




Christian Schmidt

Evolutionary Computation in Stochastic Environments 





Evolutionary Computation 
in Stochastic Environments 

von 
Christian Schmidt



Universitätsverlag Karlsruhe 2007 
Print on Demand

ISBN:	 978-3-86644-128-6

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz 
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Dissertation, genehmigt von der Fakultät für Wirtschaftswissenschaften der 
Universität Fridericiana zu Karlsruhe, 2006
Referenten:  	Prof. Dr. H. Schmeck 
		  Prof. Dr. K.-H. Waldmann
		  Prof. S. E. Chick, Ph.D.

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/2.0/de/


meiner Frau





Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaft-

licher Mitarbeiter des Instituts AIFB der Universität Karlsruhe (TH) im

Rahmen des Kooperationsprojektes “Supply Chain Planning” mit der Firma

LOCOM Consulting GmbH, Karlsruhe.

Mein Dank gilt meinem Betreuer Professor Schmeck, der mir das Ver-
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Chapter 1

Introduction

Evolutionary Algorithms (EA) are iterative optimization heuristics, which

are inspired by natural evolution. They have proven to be very successful in

many different application areas including logistics, telecommunication and

production planning. One of their particular advantages is the wide applica-

bility, as they do not impose strong restrictions like continuity or convexity

on the model used for optimization. Normally, EA are applied to determin-

istic problems, i.e. problems with all parameters and outputs known exactly.

In reality, decision makers are often confronted with problems where this is

not the case. Uncertainties might arise, if the problem contains parameters

that are outcomes of future developments and therefore unpredictable, e.g.

weather or customer demand. Further uncertainties arise from parameters or

outputs that might be determined exactly, but at costs exceeding the possible

gain in value.

In practice, these uncertain parameters are often replaced with their ex-

pected values and the problem is solved as a deterministic problem. If the

unknown parameter is critical, then the solution might be very sensitive to

deviations of the uncertain parameter from its expected value, and therefore

the solution might have a bad value when implemented.

Problems with uncertain parameters can be modeled as stochastic prob-

lems. The uncertain parameters are replaced by stochastic variables with

distributions representing the decision maker’s belief in the possible realiza-
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1.1 Scope 1. Introduction

tions. The solution for the stochastic problem will be optimized for having

the best expected value or utility over all uncertain parameters.

The application of optimization procedures designed for deterministic

problems to stochastic problems is not straightforward, because, in general,

the value of a solution can not be determined exactly. It can only be es-

timated by repeated evaluations of different scenarios, where a scenario in

this context means a possible realization of the uncertain parameters. For

complex problems this evaluation is often done by simulating the behavior

of a solution for the given scenario. Simulation is a very powerful tool, as it

allows to model complex systems in a natural and realistic way.

Adapting EA for stochastic problems is one promising possibility to com-

bine optimization and stochastic simulation for solving complex and flexible

models of real world problems with combinatorially large search spaces. Two

specialties of EA further increase the elegance of this combination: Firstly,

EA can optimize multiple criteria in one run, so decision makers are not

forced to give an a-priori weighting of concurring measures of performance

like time and cost. Secondly, the evaluation of solutions can be distributed

easily on different nodes of a computer network with modest requirements

on communication among the nodes, which allows the use of standard PC

components to improve the speed of the optimization process.

In this thesis it is shown how to design EA for solving stochastic opti-

mization problems by combining features of statistical ranking and selection

procedures with features of stochastic optimization procedures.

1.1 Scope

The general setting of this thesis is to find the configuration

x∗ = arg max
x∈X

E ω[f(x, ω)], (1.1)

where x denotes a configuration (represented by a vector of input variables)

from the search space X, ω a random scenario (represented by a vector of en-

vironment variables) and f the performance measure of a given configuration

2



1. Introduction 1.2 Related Approaches

in a certain scenario. The objective is to find the configuration with the best

expected performance over all scenarios. In various contexts configurations

are called settings, designs, systems or solutions. This model is equivalent to

the formulation of “Simulation Optimization” used by [Fu 2002].

The given formulation indicates that the focus is on finding the best

configuration x∗ rather than the exact value of the objective function, which

conforms to the needs of practitioners. For the search space it is assumed

that configurations can be generated easily as opposed to feasibility problems,

where considerable effort goes into finding valid configurations. The objective

must be estimatable by repeated evaluations of the performance measure for

different scenarios, i.e. the sample average is a consistent estimator for the

quality of a configuration. If the performance of competing configurations

can be distinguished easily by few evaluations, the problem can be solved as

a quasi-deterministic problem and the approach presented here provides no

additional benefit.

Although no proofs for convergence of EA on stochastic problems, ex-

cept for few special cases, are known yet, many commercial software pack-

ages for simulation make use of EA and related approaches to generate and

select good solutions. For simulation optimization the EA’s ability to per-

form “black-box” optimization, i.e. optimization with few assumptions on

the problem structure, is advantageous.

1.2 Related Approaches

The model used in the formulation of the stochastic optimization problem

above is very general. The approaches to solve Equation 1.1 differ in the

importance given to certain aspects of the problem and in the assumptions

made on the structure of the performance measure and the search space.

Statistical Decision Theory Statistical decision theory developed by

[Wald 1950] is the basis for many ranking and selection procedures. They

are introduced in more detail in Chapter 2. For a given set of alternative

systems a probability of correct selection is guaranteed approximately or on
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1.2 Related Approaches 1. Introduction

average. These approaches are suitable, when the number of alternatives

is small and an evaluation of the performance is expensive. Our approach

combines EA with ranking and selection procedures in order to allow search

spaces of combinatorial size instead of a few alternatives.

Markov Decision Processes Another approach considers dynamic pro-

gramming and Markov decision processes (see [Kall and Wallace 1994] for an

introduction). Here, one searches for optimal actions to execute at discrete

points in time. The actions generate random outcome and transform the cur-

rent state to the next stage probabilistically. The number of actions, states

and stages needs to be low, as the general approach is to form a backward

recursion to identify optimal actions for each state.

Stochastic Programming In the operations research (OR) community

typically problems are solved by Stochastic Programming (see [Birge and

Louveaux 1997]). The models used are generally restricted to linear objective

functions and constraints, but nonetheless many real-world problems are too

complex to be solved. For stochastic optimization problems the optimality

of a solution can not be guaranteed any more as opposed to deterministic

ones, but only a probability that the solution is near the optimal solution.

The number of scenarios (realizations of the random parameters) is usually

fixed a-priori.

Stochastic Programming as introduced by [Birge and Louveaux 1997]

is the basis for many algorithms in classical OR. The general formulation

is given by two nested linear programs, where the second stage problems

are solved conditional on a given scenario and linked to the first stage by

the expected value, a convex, non-linear function that cannot be calculated

exactly.

The Sample Average Approximation (SAA) by [Kleywegt, Shapiro, and

de Mello 2001] estimates the expected value of the second-stage problems by

approximating it with a fixed number N of scenarios and solving the resulting

problem with Benders’ Decomposition ([Benders 1962]).

For the SAA to achieve an ε-optimal solution with probability at least
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1. Introduction 1.3 Motivation

1 − α, the number of scenarios must be N ≥ σ2

ε2
log |Y |

α
with σ2 being the

problem specific variance and |Y | the problem size. That means the deviation

ε decreases with O(N−0.5) or in other words: to double the accuracy the

number of scenarios must be quadrupled.

1.3 Motivation

In this section we will motivate why we believe that EA are well suited

for solving large scale stochastic optimization problems and which research

results might positively influence the efficiency of EA on these problems.

For the problems emphasized in this thesis, it is assumed that the evalua-

tion of a configuration or solution is expensive in terms of time and cost. So

to solve problems with large search spaces it is indispensable that the num-

ber of scenarios required for measuring a solution’s performance is reduced as

much as possible without deteriorating the optimization procedure’s mech-

anisms. Using too few scenarios would result in a non-effective procedure

while too many would lead to an inefficient procedure.

Several ideas for an efficient allocation of the number of necessary sce-

narios or samples are known from other areas of research. Combining these

approaches gives reason to hope that the number of scenarios needed for

optimization can be reduced significantly compared to the usual strategy,

where the number of samples is fixed a-priori, based on the variance of the

mean estimator. The following enumeration sketches theses ideas in short.

1. Ordinal Optimization

[Ho, Sreenivas, and Vakili 1992] noted that it is easier to compare

solutions than to estimate their performance precisely. Actually the

probability that the means of two random variables X and Y differ is

P (X̄n < Ȳn) ∈ O(e−n), i.e. it converges exponentially, while the mean

X̄n ∈ O(n−0.5) converges polynomially only.

Therefore optimization procedures based on the comparison of config-

urations (ordinal optimization) rather than the value of the objective

function (cardinal optimization) should use samples more efficiently.
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1.3 Motivation 1. Introduction

2. Adaptive Allocation

[Rinott 1978] developed a two-stage selection procedure that allocates

more samples to systems with higher uncertainty instead of sampling

all systems equally. This approach can drastically reduce the number

of required samples to achieve a given level of confidence about the

selection of the best out of several systems. Further improvements were

made later on by allocating more samples of a given budget of overall

samples to configurations that have a higher probability of being the

best.

The efficiency of samples is increased by allocating them adaptively to

more uncertain and more important configurations.

3. Sequential Analysis

[Wald 1947] developed statistical tests that sequentially decide, based

on the observations so far, if further samples need to be taken in order

to select a hypothesis with a given level of confidence. Therefore the

number of samples is not predetermined, but dependent on the obser-

vations. The sequential test generally achieves the same accuracy as a

test having a fixed number of samples, but using on average only half

the number of samples.

In principal, allowing for a variable number of samples to select the

best system increases the efficiency on average.

4. Bayesian Approach ([Chick and Inoue 2001b])

Traditional selection procedures ensure a probability of correct selec-

tion within an indifference zone. To achieve this, samples need to be

allocated among the alternatives as if the least favorable situation is

encountered, i.e. all inferior systems differ exactly by the indifference

zone from the best system. In practice a selection procedure seldom

encounters this situation. A procedure based on the Bayesian approach

would allocate samples for the most probable situation (with respect

to some prior distribution) and should therefore be more effective. The

drawback is that the procedure cannot guarantee a probability of cor-

6
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rect selection. On the other hand, the Bayesian approach allows to

integrate prior information into the procedure, which eventually might

improve efficiency.

5. Using noise

Stochastic optimization algorithms deliberately introduce noise into the

search process, which allows to escape from local optima. In stochas-

tic environments the objective function is disturbed by noise. So there

should be a chance to use the noise from the problem to replace some of

the noise introduced by the procedure, therefore reducing the need for

noise-reduction by sampling. Additionally, [Fitzpatrick and Grefen-

stette 1988] observed that moderate noise does not hurt the perfor-

mance of an EA significantly, making EA robust against noise to a

certain degree.

6. Variance Reduction Techniques

Techniques to increase the accuracy of estimation, reduce the estima-

tor’s variance by introducing correlation between the samples of a sys-

tem. This is achieved by using variance reduction techniques like quasi-

random numbers (see e.g. [Niederreiter 1992]) or antithetic random

variables. The increase in accuracy strongly depends on the structure

of the performance criteria.

In general, when comparing estimations of independent systems’ per-

formances, using common random numbers positively correlates the

estimations and therefore allows for an increased comparability with

the same number of samples.

Both approaches have the necessity to manipulate the source of ran-

domness in the performance estimation, in general the random number

generator.

Except for the last, the above approaches can not be combined with tra-

ditional optimizations procedures like Stochastic Programming, because they

are based on the objective function rather than comparison of configurations,
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1.3 Motivation 1. Introduction

they determine the performance on an a-priori fixed number of samples and

they are deterministic optimization procedures.

Whereas each of these ideas can be combined with EA: In general EA

are rank-based, i.e. they compare configurations only, so they belong to the

class of ordinal optimization procedures leading to an improved convergence

behavior over cardinal optimization regarding the number of samples. Fur-

thermore this allows for adaptive and sequential selection procedures that

can be used within EA.

As EA can not give a performance guarantee for the solution found any-

way, the used selection procedures do not need to guarantee a level of con-

fidence, either. Therefore EA are not affected by this Bayesian procedures’

disadvantage, but benefit from their increased efficiency. The repeated use

of selection procedures within the run of an EA gives the opportunity to

acquire information that can be used as prior information for the Bayesian

procedures.

EA are stochastic optimization procedures that introduce randomness at

several stages. Besides their robustness against moderate noise they give

the possibility to use at least some of the randomness originating from the

performance estimation of configurations to replace the desired randomness.

All of the ideas – including variance reduction techniques – can be used

simultaneously in EA, therefore EA should have the potential to solve real-

world stochastic optimization problems.

This thesis develops the tools for applying EA in stochastic environments

by deriving procedures that incorporate most of the ideas given above. The

achievements do not only advance EA, but also statistical ranking and se-

lection and other ordinal optimization procedures like simulated annealing.

The methods presented improve the existing ones by orders of magnitude.

All methods are constructed to deliver a given accuracy with less effort

than the existing ones. The question on how much effort – in terms of number

of samples – should be spent to increase the accuracy within a single iteration

of EA (a generation) versus the number of iterations executed overall, remains

still open. Nevertheless most existing choices of accuracy within EA on

stochastic optimization problems can be achieved more efficiently with the

8



1. Introduction 1.4 Structure

methods presented in this thesis.

Improvements not considered here are variance reduction techniques. Us-

ing common random numbers for the performance estimation within EA will

improve the efficiency further, while quasi-random numbers should not be

used as they lead to an underestimation of the variance and therefore dete-

riorate the methods presented here.

1.4 Structure

This thesis is structured as follows. For ordinal optimization procedures

comparison of potential solutions is an elementary operation. Statistical

selection procedures provide efficient comparison mechanisms. An overview

of existing procedures for statistical selection is given in Chapter 2. The

procedures are examined in a comprehensive study and ideas 2-4 from above

are integrated, improving the performance of the best known procedures so

far.

Chapter 3 shows how one of the most efficient procedures for statistical

selection can be integrated into different variants of EA, combining statisti-

cal ranking and selection with ordinal optimization. All popular rank-based

selection and replacement operators are addressed to efficiently perform op-

timization on stochastic problems. Additionally, theoretical conditions for

the optimal choice of stopping parameters are derived.

In Chapter 4, noise originating from the stochastic problem is used to

partly replace the randomization that EA and Simulated Annealing usually

introduce into the search process. For that, the applied selection probabilities

are deliberately modified, resulting in higher accuracy for a given number of

samples or less samples for a given accuracy. The savings in the number of

samples are quantified for different parameter settings.

The thesis concludes with a summary of the most important results and

points out promising areas of future work.

9
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Chapter 2

Selecting a Selection Procedure

Selection procedures are used in a variety of applications to select the best

of a finite set of alternatives. ‘Best’ is defined with respect to the largest

mean, but the mean is inferred with statistical sampling, as in simulation

optimization. There is a wide variety of procedures, which gives rise to the

question of which selection procedure to select. The main contribution of

this chapter is to identify the most effective selection procedures when sam-

ples are independent and normally distributed. We also (a) summarize the

main structural approaches to deriving selection procedures, (b) derive new

procedures, (c) formalize new stopping rules for them, (d) identify strengths

and weaknesses of the procedures, and (e) present an innovative empirical

test bed with the most extensive numerical comparison of selection proce-

dures to date. The most efficient and easiest to control procedures allocate

samples with a Bayesian model for uncertainty about the means, and use

new adaptive stopping rules proposed here.

2.1 Overview

Selection procedures are intended to select the best of a finite set of alterna-

tives, where best is determined with respect to the largest sampling mean,

but the mean must be inferred via statistical sampling ([Bechhofer, Sant-

ner, and Goldsman 1995]). Selection procedures can inform managers how

11



2.1 Overview 2. Selecting a Selection Procedure

to select the best of a small set of alternative actions the effects of which

are evaluated by simulation ([Nelson and Goldsman 2001]) and are imple-

mented in commercial simulation products like ARENA ([Kelton, Sadowski,

and Sadowski 1998]). Selection procedures have also attracted interest in

combination with tools like multiple attribute utility theory ([Butler, Mor-

rice, and Mullarkey 2001]), evolutionary algorithms ([Branke and Schmidt

2004]), and discrete optimization via simulation ([Boesel, Nelson, and Kim

2003a]).

Three main approaches to solving the selection problem are distinguished

by their assumptions about how the evidence for correct selection is described

and sampling allocations are made: the indifference zone (IZ, [Kim and Nel-

son 2005]), the expected value of information procedure (VIP, [Chick and

Inoue 2001b]), and the optimal computing budget allocation (OCBA, [Chen

1996]) approaches. Each approach offers a number of different sampling as-

sumptions, approximations, stopping rules and parameters that combine to

define a procedure. With so many variations, the question arises of how

to select a selection procedure. The question is important because the de-

mands placed upon simulation optimization algorithms to assist system de-

sign choices are increasing.

Only few papers thoroughly assess how those variations compare with

each other, but there are a few exceptions. Special cases of the VIP out-

perform specific IZ and OCBA procedures (in a comparison of two-stage

procedures), and specific sequential VIP and OCBA procedures are more

efficient than two-stage procedures ([Inoue, Chick, and Chen 1999]). [He,

Chick, and Chen 2005] derive an OCBA-type procedure, OCBALL, that uses

an expected opportunity cost (EOC) loss function, then show that the orig-

inal OCBA procedure, the new OCBALL and the VIP-based LL (described

below) perform better than some other procedures in several empirical tests.

Procedure KN++ is very effective among IZ procedures ([Kim and Nelson

2005]). But even those papers study a limited number of procedures with

respect to a limited experimental testbed.

This chapter summarizes the main approaches to selection procedures,

derives new procedures and formalizes new stopping rules for the VIP and

12



2. Selecting a Selection Procedure 2.1 Overview

OCBA procedures, then addresses the unmet need for an extensive compar-

ison of the new procedures and the top existing IZ, VIP and OCBA proce-

dures. Each procedure makes approximations, and none provides an optimal

solution, so it is important to understand the strengths and weaknesses of

each approach. Section 2.3 describes new measurements to evaluate each

with respect to:

• Efficiency: The mean evidence for correct selection as a function of the

mean number of samples.

• Controllability: The ease of setting a procedure’s parameters to achieve

a targeted evidence level (as opposed to a potentially conservative guar-

antee that the targeted evidence level is exceeded).

• Robustness: The dependency of a procedure’s effectiveness on the un-

derlying problem characteristics.

• Sensitivity: The effect of the parameters on the mean number of sam-

ples needed.

The procedures are compared empirically on a large variety of selection prob-

lems described in Section 2.4. The test bed is unique not only because of its

size, but also its inclusion of randomized problem instances, which may be

more realistic in practice than the usual structured problem instances found

in the literature.

Each procedure is compared for each metric when applied to broad classes

of selection problems described in Section 2.4. The focus here is on appli-

cations where the samples are jointly independent and normally distributed

with unknown and potentially different variances, or are nearly normally

distributed as is the case in stochastic simulation with batching ([Law and

Kelton 2000]).

Section 2.5 indicates that Procedure KN++ is more efficient than the

original VIP and OCBA formulations, but appears to be difficult to control.

Certain VIP (LL) and OCBA (OCBA and OCBALL) procedures, when used

with new stopping rules below, appear to improve further with respect to

13
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efficiency, controllability and robustness. Section 2.6 addresses further issues

that may be important when selecting a selection procedure.

2.2 The Procedures

We first formalize the problem, summarize assumptions and establish nota-

tion. Section 2.2.1 describes measures of the evidence of correct selection

and, based thereon, introduces new stopping rules that improve efficiency.

Sections 2.2.2-2.2.4 describe existing and new variations on sequential pro-

cedures from the IZ, VIP and OCBA approaches.

The best of k simulated systems is to be identified, where ‘best’ means the

largest output mean. Analogous results hold if smallest is best. Let Xij be

a random variable whose realization xij is the output of the j-th simulation

replication of system i, for i = 1, . . . , k and j = 1, 2, . . .. Let µi and σ2
i be the

unknown mean and variance of simulated system i, and let µ[1] ≤ µ[2] ≤ . . . ≤
µ[k] be the ordered means. In practice, the ordering [·] is unknown, and the

best system, system [k], is to be identified by simulation. The procedures

considered below are derived from the assumption that simulation output

is independent and normally distributed, conditional on µi and σ2
i , for i =

1, . . . , k.

{Xij : j = 1, 2, . . .} iid∼ Normal
(
µi, σ

2
i

)
Although the normality assumption is not always valid, it is often possible to

batch a number of outputs so that normality is approximately satisfied. Vec-

tors are written in boldface, such as µ = (µ1, . . . , µk) and σ2 = (σ2
1, . . . , σ

2
k).

A problem instance, denoted configuration in this chapter, is given by χ =

(µ, σ2).

Let ni be the number of replications for system i run so far. Let x̄i =∑ni

j=1 xij/ni be the sample mean and s2
i =

∑ni

j=1(xij − x̄i)
2/(ni − 1) be the

sample variance1. Let x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(k) be the ordering of the sample

means based on all replications seen so far. Equality occurs with probability

1In fact we used the numerically more stable variant s2
i [ni] = 1

ni−1Σ2
i [ni], where

Σ2
i [ni] = Σ2

i [ni − 1] + ni

ni−1 (xini − x̄i[ni])2 and x̄i[ni], s2
i [ni] denote mean and variance

of the first ni outputs of system i.

14
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0 in contexts of interest here. (i) denotes the observed ordering based on the

observed means x̄·, while [i] denotes the true ordering of systems based on

the unknown true means µ·. The quantities ni, x̄i, s
2
i and (i) may change as

more replications are observed.

Each selection procedure generates estimates µ̂i of µi, for i = 1, . . . , k.

For the procedures studied here, µ̂i = x̄i, and a correct selection occurs

when the selected system, system D, is the best system, [k]. Usually the

system D = (k) with the best observed mean x̄· is selected as best, although

Procedure KN++ below might rarely choose a system that does not have the

best sample mean, due to screening. The Student t distribution with mean µ,

precision κ = σ−2, and ν degrees of freedom is denoted St (µ, κ, ν). If ν > 2

the variance is κ−1ν/(ν − 2). Denote the cumulative distribution function

(cdf) of the standard t (µ = 0, κ = 1) and standard Gaussian distribution by

Φν(·) and Φ(·) and probability density function (pdf) by φν(·) and φ(·).

2.2.1 Evidence for Correct Selection

This section provides a unified framework for describing both frequentist and

Bayesian measures of selection procedure effectiveness and the evidence of

correct selection. They are required to derive and compare the procedures

below, and are also used within the Bayesian procedures (VIP and OCBA)

to decide when the evidence of correct selection is sufficient to stop sampling.

The measures are defined in terms of loss functions. The zero-one loss

function, L0−1(D, µ) = 11
{
µD 6= µ[k]

}
, equals 1 if the best system is not

correctly selected, and is 0 otherwise. The zero-one loss function with in-

difference zone, Lδ∗(D, µ) = 11
{
µD < µ[k] − δ∗

}
, relaxes the loss only to 1

if the selected system is not within δ∗ of the best. The opportunity cost

Loc(D, µ) = µ[k]−µD is 0 if the best system is correctly selected, and is oth-

erwise the difference between the best and selected system. The opportunity

cost makes more sense in business applications.
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Frequentist Perspective

The IZ procedures take a frequentist perspective. The frequentist probability

of correct selection (PCSiz) is the probability that the system selected as best

(system D) is the system with the highest mean (system [k]), conditional on

the problem instance. The probability is with respect to the simulation

output Xij generated by the procedure (the realizations xij determine D).

PCSiz(χ)
def
= 1− E [L0−1(D, µ) |χ] = Pr

(
µD = µ[k] |χ

)
Indifference zone procedures attempt to guarantee a lower bound on PCSiz,

subject to the indifference-zone constraint that the best system is at least

δ∗ > 0 better than the others,

PCSiz(χ) ≥ 1− α∗, for all χ = (µ, σ2) such that µ[k] ≥ µ[k−1] + δ∗. (2.1)

[Nelson and Banerjee 2001] showed that some IZ procedures satisfy frequen-

tist probability of good selection guarantees,

PGSiz,δ∗(χ)
def
= Pr

(
µD + δ∗ ≥ µ[k] |χ

)
≥ 1− α∗,

for all configurations. Let PICSiz = 1 − PCSiz and PBSiz,δ∗ = 1 − PGSiz,δ∗

denote the probability of incorrect and bad selections.

The frequentist expected opportunity cost ([Chick and Wu 2005]) is

EOCiz(χ)
def
= E [Loc(D, µ) |χ] = E

[
µ[k] − µD |χ

]
.

Bayesian Perspective

Bayesian procedures use the posterior distribution of the unknown parame-

ters to measure the quality of a selection. Given the data E seen so far, three
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measures of selection quality are

PCSBayes
def
= 1− E [L0−1(D,M) | E ] = Pr

(
MD ≥ max

i6=D
Mi | E

)
PGSBayes

def
= 1− E [Lδ∗(D,M) | E ] = Pr

(
MD + δ∗ ≥ max

i6=D
Mi | E

)
EOCBayes

def
= E [Loc(D,M) | E ] = E

[
max

i=1,...,k
Mi −MD | E

]
, (2.2)

the expectation taken over both D and the posterior distribution M of µ

given E . M is the upper case letter of µ to indicate the Bayesian perspective

that µ is a realization of its corresponding random variable M. Assuming

a noninformative prior distribution for the unknown mean and variance, the

posterior marginal distribution for the unknown mean Mi given ni > 2 sam-

ples is St (x̄i, ni/s
2
i , νi) where νi = ni − 1 ([de Groot 1970]). Each Bayesian

procedure below selects the system with the best sample mean after all sam-

pling is done, D = (k).

Equations 2.2 can be calculated numerically with the following approach:

First fix MD to a value x, then determine the values for the other Mi and

integrate over all x, weighted by the density of MD. From order statistics we

have Pr(maxi Xi ≤ x) =
∏

i Pr(Xi ≤ x) if the Xi are independent. Let Fi(·)
and fi(·) denote the cdf and pdf of Xi then the cdf and pdf of maxi Xi are∏

i Fi(x) and
∑

i fi(x)
∏

j 6=i Fj(x).

PGSBayes =

∫ ∞

x=−∞

∏
i6=D

Fi(x + δ∗)fD(x)dx

EOCBayes =

∫ ∞

x=−∞

∫ ∞

y=x

(y − x)
∑
i6=D

fi(y)
∏

j 6=i,D

Fj(y)dyfD(x)dx (2.3)

where Fi(x) = Φνi

(
(x− x̄i)

√
ni/s2

i

)
, fi(x) = φνi

(
(x− x̄i)

√
ni/s2

i

)√
ni/s2

i .

To have a good selection for a given MD = x, the other values must be at

most x + δ∗, which leads to the expression for PGSBayes. Fixing MD = x

splits EOCBayes in two cases: If maxi6=D Mi < x there is no loss. Otherwise

the loss is the expected difference conditional on maxi6=D Mi ≥ x.
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Equations 2.2 can also be calculated with the procedures described in

[Genz and Bretz 2002], if the difference of Student variables is assumed to be

Student distributed, again. The correlation between the pairwise differences

with the selected system D is approximately
s2
D/nD√

s2
i /ni+s2

D/nD

√
s2
j/nj+s2

D/nD

. The

procedures can be even adapted to the case of correlated Xi.

Approximations

The above approaches are computationally very expensive. In the application

of selection procedures the effort for high numerical accuracy might be better

reduced in return for more time to simulate systems. Therefore we give some

approximations needed for the fast calculation of PGSBayes and EOCBayes.

Difference of Student variables The Bayesian procedures need to calcu-

late the probability that two independent Student variables ti ∼ St (µi, κi, νi),

tj ∼ St (µj, κj, νj) differ by at least δ∗. There are several ways to calculate

this probability:

• Numerical Integration:

Pr(ti + δ∗ < tj) =

∫ ∞

−∞

(
1− Φνj

(
(x− µj)

√
κj

))
φνi

((x− µi − δ∗)
√

κi)
√

κi dx

=

∫ 1

0

Φνj

(
−(Φ−1

νi
(t)
√

κi + δ∗ + µi − µj)
√

κj

)
dt

(2.4)

• Welch’s approximation ([Welch 1938]) for the degrees of freedom of

the difference (see [Law and Kelton 2000], p. 599):

ti − tj ≈ St
(
µi − µj, (κ

−1
i + κ−1

j )−1, νij

)
, where

νij = (κ−1
i + κ−1

j )2/(κ−2
i /νi + κ−2

j /νj)

Pr(ti + δ∗ < tj) ≈ Φνij
(−d∗ij) (2.5)

with d∗ij = (δ∗ + µi − µj)
√

κ−1
i + κ−1

j set for convenience. Our experi-
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ments indicate that this approximation is a lower bound, although we

could not prove this observation.

• Wilson’s approximation ([Wilson and Pritsker 1984]) instead of

Welch’s for the degrees of freedom as above:

ν ′ij = (κ−1
i + κ−1

j )2/(κ−2
i /(νi + 2) + κ−2

j /(νj + 2))− 2

Pr(ti + δ∗ < tj) ≈ Φν′ij
(−d∗ij) (2.6)

• Gaussian approximation of the difference:

ti − tj ≈ N (µi − µj, κ
−1
i + κ−1

j )

Pr(ti + δ∗ < tj) ≈ Φ(−d∗ij) (2.7)

• Chernoff’s inequality for the Gaussian-approximation:

Φ(x) ≤ exp(−x2/2) for x < 0

Pr(ti + δ∗ < tj) ≈ Φ
(
−d∗ij

)
=

{
µi > µj : ≤ exp(−d∗ij

2/2)

µi < µj : ≥ 1− exp(−d∗ij
2/2)

(2.8)

Bonferroni’s Bound Bonferroni’s inequality (see [Law and Kelton 1991])

gives Pr(
⋂k

i=1 Xi < 0) ≥ 1−
∑k

i=1[1− Pr(Xi < 0)], which can be applied to

give a lower bound for PCSBayes

PCSBayes ≥ 1−
∑

j:(j) 6=(k)

[1− Pr
(
M(k) < M(j) | E

)
].

Approximating the right hand side with Welch’s approximation defines

PCSBonf = 1−
∑

j:(j) 6=(k)

Φν(j)(k)
(d∗jk),

which might deliver negative values for PCSBonf.

The term EOCBayes may be expensive to compute if k > 2. Summing
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Figure 2.1: Different measures and approximations for correct selection
(Equal samples for k = 10 systems with a pairwise difference of δ = 0.5
and equal variances).

the losses from (k − 1) pairwise comparisons between the current best and

each other system gives an easily computed upper bound ([Chick and Inoue

2001b; Chick and Inoue 2002]). Let f(j)(k)(·) be the posterior pdf for the

difference M(j)−M(k) given all data E (approximately St
(
−d(j)(k), λjk, ν(j)(k)

)
distributed), and set

Ψν [s] =

∫ ∞

u=s

(u− s)φν(u)du =
ν + s2

ν − 1
φν(s)− sΦν(−s). (2.9)

Then

EOCBayes ≤
∑

j:(j) 6=(k)

∫ ∞

w=0

w f(j)(k)(w) dw

≈
∑

j:(j) 6=(k)

λ
−1/2
jk Ψν(j)(k)

[
d∗jk
]

= EOCBonf. (2.10)

The deviation between the Frequentist loss (EOCiz), the Bayesian loss

(EOCBayes) and its approximation with the Bonferroni-like bound is shown

in Figure 2.1. The two definitions of loss differ clearly. Although Bonferroni’s

bound is an upper bound for the Bayesian loss, EOCBonf is below EOCBayes,

which therefore must be originated in Welch’s approximation.
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Slepian’s Bound Approximations in the form of bounds on the above

losses are useful to derive sampling allocations and to define stopping rules.

Slepian’s inequality ([Tong 1980]) states the posterior evidence that system

(k) is best satisfies

PCSBayes ≥
∏

j:(j) 6=(k)

Pr
(
M(k) ≥M(j) | E

)
. (2.11)

The right hand side of Inequality (2.11) is approximately (Welch)

PCSSlep =
∏

j:(j) 6=(k)

Φν(j)(k)
(d∗jk),

where d∗jk is the normalized distance for systems (j) and (k),

d∗jk = d(j)(k)λ
1/2
jk with d(j)(k) = x̄(k) − x̄(j) and λ−1

jk =
s2
(j)

n(j)

+
s2
(k)

n(k)

,

ν(j)(k) =
[s2

(j)/n(j) + s2
(k)/n(k)]

2

[s2
(j)/n(j)]2/(n(j) − 1) + [s2

(k)/n(k)]2/(n(k) − 1)
.

PCSSlep ≥ PCSBonf, where equality only holds for k = 2 and PCSSlep is

strictly tighter than PCSBonf for more than 2 systems.2 We therefore mostly

used PCSSlep.

The following variation incorporates an indifference zone parameter δ∗ to

approximate the probability that the difference between the selected system

and the true best system is no more than δ∗ (PGS for probability of good

selection). Note that PCSSlep = PGSSlep,0.

PGSSlep,δ∗ =
∏

j:(j) 6=(k)

Φν(j)(k)
(λ

1/2
jk (δ∗ + d(j)(k))). (2.12)

2 For k = 2, PCSBonf and PCSSlep are equal. For 3 systems, if the additional Φν(·) = 1
then PCSBonf = PCSSlep. As Φν(·) is always below 1 and PCSBonf decreases faster than
PCSSlep for lower Φν(·), PCSBonf < PCSSlep holds for all k > 2.
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Figure 2.2: Different measures and approximations for correct selection
(Equal samples for k = 2 systems with a difference of δ = 0.25 (left) and
k = 10 with a difference δ = 0.5 of neighboring systems (right). The vari-
ances of all systems are equal).

[Chen and Kelton 2005] used max instead of +,

PCSSlep,δ∗ =
∏

j:(j) 6=(k)

Φν(j)(k)
(λ

1/2
jk max{δ∗, d(j)(k)}),

which can be interpreted as a maximum-likelihood-like estimator for PGSiz,δ∗

conditional on µ(k) ≥ µ(j) + δ∗ for all (j) 6= (k).

The deviation between PCSiz, PCSBayes, PCSSlep and PCSBonf is shown

in Figure 2.2. Even for 10 systems, there is no visible difference between

PCSSlep and PCSBonf. The difference is only significant for a few samples.

Obviously PCSSlep is not a lower bound for PCSBayes, which further supports

the claim, that Equation 2.5 underestimates Pr(ti + δ∗ < tj).

Stopping Rules

The VIP and OCBA procedures defined below will make use of EOCBonf
and PGSSlep,δ∗ to decide when to stop sampling. In particular, the following

stopping rules are considered:

1. Sequential (S): Repeat sampling while
∑k

i=1 ni < B for some specified

total budget B.

2. Probability of good selection (PGSSlep,δ∗): Repeat while PGSSlep,δ∗ <
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1− α∗ for a specified probability target 1− α∗ and given δ∗ ≥ 0.

3. Expected opportunity cost (EOCBonf): Repeat while EOCBonf > β∗,

for a specified EOC target β∗.

The IZ requires δ∗ > 0, but we allow δ∗ = 0 for the VIP and OCBA to

allow for a pure PCS-based stopping condition. We use PCSSlep to denote

PGSSlep,0. Previously published sequential VIP and OCBA work used the

S stopping rule. The other stopping rules will be shown to improve the

efficiency of both approaches.

2.2.2 Indifference Zone (IZ)

The IZ approach ([Bechhofer, Santner, and Goldsman 1995] seeks to guaran-

tee PCSiz ≥ 1− α∗, whenever the best system is at least δ∗ better than the

other systems. The indifference-zone parameter δ∗ is typically elicited as the

smallest difference in mean performance that is significant to the decision-

maker.

Early IZ procedures were statistically conservative in the sense of excess

sampling unless unfavorable configurations of the means were found. The

KN family of procedures improves sampling efficiency over a broad set of

configurations [Kim and Nelson 2001]. While a PCS guarantee in the sense

of Equation (2.1) was not proven, an asymptotic guarantee as δ∗ → 0 was

shown. One member of the family, KN++ [Goldsman, Kim, Marshall, and

Nelson 2002], might be considered to be the state of the art for the IZ ap-

proach.

Kim Nelson That procedure can handle the more general case of cor-

related simulation output. Here we specialize Procedure KN++ for inde-

pendent output. The procedure screens out some systems as more runs are

observed, and each noneliminated system is simulated the same number of

times. We used ξ = 1 replication per stage per noneliminated system and

sample variance updates in every stage.

Procedure KN++ (independent samples)
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1. Specify a confidence level 1−α∗ > 1−1/k, an indifference-zone param-

eter δ∗ > 0, a first-stage sample size n0 > 2 per system, and a number

ξ of samples to run per noneliminated system per subsequent stage.

2. Initialize the set of noneliminated systems, I ← {1, . . . , k}, set n ←
0, τ ← n0, β ← 1− (1− α∗)1/(k−1).

3. WHILE |I | > 1 DO another stage:

(a) Observe τ additional samples from system i, for all i ∈ I. Set

n← n + τ . Set τ ← ξ.

(b) Update: Set η ← 1
2

[
(2β)−2/(n−1) − 1

]
and h2 ← 2η(n−1). For all

i ∈ I, update the sample statistics x̄i and s2
i .

(c) Screen: For all i, j ∈ I and i > j, set dij ← x̄j − x̄i and

εij ← max
{

0, δ∗

2n

(
h2(s2

i +s2
j )

δ∗2 − n
)}

. If dij > εij then I ← I\{i}. If

dij < −εij then I ← I\{j}.

4. Return remaining system, system D, as best.

For correlated samples, e.g. when using common random numbers be-

tween systems, s2
i + s2

j is replaced by the estimated common variance of the

difference 1
n−1

∑n
k=1(xik − xjk − x̄i + x̄j)

2.

In the literature some variations on KN++ are found. In [Kim and

Nelson 2001] β = α∗/(k− 1) is used. [Goldsman, Kim, Marshall, and Nelson

2002] replaced η by − ln(2β)/(n− 1), which is approximately equal to the η

chosen above.

Wald’s Sequential Probability Ratio Test [Wald 1947] was the first

to use sequential sampling in connection with Hypotheses tests. Wald’s Se-

quential Probability Ratio Test (SPRT) is designed to decide between simple

hypotheses. The test stops, if the ratio of the probabilities under the hy-

potheses exceeds given bounds. For a random variable X depending on a

parameter θ let the null hypothesis H0 : θ = θ0, the alternative hypothesis

H1 : θ = θ1, the error probability of type I (wrongly rejecting H0) equal α

and the error probability of type II (wrongly rejecting H1) β.
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The test decides, which hypothesis to select on the basis of observations

x1, x2, . . .. More specifically, it continues sampling as long as

B <
f1(x1, x2, . . .)

f0(x1, x2, . . .)
< A (2.13)

for given constants A, B and fi(·) being the pdf for all observations under

Hi. If the ratio is ≤ B then H0 is selected, if ≥ A, H1 is selected. Wald shows

that this test minimizes the mean number of samples for both θ = θ0 and

θ = θ1 approximately and guarantees that the error probabilities are below

α and β, if A = 1−β
α

and B = β
1−α

.

[Baum and Veeravalli 1994] extend the SPRT for multiple disjoint hy-

pothesis. The MSPRT selects hypothesis Hi, if

1− fi(x1, x2, . . .)∑
j=1..k fj(x1, x2, . . .)

≤ αi, (2.14)

where αi is the error probability for erroneously selecting Hi. MSPRT equals

Wald’s SPRT for k = 2 systems.

To apply the SPRT for selection, we can test the hypothesis that sys-

tem i is at least δ∗ better than all other systems, i.e. Hi : ∀j 6= i :

µi ≥ µj + δ∗. The difference of the observed means under Hi is approxi-

mately St
(
δij, (s

2
i /ni + s2

j/nj)
−1, νij

)
-distributed, where νij is approximated

with Welch and δij ≥ δ∗. Assuming independence of the observed means,

fi(x1, x2, . . .) can be approximated by

fi(x1, x2, . . .) ≈
∏
j 6=i

φνij

(
x̄i−x̄j−δij√
s2
i /ni+s2

j/nj

)
1√

s2
i /ni+s2

j/nj
. (2.15)

We set δij = max{δ∗, x̄i − x̄j} in the calculation of the selection crite-

rion, so the pdf used is the maximal pdf conditional on the hypothesis Hi:
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maxδij≥δ∗ fi(·). We further set αi = α equally. The stopping rule is then

1−

∏
j 6=(k) φν(k)j

(
max{x̄(k)−x̄j−δ∗,0}q

s2
(k)

/n(k)+s2
j/nj

)
∑

i=1..k

∏
j 6=i φνij

(
max{x̄i−x̄j−δ∗,0}√

s2
i /ni+s2

j/nj

) ≤ α (2.16)

and the system with the best mean x̄k is the selected. MSPRT can be

used as a stopping rule for any of the Bayesian procedures or as a variant for

allocation in an OCBA-like procedure.

2.2.3 Value of Information Procedure (VIP)

Two VIPs in [Chick and Inoue 2001b] allocate samples to each alternative in

order to maximize the expected value of information (EVI) of the samples,

subject to a sampling budget constraint. Procedures 0-1(S) and LL(S) are

sequential variations of those procedures that improve Bonferroni bounds for

PCSBayes (the expected 0-1 loss) and EOCBayes (LL for linear loss), respec-

tively. They allocate τ replications per stage until a total of B replications

are run.

While the original stopping rule allows for full control of the number of

replications, the procedures outlined below allow to choose from any of the

stopping rules defined in Section 2.2.1. As we will demonstrate later, alter-

native stopping rules make the procedure significantly more efficient. Fur-

thermore, new procedures are introduced that use different approximations

for the EVI of samples.

Procedure 0-1.

1. Specify a first-stage sample size n0 > 2, and a total number of sam-

ples τ > 0 to allocate per subsequent stage. Specify stopping rule

parameters.

2. Run independent replications Xi1, . . . , Xin0 , and initialize the number

of replications ni ← n0 run so far for each system, i = 1, . . . , k.
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2. Selecting a Selection Procedure 2.2 The Procedures

3. Determine the sample statistics x̄i and s2
i , and the order statistics, so

that x̄(1) ≤ . . . ≤ x̄(k).

4. WHILE stopping rule not satisfied DO another stage:

(a) Initialize set of systems considered for additional replications, S ←
{1, . . . , k}.

(b) For each (i) in S\{(k)}: If (k) ∈ S then set λ−1
ik ← s2

(i)/n(i) +

s2
(k)/n(k), and set ν(i)(k) with Welch’s approximation. If (k) /∈ S

then set λik ← n(i)/s
2
(i) and ν(i)(k) ← n(i) − 1.

(c) Tentatively allocate a total of τ replications to systems (i) ∈ S
(set τ(j) ← 0 for (j) /∈ S):

τ(i) ←
(τ +

∑
j∈S nj)(s

2
(i)γ(i))

1
2∑

j∈S(s2
jγj)

1
2

− n(i),

where

γ(i) ←

{
λikd

∗
ikφν(i)(k)

(d∗ik) for (i) 6= (k)∑
(j)∈S\{(k)} γ(j) for (i) = (k).

(d) If any τi < 0 then fix the nonnegativity constraint violation: re-

move (i) from S for each (i) such that τ(i) ≤ 0, and go to Step 4b.

Otherwise, round the τi so that
∑k

i=1 τi = τ and go to Step 4e.

(e) Run τi additional replications for system i, for i = 1, . . . , k. Up-

date sample statistics ni ← ni + τi; x̄i; s2
i , and the order statistics,

so x̄(1) ≤ . . . ≤ x̄(k).

5. Select the system with the best estimated mean, D = (k).

The formulas in Step 4b use the Welch approximation, and the formulas

in Step 4c are derived from optimality conditions to improve a Bonferroni-like

bound on the EVI for asymptotically large τ ([Chick and Inoue 2001b]).

Depending on the stopping rule used, the resulting procedures are named

0-1(S), 0-1(PGSSlep,δ∗), 0-1(EOCBonf), with the stopping rule in parentheses.

The inclusion of a parameter δ∗ ≥ 0 for PGSSlep,δ∗ permits early stopping
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if the difference between strongly competing alternatives is negligible. The

IZ requires δ∗ > 0, but we allow δ∗ = 0 for the VIP and OCBA to assess a

pure PCS-based stopping condition. If δ∗ = 0 we denote the stopping rule

PCSSlep, which is algebraically equivalent when δ∗ = 0, to emphasize the

relation to PCS.

Procedure LL is a variant of 0-1 where sampling allocations seek to min-

imize EOCBonf. The initials LL (linear loss) are used rather than OC (op-

portunity cost) to avoid naming conflicts with OCBA.

Procedure LL. Same as Procedure 0-1, except set γ(i) in Step 4c to

γ(i) ←

{
λ

1/2
ik

ν(i)(k)+(d∗ik)2

ν(i)(k)−1
φν(i)(k)

(d∗ik) for (i) 6= (k)∑
(j)∈S\{(k)} γ(j) for (i) = (k)

(2.17)

New Small-Sample Procedures. Procedures 0-1 and LL allocate addi-

tional replications using an EVI approximation based on asymptotically large

number of replications (τ) per stage. That EVI approximation also uses a

Bonferroni-like bound, and necessitates the Welch approximation.

An improvement might be obtained by better approximating EVI when

there are a small number of replications per stage that are all run for one

system. The Procedure LL1 is derived by removing the asymptotic approx-

imation from the derivation of LL, as well as the Bonferroni and Welch ap-

proximations. The procedure’s name is distinguished from its large-sample

counterpart by the subscript 1 (1 system gets all replications per stage). The

procedure uses the following variables.

d∗{jk} = λ
1/2
{jk}d(j)(k)

λ−1
{jk} =

(
τ(k)s

2
(k)

n(k)(n(k) + τ(k))
+

τ(j)s
2
(j)

n(j)(n(j) + τ(j))

)
(2.18)

Procedure LL1. Same as Procedure 0-1, except replace Steps 4a-4d by:

• For each i ∈ {1, 2, . . . , k}, see if allocating to (i) is best:

– Tentatively set τ(i) ← τ and τ` ← 0 for all ` 6= (i); set λ−1
{jk}, d∗{jk}
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with Equation (2.18) for all j.

– Compute the EVI,

EVILL,(i) =

 λ
−1/2
{ik} Ψn(i)−1

[
d∗{ik}

]
if (i) 6= (k)

λ
−1/2
{k−1,k}Ψn(k)−1

[
d∗{k−1,k}

]
if (i) = (k).

• Set τ(i) ← τ for the system that maximizes EVILL,(i), and τ` ← 0 for

the others.

The sampling allocation in Procedure 0-1 is based on two asymptotic

approximations. Procedure 0-11 avoids one of them, as well as the Bonferroni

and Welch approximations.

Procedure 0-11. Same as Procedure LL1, except the EVI is approximated

with respect to the 0-1 loss,

EVI0−1,(i) =

{
Φn(i)−1(−d∗{ik}) if (i) 6= (k)

Φn(k)−1(−d∗{k−1,k}) if (i) = (k)
(2.19)

Variations for the stopping rules are named analogously as summarized in

Section 2.2.7.

2.2.4 OCBA Procedures

The OCBA is a class of procedures that was initially proposed by [Chen 1996]

and that has several variations (e.g. [Inoue, Chick, and Chen 1999; Chen,

Yücesan, Dai, and Chen 2005]). The variations involve different approxi-

mations for PCSBayes, and different thought experiments for how additional

samples might improve the probability of correct selection. Here we spec-

ify the idea behind the OCBA and the variations used for this thesis. The

OCBA assumes that if an additional τ replications are allocated for system

i, but none are allocated for the other systems, then the standard error is

scaled back accordingly. The usual OCBA assumes normal distributions to
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2.2 The Procedures 2. Selecting a Selection Procedure

approximate the effect, but we use Student distributions,

M̃i ∼ St
(
x̄i, (ni + τ)/s2

i , ni − 1 + τ
)

M̃j ∼ St
(
x̄j, nj/s

2
j , nj − 1

)
for j 6= i,

for consistency with a Bayesian assumption for the unknown σ2
i . [Chen,

Yücesan, Dai, and Chen 2005] and [Branke, Chick, and Schmidt 2005b] found

no notable difference in performance when comparing normal versus Student

distributions for the M̃i.

The effect of allocating an additional τ replications to system i, but no

replications to the others, leads to an estimated approximate probability of

correct selection (EAPCS) evaluated with respect to M̃ = (M̃1, . . . , M̃k), and

with M̃(j) − M̃(k) approximated using Welch’s approximation.

EAPCSi =
∏

j:(j) 6=(k)

Pr
(
M̃(j) < M̃(k) | E

)
≈

∏
j:(j) 6=(k)

(1− Φν̃(j)(k)
(λ̃

1/2
jk d(j)(k)))

λ̃−1
jk =

s2
(k)

n(k) + τ11 {(k) = i}
+

s2
(j)

n(j) + τ11 {(j) = i}
(2.20)

where 11 {·} is 1 if the argument is true, and 0 otherwise.

These approximations result in a sequential OCBA algorithm that greed-

ily allocates samples to systems that most increase EAPCSi − PCSSlep at

each stage. An innovation for OCBA here is that sampling continues until a

stopping rule from Section 2.2.1 is satisfied.

Procedure OCBA.

1. Specify a first-stage sample size n0 > 2, a number q of systems to sim-

ulate per stage, a sampling increment τ > 0 to allocate per subsequent

stage, and stopping rule parameters.

2. Run independent replications Xi1, . . . , Xin0 , and initialize the number

of replications ni ← n0 run so far for each system, i = 1, . . . , k.
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3. Determine the sample statistics x̄i and s2
i and the sample mean order-

ing, so that x̄(1) ≤ . . . ≤ x̄(k).

4. WHILE stopping rule not satisfied DO another stage:

(a) Compute EAPCSi for i = 1, . . . , k.

(b) Set τi ← τ/q for the q systems with largest EAPCSi − PCSSlep,

set τj ← 0 for the others.

(c) Run τi additional observations from system i.

(d) For all i with τi > 0, update ni ← ni + τi, the sample statistics x̄i,

s2
i , and order statistics, so that x̄(1) ≤ . . . ≤ x̄(k).

5. Select the system with the best estimated mean, D = (k).

[He, Chick, and Chen 2005] proposed an OCBA variation that accounts

for the expected opportunity cost. Define AEOC to be the approximation to

EOCBonf in the right hand side of Equation (2.10), and set

EEOCSi =
∑

j:(j) 6=(k)

λ̃
−1/2
jk Ψν̃(j)(k)

[
λ̃

1/2
jk d(j)(k)

]
.

Procedure OCBALL is a variation of OCBA that allocates replications to

systems that maximize the improvement in expected opportunity cost (linear

loss), AEOC− EEOCSi in Step 4b.

Yet another OCBA heuristic incorporates the indifference zone parameter

δ∗ into the sampling allocation (not just the stopping rule). Let EAPGSi,δ∗

generalize PGSSlep,δ∗ by computing it with respect to M̃. ProcedureOCBAδ∗

allocates replications to systems that most improve an estimated probability

of a good selection, EAPGSi,δ∗ − PGSSlep,δ∗ , in Step 4b. This differs from

how δ∗ was incorporated into OCBA by [Chen and Kelton 2005]. We denote

the latter by OCBAmax,δ∗ .

All OCBA variations above were implemented as fully sequential proce-

dures here (q = 1 and τ = 1).
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2.2.5 Optimal allocation

For k = 2 systems and equal variances it is optimal to allocate samples

equally among the systems. We will now derive an “optimal” allocation

scheme. For the derivation, we assume the means and variances to be known

and allocate new samples, so that the probability for the best system to

have the largest observed mean is maximized. The allocation is determined

independently of the observations made, so it’s statically. The purpose of this

allocation is to give a theoretical bound on the maximal effect, allocation can

add to selection procedures.

maxn1,...,nk
Pr(X̄[k] > X̄i ∀i 6= [k])

s.t.
k∑

i=1

ni = n

ni ≥ 0, (2.21)

where X̄i is the distribution of the observed means after ni samples.

The probability can be calculated by
∫∞
−∞
∏

i6=k Fi(x, n[i])fk(x, n[k])dx, where

Fi(x, n) = Φ(
x−µ[i]

σ[i]

√
n) and fi(x, n) = φ(

x−µ[i]

σ[i]

√
n)

√
n

σ[i]
are the cdf and pdf of

X̄i for a given number of samples n.

We implemented optimal allocation by greedily allocating samples for the

system that increases the objective at most.

2.2.6 Computational Issues

The implementation that generated the analysis and graphs in this chap-

ter used the Gnu Scientific Libary (gsl) for calculating cdfs, the Mersenne

twister random number generator [Matsumoto and Nishimura 1998, (with

2002 revised seeding)] and FILIB++ ([Lerch, Tischler, von Gudenberg, Hof-

schuster, and Kraemer 2001]) for interval arithmetic. Calculations were run

on a mixed cluster of up to 120 nodes. The nodes were running Linux 2.4

and Windows XP with Intel P4 and AMD Athlon processors ranging from 2

to 3 GHz. The program is written in C++ and jobs were distributed with
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the JOSCHKA-System ([Bonn, Toussaint, and Schmeck 2005]).

Numerical stability problems may arise in implementations of the OCBA,

0-11 and LL1 allocations even with double-precision floating point arithmetic

as the total number of replications gets quite large. For example, Ψν [s] in

Equation (2.9) is strictly positive for finite s but may evaluate to nonpositive

values (e.g. −10−300 ) for large s if some standard math library functions for

the t distribution are used (e.g. tpdf and tcdf in Matlab v. 6 release 12).

To better distinguish which system should receive samples in a given stage

(OCBA, 0-11 and LL1), numerical stability was increased by evaluating the

system that maximizes log(EAPCSi − APCS) (for OCBA) and log EVI(i)

(for 0-11 and LL1). In particular, for OCBA, set pj = Φν(j)(k)
(d∗jk), p̃j =

Φν̃(i)(k)
(λ̃

1/2
ik d(i)(k)) and

∑
j =

∑
j:(j) 6=(k) for convenience. Then

log(EAPCSi − APCS)

=


for i 6= (k):

∑
j log(1− pj)− log(1− pi) + log pi+

+ log [− (exp(log p̃i − pi)− 1)]

for i = (k):
∑

j log(1− p̃j)+

+ log
[
−
(
exp

(∑
j log(1− pj)−

∑
j log(1− p̃j)

)
− 1
)] .(2.22)

These transformations are useful, because log(1+x) = log1p(x) and exp(x)−
1 = expm1(x) have increased accuracy for x near 0. In rare cases, we com-

puted EAPCSi < APCS, which we handled by setting log(EAPCSi−APCS)

to −∞.

For calculating log EVI, we need log Φν(t) and log Ψν(t). If the numeri-

cal stability does not suffice to calculate log Φν(t) (underflow error) we de-

rive bounds for log Φν(t) based on the following property of the cdf of a

t-distribution ([Evans, Hastings, and Peacock 1993]),

Φν(t) =

{
1
2
βinc
reg(ν

2
, 1

2
, ν

ν+t2
) if t ≤ 0

1− 1
2
βinc
reg(ν

2
, 1

2
, ν

ν+t2
) if t > 0,

(2.23)

where βinc
reg(a, b, x) = β(a, b)−1

∫ x

0
ua−1(1 − u)b−1du is the incomplete beta

function, and β(a, b) = Γ(a)Γ(b)/Γ(a + b) denotes the beta function. A
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lower bound for log Φν(−t) for t > 0 can be derived as follows. If f(u) =

ua−1(1− u)b−1, then f(0) = 0, f ′(u) ≥ 0 and f ′′(u) > 0 for a = ν
2

> 1, b = 1
2

and all u ∈ [0, 1]. So the area below f(u) over [0, x] is always larger than the

area below the tangent at (x, f(x)).

log Φν(−t) ≥ ν
2
log ν

t2+ν
+ 1

2
log(1− ν

t2+ν
) (2.24)

− log
(
(ν

2
− 1)(1− ν

t2+ν
) + 1

2
ν

t2+ν

)
− log 2

For the upper bound, recall Equation (2.9). As Ψν(t) > 0 for all t > 0 we

obtain Φν(−t) < 1
t

ν+t2

ν−1
φν(t), so

log Φν(−t) < log ν/t+t
ν−1

+ log φν(t) (2.25)

The bounds in Equation (2.24) and Equation (2.25) help for Φν but can-

not directly be used for bounds on Ψν(t). But the numerical stability can be

increased by bringing the log inside the calculation of log Ψν(t):

log Ψν(t) = log t2+ν
ν−1

+ log φν(t)

+ log
[
1− t(ν−1)

(t2+ν)
exp(log Φν(−t)− log φν(t))

]
(2.26)

Allocating based upon log EVI rather than EVI for 0-11 and LL1 improved

performance when extreme guarantees of correct selection are sought (α∗ or

β∗ close to 0), but required 50% more CPU time to determine the allocation,

on average.

Collisions, due to the EVI being not numerically unique because of the

interval bounds in Equation (2.22) through Equation (2.26), occurred almost

always with 0-11 (the lower bound is loose) if high evidence levels for correct

selection were required. Collisions occurred often with LL1. In the numerical

experiments for OCBA, 0-11 and LL1, if there was no clearly defined best

(a collision), and the EVI or EAPCSi−APCS was not numerically different

from 0 for any system (with interval arithmetic), then we repeatedly doubled

τ for purposes of calculating EVI or EAPCSi − APCS, until at least one

system was numerically greater than 0. The ‘winner’ then received τ = 1
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replication. Usually, at most 3 doublings (τ = 8) were sufficient to select a

winner. If there was no clearly defined best because two or more systems

whose EVI or EAPCSi − APCS had overlapping intervals but the intervals

did not contain 0, then we allocated τ = 1 replication to the system with the

highest upper bound for the interval.

The performance of 0-11 and LL1 does not appear to be significantly

hurt by the collisions, as the curves in the (E[N ], log(1−PCSiz)) and (E[N ],

log EOCiz) planes appear relatively straight. Collisions occur rarely with

OCBA and OCBALL, but there is some slight bend to the right for low

values of α∗ or EOC bounds. That may suggest a potential inefficiency due

to another numerical issue that we have not yet identified.

Procedures KN++, LL, and 0-1 did not experience numerical stability

problems with collisions.

2.2.7 Summary of Tested Procedures

In addition toKN++, we tested eight different allocation procedures, namely

• Equal, which allocates an equal number of samples to each alternative,

• two VIP procedures that allocate with a PCS (denoted 0-1) or EOC

(denoted LL) criterion,

• two corresponding small-sample EVI allocation (denoted 0-11 and LL1),

• three OCBA procedures that allocate with a PCS (denoted OCBA),

PGS (denoted OCBAδ∗), and EOC (denoted OCBALL) criterion.

Each allocation except for KN++ was used in combination with each of

three stopping rules defined in Section 2.2.1 (S, PGSSlep,δ∗ , and EOCBonf).

Overall, this resulted in 25 different procedures. So many variations were

tested (a) to be inclusive and match all combinations in order to better

understand the relative influence of each, (b) to unify separate streams of

literature where small numbers of variants are compared at a time and nu-

merical tests do not tend to be comparable, and (c) show the improvement
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in both VIP and OCBA procedures with stopping rules other than S (the

default in all past VIP and OCBA work).

We also tested the effect of including prior information about the means

and variances in the VIP and OCBA configurations, as discussed in Sec-

tion 2.4 below.

2.3 Evaluation Criteria

There are several ways to evaluate selection procedures, including the theo-

retical, empirical, and practical perspectives. Section 2.2 indicates that the

three approaches make different basic assumptions, and that the most effi-

cient representatives of each approach each make approximations of one sort

or another. Theory that directly relates the different approaches is therefore

difficult to develop.

We turn to the empirical and practical perspectives. The efficiency of a

procedure is a frequentist measure of evidence for correct selection (PCSiz,

PGSiz,δ∗ and EOCiz) as a function of the average number of replications E[N ].

As a function of each problem instance and sampling allocation, the stopping

rule parameters implicitly define efficiency curves in the (E[N ], PCSiz) plane.

[Dai 1996] proved exponential convergence for ordinal comparisons in certain

conditions, so efficiency curves might be anticipated to be roughly linear

on a logarithmic scale, (E[N ], log(1 − PCSiz)), where 1 − PCSiz = PICSiz.

Efficiency curves for EOCiz and PGSiz,δ∗ are defined similarly. ‘More efficient’

procedures have curves that are below those of other procedures.

Efficiency curves ignore the question of how to set a procedure’s param-

eters to achieve a particular PCSiz or EOCiz. As a practical matter, one ex-

pects some deviation between a stopping rule target, say PCS ≥ 1− α∗, and

the actual PCSiz achieved. The deviation between the desired and realized

performance is measured with target curves that plot (log α∗, log(1−PCSiz))

for PCS-based targets 1− α∗, and (log β∗, log EOCiz) for opportunity cost

targets β∗. Procedures whose target curves follow the diagonal y = x over

a range of problems are ‘controllable’ in that it is possible to set parameter

values to obtain a desired level of correct selection. ‘Conservative’ procedures
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have target curves that tend to be below y = x, and are said to ‘overdeliver’

because the frequentist measure for correct selection exceeds the desired tar-

get. An IZ procedure may therefore not be controllable if it is conservative

in an unpredictable way. A controllable procedure may not have a PCSiz

guarantee if the target curve goes slight above or below the diagonal.

2.4 Test Bed Structure

A large number of problem instances assessed the strengths and weaknesses

of each procedure. We varied the number of systems, the first stage sampling

size, and the configuration of the means and variances. We tested random

problem instances and the ability to use prior information about the unknown

means.

Classic Problem Instances In a slippage configuration (SC), the

means of all systems except the best are tied for second best. A SC is

identified by the number of systems, the difference in means of the best and

each other system, and the variances of each system. The parameters δ, ρ

describe the configurations we tested.

X1j
iid∼ Normal

(
0, σ2

1

)
Xij

iid∼ Normal
(
−δ, σ2

1/ρ
)

for systems i = 2, . . . , k

If ρ = 1, then all systems have the same variance, and ρ < 1 means that

the best system has a smaller variance. We set σ2
1 = 2ρ/(1 + ρ) so that

Var[X1j −Xij] is constant for all ρ > 0.

In a monotone decreasing means (MDM) configuration, the means

of all systems are equally spaced out, so that some systems are quite a bit

inferior to the best. The parameters δ, ρ describe the configurations that we

tested. The outputs were jointly independent, and we set σ2
1 like in SC.

X1j ∼ Normal
(
0, σ2

1

)
Xij ∼ Normal

(
−(i− 1)δ, σ2

1/ρ
i−1
)

for systems i = 2, . . . , k
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Values of ρ < 1 mean that better systems have a smaller variance. For suffi-

ciently small ρ, the probability that the worst system has the best observed

mean is higher than the probability for the second best system.

For the SC and MDM configurations we tested many (hundreds), but not

all of the following parameter combinations: k ∈ {2, 5, 10, 20, 50}, δ ∈ {0.25,

0.354, 0.5, 0.707, 1}, and ρ ∈ {0.125, 0.177, 0.25, 0.354, 0.5, 0.707, 1, 1.414,

2, 2.828, 4}, with n0 ∈ {4, 6, 10}. We tested B ∈ {kn0, . . . , 2k
(

1
δ
Φ−1

(
α∗

k

))2}
for the budget stopping rule (S), varied the indifference zone parameter

relative to the difference in means δ∗ ∈ {0, 0.05, 0.1, . . . , 0.6} and α∗ ∈
[0.001, 0.5] for PGS-based stopping rules (PGSSlep,δ∗) and KN++, and var-

ied β∗ ∈ [0.001, 0.5] for (EOCBonf). For some configurations, we varied

α∗ ∈ [0.001, 1/k] for KN++ as the achieved PICS for α∗ = 0.5 was below

0.01.

Random Problem Instances Assessments of selection procedures in the

literature usually apply procedures to a specific set of structured problems,

as above. A Random problem instance (RPI) may be more realistic

in the sense that problems faced in practice are typically not in the SC or

MDM configuration. In each RPI experiment below, the output is again

jointly independent, Xij
iid∼ Normal (µi, σ

2
i ) for i = 1, . . . , k, conditional on

the problem instance. The problem instance χ is sampled randomly prior to

applying a selection procedure. Correct selection metrics are generalized to

be expectations over the sampling distribution, e.g. PCSiz = Eχ[PCSiz(χ)].

The first RPI experiment (RPI1) samples χ from the normal-inverse

gamma family. A random χ is generated by sampling the σ2
i independently,

then sampling the Mi, given σ2
i ,

p(σ2
i ) ∼ InvGamma (α, β) (2.27)

p(Mi |σ2
i ) ∼ Normal

(
µ0, σ

2
i /η
)
.

If S ∼ InvGamma (α, β), then E[S] = β/(α−1), S−1 ∼ Gamma (α, β), E[S−1] =

αβ−1 and Var[S−1] = αβ−2. Increasing η makes the means more similar

and therefore the problem harder. We set β = α − 1 > 0 to standardize
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the mean of the variance to be 1, and set µ0 = 0 . Increasing α reduces

the difference between the variances. We tested many combinations out

of k ∈ {2, 5, 10, 20}, η ∈ {0.0625, 0.0884, 0.125, . . . , 4}, α ∈ {2.5, 100}, and

n0 ∈ {4, 6, 10}. The derivations of the VIP and OCBA procedures correspond

to η → 0.

The RPI1 experiment permits a test of whether the VIP and OCBA

procedures can benefit from using the sampling distribution of χ in Equa-

tion (2.27) to describe prior judgement about the means and variances of each

system. Section 2.2 does not allow for this directly, but the mathematical

development to do so was provided elsewhere for the VIP ([Chick and Inoue

1998; Chick and Inoue 2001b]). In summary, the posterior distribution of Mi,

given the prior distribution in Equation (2.27) and data Ei = (xi1, . . . , xini
),

is

p(σ2
i | Ei) ∼ InvGamma (α′, β′),

p(Mi |σ2
i , Ei) ∼ Normal

(
µ′0, σ

2
i /η

′)
where α′ = α + ni/2, β′ = β + ( ηni

η+ni
(µ0 − x̄i)

2 +
∑ni

j=1(xij − x̄i)
2)/2, µ′0 =

ηµ0+nix̄i

η+ni
, and η′ = η + ni. To apply that result to all VIP procedures in Sec-

tion 2.2.3, substitute each x̄i with µ′0; replace each s2
i with β′/α′; and replace

each ni with η′, except in the degrees of freedom, where ni − 1 should be

replaced with 2α′. The OCBA has previously always assumed a noninforma-

tive prior distribution. Analogous substitutions allow OCBA and OCBALL

to use other prior distributions for the unknown means and variances.

A second RPI experiment (RPI2) samples problem instances from a dis-

tribution other than normal-inverted gamma to remove any potential advan-

tage for the VIP and OCBA approaches. There is no objectively best dis-

tribution for sampling problem instances. We chose RPI2 to independently

sample from:

σ2
i ∼ InvGamma (α, β)

Mi |σ2
i ∼ (−1)aExponential

(
(η/σ2

i )
1/2
)
,
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where the mean of an Exponential (λ) distribution is 1/λ. −Exponential (λ)

is a notational abbreviation for a distribution, where the realizations of an

exponential are inverted. There are typically several competitors for the best

if a = 1 and few competitors for the best if a = 0. A larger η makes for harder

problems with closer means. Heterogeneity in the variances is controlled with

α and β. We tested the same parameters as in RPI1.

Summary of Configurations The SC favors IZ procedures in that IZ

procedures provide a minimal target performance with respect to a least fa-

vorable configuration (LFC), and for many IZ procedures an SC with δ = δ∗

is a LFC. The RPI1 (η near 0) may favor the VIP and OCBA, as the deriva-

tion of those procedures assume prior probability models that are similar to

the sampling distribution of the problem instances. The MDM, RPI1 (larger

η) and RPI2 experiments do not favor any procedure in this chapter.

2.5 Empirical Results

This section summarizes the qualitative features of the analysis. Plots were

generated with 105 macroreplications for each combination of problem in-

stance, sampling allocation, and stopping rule parameter value. To improve

the significance of contrasts between different procedures, common random

numbers (CRN) were used to generate common configurations for RPI ex-

periments, and to synchronize the samples observed across procedures. CRN

were not used between systems. KN++δ∗ refers to KN++ with the given

indifference zone parameter. By default, n0 = 6 unless specified otherwise.

Two Systems, SC/MDM. When there are k = 2 systems, the SC and

MDM configurations are equivalent, and PICSiz is proportional to EOCiz.

When the variances are equal, it is optimal to sample equally often from

both systems (e.g. [Gupta and Miescke 1994]), so Procedure Equal samples

optimally. Figure 2.3 demonstrates the effect of different stopping rules on

efficiency (similar effect for different δ). The EOC-based stopping rule is more

efficient than the PCS-based stopping rule. Both are much more efficient than
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Figure 2.3: Efficiency of Equal alloca-
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KN++ with δ∗ = δ (SC, k = 2,
δ = 0.5, ρ = 1).
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Figure 2.4: Efficiency of different al-
location procedures and KN++ with
δ∗ = δ (SC, k = 2, δ = 0.5, ρ = 1).

stopping after a fixed budget (S) because any additional sampling is adapted

to the level of evidence observed so far.

If k = 2, then KN++ samples each system equally often until the stop-

ping criterion is met, so it is equivalent to the Equal allocation with a special

stopping rule. For higher PICS, Equal(EOCBonf) in this case is more efficient

than KN++, while for very low PICS, KN++ beats Equal(EOCBonf). Fig-

ure 2.3 also shows that the efficiency curve for KN++ and Equal allocation

with the S and Wald stopping rule is straighter than for the PCS or EOC

stopping rules. The Bayesian stopping rules cause a slight curvature.

Allocating equally and stopping with Wald’s SPRT is the most efficient

procedure. It outperforms all other procedures for each stopping value.

Figure 2.4 shows that of all allocations with the EOCBonf stopping rule,

Equal performs most efficiently (it is optimal for this particular setting), with

LL1, 0-1 and OCBA following. LL performs identical to 0-1, and 0-11 is very

similar to 0-1 for this problem (not shown). A similar precedence is observed

for the PCSSlep and PGSSlep,δ∗ stopping rules. For the S stopping rule, all

VIP and OCBA allocations perform about the same as Equal (not shown).

The relative ordering of the stopping rules for the equal allocation, namely

EOCBonf beats PCSSlep which beats S, is also observed for all VIP and

OCBA allocations with a similar order of magnitude difference (not shown).

With adaptive stopping rules (EOCBonf, PCSSlep, PGSSlep,δ∗), a large
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Figure 2.5: Influence of n0 (SC, k = 2, δ = 0.5, ρ = 1).

number of initial samples per system, n0, limits the opportunity to make an

early selection, but a small n0 increases the probability of poor estimates

of the output mean and variance. For the posterior marginal distributions

of the unknown means to have a finite variance, we require n0 ≥ 4 (see

text after Equation (2.2)). Figure 2.5 shows that increasing n0 in Procedure

Equal(EOCBonf) increases the number of samples required to reach relatively

low levels of evidence for correct selection, but increases the efficiency of

the procedure to reach high levels of evidence for correct selection. The

differences in the curves are predominantly attributed to output that causes

sampling to stop after very few samples, due to misleadingly low variance and

PICS estimates. The OCBA and VIP procedures behave similar to Equal

in this respect for each stopping rule. With the nonadaptive stopping rule

(S), they seem insensitive to n0. Procedure KN++ is quite insensitive to n0

(regardless of k, not shown).

The tests above use δ∗ = δ for KN++ and δ∗ = 0 for PGSSlep,δ∗ . That

choice seems natural for KN++, since δ∗ = δ is a LFC for many IZ pro-

cedures. For PGSSlep,δ∗ , the choice δ∗ = 0 seems the natural choice for

PCSiz efficiency. But the parameter δ∗ has a strong effect on efficiency and

target curves. Setting δ∗ to obtain a desired PICSiz seems challenging (an

observation for most configurations tested, not just SC).

Figure 2.6 shows the influence of δ∗ on PCSiz efficiency (the mean number

of samples required to obtain a specified level PICSiz). For small PICSiz,

there may exist settings for δ∗ so that KN++ and Equal(PGSSlep,δ∗) are
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more efficient than Equal(EOCBonf). To see this, note that when PICSiz =

0.005 and 0.01, the curves for KN++ and Equal(PGSSlep,δ∗) go below the

horizontal lines. The horizontal lines show mean number of samples required

by Equal(EOCBonf) to reach the corresponding PICSiz level. The value of δ∗

that is needed to obtain the minimal mean number of samples depends on the

problem instance. The curvature is induced by two concurring effects: For

a given level of PICSiz, α∗ has to be decreased if δ∗ is increased. The mean

number of samples are increased by decreasing α∗ but are also decreased

by increasing δ∗. Both effects are nonlinear, which gives the curvature in

Figure 2.6.

Since the problem instance is unknown in practice, it is not clear how to

set δ∗ in general. Figure 2.7 illustrates that δ∗ also has a strong effect on the

target performance. There is no obvious way to set δ∗, α∗ to reliably achieve

a given PICSiz goal. Choosing a small δ∗ may result in sampling way beyond

what is actually needed, in particular for KN++ and Wald. While δ∗ = δ

would yield very good target performance for KN++, δ is usually unknown.

Equal(PGSSlep,δ∗) significantly underdelivers for δ∗ ≥ 0.3, i.e. values smaller

than the true difference between the best and second best system.

The EOCBonf stopping rule is quite sensitive to the difference between

the two systems, δ (see Figure 2.8). It slightly underdelivers EOCiz for small

δ, and significantly overdelivers for large δ. A similar behavior is observed

for KN++ here when control for EOCiz is attempted with β∗ = δ∗α∗.

Overall, for SC with k = 2, Equal(EOCBonf) and KN++ seem the most

efficient. No procedure is fully controllable for SC, k = 2. The remarks so

far presume a common variance (ρ = 1). When ρ 6= 1, the equal allocation is

not optimal, and KN++ and Equal allocation are slightly less efficient (not

shown).

SC with k > 2 systems. It is not optimal to sample each system equally

often if k > 2. Figure 2.9 shows the efficiency of different allocation rules for

the EOCBonf stopping rule and k = 10 systems. The settings are comparable

to Figure 2.4 with k = 2 systems. While Equal is optimal for k = 2, it

performs worst for k = 10. The most efficient allocations are OCBALL
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Equal(PGSSlep,δ∗) (SC, k = 2, δ =
0.5, ρ = 1).
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Figure 2.7: Influence of δ∗ on KN++
and Equal(PGSSlep,δ∗) target perfor-
mance. (SC, k = 2, δ = 0.5, ρ = 1).

and OCBA, then LL closely behind. KN++ is much less efficient than

OCBALL, OCBA and LL (each with EOCBonf as a stopping rule). The

difference between the efficiency of the Bayesian procedures relative to the

Equal and KN++ procedures increases with k (tested k = 2, 5, 10, 20). The

qualitative nature of the claim does not change as δ and ρ are individually

varied from the values used for the plot.

Procedures LL1 and 0-11 would perform similarly to KN++ in Figure 2.9

(not shown). In fact, the small sample procedures turned out to be generally

less efficient than their counterparts LL and 0-1. The implication is that the

use of the Bonferroni and Welch approximations by LL and 0-1 causes less

deviation from optimal sampling than myopically allocating samples one at

a time to reduce EVI in LL1 and 0-11.

Other observations for k = 2 also hold for k = 5, 10 and 20, including:

the precedence of the effectiveness of stopping rules (EOCBonf beats PCSSlep
which beats S); the importance of a sufficiently large n0 for the VIP and

OCBA procedures; the sensitivity of KN++ to δ∗ but not n0.

Monotone Decreasing Means. For MDM and k > 2 equal allocation

is no longer optimal. Figure 2.10 shows the optimal allocation compared

to OCBA and LL. The curves for the loss-based procedures (OCBALL not
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Figure 2.10: Comparison of OCBA with the optimal allocation rule. The line
for optimal allocation is more rugged due to fewer simulations (104 instead
of 105); MDM (k = 10, δ = 0.5, ρ = 1).

shown) are nearly parallel to the optimal allocation, which indicates that

these procedures allocate almost optimal after the initial n0 samples.

MDM adds the complication that EOCiz is not proportional to PCSiz

when k > 2. Figure 2.11 illustrates that for the Equal allocation, the

EOCBonf stopping rule outperforms PCSSlep, which beats S, an order ob-

served for all VIP and OCBA allocations, and all MDM configurations tested.

Notably, the EOCBonf stopping rule outperforms PCSSlep not only for EOCiz

efficiency, but also for PCSiz efficiency. As for SC, the PGSSlep,δ∗ stopping

rule can be more efficient than the EOCBonf stopping rule for some (but not

all) δ∗.
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Figure 2.11 also exemplifies an observation for MDM runs that KN++

with δ∗ = δ is typically more efficient than the original VIP and OCBA

procedures, which used the S stopping rule. However, the original VIP and

OCBA allocations with the new EOCBonf stopping rule are more efficient

than KN++. Although stopping with Wald was the most efficient for k = 2,

it is the worst stopping rule in MDM. This holds for Wald used in the allo-

cation, too (not shown). The most efficient allocations are LL and OCBALL

(along with 0-1 and OCBA, not shown). The small sample procedures, 0-11

and LL1, were only competitive for high PICS values.

For MDM, the EOC-based allocations typically outperform the corre-

sponding 0-1-based allocations for all stopping rules, the difference being

particularly sizable for the S stopping rule (not shown). This is true not

only for efficiency with respect to EOCiz, but also to PCSiz. For each MDM

configuration tested, LL(EOCBonf) and OCBALL(EOCBonf) are not statis-

tically different for efficiency. Those two procedures also perform roughly

similar in target plots for most configurations and follow the target diagonal

reasonably well in most cases, although some differences with no discernable

pattern were observed in some target plots.

Figure 2.12 illustrates that KN++ is again very sensitive to the param-

eter δ∗ (difficult to control). While KN++ adheres to the target quite well
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Figure 2.13: Effect of variance ratio ρ on efficiency (left panel) and target
performance (right panel). (MDM, k = 10, δ = 0.5). Procedures OCBA and
OCBALL use PCSSlep stopping rule. Procedures OCBALL and LL perform
the same.

for SC when δ∗ = δ, it significantly overdelivers even for this setting for the

MDM configuration. Procedure OCBALL(PGSSlep,δ∗) is also sensitive to the

parameter δ∗. While the target curves for OCBALL(PGSSlep,δ∗) shift roughly

parallel to the diagonal, the target curves of KN++ change in slope. As for

SC, KN++ and PGSSlep,δ∗ are quite sensitive to δ and thus not controllable.

Figure 2.13 illustrates the effect of the output variance ratio ρ on different

procedures for MDM with k = 10. With ρ = 1 (equal variance), the best

PCSSlep procedures perform somewhat more efficiently than KN++. In-

creasing ρ (best systems have larger variance) has little effect on the relative

performance of the procedures. Decreasing ρ to 0.5 (very large variance for

the worst systems) increases the total number of samples for all procedures,

but particularly deteriorates the efficiency of KN++ (in far right of efficiency

plot) relative to the PCSSlep procedures. Procedure KN++ also overdeliv-

ers more than some other procedures (right panel). The target curves for all

procedures are relatively insensitive to ρ (the target relies primarily on the

difference between the two systems competing most for best, so efficiency is

affected more than the target curve).

Procedures OCBALL and LL are somewhat more efficient than OCBA
and 0-1 at high PICS levels, but the reverse may be true in many MDM and

SC configurations for very low PICS levels (not shown).

For all SC and MDM configurations and almost all sampling procedures,
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the efficiency curves exhibit a certain curvature. We found several explana-

tions for curved efficiency lines for the OCBA and VIP procedures. One,

a small n0 leads to poorer variance estimates initially, with a potential for

either (a) early stopping if PICS is strongly underestimated, or (b) a mas-

sive number of samples being required if an extremely low PICS or EOC

is desired, initial estimates suggest that the best system is worst, and the

procedure then tries to distinguish between the equal systems in the SC.

Both cases are alleviated by increasing n0. Two, the test bed pushed the

procedures to new limits for numerical stability. Preliminary efficiency plots

for some procedures were somewhat more curved than those presented here.

Section 2.2.6 describes computational techniques to reduce that curvature.

We believe that this cause was eliminated. Three, exponential convergence

results for ordinal comparisons are asymptotic and available for only some

procedures, so straight lines might not be expected at all levels of PICSiz

and EOCiz for all procedures.

Random Problem Instances 1. For the RPI experiments, it is necessary

to choose δ∗ > 0 for the PGSSlep,δ∗ stopping rule because there is a reasonable

probability that the two best systems have very similar means, in which case

δ∗ = 0 results in excessive sampling. Therefore δ∗ = 0 (or PCSSlep) is to

be avoided in practice. We examine efficiency for the probability of a bad

selection, PBSiz,δ∗ , instead of PICSiz, in this section.

For basically all RPI settings, the LL, OCBALL and OCBAδ∗ allocation

rules are more or less equally efficient. The 0-1 allocation is generally less

efficient (it is derived with more approximations, and wastes samples trying

to distinguish between two very close competitors in the RPI) and Equal is

worst. See Figure 2.14 for the S stopping rule (which may be needed if an

analysis has a strict time constraint).

While the differences among the allocation rules are rather small for RPI,

the performance of the stopping rules varies widely. Figure 2.15 compares dif-

ferent stopping rules in combination with Equal allocation based on PGSiz,δ∗

efficiency. PGSSlep,δ∗ stopping rule and ‘matching’ δ∗ clearly performs best.

By matching, we mean that the δ∗ chosen for the stopping rule equals the
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Figure 2.14: PBSδ∗ Efficiency of allo-
cations with S stopping rule (RPI1,
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Figure 2.15: PBSδ∗ Efficiency of
Equal allocation (RPI1, k = 5, η = 1,
α = 100).

value of δ∗ chosen to measure PGSiz,δ∗ . While this is not necessarily the

most efficient setting, it seems the most sensible. For RPI, the effect of

δ∗ on efficiency is relatively small (in Figure 2.15, Equal(PGSSlep,0.2) and

Equal(PGSSlep,0.4) are almost identical), and the chosen matching setting

yields a very good PGSiz,δ∗ target performance.

For EOCiz efficiency, settings for δ∗ exist so that PGSSlep,δ∗ is more effi-

cient than the EOCBonf stopping rule, see Figure 2.16 (left panel). Whether

that finding is of practical relevance remains to be seen, as it is not yet clear

how to set δ∗ in PGSSlep,δ∗ to control EOCiz via β∗ = δ∗α∗ (right panel).

Several efficiency curves, in particular Equal(S) in Figure 2.15 and Fig-

ure 2.16, are more curved for RPI1 than for the SC and MDM configurations.

That curvature is largely due to a very large number of samples for a few

very “hard” configurations (the best two systems have very close means and

large variances).

Figure 2.17 compares three selection procedures with adaptive stopping

rules, KN++, Equal(PGSSlep,δ∗), and OCBAδ∗(PGSSlep,δ∗). As is typical

for the RPI1 problems tested, OCBAδ∗(PGSSlep,δ∗) outperforms KN++ for

efficiency (left panel) and controllability (right panel). When moving from

α = 100 (very similar variances for each system) to α = 2.5 (very different

variances), the efficiency of OCBAδ∗(PGSSlep,δ∗) improves and the efficiency

of KN++ is basically not affected.

As can be seen in Figure 2.18, the sensitivity with respect to η in the
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Figure 2.18: Influence of η on efficiency and target for PCS-based procedures
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RPI experiments is much smaller than the sensitivity with respect to δ ob-

served for the SC and MDM configurations in Figure 2.8. Note that the

difference between the best and second best system is proportional to η−2.

For efficiency (left panel) OCBALL(PGSSlep,δ∗) slightly outperforms KN++.

Regarding target performance, KN++ consistently and strongly overdeliv-

ers, while OCBALL(PGSSlep,δ∗) meets the target rather well over all η tested.

Also, procedures with the EOCBonf stopping rule follow an EOCiz target well

(not shown).

Observations from SC and MDM that apply to RPI1 as well include:

The Bayesian procedures are generally quite sensitive to n0, while KN++ is

not; KN++ becomes less efficient relative to the Bayesian procedures as the

number of systems k increases.

If prior knowledge on the distribution of means and variances is avail-

able, this can be integrated into the Bayesian procedures as described in

Section 2.4. The benefit of doing so, when possible, is apparent in Fig-

ure 2.19 (left panel). The top line shows the efficiency of the standard pro-

cedure with Equal allocation and a budget stopping rule. This can be im-

proved by switching to a flexible allocation procedure (OCBALL(S)), using

an adaptive stopping rule (OCBALL(EOCBonf)), and using prior information

(OCBAprior
LL (EOC

prior
Bonf)). These changes reduce the mean number of samples

required to achieve a loss of 0.01 from 291 to 164, to 94 and to 79. The tar-

get performance (right panel) is only slightly affected by incorporating prior
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Figure 2.19: Effect of allocation, stopping rule and prior information (RPI,
k = 5, η = 1, α = 100).

information.

Random Problem Instances 2. The RPI2 experiment generated random

problem instances that do not match the underlying assumptions of the VIP

and OCBA procedures regarding a noninformative distribution of means and

variances. In one setting, there are few very good systems (a = 0). In an-

other, there are likely to be several good systems (a = 1). Procedure LL and

OCBALL again perform almost identically for efficiency and controllability,

so only the latter is shown in plots.

Figure 2.20 compares the efficiency and target curves forOCBALL(PGSSlep,δ∗)

and KN++. Procedures OCBALL and LL are somewhat less efficient than

KN++ if there are several good systems (a = 1, left panel). The difference

is smaller for larger δ∗. Procedures OCBALL and LL meet the target, and

KN++ significantly overdelivers PBSiz,0.2. The RPI2 configuration with few

good systems (a = 0) is quite similar to RPI1 with respect to the long tail

distribution of the good systems, so it is not surprising that results are very

similar. But even for many good systems (a = 1), most of the results from

RPI1 carry over (not shown).

On the whole, OCBALL and LL perform very well for RPI2 even though

the problem instances do not follow the normal-inverted gamma distribution

that is implicit in the derivation of those procedures. A small degradation

in efficiency relative to KN++ may be expected if there are multiple very

good systems, but controllability remains with PGSSlep,δ∗ . Procedures 0-1,
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Figure 2.20: Efficiency and target for RPI2 (k = 5, η = 1, α = 100). LL and
OCBALL perform almost identically.

0-11 and LL1 are less effective.

Additional Supporting Graphs

The previous section presented a summary of the general conclusions from

the study. This section contains a subset of additional results that explore the

ideas further. It is not practical to display all results from the experiments, as

we tested over 150 problem configurations defined by combinations of k, {SC,

MDM, RPI1, RPI2}, and configuration parameters (δ, ρ for SC, MDM; η, α, β

for RPI1, RPI2). Together with combinations of n0, sampling allocations,

and stopping rule parameters, over 104 different combinations were run. We

developed a graphical visualization tool to allow an easy navigation through

the results. That tool was used to generate most of the figures in this chapter.

SC, k > 2

Figure 2.21 (left panel) illustrates the observation that the advantage of adap-

tive Bayesian procedures, relative to Equal, increases with k. The qualitative

nature of the graph does not change as δ and ρ are individually varied from

the values used for the plot. For all other procedures with the new stop-

ping rules, there is a tendency to overdeliver as k increases, but OCBALL is

more sensitive than Equal (right panel). The tendency to overdeliver with

increasing k might be attributed to the slack introduced by Slepian’s and

Bonferroni’s inequalities.
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Figure 2.21: Influence of the number of systems k on efficiency (right panel)
and target (left panel). Equal and OCBA allocation are used in combinaton
with EOCBonf stopping rule (SC, δ = 0.5, ρ = 1).
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Figure 2.22: Comparison of KN++ and OCBA(EOCBonf) efficiency depend-
ing on the number of systems k (SC, δ = 0.5, ρ = 1).

Similar to Equal, KN++ also loses efficiency relative toOCBA(EOCBonf)

as the number of systems k increases (Figure 2.22).

Figure 2.23 shows the importance of a sufficiently large n0 also for k > 2.

The right panel indicates that increasing n0 increases the tendency to overde-

liver. While LL(EOCBonf) is slightly closer to the target thanOCBALL(EOCBonf),

it is slightly less efficient. KN++ is quite insensitive to n0 (not shown).

A larger variance for the best system relative to the other systems (larger

ρ) makes correct selections easier (Figure 2.24, left panel). Different alloca-

tion functions respond differently to ρ, as illustrated forOCBA andOCBALL,

representatives for the 0-1- and EOC-based allocations. With ρ = 4, the

EOC-based allocation is clearly superior, but the advantage diminishes for

low PICS as ρ decreases, and the PCS-based allocation partially outperforms
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Figure 2.23: Effect of various n0, with EOCBonf stopping rule on efficiency
(left) and target (right) (SC, k = 10, δ = 0.5, ρ = 1).
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Figure 2.24: Influence of variance ratio ρ on OCBA and OCBALL (SC, k =
10, δ = 0.5, EOCBonf).

the EOC-based allocation. Larger ρ overdeliver slightly more on the target

plots, and OCBA overdelivers slightly more than OCBALL (right panel).

MDM, k > 2

Figure 2.25 shows PBSiz,δ∗ efficiency and target performance for different

δ∗. The parameter δ∗ for KN++ and PGSSlep,δ∗ stopping rule have thereby

been set to the indifference zone used for measuring performance. For MDM

with δ = 0.5, an indifference zone of δ∗ = 0.2 or δ∗ = 0.4 are equivalent

for PBSiz,δ∗ efficiency, as only the best system is considered to be a good

selection. For δ∗ = 0.6, the two best systems are considered good. On the

efficiency plot (left panel), it can be seen that the problem with PBSiz,0.6 is

significantly easier. The efficiency curves for δ∗ = 0.2 and 0.4 are very similar
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Figure 2.25: PBSiz,δ∗ efficiency and target for OCBALL(PGSSlep,δ∗) and
KN++ for different settings of δ∗ (MDM, k = 10, δ = 0.5, ρ = 1). In
this configuration PBSiz,0.2 = PBSiz,0.4 = PCSiz.

for OCBALL, while KN++ loses efficiency for δ∗ = 0.4. On the target plot

(right panel), the target performance of both procedures is affected by δ∗.

Overall, the PGSSlep,δ∗ stopping rule is closer to the target than KN++,

which very much overdelivers in each case (the curve for δ∗ = 0.2 is almost

outside the plot).

RPI1

One question is whether the δ∗ of the selection procedure can be selected in

a clever way to achieve a given desired performance for the probability of

a good selection. Figure 2.26 illustrates the influence of δ∗ on the PGSiz,0.2

efficiency of KN++ and OCBALL(PGSSlep,δ∗). For RPI, setting the proce-

dure’s parameter δ∗ to the δ∗ as specified in the efficiency goal (0.2) yields

reasonable, though not optimal, efficiency for both procedures. The target

performance is good for OCBALL(PGSSlep,δ∗), while KN++ significantly

overdelivers (see Figure 2.17, right panel).

Figure 2.28 extends this observation by looking at different δ∗, but always

keeping the δ∗ parameter of the procedure equal to the δ∗ used to measure effi-

ciency or target performance. The left panel shows thatOCBALL(PGSSlep,δ∗)

is more efficient for PBSiz,δ∗ than KN++ for all settings of δ∗, while the

right panel shows that OCBALL(PGSSlep,δ∗) follows the target better than

KN++. The combined effect of lower efficiency and overdelivery is visualized

56



2. Selecting a Selection Procedure 2.5 Empirical Results

 50

 100

 150

 200

 250

 300

 350

 400

 0  0.1  0.2  0.3  0.4  0.5  0.6

E
 [N

]

δ*

PBS0.2=0.005
PBS0.2=0.01
PBS0.2=0.02

EOCBonf
PGSδ*

KN++δ*

Figure 2.26: Influence of δ∗ on the re-
quired number of samples to obtain
a desired PBSiz,0.2 = α∗ for KN++
and OCBALL(PGSSlep,δ∗). Horizon-
tal lines show the number of sam-
ples required by OCBALL(EOCBonf)
as reference (RPI1, k = 5, η = 1,
α = 100).

 0

 50

 100

 150

 200

 0.001  0.01  0.1

E
 [N

]

α*

δ*=0.1
δ*=0.2
δ*=0.3
δ*=0.4
OCBALL (PGSSlep,δ*)
KN++δ*
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by OCBALL(PGSSlep,δ∗) and KN++
depend on the setting of parameter α∗

(RPI1, k = 5, η = 1, α = 100).

in Figure 2.27, which shows the number of samples taken depending on the

parameter α∗, again for three different δ∗ configurations. For example, if δ∗ =

0.4 and a desired accuracy of α∗ = 0.01 is chosen, OCBALL(PGSSlep,δ∗) uses a

total of 57 samples, while KN++ uses 161. Both methods deliver at least the

desired target accuracy in this example, although for OCBALL(PGSSlep,δ∗),

this is not true for all settings of α∗ and δ∗ (see Figure 2.28 right panel).

Some other observations from SC and MDM also carry over to RPI: The

Bayesian procedures are generally quite sensitive to n0, while KN++ is not

(Figure 2.29), and KN++ becomes less efficient relative to the Bayesian

procedures as the number of systems k increases (Figure 2.30).

Figure 2.31 shows that the benefit of including prior information in the

VIP and OCBA procedures is more or less independent of α and η for the

values tested.

RPI2

In Section 2.5 the paragraph on ”‘Random Problem Instances 2”’ states that

most observations made for RPI1 carry over to RPI2 even in the case of
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Figure 2.28: PBSiz,δ∗ efficiency and target for OCBALL(PGSSlep,δ∗) and
KN++ for different settings of δ∗ (RPI1, k = 5, η = 1, α = 100).
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Figure 2.30: Efficiency depending on
the number of systems k (RPI1, η =
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Figure 2.32: Efficiency (left) and target (right) for Equal allocation and
different stopping rules w.r.t. EOCiz (RPI2, k = 5, a = 1, η = 1, α = 100).
For PGSSlep,δ∗ stopping, β∗ is approximated by α∗δ∗

a = 1, i.e. many good systems. Some evidence for this claim is given below.

Figure 2.33 shows that the main conclusions about allocation rules also

hold for RPI2. The LL, OCBALL and OCBAδ∗ allocations are more or less

equally efficient. Procedures 0-1 and Equal are clearly less efficient.

The relative ordering of the stopping rules with respect to EOCiz effi-

ciency in combination with the Equal allocation remains the same: PGSSlep,δ∗

is more efficient than EOCBonf which is more efficient than S stopping rule

(Figure 2.32). Figure 2.34 compares target plots for RPI with negative ex-

ponential (RPI2, a=1), Gaussian (RPI1) and positive exponential (RPI2,

a=0) distribution of the means, in the order of decreasing number of good

systems. If the sampling distribution for the means matches the type of

prior distribution used for the Bayesian procedures, the target is matched

closely. Modifying the distribution towards more good systems (negative ex-

ponential) or fewer good systems (positive exponential) leads to over- and

underdelivery, respectively.

Implementation Issues Figure 2.35 compares OCBAδ∗ and OCBAmax,δ∗

with both the PGSSlep,δ∗ and PCSSlep,δ∗ stopping rules. The result is typical,

namely that OCBAδ∗ is the better allocation and PGSSlep,δ∗ is the better

stopping rule.

We now turn to two implementation issues. [Chen, Yücesan, Dai, and

Chen 2005] wrote that the efficiency of OCBA(S) was not significantly differ-
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Figure 2.37: Wilson and Pritsker’s
(W&P) degree of freedom correction
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(SC, k = 2, δ = 0.5, ρ = 1).

ent whether a t or a normal distribution is used for EAPCSi (by substituting

in the sample variance for the unknown actual variance into a normal distri-

bution version of EAPCSi), but did not publish results. Figure 2.36 confirms

those claims and generalizes to other stopping rules. A normal distribution

in the allocation is denoted OCBAGaussian. On the other hand, using a normal

distribution for the stopping rule (PCSSlep,Gaussian) does degrade performance.

The probable cause is that absolute values are important for stopping, but

for allocation, relative values for different systems are compared.

A refined estimator of the degrees of freedom that gave good confidence in-

terval coverage for queueing experiments with small numbers of observations

([Wilson and Pritsker 1984]) didn’t improve upon Welch’s approximation for

the SC in Figure 2.37. The associated target plot gave a small (statistically

significant) decrease in PCSiz for W&P relative to Welch.

2.6 Discussion

Choices regarding IZ guarantees, probability of correct selection goals, or

expected opportunity cost goals make a practical difference in the perfor-

mance of selection procedures. The new experimental setup (random prob-

lem instances as well as stylized configurations) and measurement displays

(efficiency and target curves, as opposed to tabular results of PCSiz and the
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number of replications), proved useful for assessing the volumes of data, and

for identifying strengths and weaknesses of procedures.

For a fixed budget constraint on the number of samples, e.g. due to project

deadlines, Procedures LL(S), OCBALL(S) and OCBAδ∗(S) were most effi-

cient.

In the absence of a fixed budget constraint, the results depend on the

problem class. For SC and MDM configuration, LL and OCBALL together

with the EOCBonf stopping rule were generally the most efficient. KN++

and Wald were also very efficient when k = 2, with similar variances and

low PICS values. Procedures based on an indifference zone (KN++, Wald

and PGSSlep,δ∗ stopping rule) were very sensitive to the parameter δ∗. While

KN++ and Wald followed the target very well for the SC when δ∗ = δ, the

difference δ in the best and second best is usually unknown, so this doesn’t

help in practice. No procedure was particularly controllable for the SC and

MDM configurations.

An arbitrary configuration encountered in practice is not likely to be styl-

ized like SC or MDM configurations. When configurations are randomized

(RPI1 and RPI2), the PGSSlep,δ∗ and EOCBonf stopping rules can be consid-

ered to be reasonably controllable for a desired PGSiz,δ∗ and EOCiz, respec-

tively. For RPI, an indifference zone seems important for efficiency. Proce-

dures LL(PGSSlep,δ∗), OCBALL(PGSSlep,δ∗) and KN++ were the most effi-

cient, with OCBAδ∗(PGSSlep,δ∗) strongly competitive for PGSiz,δ∗ efficiency.

Procedure KN++ tends to overdeliver and is not controllable for PGSiz,δ∗ in

RPI experiments. The current implementation of Wald’s procedure cannot

be recommended for more than 2 systems.

Strengths of KN++ include a low sensitivity to the number of first stage

samples (n0), and its natural ability to account for correlated output. It is

the only method tested here with a proven asymptotic guarantee for PCSiz ≥
1− α∗, if that is desired rather than PCSiz = 1− α∗. The potential cost of

that preference is strong conservativeness and lack of controllability.

We suggest combining the Bayesian allocation procedures with an adap-

tive stopping rule to substantially improve efficiency. Independent of the

stopping rule, the loss-based allocations LL and OCBALL are among the
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most efficient allocations. The most efficient and controllable stopping rule

depends on the desired goal (EOCBonf or PGSSlep,δ∗). The strong efficiency

is relatively robust w.r.t. different configurations, and controllability is rel-

atively robust for RPI. These procedures also allow for the incorporation

of prior information about problem instances when that is available. Weak

points of those procedures are a dependency on the initial number of samples

for each system, n0, and the potential for a small degradation in performance

if there are many systems that are close to the best.

Experiments showed that the Bonferroni and Welch approximations used

by LL are a less significant source of potential suboptimality than the greedy

one-step lookahead EVI procedures derived here (LL1, 0-11). Those new

procedures are not recommended for general use, nor are Equal and 0-1.

There are several limits to our study. We did not test the effect of auto-

correlation from steady-state simulations, but do not see why batching would

affect one procedure differently than another. We did not test common ran-

dom numbers (CRN), a technique that can sharpen contrasts between sys-

tems. A strength of KN++ is that it can directly account for CRN. CRN

can be accounted for in the OCBA [Fu, Hu, Chen, and Xiong 2005] and VIP

[Chick and Inoue 2001a] frameworks, but more work remains. This thesis

assumed that the number of samples determines efficiency, but the mean

CPU time of different systems may differ in general. The derivation of LL
accounts for different CPU times, and the OCBA is amenable to different

sampling costs too. Two-stage procedures are preferred in some contexts.

[Inoue, Chick, and Chen 1999] suggests that LL runs very effectively in two

stages. The EOCBonf stopping rule can be adapted to two stages by finding

a second-stage sampling budget that achieves a desired predicted EOCBonf.

2.7 Future Work

2.7.1 Removing approximations in OCBA

The OCBA procedures are based on the assumption that the mean and

variance estimates will not change for a few additional samples. With the
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conjugate and noninformative posterior predictive distributions for a single

observable X ′
i given in [Bernardo and Smith 1994] the posterior distribution

of APCSi for τi additional samples can be estimated.

p(X ′
i|xij with j = 1, . . . , ni) = St

(
x̄i,

ni − 1

(ni + 1)s2
i

, ni − 1

)
, (2.28)

where the mean and variance are E [X ′
i] = x̄i, Var [X ′

i] = ni+1
ni−3

s2
i . The

updated statistics including τi new, yet unknown values X ′
i are n′i = ni + τi

independent of X ′
i, x̄′i = 1

ni+τi
(nix̄i +

∑τi X ′
i) and s2

i
′
= 1

ni+τi−1
[(ni − 1)s2

i +

nix̄
2
i +

∑τi X ′2
i − 1

ni+τi
(nix̄i +

∑τi X ′
i)

2]. Their expected values with respect

to the distribution of X ′
i are E X′

i
[x̄′i] = x̄i, E X′

i
[s2

i
′
] = ni−1

ni+τi−1
s2

i .

APCSi is a function of X ′
i. The idea of OCBA is to evaluate the system

that has the best PCSSlep after drawing X ′
i, so we choose the system that

maximizes EX′
i
[APCSi]. OCBA approximates EX′

i
[APCSi] = APCSi(E[X ′

i]).

A better approximation should be given by the second taylor polynomial (see

e.g. [Rinne 1997])

E X′
i
[APCSi] ≈ APCSi(E [X ′

i]) + Var [X ′
i]

∂2

∂X′2
i

APCSi(E [X ′
i])

Removing this approximation in OCBA should make the allocation more

stable in the early phase of the procedure, where estimation of the means

and especially the variances are still unstable.

2.7.2 Improving Stopping Rules for Bayesian Proce-

dures

The stopping criteria PGSSlep,δ∗ and EOCBonf are realizations of Brownian

motion processes with an exponentially decreasing drift.

Currently the procedures stop, if the observed value falls below a given

bound. Two problems may arise: 1) The rule is too conservative, i.e. the

current decision is correct, but the rule does not indicate to stop. 2) The

rule is too optimistic, i.e. the rule stops although the decision is wrong.

The Bayesian procedures with adaptive stopping rules have a curvature
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for low values of PBSiz,δ∗ and a strong dependence on n0 indicating that at

least problem 2 is relevant. A part of the runs stop too early and make errors

that cannot be corrected anymore. One improvement would be to add an

uncertainty estimator in the stopping rule, so that the procedure stops, if it

is certain that the PBSiz,δ∗ is below a given bound.

2.7.3 Nonnormal Distributions

The procedures presented up to now are based on the order precedence

relation X ≺ Y :<=> E(X) < E(Y ). They can be applied, if the ex-

pected values exist. From a practionist’s point of view, these procedures

might run into troubles, if the variances are very large or the distributions

are strongly skewed. If batching several replications does not lead to suf-

ficiently Gaussian distributed replications, there exist two statistical tests,

which help in the case of strongly nonnormal distributions: The ranked t-

test and Wilcoxon’s signed t-test. They are based on the precedence relation

X ≺ Y :<=> P (X < Y ) > P (X > Y ). The random variable which delivers

a lower value more often is preferred.

For symmetrical distributions this precedence relation is equivalent to the

expected value precedence relation. A decision maker will in general base his

decisions on the expected value3. But if the distribution of the simulation

outputs do not have a Gaussian-like distribution at all, one might be forced

to change to the order based precedence relation.

2.7.4 Non-Independent Simulations

Many simulations used in practice are steady-state simulations, where the

outputs are not independent, but dependent, i.e. the outputs of a simulation

are influenced by previous outputs.

Another source of non-independent simulations arises with the use of vari-

ance reduction techniques like antithetic random variables, Latin Hypercube

Sampling or Quasi Random Numbers.

3risk-averse decision makers will base their decision on the expected utility
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Kim and Nelson suggest to combine several outputs to a batch, and treat

the batched values as approximately independent. Ignoring the existence of

non-independent simulations leads to an underestimation of the variance and

therefore to too early stopping in statistical selection.

The use of common random numbers (CRN) between systems introduces

another desired cause of dependence. In general the procedures presented

work in the presence of CRN, but will be too conservative. The efficiency

might be improved by estimating the correlation and calculating PGSSlep,δ∗

with the formulas given in [Genz and Bretz 2002]. KN++ already allows for

CRN. The incorporation of variance reduction techniques is one promising

area for further research.
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Chapter 3

Integrating Statistical Ranking

into the Evolutionary

Framework

Evolutionary Algorithms (EA) are iterative and probabilistic search algo-

rithms that make use of Darwinian evolution to find good solutions to dif-

ficult optimization problems. In each iteration (“generation”) from a set

of solutions (“population”) some individuals are selected as parents (“selec-

tion” or “mating selection”). These parents are recombined by crossover and

mutated to produce new offspring (“reproduction”). The offspring replaces

some or all individuals from the old population to form a new population

(“replacement” or “environmental selection”). Better or “fitter” solutions

have either a higher probability of being selected as parents, or of surviving

to the new population, or both. In the search process, good characteris-

tics (building blocks) emerge in the population. The course of an EA with

it’s three phases (selection, reproduction, and replacement) can be seen in

Figure 3.1.

After each generation, some statistics of the new population are calcu-

lated, like best, mean and variance of the fitness values in the population

or the diversity of the population. The search stops if one of the statistics

fulfills a certain criterion, e.g. the diversity or fitness variance is low. Other
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t+1

t
Population

ParentsSelection

Offspring

Reproduction

Replacement

Figure 3.1: Schema of the evolutionary framework

stopping criteria are a maximal number of iterations, evaluations or time

overall or without improvement in the best solution’s fitness. When using

an EA interactively the algorithm can be stopped by the decision maker, as

soon as she is satisfied with the result. If the replacement operator ensures

that the best solution always survives, then the best solution from the last

solution is returned as “the solution”. If not, the best solution found so far

is saved externally and returned in the end.

An instance of an EA is determined by the choice of a selection operator,

recombination operators, a replacement operator, and eventually by a stop-

ping criterion. In the following, the number of individuals in the population

is denoted by p, the number of selected parents by m and the number of

offspring by o. In the EA literature normally µ and λ are chosen for the

population and offspring size. We changed the notation to prevent confu-

sion with mean and precision from the previous chapter. Some examples of

algorithms that fit into this scheme are given below.

Evolution Strategies A (p, m)-Evolution Strategy selects m parents from

the population of size p (with replacement) with equal probability, mutates

each parent to produce new offspring and then the p best offspring form a

new population. A (p + m)-Evolution Strategy selects the p best out of the
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offspring and the old population.

Generational EA Generational EA have a population of size p. To deter-

mine the parents, p tournaments of several individuals are made and the win-

ner of each tournament is selected. Two parents are combined by crossover

and mutation to form two new offspring. All p offspring replace the parent

generation. Often generational EA are combined with elitism, which means

that the replacement is modified such that the offspring replace all individ-

uals from the old population except the best.

Steady-State EA Steady-State EA have a population of size p, too, but

only two parents are selected per generation to form only one new offspring

by crossover and mutation. The new offspring replaces the worst individual

in the old population.

Island EA An Island EA consists of several independent populations. The

populations interchange individuals from time to time (migration). In non-

migrating generations, the islands behave similarly to independent EA. Dur-

ing migration, an additional selection occurs on each island to select the in-

dividuals to migrate to the other populations, where they replace the worst

individuals.

Simulated Annealing Even Simulated Annealing and Local Search are

covered by this framework: The population is of size one, therefore the se-

lection is trivial. The recombination operator produces an offspring in the

neighborhood of the parent and then replaces the parent if it’s fitness is

higher or in the case of Simulated Annealing replaces the parent even for

lower fitness, but with decreasing probability.

The algorithms given above are just some typical configurations. In

practice several further variants exist. An overview is given for example

in [Michalewicz and Fogel 1999].
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3.1 Related Work

Many real-world optimization problems are noisy, i.e. a solution’s quality

(and thus the fitness function) is a random variable. Examples include all

applications where the fitness is determined by a randomized computer simu-

lation, or where fitness is measured physically and prone to measuring error.

Already many years ago, researchers have argued that EA should be rela-

tively robust against noise ([Fitzpatrick and Grefenstette 1988]), and recently

a number of publications have appeared which support that claim at least

partially ([Miller and Goldberg 1996; Arnold and Beyer 2000a; Arnold and

Beyer 2000b; Arnold and Beyer 2003]). A recent survey on this topic is [Jin

and Branke 2005].

For most noisy optimization problems, the uncertainty in fitness evalu-

ation can be reduced by sampling an individual’s fitness several times and

using the average as estimate for the true mean fitness. Sampling n times

reduces a random variable’s standard deviation by a factor of
√

n, but on the

other hand increases the computation time by a factor of n. Thus, there is

a generally perceived trade-off: either one can use relatively exact estimates

but only evaluate a small number of individuals (because a single estimate

requires many evaluations), or one can let the algorithm work with relatively

crude fitness estimates, but allow for more evaluations (as each estimate

requires less effort).

The application of EA in noisy environments has been the focus of many

research papers. There are several papers looking at the trade-off between

population size and sample size to estimate an individual’s fitness, with some-

times conflicting results. [Fitzpatrick and Grefenstette 1988] conclude that

for the genetic algorithm studied, it is better to increase the population size

than to increase the sample size. On the other hand, [Beyer 1993] shows

that for a (1, o) evolution strategy on a simple sphere, one should increase

the sample size rather than o. [Hammel and Bäck 1994] confirm these results

and empirically show that it also doesn’t help to increase the parent popula-

tion size p. Finally, [Arnold and Beyer 2000a; Arnold and Beyer 2000b] show

analytically on the simple sphere that increasing the parent population size
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p is helpful in combination with intermediate multi-recombination. [Miller

1997] and [Miller and Goldberg 1996] have developed some simplified the-

oretical models which allow to simultaneously optimize the population size

and the sample size. A good overview of theoretical work on EA applied to

noisy optimization problems can be found in [Beyer 2000] or [Arnold 2002].

All papers mentioned so far assume that the sample size is fixed for all in-

dividuals. [Aizawa and Wah 1994] were probably the first to suggest that the

sample size could be adapted during the run, and suggested two adaptation

schemes: increasing the sample size with the generation number, and using

a higher sample size for individuals with higher estimated variance. [Albert

and Goldberg 2001] look at a slightly different problem, but also conclude

that the sample size should increase over the run. For (p, o) or (p + o) selec-

tion, [Stagge 1998] has suggested to base the sample size on an individual’s

probability to be among the p best (and thus should survive to the next gen-

eration). [Hedlund and Mollaghasemi 2001] use an indifference-zone selection

procedure to select the best p out of o individuals within a genetic algorithm.

For tournament selection, [Branke and Schmidt 2003; Branke and Schmidt

2004] and [Cantu-Paz 2004] use sequential sampling techniques to reduce the

number of samples to the minimum required to discriminate between indi-

viduals in a tournament. Adaptive sampling strategies have been examined

for situations where the noise strength varies over space ([Di Pietro, While,

and Barone 2004]). [Boesel 1999] argues that for linear ranking selection,

it is sufficient to group individuals of similar quality into one rank, and a

corresponding mechanism is proposed.

To “clean up” after optimization (to identify the best, with high proba-

bility, of all visited solutions), [Boesel, Nelson, and Kim 2003b] use a ranking

and selection procedure after the EA is finished. Recently, [Buchholz and

Thümmler 2005] used a statistical selection technique for selection in a p + o

strategy as well as to maintain a pool of promising candidates throughout

the run from which at the end the final solution is selected.

None of the above works provide the general framework and tight inte-

gration of selection algorithms and EA that is suggested here.

A comprehensive overview and extensive comparison of different selection
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procedures was given in Chapter 2, which concludes that OCBA together

with an appropriate stopping rule is among the best performing statistical

selection procedures. Our approach for adapting EA on noisy problems is

based on OCBA.

3.2 A Statistical Ranking Procedure

In general, the reproduction operators are independent of an individual’s fit-

ness1. So, by noise, only selection and replacement operators are affected.

Generally rank based selection and replacement operators are considered to

perform better than fitness proportional ones (see [Whitley 1989]). If we

define a correct functioning of the EA as making the same selection and

replacement decisions as in the deterministic case, only the ranks of individ-

uals in the union of the set of offspring and the set of individuals in the old

population need to be determined (in this context the sets can have dupli-

cates, so they are not sets in the mathematical sense, but families). In the

deterministic case, the ordering of all individuals can be given easily after

the evaluation of each individual. In the stochastic case, the ordering can

only be given with a certain degree of certainty. Note that after reproduction

the p individuals from the old population have already been evaluated sev-

eral times, whereas the o offspring are not yet evaluated. The procedures in

Chapter 2 can be used repeatedly to obtain the p+o ranks of each individual

one by one, but this might be very expensive in terms of samples. Not all

procedures can benefit from preevaluated systems.

In this section we derive a procedure for the complete ranking of a set

of individuals. Let the size of this set be k. Analogously to the probability

of correct or good selection (PCS, PGS) and the expected opportunity cost

(EOC), let the probability of correct or good ranking (PCR, PGR) and the

1Exceptions are memetic algorithms, which add hillclimbing after recombination and
mutation and some kinds of evolution strategies, where the mutation itself is biased towards
promising areas of the search space and not only selection and/or replacement. For the
latter case, often the estimates for the fitness values from the selection phase suffice. The
evaluations needed for the hillclimbing in the first case will not be integrated into the
mechanism presented.
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expected opportunity cost of a ranking (EOCR) for the frequentist perspec-

tive (IZ), given the configuration χ = (µ, σ2) be defined as

PCRiz
def
= Pr

(
k∧

i=1

µ(i) = µ[i] |χ

)

PGRiz,δ∗
def
= Pr

(
k∧

i=1

µ(i) ≥ µ[i] − δ∗ |χ

)

EOCRank
iz

def
=

k∑
i=1

E
[
µ[i] − µ(i) |χ

]
(3.1)

and the Bayesian perspective, given the data seen so far E , respectively

PCRBayes
def
= Pr

(
k∧

i=1

M(i) ≥M<i;k> | E

)

PGRBayes
def
= Pr

(
k∧

i=1

M(i) + δ∗ ≥M<i;k> | E

)

EOCRank
Bayes

def
=

k∑
i=1

E
[
M<i;k> −M(i) | E

]
, (3.2)

where M<i;k> denotes the i-th order statistic2, (i) the order based on the

observed means x̄i and [i] the order based on true means µi. The OCBA

procedures can easily be adopted for the ranking problem, given the approx-

imations to the Bayesian measures above and the stochastic dominance of

maxj<i M(j) �M<i;k>
3,

2The i-th order statistic is the distribution of the i-th best value out of the observations
of k random variables ([Rinne 1997]).

3maxj<i M(j) is just one combination out of all possible combinations for the i-th order
statistic, so Pr(maxj<i M(j) ≤ x) < Pr(M<i;k> ≤ x)∀x
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PGRBayes ≥
k∏

i=1

∏
j<i

Pr
(
M(i) + δ∗ > M(j) | E

)
(3.3)

≈
k∏

i=1

∏
j<i

Φν(i)(j)
(λ

1/2
ij (δ∗ + d(i)(j))) = PGRSlep,δ∗

EOCRank
Bayes ≤

k∑
i=1

∑
j<i

E
[
M(j) −M(i) |M(j) > M(i)

]
(3.4)

≈
k∑

i=1

∑
j<i

λ
−1/2
ij Ψν(i)(j)

[
d∗ij
]

= EOCRank
Bonf .

We denote the OCBA procedure based on PGRSlep,δ∗-allocationOCBARank
δ∗

and on EOCRank
Bonf -allocation OCBARank

LL . PICR and PBR denote the proba-

bilities for incorrect and bad rankings analogously to the definitions in Chap-

ter 2. PGRSlep,δ∗ and EOCRank
Bonf can be used as stopping rules, too. Further-

more, OCBA can benefit from preevaluated individuals, which we do have

from the old population as noted above.

Figure 3.2 shows that efficiency and target for the ranking variant of

OCBA are worse than OCBA for the selection problem – which was expected,

because the problem of finding a correct ranking includes the problem of find-

ing the best solution as a subproblem. Nevertheless, OCBARank
δ∗ (PGRSlep,δ∗)

and OCBARank
LL (EOCRank

Bonf ) allow to determine a correct ranking with higher

efficiency than equal allocation and allow to adapt the number of samples

for a given error probability.

Actually an EA does not need a complete ranking for the correct func-

tioning. It suffices, if only a certain set of comparisons are correct, indepen-

dently whether all ranks are correct. Denote this set of comparisons by C.
Which comparisons are needed depends on the chosen selection and replace-

ment operators of the EA. A comparison is given by the tuple 〈i, j〉, where

∀〈i, j〉 ∈ C : i, j ∈ {1, . . . , k} ∧ i 6= j. If the observed rank of individual i

is higher/lower than that of individual j and i is truly better/worse than j,

then the comparison 〈i, j〉 is correct.
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Figure 3.2: Efficiency and target forOCBARank
δ∗ , OCBA and Equal allocation

for 10 systems, equally spaced (δ = 0.5) and equal variance.

In the following sections, we give the necessary comparisons that need to

be added to C for some popular replacement and selection operators.

3.3 Replacement Operators

The replacement step determines, which p individuals out of the k = p + o

individuals from the old population and the offspring make it into the new

population. Each individual can be at most once in the new population P4.

The individuals in the old population are numbered P ′ = {1, . . . , p} and the

offspring O = {p + 1, . . . , k}. The new population is a true subset P ⊂
{1, . . . , k}. The order (.) over all individuals is defined by x̄(1) ≤ . . . ≤ x̄(k),

(.)O over all offspring and (.)P over all individuals in the new population.

The ranks (.)−1 are defined as the inversion of the order ((r)−1 = r). The

orders (i)O and (i)P can be determined from the overall order (.) by finding

the i-th individual having (j) ∈ O or (j) ∈ P for j = 1, . . . , k.

3.3.1 Comma- and Plus-Replacement

In (p, o)- and (p + o)-replacement simply the p best individuals out of the o

offspring or out of the p+o individuals from the old population and offspring

are selected. Typically comma- and plus-evolution strategies make use of

4Nevertheless we allow for individuals with identical genes in the population
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this replacement operator, but steady-state EA use (p + 1)-replacement and

local or tabu search use (1 + 1)-replacement, too.

The set operations for (p, o)-replacement with o > p ≥ 1 are

C ← C ∪
o⋃

i=o−p+1

{〈(i)O, (1)O〉, . . . , 〈(i)O, (o− p)O〉}

P = {(o− p + 1)O, . . . , (o)O} ,

for (p + o)-replacement with p, o ≥ 1

C ← C ∪
p+o⋃

i=o+1

{〈(i), (1)〉, . . . , 〈(i), (o)〉}

P = {(o + 1), . . . , (p + o)} ,

and are visualized in a Table 3.1.

Indivi- Individual j
dual i (1). . . (o− p)O. . . (p)O
(1)O

...
(o−p+1)O × · · · ×

...
...

. . .
...

(p)O × · · · ×

Indivi- Individual j
dual i (1). . . (o). . . (o + p)

(1)
...

(o + 1) × · · · ×
...

...
. . .

...
(o + p) × · · · ×

Table 3.1: Comparisons for comma- (left) and plus-replacement (right). A
“×” means that the comparison between individuals i and j is needed, 〈i, j〉 ∈
C. Note that for comma-replacement the comparisons are only among the
offspring, while for plus-replacement for the old population and the offspring.

Plus-replacement ensures that the best solution found so far always sur-

vives to the next iteration, while comma-replacement will replace it’s best

solution every iteration.

3.3.2 Complete Replacement and Elitism

Generational-EA replace the old population completely by the p offspring

produced, whereas generational-EA with elitism only produce p−1 offspring
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and replace all but the best in the old population. Without elitism, the best

solution found so far might get lost and thus the generational-EA is mostly

combined with elitism.

For complete replacement no comparisons are needed, therefore C is not

modified at all and the new population is the set of the p offspring

P = {p + 1, . . . , 2p} .

Generational-EA with elitism add comparisons between the best and all

others in the new population. We determine the elite individual (p)P for

the next iteration in the current iteration, so we can benefit from other

comparisons needed in the current iteration due to selection. The number of

offspring generated is p− 1 and the elitist individual is (p)P ′ .

P = {(p)P ′ , p + 1, . . . , 2p− 1}

C ← C ∪
p−1⋃
i=1

{〈(p)P , (i)P〉}

3.4 Selection Operators

The selection step determines which m individuals from the new population

P are selected as parents. The set of parents is denoted M and, as each

individual may be selected several times, can have duplicates.

For the selection operator of an EA several implementations exist. The

rank-based determine a probability pr for the selection of an individual with

rank r. This rank is defined with respect to the new population with size

p. As not all replacement operators select the top p individuals out of the

o offspring and p individuals in the old population, the rank used for de-

termination of individual i’s selection probability does not necessarily equal

(i)−1. Instead we denote the new ranks related to the new population by

(i)−1
P . Only comparing individuals i and j is not affected by the new ranks,

as (i)−1
P > (j)−1

P follows directly from (i)−1 > (j)−1. So, only selection oper-

ators that explicitly rely on the rank are affected.
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The expected number of times an individual i is selected can be calculated

by multiplying p(i)−1
P

with the number of overall selections per generation

m. In general, selections are independent of each other, so the number of

selections follow a multinomial distribution.

3.4.1 Random Selection

Each individual has the same probability of being selected. This operator

is normally used in Evolution Strategies. The optimization pressure is only

introduced by the replacement operator. The individuals do not have to be

evaluated for random selection, but can be just randomly selected from the

population P independently of the fitness.

pi = 1
p

Random selection therefore does not add any comparisons to C, and M is

the result of m random samples from P . Denote a random sample of P by

πj then

M = {π1, . . . , πm}.

To apply stochastic universal sampling, each individual in P is selected

bm/pc-times and the remaining m−pbm/pc parents are determined by choos-

ing randomly from P without replacement, i.e. without duplicates.

3.4.2 Tournament Selection

Tournament selection (TS, see [Goldberg, Korb, and Deb 1989]) chooses two

individuals randomly from the population P and selects the better of the

two as parent. This selection operator is mostly used with generational- and

steady-state-EA. For generational-EA m parents are selected by m tourna-

ment selections and only two tournaments are performed to select two parents

for steady-state-EA.

A variant of tournament selection is t-tournament selection, where the

parent is determined as the best out of t instead of two randomly chosen

individuals. The t individuals are chosen from P without replacement, so that
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an individual cannot participate in a tournament with itself. The selection

probability of individual i ∈ P with rank r is

pr =

{
r ≥ t : (r−1)!(p−t)!

(r−t)!p!
t

r < t : 0
.

Denote the chosen t tournament participants of tournament j by π1
j , . . . , π

t
j

and by π
(i)
j the ordered tournament participants, where x̄

π
(1)
j

< . . . < x̄
π

(t)
j

.

Then the set of comparisons is extended as follows and the selected parents

are

C ← C ∪
m⋃

j=1

{〈
π

(t)
j , π

(1)
j

〉
, . . . ,

〈
π

(t)
j , π

(t−1)
j

〉}
M = {π(t)

1 , . . . , π(t)
m }

An example of the comparisons for tournament selection is given in Ta-

ble 3.2.

Indivi- Individual j
dual i (1)P (2)P (3)P (4)P (5)P (6)P (7)P (8)P (9)P (10)P
(1)P
(2)P
(3)P
(4)P
(5)P
(6)P
(7)P × × × ×
(8)P × × × × ×
(9)P × ×
(10)P × × × × ×

Table 3.2: Comparisons for 10 randomly chosen 3-tournaments ({1, 6, 10},
{3, 6, 7}, {3, 7, 9}, {2, 7, 8}, {3, 6, 7}, {5, 7, 10}, {2, 5, 7}, {3, 6, 10}, {3, 7, 8},
{4, 6, 8}), assuming (i)P = i ∈ P . The set of parents is M =
{7, 7, 7, 8, 8, 8, 9, 10, 10, 10}.

Local selection is a selection operator where the best individual from a

neighborhood of size t is selected. For the statistical ranking procedure, this
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is just a special form of t-tournament selection, where the tournament par-

ticipants are not chosen randomly, but the individuals in the neighborhood.

3.4.3 Stochastic Tournament Selection

Stochastic tournament selection (STS, [Goldberg and Deb 1991]) is a rather

simple selection scheme where two individuals are randomly chosen from the

population, and then the better is selected with probability (1 − γ), γ ∈
[0, 0.5]. If the p individuals in the population are sorted from rank r =

1 (worst) to rank r = p (best), the expected probability pr to select an

individual with rank r can be calculated as

pr = 2
p

(
1− γ − (1− 2γ) p−r

p−1

)
.

This corresponds to a linearly increasing selection probability depending

on an individual’s rank r, with the slope of the line being determined by the

selection probability (1− γ) (cf. Figure 3.3).
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Figure 3.3: Expected number of selections E [Sr] of an individual with rank r
for p = 100 individuals and p tournament selections; STS for γ ∈ {0, 0.1, 0.2}
(left) and TS for t ∈ {2, 3, 5} (right).

In this respect, STS is equivalent to linear ranking selection. But while

ranking selection is based on a full ordering of the individuals, STS only

requires pairwise comparisons and is easier to implement. For each stochas-

tic tournament i the comparison between two randomly chosen tournament
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participants π1
i and π2

i is needed. The participant with the higher rank, indi-

vidual π
(2)
i is selected with probability 1−γ and π

(1)
i with probability γ. The

same behavior can be achieved by selecting one of the participants randomly

with probability 2γ and the better of the two with probability 1− 2γ. So for

STS the following comparison is required only with probability 1− 2γ.

C ← C
m⋃

i=1

{(π(2)
i , π

(1)
i )}

In Chapter 4 a method is given that increases the accuracy of STS in a

stochastic environment by using the noise in the evaluation to replace par-

tially the randomization introduced by selecting the better only with proba-

bility 1− γ.

3.4.4 Linear Ranking

Linear ranking selects individual r with linearly increasing probability in r

pr = 1
p

(
2− t + 2(t− 1)

r − 1

p− 1

)
,

with t ∈ [1, 2].

To calculate the selection probabilities explicitly, a complete ranking is

needed, but stochastic tournament selection (see Section 3.4.3) with γ =

0.5(2− t) implements the same selection probabilities without the need of a

complete ranking.

3.4.5 Exponential Ranking

For exponential ranking the selection pressure is higher than for linear rank-

ing. The selection probabilities are exponentially decreasing in the rank r

pr = 1
Z
cp−r

with c ∈ (0, 1) and Z = 1−cp

1−c
.

To exactly match the desired selection probabilities, the complete ranking
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needs to be determined. If an approximation to the selection probabilities

is acceptable, then exponential ranking can be replaced by t-tournament

selection with t =
⌊
p 1−c

1−cp

⌋
, which only needs t− 1 comparisons per selection.

3.4.6 Further Selection Operators

Truncation selection selects the m parents randomly (with replacement)

among the t best individuals from the population. Finding the t best in-

dividuals needs the following comparisons

C ← C
p⋃

i=p−t+1

{〈(i)P , (1)P〉, . . . , 〈(i)P , (t)P〉} .

Selection operators that need an explicit ordering of all individuals in a

population are very expensive, in terms of evaluations and should therefore

be avoided. Nevertheless the comparisons are given

C ← C
p⋃

i=1

{〈(i)P , (1)P〉, . . . , 〈(i)P , (i− 1)P〉}

3.4.7 Stochastic Universal Sampling

One of the drawbacks of tournament selection is its possibly high sampling

error: the actual number of times an individual is selected may differ signif-

icantly from the expected number of times. For example, if one would like

to select m parents, and the probability to select an individual r is pr, then

the expected number of times that individual is chosen is E [Sr] = m · pr,

but the actual number sr can be anywhere between 0 and m for tournament

selection (TS).

Such a sampling error is undesired and is often also called genetic drift.

The sampling error can be minimized by selecting the parents not indepen-

dently, but instead using a method called Stochastic Universal Sampling

(SUS, [Baker 1987]). If pr is the probability for selecting individual with

rank r, then SUS ensures that the actual number of selections sr is within

[bm · prc, dm · pre].
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The effect can be seen in Figure 3.4, which shows the standard deviation

of the number of times an individual is selected depending on its rank in

a population of 100 individuals. As can be seen, the standard deviation is

much lower for SUS than for the standard random TS.

However, the standard deviation for t-TS can be reduced as well by mak-

ing sure that every individual participates in exactly t tournaments, i.e. the

individuals for the tournaments are no longer chosen independently, but are

generated by latin rectangles (see [Byers 1991]). Hence this selection scheme

is denoted latin TS. Latin STS is implemented by a latin 2-TS, where the

first participant is chosen with probability 2γ and the better of the two with

probability 1− 2γ.

Latin TS and STS have exactly the same expected behavior as the stan-

dard random schemes, but reduce the selection variance significantly, in par-

ticular for the better individuals (see Figure 3.4). For worse individuals, the

standard deviation of all three sampling schemes is almost equally. For 2-TS,

latin TS and SUS are identically (see dotted line in left figure: the crosses of

latin TS are inside the boxes of SUS), but for higher (right figure) or lower

selection pressure (γ = 0.1, left figure) latin TS is not able to reduce the

standarddeviation into the deep valleys of SUS except for the highest rank.

Nevertheless, the standarddeviation for latin TS is clearly below random TS

and almost equal to SUS.

In the above sections, it was shown that the selection probabilities of

most rank-based selection schemes can be achieved by tournament selection.

The use of latin tournament selection allows to reduce the sampling variance

similarly to SUS without the need for further comparisons.

3.5 A Statistical Ranking Procedure for Evo-

lutionary Algorithms

One of OCBA’s advantages is its flexibility. It can be easily adapted to not

only select the best out of a given set of individuals or determine a complete

ranking, but for arbitrary quality measures. To integrate it into an EA,
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Figure 3.4: Standard deviation of number of selections Sr for different sam-
pling schemes for p = 100 individuals and p tournament selections; STS with
γ ∈ {0, 0.1} (left) and t-TS with t ∈ {3, 5} (right).

we want to make sure that the EA operates “correctly”, meaning that the

order relations required by the EA’s selection and replacement operators have

been determined correctly with a sufficiently high confidence. The previous

sections explained how to determine the required set of comparisons C. As

a quality criterion, we define the probability of good generation (PGGBayes)

as probability that all pairwise comparisons in C are correct. The following

equation approximates the probability that for all pairs in C, the individual

with the higher observed rank also has a higher true mean value. It assumes

rank i > rank j for all 〈i, j〉 ∈ C. If rank j > rank i, simply replace 〈i, j〉 by

〈j, i〉 in C before calculation.

PGGiz,δ∗
def
= Pr

 ∧
〈i,j〉∈C

µi ≥ µj − δ∗ |χ


EOCGen

iz
def
=

∑
〈i,j〉∈C

E [µj − µi |µj > µi, χ] (3.5)

PGGBayes
def
= Pr

 ∧
〈i,j〉∈C

Mi ≥Mj − δ∗ | E


EOCGen

Bayes
def
=

∑
〈i,j〉∈C

E [Mj −Mi |Mj > Mi, E ] . (3.6)
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Note that the definitions of EOCGen slightly differ from EOC and EOCRank.

They are based on the sum of the pairwise losses and not the rank wise losses.

As for OCBARank
δ∗ and OCBARank

LL , the Bayesian measures can be ap-

proximated by Slepian and Bonferroni bounds and we obtain criteria for the

OCBAEA
δ∗ and OCBAEA

LL variants of OCBA for the ranking needed for EA.

PGGBayes ≥
∏

〈i,j〉∈C

Pr (Mi + δ∗ > Mj | E)

≈
∏

〈i,j〉∈C

Φνij
(λ

1/2
ij (δ∗ + dij)) = PGGSlep,δ∗

EOCGen
Bayes ≤

∑
〈i,j〉∈C

E [Mj −Mi |Mj > Mi]

≈
∑
〈i,j〉∈C

λ
−1/2
ij Ψνij

[
d∗ij
]

= EOCGen
Bonf. (3.7)

The procedures are outlined below.

Procedures OCBAEA
δ∗ (α?) and OCBAEA

LL (β?)

1. Make an initial number of evaluations n0 of each individual without

evaluations so far. Estimate the ranks by ordering the individuals based

on the observed mean values.

2. Determine C: initialize C ← ∅ and add comparisons from the operators

as given in Sections 3.3–3.4.

3. WHILE the observed results are not sufficiently sure, i.e. PBGSlep,δ∗ >

α? or EOCGen
Bonf > β?, DO

(a) Allocate new evaluations to the individuals with the OCBA-allo-

cation rule. Individuals leaving the current population P due to

new observations are replaced by the entering individuals. This

way comparisons based on position in P (like tournament selec-

tion) others than the one directly affected are not changed.
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(b) If ranks have changed from the previous iteration of the ranking

procedure, update C: initialize C ← ∅ and add comparisons from

the operators as given in Sections 3.3–3.4.

OCBAEA
δ∗ is called in every iteration of the EA after the offspring has been

generated and before replacement. Then, the EA proceeds simply using the

ordering given by the sample means.

The number of samples taken by OCBAEA
δ∗ depends on the problem con-

figuration and the settings of α∗ and δ∗. It may be useful to vary α∗ over

time, as higher accuracy may be needed towards the early and late phases of

the algorithm (cf. [Branke 2001]).

3.6 Empirical Evaluation

We empirically compare different sampling mechanisms based on their ability

to minimize “incorrect iterations” of the EA. The proposed integration of

ranking and selection with EA needs a more exhaustive evaluation in future

work.

We stochastically generated k = 10 individuals with means distributed

according to the negative of an exponential distribution with mean 1 and vari-

ances distributed according to an inverted gamma distribution with α = 100

and β = 99 (Figure 3.5). This corresponds to the RPI2 configuration in

Chapter 2. Such a distribution with more good than bad individuals seems

common in an EA run, at least towards the end of the run, when the al-

gorithm produces many solutions close to the optimum, and a few outliers.

To achieve statistically significant results we averaged over 100,000 such ran-

domly sampled populations. This is the same number of macroreplications

like in 2.

We compare the frequentist probability of a good generation PGGiz,δ∗

depending on the expected number of evaluations used by different proce-

dures. To calculate PGGiz,δ∗ , we run the sampling mechanism and look at

the resulting order according to sample means. If all decisions required by

the scenario (i.e., those defined by C) have been identified correctly taking
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Figure 3.5: Empirical distribution of means (left) and variances (right) for
the empirical tests.

into account the indifference zone, the run is counted as successful. Other-

wise, it is not successful. PGGiz,δ∗ is the percentage of correct runs. The

parameters α∗ and δ∗ not only are determinants of PGGiz,δ∗ , but also of the

expected total number of samples, E[N ], for a given numerical experiment.

The sampling mechanisms considered are:

1. A standard allocation scheme which samples all individuals equally

often. This is denoted by Equal.

2. OCBAEA
δ∗ for a steady-state EA with population size µ = 9 and one

offspring generated

3. OCBAEA
δ∗ for an evolution strategy with (5, 10) replacement.

4. OCBAδ∗ to select the best of the 10 individuals.

5. OCBAδ∗ to give a complete ranking of the 10 individuals.

For all tests, an indifference zone of δ∗ = 0.2 is used, i.e. the ordering of a

pair of individuals is accepted as correct if the higher ranked individual is not

more than 0.2 worse than the lower ranked individual. We use the stopping

rule PGGSlep,δ∗ > 1− α∗, where α∗ is varied to generate lines in Figure 3.6.

A complete ranking of the individuals is the most challenging task and

requires the highest number of samples to reduce the error 1 − PGGiz,δ∗ .

The curves for steady-state EA and (5,10) ES are significantly below the
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Figure 3.6: Efficiency (left) and target (right) of different sampling mecha-
nisms (expected number of samples required, E[N ] and stopping parameter
α∗, to reach a certain level of PGGiz,δ∗).

curve for the complete ranking, which shows that an EA indeed requires

only partial information, and that a lot of samples can be saved by generating

only the required information. Interestingly, the steady-state EA operation

even requires less samples than identifying only the best individual (OCBA0.2

Select). This is due to the fact that we generate the means according to a

negative exponential distribution, i.e. there are several good but few bad

individuals, and thus it is relatively easier to identify the worst individual

and the better of two random pairs for the steady-state EA than it is to

identify the best individual.

Figure 3.7 compares our new OCBA-based EA with standard EAs using

the same number of samples for each individual. The OCBA-based sampling

allocation schemes are much more efficient than the corresponding Equal

allocation variants, which shows that integrating a statistical ranking and

selection procedure is beneficial.

For example, to reduce the probability of an erroneous generation, 1 −
PGGiz,δ∗ , to 0.02, the standard (5, 10)-ES would require an average of 1160

evaluations per generation. Our OCBA-based ES achieves the same accuracy

with 385 evaluations per generation. For the steady-state EA, the differences

are even larger: the standard steady-state EA would require an average of

845 evaluations per generation. while our OCBA-based EA only requires

240 evaluations. That is, our method saves 67-71% of the samples, and the
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benefit of our newly proposed methods increases with an increasing desired

PGGiz,δ∗ .

The controllability, i.e. the ability to achieve a given level of PGGiz,δ∗

is very high, whereas the target cannot be guaranteed. This holds for all

procedures with respect to the chosen configuration.

While this only looks at a single example of an artificially generated

iteration, it is to be expected that the benefit of our proposed method will be

even larger for larger populations (because the required information becomes

an even smaller portion of the information required for a full ranking) and

in an iterative EA setting (because OCBA will be able to re-use the samples

of surviving individuals, and those are the individuals that were allocated

relatively many samples).

To improve efficiency, prior information about the distribution of means

and variances can be acquired from the previous iteration and integrated into

the estimation as shown in Section 2.4.

3.7 Setting the Error Probability

With the procedures derived in the previous section an efficient and control-

lable procedure is available for use in EA. The open question is how to set
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the indifference zone δ∗ and the error probability α? or the loss β?. This

setting depends on the use of the EA in the stochastic environment.

1. Generator

The EA is used as generator for solutions, where every solution visited

is stored in a database and the best solution is determined after the

“optimization” process via selection of the best out of the database.

The selection step might be challenging, as a large number of alter-

natives need to be compared. The advantage of this approach is the

guarantee, that the best out of the visited solutions is returned. The

disadvantage is that during the search only uncertain information on

the current best solution can be given. The ranking procedure only

needs to ensure that the optimization does not turn into a random

search. This approach was chosen by [Boesel 1999] and is not further

investigated in this thesis.

2. Optimizer

The EA is used analogously to the use in a deterministic environment,

where the decision maker expects the best solution in the latest popu-

lation of a run. If the replacement operator ensures that the best (or

perceived best) solution survives to the next generation with a high

probability, then the returned solution can be determined from the lat-

est population without spending much effort to find the solution from

a large database of potential solutions, but instead from a small popu-

lation.

EA that can be used for the second purpose are generational EA with

elitism, steady-state EA and Plus-ES. The latter two replace the worst in-

dividual(s), so if the probability for correct generation is PGGiz,δ∗ , then the

probability denoted by PGSiz,δ∗ that the best individual survives to the next

generation is significantly larger than PGGiz,δ∗ .

Note that the probability for the best individual to survive t generations

is larger than (PGSiz,δ∗)
t, because the PGSiz,δ∗ of successive generations are

positively correlated.
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Figure 3.8: Typical convergence curve of an EA depending on number of
iterations t.

If the EA is used interactively, it might be necessary to keep the decision

maker informed on the currently best solution. Therefore in each generation

– or at least for a given interval – the overall best solution found needs to

be available (online). This can be easily integrated into OCBAEA
δ∗ , but will

modify the behavior of the EA, as samples are used for information that

is not needed within the EA. For non-interactive EA the choice of the best

solution in the last population might be delayed for after the optimization

(offline).

In general the optimal choice of α?, δ∗ and β? not only depends on the

problem, but also on the parameters of the EA like population size, selection

pressure, mutation rate and others. Even worse, the optimal setting may

vary over the run of an EA.

In the following we derive theoretical conditions for the optimal setting

of α? or β? by making assumptions on the trade-off between the benefit of

additional accuracy and the price of achieving additional accuracy.

Generally EA converge exponentially fast to the optimum (see Figure 3.8).

The speed of the convergence d = − ∂
∂t

log(ft−f ?) depends on the parameter

settings. Assume that the convergence speed is locally constant. The con-

vergence speed, when applied to a certain deterministic problem is denoted

d0. In a stochastic environment, d0 could only be achieved for an error prob-
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ability α = 0, which demands an infinite number of samples n. A higher

error probability will result in less selection pressure and therefore the con-

vergence speed is reduced. In the extreme case, if no samples are taken at all,

the EA has no information which individuals are better and degrades to a

random walk without any improvement (d1 = 0). The convergence speed dα

for the error probability α is therefore in the range [d1, d0] (see Figure 3.9).

Reasonably, the convergence should increase monotonically with decreasing

α. Assume the convergence increases polynomially with exponent q (see

Figure 3.10).

dα = d0(1− α)q (3.8)

With these assumptions, we can give a functional relation between the

error probability α in each iteration and the quantitative benefit of additional

accuracy for t iterations: ∆t = ft0−ft0+t = (ft0−f ?)(1−e−dαt). In Figure 3.7

the error probability decreases exponentially in the number of samples per

generation n. If no samples are used (n = 0), we assume the error probability

α = 1, so the functional relation is approximately n = −c log α, where c

determines the efficiency.

Given a budget of N samples available for optimization, the question

arises, how many samples should be spend for the accuracy of a single itera-
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tion and how many iterations should be performed. The more iterations the

EA runs, the better the result and the more accuracy per iteration, the higher

the convergence per iteration. But more accuracy per iteration involves more

samples per iteration and therefore budget for less iterations overall.

Taking no samples per iteration allows for an infinite number of iterations,

but results in no improvement per iteration and therefore no improvement

overall. Using the budget of N samples in one iteration would maximize

the improvement in this iteration, but would only allow for one iteration,

again resulting in (almost) no improvement. So there is a trade-off between

the number of samples per generation and the total number of iterations.

Assuming that the number of samples per iteration n is approximately con-

stant, the number of iterations is T = N/n. Inserting this together with the

relation for samples and error probability into the relation for accuracy gives

∆T (α) = (ft0 − f ?)

(
1− e

−d0(1−α)q N
−c log α

)
= (ft0 − f ?)

(
1− e

d0N
c

(1−α)q

log α

)
(3.9)

for a total budget of N samples for the optimization. Maximizing ∆T is

equivalent to minimizing (1−α)q

log α
. It is independent of the deviation between

best and current solution ft0 − f ?, the budget N , the maximal convergence

speed d0 and the efficiency of the ranking procedure c. The function has its

unique minimum for q = 1−α
−α log α

> 0. Figure 3.11 shows ∆T (α)

To choose the error probability α per iteration optimally, the ranking

procedure needs to sample until the error probability α holds 1−α
−α log α

< q.

Note that α decreases with additional samples.

However in practice, the convergence exponent q is unknown and depends

on the current population. Further research is needed to get a deeper un-

derstanding of the relationship between error probability and convergence

speed.
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3.8 Conclusion

Optimization in noisy environments is challenging, because the noise makes

it difficult to decide which of two solutions is better, which is a prerequisite

for every optimization algorithm. While noise can usually be reduced by

averaging over multiple samples, this is a costly process. In this chapter, we

have proposed a new adaptive sample allocation mechanism that attempts

to minimize the number of samples required to warrant a proper functioning

of an EA. The approach is based on two ideas:

1. Restriction of the focus on those pairwise comparisons that are actually

used by the EA. As the empirical results have shown, these comparisons

may require less samples than even only identifying the best individual.

2. The use of OCBA, a sample allocation procedure from statistical rank-

ing and selection. This allowed to distribute the additional evaluations

to those individuals where they promise the highest benefit, and to stop

sampling when there is sufficient evidence for correct selection.

3.9 Future Work

A comprehensive study on the effects of population size, selection pressure

and accuracy has to be done for different problems. The current approach
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only allows for the imitation of existing methods with higher efficiency. Im-

itating the behavior of an EA in a deterministic environment results in ex-

cessive sampling for typical parameters. Using a fixed sample size scheme

as often used in stochastic environments has proven to be suboptimal in

Chapter 2.

An approach for choosing a near-optimal error probability is to maximize

the improvement per sample ∆1/n. The improvement per iteration ∆1 can

be estimated by comparing the mean fitness of the old population P ′, with

the mean fitness of the new parentsM. As long as the ratio of estimated im-

provement and samples does not decrease significantly, the ranking procedure

keeps on sampling.

Weighted comparisons, such that the geometric mean over all comparisons

holds the target, allows the integration of a higher probability for the best to

survive or for more important comparisons. The identification of these will

be both promising and challenging.

One further area of future research can be the adaptation of OCBAEA
δ∗ for

multiple objectives, allowing to optimize problems with multiple performance

criteria in stochastic environments.
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Chapter 4

Using Noise

For noisy optimization problems, there is generally a trade-off between the

effort spent to reduce the noise (in order to allow the optimization algorithm

to run properly), and the number of solutions evaluated during optimiza-

tion. However, for stochastic search algorithms like evolutionary optimiza-

tion, noise is not always bad. On the contrary, in many cases, noise has an

effect very similar to the randomness which is purposefully and deliberately

introduced e.g. during selection. At the example of stochastic tournament

selection, we show that the noise inherent in the optimization problem can

be used to partially replace the randomness in selection, thereby reducing

the required sampling effort by approximately 50% for typical parameter

settings.

4.1 Introduction

Generally, noise is considered harmful, as it may mislead the optimization

algorithm. However, noise is not always bad. EA are randomized search

algorithms, and most of them use deliberately randomness to purposefully

introduce errors into the selection process, primarily in order to get out of

local optima.

Therefore, in this chapter we argue that it should be possible to accept the

noise inherent in the optimization problem and to use it to (at least partially)
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replace the randomness in the optimization algorithm. We propose noise-

adjusted tournament selection (NATS) where the probability of accepting

the better individual is tuned to reflect the uncertainty in evaluation. As

a result, it is possible to dramatically reduce the effect of noise without

requiring an excessive number of samples.

Experiments on a simple sphere indicate that the effort in terms of sam-

ples for achieving a high selection pressure is not worth the gain in addi-

tional solution improvement per generation. It seems that at least for some

parameter settings, the best results are obtained with relatively low selection

pressure like obtained e.g. with stochastic tournament selection.

4.1.1 Stochastic Tournament Selection

Stochastic tournament selection (STS) has been described in detail in Sec-

tion 3.4.3. Selecting the better of two individuals with probability (1 − γ)

in a noisy environment can be achieved in two fundamental ways: The stan-

dard way would be to eliminate the noise as much as possible by using a

large number of samples, and then selecting the better individual with prob-

ability (1 − γ). The noise-adjusted tournament selection proposed here has

a different philosophy: instead of eliminating the noise and then artificially

introducing randomness, we propose to accept a higher level of noise, and

only add a little bit of randomness to obtain the desired behavior.

4.1.2 Basic Notations

Let us denote the two individuals to be compared as i and j. If the fitness is

noisy, we assume that the fitness of individual i resp. j is a random variable

Xi resp. Xj with Xi ∼ N (µi, σ
2
i ) resp. Xj ∼ N (µj, σ

2
j ). However, µi and

µj are unknown, we can only estimate them by sampling each individual’s

fitness a number of ni resp. nj times and using the averages x̄i and x̄j as

estimators for the fitnesses, and the sample variances s2
i and s2

j as estimators

for the true variances.

If the actual fitness difference between the two individuals is denoted

as δ = µi − µj, the observed fitness difference is again a random variable
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D = x̄i − x̄j ∼ N (δ, σ2
d). The variance of D depends on the number of

samples drawn from each individual, ni and nj, and can be calculated as

σ2
d = σ2

i /ni + σ2
j /nj.

We define δ∗ = δ/
√

σ2
i +σ2

j as the standardized fitness difference and σ∗ =

σ2
i /(σ

2
i + σ2

j ) as the ratio of the variances. We estimate δ∗ by

d∗ =
x̄i − x̄j√
s2

i + s2
j

The corresponding random variable D∗ can be approximated by a non-central

t-distribution, where the degrees of freedom ν are given by Welch’s approxi-

mation. Dividing the nominator and denominator of d∗ by
√

σ2
i + σ2

j shows

that the nominator is a Gaussian random variable with mean δ∗ and vari-

ance σ∗

ni
+ 1−σ∗

nj
. The denominator is the root of the sum of two weighted χ2-

distributions. The sum is approximated by the fraction of a χ2-distribution

and its degrees of freedom ν, which are determined by Welch’s approxima-

tion: ν−1 = σ∗2

ni−1
+ (1−σ∗)2

nj−1
. The fraction of a Gaussian random variable with

non-zero mean and the root of a χ2 random variable divided by its degrees

of freedom is a Student random variable with the degrees of freedom from

the χ2 random variable.

D∗ ≈ tν

(
δ∗, 1

η

)
with η−1 = σ∗

ni
+ 1−σ∗

nj
(4.1)

The degrees of freedom ν range in [min{ni−1, nj−1}, ni +nj−2]. They

are minimal for the extreme values 0 and 1 of σ∗ and reach a maximum for

σ∗ = ni−1
ni+nj−2

. The effective sample size η lies in [ni, nj]. For equal allocation

of n samples among the individuals i and j, the effective sample size η is n/2,

independent of the variance ratio σ∗ and for similar variances (σ∗ ≈ 0.5) the

degrees of freedom are ν ≈ n− 2.

The important conclusion from Equation 4.1 is that the distribution of

d∗ primarily depends on δ∗ (besides ni and nj), a property which we will be

using later. Also, the above considerations show that d∗ is an asymptotically

unbiased estimator for δ∗.
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4.2 Effect of Noise 4. Using Noise

For stochastic tournament selection, if 1−γ is the desired selection prob-

ability for the truly better individual, the desired selection probability for

individual i is

πi(δ
∗) =

{
δ∗ ≥ 0 : 1− γ

δ∗ < 0 : γ
.

For Simulated Annealing the desired selection probability not only de-

pends on the sign of δ∗, but also on the value. The Metropolis acceptance

criterion at the temperature level θ defines the selection probability

πi(δ
∗) =

{
δ∗ ≥ 0 : 1

δ∗ < 0 : eδ∗/θ
.

We denote with π̂i(d
∗) the implemented probability for choosing individ-

ual i based on the estimated standardized fitness difference d∗, and with

pi(δ
∗) = E [π̂i(D

∗)] the actual selection probability for individual i given a

true standardized fitness difference of δ∗. As shown above D∗ depends besides

δ∗ on ni, nj and weakly on σ∗.

4.2 The Effect of Noise

4.2.1 Standard Approach

The simplest (and standard) way to apply stochastic tournament selection

or simulated annealing would be to ignore the uncertainty in evaluation by

making the following assumption:

Assumption 1: The observed fitness difference is equal to the actual

fitness difference, i.e. δ∗ = d∗.

Individual i is selected with probability 1− γ, if d∗ ≥ 0 and with proba-

bility γ, if d∗ < 0.

π̂i(d
∗) =

{
d∗ ≥ 0 : 1− γ

d∗ < 0 : γ

However, there can be two sources of error: Either we observe a fitness

difference d∗ > 0 when actually δ∗ < 0, or vice versa. The corresponding
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Figure 4.1: True selection probability of individual i depending on the actual
standardized fitness difference δ∗ for different sample sizes n and equal vari-
ances. The dotted horizontal line represents the desired selection probability
(1− γ).

error probability α can be calculated as

α =

 δ ≤ 0 : P (D > 0) = 1− Φ
(
−δ
σd

)
= Φ

(
δ
σd

)
δ > 0 : P (D < 0) = Φ

(
−δ
σd

)
= Φ

(
−|δ|
σd

)
= Φ (−|δ∗√η|) . (4.2)

The overall selection probability for individual i is composed of the prob-

ability to observe a difference d∗ > 0 correctly and then selecting individual

i (with probability 1 − γ) or else erroneously observe d∗ > 0 and selecting

individual i (with probability γ). Therefore the actual selection probability

is pi(δ
∗) = (1− α)(1− γ) + αγ.

To visualize the effect of the error probability on the actual selection

probability pi, let us consider an example with γ = 0.2.

Figure 4.1 depicts the resulting true selection probability of individual

i depending on the actual standardized fitness difference δ∗. The dotted

horizontal line corresponds to the desired behavior in the deterministic case,

the bold lines labeled “standard” are the actual selection probabilities due to

the noise for sample sizes n = 80, 40, 20, 10 for both individuals together, i.e.
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ni = nj = 40, 20, 10, 5 per individual. As can be seen, the actual selection

probability for the better individual approaches approximately the desired

probability for δ∗ = 0.35, 0.50, 0.70 and 1.00, respectively1. For δ∗ → 0 it

approaches 0.5. The latter fact is unavoidable, since for δ∗ → 0, the signal-to-

noise ratio approaches zero, and it becomes basically impossible to determine

the better of the two individuals. The interesting question is how quickly pi

approaches 1− γ, and whether this behavior can be improved. Note that we

only show the curves for δ∗ ≥ 0 (assuming without loss of generality that

µi ≥ µj). For δ∗ < 0 the curve would be symmetric to (0, 0.5).

In previous papers, it has been noted that the effect of noise on EA is

similar to a smaller selection pressure (e.g. [Miller 1997]). Figure 4.1 demon-

strates that there is a notable difference: A lower selection pressure in form

of a higher γ would change the level of the dotted line, but it would still be

horizontal, i.e. the selection probability for the better individual would be in-

dependent of the actual fitness difference. With noise, only the tournaments

between individuals of similar fitness are affected. That way, a dependence

on the actual fitness values is introduced which somehow contradicts the idea

of rank-based selection.

4.2.2 A Simple Correction

If we know that our conclusion about which of the two individuals has a better

fitness is prone to some error, it seems straightforward to take this error

probability into account when deciding which individual to select. Instead

of always selecting the perceived better individual with probability (1 − γ),

we could try to replace the selection probability of individual i by a function

π̂i(·) which depends on the standardized observed fitness difference d∗. Let

us make the following assumption:

Assumption 2: It is possible to accurately estimate the error probability

α.

Without loss of generality we assume individual i as the better individual.

1 The deviation at that point falls below 1%. It can be calculated by
−Φ−1

(
0.01(1−γ)

1−2γ

)√
η.
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Figure 4.2: Implemented probability
π̂i for selecting individual i depending
on the observed standardized fitness
difference d∗ and n = 40 samples.
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Figure 4.3: True selection probability
pi of individual i depending on the ac-
tual standardized fitness difference δ∗

and n = 40 samples.

It is selected either if we recognize it as the better (probability (1− α)) and

select the perceived better individual (probability π̂i), or if we think it is

worse (probability α), but decide to choose the worse individual (probability

1−π̂i). Thus, since we would like to have an overall true selection probability

of (1− γ), an appropriate π̂i-function could be derived as

(1− α)π̂i + α(1− π̂i)
!
= 1− γ

π̂i =
1− γ − α

1− 2α
.

π̂i is a probability and can not be smaller than 0, i.e. the above equation

assumes α ≤ γ < 0.5. For α > γ we set π̂i = 1.

Unfortunately, α can not be calculated using Equation 4.2, because we

don’t know δ∗. It seems straightforward to estimate δ∗ by the observed

difference d∗. Then, α is estimated as α̂ = Φ(−|d∗|√η), which is only a

biased estimator due to the non-linear transformations. Nevertheless, this

may serve as a reasonable first approximation of an optimal π̂i-function.

π̂i(d
∗) =

1− γ − Φ
(
−|d∗|√η

)
1− 2Φ

(
−|d∗|√η

) (4.3)

Figure 4.2 visualizes this π̂i-function (labeled as “corr”) for n = 40 sam-
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ples and γ = 0.2. As can be seen, the probability to select the better in-

dividuals increases when the standardized difference d∗ becomes small, and

is 1 for |d∗| < −Φ−1(γ) (i.e. the observed better individual is always se-

lected if the observed standardized fitness difference |d∗| is small). Assuming

the same parameters as in the example above, the resulting selection prob-

abilities pi(δ
∗) are depicted in Figure 4.3 (labeled as “corr”). The selection

probability approaches the desired selection probability faster than with the

standard approach, but then it overshoots before it converges towards 1− γ.

Nevertheless, the approximation is already much better than the standard

approach (assuming a uniform distribution of δ∗).

4.2.3 Noise Adjusted Tournament Selection

An improvement might by achieved by modifying the function π̂i(d
∗) such

that the resulting selection probability pi matches πi exactly or at least better.

An abstract formulation for this is: Given a function f(.) and a random

variable Z dependent on x, we look for a function g(·), so that the expected

value of the transformed random variable equals the value of the function at

the parameter x.

E [g(Zx)] = f(x)

It is obvious that g(·) equals f(·) if Zx = x, but if the Zx are randomly

disturbed and x is unknown for a given realization z, in general no exact so-

lution exists. g(·) can be chosen to minimize a (weighted) deviation between

the expected and the desired value,

min
g(·)

∫ +∞

−∞
w(x) d (E [g(Zx)], f(x)) dx (4.4)

for a distance metric d(·, ·). The less Zx varies, the more likely a good fitting

function g(·) can be found. Let p(z, x) denote the probability density function

(pdf) of Zx for a given parameter x. If the pdf is n-times differentiable in x,

then E [g(Zx)] is n-times differentiable in x, too2, independent of the shape of

2 dn

(dx)n E [g(Zx)] = dn

(dx)n

∫∞
−∞ g(z)p(z, x)dz =

∫∞
−∞ g(z) dn

(dx)n p(z, x)dz
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g(·). This holds for discrete random variables as long as they are continuous

in the parameters, too. From this it follows that only continuous f(·) can be

matched.

To solve Equation 4.4 we choose the Euclidean distance metric d(x, y) =

‖x− y‖2 and g(·) as a stepwise defined function on m + 1 intervals (x0, x1],

. . ., (xm, xm+1), where x0 and xm+1 are ±∞ and gj is the value of g(·) in

the j-th interval. Further we denote the set of n supportive points by x̃i.

n should be chosen larger than m and some x̃i /∈ [x1, xm] to circumvent

boundary effects and force convergence of g(·) towards the boundaries. pij =

Pr (Zx̃i
∈ (xj−1, xj]) is the probability of observing a value in the j-th interval,

if the parameter is x̃i, wi is the weight or the loss of a deviation at x̃i and

ti = f(x̃i) the target value. The mean is then approximated by E [g(Zx̃i
)] ≈∑m+1

j=1 pijgj. Now Equation 4.4 can be approximated by

min
gj ,j=0,...,m

n∑
i=1

wi(
m+1∑
j=1

pijgj − ti)
2 (4.5)

This is a quadratic program ming
1
2
gT Qg + cTg with Q = 2P T WP , c =

−2tT WP , where W is the diagonal matrix of the weights wi. It can be

solved by any quadratic program solver3.

In the applications below, we interpret g(·) as an applied selection prob-

ability, so g(·) ∈ [0, 1] adds bounds for the variables. For g(·) hitting approx-

imately the target, the variance of the random variable Zx should be low. If

Zx is the result of a sampling process – as it is below – the variance can be

reduced by additional samples.

To apply these results we set x = δ∗, Zx = D∗, f(·) = πi(·) and receive

π̂i(·) = g(·). An example curve of π̂i(·) is shown in Figure 4.4.

The calculation of π̂i for 2000 supportive points takes roughly 90 seconds

on a 3 GHz PC. The efficiency can be improved by integrating the condition

that g(·) has to be point symmetric: g(x) = 1−g(−x). For calculation of the

cdf of the noncentral t-distribution the algorithm found in [Krishnamoorthy

and Benton 2003] was used.

3We used the freely available OOQP, described in detail in [Gertz and Wright 2003].
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Figure 4.5: True selection probability
pi of individual i depending on the ac-
tual standardized fitness difference δ∗

and n = 20 samples.

Tournament selection based on this optimized acceptance function is de-

noted noise-adjusted tournament selection (NATS). Note that once the ap-

propriate acceptance function π̂i(·) has been determined, NATS is computa-

tionally just as efficient as standard STS. And since the acceptance function

primarily depends on γ and the sample size n, typical acceptance functions

could be provided by a public repository, making NATS almost as simple to

use as STS.

The resulting acceptance function is depicted in Figure 4.4. At first sight,

the strong fluctuations seem surprising. However, a steeper ascent of the

selection probability can only be achieved by keeping π̂i = 1 for as long as

possible. The resulting overshoot then has to be compensated by a very

low π̂i etc. such that in the end, an oscillating acceptance pattern emerges

as optimal. For observed differences up to approximately 0.35, the better

individual is always selected, while for a difference around 0.47 the worse

individual is selected with high probability. The probabilities vary largely

until they converge to the desired probability.

As can be seen in Figure 4.5, despite the oscillating acceptance function
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π̂i(·), the curve of achieved selection probabilities is very smooth, and much

closer to the actually desired selection probability of γ resp. (1 − γ) than

either the standard approach of ignoring the noise, or the first approxima-

tion of an appropriate acceptance function presented in the previous section.

Similar results can be obtained for Simulated Annealing, which is not further

discussed here.

4.2.4 Sequential Sampling

The sequential selection procedures presented in Chapter 2 showed a large

saving compared to the simple equal sampling scheme with a fixed budget of

samples. The procedures are designed for the selection of one out of many

systems. Regarding a single tournament, only the better of two individuals

has to be determined. Although in general, individuals participate in several

tournaments, we prescind from that and treat the tournaments as being

independent.

Representative for other sequential selection procedures we use Kim and

Nelson’s procedure to identify the better of two systems and compare it to a

new sequential procedure specialized on the comparison of just two systems.

The procedure denoted with αc is based on the assumption that the error

probability on each stage should be a constant αc. Note that because the

procedure may stop on any stage due to a large observed fitness difference,

the underlying probability distributions are truncated and become rather

skewed with an increasing number of iterations. Therefore, we determine the

thresholds εk and the total actual error probability (which also depends on

the probability to make a decision in stage k) empirically by simulation. This

method is described as Algorithm 1, where Φδ∗,k(x) denotes the cumulative

probability distribution for the observed standardized fitness difference in

stage k, based on a true fitness difference δ∗. The total number of stages is

limited to K.

We use binary search to find a per-stage error probability αc which yields

a total error probability of α at the reference value δ∗r . Note that the proce-

dure to determine the εk is computationally more demanding than Kim and
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Algorithm 1 Determining thresholds and total error probability
Input: constant error per stage αc

Generate a large number of pairs of individuals with standardized fitness
difference δ∗r

Sample each individual n0 = 4 times
Estimate Φδ∗r ,0 from the observed d∗ of all pairs of individuals
FOR k = 0 TO K − 1 DO {

εk = max{0,−Φ−1
δ∗r ,k(αc)}

Determine probability p
δ∗r
k to go to next stage based on εk and Φδ∗r ,k

Estimate Φδ∗r ,k+1 by truncating at εk, −εk, and resampling remaining
individuals
}
RETURN total error probability α = αc +

∑K
k=1 αc

∏k−1
i=0 p

δ∗r
i and thresh-

olds εk

Nelson’s method. However, this effort has to be spent only once for a given

indifference threshold δ∗r and error probability α, and could in principle be

provided by tables.

4.3 Results

4.3.1 Sample size comparisons

Clearly, the methods proposed in the previous section constitute a signifi-

cant improvement compared to the standard STS. In this section, we try to

quantify the improvement in terms of computational effort saved, which is

probably the most relevant measure. To this end, we check how many samples

are necessary in combination with standard STS to obtain actual selection

probabilities similar to when we use the acceptance function generated by

our NATS method.

Figure 4.6 shows the actual selection probabilities for standard STS for

different number of samples taken (thin lines labeled with 10, 20, 40, 80, 160).

On top of that, we have drawn some dashed lines resulting from NATS. As

can be seen, the curve obtained from our method combined with 10 sam-
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Figure 4.6: Comparison of standard STS and our proposed NATS method
for different sample sizes.

ples closely matches the curve obtained with standard STS and 20 samples.

These savings seem to be independent of the number of samples: for all

curves, NATS allows to cut the number of samples by approximately 50%,

still yielding the same accuracy in selection. Since sampling is usually the

time-determining factor for complicated real-world optimization problems,

this means the run-time of the algorithm is reduced by 50% as well.

4.3.2 Dependency on selection pressure parameter

So far, we have assumed a selection probability for the tournament’s better

individual of 80%, i.e. γ = 20%. As we have explained in Section 3.4.3,

the parameter γ allows the algorithm designer to choose the selection pres-

sure. Now we examine how the setting of γ influences the effectiveness our

approach.

As we have shown in the previous subsection, with γ = 0.2, our method

allows to save 50% of the evaluations. For γ = 0, the method is bound to

fail, because the underlying trick is to compensate the noise by increasing the

probability to select the better individual. Obviously, if the better individual

is always selected that idea can not be applied. On the other hand, for

γ = 0.5, we obviously don’t need to evaluate at all, but can just select

randomly instead. In that case, we could thus save 100% of all evaluations.
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Figure 4.7: Percentage of samples that can be saved by using our proposed
noise-adjusted STS, compared to standard STS, without sacrificing selection
accuracy.

Figure 4.7 shows the percentage of samples that can be saved using our

noise-adapted STS when compared to the standard STS. The savings have

been determined similarly to the last subsection, by comparing curves with

different sample sizes, and choosing the number of samples n∗ for the stan-

dard STS such that the resulting selection probabilities pi are as similar as

possible (difference integral) to the noise-adjusted STS with a given number

of samples n. The savings are then computed as 1−n/n∗. Results are shown

for a sample size of n = 20, but seem to be independent of the sample size, as

the results for sample sizes of 10, 40, or 80 look almost identical (not shown).

As can be seen, in the interesting range of γ ∈ [0.0, 0.3] the savings

resulting from the noise-adjusted STS rise quickly with γ, and significant

savings can be obtained even for relatively small γ values.

4.3.3 Application to Generational-EA

We present two kinds of experiments. In all cases, we assume the use of

stochastic tournament selection, where two individuals are chosen randomly,

and the better individual is to be chosen with probability 1 − γ = 80%.

In the first set of experiments, we compare the error probabilities of dif-

ferent methods for a single tournament, depending on the (standardized)

true fitness difference. In the second set, we test the approaches on a sim-

ple 1000 bit onemax problem, and compare the obtained fitness based on
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n 1 10 20 30 40 50
P (S) 0.582 0.720 0.765 0.784 0.792 0.796

Table 4.1: Actual selection probability for better individual P(S), depending
on the number of samples per individual n and assuming a true standardized
fitness difference of 0.35.

the total number of evaluations. For the optimization runs, we assume a

simple GA with generational reproduction, population size of 20, one-point

crossover with probability 0.6, and bit-flip mutation with mutation probabil-

ity 1/(chromosome length). Unless stated otherwise, we assume a Gaussian

noise with mean 0 and standard deviation σ = 2.

We compare the different methods based on the average population fit-

ness, as the true best is generally unknown in a stochastic environment.

Results are averaged over 40 runs.

Selection Error The smallest observable fitness difference possible for the

onemax problem is 1 (solutions differ in only 1 bit). Given a Gaussian noise

with standard deviation σ, the standardized fitness difference between two

such individuals is δ∗min = 1/
√

2σ2. If we want to eliminate the effect of noise,

we thus require that the selection error is close to zero for δ∗ > δ∗min.

Let us first consider the case of standard stochastic tournament selection,

where the observed better individual is accepted with (1− γ) = 80% proba-

bility. For the assumed Gaussian noise with σ = 2, we get δ∗min ≈ 0.35. Table

4.1 then shows the actual probability of selecting the truly better individual

if the true standardized fitness difference is equal to 0.35, depending on the

number of samples used per individual. Any deviation from the desired 80%

is due to the noise.

As can be seen, about 40 samples per individual are required to reduce the

effect of noise to less than 1% deviation. Figure 4.8 confirms that indeed this

is sufficient to eliminate the effect of noise. It shows the average fitness of the

population over time, for different levels of noise, assuming 80 samples per

tournament (40 per individual). As expected, a noise of σ = 2 has basically

no effect (the lines for σ = 2 and σ = 0 are indistinguishable), while larger
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Figure 4.8: Average fitness of population for different levels of noise, with
error bars.

noise leads to inferior performance (see σ = 5 or σ = 10).

As this example shows, the effect of noise can be eliminated by multiple

sampling. However, it also demonstrates the excessive computational burden

(80 samples per tournament instead of 2 if the environment would be deter-

ministic). In the following, we show how this computational burden can be

reduced dramatically.

Using NATS, a total of 40 samples per tournament (20 samples per indi-

vidual) should be sufficient to eliminate the effect of noise. For this method,

the only relevant issue is when the selection error (probability of observing

d < 0 although δ > 0 or vice versa) falls below the threshold of γ = 20%.

Using 40 samples per tournament, this is the case for δ∗r = 0.188 (see Figure

4.9, line “Standard 40”). Thus, in the following, we are looking for sequen-

tial sampling procedures which guarantee an error probability of less than

α = 20% for δ∗ > δ∗r = 0.188, because these sampling plans should allow

us to obtain a selection behavior very close to standard tournament selec-

tion based on 80 samples per tournament (and thus complete elimination of

noise).

Using Kim and Nelson’s procedure and our new proposed sequential sam-

pling procedure with constant αc, for the given δ∗r = 0.35 and α = 0.2, we

observe the error probabilities depicted in Figure 4.9. As can be seen, the
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error bounds are observed in all three cases. For δ∗ > δ∗r , Kim and Nelson’s

procedure results in a slightly higher error probability than the standard

method. Our sampling procedure is better than Kim and Nelson’s, but the

error is still higher than when the constant sample size is used. This small in-

crease in error might slightly impact the optimization if the sampling method

were used in isolation. In our case, however, it is of no importance, because

we use it in combination with NATS, which is capable of completely com-

pensating an error of less than γ = 20%.

On the other hand, the savings in terms of samples acquired are depicted

in Figure 4.10. As can be seen, savings are dramatic for both sequential

sampling methods, in particular if the true standardized fitness difference δ∗

is large. Our method significantly outperforms Kim and Nelson’s procedure,

yielding savings of about 14-24% of the samples and lower error probabilities.

Therefore in the rest of the paper we only use our sequential sampling method

αc.

As has been stated above, all methods can now be combined with NATS.

Figure 4.11 compares the actual selection probability of the better individual

depending on the actual standardized fitness difference δ∗, for the following

three configurations:

1. The standard stochastic tournament selection with 80 samples per tour-

nament
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Figure 4.11: Resulting selection probability depending on the true standard-
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nament, the standard approach with 40 samples and NATS, and NATS com-
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2. The tournament selection probabilities modified according to NATS

and 40 samples per tournament

3. Our sequential sampling procedure with constant error αc per stage

and selection probabilities modified by NATS

As can be seen, all curves look more or less identical. Overall, this means

that in order to eliminate the effect of noise, instead of 80 samples per tour-

nament, we only need between 8 and 29 samples on average (depending on

the actual fitness difference of the individuals) by using our new sequential

sampling mechanism together with NATS.

Behavior during optimization In the previous section, it has been shown

that by using appropriate sampling techniques, it is possible to avoid the ef-

fect of noise with a much smaller number of samples than if each individual

would just be sampled the same number of times. To show that these con-

siderations also hold during optimization, Figure 4.12 empirically compares

the convergence curves of the different sampling techniques on the 1000 bit

onemax problem. They are all virtually identical to the deterministic case

without noise. The corresponding numbers of evaluations per generation are
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shown in Figure 4.13 Naturally, the standard approaches sample the same

number of times independent of the generation. Surprisingly, the number of

samples is also quite constant for the sequential sampling procedure. Only

in the very beginning, the number of samples is significantly smaller than

later in the run. For our constant αc method, the sampling effort is never

more than 19% of the standard approach, i.e. by integrating the noise into

the selection process, we save approximately 81 % of the samples.

4.4 Conclusion and Future Work

In this chapter, we have argued that the noise present in many real-world

optimization problems may be used to at least partially replace the ran-

domness in stochastic selection schemes. Instead of trying to estimate an

individual’s fitness as accurately as possible, a certain level of selection error

may be acceptable and can be accounted for simply by adjusting the selection

procedure.

At the example of stochastic tournament selection, we have derived two

models which determine the selection probability for the better individual

depending on the observed fitness difference. The simple model is based on
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some simplifying assumptions regarding the distribution of the error proba-

bility; the second model is based on a modified acceptance function.

As the results on the onemax problem show, using the proposed noise-

adapted tournament selection allows to reduce the number of samples sig-

nificantly (around 50% for a typical setting) without compromising selection

quality. We further reduced the number of samples drastically (up to 81%)

by combining NATS with sequential selection procedures.

Future work will include additional improvements resulting from sam-

pling only one individual at a time (instead of both individuals participating

in a tournament), and from re-using samples for individuals participating

in several tournaments, i.e. to integrate the OCBA procedure derived in

Chapter 3.

One further direction of our research is the integration of appropriate

population sizing and selection pressure, as it may be crucial to the success

of an EA in noisy environments.

116



Chapter 5

Summary and Outlook

In this thesis, we have developed efficient methods for the application of

EA on stochastic problems. To achieve this, we analyzed procedures for

statistical selection systematically with respect to different measures and

improved them significantly. We showed how to adapt one of the procedures

for the needs of EA and identified and modified operators to apply them

efficiently in stochastic environments.

For statistical selection we developed a unified experimental setup with

standardized configurations allowing for comparison with results from other

researchers. Opposed to other publications, where only few values are tabu-

lated, we provide results for a whole range of parameter settings in an easily

interpretable graphical form. The new random problem instances model the

requirements of selection procedures in practice more realistically. Measure-

ment displays for indifference zone or expected opportunity cost measures

are given to compare the procedures with respect to different criteria like

efficiency and target.

We identified the expected opportunity cost based proceduresOCBALL(S)

and LL(S) to be the most efficient, when a fixed budget of samples is given.

In the absence of a budget constraint on average the OCBAδ∗ , OCBALL and

LL procedures provide the best results for a wide variety of configurations,

with respect to controllability and efficiency. The procedures based on the

indifference zone approach (KN++ and Wald) suffer from the strong depen-
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dence on the indifference zone parameter and are hard to control. Nonetheless

if a given level of confidence has to be guaranteed, KN++ is the procedure of

choice. The number of initial samples is a critical parameter for the Bayesian

procedures, while KN++ is less sensitive. KN++ allows for correlated out-

put between systems.

From our results we suggest combining the Bayesian allocation procedures

with an adaptive stopping rule to substantially improve efficiency compared

to the original publications with a fixed budget. The most efficient and con-

trollable stopping rule depends on the desired goal (EOCBonf or PGSSlep,δ∗).

The Bayesian procedures also allow for the incorporation of prior information

about problem instances when that is available.

Preliminary work on the analysis and improvement of statistical selection

has been presented at the Winter Simulation Conference ([Branke, Chick,

and Schmidt 2005a]). More comprehensive results of Chapter 2 have been

submitted to Management Science ([Branke, Chick, and Schmidt 2005c]).

Compared to selection, optimization in noisy environments is even more

challenging, because not only a few, but combinatorially many alternatives

need to be compared. For that the OCBA procedure is adapted to only

include those pairwise comparisons that are actually used by the EA. Most

popular selection and replacement operators are covered. We recommend

the newly developed latin tournament selection as it combines the low sam-

pling error of stochastic universal sampling with arbitrary selection pressure

and its pairwise structure allows for efficient implementation in a statistical

procedure. For replacement operators we do recommend those variants that

ensure survival of the best known solution, like evolution strategies, steady-

state EA or generational EA with elitism, to reduce the effort of identifying

the best solution to the last population instead of all visited solutions.

Progress of the optimization is ensured by our adapted statistical selec-

tion procedure as it is applied in each generation. The additional samples

are distributed to the solutions that promise the highest benefit for the cor-

rect functioning of an EA. With the adaptive stopping rules developed, the

number of samples automatically varies with the complexity faced in each

generation.
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The proposed method improves existing approaches for EA on stochastic

problems in two aspects: First, it allows to imitate – up to an arbitrary level

– the behavior of EA with known fitness values, efficiently and self-adaptive.

Second, EA using a fixed number of samples per individual can be improved

by allocating samples to individuals, which are more important for the course

of an EA than others. A theoretical relationship for the tradeoff between

samples used in a single generation and number of generations overall is

derived, which could be used to obtain optimal settings for the stopping

rule. Unfortunately, the necessary values cannot be determined easily in

practice.

Some first results for the integration of statistical selection and EA have

been published in [Schmidt, Branke, and Chick 2006].

Tuning the tradeoff between more easily to achieve lower selection pres-

sure and on the other hand less progress of the optimization per generation,

often results in relatively low selection pressures compared to those typically

used in deterministic environments. Stochastic tournament selection is able

to implement such low selection pressures. We derive a method that inte-

grates the remaining noise from the individual’s fitness into the probabilistic

comparison of stochastic tournament selection by modifying the acceptance

function. For typical settings the required number of samples can be reduced

by 50%. Combining the method with a sequential comparison procedure

allows for a further reduction up to 81% without compromising selection

quality.

The general idea for the noise-adjusted tournament selection has been

published in [Branke and Schmidt 2003] and received a best paper award.

In this thesis an improved approach based on quadratic programming was

presented. The combination with sequential comparison has been published

in [Branke and Schmidt 2004].

With respect to the achievements obtained in this thesis for the field

of evolutionary computation, empirical experiments on a large variety of

stochastic problems need to be carried out, in order to realize the improve-

ments. A deeper understanding of the effects of population sizing and selec-

tion pressure is needed to tune the parameters of the statistical procedures.
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So far, fixing the error probabilities to a certain level combined with high

selection pressure, quickly leads to excessive sampling.
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Buchholz, P. and A. Thümmler (2005). Enhancing evolutionary algorithms

with statistical sselection procedures for simulation optimization. In

N. Kuhl, M. N. Steiger, F. B. Armstrong, and J. A. Joines (Eds.),

Winter Simulation Conference, pp. 842–852. IEEE.

Butler, J., D. J. Morrice, and P. W. Mullarkey (2001). A multiple at-

tribute utility theory approach to ranking and selection. Management

Science 47 (6), 800–816.

Byers, J. (1991). Basic algorithms for random sampling and treatment

randomization. Computers in Biology and Medicine 112 (21), 69–77.

Cantu-Paz, E. (2004). Adaptive sampling for noisy problems. In K. Deb

et al. (Eds.), Genetic and Evolutionary Computation Conference, Vol-

ume 3102 of LNCS, pp. 947–958. Springer.

123



BIBLIOGRAPHY BIBLIOGRAPHY

Chen, C.-H. (1996). A lower bound for the correct subset-selection proba-

bility and its application to discrete event simulations. IEEE Transac-

tions on Automatic Control 41 (8), 1227–1231.
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