ;\left[\mathrm{R}_{\text {int }}=0.0585\right]$
parameters	442
$R_{1}[1>2 \sigma(1)]$	0.0524
$w R_{2}$ (all data)	0.1323
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	1.491 / -0.655
CCDC number	601693

5.2.35 $1 / \infty\left[\mathrm{Na}_{2}\left\{\mathrm{P}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{3}\right\}(\mathrm{dme})\right]_{\infty}(35)$

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{Na}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{8}$
Molecular weight $/\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right.$]	704.84
Temperature /[K]	100(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[\AA]; [deg.]	$\begin{array}{ll} a=10.8600(6) & \alpha=89.670(4) \\ b=11.8116(7) & \beta=82.780(4) \\ c=13.6914(7) & \gamma=83.450(5) \end{array}$
Volume /[\AA^{3}]	1730.89(17)
Z, Calculated density /[g•cm ${ }^{-3}$]	2, 1.352
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.679
F(000)	736
2θ range	3.00-54.00
Reflections collected / unique	$13736 / 7000 ;\left[\mathrm{R}_{\text {int }}=0.0303\right]$
parameters	317
$R_{1}[1>2 \sigma(1)]$	0.0235
$w R_{2}$ (all data)	0.0549
Largest diff. peak and hole / $\left[\mathrm{e} \AA^{-3}\right]$	0.540 / -0.318
CCDC number	623842

5.2.36 [$\left.\mathrm{Ni}\left\{\mathrm{P}(\mathrm{OH}) \mathrm{S}_{2}\right\}_{2}(\text { (thf })_{4}\right](36)$

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{NiO}_{8} \mathrm{P}_{2} \mathrm{~S}_{4}$
Molecular weight /[g• mol^{-1}]	605.34
Temperature /[K]	200(2)
$\lambda /[\AA$]	0.71073
Crystal system	Triclinic
space group	P1
Unit cell /[\AA]; [deg.]	$\begin{array}{ll} a=8.059(2) & \alpha=71.86(4) \\ b=9.431(3) & \beta=77.80(4) \\ c=10.392(3) & \gamma=65.62(4) \end{array}$
Volume / $\left[\AA^{3}\right.$]	680.5(4)
Z, Calculated density /[g $\cdot \mathrm{cm}^{-3}$]	1,1.477
$\mu /\left[\mathrm{mm}^{-1}\right]$	1.173
F(000)	318
2θ range	4.14-51.68
Reflections collected / unique	$5318 / 2430 ;\left[\mathrm{R}_{\text {int }}=0.0675\right]$
parameters	145
$R_{1}[1>2 \sigma(1)]$	0.0475
$w R_{2}$ (all data)	0.1409
Largest diff. peak and hole / $\left[\mathrm{e}^{-3}\right]$	0.441/-0.727
CCDC number	614762

5.2.37 [ArPS $(\mu-S)\{\mu-\mathrm{N}(\mathrm{Ph})\} \mathrm{SPAr}](\mathrm{Ar}=4$-anisyl) (37)

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}$
Molecular weight /[g• mol^{-1}]	463.48
Temperature /[K]	120(2)
$\lambda /[\AA]$	0.71073
Crystal system	Monoclinic
space group	$P 2_{1} / \mathrm{C}$
Unit cell /[Å]; [deg.]	$\begin{aligned} & a=10.406(2) \\ & b=15.895(3) \quad \beta=97.32(3) \\ & c=13.005(3) \end{aligned}$
Volume /[\AA^{3}]	2133.5(7)
Z, Calculated density /[g cm^{-3}]	4, 1.443
$\mu /\left[\mathrm{mm}^{-1}\right]$	0.514
F(000)	960
2θ range	4.06-53.98
Reflections collected / unique	$7973 / 4423 ;\left[\mathrm{R}_{\text {int }}=0.0794\right]$
parameters	253
$R_{1}[1>2 \sigma(1)]$	0.0548
$w R_{2}$ (all data)	0.1747
Largest diff. peak and hole /[e \AA^{-3}]	0.606 / -0.773

6. Conclusion

The results here demonstrate that a broad variety of novel architectures can be obtained by one-pot syntheses using P/S or P/Se precursors and metal salts.

At first, in the systematic studies of the reactions of Lawesson's reagent and metal alkoxides, carboxylates and thiolates, a number of new metal complexes (1-18) (Scheme 6.1) containing different kinds of P/S ligands-[ArS ${ }_{2} \mathrm{P}-\mathrm{O}-\mathrm{PS}_{2} \mathrm{Ar}^{2-}{ }^{2-},\left[\mathrm{ArPS}_{3}\right]^{2-}$, $\left[\operatorname{ArP}\left(\mathrm{O}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-},\left[\mathrm{ArP}\left(\mathrm{S}^{t} \mathrm{Bu}\right) \mathrm{S}_{2}\right]^{-},\left[\mathrm{ArP}(\mathrm{O}) \mathrm{S}_{2}\right]^{2-},\left[\mathrm{ArP}(\mathrm{O})(\mathrm{OAc}) \mathrm{S}^{-}\right.$and $\left[\mathrm{ArP}(\mathrm{OH}) \mathrm{S}_{2}\right]^{-}$were prepared (Scheme 6.2). In addition, the mechanism of the ring-opening reaction of Lawesson's reagent is basically proved by NMR investigations, whilst the differential thermal analysis of some complexes is in fairly good agreement for the expected theoretical value. Among these complexes, $\left[\operatorname{Ag}_{28}\left(\mu_{6}-\mathrm{S}\right)_{2}\left\{\operatorname{ArP}(\mathrm{O}) \mathrm{S}_{2}\right\}_{12}\left(\mathrm{PPh}_{3}\right)_{12}\right](13)$ is the biggest metal cluster, and its theoretical calculations are currently performed.

Scheme 6.1 Reactions of Lawesson's reagent and metal salts

Scheme 6.2 Different P/S ligands generated from Lawesson's reagent

Secondly, the ring-opening reactions of Woollins' reagent with metal salts offer a new approach to the coordination chemistry of P -Se based ligands and thereby complexes 19-32 are synthesized (Scheme 6.3). One-dimensional coordination polymers are formed in the case of alkali metal salts are used. Different kinds of P/Se ligands obtained from Woollins' reagent are shown in scheme 6.4.

Scheme 6.3 Reactions of Woollins' reagent and metal salts

Scheme 6.4 Different P/Se ligands generated from Woollins' reagent

Finally, the unusual break-up of $\mathrm{P}_{4} \mathrm{~S}_{6}$ and $\mathrm{P}_{4} \mathrm{~S}_{10}$ by metal alkoxides is presented and complexes 33-36 are obtained (Scheme 6.5 and 6.6). Because of the complexity of the reactions, the mechanism is still under surface. A honeycomb-like architecture of 2D-polymer is observed when the reaction of $\mathrm{NaS}^{t} \mathrm{Bu}$ and $\mathrm{P}_{4} \mathrm{~S}_{10}$ is performed in DME.

Scheme 6.5 Reactions of $P_{4} S_{n}$ and metal salts ($n=6$ or 10)

\ominus

Scheme 6.6 Different P/S ligands generated from $P_{4} S_{n}(n=6$ or 10)

Reaction mechanisms of Woollins' reagent and $\mathrm{P}_{4} \mathrm{~S}_{6}\left(\mathrm{P}_{4} \mathrm{~S}_{10}\right)$, together with the physical properties of these new metal complexes, e.g., magnetic behavior, thermal decomposition and the development of thermolabile precursors for MOCVD, will be the subjects of future investigations.

7. Literature

1. J. Bjernemose, R. P. Davies, A. P. S. Jurd, M. G. Martinelli, P. R. Raithby and A. J. P. White, Dalton Trans., 2004, 3169.
2. C. W. Liu, B.-J. Liaw, L.-S. Liou and J.-C. Wang, Chem. Commun., 2005, 1983.
3. A. Clearfield, Prog. Inorg. Chem., 1998, 47, 371.
4. M. Walawalker, H. W. Roesky and R. Murugavel, Acc. Chem. Res., 1999, 32, 117.
5. G. Yucesan, V. Golub, C. J. O'Connor and J. Zubieta, Dalton Trans., 2005, 2241.
6. S. Langley, M. Helliwell, J.Raftery, E. I. Tolis and R. E. P. Winpenny, Chem. Commun., 2004, 142.
7. I. Haiduc, J. Organomet. Chem., 2001, 623, 29, and references therein.
8. G. A. Zank and T. B. Rauchfuss, Organometallics, 1984, 3, 1191.
9. M. C. Aragoni, M. Arca, F. Demartin, F. A. Demillanova, F. Isaia, V. Lippolis and G. Verani, Inorg. Chim. Acta, 2005, 358, 213.
10. Z. Weng, W. K. Leong, J. J. Vittal, J. Jagadese and L. Y. Goh, Organometallics, 2003, 22, 1645.
11. V. G. Albano, M. C. Aragoni, M. Arca, C. Castellari, F. Demartin, F. A. Devillanova, F. Isaia, V. Lippolis, L. Loddo and G. Verani, Chem. Commun., 2002, 1170.
12. W. E. Van Zyl, R. J. Staples and J. P. Fackler, Inorg. Chem. Commun, 1998, 1, 51.
13. D. Fenske, A. Rothenberger and M. Shafaei-Fallah, Z. Anorg. Allg. Chem., 2004, 630, 943.
14. M. Shafaei-Fallah, C. E. Anson, D. Fenske and A. Rothenberger, Dalton Trans., 2005, 2300, and references therein.
15. I. P. Gray, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 2005, 2188.
16. Q. Chang, Y. Wang, X.-H. Li, Y.-L. Song, H.-G. Zheng, X.-Q. Xin, S. S. S. Raj and H.-K. Fun, Wuji Huaxue Xuebao, 2003, 19, 574.
17. H. P. S. Chauhan, N. M. Shaik and K. Kori, Main Group Met. Chem., 2003, 26, 213.
18. J. Chen, S. Lu, Z. Huang, R. Yu and Q. Wu, Chem. Eur. J., 2001, 7, 2002.
19. W. De Oliveira, J. L. Migot, M. B. Gomes de Lima, J. Sala-Pala, J. E. Guerchais and J. Y. Le Gall, J. Organomet. Chem., 1985, 284, 313.
20. A. A. S. El-Khaldy, Asian J. Chem., 2003, 15, 1561.
21. L. Y. Goh, Z. Weng, W. K. Leong, I. Haiduc, K. M. Lo and R. C. S. Wong, J. Organomet. Chem., 2001, 631, 67.
22. A. V. Ivanov, A. V. Gerasimenko, O. N. Antzutkin and W. Forsling, Inorg. Chim. Acta, 2005, 358, 2585.
23. V. K. Jain and S. Chaudhury, J. Organomet. Chem., 1994, 468, 279.
24. B.-J. Liaw, T. S. Lobana, Y.-W. Lin, J.-C. Wang and C. W. Liu, Inorg. Chem., 2005, 44, 9921.
25. C. W. Liu, B.-J. Liaw and L.-S. Liou, Inorg. Chem.Commun., 2004, 7, 868.
26. X. Liu, Q.-F. Zhang and W.-H. Leung, J. Coord. Chem., 2005, 58, 1299.
27. R. Llusar, M. Sokolov and C. Vicent, C. R. Chim., 2005, 8, 1815.
28. S. Lu, F. Sun, Y. Zhu, Y. Peng, Y. Liang, J. Li, Z. Huang, Q. Wu and C. Lu, Huaxue Xuebao, 2005, 63, 1979.
29. H. Ohta, M. Kita, H. Kanno and M. Kojima, Inorg. Chim. Acta, 2000, 311, 75.
30. R. J. Rao, G. Srivastava and R. C. Mehrotra, Phosphorus, Sulfur Relat. Elem., 1985, 25, 183.
31. M. Rieckhoff, M. Noltemeyer, F. T. Edelmann, I. Haiduc and I. Silaghi-Dumitrescu, J. Organomet. Chem., 1994, 469, C22.
32. Y. P. Singh and R. C. Mehrotra, Polyhedron, 1986, 5, 967.
33. Z. Travnicek, V. Machala, L. Szuecova, M. Malon and J. Marek, Transition Met. Chem., 2004, 29, 352.
34. K.-H. Yih, G.-H. Lee, S.-L. Huang and Y. Wang, J. Organomet. Chem., 2003, 665, 114.
35. I. Haiduc, L. Y. Goh, Coord. Chem. Rev., 2002, 224, 151.
36. I. Haiduc, Rev. Inorg. Chem., 1981, 3, 353.
37. I. Haiduc, D. B. Sowerby, S.-F. Lu, Polyhedron, 1995, 14, 3389, and references therein.
38. C. Silvestru, I. Haiduc, Coord. Chem. Rev., 1996, 147, 117.
39. I. Haiduc, D.B. Sowerby, Polyhedron, 1996, 15, 2469.
40. I. Haiduc, Coord. Chem. Rev., 1997, 158, 325.
41. H. P. S. Chauhan, N. M. Shaik and U. P. Singh, Appl. Organometal. Chem., 2005, 19, 1132.
42. C. C. Lo, M. H. Ho, M. D. Hung, J. Agric. Food Chem., 1996, 44, 2227.
43. B. C. Verma, D. K. Sharma, S. B. Kalia, S. Kumar, Pollut. Res., 1997, 16, 19.
44. R. Ramesh, K. Natarajan, Synth. React. Inorg. Met.-Org. Chem., 1996, 26, 1677.
45. J. Franekic, N. Bratulic, M. Pavlica, D. Papes, Mutat. Res., 1994, 325, 65.
46. C. Safak, H. Erdogan, M. Ertan, N. Yulug, J. Chem. Soc. Rak., 1990, 12, 296.
47. J. Aragones, C. Lopez-Rodriguez, A. Corbi. P. Gomez del Arco, M. LopezCabrera, M. O. de Landazuri, J. M. Redondo, J. Biol. Chem., 1996, 271, 10924.
48. B. E. Causton, F. J. Burka, N. H. Wilson, Dent. Mater., 1993, 9, 209.
49. D. J. Johnson, D. G. Graham, V. Amarnath, K. Amarnath, W. M. Valentine, Chem. Res. Toxicol., 1996, 9, 910.
50. W. Chen, M. Tian, Chem. Abstr., 1989, 111, 7504.
51. Klaman, D., Ed., Lubricant and Related Products, Verlag Chemie, Weinheim, Germany, 1984.
52. Y. Miyake, M. Harada, Rev. Inorg. Chem., 1989, 10, 145.
53. Y.-A. Lee, J. E. McGarrah, R. J. Lachicotte, R. Eisenberg, J. Am. Chem. Soc., 2002, 124, 10662.
54. W. E. Van Zyl, J. M. Lopez-de-Luzuriaga, A. A. Mohamed, R. J. Staples, J. P. Jr. Fackler, Inorg. Chem., 2002, 41, 4579.
55. W. E. Van Zyl, J. M. Lopez-de-Luzuriaga, J. P. Jr. Fackler, J. Mol. Struct., 2000, 516, 99.
56. P. A. Patnaik, Comprehensive Guide to the Hazardous Properies of Chemical Substances, Van Nostrand Reinhold: New York, 1992, Chapter 40 and references therein.
57. C. Byrom, M. A. Malik, P. O'Brien, A. J. P. White, D. J. Williams, Polyhedron, 2000, 19, 211.
58. C. J. Carmalt, J. D. Mileham, A. J. P. White, D. J. Williams, J. W. Steed, Inorg. Chem., 2001, 40, 6035.
59. A. A. Eagle, L. J. Laughlin, C. G. Young, E. R. T. Tiekink, J. Am. Chem. Soc., 1992, 114, 9195.
60. A. A. Eagle, S. Thomas, C. G. Young, In Transition Metal Sulfur Chemistry; E. I. Stiefel, K. Mutsumoto, Eds., American Chemical Society: Washington, DC, 1996, Chapter 20, p. 324.
61. W. T. Wiesler and M. H. Garuthers, J. Org. Chem., 1996, 61, 4272.
62. L. Carius, Ann., 1859, 112, 190.
63. J. H. Fletcher, J. C. Hamilton, I. Hechenbleikner, E. I. Hoegberg, B. J. Sertl and J.
T. Cassaday, J. Am. Chem. Soc., 1950, 72, 2461.
64. J. R. Van Wazer, Phosphorus and its compounds, 1961, Volume II, chapter 19, and references therein.
65. F. Jian, G. Zheng and H. Xiao, Synth. React. Inorg. Met.-Org. Chem., 2004, 34, 1517.
66. M. Gianini, W. R. Caseri, V. Gramlich, U. W. Suter, Inorg. Chim. Acta, 2000, 299, 199.
67. J. A. Mccleverty, R. S. Z. Kowalski, N. A. Bailey, R. Mulvaney and D. A. O'Cleirigh, Dalton Trans., 1983, 627.
68. B. A. Khaskin, Russ. Chem. Rev., 1984, 53, 768.
69. A. N. Shishkov, N. K. Nikolov, A. I. Busev, A. I. Nauch, Tr., Plovdivski, Chem. Abstr., 1973, 78, 83952.
70. I. Cuadrado, M. Moran, Transition Met. Chem., 1984, 9, 96.
71. M. Moran, I. Cuadrado, J. Organomet. Chem., 1986, 311, 333.
72. F. T. Edelmann, M. R. Riecknoff, I. Haiduc, I. Silaghi-Dumitrescu, J. Organomet. Chem., 1993, 447, 203.
73. S. Scheibye, B. S. Pedersen, S.-O. Lawesson, Bull. Soc. Chim. Belg., 1978, 87, 229.
74. A. A. EL-Barbary, S. Scheibye, S.-O. Lawesson and H. Fritz, Acta Chem. Scand. B, 1980, 34, 597.
75. M. Jesberger, T. P. Davis, L. Barner, Synthesis, 2003, 13, 1929, and references therein.
76. M. P. Cava and M. I. Levinson, Tetrahedron, 1985, 41, 5061.
77. T. Ozturk, Tetrahedron Lett., 1996, 37, 2821.
78. M. St. J. Foreman and J. D. Woollins, Dalton Trans., 2000, 1533.
79. K. Clausen, A. A. EL-Barbary, and S.-O. Lawesson, Tetrahedron, 1981, 37, 1019.
80. H. Davy, Dalton Trans., 1982, 457.
81. R. A. Cherkasov, G. A. Kutyrev, A. N. Pudovik, Tetrahedron, 1985, 41, 2567.
82. S. Scheibye, R. Shabana and S.-O. Lawesson, Tetrahedron, 1982, 38, 993.
83. P. Fay and H. P. Lankelma, J. Am. Chem. Soc., 1952, 74, 4933.
84. H. Z. Lecher, R. A. Greenwood, K. C. Whitehouse and T. H. Chao, J. Am. Chem. Soc., 1956, 78, 5018.
85. O. N. Grishina, N. A. Andreev and É. I. Babkina, Zh. Obshch. Khim., 1977, 47, 72.
86. J. T. Shore, W. T. Pennington, M. C. Noble and A. W. Cordes, Phosphorus and Sulfur, 1988, 39, 153.
87. R. Kempe, J. Sieler, H. Beckmann and G. Ohms, Z. Kristallographie, 1992, 202, 159.
88. G. Grossmann, G. Ohms, K. Krüger and G. Jeschke, Phosphorus, Sulfur and Silicon, 1995, 107, 57.
89. I. P. Gray, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 2004, 2477, and references therein.
90. I. Haiduc, G. Meyei, R. Micu-Semeniuc, F. T. Edelmann and A. Fischer, Z. Anorg. Allg. Chem., 2006, 632, 295.
91. I. P. Gray, H. L. Milton, A. M. Z. Slawin, J. D. Woollins, Phosphorus, Sulfur Silicon Relat. Elem., 2004, 179(4-5), 969.
92. H, Liu, H. Mao, C. Xu, H. Zhang, H. Hou, Q. Wu, Y. Zhu, B. Ye, L. Yuan, Polyhedron, 2004, 23, 1799
93. M. R. St. J. Foreman, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 1996, 3653.
94. I. P. Gray, H. L. Milton, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 2003, 3450.
95. I. P. Gray, A. M. Z. Slawin and J. D. Woollins, New J. Chem., 2004, 28, 1383.
96. I. P. Gray, A. M. Z. Slawin and J. D. Woollins, Z. Anorg. Allg. Chem., 2004, 630, 1851.
97. M. R. St. J. Foreman, A. M. Z. Slawin and J. D. Woollins, Chem. Commun., 1997, 1269.
98. B. McCulloch, D. L. Ward, J. D. Woollins and C. H. Brubaker, Jr., Organometallics, 1985, 4, 1425.
99. J. C. Fitzmaurice, D. J. Williams, P. T. Wood and J. D. Woollins, Chem. Commun., 1988, 741.
100. P. T. Wood and J. D. Woollins, Chem. Commun., 1988, 1190.
101. L. Horner, H. Hoffmann and P. Beck, Chem. Ber., 1958, 91, 1583.
102. P. Bhattacharyya, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 2001, 300.
103. G. Grossmann, G. Ohms, K. Krüger, K. Karaghiosoff, K. Eckstein, J. Hahn, A. Hopp, O. L. Malkina, P. Hrobarik, Z. Anorg. Allg. Chem., 2001, 627, 1269.
104. I. Baxter, A. F. Hill, J. M. Malget, A. J. P. White, D. J. Williams, Chem. Commun.,

1997, 2049.
105. P. Bhattacharyya, J. D. Woollins, Tetrahedron Lett., 2001, 42, 5949.
106. J. Bethke, K. Karaghiosoff, L. A. Wessjohann, Tetrahedron Lett., 2003, 44, 6911.
107. S. Knapp, E. Darout, Org. Lett., 2005, 7, 203.
108. P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, Chem. Eur. J., 2002, 8, 2705.
109. P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, Angew. Chem. Int. Ed., 2000, 39, 1973.
110. I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, Chem. Eur. J., 2005, 11, 6221.
111. M. R. St. J. Foreman, A. M. Z. Slawin and J. D. Woollins, Chem. Commun., 1997, 855.
112. C. Q. Nguyen, A. Adeogun, M. Afzaal, M. A. Malik and P. O'Brien, Chem. Commun., 2006, 2182.
113. R. P. Davies and M. G. Martinelli, Inorg. Chem., 2002, 41, 348.
114. R. P. Davies, M. G. Martinelli and A. J. P. White, Chem. Commun., 2006, 3240.
115. C. W. Liu, C. Hung, B. K. Santra, Y. Chu, J. Wang and Z. Lin, Inorg. Chem., 2004, 43, 4306.
116. S. E. Kabir, N. Begum, Md. M. Hassan, Md. I. Hyder, H. Nur, D. W. Bennett, T. A. Siddiquee, D. T. Haworth, E. Rosenberg, J. Organomet. Chem., 2004, 689, 1569.
117. A. P. Purdy, J. C. F. George and J. H. Callahan, Inorg. Chem., 1991, 30, 2812 and references therein.
118. T. Tsuda, T. Hashimoto and T. Saegusa, J. Am. Chem. Soc., 1972, 94, 658.
119. T. Greiser and E. Weiss, Chem. Ber., 1976, 109, 3142.
120. D. Fenske, A. Rothenberger, Inorg. Synth., 2006, in press.
121. C. E. Anson, R. Langer, L. Ponikiewski, A. Rothenberger, Inorg. Chim. Acta, 2005, 358, 3967.
122. L. Ponikiewski, A. Rothenberger, Inorg. Chim. Acta, 2005, 358, 1322.
123. C. E. Anson, L. Ponikiewski, A. Rothenberger, Inorg. Chim. Acta, 2006, 359, 2263.
124. P. Kilian, A. M. Z. Slawin, J. D. Woollins, Eur. J. Inorg. Chem., 1999, 2327.
125. H. Masada, Y. Murotani, Bull. Chem. Soc. Jpn., 1979, 52, 1213.
126. J. P. Lorand, J. Am. Chem. Soc., 1974, 96, 2867.
127. T. Wen and C. E. McKenna, Chem. Commun., 1991, 1223.
128. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.
129. R. Köster, A. Sporzynski, W. Schüssler, D. Bläser and R. Boese, Chem. Ber., 1994, 127, 1191.
130. G. A. Carriedo, V. Riera, M. L. Rodriguez and J. C. Jeffrey, J. Organomet. Chem., 1986, 314, 139.
131. D. C. Cupertino, M. M. Harding and D. J. Cole-Hamilton, J. Organomet. Chem., 1985, 294, C29.
132. D. Fenske, A. Rothenberger and M. Shafaei-Fallah, Eur. J. Inorg. Chem., 2005, 59.
133. D. Fenske, C. E. Anson, A. Eichhöfer, O. Fuhr, A. Ingendoh, C. Persau and C. Richert, Angew. Chem., Int. Ed., 2005, 44, 5242.
134. Q. Gao, N. Guillou, M. Nogues, A. K. Cheetham and G. Ferey, Chem. Mater., 1999, 11, 2937.
135. M. D. Santana, G. Garcia, A. A. Lozano, G. Lopez, J. Tudela, J. Perez, L. Garcia, L. Lezama and T. Rojo, Chem. Eur. J., 2004, 10, 1738.
136. For a recent classification of H-bonds, see: e.g., C. Giacovazzo, H. L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti and M. Catti, in Fundamentals of Crystallography, ed. C. Giacovazzo, Oxford University Press, Oxford, 2nd ed., 2002, p. 592.
137. H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512.
138. L. Zhao, V. Niel, L. K. Thompson, Z. Xu, V. A. Milway, R. G. Harvey, D. O. Miller, C. Wilson, M. Leech, J. A. K. Howard and S. L. Heath, Dalton Trans., 2004, 1446.
139. D. Walther, S. Liesicke, L. Bottcher, R. Fischer, H. Gorls and G. Vaughan, Inorg. Chem., 2003, 42, 625.
140. G. Psomas, A. J. Stemmler, C. Dendrinou-Samara, J. J. Bodwin, M. Schneider, M. Alexiou, J. W. Kampf, D. P. Kessissoglou and V. L. Pecoraro, Inorg. Chem., 2001, 40, 1562.
141. M. Karakus, H. Yilmaz, Y. Ozcan and S. Ide, Appl. Organomet. Chem., 2004, 18, 141.
142. T. Kimura, T. Murai, A. Miwa, D. Kurachi, H. Yoshikawa and S. Kato, J. Org. Chem., 2005, 70, 5611.
143. T. Kimura and T. Murai, J. Org. Chem., 2005, 70, 952.
144. J. G. Planas, F. Hampel and J. A. Gladysz, Chem. Eur. J., 2005, 11,1402.
145. W. J. Parak, T. Pellegrino and C. Plank, Nanotechnology, 2005, 16, R9.
146. J. Janek, B. Mogwitz, G. Beck, M. Kreutzbruck, L. Kienle and C. Korte, Prog. Solid State Chem., 2005, 32, 179.
147. M. J. Pilkington, A. M. Z. Slawin, D. J. Williams, P. T. Wood and J. D. Woollins, Heteroat. Chem., 1990, 1, 351.
148. W. Kuchen and H. Hertel, Angew. Chem. Int. Ed., 1969, 8, 89.
149. W. Kuchen and B. Knop, Angew. Chem. Int. Ed., 1965, 4, 244.
150. R. P. Davies, M. G. Martinelli, A. E. H. Wheatley, A. J. P. White and D. J. Williams, Eur. J. Inorg. Chem., 2003, 3409.
151. R. P. Davies, C. V. Francis, A. P. S. Jurd, M. G. Martinelli, A. J. P. White and D. J. Williams, Inorg. Chem., 2004, 43, 4802.
152. Bruker-Daltonik, Programs WinNMR and WinDaisy, Bremen, 1999.
153. G. Hdgele, M. Engelhardt, W. Boenigk, Simulation und automatisierte Analyse von NMR-Spektren, VCH, Weinheim, 1987.
154. M. J. Pilkington, A. M. Z. Slawin, D. J. Williams, J. D. Woollins, Dalton Trans., 1992, 2425.
155. C. Stoll, I.-P. Lorenz, H. Nöth, W. Ponikwar, J. Organomet. Chem., 2000, 602, 24.
156. Z. Spichal, M. Necas, J. Pinkas, Inorg. Chem., 2005, 44, 2074.
157. G. Gilli, in Fundamentals of Crystallography (Ed.: C. Giacovazzo), Oxford University Press, Oxford, 2002, p. 590.
158. I. P. Parkin, M. J. Pilkington, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron, 1990, 9, 987.
159. C. G. Lugmair, T. D. Tilley, A. L. Rheingold, Chem. Mater., 1997, 9, 339.
160. K. C. K. Swamy, M. Veith, V. Huch, S. Mathur, Inorg. Chem., 2003, 42, 5837.
161. R. Murugavel, S. Kuppuswamy, R. Boomishankar, A. Steiner, Angew. Chem. Int. Ed., 2006, 45, 5536.
162. M. Westerhausen, M. W. Ossberger, A. Keilbach, C. Guckel, H. Piotrowski, M. Suter, H. Z. Nöth, Z. Anorg. Allg. Chem., 2003, 629, 2398.
163. M. Pompetzki, M. Jansen, Monatsh. Chem., 2002, 133, 975.
164. M. Pompetzki, R. E. Dinnebier, M. Jansen, Solid State Sci., 2003, 5, 1439.
165. D. P. Elias, Acta Cryst., 1957, 10, 600.
166. R. Shabana, F. H. Osman and S. S. Atrees, Tetrahedron, 1993, 49, 1271.
167. E. Fluck and H. Binder, Angew. Chem. Int. Ed., 1967, 6, 260.
168. H. W. Roesky and M. Dietl, Angew. Chem. Int. Ed., 1973, 12, 425.
169. M. St. J. Foreman, R. J. Mortimer, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 1999, 3419.
170. M. H. Chisholm, S. R. Drake, A. A. Naiini, W. E. Streib, Polyhedron, 1991, 10, 337.
171. L. M. Nguyen, M. E. Dellinger, J. T. Lee, R. A. Quinlan, A. L. Rheingold, R. D. Pike, Inorg. Chim. Acta, 2005, 358, 1331.
172. Stoe\&Cie. GmbH, Stoe IPDS Steuersoftware V 2.73, Darmstadt 1996.
173. G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Göttingen, 1997.
174. G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Göttingen, 1997.
175. G. M. Sheldrick, SHELXP 5.05, Program for Molecular Graphics, Göttingen, 1994.

8. Publication List

1. Synthesis and crystal structures of octahedral metal complexes containing the new dianion $[\mathrm{PhP}(\mathrm{Se}, \mathrm{O}) \mathrm{Se}-\mathrm{Se}(\mathrm{O}, \mathrm{Se}) \mathrm{PPh}]^{2-}$

Weifeng Shi, Le Zhang, Maryam Shafaei-Fallah, Alexander Rothenberger, Z. Anorg. Allg. Chem., 2007, 633, 440.
2. Transformations of \mathbf{P}-chalcogenide precursors with a hydrated metal salt Weifeng Shi, Rebecca Kelting, Maryam Shafaei-Fallah, Alexander Rothenberger, J. Organomet. Chem., 2007, DOI: 10.1016/j.jorganchem.2006.11.009.
3. Polymeric Organometallic Architectures of Novel P-Se Anions

Weifeng Shi, Maryam Shafaei-Fallah, Le Zhang, Christopher E. Anson, Eberhard Matern and Alexander Rothenberger, Chem. Eur. J., 2007, 13(2), 598.
4. Metal thiophosphonates and related compounds: an emerging area of supramolecular coordination chemistry
Weifeng Shi, Maryam Shafaei-Fallah, Christopher E. Anson and Alexander Rothenberger, Dalton Trans., 2006, 3257.
5. Polymeric arrangements of \mathbf{P}-Se anions and a first insight into their reactivity Weifeng Shi, Maryam Shafaei-Fallah, Christopher E. Anson and Alexander Rothenberger, Dalton Trans., 2006, 2979.
6. Reactions of P/S-containing proligands with coinage metal salts: a new route to polynuclear complexes with unusual structural types
Weifeng Shi, Reinhart Ahlrichs, Christopher E. Anson, Alexander Rothenberger, Claudia Schrodt and Maryam Shafaei-Fallah, Chem. Commun., 2005, 5893.
7. A Strategy for the build-up of transition-metal complexes containing tripodal $\left[\mathrm{ArPOS}_{2}\right]^{2-}$ and $\left[\mathrm{ArPS}_{3}\right]^{2-}$ ligands ($\mathrm{Ar}=4$-anisyl)
Weifeng Shi, Maryam Shafaei-Fallah, Christopher E. Anson and Alexander Rothenberger, Dalton Trans., 2005, 3909.
8. Synthetic Applications of Lawesson's Reagent in Reactions with Cul Alkoxides Weifeng Shi and Alexander Rothenberger, Eur. J. Inorg. Chem., 2005, 2935.
9. Copper-mediated cleavage of disulfides by tertiary phosphines: A new route to As-S anions

Robert Langer, Weifeng Shi, Alexander Rothenberger, Dalton Trans., 2006, 4435.
10. Synthesen und Strukturen von Übergangsmetall-Komplexen mit Dithiophos-phinato- und Trithiophophonato-Liganden
Maryam Shafaei-Fallah, Weifeng Shi, Dieter Fenske and Alexander Rothenberger, Z. Anorg. Allg. Chem., 2006, 632, 1091.
11. From neutral P-S precursors to oligo- and polymeric arrangements of P-S anions

Alexander Rothenberger, Maryam Shafaei-Fallah and Weifeng Shi, Chem. Commun., 2007, DOI: 10.1039/b617177j.

Acknowledgements:

It gives me great pleasure to thank the following people for their help and support to make it possible for me to accomplish this work.

Firstly, I acknowledge my sincere thanks and gratitude to Prof. Dr. D. Fenske for giving me this opportunity to come and start a research career in his group and for his constant encouragement and support throughout my doctorate studies.

A large debt of thanks is owed to Dr. A. Rothenberger, not only for this interesting topic, the fruitful discussions and innumerable valuable suggestions, but also for the help to this colorful life in Karlsruhe.

I extend my warm thanks to the following people, Dr. Ian Hewitt, Ms. A. Baust, Dr. L. Ponikiewski, Dr. I. Issac, Dr. M. Shafaei-Fallah, Dr. C. E. Anson, Priv.-Doz. Dr. U. Radius, Mr. K. Maisch, Dr. C. Persau, Dr. S. König, B. Bechlars, S. Dürr, T. Schaub, S. Wieber and other colleagues in this and other groups for their generous help and for this pleasure environment.

My big thanks to these people for their assistance and technical helps, Dr. E. Matern, Dr. W. Bensmann, Ms. H. Berberich, Ms. M. Stay, Mr. K. Keihauer, Mr. J. Treptow and Ms. G. Kuhne.

Finally, I would like to thank my wife, Xiaomei Hu for her entirely encouragement and to my family for their ever continuing support.

Curriculum vitae．

Personal Data：

Name：	Weifeng Shi（施卫峰）
Data of birth：	01．Feb． 1977
Place of birth：	Jiangsu，China
Nationality：	Chinese

Education：

09／2005～02／2007

09／2004～09／2005

09／1999～07／2004

09／1995～07／1999

09／1992～07／1995

09／1989～07／1992 Changyinsha Nongchang junior high school，Jiangsu province， China

09／1983～07／1989 Changyinsha Nongchang elementary school，Jiangsu province， China

