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Introduction

A tessellation (or mosaic) in Rd is a locally finite subdivision of Rd into closed d-dimensional
subsets with pairwise distinct interiors. Often it is further assumed that these subsets, called
cells or crystals, are bounded convex polytopes. Such configurations appear in many natural
structures, such as polycrystalline materials, plant cells, crack patterns or foam structures.
While for instance honeycombs show a deterministic structure, most real-life tessellations
must be considered as random. Consequently, random tessellations belong to the central
models of stochastic geometry. Typically, they are constructed from random processes of
geometric objects (e.g., points, balls or hyperplanes) in space and may be regarded as either
random closed sets or point processes of convex polytopes.

Information on the topological and geometric structure of a random tessellation is cap-
tured by geometric characteristics (e.g., volume, surface area or number of vertices) of its
“typical” cell. This notion refers to a cell drawn at random among the cells of the tessel-
lation, where each cell is chosen with the same probability, and is formalized by means of
Palm theory. Moments or distribution functions of characteristics of their typical cells are
used as a tool for the characterization and comparison of random tessellations. Therefore,
the computation of these quantities for different tessellation models is one of the main tasks
when studying random tessellations.

Perhaps the most important and most widely studied model is the Voronoi (or Dirichlet)
tessellation generated by a locally finite set S of points in Rd. The cell generated by a point
x ∈ S consists of all points y ∈ Rd having x as nearest neighbor in S. Alternatively, the
Voronoi tessellation can be defined as the result of a growth process. The points of S act
as seeds which start to grow simultaneously and with constant speed. Growth stops at the
contact points to the neighboring cells but otherwise continues until space is completely
filled.

The first presentations of this concept are attributed to Dirichlet (1850) and Voronoi
(1907, 1908, 1909). Since then, Voronoi tessellations with respect to various processes of
generators (e.g., Poisson, hard core or cluster processes) have been considered and are used
in application areas such as astronomy, biology, crystallography, ecology or communication
theory. However, only the Voronoi tessellation generated by a stationary Poisson process
allows for a reasonable number of analytical results. The geometric characteristics of the
typical Voronoi cell with respect to other processes of generators have to be studied by means
of simulation.

The Voronoi construction, with cell faces being equidistant from the generators of their
cells, is quite restrictive for the range of cell patterns which can be realized by Voronoi
tessellations. Thus, it sometimes turns out in applications that an observed cell structure
cannot be modeled satisfactorily by a Voronoi tessellation. In order to realize a larger variety
of tessellation structures, the Voronoi construction has been generalized in various ways.
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Voronoi tessellations of order k ∈ N take not only the nearest but the k nearest neighbors
of a generator x ∈ S into account. Further generalizations are obtained when replacing the
Euclidean distance by other (even anisotropic) metrics or when using more general objects
(e.g., balls or line segments) as generators. Another approach to generalize the concept of
Voronoi tessellations is the use of weighted distances. An individual weight w is attached
to each point x ∈ S, the distance of y ∈ Rd to the weighted point (x, w) is then measured
by a function of ||x− y|| and w. One well-known example is the Johnson-Mehl tessellation
(Johnson and Mehl, 1939), which is obtained by additively weighting the Euclidean distance.
It can be interpreted as the result of a growth process of seeds being generated according to
a random process in time. Unlike Voronoi cells, the cells of a Johnson-Mehl tessellation are
in general no longer convex. Some analytic results for Johnson-Mehl tessellations generated
by a time-inhomogeneous Poisson process have been established by Møller (1992).

This work is devoted to another type of weighted Voronoi tessellation: the Laguerre
tessellation, which is generated by a set S of spheres in Rd and with respect to the so-called
power distance

pow(y, (x, r)) := ||x− y||2 − r2, (x, r) ∈ S, y ∈ Rd.

This distance and the radical axis, the set of points having equal power distance to two
spheres in Rd, have been considered by several authors (Blaschke, 1929; Coxeter, 1969; Fi-
scher et al., 1971). The first systematic considerations of the corresponding tessellations seem
to be the papers by Imai et al. (1985), Ash and Bolker (1986), and Aurenhammer (1987b).
Besides the term Laguerre tessellation a great variety of other names has been introduced for
these structures, e.g., power tessellation, sectional Dirichlet tessellation, radical tessellation,
Voronoi diagram in the Laguerre geometry, or Laguerre tiling. So far, Laguerre tessellations
have mainly been studied in the context of computational geometry, materials science, or
physics. Little attention has been paid to Laguerre tessellations as challenging and promising
models in stochastic geometry. This work is thought as a foundation for the systematic
investigation of random Laguerre tessellations in the framework of stochastic geometry.

As a first point, geometric properties of the Laguerre cells and the resulting tessellations
have to be studied. The advantage of the power distance is not obvious at the first glance, but
leads to promising geometric properties of the induced tessellations. First of all, their cells
are convex polytopes, which are handled more easily than curved structures both analytically
and computationally. Further, under some mild assumptions on the set of generators, the
Laguerre tessellation turns out to be a normal tessellation. For such structures, a general
framework of results and methods has been developed (e.g., Mecke, 1984; Møller, 1989). For
example, well-known formulas relating the mean values of different cell characteristics can
be applied for Laguerre tessellations. It even turns out that every normal tessellation in Rd

for d ≥ 3 can be represented as a Laguerre tessellation.
However, when working with Laguerre tessellations one is also confronted with several

difficulties. A sphere contained in the generating set S does not necessarily generate a cell
and if it does, it is not necessarily contained in this cell. This makes Laguerre tessellations less
descriptive than Voronoi tessellations. As a further consequence, some important geometric
characteristics such as the cell intensity are well-known for Voronoi tessellations but cannot
be computed in the Laguerre case. Even more, it is not immediately clear which of the
results for (Poisson) Voronoi tessellations can be generalized to Laguerre tessellations.

Laguerre tessellations are used in various application areas. One example is compu-
tational geometry, where algorithms, for instance for the computation of the volume, the
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contour, and the connected components of the union of a set of balls (Imai et al., 1985; Avis
et al., 1988), or for problems related to the illumination of balls (Aurenhammer, 1987b), are
based on the construction of Laguerre tessellations. Further, information on the geometric
structure of binary or polydisperse packings of spheres can be derived from their Laguerre
tessellations (e.g., Gervois et al., 2002, 2004). In molecular biology and biochemistry, La-
guerre tessellations are used to analyze the structure of folded proteins (Sadoc et al., 2003).
Finally, they are used in materials science as models for cellular and polycrystalline ma-
terials. Telley et al. (1996a,b), Xue et al. (1997), and Schüle (1996) proposed models for
grain growth in polycrystalline materials which are based on Laguerre tessellations. Recent
applications of Laguerre tessellations in materials science can be found in Fan et al. (2004)
(polycrystalline materials), Kühn (2005) (sintered alumina), Kadashevich and Stoyan (2005)
(aerated autoclaved concrete), and Kanaun and Tkachenko (2006) (open cell foams).

The use of Laguerre tessellations as models for the microstructure of materials requires
an understanding of the geometric structure of their typical cells with respect to changing
processes of generators and radius distributions. So far, little has been done in this field. As
a starting point, we will investigate Laguerre tessellations generated by stationary marked
Poisson processes in Rd. The analytic formulas for Poisson Voronoi and Johnson-Mehl
tessellations as well as some first unpublished results by Zuyev (2004) rise the hope that also
Laguerre tessellations will prove tractable to analytic investigations. To some degree, this
turns out to be indeed the case. In this work, several results for moments and distributions
of characteristics of Poisson Laguerre tessellations are established. However, compared to
Poisson Voronoi tessellation, a lot of technical difficulties arise. The power distance of a
point in space to a sphere is not necessarily positive and depends on both the location and
the radius of the sphere. Hence, the formulas obtained for Laguerre tessellations are less
explicit than the ones for the Voronoi case which makes a further treatment (e.g., numerical
evaluation) more difficult if not even impossible.

Nevertheless, Laguerre tessellations are promising models for the microstructure of ma-
terials. In this thesis, their application as models for cellular materials is discussed by the
example of a closed polymer foam. The Laguerre model outperforms not only the Poisson
Voronoi tessellation but also Voronoi tessellations generated by hard core point processes.
This is a remarkable result since these models are widely used in the context of foam mod-
eling and shows that Laguerre tessellations should be considered as a powerful alternative.

The organization of the text is as follows: In Chapter 1, we give a summary of some basic
definitions and results from stochastic geometry which will be used throughout the thesis.
In particular, we turn attention to point processes and random tessellations.

The concept of the Laguerre diagram and its orthogonal dual, the Laguerre Delaunay
diagram, is introduced in Chapter 2. We restrict ourselves to the deterministic case, where
the set of generators is a given set of spheres in Rd. We study geometric properties of both
diagrams and introduce some regularity conditions on the set of generators which ensure
that they are tessellations of Rd. Finally, we show that any normal tessellation in Rd for
d ≥ 3 can be realized as a Laguerre tessellation, which is an evidence for the generality of
Laguerre tessellations.

Chapter 3, the central chapter of this thesis, is devoted to Poisson Laguerre tessellations,
where the process of generators is a homogeneous independently marked Poisson process Φ
in Rd. After the existence of the Poisson Laguerre tessellation is guaranteed, we provide a
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complete description of the Palm distribution describing Φ as seen from a randomly chosen
point on a k-face of the tessellation. From this result, we deduce some formulas for mean
values and distributions of characteristics of the typical cells of the Laguerre and the Laguerre
Delaunay tessellation generated by Φ. Further, we derive formulas for contact and chord
length distributions of Poisson Laguerre tessellations. Finally, we prove some limit theorems
dealing with the convergence of Poisson Laguerre to Poisson Voronoi tessellations.

Since the cases d = 2 and d = 3 are the most important ones for applications, they
are discussed in detail in Chapter 4. For two-atom and uniform distributions of radii, we
evaluate numerically some of the formulas derived in Chapter 3. To get a further impression
of the sample structures, distributions of characteristics of their typical cells are determined
by simulations.

In the final chapter we discuss an example of applications, the modeling of a foam struc-
ture by a random Laguerre tessellation. We estimate the characteristics of the cells of a
closed polymer foam from a tomographic image. Based on these quantities we fit a Laguerre
tessellation model to the microstructure of the material. The comparison of this model
to some widely used Voronoi tessellation models clearly suggests the use of the Laguerre
tessellation.



Chapter 1

Definitions and classical results

In this chapter we introduce the notation used throughout this thesis and state some classical
results from stochastic geometry which will be needed in the subsequent chapters. The
notation is mainly based on the book by Schneider and Weil (2000). For the proofs of most
of the theorems and further details we refer to the books on stochastic geometry by Schneider
and Weil (2000) and Stoyan et al. (1995). We will only include the proofs of those statements
which we have not found proven in the required form in the literature. A detailed treatment
of point processes can be found in the book by Daley and Vere-Jones (1988). Concerning
random tessellations we refer to the work of Møller (1989, 1994).

1.1 General notation

• Denote the set of real numbers by R and the set of positive real numbers by R+.
Further, let N := {1, 2, 3, . . .} and N0 := {0, 1, 2, 3, . . .}.

• Let E be a locally compact space with countable basis and write B(E) for its Borel
σ-field. The system of closed sets in E will be denoted by F(E), the system of open
sets by G(E), and the system of compact sets by C(E). F ′(E) := F(E) \ {∅} and
C′(E) := C(E) \ {∅} are the non-empty closed and compact subsets of E, respectively.

The space F(E) is equipped with the topology of closed convergence, which is generated
by the sets

{FC : C ∈ C(E)} ∪ {FG : G ∈ G(E)},
where

FC := {F ∈ F(E) : F ∩ C = ∅}, C ∈ C(E), and

FG := {F ∈ F(E) : F ∩G 6= ∅}, G ∈ G(E).

Finally, the set F(E) is equipped with the σ-field B(F(E)) of Borel sets with respect
to the topology defined above.

The Borel sets in d-dimensional Euclidean space Rd will be denoted by Bd, and we
will use the abbreviations F := F(Rd), G := G(Rd), C := C(Rd), F ′ := F ′(Rd), and
C′ := C′(Rd). The translation of a set B ∈ Bd by x ∈ Rd is defined as

B + x := {y + x : y ∈ B}.
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• Write 〈·, ·〉 for the Euclidean scalar product on Rd and || · || for the corresponding norm.

• For B ⊂ Rd we write intB for the topological interior and ∂B for the boundary of B.

• The Lebesgue measure on Rd is denoted by λd. For B ∈ Bd we will use the notation
|B|d := λd(B). When integrating with respect to λd, we will usually write dx instead
of λd(dx).

• For x ∈ Rd and r ≥ 0 let b(x, r) denote the d-dimensional ball of radius r centered in
x. The d-dimensional unit sphere is denoted by Sd−1 and its surface measure by S.
Let ωd := |b(0, 1)|d be the volume and σd := S(Sd−1) the surface area of the unit ball
in Rd, i.e.

ωd =
π

d
2

Γ(d
2

+ 1)
and σd = 2

π
d
2

Γ(d
2
)
.

• Write SOd for the group of rotations about the origin in Rd and ν for its unique
rotational invariant probability measure.

• The k-dimensional Hausdorff-measure is denoted by Hk.

• For real numbers a and b such that a < b we will write U(a, b) for the uniform dis-
tribution on the interval [a, b]. For r0, r1 ∈ R and 0 ≤ p ≤ 1 let A(r0, r1, p) be the
two-atom distribution which takes the values r0 and r1 with probabilities p and 1− p,
respectively.

1.2 Point processes

Definition 1.2.1
For x ∈ Rd the Dirac measure δx is a probability measure on Rd defined by

δx(A) :=

{

1, if x ∈ A,
0, if x 6∈ A,

A ∈ Bd. (1.1)

A counting measure on Rd is a measure defined as a finite or countable sum

η :=
k
∑

i=1

δxi
, k ∈ N0 ∪ {∞}. (1.2)

The counting measures η considered here are assumed to be locally finite, i.e. η(C) <∞ for
every C ∈ C. A counting measure η is called simple if η({x}) ≤ 1 for all x ∈ Rd. We write
N for the set of all locally finite counting measures on Rd and Ns for the subset of all simple
measures in N. We equip N with the σ-field N generated by the maps η 7→ η(B), η ∈ N,
B ∈ Bd. Each simple counting measure η ∈ Ns can be identified with its support

supp η := {x ∈ Rd : η({x}) = 1},

which is a locally finite subset of Rd.
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Definition 1.2.2
A point process is a random variable Φ on a probability space (Ω,A,P) taking values in the
measurable space (N,N ). The distribution PΦ of a point process is now determined by the
probabilities

PΦ(A) = P(Φ ∈ A) = P({ω ∈ Ω : Φ(ω) ∈ A}), A ∈ N .

By Schneider and Weil (2000, Lemma 3.1.7), there is a sequence (Xi)i∈N of measurable
mappings Xi : Ω → Rd such that

Φ =

Φ(Rd)
∑

i=1

δXi
. (1.3)

The point process Φ is called simple if Φ ∈ Ns almost surely. In this case, each realization
of Φ can be identified with its support. Therefore, we will also use the notations Φ =
{X1, X2, . . .} and x ∈ Φ.

Definition 1.2.3 (Intensity measure)
The intensity measure Λ of a point process Φ is given by

Λ(B) := E[Φ(B)] =

∫

ϕ(B)P(dϕ), B ∈ Bd.

Then Λ(B) is the mean number of points contained in B. In the following, we will always
assume that Λ is locally finite, i.e. that Λ(C) <∞ for all C ∈ C.

Theorem 1.2.4 (Campbell theorem)
For any measurable function h : Rd → [0,∞) the function

∑

x∈Φ

h(x) is measurable with

E

[

∑

x∈Φ

h(x)

]

=

∫

∑

x∈ϕ

h(x)P(dϕ) =

∫

h(x)Λ(dx).

Definition 1.2.5 (Stationarity and isotropy)
For any y ∈ Rd we define the translation of Φ by y ∈ Rd as

Φ + y := {x+ y : x ∈ Φ}.
A point process Φ is called stationary if its distribution is invariant under translations, i.e.

P(Φ ∈ A) = P(Φ + y ∈ A), A ∈ N , y ∈ Rd.

The intensity λ of a stationary point process Φ is defined by

λ := Λ
(

[0, 1]n
)

= E
[

Φ([0, 1]n)
]

and can be interpreted as the mean number of points of Φ per unit volume. The local
finiteness of Λ implies that λ is finite. The intensity measure Λ of Φ has a decomposition

Λ(B) = λ |B|d, B ∈ Bd.

Further, we define the rotation of Φ by ϑ ∈ SOd as

ϑΦ := {ϑx : x ∈ Φ}.
A point process Φ is called isotropic if its distribution is invariant under rotations, i.e.

P(Φ ∈ A) = P(ϑΦ ∈ A), A ∈ N , ϑ ∈ SOd.
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For the rest of this section, we will assume that Φ is a stationary point process with
intensity 0 < λ <∞.

Definition 1.2.6 (Palm distribution of a point process)
The Palm distribution P0 of the point process Φ is a probability measure on N defined by

P0(A) :=
1

λ
E

[

∑

x∈Φ

1I[0,1]d(x) 1IA(Φ − x)

]

, A ∈ N .

Heuristically, P0 is the distribution of the point process Φ conditioned on 0 ∈ Φ. For an
arbitrary point x ∈ Rd we define Px(A) := P0(A− x), A ∈ N .

The reduced Palm distribution P0,! is defined by

P0,!(A) :=
1

λ
E

[

∑

x∈Φ

1I[0,1]d(x) 1IA
(

(Φ − x) \ {0}
)

]

, A ∈ N .

It is the distribution of Φ \ {0} conditioned on 0 ∈ Φ.

Definition 1.2.7 (Generating functional)
Let U be the family of all non-negative bounded measurable functions u on Rd whose support
is bounded. Furthermore, let V be the family of all functions v = 1 − u for u ∈ U with
0 ≤ u ≤ 1. Then the generating functional GΦ of a point process Φ is defined by

GΦ(v) := E

[

∏

x∈Φ

v(x)

]

=

∫

∏

x∈ϕ

v(x)P(dϕ), v ∈ V.

The distribution of Φ is uniquely determined by GΦ.

Theorem 1.2.8 (Refined Campbell theorem)
For any measurable function h : Rd×N → [0,∞) the function

∑

x∈Φ

h(x,Φ) is measurable with

E

[

∑

x∈Φ

h(x,Φ)

]

=

∫

∑

x∈ϕ

h(x, ϕ)P(dϕ) = λ

∫ ∫

h(x, ϕ+ x)P0(dϕ)dx.

Definition 1.2.9 (Poisson point process)
A Poisson point process on Rd with locally finite intensity measure Λ is characterized by the
following properties:

(i) The number of points contained in a bounded Borel set B ∈ Bd has a Poisson distri-
bution with mean Λ(B).

(ii) For arbitrary k ∈ N the numbers of points of Φ in k disjoint Borel sets form k inde-
pendent random variables.

A point process Φ satisfying condition (i) is simple if and only if its intensity measure
Λ is free of atoms. For simple point processes condition (i) implies condition (ii). Including
condition (ii) in the definition guarantees that the Poisson process Φ is uniquely determined
by Λ irrespective of Φ being simple or not (Schneider and Weil, 2000, p. 103).
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Proposition 1.2.10
Let Φ be a stationary Poisson process on Rd with intensity λ.

(i) Generalized Campbell theorem
Let h : (Rd)n → [0,∞) be a measurable function. Then

E

[

∑ 6=

x1,...,xn∈Φ

h(x1, . . . , xn)

]

= λn

∫

. . .

∫

h(x1, . . . , xn) dx1 . . . dxn,

where
∑ 6=

denotes summation over n-tuples of pairwise distinct points of Φ.

(ii) The generating functional of Φ has the form

GΦ(v) = exp

(

−λ
∫

(

1 − v(x)
)

dx

)

, v ∈ V.

(iii) Slivnyak-Theorem
The Palm distribution of Φ is given by P0 = P ∗ δδ0 , where δδ0 is the distribution of the
point process consisting only of the fixed point 0. This means

∫

h(ϕ) P0(dϕ) =

∫

h(ϕ ∪ {0}) P(dϕ)

for any measurable function h : N → [0,∞). For x ∈ Rd we have Px = P ∗ δδx
.

(iv) The reduced Palm distribution of Φ is just the original distribution of Φ, i.e. P0,! = P.

Theorem 1.2.11 (Slivnyak-Mecke formula)
Let Φ be a stationary Poisson process on Rd with intensity λ and let h : (Rd)n ×N → [0,∞)
be a measurable function. Then we have

E

[

∑ 6=

x1,...,xn∈Φ

h(x1, . . . , xn,Φ)

]

= λn

∫

. . .

∫

E [h(x1, . . . , xn,Φ ∪ {x1, . . . , xn})] dx1 . . . dxn.

Proof:
Application of the refined Campbell theorem and the Slivnyak theorem yields

E

[

∑ 6=

x1,...,xn∈Φ

h(x1, . . . , xn,Φ)

]

= E





∑

x1∈Φ

∑6=

x2,...,xn∈Φ\{x1}
h(x1, . . . , xn,Φ)





= λ

∫ ∫

∑ 6=

x2,...,xn∈(ϕ+x1)\{x1}
h(x1, . . . , xn, (ϕ+ x1)) P0(dϕ)dx1

= λ

∫ ∫

∑ 6=

x2,...,xn∈ϕ\{x1}
h(x1, . . . , xn, ϕ) Px1(dϕ) dx1

= λ

∫ ∫

∑ 6=

x2,...,xn∈ϕ

h(x1, . . . , xn, ϕ ∪ {x1}) P(dϕ) dx1.

The result is obtained by iteration of this procedure for the remaining points.
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1.3 Marked point processes

Definition 1.3.1
Let E be a locally compact space with countable basis. Analogous to (1.1) and (1.2) we may
define the notion of Dirac and counting measures on Rd ×E. Denote by N(E) the set of all
counting measures η on Rd ×E satisfying the conditions

(i) η(· × E) ∈ Ns and

(ii) for each x ∈ η(· × E) there is exactly one m ∈ E such that (x,m) ∈ η.

We equip N(E) with the σ-field N (E) generated by the maps η 7→ η(A), A ∈ B(Rd ×E).

Definition 1.3.2
A marked point process Φ on Rd with mark space E is a random variable on a probability
space (Ω,A,P) taking values in the measurable space (N(E),N (E)). There are sequences
of measurable mappings Xi : Ω → Rd, i ∈ N, and Mi : Ω → E, i ∈ N, such that

Φ =
τ
∑

i=1

δ(Xi,Mi),

where τ := Φ(Rd × E). The marked point process Φ is called independently marked, if
the random marks (Mi)i∈N are independently identically distributed and independent of
((Xi)i∈N, τ). The distribution F of the random variables Mi is called the mark distribution
of Φ.

We define the translation of Φ by y ∈ Rd as

Φ + y := {(x+ y,m) : (x,m) ∈ Φ}, y ∈ Rd,

and call Φ stationary if its distribution is invariant under translations. We further define the
rotation of Φ by ϑ ∈ SOd as

ϑΦ := {(ϑx,m) : (x,m) ∈ Φ}, ϑ ∈ SOd.

Theorem 1.3.3
The intensity measure Λ of a stationary marked point process Φ on Rd with mark space E
is given by

Λ = λHd ⊗ Q,

where λ is the intensity of the unmarked point process Φ(·×E) and Q is a probability measure
on E.

Again we assume 0 < λ <∞. Then

Q(B) =
1

λ
E





∑

(y,m)∈Φ

1I[0,1]d(y) 1IB(m)



 , B ∈ B(E).

If Φ is an independently marked point process, then Q equals the mark distribution F.
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Definition 1.3.4 (Palm distribution)
Let Φ be a stationary marked point process on Rd with mark space E and intensity λ > 0.
The Palm distribution P0 of Φ is defined by

P0(A) :=
1

λ
E





∑

(y,m)∈Φ

1I[0,1]d(y) 1IA(Φ − y)



 , A ∈ N (E).

The results for point processes given in the last section can be generalized to the case of
marked point processes.

Theorem 1.3.5 (Refined Campbell theorem)
Let Φ be a stationary marked point process on Rd with mark space E and intensity λ > 0. Let
h : Rd ×E ×N(E) → [0,∞) be a measurable function. Then the function

∑

(y,m)∈Φ

h(y,m,Φ)

is measurable and

E





∑

(y,m)∈Φ

h(y,m,Φ)



 = λ

∫

E

∫

Rd

∫

N(E)

h(y,m, ϕ+ y) P0(dϕ) dy F(dm).

Definition 1.3.6
A Poisson process on Rd ×E can be defined analogously to Definition 1.2.9, where the word
“bounded” in (i) is replaced by Λ(B) < ∞. One way to construct such a process is by
independent marking of a Poisson process on Rd (Schneider and Weil, 2000, Satz 3.4.7). For
the stationary case, any Poisson process on Rd×E which satisfies the conditions in Definition
1.3.1 is independently marked. Therefore, we will understand by a stationary marked Poisson
process on Rd with mark space E a point process on Rd×E which is obtained by independent
marking of a stationary Poisson process on Rd.

Proposition 1.3.7
Let Φ be a stationary marked Poisson process on Rd with mark space E and intensity λ.

(i) Generalized Campbell theorem
Let h : (Rd × E)n → [0,∞) be a measurable function. Then

E





∑ 6=

(x1,m1),...,(xn,mn)∈Φ

h(x1, m1, . . . , xn, mn)





= λn

∫

E

. . .

∫

E

∫

Rd

. . .

∫

Rd

h(x1, m1, . . . , xn, mn) dx1 . . . dxnF(dm1) . . .F(dmn).

(ii) Define the set V as a set of functions on Rd ×E analogously to Definition 1.2.7. The
generating functional of Φ has the form

GΦ(v) = exp



−λ
∫

E

∫

Rd

(

1 − v(x,m)
)

dxF(dm)



 , v ∈ V. (1.4)
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(iii) Slivnyak-Theorem
If Φ is a Poisson process with mark distribution F, then

P0(A) =

∫

E

P(Φ ∪ {(0, m)} ∈ A) F(dm), A ∈ N (E).

Theorem 1.3.8 (Slivnyak-Mecke formula)
Let Φ be a stationary Poisson process of intensity λ and let h : (Rd ×E)n ×N(E) → [0,∞)
be a measurable function. Then we have

E





∑ 6=

(x1,m1),...,(xn,mn)∈Φ

h(x1, m1, . . . , xn, mn,Φ)





= λn

∫

E

. . .

∫

E

∫

Rd

. . .

∫

Rd

E [h(x1, m1, . . . , xn, mn,Φ ∪ {(x1, m1), . . . , (xn, mn)})] dx1 . . . dxn

F(dm1) . . .F(dmn).

Proof:
Works as the proof of Theorem 1.2.11.

1.4 Random measures and Palm measure

In the following, we will work with the canonical setting (Ω,A,P) = (N(E),N (E),P),
where P is a probability measure on (N(E),N (E)). For the moment, we assume that P is
the distribution of a stationary point process Φ defined by the identical mapping on N(E).
Later, we will also consider other choices of P.

Definition 1.4.1
Denote the space of all locally finite measures on Rd by M. Equip M with the σ-field M
generated by the mappings α 7→ α(B), α ∈ M, B ∈ Bd.

(i) A random measure M (adapted to the point process Φ) is a measurable mapping from
N(E) to M. It is called stationary if

M(ϕ,B + x) = M(ϕ− x,B), ϕ ∈ N(E), x ∈ Rd, B ∈ Bd.

(ii) The intensity measure of a random measure M is given by

Λ(B) := E[M(B)], B ∈ Bd.

For a stationary random measureM we have Λ(dx) = λM dx, where λM = E[M([0, 1]d)]
is the intensity of M .

(iii) Let M be a stationary random measure. The measure

PM(A) :=

∫ ∫

1I{ϕ− x ∈ A, x ∈ [0, 1]d}M(ϕ)(dx) P(dϕ), A ∈ N (E), (1.5)
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is called the Palm measure of P with respect to M . PM is a σ-finite measure satisfying
the refined Campbell theorem

E

[
∫

h(x,Φ − x)M(dx)

]

= EM

[
∫

h(x,Φ) dx

]

for all measurable functions h : Rd × N(E) → [0,∞). Here, EM denotes integration
with respect to PM .

If 0 < λM <∞, we define the Palm probability measure of M via P0
M := λ−1

M PM .

An important result relating the Palm measures of two stationary random measures is
Neveu’s exchange formula (Neveu, 1977).

Theorem 1.4.2
Let M and M ′ be stationary random measures and h : Rd × N(E) → [0,∞) a measurable
function. Then

EM

[
∫

h(−x,Φ − x)M ′(dx)

]

= EM ′

[
∫

h(x,Φ)M(dx)

]

. (1.6)

1.5 Tessellations

Definition 1.5.1 (Tessellation)
A tessellation of Rd is a countable set T = {Ci : i ∈ N} sets Ci ∈ C′ (the cells of the
tessellation) such that

(i) int(Ci) ∩ int(Cj) = ∅, i 6= j,

(ii)
⋃

i

Ci = Rd,

(iii) T is locally finite, i.e. #{Ci ∈ T : Ci ∩B 6= ∅} <∞ for all bounded B ⊂ Rd, and

(iv) each cell of the tessellation is a compact convex set with interior points.

By Schneider and Weil (2000, Lemma 6.1.1), (iv) implies that the cells are bounded
d-dimensional polytopes.

Definition 1.5.2
Suppose T is a tessellation of Rd.

(i) The faces of a convex polytope P are the intersections of P with its supporting hy-
perplanes (Schneider, 1993, Section 2.4). Let P be a d-dimensional polytope and
s ∈ {0, . . . , d − 1}. We call a face of P of dimension s an s-face of P . Then the
0-faces of P are the vertices, the 1-faces the edges, and the (d − 1)-faces the facets.
For convenience, the polytope P is considered as a d-face.

Write ∆s(P ) for the set of s-faces of a polytope P and ∆s(T ) :=
⋃

C∈T ∆s(C) for the
set of s-faces of all cells C of T . Further, let

F (y) :=
⋂

C∈T,y∈C

C, y ∈ Rd,
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be the intersection of all cells of the tessellation containing the point y. Then F (y) is
a finite intersection of d-polytopes and, since it is non-empty, F (y) is an s-dimensional
polytope for some s ∈ {0, . . . , d}. Therefore, we may introduce

Ss(T ) := {F (y) : dimF (y) = s, y ∈ Rd}, s = 0, . . . , d,

the set of s-faces of the tessellation T . Then an s-face H ∈ ∆s(T ) of a cell C of T is
the union of all those s-faces F ∈ Ss(T ) of the tessellation contained in H .

(ii) A tessellation T is called face-to-face if the faces of the cells and the faces of the
tessellation coincide, i.e. if ∆s(T ) = Ss(T ) for s = 0, . . . , d. For s = 0 and s = d this
is always true. For face-to-face tessellations we will unify notations writing Ss(C) for
the set of s-faces of a cell C of T .

(iii) A tessellation T is called normal if it is face-to-face and every s-face of T is contained
in the boundary of exactly d− s+ 1 cells for s = 0, . . . , d− 1.

1.6 Random tessellations

Write T for the set of all tessellations in Rd, and Tn and Tf for the subset of normal and
face-to-face tessellations. F ′ equipped with the topology of closed convergence is a locally
compact space with countable basis (Schneider and Weil, 2000, Satz 1.1.1). Hence, the
topology of closed convergence can also be defined for the system F(F ′). The sets T and
Tf are Borel sets in F(F ′) and the mappings T 7→ Sk(T ), T ∈ Tf , k = 0, . . . , d − 1, are
measurable (Schneider and Weil, 2000, Lemma 6.1.2). Schneider and Weil (2000, Lemma
6.1.3) further implies that Tn is a Borel set in F(F ′).

Definition 1.6.1 (Random tessellation)
A random tessellation in Rd is a random variable X on a probability space (Ω,A,P) with
range T. It is called normal or face-to-face if its realizations are almost surely normal or
face-to-face, respectively.

The translation and the rotation of a tessellation T ∈ T are defined via

T + y := {C + y : C ∈ T}, y ∈ Rd, and

ϑT := {ϑC : C ∈ T}, ϑ ∈ SOd.

A random tessellation is called stationary if its distribution is invariant under translations
and isotropic if it is invariant under rotations.

Definition 1.6.2 (Centroid of a compact set)
Let c : C′ → Rd be a measurable function such that

c(C + y) = y + c(C), y ∈ Rd. (1.7)

The point c(C) is called the centroid of the set C. A generalized centroid function is a
measurable function c : C′ × N(C′) → Rd such that

c(C + x, η + x) = c(C, η) + x, x ∈ Rd, η ∈ N(C′), C ∈ η,

where N(C′) denotes the set of all counting measures on C′.
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Typical choices of centroids are the center of gravity of the set C, the center of its
surrounding ball, or the “extreme” point of C with respect to a given direction. Given a
generalized centroid function c, each stationary random tessellation X may be interpreted
as a stationary marked point process (also called X) on Rd with mark space C′ via

X =
∑

C∈X

δ(c(C,X),C−c(C,X)).

Let ck denote a generalized centroid function acting on the set of k-faces of a random
tessellation X. Then we can define the point process Nk of centers of the k-faces of X as

Nk(X) :=
∑

F∈Sk(X)

δck(F,X).

We assume that Nk ∈ Ns P-almost surely, which guarantees that ck(F ) 6= ck(F
′) for different

k-faces F, F ′ ∈ Sk(X) as well as the local finiteness of Nk. Note that this is an assumption
on both X and the choice of ck. Property (1.7) implies that Nk is a stationary point process.

Now the intensity γk of Nk is given by the formula

γk = E





∑

F∈Sk(X)

1I[0,1]d(ck(F,X))



 , k = 0, . . . , d,

and can be interpreted as the mean number of k-faces per unit volume. The values of γk do
not depend on the choice of the (generalized) centroid function ck (see Møller, 1989, p. 47).

Under the Palm distribution P0
Nk

there is a k-face Ck(0) with center in the origin. Its
distribution is called the distribution of the typical k-face of the tessellation X. Let T be a
realization of X. By assumption, ψk := Nk(T ) ∈ Ns almost surely. In this case any x ∈ ψk

is the center of a unique k-face Ck(x, T ) ∈ Sk(T ) defined via

Ck(x, T ) = F ⇐⇒ ck(F, T ) = x.

For x ∈ Rd \ψk we set Ck(x, T ) := {x}. If ψk /∈ Ns we define Ck(x, T ) := {x} for all x ∈ Rd.

Fix k ∈ {0, . . . , d} and define Fk(x, T ) := F and ck(x, T ) := ck(Fk(x, T ), T ) whenever
the point x ∈ Rd is contained in the relative interior of some k-face F ∈ Sk(T ). If x ∈ Rd is
not contained in the relative interior of any k-face, we set Fk(x, T ) := {x} and ck(x, T ) := x.
Then

Ck(x, T ) = Ck(0, T − x) + x, T ∈ T, x ∈ Rd,

ck(x, T ) = ck(0, T − x) + x, T ∈ T, x ∈ Rd.
(1.8)

Further random measures induced by a random tessellation are the measures

Mk(B) :=
∑

F∈Sk(X)

Hk(F ∩ B), k = 0, . . . , d, B ∈ Bd.

Their intensities

µk = E





∑

C∈Sk(X)

Hk(C ∩ [0, 1]d)



 , k = 0, . . . , d,
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can also be written as

µk = E





∑

C∈Sk(X)

Hk(C) 1I[0,1]d(ck(C))



 , k = 0, . . . , d,

with the interpretation of mean total k-content of the k-faces of the tessellation per unit
volume. The measures Mk and their Palm measures will be studied in detail in Chapter 3.
Here, we will only state some formulas connecting the Palm measures of Nk and Mk.

Theorem 1.6.3
For measurable functions f, g : T → [0,∞) we have

EMk

[

f(X)g
(

X − ck(0, X)
)

]

= ENk






g(X)

∫

Ck(0)

f(X − x)Hk(dx)






.

Proof:
Using the representation of X as a marked point process and (1.8), the formula follows from
(1.6) with M = Mk, M

′ = Nk, and h(x,X) := 1I{ck(x,X) = 0}f(X − x)g(X).

Corollary 1.6.4
For each measurable function g : T → [0,∞) we have

EMk

[

g
(

X − ck(0, X)
)

]

= ENk

[

Hk
(

Ck(0)
)

g(X)
]

and

ENk

[

g(X)
]

= EMk

[

Hk
(

Fk(0, X)
)−1 · g

(

X − ck(0, X)
)

]

.

For the intensities µk and γk we get the relation

µk = γkENk

[

Hk
(

Ck(0)
)

]

.

In the following theorem let Pd denote the set of all d-dimensional convex polytopes in
Rd. For k = 0, . . . , d consider the functions nk : Pd → N, where nk(P ) is the number of
k-faces of P ∈ Pd. Then Pd is a Borel set in F and the function nk is measurable (Schneider
and Weil, 2000, proof of Lemma 6.1.2).

Theorem 1.6.5
If the random tessellation is normal we have

(1 − (−1)k)γk =

k−1
∑

j=0

(−1)j

(

d− j + 1

k − j

)

γj

and

γk = γd

ENd

[

nk(Cd(0))
]

d− k + 1
. (1.9)

In particular,
2γ1 = (d+ 1)γ0,

3γ0 = 2γ1 = 6γ2, if d = 2,

2γ0 = γ1 = 2(γ2 − γ3), if d = 3.
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Typical examples for f and g in Theorem 1.6.3 are functions measuring geometric char-
acteristics of the cells of the random tessellation X, e.g., the cell volume, the edge length or
the number of k-faces of the cells. The formulas stated above indicate that a lot of relations
between different cell characteristics exist.

In fact, Mecke (1984) has shown that for a planar face-to-face tessellation the mean
values of its cell characteristics are completely determined by the values of µ0 and µ1 (usually
denoted by LA). For a spatial tessellation the required parameters are µ0, µ1 (LV ), µ2 (SV ),
and the cell intensity γ3.

Theorem 1.6.6
For a stationary and normal random tessellation of R2 let a2 and u2 be the expected area
and perimeter of the typical cell, respectively, and let l1 be the expected length of the typical
edge. Then the following relations hold

2γ2 = γ0,

γ1 =
3

2
γ0,

l1 =
LA

γ1

=
2LA

3γ0

,

a2 =
1

γ2
=

2

γ0
, and

u2 =
2LA

γ2

=
4LA

γ0

.

Theorem 1.6.7
For a stationary and normal random tessellation of R3 let l3, s3, v3, and b̄3 be the expected
total edge length, surface area, volume, and mean width, respectively, of the typical cell, let
a2 and u2 be the expected area and perimeter of the typical facet, and let l1 be the expected
length of the typical edge. Finally, write n0, n1, and n2 for the mean number of vertices,
edges, and facets, respectively, of the typical cell. Then the following relations hold

γ2 = γ0 + γ3, γ1 = 2γ0,

l3 =
3LV

γ3
, s3 =

2SV

γ3
, v3 =

1

γ3
, b̄3 =

LV

4γ3
,

a2 =
SV

γ2
=

SV

γ0 + γ3
, u2 =

3LV

γ2
=

3LV

γ0 + γ3
,

l1 =
LV

γ1

=
LV

2γ0

,

n0 =
4γ0

γ3
, n1 =

6γ0

γ3
, and n2 =

2(γ0 + γ3)

γ3
.

1.7 Flat sections

Here, we summarize some results concerning the intersection of a random tessellation of Rd

with an affine subspace Fs of Rd of dimension 0 < s < d. Let X be a stationary random
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tessellation with finite intensities γ0, . . . , γd. Then Xs := X∩Fs is a stationary tessellation of
Fs, so the results given for stationary random tessellations also hold for Xs. Further, some
relations between the characteristics of the tessellations X and Xs exist. Details are again
to be found in Møller (1989, Section 6). Since X is stationary, we may assume that Fs is an
s-dimensional linear subspace Ls of Rd.

Lemma 1.7.1
Let k ∈ {0, . . . , s}. A k-face F of Xs is almost surely given by the intersection of Ls and a
(d− s+ k)-face F ′ of X, i.e. F = F ′ ∩ Ls.

We will mark intensities, typical cells and expectations with respect to Xs with super-
script (s). Then the following relations hold.

Theorem 1.7.2
For k = 0, . . . , d we have

γ
(s)
k = γd−s+kENd−s+k

[

Hd−s
(

πL⊥
s
(Cd−s+k(0))

)

]

and

γ
(s)
k E

N
(s)
k

[

f(C
(s)
k (0))

]

= γd−s+kENd−s+k







∫

π
L⊥

s
(Cd−s+k(0))

f
(

Cd−s+k(0) ∩ (y + Ls)
)

Hd−s(dy)







for each non-negative measurable function f which is invariant under translations in Rd.
πL⊥

s
denotes the projection onto the orthogonal complement of Ls in Rd.

For the cases d = 2 and d = 3, which are important for applications, we obtain the
following results.

Corollary 1.7.3

(i) d = 2, s = 1

Let l
(1)
1 and l1 be the expected length of the typical edge of X1 and X, respectively.

Further, let u2 and a2 denote the expected perimeter and area, respectively, of the
typical cell of X. Then

γ
(1)
0 =

2

π
γ1l1 =

2LA

π
,

γ
(1)
1 =

1

π
γ2u2 =

2LA

π
, and

l
(1)
1 = π

a2

u2
=

π

2LA
.

(ii) d = 3, s = 1

Let l
(1)
1 be the expected length of the typical edge of X1, a2 the expected area of the typical

facet of X, and let s3 and v3 be the expected surface area and volume, respectively, of
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the typical cell of X. Then we have

γ
(1)
0 =

1

2
γ2a2 =

SV

2
,

γ
(1)
1 =

1

4
γ3s3 =

SV

2
, and

l
(1)
1 = 4

v3

s3
=

2

SV
.

(iii) d = 3, s = 2

Let l
(2)
1 be the expected length of the typical edge of X2, let n

(2)
2 , u

(2)
2 , and a

(2)
2 be the

expected number of vertices, perimeter, and area, respectively, of the typical cell of X2.
Further, let l1 be the expected length of the typical edge of X, let u2 and a2 be the
expected perimeter and area, respectively, of the typical facet of X, and let b̄3, s3, and
v3 be the expected mean width, surface area, and volume, respectively, of the typical cell
of X. Then

γ
(2)
0 =

1

2
γ1l1 =

LV

2
,

γ
(2)
1 =

1

4
γ2u2 =

3LV

4
,

γ
(2)
2 = γ3b̄3 =

LV

4
,

l
(2)
1 = π

a2

u2
=
πSV

3LV
,

n
(2)
2 = 6,

u
(2)
2 =

πs3

4b̄3
=

2πSV

LV
, and

a
(2)
2 =

v3

b̄3
=

4

LV

.



Chapter 2

Laguerre tessellations

In this chapter we will introduce the notion of a Laguerre diagram generated by a set of
spheres in Rd which is a generalized (weighted) version of the well-known Voronoi diagram
(Møller, 1994; Stoyan et al., 1995; Okabe et al., 2000; Schneider and Weil, 2000). We will
study geometric properties of this diagram and investigate under which conditions it forms
a tessellation of Rd.

Besides Voronoi tessellations also their duals, the Delaunay tessellations, are of special
interest. Their construction can be generalized to Laguerre tessellations leading to Laguerre
Delaunay tessellations. Using these structures we derive a characterization of the class of
Laguerre tessellations in Rd. It turns out that any normal tessellation of Rd with d ≥ 3 can
be represented as a Laguerre tessellation.

For further reading on Laguerre diagrams we refer to Imai et al. (1985), Aurenhammer
(1987b), Edelsbrunner and Seidel (1986), Schlottmann (1993), and the book by Okabe et al.
(2000). Laguerre Delaunay diagrams are considered for instance in Aurenhammer (1987a)
and Schlottmann (1993).

2.1 Definitions

For y, x ∈ Rd and w ∈ R define the power of y with respect to the pair (x, w) as

pow
(

y, (x, w)
)

:= ||y − x||2 − w. (2.1)

Let ϕ ⊂ Rd×R be a countable set such that min(x,w)∈ϕ pow(y, (x, w)) exists for each y ∈ Rd.
Then the Laguerre cell of (x, w) ∈ ϕ is defined as

C
(

(x, w), ϕ
)

:= {y ∈ Rd : pow
(

y, (x, w)
)

≤ pow
(

y, (x′, w′)
)

, (x′, w′) ∈ ϕ}.
The point x is called the nucleus of the cell C

(

(x, w), ϕ
)

. The Laguerre diagram L(ϕ) is the
set of the non-empty Laguerre cells of ϕ, i.e.

L(ϕ) := {C((x, w), ϕ) : (x, w) ∈ ϕ,C((x, w), ϕ) 6= ∅}.
When considering the special case of positive weights, the elements (x, r) ∈ ϕ can be

interpreted as spheres with radii r =
√
w ≥ 0 centered in the points x ∈ Rd. So let s(x, r)

denote a sphere in Rd centered in x with radius r, i.e.

s(x, r) := {y ∈ Rd : ||y − x|| = r}, x ∈ Rd, r ≥ 0.
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Then the power of a point y ∈ Rd with respect to a sphere s(x, r) is given by

pow
(

y, s(x, r)
)

= ||y − x||2 − r2. (2.2)

In this case the power distance has the following geometric interpretation: For each point
y ∈ Rd outside the sphere s(x, r) the value pow

(

y, s(x, r)
)

equals the squared length of the
tangent line from y to the sphere. The power of a point y with respect to the sphere s(x, r)
is smaller than 0 if y lies inside the sphere, equals 0 if y is contained in the boundary of
the sphere, and is larger than 0 if y is outside the sphere. In order to treat also the case of
negative weights, Aurenhammer has introduced the notion of an imaginary sphere, a sphere
with imaginary radius r′ = ir, r ≥ 0 and i =

√
−1 (Aurenhammer, 1987a). In the following

we call a sphere with either real or imaginary radius a generalized sphere. We will often
identify a pair (x, r) with the sphere s(x, r) and use both notations synonymously. In both
cases, we will use the definition (2.2) of the power distance. At some points, especially when
working with more than one sphere, we will also use the abbreviation si := s(xi, ri).

Note that a Laguerre cell does not necessarily contain its nucleus and that a nucleus
does not necessarily generate a cell. A necessary condition for a cell to be empty is that the
generating sphere is completely contained in the union of the remaining spheres. However,
this is not a sufficient condition as Figure 2.1 shows.

Figure 2.1: The Laguerre diagram of a set of six spheres in R2. The point centered in ◦ does
not generate a cell. The sphere centered in � is completely contained in one of the other
spheres. Nevertheless, it generates the cell printed in gray.

Given two spheres s1 = s(x1, r1) and s2 = s(x2, r2) in Rd, the points z ∈ Rd satisfying
pow(z, s1) = pow(z, s2) form a hyperplane Ra(s1, s2) given by

Ra(s1, s2) =
{

z ∈ Rd : 2〈z , x1 − x2〉 = ||x1||2 − ||x2||2 + r2
2 − r2

1

}

, (2.3)
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which is perpendicular to the line joining x1 and x2 and called the radical axis of s1 and s2.
Then

H(s1, s2) :=
{

z ∈ Rd : 2〈z , x1 − x2〉 ≥ ||x1||2 − ||x2||2 + r2
2 − r2

1

}

is the closed half space dominated by s1 (but not necessarily containing x1) and bounded by
Ra(s1, s2).

0x1 x2

Figure 2.2: The radical axes for the spheres s(x1, r1) and s(x2, r2) with x1 = (−1.5, 0),
x2 = (1.5, 0), r1 = 1, 2, 3, 4, 5, and r2 = 1.

If two spheres intersect, then their radical axis passes through their intersections. Oth-
erwise, the two spheres are contained in the same open half space bounded by their radical
axis if and only if one of the spheres is contained in the other. If two spheres have equal
radii, their radical axis is the perpendicular bisector of the line joining their centers.

Obviously, the Laguerre cells are also defined by the equality

C(s0, ϕ) =
⋂

s∈ϕ,s 6=s0

H(s0, s), s0 ∈ ϕ. (2.4)

Hence, every s-face F ∈ Ss(L(ϕ)) can be written as

F = F (s0, . . . , sk, ϕ) =
k
⋂

i=0

C(si, ϕ), s0, . . . , sk ∈ ϕ,

with a suitable number of cells involved. Then F (s0, . . . , sk, ϕ) is included in the affine
subspace

G(s0, . . . , sk) =
{

y ∈ Rd : pow(y, s0) = . . . = pow(y, sk)
}

.

Remarks 2.1.1

(i) If the radii of all spheres in ϕ are equal, the Laguerre diagram of ϕ equals the Voronoi
diagram of the set {x : (x, r) ∈ ϕ}.

(ii) Since the cells of the diagram are determined by the inequality

||x1 − y||2 − r2
1 ≤ ||x2 − y||2 − r2

2, y ∈ Rd, (x1, r1), (x2, r2) ∈ ϕ,
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adding the same constant on both sides of the equality will leave the Laguerre diagram
unchanged. Therefore, the tessellation is invariant under transformations of the form
r 7→ (r2 + t)

1
2 , with a fixed value t ∈ R such that all radii remain positive.

2.2 Geometric properties of Laguerre diagrams

In this section we determine some geometric properties of the Laguerre diagram of a set of
spheres in Rd. In particular, we are interested in conditions on the set of generators which
make the Laguerre diagram a tessellation of Rd.

The representation (2.4) shows that the Laguerre cells are closed convex sets. As the
intersection of two cells is included in their radical axis the cells clearly have disjoint topo-
logical interiors. So what remains to show is that the Laguerre cells form a locally finite and
space-filling system of bounded d-dimensional polytopes.

For applications, it is often required that tessellations are face-to-face or normal, as
these properties are present in many structures appearing in nature. Furthermore, many
formulas relating different characteristics of normal tessellations exist (cf. Section 1.6 and
Møller (1989)). Therefore, sufficient conditions for the Laguerre tessellation being normal
are studied as well.

In 2.2.2 to 2.2.4 we mainly follow the argumentation of Schlottmann (1993), who gives
some results for geometric properties of Laguerre tessellations. Analogous results for the
special case of Voronoi tessellations are derived in Schneider and Weil (2000, Chapter 6).

The results of this section are formulated using positive weights and the definition (2.2)
of the power distance. However, the argumentation also carries over to the case of arbitrary
weights and the power distance defined via (2.1).

Definition 2.2.1
We say that ϕ ⊂ Rd × R+ fulfills regularity condition

(R1) if for every y ∈ Rd and every t ∈ R only finitely many elements (x, r) ∈ ϕ satisfy
||y − x||2 − r2 ≤ t, and

(R2) if conv{x : (x, r) ∈ ϕ} = Rd.

If the set of radii is bounded, condition (R1) implies the local finiteness of the set of points
{x : (x, r) ∈ ϕ}.

Further, we say that the points of ϕ are in general position if the following conditions
hold.

(GP1) No k + 1 nuclei are contained in a (k − 1)-dimensional affine subspace of Rd for k =
2, . . . , d, and

(GP2) no d+ 2 points have equal power with respect to some point in Rd.

In the case of equal radii (which is the Voronoi case) this is exactly the property addressed
as general quadratic position in Møller (1994).

Proposition 2.2.2
Let ϕ satisfy (R1) and (R2). Then every cell of L(ϕ) is compact.
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Proof:
It remains to prove the boundedness of the Laguerre cells. Fix (x0, r0) ∈ ϕ and choose a
unit vector u ∈ Sd−1. By condition (R2) we find (x, r) ∈ ϕ such that 0 < 〈u, x − x0〉.
Now for a suitable δ > 0 all u′ within a neighborhood of u on the unit sphere satisfy
δ||x0 − x|| < 〈u′, x− x0〉. Then

||x0 + λu′ − x||2 − r2 = ||x0 − x||2 + λ2 − 2λ〈u′, x− x0〉 − r2

< ||x0 − x||2 + λ2 − 2λδ||x0 − x|| − r2

for any λ > 0. Since ||x0 + λu′ − x0||2 − r2
0 = λ2 − r2

0, we have

||x0 + λu′ − x0||2 − r2
0 > ||x0 + λu′ − x||2 − r2 for λ >

1

2

∣

∣

∣
1 − r2 − r2

0

||x0 − x||2
∣

∣

∣

||x0 − x||
δ

,

i.e., x0 + λu′ 6∈ C((x0, r0), ϕ). This shows that the mapping

u 7→ sup{λ ≥ 0 : λ = 0 or x0 + λu ∈ C((x0, r0), ϕ)}

is locally bounded and therefore bounded on the unit sphere. Therefore, the boundedness
of C((x0, r0), ϕ) is shown.

Lemma 2.2.3
Let ϕ satisfy (R1) and (R2). For every bounded subset B of Rd and every t ∈ R only
finitely many (x, r) ∈ ϕ fulfill ||y − x||2 − r2 ≤ t for at least one point y ∈ B. In other

words, the set B is intersected only by a finite number of balls b
(

x,
√

[t+ r2]+
)

, where

[t+ r2]+ := max(t+ r2, 0).

Proof:
If this was not the case, we would find a bounded set B, a number t ∈ R and sequences
((xn, rn))n of pairwise distinct elements of ϕ and (yn)n in B such that ||yn − xn||2 − r2

n ≤
t. Since the closure of B is compact, we may pass to a suitable subsequence such that
||yn − y0|| ≤ 1

2
for all n. Further, again passing to a subsequence, we may assume that

〈y0 − xn, u〉 ≥ 1
2
||y0 − xn|| for a suitable unit vector u and all n. Then

||y0 − u− xn||2 − r2
n

= ||y0 − xn||2 + 1 − 2〈y0 − xn, u〉 − r2
n

≤ ||y0 − yn||2 + ||yn − xn||2 + 2||y0 − yn|| ||yn − xn|| + 1 − ||y0 − xn|| − r2
n

≤ t+
5

4
+
∣

∣ ||yn − xn|| − ||y0 − xn||
∣

∣

≤ t+
5

4
+ ||yn − y0|| ≤ t+

7

4
,

for all n, a contradiction to (R1).

Proposition 2.2.4
Let ϕ satisfy (R1) and (R2). Then the set of cells of L(ϕ) is locally finite and space filling.
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Proof:
Choose y0 ∈ Rd and (x0, r0) ∈ ϕ. From (R1), it follows that there are only finitely many
elements (x, r) ∈ ϕ such that

||y0 − x||2 − r2 ≤ ||y0 − x0||2 − r2
0.

Therefore, there is at least one (x′, r′) minimizing this expression, i.e., y0 ∈ C((x′, r′), ϕ).
Now let K be a compact subset of Rd. There exists an R > 0 such that ||y−x0||2−r2

0 ≤ R
for all y ∈ K. Lemma 2.2.3 shows that the set ϕ′ of (x, r) ∈ ϕ satisfying ||y − x||2 − r2 ≤ R
for at least one y ∈ K is finite. Then any cell C((x, r), ϕ) with (x, r) ∈ ϕ \ ϕ′ does not
intersect K. Hence, the set of Laguerre cells is locally finite.

Proposition 2.2.5
Let ϕ satisfy (R1) and (R2). Then the Laguerre diagram L(ϕ) is face-to-face.

Proof:
Suppose it is not. Then there exist some cells Ci = C((xi, ri), ϕ), i = 1, . . . , n, such that
F :=

⋂

i Ci 6= ∅ is not a face of C1. This means that the affine hull G of F contains a
point z ∈ C1 which is not contained in F , say z /∈ C2. As G is contained in the radical axis
Ra((x1, r1), (x2, r2)), we have

〈z , x2 − x1〉 =
1

2

(

||x2||2 − ||x1||2 + r2
1 − r2

2

)

. (2.5)

Since z is not contained in C2, there is a point (x, r) ∈ ϕ distinct from (xi, ri), i = 1, . . . , n,
such that

〈z , x− x2〉 >
1

2

(

||x||2 − ||x2||2 + r2
2 − r2

)

.

Now z ∈ C1 yields

〈z , x− x1〉 ≤
1

2

(

||x||2 − ||x1||2 + r2
1 − r2

)

.

Both inequalities combined show

〈z , x2 − x1〉 <
1

2

(

||x2||2 − ||x1||2 + r2
1 − r2

2

)

,

contradictory to (2.5).

Suppose that a non-empty Laguerre cell C(s0, ϕ) with dimension smaller than d exists.
Then this cell is contained in the radical axis Ra(s1, s2) formed by two other cells C(s1, ϕ)
and C(s2, ϕ). This is only possible if Ra(s0, s1) = Ra(s0, s2) which means that the points
x0, x1, and x2 are contained in a line. Hence the Laguerre cells of a set ϕ in general position
are either empty or have dimension d.

Lemma 2.2.6
Assume that ϕ satisfies (R1), (R2), and (GP 1). Let 1 ≤ k ≤ d and choose k + 1 spheres
s0, . . . , sk ∈ ϕ. Further let L = L(x0, . . . , xk) be the k-dimensional linear subspace spanned
by x1 − x0, . . . , xk − x0. Then the si define a unique point z = z(s0, . . . , sk) ∈ L such
that pow(z, s0) = . . . = pow(z, sk) and G(s0, . . . , sk) equals the (d − k)-dimensional affine
subspace z + L⊥.
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Proof:
According to (2.3) G(s0, . . . , sk) is the space of solutions of the system of linear equations

〈xi − x0 , z〉 =
1

2

(

||xi||2 − ||x0||2 + r2
0 − r2

i

)

, i = 1, . . . , k. (2.6)

Condition (GP1) shows that these equations are linearly independent, hence the system has
a unique solution z in the k-dimensional space L. Further, the space of solutions of the
homogeneous system is just the (d− k)-dimensional orthogonal complement of L.

Corollary 2.2.7
Assume that ϕ satisfies (R1) and (R2) and is in general position. Then the Laguerre diagram
of ϕ is normal.

Proof:
Let F ∈ Sk(L(ϕ)), 0 ≤ k ≤ d, be a k-face of L(ϕ). Then Lemma 2.2.6 tells us that F can
be represented as F = F (s0, . . . , sd−k+1, ϕ). For 1 ≤ k ≤ d it further implies that F belongs
to exactly d− k + 1 cells of L(ϕ). For k = 0, this is a consequence of condition (GP2).

The combination of the preceding results yields the following theorem.

Theorem 2.2.8
If the set ϕ ⊂ Rd × R+ satisfies the regularity conditions (R1) and (R2) then the set of the
Laguerre cells C((x, r), ϕ), (x, r) ∈ ϕ, with non-vanishing interior is a face-to-face tessel-
lation of Rd. If the points of ϕ are further in general position then all cells of L(ϕ) have
dimension d and the Laguerre tessellation L(ϕ) is normal.

2.3 Laguerre Delaunay tessellations

We will now come to the definition of the dual of the Laguerre tessellation. However, since
the focus of this thesis is on the Laguerre tessellation itself, we will not go into detail here. In
fact, we will restrict ourselves to the summary of the most important definitions and results.
For further details we refer to Schlottmann (1993).

Definition 2.3.1
Let ϕ ⊂ Rd×R+ be a set in general position which fulfills the regularity conditions (R1) and
(R2). Then the Laguerre diagram L(ϕ) is a tessellation of Rd. For each vertex z ∈ S0(L(ϕ))
we consider the set

D(z, ϕ) := conv
{

x : (x, r) ∈ ϕ, z ∈ S0

(

C((x, r), ϕ)
)}

.

We call D(z, ϕ) the Laguerre Delaunay cell of the vertex z.

Let z ∈ S0

(

L(ϕ)
)

be a vertex of L(ϕ). Then there is a number p ∈ R such that for
(x, r) ∈ ϕ

z ∈ C((x, r), ϕ) ⇐⇒ pow(z, (x, r)) = p

and there is no (x, r) ∈ ϕ with pow(z, (x, r)) < p. Let z, z′ ∈ S0

(

L(ϕ)
)

such that z 6= z′

and D(z, ϕ) ∩ D(z′, ϕ) 6= ∅. Then, we find p, p′ ∈ R such that for each (x, r) ∈ ϕ with
x ∈ D(z, ϕ) ∩D(z′, ϕ) we have

pow(z, (x, r)) = p and pow(z′, (x, r)) = p′.
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This means x is contained in the hyperplane H defined by the equation

y ∈ H ⇐⇒ 2〈y, z − z′〉 = p′ − p+ ||z||2 − ||z′||2.

This equation reminds us of (2.3), the equation defining the radical axis of two generalized
spheres. Indeed, Schlottmann (1993) has shown that it is possible to define a set ϕ∗ of
generalized spheres in Rd such that the Delaunay tessellation of ϕ is the Laguerre tessellation
of ϕ∗. Namely, let z be a vertex of the Laguerre tessellation of ϕ. Then there are d + 1
pairs (x0, r0), . . . , (xd, rd) ∈ ϕ such that z ∈ C((xi, ri), ϕ) and a real number p(z) such that
pow(z, (xi, ri)) = p(z) for i = 0, . . . , d. Now we define

ϕ∗ :=
{(

z, p(z)
)

: z ∈ S0

(

L(ϕ)
)}

.

Theorem 2.3.2
The set ϕ∗ fulfills the regularity conditions (R1) and (R2). Every Laguerre cell of ϕ∗ is
non-empty and we have D(ϕ) = L(ϕ∗).

Proof:
Schlottmann (1993, Proposition 2)

Corollary 2.3.3
Let ϕ ⊂ Rd ×R+ be a set in general position which fulfills the regularity conditions (R1) and
(R2). Then the set

D(ϕ) :=
{

D(z, ϕ) : z ∈ S0

(

L(ϕ)
)}

is a face-to-face tessellation of Rd.

We call D(ϕ) the Laguerre Delaunay tessellation of ϕ. Since the Laguerre tessellation of
ϕ is a normal tessellation, the cells of D(ϕ) have exactly d+ 1 vertices. Hence, all k-faces of
D are k-simplices.

Remark 2.3.4
The vertices of the Delaunay tessellation are exactly those elements of ϕ whose Laguerre cell
is not empty. If we denote this set by ϕ0, this means D(ϕ) = D(ϕ0) (and L(ϕ) = L(ϕ0)).

2.4 The class of Laguerre tessellations

In this section we discuss conditions on a tessellation T of Rd which guarantee that T
can be represented as a Laguerre tessellation. Aurenhammer (1987a) has given a complete
characterization of the set of Laguerre diagrams generated by finite sets of spheres. A very
pleasing result is that each normal (finite) cell complex can be realized as a Laguerre diagram.
However, diagrams with finitely many cells necessarily contain unbounded cells, hence do
not belong to T. Here, we will formulate Aurenhammer’s results for the case of infinitely
many spheres (or cells) which then also applies to tessellations in the sense of Definition
1.5.1.

Definition 2.4.1
Consider a tessellation T = {Ci : i ∈ N} of Rd. An orthogonal dual of T is a point set
D(T ) := {xi : i ∈ N} in Rd with the following properties.
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Figure 2.3: The Laguerre Delaunay diagram (dashed) of a set of six spheres in R2. The
point generating an empty Laguerre cell does not contribute to the Delaunay diagram.

(i) Each cell Ci of T is associated with exactly one point xi ∈ D(T ) such that xi 6= xj for
i 6= j. (Duality)

(ii) For cells Ci and Cj , i 6= j, of T let Li,j denote the line connecting xi and xj . Then Li,j

is orthogonal to Ci ∩ Cj . (Orthogonality)

(iii) Any ray parallel to Li,j directed from xi to xj and intersecting both of Ci and Cj first
meets Ci. (Orientation)

Theorem 2.4.2
A tessellation T of Rd is the Laguerre tessellation of some set ϕ of generalized spheres if and
only if an orthogonal dual D(T ) of T exists.

Proof:
If T is a Laguerre tessellation of Rd, the set of cell centers of the corresponding Delaunay
tessellation yields the required orthogonal dual. Conversely, consider a tessellation T = {Ci :
i ∈ N} of Rd and assume the existence of an orthogonal dual D(T ) = {xi : i ∈ N}. We have
to show the existence of a set ϕ = {si : i ∈ N} of generalized spheres centered in the points
xi ∈ D(T ) such that T = L(ϕ).

We will write si ∼ sj if Ci ⊆ H(si, sj) and Cj ⊆ H(sj, si) for the cells Ci and Cj

belonging to xi and xj , respectively. Then, T = L(ϕ) is equivalent to si ∼ sj for si, sj ∈ ϕ
with i 6= j. Sort the points xi in increasing distance to the origin, where points with equal
distance are ordered lexicographically. We will now iteratively assign radii ri to the points
xi such that T is the Laguerre tessellation of the set ϕ = {si : si = s(xi, ri), i ∈ N}. The
radius r1 can be chosen arbitrarily. Consider three cells Ci, Cj, and Cm, i < j < m, such that
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F := Ci∩Cj∩Cm 6= ∅ and assume that a radius ri has already been constructed. A result by
Aurenhammer (1987a, Fact 1) shows that for any radius ri of si and for any cell Cj distinct
from Ci there exists a generalized sphere sj such that sj ∼ si. Hence, we find generalized
spheres sj and sm such that sj ∼ si and sm ∼ si. Then F ⊂ Ra(si, sj)∩Ra(si, sm). Since the
radical axes of the three spheres si, sj, and sm are not parallel, they intersect in a common
(d − 2)-dimensional subspace of Rd. Therefore, we also have F ⊂ Ra(sj, sm). Obviously,
F ⊂ Cj ∩ Cm. Since both Cj ∩ Cm and Ra(sj, sm) are orthogonal to the line joining xj and
xm and contain F , we conclude Cj ∩ Cm ⊂ Ra(sj , sm). Further, the orientation of D(T )
yields Cj ⊂ H(sj, sm). This implies transitivity of the relation ∼ for F 6= ∅ which allows the
construction of a set ϕ := {si : i ∈ N} of generalized spheres such that T = L(ϕ).

In order to give the proof of the following theorem, we first fix some notations. Let
T = {Ci : i ∈ N} be a normal tessellation of Rd. For i ≥ d define Qi = ∪i

j=1Cj and let v be
a vertex in the boundary of Qi. Denote by e1, . . . , es the edges in ∂Qi having v as a vertex.
We say that Qi is concave at v if the convex hull conv{e1, . . . , es} is not contained in Qi.
Since T is normal, concavity of Qi implies the existence of a unique cell C of T containing
all faces F in ∂Qi with v ∈ F . This cell is called proper with respect to Qi.

Theorem 2.4.3
Every normal tessellation of Rd for d ≥ 3 is a Laguerre tessellation.

Proof:
Let T be a normal tessellation of Rd with d ≥ 3. We will introduce a certain ordering
C1, C2, . . . of the cells of T which can then be used for an iterative construction of an or-
thogonal dual D(T ) = {x1, x2, . . .}.

Choose C1, . . . , Cd such that they share a common edge. A set of points x1, . . . , xd that
satisfies duality, orthogonality and orientation can easily be found. For i > d choose Ci

proper with respect to Qi−1 such that Qi is simply connected. For j < i denote by Fj,i the
face Ci ∩ Cj (if it exists) and by Lj,i the line orthogonal to Fj,i through xj . So we have
to construct a suitable point xi ∈ D(T ) using the points {x1, . . . , xi−1} ⊂ D(T ). Define
Fi := Qi−1 ∩ Ci and define an inner vertex of Fi as a vertex in Fi \ ∂Qi.

If we can show that
⋂

Fj,i∈Fi

Lj,i is a single point we can define

xi :=
⋂

Fj,i∈Fi

Lj,i.

This implies orthogonality of the set Xi := {x1, . . . , xi}. Duality and orientation of Si follow
from the convexity of Ci.

Let v and v′ be two inner vertices joined by the edge e. Aurenhammer (1987a, Claim 1)
shows that for any inner vertex v of Fi g :=

⋂

v∈Fj,i
Lj,i is a single point. Hence, there exist

unique points p =
⋂

v∈Fj,i
Lj,i and p′ =

⋂

v′∈Ft,i
Lt,i. Further, by Aurenhammer (1987a, Claim

2) the graph consisting of the inner vertices of Fi and the edges joining them is connected.
Therefore, it is sufficient to show that for any such v and v′ the points p and p′ coincide.
Now the edge e is contained in exactly (d − 1) 2-faces of Fi, thus j = t occurs for (d − 1)
values of j. Since d ≥ 3, the intersection point p = p′ is uniquely determined by the (d− 1)
lines corresponding to these indices.

Repeating this construction, the set
⋃

iXi yields an orthogonal dual D(T ) of T . Now
Theorem 2.4.2 tells us that T is a Laguerre tessellation.
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Remarks 2.4.4

(i) The proof of Theorem 2.4.3 does not only yield the existence of a set of generators
but also a way to construct it. This construction, however, does not lead to a unique
solution.

(ii) A counter-example to Theorem 2.4.3 for the case d = 2 is given in Aurenhammer
(1987a).



Chapter 3

Poisson Laguerre tessellations

Voronoi and generalized Voronoi tessellations generated by stationary point processes are
used in various fields of application and have therefore raised the interest of many researchers
for a long time. The appearance of such tessellations is mainly governed by the distribution
of the geometric characteristics of their typical cells.

The easiest and most well-known model is the Voronoi tessellation generated by a sta-
tionary Poisson point process on Rd. Fundamental properties of the Poisson process such as
the Slivnyak theorem or the formula for the generating functional make this model tractable
for the analytical derivation of mean values and even distribution functions of several char-
acteristics of its typical cell. First results for mean values have been provided by Meijering
(1953), Gilbert (1962), and Miles (1971, 1972). A derivation of these results using methods
from Palm theory can be found in the work of Møller (1989, 1992). Later also formulas for
several distribution functions became available. For example, Muche and Schlather studied
the edge length distribution function (Muche, 1996b, 2005; Schlather, 2000), Muche and
Stoyan (1992) considered contact and chord length distributions, and Calka (2003b) studied
the distribution of the number of faces and of the area of a planar Voronoi tessellation. A
summary of results can be found in the book by Okabe et al. (2000). Recently, Baumstark
and Last (2007) provided very general results for distributions of the generators of the typical
k-face of a Poisson Voronoi tessellation.

Few analytic results have been obtained for generalized random Voronoi tessellations.
Several mean value formulas for the Johnson-Mehl tessellation have been derived by Møller
(1992). To the best of our knowledge, the only investigation of random Laguerre tessellations
is an unpublished manuscript of Zuyev (2004).

3.1 Existence of the Poisson Laguerre tessellation

In this chapter we study the Laguerre tessellation generated by a stationary marked Poisson
process. As in Section 1.4 we will work in the canonical setting, i.e. we choose the probability
space (Ω,A,P) = (N(R+),N (R+),P), where P is the distribution of a stationary marked
Poisson process Φ on Rd with intensity λ > 0 and mark space R+. The marks are supposed
to be independently identically distributed with distribution F. We will always interpret the
set of generators as a set of spheres in Rd, in particular we will work with a distribution of
(non-negative) radii of the spheres rather than a distribution of weights.
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The definition of a point process implies that we are working with a locally finite set
of generators. While this already guarantees the existence of the Poisson Voronoi tessel-
lation, the existence of the Poisson Laguerre tessellation requires some restrictions on the
distribution of radii.

Definition 3.1.1
For ϕ ∈ N(R+) and t ∈ R we define

ϕt := ϕ ∩
{

(x, r) ∈ Rd × R+ : pow
(

0, (x, r)
)

> t
}

. (3.1)

Since Φ is stationary, the distribution of Φt is not changed when replacing the origin by an
arbitrary point y ∈ Rd in (3.1).

Proposition 3.1.2 (Zuyev (2004))
Choose y ∈ Rd and write

p(t) := P
(

pow(y, (x, r)) > t, (x, r) ∈ Φ
)

= P(Φt = Φ), t ∈ R, (3.2)

for the probability that the power from y to each point of Φ exceeds t. Then p(t) does not
depend on y and is given by

p(t) = exp
(

− λωd

∞
∫

0

(

[t+ r2]+
)

d
2 F(dr)

)

where t+ := max(t, 0).

Proof:
Let y ∈ Rd be an arbitrary point. Using (1.4) we obtain

p(t) = E





∏

(x,r)∈Φ

1I{pow(y, (x, r)) > t}





= exp
(

− λ

∞
∫

0

∫

Rd

1I
{

pow
(

y, (x, r)
)

≤ t
}

dxF(dr)
)

= exp
(

− λ

∞
∫

0

∫

Rd

1I
{

||y − x||2 ≤ t+ r2
}

dxF(dr)
)

= exp
(

− λωd

∞
∫

0

(

[t+ r2]+
)

d
2 F(dr)

)

.

Remark 3.1.3
For any point y ∈ Rd the property pow(y, (x, r)) > t for all (x, r) ∈ Φ is equivalent to
y 6∈ b

(

x,
√

[t+ r2]+
)

for all (x, r) ∈ Φ. Hence, 1− p(t) is the volume fraction of the Boolean

model of balls centered in x and with radii
√

[t+ r2]+, (x, r) ∈ Φ.
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Proposition 3.1.4 (Zuyev (2004))
Let Φ be a stationary marked Poisson process on Rd with intensity λ > 0 and mark distribu-
tion F. Suppose R is a random variable with distribution F. Then the following statements
are equivalent:

(i) The Laguerre tessellation of Φ exists, i.e. min
(x,r)∈Φ

pow(y, (x, r)) almost surely exists for

all y ∈ Rd.

(ii) We have

E
[

Rd
]

<∞. (3.3)

Proof:
Fix a point y ∈ Rd. If (ii) holds, we have

P
(

inf
(x,r)∈Φ

pow(y, (x, r)) = −∞
)

= lim
t→−∞

P
(

inf
(x,r)∈Φ

pow(y, (x, r)) < t
)

= lim
t→−∞

(1 − p(t)) = 0.

This means that for each y ∈ Rd we have at least one (x, r) ∈ Φ minimizing pow(y, (x, r)).
Hence, y ∈ C((x, r),Φ). On the other hand, E[Rd] = ∞ implies p(t) = 0 for each t ∈ R and
therefore inf(x,r)∈Φ pow(y, (x, r)) = −∞ with probability 1.

From now on we will assume that the mark distribution F of Φ satisfies (3.3). From the
theory of Boolean models (see Hall, 1988, Chapter 4.2) we see that Proposition 3.1.4 can be
extended by the following equivalent statements.

(iii) For each point of y ∈ Rd the set {(x, r) ∈ Φ : y ∈ b(x, r)} is almost surely finite.

(iv) For each bounded set B ⊂ Rd the set {(x, r) ∈ Φ : b(x, r) ∩ B 6= ∅} is almost surely
finite.

Therefore, Proposition 3.1.4 is in line with regularity condition (R1). Regularity condition
(R2) is a consequence of the stationarity of Φ (Schneider and Weil, 2000, Satz 1.3.5). So it
remains to check whether the general position conditions (GP1) and (GP2) are satisfied in
this context.

Proposition 3.1.5
Φ almost surely fulfills the general position conditions (GP1) and (GP2).

Proof:
It is well known (and can be shown by arguments similar to the ones below) that the points
of a Poisson point process are almost surely in general quadratic position (Møller, 1992,
Proposition 4.1.2). Therefore, Φ conforms to condition (GP1). By Lemma 2.2.6, any d+1
points (x0, r0), . . . , (xd, rd) in Φ define a unique point z := z

(

(x0, r0), . . . , (xd, rd)
)

∈ Rd such
that

pow(z, (x0, r0)) = . . . = pow(z, (xd, rd)) =: ρ
(

(x0, r0), . . . , (xd, rd)
)

.
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The expected number of points in Rd having equal power to at least (d + 2) points of Φ is
given by

1

(d+ 2)!
E





∑ 6=

s0,...,sd+1∈Φ

1I{pow(sd+1, z(s0, . . . , sd)) = ρ(s0, . . . , sd)}





= λd+2

∞
∫

0

. . .

∞
∫

0

∫

Rd

. . .

∫

Rd

∞
∫

0

∫

Rd

1I
{

||xd+1 − z
(

(x0, r0), . . . , (xd, rd)
)

||2 − r2
d+1 = ρ

(

(x0, r0), . . . , (xd, rd)
)}

dxd+1 F(drd+1)

dx0 . . . dxd F(dr0) . . .F(drd)

The inner integral is of the form
∫

Rd

1I {||x− z||2 = c} dx with fixed z ∈ Rd and c ∈ R, and

therefore equals 0. Hence, regularity condition (GP2) holds as well.

This shows that the Laguerre tessellation of Φ is a tessellation of Rd which is almost
surely normal and face-to-face.

Remark 3.1.6
Ash and Bolker (1986, Theorem 18) show, that a Laguerre tessellation generated by a marked
Poisson process on R2 almost surely has no vertex which belongs to more than 3 cells.
Their proof uses differential geometric methods based on the Transversality Theorem. A
generalization to higher dimensions seems straightforward.

3.2 Palm distributions

3.2.1 Notation

As we have seen in Section 1.6, a random tessellation gives rise to several random measures.
In this section we consider random measures induced by a Poisson Laguerre tessellation
L(Φ), namely the measures Mk on Rd introduced in (1.5) which are defined via

Mk(·) =
∑

S∈Sk(L(Φ))

Hk(S ∩ ·), k ∈ {0, . . . , d}.

The intensity of Mk will be denoted by µk.
The Palm measure Qk of Mk is a measure on N(R+) given by

Qk(·) = E

[

∫

[0,1]d

1I{Φ − y ∈ ·}Mk(dy)
]

.

We will prove later that µk < ∞ for k = 0, . . . , d − 1. Hence, we can define the Palm
probability measure of Mk as Q0

k := µ−1
k Qk. With respect to this measure the origin 0 ∈ Rd

is almost surely contained in a k-face of L(Φ). Integration with respect to Qk and Q0
k will

be denoted by EMk
and E0

Mk
, respectively.
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For ϕ ∈ N(R+) let F ∈ Sk

(

L(ϕ)
)

be a k-face of L(ϕ) for k ∈ {0, . . . , d}. Then there are
m = d− k points s0 = (x0, r0), . . . , sm = (xm, rm) in ϕ which satisfy F = F (s0, . . . , sm, ϕ).

Let x ∈ Rd be contained in the relative interior of the face F and define

Pk(x, ϕ) := pow(x, s0) = . . . = pow(x, sm).

The points s0, . . . , sm ∈ ϕ are uniquely determined if

ϕ
(

{

(y, r) : pow
(

x, (y, r)
)

= Pk(x, ϕ)
}

)

= m+ 1, (3.4)

which is always the case if ϕ is in general position. In this case, the points x0, . . . , xm are
contained in a (d−k)-plane E. Then for k ≤ d−1 there is a unique point z(s0, . . . , sm) ∈ E,
such that

pow
(

z(s0, . . . , sm), s0

)

= . . . = pow
(

z(s0, . . . , sm), sm

)

. (3.5)

For k = d we have E = {x0} and define z(s0) := x0. Thus, we may further define

Sk,i(x, ϕ) :=
(

Xk,i(x, ϕ), Rk,i(x, ϕ)
)

:= (xi, ri), i = 0, . . . , m,

Zk(x, ϕ) := z(s0, . . . , sm),
(3.6)

where the order of Sk,i(x, ϕ) is determined by the lexicographic order of x0, . . . , xm. For
k = 0 we always have Zk(x, ϕ) = x. If (3.4) does not hold we define Sk,i(x, ϕ) := (x, 0)
and Zk(x, ϕ) := x. For each point x ∈ Rd which is not contained in the relative interior
of a k-face F ∈ Sk

(

L(ϕ)
)

, let Pk(x, ϕ) := 0, Sk,0(x, ϕ) = . . . = Sk,m(x, ϕ) := (x, 0), and
Zk(x, ϕ) := x.

The power of Zk(x, ϕ) to the generators of F is denoted by

P ′
k(x, ϕ) := pow

(

Zk(x, ϕ), Sk,0(x, ϕ)
)

.

Then for k ≤ d − 1 the distance ||Xk,i(x, ϕ) − Zk(x, ϕ)|| =
√

P ′
k(x, ϕ) +Rk,i(x, ϕ)2 is Qk-

almost everywhere a positive number and we may further define the unit vectors

Uk,i(x, ϕ) :=
Xk,i(x, ϕ) − Zk(x, ϕ)
√

P ′
k(x, ϕ) +Rk,i(x, ϕ)2

, i = 0, . . . , m.

For k = d we have P ′
d(x, ϕ) = −Rd,0(x, ϕ)2 and define Ud,0(x, ϕ) := 0.

If k ≥ 1 we fix a unit vector u ∈ Sd−1 ∩E⊥ and define

P ′′
k (x, ϕ) := ||x− Zk(x, ϕ)||2

and

Uk(x, ϕ) :=

{

Zk(x,ϕ)−x√
P ′′

k
(x,ϕ)

, if P ′′
k (x, ϕ) > 0,

u, otherwise.

For any x ∈ Rd which is not contained in the relative interior of a k-face these definitions yield
P ′

k(x, ϕ) = P ′′
k (x, ϕ) = 0 and we set Uk,0(x, ϕ) = . . . = Uk,m(x, ϕ) := ud−k and Uk(x, ϕ) := uk

with arbitrary ud−k ∈ Sd−1 ∩ E and uk ∈ Sd−1 ∩E⊥. If k = 0 we define Uk(x, ϕ) := 0.
Both x and Zk(x, ϕ) are contained in the affine hull of the face F , which is orthogonal to

the linear hull of the points Xk,0(x, ϕ), . . . , Xk,m(x, ϕ) (Lemma 2.2.6). Hence, we have

Pk(x, ϕ) = P ′
k(x, ϕ) + P ′′

k (x, ϕ)
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and the mappings defined above show the following behavior with respect to translations

Zk(x, ϕ) = Zk(0, ϕ− x) + x,

Pk(x, ϕ) = Pk(0, ϕ− x), P ′
k(x, ϕ) = P ′

k(0, ϕ− x), P ′′
k (x, ϕ) = P ′′

k (0, ϕ− x),

Uk(x, ϕ) = Uk(0, ϕ− x), and Uk,i(x, ϕ) = Uk,i(0, ϕ− x),

for each ϕ ∈ N(R+), x ∈ Rd, and i = 0, . . . , m.
With respect to the measure Qk the origin is almost everywhere contained in a unique k-

face Fk(0) := F
(

Sk,0(0,Φ), . . . , Sk,m(0,Φ),Φ
)

∈ Sk

(

L(Φ)
)

. Therefore, the following random
variables are of special interest:

• Zk := Zk(0,Φ), the center of the face Fk(0),

• Pk := Pk(0,Φ), the power of the origin to the generators of Fk(0),

• P ′
k := P ′

k(0,Φ), the power of Zk to the generators of Fk(0),

• P ′′
k := P ′′

k (0,Φ), the squared distance of Zk to the origin,

• Uk,i := Uk,i(0,Φ), i = 0, . . . , m, the directions from Zk to the generators,

• Rk,i := Rk,i(0,Φ), i = 0, . . . , m, the weights of the generators,

• Uk := Uk(0,Φ), the direction from the origin to Zk.

For abbreviation and in order to neglect the enumeration we define

Ψk :=
{

(Uk,0, Rk,0), . . . , (Uk,m, Rk,m)
}

.

An illustration of these notations for d = 2 and k = 1 is given in Figure 3.1.

3.2.2 A complete description of Q0

k

For 0 < m ≤ d and x0, . . . , xm ∈ Rd let ∆m(x0, . . . , xm) be the m-dimensional volume of the
convex hull of x0, . . . , xm in Rd. Further, write Ld

m and Ed
m for the set of all m-dimensional

linear and affine subspaces of Rd, respectively.

Theorem 3.2.1
There exist unique invariant measures νm on Ld

m and µm on Ed
m such that νm(Ld

m) = 1 and

∫

Ed
m

f(E)µm(dE) =

∫

Ld
m

∫

L⊥

f(L+ y)Hd−m(dy) νm(dL) =

∫

SOd

∫

L⊥
0

f
(

ϑ(y + L0)
)

Hd−m(dy) ν(dϑ),

where f : Ed
m → [0,∞) is a measurable function and L0 ∈ Ld

m is a fixed linear subspace of
Rd.

Proof:
(Schneider and Weil, 1992, Satz 1.3.3, Satz 1.3.4, and p. 29).
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√
P ′

R0

√
P

R1

√
P ′′

U1

U0

U

X0

X1

0Z

Figure 3.1: Illustration of the notation for d = 2 and k = 1. The subscript 1 is omitted in
the labels.

Theorem 3.2.2 (Blaschke-Petkantschin formula)
Suppose 1 ≤ m ≤ d and f : (Rd)m+1 → [0,∞) is a measurable function. Then

∫

Rd

. . .

∫

Rd

f(x0, . . . , xm) dx0 . . . dxm

= cdm(m!)d−m

∫

Ed
m

∫

E

. . .

∫

E

f(x0, . . . , xm)∆m(x0, . . . , xm)d−mHm(dx0) . . .Hm(dxm)µm(dE),

where cdm =
σd−m+1...σd

σ1...σm
.

Proof:
(Schneider and Weil, 1992, Satz 6.1.5.).

Finally, we prove a generalized version of a transformation formula given in Schneider
and Weil (2000).

Lemma 3.2.3
Let L be a k-dimensional linear subspace of Rd and f : Lk+1 → [0,∞) a measurable function.
Further, consider strictly monotonic increasing, differentiable functions ri : [a,∞) → [0,∞),
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i = 0, . . . , k, with an arbitrary real number a. Then we have
∫

L

. . .

∫

L

f(x0, . . . , xk)dx0 . . . dxk

= k!

∫

L

∞
∫

a

∫

Sd−1∩L

. . .

∫

Sd−1∩L

f
(

y + r0(t)u0, . . . , y + rk(t)uk

)

k
∏

i=0

(

ri(t)
k−1ṙi(t)

)

∆k

(

1

ṙ0(t)
u0, . . . ,

1

ṙk(t)
uk

)

SL(du0) . . .SL(duk) dtHk(dy),

where SL is the surface measure on the k-dimensional sphere Sd−1∩L and ṙi is the derivative
of the function ri, i = 0, . . . , k.

Proof:
We will only prove this lemma for L = Rk ⊂ Rd. The assertion is then obtained by
introducing an appropriate coordinate system on L. We define a mapping

T : Rk × [a,∞) × Sk−1 × . . .× Sk−1 → (Rk)k+1

(y, t, u0, . . . , uk) 7→







y + r0(t)u0
...

y + rk(t)uk






.

It is easy to see that T is injective. We have to show that the determinant of the Jacobian
of T is given by

D := D(y, t, u0, . . . , uk) = k!
k
∏

i=0

(

ri(t)
k−1ṙi(t)

)

∆k

(

1

ṙ0(t)
u0, . . . ,

1

ṙk(t)
uk

)

.

Assume that the unit vectors ui are given in spherical coordinates and let u̇i denote the
derivative of ui with respect to these coordinates. Writing Ek for the k-dimensional unit
matrix we obtain

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ek ṙ0(t)u0 r0(t)u̇0 0 · · · 0
Ek ṙ1(t)u1 0 r1(t)u̇1 · · · 0
...

...
...

...
. . .

...
Ek ṙk(t)uk 0 0 · · · rk(t)u̇k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For D̃ =
(

k
∏

i=0

1
ri(t)

)k−1
D this leads to

D̃2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ek Ek · · · Ek

ṙ0(t)u
t
0 ṙ1(t)u

t
1 · · · ṙk(t)u

t
k

u̇t
0 0 · · · 0

0 u̇t
1 · · · 0

...
...

. . .
...

0 0 · · · u̇t
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ek ṙ0(t)u0 u̇0 0 · · · 0
Ek ṙ1(t)u1 0 u̇1 · · · 0
...

...
...

...
. . .

...
Ek ṙk(t)uk 0 0 · · · u̇k

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k + 1)Ek

∑

ṙi(t)ui u̇0 u̇1 · · · u̇k
∑

ṙi(t)u
t
i

∑

ṙi(t)
2 0 0 · · · 0

u̇t
0 0 Ek−1 0 · · · 0
u̇t

1 0 0 Ek−1 · · · 0
...

...
...

. . .
...

u̇t
k 0 0 0 · · · Ek−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Now we will use the formula |A| = |B||A22|, where

A =

(

A11 A12

A21 A22

)

and B = A11 −A12A
−1
22 A21,

if the matrix A is symmetric and A−1
22 exists. In our case we have A22 = E(k+1)(k−1). Further

note that Ek − u̇iu̇
t
i = uiu

t
i as the matrix uiu̇i is orthogonal. Using this relation we obtain

D̃2 =

∣

∣

∣

∣

(k + 1)Ek −
∑

u̇iu̇
t
i

∑

ṙi(t)ui
∑

ṙi(t)u
t
i

∑

ṙi(t)
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

uiu
t
i

∑

ṙi(t)ui
∑

ṙi(t)u
t
i

∑

ṙi(t)
2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

u0 · · · uk

ṙ0(t) · · · ṙk(t)

)







ut
0 ṙ0(t)
...

...
ut

k ṙk(t)







∣

∣

∣

∣

∣

∣

∣

= (k!)2

k
∏

i=0

ṙi(t)
2∆2

k

(

1

ṙ0(t)
u0, . . . ,

1

ṙk(t)
uk

)

,

which completes the proof.

Let Φ be the (marked) point process of generators of a random Laguerre tessellation and
recall that

Φt = Φ ∩
{

(x, r) : pow
(

0, (x, r)
)

> t
}

.

With respect to Qk, 1 ≤ k ≤ d− 1, the point process Φ is determined by the following tuple
of random variables

(ΦPk , P ′
k, P

′′
k ,Ψk, Uk) (3.7)

which have been defined in Section 3.2.1. In fact we have for any measurable function h on
Rd × R+ that

∑

(x,r)∈Φ

h(x, r) =
∑

(x,r)∈ΦPk

h(x, r) +
∑

(u,r)∈Ψk

h
(

(P ′
k + r2)

1
2u+ P

′′ 1
2

k Uk

)

. (3.8)

For k = 0 the decomposition simplifies to (ΦP0 , P0,Ψ0). Finally, for k = d we have Qd =
Q0

d = P and the corresponding representation is (ΦPd , Pd, Ud, Rd,0).

Theorem 3.2.4
Let Φ be a stationary marked Poisson process with intensity λ > 0 and mark distribution F

with property (3.3). Denote integration with respect to the Palm measure Qk by EMk
and let
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h be a non-negative measurable function defined on a suitable domain. For 1 ≤ k ≤ d − 1
and m = d− k we have

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

Sd−1∩L⊥

∫

SOd

E
[

h(Φt+s, t, s,
{

(ϑu0, r0), . . . , (ϑum, rm)
}

, ϑu)
]

ν(dϑ) SL⊥(du)

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum)ds dtF(dr0) . . .F(drm).

For k = 0 the following formula holds

EM0

[

h(ΦP0 , P0,Ψ0)
]

=
λd+1

2(d+ 1)

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

d
∏

i=0

(t+ r2
i )

d−2
2 p(t)

∫

Sd−1

. . .

∫

Sd−1

E
[

h(Φt, t,
{

(u0, r0), . . . , (ud, rd)
}

)
]

∆d

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

d)
1
2ud

)

S(du0) . . .S(dud) dtF(dr0) . . .F(drd).

Finally, for k = d the representation with respect to (ΦPd, Pd, Ud, Rd,0) reads

EMd

[

h(ΦPd , Pd, Ud, Rd,0)
]

=
λ

2

∞
∫

0

∞
∫

−r2
0

p(t)(t+ r2
0)

d−2
2

∫

Sd−1

E
[

h(Φt, t, u, r0)
]

S(du) dtF(dr0).

Proof:
We will concentrate on the case 1 ≤ k ≤ d − 1. The proofs for the cases k = 0 and k = d
work similarly. Let h1 : N → [0,∞) be a measurable function defined by

h1(ϕ) := h
(

ϕPk(0,ϕ), P ′
k(0, ϕ), P ′′

k (0, ϕ),Ψk(0, ϕ), Uk(0, ϕ)
)

and write m := d− k. Using the definition of Mk and Theorem 1.3.8 we get

EMk

[

h1(Φ)
]

= E







∫

[0,1]d

h1(Φ − y)Mk(dy)







=
1

(m+ 1)!
E





∑ 6=

s0,...,sm∈Φ

∫

1I
{

y ∈ [0, 1]d ∩ F
(

s0, . . . , sm,Φ
)}

h1(Φ − y)Hk(dy)





=
λm+1

(m+ 1)!

∞
∫

0

. . .

∞
∫

0

∫

Rd

. . .

∫

Rd

∫

E

[

1I
{

y ∈ [0, 1]d ∩ F
(

(x0, r0), . . . , (xm, rm),Φ
)}

h1

(

[

Φ ∪
{

(x0, r0), . . . , (xm, rm)
}]

− y
)]

Hk(dy) dx0 . . . dxmF(dr0) . . .F(drm).
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Using the decomposition of Φ we have

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

(m+ 1)!

∞
∫

0

. . .

∞
∫

0

∫

Rd

. . .

∫

Rd

∫

E

[

1I
{

y ∈ [0, 1]d ∩ F
(

(x0, r0), . . . , (xm, rm),Φ
)}

h
(

(Φ − y)Pk(y,Φ∪{(x0,r0),...,(xm,rm)}), P ′
k

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

,

P ′′
k

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

,Ψk

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

,

Uk

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

)]

Hk(dy) dx0 . . . dxmF(dr0) . . .F(drm).

If x0, . . . , xm are in general position and y ∈ F
(

(x0, r0), . . . , (xm, rm),Φ
)

, we have

Pk

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

= pow
(

y, (x0, r0)
)

,

P ′
k

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

= pow
(

z
(

(x0, r0), . . . , (xm, rm)
)

, (x0, r0)
)

,

P ′′
k

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

= ||z
(

(x0, r0), . . . , (xm, rm)
)

− y||2,
Ψk

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

= Ψ̃k

(

(x0, r0), . . . , (xm, rm)
)

and

Uk

(

y,Φ ∪
{

(x0, r0), . . . , (xm, rm)
})

= Ũk

(

y, (x0, r0), . . . , (xm, rm)
)

,

where

Ψ̃k(s0, . . . , sm) :=

{(

x0 − z(s0, . . . , sm)

||x0 − z(s0, . . . , sm)|| , r0
)

, . . . ,

(

xm − z(s0, . . . , sm)

||xm − z(s0, . . . , sm)|| , rm

)}

and

Ũk(y, s0, . . . , sm) :=
z(s0, . . . , sm) − y

||z(s0, . . . , sm) − y|| .

If z
(

(x0, r0), . . . , (xm, rm)
)

= y we define Ũk

(

y, (x0, r0), . . . , (xm, rm)
)

to be some fixed unit
vector. If x0, . . . , xm are not in general position, all functions can be defined arbitrarily.
Thus, we get

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

(m+ 1)!

∞
∫

0

. . .

∞
∫

0

∫

Rd

. . .

∫

Rd

∫

E

[

1I{y ∈ [0, 1]d ∩ F
(

(x0, r0), . . . , (xm, rm),Φ
)

}

h
(

(Φ − y)pow(y,(x0,r0)), pow
(

z
(

(x0, r0), . . . , (xm, rm)
)

, (x0, r0)
)

,

∣

∣

∣

∣z
(

(x0, r0), . . . , (xm, rm)
)

− y
∣

∣

∣

∣

2
, Ψ̃k

(

(x0, r0), . . . , (xm, rm)
)

, Ũk

(

y, (x0, r0), . . . , (xm, rm)
)

)]

Hk(dy) dx0 . . . dxm F(dr0) . . .F(drm).
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Since Φ is stationary and using (3.2) we have

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

(m+ 1)!

∞
∫

0

. . .

∞
∫

0

∫

Rd

. . .

∫

Rd

∫

1I
{

y ∈ [0, 1]d ∩G
(

(x0, r0), . . . , (xm, rm)
)}

p
(

pow
(

y, (x0, r0)
))

E

[

h
(

Φpow(y,(x0,r0)), pow
(

z
(

(x0, r0), . . . , (xm, rm)
)

, (x0, r0)
)

,
∣

∣

∣

∣z
(

(x0, r0), . . . , (xm, rm)
)

− y
∣

∣

∣

∣

2
,

Ψ̃k

(

(x0, r0), . . . , (xm, rm)
)

, Ũk

(

y, (x0, r0), . . . , (xm, rm)
)

)]

Hk(dy) dx0 . . . dxm

F(dr0) . . .F(drm).

Using the affine Blaschke-Petkantschin formula (Theorem 3.2.2) we obtain

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

(m+ 1)!
cdm(m!)k

∞
∫

0

. . .

∞
∫

0

∫

Ed
m

∫

E

. . .

∫

E

∫

1I
{

y ∈ [0, 1]d ∩G
(

(x0, r0), . . . , (xm, rm)
)}

E

[

h
(

Φpow(y,(x0,r0)), pow
(

z
(

(x0, r0), . . . , (xm, rm)
)

, (x0, r0)
)

,
∣

∣

∣

∣z
(

(x0, r0), . . . , (xm, rm)
)

− y
∣

∣

∣

∣

2
,

Ψ̃k

(

(x0, r0), . . . , (xm, rm)
)

, Ũk

(

y, (x0, r0), . . . , (xm, rm)
)

)]

p
(

pow
(

y, (x0, r0)
))

∆k
m(x0, . . . , xm)Hk(dy) Hm(dx0) . . .Hm(dxm)µm(dE) F(dr0) . . .F(drm).

We fix a subspace L ∈ Ld
m and apply Theorem 3.2.1. Since G

(

(x+x0, r0), . . . , (x+xm, rm)
)

=
x+G

(

(x0, r0), . . . , (xm, rm)
)

and z(x + x0, . . . , x+ xm) = x+ z(x0, . . . , xm), we get

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

(m+ 1)!
cdm(m!)k

∞
∫

0

. . .

∞
∫

0

∫

SOd

∫

ϑL⊥

∫

ϑL

. . .

∫

ϑL

∫

p
(

pow
(

y, (x+ x0, r0)
))

∆k
m(x0, . . . , xm)

1I
{

y ∈ [0, 1]d ∩ x+ z
(

(x0, r0), . . . , (xm, rm)
)

+ ϑL⊥}E

[

h
(

Φpow(y,(x+x0,r0)),

pow
(

z
(

(x0, r0), . . . , (xm, rm)
)

, (x0, r0)
)

,
∣

∣

∣

∣x+ z
(

(x0, r0), . . . , (xm, rm)
)

− y
∣

∣

∣

∣

2
,

Ψ̃k

(

(x0, r0), . . . , (xm, rm)
)

, Ũk

(

y, (x+ x0, r0), . . . , (x+ xm, rm)
)

)]

Hk(dy)

Hm(dx0) . . .Hm(dxm)Hk(dx) ν(dϑ) F(dr0) . . .F(drm).

Now the change of coordinates introduced in Lemma 3.2.3 with z = z(s0, . . . , sm), t =

pow(z, s0) and ri(t) = (t+ r2
i )

1
2 yields

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

2(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∫

SOd

∫

ϑL⊥

∫

ϑL

∫

p
(

t+ ||x+ z − y||2
)
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1I
{

y ∈ [0, 1]d ∩ x+ z + ϑL⊥}
∫

Sd−1∩ϑL

. . .

∫

Sd−1∩ϑL

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

E

[

h
(

Φt+||x+z−y||2, t, ||x+ z − y||2,
{

(u0, r0), . . . , (um, rm)
}

,
x+ z − y

||x+ z − y||
)]

SL(du0) . . .SL(dum)Hk(dy)Hm(dz)Hk(dx)ν(dϑ) dtF(dr0) . . .F(drm).

Now substitute (u0, . . . , um, z, x) by (ϑu0, . . . , ϑum, ϑz, ϑx) and use that ∆m(·) and Hi(·) are
invariant under rotations. This yields

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

2(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∫

SOd

∫

L⊥

∫

L

∫

p
(

t+ ||ϑ(x+ z) − y||2
)

1I
{

y ∈ [0, 1]d ∩ ϑ(x+ z + L⊥)
}

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

E

[

h
(

Φt+||ϑ(x+z)−y||2 , t, ||ϑ(x+ z) − y||2,
{

(ϑu0, r0), . . . , (ϑum, rm)
}

,
ϑ(x+ z) − y

||ϑ(x+ z) − y||
)]

SL(du0) . . .SL(dum)Hk(dy)Hm(dz)Hk(dx) ν(dϑ) dtF(dr0) . . .F(drm).

By the change of variables y0 := y − ϑ(x+ z) ∈ ϑL⊥ we get

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

2(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∫

SOd

∫

L⊥

∫

L

∫

p
(

t+ ||y0||2
)

1I
{

y0 + ϑ(x+ z) ∈ [0, 1]d ∩ ϑ(x+ z + L⊥)
}

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

E

[

h
(

Φt+||y0||2, t, ||y0||2,
{

(ϑu0, r0), . . . , (ϑum, rm)
}

,
−y0

||y0||
)]

SL(du0) . . .SL(dum)Hk(dy0)

Hm(dz)Hk(dx)ν(dϑ) dtF(dr0) . . .F(drm).

For fixed y0 ∈ ϑL⊥ we have

∫

L⊥

∫

L

1I
{

y0 + ϑ(x+ z) ∈ [0, 1]d ∩ ϑ(x+ z + L⊥)
}

Hm(dz)Hk(dx)

=

∫

L⊥

∫

L

1I{y0 + x+ z ∈ [0, 1]d}Hm(dz)Hk(dx) = 1.
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Therefore, replacing −y0 by ϑy0 yields

EMk

[

h(ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

2(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∫

L⊥

p
(

t+ ||y0||2
)

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

SOd

E

[

h
(

Φt+||y0||2, t, ||y0||2,
{

(ϑu0, r0), . . . , (ϑum, rm)
}

,
ϑy0

||y0||
)]

ν(dϑ)

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum)Hk(dy0) dtF(dr0) . . .F(drm),

which, introducing spherical coordinates y0 = s
1
2u in L⊥, reads

EMk

[

h
(

ΦPk , P ′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

SOd

∫

Sd−1∩L⊥

E

[

h
(

Φt+s, t, s,
{

(ϑu0, r0), . . . , (ϑum, rm)
}

, ϑu
)

]

SL⊥(du)ν(dϑ)

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum)ds dtF(dr0) . . .F(drm)

Definition 3.2.5
For w0, . . . , wm ≥ 0 define

Vm,k(w0, . . . , wm) := (m!)k+1

∫

Sm−1

. . .

∫

Sm−1

∆k+1
m (w0u0, . . . , wmum) S(du0) . . .S(dum).

Corollary 3.2.6 (Intensities of Mk)
The intensities µk, 0 < k < d, are given by the formula

µk =
λm+1

4(m+ 1)!
cdmσk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(s+ t)s
k−2
2 ds

Vm,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

m)
1
2

)

dtF(dr0) . . .F(drm),

(3.9)

where m = d− k. For k = 0 we have

µ0 =
λd+1

2(d+ 1)!

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

d
∏

i=0

(t+ r2
i )

d−2
2 p(t)Vd,0

(

(t+ r2
0)

1
2 , . . . , (t+ r2

d)
1
2

)

dt

F(dr0) . . .F(drd).

For k = d we have µd = 1.
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Remarks 3.2.7

(i) The formulas for µk cannot be evaluated further since we lack an explicit formula
for Vm,k(w0, . . . , wm). In general, it seems to be difficult to obtain such a formula.
However, Miles (1971) has shown that

Vm,k(1, . . . , 1) = (m!)k+1

∫

Sm−1

. . .

∫

Sm−1

∆m(u0, . . . , um)k+1 S(du0) . . .S(dum)

= 2m+1π
m(m+1)

2
Γ
(

1
2
(m+ 1)(d+ 1) −m

)

Γ(md
2

)Γ(d+1
2

)m+1

m
∏

i=1

Γ
(

1
2
(k + 1 + i)

)

Γ( i
2
)

.

(3.10)

For any r > 0 we have

Vm,k(r, . . . , r) = rm(k+1) Vm,k(1, . . . , 1).

(ii) If the distribution of radii is degenerate we have the case of a Poisson Voronoi tes-
sellation. This case allows for more explicit results (e.g., using (3.10)). The intensity
formula (3.9) leads to the well-known values

µV
k =

λ
m
d 2m+1 π

m
2 Γ(dm+k+1

2
) Γ(d

2
+ 1)m+ k

d Γ(m+ k
d
)

d (m+ 1)! Γ(dm+k
2

) Γ(d+1
2

)m Γ(k+1
2

)
.

For the definition of the Palm probability measures Q0
k we have to make sure that the

intensities µk are finite. For that purpose, we first derive an estimate for the quantities
∆m(s0u0, . . . , smum)k+1 and Vm,k(s0, . . . , sm).

Lemma 3.2.8
Let 0 ≤ w0 ≤ w1 ≤ . . . ≤ wm and u0, . . . , um ∈ Sm−1. Then the estimates

∆m(w0u0, . . . , wmum)k+1 ≤ αm,k

m
∏

j=1

wk+1
j ≤ αm,k w

m(k+1)
m ,

and

Vm,k(w0, . . . , wm) ≤ βm,k

m
∏

j=1

wk+1
j ≤ βm,k w

m(k+1)
m (3.11)

hold for suitable positive constants αm,k and βm,k.

Proof:
For 0 ≤ w0 ≤ w1 ≤ . . . ≤ wm and u0, . . . , um ∈ Sm−1 we have

∆m(w0u0, . . . , wmum) = ∆m (0, w1u1 − w0u0, . . . , wmum − w0u0)

=

m
∏

j=1

wj ∆m

(

0, u1 −
w0

w1
u0, . . . , um − w0

wm
u0

)

.

Since w0 ≤ wi for i = 1, . . . , m, the simplex spanned by the points 0 and ui − w0

wi
u0, i =

1, . . . , m, is contained in an m-dimensional ball of radius 2. Further, the regular m-simplex
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has volume
√

m+1

m!
√

2m
and maximizes the volume of simplices with vertices on Sd−1 (Matoušek,

2002, p. 317). Hence,

∆m(w0u0, . . . , wmum) ≤
m
∏

j=1

wj

√
2m

√
m+ 1

m!

and

∆m(w0u0, . . . , wmum)k+1 ≤
m
∏

j=1

wk+1
j

(√
2m

√
m+ 1

m!

)k+1

.

Therefore,

Vm,k(w0, . . . , wm) ≤
m
∏

j=1

wk+1
j σm+1

m

(√
2m

√
m+ 1

)k+1

.

Theorem 3.2.9
The intensities µk are finite for k = 0, . . . , d.

Proof:
Since µd = 1, the case k = d is trivial. Hence, let k ∈ {1, . . . , d − 1} and write mk for the
k-th moment of the radius distribution F. Using assumption (3.3), we see that mk is finite
for any k ≤ d. Further, we may assume that the radii are not almost surely equal to 0.

Assuming r0 ≤ ri for i = 1, . . . , m, and using (3.11), we obtain
m
∏

i=0

(t+ r2
i )

m−2
2 Vm,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

m)
1
2

)

≤ βm,k(t+ r2
0)

m−2
2

m
∏

j=1

(t+ r2
j )

d−1
2 .

Hence,

µk ≤ Cm,k

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

∞
∫

−r2
0

(t+ r2
0)

m−2
2

m
∏

j=1

(t+ r2
j )

d−1
2

∞
∫

0

p(s+ t)s
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm),

where Cm,k > 0 is a suitable constant. Now, we split up the integral over s and t into three
different cases. First, we consider s, t ≥ 0. Then

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

∞
∫

0

(t+ r2
0)

m−2
2

m
∏

j=1

(t+ r2
j )

d−1
2

∞
∫

0

e
−λωd

∞R
0

(s+t+r2)
d
2 F(dr)

s
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm)

≤
∞
∫

0

. . .

∞
∫

0

∞
∫

0

(t+ r2
0)

m−2
2

m
∏

j=1

(t+ r2
j )

d−1
2

∞
∫

0

e−λωd(s
d
2 +t

d
2 +md)s

k−2
2 ds dtF(dr0) . . .F(drm)

= e−λωdmd

∞
∫

0

e−λωds
d
2 s

k−2
2 ds

∞
∫

0

e−λωdt
d
2

∞
∫

0

(t+ r2)
m−2

2 F(dr)





∞
∫

0

(t+ r2)
d−1
2 F(dr)





m

dt.
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For any t > 0 and n ≥ −1 we have

∞
∫

0

(t+ r2)
n
2 F(dr) ≤







t−
1
2 , if n = −1,

∞
∫

0

(t
1
2 + r)n F(dr), if n ≥ 0.

The integral in the last line can be written as a polynomial in t
1
2 , whose coefficients contain

the moments mi, i = 1, . . . , n. Therefore,

∞
∫

0

(t+ r2)
m−2

2 F(dr)





∞
∫

0

(t+ r2)
d−1
2 F(dr)





m

≤
dm−2
∑

i=−1

ait
i
2

with suitable coefficients ai ≥ 0. Finally, with

∞
∫

0

tα−1e−γtβ dt =
Γ
(

α
β

)

βγ
α
β

, α, β, γ > 0, (3.12)

we obtain

e−λωdmd

∞
∫

0

e−λωds
d
2 s

k−2
2 ds

∞
∫

0

e−λωdt
d
2

∞
∫

0

(t+ r2)
m−2

2 F(dr)





∞
∫

0

(t+ r2)
d−1
2 F(dr)





m

dt

≤ e−λωdmd
2Γ(k

d
)

d(λωd)
k
d

dm−2
∑

i=−1

ai

2Γ( i+2
d

)

d(λωd)
i+2

d

<∞

As a second case, we consider the integral over the range −r2
0 ≤ t ≤ 0 and 0 ≤ s ≤ −t,

namely

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

0
∫

−r2
0

(t+ r2
0)

m−2
2

m
∏

j=1

(t+ r2
j )

d−1
2

−t
∫

0

e
−λωd

∞R
0

([s+t+r2]+)
d
2 F(dr)

s
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm)

=

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

r2
0
∫

0

t
m−2

2

m
∏

j=1

(t+ r2
j − r2

0)
d−1
2

r2
0−t
∫

0

e
−λωd

∞R
0

([s+t−r2
0+r2]+)

d
2 F(dr)

s
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm)

≤
∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

r2
0
∫

0

t
m−2

2

m
∏

j=1

(t+ r2
j − r2

0)
d−1
2 dt

r2
0
∫

0

s
k−2
2 dsF(dr0) F(dr1) . . .F(drm)

≤
∞
∫

0

. . .

∞
∫

0

m
∏

j=1

rd−1
j

min
i

ri
∫

0

r2
0
∫

0

t
m−2

2 dt

r2
0
∫

0

s
k−2
2 dsF(dr0) F(dr1) . . .F(drm).
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Disintegrating with respect to s and t, we get

∞
∫

0

. . .

∞
∫

0

m
∏

j=1

rd−1
j

min
i

ri
∫

0

r2
0
∫

0

t
m−2

2 dt

r2
0
∫

0

s
k−2
2 dsF(dr0) F(dr1) . . .F(drm)

≤ 4

mk

∞
∫

0

. . .

∞
∫

0

m
∏

j=1

rd−1
j

∞
∫

0

rd
0 F(dr0) F(dr1) . . .F(drm) =

4

mk
mm

d−1md.

(3.13)

Finally, what remains to be investigated is the case −r2
0 ≤ t ≤ 0 and −t ≤ s < ∞,

namely

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

0
∫

−r2
0

(t+ r2
0)

m−2
2

m
∏

j=1

(t+ r2
j )

d−1
2

∞
∫

−t

e
−λωd

∞R
0

(s+t+r2)
d
2 F(dr)

s
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm)

=

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

r2
0
∫

0

t
m−2

2

m
∏

j=1

(t+ r2
j − r2

0)
d−1
2

∞
∫

r2
0−t

e
−λωd

∞R
0

(s+t−r2
0+r2)

d
2 F(dr)

s
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm)

=

∞
∫

0

. . .

∞
∫

0

min
i

ri
∫

0

r2
0
∫

0

t
m−2

2

m
∏

j=1

(t+ r2
j − r2

0)
d−1
2

∞
∫

0

e
−λωd

∞R
0

(s+r2)
d
2 F(dr)

(s+ r2
0 − t)

k−2
2 ds dt

F(dr0) F(dr1) . . .F(drm)

≤ e−λωdmd

∞
∫

0

. . .

∞
∫

0

m
∏

j=1

rd−1
j

∞
∫

0

r2
0
∫

0

t
m−2

2

∞
∫

0

e−λωds
d
2 (s+ r2

0 − t)
k−2
2 ds dtF(dr0)

F(dr1) . . .F(drm)

With the estimate

(s+ r2
0 − t)

k−2
2 ≤

{

(s
1
2 + r0)

k−2, if k ≥ 2,

s−
1
2 , if k = 1,

and formula (3.12) we obtain a similar expression as in (3.13).
The case k = 0 is handled similarly.

Corollary 3.2.10 (Marginal distributions)
Let Φ be a stationary marked Poisson process with intensity λ > 0 and mark distribution
F with property (3.3). Further, write m := d − k and let h be a non-negative measurable
function defined on a suitable domain.

(i) With respect to Q0
k, the conditional distribution of ΦPk given Pk = t is the distribution

of a marked Poisson process on Rd × R+ whose intensity measure is the restriction of
λHd ⊗ F to the complement of the set {(x, r) : ||x||2 − r2 ≤ t}.
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(ii) For 1 ≤ k ≤ d− 1 we have

µkE
0
Mk

[

h(P ′
k, P

′′
k )
]

=
λm+1

4(m+ 1)!
cdmσk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

∞
∫

0

p(t+ s)h(t, s)

m
∏

i=0

(t+ r2
i )

m−2
2

Vm,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

m)
1
2

)

s
k−2
2 ds dtF(dr0) . . .F(drm).

For k = 0 the formula reads

µ0E
0
M0

[

h(P0)
]

=
λd+1

2(d+ 1)!

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

p(t)h(t)
d
∏

i=0

(t+ r2
i )

d−2
2

Vd,0

(

(t+ r2
0)

1
2 , . . . , (t+ r2

d)
1
2

)

dtF(dr0) . . .F(drd).

For the case k = d finally

EMd

[

h(Pd)
]

=
λσd

2

∞
∫

0

∞
∫

−r2
0

p(t)(t+ r2
0)

d−2
2 h(t) dtF(dr0),

in particular

P(pow(0,Φ) ≤ z) = 1 − P(pow(0,Φ) > z) = 1 − p(z).

(iii) The random pair (Ψk, Uk), 0 < k < d, has the distribution

µkE
0
Mk

[

h(Ψk, Uk)
]

=
λm+1

4(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
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0
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m
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∫
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∫
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∫

SOd

h
(

{(ϑu0, r0), . . . , (ϑum, rm)}, ϑu
)

ν(dϑ) SL⊥(du)

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm),

while

µ0E
0
M0
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h(Ψ0)
]

=
λd+1

2(d+ 1)

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
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r2
i

d
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(t+ r2
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d−2
2 p(t)
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Sd−1

. . .

∫

Sd−1

E
[

h({(u0, r0), . . . , (ud, rd)})
]

∆d

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

d)
1
2ud

)

S(du0) . . .S(dud) dtF(dr0) . . .F(drd).
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(iv) The random variable Uk, 0 < k < d, is independent of (ΦPk , P ′
k, P

′′
k ). The distribution

of Ud is the uniform distribution on Sd−1.

Remark 3.2.11
For the Poisson Voronoi tessellation it is more convenient to consider the random variables
Rk := ||Xk,i||, R′

k := ||Xk,i − Zk||, and R′′
k := ||Zk|| instead of Pk, P

′
k, and P ′′

k . Then
ΦR2

k = Φ ∩ {x ∈ Φ : ||x|| > Rk} and the random variables (ΦR2
k , Rk), R

′
k/Rk, and (Ψk, Uk)

are independent. Rd
k is Gamma distributed with shape parameter d − k + k

d
and scale

parameter λωd. The ratio
R′

k

Rk
, k ∈ {1, . . . , d− 1}, is Beta distributed with parameters d(d−k)

2

and k
2
. For details see Theorem 1.1 of Baumstark and Last (2007).

3.3 Further distributions

3.3.1 Distributions of the typical Laguerre Delaunay simplex

In Section 1.6 we have introduced the notion of the typical cell of a random tessellation. In
this section, we are going to study some distributions connected with the typical cell Z0 of
the Laguerre Delaunay tessellation D(Φ) associated with Φ. For this purpose we define a
centroid function c : C′ → Rd acting on the set ∆(d) of d-dimensional simplices in Rd.

We denote the vertices of K ∈ ∆(d) numbered in lexicographic order by x0(K), . . . , xd(K)
and assume that a weight ri > 0 is assigned to each vertex xi(K). Then the centroid function
is defined by c(K) := z

(

(x0(K), r0), . . . , (xd(K), rd)
)

with z as in (3.5). For K ∈ C′ \ ∆(d)

we set c(K) := 0. Then c is a continuous, hence measurable, function on ∆(d).
With respect to the measure Q0

0, there is a vertex of L(Φ) at the origin. The neighbors
of this vertex are given by (X0,0, R0,0), . . . , (X0,d, R0,d) as defined in (3.6). The simplex

Z0 := conv{X0,0, . . . , X0,d}
is a cell of D(Φ) with c(Z0) = 0. Z0 is called the typical cell of D(Φ). Therefore, Theorem
3.2.4 can be interpreted as a distributional result for the typical Laguerre Delaunay simplex.

Theorem 3.3.1
Let h : ∆(d) → [0,∞) be a measurable function. Then

µ0E
0
M0

[

h(Z0)
]

=
λd+1

2(d+ 1)

∞
∫

0

. . .

∞
∫

0

∞
∫
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d
∏
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(t+ r2
i )

d−2
2

∫

Sd−1

. . .

∫

Sd−1

∆d

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

d)
1
2ud

)

h
(
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{

(t+ r2
0)

1
2u0, . . . , (t+ r2

d)
1
2ud

}

)

S(du0) . . .S(dud) dtF(dr0) . . .F(drd).

Corollary 3.3.2
The k-th moment of the volume of the typical Laguerre Delaunay simplex is given by

E0
M0

[

|Z0|kd
]

=
1

µ0

λd+1

2(d+ 1)!

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
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i

p(t)
d
∏

i=0

(t+ r2
i )

d−2
2 Vd,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

d)
1
2

)

dtF(dr0) . . .F(drd)
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Remark 3.3.3
Again, the lack of an explicit expression for Vd,k makes the derivation of more explicit distri-
bution functions impossible. Only for the Poisson Voronoi case the formula for E0

M0

[

h(Z0)
]

is more tractable. Based on this formula Muche (1996a) obtained the probability density
functions of the volume of the typical three-dimensional Poisson Delaunay cell, the area and
the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the
length of an edge. He also gives formulas for higher moments of these characteristics as well
as some results for the two-dimensional case.

3.3.2 Distributions for typical faces

We start with some definitions. For l, s, r0 ≥ 0, t ∈ R, and u, v ∈ Sd−1 we set

ρ(l, t, r0, u, v) := l2 + t− 2l([t+ r2
0]

+)
1
2 〈u, v〉 and

τ(l, t, s, u, v) := l2 + t+ s− 2ls
1
2 〈u, v〉.

If 〈u, v〉 = cos(θ) for θ ∈ [0, π] we use the alternative definition

ρ(l, t, r0, θ) := l2 + t− 2l([t+ r2
0]

+)
1
2 cos(θ) and

τ(l, t, s, θ) := l2 + t+ s− 2ls
1
2 cos(θ).

Let B1 = b(x1, r1) and B2 = b(x2, r2) be two balls in Rd with centers x1 and x2 and radii
r1 and r2, respectively. The volume of their union only depends on the distance l = ||x1−x2||
of the two centers and the radii r1 and r2. It will be denoted by κ(l, r1, r2). Further, we
denote the d-volume of a truncated ball of radius r and intersection height w by ωd(r, w).

Proposition 3.3.4
For l, r1, r2 ≥ 0 we have

κ(l, r1, r2) =







max(r1, r2)
dωd, if l < |r1 − r2|,

(rd
1 + rd

2)ωd, if l > r1 + r2,
ωd (r1, w(r1, r2, l)) + ωd (r2, w(r2, r1, l)) , otherwise,

(3.14)

with

w(r, s, l) =
r2 − s2 + l2

2l

and

ωd(r, w) = rdωd

⌊d/2⌋
∑

i=0

ai

(w

r

)

,

where ⌊x⌋ is the integer part of x and

a0(w) :=

{

1 − arccos(w)
π

, if d is even,
1+w

2
, if d is odd,

ai(w) :=

{

w
2
√

π
Γ(i)

Γ(i+ 1
2
)
(1 − w2)i− 1

2 , if d is even,

w
2
√

π

Γ(i+ 1
2
)

Γ(i+1)
(1 − w2)i, if d is odd,

i = 1, . . . , ⌊d/2⌋ .
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Proof:
The formula for w(r, s, l) follows from elementary calculations. The remaining part is taken
from Muche (2005, p. 291-292).

Finally, we define

ξ(l, t1, t2) := exp



−λ
∞
∫

0

κ
(

l,
(

[t1 + r2]+
)

1
2 ,
(

[t2 + r2]+
)

1
2

)

F(dr)



 (3.15)

for l ≥ 0, t1, t2 ∈ R.

Theorem 3.3.5
Let Φ be a stationary marked Poisson process with intensity λ and mark distribution F

satisfying (3.3). Choose k ∈ {1, . . . , d − 1} and write m := d − k. Further, let h be a
non-negative measurable function defined on a suitable domain. Then the joint distribution
of

(Hk(Fk(0)), P ′
k, P

′′
k ,Ψk)

under Q0
k is given by

µkE0
Mk

[

h(Hk(Fk(0)), P ′
k, P

′′
k ,Ψk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1σk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

SOd

E
[

h
(

AL⊥(t, s,Φs+t), t, s, {(ϑu0, r0), . . . , (ϑum, rm)}
)]

ν(dϑ)

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm),

(3.16)

with

AL⊥(t, s, η) :=

∞
∫

0

∫

Sd−1∩L⊥

1I {τ(l, t, s, v, u) ≤ pow(lv, (x, r)), (x, r) ∈ η} lk−1 SL⊥(dv) dl

where L ∈ Ld
m is a fixed subspace of Rd and u ∈ Sd−1 ∩ L⊥. For k = d we have

E0
Md

[

h(Hd(Fd(0)), Pd, Ud, Rd,0)
]

=
λ

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2 p(t)

∫

Sd−1

E
[

h
(

A(t, r0, u,Φ
t), t, u, r0

)]

S(du) dtF(dr0),

where

A(t, r0, u, η) :=

∞
∫

0

∫

Sd−1

1I {ρ(l, t, r0, v, u) ≤ pow(lv, (x, r)), (x, r) ∈ η} ld−1 S(dv) dl.
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Proof:
We will only consider the case k < d. The case k = d is handled similarly. Since Fk(0) =
F (Sk,0, . . . , Sk,m,Φ), the linear hull of Fk(0) is given by Gk(0) := G(Sk,0, . . . , Sk,m). For a
unit vector v ∈ Gk(0) ∩ Sd−1 and l > 0 we have

lv ∈ Fk(0) ⇐⇒ pow(lv, Sk,0) ≤ pow(lv, (x, r)), (x, r) ∈ Φ.

Now, since Xk,0 = (P ′
k +R2

k,0)
1
2Uk,0 + P

′′ 1
2

k Uk, we have

pow(lv, Sk,0) = ||Xk,0 − lv||2 − R2
k,0

=
∣

∣

∣

∣(P ′
k +R2

k,0)
1
2Uk,0 + P

′′ 1
2

k Uk − lv
∣

∣

∣

∣

2 −R2
k,0

= P ′
k + P ′′

k + l2 − 2lP
′′ 1

2
k 〈Uk, v〉

= τ(l, P ′
k, P

′′
k , Uk, v).

Then

Hk(Fk(0)) =

∞
∫

0

∫

Sd−1∩Gk(0)

1I
{

τ(l, P ′
k, P

′′
k , Uk, v) ≤ pow(lv, (x, r)), (x, r) ∈ ΦPk

}

lk−1 SGk(0)(dv) dl

=: ÃGk(0)(P
′
k, P

′′
k , Uk,Φ

Pk).

Now we choose a non-negative measurable function h defined on a suitable domain, apply
Theorem 3.2.4 and get

µkE0
Mk

[

h(Hk(Fk(0)), P ′
k, P

′′
k ,Ψk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

Sd−1∩L⊥

∫

SOd

E
[

h
(

ÃϑL⊥(t, s, ϑu,Φs+t), t, s, {(ϑu0, r0), . . . , (ϑum, rm)}
)]

ν(dϑ)

SL⊥(du) ∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm).

For u, v ∈ L⊥ we have

1I{τ(l, t, s, ϑu, ϑv) ≤ pow(lϑv, (x, r)), (x, r) ∈ Φt+s}
= 1I{τ(l, t, s, u, v) ≤ pow(lv, (x, r)), (x, r) ∈ ϑ−1Φt+s}. (3.17)

Therefore, using the invariance under rotations of Φt+s we have

µkE
0
Mk

[

h(Hk(Fk(0)), P ′
k, P

′′
k ,Ψk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

Sd−1∩L⊥

∫

SOd

E
[

h
(

ÃL⊥(t, s, u,Φs+t), t, s, {(ϑu0, r0), . . . , (ϑum, rm)}
)]

ν(dϑ)

SL⊥(du) ∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm).
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An argument similar to (3.17) using the invariance under rotations of SL⊥ yields

ÃL⊥(t, s, ϑu,Φs+t) = ÃL⊥(t, s, u, ϑ−1Φs+t)

for any rotation ϑ of L⊥. Now we can replace integration with respect to u by a fixed vector
u ∈ Sd−1 ∩ L⊥ which yields

µkE
0
Mk

[

h(Hk(Fk(0)), P ′
k, P

′′
k ,Ψk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1σk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

SOd

E
[

h
(

ÃL⊥(t, s, u,Φs+t), t, s, {(ϑu0, r0), . . . , (ϑum, rm)}
)]

ν(dϑ)

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm).

Corollary 3.3.6
The mean value E0

Mk

[

Hk
(

Fk(0)
)]

for 0 < k < d is given by

µkE
0
Mk

[

Hk
(

Fk(0)
)]

=
λm+1

4(m+ 1)!
cdmσk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2 Vm,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

m)
1
2

)

∞
∫

0

∞
∫

0

∫

Sd−1∩L⊥

ξ
(

l, s+ t, τ(l, t, s, u, v)
)

lk−1s
k−2
2 S(dv) dl ds dtF(dr0) . . .F(drm),

where u ∈ Sd−1 ∩ L⊥ is a fixed vector and the function ξ is defined in (3.15). For k = d we
have

E0
Md

[

Hd
(

Fd(0)
)]

=
λσd

2

∞
∫

0

∞
∫

−r2
0

∞
∫

0

∫

Sd−1

(t+ r2
0)

d−2
2 ξ
(

l, t, ρ(l, t, r0, u, v)
)

ld−1 S(dv) dl dtF(dr0).

Proof:
In this special case the expectation in the integrand of (3.16) is

E
[

AL⊥(t, s,Φs+t)
]

=

∞
∫

0

∫

Sd−1∩L⊥

P
(

τ(l, t, s, u, v) ≤ pow(lv, (x, r)), (x, r) ∈ Φt+s
)

lk−1 SL⊥(dv) dl.
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Since p(s+ t) = P(||x||2 − r2 ≥ s+ t, (x, r) ∈ Φ) and by definition of Φs+t we have

p(s+ t)P
(

τ(l, t, s, u, v) ≤ pow(lv, (x, r)), (x, r) ∈ Φt+s
)

= P

(

x 6∈ b
(

0,
(

[s+ t+ r2]+
)

1
2

)

∪ b
(

lv,
(

[τ(l, t, s, u, v) + r2]+
)

1
2

)

, (x, r) ∈ Φ
)

= exp



−λ
∞
∫

0

κ
(

l,
(

[s + t+ r2]+
)

1
2 ,
(

[τ(l, t, s, u, v) + r2]+
)

1
2

)

F(dr)





= ξ
(

l, s+ t, τ(l, t, s, u, v)
)

.

Inserting this into (3.16) we obtain

µkE
0
Mk

[

Hk(Fk(0))
]

=
λm+1

4(m+ 1)!
cdmσk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2 Vm,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

m)
1
2

)

∞
∫

0

∞
∫

0

∫

Sd−1∩L⊥

ξ
(

l, s+ t, τ(l, t, s, u, v)
)

lk−1 s
k−2
2 SL⊥(dv) dl ds dtF(dr0) . . .F(drm).

The proof for k = d works similarly.

Remark 3.3.7
For the case k = d Corollary 3.3.6 yields a formula for the mean volume EMd

[|Fd(0)|d] of
the (almost surely unique) Laguerre cell containing the origin. It is well known, that the cell
Fd(0) is larger than the typical cell Cd(0) of the tessellation (Schneider and Weil, 2000, Satz
6.1.12). Since the volume of the typical cell is given by 1

γd
, we get the following inequalities

for the cell intensity:

1

EMd
[|Fd(0)|d]

≤ 1

ENd
[|Cd(0)|d]

= γd = p0λ ≤ λ,

where p0 is the probability that the cell generated by the typical point of Φ is not empty.

We will now have a closer look at the case k = 1. Let x be a point in the relative
interior of an edge F ∈ S1

(

L(Φ)
)

. Then we define U∗
1 (x,Φ) to be the unique vector in the

set {−U1(x,Φ), U1(x,Φ)} satisfying −U∗
1 (x,Φ) < U∗

1 (x,Φ) with respect to the lexicographic
order on Rd. Further, we write I1(x,Φ) for the {−1, 1}-valued random variable with

U1(x,Φ) = I1(x,Φ)U∗
1 (x,Φ).

Finally, let T ′(x,Φ) and T ′′(x,Φ) be the two non-negative random variables such that

F1(x,Φ) = [x− T ′(x,Φ)U∗
1 (x,Φ), x+ T ′′(x,Φ)U∗

1 (x,Φ)].

Then T ′(x,Φ) + T ′′(x,Φ) = H1(F1(x,Φ)) is the length of F1(x,Φ). For points x ∈ Rd

which are not contained in the relative interior of some edge the above random variables are
set to some arbitrary values. With respect to Q0

1 again the random variables T ′ := T ′(0,Φ),
T ′′ := T ′′(0,Φ), I1 := I1(0,Φ), and U∗

1 := U∗
1 (0,Φ) are of special interest.
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Proposition 3.3.8
Under the Palm probability measure Q0

1 the random variables T ′ and T ′′ are independent of
Ψ1 and conditionally independent given (P ′

1, P
′′
1 , I1). We have

Q0
1(T

′ > t1 |P ′
1, P

′′
1 , I1) = e

λωd

∞R
0

([P1+r2]+)
d
2 F(dr)

ξ
(

t1, P1, P1 + 2t1P
′′ 1

2
1 I1 + t21

)

and

Q0
1(T

′′ > t2 |P ′
1, P

′′
1 , I1) = e

λωd

∞R
0

([P1+r2]+)
d
2 F(dr)

ξ
(

t2, P1, P1 − 2t2P
′′ 1

2
1 I1 + t22

)

.

Proof:
With respect to Q0

1 the origin is almost surely contained in the interior of an edge F1(0) ∈
S1

(

L(Φ)
)

whose neighbors (X1,0, R1,0), . . . , (X1,d−1, R1,d−1) are in general position. Now

T ′ > t1 ⇐⇒ ΦP1

(

{

(x, r) : ||x+ t1U
∗
1 ||2 − r2 < ||X1,0 + t1U

∗
1 ||2 − R2

1,0

}

)

= 0

⇐⇒ ||x+ t1U
∗
1 ||2 − r2 ≥ P1 + 2t1P

′′ 1
2

1 I1 + t21, (x, r) ∈ ΦP1 .

Therefore, T ′ does not depend on Ψ1 and

Q0
1(T

′ > t1 |P ′
1, P

′′
1 , I1) = e

λωd

∞R
0

([P1+r2]+)
d
2 F(dr)

ξ
(

t1, P1, P1 + 2t1P
′′ 1

2
1 I1 + t21

)

.

A similar calculation yields the corresponding formula for Q0
1(T

′′ > t2 |P ′
1, P

′′
1 , I1). Now for

(x, r) ∈ ΦP1 we have ||x||2 − r2 > P1, hence

||x+ t1U
∗
1 ||2 − r2 ≤ P1 + t21 + 2t1P

′′ 1
2

1 I1

⇐⇒ ||x||2 + 2t1〈x , U∗
1 〉 − r2 ≤ P1 + 2t1P

′′ 1
2

1 I1 < ||x||2 − r2 + 2t1P
′′ 1

2
1 I1

⇐⇒ 〈x , U∗
1 〉 < P

′′ 1
2

1 I1.

Analogously we see

||x− t2U
∗
1 ||2 − r2 ≤ P1 + t22 − 2t2P

′′ 1
2

1 I1 ⇐⇒ 〈x , U∗
1 〉 > P

′′ 1
2

1 I1.

Therefore,

b
(

− t1U
∗
1 ,
(

[P1 + t21 + 2t1P
′′ 1

2
1 I1 + r2]+

)
1
2

)

∩ b
(

t2U
∗
1 ,
(

[P1 + t22 − 2t2P
′′ 1

2
1 I1 + r2]+

)
1
2

)

∩ Rd \ b
(

0,
(

[P1 + r2]+
)

1
2

)

= ∅

for each r ≥ 0. By Corollary 3.2.10 (i) this implies that T ′ and T ′′ are conditionally inde-
pendent given (P ′

1, P
′′
1 , I1).

So far we have only considered the face Fk(0). In order to determine some results for
the typical k-face Ck(0) of a Poisson Laguerre tessellation, we first have to define a suitable
generalized centroid function. So let Pk denote the system of all k-dimensional bounded
polytopes in Rd. Now define a measurable mapping ck : Pk × N(R+) → Rd as follows. If
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ϕ ∈ N(R+) is in general position and F ∈ Sk

(

L(ϕ)
)

we choose y in the relative interior of F
and set ck(F, ϕ) := Zk(y, ϕ) as defined in (3.6). In all other cases we define ck(F, ϕ) as the
center of the smallest ball circumscribing F ∈ Pk. Then obviously

ck(F, ϕ) = ck(F − y, ϕ− y) + y, ϕ ∈ N(R+), F ∈ Pk.

Using the fact that the factorial moment measures of a Poisson process are absolutely
continuous with respect to Lebesgue measure, it can be shown that the centers of the faces
F ∈ Sk

(

L(ϕ)
)

are almost surely mutually different. Due to (1.9) and the finiteness of γ0, we
see that

ϕk :=
∑

F∈Sk(L(ϕ))

δck(F,ϕ)

is P-almost surely contained in Ns. Now we define the stationary point process Nk of centers
of the k-faces of L(Φ) via Nk(ϕ) := ϕk if ϕk ∈ Ns and Nk(ϕ) := 0, otherwise. Further, we
define Ck(x, ϕ), Fk(x, ϕ), and ck(x, ϕ) for x ∈ Rd and ϕ ∈ N(R+) as in Section 1.6. We will
often use the abbreviations Fk(x) := Fk(x,Φ), Ck(x) := Ck(x,Φ), and ck(x) := ck(x,Φ).

For x ∈ Nk we define ρk(x,Φ) := pow(x,Φ). Further, let Vk,0(x,Φ), . . . , Vk,m(x,Φ) ∈ Sd−1

and R′
k,0(x,Φ), . . . , R′

k,m(x,Φ) ≥ 0 denote the (lexicographically ordered) unit vectors and
the radii such that

(

(

ρk(x,Φ) +R′
k,i(x,Φ)2

)
1
2Vk,i(x,Φ), R′

k,i(x,Φ)
)

, i = 0, . . . , m,

are the neighbors of Ck(x). For x /∈ Nk these random variables can be defined arbitrarily.
We write

Ξk(x,Φ) :=
{(

Vk,0(x,Φ), R′
k,0(x,Φ)

)

, . . . ,
(

Vk,m(x,Φ), R′
k,m(x,Φ)

)}

.

As earlier, we will use the short-hand notations ρk := ρk(0,Φ), Vk,i := Vk,i(0,Φ), R′
k,m :=

R′
k,m(0,Φ), and Ξk := Ξk(0,Φ). With respect to the Palm measure PNd

we have 0 ∈ Nd.
Hence, this definition yields ρd = 0, Vd,0 = 0, and Ξd = (0, Rd,0).

Theorem 3.3.9
Let h be a non-negative measurable function defined on a suitable domain. The distribution
of (Hk(Ck(0)), ρk,Ξk) with respect to P0

Nk
for 0 < k < d is given by

γkE
0
Nk

[

h
(

Hk(Ck(0)), ρk,Ξk

)]

=
λm+1

4(m+ 1)!
cdm(m!)k+1σk

∞
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∞
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∞
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∞
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∏
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. . .

∫
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SOd

E
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(

AL⊥(t, s,Φs+t), t, {(ϑu0, r0), . . . , (ϑum, rm)}
)]

∆k+1
m

(

(t+ r2
0)

1
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m)
1
2um

)

ν(dϑ) SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm),

(3.18)
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where m = d− k and AL⊥ are defined as in Theorem 3.3.5. For k = d we have

γdE
0
Nd

[

h
(

Hd(Cd(0)), Rd,0

)]

=
λ

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2 p(t)

∫

Sd−1

E
[

A(t, r0, u,Φ
t)−1 h

(

A(t, r0, u,Φ
t), r0

)]

S(du) dt

F(dr0)

with the function A as defined in Theorem 3.3.5.

Proof:
Let 0 < k < d and assume that 0 is contained in the relative interior of some k-face
Fk(0) and that the points of Φ are in general position. Then Ξk

(

0,Φ − ck(Fk(0))
)

= Ψk,
ρk

(

0,Φ − ck(Fk(0))
)

= P ′
k and

Ck

(

0,Φ − ck(Fk(0))
)

= Fk(0) − ck(Fk(0)).

By Corollary 1.6.4 and Theorem 3.3.5 we have for each non-negative measurable function h
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Hk(Fk(0))−1h
(

Hk(Fk(0)), P ′
k,Ψk

)]

=
λm+1

4(m+ 1)!
cdm(m!)k+1σk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

m
∏

i=0

(t+ r2
i )

m−2
2

∞
∫

0

p(t+ s)s
k−2
2

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

SOd

E
[

AL⊥(t, s,Φs+t)−1h
(

AL⊥(t, s,Φs+t), t, {(ϑu0, r0), . . . , (ϑum, rm)}
)]

∆k+1
m

(

(t+ r2
0)

1
2u0, . . . , (t+ r2

m)
1
2um

)

ν(dϑ) SL(du0) . . .SL(dum) ds dtF(dr0) . . .F(drm).

The formula for the case k = d is obtained similarly.

Remarks 3.3.10

(i) For the Poisson Voronoi tessellation explicit formulas for the case k = 1 exist. For-
mulas for the edge length distribution function have been derived by Muche (1996b)
and Schlather (2000). Recently, a complete description of the distribution of the typ-
ical edge and its neighbors has been obtained by Baumstark and Last (2007). Their
argumentation, however, does not carry over to the case of Laguerre tessellations.

(ii) Using formula (3.18) with h ≡ 1 we get

γk =
λm+1

4(m+ 1)!
cdmσk

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

r2
i

∞
∫

0

m
∏

i=0

(t+ r2
i )

m−2
2 p(t+ s)s

k−2
2

Vm,k

(

(t+ r2
0)

1
2 , . . . , (t+ r2

m)
1
2

)

E
[

AL⊥(t, s,Φs+t)−1
]

ds dtF(dr0) . . .F(drm).
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The formula for the cell intensity γd reads

γd =
λσd

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2 p(t) E

[

A(t, r0, u,Φ
t)−1

]

dtF(dr0)

with fixed u ∈ Sd−1.

Unfortunately, the numerical evaluation of this formula for the cell intensity seems impossi-
ble.

3.3.3 Contact distributions

Given a random closed set X and a convex compact set B in Rd containing the origin, the
contact distribution function HB is defined via

HB(r) := P(X ∩ rB 6= ∅ | 0 /∈ X), r ≥ 0.

Important special cases are the spherical contact distribution function Hs, where B = b(0, 1)
is the unit ball centered in the origin, and the linear contact distribution function Hl(v),
where B is a line segment of unit length in direction v ∈ Sd−1.

Contact and chord length distributions of the Poisson Voronoi tessellation have been
studied by Muche and Stoyan (1992) while Heinrich (1998) investigated the Voronoi tessel-
lation with respect to more general point processes. Here, we are going to consider Poisson
Laguerre tessellations. In this case, the random closed set of interest is the union of cell
boundaries of the tessellation. Since the origin is almost surely contained in the cell Fd(0),
we have HB(r) = 1 − P(rB ⊂ Fd(0)) for every choice of B.

Lemma 3.3.11
For x ∈ Rd, v ∈ Sd−1, and s, r1, r2 ≥ 0 define the set

C(x, v, s, r1, r2) := b
(

sv,
[

||x− sv||2 − r2
1 + r2

2]
+
)

1
2

)

\ b
(

0,
(

[||x||2 − r2
1 + r2

2]
+
)

1
2

)

.

Then

C(x, v, s1, r1, r2) ⊆ C(x, v, s2, r1, r2), 0 ≤ s1 ≤ s2.

Proof:
Let x, y ∈ Rd. Then

y ∈ C(x, v, s1, r1, r2)

⇐⇒ ||y||2 > ||x||2 − r2
1 + r2

2 and ||y − s1v||2 ≤ ||x− s1v||2 − r2
1 + r2

2

⇐⇒ ||y||2 > ||x||2 − r2
1 + r2

2 and ||y||2 − 2s1〈y, v〉 ≤ ||x||2 − 2s1〈x, v〉 − r2
1 + r2

2

⇐⇒ ||x||2 − r2
1 + r2

2 < ||x||2 + 2s1〈y − x, v〉 − r2
1 + r2

2.

Therefore, 〈y − x, v〉 > 0 and the implications above also hold for s2 ≥ s1.
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Lemma 3.3.12
Let B be a compact set which is star-shaped with respect to the origin, r1, r2 ≥ 0, and x ∈ Rd.
Then

⋃

y∈B

b
(

y,
(

[||x− y||2 − r2
1 + r2

2]
+
)

1
2

)

=
⋃

y∈∂∗B

b
(

y,
(

[||x− y||2 − r2
1 + r2

2]
+
)

1
2

)

∪ b
(

0,
(

[||x||2 − r2
1 + r2

2]
+
)

1
2

)

,

where ∂∗B := {sB(v)v : v ∈ Sd−1} and sB(v) := sup{s ≥ 0 : sv ∈ B}.

Proof:
Since B is star-shaped, we have B = {sv : 0 ≤ s ≤ sB(v), v ∈ Sd−1}. Therefore, it is
sufficient to show that

⋃

0≤s≤sB(v)

C(x, v, s, r1, r2) = C(x, v, sB(v), r1, r2),

which is follows from Lemma 3.3.11.

Theorem 3.3.13
Let Φ be a stationary marked Poisson process on Rd with intensity λ > 0 and mark distribu-
tion F with property (3.3). Further, let B ⊂ Rd be a star-shaped set containing the origin.
Then the contact distribution function HB(r) = P(∂Fd(0) ∩ rB 6= ∅) is given by

1 −HB(r) =
λ

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2

∫

Sd−1

e
−λ

∞R
0

ν(r,t,r0,u,w)F(dw)
S(du) dtF(dr0), r ≥ 0,

where

ν(r, t, r0, u, w) =
∣

∣

∣

⋃

sv∈r∂∗B

b
(

sv,
(

[ρ(s, t, r0, u, v) + w2]+
)

1
2

)

∪ b
(

0,
(

[t+ w2]+
)

1
2

)∣

∣

∣

d

with ∂∗B and sB(v) as defined in Lemma 3.3.12.

Proof:
Assume Fd(0) = C((x0, r0), ϕ) for a unique point (x0, r0) ∈ ϕ. For every compact subset B
of Rd containing the origin we have

B ⊂ Fd(0)

⇐⇒ ||y − x0||2 − r2
0 ≤ ||y − x||2 − r2, (x, r) ∈ ϕ, y ∈ B

⇐⇒ x 6∈ b
(

y,
(

[||y − x0||2 − r2
0 + r2]+

)
1
2
)

, (x, r) ∈ ϕ \ {(x0, r0)}, y ∈ B

⇐⇒ (ϕ− δ(x0,r0))

(

{

(y, w) : y ∈
⋃

x∈B

b
(

x,
(

[||x− x0||2 − r2
0 + w2]+

)
1
2
)

}

)

= 0.
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Using the case k = d of Theorem 3.2.4 we get

E
[

1I{B ⊂ Fd(0)}
]

=
λ

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2 p(t)

∫

Sd−1

P

(

Φt
(

{(y, w) : y ∈
⋃

x∈B

b
(

x, ([||x− (t+ r2
0)

1
2u||2 − r2

0 + w2]+)
1
2

)

}
)

= 0
)

S(du) dtF(dr0)

=

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2 p(t)

∫

Sd−1

P

(

Φt
(

{(y, w) : y ∈
⋃

sv∈B

b
(

sv, ([ρ(s, t, r0, u, v) + w2]+)
1
2

)

}
)

= 0
)

S(du) dtF(dr0).

Since Φ is a Poisson process we have

p(t)P
(

Φt
(

{(y, w) : y ∈
⋃

sv∈B

b
(

sv, ([ρ(s, t, r0, u, v) + w2]+)
1
2

))

= 0
)

= exp



−λ
∞
∫

0

∣

∣

∣

⋃

sv∈B

b
(

sv, ([ρ(s, t, r0, u, v) + w2]+)
1
2

)

∪ b
(

0, ([t+ w2]+)
1
2

)

∣

∣

∣

d
F(dw)



 .

With Lemma 3.3.12 this yields

1 −HB(r) = E
[

(1I{rB ⊂ Fd(0)})
]

=
λ

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2

∫

Sd−1

e
−λ

∞R
0

∣

∣

S
sv∈r∂∗B

b(sv,([ρ(s,t,r0,u,v)+w2]+)
1
2 )∪b(0,([t+w2]+)

1
2 )

∣

∣

d
F(dw)

S(du) dt

F(dr0).

Corollary 3.3.14 (Linear contact distribution function)
The linear contact distribution function Hl(v) for v ∈ Sd−1 is given by

1 −Hl(v)(r) =
λ

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2

∫

Sd−1

ξ
(

r, t, ρ(r, t, r0, u, v)
)

S(du) dtF(dr0), r ≥ 0,

where

ξ(l, t1, t2) = exp



−λ
∞
∫

0

κ
(

l,
(

[t1 + r2]+
)

1
2 ,
(

[t2 + r2]+
)

1
2

)

F(dr)



 , l ≥ 0, t1, t2 ∈ R,

as defined in (3.15).
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Since the Poisson Laguerre tessellation is isotropic, the values of Hl(v)(r) do not depend
on the direction v of the line segment.

Remark 3.3.15
Denote the k-th moment of the linear contact distance in direction v by H

k

l(v). Then the
mean volume of the cell Fd(0) can be written as

E0
Md

[

Hd
(

Fd(0)
)]

=
1

d

∫

Sd−1

H
d

l(v)S(dv) =
σd

d
H

d

l(v0),

where v0 ∈ Sd−1 is a fixed unit vector. For the k-th moment of any real-valued random
variable X with distribution function F we have

E[Xk] = k

∞
∫

0

xk−1(1 − F (x))dx.

Inserting the formula for 1 − Hl(v)(r) derived above, we obtain the formula for the mean
volume of the cell Fd(0) given in Corollary 3.3.6.

Corollary 3.3.16 (Spherical contact distribution function)
The spherical contact distribution function Hs is given by

1 −Hs(r)

=
λσd

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2 e

−λ
∞R
0

∣

∣

S
v∈Sd−1

b
(

rv,([ρ(r,t,r0,v,u)+w2]+)
1
2

)

∪b
(

0,([t+w2]+)
1
2

)∣

∣

d
F(dw)

dtF(dr0),

r ≥ 0,

where u ∈ Sd−1 is a fixed unit vector.

Proof:
Since

∣

∣

∣

⋃

v∈Sd−1

b
(

rv, ([ρ(r, t, r0, v, u) + w2]+)
1
2

)

∪ b
(

0, ([t+ w2]+)
1
2

)

∣

∣

∣

d

is independent of the unit vector u, we may replace integration with respect to this variable
by a fixed choice of u.

3.3.4 Chord length distribution

The chord length distribution function Lv of a random tessellation X in direction v is the
distribution function of the length of the typical chord which is obtained by intersecting the
system of cell boundaries with a line in direction v ∈ Sd−1. See Heinrich (1998) for a formal
definition.

The relation between the chord length distribution function Lv and the linear contact
distribution function Hl(v) is

Hl(v)(r) =
1

L̄v

r
∫

0

(1 − Lv(x)) dx, r ≥ 0, (3.19)
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where L̄v =
∞
∫

0

(1−Lv(x))dx is the mean chord length in direction v (see Stoyan et al., 1995,

Formula 6.2.5). Again, due to isotropy, the value of Hl(v)(r) does not depend on the choice of
v. The mean chord length is equal to the mean length of a line segment in a one-dimensional
section of the tessellation which can be calculated using the stereological relations given in
Section 1.7. For the two- and three-dimensional case we have

L̄v =

{ π
2LA

, if d = 2,
2

SV
, if d = 3.

Theorem 3.3.17
Let Φ be a stationary marked Poisson process on Rd with intensity λ > 0 and mark distri-
bution F with property (3.3). The chord length distribution function Lv is given by

1 − Lv(r) = L̄v
λ2

2

∞
∫

0

∞
∫

−r2
0

(t+ r2
0)

d−2
2

∫

Sd−1

∞
∫

0

κ′(r, t, r0, w, v, u)F(dw) ξ
(

r, t, ρ(r, t, r0, v, u)
)

S(du) dtF(dr0), r ≥ 0,

where

κ′(r, t, r0, w, u, v) =
d

dr
κ
(

r,
(

[t+ w2]+
)

1
2 ,
(

[ρ(r, t, r0, u, v) + w2]+
)

1
2

)

.

Proof:
The formula is an immediate consequence of (3.19) combined with Corollary 3.3.14.

3.4 Limit theorems

We have already remarked that a Voronoi tessellation can be interpreted as a Laguerre
tessellation with respect to a degenerate distribution of radii. Therefore, it seems natural to
use the Poisson Voronoi tessellation as a benchmark and ask for relations between arbitrary
Poisson Laguerre tessellations and this special case. One possibility is to consider Poisson
Voronoi tessellations as limits of Poisson Laguerre tessellations when scaling the generating
point process or changing the parameters of the mark distribution.

Let Φ be a stationary marked Poisson process with intensity λ > 0 and mark distribution
F with property (3.3). For c, v > 0 define the point process

Φc,v := {(cx, vr) : (x, r) ∈ Φ}.

Then Φc,v is a stationary marked Poisson process with intensity c−dλ and Φ1,1 = Φ. Write
L(c, v) := L(Φc,v) for the Laguerre tessellation generated by Φc,v and Mk(c, v) for the corre-
sponding random measures. The Palm measures, Palm probability measures, and intensities
of Mk(c, v) are denoted by Qk(c, v), Q0

k(c, v), and µk(c, v), respectively.



64 Chapter 3 Poisson Laguerre tessellations

The following relations hold:

L(1, v) = vL(v−1, 1),

Qk(1, v) = vk−dQk(v
−1, 1), k = 0, . . . , d,

µk(1, v) = vk−dµk(v
−1, 1), k = 0, . . . , d,

L(c, 1) = cL(1, c−1),

Qk(c, 1) = ck−dQk(1, c
−1), k = 0, . . . , d, and

µk(c, 1) = ck−dµk(1, c
−1), k = 0, . . . , d.

(3.20)

For v = 0 we obtain a Poisson process with degenerate mark distribution, which can be
identified with an unmarked stationary Poisson process Ψλ of intensity λ. The corresponding
random measures are denoted by MV

k,λ, their Palm measures, Palm probability measures, and

intensities are QV
k,λ, Q

V,0
k,λ, and µV

k,λ.
Now, we equip N(R+) and N with the topology of vague convergence of measures (Kallen-

berg, 1983, p. 169). In order to investigate weak convergence of the measures Qk(c, v), we
have to study convergence of EMk(c,v)

[

f(Φc,v)
]

, where f : N(R+) → [0,∞) is a continuous,
bounded function.

Lemma 3.4.1
For k = 0, . . . , d define Ak ⊂ Ns(R

+) as the set of ϕ ∈ Ns(R
+) such that ϕ fulfills (R1) and

that there is a real number t with

ϕ
(

{(x, r) ∈ Rd × R+ : pow(0, (x, r)) = t}
)

= d− k + 1 and

ϕ
(

{(x, r) ∈ Rd × R+ : pow(0, (x, r)) < t}
)

= 0.
(3.21)

Then the mapping
ϕ 7→ (ϕt, t, s, {(u0, r0), . . . , (ud−k, rd−k)}, u) (3.22)

as suggested by (3.7) is continuous on Ak.

Proof:
Any ϕ ∈ Ak can be decomposed into the disjoined sets

ϕt :=
{

(x, r) ∈ ϕ : pow(0, (x, r)) = t
}

and

ϕt :=
{

(x, r) ∈ ϕ : pow(0, (x, r)) > t
}

.

For any set ϕ̃ in Rd ×R+ which consists of exactly d− k+ 1 points and for which there is a
number t ∈ R such that pow(0, (x, r)) = t for all (x, r) ∈ ϕ̃ we can define the mapping

ϕ̃ 7→
(

t, s, {(u0, r0), . . . , (ud−k, rd−k)}, u
)

which is obviously continuous.
It remains to show the continuity of ϕ 7→ (ϕt, ϕt). So choose ϕ ∈ Ak and let t ∈ R be

defined by (3.21). By condition (R1), min(x,r)∈ϕ\ϕt
pow(0, (x, r)) =: p > t exists. Define the

set

Bt,p :=
{

(x, r) ∈ Rd × R+ : pow(0, (x, r)) ≤ t+ p

2

}

.
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Then ϕ ∩ Bt,p = ϕt =
{

(xi, ri) : i = 0, . . . , d − k + 1
}

. Now choose a sequence ϕn ∈ Ak,
n ∈ N, with ϕn → ϕ vaguely. By Daley and Vere-Jones (1988, Proposition A2.6.II) there
are sequences (xn

i , r
n
i ) ∈ Rd × R+, n ∈ N, i = 0, . . . , d − k + 1, such that (xn

i , r
n
i ) ∈ ϕn,

(xn
i , r

n
i ) → (xi, ri), and ϕn ∩ Bt,p =

{

(xn
i , r

n
i ) : i = 0, . . . , d − k + 1

}

for all large n. Now
ϕn ∈ Ak implies ϕn∩Bt,p = ϕn,t, hence ϕn,t → ϕt, which shows the continuity of ϕ 7→ (ϕt, ϕt).

Theorem 3.4.2
Consider a stationary marked Poisson process Φ on Rd with intensity λ and mark distribution
F with property (3.3). Then lim

v→0
Q0

k(1, v) = Q
V,0
k,λ weakly.

Proof:
We will show the weak convergence of the distribution of the tuple (ΦPk

1,v, P
′
k, P

′′
k ,Ψk, Uk)

under the probability measures Q0
k(1, v), where P ′

k, P
′′
k ,Ψk, and Uk are defined with respect

to ΦPk

1,v. (The dependence on v is not captured by the notation.) In view of (3.8) it is then
not difficult to derive the actual assertion of the theorem.

With respect to the measure Q0
k(1, v), Φ1,v is almost surely contained in Ak. By Kallen-

berg (1983, 15.4.1) it is therefore sufficient to show the convergence on the set Ak. As shown
in Lemma 3.4.1, the decomposition (3.22) of Φ1,v is continuous on Ak.

Let h be a non-negative, continuous, bounded function defined on a suitable domain. We
consider the case 1 ≤ k ≤ d− 1 first. For abbreviation, we write

g(Φt+s
1,v , t, s, w0, . . . , wm)

:= (m!)k+1

∫

Sd−1∩L

. . .

∫

Sd−1∩L

∫

Sd−1∩L⊥

∫

SOd

E
[

h(Φt+s
1,v , t, s, {(ϑu0, w0), . . . , (ϑum, wm)}, ϑu)

]

ν(dϑ)

∆k+1
m

(

(t+ w2
0)

1
2u0, . . . , (t+ w2

m)
1
2um

)

SL⊥(du) SL(du0) . . .SL(dum).

Then

EMk(1,v)

[

h(ΦPk

1,v, P
′
k, P

′′
k ,Ψk, Uk)

]

=
λm+1

4(m+ 1)!
cdm(m!)k+1

∞
∫

0

. . .

∞
∫

0

∞
∫

−min
i

v2r2
i

m
∏

i=0

(t+ v2r2
i )

m−2
2

∞
∫

0

e
−λωd

∞R
0

([s+t+v2r2]+)
d
2 F(dr)

s
k−2
2

g
(

Φt+s
1,v , t, s, vr0, . . . , vrm

)

ds dtF(dr0) . . .F(drm).

Here, we first consider the integral over t ∈ [0,∞) and assume v ≤ 1. Since s+ t+ v2r2 −−→
v→0

s+ t and s+ t+ v2r2 ≤ s+ t+ r2 for any s, t, and r > 0, Lebesgue’s theorem of dominated
convergence shows

e
−λωd

∞R
0

(s+t+v2r2)
d
2 F(dr)

−−→
v→0

e−λωd(s+t)
d
2 , s, t ≥ 0.

Using the boundedness and continuity of h, Lemma 3.4.1, and again the dominated conver-
gence theorem, we further get

E
[

h(Φt+s
1,v , t, s, {(ϑu0, vr0), . . . , (ϑum, vrm)}, ϑu)

]

−−→
v→0

E
[

h(Φt+s
1,0 , t, s, {(ϑu0, 0) . . . , (ϑum, 0)}, ϑu)

]

.
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Hence, the integrand in EMk(1,v)

[

h(ΦPk

1,v, P
′
k, P

′′
k ,Ψk, Uk)

]

converges to

t
dm−2

2 e−λωd(s+t)
d
2 s

k−2
2 E

[

h(Φt+s
1,0 , t, s, {(ϑu0, 0), . . . , (ϑum, 0)}, ϑu)

]

∆k+1
m (u0, . . . , um)

for any s, t ≥ 0, u0, . . . , um ∈ Sd−1 ∩ L, u ∈ Sd−1 ∩ L⊥, and ϑ ∈ SOd. Using (3.11) and
assuming r0 ≤ ri for i = 1, . . . , d, we see

m
∏

i=0

(t+ v2r2
i )

m−2
2 g
(

Φt+s
1,v , t, s, vr0, . . . , vrm

)

v≤1

≤
m
∏

i=1

(t+ r2
i )

d−1
2 (t+ r2

0)
m−2

2 Mhσkβm,k,

where Mh is an upper bound for h. Hence,

m
∏

i=0
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which was shown to be integrable in Theorem 3.2.9. Therefore, the dominated convergence
theorem yields
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Identifying Φt+s
1,0 with Ψt+s

λ and using ∆m(tu0, . . . , tum) = tm∆m(u0, . . . , um) this yields the
expectation with respect to QV

k,λ. It remains to show the convergence to 0 of the integral
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With the special choice of h ≡ 1, the above calculations show the convergence of the inten-
sities µk(1, v) to µV

k,λ. This implies weak convergence of the corresponding Palm probability
measures and shows the assertion for the cases k = 1, . . . , d− 1. The cases k = 0 and k = d
are slightly easier than the ones presented above, since there is no integration with respect
to s. Otherwise, they are handled similarly.

Now, we are going to study the case of radii tending to infinity. In order to guarantee the
existence of the limits and since the radii do not play a role for Voronoi tessellations, they will
be ignored in the computations below. For instance, we will consider the random variable
Ψ̃k := (Uk,0, . . . , Uk,m) rather than Ψk. Further, we will use the following observation: If the
mark distribution of a point process Φ is degenerate, any continuous, bounded function h
taking the arguments (ΦPk , P ′

k, P
′′
k , Ψ̃k, Uk) can be transformed into a continuous, bounded

function h̄ taking the arguments (ΦR2
k(· × R+), R′
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h(ΦPk , P ′
k, P

′′
k , Ψ̃k, Uk) = h̄(ΦPk+R2

k,0(· × R+), (P ′
k +R2

k,0)
1
2 , P

′′ 1
2

k , Ψ̃k, Uk)

= h̄(ΦR2
k(· × R+), R′

k, R
′′
k, Ψ̃k, Uk).

(3.23)

Theorem 3.4.3
Choose 0 ≤ s0 < s1 and 0 ≤ p ≤ 1. Consider a stationary marked Poisson process Φ on Rd

with intensity λ and a mark distribution defined as a mixture F = (1 − p)F1 + pδs1, where
F1 is a distribution with support contained in [0, s0]. For v → ∞ the Laguerre tessellation
L(1, v) converges to the Poisson Voronoi tessellation of intensity pλ in the sense that

E0
Mk(1,v)

[

h(P ′
k, P

′′
k , Ψ̃k, Uk)

]

−−−→
v→∞

E0
MV

k,pλ

[

h̄(R′
k, R

′′
k, Ψ̃k, Uk)

]

for any non-negative, bounded, and continuous function h.

Proof:
Let h be a non-negative, continuous, bounded function defined on a suitable domain. We

consider the case 1 ≤ k ≤ d− 1 and define Nk,0 :=
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with suitable constants cn0,n1 > 0 and
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First, we consider the integrals (3.24). Using (3.11), we obtain the estimate
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where Mh is an upper bound for h. Hence, we have
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Using the binomial theorem, this integral can be written as a polynomial in v with coefficients
of the form (3.26). Hence, the right hand side of (3.27) tends to 0 with v to infinity.

Since all radii are equal in (3.25), we can use (3.23) and replace h by a suitable function
h̄ and g by a function ḡ in the same manner. This yields
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With the transformation r := t+ v2s2
1 this formula reads
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Again, this equals the formula for EMV
k,pλ

[

h̄(R′
k, R

′′
k, Ψ̃k, Uk)

]

for the Poisson Voronoi tessella-

tion of intensity pλ (Baumstark and Last, 2007). The choice h ≡ 1 shows the convergence of
the intensities, and therefore of the Palm probability measures. The cases k = 0 and k = d
are handled similarly.

Remarks 3.4.4

(i) The result of the previous theorem cannot be formulated in terms of weak convergence
of the measures Q0

k(1, v) for the following reason: Looking at the point process ΦPk

1,v

from a typical point on a k-face, we observe a point process of intensity λ containing
some points whose Laguerre cell is empty. The limit point process Ψpλ, however, only
contains the points generating non-empty cells. Therefore, Ψpλ could be interpreted
as the limit of thinned versions of ΦPk

1,v.

(ii) The proof of Theorem 3.4.3 shows that in fact the difference s2
1−s2

0 is the factor deter-
mining the convergence. With increasing value of v this difference grows quadratically,
thus increasing the influence of points with the larger weight.

(iii) Theorem 3.4.3 holds in particular if F is a two-atom distribution A(s1, s0, p) (cf. Section
1.1).
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Corollary 3.4.5
Choose 0 ≤ s0 < s1 and 0 ≤ p ≤ 1. Consider a stationary marked Poisson process Φ(s1, s0, p)
on Rd with intensity λ and mark distribution A(s1, s0, p) and denote the corresponding ran-
dom measure Mk by Mk(s1, s0, p). For s1 → ∞ the Laguerre tessellation L(Φ(s1, s0, p))
converges to the Poisson Voronoi tessellation of intensity pλ in the sense that
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for any non-negative, bounded, and continuous function h.

Proof:
Imitating the steps of the previous proof, we end up with an expression similar to (3.27)
which reads
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Using the binomial theorem, this integral can be written as a polynomial in (s2
1 − s2

0)
1
2 with

coefficients containing integrals of the form (3.26) independent of this expression. This shows
that (3.29) tends to 0 for s1 → ∞.

The analogue to (3.28) in the case considered here reads
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which is again the formula for EMV
k,pλ

[

h̄(R′
k, R

′′
k, Ψ̃k, Uk)

]

for the Poisson Voronoi tessellation

of intensity pλ.

This result is not very surprising. With increasing value of s1 the points carrying this
larger weight gain more and more influence. Finally, all cells generated by spheres with
radius s0 are deleted from the tessellation.

In the following, we will apply the scaling laws given in (3.20) to deduce some limit results
with dependence on the intensity λ.

Corollary 3.4.6
Consider a stationary marked Poisson process Φλ on Rd with intensity λ and mark distribu-
tion F with property (3.3).

(i) We have
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for any non-negative, continuous, bounded function h defined on a suitable domain.
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(ii) Now let F be a distribution as considered in Theorem 3.4.3. Then
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Proof:

(i) Let c ≥ 0. With (3.20) and Theorem 3.4.2 we get
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for any c > 0, hence Qk(c, 1) and QV
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cd

approach each other

for c → ∞. The same is true if Qk is replaced by the intensities µk which yields the
assertion.

(ii) Let c ≥ 0. Here, we use Theorem 3.4.3, which yields
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Again, we use the transformation QV
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. Therefore, the expectations
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Using h ≡ 1 the same holds for the intensities µk, hence for the expectations with
respect to the Palm probability measures.

3.5 Summary and open problems

In the course of this chapter we have derived several formulas for mean values and distribu-
tions of geometric characteristics of Poisson Laguerre tessellations. Most of these results are
based on the generalization of the methods developed for the analysis of Poisson Voronoi
tessellations. In some cases, however, it turns out that a straightforward generalization is
impossible due to the more complex geometry of Laguerre tessellations.

The main result of this chapter is a complete description of the Palm probability measure
Q0

k of Mk (Theorem 3.2.4). It provides us with a description of the generating point process
Φ as seen from a randomly chosen (typical) point on a k-face of the tessellation. More
precisely, we have computed the joint distribution of the d − k + 1 neighbors of the k-face
containing this typical point. However, the distribution formulas obtained here cannot be
formulated as explicitly as the ones for the Poisson Voronoi tessellation (Baumstark and
Last, 2007, Theorem 1.1). This is mainly caused by the loss of independence of some of
the considered random variables when moving to the weighted case. The same is true for
the formulas for the intensities µk, which remain in integral form and have to be evaluated
numerically.

Further random variables associated with a random tessellation are the characteristics
of its typical k-faces and the point processes Nk of their centroids. It is difficult to prove
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analytical formulas for these quantities directly. However, the formulas relating them to Q0
k

yield some, although not very explicit, formulas (Theorem 3.3.9). An exception is the typical
edge of the Poisson Voronoi tessellation. Both Schlather (2000) and Muche (2005) provide
formulas for the distribution of its length. Baumstark and Last (2007) give a complete
description of the distribution of the typical edge and its neighbors. However, each of these
authors make heavy use of symmetries within a Poisson Voronoi tessellation which are no
longer present in Laguerre tessellations. Therefore, the application of their methods to
Poisson Laguerre tessellations is not possible.

One important quantity is the cell intensity γd which, in the Voronoi case, is easily seen
to equal the intensity λ of the generating point process. In the Laguerre case this does no
longer hold since not all points necessarily generate a cell. So far, we have not been able
to derive an analytical formula for the cell intensity which allows for numerical evaluation.
This has severe consequences as it implies that already for d = 3 not all mean values of the
cell characteristics can be computed analytically.

Based on the distribution formula for Q0
0, Muche (1996a) computed the distribution

functions of various characteristics of the typical two- and three-dimensional Poisson De-
launay cell. In Section 3.3.1 we have deduced distribution formulas for the shape and the
volume of the typical Poisson Laguerre Delaunay cell. However, the attempt to general-
ize Muche’s results further fails because of the lack of an explicit formula for the volume
∆d(w0u0, . . . , wdud).

Formulas for contact and chord length distributions of Poisson Laguerre tessellations have
been derived in Sections 3.3.3 and 3.3.4, respectively. This generalizes results by Muche and
Stoyan (1992). Tessellations with respect to more general point processes of generators, in
the Voronoi case studied by Heinrich (1998), were not considered in this context.

Other quantities which have been studied in the case of the Poisson Voronoi tessellation
include higher moments or covariances of cell characteristics (Brakke, 1986; Gilbert, 1962),
distributions of several angles (Brakke, 1986; Muche, 1998; Baumstark and Last, 2007), or
characteristics of sectional tessellations (Møller, 1994). These have not been considered here.
Further, Calka (2003a,b) derived an explicit formula for the distribution of the number of
faces and the area of the typical planar Poisson Voronoi cell. Our investigations have shown
that, in principle, Calka’s results can be generalized to the Laguerre case. However, the
formulas, already looking rather complicated in the Voronoi case, did not turn out to be
very explicit. Therefore, they are not given here.

Finally, we have proven some limit theorems dealing with the convergence of Poisson
Laguerre to Poisson Voronoi tessellations (Section 3.4). Further relations between these two
types of tessellations can be expected. Consider a Laguerre tessellation and the Voronoi
tessellation generated by Poisson processes of the same intensity λ. Then the cell intensity
of the Laguerre tessellation is at most λ, while the cell intensity of the Poisson Voronoi
tessellation equals λ. Therefore, the Laguerre tessellation has fewer but larger cells than
the Voronoi tessellation. We conjecture that the remaining intensities γk, k = 0, . . . , d − 1,
as well as the intensities µk, k = 0, . . . , d − 1, of a Poisson Laguerre tessellation are also
bounded from above by the corresponding intensities of the Poisson Voronoi tessellation.
The simulation results in the next chapter will support this conjecture. So far, however, we
have not been able to prove it.
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Special cases, examples, and simulations

In this chapter we investigate planar (d = 2) and spatial (d = 3) Laguerre tessellations,
which are the most important ones for applications. Our aim is to make the integral formulas
derived in the last chapter as explicit as possible to allow for a numerical evaluation. As
an example, we study Poisson Laguerre tessellations with respect to two-atom and uniform
distributions of radii. We evaluate numerically the integral formulas for the intensities µk

and for the linear contact and chord length distributions. The resulting values for µk are
cross-checked with the values estimated using simulations of the particular tessellations.

Further, we show and discuss simulation results for distributions of several characteristics
of the typical cells of the considered tessellations. At this point, one has to be careful with
the interpretation of the notion “typical cell”. The typical cell of a Voronoi tessellation
equals the cell generated by the typical point of the generating point process. For Laguerre
tessellations, however, one has to distinguish between the (possibly empty) cell generated by
the typical point and the typical non-empty cell drawn at random from the non-empty cells
of the tessellation. Here, we will usually understand the term typical cell in the latter way.
The cell generated by the typical point is then distributed as a mixture of the distribution of
the typical non-empty cell (with probability p0) and the empty cell (with probability 1−p0).
We start with a short survey of the simulation methods applied.

4.1 Simulation methods

The number of analytic formulas for distributions of characteristics of the typical Poisson
Voronoi cell has grown over the last years. Nevertheless, some important distributions (e.g.
the cell volume distribution of a three-dimensional tessellation) are not yet captured. The
results of the last chapter indicate, that it is even harder to obtain formulas for generalized
Voronoi tessellations. In addition, the variety of applications of (generalized) Voronoi tes-
sellations requires the investigation of a wider range of processes of nuclei (e.g. hard core
or cluster processes). Most of these models are completely intractable to analytic investiga-
tion. In each of these cases the desired distributions have to be studied using Monte-Carlo
simulations of the tessellation models.

This fact raised the need for practical methods for the generation of realizations of ran-
dom tessellations or, more precisely, their restrictions to a bounded observation window.
Consequently, there have been several publications in computational geometry dealing with
efficient algorithms for the computation of these structures (e.g. Aurenhammer, 1987b; Bois-
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sonnat and Yvinec, 1998; Imai et al., 1985). For the simulation of Laguerre tessellations we
use an algorithm discussed by Aurenhammer (1987b) and Sugihara (2000). It reduces the
construction of a Laguerre Delaunay tessellation in Rd to the construction of a convex hull
in Rd+1.

So let S be a finite subset of Rd, F a face of its convex hull conv S, n the outward normal
to F , and ed = (0, . . . , 0, 1). F is called an upper face if 〈n, ed〉 > 0 and a lower face if
〈n, ed〉 < 0. The collection of the upper faces is called the upper hull and the collection of
lower faces the lower hull of S. Then the basic result is the following.

Theorem 4.1.1
Let S = {(xi, ri) : i = 1, . . . , n} be a finite subset of Rd × R+. Define a set S ′ in Rd+1 via

S ′ := {(xi, ||xi||2 − r2
i ) : i = 1, . . . , n} ⊆ Rd+1.

The projection of the lower hull of S ′ onto the subspace Rd × {0} is the Laguerre Delaunay
diagram of S.

Proof:
Aurenhammer (1987b, Section 4).

The corresponding algorithm for Voronoi tessellations is implemented in the QHull soft-
ware package (Barber et al., 1996). We have adapted this package such that it can be used
to construct Laguerre Delaunay tessellations. From these, the vertices and the systems of
k-faces are derived using the system of linear equations given in (2.6).

For the simulation of the typical cell of a (generalized) Voronoi tessellation there are two
main approaches. The first one is based on generating a realization of the tessellation in a
single, very large window and measuring the characteristics of each of its cells. However,
this straightforward approach has two main disadvantages: first, cells which are close to the
boundary of the observation window may cause edge effects, which have to be removed using
an appropriate edge treatment, and secondly, the generation of a sufficiently large realization
might cause computational problems.

A second simulation method consists in generating a sequence of independent realizations
of the typical cell and measuring the desired distributions from the aggregate of these cells.
Quine and Watson (1984) introduced an efficient method for the simulation of the typical
Poisson Voronoi cell based on radial generation of the Poisson process of nuclei. A gener-
alization of this method to the Johnson-Mehl model has been published by Møller (1995).
Now we will adapt the Quine-Watson approach to Poisson Laguerre tessellations.

It is well known, that the typical cell Cd(0) of a Poisson Laguerre tessellation has the
same distribution as the cell C

(

(0, r0),Φ ∪ {(0, R0)}
)

, where R0 has the distribution of the
weight of the typical point of Φ. Therefore, we proceed as follows. Let Φ be a stationary
marked Poisson process, where the locations xi are generated with increasing distance to the
origin as described in Quine and Watson (1984) and the marks ri are sampled from a mark
distribution F. In order to provide a stopping criterion for the generation of points, we will
assume that an upper bound R > 0 for the marks exists. In applications this is no serious
restriction, since even distributions such as the gamma or log-normal distribution can be
truncated at suitable values.

Then we almost surely have n0 ∈ N such that the (possibly empty) cell C(n) :=
C
(

(0, r0), {(0, r0), (x1, r1), . . . , (xn, rn)}
)

is bounded for all n ≥ n0. For each such n let
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d(n) denote the distance of the origin to the furthest vertex of C(n). A point y ∈ Rd belongs
to C

(

(0, r0),Φ ∪ {(0, r0)}
)

if and only if

(

[||y||2 − r2
0 + r2]+

)
1
2 ≤ ||y − x||, (x, r) ∈ Φ.

Therefore, the influence of a point (x, r) on C(n) depends on both the location of x and
the value of r. Since the marks are bounded by R, we can formulate a criterion which is
independent of the sequence of radii, namely C(n) = C((0, r0),Φ ∪ {(0, r0)}) if

||xn+1|| > d(n) + (d(n) − r2
0 +R2)

1
2 .

This yields the following algorithm for the simulation of a typical Poisson Laguerre cell: Ra-
dially generate x1, . . . , xn+1 and draw the weights r0, r1, . . . , rn+1 from the mark distribution
F until C(n) is bounded and ||xn+1|| > d(n)+ (d(n)− r2

0 +R2)
1
2 . Then C(n) yields a sample

of the typical Poisson Laguerre cell Cd(0).

4.2 The planar case

4.2.1 General formulas

In this section, we formulate the mean value formulas and distribution functions which we
obtained in the last chapter explicitly for the two-dimensional case. So let Φ be a stationary
marked Poisson process on R2 ×R+ with intensity λ and mark distribution F with property
(3.3).

Formulas for ∆k+1
m and Vm,k

The main problem when working with the expressions in Theorem 3.2.4 is the lack of explicit
general formulas for ∆k+1

m (w0u0, . . . , wmum) (p. 36) and Vm,k(w0, . . . , wm) (p. 44). However,
in some special cases we are able to overcome this problem. In the two-dimensional case we
have to consider ∆2 and ∆2

1. Unfortunately, ∆2

(

w0u0, w1u1, w2u2

)

remains intractable. But
we have

∆2
1 (w0u0, w1u1) = w2

0 + w2
1 − 2〈u0, u1〉w0w1, u0, u1 ∈ S1 ∩ L,w0, w1 > 0,

and therefore

V1,1 (w0, w1) = 4(w2
0 + w2

1), w0, w1 > 0.

The representation of Qk

Now we insert the expressions computed above into the distribution formulas given in The-
orem 3.2.4. In each case, let h be a non-negative measurable function defined on a suitable
domain. With respect to Q0, the neighborhood of the vertex in the origin is described by
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the random variables (ΦP0 , P0,Ψ0), whose distribution is given by

EM0

[

h(ΦP0 , P0,Ψ0)
]

=
λ3

6

∞
∫

0

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

e
−λπ

∞R
0

[t+r2]+F(dr)
∫

S1

∫

S1

∫

S1

E
[

h(Φt, t, {(u0, r0), (u1, r1), (u2, r2)})
]

∆2

(

(t+ r2
0)

1
2u0, (t+ r2

1)
1
2u1, (t+ r2

2)
1
2u2

)

S(du0) S(du1) S(du2) dtF(dr0) F(dr1) F(dr2).

With respect to Q1, the decomposition of Φ reads (ΦP1, P ′
1, P

′′
1 ,Ψ1, U1) and we have

EM1

[

h(ΦP1 , P ′
1, P

′′
1 ,Ψ1, U1)

]

=
λ2π

8

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

∫

S1∩L

∫

S1∩L

(

2t+ r2
0 + r2

1

(t+ r2
0)

1
2 (t+ r2

1)
1
2

− 2〈u0, u1〉
) ∞
∫

0

e
−λπ

∞R
0

[s+t+r2]+F(dr)
s−

1
2

∫

SO2

∫

S1∩L⊥

E
[

h(Φt+s, t, s, {(ϑu0, r0), (ϑu1, r1)}, ϑu)
]

SL⊥(du) ν(dϑ) ds SL(du0) SL(du1) dt

F(dr0) F(dr1).

When disintegrating with respect to Ψ1, we may insert the formula for V1,1 and obtain

EM1

[

h(ΦP1 , P ′
1, P

′′
1 , U1)

]

=
λ2π

2

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

2t+ r2
0 + r2

1

(t+ r2
0)

1
2 (t+ r2

1)
1
2

∞
∫

0

e
−λπ

∞R
0

[s+t+r2]+F(dr)
s−

1
2

∫

SO2

∫

S1∩L⊥

E
[

h(Φt+s, t, s, ϑu)
]

SL⊥(du) ν(dϑ) ds dtF(dr0) F(dr1).

The intensities µk

For the intensities µ0 and µ1 we get

µ0 =
λ3

12

∞
∫

0

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

e
−λπ

∞R
0

[t+r2]+F(dr)
V2,0

(

(t+ r2
0)

1
2 , (t+ r2

1)
1
2 , (t+ r2

2)
1
2

)

dtF(dr0)

F(dr1) F(dr2)

and

µ1 = λ2π

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

2t+ r2
0 + r2

1

(t+ r2
0)

1
2 (t+ r2

1)
1
2

∞
∫

0

e
−λπ

∞R
0

[t+s+r2]+F(dr)
s−

1
2 ds dtF(dr0) F(dr1).

These two formulas provide all parameters which are required for computing the mean
values of the cell characteristics using Theorem 1.6.6. In particular, we can derive a formula
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for the probability p0 that the typical point of Φ generates a non-empty cell: Since the
intensity of cells is given by γ2 = p0λ and γ0 = 2γ2, we have

p0 =
γ2

λ
=
γ0

2λ
=
µ0

2λ
=

=
λ2

24

∞
∫

0

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

e
−λπ

∞R
0

[t+r2]+F(dr)
V2,0

(

(t+ r2
0)

1
2 , (t+ r2

1)
1
2 , (t+ r2

2)
1
2

)

dtF(dr0)

F(dr1) F(dr2).

Denote the intensities of the point process of centers of the k-faces of a Poisson Voronoi
tessellation with intensity λ by γV

k . Then, since γ2 = λp0 ≤ λ = γV
2 , we see that γ1 = 3γ2 ≤

3γV
2 = γV

1 and γ0 = 2γ2 ≤ 2γV
2 = γV

0 . Therefore, the estimates conjectured in Section 3.5
hold in the planar case.

The mean content of Fk(0)

For the mean length of the edge F1(0) we obtain

E0
M1

[

H1(F1(0))
]

=
λ2π

µ1

∑

θ∈{0,π}

∞
∫

0

∞
∫

0

∞
∫

−min
i

r2
i

2t+ r2
0 + r2

1

(t+ r2
0)

1
2 (t+ r2

1)
1
2

∞
∫

0

∞
∫

0

ξ
(

l, s+ t, τ(l, t, s, θ)
)

s−
1
2 dl ds dtF(dr0) F(dr1).

The mean area of the cell F2(0) containing the origin is

E0
M2

[

H2(F2(0))
]

= λπ

∞
∫

0

∞
∫

−r2
0

∞
∫

0

2π
∫

0

ξ
(

l, t, ρ(l, t, r0, θ)
)

l dθ dl dtF(dr0).

The linear contact distribution

The formula for the linear contact distribution function is given by

Hl(r) = 1 − λ

2

∞
∫

0

∞
∫

−r0

2π
∫

0

ξ
(

r, t, ρ(r, t, r0, θ)
)

dθ dtF(dr0), r ≥ 0,

where we recall that

ξ(r, t, ρ) = exp



−λ
∞
∫

0

κ
(

r,
(

[t+ w2]+
)

1
2 ,
(

[ρ+ w2]+
)

1
2

)

F(dr)



 , r ≥ 0, t, ρ ∈ R.
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In the two-dimensional case, formula (3.14) for κ
(

r, (t+ w2)
1
2 , (ρ+ w2)

1
2

)

with r > 0, t +

w2 > 0, and ρ+ w2 > 0 reads

κ
(

r, (t+ w2)
1
2 , (ρ+ w2)

1
2

)

= (t+ w2)

(

π − arccos

(

t− ρ+ r2

2r(t+ w2)
1
2

)

+
t− ρ+ r2

2r(t+ w2)
1
2

(

1 − (t− ρ+ r2)2

4r2(t+ w2)

)
1
2

)

+ (ρ+ w2)

(

π − arccos

(

ρ− t+ r2

2r(ρ+ w2)
1
2

)

+
ρ− t+ r2

2r(ρ+ w2)
1
2

(

1 − (ρ− t+ r2)2

4r2(ρ+ w2)

)
1
2

)

if |(t+ w2)
1
2 − (ρ+ w2)

1
2 | < r < (t+ w2)

1
2 + (ρ+ w2)

1
2 . The formulas for the other cases in

(3.14) are obvious.

The chord length distribution

The formula for the chord length distribution function reads

L(r) = 1 − λ2π

4µ1

∞
∫

0

∞
∫

−r2
0

2π
∫

0

∞
∫

0

κ′(r, t, r0, w, θ) F(dw) ξ
(

r, t, ρ(r, t, r0, θ)
)

dθ dtF(dr0), r ≥ 0,

where ξ and κ are defined as above and

κ′(r, t, r0, w, θ) =
d

dr
κ
(

r,
(

[t+ w2]+
)

1
2 ,
(

[ρ(r, t, r0, θ) + w2]+
)

1
2

)

for r, r0, w ≥ 0, t ∈ R, and θ ∈ [0, 2π].

4.2.2 Two-atom distribution

In the following we investigate formula (3.9) for a two-dimensional Poisson Laguerre tessel-
lation where F is the two-atom distribution A(s1, s0, p) with 0 ≤ s0 < s1 and 0 ≤ p ≤ 1.
Consider a stationary marked Poisson process Φ on R2 with intensity λ and mark distribution
F = A(s1, s0, p). Let m2 := ps2

1 + (1 − p)s2
0 be the second moment of the radii.

The cells, edges, and vertices of L(Φ) can be partitioned into several classes depending
on how many of the generating nuclei carry the smaller or the larger radius. In the following
formulas we will condition on the number of nuclei with radius s0 and s1, respectively. This
yields explicit information on the contribution of the different classes of k-faces to Qk.

We recall that Ψk =
{

(Uk,0, Rk,0), . . . , (Uk,m, Rk,m)
}

and define the random variables

Nk,j :=

m
∑

i=0

1I{sj}(Rk,i), k = 0, 1, j = 0, 1, (4.1)

as the random number of nuclei carrying weight sj. Then the formulas for the expectations
EM0

[

h(ΦP0 , P0,Ψ0)
]

conditioned on a specific choice of radii are
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EM0

[

h(ΦP0 , P0,Ψ0) |N0,1 = 3
]

=
λ3

6
p3e−λπm2

∞
∫

−s2
0

e−λπt(t+ s2
1)

∫

S1

∫

S1

∫

S1

E
[

h(Φt, t, {(u0, s1), (u1, s1), (u2, s1)})
]

∆2

(

u0, u1, u2

)

S(du0) S(du1) S(du2) dt

+
λ3

6
p3e−λπps2

1

−s2
0

∫

−s2
1

e−λπpt(t+ s2
1)

∫

S1

∫

S1

∫

S1

E
[

h(Φt, t, {(u0, s1), (u1, s1), (u2, s1)})
]

∆2

(

u0, u1, u2

)

S(du0) S(du1) S(du2) dt,

EM0

[

h(ΦP0 , P0,Ψ0) |N0,0 = 1, N0,1 = 2
]

=
λ3

2
p2(1 − p)e−λπm2

∞
∫

−s2
0

e−λπt

∫

S1

∫

S1

∫

S1

E
[

h(Φt, t, {(u0, s0), (u1, s1), (u2, s1)})
]

∆2

(

(t+ s2
0)

1
2u0, (t+ s2

1)
1
2u1, (t+ s2

1)
1
2u2

)

S(du0) S(du1) S(du2) dt,

EM0

[

h(ΦP0 , P0,Ψ0) |N0,0 = 2, N0,1 = 1
]

=
λ3

2
p(1 − p)2e−λπm2

∞
∫

−s2
0

e−λπt

∫

S1

∫

S1

∫

S1

E
[

h(Φt, t, {(u0, s1), (u1, s0), (u2, s0)})
]

∆2

(

(t+ s2
1)

1
2u0, (t+ s2

0)
1
2u1, (t+ s2

0)
1
2u2

)

S(du0) S(du1) S(du2) dt,

and

EM0

[

h(ΦP0 , P0,Ψ0) |N0,0 = 3
]

=
λ3

6
(1 − p)3e−λπm2

∞
∫

−s2
0

e−λπt(t+ s2
0)

∫

S1

∫

S1

∫

S1

E
[

h(Φt, t, {(u0, s0), (u1, s0), (u2, s0)})
]

∆2

(

u0, u1, u2

)

S(du0) S(du1) S(du2) dt.

For the formulas with respect to Q1 we note that ∆2
1(u0, u1) = 4 1I{u0 = −u1} and

∆2
1(w0u0, w1u1) = ∆2

1(w1u0, w0u1) for unit vectors u0, u1 ∈ S1∩L and w0, w1 > 0. Therefore,
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we may keep u0 ∈ S1 ∩ L fixed in two of the following formulas and get

EM1
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h(ΦP1 , P ′
1, P

′′
1 ,Ψ1, U1) |N1,1 = 2

]

= λ2πp2e−λπm2
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SL⊥(du) ν(dϑ) ds dt,
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and
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∞
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We are now going to investigate the intensities µk of the measures Mk. As above, we may
not only ask for the total value of µk but also for the contribution of each class of k-faces to
this value. Hence, write µ0(r0, r1, r2) for the intensity of vertices whose neighbors carry the
weights r0, r1, and r2 and µ1(r0, r1) for the total length of edges whose neighbors carry the



4.2 The planar case 81

weights r0 and r1. Then the intensities µ0 and µ1 have the decomposition

µ0 = µ0(s0, s0, s0) + µ0(s1, s0, s0) + µ0(s1, s1, s0) + µ0(s1, s1, s1)
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Example 4.2.1
As an example, we consider the Poisson Laguerre tessellation for the parameters λ = 100,
s0 = 0.01, s1 = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and p = 0.5. This means we start with
a Poisson Voronoi tessellation of intensity λ = 100 and gradually increase the value of the
larger radius. By Corollary 3.4.5, the tessellations obtained this way will approach the
Poisson Voronoi tessellation of intensity λ = 50 for large values of s1. Some realizations are
shown in Figure 4.3.

The formulas for µ0(= γ0) and µ1(= LA) are evaluated using the numerical integration
functions of Mathematica. From these, the mean values of characteristics of the typical
non-empty cell are computed using the relations given in Theorem 1.6.6. The results are
summarized in Table 4.1. The contributions of the different types of cells to µ0 and µ1 are
listed in Tables 4.2 and 4.3, respectively.

Plots of the linear contact distribution function, its density, and the chord length distri-
bution function, also evaluated with Mathematica, are shown in Figures 4.1 and 4.2.

In each of these representations, the convergence to a Poisson Voronoi tessellation of
intensity λ = 50 with increasing s1 is clearly visible. It turns out that already for r1 = 0.3
nearly all of the cells generated by points with the smaller weight have disappeared.

Due to the lack of analytic formulas, distributions of characteristics of the typical cells
have to be studied by simulation. For each value of s1 we generated 200, 000 realizations of
the typical non-empty cell using the algorithm discussed in the previous section. The results
for the means, variances, minima, and maxima of their area, perimeter, and number of edges
are presented in Table 4.5. The histograms of the corresponding distributions are shown in
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Figures 4.4, 4.5, and 4.6, respectively. Besides the distributions for the total number of cells
we also included the histograms conditioned on the radius of the generators.

The histograms of the area distributions show a large amount of very small cells generated
by spheres with radius s0. The values of the minima of area and perimeter indicate that
cells can in principle become arbitrarily small. From the distribution of edge numbers we
see that small cells have less edges with an increasing amount of triangles and quadrangles.
However, besides the peak for small cells in the area distributions it is hard to distinguish
between the two cell types in the histograms.

In order to investigate the situation for different choices of p we have computed the mean
values γ0, γ2, and LA for the same choices of λ, s0, and s1 as above and p = 0.1, 0.3, 0.5, 0.7,
and 0.9. To check the accuracy of the numerical integration, the results are compared to
the values obtained by simulation of the model. For each set of parameters, we generate
10, 000 realizations of the Laguerre tessellations within the unit cube using periodic boundary
conditions. As a reference value, we use the mean of the values measured from the single
realizations. The results are summarized in Table 4.4. We observe that the values obtained
by simulation are in good agreement with the results from numerical integration. Further,
it turns out that the convergence to the Poisson Voronoi tessellation is slower for smaller
values of p.

s1 PV100 0.05 0.1 0.15 0.2 0.25 0.3 PV50

γ0 200.000 192.406 148.398 110.968 101.050 100.043 100.001 100.000
γ1 300.000 288.609 222.597 166.452 151.574 150.065 150.001 150.000
γ2 100.000 96.203 74.199 55.484 50.525 50.022 50.001 50.000
LA 20.000 19.203 16.283 14.529 14.173 14.143 14.142 14.142
l1 0.06667 0.06654 0.07315 0.08729 0.09351 0.09425 0.09428 0.09428
a2 0.0100 0.0104 0.0135 0.0180 0.0198 0.0200 0.0200 0.0200
u2 0.4000 0.3992 0.4389 0.5237 0.5610 0.5655 0.5657 0.5657

Table 4.1: Mean values of cell characteristics of a Laguerre tessellation in R2 generated by
a stationary marked Poisson process with intensity λ = 100. The mark distribution is a
two-atom distribution with s1 as given in the table, s0 = 0.01, and p = 0.5. For comparison,
the values for Poisson Voronoi tessellations with intensity λ = 100 and λ = 50 are included.

s1 PV100 0.05 0.1 0.15 0.2 0.25 0.3 PV50

µ0(s1, s1, s1) 25.000 35.627 67.743 92.562 99.263 99.969 99.999 100.000
µ0(s0, s1, s1) 75.000 77.291 48.678 12.652 1.331 0.058 0.001 0.000
µ0(s0, s0, s1) 75.000 62.341 26.699 5.013 0.408 0.015 0.000 0.000
µ0(s0, s0, s0) 25.000 17.148 5.279 0.741 0.047 0.001 0.000 0.000

Table 4.2: Contributions to µ0 of different cell types in a Laguerre tessellation in R2 generated
by a stationary marked Poisson process with intensity λ = 100. The mark distribution is a
two-atom distribution with s1 as given in the table, s0 = 0.01, and p = 0.5. For comparison,
the values for Poisson Voronoi tessellations with intensity λ = 100 (interpreted as a Laguerre
tessellation with mark distribution A(0.01, 0.01, 0.5)) and λ = 50 (interpreted as a Laguerre
tessellation with mark distribution A(0.01, 0.01, 1)) are included.
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s1 PV100 0.05 0.1 0.15 0.2 0.25 0.3 PV50

µ1(s1, s1) 5.000 6.935 11.239 13.615 14.100 14.141 14.142 14.142
µ1(s0, s1) 10.000 8.839 3.987 0.766 0.063 0.002 0.000 0.000
µ1(s0, s0) 5.000 3.430 1.056 0.148 0.010 0.000 0.000 0.000

Table 4.3: Contributions to µ1 of different cell types in a Laguerre tessellation in R2 generated
by a stationary marked Poisson process with intensity λ = 100. The mark distribution is a
two-atom distribution with s1 as given in the table, s0 = 0.01, and p = 0.5. For comparison,
the values for Poisson Voronoi tessellations with intensity λ = 100 (interpreted as a Laguerre
tessellation with mark distribution A(0.01, 0.01, 0.5)) and λ = 50 (interpreted as a Laguerre
tessellation with mark distribution A(0.01, 0.01, 1)) are included.
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Figure 4.1: Linear contact distribution function (left) and its density (right) for a Laguerre
tessellation in R2 generated by a stationary marked Poisson process with intensity λ = 100
and radius distribution A(s1, 0.01, 0.5) with s1 = 0.05, 0.1, 0.15, and 0.2. The solid lines
correspond to the Poisson Voronoi tessellations with intensities λ = 100 and λ = 50. The
line for s1 = 0.2 is so close to the Poisson Voronoi line that they cannot be distinguished.
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Figure 4.2: Chord length distribution function for a Laguerre tessellation in R2 generated
by a stationary marked Poisson process with intensity λ = 100 and radius distribution
A(s1, 0.01, 0.5) with s1 = 0.05, 0.1, 0.15, and 0.2. The solid lines correspond to the Poisson
Voronoi tessellations with intensities λ = 100 and λ = 50.
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Figure 4.3: Realizations of Poisson Laguerre tessellations of a fixed realization of a stationary
marked Poisson process with intensity λ = 100. The radii are equal (top) or have distribution
A(0.05, 0.01, 0.5), A(0.1, 0.01, 0.5), and A(0.15, 0.01, 0.5). The last image equals the Voronoi
tessellation of the points carrying the larger weights.
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Figure 4.4: Area distribution of the typical non-empty cell of a Laguerre tessellation in
R2 generated by a stationary marked Poisson process with intensity λ = 100 and mark
distribution A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01 (Voronoi
case) and s1 = 0.05, 0.1, 0.15, 0.2. The columns show the area distributions of the typical
non-empty cell (left) and of the typical non-empty cells whose generators carry the weights
0.01 (middle) and s1(right).
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Figure 4.5: Perimeter distribution of the typical non-empty cell of a Laguerre tessellation
in R2 generated by a stationary marked Poisson process with intensity λ = 100 and mark
distribution A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01 (Voronoi case)
and s1 = 0.05, 0.1, 0.15, 0.2. The columns show the perimeter distributions of the typical
non-empty cell (left) and of the typical non-empty cells whose generators carry the weights
0.01 (middle) and s1(right).
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Figure 4.6: Distribution of the number of edges of the typical non-empty cell of a Laguerre
tessellation in R2 generated by a stationary marked Poisson process with intensity λ = 100
and mark distribution A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01
(Voronoi case) and s1 = 0.05, 0.1, 0.15, 0.2. The columns show the edge number distributions
of the typical non-empty cell (left) and of the typical non-empty cells whose generators carry
the weights 0.01 (middle) and s1(right).
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p s1 γ2 γS
2 γ0 γS

0 LA LS
A

0.1 0.05 98.865 98.711 197.730 197.422 19.688 19.671
0.1 0.10 90.204 90.201 180.408 180.401 17.870 17.866
0.1 0.15 72.748 72.883 145.496 145.767 14.805 14.826
0.1 0.20 51.855 51.870 103.709 103.741 11.598 11.607
0.1 0.25 33.694 33.557 67.387 67.113 9.104 9.092
0.1 0.30 21.373 21.328 42.746 42.656 7.569 7.561
0.1 0.35 14.630 14.715 29.260 28.430 6.798 6.808
0.1 0.40 11.600 11.595 23.199 23.190 6.478 6.473
0.3 0.05 97.065 97.176 194.129 194.354 19.301 19.312
0.3 0.10 77.138 77.112 154.276 154.224 16.078 16.075
0.3 0.15 50.548 50.587 101.095 101.175 12.853 12.860
0.3 0.20 35.381 35.396 70.762 70.791 11.380 11.388
0.3 0.25 30.848 30.807 61.695 61.615 11.013 10.998
0.3 0.30 30.081 30.049 60.162 60.098 10.959 10.958
0.3 0.35 30.005 30.013 60.009 60.027 10.955 10.960
0.3 0.40 30.000 29.986 60.000 59.972 10.955 10.952
0.5 0.05 96.203 95.937 192.406 191.875 19.203 19.176
0.5 0.10 74.199 74.274 148.398 148.548 16.283 16.287
0.5 0.15 55.484 55.477 110.968 110.954 14.529 14.522
0.5 0.20 50.525 50.468 101.050 100.937 14.173 14.165
0.5 0.25 50.022 50.021 100.043 100.043 14.143 14.143
0.5 0.30 50.001 49.997 100.001 99.993 14.142 14.144
0.7 0.05 96.591 96.713 193.182 193.426 19.359 19.368
0.7 0.10 80.054 80.049 160.107 160.097 17.485 17.482
0.7 0.15 71.140 71.195 142.280 142.389 16.798 16.804
0.7 0.20 70.039 70.018 140.077 140.036 16.735 16.732
0.7 0.25 70.001 70.015 140.001 140.030 16.733 16.735
0.7 0.30 70.000 70.010 140.000 140.020 16.733 16.734
0.9 0.05 98.459 98.518 196.918 197.035 19.737 19.747
0.9 0.10 92.255 92.408 184.509 184.816 19.120 19.138
0.9 0.15 90.125 90.133 180.250 180.265 18.980 18.978
0.9 0.20 90.002 90.097 180.003 180.193 18.974 18.985
0.9 0.25 90.000 90.024 180.000 180.048 18.974 18.977
0.9 0.30 90.000 90.062 180.000 180.125 18.974 18.981

Table 4.4: Intensities for a Laguerre tessellation in R2 generated by a stationary marked Pois-
son process with intensity λ = 100 and radius distribution A(s1, 0.01, p). The characteristics
with superscript S are obtained by simulation (mean of 10,000 relizations), characteristics
without superscript by numerical integration.
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s1 mean var min max
area 0.01 0.01001 2.837e-5 0.00017 0.05065

0.05 0.01042 3.831e-5 0 0.05146
0.10 0.01350 9.102e-5 0 0.06110
0.15 0.01800 1.186e-4 0 0.08345
0.20 0.01978 1.139e-4 0 0.09525

perimeter 0.01 0.40012 0.00955 0.06488 0.87680
0.05 0.39972 0.01464 1.5e-5 0.88848
0.10 0.43929 0.03040 5.0e-6 0.99135
0.15 0.52317 0.02876 1.0e-6 1.10381
0.20 0.56073 0.02047 1.5e-5 1.18035

number of edges 0.01 6.002 1.775 3 14
0.05 6.005 2.197 3 14
0.10 6.004 2.933 3 15
0.15 5.999 2.338 3 16
0.20 6.001 1.861 3 14

Table 4.5: Characteristics of the typical cell of a Laguerre tessellation in R2 generated
by a stationary marked Poisson process with intensity λ = 100 and radius distribution
A(s1, 0.01, 0.5).

4.2.3 Uniform distribution

As a second example we investigate planar Poisson Laguerre tessellations with uniformly
distributed radii. In contrast to the two-atom case we will not explicitly formulate the
integral formulas but only consider the results of numerical integrations and simulations.

As in the two-atom case we choose λ = 100, while the radius distribution is U(0.01, b),
where b starts at 0.05 and increases in steps of 0.05. Again, we evaluate numerically the
formulas for µ0 and µ1, compare the results to the mean values measured from 10, 000
simulations, and compute the mean values of the cell characteristics. The results are shown
in Tables 4.7 and 4.6. Here, also, the values are in good agreement.

s1 PV100 0.05 0.1 0.15 0.2 0.25 0.3
γ0 200.000 196.976 172.513 129.974 92.506 69.431 55.785
γ1 300.000 295.464 258.770 194.961 138.759 104.147 83.678
γ2 100.000 98.488 86.113 64.619 46.253 34.715 27.893
LA 20.000 19.615 17.477 14.546 12.201 10.641 9.566
l1 0.06667 0.06639 0.06754 0.07461 0.08793 0.10217 0.11432
a2 0.0100 0.0102 0.0116 0.0155 0.0216 0.0288 0.0359
u2 0.4000 0.3983 0.4052 0.4477 0.5276 0.6130 0.6859

Table 4.6: Mean values of cell characteristics of a Laguerre tessellation in R2 generated by a
Poisson process with intensity λ = 100 and mark distribution U(0.01, b).
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In order to study distributions of cell characteristics of the typical cell, we simulate
200,000 realizations of the typical non-empty cell. Means, variances, minima, and maxima
of their area, perimeter, and number of edges are contained in Table 4.8. The corresponding
distributions together with the distribution of the radii of their generators are shown in
Figure 4.7. Again, we observe decreasing values of the intensities µ0 and µ1. This time,
however, there is no obvious limiting distribution. The histograms for the first steps show a
rapid change in the shapes of the distributions. For larger values of b the changes are more
even and the distributions seem to stabilize at a certain shape while their support increases.
As in the two-atom case we find a large number of very small cells.
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Figure 4.7: Distribution of area, perimeter, number of edges, and radius of the generating
circle (from left to right) of the typical non-empty cell of a Laguerre tessellation in R2

generated by a Poisson process with intensity λ = 100 and mark distribution U(0.01, b).
The rows correspond to the parameters b = 0.05, 0.1, 0.15, 0.2, 0.25.
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a b γ2 γS
2 γ0 γS

0 LA LS
A

0.01 0.05 98.488 98.459 196.976 197.918 19.615 19.617
0.01 0.10 86.113 86.057 172.226 172.115 17.477 17.476
0.01 0.15 64.619 64.705 129.237 129.411 14.546 14.541
0.01 0.20 46.253 46.344 92.506 92.688 12.201 12.204
0.01 0.25 34.715 34.814 69.431 69.628 10.641 10.639
0.01 0.30 27.893 27.810 55.785 55.619 9.566 9.560
0.01 0.35 23.195 23.295 46.391 46.589 8.767 8.773
0.01 0.40 20.032 19.981 40.064 39.962 8.148 8.140

Table 4.7: Intensities for a Laguerre tessellation in R2 generated by a Poisson process with
intensity λ = 100 and radius distribution U(a, b). The characteristics with superscript S are
obtained by simulation (mean of 10,000 relizations), characteristics without superscript by
numerical integration.

a b mean var min max
area 0.01 0.05 0.010158 3.2892e-5 0 0.05385

0.01 0.10 0.011601 7.6127e-5 0 0.06399
0.01 0.15 0.015474 1.9257e-4 0 0.08425
0.01 0.20 0.021659 3.8921e-4 0 0.11881
0.01 0.25 0.028860 6.5194e-4 0 0.14515

perimeter 0.01 0.05 0.39841 0.01218 0.00012 0.88004
0.01 0.10 0.40554 0.02597 5.8e-5 0.94447
0.01 0.15 0.44923 0.04854 1.4e-5 1.09619
0.01 0.20 0.52728 0.07216 3.0e-6 1.27365
0.01 0.25 0.61234 0.09250 3.0e-6 1.41067

number of edges 0.01 0.05 5.9997 2.0007 3 13
0.01 0.10 5.9981 2.9830 3 15
0.01 0.15 5.9959 3.7364 3 17
0.01 0.20 6.0063 3.8906 3 17
0.01 0.25 6.0072 3.7834 3 18

Table 4.8: Characteristics of the typical cell of a Laguerre tessellation in R2 generated by a
Poisson process with intensity λ = 100 and radius distribution U(a, b).

4.3 The spatial case

Now we will have a closer look at the three-dimensional case. We proceed as for d = 2.
Let Φ be a stationary marked Poisson process on R3 × R+ with intensity λ > 0 and mark
distribution F with property (3.3).
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4.3.1 General formulas

Formulas for ∆k+1
m and Vm,k

The first step is again the derivation of explicit formulas for ∆k+1
m and Vm,k. This time,

∆3, ∆2
2, and ∆3

1 are required. Again, ∆3 (w0u0, . . . , w3u3) is intractable. A formula for
∆2

2 (w0u0, w1u1, w2u2) can in principle be computed but looks rather complicated. Neverthe-
less, we get

V2,1 (w0, w1, w2) = 4π3
(

w2
0w

2
1 + w2

0w
2
2 + w2

1w
2
2

)

, w0, w1, w2 > 0,

and for 0 ≤ w0 ≤ w1 we obtain

∆3
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(
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1 + 3w2

1

)

− w0

(

3w2
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0

)

〈u0, u1〉, u0, u1 ∈ S2 ∩ L,w0, w1 > 0

and

V1,2 (w0, w1) = 4w1(w
2
1 + 3w2

0), w0, w1 > 0.

Note that the last two expressions are not symmetric in w0 and w1. Therefore, one has to
be careful which of the occurring radii is the smaller one when applying these formulas.

The representation of Qk

Now we insert the formulas derived above in the distribution formulas given in Theorem
3.2.4. In each case let h be a non-negative measurable function defined on a suitable domain.
With respect to Q0, the neighborhood of the vertex in the origin is described by the random
variables (ΦP0 , P0,Ψ0), whose distribution function is given by
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Again, we disintegrate with respect to Ψ1, which yields
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With respect to Q2, the point process Φ is determined by the tuple (ΦP2 , P ′
2, P

′′
2 ,Ψ2, U2).

As remarked earlier, the formulas for ∆3
1 and V1,2 require information on the order of the

radii r0 and r1. Therefore, we arrange integration in a way that r0 ≤ r1 always holds. To
do so, we have to distinguish between continuous and discrete distributions of radii. If we
assume a continuous distribution the corresponding formulas read
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The intensities µk
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For a discrete distribution F as described above we get
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Remark 4.3.1
For a spatial Poisson Laguerre tessellation formula (3.9) only yields γ0, LV , and SV . For
a complete determination of the mean cell characteristics, we still lack the value of γ3 or,
equivalently, of the probability p0. So far the only way to determine this value is by simula-
tion.

The mean content of Fk(0)

The mean length of the edge F1(0) is given by
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The mean area of the facet F2(0) for a continuous distribution F is
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For a discrete distribution we get
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Finally, the mean volume of the cell F3(0) containing the origin is given by
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The linear contact distribution

The formula for the linear contact distribution function is
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where again

ξ(r, t, ρ) = exp


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2 .

The formulas for the other cases in (3.14) are again obvious.

The chord length distribution

The formula for the chord length distribution function reads

L(r) = 1 − 2πλ2

µ2
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where ξ and κ are defined as above and

κ′(r, t, r0, w, θ) =
d

dr
κ
(

r,
(

[t+ w2]+
)

1
2 ,
(

[ρ(r, t, r0, θ) + w2]+
)
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2

)

for r, r0, w ≥ 0, t ∈ R, and θ ∈ [0, 2π].

4.3.2 Two-atom distribution

Choose 0 ≤ s0 < s1 and 0 ≤ p ≤ 1. Consider a stationary Poisson process Φ on R2 with
intensity λ and mark distribution A(s1, s0, p). Then

p(t) =

{

p1(t) := e−
4
3
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3
2 +(1−p)(t+s2

0)
3
2
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, if − s2
0 < t,

p2(t) := e−
4
3
λπp(t+s2

1)
3
2 , if − s2

1 ≤ t ≤ −s2
0.

Again, we consider random variables Nk,j defined analogously to (4.1) and distinguish
between different configurations of radii. Let h be a non-negative measurable function de-
fined on a suitable domain. Then the distribution formulas with respect to Q0 for the
corresponding Laguerre tessellation are given by
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With respect to Q1, we obtain
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and
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Then the intensities µk are given by

µ0 =
27λ4π5
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Example 4.3.2
As in the planar case we will now discuss an example. This time, we choose λ = 1000,
s0 = 0.01 and s1 starting at 0.01 and then taking the values between 0.05 and 0.3 at steps of
0.05. In order to keep the extend of this chapter limited, observations are slightly reduced
compared to the planar case.

Due to the lack of a tractable formula for the cell intensity γ3, we are not able to compute
all the mean values of cell characteristics only based on numerical integration. Table 4.9
shows the values of γ0, LV , and SV for p = 0.1, 0.3, 0.5, 0.7, and 0.9. The values obtained
by numerical integration are again compared to the mean values measured from 10, 000
realizations of the corresponding tessellations. For γ3 only the simulated value is given.

For p = 0.5 the mean values of the limiting Poisson Voronoi tessellation are reached for
s1 = 0.20. As in the two-dimensional case convergence is faster for larger values of p.

The plots of the linear contact distribution function, its density, and the chord length
distribution function for the case p = 0.5 are shown in Figures 4.13 and 4.14. The curves
rapidly approach the one for the Poisson Voronoi tessellation of intensity λ = 500. It is
almost impossible to distinguish between the lines already for s1 = 0.15.

Finally, the distributions of volume v, surface area s, total edge length l, and number of
faces n of the typical non-empty cell are studied by simulation. As a further characteristic
we include the sphericity (or isoperimetric shape factor) g = 6

√
πv√
s3

of the cells. For each set
of parameters we generate 200, 000 realizations of the typical non-empty cell. The means,
variances, minima, and maxima of the observed characteristics are shown in Table 4.13.
The histograms of v, s, l, n, and g are displayed in Figures 4.8, 4.9, 4.10, 4.11, and 4.12,
respectively.

The histograms for s1 = 0.05 are still close to both the ones for the Poisson Voronoi
tessellation and to the corresponding histograms of the planar tessellation. For s1 = 0.1,
however, the two classes of cells are clearly visible especially in the histograms for s and
l. Already for s1 = 0.15 the influence of the cells with smaller weight has decreased a lot.
Looking at the histogram for the shape factor we observe that the cells generated by points
with smaller weight tend to be much more irregular than cells whose generator carries the
larger weight.
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p s1 γS
3 γ0 γS

0 LV LS
V SV SS

V

0.1 0.05 998.090 6703.969 6703.907 577.182 577.182 28.776 28.775
0.1 0.10 929.936 5863.007 5862.817 501.083 501.007 25.252 25.250
0.1 0.15 624.804 3582.998 3584.842 315.166 315.208 18.484 18.485
0.1 0.20 246.347 1407.210 1407.059 165.555 165.564 14.337 14.340
0.1 0.25 112.111 732.295 733.788 128.080 128.209 13.548 13.554
0.1 0.30 100.342 677.653 678.680 125.674 125.776 13.509 13.515
0.3 0.05 994.516 6613.913 6618.535 569.013 569.041 28.385 28.385
0.3 0.10 791.390 4809.509 4813.489 422.236 422.307 23.126 23.127
0.3 0.15 373.931 2391.778 2393.539 276.374 276.541 19.712 19.719
0.3 0.20 300.782 2033.237 2034.211 261.431 261.537 19.484 19.489
0.3 0.25 300.055 2030.319 2030.469 261.349 261.368 19.483 19.483
0.3 0.30 300.034 2030.319 2030.361 261.349 261.341 19.483 19.483
0.5 0.05 991.877 6582.627 6584.787 566.198 566.195 28.300 28.300
0.5 0.10 738.288 4657.602 4659.877 427.898 428.883 24.177 24.176
0.5 0.15 506.250 3413.997 3412.675 368.270 368.196 23.110 23.106
0.5 0.20 499.887 3383.870 3382.616 367.384 367.304 23.100 23.097
0.5 0.25 499.900 3383.864 3382.724 367.384 367.311 23.100 23.097
0.5 0.30 499.880 3383.864 3382.609 367.384 367.299 23.100 23.097
0.7 0.05 992.027 6610.021 6611.158 568.883 568.892 28.470 28.470
0.7 0.10 789.504 5200.652 5199.942 478.175 478.190 26.111 26.111
0.7 0.15 700.503 4739.167 4740.349 459.808 459.864 25.842 25.844
0.7 0.20 699.987 4737.410 4737.445 459.768 459.760 25.842 25.842
0.7 0.25 699.777 4737.410 4736.683 459.768 459.660 25.842 25.839
0.7 0.30 699.949 4737.410 4737.131 459.768 459.744 25.842 25.841
0.9 0.05 996.034 6698.905 6698.458 577.066 577.034 28.849 28.848
0.9 0.10 917.453 6180.176 6178.456 546.653 546.581 28.137 28.135
0.9 0.15 900.130 6091.007 6091.888 543.629 543.677 28.100 28.101
0.9 0.20 899.334 6090.956 6090.185 543.628 543.574 28.100 28.098
0.9 0.25 899.589 6090.956 6089.589 543.628 543.554 28.100 28.098
0.9 0.30 899.828 6090.956 6089.697 543.628 543.555 28.100 28.098

Table 4.9: Intensities for a Laguerre tessellation in R3 generated by a Poisson process with
intensity λ = 1000 and radius distribution A(s1, 0.01, p). The characteristics with super-
script S are obtained by simulation (mean of 10,000 realizations), characteristics without
superscript by numerical integration.
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Figure 4.8: Volume distribution of the typical non-empty cell of a Laguerre tessellation in R3

generated by a Poisson process with intensity λ = 1000 and mark distribution A(s1, 0.01, 0.5).
The rows correspond to the parameters s1 = 0.01 (Voronoi case) and s1 = 0.05, 0.1, 0.15, 0.2.
The columns show the volume distributions of the typical non-empty cell (left) and of the
typical non-empty cells whose generators carry the weights 0.01 (middle) and s1(right).
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Figure 4.9: Surface area distribution of the typical non-empty cell of a Laguerre tessel-
lation in R3 generated by a Poisson process with intensity λ = 1000 and mark distribu-
tion A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01 (Voronoi case) and
s1 = 0.05, 0.1, 0.15, 0.2. The columns show the surface area distributions of the typical non-
empty cell (left) and of the typical non-empty cells whose generators carry the weights 0.01
(middle) and s1(right).
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Figure 4.10: Distribution of the total edge length of the typical non-empty cell of a Laguerre
tessellation in R3 generated by a Poisson process with intensity λ = 1000 and mark dis-
tribution A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01 (Voronoi case)
and s1 = 0.05, 0.1, 0.15, 0.2. The columns show the edge length distributions of the typical
non-empty cell (left) and of the typical non-empty cells whose generators carry the weights
0.01 (middle) and s1(right).
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Figure 4.11: Distribution of the number of faces of the typical non-empty cell of a Laguerre
tessellation in R3 generated by a Poisson process with intensity λ = 1000 and mark dis-
tribution A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01 (Voronoi case)
and s1 = 0.05, 0.1, 0.15, 0.2. The columns show the face number distributions of the typical
non-empty cell (left) and of the typical non-empty cells whose generators carry the weights
0.01 (middle) and s1(right).
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Figure 4.12: Shape factor distribution of the typical non-empty cell of a Laguerre tessel-
lation in R3 generated by a Poisson process with intensity λ = 1000 and mark distribu-
tion A(s1, 0.01, 0.5). The rows correspond to the parameters s1 = 0.01 (Voronoi case) and
s1 = 0.05, 0.1, 0.15, 0.2. The columns show the shape factor distributions of the typical non-
empty cell (left) and of the typical non-empty cells whose generators carry the weights 0.01
(middle) and s1(right).
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Figure 4.13: Linear contact distribution function (left) and its density (right) for a Laguerre
tessellation in R3 generated by a Poisson process with intensity λ = 1000 and radius distri-
bution A(s1, 0.01, 0.5) with s1 = 0.05, 0.1, 0.15, and 0.2. The solid lines correspond to the
Poisson Voronoi tessellations with intensities λ = 1000 and λ = 500. The lines for s1 = 0.15
and s1 = 0.2 are so close to the Poisson Voronoi line that they cannot be distinguished.
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Figure 4.14: Chord length distribution function for a Laguerre tessellation in R3 generated
by a Poisson process with intensity λ = 1000 and radius distribution A(s1, 0.01, 0.5) with
s1 = 0.05, 0.1, 0.15, and 0.2. The solid lines correspond to the Poisson Voronoi tessellations
with intensities λ = 1000 and λ = 500. The lines for s1 = 0.15 and s1 = 0.2 are so close to
the Poisson Voronoi line that they cannot be distinguished.
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s1 mean var min max
volume 0.01 0.00100 1.795e-7 3.322e-05 0.00405

0.05 0.00101 3.434e-7 6.515e-13 0.00465
0.10 0.00135 1.114e-6 8.333e-18 0.00631
0.15 0.00197 7.521e-7 3.833e-17 0.00832
0.20 0.00200 7.199e-7 1.165e-04 0.00863

surface area 0.01 0.05823 0.00022 0.00875 0.13570
0.05 0.05710 0.00047 1.440e-07 0.14645
0.10 0.06554 0.00157 5.030e-11 0.18579
0.15 0.09126 0.00064 1.228e-10 0.22315
0.20 0.09243 0.00055 0.01622 0.22916

total edge length 0.01 1.75004 0.13605 0.54345 3.87302
0.05 1.71358 0.27484 0.00239 4.18984
0.10 1.74015 0.75631 5.0e-5 4.83475
0.15 2.18177 0.25936 6.5e-5 4.86945
0.20 2.20532 0.21661 0.66430 4.92969

number of faces 0.01 15.540 11.091 5 37
0.05 15.286 16.930 4 42
0.10 14.633 31.450 4 40
0.15 15.485 12.407 4 35
0.20 15.534 11.103 5 33

shape factor 0.01 0.72774 0.00341 0.32331 0.88563
0.05 0.71072 0.00889 0.02882 0.89174
0.10 0.67049 0.01838 0.02089 0.90484
0.15 0.72452 0.00445 0.03287 0.88187
0.20 0.72768 0.00343 0.28647 0.89110

Table 4.10: Characteristics of the typical non-empty cell of a Laguerre tessellation in R3 gen-
erated by a Poisson process with intensity λ = 1000 and radius distribution A(s1, 0.01, 0.5).

4.3.3 Uniform distribution

As for the two-dimensional case we study the case of uniformly distributed radii as a second
example. Here, we choose λ = 1000 and a radius distribution U(0.01, b), where b takes values
between 0.05 and 0.25 (or 0.30) in steps of 0.05. As for the discrete distribution, we evaluate
numerically the formulas for γ0, LV , and SV and compare the results to the mean values
measured from 10, 000 simulations. We also use these simulations to determine the value of
γ3. The results are shown in Table 4.11.

Further, we simulate 200, 000 realizations of the typical non-empty cell. As in the previous
sections we measure the volume v, surface area s, total edge length l, number of faces n,
and shape factor g of each of the cells. The means, variances, minima, and maxima are
summarized in Table 4.12. The corresponding histograms are shown in Figures 4.15 and
4.16. As in the planar case, the shape of the histograms rapidly changes during the first
steps. In the later steps some kind of stabilization occurs and the changes are less obvious.
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a b γS
3 γ0 γS

0 LV LS
V SV SS

V

0.01 0.05 998.306 6706.899 6704.146 577.284 577.196 28.800 28.791
0.01 0.10 919.005 5817.862 5815.773 501.165 501.325 25.689 25.758
0.01 0.15 619.285 3745.935 3754.156 356.206 356.372 21.236 21.276
0.01 0.20 383.809 2340.349 2346.283 263.072 262.971 18.400 18.408
0.01 0.25 274.842 1690.610 1689.321 212.865 212.693 16.572 16.610
0.01 0.30 213.464 1303.043 1315.433 180.515 180.516 15.310 15.325

Table 4.11: Intensities for a Laguerre tessellation in R3 generated by a Poisson process with
intensity λ = 1000 and radius distribution U(a, b). The characteristics with superscript S
are obtained by simulation (mean of 10,000 realizations), characteristics without superscript
by numerical integration.

a b mean var min max
volume 0.01 0.05 0.00100 2.470e-7 5.0e-14 0.00399

0.01 0.10 0.00109 1.065e-6 2.4e-17 0.00623
0.01 0.15 0.00162 3.503e-6 2.0e-18 0.01110
0.01 0.20 0.00262 8.001e-6 8.1e-17 0.01692
0.01 0.25 0.00364 1.460e-5 5.7e-17 0.02415

surface area 0.01 0.05 0.05769 0.00032 1.093e-08 0.13931
0.01 0.10 0.05601 0.00127 8.562e-11 0.17898
0.01 0.15 0.06877 0.00323 1.900e-11 0.26118
0.01 0.20 0.09622 0.00557 2.725e-10 0.34477
0.01 0.25 0.12087 0.00824 1.235e-10 0.44358

total edge length 0.01 0.05 1.73446 0.19107 5.0e-4 3.84100
0.01 0.10 1.63534 0.66397 5.8e-5 4.74310
0.01 0.15 1.72638 1.25302 2.1e-5 6.03187
0.01 0.20 2.06038 1.60204 1.1e-4 6.86152
0.01 0.25 2.32245 1.91240 2.0e-6 7.60894

number of faces 0.01 0.05 15.429 13.424 4 33
0.01 0.10 14.644 31.888 4 42
0.01 0.15 14.121 44.114 4 45
0.01 0.20 14.251 41.295 4 45
0.01 0.25 14.301 39.708 4 42

shape factor 0.01 0.05 0.72068 0.00581 0.04453 0.88186
0.01 0.10 0.67082 0.01828 0.03801 0.91074
0.01 0.15 0.63871 0.02389 0.01932 0.91075
0.01 0.20 0.64597 0.02286 0.01068 0.90765
0.01 0.25 0.64953 0.02228 0.02061 0.90274

Table 4.12: Characteristics of the typical cell of a Laguerre tessellation in R3 generated by
a Poisson process with intensity λ = 1000 and radius distribution U(a, b).
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Figure 4.15: Distribution of volume, surface area, and total edge length (from left to right)
of the typical non-empty cell of a Laguerre tessellation in R3 generated by a Poisson process
with intensity λ = 1000 and mark distribution U(0.01, b). The rows correspond to the
parameters b = 0.05, 0.1, 0.15, 0.2, 0.25.
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Figure 4.16: Distribution of number of faces, shape factor, and radius of the generating
sphere (from left to right) of the typical non-empty cell of a Laguerre tessellation in R3

generated by a Poisson process with intensity λ = 1000 and mark distribution U(0.01, b).
The rows correspond to the parameters b = 0.05, 0.1, 0.15, 0.2, 0.25.



Chapter 5

Modeling of cellular materials

The microstructure of a material highly affects its macroscopic properties such as elasticity,
thermal conductivity or permeability. Therefore, the design of modern high-performance
materials requires insight into the microstructure of the given material as well as an under-
standing of its influence on physical properties. Even more, this knowledge is required when
optimizing materials for the construction of components.

Microstructural geometry is usually described by mean values or distributions of suit-
able geometric characteristics which are statistically estimated from images of the material.
In order to capture all spatial information, these measurements are ideally performed on
volume images. Thanks to the rapid development of imaging techniques such as micro-
computer tomography (µCT) or laser scanning microscopy, more and more high quality
three-dimensional images become available. Nevertheless, many materials can not yet be
handled by 3d imaging devices due to resolution restrictions or low contrast. For example,
the current limit resolution in µCT imaging is about 1 µm, while typical grain diameters in
sintered ceramics, are about 150− 200 nm. For these materials, the classical method of sec-
tional analysis has to be used. Therefore, it is not possible to measure all desired quantities
directly from the image. The answer to this problem might be the use of model assumptions.
The model parameters can be estimated from sectional images, further characteristics are
then derived using stereological formulas for the model structure under consideration.

Another application area for modeling of materials, which is just starting to develop, is
the so-called “virtual design” of materials. Using the model structure, physical properties of
the corresponding material are computed or simulated. Repeated calculations with varying
model parameters allow to investigate the reaction of the material’s properties to changes
of the microstructure. Thus, instead of producing many sample structures and choosing
the best one for a given application, suggestions for good candidates can be obtained by
simulation. The increasing capability of simulation algorithms as well as computer power
allows for high precision in the simulation results. In return, this requires more and more
sophisticated model structures and model-fitting procedures.

Random closed sets are classical models from stochastic geometry which are used to
describe the microstructure of materials (see Matheron, 1975; Stoyan et al., 1995; Ohser
and Mücklich, 2000). The variety of these models makes them applicable for various types
of materials. Processes of lines or cylinders are used to model fibrous materials (Schladitz
et al., 2006). Systems of balls are used for porous materials as they appear in the beginning
of the sinter process (Lautensack et al., 2006) or the system of grains and pores in concrete
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(Ballani et al. (2006) and Kadashevich et al. (2005), respectively). Boolean models with
various kinds of grain shapes are used for example for cast iron (line segments, Stoyan et al.
(1995, p. 92)), calcium ferrite (quadrangles, Serra (1982, Chapter XIII)) or the pore phase
in carbonate rock (ellipsoids, Arns et al. (2003)). Finally, random tessellations are popular
models for cellular or polycrystalline materials such as foams or sintered ceramics. Further
information on the modeling of materials can be found in the books by Ohser and Mücklich
(2000), Stoyan et al. (1995) or Torquato (2002).

5.1 Modeling the microstructure of materials by ran-

dom tessellations

Random tessellations are typically used as models for polycrystalline or cellular materials.
So far, however, mainly the Voronoi and the Johnson-Mehl tessellation have been consid-
ered. We will give only a few examples here which nevertheless indicate the wide range
of possibilities arising from the use of tessellation models. Kumar and Kurtz (1994) used
three-dimensional Poisson Voronoi tessellations to study the thermal expansion coefficients
of polycrystalline materials. Schwertel and Stamm (1997) investigated sectional images of
an austenitic steel. From measurements in the 2d images they estimated the cell intensities
of corresponding Poisson Voronoi and Johnson-Mehl tessellations. Their results suggest that
the weighted tessellation gives the better fit. Roberts and Garboczi (2001) as well as Ribeiro-
Ayeh (2005) modeled closed cell solid foam structures by Voronoi tessellations with respect
to hard core point processes. From these models, they computed elastic moduli of the foam
structures. Andersson (2005) used two-dimensional Poisson Voronoi tessellations to simu-
late crack growth in metals. Finally, Coster et al. (2005) constructed a three-dimensional
Johnson-Mehl model for a sintered ceramic (Cerine).

The wish for a model structure which is easy to handle both analytically and com-
putationally often suggests the use of the Poisson Voronoi tessellation. However, for some
applications, the Poisson Voronoi model can be rejected right away (see Stoyan et al., 1995).
Also, the range of distributions which can be realized by Voronoi tessellations with respect
to changing seed distributions is limited. As indicated by Coster et al. (2005) or Schwertel
and Stamm (1997) the use of weighted tessellations provides a powerful alternative. In many
cases the Johnson-Mehl model is proposed (Chu et al., 2000; Coster et al., 2005; Schwertel
and Stamm, 1997). This seems to be a good choice for materials with strongly curved cell
faces.

For structures with (nearly) planar faces, Laguerre tessellations should be favored for the
following reasons: The results stated in Section 2.4 suggest that each normal and regular cell
structure with convex or nearly convex cells can be realized as or at least approximated by a
Laguerre tessellation. The mean value relations for normal and regular tessellations (Section
1.6) allow for a computation of the mean values of the cell characteristics based on only
few measurements. As described in Section 4.1, efficient algorithms for the construction of
Laguerre tessellations are available. Since the Laguerre cells are bounded by planar faces (in
contrast to the curved faces of Johnson-Mehl cells), the computation of their characteristics
such as volume or surface area is much easier. The same is true when sectional tessellations
have to be studied. Using its representation as a Laguerre tessellation (Okabe et al., 2000,
p.132), it is possible to simulate the sectional tessellation without actually constructing the
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Figure 5.1: Examples for cellular materials: sectional image of sintered alumina (Al2O3, A.
Krell, Fraunhofer IKTS, top left), alkaline zinc-nickel layers on steel (D. Peisker, Institute
of Iron and Steel Technology, Freiberg University of Mining and Technology, top right),
reconstructed tomographic images of an open aluminum foam (Mpore, bottom left) and a
closed polymer foam (L. Helfen, ESRF, bottom right).

three-dimensional structure. Johnson-Mehl tessellations do not possess this property. For the
simulation of physical properties of a material, finite element methods are applied, which
usually require a triangulation of the cell faces. This is again much easier for the planar
Laguerre faces than for the curved ones appearing in Johnson-Mehl tessellations. Finally,
like Voronoi or Johnson-Mehl tessellations, Laguerre tessellations can be defined as the result
of a growth process (Edelsbrunner and Seidel, 1986, Note 3.3). Therefore, this model can
also be used for porous structures as they typically appear in intermediate states of a sinter
process.

As a consequence, Laguerre tessellations should be regarded as a powerful tool for the
modeling of materials. First applications can be found for example in several publications
by the group of T. Liebling in Lausanne (Telley et al., 1996a,b; Xue et al., 1997) or in Kühn
(2005) and Kanaun and Tkachenko (2006).
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5.2 Modeling a foam structure

Foamed materials made of ceramics, metals or polymers are of interest in many application
areas. Due to properties such as light weight, porosity, and stiffness, they are used for filters,
crash absorbers, insulators or as cores of sandwich constructions. On the other hand, they
can also be found in many natural structures such as bone, wood or sponge and in food
structures like bread or cereals.

Foams consist of spherical or polyhedral cells separated by liquid or solid cell bound-
aries together building a space-filling structure. They are characterized as “open-cell” when
forming a continuous network of cell edges or “closed-cell” if the cells are bounded by solid
membrane-like faces.

The physical properties of a foam (e.g., elasticity or thermal conductivity) heavily depend
on its microstructure. However, the influence of certain geometric characteristics of the
foam cells on these properties is far from being understood. Many of the formulas for the
computation of physical properties of a foam are gained from simplifications of the foam
cells such as the cubic unit cell used by Gibson and Ashby (1988). Other approaches are
mainly based on the observation of liquid foams, leading to deterministic models such as
the Kelvin (Thomson, 1887) and the Weaire-Phelan foam (Weaire and Phelan, 1994) or the
tetrakaidekahedral cell model (i.e., the Voronoi tessellation of the bcc lattice, Kusner and
Sullivan (1996)).

For a long time the only way of studying the structure of real foams consisted in tediously
observing single foam cells as done by Matzke (1946). Today, three-dimensional images
of foam structures obtained by micro-computer tomography provide a powerful source of
information on the microstructure of a foam sample. Several tools for processing these
images and measuring cell characteristics have been developed during the last years (see
Godehardt et al. (2004), Montminy et al. (2004) or Lambert et al. (2005)). Investigations
of various samples of solid foams have shown that these structures show a great variety of
cell shapes and sizes (Montminy et al. (2004), Dillard et al. (2005)) which is not captured
by deterministic models.

Information on the macroscopic properties of a given foam can be gained from experi-
ments (e.g., mechanical testing, Benouali et al. (2005) or Dillard et al. (2005)) or simulation
of these properties in images of its microstructure (Knackstedt et al., 2005). However, these
techniques only mirror the behavior of a given foam sample. The virtual design approach
allows to study the reaction of physical properties to changes of certain geometric character-
istics and to optimize a foam for particular applications. Therefore, finite element analyses
are carried out using model foams featuring various microstructures. Models which are typ-
ically used for these purposes are randomly disturbed variations of the deterministic models
discussed above (see e.g., Grenestedt and Tanaka (1999) or Ribeiro-Ayeh (2005)) or Voronoi
tessellations with respect to the centers of sphere packings generated by random sequential
adsorption or other random close packing algorithms (see e.g., Roberts and Garboczi (2001),
Zhu et al. (2000) or Ribeiro-Ayeh (2005)).

Most studies on physical properties of foam structures are concerned with elastic prop-
erties. From both experiments and the use of model structures it is well known that the
volume fraction and cell anisotropy of the foam play an important role (Gibson and Ashby
(1988), Benouali et al. (2005), Knackstedt et al. (2005) or Roberts and Garboczi (2001)).
Results of Brezny and Green (1990), Zhu et al. (2000), and Kanaun and Tkachenko (2006)
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further indicate that cell size and irregularity (measured e.g., by the variation of shape or
size) are of importance as well.

So far, most of the publications on foam structures are devoted to either the analysis of
real foam structures or the observation of model foams. In some of these model studies the
values of physical properties are compared to real foam samples without, however, investi-
gating the geometric fit of the model (Roberts and Garboczi (2001, 2002) or Ribeiro-Ayeh
(2005)).

In this chapter, we are going to use geometric characteristics measured from a three-di-
mensional image of a foam structure for fitting a model to its geometric microstructure. We
are not going to investigate physical properties of the foam under consideration. However, we
expect that a better fit of the geometry of a material will also improve the results obtained
for its macroscopic properties.

5.2.1 The data

The material considered here is a polymer foam used for the thermal insulation of buildings.
A three-dimensional gray value image of the material taken at the European Synchrotron
Radiation Facility in Grenoble was provided by the producer of the material. The original
image size is 1024×1024×2000 voxels with a voxel edge length of 5 µm such that the image
shows 5.12 mm × 5.12 mm × 10 mm of material. The average thickness of the facets of the
cells in the material is 1.7 µm, the volume fraction is 3.6%.

5.2.2 Cell reconstruction

The microstructure of the foam sample will be described using geometric characteristics of
its cells which are extracted from the image of the material. This image, however, only shows
the system of cell boundaries. In order to measure geometric characteristics of single foam
cells, the cells have to be separated. The straightforward approach of binarizing and labeling
the image does not work here because of the coarse resolution of the image. Instead, the
cells have to be reconstructed using a chain of image processing algorithms.

To reduce computational effort, the reconstruction procedure is restricted to a cube
of a side length of 578 voxels. First, the wall system of the foam is segmented by simple
thresholding. To the resulting black-and-white image, the Euclidean distance transformation
is applied, assigning to each background pixel its distance to the wall system (Cuisenaire,
1999). Ideally, this yields local maxima exactly at the cell centers. In practice, superfluous
local maxima have to be removed using filters or morphological transformations. Here, the
h-maxima transformation (Soille, 1999, Section 6.4.4) is applied. The watershed algorithm
(Vincent and Soille, 1991) divides the inverted distance image into cells. Due to the coarse
resolution of the image some of the cell walls are hardly visible and therefore not captured in
the binarization step. In a post-processing step, these errors are corrected manually. Finally,
in order to make measurements comparable to the space-filling tessellation models, the black
cell facets are removed from the image by dilation.

Planar sections of the volume images obtained during this procedure are shown in Figure
5.2. All image processing steps are performed on volume images using the MAVI software
package developed at the Fraunhofer ITWM (2005). For further information on the recon-
struction method see Godehardt et al. (2004) and Lautensack and Sych (2006).
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Figure 5.2: Planar sections of the original image, the segmented system of cell walls, the
distance image, the reconstructed cells, the reconstructed cells after manual correction, and
the dilated image.

5.2.3 Statistical analysis

The difference between a proposed tessellation model and the foam sample will be measured
by the deviation of several geometric characteristics of the typical cell of the model from the
characteristics of the foam cells. Similar approaches are discussed for example in Gloaguen
et al. (2006) and in Kühn (2005). Both are based on optimization with respect to distance
measures defined on vectors of cell characteristics of the tessellations. Let ĉ be the vector of
characteristics estimated from the input structure and c the vector of the same characteristics
for one of the model structures under consideration. For measuring the distance between ĉ
and c we adopt the approach of Gloaguen et al. (2006) who define relative distance measures
based on the Euclidean, the absolute, and the maximum metric via

de(ĉ, c) =

√

√

√

√

n
∑

i=1

(

ĉi − ci
ĉi

)2

,

da(ĉ, c) =

n
∑
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∣

∣

∣

∣

ĉi − ci
ĉi

∣

∣

∣

∣
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i=1,...,n

|ĉi − ci|
ĉi

.

(5.1)

Although a large number of characteristics can in principle be computed, our model-
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fit will be based on only four of them. The mean value formulas for three-dimensional
tessellations in Theorem 1.6.7 suggest the use of γ0, γ3, LV , and SV . However, we will use
some characteristics which are more easily and robustly estimated from both the volume
image and the analytic representation of the tessellation models: the volume v, surface area
s, mean width b̄, and number of faces f of the cells. Moreover, for fixed γ3 the values of s
and b̄ are proportional to SV and LV , respectively, and f only depends on γ0.

While f already holds some information on the regularity of the cells, the sphericity (or

isoperimetric shape factor) g = 6
√

πv√
s3

is additionally investigated. Measurements are again

performed using MAVI. A rough approximation of the mean width b̄ is obtained as the mean
of the diameters dx, dy, and dz in coordinate directions. In order to avoid boundary effects
we use a minus sampling edge correction whereby 1823 cells with a total volume of 10.123
mm3 are included in the statistics. The mean values of the cell characteristics are given in
Table 5.1, histograms of the corresponding distributions are displayed in Figure 5.3.

data v s f b̄ dx dy dz g
mean 0.0055532 0.17586 14.637 0.24698 0.23773 0.24785 0.23951 0.77124
var 6.54219e-6 0.00280 10.378 0.00143 0.00192 0.00222 0.00195 0.00173
PV v s f b̄ dx dy dz g

mean 0.0055532 0.18254 15.535 0.25819 0.25819 0.25819 0.25819 0.72790
var 5.55081e-6 0.00215 11.012 0.00095 0.00095 0.00095 0.00095 0.00340

Table 5.1: Mean values and variances of geometric characteristics of the reconstructed foam
cells. For comparison the values for the Poisson Voronoi tessellation of the same intensity
λ = 180.077 are given. The values for the Poisson Voronoi tessellation are taken from
(Okabe, Boots, Sugihara, and Chiu, 2000) except for g which is obtained by simulation.
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Figure 5.3: Distributions of cell characteristics of the foam sample.
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5.2.4 Choice of model structures

We are planning to model the given foam sample by a Laguerre tessellation with respect to
a marked point process. First of all, we note that the small deviation in the values for dx, dy,
and dz justifies the use of an isotropic model. Working with a Poisson process of generators
would of course hold the advantage of having analytic formulas for at least some of the mean
values at hand. However, the lack of a formula for the cell intensity requires simulation
studies even for these structures. The comparison of Figure 5.3 with the simulation results
given in Chapter 4 yields several further arguments against Poisson distributed generators.
In particular, the existence of very small and highly irregular cells in the Poisson Laguerre
tessellations does not fit the distributions measured for the foam structure.

For this application, Laguerre tessellations generated by marked point processes defined
by the centers and radii of hard sphere systems are a more promising choice. In this case,
the cell intensity is equal to the intensity of the generating process while the remaining
cell characteristics have to be measured from simulations. Up to now, simulation studies
for such structures are still rare. Gervois et al. (2002) investigated Laguerre tessellations
with respect to packings of binary mixtures of spheres. Fan et al. (2004) studied Laguerre
tessellations of random dense packings of spheres with log-normal volume distribution. Their
results indicate that the volume distribution of the Laguerre cells is closely determined by
the distribution of the ball volumes. However, they observe mean face numbers in a range
of 13.0 to 14.2 which demonstrates that these structures are too regular for our application.
Further, the generation of dense packings is computationally very complex. An algorithm
which is less time consuming would be preferable for the optimization procedure.

In conclusion, we are looking for a hard sphere point process which is less regular than
a dense packing of balls, easy to implement, has acceptable run times and does not depend
on too many parameters. If the volume fraction is not chosen too high, a system of balls
generated by random sequential adsorption (RSA, Torquato (2002, Section 3.4), or SSI,
Stoyan et al. (1995)) fulfills these requirements. This point process is generated within a
bounded observation windowW as follows: Proposals for the position of ball centers and radii
are successively drawn from the uniform distribution on W and a given radius distribution,
respectively. If a newly proposed ball does not overlap with any of the previously placed
balls, the proposal is accepted, otherwise it is rejected and a new proposal is made. This
procedure is repeated until the desired number of balls has been placed.

However, since small balls are accepted with a higher probability than large ones, the
radius distribution of the accepted balls will differ from the distribution of the proposed
radii. In order to generate a system of balls with a radius distribution equal to the proposal
distribution, the RSA algorithm should be implemented in a way that a new radius is
only proposed if a ball with the previously proposed radius has been placed successfully.
In contrast to the Poisson processes discussed in the previous chapters, the marks of an
RSA process are no longer independent. Nevertheless, the proposal distribution of the radii
may be interpreted as the distribution of the radius of the typical ball. In the following,
we will consider Laguerre tessellations generated by an RSA point process (RSA Laguerre
tessellations).

In the literature both log-normal and gamma distributions are reported for the cell volume
distribution of cellular materials (see Fan et al., 2004, and references therein). Hence, we
estimate the parameters of both distributions from the foam data using maximum likelihood.
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For the gamma distribution we obtain shape parameter a = 4.6705 and scale parameter
s = 0.001189, for the log-normal distribution we get µ = −5.3043 and σ = 0.4907. Figure
5.4 shows the density of the volume distribution of the foam cells together with the densities
of the estimated distributions. The plot shows an acceptable fit for the gamma distribution
while the log-normal distribution performs worse. Therefore, we choose a gamma distribution
for the ball volumes vb. Denoting the mean number of balls per unit volume by NV and the
volume fraction of the ball system by VV , the mean ball volume is given by E[vb] = VV /NV .
Therefore, the fit of the tessellation structure requires an optimization with respect to VV

and the variance Var[vb].
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Figure 5.4: The volume density of the foam cells and the density of the fitted gamma and
log-normal distributions.

5.2.5 Model fitting procedure

In the following, we will discuss how the model described above will be fitted to the foam
data using the distance measures defined in (5.1). In the application discussed in Gloaguen
et al. (2006), all three measures performed similarly. Since we do not see any reasons why one
of them should be preferred, we will run the optimization procedure with all three measures
and compare the results.

The vectors c and ĉ will in our case consist of eight entries, namely the means and
variances of v, s, b̄ (measured as the mean of dx,dy, and dz), and f . The reference values for
the proposed RSA Laguerre tessellations have to be determined by simulation. As a direct
simulation of the typical cell is not possible in this case we use the approach working with
large aggregates of cells. We simulate Laguerre tessellations of RSA systems consisting of
18230 balls within a cube of volume 101.23 mm3, which is ten times the size of the original
sample. For the ball volumes we simulate a gamma distribution with mean 0.0055532 mm3

(the mean cell volume) and a coefficient of variation (CV) varying between 0.80 and 1.20 with
a step width of 0.01. Scaling these values with the volume fraction VV yields an expected
ball volume of VV /NV . For the volume fraction VV we use the values 0.20, 0.25, and 0.30.
For each combination of CV and VV we generate five realizations yielding a total number of
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91150 cells per set of parameters. All simulations use periodic boundary conditions to avoid
edge effects.

In the simulations it turned out that for each of the three VV -values all four cell charac-
teristics show the same monotonous behavior with increasing value of CV: While the mean
values decrease, we observe increasing variances. Therefore, including both in the optimiza-
tion procedure is crucial for the minimization.

In order to compare the Laguerre model to some widely used Voronoi models we will
also investigate the Poisson Voronoi (PV) tessellation as well as a Voronoi tessellation with
respect to a hard core (HCV) point pattern generated by random sequential adsorption. For
this purpose we simulate Voronoi tessellations of RSA systems consisting of 18230 equal balls
within a cube of volume 101.23 mm3. The volume fraction VV of the balls varies between
0.1 and 0.3 in steps of 0.05. Again, we consider five realizations for each choice of VV .

5.2.6 Test of the optimization method using simulated data

Before applying the proposed optimization method to the foam sample we test the method
using simulated data. For that purpose we choose several values for CV and VV from the
range of our reference structures. For each set of parameters we generate a realization of the
corresponding RSA Laguerre tessellation of the same size as the foam sample, i.e. containing
1823 cells within a cube of volume 10.123 mm3. Again, periodic boundary conditions are
used to avoid edge effects. To these realizations, we apply the optimization method described
in the last section. The minimal distances de, da, and dm and the corresponding parameters
are shown in Table 5.2.

It turns out that in most cases the value of VV is fitted correctly when using distances
de and da while more errors occur for distance dm. Otherwise, especially de and da perform
similarly. When interpreting the results, one should keep in mind that the reference values
also result from simulations and therefore deviate from the true values.

5.2.7 Results for foam data

Now we use the optimization method described above for fitting a tessellation model to the
polymer foam. The minimal distances for each of the three VV -values are shown in Table 5.3.
In all three cases the smallest CV-value is obtained using da, while dm returns the largest
value. The total minimum over the range of simulations is obtained for VV = 0.20 irrespective
of the distance measure applied. This means that the most irregular structure is chosen as the
best model. However, the distances between the results for different VV -values appear rather
small when compared to the distances obtained for the Poisson Voronoi tessellation. The
hard core Voronoi tessellation, usually a very popular model for foam structures, performs
even worse than the Poisson Voronoi model. This is mainly caused by the low variances of
the considered characteristics compared to the real data. Consequently, the best results are
obtained for the smallest value of VV , which again produces the most irregular structures.
Table 5.4 shows the mean values and the variances for the cell characteristics of the best fit
models under the different distance measures.

To further validate the model fit we examine the distributions of the cell characteristics
of interest. Their densities are plotted in Figure 5.6. The differences between the best fit
models for the three distance measures are small compared to the difference of one of them
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simulation result de result da result dm

CV VV dmin
e CV min

e V min
Ve

dmin
a CV min

a V min
Va

dmin
m CV min

m V min
Vm

0.83 0.20 0.00835 0.83 0.20 0.01878 0.83 0.20 0.00575 0.83 0.20
0.86 0.25 0.01267 0.85 0.25 0.02866 0.85 0.25 0.00868 0.85 0.25
0.91 0.20 0.03249 0.90 0.20 0.05686 0.90 0.20 0.02520 0.90 0.20
0.94 0.30 0.01907 1.00 0.30 0.03109 1.00 0.30 0.01256 1.12 0.25
0.95 0.25 0.03400 0.96 0.25 0.05728 0.96 0.25 0.02310 0.86 0.30
1.01 0.25 0.02370 1.08 0.20 0.03525 0.95 0.25 0.01243 1.08 0.20
1.05 0.20 0.02076 1.09 0.20 0.03898 1.09 0.20 0.01541 1.09 0.20
1.08 0.30 0.02578 1.10 0.30 0.04496 1.10 0.30 0.01907 1.09 0.30
1.12 0.30 0.01252 1.14 0.30 0.02549 1.14 0.30 0.00881 1.14 0.30
1.14 0.25 0.02401 1.17 0.25 0.04485 1.17 0.25 0.01892 1.16 0.25
1.17 0.20 0.03278 1.01 0.25 0.07600 1.14 0.20 0.02198 1.01 0.25

Table 5.2: Result of the fitting procedure for simulated input data. The first two columns
show the parameters of the simulated data sets. The remaining columns contain the minimal
distances and the corresponding parameters CV and VV with respect to each of the distance
measures de, da, and dm.

to the Voronoi tessellations or the real data. Therefore, only the results for da are included
in the plots.

For each of the considered distributions it is obvious that the Laguerre model performs
better than both Voronoi tessellations. Especially the difference between the data and the
hard core Voronoi tessellation is striking. This model is not able to capture the variability
of the characteristics observed in the material. The Poisson Voronoi tessellation fits the
volume density of the foam cells quite nicely, which is due to the fact that both volume
distributions can be approximated by a gamma distribution (Kumar et al., 1992). For
the other characteristics, however, the Laguerre models provides much better results. 3D
visualizations and sections of both the real and the model foam are shown in Figure 5.5.

VV dmin
e CV min

e dmin
a CV min

a dmin
m CV min

m

0.20 0.26031 1.10 0.51813 1.03 0.17392 1.14
0.25 0.26544 0.99 0.52428 0.94 0.17895 1.00
0.30 0.27097 0.90 0.52052 0.85 0.17553 0.91
PV 0.44882 - 0.92655 - 0.33695 -

HCV 1.19135 - 2.43360 - 0.67866 -

Table 5.3: Result of the fitting procedure for the foam data. The columns contain the
minimal distances and corresponding values of CV with respect to each of the distance
measures de, da, and dm. For comparison the distances for the Poisson Voronoi tessellation
and for the hard core Voronoi tessellation with VV = 0.1 are shown.
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5.3 Discussion

In this chapter we have reconstructed the cells of a closed polymer foam from a tomographic
image of the material. From the reconstructed image we have extracted information on the
distributions of various cell characteristics of the foam. Using an optimization method based
on relative distance measures defined on vectors of means and variances of cell characteristics,
we have fitted a Laguerre tessellation model to the foam structure. Comparison of our model
to some widely used Voronoi tessellation models shows that it allows for a better fit of the
geometric characteristics of the foam sample.

The results presented in this chapter indicate that Laguerre tessellations are promising
models for the microstructure of cellular materials. However, the area of model fitting still
holds many open questions. So far, little is known about geometric characteristics of the
typical cell of Laguerre tessellations with respect to different processes of generators (e.g.,
hard core point processes or random dense packings of spheres) and different distributions
of radii. Therefore, the decision for a certain model structure will at the moment mainly be
based on “smart guessing”.

Comparing the density of cell volumes in our example to the fitted gamma distribution in
Figure 5.4 we observe that the gamma distribution shows a slight deviation to the left. The
same tendency is even more clearly visible in both the volume and the surface area density
of the model structures. Consequently, the question arises whether the choice of another
distribution type for the ball volumes would yield better results. The two-peaked structure
of the volume distribution suggests using a mixture of different distributions. However, by
increasing the number of model parameters, this would also increase the complexity of the
fitting procedure.

Once the decision for a certain model structure has been made, the parameters of the
model are optimized with respect to distance measures. Here, one has to decide for the char-
acteristics which are included in the optimization procedure. At this point a better knowledge
of the correlations between microstructure and physical properties would be helpful when
designing the fitting procedures. If the degree of influence of the geometric characteristics
on a certain macroscopic property was known, one could concentrate on the more important
characteristics and neglect the less influential ones.

When moving through the space of model parameters, we have to ask for a suitable range
and step width. In our example it turned out that the differences between the Laguerre
tessellations for neighboring CV-values are small. Therefore, one could have chosen a larger
step width for the CV-values in the optimization procedure which would have reduced the run
time. In general, the step widths should be chosen such that they allow for both acceptable
accuracy and run time.
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data v s f b g
mean 0.0055532 0.17586 14.637 0.24698 0.77124

variance 6.54219e-6 0.00280 10.378 0.00143 0.00173
de v s f b̄ g

mean 0.0055532 0.17507 15.111 0.24920 0.76560
variance 7.29116e-6 0.00251 11.079 0.00115 0.00307

da v s f b̄ g
mean 0.0055532 0.17532 15.129 0.24951 0.76752

variance 6.62352e-6 0.00231 10.444 0.00107 0.00281
dm v s f b̄ g

mean 0.0055532 0.17494 15.113 0.24913 0.76463
variance 7.68002e-6 0.00263 11.419 0.00120 0.00317

PV v s f b̄ g
mean 0.0055532 0.18254 15.535 0.25819 0.72790
var 5.55081e-6 0.00215 11.012 0.00095 0.00340

HCV v s f b̄ g
mean 0.0055532 0.17990 15.402 0.25492 0.76257

variance 2.32507e-6 0.00090 7.033 0.00049 0.00140

Table 5.4: Mean values and variances of geometric characteristics of the reconstructed foam
cells and the fitted Laguerre and Voronoi tessellations.

Figure 5.5: Visualizations (top) and planar sections (bottom) of the reconstructed foam cells
(left) and of the model foam (right).
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Figure 5.6: Distributions of cell characteristics of the foam sample, the fitted Laguerre
tessellation using distance da, and the Voronoi tessellations with respect to a Poisson and
an RSA hard core point process.
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