Dissertationsreihe am Institut für Hydromechanik der Universität Karlsruhe (TH) Heft 2006/4

Schäden durch Winterstürme – das Schadensrisiko von Wohngebäuden in Baden-Württemberg

Patrick Heneka

universitätsverlag karlsruhe

Patrick Heneka

Schäden durch Winterstürme – das Schadensrisiko von Wohngebäuden in Baden-Württemberg

Dissertationsreihe am Institut für Hydromechanik der Universität Karlsruhe (TH) Heft 2006/4

Schäden durch Winterstürme – das Schadensrisiko von Wohngebäuden in Baden-Württemberg

von Patrick Heneka

universitätsverlag karlsruhe

Dissertation, genehmigt von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften der Universität Fridericiana zu Karlsruhe (TH), 2006 Referenten: Prof. Dr.-Ing. Bodo Ruck, Prof. Dr. rer. nat. Christoph Kottmeier

Impressum

Universitätsverlag Karlsruhe c/o Universitätsbibliothek Straße am Forum 2 D-76131 Karlsruhe www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Universitätsverlag Karlsruhe 2007 Print on Demand

ISSN: 1439-4111 ISBN: 978-3-86644-117-0

Schäden durch Winterstürme das Schadensrisiko von Wohngebäuden in Baden-Württemberg

Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS

von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

DISSERTATION

von Dipl.-Ing. Patrick Heneka aus Leonberg

Tag der mündlichen Prüfung: 8. Dezember 2006

Hauptreferent: Prof. Dr.-Ing. Bodo Ruck Korreferent: Prof. Dr. rer. nat. Christoph Kottmeier

Karlsruhe 2006

Schäden durch Winterstürme das Schadensrisiko von Wohngebäuden in Baden-Württemberg

Kurzfassung

In der vorliegenden Arbeit wird die Schadensanfälligkeit von privaten Wohngebäuden durch Winterstürme untersucht und es wird eine Abschätzung des individuellen Schadensrisikos für jede Gemeinde in Baden-Württemberg angegeben. Dazu wird ein Modell entwickelt, mit dem die Schadensanfälligkeit von Gebäuden durch Stürme simuliert werden kann.

Nach einer kurzen Darstellung der Grundlagen bezüglich des Auftretens von Winterstürmen, dem Grenzschichtprofil des bodennahen Windes und den Ursachen von Sturmschäden an Gebäuden wird ausführlich auf die z.Z. gängigen Methoden eingegangen, die zur quantitativen Abschätzung von Sturmschäden an Gebäuden entwickelt wurden.

Als Vorarbeit zur Erstellung des Schadensmodells werden Daten zu Gebäudeschäden, die für fünf Sturmereignisse in der Vergangenheit zur Verfügung stehen, auf Korrelation mit meteorologischen und topographischen Faktoren untersucht. Hierbei wird festgestellt, dass für die Schadenshöhe nicht die absolute Windgeschwindigkeit, sondern die Überschreitung einer für das Gebiet charakteristischen Windgeschwindigkeit (=Windklima) von maßgeblicher Bedeutung ist. Des Weiteren werden Zusammenhänge zwischen der lokalen Geländeform und dem Auftreten von Sturmschäden quantifiziert.

Ausgehend von der exakten Formulierung von Sturmschäden an Gebäuden wird durch einige Vereinfachungen und Annahmen ein mit den vorhandenen Daten anwendbares Schadensmodell hergeleitet. Dieses Modell wird anhand von Schadensdaten der Sturmereignisse kalibriert und dient zur Berechnung der Schadenshöhe und der Anzahl der betroffenen Gebäude innerhalb eines Postleitzahlengebietes oder einer Gemeinde. Unter Annahme einer dem Windklima angepassten Bauweise von Gebäuden lassen sich mit dem entwickelten Modell sowohl die Gesamtschäden der Stürme (maximal 20% Abweichung) als auch die räumliche Verteilung der Schäden (Korrelationskoeffizient ca. 0,87) gut simulieren. Im Vergleich mit gängigen Schadensmodellen von Versicherungen werden im Geschwindigkeitsbereich bis 40m/s zwar geringere Schäden berechnet; bei höheren Geschwindigkeiten stimmen die Modelle jedoch sehr gut überein.

Mit Kenntnis des Schadensrisikos lassen sich die Schäden angeben, mit denen mit einer bestimmten Wahrscheinlichkeit zu rechnen ist. Für drei unterschiedliche Modellannahmen werden für jede Gemeinde Baden-Württembergs Risikokurven berechnet und eine Abschätzung der Unsicherheiten gegeben. Es wird gezeigt, dass bei Annahme einer dem Windklima angepassten Gebäudebauweise die räumlichen Unterschiede des Risikos über der Landesfläche sehr gering sind. Mit einer Wahrscheinlichkeit von 2% innerhalb eines Jahres werden durchschnittlich 6% aller Wohngebäude innerhalb einer Gemeinde beschädigt und es muss mit einem Schaden von 0,25% des Gesamtwertes aller Wohngebäude gerechnet werden. Für ganz Baden-Württemberg wird ein durchschnittlicher jährlicher Schaden von 13 Mio. € berechnet, wobei ganz extreme Ereignisse mit sehr geringen Eintrittswahrscheinlichkeiten unberücksichtigt bleiben.

Winter storm damage damage risk of residential buildings in the German state of Baden-Württemberg

Abstract

In the present work, the vulnerability of residential buildings to winter storms is investigated and an estimate of the specific risk for every municipality in the German state of Baden-Württemberg is given. The vulnerability of buildings is simulated by the use of a storm damage model which is developed in this work.

After a brief introduction into the meteorological phenomena of storms, the atmospheric boundary layer, the causes of wind damage to structures and the current models to assess storm damage to buildings are discussed in detail.

Damage data of past storm events are analysed in order to quantify correlations with meteorological and topographical parameters. As a result, it is not the absolute wind speed, but rather the wind speed relative to a characteristic local wind speed (=wind climate) that is responsible for the occurrence of damage. Additionally, correlations between local orography and storm damage are given.

Starting from the exact formulation of storm damage to buildings and with the help of some logic assumptions and simplifications, a storm damage model applicable with the available data is deduced. The model is calibrated with damage data of past storm events. Model outputs are the number of affected buildings and the monetary damage to buildings within a postal code zone or municipality in dependence of the maximum wind speed. Under the assumption that the building resistance is proportional to the wind climate, it is possible to calculate the total damage of storm events (maximum 20% error of observed damage) as well as the spatial distribution of damage (correlation coefficients of 0,87 with observed damage distribution). In comparison with current damage models of insurance industry and damage research, the developed model shows good agreement at wind speeds over 40m/s, at lower wind speeds, the model calculates predicts about 50 times lower damage.

Damage risk of municipalities is defined as storm damage being exceeded at a certain annual level of probability. For 3 different model assumptions, risk curves including an assessment of the uncertainties are calculated for every municipality of the state of Baden-Württemberg. It is shown that under the assumption of building vulnerability being proportional to the wind climate, the spatial differences of risk in Baden-Württemberg are very small. At the probability level of 2% during one year, in average 6% of the building stock are expected to be damaged and 0.25% of the total assets are lost. The average annual loss is estimated to 13 million \in for the state of Baden-Württemberg, not taking into account extreme events with very small probabilities of occurrence.

Danke

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Angestellter am Laboratorium für Gebäude- und Umweltaerodynamik des Instituts für Hydromechanik an der Universität Karlsruhe von März 2003 bis Juni 2006.

An erster Stelle möchte ich mich bei Prof. Bodo Ruck für die hervorragenden Arbeitsbedingungen und die stetige wissenschaftliche Betreuung bedanken. Das mir entgegengebrachte Vertrauen und die damit verbundenen Freiheiten waren für das Entstehen der Arbeit sehr förderlich. Prof. Christoph Kottmeier vom Institut für Meteorologie und Klimaforschung der Universität Karlsruhe danke ich sehr für die Übernahme des Korreferats.

Ohne Thomas Hofherr vom Institut für Meteorologie und Klimaforschung der Universität Karlsruhe und seinen berechneten Windfeldern der untersuchten Winterstürme wäre diese Arbeit nicht in dieser Form möglich gewesen. Vielen Dank für die spannenden Diskussionen und Deine Mithilfe.

Ein großes Dankeschön geht an alle Kollegen am Institut für Hydromechanik für die freundschaftliche und angenehme Atmosphäre während der Jahre. Hier möchte ich Harald Deutsch, Armin Reinsch, Muhammad Ikhwan, Conny Frank, Christof Gromke und Martin Zaschke für die gute Zusammenarbeit und die konstruktiven Anregungen danken.

Mein ganz besonderer Dank gilt meinen Eltern und meiner Freundin Kerstin für die unermüdliche Unterstützung und das große Verständnis vor allem während der Schlussphase dieser Arbeit.

Finanziell gefördert, und damit erst möglich gemacht, wurde das Projekt durch das Center for Disaster Management and Risk Reduction Technology (CEDIM), einer gemeinsamen Einrichtung der Universität Karlsruhe und des Geoforschungszentrums Potsdam.

Karlsruhe, Dezember 2006

Inhaltsverzeichnis

1.	Ein	lleitung	1
2.	Gru	undlagen	5
	2.1	Sturmereignisse	5
		2.1.1 Extratropische Stürme	6
		2.1.2 Weitere schadensverursachende Sturmereignisse	8
		2.1.3 Auftreten von Sturmereignissen in Deutschland	9
	2.2	Die atmosphärische Grenzschicht	9
		2.2.1 Einfluss der Oberflächenrauhigkeit	11
		2.2.2 Einfluss der Orographie	13
		2.2.3 Turbulenz und Böigkeit des Windes	14
	2.3	Schäden durch Sturmereignisse	16
		2.3.1 Definition der Schadensbegriffe	16
		2.3.2 Sturmschaden an Strukturen	18
		2.3.3 Modellierung von Sturmschaden	22
		2.3.4 Zusätzliche Parameter in den Schadensmodellen	30
	2.4	Risikoanalyse	32
		2.4.1 Definition	32
		2.4.2 Sturmrisiko	35
0	D	des la service de la prése	27
3.	Bes 2 1	Schreibung der verwendeten Daten	31 27
	3.1	2.1.1. Or Lister and Annual Statistische Daten	37
		3.1.1 Gebletsgrenzen	37 20
		3.1.2 Angaben zu wonngebauden	38 20
	าก	3.1.3 Gebaudewerte	38 40
	3.2	2.2.1 Operation	40
		3.2.1 Orographie	40
	<u>?</u> ?	3.2.2 Landnutzung	40
	ა.ა	2.2.1 Schedengdeten	4Z 49
		2.2.2. Meteomologiashe Doton	45 45
	24	Sturm gefährdung	40
	ง.4 วร	Verwondete Software	40 48
	5.0	2.5.1 Cooinformationggystom (CIS)	40 49
		2.5.2 Motlah	4ð 40
		0.0.2 WattaD	49

II Inhaltsverzeichnis

4.	Lastannahmen nach DIN 1055	51
	4.1 Statistiken	53
	4.1.1 Baujahre von Gebäuden	53
	4.1.2 Windlastzonen	54
	4.2 Fazit	55
5.	Analyse der Schadensdaten	57
0.	5.1 Bäumliche Verteilung der Schäden	57
	5.2 Verteilung der Schäden nach Größenklassen	59
	5.3 Einfluss der Windgeschwindigkeit	61
	5.3.1 Absolute Windgeschwindigkeit	62
	5.3.2 Relative Windgeschwindigkeit	64
	5.4 Einfluss der Geländehöhe	69
	5.5 Einfluss der Orographie	71
	5.5.1 Geländeparametrisierung	71
	5.5.2 Ergebnisse	72
	5.6 Einfluss der Oberflächenrauhigkeit	78
	5.6.1 Parametrisjerung der Rauhigkeit	78
	5.6.2 Ergebnisse	81
	5.7 Diskussion	83
		00
6.	Schadensmodell	85
	6.1 Exakte Beschreibung von Sturmschaden an Gebäuden	85
	6.2 Herleitung des Schadensmodells	87
	6.2.1 Modellannahmen	89
	6.2.2 Anpassung des Modells an weitere Parameter	90
	6.2.3 Modellierung der Unsicherheiten	91
	6.3 Kalibrierung	92
	6.3.1 Modell 1: Konstante Schadensanfälligkeit	93
	6.3.2 Modell 2: Schadensanfälligkeit teilweise proportional zum Windklima	94
	6.3.3 Modell 3: Schadensanfälligkeit proportional zum Windklima	94
	6.3.4 Bemerkungen	96
	6.4 Validierung	96
	6.4.1 Schadensfunktion	96
	6.4.2 Schadensverteilungen	99
	6.4.3 Histogramme	103
	6.4.4 Vergleich mit anderen Schadensmodellen	105
	6.5 Fazit	108
7	Schadensrisiko für Gemeinden	100
••	7.1 Berechnung der Risikokurven	100
	7.2 Freehnisse	114
	7.3 Vergleich mit anderen Bisikoberechnungen	125
		±20
8.	Zusammenfassung und Ausblick	131

А.	Schadensskalen	135
	A.1 Auswirkungen nach der Torro-Skala in Mitteleuropa	135
	A.2 Torro-Skala angepasst für Holzgewächse in Mitteleuropa	136
	A.3 Saffir-Simpson Skala	137
в.	Schadensrisiko aller Gemeinden in Baden-Württemberg	139
Lit	eratur	157

Abbildungsverzeichnis

1.1	Anzahl schadenverursachenden Ereignisse in den Jahren 1974-2004 nach Munich Re (2005) $\ldots\ldots\ldots$	2
$\begin{array}{c} 2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.7 \\ 2.8 \\ 2.9 \\ 2.10 \\ 2.11 \\ 2.12 \\ 2.13 \\ 2.14 \end{array}$	$ Lebenszyklus einer Idealzyklone (aus Kunz & Hauck 2005) \dots \\ Verlauf des Luftdrucks und der mittleren Windgeschwindigkeiten während Orkan Lothar \dots \\ Aufbau der atmosphärischen Grenzschicht nach Etling (2002) \dots \\ Ausbildung der Prandtl-Schicht nach einem sprunghaftem Wechsel der Oberflächenrauhigkeit \dots \\ Logarithmische Windprofile über unterschiedlichen Rauhigkeiten \dots \\ Unterschiedliche Effekte der Hügelumströmung \dots \\ Spektrum des horizontales Windes in der Nähe des Bodens, nach Davenport (1965) \dots \\ Prinzipskizze der Kräfte, die auf einen Dachziegel wirken \dots \\ Anteil des Schadens verschiedener Gebäudeteile nach Friedman (1984) \dots \\ Damage band für Wohngebäude mit ein bis drei Stockwerken aus Unanwa (2000) \dots \\ Schadensanteil verschiedener Schadensmodelle in Abhängigkeit der Böengeschwindigkeit \dots \\ Graphische Darstellung der Risikokette aus Gleichung (1.1) \dots \\ $	$\begin{array}{c} 6\\ 7\\ 10\\ 12\\ 13\\ 14\\ 15\\ 19\\ 20\\ 21\\ 28\\ 29\\ 30\\ 33\end{array}$
91	Wiederherstellungskesten von Wehngehäuden nie Comeinde nach Kleist et al. (2006)	20
0.1 2.0	Wiederheistenungskosten von wohngebauten pro Gemeinde nach Kleist et al. (2000)	- <u>J</u> 9 - <u>/</u> 1
0.2 3.3	Zugbahnen der untersuchten Winterstürme	41
3.7	Maximale Windgeschwindigkeiten während Lether	47
3.5	Sturmærfährdungskarte von Baden-Württemberg	48
3.6	Darstellung unterschiedlicher räumlich verknüpfter Informationsebenen in einem GIS	49
4.1	Windlastzonenkarte aus der DIN 1055 (2005)	52
51	Vartailung der Cabäudeschöden und Schadholzmangen durch Sturm Lathar 26.12.1000	58
5.0	Verteining der Gebaudeschaden und Schadnolzmeingen duch Sturin 2012.1999	50
53	Histogrammo der Schadensenteile aller 5 stalligen Postleitzehlengebiete	60
5.4	Histogramme der Anteile der hetroffenen Gebäude aller 5-stelligen Postleitzahlengebiete	61
5.5	Histogramm der Durchschnittsschöden für alle Sturmereienisse	62
5.6	Schälen der Postleitzahlengebiete in Abhängigkeit der maximalen Böengeschwindigkeit.	63
5.7	Schäden der Postleitzahlengepiete in Abhängigkeit der maximalen Böengeschwindigkeit (log)	63
5.8	Durchschnittsschäden pro Gebäude in Abhängigkeit der maximalen Böengeschwindigkeit	64
5.9	Schäden der Postleitzahlengebiete in Abhängigkeit der relativen Geschwindigkeit	65
5.10	Schäden der Postleitzahlengebiete in Abhängigkeit der relativen Geschwindigkeit (log)	66
5.11	Durchschnittsschäden pro Gebäude in Abhängigkeit der relativen Geschwindigkeit	66
5.12	Histogramme des Schadens- und Gebäudeanteiles bei unterschiedlichen absoluten Geschwindigkeiten	67
5.13	Histogramme des Schadens- und Gebäudeanteiles bei unterschiedlichen relativen Geschwindigkeiten	68
5.14	Zusammenhang zwischen Geländehöhe und relativem Schaden	70
5.15	Definition des Geländeindex (TI) als Maß für die relative Geländehöhe zur benachbarten Umgebung	72
5.16	Automatisierte Erkennung von Geländeformen aus einem Digitalem Höhenmodell (DHM)	74
5.17	Histogramm der Geländeindizes (TI_m) aller Postleitzahlengebiete in Baden-Württemberg	75
5.18	Zusammenhang zwischen Geländeindex und normalisiertem Schaden	75
5.19	Windgeschwindigkeit-Schadensbeziehung mit Geländeindex Parametrisierung	76
5.20	Windgeschwindigkeit-Schadensbeziehung mit Geländeindex Parametrisierung	77
5.21	Definition des Rauhigkeitsindizes (RI)	79
5.22	Parametrisierung der Überflachenrauhigkeiten	80
5.23	Histogramm der mittleren Kaunigkeitsindizes (KI_m)	81
5.24 5.25	Zusammenhang zwischen Kaunigkeitsindex und normalisiertem Schaden	82 83
0.40	Zusammennang Zwischen Raumgreitsmuter und Durchschlittischlidtell	00
6.1	Schadensfunktion für ein Einzelgebäude G	86

VI Abbildungsverzeichnis

6.2	Räumliche Mittelung der Windgeschwindigkeiten	87
6.3	Verteilung der kritischen Geschwindigkeiten $f(V_{krit})$ eines Gebäudebestandes	88
6.4	Illustration zur Berechnung des Schadensanteils	88
6.5	Illustration der Unsicherheiten	91
6.6	Illustration der unterschiedlichen Annahmen für die Parameter	92
6.7	Schadensfunktion nach Modell 1	97
6.8	Schadensfunktion nach Modell 2 und 3	98
6.9	Vergleich der simulierten (Modell 1) und beobachteten Schadensverteilungen Lothar	101
6.10	Vergleich der simulierten (Modell 3) und beobachteten Schadensverteilungen Lothar	102
6.11	Histogramme der modellierten und tatsächlichen Schadenshöhe	103
6.12	Histogramme der modellierten und tatsächlichen Anzahl der betroffenen Gebäude	104
6.13	Histogramme der modellierten und tatsächlichen Durchschnittsschäden	105
6.14	Schadensfunktionen für private Wohngebäude im Vergleich	106
6.15	Schadensfunktionen für private Wohngebäude im Vergleich (log)	107
7.1	Lage der Gemeinden, für die beispielhaft die Risikoberechnung dargestellt ist	110
7.2	Mittlere Gefährdungsfunktion einiger Gemeinden	110
7.3	Schadensfunktionen für 6 Gemeinden für private Wohngebäude	111
7.4	Risikokurven für den Schadensanteil	
7.5	Risikokurven für den Gebäudeanteil	
7.6	Risikokurven für die Gemeinde Metzingen	115
7.7	Schadensrisikokarte Modell 1: Schadensanteil pro Gemeinde	
7.8	Schadensrisikokarte Modell 1: Gebäudeanteil pro Gemeinde	118
7.9	Schadensrisikokarte Modell 2: Schadensanteil pro Gemeinde	119
7.10	Schadensrisikokarte Modell 2: Gebäudeanteil pro Gemeinde	120
7.11	Schadensrisikokarte Modell 3: Schadensanteil pro Gemeinde	
7.12	Schadensrisikokarte Modell 3: Gebäudeanteil pro Gemeinde	
7.13	Histogramme des durchschnittlichen jährlichen Schadens pro privatem Wohngebäude	
7.14	Schadensrisikokarte Modell 1: Durchschnittlicher jährlicher Schaden	
7.15	Schadensrisikokarte Modell 2: Durchschnittlicher jährlicher Schaden	
7.16	Schadensrisikokarte Modell 3: Durchschnittlicher jährlicher Schaden	

Tabellenverzeichnis

2.1	Umrechnung zwischen Beaufort Skala und Windgeschwindigkeiten verschiedener Einheiten	5
2.2	Unterschiedliche Sturmtypen und ihre typische Ausdehnung und Dauer	5
2.3	Schadensverursachende Sturmereignisse in Deutschland 1970-2004	9
2.4	Klassifizierung von Landschaftsflächen in Rauhigkeitslängen nach Wieringa (1992)	12
2.5	Werte für den Böenfaktor G zur Ermittlung der Spitzenböen	15
2.6	Quotienten der Windgeschwindigkeiten über unterschiedlichen Rauhigkeiten	16
2.7	Unterschiedliche Bezeichnungen für den Schadensanteil und den Gebäudeanteil	17
2.8	Verknüpfung zwischen tatsächlichem Schaden an Wohngebäuden und Schadensanteil	18
2.9	Eigengewicht der Dachdeckung nach DIN 1055-1	20
2.10	Methodische Unterteilung der bisherigen Arbeiten zur Abschätzung von Schaden durch Sturmereignisse	23
2.11	Beaufortskala mit Auswirkungen an Land und auf See	24
2.12	Schadensmatrix Hart 1976	25
3.1	Nomenklatur der in 44 Oberflächenklassen unterteilten CORINE Landnutzungsdaten.	40
3.2	Die schwersten Stürme jeden Jahres in Baden-Württemberg in der Reihenfolge des Sturmindex	42
3.3	Übersicht über die Schadensdaten der einzelnen Stürme.	45
41	Annahme der Windgeschwindigkeiten und Staudrücke in der DIN 1055 Ausgabe 1936	51
42	Böenwindreschwindigkeiten in 8 hzw. 16 Meter über Grund	53
4.3	Verteilung der Baujahre des Gehäudebstandes	54
4 4	Verteilung der Postleitzahlengebiete in Baden-Württemberg und in Deutschland auf die 4 Windlastzonen	54
4.5	Verteilung der Postleitzahlengebiete in unterschiedliche Geländehöhenklassen	54
5.1	Durchschnittsschaden pro untersuchtem Wintersturm (Bezugsiahr $= 2000$)	60
5.2	Interpretation des mittleren Geländeindex (<i>Tu</i> m).	73
5.3	Korrelationskoeffizienten zwischen Geländeindizes und Böengeschwindigkeiten	73
5.4	Zuordnung von Rauhigkeitslängen z_0 zu den 44 CORINE Landnutzungsklassen	79
61	Modellnarameter für die Annahme 1	93
6.2	Varelaich Modell 1 und habachtatar Gasantschaden	93 Q/
63	Modellnarameter für die Annahme 2	0/
6.4	Verzleich Modell 2 und beobachteter Gesamtschaden	95
6.5	Modellparameter für die Annahme 3	95
6.6	Vergleich Modell 3 und beobachteter Gesamtschaden	95
6.7	Korrelationskoeffizienten der räumlichen Schadensverteilungen	99
71	Perzentilen des durchschnittlichen jährlichen Schadens	124
7.2	Vergleich von Risiken für die Städte Köln und Stuttgart 1	125
B.1	Schadensrisiko für alle Gemeinden in Baden-Württemberg	139

Symbolverzeichnis

Fläche	m^2
Durchschnittlicher jährlicher Schaden	€
Druckbeiwert	
Durchschnittsschaden	€
Anlauflänge (Fetch)	m
Böenfaktor	
Gebäudeanteil	
jährliche Überschreitenswahrscheinlichkeit	
Rauhigkeitsindex	m
Schadensanteil	
Geländeindex	m
Geschwindigkeitskomponente in x-Richtung	m/s
10-Minuten Mittel der Geschwindigkeit (Grundgeschwindigkeit)	m/s
Böengeschwindigkeit gemittelt über den Zeitraum t	m/s
Schubspannungsgeschwindigkeit	m/s
Schwankungsanteile der 3 Komponenten	m/s
Windgeschwindigkeit	m/s
Maximale Böengeschwindigkeit während eines Sturmereignisses	m/s
Windgeschwindigkeit mit einer jährlichen Überschreitenswahrscheinlichkeit	
von $p = 2\%$. Auch als lokales Windklima bezeichnet	m/s
Rauhigkeitslänge	m
	Fläche Durchschnittlicher jährlicher Schaden Druckbeiwert Durchschnittsschaden Anlauflänge (Fetch) Böenfaktor Gebäudeanteil jährliche Überschreitenswahrscheinlichkeit Rauhigkeitsindex Schadensanteil Geländeindex Geschwindigkeitskomponente in x-Richtung 10-Minuten Mittel der Geschwindigkeit (Grundgeschwindigkeit) Böengeschwindigkeit gemittelt über den Zeitraum t Schubspannungsgeschwindigkeit Schubspannungsgeschwindigkeit Schwankungsanteile der 3 Komponenten Windgeschwindigkeit Maximale Böengeschwindigkeit während eines Sturmereignisses Windgeschwindigkeit mit einer jährlichen Überschreitenswahrscheinlichkeit von $p = 2\%$. Auch als lokales Windklima bezeichnet Rauhigkeitslänge

Indizes

g	Böen	
m	räumlicher Mittelwert	

stdräumliche Standardabweichung

Abkürzungen

CEDIM	Center f	for Disaster	Management	and Risk	Reduction	Technology
-------	----------	--------------	------------	----------	-----------	------------

- CORINE Coordination of Information on the Environment
- DHM DWD
- Digitales Höhenmodell Deutscher Wetterdienst

1. Einleitung

"Der Sturm, der in der Nacht vom 12. zum 13. des Monats in Berlin mit erschreckender Gewalt wüthete, Fenster, ja ganze Dächer aushob, im Thiergarten die stärksten Bäume knickte und entwurzelte, ist mit größerer oder geringerer Heftigkeit über ganz Westeuropa dahingezogen. (...) Aus Münster, Dortmund und Essen liegen beklagenswerthe Meldungen vor. (...) Aus Plauen, Breslau und Dresden wird von gleichen Zerstörungen berichtet, die Zinkbekleidung mancher Dächer im Gewichte einiger Zentner ist mehrere hundert Schritte weit getragen worden."¹

Nicht erst in jüngerer Vergangenheit, sondern bereits vor Jahrhunderten richteten Winterstürme wie der *März-Orkan* im Jahr 1876, dessen Hauptsturmfeld große Teile Westund Mitteleuropas umfasste, große Schäden an Bauwerken und Wäldern an und forderten Dutzende Todesopfer. Angaben zu den genauen Schäden gibt es aus dieser Zeit jedoch nicht, im Gegensatz zu den detaillierten Informationen über die Sturmereignisse in der zweiten Hälfte des 20. Jahrhunderts.

Der Niedersachsen-Orkan im November 1972 kostete 47 Menschen das Leben und verursachte Schäden von über 680 Mio. €.² Ganz Deutschland wurde von Wintersturm Capella im Januar 1976 (27 Todesopfer und 440 Mio. € Gesamtschäden) betroffen. Die Sturmserie 1990 mit den großen Stürmen Daria, Herta, Vivian und Wiebke kostete über 60 Menschen das Leben und verursachte Gesamtschäden von über 3 Mrd. €. Eine weitere Serie im Dezember 1999 mit Anatol, Lothar und Martin verursachte ebenfalls Schäden im Milliardenbereich. Neben diesen Großereignissen traten zusätzlich eine ganze Reihe von kleineren Sturmereignissen mit Schäden bis zu einigen Millionen € auf.

Winterstürme sind demzufolge kein neues Phänomen, von Interesse ist vielmehr, mit welchen Schäden aktuell und in Zukunft durch Stürme zu rechnen ist. In Berz (2005) werden versicherte Schadenspotentiale, also theoretisch mögliche Schäden, von 10 Mrd. \in für ein Jahrhundertereignis und von 30 Mrd. \in für ein Jahrtausendereignis angegeben. Bresch, Bisping & Lemcke (2000) von der Schweizer Rückversicherung rechnen ebenfalls mit Schäden in dieser Größenordnung und geben für Sturmereignisse mit Schäden wie bei Sturm Lothar eine Wiederkehrperiode von 8 bis 10 Jahren an. Diese Angaben basieren auf umfangreichen Schadensstatistiken vergangener Sturmereignisse und demonstrieren die Größenordung der Schäden, mit denen in Versicherungskreisen gerechnet wird.

Als weitere Motivation zur näheren Betrachtung des Risikos von Winterstürmen sei auf Abb. 1.1 verwiesen. In dieser Darstellung der Münchener Rückversicherung (MunichRe 2005) ist eine stetige Zunahme der Schadensereignisse zu erkennen. Als Sturm werden hierbei sowohl Winterstürme als auch Gewitter- und Tornadoereignisse bezeich-

¹ Deutscher Reichsanzeiger, 14. März 1876, Seite 4 (aus Lowinski n.d.)

 $^{^2}$ Alle Schadenssummen sind in Originalwerten angegeben (aus Munich
Re 1999)

Abb. 1.1. Anzahl schadenverursachenden Ereignisse in den Jahren 1974-2004 nach Munich Re (2005)

net. Wenn nach den Gründen der Zunahme der Ereignisse gefragt wird, werden häufig ausschließlich Einflüsse der Klimaänderung genannt. Dabei bedarf es, um die Ursachen herauszufinden, einer gemeinsamen Betrachtung des meteorologischen Sturmereignisses, der Schadensanfälligkeit und der monetären Werte, welche beschädigt werden können. Beispielsweise wird durch einen Anstieg der monetären Werte - bei gleichbleibender Gefährdung und Anfälligkeit - genauso ein Anstieg der Schäden und Ereignisse verursacht wie durch häufigere Sturmereignisse.

Es ist nach Brockhagen (2002) nicht zu belegen, ob die Sturmhäufigkeit in Laufe des 20. Jahrhunderts zugenommen hat, obwohl deutliche Schwankungen innerhalb einzelner Dekaden nachgewiesen werden konnten. Vor diesem Hintergrund rückt die Betrachtung der Schadensanfälligkeit und der Werte in den Vordergrund und es stellt sich die Frage, welchen Rolle diese beiden Faktoren in der Risikokette spielen.

Für eine Risikobetrachtung müssen alle diese Faktoren gleichwertig berücksichtigt werden um den jeweiligen Einfluss bestmöglich wiederzugeben. Das Risiko ist definiert als die Eintrittswahrscheinlichkeit von Auswirkungen (Schäden, Verluste) durch Sturmereignisse und lässt sich formal durch die Gleichung (z.B. Petak & Atkisson 1982)

$$Risiko = Gefährdung * Schadensanfälligkeit * Wert$$
(1.1)

beschreiben. In der Vergangenheit wurde jedoch in überproportionalem Maße die Gefährdung durch Naturkatastrophen bearbeitet; Grundlagenuntersuchungen im Bereich der Schadensanfälligkeit und der Ermittlung der betroffenen Werte sind weniger bekannt.

Bisher existieren keine Angaben darüber, die die räumliche Verteilung der erwarteten Schäden betreffen. Die Frage ist, gibt es Regionen, die dem Schadensrisiko durch Winterstürme stärker ausgesetzt sind als andere Regionen? Prinzipiell treten Winterstürme überall in Deutschland mit unterschiedlichen Häufigkeiten und Intensitäten auf. Für das Schadensrisiko ist aber auch die Schadensanfälligkeit wichtig; d.h. gibt es auch hier räumliche Unterschiede?

Diese und weitere Fragestellungen wurden von der Universität Karlsruhe und dem Geoforschungszentrum Potsdam (GFZ) erkannt und es wurde das Centre for Disaster Management and Risk Reduction Technology (CEDIM) gegründet. Das Ziel dieser gemeinschaftlich interfakultativ betriebenen Einrichtung ist es, Risiken zu erkennen um geeignete Maßnahmen zur Warnung, Vermeidung oder Reduzierung zu treffen. Als Grundlage wird dazu die Abschätzung des aktuellen Risikos in Deutschland benötigt, welche im ersten CEDIM-Projekt "Risikokarte Deutschland" für die Naturkatastrophen Wintersturm, Erdbeben und Hochwasser durchgeführt wurde. Im Rahmen dieses Projektes wurde die hier vorliegende Arbeit als Teilprojekt "Vulnerabilität und Risiko von Winterstürmen" erstellt. Das eng mit dieser Arbeit verknüpfte Teilprojekt "Gefährdung durch Winterstürme" wurde am Institut für Meteorologie und Klimaforschung der Universität Karlsruhe/ Forschungszentrum Karlsruhe bearbeitet.

Das Hauptziel dieser Arbeit ist die Quantifizierung des aktuellen Sturmschadensrisikos für Wohngebäude für alle Gemeinden in Baden-Württemberg. An Wohngebäuden entsteht ein großer Teil der direkten Schäden in Zusammenhang mit Sturmereignissen, und zudem ist die Datengrundlage sehr gut. In dieser Arbeit wird daher insbesondere auf die Entwicklung eines Modells zur Simulation der Schadensanfälligkeit (in Folgenden auch als Vulnerabilität bezeichnet) des aktuellen Gebäudebestandes eingegangen.

In Kapitel 2 wird ausführlich auf die Grundlagen der in dieser Arbeit benötigten Teilgebiete eingegangen. Es wird die Entstehung und Auswirkungen von Winterstürmen, der bodennahen Winde und die Ursachen von Schäden an Gebäuden durch Sturmereignisse erläutert. Zudem werden die z.Z. gängigen Methoden zur Simulation von Sturmschäden dargestellt und bewertet. In Kapitel 3 werden die verwendeten Daten beschrieben. In Kapitel 4 wird die für die Windlastannahmen maßgebliche Norm DIN 1055 vorgestellt und bezüglich der Anwendung in Deutschland ausgewertet. Um die Parameter zu identifizieren, welche für die Erstellung des Modells zur Simulation von Schäden benötigt werden, werden Schadensdaten vergangener Sturmereignisse in Kapitel 5 untersucht. Es wird dabei vor allem auf die meteorologischen und topographischen Einflüsse eingegangen. Die Herleitung, Kalibrierung und Validierung des Schadensmodells wird in Kapitel 6 beschrieben. In Kapitel 7 wird das Schadensrisiko für Wohngebäude für alle Gemeinden berechnet und in Risikokarten dargestellt. Abschluss der Arbeit bildet Kapitel 8 mit der Zusammenfassung.

2. Grundlagen

2.1 Sturmereignisse

Sturmereignisse sind meteorologische Vorgänge zum Ausgleich atmosphärischer Druckunterschiede, bei denen Windgeschwindigkeiten am Boden mit Sturmstärke vorkommen. Die Sturmstärke ist hierbei definiert durch Windgeschwindigkeiten >17m/s (=62km/h) im 10-Minuten Mittel in 10 Meter Höhe über dem Boden. Dies entspricht der Windstärke 8 auf der 12-skaligen Beaufort Skala. Einzelne Windböen können bei dieser Windstärke jedoch schon sehr viel stärker sein. In Tab. 2.1 sind die Windstärken der Beaufort Skale mit Windgeschwindigkeiten der gängigsten Einheiten aufgelistet.

Tab. 2.1. Umrechnung zwischen Beaufort Skala (Bft), Windgeschwindigkeiten mit den Einheiten [m/s], [km/h], und [kn] sowie den entsprechenden Staudrücken in $[kN/m^2]$

Bft	4 5	6	7 8	9	10	11	12						
m/s	5	10	15	20	25	30	35	40	45	50	60	80	100
km/h	18	36	54	72	90	108	126	144	162	180	216	288	360
kn	9,7	19,4	29,2	$38,\!9$	$48,\! 6$	58,3	68	$77,\!8$	87,5	97,2	$116,\! 6$	$155,\!5$	$194,\!4$
kN/m^2	$0,\!02$	0,06	$0,\!14$	$0,\!25$	$0,\!38$	$0,\!55$	0,75	$0,\!98$	$1,\!24$	$1,\!53$	$2,\!21$	$3,\!92$	$6,\!13$

Das Auftreten von Windgeschwindigkeiten mit Sturmstärke lässt sich nach der Art der Entstehung und nach den räumlichen und zeitlichen Skalen unterscheiden (Tab. 2.2). Die größte räumliche Ausdehnung aller Sturmtypen besitzen extratropische Stürme mit über 1000km (Kunz & Hauck 2005). Die Ausdehnung von Hurrikanen beträgt mehrere hundert Kilometer; Fönstürme, Gewitterstürme und Tornados sind sehr viel kleinräumigere Ereignisse. Da diese Ereignisse nicht ortsfest sind (bis auf Fönstürme), ist zusätzlich zur Ausdehnung die Länge der Zugbahnen von Bedeutung, die ein Vielfaches der Ausdehnung betragen kann.

Tab. 2.2. Unterschiedliche Sturmtypen und ihre typische Ausdehnung und Dauer

Bezeichnung	Ausdehnung	Dauer
Extratropische Stürme (Winterstürme)	1000-2000 km	Mehrere Tage
Tropische Wirbelstürme (Hurrikane)	500 km	Wochen
Fönstürme, regionale Stürme	50 km	Tage
Gewitterstürme	2-20km	Stunden
Tornados	0, 1-1km	Minuten

6 2. Grundlagen

Gute Beschreibungen zur Entstehung und den Charakteristiken von Stürmen finden sich beispielsweise in Häckel (1999), Kraus & Ebel (2003) und Kunz & Hauck (2005). Im Folgenden wird ausführlich auf die Entstehung von extratropischen Stürmen eingegangen, da sie für die vorliegende Arbeit von besonderer Relevanz sind. Die weiteren Sturmtypen werden kurz im Hinblick auf schadensverursachende, meteorologische Größen gestreift.

2.1.1 Extratropische Stürme

Extratropische Stürme sind extreme Vertreter der großskaligen Tiefdruckgebiete der mittleren Breiten. Tiefdruckgebiete entstehen durch das Aufeinandertreffen von Luftmassen unterschiedlicher Temperatur und Feuchte. Dies erfolgt bei den für Europa interessierenden Tiefdruckgebieten entlang der Polarfront über dem Atlantischen Ozean, die die kalte, trockene Polarluft von der warmen, feuchten subtropischen Luft trennt.

Durch sogenannte Wellenströmungen des *jet streams* wird eine Wellenbildung an der Polarfront am Boden erzeugt, so dass ein gegen den Uhrzeigersinn (zyklonal) rotierendes System entsteht (Abb. 2.1b). Hierbei wird warme Luft von Süden in das Zentrum des entstehenden Wirbelzentrums hineingezogen und somit durch deren geringere Dichte der Luftdruck weiter abgesenkt. Durch die zyklonale Drehung wird die Polarfront in zwei Teilzonen aufgeteilt: eine Warmfront an der Vorderseite und eine Kaltfront an der Rückseite (Abb. 2.1c). Solange warme Luftmassen in das Zentrum des Tiefs gelangen können, verstärkt sich das Tiefdruckgebiet, der Luftdruck sinkt und Temperaturgegensätze zwischen den Luftmassen verstärken sich. Im Laufe der weiteren Entwicklung holt die schnellere Kaltfront die Warmfront ein und bilden eine gemeinsame Front (Okklusion), die Warmluft gelangt nicht mehr ins Zentrum und das Tief schwächt sich ab (Abb. 2.1d). Nach Untersuchungen von Lozano, Devoy, May & Andersen (2004) beträgt die durchschnittliche Lebenszeit dieser Tiefdruckgebiete 4 bis 5 Tage.

Am Rand von großen Tiefdruckgebieten können sich zudem kleinere Tiefs (Rand- oder Mesozyklonen) bilden (Kraus & Ebel 2003). Diese zeigen die gleiche Charakteristik wie die großen Gebiete, die Bewegung wird jedoch maßgeblich von ihnen gesteuert.

Abb. 2.1. Lebenszyklus einer Idealzyklone (aus Kunz & Hauck 2005)

Eine Zyklogenese findet in der Regel alle zwei bis fünf Tage statt und meist ziehen sie in nördlichen Zugbahnen über Europa hinweg ohne besonders wahrgenommen zu werden. Nur unter bestimmten Voraussetzungen entwickeln sich aus diesen Tiefdruckgebieten für Mitteleuropa gefährliche Orkane. Prinzipiell gilt: Je feuchter und wärmer die Luftmassen (also auch die Temperaturunterschiede zwischen Kalt- und Warmluft), desto mehr Energie steht dem System zur Verfügung. Zusätzlich kann die Interaktion mit der Strömung in höheren Luftschichten (*jet stream*) und mit Gebieten mit großer Wirbelhaftigkeit (*vorticity*) zur Verstärkung beitragen. Damit das System überhaupt nach Mitteleuropa ziehen kann, muss die großräumige Wetterlage (Azorenhoch, Islandtief) die Zugbahn begünstigen.

Extratropische Stürme (Tiefdruckgebiete) werden auch Winterstürme genannt, da sie meist von Oktober bis April auftreten. Im Winter sind die Temperaturunterschiede zwischen Äquator und Polargebieten besonders groß, so dass sich häufiger extreme Systeme bilden können. Ein weiterer Einfluss, der zur Verstärkung von Tiefdruckgebieten führen kann, ist die Nordatlantische Oszillation (NAO), welche die Schwankung der Druckverhältnisse zwischen diesen Gebieten angibt (Glowienka-Hense 1990, Klawa 2001). Nach Klawa (2001) ist bei einem stark positiven NAO-Index, also großen Druckunterschieden, eine erhöhte Sturmhäufigkeit in Mitteleuropa zu beobachten.

Der Verlauf der meteorologischen Größen beim Durchzug eines Wintersturmes soll exemplarisch anhand von Stationsmessungen des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe während Orkan Lothar verdeutlicht werden. In Abb. 2.2 sind der Luftdruck und die über 10 Minuten gemittelten Windgeschwindigkeiten (in ca. 60m Höhe) von 0 bis 24 Uhr am 26.12.1999 aufgetragen. Der Luftdruck sinkt über einen Zeitraum von 12 bis 14 Stunden mit Raten von bis zu 8hPa/h bis gegen 11 Uhr mittags der niedrigste Druck erreicht ist. Erst kurz vor Erreichen dieses Drucktiefpunktes steigen die Windgeschwindigkeiten schlagartig an und bleiben über 3 bis 4 Stunden auf Orkanstärke, während der Luftdruck wieder deutlich zunimmt. Nach Durchzug des Tiefs nehmen die Windgeschwindigkeiten wieder langsam ab.

Abb. 2.2. Verlauf des Luftdrucks und der mittleren Windgeschwindigkeiten in Karlsruhe während Orkan Lothar am 26.12.1999

8 2. Grundlagen

2.1.2 Weitere schadensverursachende Sturmereignisse

Tropische Wirbelstürme. Tropische Wirbelstürme unterscheiden sich in ihrer Entstehung, ihrem Verlauf und in ihren Auswirkungen von den extratropischen Winterstürmen. Sie werden nach dem Gebiet ihres Auftretens Hurrikane (Atlantik und Ostpazifik), Taifune (Westpazifik) oder Zyklone (Indischer Ozean, Australien) genannt. Tropische Wirbelstürme entstehen ausschließlich über Ozeanen und benötigen eine Reihe von Voraussetzungen für ihre Entstehung. Die wichtigsten sind: mind. $26^{\circ}C$ Oberflächentemperatur des Wassers, geringe vertikale Windscherung, labile atmosphärische Schichtung und eine hinreichend große Entfernung vom Äquator (Pielke 1990). Unter diesen Bedingungen formiert sich ein Wirbelsystem, das aus einem wolkenfreiem Auge von etwa 20-50km Durchmesser und aus sich zyklonal drehenden Wolkenbänder von 500-2000km besteht. Der Luftdruck innerhalb dieses Systems kann bis unter 900hPa sinken.

Die Zugbahn des großräumigen Wirbelsytems an sich ist relativ langsam, die hohen Windgeschwindigkeiten kommen durch die zyklonale Drehung zustande. Je nach Ausbildung des Systems treten Geschwindigkeiten (1-Minuten Mittel) bis über 70m/s auf. Solange das System über warmen Wasser ist, kann es sich verstärken, an Land fällt es durch die fehlende Energiezufuhr rasch zusammen und die Windgeschwindigkeiten nehmen ab. Schadensverursachend sind die hohen Windgeschwindigkeiten, der extreme Niederschlag und die Sturmflut (*storm surge*), die an Küsten Flutwellen von bis zu 6m Höhe erzeugt und große Teile der Küstenregion überschwemmen kann. Zusätzlich können Tornados innerhalb des Wirbelsystems auftreten.

Lokale Stürme, Gewitterstürme. Lokale Vertreter von Sturmereignissen sind Gewitterstürme. Der Durchmesser der Stürme reicht typischerweise von 2 - 10km bei einzelnen Gewitterwolken und bis zu 300km bei Mesoscale Convective Complexes, die viele einzelne Gewitterstürme enthalten (Kraus & Ebel 2003). Sie entstehen meist in den Sommermonaten bei labiler atmosphärischer Schichtung durch die Hebung von bodennahen feucht-warmen Luftschichten in größere Höhen. Die hierbei ausgelösten starken Aufwinde ermöglichen die Bildung von Regentröpfchen und Eisteilen, die sich solange in der Atmosphäre vergrößern können, bis sie durch ihr Gewicht in einem intensiven so genannten downdraft zu Boden fallen. Durch diese Abwärtsbewegung aus Luftteilchen und Niederschlag werden am Boden örtliche Windgeschwindigkeiten bis in Orkanstärke erreicht.

Tornados. Tornados treten ausschließlich zusammen mit konvektiver Bewölkung (Gewittern) auf und beschreiben kleinräumige Wirbelstürme, deren meist senkrechter Schlauch von der Basis von Gewitterwolken bis zum Erdboden herabreicht (Wegener 1917). Tornados können Durchmesser von 10 m bis z.T. über 1 km und tangentiale Windgeschwindigkeiten am Boden von bis zu 140m/s aufweisen. Die Lebensdauer liegt durchschnittlich im Minutenbereich, so dass bei diesen Stürme nur sehr kleinräumig extreme Windgeschwindigkeiten auftreten.

Regionale Stürme. Unter regionalen Stürmen sind beispielsweise Föhnstürme in Bergregionen zu verstehen. Diese können unter bestimmten Voraussetzungen durch die Überströmung von Gebirgen entstehen und können in im Lee der Gebirge liegenden Tälern Sturm- und Orkanstärke erreichen (Kuhn 1989). Solche Fallwinde treten in den meisten Bergregionen der Erde unter unterschiedlichen Namen (Bora, Chinook) auf.

9

2.1.3 Auftreten von Sturmereignissen in Deutschland

In Deutschland treten grundsätzlich alle Sturmereignisse mit Ausnahme der Hurrikane auf. Im Folgenden interessieren nur die schadensverursachenden Ereignisse. Statistiken über die rein meteorologischen Phänomene finden sich u.a. in Dotzek (2004). In Tab. 2.3 ist die Verteilung aller schadensverursachenden Sturmereignisse der letzten 35 Jahre auf die unterschiedlichen Sturmtypen aufgelistet (aus MunichRe 2005). Die häufigsten Ereignisse sind Unwetter gefolgt von Winterstürmen. Winterstürme verursachen jedoch sowohl die meisten Todesfällen wie auch die größten Schäden. Regionale Stürme und Tornados verursachen zwar teilweise große Einzelschäden, tragen aber kaum zum Gesamtschaden bei.

Tab.	2.3.	Schadensverursachende	Sturmereignisse i	in Deutsch	land in	den	Jahren	1970-2004	nach
GeoRi	isikoF	orschung der Munich Re	2005 (* in Origina	alwerten)					

Sturmtyp	Anzahl	Todesfälle	Versicherter	Volkswirtschaftlicher
	Ereignisse		Schaden [*] [Mrd.€]	Schaden [*] [Mrd. \in]
Winterstürme	108	400	4,95	$9,\!18$
Unwetter	174	120	1,87	4,42
Regionale Stürme	30	16	0,05	0,34
Tornados	30	16	-	$0,\!17$

Der Schadensstatistik zufolge würde es nun nahe liegen, die Schäden und das Risiko von Winterstürmen und Unwettern zu untersuchen. Aus folgenden Gründen werden in dieser Arbeit jedoch ausschließlich Winterstürme berücksichtigt:

- Unwetter sind Ereignisse mit relativ kleiner Ausdehnung, das bedeutet, dass die meisten dieser Stürme nicht von Messstationen erfasst werden (der Deutsche Wetterdienst betreibt nur etwa 200 Stationen). Es stehen somit keine meteorologischen Daten zur Verfügung.
- Der Schaden einzelner Winterstürme übertrifft denjenigen von einzelnen Unwettern um das ca. 5-fache, somit sind diese im Hinblick auf Großschäden relevanter.

2.2 Die atmosphärische Grenzschicht

Die Windgeschwindigkeit in Bodennähe ist maßgeblich beeinflusst durch die unterschiedliche Ausprägung der Erdoberfläche. Der Antrieb des Windes erfolgt in der freien unbeeinflussten Atmosphäre und resultiert dort in den höchsten Windgeschwindigkeiten, dem geostrophischen Wind. Mit abnehmender Höhe erhöht sich der Einfluss der Erdoberfläche durch Reibung; die Windgeschwindigkeiten nehmen ab und die Turbulenz nimmt zu. Die Dicke dieser Grenzschicht ist abhängig vom thermischen Schichtungszustand und der Rauhigkeit der Erdoberfläche. Bei neutraler (=adiabater) Schichtung beträgt die Dicke δ etwa 1km. Die Wechselwirkung mit dem Boden bewirkt einen schnellen Austausch von Energie, Masse und Impuls, insbesondere durch turbulente Transportvorgänge.

Die Windgeschwindigkeit dieser Grenzschichtströmung setzt sich an einer beliebigen Stelle aus den Komponenten u, v, w in Richtung der drei Koordinatenachsen x, y, z

nach

zusammen. Hierbei können die Geschwindigkeitsanteile in einen zeitlichen Mittelwert \bar{u} und eine diesem Mittelwert überlagerte turbulente Schwankungsgröße u' unterteilt werden. Definiert man die x-Achse als Hauptströmungsrichtung, dann nehmen die zeitlichen Mittelwerte der lateralen Geschwindigkeit v und vertikalen Komponente w den Wert Null an, jedoch bleibt der Schwankungsanteil dieser Komponenten erhalten. Demnach lässt sich die Windgeschwindigkeit V schreiben als

$$V = [\bar{u} + u', v', w']^T.$$
(2.1)

Die atmosphärische Grenzschicht lässt sich in die viskose Unterschicht, die Prandtl-Schicht und die Ekman-Schicht unterteilen (Abb. 2.3).

In der nur wenige Millimeter starken **viskosen Unterschicht** bestimmen molekulare Vorgänge den turbulenzfreien Austausch von Transportgrößen. Diese Schicht muss bei der Betrachtung von Austauschvorgängen zwischen Atmosphäre und Land bzw. Meer berücksichtigt werden, hat aber keinen Einfluss auf die interessierenden dynamischen Größen.

Die sogenannte **Prandtl-Schicht** erstreckt sich in eine Höhe von etwa 50 bis 100m. In dieser Schicht ist der turbulente Impulsfluss bzw. die turbulente Schubspannung höhenkonstant, d.h.

$$-\overline{w'u'} = \frac{\tau}{\bar{\rho}} = \text{konstant.}$$

Die Schubspannung in der Prandtl-Schicht ist somit gleich ihrem Wert am Erdboden (τ_0 bzw. $\overline{w'u'_0}$) in der Höhe z_0 (Rauhigkeitshöhe). Für den Ausdruck $\overline{w'u'_0}$ wird die sogenannte Schubspannungsgeschwindigkeit u_* verwendet:

$$u_*^2 = -\overline{w'u'_0} = \frac{\tau_0}{\bar{\rho}} \tag{2.2}$$

Die Reibung bestimmt hier maßgeblich die Dynamik der Atmosphäre, der Einfluss der Coriolis-Kraft ist in diesen Höhen noch gering. Die Prandtl-Schicht lässt sich somit durch die Zunahme der Windgeschwindigkeiten kennzeichnen, die an der Obergrenze bis auf 70 - 80% des geostrophischen Windes ansteigen.

Die sog. Ekman-Schicht erstreckt sich bis in Höhen von ein bis zwei Kilometern. Die turbulenten Flüsse nehmen in dieser Schicht ab und verschwinden an ihrer Obergrenze völlig, d.h. in der freien Atmosphäre herrscht eine annähernd gleichmäßige laminare Strömung vor. Durch den Einfluss der Coriolis-Kraft dreht sich der Wind von der Richtung des geostrophischen Windes in die Richtung des Bodenwindes, während er betragsmäßig nur gering abnimmt.

Für die weitere Betrachtung der Auswirkungen von Sturmereignissen auf technische und natürliche Strukturen sind vorrangig die Eigenschaften der Prandtl-Schicht von Bedeutung, da sich die meisten dieser Strukturen in Höhen von 10 - 50m erstrecken. Die Verhältnisse in der Prandtl-Schicht werden neben der thermischen Schichtung der Atmosphäre, die im Falle von Starkwind als adiabatisch (neutrale Schichtung) angenommen werden kann (Schroers & Lösslein 1983), maßgeblich von der topographischen Beschaffenheit der Erdoberfläche beeinflusst. Dabei spielen vor allem die unterschiedlichen Landnutzungsarten (Oberflächenrauhigkeit) und die Form des Geländes (Orographie) eine Rolle. In ca. 10m Höhe über Grund rufen diese Einflüsse bei konstantem geostrophischen Wind sehr unterschiedliche Windgeschwindigkeiten hervor, was vor allem im Hinblick auf die bei Starkwind auftretenden Schäden von Bedeutung ist.

2.2.1 Einfluss der Oberflächenrauhigkeit

Für die Beschreibung der Windgeschwindigkeiten in der Prandtl-Schicht gibt es sowohl das in der Meteorologie übliche logarithmische Windprofil als auch das meist im Ingenieurwesen verwendete Potenzprofil. Beide beschreiben den vertikalen Verlauf der mittleren Windgeschwindigkeiten über unterschiedlich rauhen Oberflächen. In dem interessierenden Bereich bis 50m Höhe sind beide Profile annähernd gleichwertig, jedoch wird im logarithmischen Windprofil direkt ein Parameter zur Beschreibung der Beschaffenheit der Erdoberfläche berücksichtigt; deshalb wird in dieser Arbeit dieses Profil verwendet.

Mithilfe des Gradientenansatzes $\overline{w'u'} = -K_m \frac{\partial \bar{u}}{\partial z}$ und des Mischungswegansatzes $K_m = l^2 |\frac{\partial \bar{u}}{\partial z}|$ (siehe Etling 2002) ergibt sich aus Gl. (2.2) für den Gradienten des Windes

$$\frac{\partial \bar{u}}{\partial z} = \frac{u_*}{l}.\tag{2.3}$$

Der Mischungsweg l ist ein Längenmaß für die Durchmischung in turbulenten Strömungen und kann nach Prandtl zu $l(z) = \kappa z$ geschrieben werden, wobei κ die von Kármánsche Konstante ist. Der Wert κ schwankt je nach Messungen und Autoren, Tennekes (1973) gibt einen Bereich um 0, 33 bis 0, 4, Etling (2002) zwischen 0, 36 und 0, 45 an. Im Windingenieurwesen wird oft der Wert $\kappa = 0.4$ (z.B. Sockel 1984, Simiu & Scanlan 1986) verwendet.

Mit den Randbedingungen $z = z_0$ und $\bar{u}(z_0) = 0$ am Boden lässt sich Gl. (2.3) integrieren und nach der mittleren Geschwindigkeit \bar{u} auflösen:

$$\bar{u}(z) = \frac{u_*}{\kappa} \ln(\frac{z}{z_0}) \tag{2.4}$$

Diese Gleichung wird das logarithmische Windprofil genannt und hängt nur von den Parametern u_* und z_0 ab. Die sogenannte Rauhigkeitslänge z_0 bestimmt die Profilform und ist für verschiedene Oberflächenbeschaffenheiten der Erde in Tab. 2.4 angegeben.

Die Rauhigkeitslänge ist hierbei nicht identisch mit der Höhe der Hindernisse, sondern ist die Höhe, bei der die Geschwindigkeit theoretisch gleich 0 ist. Die Schubspannungsgeschwindigkeit u_* wird üblicherweise aus der Messung der Geschwindigkeit in der Höhe

12 2. Grundlagen

z_0 [m]	Beschreibung der Landschaft
0,0002	Offene See, große Eisflächen
0,005	Landschaft ohne nennenswerte Hindernisse, bsp. Strände
0,03	Landschaft mit wenig Vegetation (Gras) und wenigen weitverteilten Hindernissen
$0,\!10$	Kultivierte Landschaftsflächen mit Feldern und wenigen Hindernissen
0,25	Landschaft mit hohen Feldfrüchten und einzelnen Hindernissen
0,5	Landschaft mit vielen Hindernissen (Farmen, kleine Wäldchen)
$1,\!0$	Ganz bedeckte Landschaften wie Dörfer, Wälder
> 2	Stadtzentren mit großen Gebäuden, hohe Wälder mit Lichtungen

Tab. 2.4. Klassifizierung von Landschaftsflächen in Rauhigkeitslängen nach Wieringa (1992)

 $z = 2,71z_0$ ($e \approx 2,71$) erhalten. Die Gl. (2.4) wird zu $\bar{u}(2,71z_0) = u_*/\kappa$ und es lässt sich damit die Schubspannungsgeschwindigkeit bestimmen.

Vollständig ausgebildete Windprofile setzen eine ausreichend lange Anlaufstrecke mit homogener Rauhigkeit voraus. In Abb. 2.4 ist die Entstehung einer neuen Grenzschicht nach einem Rauhigkeitssprung dargestellt. Das Gleichgewicht innerhalb dieser Grenzschicht bildet sich von der Bodenseite her aus. Nach Wieringa (1992) ist eine Anlauflänge F mit homogener Oberflächenrauhigkeit z_0 von

$$F \approx 2z_0 \left(\frac{10z}{z_0} \left[\ln \frac{10z}{z_0} - 1 \right] + 1 \right)$$
(2.5)

nötig, um bis in die Höhe z ein Gleichgewichtsprofil zu erzeugen. Als Faustregel für die Anlauflänge gilt $F \approx 100$ bis 150 Mal die Beobachtungshöhe z (z.B. Taylor 1962). In realem Gelände in Mitteleuropa sind dermaßen große zusammenhängende Flächen jedoch selten - für ein ausgebildetes Profil bis 10m Höhe ist je nach z_0 eine Anlauflänge von 500 bis 1500m erforderlich - ; es muss somit von Mischprofilen ausgegangen werden.

Für ebenes, flaches Gelände, für das dieser Ansatz Gültigkeit hat, lässt sich somit die Verteilung der Windgeschwindigkeit in der Höhe für unterschiedliche Rauhigkeiten auftragen (Abb. 2.5). Die Profile wurden für eine Gradientengeschwindigkeit von $\bar{u}_{grad} = 60m/s$ in und einer Anlauflänge von F = 100km berechnet. Beim Mischprofil wechseln sich die Rauhigkeiten ab, die Übergangsbereiche der Teilprofile wurden vernachlässigt. In 10*m* Höhe liegen die Grenzgeschwindigkeiten für die homogenen Rauhigkeiten bei $\bar{u}_{(z_0=0,5)} = 24m/s$ und $\bar{u}_{(z_0=0,005)} = 37m/s$, während die resultierenden Geschwindig-

Abb. 2.4. Ausbildung der Prandtl-Schicht nach einem sprunghaftem Wechsel der Oberflächenrauhigkeit

Abb. 2.5. Logarithmische Windprofile über unterschiedlichen Rauhigkeiten (Profile mit homogener Rauhigkeit und Mischprofile) nach einer Anlauflänge von 100km

keiten des aus diesen beiden Rauhigkeiten gebildeten Mischprofils dazwischen liegen. Die Rauhigkeitsverteilung in Anströmrichtung hat also einen wesentlichen Einfluss auf das Profil, wobei der Einfluss der näheren Umgebung wesentlich stärker zu bewerten ist als der weiteren Umgebung. Der praktische Unterschied in der Windgeschwindigkeit für Höhen bis 10m hängt maßgeblich von den Rauhigkeiten des letzten Kilometers ab.

2.2.2 Einfluss der Orographie

Als Orographie wird die reine Geländeform ohne Berücksichtigung der Oberflächenbeschaffenheit bezeichnet. Der Einfluss der Orographie des realen Geländes auf das Geschwindigkeitsfeld lässt sich nicht analytisch angeben. Dies liegt vor allem daran, dass reales Gelände sehr komplex ist und sehr unterschiedliche Strömungseffekte auftreten können. Neben der natürlichen Geschwindigkeitserhöhung durch eine größere Höhe (Windprofil) ändert sich die Geschwindigkeit zusätzlich durch unterschiedliche Um- oder Überströmung und Kanalisierungs- sowie Ablösungseffekte (Abb. 2.6). Vor allem in steilerem Gelände sind diese Effekte stark nichtlinear. Zudem bestimmt die Temperaturschichtung der Atmosphäre welche Art von Umströmung vorliegt.

Für einfachere Geometrien wie Hügel (2- oder 3-dimensional) und Geländestufen gibt es eine Reihe von Messungen (Britter, Hunt & Richards 1981, Ruck & Adams 1991, Carpenter & Locke 1999) und theoretischen Ansätzen (Jackson & Hunt 1975, Lemelin & Surry 1988) zur Berechnung des Verlaufes der Strömungsgrößen. Die maximalen Geschwindigkeitsüberhöhungen werden auf der Hügelspitze erreicht und werden maßgeblich durch charakteristische Eigenschaften wie das Verhältnis Höhe zu Länge (bzw. Breite) des Hügels beeinflusst. Bei unterschiedlichen Geländekonfigurationen wurden dabei Werte bis zum 2fachen der ungestörten Anströmung gemessen.

Abb. 2.6. Unterschiedliche Effekte der Hügelumströmung, die zur Änderung der Geschwindigkeitsverteilung führen a.) Zunahme der Geschwindigkeit in der Höhe b.) Kanalisierung der Strömung c.) Um- oder Überströmung von Hindernissen d.) Ablösung der Strömung

Auch im Eurocode Teil 2.4 (Eurocode 1991) und in der DIN 1055 (2005) werden Überhöhungsfaktoren für die Umströmung von Geländestufen und Hügel angegeben. Es wird hierzu ein Topographiekoeffizient c_t , der die Geschwindigkeitsüberhöhung angibt, in Abhängigkeit der Steigung Φ , der Länge des Hügels L, des Abstands zur Spitze x und der Höhe über Grund z berechnet:

$$c_t = \begin{cases} 1 & \text{für} \quad \Phi < 0,05\\ 1 + 2s\Phi & \text{für} \quad 0,05 \le \Phi < 0,3\\ 1 + 0,6s\Phi & \text{für} \quad 0,3 \le \Phi \end{cases}$$
(2.6)

Der Faktor s ist dabei als Funktion von L, x und z aus Tabellen zu entnehmen. Es sind demnach für steile Hänge Geschwindigkeitsüberhöhungen von ca. 48% im Vergleich zur ungestörten Anströmung möglich. Für Gebiete, die hinter einem Kamm oder einer Bergspitze mit mittleren Steigungen liegen, ist mit 10 bis 20% höheren Windgeschwindigkeiten zu rechnen.

Nach Gerth & Christoffer (1994) wird das Jahresmittel in Tälern um das 0,75fache reduziert, an Kuppen- und Kammlagen hingegen findet sich eine Erhöhung um das 1,15 bis 1,41fache.

Ein allgemeingültiger Zusammenhang zwischen Geländeform und Strömungsgrößen ist z.Z. noch nicht genauerer quantifizierbar, für diese Arbeit reichen jedoch die hier gemachten Aussagen aus.

2.2.3 Turbulenz und Böigkeit des Windes

Das logarithmische Windprofil und die Überhöhungsfaktoren für Orographie gelten ausschließlich für die mittleren Windgeschwindigkeiten \bar{u} . Für die höchsten Belastungen sind jedoch vielmehr die Schwankungsanteile (Turbulenz) und daraus folgend die dazugehörigen maximalen Windgeschwindigkeiten von Interesse. Ein typisches Frequenzspektrum für bodennahen Wind lässt sich nach Davenport (1965) in einen makrometeorologischen und mikrometeorologischen Bereich aufteilen (Abbildung 2.7). Sie entsprechen dem großräumigen Wettergeschehen bzw. der örtlichen Turbulenz. Das Maximum in dem interessierenden mikrometeorologischen Bereich liegt bei Frequenzen um 1*min* und entspricht der von der Bodenrauhigkeit erzeugten Turbulenz.

Abb. 2.7. Spektrum des horizontales Windes in der Nähe des Bodens, nach Davenport (1965)

Zur Bestimmung der Böigkeit in Bodennähe wird ein Zusammenhang zwischen der mittleren Windgeschwindigkeit und der maximalen, über einen sehr kurzen Zeitraum gemittelten Windgeschwindigkeit verwendet. Für die Spitzenböen wird mit einer Mittelungszeit von 2 - 3s gerechnet. Die Böengeschwindigkeit wird somit aus der mittleren Windgeschwindigkeit und einem Böenfaktor G berechnet.

$$\hat{u}(t, z, z_0) = G(t, 10min, z, z_0)\bar{u}(z, z_0)$$
(2.7)

Dieser Faktor G ist von der Höhe über dem Boden z, der Oberflächenrauhigkeit z_0 und der Mittelungszeit t der Böen abhängig. Die Ermittlung von Böenfaktoren über unterschiedlichem Gelände ist Bestandteil vieler Arbeiten (z.B. Wieringa 1973, Schroers, Lösslein & Zilch 1990, Ashcroft 1994). In Tab. 2.5 sind einige Werte für Böenfaktoren angegeben. Es fällt auf, dass die Angaben der verschiedenen Autoren teilweise stark streuen, was somit in einer Unter- oder Überschätzung der Böengeschwindigkeiten resultieren kann.

In Kap. 2.2.1 wurde gezeigt, dass die mittleren Windgeschwindigkeiten über rauhem Gelände kleiner sind als über glattem Gelände. Nach Tab. 2.5 ist bei rauhem Gelände durch die größere mechanische Turbulenzerzeugung jedoch der Böenfaktor größer. Es reduziert sich somit der Unterschied der Böengeschwindigkeiten über unterschiedlichem Gelände. Hält man sich an die Vorgaben zu den Geschwindigkeitsprofilen in der DIN 1055

	-	-			
$z_0[m]$	0,003	$0,\!01$	$0,\!03$	0,1	$0,\!3$
Wieringa (1973) $10m/s$	$1,\!31$	$1,\!36$	$1,\!43$	$1,\!54$	1,70
Wieringa (1973) $30m/s$	$1,\!25$	$1,\!29$	$1,\!35$	$1,\!44$	$1,\!58$
Schroers et al. (1990)			$1,\!48$		
Ashcroft (1994)	$1,\!36$	$1,\!42$	$1,\!48$	$1,\!58$	1,74
DIN 1055 (2005)		$1,\!36$	$1,\!45$		$1,\!65$

Tab. 2.5. Werte für den Böenfaktor G zur Ermittlung der Spitzenböen (3s) in 10m Höhe über unterschiedlich rauhen Gelände
oberflächen mit Rauhigkeitslängen z_0

(2005), ergeben sich die in Tab. 2.6 angegebenen Quotienten der mittleren und Böengeschwindigkeiten bezogen auf die jeweilige Geschwindigkeit bei $z_0 = 1$ für unterschiedliche Rauhigkeiten z_0 . Man erkennt, dass bei konstantem Gradientenwind beispielsweise

Tab. 2.6. Quotienten der Windgeschwindigkeiten über der Rauhigkeit z_0 und der Windgeschwindigkeit über $z_0 = 1$ nach DIN 1055 Teil 4

$z_0 [m]$	$\frac{\bar{u}(z_0)}{\bar{u}(z_0=1)}$	$\frac{\hat{u}(z_0)}{\hat{u}(z_0=1)}$
0,01	1,84	1,4
$0,\!05$	$1,\!56$	1,26
$0,\!3$	1,2	$1,\!10$
1	1	1

die mittleren Geschwindigkeiten über Grasland ($z_0 = 0,05$) mehr als 1,5 Mal so groß sind wie über städtischem Gebiet. Der Unterschied bei den Böenwindgeschwindigkeiten ist hierbei jedoch geringer, er beträgt das 1,26fache.

Die hier getroffenen Aussagen gelten für ebenes, flaches Gelände. Durch die orographische Gliederung des Geländes sind ebenfalls Unterschiede in der Turbulenz zu erwarten.

2.3 Schäden durch Sturmereignisse

In diesem Abschnitt werden die Erkenntnisse über das Auftreten und die Arten von Sturmschäden zusammengestellt und hinsichtlich der Verwertung bei der Modellierung von Sturmschäden in Deutschland diskutiert. Weiterhin werden die bekannten Modelle zur Modellierung von Sturmschäden an Gebäuden vorgestellt und verglichen.

2.3.1 Definition der Schadensbegriffe

Bevor eine genauere Betrachtung der Schäden durch Sturm erfolgt, muss der Schadensbegriff eindeutig definiert werden um eine systematische Unterteilung vornehmen zu können.

Schäden werden im Allgemeinen in direkte und indirekte Schäden eingeteilt. Direkte Schäden werden ummittelbar durch das Schadensereignis verursacht, während indirekte Schäden zwar durch das Ereignis ausgelöst werden, aber räumlich oder zeitlich getrennt davon auftreten. Je nachdem, ob die Schäden monetär bewertbar sind oder nicht, werden beide Schadensarten zudem in tangible bzw. intangible Schäden unterteilt.

Im Folgenden werden ausschließlich direkte monetär bewertbare Schäden betrachtet. Intangible (z.B. humanitäre, ökologische) Schäden sowie indirekte Schäden (durch Betriebsunterbrechungen in Produktion und Vertrieb) können im Rahmen dieser Untersuchungen nicht berücksichtigt werden.

Der direkte Schaden an Gebäuden wird definiert als der im Zusammenhang mit dem Sturmereignis entstandene Defekt an Gebäudeteilen oder am Gesamtgebäude. Der direkte monetäre Schaden an Gebäuden entspricht den Kosten für die geleisteten Reparaturmaßnahmen um den Ausgangszustand wiederherzustellen. Zusätzlich ist die Anzahl der von Schaden betroffenen Gebäude von Interesse. Es ist dabei sinnvoll, dimensionslose Größen für den Schaden zu verwenden. Normiert wird jeweils mit dem Gesamtwert und der Gesamtzahl der Gebäude.

$$Schadensanteil = \frac{\text{Reparaturkosten der Gebäude}}{\text{Gesamtwert der Gebäude}}$$
(2.8)

$$Gebäudeanteil = \frac{\text{Betroffene Gebäude}}{\text{Gesamtzahl der Gebäude}}$$
(2.9)

In Tab. 2.7 sind die verschiedenen, in der Literatur üblichen Bezeichnungen für den Schadensanteil und den Gebäudeanteil angegeben. Für Versicherungen ist nur die Schadenshöhe und die Anzahl der betroffenen Policen von Interesse. Eine Übersicht

Tab. 2.7. Unterschiedliche Bezeichnungen für den Schadensanteil und den Gebäudeanteil

Bezeichnung	Schadensanteil	Gebäudeanteil
Versicherung dt.	Schadensatz	Schadenfrequenz
englisch	damage index/ratio	claim ratio
Versicherung engl.	loss ratio	claim ratio

über weitere Schadensskalen, bzw. dimensionslose Schadensgrößen ist in Blong (2003a) angegeben.

Der tatsächlich aufgetretene Schaden an Gebäuden steht also durch die Reparaturkosten in Verbindung mit dem direkten monetären Schaden (wie beispielsweise auch in Blong (2003b) vorgeschlagen). Diese Verbindung ist allerdings abhängig von einer ganzen Reihe individueller Faktoren (Gebäudestandort, Qualität, usw.) und lässt sich dadurch nur als grobe Abschätzung angeben. In Tab. 2.8 ist diese Verbindung zwischen aufgetretenem Schaden an Gebäuden und Schadensanteil nach Angaben von Dotzek (2000) für Mitteleuropa, Hart (1976) für die Vereinigten Staaten und Leicester & Reardon (1976) bzw. Blong (2003*b*) für Australien aufgelistet.

Die Streuung zwischen den Angaben der verschiedenen Autoren ist recht groß - auch bedingt durch die unterschiedlichen Beschreibungen der Schäden - und lässt somit Platz für Diskussionen über die genaue Zuordnung der Schadensanteile. Vor allem im unteren Bereich der Schadensanteile lassen sich die Angaben für Mitteleuropa sicherlich nicht mit denen aus USA und Australien vergleichen. So muss nach Dotzek (2000) für große Schäden an Dächern und einzelnen strukturellen Schäden mit einem Schadensanteil von 3 bis 5 Promille gerechnet werden. Diese Werte sind für europäische Winterstürme im realistischen Bereich, wie später bei der Analyse der Schadensdaten gezeigt wird. Die Angaben der anderen Autoren schwanken zwischen 1 und 20% und sind für europäische Verhältnisse zu hoch angesetzt und werden höchstens lokal bei Tornadoereignissen erreicht.

Die Reparaturkosten im Sturmfall werden im Regelfall von den Versicherungen gezahlt. Die Angaben zu Schäden, die von Versicherungen zur Verfügung gestellt werden, beziehen sich zumeist auf den ausgezahlten Betrag (welcher den monetären Verlust der Versicherung darstellt, also den versicherten Schaden). Dieser setzt sich in der Regel zusammen aus dem Schadensbetrag minus dem vereinbarten Selbstbehalt. Für welche Schäden gehaftet wird, regelt für jede Police der Versicherungsvertrag. Die Deckung kann sich dabei über direkte

Schadensbeschreibung nach	Schadensanteil in [%] nach							
Dotzek (2000)	Dotzek (2000)		Hart (1976)		L&R (1976)		Blong $(2003b)$	
	untere	obere	untere	obere	untere	obere	untere	obere
	Gre	nze	Gre	nze	Gre	nze	Gre	nze
Kaum Schaden	0.01	0.05	0	0.5	0	0		
Leichte Schäden an Dachziegeln	0.05	0.1					1	5
Dächer teilweise abgedeckt, Leicht- bauten, erste Schäden an massiven Gebäuden	0.1	0.25	0.5	1.25	5	5		
Große Schäden an Dächern, einzelne strukturelle Schäden	0.25	0.8					5	20
Ganze Dächer abgedeckt, zunehmend Schäden an Massivbauten	0.8	3	1.25	7.5	10	10		
Schwere Schäden an Dächern, Leichtbauten	3	10	7.5	65	15	20	20	60
Schwere Schäden an Massivbauten, Einsturz einzelner Gebäude	10	30			20	25		
Verbreitet völlige Zerstörung von Leichtbauten und schwere Schäden an Massivbauten	30	90	65	100	50	65	60	90
Verbreitet Einsturz von Gebäuden	60	100			75	90		
Totalschaden	80	100	100		100		90	100

Tab. 2.8. Verknüpfung zwischen tatsächlichem Schaden an Wohngebäuden und Schadensanteil

Schäden an Gebäude, Anbauten und Außenanlagen, sowie über Folgekosten, Produktionsausfälle, etc. erstrecken. Den Selbstbehalt (auch: Franchise, engl.: *deductible*) übernimmt der Versicherungsnehmer. Bei schadensreichen Ereignissen werden die Beträge oft unbürokratisch (bis zu einem gewissen Auszahlungsbetrag) ohne Einzelprüfung ausgezahlt um eine schnelle Versorgung zu gewährleisten.

2.3.2 Sturmschaden an Strukturen

Entstehung. Bevor im Folgenden der monetäre Schaden zur Abschätzung verwendet wird, wird zunächst auf die Ursachen von Schaden an Gebäuden durch Starkwind eingegangen. Schadensmechanismen sind grundsätzlich statische oder dynamischen Belastungen, die oberhalb der Festigkeit bzw. Dauerfestigkeit von Strukturteilen liegen.

Die Umströmung von Gebäuden verursacht die Entstehung von Druckunterschieden innerhalb der Luftströmung. Diese Druckunterschiede wirken lokal oder großflächig auf Gebäudeteile. Die lokale Belastung (Druck oder Sog) lässt sich durch einen dimensionslosen Druckbeiwert c_p angeben und ist definiert als Druckdifferenz zwischen Außenund Innendruck der betrachteten Bauwerkskomponenten bezogen auf den Staudruck der ungestörten Anströmung mit der Luftdichte ρ und der Geschwindigkeit V:

$$c_p = c_{p,aussen} - c_{p,innen} = \frac{p_{aussen} - p_{innen}}{\frac{1}{2}\rho V^2}$$
(2.10)

Ein positiver c_p -Wert bedeutet Druck (Überdruck) auf die Struktur, während ein negativer c_p -Wert für Sog (Unterdruck) steht. Durch die Darstellung der c_p -Verteilung lassen sich

Abb. 2.8. Bereiche unterschiedlicher c_p -Beiwerte bei typischen Strukturen nach DIN 1055: a.) Flachdach mit scharfkantigem Traufbereich, b.) und c.) Satteldach mit Dachneigung von 30°, d.) Pultdach mit Neigungswinkel 15°. Besonders in den Eckbereichen muss mit hohen Beiwerten gerechnet werden. RS = Rückseite des Bauwerkes

somit Bereiche erkennen, die bei gleicher Anströmungsgeschwindigkeit durch Windkräfte besonders belastet werden. Die c_p -Verteilungen einiger typischer Strukturen sind DIN-gerecht in Abb. 2.8 dargestellt. Besonders in den Eckbereichen und an den Kanten sind hohe Sogbeiwerte auszumachen, die aus der beschleunigten Umströmung an diesen Stellen resultieren.

Die Kraft auf ein Gebäudeteil in Abhängigkeit der freien Anströmgeschwindigkeit V berechnet sich zu

$$F = \frac{1}{2}\rho c_p A V^2, \tag{2.11}$$

wobei für A die belastete Fläche in $[m^2]$ eingesetzt wird. Beispielsweise muss bei Satteldächern an der Giebelkante ($c_p = -2, 0$) bei Windgeschwindigkeiten von 40m/s mit einer Flächenbelastung von bis zu $2kN/m^2$ gerechnet werden.

Diese c_p -Werte gelten für eine geschlossene Außenhaut der Gebäude. Zusätzliche Belastungen können durch Öffnungen (bereits zerstörte Fenster, Türen, Dachbedeckung) in der Struktur entstehen, da sich hier der Innendruck und somit der Gesamtdruck erhöhen kann.

Im Prinzip kann somit bei ausreichender Kenntnis über die strukturellen und aerodynamischen Eigenschaften einer Struktur eine Abschätzung über das Verhalten bei Starkwind getroffen werden. Eine Berechnung der Geschwindigkeiten, ab denen Schaden an Gebäuden auftritt, findet sich beispielsweise in Nateghi-A (1996). Am Beispiel der Berechnung der Windkräfte auf Dachziegeln wird die prinzipielle Vorgehensweise dargestellt (Hazelwood 1980, van Staalduinen 1994):

Für die resultierende Kraft auf die Dachbedeckung nach Abb. 2.9 gilt:

$$f_{res} = mg\cos(\alpha) + f_{deck} + f_{sturm} - w = \begin{cases} > 0 & \text{Ziegel bleiben liegen} \\ < 0 & \text{Ziegel heben ab} \end{cases}$$
(2.12)

Abb. 2.9. Prinzipskizze der Kräfte, die auf einen Dachziegel wirken

Hierbei ist m die Masse der Dachbedeckung in $[kg/m^2]$, α der Dachneigungswinkel in $[^{\circ}]$, f_{deck} die Belastung, die die Überdeckung der Ziegeln aufnimmt in $[kN/m^2]$, f_{sturm} die Belastung, die eventuell vorhandene Sturmklammern aufnehmen in $[kN/m^2]$ und w die Windkraft in $[kN/m^2]$. In Tab. 2.9 sind einige typische Beispiele für diese Werte angegeben (aus Braas 2004). Die Windkraft w wirkt senkrecht auf die Bedeckung und berechnet sich aus dem Staudruck und dem lokalen c_p -Wert. Nach einigen Normen (z.B. NEN 6707 1991) kann die Windkraft unter bestimmten Voraussetzungen mit einem zusätzlichen Druckausgleichsbeiwert abgemindert werden, der durch die Durchströmung der Ziegeln zustande kommt (van Staalduinen 1994).

Modell	Dachsteine	Masse m	f_{sturm} [kN/m		$/m^{2}]$
	$[\text{Stück}/m^2]$	$[\mathrm{kN}/m^2]$	1/3	1/2	1/1
Tegalit	$\leq 10~(>10)$	$0,50\ (0,55)$	$0,\!50$	$1,\!25$	2,51
Profilierte Dachsteine	$\leq 10~(>10)$	$0,\!60\ (0,\!65)$	$0,\!50$	$1,\!09$	$2,\!18$
Biberschwanz		$0,51\ (0,46)$	$0,\!50$	$0,\!96$	$1,\!93$
Flachdachpfannen		$0,\!47\ (0,\!43)$	$0,\!50$	$0,\!83$	$1,\!66$

Tab. 2.9. Eigengewicht der Dachdeckung nach DIN 1055-1 und Flächenbemessungslast f_{sturm} für Universalsturmklammern nach Braas-Herstellerangaben aus Braas 2004

Die Berechnung von Gl. 2.12 setzt eine genaue Kenntnis der tatsächlichen Belastungswerte vorhandener Dachkonstruktionen voraus. Da die Windkraft zusätzlich von der Windrichtung abhängig ist, ist die Berechnung ohne weitergehende Untersuchungen nur bei den in der DIN angegeben idealen Gebäudeformen möglich.

Die Schadensausbreitung nachdem ersten Auftreten von Schaden ist weitaus schwieriger zu beurteilen. Zum einen ändert sich die Außenhaut und sogar z.T. die Gebäudeformen (durch fehlende Ziegeln, zusätzliche Öffnungen, etc.) und damit die Umströmung und folglich die Belastung; zum anderen sind Veränderungen auf der Widerstandsseite der Struktur (durch Kraftumlagerungen) zu erwarten. Es ist somit schwierig abzuschätzen, wie viele Ziegeln auf einem Dach abgedeckt werden.

Erfahrungen. Das Building Research Establishment (BRE) in Großbritannien führt seit den 60er Jahren sehr detailliert Buch über aufgetretene Sturmschäden (z.B. Menzies

1971, Buller 1978, Blackmore & Tsokri 2004). Nach Buller (1978) treten ab 20m/sBöengeschwindigkeit vereinzelt leichte Schäden auf, ab 25m/s ist mit Schäden bei allen Gebäudetypen zu rechnen. Auch werden regionale Unterschiede bei den Schäden festgestellt, beispielsweise wird in Schottland der gleiche Schaden erst bei 13m/s höheren Windgeschwindigkeiten erreicht als im Süden Englands (Spence, Fawcett & Brown 1998).

Schäden durch Wintersturm Lothar in Frankreich wurde von Sacré (2002) beschrieben. Hiernach trat an Gebäuden, die direkt an Gelände mit kleiner Rauhigkeit (Felder oder Büsche) grenzten, schwererer Schaden - vor allem an Dächern - auf.

Weitere Beschreibungen von Sturmschäden durch Winterstürme werden auch in unterschiedlicher Ausführlichkeit in Veröffentlichungen der großen Rückversicherer (MunichRe 1990, MunichRe 1999, Bresch et al. 2000, Axer 2004) sowie in Lamb (1991) und in Cook (1985) gegeben.

Eine Untersuchung der Verteilung von Sturmschäden auf einzelne Strukturteile ist in Friedman (1984) angegeben. Hier wurden Schadensinformationen des Hurrikans Betsy (1965) in Louisiana ausgewertet. In Abb. 2.10 ist der Verlauf der Schadensanteile des Daches, des Interieurs sowie der Fassaden und Öffnungen über der Windgeschwindigkeit aufgetragen. Es ist erkennbar, dass bis zu einer Geschwindigkeit von 50m/s Schäden an Dächern überwiegen, danach dominieren Schäden im Inneren des Gebäudes. Schaden an Fassadenelementen spielen ab 40m/s eine größere Rolle, Schäden an Fenstern und Türen fallen hingegen kaum ins Gewicht. Es muss hier jedoch nochmals auf den Unterschied

Abb. 2.10. Anteil des Schadens verschiedener Gebäudeteile in Abhängigkeit der Böenwindgeschwindigkeit nach Friedman (1984)

zwischen Hurrikanen und Winterstürmen hingewiesen werden, bei Hurrikanen spielt neben der Windgeschwindigkeit als Schadensgrund auch der extreme Niederschlag und vor allem die Sturmflut eine große Rolle.

Weitere detaillierte Beschreibungen und Auswertungen von Sturmschäden durch Zyklone und Hurrikane werden u.a. in Leicester & Reardon (1976), Sparks, Liu & Saffir (1989)

und Shanmugasundaram, Arunachalam, Gomathinayagam, Lakshmanan & Harikrishna (2000) gegeben.

Zusammenfassend ist anzumerken, dass bisher zu wenig systematische Erhebungen zu Schäden wie in der Arbeit von Sacré (2002) publiziert wurden; hier war jedoch zu wenig Datenmaterial vorhanden so dass keine repräsentativen Aussagen möglich sind. Erhebungen nach Sturmereignissen mit mehreren Tausend Einzelschäden sind natürlich mit einem großen Aufwand verbunden, würden aber zu einem besseren Verständnis der tatsächlichen Schädigungsmechanismen führen.

Natürliche Strukturen. Neben Gebäudeschäden werden auch bedeutende Sturmschäden in der Ökosphäre durch Sturmereignisse verursacht. Dabei ist der Windwurf von Bäumen an erster Stelle zu nennen. Beispielsweise wurden in Baden-Württemberg alleine durch Orkan *Lothar* im Dezember 1999 das dreifache der jährlichen Erntemenge an Holz geworfen (Schmoeckel 2006). In Rottmann (1986) finden sich eine Reihe von Schadensstatistiken zu vergangenen Sturmereignissen.

Der monetäre Folgeschaden ist dabei durch Mindererlöse und Mehraufwendungen gekennzeichnet (Rottmann 1986). Die Mindererlöse kommen dabei hauptsächlich durch den Holzverlust, die sogenannte Hiebsunreife, Preisminderung und den Zuwachsverlust zustande. Mehraufwendungen bezeichnen die erhöhten Kosten durch Aufräumarbeiten, Schädlingsbekämpfung und Rekultivierung. Es wird somit deutlich, dass bei Waldschäden vor allem die betriebswirtschaftlichen Folgeschäden von monetärer Bedeutung sind.

Zur Ursache von Sturmschäden in Waldbeständen soll im Rahmen dieser Arbeit nicht näher eingegangen werden und es sei auf Hütte (1967), Ruck, Schmitt & Kihm (1988), Ruck & Adams (1991), Peltole, Kellomäki & Vaisanen (1999), Führer & Nopp (2001), Schmoeckel (2006) und Hanewinkel (2005) verwiesen.

2.3.3 Modellierung von Sturmschaden

Die Simulation von Sturmschaden an Gebäuden ist von grundlegender Bedeutung für die gesamte Risikoanalyse. Die Forschungsaktivitäten lassen sich in mehrere Gruppen unterteilen, die das Problemfeld mit unterschiedlichen wissenschaftlichen Methoden bearbeiten. In Unanwa, McDonald, Mehta & Smith (2000) wird eine Unterscheidung in qualitative und quantitative Methoden vorgeschlagen, wobei sich letztere noch sinnvoll weiter unterteilen lassen in empirische, theoretische und stochastische Modelle. In Tab. 2.10 ist die gängige Literatur nach dieser Unterteilung aufgelistet und wird in den folgenden Abschnitten behandelt. Es ist hierbei erkennbar, dass die meisten Methoden im Bereich empirischer, quantitativer Methoden angesiedelt sind.

Qualitative Methoden dienen einer groben Abschätzung der zu erwartenden Auswirkungen von Starkwind auf Strukturen in Abhängigkeit der Windgeschwindigkeit. Hierbei wird nicht näher auf spezifische strukturelle Eigenschaften eingegangen, sondern meist nur eine allgemeine Beschreibung der Auswirkungen und des Schadensniveaus gegeben. Diese Methoden werden hauptsächlich invers angewendet, d.h. es werden aufgrund der Auswirkungen die Windgeschwindigkeiten abgeschätzt. Beispiele für qualitative Methoden sind die Beaufort-Skala für Starkwind, die Torro-Skala (Meaden 1976) und die Fujita-Skala (Fujita 1981) für Tornados sowie die Saffir-Simpson Skala für Hurrikane. Die Beaufort-Skala (Tab. 2.11) wurde ursprünglich bereits im 19. Jahrhundert für die Seefahrt

1.) Qualitativ		Beaufort Skale, Torro-, Fujita-Skala, Saffir-Simpson Skala
2.) Quantitativ	a.) empirisch	Hart (1976), Leicester & Reardon (1976), Leicester, Bubb, Dorman & Beresford (1979), Friedman (1984), Schraft, Durand & Hausmann (1993), MunichRe (1993), MunichRe (2001), Angermann (1993), Dorland, Tol & Palutikof (1999), Huang, Rosowsky & Sparks (2000), Klawa (2001), Klawa & Ulbrich (2003), Chock (2005)
	b.) theoretisch	Sill & Kozlowski (1997), Murlidharan, Durgaprasad & Appa Rao (1997), Unanwa et al. (2000), Pinelli, Simiu, Gurley, Subramanian, Zhang & Cope (2004)
	c.) stochastisch	Rootzén & Tajvidi (1997), Katz (2002)

Tab. 2.10. Methodische Unterteilung der bisherigen Arbeiten zur Abschätzung von Schaden durch Sturmereignisse

entwickelt und später für Auswirkungen an Land erweitert. Schäden an Gebäuden treten demnach ab Windstärke 9 auf, dies entspricht etwa 21m/s mittlerer Windgeschwindigkeit.

Dotzek, Berz, Rauch & Peterson (2000) beschreiben in ihrer für Mitteleuropa angepassten Skala (Anhang A.1) die Auswirkungen von Tornadowinden nach der Torro Skala auf technische Strukturen wie Bauwerke, Gerüste oder Kraftfahrzeuge. Für mitteleuropäische Holzgewächse gibt Hubrig (2001) einen qualitativen Zusammenhang zwischen Auswirkungen und der Torro Skala an (Anhang A.2). Aufgrund dieser beiden Beschreibungen kann die Stärke sowie die Windgeschwindigkeit anhand der aufgetretenen Schäden abgeschätzt werden. Mit der Saffir-Simpson Skala (im Anhang A.3) wird die Stärke von Hurrikanen angegeben und die typischen Auswirkungen im Bezug auf Bauwerke und Bäume beschrieben.

Unter **quantitativen Schadensmodellen** versteht man Funktionen, die einer Windgeschwindigkeit unter Berücksichtigung maßgeblicher Parameter den Schaden (prozentual oder absolut) an einer Struktur zuordnen. Hier gibt es drei unterschiedliche Ansätze in der bisherigen Literatur: die empirische (experimentelle), die theoretische (deduktive) und die stochastische Modellbildung. Durch die experimentelle Modellbildung soll aufgrund einer Datengrundlage das Verhalten des Systems (in diesem Fall: Sturmschaden) beschrieben werden. Bei der deduktiven Modellbildung wird das Modell aus elementaren (physikalischen) Gesetzen abgeleitet, die das System erklären, bzw. seine Struktur abbilden. Die stochastische Modellbildung beschreibt extreme Ereignisse als zufällig und unabhängig und wendet die Extremwerttheorie auf eine Datengrundlage an. Im Folgenden werden die existierenden Modelle jeweils vorgestellt und anschließend auf ihre Anwendbarkeit für die Schadensabschätzung in Deutschland bewertet.

Empirische Schadensmodelle. Für die Abschätzung des Sturmrisikos in den Vereinigten Staaten erstellte Hart (1976) Schadensmatrizen für verschiedene Sturmereignisse (Hurrikane, Tornados, Winterstürme) basierend auf Expertenumfragen (Delphi-

Bft	m/s	dt. Bez.	engl. Bez.	Auswirkungen an Land	Auswirkungen auf See
0	0.0-0.2	Windstille	calm air	Keine Luftbewegung. Rauch steigt senkrecht empor.	Spiegelglatte See.
1	0.3-1.5	leiser Zug	light air	Windrichtung nur an ziehendem Rauch erkennbar.	Kleine, schuppenförmig ausse- hende Kräuselwellen ohne Schaumköpfe.
2	1.6-3.3	leichter Wind	light breeze	Wind im Gesicht fühlbar.	Kleine Wellen, noch kurz, aber ausgeprägter. Kämme glasig, bre- chen sich nicht.
3	3.4-5.4	schwacher Wind	gentle breeze	Blätter werden bewegt, leichte Wimpel gestreckt.	Kämme beginnen sich zu bre- chen, Schaum überwiegend gla- sig, ganz vereinzelt kleine weiße Schaumköpfe
4	5.5-7.9	mäßiger Wind	moderate breeze	Wind hebt Staub und Pa- pier, kleine Zweige werden bewegt, schwere Wimpel gestreckt.	Wellen noch klein, aber länger. Weiße Schaumköpfe ziemlich ver- breitet.
5	8.0-10.7	frischer Wind	fresh breeze	Größere Zweige werden bewegt, Wind im Gesicht schon unangenehm.	Mäßige Wellen mit ausgeprägter langer Form. Überall weiße Schaumkämme. Ganz vereinzelt Gischt.
6	10.8-13.8	starker Wind	strong breeze	Äste werden be- wegt, Wind pfeift in Drahtleitungen.	Bildung großer Wellen beginnt, Kämme brechen und hinterlassen größere weiße Schaumflächen.
7	13.9-17.1	steifer Wind	moderate gale	Kleinere Bäume werden bewegt, spürbare Hem- mung beim Gehen gegen den Wind.	See türmt sich. Der beim Bre- chen entstehende weiße Schaum beginnt sich in Streifen in die Windrichtung zu legen.
8	17.2-20.7	stürmi- scher Wind	fresh gale	Große Bäume werden bewegt, Zweige abge- brochen, das Gehen erheblich erschwert.	Mäßig hohe Wellenberge mit Kämmen von beträchtlicher Länge. Von den Kanten der Kämme beginnt Gischt abzuwe- hen. Schaum legt sich ausgeprägt in die Windrichtung.
9	20.8-24.4	Sturm	strong gale	Leichtere Gegenstände werden aus ihrer Lage gebracht, Schäden an Dächern.	Hohe Wellenberge, dichte Schaumstreifen in Windrich- tung. "Rollen" der See beginnt. Gischt kann die Sicht schon beeinträchtigen.
10	24.5-28.4	starker Sturm	whole gale	Bäume werden entwur- zelt, Häuser beschädigt.	Sehr hohe Wellenberge mit lan- gen überbrechenden Kämmen. See weiß durch Schaum. Schw- eres stoßartiges "Rollen" der See. Sicht durch Gischt beeinträchtigt.
11	28.5-32.6	orkanartiger Sturm	storm	Schwere Sturmschäden.	Außergewöhnlich hohe Wellen- berge. Luft mit Schaum und Gischt angefüllt. See vollständig weiß.
12	>32.6	Orkan	hurricane	Verwüstungen.	Sicht sehr stark herabgesetzt. Jede Fernsicht hört auf.

Tab. 2.11. Beaufortskala mit Auswirkungen an Land und auf See

Schaden	Schadensindex	Windgeschwindigkeit [m/s]							
		$22,\!35$	$33,\!525$	44,7	$55,\!875$	$67,\!05$	89,4	111,75	134,1
Kein	0-0,05	0,959	0,772	$0,\!442$	0,339	$0,\!152$	$0,\!103$	0,086	0,000
Leicht	$0,\!05\text{-}1,\!25$	0.032	0.191	0.177	0.128	0.106	0.028	0.02	0.011
Mittel	$1,\!25-7,\!5$	0,006	$0,\!028$	0,323	$0,\!111$	$0,\!136$	$0,\!113$	$0,\!028$	$0,\!022$
Stark	7,5 - 65	0,001	$0,\!004$	$0,\!05$	0,261	0,219	0,211	$0,\!128$	0,133
Sehr stark	65 - 100	0,001	$0,\!002$	0,009	$0,\!142$	0,281	$0,\!234$	0,267	$0,\!187$
Total	100	0,001	$0,\!002$	0,002	0,019	0,107	$0,\!310$	$0,\!472$	$0,\!647$

Tab. 2.12. Anteil der Schadensklassen bei unterschiedlichen Windgeschwindigkeiten für ein bis dreistöckige Wohngebäude aus Beton oder Mauerwerk aus Hart (1976)

Methode). Dabei wurde nach Wohngebäuden und Industriebauten, beziehungsweise nach Holz-, Mauerwerk- und Stahlstrukturen unterschieden. Aus der Schadensmatrix (Tabelle 2.12) lässt sich die Verteilung der Schäden auf verschiedene Schadensklassen bei unterschiedlichen Windgeschwindigkeiten entnehmen. Beispielsweise wird bei 44,7m/s bei etwa 44% der Gebäude kein Schaden, bei 18% leichter und bei 32% mittlerer Schaden erwartet. Mithilfe dieser Matrix kann durch lineare Interpolation sowohl der Anteil der betroffenen Gebäude als auch der Schadensanteil für jede Windgeschwindigkeit berechnet werden. Als Windgeschwindigkeit wird hier die maximale Böengeschwindigkeit verwendet. Für andere Gebäudetypen (Holzbauten, Industriegebäude aus Holz, Beton, Metall) werden ebenfalls Matrizen angegeben, die sich aber nicht wesentlich unterscheiden.

Leicester et al. (1979) stellten Schadensfunktionen für neun Städte in Nordaustralien auf. Dabei wurde auf die Schadenserfahrung vergangener Zyklone (Leicester & Reardon 1976) sowie auf eine ausführliche Erfassung des Gebäudebestandes zurückgegriffen. Die Gebäude wurden in Klassen unterschiedlicher Vulnerabilität und Umgebung eingeteilt, und damit für jede Stadt eine individuelle Schadensfunktion berechnet. Die für dieses Verfahren notwendige Datenerfassung ist jedoch sehr aufwändig und setzt eine umfangreiche Datenbasis voraus.

In Friedman (1984) wird die Schadensanfälligkeit von Gebäuden bezüglich Hurrikanen untersucht. Es werden verschiedene Schadensfunktionen angegeben, die auf der Auswertung vergangener Ereignisse beruhen. Erstmals wird der statistische Charakter der Wind-Schadensbeziehung in den Vordergrund gestellt, d.h. es werden die Unsicherheiten der Beziehung berücksichtigt.

Die Münchener Rückversicherung liefert seit Jahren mit ihren Publikationen (MunichRe 1990, MunichRe 1993, MunichRe 1999, MunichRe 2001) Beiträge zu Schäden durch Sturmereignissen, vor allem in Bezug auf die Geschäftserwartung der Rückversicherer. Durch Auswertung von Sturmereignissen in Europa (MunichRe 2001) wurde ein mittlerer Anstieg des Schadensatzes mit der 4ten bis 5ten Potenz festgestellt. Der Schadensatz lässt sich somit berechnen zu

$$SS(\hat{V}) = SS(160) * \left(\frac{\hat{V}}{160}\right)^{(4\div5)},$$
(2.13)

wobei $SS(\hat{V})$ der gesuchte Schadensatz bei einer Böengeschwindigkeit \hat{V} und SS(160) ein durch die Auswertung von Wintersturm "Lothar" bekannter mittlerer Schadensatz bei

160km/h ist. Dieser Anstieg zur 4ten bis 5ten Potenz ist jedoch größer als in früheren Publikationen angegeben (MunichRe 1993), wo er aufgrund des mittleren Schadensatzes der 1990-Sturmserie bei maximalen 125km/h zur 2,7ten Potenz geschätzt wurde.

In Angermann (1993) wurde der Zusammenhang zwischen Sturmstärke und versicherten Sachschäden auf Basis der zweistelligen Postleitzahlen untersucht. Die Analyse ergab eine hohe Korrelation zwischen Schaden und Windgeschwindigkeit. Für die weiteren untersuchten Parameter Niederschlag und Sturmdauer konnte kein funktionaler Zusammenhang entdeckt werden. Es wurde die folgende Form einer Schadensfunktion vorgeschlagen:

Schaden (Gebiet) =
$$a(BI)^b$$
. (2.14)

Hier sind a und b Konstanten, die durch Regression erhalten werden und BI ein Betroffenheitsindex, der durch die Formel

$$BI = \frac{KF}{10^4} \left(\hat{V}^3 \left(1 + \frac{rr}{1000} \right) \left(1 + \frac{d}{100} \right) \right)$$
(2.15)

definiert ist. \hat{V} ist darin die maximale Böengeschwindigkeit in [kn], rr der Niederschlag in [mm] und d die Sturmdauer in [h] an der Station. Der Korrekturfaktor KF wird eingeführt, um Stationen, die in einem unterschiedlichen lokalen Windklima, aber innerhalb einer Windzone liegen, aneinander anzugleichen. Für die Schadenfrequenz werden die Konstanten zu a = 0,069 und b = 1,3, für den Schadensatz zu a = 0,00085 und b = 1,4 gefunden. Diese Formel wird als anwendbar für eine integrale Abschätzung für alle Postleitzahlengebiete vorgeschlagen, bei der Anwendung auf einzelne Regionen sei bedingt durch die große Streuung mit großer Vorsicht vorzugehen.

In Dorland et al. (1999) wird eine Sturmschadensfunktion durch empirische Anpassung an Versicherungsdaten und meteorologischen Daten von fünf Stürmen zwischen 1987 und 1992 in den Niederlanden entwickelt. In die logarithmische Beziehung gehen neben der maximalen Böengeschwindigkeit \hat{V} noch die Anzahl der Objekte O und die Fläche A des betrachteten Gebietes mit ein.

$$\ln L = \alpha \ln O + \beta \ln A + \chi \hat{V} + c \tag{2.16}$$

mit:
$$L$$
 = absoluter Schaden in Niederländischen Gulden
 α, β, χ, c = durch Regression erhaltene Koeffizienten

Die zur Kalibrierung der Funktion verwendeten Windgeschwindigkeiten lagen zwischen 25 und 40m/s. Die logarithmische Funktion ist durch einen stärkeren Anstieg bei höheren Windgeschwindigkeiten als bei Potenzfunktionen gekennzeichnet.

In Klawa (2001) und Klawa & Ulbrich (2003) wird ein Verfahren für eine großräumige Abschätzung des Sturmrisikos entwickelt. Dabei wird eine Sturmschadensfunktion basierend auf dem Potenzmodel der Münchener Rückversicherung verwendet und mit Hilfe von Regressionsmethoden kalibriert.

Schaden (Gebiet) ~
$$\left(\frac{\hat{V}_{max}}{\hat{V}_{min}} - 1\right)^3 W$$
, für $\hat{V}_{max} > \hat{V}_{min}$ (2.17)

Hierin ist \hat{V}_{max} die in dem Gebiet gemessene maximale Windgeschwindigkeit, \hat{V}_{min} die Mindestwindgeschwindigkeit, oberhalb der Schaden auftritt (es wurde hier die 98%-Perzentile der langjährigen Geschwindigkeitsmessungen verwendet) und W der Wert innerhalb des Gebietes. Durch die Einführung von V_{min} wird hierbei das lokale Windklima berücksichtigt und somit nur dessen Überschreitung als schadensverursachend gewertet. Für die Abschätzung des Gesamtschadens zeigt diese Methode sehr gute Ergebnisse, die räumliche Verteilung der Schäden ist jedoch nur unzureichend wiedergegeben, da nur 24 Wetterstationen in Deutschland verwendet wurden.

In Dotzek et al. (2000) wird erstmals für Mitteleuropa der Zusammenhang zwischen der Windgeschwindigkeit (klassifiziert nach der Torro-Skala) und dem Schadensatz für leichte und massive Bauwerke angegeben (Tab. 2.8 und Anhang A.1). Es wird jedoch nicht exakt beschrieben, wie diese Werte zustande gekommen sind. Durch die Beteiligung von Rückversicherern kann aber davon ausgegangen werden, dass Versicherungsdaten zugrunde gelegen haben.

Eine Schadensfunktion für Hurrikane in den Vereinigten Staaten wurde an der Clemson Universität entwickelt (Sparks, Schiff & Reinhold 1994, Huang et al. 2000). Anhand von Schadensdaten der Hurrikane Hugo 1989 und Andrew 1992 wurden empirische Schadensbeziehungen für private Wohngebäude hergeleitet.

$$dr(\bar{V}) = \begin{cases} \frac{1}{100} \exp(0, 242\bar{V} - 5, 54) & \text{für } \bar{V} \le 42 & \text{in m/s} \\ 1 & \text{für } \bar{V} > 42 & \text{in m/s} \end{cases}$$
(2.18)

$$cr(\bar{V}) = \exp\left(-\exp\left[-0,366(\bar{V}-22,44)\right]\right)$$
(2.19)

Hierbei ist $cr(\bar{V})$ der erwartete Anteil der betroffenen Gebäude und $dr(\bar{V})$ der Schadensindex. Für die Windgeschwindigkeit \bar{V} wird jeweils die 10-Minuten Mittelgeschwindigkeit in 10 Metern Höhe eingesetzt. Bemerkenswert ist der durch die Exponentialfunktion begründete starke Anstieg des Schadens zwischen 30 und 40m/s, bei letzterer Windgeschwindigkeit sind bereits über 80% der Gebäude beschädigt.

In Chock (2005) wird ein Schadensmodell erstellt um Schäden durch Hurrikane in Hawaii abzuschätzen. Hierfür wurden aufgrund einer sehr detaillierten Datenbasis des Gebäudebestands und Sturmschadens eines Hurrikans sowie des dazugehörigen Windfeldes Schadensfunktionen für eine Vielzahl von unterschiedlichen Gebäudekonfigurationen erstellt. Diese sind jedoch nur sehr spezifisch für diese Region verwendbar.

Weitere empirische Schadensfunktionen für unterschiedliche Sturmereignisse und Regionen wurden in Drayton, Page & Muir-Wood (1999) angegeben.

Theoretische Schadensmodelle. In Sill & Kozlowski (1997) wird ein theoretisches Schadensmodell zur Abschätzung von Hurrikanschäden an Gebäuden entwickelt. Das Modell basiert auf logischen Annahmen zur Schadensanfälligkeit und Schadensausbreitung und wurde mit Schadensdaten (aus Friedman 1984, Sparks et al. 1994) kalibriert. Dabei wird der Schadensanteil mit Hilfe von abschnittsweise definierten Schadensfunktionen (aus Sparks et al. 1994) und der Gebäudeanteil unter Annahme von Wahrscheinlichkeitsverteilungen der Anfälligkeit von Strukturen berechnet.

In einer sehr umfassenden Arbeit von Unanwa et al. (2000) wird die Methode der *wind damage bands* eingeführt, mit der der Schadensanteil (in % einer Gesamtstruktur) für Gebäude begrenzt durch eine untere und obere Grenzschwelle für bestimmte Intensitäten

von Sturmgefährdung bestimmt werden kann. Die untere und obere Schadensgrenze werden durch verschiedene Konstruktionsweisen von Gebäudeteilen festgelegt, so dass diese den günstigsten und ungünstigsten Fall darstellen und der reale Schaden innerhalb dieser Grenzen liegt. Es werden *damage bands* für verschiedene Gebäudeteile angegeben, welche jeweils direkten Schaden durch Windeinfluss und indirekten Schaden durch Schadensausbreitung erfahren können. Die Verteilung der oberen und unteren Grenzen für Schaden wurden durch Auswertung von Fachliteratur, bzw. Messungen und durch Expertenbefragung nach der Delphi-Methode erhalten. Der Schadensanteil der Gesamtstruktur errechnet sich durch die Summation der Einzelschäden, bzw. der gekoppelten Schäden durch Ausbreitung. In Abbildung 2.11 ist das *damage band* für Wohnhäuser mit ein bis drei Stockwerken dargestellt, die untere Kurve begrenzt den zu erwartende Schaden für die stabilsten Gebäude, die obere Kurve den Schaden für die sturmanfälligsten.

Abb. 2.11. *Damage band* für Wohngebäude mit ein bis drei Stockwerken aus Unanwa (2000)

Ein auf einem probabilistischen Komponenten-Ansatz (engl.: component approach) basierendes Schadensmodell entwickelten Pinelli et al. (2004) für Hurrikane in Florida. Hierbei wird die Versagenswahrscheinlichkeit einzelner Gebäudeteile (Öffnungen, Dach, Mauerwerk, etc.) bei bestimmten Windgeschwindigkeiten angegeben und daraus der Gesamtschaden berechnet. Die Versagenswahrscheinlichkeiten werden unter Berücksichtigung der Einwirkungen durch Wind und die Widerstandsfähigkeit der einzelnen Strukturteile und deren Verbindungen mithilfe einer Monte-Carlo Simulation ermittelt (Cope, Gurley, Pinelli & Hamid 2003). Diese Methode ist sehr detailliert, aber auch sehr aufwändig hinsichtlich der benötigten Information über die genauen Festigkeiten der Gebäudestruktur. Voraussetzungen sind hier die homogene strukturelle Bauweise des Gebäudebestandes.

In diesem Zusammenhang kann noch die Arbeit von Nateghi-A (1996) angegeben werden, der die Versagensgeschwindigkeit der Schwachpunkte (*weak links*) von Gebäuden bestimmt. Dieser Ansatz lässt sich ebenfalls nur mit ausreichend vielen Daten durchführen, der hierbei zu erwartende Fehler durch Ungenauigkeiten dieser Daten wird mit mindestens 20% angegeben.

Weitere theoretische Schadensmodelle finden sich in Murlidharan et al. (1997).

Stochastische Schadensmodelle. Rein stochastische Schadensabschätzungen wurden zuerst in Rootzén & Tajvidi (1997) und danach in Katz (2002) vorgenommen. Die Methoden basieren auf der Annahme, dass sich extreme Schadensereignisse durch Extremwertverteilungen simulieren lassen und sind damit rein mathematische Modelle.

Katz (2002) simulierte Schaden durch Hurrikane in den US. Dabei wurde das Auftreten von Hurrikanen als Poisson Prozess und die Schadenshöhe (Gesamtschaden) als Log-Normalverteilung modelliert. Diese Abschätzung basiert allerdings nur auf stochastischen Annahmen.

Vergleich. Der direkte Vergleich der einzelnen Schadensmodelle ist schwierig, da es sowohl Unterschiede in der Schadensdefinition als auch in der Definition der Windgeschwindigkeiten gibt. Für den Vergleich wurden daher nur Modelle verwendet, die entweder den Schadensanteil oder den Gebäudeanteil angeben. Dadurch, dass diese oftmals leicht unterschiedlich definiert sind - beispielsweise für Versicherungen oder Reparaturkosten -, sind hier Abweichungen zu erwarten. Ebenso wurden die Windgeschwindigkeiten auf die Böenwindgeschwindigkeit unter Zuhilfenahme der Umrechnungsfaktoren für verschiedene Mittelungszeiten umgerechnet. In Abb. 2.12 ist der Schadensanteil und in Abb. 2.13 der Gebäudeanteil verschiedener Modelle dargestellt.

Die unterschiedlichen Kurven zur Berechnung des Schadensanteils besitzen eine starke Streuung, so dass bei beispielsweise 50m/s beinahe alle Schadensanteile gefunden werden können. Diese Unterschiede liegen vor allem an den verschiedenen Einsatzgebieten und den Bauweisen der Gebäude.

Abb. 2.12. Schadensanteil verschiedener Schadensmodelle in Abhängigkeit der Böengeschwindigkeit

Im Gegensatz zum Schadensanteil liegen die Kurven zur Berechnung des Gebäudeanteils enger beieinander. Abgesehen vom Schadensmodell von Huang et al. (2000) sind die Unterschiede zwischen Hurrikanen und Winterstürmen wesentlich geringer. Bei Windgeschwindigkeiten zwischen 42 - 55m/s wird ein Gebäudeanteil von 50% erwartet, also die Beschädigung der Hälfte aller Gebäude.

2.3.4 Zusätzliche Parameter in den Schadensmodellen

Neben der Windgeschwindigkeit spielen zusätzliche Parameter eine entscheidende Rolle zur Verbesserung der Schadensabschätzung. Wie später bei der Auswertung von Schadensdaten aus Baden-Württemberg gezeigt wird, stellen die in Abb. 2.12 und 2.13 gezeigten Kurven nur den mittleren Schaden aller betroffenen Gebäude dar. Die tatsächliche Abweichung einzelner Gebäude von der mittleren Schadenskurve sind groß und liegen teilweise in der Größenordung von bis zu 100% (Friedman 1984). Dies liegt einerseits daran, dass die Einwirkungen durch lokale Einflüsse (Oberflächenrauhigkeit, Orographie, Sturmdauer, Niederschlag) verändert wurden und dass andererseits unterschiedliche strukturelle Eigenschaften (Gebäudetyp, -alter) vorlagen. Bei der Betrachtung von Schadensdaten von Versicherungen kommen weitere Parameter hinzu, die sich vor allem durch den Bestand der Policen, die Deckung, den Selbstbehalt und die Auszahlungsmethoden charakterisieren. Der Forschungsstand zum Einfluss dieser Parameter auf den Sturmschaden wird dazu im Folgenden aufgezeigt:

Gebäudetyp. Sill & Kozlowski (1997) unterscheiden die Schadensfunktionen nach Gebäudetyp (Wohngebäude, kommerziell genutztes Gebäude, mit/ohne Fundament, usw.).

Abb. 2.13. Gebäudeanteil verschiedener Schadensmodelle in Abhängigkeit der Böengeschwindigkeit

Die Parameter werden aus Erfahrungen der Autoren geschätzt. Dabei werden große Unterschiede der untersuchten Strukturen festgestellt, während bei 50m/s Böengeschwindigkeit maximal 5% Verlust für Geschäftsgebäude (alle Bauarten) zu erwarten sind, liegt dieser Wert bei Wohngebäuden zwischen 20 und 40%. Auch bei den Untersuchungen von Leicester et al. (1979) wurden verschiedene Strukturklassen mit unterschiedlichen Schadensanfälligkeiten verwendet. In Spence et al. (1998) werden Gebäudetypen unterschiedliche Vulnerabilitäten zugeordnet.

Gebäudealter. Der Einfluss des Alters von Gebäuden auf deren Anfälligkeit wurde bisher nicht quantitativ untersucht. In Spence et al. (1998) werden je nach Gebäudealter unterschiedliche Vulnerabilitäten vergeben.

Geländerauhigkeit. Zum Einfluss der Geländerauhigkeit gibt es mehrere Untersuchungen. Zum einen stellt Sacré (2002) fest, dass die Art des Schadens sowie die Schadenshöhe je nach Rauhigkeit der Anströmung variiert. In weiteren Modellen (Leicester & Reardon 1976, Sill & Kozlowski 1997) werden unterschiedliche Schadensfunktionen für Standpunkte mit verschiedenen Rauhigkeiten angegeben. Die Unterschiede in diesen Funktionen betreffen jedoch nur die durch die Rauhigkeit veränderte Windgeschwindigkeit und nicht eine geänderte Schadensanfälligkeit der Gebäude.

Orographie. Bisher konnte in der Literatur kein Hinweis auf den Einfluss der Exposition auf den tatsächlichen Sturmschaden an Gebäuden gefunden werden. Für Waldgebiete wurde festgestellt, das vor allem in exponiertem Gelände und auf Kuppen Windwurf auftritt (Rottmann 1986). Neuere Untersuchungen (Schmoeckel 2006) für Orkan Lothar bestätigen den Einfluss orographischer Strukturen auf Windwurf.

Sturmdauer. In Schraft et al. (1993) werden die Schadensfunktionen nach unterschiedlicher Sturmdauer unterschieden, demnach tritt höherer Schaden bei längerer Einwirkzeit der Windgeschwindigkeiten ein. In den *severity index* von Lamb (1991) zur Bewertung der Stärke von Stürmen zwischen 1550 und 2000 fließt ebenfalls die Sturmdauer mit ein. Angermann (1993) findet hingegen bei der Auswertung von 48 Sturmereignissen keinen eindeutigen Zusammenhang zwischen Sturmdauer und -schaden.

Niederschlag. Obwohl Niederschlag vor allem bei Hurrikanen eine große Rolle spielt, wurde in keiner Publikation eine gesonderte Behandlung dieses Parameters gefunden. Bei Angermann (1993) findet die Regenrate während eines Sturmereignisses Eingang in den Betroffenheitsfaktor, wobei ein eindeutiger Zusammenhang nicht nachgewiesen werden konnte.

Betroffene Fläche. Im Schadensmodell von Dorland et al. (1999) geht explizit die Fläche der Gebiete mit ein, je größer die Fläche desto größer der Schaden. In den *severity index* von Lamb (1991) zur Bewertung der Stärke von Stürmen zwischen 1550 und 2000 fließt zusätzlich die Größe der betroffene Region mit ein.

Versicherungsspezifische Aspekte. Für den versicherten Schaden haben neben den meteorologischen und strukturellen Einflüssen auch versicherungstechnische Parameter Einfluss auf den entstehenden Schaden. Es wird hier vor allem der Selbstbehalt genannt, durch dessen Festlegung der versicherte Schaden maßgeblich vermindert werden kann (Schraft et al. 1993).

Aus diesen Vorarbeiten und der zur Verfügung stehenden Datengrundlage werden in Kap. 5 die Parameter Orographie und Oberflächenrauhigkeit auf ihren Einfluss auf den tatsächlich aufgetretenen Sturmschaden untersucht.

2.4 Risikoanalyse

2.4.1 Definition

Petak & Atkisson (1982) definieren den Begriff Risikoanalyse, bzw. Risikoabschätzung folgendermaßen und schlagen eine systematische Unterteilung vor:

As a concept, risk typically is viewed as being a function of two major factors: (a) the probability that an event, or series of events of various magnitudes, will occur, and (b) the consequences of the event(s). Hence, risk estimation is aimed at identifying (a) the probability that particular events of specified intensities will occur over some indicated time frame; (b) the area and/or population that will be exposed to the event (e.g., the population at risk); (c) the vulnerability of the area or exposed population to effects associated with the events; and (d) the consequences to the population at risk of exposure to the expected series and intensities of the events of probabilistically derived estimates of the consequences to the population at risk resulting from exposure to the hazard, typically in the form of annual expected, most likely, and maximum probable quantitative estimates.

Diese Definition lässt sich, wenn man von den indirekten Folgen (d) absieht, durch die bereits bekannte Gleichung (1.1) ausdrücken und wird hier noch einmal wiedergegeben:

Risiko = Gefährdung * Vulnerabilität * Wert

Diese Gleichung stellt nicht das Produkt von Skalaren dar, sondern ist vielmehr eine Verknüpfung von Funktionen. Abbildung 2.14 zeigt die Funktionsweise dieser Gleichung in graphischer Darstellung. Ausgehend von einer bestimmten Wahrscheinlichkeit wird durch die Gefährdungsfunktion die zu erwartende Intensität ermittelt - in diesem Fall beispielsweise die Windgeschwindigkeit. Diese ist durch die Vulnerabilitätsfunktion (Schadensfunktion) direkt mit einem dimensionslosen Schadensanteil verknüpft. Die Wertefunktion dient schließlich der Monetarisierung des Schadens. Durch diese Risikokette wird also der monetäre Schaden berechnet, der mit einer bestimmten Wahrscheinlichkeit erreicht oder überschritten wird. Die Risikofunktion kombiniert diese drei Schritte zu einer Schadens-Häufigkeitskurve, in welcher der Schaden direkt mit der Eintrittswahrscheinlichkeit verknüpft ist. Die Funktionen sind durch den Median und einen Fehlerbereich repräsentiert, dies soll die vorhandenen Unsicherheiten andeuten, welche später behandelt werden. Ein wichtiger Punkt dieser Definition soll hier nochmals betont werden: Sollte eine dieser drei Funktionen den Wert 0 annehmen (keine Gefährdung (Tal), keine Schadensanfälligkeit (Bunker), kein Wert (Baracke)), dann ist nach dieser Definition auch das Risiko gleich 0.

Abb. 2.14. Graphische Darstellung der Risikokette aus Gleichung (1.1)

Uberschreitenswahrscheinlichkeit und Wiederkehrzeit. Die jährliche Uberschreitenswahrscheinlichkeit p beschreibt die Wahrscheinlichkeit mit der ein Ereignisniveau innerhalb eines Zeitraumes von einem Jahr eintritt oder überschritten wird. Der Kehrwert dieser Größe wird auch Wiederkehrperiode T genannt, es gilt

$$p = \frac{1}{T}.$$
(2.20)

Die Wahrscheinlichkeit, dass ein Ereignisniveau mit einer jährlichen Überschreitenswahrscheinlichkeit p innerhalb eines Zeitraumes von n Jahren überschritten wird, wird die allgemeine Überschreitenswahrscheinlichkeit p_0 genannt und ist definiert als

$$p_0 = 1 - (1 - p)^n. (2.21)$$

Hiermit lässt sich beispielweise die jährliche Überschreitenswahrscheinlichkeit eines Ereignisniveaus berechnen, welches mit einer Wahrscheinlichkeit von $p_0 = 10\%$ in n = 50 Jahren überschritten wird; einsetzen in Gl. (2.21) ergibt

$$0, 1 = 1 - (1 - p)^{50} \to p = 0,0021.$$

Die durchschnittliche Wiederkehrperiode beträgt demnach $T = \frac{1}{p} = 475$ Jahre. Dies bedeutet jedoch nicht, dass dieses Ereignis sicher innerhalb dieses Zeitraumes auftritt, die Wahrscheinlichkeit dafür beträgt nach Gl. (2.21)

$$p_p = 1 - (1 - p)^T = 1 - (1 - 0,0021)^{475} = 63\%.$$

Bei der Betrachtung von drei Zeiträumen von jeweils 475 Jahren tritt also nur bei etwa zweien dieses Ereignis ein. Dies ist jedoch nur richtig, wenn die Vorraussetzungen für diese Ereignisse während dieses Zeitraumes konstant sind (z.B. keine Änderung der Eintrittshäufigkeit).

Gefährdung. Prinzipiell gibt es zwei unterschiedliche Betrachtungsweisen um den Begriff Gefährdung durch Naturereignisse zu definieren. Diese hängen jeweils von der betrachteten räumlichen Skala ab. Betrachtet man ein Bundesland oder das gesamte Bundesgebiet, dann sind Ereignisse mit ihrer räumlichen Ausdehnung und Intensität von Interesse. Die Gefährdung definiert sich hier als Eintrittswahrscheinlichkeit eines bestimmten Ereignisses (z.B. Wintersturm *Lothar* oder Elbeflut). Hier ist es wichtig zu wissen, über welches Gebiet sich das Ereignis erstreckt. Hingegen ist bei der Betrachtung eines bestimmten Ortes (beispielsweise einer Gemeinde) die räumliche Ausdehnung eines Wintersturms nicht von Interesse, da ein Wintersturm die gesamte Fläche einer Gemeinde betrifft. Es interessiert einzig die mit bestimmten Wahrscheinlichkeiten auftretende Intensität. Ob der Nachbarort bei diesem Ereignis ebenfalls Schaden erleidet, ist bei dieser Betrachtung unerheblich.

Der große Unterschied dieser beiden Definitionen liegt also in der räumliche Korrelation. Bei der Ereignisdefinition interessiert die Ausdehnung und Intensität, die ein Ereignis haben kann, unabhängig davon wo genau das Ereignis auftritt. Bei der Ortsdefinition ist ausschließlich die Intensität an einem bestimmten Ort von Interesse.

Bei der Erstellung der Risikokarte innerhalb CEDIM stehen nicht die Ereignisse im Vordergrund, sondern die räumliche Verteilung des Risikos. Somit wird in dieser Arbeit ausschließlich die Gefährdung an bestimmten Orten betrachtet: **Sturmgefährdung bezeichnet die Wahrscheinlichkeit, dass eine bestimmte Windgeschwindigkeit an einem Ort überschritten wird**.

Mit Hilfe von Extremwertverteilungen lassen sich statistische Aussagen über die Eintrittswahrscheinlichkeit von Windgeschwindigkeiten herleiten. In diesem Fall wird die 2-parametrische Gumbel-Verteilung verwendet, die mit der üblichen Transformation $y = \frac{x-\beta}{\alpha}$ folgende Standardform hat (siehe z.B. Plate 1993):

$$F(x) = \exp(-e^{-\frac{(x-\beta)}{\alpha}}) \tag{2.22}$$

Auf Basis der maximalen jährlichen Geschwindigkeiten werden die Parameter α und β der Verteilung mit der Methode der probability weighted moments (Greenwood, Landwehr, Matalas & Wallis 1979) geschätzt. Die inverse Verteilungsfunktion zur Bestimmung der Geschwindigkeit, die mit der Wahrscheinlichkeit p innerhalb eines Jahres überschritten wird, lässt sich schreiben als

$$V(p) = \beta - \alpha \left(-\ln\left[-\ln(1-p) \right] \right).$$
(2.23)

Weitere Methoden zur Abschätzung von Extremwerten werden in Palutikof, Brabson, Lister & Adcock (1999) und An & Pandey (2005) vorgestellt. Nach den Untersuchungen letzterer stellt die Gumbel-Verteilung eine obere Grenze der Abschätzung der Windgeschwindigkeit im Vergleich zu anderen Methoden (*Peaks-over-threshold, modified Gumbel, method of independent storms*) dar.

Risiko. Das Risiko ist analog zur Gefährdung definiert als Schaden, der mit einer bestimmten Wahrscheinlichkeit an einem Ort erreicht oder überschritten wird. Der Ort ist in diesem Fall die Gemeinde.

Das Risiko lässt sich durch verschiedene Werte beschreiben wie Schaden-Häufigkeitskurven, maximal möglicher Schaden und durchschnittlicher jährlicher Schaden. Der durchschnittliche jährliche Schaden AAL (engl.: average annual loss) wird als Integral über die Schaden-Häufigkeitskurve D in den Grenzen p_{min} und 1 berechnet.

$$AAL(p_{min}) = \int_{p_{min}}^{1} D(p)dp \tag{2.24}$$

Es werden somit alle Ereignisse berücksichtigt, deren Eintrittswahrscheinlichkeit über p_{min} liegt. Seltenere Ereignisse sind in diesem AAL ausgeschlossen. Allgemein wird ein möglichst geringes p_{min} angestrebt, dies hängt jedoch vor allem von der Vorgabe aus der Gefährdungsbestimmung ab.

Da die Risikofunktionen im Allgemeinen diskret zur Verfügung stehen, also für einige unterschiedliche Wahrscheinlichkeitsniveaus zwischen 1 und p_{min} , wird der AAL nach der folgenden Gleichung segmentweise berechnet (Merz & Thieken 2004):

$$AAL = \sum_{j=1}^{n} \Delta p_j D_j \tag{2.25}$$

Hierbei sind D_j und Δp_j der Schaden und die Eintrittswahrscheinlichkeit für das *j*-te Segment von insgesamt *n* Segmenten:

$$D_j = \frac{1}{2}(D(p_j) + D(p_{j+1}))$$
(2.26)

$$\Delta p = |p_j - p_{j+1}| \tag{2.27}$$

2.4.2 Sturmrisiko

Für das Gebiet der Stadt Köln wurde im Rahmen des Deutschen Forschungsnetzwerkes Naturkatastrophen (DFNK) eine Risikoabschätzung durchgeführt (Tetzlaff 2001, Radke & Tezlaff 2004). Dazu wurde ebenfalls der oben beschriebene Risikoansatz verwendet. Die Sturmgefährdung wurde anhand von Windgeschwindigkeitsdaten einer Station des Deutschen Wetterdienstes ermittelt. Für die Schadensfunktion wurde Gl. (2.13) der Münchener Rück verwendet. Als Ergebnis wird ein Schaden zwischen 37 und 60 Mio. € für ein Ereignis mit einer Überschreitenswahrscheinlichkeit von p = 0.02 und zwischen 70 und 135 Mio. € bei p = 0.0033 angegeben.

Mit ähnlichen Verfahren werden Risikokurven für einzelne Städte in Australien und den Vereinigten Staaten erstellt (Leicester et al. 1979, Sparks et al. 1994). Weitere Risikoanalysen für Hurrikane in den Vereinigten Staaten sind in Petak & Hart (1979), Friedman (1979) und Friedman (1984) angegeben.

Ein alternatives Konzept zur Bestimmung des durchschnittlichen jährlichen Schaden durch Hurrikane basierend auf einer Monte-Carlo Simulation ist in Huang, Rosowsky & Sparks (2001) angegeben. Das Auftreten, die Ausdehnung und die Intensität von Hurrikanen wurde durch Auswertung von Ereignissen 1887-1998 parametrisiert und als Eingang für eine Monte-Carlo Simulation verwendet, welches die Hurrikan Aktivität eines 50 Jahres Zeitraumes simuliert. Mit Hilfe eines Schadensmodells (Huang et al. 2000) wird damit der Schaden innerhalb dieses Zeitraumes berechnet und der jährliche Schaden berechnet.

In Pinelli et al. (2004) wird ein weiteres theoretisches Verfahren beschrieben, welches die Berechnung der jährlichen Schäden an Wohngebäuden durch Hurrikane ermöglicht. Es wird hierbei ein probabilistisches Schadensmodell vorgeschlagen und mit hypothetischen

Wahrscheinlichkeiten für die Schädigung von Strukturteilen eine exemplarische Berechnung durchgeführt. Für reale Fälle ist dieses Verfahren jedoch mit erheblichem Aufwand für die Bestimmung dieser Wahrscheinlichkeiten verbunden.

3. Beschreibung der verwendeten Daten

Im Gegensatz zu experimentellen Aufgabenstellungen im Bereich Windingenieurwesen, bei denen Daten durch Versuche gewonnen werden können, muss bei dieser Arbeit auf vorhandene Daten zurückgegriffen werden. Das Schadensverhalten von existierenden Gebäudebeständen bei Windeinfluss lässt sich nicht im Modellmaßstab simulieren. Mit Hilfe von Windkanälen ist es möglich, Belastungen auf Bauwerke zu simulieren, die Bauwerksantwort durch Verformung oder Schädigung kann jedoch nur unzureichend für idealisierte Verhältnisse wiedergegeben werden.

Die Grundvoraussetzung für die Durchführbarkeit dieser Arbeit ist es, dass eine ausreichende Datenbasis zur Verfügung steht. Es werden Daten zu Sturmereignissen, also Schadensdaten und meteorologische Daten sowie Daten zum Gebäudebestand und zur Topographie benötigt. Statistische Daten zu Bevölkerung und Gebäudebestand sowie topographische Daten zu Orographie und Landnutzung sind in ausreichender Qualität frei verfügbar. Daten zu Sturmereignissen existieren im Allgemeinen jedoch kaum. Durch Kooperation mit dem Institut für Meteorologie und Klimaforschung der Universität Karlsruhe und der SV Gebäudeversicherung Stuttgart stehen diese Daten für einige Sturmereignisse in Baden-Württemberg zur Verfügung.

3.1 Statistische Daten

3.1.1 Gebietsgrenzen

Es stehen die folgenden Gebietsgrenzen als Vektordaten zur Verfügung: Gemeinden, Landkreise, Länder und 1- bis 5-stellige Postleitzahlengebiete. Gemeinden, Kreise und Länder sind eindeutig mit dem 8-stelligen Kreisgemeindeschlüssel (KGS8) kodiert, PLZ-Gebiete eindeutig mit der jeweiligen 5-stelligen Postleitzahl.

Die Analyse der Daten sowie die Erstellung der Schadensfunktionen wird auf 5-stelligen Postleitzahlengebieten (PLZ5) vorgenommen. Für diese Gebiete stehen die Schadensdaten zur Verfügung. Die Risikoabschätzung wird auf Gemeindeebene vorgenommen, nur hier stehen die benötigten Gebäudewerte zur Verfügung. Bei der Überführung der beiden Gebiete ineinander ist zu beachten, dass die Grenzen nicht zwingend deckungsgleich sind. Zudem kommen folgende zwei Fälle vor: (a) mehrere PLZ5 Gebiete bilden eine Gemeinde und (b) mehrere Gemeinden bilden ein PLZ5 Gebiet. Es ist somit nicht möglich, eine exakte Überführung von Daten zwischen den beiden Ebenen ohne Qualitätsverlust durchzuführen.

3.1.2 Angaben zu Wohngebäuden

Um die Untersuchungen durchzuführen ist es unerlässlich, die genaue Anzahl der Wohngebäude pro 5-stelligem Postleitzahlengebiet und pro Gemeinde zu kennen. Für die Analyse vergangener Sturmereignisse muss die Gebäudeanzahl der entsprechenden Jahre bekannt sein. Für die Risikoanalyse werden die Daten auf das Jahr 2000 bezogen.

Als Grundlage stehen dazu statistische Daten der Firma INFAS zur Verfügung. Diese Daten beinhalten die Anzahl verschiedener Gebäudetypen pro PLZ und Gemeinde für das bundesdeutsche Gebiet. Die Gebäudetypen sind unterteilt in die Klassen: (1) Unbekannt, (2) Familien-, (3) Reihen-, (4) Mehrfamilien-, (5) Block-, (6) Hoch-, (7) Terrassen-, (8) Bauernhaus, (9) Büro- und (10) Fabrikgebäude. Die Anzahl der Wohngebäude wurde durch die Summation der Klassen (2) bis (8) ermittelt, dies entspricht dem üblichen Verfahren innerhalb CEDIM (Kleist, Thieken, Köhler, Müller, Seifert, Borst & Werner 2006).

Alle Angaben der INFAS Daten beziehen sich auf das Jahr 2000. Für die Analyse der Stürme sind jedoch die Anzahl der Wohngebäude in den Jahren X = 1983, 1986, 1990, 1993, 1994, 1995 und 1999 notwendig. Dazu wurden Gebäudedaten des statistischen Landesamtes Baden-Württemberg verwendet, die für die Jahre 1970, 1980, 1983, 1990, 1999 und 2002 auf Gemeindeebene vorliegen. Es wurde damit für jede Gemeinde der Gebäudequotient des Jahres X geteilt durch das Jahr 2000 gebildet - wenn nötig durch lineare Interpolation - und die Anzahl der Gebäude im Jahr X basierend auf INFAS Daten berechnet.

Zusätzlich stehen für die INFAS Daten Informationen zu Gebäudealter und Gebäudequalität zur Verfügung, diese sind jedoch nicht korreliert mit der Klasse der Gebäudetypen, so dass hier zwischen Wohn- und Industriegebäuden nicht unterschieden werden kann. Die Klasse Gebäudequalität verwendet zudem nur qualitative Attribute (einfach bis exklusiv), deren Kriterien unbekannt sind.

3.1.3 Gebäudewerte

Der Zeitwert von Wohngebäuden ist definiert als diejenigen Kosten, die zur Wiederherstellung des Gebäudes benötigt werden. Diese leiten sich aus den Normalherstellungskosten $[\in/m^2]$ ab, die für jeden Gebäudetyp vom Statistischen Bundesamt veröffentlicht werden. Mithilfe von weiteren statistischen Daten über Wohnflächenverteilung, Gebäudetypverteilung und -zuordnung werden dann die Wiederherstellungskosten (WHK) der Wohngebäude für jede Gemeinde in Deutschland errechnet (Kleist et al. 2006). Diese Angaben beziehen sich auf das Jahr 2000.

In Abb. 3.1 sind die WHK pro Gemeinde dargestellt. Diese Werte schwanken je nach Lage und Gemeindegröße zwischen mehreren 100 Mio. \in und 100 Mrd. \in . Deutlich erkennbar sind die großen Städte (Berlin, Hamburg, München) und die großen Balungsräume (Ruhrgebiet, Rhein-Main-Neckar Raum). Hier kumulieren sich die Werte. Ebenfalls sind teilweise deutliche Unterschiede zwischen den einzelnen Bundesländern erkennbar.

Abb. 3.1. Wiederherstellungskosten von Wohngebäuden pro Gemeinde nach Kleist et al. (2006)

40 3. Beschreibung der verwendeten Daten

3.2 Topographische Daten

Topographie bezeichnet die Beschaffenheit der Erdoberfläche und lässt sich in Orographie (Geländeform als Höhenmodell) und Landnutzung (Oberflächenform) unterteilen.

3.2.1 Orographie

Für die Untersuchungen steht ein digitales Höhenmodell mit einer horizontalen Auflösung der Rasterpunkte von 75 x 75m zur Verfügung (Abb. 3.2). Das Modell wurde aus den Daten einer Satellitenüberfliegung des Gebietes (SRTM - *Shuttle Radar Topographic Mission*) im Jahr 2000 mit einem C-Band Radar abgeleitet und stellt somit die Geländeoberfläche dar, also die Höhe der Orts- und Bewuchsflächen in Metern über dem mittleren Meeresspiegel. Die vertikale Genauigkeit wird je nach Ortslage zwischen 1,0 und 7,9 Metern angegeben.

3.2.2 Landnutzung

Als Information über die Beschaffenheit der Erdoberfläche wurden CORINE Landnutzungsdaten (CLC - CORINE land cover) verwendet. Diese sind Teil des Programms

CLC	Beschreibung	CLC	Beschreibung
111	Flächen durchgängig städtischer Prägung	311	Laubwald
112	Flächen nicht-durchgängig städtischer Prägung	312	Nadelwald
121	Industrie- und Gewerbeflächen	313	Mischwald
122	Straßen und Eisenbahn	321	Natürliches Grasland
123	Hafengebiete	322	Heiden und Moorheiden
124	Flughäfen	323	Hartlaubgewächse
131	Abbauflächen	324	Wald-Strauch-Übergangsstadien
132	Deponien und Abraumhalden	331	Strände, Dünen und Sandflächen
133	Baustellen	332	Felsflächen ohne Vegetation
141	Städtische Grünflächen	333	Flächen mit spärlicher Vegetation
142	Sport und Freizeitanlagen	334	Brandflächen
211	Nicht bewässertes Ackerland	335	Gletscher und Dauerschneegebiete
212	Permanent bewässertes Ackerland	411	Sümpfe
213	Reisfelder	412	Torfmoore
221	Weinbauflächen	421	Salzwiesen
222	Obst- und Beerenobstbestände	422	Salinen
223	Olivenhaine	423	In der Gezeitenzone liegende Flächen
231	Wiesen und Weiden	511	Gewässerläufe
241	Mischung einjähriger Früchte mit Dauerkulturen	512	Wasserflächen
242	Komplexe Parzellenstrukturen	521	Lagunen
243	Landwirtschaft mit natürlicher Bodenbedeckung	522	Mündungsgebiet
244	Agroforstlich genutzte Flächen	523	Meere und Ozeane

Tab. 3.1. Nomenklatur der in 44 Oberflächenklassen unterteilten CORINE Landnutzungsdaten.

Abb. 3.2. Digitales Höhenmodell von Baden-Württemberg mit Kennzeichnung der wichtigsten Mittelgebirge und Ebenen

42 3. Beschreibung der verwendeten Daten

CORINE (*Coordination of Information on the Environment*) der Europäischen Union. Die Kartierung der Bodenbedeckung und Landnutzung wurde europaweit auf der Basis von Satellitendaten im Maßstab 1:100.000 durchgeführt. Die Ersterfassung (CLC1990) erfolgte nach 44 Landnutzungsklassen (Tab. 3.1). Hierbei werden alle einheitlichen Bodenbedeckungen von über 25ha Fläche erfasst.

Für die Ermittlung der bebauten Flächen innerhalb der PLZ-Gebiete wurden die Klassen 111 und 112 verwendet. Bei den insgesamt 8270 5-stelligen Postleitzahlengebieten in Deutschland konnten somit zu 8160 Gebieten die Zuordnung von bebauten Flächen zu PLZ5 durchgeführt werden, bei 110 PLZ-Gebieten liegen die bebauten Flächen unterhalb der Erfassungsgrenze von 25ha und konnten somit nicht zugeordnet werden.

3.3 Daten zu Sturmereignissen

Die jeweils stärksten Stürme jeden Jahres in der Zeitspanne 1971-2000 über der Landesfläche Baden-Württembergs sind in Tabelle 3.2 aufgelistet. Die Rangfolge wurde durch Auswertung von Windgeschwindigkeitsdaten von 20 Wetterstationen des Deutschen Wetterdienstes (DWD) ermittelt. Dazu wurden für jede Station die maximalen Böengeschwindigkeiten innerhalb eines Zeitraums von 3 Tagen mit der maximalen Böengeschwindigkeit des gesamten Zeitraums von 30 Jahren normiert. Für jedes Sturmereignis in jedem Jahr wurden diese normalisierten Geschwindigkeiten für alle Stationen addiert, das Ereignis mit dem größten Index wurde in die Rangfolge mit aufgenommen (Heneka, Hofherr, Ruck & Kottmeier 2006).

Rang	Datum	Rang	Datum	Rang	Datum
1	28. Februar 1990	11	26. Januar 1995	21	03. Februar 1980
2	26. Dezember 1999	12	16. Januar 1974	22	30. Januar 2000
3	13. November 1972	13	28. Januar 1994	23	25. Februar 1997
4	01. Februar 1983	14	28. Oktober 1998	24	13. November 1973
5	02. Januar 1976	15	16. Dezember 1982	25	03. Januar 1978
6	09. Dezember 1993	16	18. November 1971	26	28. März 1987
7	23. November 1984	17	25. März 1988	27	14. Dezember 1989
8	24. März 1986	18	29. Oktober 1996	28	03. Januar 1991
9	13. März 1992	19	12. November 1977	29	05. November 1985
10	10. Dezember 1979	20	03. Januar 1981	30	29. November 1975

Tab. 3.2. Die schwersten Stürme jeden Jahres in Baden-Württemberg in der Reihenfolge des Sturmindex aus Heneka et al. (2006)

Zu acht schadensverursachenden Sturmereignissen stehen jeweils Daten zur Windgeschwindigkeitsverteilung und zur Schadenssumme an privaten Wohngebäuden zur Verfügung. Die Stürme sind in Tabelle 3.2 jeweils mit fetter Schrift gekennzeichnet. Der Auswahl dieser Stürme lagen folgende Kriterien zugrunde: 1.) Es musste ein schadenverursachendes Ereignis sein 2.) Es mussten sowohl meteorologische Daten als auch Schadensdaten zur Verfügung stehen. Die meteorologischen Daten wurden vom Institut für Meteo-

Abb. 3.3. Zugbahnen der untersuchten Winterstürme

rologie und Klimaforschung der Universität Karlsruhe/Forschungszentrum Karlsruhe zur Verfügung gestellt, die Schadensdaten von der SV Gebäudeversicherung Stuttgart.

Die Zugbahnen der untersuchten Stürme sind in Abbildung 3.3 dargestellt und wurden aus den Publikationen von Angermann (1993) bzw. Axer (2004) sowie aus Bodendruck Reanalysedaten des NCEP (*National Centers for Environmental Prediction*, auf www.wetterzentrale.de) und dem Europäischen Wetteratlas entnommen. Zu sehen sind die Zugbahnen des Tiefdruckkerns. Bei den meisten Stürmen (z.B. *Lore* 1994) waren Randtiefs für die schadensbringenden Windgeschwindigkeiten verantwortlich. Die genauen Zugbahnen der Randtiefs sind jedoch in den Reanalysedaten nicht ersichtlich und somit sind nur die Zugbahnen der steuernden Tiefdruckgebiete angegeben.

3.3.1 Schadensdaten

Die SV Gebäudeversicherung Stuttgart stellte umfangreiche Daten zur Schadenssumme von Sturmereignissen zur Verfügung. Die Daten betreffen die Verbundene Wohngebäudeversicherung (VGV), die von privaten Gebäudebesitzern abgeschlossen wird. Diese Versicherung war bis 1994 obligatorisch und wurde ausschließlich von der SV versichert. Der Versicherungsgrad lag somit bis 1994 bei 100% und wird heute noch zu über 90% angegeben. Durch die Marktöffnung haben auch andere Versicherungen zusätzliche Anteile, der Großteil wird aber weiterhin durch die SV versichert. Die Angaben zu den Schadenssummen beziehen sich auf die Auszahlungssumme, die die Versicherung im Schadensfall an den Versicherungsnehmer geleistet hat. 44 3. Beschreibung der verwendeten Daten

Ein Selbstbehalt von $200 \in$ (entsprechend 400 DM) wurde bereits von der Schadenssumme abgezogen und minimiert somit die Auszahlungssumme. Da es außer der Auszahlungssumme, die für jedes Gebäude vorhanden ist, keine weiteren Angaben über die Art des Schadens gibt, gehen wir für die Analyse der Daten von folgenden Annahmen aus:

- Alle Gebäude sind versichert und alle Schadensfälle wurden erfasst
- Der Auszahlungsbetrag + Selbstbehalt entspricht der Reparatursumme, die f
 ür die Sch
 äden durch Sturmeinfluss aufgebracht werden muss.
- Schadensfälle mit 0 € Auszahlungssumme, die entweder abgelehnte Fälle oder Schadensfälle unter dem Selbstbehalt sind, werden als nicht abgelehnte Schadensfälle behandelt und es wird der gesamte Selbstbehalt addiert

Des Weiteren ist die Versicherungssumme für die einzelnen Policen angegeben. Dieser Betrag ist der maximal versicherte Auszahlungsbetrag und deckt im Fall der VGV meist den Wert des Gebäudes.

- Die Versicherungssumme ist gleich dem Wert der Gebäude, dieser wird auch als Wiederherstellungskosten bezeichnet
- Für Gebäude, bei denen keine Versicherungssumme angegeben ist, wird die mittlere Versicherungssumme aller Gebäude innerhalb des Postleitzahlengebietes verwendet

Die Anzahl der betroffenen Gebäude pro Postleitzahlgebiet und Sturm wird durch Summation der einzelnen Schadensfälle bestimmt. Es werden dabei ebenfalls die Schadensfälle mit 0€ Auszahlungssumme zugerechnet. Da die Postleitzahlgebiete unterschiedliche Gebäudebestände haben ist es von Vorteil, mit dimensionslosen Zahlen zu rechnen. Der Anteil der betroffenen Gebäude pro PLZ-Gebiet lässt sich folgendermaßen berechnen:

$$Gebäudeanteil = \frac{\text{Anzahl der Schadensfälle}}{\text{Gesamtzahl aller Gebäude}}$$
(3.1)

Für die Gesamtzahl der Gebäude wird hier mit der Angabe des entsprechenden Sturmjahres gerechnet. Der Gebäudeanteil wird in der Versicherungsbranche als *Schadenfrequenz* bezeichnet.

Die Schadenssumme aller betroffenen Gebäude pro Postleitzahlengebiet für jeden Sturm erhält man durch Summation der Einzelschäden und Addition der Selbstbehalte. Durch Division mit dem Gesamtwert aller Gebäude erhält man den dimensionslosen Schadensanteil:

$$Schadensanteil = \frac{Summe \ der \ Schäden + Betroffene \ Gebäude * Selbstbehalt}{Gesamtwert \ aller \ Gebäude}$$
(3.2)

Auch hier wird mit dem Gesamtwert des entsprechenden Sturmjahres gerechnet, mit den Versicherungssummen stehen diese Angaben bereits zur Verfügung. Der Schadensanteil wird in der Versicherungsbranche als *Schadensatz* bezeichnet.

Die Daten der Stürme 1999, 1994, 1990, 1986 können ohne Einschränkung verwendet werden, bei Sturm 1983 fehlt die Angabe über die gesamte Versicherungssumme, weswegen

der Schadensanteil nicht berechnet werden kann. In Tab. 3.3 sind die Schadenshöhe und die Anzahl der Schadensfälle dieser Stürme aufgelistet. Die Angaben zur Schadenshöhe sind die Originalwerte des entsprechenden Sturmjahres. Für die Analyse der Stürme wurden die Schäden inflationsbereinigt und auf das Jahr 2000 bezogen. Dazu wurde der Baupreisindex für die Instandhaltung von Wohngebäuden des statistischen Bundesamtes (DSTATIS 2004) verwendet.

Das Schadensaufkommen der Stürme 1993, 1995 und 2000 war zu gering, so dass die Statistik auf PLZ5-Ebene nicht aussagekräftig ist - teilweise wurde nur ein Schadensfall pro Gebiet verzeichnet. Diese Stürme werden somit nicht zur Auswertung herangezogen.

Tab. 3.3. Übersicht über die Schadensdaten zu den einzelnen Stürmen für Baden-Württemberg. Der Schaden wurde mit einem Selbstbehalt beaufschlagt und ist jeweils auf das Jahr 2000 bezogen. Zum Vergleich sind die mit KAMM simulierten durchschnittlichen Windgeschwindigkeiten in BW angegeben.

Name	Lothar	Lore	Wiebke	Sturm 1986	Sturm 1983
Datum	26.12.1999	28.01.1994	28.02.1990	20.10.1986	01.02.1983
Schadenshöhe \in	304 Mio.	23,7 Mio.	50,6 Mio.	4,7 Mio.	8,5 Mio.
Anzahl Gebäude	197.520	17.337	34.270	3.083	6.529
Wind $[m/s]$	$_{38,5}$	31,8	34,2	27,9	29,1

3.3.2 Meteorologische Daten

Für jedes Sturmereignis wurden vom Institut für Meteorologie und Klimaforschung der Universität Karlsruhe Windgeschwindigkeits- und Windrichtungsfelder der bodennahen Windverhältnisse zur Verfügung gestellt. Die Informationen beziehen sich jeweils auf eine Höhe von 10 Metern über Geländeoberfläche und haben eine horizontale Auflösung von 1km x 1km. Die Geschwindigkeitsfelder repräsentieren (a) das maximale 10-Minuten-Mittel und (b) die maximale Böengeschwindigkeit, die während des Sturmes auftraten und (c) die Windrichtung der 10-Minuten-Mittel Geschwindigkeiten.

Die numerische Strömungssimulation der Stürme wurde mit dem Karlsruher Atmosphärischen Mesoskaligen Modell (KAMM) durchgeführt. Das dreidimensionale, nichthydrostatische¹ Modell wurde speziell für die Simulation atmosphärischer Prozesse mit Gebietsgrößen von 20 bis 200km entwickelt und besteht aus einem atmosphärischen Modell und einem Bodenvegetationsmodell. Es können insbesondere Prozesse über inhomogenem Gelände mit horizontalen Auflösungen von mehreren 100 Metern bis 10 km beschrieben werden, die als Folge einer großräumigen synoptischen Strömung auftreten. Das Koordinatensystem folgt hierbei der Geländeoberfläche, als numerische Schemata werden finite Differenzen verwendet. Eine exakte Beschreibung des Modells und der Gleichungen findet sich in Adrian & Fiedler (1991) und Lenz (1996).

Im vorliegenden Fall wurden als Antriebsdaten für das Modell die Reanalysedaten des European Centre for Medium-Range Weather Forecasts (ECMWF) verwendet. Dieser Datensatz liegt global mit einer Auflösung von 2,5° (entspricht in unseren Breiten etwa

¹ Bei nichthydrostatischen Modellen wird die Vertikalbewegung der Strömung berücksichtigt, während bei hydrostatischen Modellen ein Gleichgewichtszustand zwischen Gewichts- und Druckkraft angenommen wird und somit keine Bewegung simuliert wird.

ca. 200km) für jede 6 Stunden im Zeitraum von 1957 bis 2001 vor (Uppala, Kallberg, Simmons, Andrae, da Costa Bechtold, Fiorino et al. 2005). Für jeden Sturm wurde der entsprechende Datensatz zum Sturmzeitpunkt verwendet. Da die zeitliche Auflösung dieses Datensatzes nur 6h beträgt, wird angenommen, dass zu dem berechneten Zeitpunkt die höchsten Windgeschwindigkeiten während des Sturmes vorlagen und somit das Maximalwindfeldfeld innerhalb des Ausschnitts vorliegt. Als Randbedingungen am Boden wurden die Orographie und Landnutzungsdaten jeweils auf das Raster $1km \ge 1km$ interpoliert.

Mit dem Modell werden die mittleren Windgeschwindigkeiten in einer horizontalen Auflösung von $1km \ge 1km$ berechnet. Diese entsprechen nach Panofsky & Dutto (1994) den über 10 Minuten gemittelten Geschwindigkeiten. Um die Böengeschwindigkeiten zu erhalten, werden die Geschwindigkeiten in 10m Höhe mit den für die entsprechende Landnutzung gültigen Böenfaktoren multipliziert. Zur Validierung werden die resultierenden Geschwindigkeitsfelder an den Rasterpunkten mit den Stationsdaten des DWD verglichen. Die Werte liegen im Bereich zwischen 75 und 125% der beobachteten Werte, niedrige Windgeschwindigkeiten werden generell leicht zu hoch simuliert. Im Lee des Schwarzwalds werden ebenfalls etwas zu hohe Geschwindigkeiten berechnet. Für eine ausführlichere Beschreibung der Simulation siehe Heneka et al. (2006).

In Abb. 3.4 sind die berechneten maximalen Geschwindigkeiten während Wintersturm Lothar (1999) abgebildet. Im Gegensatz zu den aus Messdaten von DWD Wetterstationen interpolierten Geschwindigkeitsfeldern (z.B. MunichRe 2001, Klawa & Ulbrich 2003) erkennt man deutlich die durch die Orographie und Landnutzung bedingte Gliederung des Geschwindigkeitsfeldes.

Für die bebauten Flächen jedes 5-stelligen Postleitzahlengebietes wurde für jeden Sturm das räumliche Mittel aller in der Fläche liegenden Rasterpunkte gebildet und ihnen als maximal aufgetretene Böengeschwindigkeit zugeordnet.

3.4 Sturmgefährdung

Die Sturmgefährdung bezeichnet Windgeschwindigkeiten, die an einem Ort mit bestimmten jährlichen Wahrscheinlichkeiten erreicht oder überschritten werden. Für die Überschreitenswahrscheinlichkeiten von p = 0,5 bis p = 0,005 stehen diese Informationen durch das Institut für Meteorologie und Klimaforschung für die Fläche Baden-Württembergs mitsamt einer Angabe zur Unsicherheit zur Verfügung.

Hierfür wurden die Geschwindigkeitsfelder der 30 Stürme aus Tab. 3.2 zur Berechnung der Gefährdung verwendet. Für jeden Rasterpunkt des $1km \ge 1km$ Rasters wurden die Parameter α und β der Gumbel Extremwertfunktion mittels probability weighted moments (PWM) bestimmt. Hieraus lassen sich nach Gl. (2.23) die Windgeschwindigkeiten berechnen. Zusätzlich wurde mit Hilfe der Bootstrap Methode (Efron & Tibshirani 1993) die statistische Genauigkeit berechnet. Bei diesem statistischen Verfahren werden aus den 30 zur Verfügung stehenden Geschwindigkeiten pro Rasterpunkt pro Durchlauf jeweils 30 Geschwindigkeiten mit Zurücklegen gezogen und für die Gefährdungsberechnung verwendet. Die aus 1000 Durchläufen erhaltene Gefährdungsverteilung für jede Wahrscheinlichkeit wird anschließend nach Median und Standardabweichung ausgewertet.

Abb. 3.4. Mit KAMM berechneter Ausschnitt des maximalen Windgeschwindigkeitfeldes von Wintersturm Lothar am 26.12.1999

In Abb. 3.5 ist eine Sturmgefährdungskarte der jährlichen Überschreitenswahrscheinlichkeit 2% von Baden-Württemberg dargestellt. Die Geschwindigkeiten reichen von 32 bis über 48m/s, sie variieren also stark je nach Standort. Ein Vergleich mit den entsprechenden Gefährdungsgeschwindigkeiten, die mit Hilfe von Messdaten der DWD Stationen berechnet wurden, zeigt, dass die Gefährdung in den meisten Gebieten Baden-Württembergs sehr gut wiedergegeben wird. Größere Abweichungen gibt es jedoch an der Station Freudenstadt bzw. im Ostschwarzwald, wo die Gefährdung überschätzt wird.

Abb. 3.5. Sturmgefährdungskarte von Baden-Württemberg. Dargestellt ist die Verteilung der Böengeschwindigkeiten, die mit der Wahrscheinlichkeit von 2% innerhalb eines Jahres überschritten werden.

3.5 Verwendete Software

3.5.1 Geoinformationssystem (GIS)

Als Geografisches oder Geo-Informationssystem (GIS) wird ein Informationssystem bezeichnet, mit welchem raumbezogene Daten erfasst, verarbeitet und dargestellt werden können. Das GIS besteht aus Hardware, Sofware, Daten und Anwendungen (Bill 1994). Für die hier erstellte Arbeit wird die Software ArcGIS von ESRI verwendet.

Die im folgenden Kapitel beschriebene Berechnung von topographischen Indizes wurde mit den im GIS implementierten Werkzeugen durchgeführt. Dazu wurden die Gebietsgrenzen, das Höhenmodell, die Landnutzungsdaten und die Windgeschwindigkeits- bzw. Sturmgefährdungsfelder in das GIS eingelesen und - soweit nötig - georeferenziert. In

Abb. 3.6. Darstellung unterschiedlicher räumlich verknüpfter Informationsebenen in einem GIS.

Abb. 3.6 sind die verschiedenen Informationsebenen dargestellt, die sich für die Analyse verschneiden und überlagern lassen.

3.5.2 Matlab

Für die weiteren Berechnungen und Analysen sowie für die Erzeugung der Diagramme wurde das Programm MatLab Version 6.5. der Firma MathWorks Inc. verwendet.
4. Lastannahmen nach DIN 1055

Die für die Bemessung von Tragwerken anzunehmenden Lasten durch Windwirkung werden in der Deutschen Industrienorm DIN 1055 Teil 4 bzw. im europäischen Eurocode 1 Teil 2.4 festgelegt. Hierin werden sowohl die Verteilungen der Druckbeiwerte c_P für Tragwerke mit unterschiedlichen Geometrien als auch die für die Belastungsberechnung notwendigen Bemessungsstaudrücke festgelegt. Während sich bei den Angaben zur c_P -Verteilung für nicht-schwingungsfähige Tragwerke¹ im Laufe der Normänderungen und -ergänzungen zwischen 1936 und 2005 keine wesentliche Änderungen feststellen lassen, sind für den Bemessungstaudruck maßgebliche Unterschiede zu verzeichnen.

In den Normblättern von 1936 und 1986 wird unabhängig vom Standort des Tragwerkes der Staudruck in Abhängigkeit der Höhe über Gelände (Tab. 4.1) angegeben. Diese Angaben gelten für alle *normbaren* Tragwerke; hierunter fallen Bauwerke, die nicht

Höhe über Gelände	Windgeschwindigkeit	Staudruck
[m]	[m/s]	$[kN/m^2]$
von 0 bis 8	28,3	$0,\!5$
von 8 bis 20	$35,\!8$	$0,\!8$
von 20 bis 100	42,0	1,1
über 100	$45,\!6$	$1,\!3$

Tab. 4.1. Annahme der Windgeschwindigkeiten und Staudrücke in der DIN 1055 Ausgabe 1936

besonders exponiert sind. Das bedeutet, dass unabhängig vom regionalen Standard für jedes dieses Bauwerke in Deutschland dieselbe Bemessungsgrößen zugrunde lagen. Für Sonderbauten wie Schornsteine oder Türme werden in den entsprechenden Normen bereits Windzonenkarten zur differenzierten Belastungsberechnung zur Verfügung gestellt (DIN 1055–1986). Für exponierte Bauwerke, die auf einer das umliegende Gelände steil und hoch überragenden Erhebung liegen, wird ein Bemessungsstaudruck von mindestens 1,1 kN/m^2 angegeben.

In den aktuell gültigen Nomen des Eurocode (1991) und in der seit 2005 gültigen DIN 1055 (2005) wird der zu verwendende Grundstaudruck q_{ref} in einer Windlastzonenkarte angegeben. Der Staudruck berechnet sich aus diesem Grundstaudruck q_{ref} und dem vertikalen Staudruckprofil, welches für unterschiedliche Geländeoberflächen angegeben ist. Die Windlastzonenkarte ist aufgeteilt in 4 Zonen mit Geschwindigkeiten und Grundstaudrücken gleicher Auftretenswahrscheinlichkeit (Abb. 4.1). Die Erstellung der Karte ist in Kasperski (2001) und Kasperski (2002) beschrieben. In dieser Karte sind die Zo-

¹ Wohngebäude gelten im Allgemeinen als nicht-schwingungsfähige Tragwerke

Abb. 4.1. Windlastzonenkarte aus der DIN 1055 (2005)

nen der über 10 Minuten gemittelten Geschwindigkeiten in ebenem, offenen Gelände in 10 Meter über Grund angegeben, welche mit einer Wahrscheinlichkeit von 0,02 innerhalb eines Jahres überschritten werden. Somit sind Bauwerke im Norden Deutschlands generell mit höheren Staudrücken zu bemessen als im Süden, wobei große regionale Unterschiede auszumachen sind. Für Gebäudestandorte über 800 Meter sowie für exponierte Standorte auf Kuppen oder Geländestufen wird der Staudruck nach den Vorgaben der DIN erhöht.

In Tab. 4.2 sind die Böengeschwindigkeiten der aktuellen DIN 1055 (2005) für die unterschiedlichen Höhen, Lastzonen und Geländekategorien in ebenem, flachen Gelände angegeben. Mit den Geländekategorien sind die Oberflächenrauhigkeiten berücksichtigt, die von offener See (Kategorie I) bis zu Großstadtgebieten (Kategorie IV) reichen. Die fett gedruckten Geschwindigkeiten sind höher als in den Vorgängernormen von 1936 und 1986 angegeben. Bis 8 Meter Höhe wird nach der neuen Norm für alle Standorte bis auf Stadtgebiete der Zone I mit teilweise sehr viel höheren Böengeschwindigkeiten gerechnet.

$z = 8m, v_{alt} = 28, 3m/s$								
	Geländekat. I	Geländekat. II	Geländekat. III	Geländekat. IV				
Windlastzone I	$35,\!5$	31,8	$27,\!6$	25,9				
Windlastzone II	39,4	$35,\!3$	30,7	28,8				
Windlastzone III	43,3	38,8	33,7	$31,\!6$				
Windlastzone IV	47,3	42,4	42,4 36,8					
$z = 16m, v_{alt} = 35$	$z = 16m, v_{alt} = 35, 8m/s$							
	Geländekat. I	Geländekat. II	Geländekat. III	Geländekat. IV				
Windlastzone I	$37,\!9$	34,5	30,7	26,0				
Windlastzone II	42,1	38,4	34,1	28,8				
Windlastzone III	46,3	42,2	$37,\! 6$	31,7				
Windlastzone IV	$50,\!5$	46,0	41,0	$34,\!6$				

Tab. 4.2. Böenwindgeschwindigkeiten [m/s] in 8 bzw. 16 Meter über Grund für Windlastzonen und Geländekategorien nach DIN 1055 (2005). Fett gedruckte Geschwindigkeiten sind höher als die in den Vorgängernormen angegeben.

Bis zu 16 Meter Höhe sind generell in Windlastzone I niedrigere und in den anderen Zonen höhere Geschwindigkeiten angegeben. Drastische Unterschiede fallen vor allem in den Windlastzonen III und IV auf. Hier werden teilweise bis zu 20 m/s höhere Geschwindigkeiten angegeben. In Großstädten hingegen, wo Gebäudehöhen unter 8 Meter selten anzutreffen sind, wird in der alten Norm mit höheren Geschwindigkeiten - also konservativer - gerechnet.

4.1 Statistiken

Für die spätere Analyse der Schadensdaten soll zunächst untersucht werden, für wie viele Gebäude bzw. PLZ-Gebiete welche Auslegung der Norm zutrifft.

4.1.1 Baujahre von Gebäuden

Neufassungen der DIN 1055 Teil 4 wurden in den Jahren 1936, 1986 und 2005 veröffentlicht. Obwohl keineswegs sichergestellt ist, das die jeweiligen gültigen Bestimmungen beim Bau eines Bauwerkes eingehalten wurden, kann durch Auswertung der Baujahre von Gebäuden zumindest die Anzahl der Gebäude bestimmt werden, die in den Gültigkeitszeitraum der Norm-Ausgaben entfielen.

Hierzu wurden die nach Altersklassen getrennten INFAS Gebäudedaten verwendet. Die Daten geben die Baujahre der Gebäude an, Renovierungen und Umbauten sind nicht berücksichtigt. In Tab. 4.3 sind die entsprechenden Zahlen für Deutschland und Baden-Württemberg dargestellt. Mehr als 90% der bestehenden Gebäude wurden demnach vor 1986 neu gebaut, also während der Gültigkeit der Staudruckannahmen in Tab. 4.1. Somit kann von Seite der Norm festgestellt werden, dass der Großteil der Gebäude in Deutschland der konstanten Bemessungsgrundlage folgt.

	Gesamtanzahl	vor 1945	1945 - 1985	nach 1986	unbekannt
BW	2.574.000	760.000~(30%)	1.600.000~(62%)	160.000~(7%)	53.000~(0,2%)
D	20.470.000	7.727.000 (38%)	11.380.000(56%)	1.240.000~(6%)	577.000~(0,3%)

Tab. 4.3. Verteilung der Baujahre des Gebäudebestandes (aus INFAS Daten, Stand: 2001)

4.1.2 Windlastzonen

Für neuere Gebäude gelten die nach den Windlastzonen differenzierten Lastannahmen. Über die Verschneidung von bebauten Flächen von Postleitzahlengebieten und der Windlastzonekarte lässt sich die Anzahl der PLZ-Gebiete pro Zone bestimmen (Tab. 4.4). In Baden-Württemberg liegen demzufolge mehr als 86% der PLZ-Gebiete in Lastzone I

Tab. 4.4. Verteilung der Postleitzahlengebiete in Baden-Württemberg und in Deutschland auf die 4 Windlastzonen

	Gesamtanzahl	Ι	II	III	IV
BW	1160	1005~(86,6%)	155~(13,3%)	0 (0%)	0 (0%)
D	8196	4628~(56,4%)	2725 (33,4%)	647~(7,9%)	196 $(2,\!4\%)$

während 13% der Gebiete, welche ausschließlich im Südosten des Landes liegen, in Zone II zu finden sind. In Deutschland verteilen sich die Postleitzahlgebieten auf alle 4 Zonen, wobei etwa 10% der Gebiete in den höchstbelasteten Zonen III und IV liegen.

In der Norm sind zudem Zuschläge auf die Lastannahmen vorzusehen, wenn die entsprechenden Gebäude in Geländehöhen über 800*m* liegen. Für Bauwerke über 1100*m* sowie für Kamm- und Gipfellagen der Mittelgebirge sind gesonderte Betrachtungen gefordert. Es ist von Interesse auf wie viele Postleitzahlengebiete diese Zuschläge bzw. gesonderte Betrachtungen zutreffen. Es wurde deshalb eine Auswertung mit dem DHM 75m und den CORINE Landnutzungsdaten vorgenommen. In Tab. 4.5 wurde die Anzahl der bebauten Flächen von Postleitzahlengebieten, die in bestimmten Höhenklassen liegen, gezählt. Durch die Mindesterfassungsgrenze fallen kleinere Gebiete und Einzelgebäude heraus, so dass diese Statistik nur für PLZ-Gebiete mit Flächen größer als 25*ha* gilt.

In Baden-Württemberg liegen überdurchschnittlich viele Postleitzahlengebiete über 800m, während in Deutschland nur 1,3% der Gebiete in diese Höhenklasse fallen. Kein Gebiet - über 25ha - liegt jedoch über 1100m, in dieser Höhenklasse werden vermutlich nur Einzelgebäude und kleinere Siedlungen zu finden sein. Es wird hiermit deutlich, dass diese Zuschläge und gesonderten Betrachtungen nur für eine kleine Gruppe von

Tab. 4.5. Verteilung der Postleitzahlengebiete in Baden-Württemberg und in Deutschland in unterschiedliche Geländehöhenklassen, die in der DIN 1055 Berücksichtigung finden

	Gesamtanzahl	h < 800m	800m < h < 1100m	h > 1100m
BW	1160	1097 (94,6%)	$63~(5,\!3\%)$	0
D	8196	8049 (98,6%)	147~(1,3%)	0

Gebäuden anzuwenden ist, für den Großteil der Bauwerke gelten die in der Norm festgelegten Angaben.

4.2 Fazit

Nachdem die neue Norm mit unterschiedlichen Windlastzonen erst im Mai 2005 offiziell Gültigkeit erlangte, kann davon ausgegangen werden, dass alle Wohngebäude, welche sich nicht in besonders exponierten Lagen befinden, nach den Bemessungsgrundlagen der alten Normen ausgelegt wurden. Das bedeutet, dass die kritischen Geschwindigkeiten - unter Vernachlässigung von Sicherheitsbeiwerten - bei 28,3m/s für Bauwerke unter 8 Meter Höhe und bei 35,8m/s bei Bauwerken von 8 bis 20 Metern Höhe liegen. Somit ist die Bemessung der Gebäude von Seiten der Norm unabhängig des windklimatischen Standortes anzunehmen.

5. Analyse der Schadensdaten

Inhalt dieses Kapitels ist die Untersuchung von Schadensdaten von vergangenen Sturmereignissen im Hinblick auf die spätere Erstellung eines Schadensmodells, welches zur Abschätzung von Sturmschäden verwendet wird. Bei der Analyse wird der Einfluss von meteorologischen und topographischen Faktoren auf Schäden an Wohngebäuden quantifiziert. Wie in Abschnitt 2.3.3 gezeigt wurde, spielt die Windgeschwindigkeit die bedeutendste Rolle für die Schadenshöhe und für die Anzahl der Schäden während eines Sturmereignisses. Daneben wird der Einfluss der Konstruktionsweise der Gebäude als weiterer Parameter identifiziert, wobei bisher jedoch keine allgemeingültigen Beziehungen für die Anwendung in Deutschland zur Verfügung stehen. Systematische Untersuchungen zum Einfluss topographischer Faktoren wie Orographie und Oberflächenrauhigkeit wurden bei bisherigen Arbeiten nicht vorgenommen, so dass dieser Einfluss hier erstmals großflächig analysiert werden kann.

Die Auswertung wird auf Postleitzahlenebene durchgeführt, das heißt, alle meteorologischen, topographischen und Schadensdaten werden für die bebauten Gebiete gemittelt.

5.1 Räumliche Verteilung der Schäden

Die räumliche Verteilung der Sturmschäden ist maßgeblich durch die Zugbahn und die Intensität des Sturmtiefs gekennzeichnet.

In Abb. 5.1(a) ist die räumliche Verteilung der absoluten Schäden an privaten Wohngebäuden pro Postleitzahlengebiet durch Wintersturm Lothar dargestellt. Zum Vergleich sind die durch den Sturm verursachten Schadholzmengen nach Angaben des Ministeriums für Ländlichen Raum angegeben (b). Auffallend ist die Ähnlichkeit der Verteilung der Schäden beider Strukturklassen. Die Hauptschadensgebiete sind das Rheintal, der Nordschwarzwald und das Gebiet des mittleren Neckars, wenig Schaden tritt hingegen im Norden Baden-Württembergs auf. Vor allem ist die deutliche Grenze im nördlichen Teil des Landes zwischen geschädigten und schadensfreien Gebieten bemerkenswert. Die Zugbahn des Tiefdruckkerns (Abb. 3.3) und das mit KAMM berechnete Maximalwindfeld (Abb. 3.4) tragen zur Erklärung dieser Grenze bei, denn die höchsten Geschwindigkeiten eines Sturmtiefs treten bei westlichen Windrichtungen bedingt durch Überlagerung von Translation und zyklonaler Drehung südlich des Tiefdruckkerns auf.

Weiterhin auffallend sind die vergleichsweise geringen Gebäudeschäden im westlichen Schwarzwald, einerseits liegen hier die PLZ-Gebiete zumeist in Tälern wodurch die auftretenden Windgeschwindigkeiten geringer sind und andererseits sind hier auch weniger Werte angesammelt.

(a) Schäden an privaten Wohngebäuden nach SV Gebäudeversicherung Baden-Württemberg

(b) Schadholzmengen nach dem Ministerium für Ländlichen Raum Baden-Württemberg (2000)

Abb. 5.1. Verteilung der Gebäudeschäden und Schadholzmengen durch Sturm Lothar 26.12.1999

In Abb. 5.2 sind die Verteilungen der Schadenshöhen pro PLZ-Gebiet für die 4 weiteren untersuchten Stürme dargestellt. Man erkennt, dass bei Wintersturm 1994 ganz Baden-Württemberg betroffen war, wobei im Norden die größten Schäden auftraten. Das Hauptschadensgebiet von Wintersturm *Wiebke* 1990 lag in der Mitte und im Norden Baden-Württembergs, der Süden war hingegen nur wenig betroffen. Die beiden kleineren Stürme 1983 und 1986 verursachten vor allem in der Mitte und im Osten größere Schäden, wobei die Gesamtschadenssummen sehr viel niedriger lagen als bei den anderen Stürmen.

Insgesamt lässt sich damit zeigen, dass alle Stürme eine großflächige Ausdehnung innerhalb des Landesgebietes besaßen und dass es viele PLZ-Gebiete gibt, die von allen untersuchten Stürmen betroffen waren (z.B. Raum Stuttgart). Für die spätere Analyse ist bemerkenswert, dass zumindest bei den großen Stürmen (1999, 1994, 1990) Schäden in allen Geländehöhen - sowohl im Rheintal als auch in den Mittelgebirgen - auftraten.

Abb. 5.2. Räumliche Verteilung der Schäden aller Sturmereignisse (Bezugsjahr: 2000)

5.2 Verteilung der Schäden nach Größenklassen

Die Verteilung der Schäden nach Größenklassen gibt Aufschluss darüber, welche Schadensund Gebäudeanteile bei den Sturmereignissen in den Postleitzahlgebieten aufgetreten sind. In den Abbildungen 5.3 und 5.4 sind die Histogramme der PLZ-Gebiete der 4 größten Stürme dargestellt. Man erkennt bei allen Diagrammen, dass nur wenige Gebiete größere Schadens- und Gebäudeanteile besitzen, die meisten PLZ Gebiete haben kleine Anteile. Nur bei Wintersturm Lothar (1999) gibt es bereits mehr Gebiete mit größerem Schaden als mit geringerem. Des Weiteren sind Unterschiede zwischen den einzelnen Stürmen zu

Abb. 5.3. Histogramme der Schadensanteile aller 5-stelligen Postleitzahlengebiete

erkennen, Lothar (1999) verursachte bis zu 5 Mal höhere Schäden als Wiebke (1990) und etwa 10-20 Mal höhere Schäden als Lore (1994) und der Wintersturm 1986.

Eine weitere interessierende Größe ist der Durchschnittsschaden, also der durchschnittliche Schaden pro beschädigtem Wohngebäude. Der durchschnittliche Schaden für alle Wohngebäude in Baden-Württemberg für jeden Sturm errechnet sich jeweils aus der Gesamtschadenssumme zuzüglich des Selbstbehaltes geteilt durch die Gesamtzahl der Schäden (Tab. 5.1). Die Durchschnittsschäden wurden mit dem Baupreisindex inflationsbereinigt und sind auf das Jahr 2000 bezogen. Man erkennt, dass die durchschnittlichen Schäden der Stürme alle in derselben Größenordnung liegen, obwohl jeweils sehr unterschiedliche Gesamtschadenshöhen vorlagen. Da die maximalen Einzelschäden der Stürme bei Lothar sehr viel höher lagen (bis 120.000 \in) als bei Wiebke und Lore (ca. 50.000 \in) und den Stürmen 1983 und 1986 (ca. 20.000 \in), ist dies dadurch zu erklären, dass bei stärkeren

Tab. 5.1. Durchschnittsschaden pro untersuchtem Wintersturm (Bezugsjahr = 2000)

Sturm 1999	Sturm 1994	Sturm 1990	Sturm 1986	Sturm 1983
1546€	1380€	1484€	1521€	$1305 \in$

Abb. 5.4. Histogramme der Anteile der betroffenen Gebäude aller 5-stelligen Postleitzahlengebiete

Stürmen auch sehr viel mehr geringere Schadensfälle auftreten, die den Durchschnittswert absenken.

In Abb. 5.5 ist das Histogramm der Durchschnittsschäden innerhalb von PLZ-Gebieten dargestellt. Die meisten Schäden liegen im Bereich von 500 bis $1500 \in$, nur bei wenigen Postleitzahlgebieten wurden Durchschnittsschäden von $4000 \in$ erreicht. Es sind hierbei keine größeren Unterschiede zwischen den einzelnen Stürmen festzustellen.

5.3 Einfluss der Windgeschwindigkeit

Die Windgeschwindigkeit ist der wichtigste Einflussfaktor in Bezug auf Schäden an Gebäuden. In bisherigen Publikationen konnte dies sowohl theoretisch als auch empirisch nachgewiesen werden. Im Folgenden werden die Schadensdaten für jedes Postleitzahlengebiet über die mit dem Model KAMM berechneten maximalen Windgeschwindigkeiten während der Stürme aufgetragen. Dabei wird jedem PLZ-Gebiet die über die bebaute Fläche gemittelte Windgeschwindigkeit zugewiesen. Es wird damit sichergestellt, dass Schadensdaten und Windgeschwindigkeiten geographisch zusammenpassen, wobei von einer homogenen Verteilung aller Größen über den bebauten Flächen ausgegangen wird.

Abb. 5.5. Histogramm der Durchschnittsschäden innerhalb der PLZ-Gebiete für alle Sturmereignisse (Bezugsjahr = 2000)

Die Auftragung des Schaden über die Windgeschwindigkeiten kann grundsätzlich in 2 verschiedenen Arten erfolgen: als **absolute** Windgeschwindigkeit und als Windgeschwindigkeit **relativ** zum Windklima.

5.3.1 Absolute Windgeschwindigkeit

Bei der Darstellung des Schadens über die absoluten Geschwindigkeiten wird davon ausgegangen, dass diese maßgeblich für das Auftreten und die Höhe des Schadens verantwortlich sind.

In Abb. 5.6 sind die Schäden pro Postleitzahlengebiet in Abhängigkeit von der maximalen Böengeschwindigkeit aufgetragen, d.h. jeder Punkt repräsentiert ein PLZ-Gebiet. Man erkennt insgesamt einen ansteigenden Trend zu größerem Schadensanteil und Gebäudeanteil bei ansteigender Geschwindigkeit. Bis 35m/s ist dieser Anstieg nur leicht, ab 35m/s ist er deutlicher sichtbar. Weiterhin fällt die große Streuung der Punkte bei beiden Schadenszahlen auf. Bei den selben Geschwindigkeiten treten also sehr unterschiedliche Schadens- und Gebäudeanteile auf. Die Strichpunkt-Linien begrenzen den Bereich, in dem 68% aller Datenpunkte liegen. Jeweils unter- und oberhalb dieses Bereichs liegen 16% aller Punkte. Da sich die Geschwindigkeits- und die Schadensbereiche der einzelnen Stürme teilweise überlappen, ist in Abb. 5.7 der Schaden logarithmisch aufgetragen um die Bereiche der kleineren Stürme besser zu erkennen.

Eine weitere Information lässt sich durch die Auftragung des Durchschnittsschaden über die Windgeschwindigkeit in Abb. 5.8 gewinnen. Es wurden für die einzelnen Geschwindigkeitsbereiche der jeweilige Gesamtschaden durch die Anzahl der betroffenen Gebäude dividiert. Die Schäden wurden mit dem Baupreisindex inflationsbereinigt, der Effekt der Preissteigerung spielt also keine Rolle. Der durchschnittliche Schaden liegt im Bereich bis etwa 36m/s zwischen 1300 und 1600 Euro, wobei die Schäden der einzelnen Stürme sehr stark streuen. Bei den Stürmen 1983 und 1986 steigen die Schäden mit der Windgeschwindigkeit konstant an, während bei den Stürmen 1990 und 1994 der durch-

Abb. 5.6. Schadens- und Gebäudeanteile der Postleitzahlengebiete in Abhängigkeit der maximalen Böengeschwindigkeit. Es wurden der Übersicht halber nur ein Teil der PLZ-Gebiete von 4 untersuchten Sturmereignissen dargestellt

Abb. 5.7. Schadens- und Gebäudeanteile der Postleitzahlengebiete in Abhängigkeit der maximalen Böengeschwindigkeit in logarithmischer Darstellung

schnittliche Schaden erst annähernd konstant bleibt und dann bei höherer Geschwindigkeit zunimmt. Der Durchschnittsschaden von Wintersturm Lothar (1999) nimmt leicht von 1550 Euro bei 33m/s bis auf 1700 Euro bei 44m/s zu. Insgesamt ist also eine leichte Zunahme des durchschnittlichen Schadens sowie eine große Streuung zwischen den einzelnen Stürmen festzustellen.

Abb. 5.8. Durchschnittsschäden pro Gebäude innerhalb der PLZ-Gebiete in Abhängigkeit der maximalen Böengeschwindigkeit

Hieraus erkennt man bereits deutlich, dass die durchschnittliche Schadenshöhe nur leicht ansteigt, aber im Großen und Ganzen relativ konstant ist. Das bedeutet, dass der Hauptgrund, weshalb größerer Gesamtschaden auftritt, die gestiegene Anzahl von Schadensfällen ist und nicht der größere Schaden bei einzelnen Gebäuden. Bei Windgeschwindigkeiten, wie sie bisher bei Winterstürmen aufgetreten sind, ist demnach kaum mit flächendeckenden Totalschäden von Gebäuden zu rechnen. Vielmehr werden jedoch Großteile der Gebäude innerhalb von PLZ-Gebieten beschädigt sein. Bei Orkan Lothar waren teilweise bereits bis zu einem Drittel der Gebäude innerhalb von PLZ-Gebieten von Schaden betroffen.

5.3.2 Relative Windgeschwindigkeit

Bei der zweiten Darstellungsweise liegt die Annahme zugrunde, dass nicht die absolut aufgetretene Geschwindigkeit, sondern die auf eine für das Windklima charakteristische Geschwindigkeit bezogene relative Windgeschwindigkeit für den Schaden innerhalb eines Gebietes maßgebend ist. Es wird also davon ausgegangen, dass die Bauweise der Gebäude dem entsprechenden Windklima angepasst ist.

Das Windklima lässt sich durch Windgeschwindigkeiten beschreiben, die dieselbe Auftretenswahrscheinlichkeiten besitzen. In diesem Fall bietet sich hierfür die 50-jährliche Windgeschwindigkeit an, die mit der jährlichen Wahrscheinlichkeit von p = 0.02 überschritten wird. Diese steht in einem $1km \ge 1km$ Raster zur Verfügung und wird den bebauten Flächen jedes Postleitzahlengebietes zugeordnet, wobei equivalent zur Berechnung der absoluten Geschwindigkeiten über diese Flächen gemittelt wird.

In Klawa (2001) ist als Bezugsgeschwindigkeit die 98%-Perzentile der gemessenen Windgeschwindigkeiten verwendet worden. Diese Angaben stehen für die Untersuchungen jedoch nicht zur Verfügung.

In Abb. 5.9 sind die Schäden pro PLZ-Gebiet in Abhängigkeit der relativen Windgeschwindigkeit dargestellt. Bei den Gebieten, die bei $V_{B\ddot{o}e}/V_{p=0.02} = 1$ liegen, trat während des Sturmes exakt die 50-jährliche Geschwindigkeit auf. Man erkennt ebenfalls wie in Abb. 5.6 einen Anstieg des Schadens bei höheren relativen Windgeschwindigkeiten, welcher jedoch stärker ausgeprägt ist. Beim 1-fachen der 50-jährlichen Windgeschwindigkeit sind mittlere Gebäudeanteile von 6% und Schadensanteile von 0,25 Promille zu erwarten, beim 1,1-fachen bereits 15% Gebäudeanteil und 1 Promille Schadensanteil. Zudem ist die Streuung insgesamt wesentlich geringer als in Abb. 5.6.

Die unterschiedlichen Bereiche der einzelnen Stürme lassen sich in Abb. 5.10 durch die logarithmische Auftragung des Schadens erkennen. Allein bei Wintersturm *Lothar* (1999) traten Geschwindigkeiten auf, die im Bereich und teilweise stark oberhalb der 50jährlichen Windgeschwindigkeiten liegen. Die anderen Stürme liegen bei maximal 95%

Abb. 5.9. Schadens- und Gebäudeanteile der Postleitzahlengebiete in Abhängigkeit der relativen Geschwindigkeit. Es wurden der Übersicht halber nur ein Teil der PLZ-Gebiete von 4 untersuchten Sturmereignissen dargestellt

Abb. 5.10. Schadens- und Gebäudeanteile der Postleitzahlengebiete in Abhängigkeit der relativen Geschwindigkeit in logarithmischer Darstellung

Abb. 5.11. Durchschnittsschäden pro Gebäude innerhalb der PLZ-Gebiete in Abhängigkeit der relativen Geschwindigkeit

Abb. 5.12. Histogramme des Schadens- und Gebäudeanteiles bei unterschiedlichen absoluten Geschwindigkeiten (V = 32,5; 37,5; 42,5m/s)

dieser Windgeschwindigkeit. Man erkennt bei dieser logarithmischen Auftragung einen konstanten, fast linearen Anstieg des mittleren Schadens der Stürme.

Der Verlauf der mittleren Durchschnittsschäden (DS) der verschiedenen Stürme in Abhängigkeit der relativen Geschwindigkeiten ist in Abb. 5.11 dargestellt. Die Durchschnittsschäden der Stürme stimmen gut überein, es sind kaum Unstetigkeiten zu erkennen. Bis zu etwa 95% der 50-jährlichen Geschwindigkeit bleibt der DS konstant bei 1300 bis 1500 \in , erst danach steigt er konstant zunehmend bis auf 2200 Euro beim 1,1-fachen an. Diese klare Abhängigkeit steht im Gegensatz zur Darstellung über den absoluten Geschwindigkeiten. Bei der Darstellung in Abb. 5.11 lässt sich demnach sehr gut die

Abb. 5.13. Histogramme des Schadens- und Gebäudeanteiles bei unterschiedlichen relativen Geschwindigkeiten (V = 0.9; 1.0; 1.1)

Abhängigkeit der Durchschnittsschäden von der relativen Windgeschwindigkeit feststellen, erst ab der Überschreitung der 50-jährlichen Windgeschwindigkeit steigt der Schaden an.

Die Streuung des Schadens- und Gebäudeanteils bei PLZ-Gebieten, für die dieselbe Geschwindigkeit berechnet wurde, ist bei der absoluten Auftragung größer als bei Auftragung der relativen Geschwindigkeiten. In den Abbildungen 5.12 und 5.13 sind Schadenshistogramme bei jeweils 3 unterschiedlichen Geschwindigkeitsstufen abgebildet. Für diese Auswertung wurden Daten aller Stürme verwendet. Es sind jeweils die PLZ-Gebiete aufgetragen, die im Geschwindigkeitsbereich $v_{abs} \pm 1.25m/s$ (bzw. $v_{rel} \pm 0.0125$) der im Diagramm angegebenen Geschwindigkeit lagen. Man erkennt deutlich, über welche Schadens-

und Gebäudeanteile sich der Schaden bei den unterschiedlichen Geschwindigkeiten verteilt und dass die Streuung mit der Geschwindigkeit zunimmt.

5.4 Einfluss der Geländehöhe

Es ist von Interesse, zu welcher der beiden vorgestellten Darstellungen Schadensdaten aus anderen windklimatischen Gebieten am besten passen. Anhand von Schadensdaten beispielsweise aus Norddeutschland, wo ein deutlich unterschiedliches Windklima herrscht, wird sich dieser Sachverhalt gut klären lassen. Diese Daten aus anderen Gebieten stehen jedoch zur Zeit nicht zur Verfügung, weshalb hier anhand der Geländehöhe angestrebt wird, nähere Informationen über den Einfluss des Windklimas zu erhalten. Aus der Gefährdungskarte in Abb. 3.5 ist ersichtlich, dass in größeren Höhenlagen grundsätzlich höhere Geschwindigkeiten zu erwarten sind. Im Folgenden werden deshalb die PLZ-Gebiete nach ihrer Geländehöhe getrennt betrachtet.

Die Geländehöhe ist definiert als Mittelwert der Rasterpunkte des DHM75 innerhalb der bebauten Flächen der PLZ-Gebiete. In Abb. 5.14 sind jeweils die mittleren Geschwindigkeiten und die Schadenszahlen über die Geländehöhe dargestellt. Die Höhenbereiche um 100 bis 200 Meter über NN befinden sich in der Rheinebene, die Bereiche von 600 bis 1000 Metern in den Höhenlagen des Schwarzwaldes und der Schwäbischen Alb. Im obersten Diagramm erkennt man, dass die mit KAMM simulierten Böengeschwindigkeiten bei allen Stürmen mit der Geländehöhe stark ansteigen. Es wird zudem der Unterschied der Geschwindigkeitsbereiche bei den Stürmen deutlich. Bei der Betrachtung der auf das Windklima bezogenen relativen Geschwindigkeiten $V_{Böe}/V_{p=0.02}$ im zweiten Diagramm ist ersichtlich, dass die maximalen relativen Geschwindigkeiten bei den Stürmen in unterschiedlichen Höhenbereichen liegen. Wintersturm Lothar (1999) war in den niedrigen Lagen überproportional intensiv, Lore (1994) in den mittleren, während Wiebke (1990) und Sturm 1986 eher in den Hochlagen starke Geschwindigkeiten aufwiesen.

Bei Vergleich der relativen Geschwindigkeiten mit den Schadens- und Gebäudeanteilen lässt sich bei *Lothar* eine gute Übereinstimmung der Verläufe über die Höhe erkennen. Der größte Schaden tritt auch hier in den niedrigen Höhenlagen bis 400 Metern auf. Bei *Lore* (1994) wie auch bei *Wiebke* (1990) ist insgesamt eine Abnahme des Schadens mit größerer Höhe zu erkennen. Der Schaden bei Sturm 1986 nimmt ebenso wie die relativen Geschwindigkeiten leicht zu, wobei zu bemerken ist, dass in den Lagen bis 200 Metern nur sehr vereinzelt Schaden zu verzeichnen war.

Insgesamt ist bei den Schadens- und Gebäudeanteilen keine mit der Geländehöhe ansteigende Tendenz wie bei den absoluten Geschwindigkeiten zu erkennen. Das bedeutet, dass die Schadensanfälligkeit der Gebäude in den Höhenlagen unterschiedlich ist, denn bei konstanter Anfälligkeit wären Schäden proportional zur absoluten Geschwindigkeit zu erwarten. Diese Tendenz ist nicht ersichtlich. Es wird deutlich, dass der mittlere Schadensund Gebäudeanteil über die Höhe eher abnimmt und - vor allem bei *Lothar* - der Tendenz der relativen Geschwindigkeiten folgt.

Abb. 5.14. Zusammenhang zwischen durchschnittlicher Geländehöhe der Postleitzahlengebiete und absoluten und relativen Windgeschwindigkeiten sowie mittlerem Schadens- und Gebäudeanteil

5.5 Einfluss der Orographie

In Abschnitt 2.2.2 wurde bereits der Einfluss der Orographie auf die lokal auftretenden Windgeschwindigkeiten dargelegt; je nach Geländeform sind Geschwindigkeitsänderungen zwischen 75% und 120% im Vergleich zur ungestörten Strömung zu erwarten. Die durch großräumige Hindernisse verursachten Geschwindigkeitsänderungen sind bereits durch das atmosphärische Modell KAMM aufgelöst und durch die Windgeschwindigkeiten angegeben. Es wird deshalb Wert auf die kleinräumige Orographie gelegt, also unter 1km horizontaler Ausdehnung. Im Folgenden wird untersucht, ob die Anzahl und die Höhe der Sturmschäden je nach Geländeform ebenfalls variiert. Als Datengrundlage für die Geländeanalyse dient das digitale Höhenmodell mit einer Auflösung von 75m.

Für Gebäude liegen in der Literatur keine quantitativen Untersuchungen bezüglich dieses Einflusses vor. Dies liegt vor allem daran, dass bisherige Untersuchungsgebiete keine ausgeprägten orographischen Eigenschaften aufwiesen (z.B. Dorland et al. 1999, Sacré 2002). Für Waldbestände werden hierzu in Rottmann (1986) Windwurfschäden von zwei Stürmen mit der Lage im Gelände in Zusammenhang gebracht. Ein Großteil der beschädigten Waldflächen sind demnach an Oberlagen in Luv und auf Hochplateaus vorhanden, während am Unterhang oder in Leelagen die geringsten Schäden auftraten.

Windwurfflächen von Orkanen wurden von Schüepp, Schiesser, Huntrieser, Scherrer & Schmidtke (1994) und Schmoeckel (2006) auf orographischen Einfluss hin untersucht. in Schmoeckel (2006) wurden bestimmte Ausrichtungen und Neigungen identifiziert, bei denen häufiger Schäden auftraten. Hingegen konnten keine eindeutigen Zusammenhänge zwischen dem Auftreten von Windwurf und der Geländekrümmung (konkav, eben, konvex) gefunden werden.

5.5.1 Geländeparametrisierung

Für die Analyse des Einflusses der Orographie wird die Geländelage parametrisiert, bzw. klassifiziert. Diese Klassifizierung hat zudem automatisiert zu erfolgen, da deutschlandweit mehr als 10.000 Gemeinden oder Postleitzahlengebiete berücksichtigt werden müssen.

Grundsätzlich ist eine Unterteilung des Geländes in Bezug auf das Auftreten unterschiedlicher Windgeschwindigkeiten sinnvoll. Die Lagen können u.a. unterschieden werden nach: Hang-, Gipfel-, Tal-, Kamm- und Sattellagen, die bei konstanter Gradientwindgeschwindigkeit jeweils verschiedene lokale Geschwindigkeiten aufweisen. Die automatisierte Erkennung solcher Lagen ist schwierig, da es keine eindeutige Definition gibt.

Es wird deswegen zumeist auf topographische Indizes zurückgegriffen um die Geländelage zu beschreiben. In Gerth & Christoffer (1994) werden für die 8 Hauptwindrichtungen die relative Höhe zur Umgebung bestimmt, Quine & White (1998) geben ebenfalls richtungsabhängig den Winkel zwischen Horizont und Gelände in unterschiedlichen Entfernungen an (TOPEX). In der Hydrologie werden zumeist Interpolationsverfahren verwendet, bei denen eine mehrparametrische dreidimensionale Fläche an die reale Orographie angenähert wird, um Ausrichtung, Krümmung und Hangneigung zu berechnen (Heerdegen & Beran 1982, Zevenbergen & Thorne 1987).

Für die folgende Analyse wird in Anlehnung an den Geländeindex von Gerth & Christoffer (1994) ein ähnlicher Index erstellt, allerdings ohne Berücksichtigung der Richtungsabhängigkeit. Dies bedeutet zwar einerseits eine Einschränkung in der Genauigkeit der Untersuchung, andererseits werden damit auch ohne Kenntnis der Windrichtung, die für Sturmereignisse nicht einfach vorherzusagen ist, gültige Beziehungen abgeleitet.

Vorbemerkung. Die durchschnittliche bebaute Fläche innerhalb eines Postleitzahlengebietes beträgt ca. $2km^2$. Für dieses Gebiet liegen die Schadensinformationen ohne weitere Ortsangaben vor. Aus diesem Grund muss sich der Geländeparameter ebenfalls auf die bebaute Fläche beziehen, eine höhere Auflösung ist somit nicht notwendig. Der zur Beschreibung des Geländes notwendige Parameter ist ebenso wie die bereits betrachtete Windgeschwindigkeit charakteristisch für die Lage des gesamten Gebietes, er ist also ein räumlicher Mittelwert. Es ist durchaus denkbar, dass ein Teil des Ortes extrem exponiert ist, während ein anderer Teil sehr geschützt liegt. Dadurch, dass die Schadensdaten nicht Teilgebieten der Orte zugeordnet werden können, bezieht sich die Schadensangabe also immer auf den Mittelwert.

Definition. Der Geländeindex TI gibt die Differenz in Metern zwischen dem beobachteten Punkt und dem Mittelwert seiner Nachbarpunkte innerhalb des maximalen Radius r an.

$$TI(r) = z_0 - z_m(r) = z_0 - \frac{1}{n} \sum_{i=1}^n (z_i)$$
(5.1)

Hierbei ist n die Anzahl der Rasterpunkte innerhalb des Radius r um den Rasterpunkt z_0 (Abb. 5.15). Je nach Wahl des Radius ergeben sich unterschiedliche Werte für den Geländeindex, da sich durch die Inhomogenität des Geländes die resultierenden Mittelwerte stark ändern.

Abb. 5.15. Definition des Geländeindex (TI) als Maß für die relative Geländehöhe zur benachbarten Umgebung

Für jedes PLZ-Gebiet werden die Rasterpunkte innerhalb der bebauten Flächen nach Mittelwert und Standardabweichung ausgewertet. Je nach Mittelwert TI_m kann somit qualitativ die Geländelage zugeordnet werden (Tab. 5.2). Tal- und Gipfellagen lassen sich durch die Betrachtung des Mittelwerts bereits sehr gut unterscheiden, zur Erkennung von Lagen in der Ebene und an Hängen muss zusätzlich die Standardabweichung TI_{std} hinzugezogen werden.

5.5.2 Ergebnisse

Da der Geländeindex als zusätzlicher Parameter zur Windgeschwindigkeit für die Schadensabschätzung verwendet werden soll, ist Unkorreliertheit zur Windgeschwindigkeit gefordert, d.h die Windgeschwindigkeiten dürfen nicht im Geländeindex abgebildet sein. Um dies

TI_m	TI_{std}	Interpretation
$\gg 0$		liegt erheblich über Umgebung, auf Gipfel
> 0		liegt oberhalb Umgebung, auf Hügel, Kuppe
≈ 0	klein	liegt auf Ebene
	groß	liegt auf Hang, Sattel
< 0		liegt unterhalb Umgebung, im Tal
$\ll 0$		liegt erheblich unterhalb Umgebung, in engem Tal

Tab. 5.2. Interpretation des mittleren Geländeindex (TI_m) für die Lage der bebauten Flächen von Postleitzahlgebieten

zu gewährleisten, werden Geländeindizes für die unterschiedlichen Radien r 300, 600, 1200 und 2400m berechnet. In Tabelle 5.3 sind die Korrelationskoeffizienten zwischen Geländeindex der PLZ-Gebiete und den jeweiligen berechneten Windgeschwindigkeiten dargestellt. Man erkennt die Zunahme der Korrelation mit größerem Radius des Geländeindex. Dies hat die Ursache darin, dass bei größeren Radien der Geländeindex bereits in der Skala des berechneten Windfeldes liegt $(1km \ge 1km)$ und sich somit die Effekte überlagern. Bei kleinen Radien wird hingegen nur die Umgebung innerhalb eines Rasterpunktes des Windfeldes berücksichtigt und es kommen somit ausschließlich lokale Strömungseffekte zur Geltung, die nicht in KAMM simuliert werden können. Für die weitere Untersuchung wurde ein Radius von r = 600m gewählt, da dieser Radius etwa die Größenordnung des Windfeldraster besitzt und somit innerhalb dieses Rasterelements das gesamte Gelände erfasst. Die Korrelation ist leicht positiv, mit maximal 0,1 bei Wintersturm Lothar (1999) jedoch nicht von Bedeutung.

In Abb. 5.16 ist das digitale Höhenmodell DHM75m und der entsprechende Geländeindex mit r = 600m beispielhaft an einem 10 x 15km großen Ausschnitt gezeigt. Die Haupt- und Nebentäler (helles grau) sowie die Kammlagen (dunkles grau) werden sehr gut erkannt, ebenso wie die Ebenen (weiß). Zusätzlich sind für einige PLZ Gebiete die über die bebauten Flächen gemittelten Geländeindizes TI_m angegeben. Deutlich erkannt als in einem engen Tal liegend wurde beispielsweise das Gebiet mit $TI_m = -41,5m$, ebenso wie die Fläche in der Ebene mit $TI_m = 0$.

Die Verteilung der Geländeindizes (Radius r = 600m) aller Postleitzahlgebiete in Baden-Württemberg ist im Histogramm in Abb. 5.17 abgebildet. Man erkennt, dass etwa 80% der Gebiete einen Geländeindex zwischen $TI_m = -15$ bis 1 besitzen. Nur wenige PLZ-Gebiete liegen oberhalb ihrer Umgebung, die meisten jedoch stark unterhalb. Dies

Tab. 5.3. Korrelationskoeffizienten zwischen Geländeindizes unterschiedlicher Radien und berechneten Böengeschwindigkeiten auf PLZ-Ebene.

TI mit Radius	Sturm 1983	Sturm 1986	Sturm 1990	Sturm 1994	Sturm 1999
r = 2400m	0,18	$0,\!12$	$0,\!15$	$0,\!17$	$0,\!25$
r = 1200m	0,06	0,03	0,06	$0,\!10$	$0,\!15$
r = 600m	-0,01	0,01	0,03	0,07	0,10
r = 300m	-0,04	-0,01	$0,\!01$	0,06	0,08

Abb. 5.16. Automatisierte Erkennung von Geländeformen. Oben: Ausschnitt aus einem Digitalen Höhenmodell (DHM) mit 75m Auflösung. Unten: Geländeindex TI (r=600m) für den selben Ausschnitt. Rote Flächen haben einen positiven TI, während grüne Flächen negativ sind. Bei weißen Flächen ist TI etwa 0. Zusätzlich sind bebaute Flächen von Postleitzahlgebieten schraffiert dargestellt und der Mittelwert der Geländeindizes TI_m innerhalb der Fläche angegeben.

ist erklärbar, da die meisten bebauten Gebiete in Tälern liegen und Ortschaften auf exponierten Gipfellagen selten sind.

Abb. 5.17. Histogramm der Geländeindizes (TI_m) aller Postleitzahlengebiete in Baden-Württemberg

Für alle untersuchten Stürme wurde in Abb. 5.18 der normalisierte Schaden der PLZ-Gebiete für unterschiedliche Geländeindizes aufgetragen. Die Normalisierung wurde jeweils mit dem Durchschnittswert des Schadens der einzelnen Stürme durchgeführt

Abb. 5.18. Zusammenhang zwischen Geländeindex und normalisiertem Schaden

Die Punkte stellen jeweils die Mittelwerte der Schäden aller PLZ-Gebiete mit einem Geländeindex von $TI = TI_m \pm 2m$ dar (floating mean).

Man erkennt, dass der normalisierte Schaden sehr stark positiv mit dem Geländeindex korreliert ist. Bei PLZ-Gebieten mit $TI_m < 30m$ entsteht nur etwa 70% des mittleren Schadens, bei Gebieten mit $TI_m \sim 5m$ etwa 120% und bei noch größeren TI_m tritt vereinzelt bis 180% des mittleren Schadens auf. Dies gilt sowohl für den Schadensanteil als auch für den Gebäudeanteil. Alle Winterstürme zeigen hierbei denselben Trend, systematische Unterschiede lassen sich nicht feststellen. Insgesamt sind auch die Schwankungen zwischen den einzelnen Stürmen recht gering. Erst bei sehr kleinen und sehr großen Geländeindizes sind größere Unterschiede festzustellen, die auf die geringe Anzahl von PLZ Gebieten, die für die Mittelung zur Verfügung stehen, zurückzuführen ist. Zufällige Schwankungen spielen hier eine größere Rolle.

Bei Annahme einer linearen Beziehung lassen sich zur Abschätzung des durchschnittlichen Schadens bezogen auf den mittleren Schaden bei Postleitzahlgebieten mit unterschiedlichen Geländeindizes die folgenden Gleichungen durch Regression bestimmen:

$$X_{SA} = 100(0, 014108TI_m + 1, 0998)$$

$$X_{GA} = 100(0, 014144TI_m + 1, 0857)$$
(5.2)
(5.3)

Abb. 5.19. Beziehung zwischen der absoluten Windgeschwindigkeit und dem Schadens- und Gebäudeanteil mit zusätzlicher Parametrisierung des Geländes in 4 Klassen

Diese beiden Geraden sind zusätzlich in Abb. 5.18 eingetragen. Beispiel: Bei Postleitzahlgebieten mit einem Geländeindex von $TI_m = -30m$ wird nach Gl. (5.3) ein Gebäudeanteil von durchschnittlich etwa 67% des mittleren Gebäudeanteiles eines Sturmes erwartet. Zu bemerken ist, dass diese Beziehungen unabhängig von der aufgetretenen Windgeschwindigkeit für den Durchschnitt aller PLZ-Gebiete mit diesen Geländeindizes gelten.

In den Abb. 5.19 und 5.20 sind die mit dem Geländeindex parametrisierten Windgeschwindigkeit-Schadensbeziehungen aufgetragen. Die Datenpunkte wurden unterteilt in unterschiedliche durch TI_m beschriebene Geländeklassen. Aufgrund der Verläufe der Kurven in Abb. 5.18 wird die folgende Aufteilung gewählt: Klasse 1 ($TI_m < -25$), Klasse 2 ($-25 < TI_m < -10$), Klasse 3 ($-10 < TI_m < 0$) und Klasse 4 ($TI_m > 0$). Für alle Windgeschwindigkeiten müssten demnach die Schadens- und Gebäudeanteile der höheren Klassen größer sein als die der niedrigeren. Dies trifft nach den Abbildungen sowohl bei der Auftragung mit der absoluten Windgeschwindigkeit als auch mit der relativen Windgeschwindigkeit zu.

In Abb. 5.19 lassen sich bis zu 35m/s Böengeschwindigkeit durch die geringe Schadenshöhe praktisch keine Unterschiede nachweisen. Ab etwa 35m/s ist der Einfluss des Geländeparameters im Verlauf der Windgeschwindigkeit-Schadensbeziehung deutlich zu erkennen. Bei der gleichen mit KAMM berechneten Geschwindigkeit ist der mittlere Schaden bei Gebieten mit höherem TI_m größer. Der durchschnittliche Schaden bei

Abb. 5.20. Beziehung zwischen der relativen Windgeschwindigkeit und dem Schadens- und Gebäudeanteil mit zusätzlicher Parametrisierung des Geländes in 4 Klassen

5. Analyse der Schadensdaten

Geländelagen der Klasse 4 $(TI_m > 0)$ ist zwischen 2 und 4 Mal so groß wie bei Klasse 1 $(TI_m < -25)$. Der Gebäudeanteil ist bei den exponierten Lagen der Klasse 4 zwischen 2 und 3 Mal größer als bei Klasse 1.

Ein ähnliches Bild ergibt sich bei der Betrachtung der Wind-Schadensbeziehung mit der Auftragung der relativen Windgeschwindigkeiten in Abb. 5.20. Bis zu 90% der 50-jährigen Windgeschwindigkeit lassen sich keine Unterschiede erkennen. Bei höheren relativen Windgeschwindigkeiten liegt auch hier der Schaden der Klasse 4 höher als bei Klasse 1 und auch als bei den anderen Klassen.

Man erkennt in beiden Abbildungen deutlich, dass die beiden mittleren Geländeklassen 2 und 3 eher zusammenliegen und nur die größte und kleinste Klasse deutlich getrennt voneinander sind. Da nach Abb. 5.17 über 80% der PLZ-Gebiete in den beiden mittleren Klassen, also zwischen $-25 < TI_m < 0$, kann mit dem Gelände
index nur für etwa 20% der Gebiete eine weitere Unterscheidung vorgenommen werden.

5.6 Einfluss der Oberflächenrauhigkeit

Wie in Kap. 2.2.1 gezeigt wurde, hängen die resultierenden Geschwindigkeiten in Bodennähe maßgeblich von der Beschaffenheit der Oberfläche in Strömungsrichtung ab. Nach Tab. 2.6 können Böengeschwindigkeiten in derselben Höhe bei flachem Gelände mit geringer Rauhigkeit ($z_0 = 0.01$) um 20 bis 30% höher liegen als in Stadt- oder Waldgebieten ($z_0 = 1$). Im Folgenden wird untersucht, ob sich dieser Unterschied in den Windgeschwindigkeiten auch bei den aufgetretenen Schäden beobachten lässt.

Die einzige verfügbare Arbeit, die sich auf dieses Thema bezieht, stammt von Sacré (2002). In dieser Arbeit werden wird der Zusammenhang zwischen Gebäudeschäden durch Wintersturm Lothar (1999) und der nach Rauhigkeitsklassen eingeteilten Ortslage untersucht. Es wurde festgestellt, dass größere strukturelle Schäden an Gebäuden, die an niedrige Oberflächenrauhigkeit grenzen, auftreten. Weiter konnten Unterschiede in der Art des Schadens je nach Rauhigkeit erkannt werden, wobei diese Aussagen auf lediglich 550 Schadensfällen, die durch Fragebögen erhoben wurden, basieren.

5.6.1 Parametrisierung der Rauhigkeit

Durch die Parametrisierung wird erkannt, an welche Oberflächenrauhigkeiten die bebauten Flächen eines PLZ-Gebietes in Windrichtung grenzen. Das heisst, es muss zwischen verschiedenen Landnutzungsarten (Wiese, Feld, Wald und Stadtfläche) unterschieden werden. Diese Informationen liegen mit den CORINE Landnutzungsdaten europaweit einheitlich vor. In einem ersten Schritt müssen diesen Landnutzungsklassen die entsprechenden Rauhigkeitslängen z_0 zugeordnet werden. Dazu werden die von Wieringa (1992) in Tab. 2.4 vorgeschlagenen Werte für z_0 mit den Landnutzungsklassen aus Tab. 3.1 verknüpft. Die Zuordnung ist in Tab. 5.4 dargestellt. Die meisten Oberflächenklassen lassen sich hier eindeutig zuordnen, bei Zweifeln werden die niedrigeren Rauhigkeiten verwendet.

Die CORINE Landnutzungsdaten liegen original im Vektorformat vor, die kleinsten Flächen sind 25ha groß. Für die weitere Verarbeitung wurden diese Vektordaten in einem Geoinformationssystem in Rasterdaten mit einer Auflösung von 75m umgewandelt.

Klasse	z_0								
111	2	141	0.5	241	0.25	323	0.1	421	0.005
112	1	142	0.5	242	0.5	324	0.25	422	0.005
121	1	211	0.1	243	0.25	331	0.03	423	0.005
122	1	212	0.1	244	0.25	332	0.03	511	0.005
123	1	213	0.1	311	1	333	0.03	512	0.005
124	1	221	0.25	312	1	334	0.03	521	0.0002
131	1	222	0.5	313	1	335	0.005	522	0.0002
132	1	223	0.5	321	0.03	411	0.005	523	0.0002
133	1	231	0.03	322	0.1	412	0.005		

Tab. 5.4. Zuordnung von Rauhigkeitslängen z_0 zu den 44 CORINE Landnutzungsklassen

Um festzustellen, an welche Rauhigkeiten die bebauten Ortsflächen grenzen, werden für jeden Rasterpunkt die benachbarten Rasterpunkte analysiert und ein Rauhigkeitsindex gebildet. Der Index jedes Rasterpunktes hängt von den in Strömungsrichtung bis zu einem maximalen Abstand vorgefundenen Rauhigkeiten ab. Für homogene Rauhigkeiten in Windrichtung können direkt diese Werte verwendet werden. In der Mehrzahl werden in Strömungsrichtung jedoch inhomogene Rauhigkeitslängen vorgefunden; diese müssen mit einem geeigneten Algorithmus bewertet werden. Es wird dazu ein Rauhigkeitsindex (RI) vorgeschlagen, der den unterschiedlichen Rauhigkeiten Rechnung trägt und folgendermaßen definiert ist:

$$RI(n,\alpha) = \sum_{i=1}^{n} \frac{(n-i+1)z_{0,i}}{\sum_{i=1}^{n} i}$$
(5.4)

Zur Veranschaulichung der Gleichung dient Abb. 5.21. Hierbei ist n die Anzahl der betrachteten Rasterpunkte in Windrichtung α . Der Index ist linear gewichtet, d.h. Rauhigkeitslängen in der Nähe des Rasterpunktes werden stärker gewichtet als in der Ferne. Für homogene Rauhigkeiten ist der Rauhigkeitsindex exakt berechnet.

Abb. 5.21. Definition des Rauhigkeitsindizes (*RI*)

Da bei allen untersuchten Sturmereignissen der Wind aus westlichen bis südwestlichen Richtungen kam, wird für die Bildung des Indizes für alle Rasterpunkte einheitlich $\alpha = 270^{\circ}$ angenommen. Diese Annahme erleichtert die Berechnung. Es kann für alle ca. 12

Abb. 5.22. Parametrisierung der Oberflächenrauhigkeiten für denselben Ausschnitt wie in Abb. 5.16. Oben: Der Landnutzung entsprechende Rauhigkeitslängen z_0 im Rasterformat mit einer horizontalen Auflösung von 75m. Unten: Rauhigkeitsindex nach Gl.(5.4) mit Anströmung aus West (270°) und einer Distanz von 900 Metern. Dunkle Flächen besitzen einen hohen Rauhigkeitsindex in Strömungsrichtung, helle Flächen einen niedrigen. Zusätzlich sind bebaute Flächen von Postleitzahlgebieten schraffiert dargestellt und deren mittlerer Rauhigkeitsindex angegeben.

Mio. Rasterpunkte der selbe Algorithmus verwendet werden und es sind zudem keine größeren Unterschiede zu erwarten, da die Windrichtungen maximal um 30° schwanken. Es werden n = 12 Rasterpunkte betrachtet, was einem Abstand von 900m entspricht. Bei einer uns interessierenden Höhe von 10m ist dies ein durchschnittlicher Wert für die Anlauflänge nach Gl. (2.5). Zudem liegt dieser Wert genau in der Rastergröße von KAMM, so dass somit zusätzlich kleinskalige Rauhigkeitsinformationen einfließen, die im numerischen Windfeldmodell nicht aufgelöst werden.

5.6.2 Ergebnisse

In Abb. 5.22 sind die der Landnutzung entsprechenden Rauhigkeitslängen (oberes Bild) und der Rauhigkeitsindex (unteres Bild) desselben Ausschnitts wie bei der Orographie dargestellt. Je dunkler die Flächen eingefärbt sind, desto größer sind die Rauhigkeitslängen z_0 . In der unteren Abbildung ist der berechnete Rauhigkeitsindex RI für jeden Rasterpunkt abgebildet. Mann erkennt deutlich die Übergänge zwischen den unterschiedlich rauhen Oberflächen. Vor allem an den an niedrigen Rauhigkeiten grenzenden westlichen Rändern der bebauten Gebiete lässt sich der Verlauf des Geländeindex gut erkennen. Während die Randpunkte noch geringe RI aufweisen, besitzen die Punkte innerhalb und am östlichen Rand der bebauten Flächen durch die städtische Nachbarschaft in Windrichtung ($z_0 = 1$) hohe RI.

Um für die bebauten PLZ-Gebiete eine charakteristische Größe zu erhalten werden die Rauhigkeitsindizes innerhalb ihrer Fläche gemittelt. Aus diesem mittleren Rauhigkeitsindex RI_m kann somit erkannt werden, ob die bebauten Flächen an niedrigen Rauhigkeiten grenzen. Bei kleinem RI_m (~ 0,5) liegt die Fläche mehrheitlich neben Feld- oder Ackerflächen, bei großem RI_m (~ 1) neben Wald- oder Stadtgebieten. In Abb. 5.22 sind zusätzlich die gemittelten Rauhigkeitsindizes einiger PLZ-Gebiete eingetragen.

In Abb. 5.23 ist das Histogramm der Rauhigkeitsindizes aller Postleitzahlengebiete in Baden-Württemberg abgebildet. Für die meisten Gebiete liegt RI_m zwischen 0,5 und 1, nur bei einigen wenigen in Innenstädten gelegenen Gebieten ist der Index größer als 1.

Abb. 5.23. Histogramm der mittleren Rauhigkeitsindizes (RI_m) der bebauten Flächen aller Postleitzahlengebiete in Baden-Württemberg

Analog zu den Untersuchungen der Orographie ist in Abb. 5.24 für jeden Sturm der mit dem Mittelwert normalisierte Schaden für Postleitzahlengebiete mit unterschiedlichen Rauhigkeiten aufgetragen. RI_m variiert von 0,55 bis 1. In diesem Bereich sind nach Abb. 5.23 ausreichend Gebiete für repräsentative Aussagen enthalten. Die Punkte stellen die Mittelwerte der Schäden aller PLZ-Gebiete mit einem Rauhigkeitsindex von $RI_m = RI \pm$ 0,04 dar. Es wurden alle PLZ-Gebiete aufgetragen, die Korrelation mit der Windgeschwindigkeit (r=-0,1 bis 0,01 je nach Sturm) sowie mit dem Geländeindex (r=0,04) ist gering.

Abb. 5.24. Zusammenhang zwischen Rauhigkeitsindex und normalisiertem Schaden

Der normierte Schadensanteil der Stürme 1986, 1990 und 1994 ist bei kleinen RI_m bis 0,65 jeweils größer als der Durchschnitt. Es werden teilweise Anteile von bis zu 180% erreicht. Mit größer werdendem Rauhigkeitsindex nimmt der Schadensanteil immer weiter ab, bis er sich ab $RI_m = 0.8$ zwischen 60 und 80% des Durchschnittsschadens stabilisiert. Zwischen den einzelnen Stürmen ist zudem keine größere Streuung zu erkennen. Bei Wintersturm Lothar (1999) ist diese Tendenz jedoch nicht zu beobachten. Über die gesamten Rauhigkeiten bleiben die normierten Schadensanteile weitestgehend konstant, wobei ein eher leicht zunehmender Trend zu beobachten ist.

Bei der Betrachtung des normierten Gebäudeanteils zeigt sich bis zu einem Rauhigkeitsindex von $RI_m = 0,8$ die selbe Tendenz, wenn auch nicht ganz so ausgeprägt wie beim Schadensanteil. Die Gebäudeanteile der kleineren Stürme nehmen ab, während sie bei Lothar leicht zunehmen. Ab $RI_m = 0,8$ steigen jedoch die Gebäudeanteile aller Stürme stark an und erreichen bei RI = 1 Werte zwischen 100 bis 150% des durchschnittlichen Gebäudeanteils.

Dieser Verlauf kann folgendermaßen interpretiert werden: Bei größeren RI_m tritt unterdurchschnittlicher Schadensanteil, aber überdurchschnittlicher Gebäudeanteil auf, somit müsste der Durchschnittsschaden für die Stürme 1983, 1986, 1990 und 1994 bei größeren Rauhigkeitsindizes geringer sein als bei kleinen RI. In Abb. 5.25 wurde deshalb der jeweilige Durchschnittsschaden über den Rauhigkeitsindex aufgetragen. Zusätzlich sind Regressionskurven zweiter Ordnung dargestellt. Bei den Stürmen 1990 und 1994 ist eine Abnahme von $1600 \in$ auf ca. $1300 \in$ gut zu erkennen, der Sturm 1983 zeigt jedoch keinerlei aussagekräftige Tendenz während Sturm 1986 mit hohen Rauhigkeiten ansteigt. Bei Sturm Lothar steigt der durchschnittliche Schaden von $1500 \in$ auf $1600 \in$ leicht an, was angesichts der Verläufe der Schadens- und Gebäudeanteile zu erwarten ist.

Abb. 5.25. Zusammenhang zwischen Rauhigkeitsindex und Durchschnittsschaden pro Gebäude der einzelnen Stürme

5.7 Diskussion

Die Ergebnisse zeigen, dass die Windgeschwindigkeit den größten Einfluss auf die Anzahl der betroffenen Gebäude sowie auf die Schadenshöhe hat. Es wurden dabei 2 Darstellungsarten der Windgeschwindigkeit gewählt, denen eine unterschiedliche idealisierte Vorstellung zugrunde liegt.

Trägt man den Schaden über die absolut aufgetretene Geschwindigkeit auf, dann geht man von einer konstanten Schadensanfälligkeit aller PLZ-Gebiete aus. Im Gegensatz dazu impliziert die Darstellung des Schadens über die zum Windklima relativen Geschwindigkeiten, dass sich die Schadensanfälligkeit der PLZ-Gebiete proportional zum Windklima

84 5. Analyse der Schadensdaten

verhalten. Da in den Diagrammen beider Annahmen eine Streuung der Werte vorhanden ist, liegt die Realität dazwischen, beziehungsweise es spielen noch weitere Einflüsse eine Rolle.

Die Ergebnisse deuten jedoch stark darauf hin, dass das Windklima einen maßgeblichen Einfluss auf den entstehenden Sturmschaden hat. Besonders bei der Betrachtung der über die Geländehöhe aufgetragenen Schäden wird deutlich, dass der Sturmschaden in Hochlagen trotz größerer absolute Geschwindigkeit nicht ansteigt, im Gegenteil, er nimmt eher ab. Eine Erklärung hierfür ist eine dem Windklima angepasste Bauweise. Da eine solche jedoch in den entsprechenden Normen erst seit neuestem verankert ist und somit die meisten bestehenden Gebäude nach den alten Normen gebaut sind (vgl. hierzu Kap. 4.1.1), ist von einer eher unbewussten, historischen Anpassung durch häufigere Schadensfälle und Reparaturen sowie durch traditionell unterschiedliche Bauweisen auszugehen.

Der Einfluss der kleinräumigen Orographie auf den Schadens- und Gebäudeanteil konnte ebenfalls quantifiziert werden. Jedoch sind nur für wenige stark exponierte oder stark geschützte Postleitzahlengebiete signifikante Änderungen zu erwarten, die meisten Gebiete in Baden-Württemberg liegen in orographisch neutralem Gebiet.

Für die Rauhigkeitslängen in Strömungsrichtung wurde kein eindeutiger funktioneller Zusammenhang für alle untersuchten Stürme entdeckt. Hier sollte ein möglicher Zusammenhang in einer kleinräumigeren Skala untersucht werden, d.h. es ist die genaue Lage der Schadensfälle innerhalb eines Ortsgebietes zu betrachten. Dazu sind jedoch genauere Informationen zu den Schadensfällen nötig, die jedoch nicht Gegenstand dieser Untersuchung waren.

6. Schadensmodell

Mit Hilfe des Schadensmodells wird die Schadensanfälligkeit bzw. Verletzlichkeit von Gebäuden im Hinblick auf Sturmereignisse als Teil der Risikokette nach Abb. 2.14 simuliert. Auf der Grundlage meteorologischer Daten wird der zu erwartende Schaden am bestehenden Gebäudebestand berechnet. Wie in Kapitel 2 gezeigt wurde, ist es nicht möglich, existierende Modelle für diese Zwecke anzuwenden. Schadensmodelle, die den absoluten monetären Schaden berechnen, können nicht für andere Gebiete verwendet werden. Schadensmodelle für tropische Wirbelstürme aus den USA oder Australien sind einerseits aufgrund der meteorologischen Unterschiede (Regen, Sturmflut) nicht anwendbar und andererseits sind die dortigen strukturellen Verhältnisse der Bauwerke nicht mit den hiesigen vergleichbar. Empirische Modelle für europäische Winterstürme haben sich bisher nicht ausreichend bewährt, da die Extrapolation nicht von deterministischen Fragestellungen, sondern zu sehr von der Form der verwendeten mathematischen Funktionen abhängt (Spence et al. 1998). Die verbleibenden deterministischen Modelle sind zu datenintensiv und deshalb für eine großflächige Anwendung nicht nutzbar.

Der Ansatz von Sill & Kozlowski (1997) ist hingegen grundsätzlich für eine Übertragung auf andere Verhältnisse anwendbar. Dieser Ansatz basiert auf logischen Annahmen sowie auf einer durchgängigen mathematischen Formulierung, so dass durch geeignete Kalibrierung auch für andere Schadensdaten eine Modellerstellung möglich ist. Eine solche Kalibrierung am Modell wird hier nicht durchgeführt, da die Modellannahmen zu sehr auf US Verhältnisse angepasst wurden. Es wird vielmehr im Folgenden ein neues Schadensmodell entwickelt.

Dazu wird die Berechung von Sturmschaden an Wohngebäuden zunächst exakt durchgeführt und dann in Anlehnung an das Sill & Kozlowski-Modell durch einige Vereinfachungen für eine großflächige Schadensabschätzung zur Anwendung gebracht. Durch die Erfahrungen aus der Analyse der Schadensdaten in Kapitel 5 wird das Schadensmodell zunächst für den mittleren Schaden hergeleitet. Zur Kalibrierung werden dann später zusätzliche Parameter wie der Geländeindex, für den ein signifikanter Einfluss festgestellt werden konnte, miteinbezogen.

6.1 Exakte Beschreibung von Sturmschaden an Gebäuden

Im Folgenden bezeichnet V die maximal aufgetretene Windgeschwindigkeit während eines Sturmereignisses in der näheren Umgebung eines Gebäudes. Wenn V größer ist als eine Geschwindigkeit V_{krit} entsteht Schaden an einem Gebäude, V_{krit} wird als kritische Windgeschwindigkeit bezeichnet. Ab dieser Geschwindigkeit entsteht immer größerer Schaden und es lässt sich der Schadensanteil durch eine zunächst noch unbestimmte Funktion g(V) berechnen. Ab einer Geschwindigkeit V_{tot} ist der maximal mögliche Schaden erreicht, V_{tot} wird nachfolgend die totale Geschwindigkeit genannt. Somit lässt sich der Schadensanteil durch die Schadensfunktion G für jedes einzelne Gebäude abschnittsweise berechnen zu

$$G(V, V_{krit}, V_{tot}) = \begin{cases} 0 & \text{für } V < V_{krit} \\ g(V) & \text{für } V_{krit} \le V < V_{tot} \\ 1 & \text{für } V_{tot} \le V \end{cases}$$
(6.1)

Der qualitative Verlauf dieser Gleichung ist in Abb. 6.1 dargestellt. Die Reparaturkosten an einem Gebäude ergeben sich somit nach Gl. (3.2) zu $G \times W$, also der Schadensanteil Gmultipliziert mit dem Gebäudewert W. Die Funktion g(V) stellt den exakten Zusammenhang zwischen der maximal aufgetretener Windgeschwindigkeit und dem entstandenen Schaden für jedes Gebäude dar.

Durch Summation aller Einzelschäden erhält man den Gesamtschaden einer Ansammlung von N Gebäuden.

Gesamtschaden = Schaden₁ + Schaden₂ + ... + Schaden_N
=
$$G_1(V_1, V_{krit,1}, V_{tot,1})W_1 + G_2(V_2, V_{krit,2}, V_{tot,2})W_2 +$$

 $\dots + G_N(V_N, V_{krit,N}, V_{tot,N})W_N$
= $\sum_{i=1}^N G_i(V_i, V_{krit,i}, V_{tot,i})W_i$ (6.2)

Für eine exakte Lösung dieser Gleichung müssen also $W, g(V), V_{krit}, V_{tot}$ für jedes einzelne Gebäude bekannt sein. Zusätzlich sind die genauen Windgeschwindigkeiten V notwendig, die in der Umgebung jedes Gebäudes aufgetreten sind.

Es ist prinzipiell möglich, wenn auch mit einigem Aufwand, den Gebäudewert und die genaue Geschwindigkeit bei einem Schadensereignis für jedes Gebäude zu bestimmen. Die Schadensfunktionen G_i müssten unter Zuhilfenahme bekannter deterministischer Modelle (z.B. Unanwa et al. 2000, Nateghi-A 1996, Pinelli et al. 2004) für jedes einzelne Gebäude aufwändig bestimmt werden, was durch die Unterschiede in der Bauweise und durch die große Anzahl an Gebäuden praktisch unmöglich ist und der damit verbundene Aufwand in keinem Verhältnis zum Ergebnis steht.

Bekannte Größen sind hingegen die Anzahl der Gebäude N für jedes Postleitzahlengebiet und der Gesamtwert aller Gebäude $\sum_{i=1}^{N} W_i$, sowie die maximale Böengeschwindigkeit V in einem 1km x 1km Raster aus den KAMM Simulationen der Sturmereignisse. Zusätzlich sind die vorhandenen Schadensdaten auf Postleitzahlenebene zur Kalibrierung und/oder Validierung geeignet.

Abb. 6.1. Schadensfunktion für ein Einzelgebäude G
6.2 Herleitung des Schadensmodells

Für die Erstellung eines anwendbaren Modells zur Simulation der Schadensanfälligkeit müssen also Vereinfachungen getroffen werden, um die fehlenden Daten zu ersetzen. Da sowohl die Verteilung der Gebäude als auch die Verteilung der Schäden innerhalb von PLZ-Gebieten unbekannt ist, wird mit dem Modell der Gesamtschaden für PLZ-Gebiete berechnet. Für diese Einheit stehen sowohl statistische Daten als auch Schadensdaten zur Verfügung. Im Folgenden sind die wichtigsten Annahmen für die Herleitung des Schadensmodells beschrieben:

- 1. Da die Einzelwerte der Gebäude unbekannt sind, wird für jedes Gebäude ein mittlerer Wert angenommen mit $W = \frac{\text{Gesamtwert}}{N}$. Damit wird der Schadensanteil jedes Gebäudes bei der Schadenssummation gleich gewichtet.
- 2. Die mit KAMM auf einem $1km \ge 1km$ Raster berechneten Geschwindigkeiten V werden über die Fläche der bebauten Gebiete gemittelt und gelten somit für alle Gebäude innerhalb dieser Fläche (Abb. 6.2).
- 3. Die kritischen und totalen Windgeschwindigkeiten V_{krit} und V_{tot} aller Gebäude innerhalb eines Bestandes (PLZ-Gebiet, Gemeinde) lassen sich durch geeignete Verteilungsfunktionen $f(V_{krit})$ und $f(V_{tot})$ beschreiben. Prinzipiell kann jede beliebige Verteilungsfunktion verwendet werden.
- 4. Die Funktion für den Anstieg des Schadens g(V) gilt für alle Gebäude innerhalb eines PLZ-Gebietes. Sie stellt somit eine durchschnittliche Funktion dar.

Die Verteilungsfunktion der kritischen Windgeschwindigkeiten soll der Tatsache Rechnung tragen, dass bei niedrigen Windgeschwindigkeiten vereinzelt schlecht gebaute oder gewartete Gebäude beschädigt werden, bei mittleren Geschwindigkeiten viele Gebäude mit durchschnittlicher Festigkeit und dass selbst bei extrem hohen Geschwindigkeiten bei manchen Gebäuden kein Schaden auftritt. Sill & Kozlowski (1997) verwenden hierfür eine Dreiecksfunktion (allerdings über das Geschwindigkeitsquadrat und nicht über die Geschwindigkeit). In Abb. 6.3 ist eine solche Verteilungsfunktion exemplarisch dargestellt.

Durch Integration der Verteilungsfunktion $f(V_{krit})$ bis zur maximal aufgetretenen Windgeschwindigkeit V erhält man den Anteil der Gebäude GA, bei denen die kritische Windgeschwindigkeit übertroffen wurde und somit Schaden entstanden ist.

$$GA(V) = \int_{-\infty}^{V} f(V_{krit}) dV_{krit}$$
(6.3)

Abb. 6.2. Räumliche Mittelung der Windgeschwindigkeiten innerhalb der bebauten Flächen (grau) der Postleitzahlengebiete

Abb. 6.3. Verteilung der kritischen Geschwindigkeiten $f(V_{krit})$ eines Gebäudebestandes

Dieses Integral ist gleich der Summenfunktion der Wahrscheinlichkeitsverteilung $f(V_{krit})$ und ist in Abb. 6.3 grau eingefärbt.

Der Schadensanteil SA der betroffenen Gebäude errechnet sich bei gegebener Schadensfunktion G(V) anschaulich nach Abb. 6.4. Einige wenige Gebäude f_1 mit hoher Schadensanfälligkeit erleiden bis zur Windgeschwindigkeit V einen großen Schadensanteil G_1 . Gebäude, die erst knapp unterhalb V erstmals geschädigt werden, wird hingegen ein geringerer Schadensanteils zugewiesen. Der Schadensanteil aller Gebäude errechnet sich aus der Summe dieser Einzelschäden zu

$$SA = SA_1 + SA_2 + \dots + SA_n$$

= $f_1G_1 + f_2G_2 + \dots + f_nG_n$
= $\sum_{i=1}^n f_iG_i$ (6.4)

Für den Übergang $n\to\infty$ ergibt sich damit das Integral zur Berechnung des Schadensanteils SAeiner Ansammlung von Gebäuden

$$SA(V) = \int_{-\infty}^{V} f(V_{krit}) G(V_{krit}) dV_{krit}$$
(6.5)

Mit den Gleichungen (6.3) und (6.5) lassen sich unter den getroffenen Annahmen die wichtigsten Schadenszahlen bei einer maximal aufgetretenen Windgeschwindigkeit V für eine Ansammlung von N Gebäuden berechnen.

Abb. 6.4. Illustration zur Berechnung des Schadensanteils

6.2.1 Modellannahmen

Die Herleitung des Schadensmodells wurde allgemein formuliert um viele Variationsmöglichkeiten zu erhalten. Prinzipiell können alle Verteilungsfunktionen für die kritischen Windgeschwindigkeiten $f(V_{krit})$, für die totalen Windgeschwindigkeiten $f(V_{tot})$ und für die Schadensausbreitungsfunktionen G(V) eingesetzt werden.

Wahl der Verteilungsfunktion für die kritischen Windgeschwindigkeiten. Ab der jeweiligen kritischen Geschwindigkeit eines Gebäudes tritt erstmalig Schaden auf. Diese Geschwindigkeit hängt von der Widerstandsfähigkeit der schwächsten Gebäudeteile ab und somit grundsätzlich von der Bemessung des Bauwerkes. Weitere Faktoren wie die Qualität der Bauausführung, der Zustand des Gebäudes bezüglich Alterung und Verfall spielen ebenfalls eine große Rolle. Es muss somit von einer breiten Streuung der kritischen Windgeschwindigkeiten ausgegangen werden, die durch geeignete Verteilungsfunktionen simuliert wird. Dazu wurden verschiedene Verteilungsfunktionen (Normal-, Lognormal-, Weibull-Verteilung) getestet. Hierbei zeigte sich, dass im unteren Geschwindigkeitsbereich kaum Unterschiede zwischen den Funktionen zu erkennen sind. Erst im Bereich ab 60m/sgibt es teilweise große Unterschiede in der Schadensberechnung. Diese Windgeschwindigkeiten werden jedoch bei Winterstürmen kaum erreicht und es wird im Folgenden nur mit der Normalverteilungsfunktion gerechnet.

Setzt man in Gl. (6.3) als Verteilungsfunktion für die kritischen Geschwindigkeiten eine Normalverteilung Nor $(\mu_{krit}, \sigma_{krit}^2)$ ein, dann lässt sich die Anzahl der betroffenen Gebäude innerhalb eines Bestandes mit N Gebäuden folgendermaßen berechnen:

Gebäude =
$$N \int_{-\infty}^{V} \frac{1}{\sigma_{krit}\sqrt{2\pi}} \exp\left(-\frac{(V_{krit} - \mu_{krit})^2}{2\sigma_{krit}^2}\right) dV_{krit} = N \operatorname{erf}(V)$$
 (6.6)

Das Integral ist auch als die Gaussche Fehlerfunktion bekannt und lässt sich standardmäßig schnell und einfach bestimmen. Man sieht, dass die Anzahl der betroffenen Gebäude somit nur von den Formparametern μ_{krit} und σ_{krit} der Normalverteilung abhängen.

Wahl der Schadensfunktion für Einzelgebäude. Es wird oft diskutiert, ob für die Schadensfunktionen neben empirischen Erkenntnissen auch physikalisch begründete Annahmen getroffen werden können (Lamb 1991, Angermann 1993, Klawa & Ulbrich 2003), so dass der Anstieg des Schadens bei höheren Geschwindigkeiten durch physikalische Zusammenhänge beschrieben werden kann. Der bei Untersuchungen der 1990er Sturmserie gefundene Zusammenhang zwischen Schaden und der dritten Potenz der Windgeschwindigkeit (Schaden ~ v^3) wird beispielsweise mit der zur Verfügung stehenden kinetischen Energie der Strömung in Zusammenhang gebracht (MunichRe 1993). Dies mag für die Betrachtung von Einzelgebäuden zutreffen, jedoch nicht für einen Gebäudebestand, da hier die höhere Schadenssumme hauptsächlich durch die gestiegene Anzahl der betroffenen Gebäude zustande kommt. In dem neuen Modell werden diese beiden Mechanismen getrennt betrachtet; die Schadensfunktion G bezeichnet diejenige eines durchschnittlichen Einzelgebäudes, während die Verteilung der kritischen Windgeschwindigkeiten $f(V_{krit})$ für eine Ansammlung von Gebäuden gilt.

Die Ausbreitungsfunktion g(V) wird als proportional zur Potenz α der relativen Windgeschwindigkeit angenommen: 90 6. Schadensmodell

$$g(V) = \left(\frac{V - V_{krit}}{V_{tot} - V_{krit}}\right)^{\alpha}$$
(6.7)

Für $\alpha = 2$ ist der durchschnittliche Schaden eines Einzelgebäudes proportional zur Druckkraft (~ v^2) der Strömung, für $\alpha = 3$ proportional zur kinetischen Energie (~ v^3) der Strömung.

Wahl der Verteilungsfunktion für die totalen Windgeschwindigkeiten. Die kritischen Windgeschwindigkeiten V_{krit} wurden bisher bereits als einer Normalverteilung folgend angenommen, die totalen Geschwindigkeiten V_{tot} folgen ebenfalls einer gewissen Verteilung. Im Allgemeinen sind diese beiden Verteilungen nicht unabhängig voneinander (also korreliert mit dem Korrelationskoeffizienten ϱ) und lassen sich damit allgemein als 2-dimensionale Wahrscheinlichkeitsdichteverteilung $f(V_{krit}, V_{tot}, \varrho)$ in die Gleichungen aufnehmen.

Der Einfachheit halber (da es bisher keine anderslautenden Hinweise gibt) wird davon ausgegangen, dass für die totalen Windgeschwindigkeiten ebenfalls eine Normalverteilung vorliegt und dass der Korrelationskoeffizient $\rho = 1$ ist. Die totalen Geschwindigkeiten für alle Gebäude lassen sich damit aus den jeweiligen kritischen Geschwindigkeiten und einem konstanten Abstand ΔV zu

$$V_{tot} = V_{krit} + \Delta V \tag{6.8}$$

berechnen. Dies bedeutet, dass für alle Gebäude innerhalb eines Gebietes der Unterschied zwischen kritischer und totaler Geschwindigkeit derselbe ist. Alternativ könnte hier auch angenommen werden, dass ΔV proportional zur kritischen Geschwindigkeit ist. Auch hierzu gibt es bisher keine Anhaltspunkte, so dass in dieser Arbeit ΔV konstant ist.

Die Schadenshöhe innerhalb eines Bestandes von N Gebäuden mit einem Gesamtwert W der Gebäude ergibt sich damit aus Gl. (6.5), (6.7) und (6.8) zu

Schaden =
$$W \int_{-\infty}^{V} \left(\frac{V - V_{krit}}{\Delta V}\right)^{\alpha} \frac{1}{\sigma_{krit}\sqrt{2\pi}} \exp\left(-\frac{(V_{krit} - \mu_{krit})^2}{2\sigma_{krit}^2}\right) dV_{krit}$$
 (6.9)

Der Schaden hängt also neben den Parametern für die Verteilung der kritischen Geschwindigkeiten noch zusätzlich von ΔV und α ab. Dieses Integral lässt sich jedoch nicht mehr analytisch lösen und muss somit numerisch berechnet werden.

6.2.2 Anpassung des Modells an weitere Parameter

Das Schadensmodell lässt sich durch die Einführung von weiteren Parametern neben der Windgeschwindigkeit verbessern, z.B. durch meteorologische, topographische oder strukturelle Parameter. Damit kann der Gebäudebestand in weitere Untergruppen mit unterschiedlichen Eigenschaften eingeteilt werden und es ergeben sich differenzierte Schadensfunktionen für jede Gruppe. Zur Anpassung des Schadensmodells an weitere Parameter gibt es prinzipiell zwei Möglichkeiten: 1.) Anwendung gültiger Beziehungen auf den mittlere Schaden und 2.) Kalibrierung an nach Parametern unterteilten Schadensdaten.

 Wenn (empirische oder deterministische) Beziehungen zur Verfügung stehen, mit denen der Einfluss eines Parameters auf den aufgetretenen Schaden beschrieben werden kann, können diese im Anschluss an die Berechnung des mittleren Schadens angewendet werden. Beispielsweise konnte in Kap. 5.5 festgestellt werden, dass die lokale orographische Beschaffenheit die Schadenshöhe beeinflusst. Die abgeleiteten Beziehungen (5.2) und (5.3) können direkt auf den mittleren Schaden angewendet werden.

2. Alternativ kann die Einbeziehung von weiteren Parametern durch die Anpassung der Verteilungs- und Schadensausbreitungsfunktionen im Rahmen der Kalibrierung an Schadensdaten ermöglicht werden. Hierbei werden die Schadensdaten nach den Parametern getrennt, zur Kalibrierung verwendet und somit für jeden Parameter unterschiedliche Schadensmodelle erhalten.

6.2.3 Modellierung der Unsicherheiten

Wie in Kapitel 5 gezeigt wurde, wird durch die Einführung meteorologischer und topographischer Parameter die Abweichung des Schadens einzelner PLZ-Gebiete vom mittleren Schaden nicht vollständig erklärt.

Da keine weiteren Daten zur Verfügung stehen, müssen diese Abweichungen somit als zufällige Schwankungen angesehen werden. Hierbei ist es vor allem interessant, die Größenordung dieser Schwankungen zu berechnen. Mit einem Zusatz im Modell wird versucht, die Schwankungen der Schadens- und Gebäudeanteile, wie sie in der Analyse festgestellt wurden, zu simulieren.

In Abb. 6.5 ist dieser Sachverhalt dargestellt. Mit dem bisherigen Modell wird eine mittlere Schadensfunktion berechnet. Eine einfache Möglichkeit, die zufälligen Schwankungen des Schadens zu simulieren, besteht in der Annahme, dass der Mittelwert μ_{krit} der Verteilungsfunktion $f(V_{krit})$ nicht konstant ist, sondern ebenfalls einer Verteilung folgt. Damit ist es möglich, durch eine Monte-Carlo Simulation eine Verteilung der Schadensund Gebäudeanteile (ähnlich der in den Abbildungen 5.13 und 5.12) zu realisieren. Es ist somit eine Aussage darüber möglich, mit welchen Schäden im ungünstigsten oder günstigsten Fall zu rechnen ist. Als Verteilungsfunktion für μ_{krit} wird wieder die Normalverteilung gewählt. Der Mittelwert ist derselbe wie für das Modell für den mittleren Schaden. Die Standardabweichung wird so angepasst, dass die 16 und 84% Perzentilen zwischen Modell und Daten möglichst gut übereinstimmen.

Werden die Abweichungen als zufällige Schwankungen definiert, lassen sich für das Erreichen bestimmter Schadenshöhen damit auch die entsprechenden Wahrscheinlichkeiten

angeben. In Abb. 6.5 sind hierfür exemplarisch die 16 und 84% Perzentile eingezeichnet, die jeweils eine Standardabweichung bei einer Normalverteilung entsprechen. Die 84% Perzentile wird bei allen Windgeschwindigkeiten mit einer Wahrscheinlichkeit von 16% überschritten.

6.3 Kalibrierung

Das Modell besitzt unter den im vorhergehenden Abschnitt gemachten Annahmen einer Normalverteilung für die kritischen Geschwindigkeiten und $\alpha = 2$ folgende Parameter, deren Werte durch Anpassung an die Daten ermittelt werden müssen: $\mu_{krit}, \sigma_{krit}$ und ΔV . Die Parameter μ_{krit} und σ_{krit} lassen sich aus der Kalibrierung mit dem Gebäudeanteil bestimmen, ΔV wird aus dem Schadensanteil bestimmt.

Für die Festlegung dieser Parameter muss zusätzlich eine Aussage über die Verteilung der Parameter in den PLZ Gebieten getroffen werden. Insgesamt lassen sich 3 unterschiedliche Annahmen für die Parameter identifizieren (Abb. 6.6):

- <u>Modell 1:</u> Die Parameter sind konstant für alle Gebiete. Dies bedeutet, dass von einer konstanten Schadensanfälligkeit aller Postleitzahlengebiete im gesamten Land ausgegangen wird. Mit Blick auf die gültigen Normen ist dieser Ansatz für Baden-Württemberg gerechtfertigt, da für den Großteil der Gebiete mit den selben Bemessungslasten gerechnet wird (siehe Kap. 4). Für alle Parameter werden hier konstante Werte berechnet.
- 2. <u>Modell 2:</u> Der Mittelwert der Normalverteilung ist proportional zum Windklima des PLZ Gebietes, alle anderen Parameter sind konstant. Das Windklima wird durch eine Windgeschwindigkeit gleicher Überschreitenswahrscheinlichkeit beschrieben. Es liegt die Annahme zugrunde, dass sich die Schadensanfälligkeit von Gebäuden dem Windklima anpasst, d.h. in Gebieten mit höherer Gefährdung ist durch häufige Reparaturen bzw. durch die Historie windstabiler gebaut. Die Streuung und die Schadensausbreitung ist jedoch für alle Gebäude dieselbe. Der Parameter μ_{krit} wird als proportional zum Windklima, die anderen Parameter werden als konstant für alle Gebiete angenommen.
- 3. <u>Modell 3:</u> Alle Parameter sind proportional zum Windklima des Gebietes. Dieser Ansatz ist derselbe wie bei Modell 2, nur dass alle Parameter als proportional zum Windklima angenommen werden. Somit ist auch die Streuung der Nor-

Abb. 6.6. Illustration der unterschiedlichen Annahmen für die Parameter. V_1 bezeichnet exemplarisch ein Windklima mit geringen Windgeschwindigkeiten, V_2 mit hohen Windgeschwindigkeiten

malverteilung und der Abstand ΔV zwischen Schadensbeginn und Totalschaden bei höherem Windklima größer als bei niedrigem Windklima.

Anhand der drei unterschiedlichen Annahmen wird zunächst jeweils die Kalibrierung des Schadensmodells durchgeführt. Zusätzlich werden die Ergebnisse der Analyse der lokalen Orographie durch die Anwendung der Gl. (5.2) und (5.3) mitverwendet. Je nach Geländeindex des PLZ Gebietes wird somit der Schaden reduziert oder aufgewertet.

6.3.1 Modell 1: Konstante Schadensanfälligkeit

Die meisten Schadensmodelle aus der Literatur wurden unter der Annahme einer konstanten Schadensanfälligkeit erstellt. Somit können durch Vorüberlegungen bereits Angaben zur Größenordnung der Parameter gemacht werden.

Der Mittelwert der Normalverteilung μ_{krit} stellt diejenige Geschwindigkeit dar, bei der die Hälfte aller Gebäude innerhalb eines Gebietes betroffen sind. Sill & Kozlowski (1997) geben hierfür in ihrem Modell 48m/s an, aus MunichRe (2001) lässt sich ein Wert zwischen 45 und 50m/s ablesen. Erste Schäden an Gebäuden treten bei 20 bis 25m/s auf (siehe Abb. 2.13). Bedenkt man, dass bei einer Normalverteilung etwa 0,1% der Werte unterhalb von $\mu - 3\sigma$ liegen, lässt sich als Anhaltswert ein σ_{krit} zwischen 7 und 10m/sschätzen.

Mit diesen Startwerten wird eine Regression dermaßen durchgeführt, dass die betroffenen Gebäude der einzelnen Stürme möglichst gut berechnet wird. Dazu werden für jeden Sturm nach Gl. (6.6) die Gebäudeanteile der PLZ-Gebiete mit den jeweiligen Böenwindgeschwindigkeiten berechnet, mit der Gebäudeanzahl multipliziert und für alle PLZ-Gebiete aufsummiert. Der Gesamtfehler zwischen Versicherungsdaten und berechneten Schaden aus allen Stürmen wird somit minimiert. Dieselbe Prozedur wird zur Kalibrierung von ΔV verwendet. Bisher gibt es für diesen Wert keinerlei Anhaltswerte in der Literatur. Hierzu wurde nach Gl. (6.9) der Schaden pro PLZ-Gebiet berechnet und für Baden-Württemberg aufsummiert. Durch Anpassung von ΔV wird der Fehler zwischen Modell und Versicherungsdaten minimiert. In Tab. 6.1 sind die so gefundenen Parameter für Baden-Württemberg angegeben. Für die Geschwindigkeit μ_{krit} , bei der die Hälfte

Tab. 6.1. Modellparameter für die Annahme 1 einer konstanten Schadensanfälligkeit aller PLZ Gebiete (in Klammer die Standardabweichung von μ_{krit})

μ_{krit}	σ_{krit}	ΔV	α
50,4 m/s ($\sigma=2,5)$	$7,8~\mathrm{m/s}$	$78 \mathrm{~m/s}$	2

aller Gebäude beschädigt werden, wird ein Wert von 50,4m/s erhalten. Dies liegt in der Größenordnung anderer Modelle und kann somit als realistisch angesehen werden.

Die Ergebnisse der Kalibrierung sind in Tab. 6.2 aufgelistet und zeigen für die einzelnen Stürme jeweils den berechneten Gesamtschaden, den beobachteten Gesamtschaden sowie den Fehler. Der Schaden der Stürme 1990 und 1994 wird teilweise stark überschätzt, die Stürme 1986 und 1999 jeweils unterschätzt. Die großen Abweichungen der kleineren Stürme (1990, 1994) wurde zugunsten einer besseren Modellierung von Sturm Lothar (1999) in Kauf genommen.

94 6. Schadensmodell

Sturmname	Sturm 1986	Wiebke	Lore	Lothar
Datum	20.10.1986	28.21.3.1990	28.1.1994	26.12.1999
Gesamtzahl	beschädigter p	rivater Wohngeba	äude	
Modell	2546	41888	22809	182678
Daten	3072	34097	17228	196683
Fehler $[\%]$	-17.12	22.85	32.39	-7.12
Gesamtschaden an privaten Wohngebäuden [Mio. \in]				
Modell	2.26	61.71	33.68	273.10
Daten	3.06	37.95	22.36	302.32
Fehler [%]	-26.24	62.60	50.62	-9.66

Tab. 6.2. Modellierter (Modellannahme 1: konstante Schadensanfälligkeit) und beobachteter Gesamtschaden der Stürme in Originalwerten an privaten Wohngebäuden in Baden-Württemberg

6.3.2 Modell 2: Schadensanfälligkeit teilweise proportional zum Windklima

Das Vorgehen zur Kalibrierung ist ähnlich dem des ersten Modells. Der Unterschied besteht darin, dass die Böengeschwindigkeit durch die 50-jährige Windgeschwindigkeit des jeweiligen Gebietes dividiert wird. Diese Geschwindigkeit charakterisiert das lokale Windklima der PLZ Gebiete. Somit ist σ_{krit} ein Vielfaches dieser Geschwindigkeit. In Tab. 6.3 sind die Parameter des zweiten Modells für Baden-Württemberg angegeben.

Tab. 6.3. Modellparameter für Annahme 2) einer relativen Schadensanfälligkeit der PLZ Gebiete. μ_{krit} ist bezogen auf den 50-jährlichen Wind $V_{p=0.02}$ des jeweiligen Gebietes (in Klammer die Standardabweichung von μ_{krit})

μ_{krit}	σ_{krit}	ΔV	α
1,3 (σ =0,04)	7,4 m/s $$	$78 \mathrm{~m/s}$	2

Die Hälfte aller Gebäude werden demnach ab der Überschreitung von jeweils dem 1,3fachen der 50-jährlichen Windgeschwindigkeit des betrachteten Gebietes beschädigt. Dies entspricht je nach Lage des Gebietes absoluten Geschwindigkeiten von 42 - 64m/s. In Tab. 6.4 ist der Vergleich der modellierten und beobachteten Gesamtschäden der vier untersuchten Stürme aufgelistet. Die Gesamtzahl der betroffenen Gebäude wird mit Modell 2 wesentlich besser berechnet als mit Modell 1. Lediglich Sturm 1986 wird stark unterschätzt. Für die größeren Stürme sind bei der Anzahl der betroffenen Gebäude Abweichungen von bis zu 18% zu erwarten, bei der Schadenshöhe gibt es maximale Abweichungen von 28%. Wie bei Modell 1 sind auch hier die Abweichungen beim Schadensanteil größer als beim Gebäudeanteil.

6.3.3 Modell 3: Schadensanfälligkeit proportional zum Windklima

Beim dritten Modell ist die Vorgehensweise der Kalibrierung dieselbe wie bei den beiden vorhergehenden. Alle Modellparameter bis auf den Exponenten der Schadensausbreitungsfunktion sind Vielfaches der jeweiligen 50-jährlichen Windgeschwindigkeiten der Gebiete. In Tab. 6.5 sind diese Parameter für Baden-Württemberg angegeben. Ähnlich wie beim

Sturmname	Sturm 1986	Wiebke	Lore	Lothar
Datum	20.10.1986	28.2 1.3.1990	28.1.1994	26.12.1999
Gesamtzahl	beschädigter pi	rivater Wohngebä	äude	
Modell	1609	35361	20424	194292
Daten	3072	34097	17228	196683
Fehler $[\%]$	-47.62	3.71	18.55	-1.22
Gesamtschaden an privaten Wohngebäuden [Mio. \in]				
Modell	1.38	45.93	28.54	263.96
Daten	3.06	37.95	22.36	302.32
Fehler $[\%]$	-54.78	21.04	27.61	-12.69

Tab. 6.4. Modellierter (Modell 2) und beobachteter Sturmschaden in Originalwerten an privaten Wohngebäuden in Baden-Württemberg

Tab. 6.5. Modellparameter für Annahme 3) einer relativen Schadensanfälligkeit der PLZ Gebiete. Alle Parameter sind bezogen auf den 50-jährlichen Wind $V_{p=0.02}$ des jeweiligen Gebietes (in Klammer die Standardabweichung von μ_{krit})

μ_{krit}	σ_{krit}	ΔV	α
1,305 (σ =0,04)	$0,\!195$	$2,\!08$	2

zweiten Modell liegt der Mittelwert der Normalverteilung der kritischen Windgeschwindigkeiten beim 1,3fachen der 50-jährlichen Windgeschwindigkeit. Die Standardabweichung liegt in absoluten Zahlen zwischen 6,4 und 9,6m/s. Der Abstand zwischen kritischer und totaler Windgeschwindigkeit zwischen 65 und 100m/s je nach Lage des Gebietes.

In Tab. 6.6 sind die modellierten und beobachteten Gesamtschäden der vier untersuchten Stürme aufgelistet. Sieht man von Sturm 1986 ab, lässt sich die Anzahl der betroffenen Gebäude mit einer maximalen Abweichung von 8% und die Schadenshöhe mit einer maximalen Abweichung von 20% berechnen. Die Gesamtsummen des Sturmes 1986 werden jedoch stark unterschätzt. Im Vergleich zu den anderen beiden Modellen kann

Tab. 6.6. Modellierter (Modell 3: $\mu, \sigma, \Delta V \sim V_{p=0.02}$) und beobachteter Sturmschaden in Originalwerten an privaten Wohngebäuden in Baden-Württemberg

Sturmname	Sturm 1986	Wiebke	Lore	Lothar
Datum	20.10.1986	28.2 1.3.1990	28.1.1994	26.12.1999
Gesamtzahl	beschädigter p	rivater Wohngeba	äude	
Modell	1546	32602	17969	181980
Daten	3072	34097	17228	196683
Fehler [%]	-49.67	-4.38	4.30	-7.48
Gesamtschaden an privaten Wohngebäuden [Mio. \in]				
Modell	1.25	45.56	26.35	264.85
Daten	3.06	37.95	22.36	302.32
Fehler [%]	-59.13	20.04	17.84	-12.39

unter Annahme einer proportionalen Schadensanfälligkeit der Gesamtschaden sehr gut

berechnet werden. Dies scheint zumindest ab einer gewissen Intensität zu stimmen. Für Sturm 1986, dessen relative Windgeschwindigkeiten zwischen 0,6 und 0,8 lagen, liegen die Modellberechnungen zu tief.

6.3.4 Bemerkungen

Es wurden zusätzlich verschiedene Verteilungsfunktionen für die kritischen Windgeschwindigkeiten untersucht. Unter Verwendung der Lognormal-Verteilung konnte die Abschätzung des Gesamtschadens von Modell 1 stark verbessert werden, jedoch waren die Korrelationen aller Modelle durchweg niedriger als bei der Normal-Verteilung.

Bei der Schadensfunktion g(V) wurde ebenfalls die Potenz $\alpha = 3$ zur Kalibrierung verwendet. Hier zeigte sich jedoch, dass ΔV dermaßen kalibriert werden musste, dass schon bei theoretischen Geschwindigkeiten von 70-80m/s flächendeckender Totalschaden bei Gebäuden berechnet wurde. Dies deckt sich eher mit Schadenserfahrungen aus den Vereinigten Staaten, für Europa sind dies jedoch unrealistische Werte. Bei $\alpha = 2$ tritt Totalschaden (Schadensanteil größer 80%) erst ab ca. 120m/s (> 400km/h) auf. Dies ist natürlich auch ein theoretischer Wert, die Größenordung liegt aber eher im realistischen Bereich eines T9 bis T11 Tornados. Zu dieser Abschätzung lassen sich auch die Beschreibung der Auswirkungen von Tornados in Mitteleuropa (Anhang A.1) hinzuziehen.

6.4 Validierung

Da keine weiteren Schadensdaten aus Sturmereignisse zur Verfügung stehen, an denen die zuvor beschriebenen Schadensmodelle getestet werden können, wird die Validierung an den Verteilungen und Derivaten der vorhandenen Schadensdaten durchgeführt.

6.4.1 Schadensfunktion

In Abb. 6.7 sind die Schadensfunktionen nach Modell 1 in Abhängigkeit der absoluten Böengeschwindigkeit dargestellt. Die durchgezogene Line stellt den Median der Modellberechnung dar, die Strichpunkt-Linien die 16 bzw. 84% Perzentilen¹. Die Rauten und Kreise sind die entsprechenden Werte der Schadensdaten. Für die Modellberechnung wird für jede Geschwindigkeit eine Monte-Carlo Simulation mit 10.000 Läufen durchgeführt. Der Parameter μ_{krit} der kritischen Geschwindigkeiten wird einer Normalverteilung folgend mit der in Tab. 6.1 angegebenen Standardweichung simuliert. Der Median der Ergebnisverteilung entspricht somit der mittleren Schadenskurve.

Sowohl der Median als auch die Perzentilen werden durch das Modell insgesamt gut wiedergegeben, wobei die 16% Perzentilen etwas überschätzt werden. Für drei Geschwindigkeiten werden zudem die modellierten und tatsächlichen Verteilungen der Schadensgrößen, aus denen der Median und die Perzentilen abgeleitet sind, näher verglichen. Beim Schadensanteil erkennt man, dass meist zu hohe Schäden modelliert werden, die Tendenz aber richtig ist. Die Verteilungen des Gebäudeanteiles werden hingegen vor

 $^{^1}$ Diese Perzentilen wurde gewählt, da sie bei einer Normalverteilung dem Mittelwert \pm einer Standardabweichung entsprechen.

allem in den höheren Geschwindigkeitsbereichen besser modelliert. An der Verteilung der Schadensdaten ist zu sehen, warum die 16% Perzentilen nicht übereinstimmen: die geringeren Schäden werden etwas überbewertet. Dagegen wird der Gebäudeanteil im unteren Geschwindigkeitsbereich unterschätzt.

In Abb. 6.8 sind die Schadensfunktionen nach den Modellen 2 und 3 in Abhängigkeit der relativen Böengeschwindigkeit dargestellt. Für Modell 2, welches sowohl auf relativen (μ_{krit}) als auch auf absoluten Parametern $(\sigma_{krit}, \Delta V)$ beruht, wird mit einer 50-jährlichen

Abb. 6.7. Schadensfunktion nach Modell 1 in Abhängigkeit der absoluten Böengeschwindigkeit. Für 3 Geschwindigkeitsstufen (34m/s, 37m/s, 40m/s) sind die Verteilungen der simulierten und tatsächlichen Schadensgrößen dargestellt.

98 6. Schadensmodell

Windgeschwindigkeit von $V_{p=0.02} = 38m/s$ gerechnet, welches einem mittleren Windklima in Baden-Württemberg entspricht. Für größere $V_{p=0.02}$ ist die Funktion steiler, für kleinere flacher. Für die gewählte 50-jährliche Windgeschwindigkeit sind die beiden Modelle nahezu identisch.

Der Median und die 16 und 84% Perzentilen des berechneten Schadensanteils werden bis zu relativen Geschwindigkeiten von 1,1 im Vergleich zu den Schadensdaten sehr gut modelliert, bei 1,15 liegen die Ergebnisse etwas unterhalb der Schadensdaten, wobei hier

Abb. 6.8. Schadensfunktion nach Modellen 2 und 3 in Abhängigkeit der relativen Böengeschwindigkeit. Für 3 Geschwindigkeitsstufen (0,9, 1,0 und 1,1) sind die Verteilungen des simulierten und tatsächlichen Schadens dargestellt.

nur 12 PLZ-Gebiete zur Auswertung zur Verfügung standen und somit zufällige Einflüsse stärker zur Geltung kommen. Beim Gebäudeanteil sind im gesamten Bereich der Median und die Perzentilen sehr gut simuliert, nur bei 1,1 ist die reale Schwankung durch die geringe Anzahl der ausgewerteten Gebiete geringer. Die Verteilungen der modellierten Schäden bei den drei dargestellten Geschwindigkeitsstufen stimmen bei den Modellen 2 und 3 bereits sehr viel besser als beim ersten Modell überein. Somit werden auch die Perzentilen durch die Modelle sehr gut wiedergegeben.

Es zeigt sich, dass mit dem Schadensmodell der Schaden für PLZ-Gebiete bei unterschiedlichen Windgeschwindigkeiten inklusive einer Abschätzung der Unsicherheiten angegeben werden kann. Da das Modell auf die Berechnung des Gesamtschadens optimiert wurde, wird somit bereits eine wesentliche charakteristische Größe eines Sturmereignisses gut wiedergegeben. Anhand der Perzentilen lässt sich mit den Modellen angeben, mit welcher Wahrscheinlichkeit ein bestimmter Schadens- oder Gebäudeanteil bei einer Windgeschwindigkeit überschritten wird (unter Annahme zufälliger Schwankungen).

6.4.2 Schadensverteilungen

Um die Güte der räumlichen Schadensverteilung der Modelle zu quantifizieren, wird für jedes Postleitzahlengebiet der modellierte und tatsächlich aufgetretene Schaden verglichen. Hierzu werden jeweils die Korrelationskoeffizienten zwischen den Ergebnissen der drei Modelle und den Schadensdaten gebildet. Diese sind ein Maß für den linearen Zusammenhang zweier Größen und lassen sich damit als Angabe zur Erklärung der Schwankungen interpretieren. Bei einem Koeffizienten von 1 würden die Modelle die exakte Verteilung des Schaden berechnen.

Die Korrelationskoeffizienten sind für jeden Sturm in Tab. 6.7 dargestellt. Sie schwanken je nach Sturm, Modell und Schadensgröße zwischen 0,13 und 0,87. Je stärker der Sturm ist, desto höher ist der Korrelationskoeffizient. Es lässt sich vermuten, dass zufällige Variationen bei kleineren Stürmen mehr ins Gewicht fallen als bei größeren. Der Gebäudeanteil ist bei den meisten Stürmen und Modellen deutlich besser korreliert als der Schadensanteil. Zwischen den Modellen gibt es ebenfalls deutliche Unterschiede. Die Korrelation

Stummomo	Sturm 1096	Wieble	Lono	Lothan
Sturmanie	Sturm 1980	WIEDKE	Lore	Lothai
Datum	20.10.1986	28.2 1.3.1990	28.1.1994	26.12.1999
Schadensmodell 1				
Schadenshöhe	0,190	0,299	$0,\!134$	$0,\!627$
Anzahl Gebäude	0,221	0,402	0,238	0,763
Schadensmodell 2				
Schadenshöhe	0,214	0,603	$0,\!468$	0,821
Anzahl Gebäude	0,199	$0,\!658$	0,560	0,812
Schadensmodell 3				
Schadenshöhe	0,257	0,582	$0,\!345$	0,868
Anzahl Gebäude	0,281	$0,\!653$	$0,\!478$	0,864

Tab. 6.7. Korrelationskoeffizienten der Verteilung der Schadenshöhe und der Anzahl der betroffenen Gebäude zwischen Versicherungsdaten und den verschiedenen Modellberechnung

zwischen Modell 1 und den Schadensdaten ist bei allen Stürmen deutlich schlechter als bei den Modellen 2 und 3. Teilweise sind dort die Korrelationskoeffizienten doppelt so groß. Mit Korrelationskoeffizienten von unter 0,25 bei *Lore* und Sturm 1986 ist zudem kaum ein Zusammenhang zwischen Berechnung des Modells 1 und den beobachteten Schäden gegeben. *Lothar* wird mit 0,76 bereits recht gut simuliert.

Die Modelle 2 und 3 liefern insgesamt deutlich bessere Korrelationen, wobei die Koeffizienten von Modell 3 bei Sturm 1986 und *Lothar* höher, bei *Wiebke* nahezu gleich und bei *Lore* etwas niedriger als bei Modell 2 sind. Mit 0,86 bei *Lothar* werden mit dem Modell 3 bereits sehr gute Werte erreicht. Die Koeffizienten für jeden Sturm sind bei Modell 3 durchweg größer als 0,25.

Schadensverteilungen von Wintersturm Lothar. Zur Verdeutlichung der Unterschiede der Modelle sind für das Beispiel Wintersturm Lothar in den Abb. 6.9 und 6.10 die Simulationsergebnisse von Modell 1 und Modell 3 jeweils mit den beobachteten Daten gegenübergestellt. Die PLZ Gebiete sind jeweils mit dem mit KAMM berechneten Windgeschwindigkeiten farblich unterlegt; für die weißen Flächen standen keine Informationen über die bebauten Flächen zur Verfügung. Der Schaden in Mio. Euro pro Postleitzahlengebiet wird durch die Länge der schwarzen Balken angegeben.

Bei Modell 1 in Abb. 6.9 erkennt man durch den Vergleich von Geschwindigkeiten und Schadenshöhe gut, dass die Schadenshöhe ausschließlich von den berechneten Windgeschwindigkeiten abhängt. Als Hauptschadensgebiete werden das Rheintal und der Schwarzwald auszumachen. Im Vergleich mit der realen Schadensverteilung sind jedoch vor allem im Schwarzwald zu hohe Schäden und im Rheintal zu niedrige Schäden simuliert. Die Korrelation beträgt nach Tab. 6.7 0,62.

In Abb. 6.10 ist die mit Modell 3 berechnete Schadensverteilung der realen Verteilung gegenübergestellt. Die räumlichen Korrelation beträgt nach Tab. 6.7 bereits 0,86 und man erkennt eine bessere Übereinstimmung der Schadensverteilungen. Die Schadenshöhen werden sowohl im Nord- als auch im Südschwarzwald sehr gut wiedergegeben. Auch im Rheintal wird eine klare Verbesserung gegenüber dem Modell 1 erreicht. Fehlerhaft wird jedoch der Nordwesten (Rhein-Neckar-Gebiet) berechnet; im Vergleich werden hier zu große Schäden simuliert.

Abb. 6.9. Vergleich der simulierten (Modell 1) und beobachteten Schadensverteilungen bei Wintersturm Lothar (26.12.1999).

 ${\bf Abb.\ 6.10.} \ Vergleich\ der\ simulierten\ (Modell\ 3)\ und\ beobachteten\ Schadensverteilungen\ bei\ Wintersturm\ Lothar\ (26.12.1999).$

6.4.3 Histogramme

Zusätzlich zur räumlichen Korrelation der Schäden ist die Verteilung der Schäden auf unterschiedlichen Größenklassen ein wichtiger Indikator für die Anwendbarkeit der Modelle. Bei der Betrachtung von Sturmereignissen sind diese Verteilungen, die die Anzahl der Schäden und betroffenen Gebäude pro PLZ-Gebiet unabhängig von ihrem Standort angeben, wichtig für die Schadensbewältigung.

In Abb. 6.11 sind die Histogramme der Schadenshöhen für die vier untersuchten Stürme dargestellt. Die tatsächlichen Schadensdaten sind den Ergebnissen der drei Modellberechnungen mit den unterschiedlichen Annahmen gegenübergestellt. Bei Sturm 1986 werden mit den Modellen zu geringe Schadenshöhen berechnet, Modell 1 gibt die Größenklassen am besten wieder. Bei Wiebke stimmen Modellberechnungen und Daten bis $150.000 \in$ sehr gut überein. Die Modelle 1 und 2 geben zu viele PLZ-Gebiete über dieser Schadenshöhe an, während Modell 3 am besten mit den Daten übereinstimmt. Ein ganz ähnliches Bild

Abb. 6.11. Histogramme der modellierten und tatsächlichen Schadenshöhe pro 5-stelligem Postleitzahlengebiet

104 6. Schadensmodell

lässt sich bei Lore feststellen. Die Verteilung der Schadenshöhen bei Lothar wird von allen Modellen sehr gut wiedergegeben.

In Abb. 6.12 sind die Histogramme der Anzahl der betroffenen Gebäude pro PLZ-Gebiet dargestellt. Es zeigt sich hier ein ähnliches Bild wie bei den Histogrammen der Schadenshöhen. Die Anzahl der betroffenen Gebäude bei Sturm 1986 wird von den Modellen etwas unterschätzt, bei *Wiebke* stimmen die Ergebnisse des Modells 1 am besten überein, bei *Lore* und bei *Lothar* wird die Verteilung jeweils von allen Modellen recht gut wiedergegeben.

Insgesamt geben die Modellberechnungen die beobachteten Schadensklassen gut wieder, wenn man berücksichtigt, dass als einzige Parameter die Böenwindgeschwindigkeiten, die lokale Orographie und bei dem Modellen 2 und 3 das lokale Windklima eingeflossen sind.

In Abb. 6.13 sind die Histogramme der durchschnittlichen Schadenshöhe innerhalb von Postleitzahlgebieten dargestellt. Die Ergebnisse für die einzelnen Stürme sind sehr

Abb. 6.12. Histogramme der modellierten und tatsächlichen Anzahl der betroffenen Gebäude pro 5-stelligem Postleitzahlengebiet

unterschiedlich. Die Modellberechnungen sind alle im realistischen Bereich, wobei jedoch große Abweichungen bei der Anzahl der PLZ-Gebiete in den Klassen des Durchschnittsschadens zu erkennen sind. Da der Durchschnittsschaden eine aus den direkten Größen Schadenshöhe und Gebäudeanzahl abgeleitete Größe ist, sind diese Abweichungen erklärbar, da sich hier einzelnen Fehler aufsummieren.

6.4.4 Vergleich mit anderen Schadensmodellen

In Abb. 6.14 sind die mit den oben vorgestellten Modellen berechneten Schadensfunktionen in Abhängigkeit der absoluten Böengeschwindigkeit aufgetragen und mit anderen Schadensmodellen für Mitteleuropa verglichen. Die Modelle 2 und 3 wurden jeweils mit zwei unterschiedlichen 50-jährlichen Geschwindigkeiten $V_{p=0.02} = 36, 7m/s$ und $V_{p=0.02} = 41m/s$ berechnet. Die anderen Schadensmodelle wurden aus MunichRe (2001), Angermann (1993), Dotzek et al. (2000) und Schraft et al. (1993) entnommen (nähere

Abb. 6.13. Histogramme der modellierten und tatsächlichen Durchschnittsschäden pro Gebäude innerhalb 5-stelliger Postleitzahlengebiete

Angaben zu dem Modellen finden sich in Kap. 2.3.3). Wo Formeln für die Schadensfunktion angegeben sind, werden diese verwendet, bei den anderen werden die Funktionen aus den Diagrammen ausgelesen. Soweit notwendig, wird zwischen den Stützstellen jeweils linear interpoliert. Für die Funktion der Münchener Rück (MunichRe 2001) wird für den Schadensanteil in Gl. (2.13) eine Potenz von 4,5 verwendet, für den Gebäudeanteil eine Potenz von 3.

Die in diesem Kapitel entwickelten Modelle 1, 2 und 3 sind über den gesamten Verlauf der Böengeschwindigkeiten ähnlich und unterscheiden sich nur durch einen vom Windklima verursachten horizontalen Versatz. Diese Modelle liegen beim Schadensanteil genau im Bereich des Modells von Dotzek et al. (2000), der zwischen Schadenskurven für stabile Gebäude (+) und für Leichtbauten (-) unterscheidet. Dieses Ergebnis zeigt, dass das entwickelte Schadensmodell unter den gemachten Annahmen und mit der Kalibrierung an den vorhandenen Schadensdaten sehr gut mit bereits gemachten Erfahrungen übereinstimmt. Die Schadensfunktion der Münchener Rück liegt stark unterhalb der anderen Modelle, wobei zu klären wäre, ob diese Funktion bis 70m/s extrapoliert werden kann (in MunichRe (2001) ist die Kurve nur bis 55m/s angegeben). Die Schadenskurven zur Berechnung des Gebäudeanteils liegen bei niedrigen Geschwindigkeiten bis 40m/s ober-

Abb. 6.14. Schadensfunktionen für private Wohngebäude im Vergleich mit Schadensfunktionen aus der Literatur

halb der entwickelten Modelle, bei höheren Geschwindigkeiten gehen alle Modelle ineinander über.

Um die Unterschiede bei niedrigeren Geschwindigkeiten zu verdeutlichen, sind in Abb. 6.15 die selben Schadensmodelle wie oben in logarithmischer Auftragung bis zu absoluten Windgeschwindigkeiten von 50m/s dargestellt. Zur zusätzlichen Orientierung sind die über alle PLZ-Gebiete gemittelten Geschwindigkeiten von Sturm 1986 und *Lothar* eingetragen. Man erkennt hier deutlich, dass das in der vorliegenden Arbeit entwickelte Modell bei allen Modellannahmen in diesem Bereich teilweise deutlich unterhalb der anderen Modelle liegt. Dies ist umso bemerkenswerter, da dieses Modell die Schadenshöhen und betroffenen Gebäude der Stürme *Wiebke* und *Lore* teilweise um bis zu 60% überschätzt. Eine mögliche Erklärung ist, dass die anderen Modelle sozusagen die Einhüllenden der Schadensfunktionen darstellen, also einen Maximalschaden angegeben. Bei höheren Geschwindigkeiten ab 40m/s nähern sich die Kurven aller Modelle wieder aneinander an.

Abb. 6.15. Schadensfunktionen für private Wohngebäude im Vergleich mit Schadensfunktionen aus der Literatur. Es sind zusätzlich die durchschnittlichen Böengeschwindigkeiten während 2 Stürmen angegeben.

6.5 Fazit

Anhand der Ergebnisse der Kalibrierung und Validierung lässt sich feststellen, dass das Modell 3, welchem die Annahme relativer Schadensanfälligkeiten der PLZ-Gebiete zugrunde liegt, den beobachteten Schaden am besten wiedergibt. Das Schadensmodell 2, bei dem nur ein Parameter relativ zum Windklima ist, ist vor allem wegen den größeren Abweichungen der Berechnung des Gesamtschadens etwas schlechter. Das Schadensmodell 1, bei dem von einer absoluten Schadensanfälligkeit aller PLZ-Gebiete ausgegangen wird, ist sowohl bei der Berechnung des Gesamtschadens, als auch bei den räumlichen Korrelation schlechter als die beiden anderen Modelle.

Bei dieser Bewertung wurde maßgeblich die Berechnung des Gesamtschadens und die Qualität der räumlichen Schadensverteilung berücksichtigt. Diese beiden Größen sind für die Erstellung von Risikokarten, bei denen es auf die räumlichen Unterschiede in der Schadensanfälligkeit ankommt, die wichtigsten. Die Qualität der Verteilung von Schäden und Durchschnittsschäden in Größenklassen, wo das Schadensmodell 1 gut abschneidet, spielt dafür eine geringere Rolle.

Bemerkenswert ist zudem, dass, obwohl die von Modell 1 berechneten Größenklassen der Schäden gut wiedergegeben werden, die räumliche Korrelation mit den tatsächlich aufgetretenen Schäden bei einigen Stürmen unzureichend ist. Auf Landkarten aufgetragen bedeutet das, dass bei den meisten PLZ-Gebieten der Einzelschaden fehlerhaft berechnet wurde, in der Summe aller Gebiete jedoch die Größenordnung wieder einigermaßen stimmt. Bei den stärkeren Stürmen wird die Berechnung der Schadensverteilung durch die geringere Gewichtung von zufälligen Einflüssen bereits deutlich besser.

7. Schadensrisiko für Gemeinden

Das Schadensrisiko gibt an, mit welchem statistischen Schaden durch Winterstürme in einer Gemeinde zu rechnen ist. Die Berechnungen basieren auf meteorologischen Informationen zur Sturmgefährdung und den im vorhergehenden Kapitel entwickelten Schadensfunktionen. Alle Eingangsdaten wie Gebäudebestand, Landnutzung oder Werteverteilung sind Angaben aus dem Jahr 2000 und somit bezieht sich das Risiko ebenfalls auf dieses Jahr. Das Risiko für weitere Jahre kann nicht einfach hochgerechnet werden, da durch verschiedene Einflüsse alle 3 Risikokomponenten (Gefährdung, Vulnerabilität und Werteverteilung) zeitlichen Änderungen unterworfen sind. Diese Thematik soll in dieser Arbeit jedoch nicht berücksichtigt werden.

Das Schadensrisiko wird explizit auf Gemeindeebene berechnet, d.h. für jede Gemeinde wird das spezifische Risiko angegeben. Im Gegensatz dazu würde das Risiko von Sturmereignissen den Schaden mit seiner räumlichen Ausdehnung berechnen. In diesem Fall würde die Wahrscheinlichkeit angegeben, mit der ein Sturmereignis (wie *Lothar*) als Gesamtes eintritt (siehe auch Kap. 2.4). Hierzu müssen die Ausdehnung und Intensität des Sturmes erfasst werden, da die maximalen Windgeschwindigkeiten, aus denen sich ein Ereignisses zusammensetzt, lokal sehr unterschiedliche Auftretenswahrscheinlichkeiten besitzen. Mit der in dieser Arbeit vorgestellten Methode lassen sich die räumlichen Ausdehnungen von Stürmen jedoch nicht erfassen. Ganz exakt müsste hier also - um keine Missverständnisse aufkommen zu lassen - eher von einer Starkwindgefährdung und einem Schadensrisiko durch Starkwind gesprochen werden.

7.1 Berechnung der Risikokurven

Wie in Kap. 2.4 gezeigt wurde, geben Risikokurven die jährlichen Überschreitenswahrscheinlichkeiten des Schadens an und sind eine Kombination der 3 Risikokomponenten. Sie werden alternativ auch Schadens-Häufigkeitskurven genannt. Da sowohl die Sturmgefährdung als auch die Schadensfunktionen mit Unsicherheiten behaftet sind, wird eine Monte-Carlo Simulation zur Risikoberechnung durchgeführt. Die Monte-Carlo Simulation dient als Werkzeug zur Abschätzung der Unsicherheiten und berechnet die Ergebnisverteilung anhand einer Variation der Eingangswerte. Die Eingangswerte werden bestimmten Wahrscheinlichkeitsverteilungen folgend zufällig simuliert. Somit erhält man eine quantitative Angabe darüber, wie die Ergebnisse streuen können. Gute Beschreibungen zu Monte Carlo Methoden finden sich beispielsweise in Hengartner & Theodorescu (1978) und Fruehwirth & Regler (1983).

Im Folgenden wird die Risikoberechnung anschaulich für 6 Gemeinden in Baden-Württemberg durchgeführt (Abb. 7.1). Als Angaben zur Sturmgefährdung liegen für jede

110 7. Schadensrisiko für Gemeinden

Abb. 7.1. Lage der Gemeinden, für die beispielhaft die Risikoberechnung dargestellt ist.

Gemeinde die Böengeschwindigkeiten welche jeweils mit den 11 jährlichen Wahrscheinlichkeitsniveaus $p = \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \frac{1}{50}, \frac{1}{100}, \frac{1}{200}, \frac{1}{500}$ überschritten werden. Zusätzlich stehen die Standardabweichungen der Böengeschwindigkeiten für jedes p zur Verfügung. Die Abweichungen der Geschwindigkeiten werden durch eine Normalverteilung simuliert.

Abb. 7.2. Mittlere Gefährdungsfunktion einiger Gemeinden

In Abb. 7.2 sind die mittleren Gefährdungskurven der 6 Gemeinden dargestellt. Man erkennt die Unterschiede zwischen den Gemeinden, im Rheintal (Schwetzingen, Offenburg) sind deutlich niedrigere Geschwindigkeiten zu erwarten als in den restlichen Landesteilen. Neben den Unterschieden in der Höhe der Geschwindigkeiten lassen sich auch unterschiedliche Steigungen der Gefährdungskurven ausmachen. In Donaueschingen werden Geschwindigkeiten um die 30m/s viel häufiger erwartet als in Bad Mergentheim oder in Biberach, während die maximalen Geschwindigkeiten bei diesen Gemeinden höher sind.

Dem in Kap. 6 entwickelten Schadensmodell für private Wohngebäude liegen 3 unterschiedliche Annahmen zugrunde und so können für alle Gemeinden jeweils 3 Schadensfunktionen angegeben werden. Für jede dieser 3 Annahmen wird im Folgenden das Risiko berechnet. Zur Simulation der Unsicherheiten wird jeweils der Parameter μ_{krit} der kriti-

Abb. 7.3. Schadensfunktionen für 6 Gemeinden für private Wohngebäude (Oben: Schadensmodell 1, Mitte: Schadensmodell 2, Unten: Schadensmodell 3).

112 7. Schadensrisiko für Gemeinden

schen Geschwindigkeit als normalverteilt angenommen, die Standardabweichungen hierfür sind durch die Kalibrierung ebenfalls bekannt. In Abb. 7.3 sind für die 6 Gemeinden jeweils die mittleren Schadensanteile der 3 Modelle in Abhängigkeit der absoluten Geschwindigkeiten abgebildet. Die mit dem ersten Modell berechnete Schadenskurve ist für alle Gemeinden dieselbe, beim zweiten und dritten Modell unterscheiden sich die Schadenskurven deutlich je nach lokaler 50-jährlicher Windgeschwindigkeit.

Die Risikoberechnung für jede Gemeinde erfolgt mit den oben genannten Eingangswerten der Gefährdung und den Parametern der Schadensmodelle. Für jedes Wahrscheinlichkeitsniveau werden die Eingangsparameter 1000 Mal simuliert und damit eine Ergebnisverteilung für den entsprechenden Gebäude- und Schadensanteil nach Gl. (6.3) und (6.5) berechnet. Diese Verteilung wird anschließend nach Median und Perzentilen ausgew-

Abb. 7.4. Risikokurven für den Schadensanteil für 6 Gemeinden (Oben: Schadensmodell 1, Mitte: Schadensmodell 2, Unten: Schadensmodell 3).

ertet. Um absolute Schadenszahlen zu erhalten werden die Anteile mit der Gesamtzahl der Gebäude sowie dem Gesamtwert multipliziert. In Abb. 7.4 sind die mittleren Risikokurven für den Schadensanteil der Gemeinden und in Abb. 7.5 für den Gebäudeanteil dargestellt. Bei der Betrachtung des Risikos der einzelnen Gemeinden nach den unterschiedlichen Modellen erkennt man besonders für die Gemeinden mit geringer Gefährdung (Schwetzingen und Offenbach) deutliche Unterschiede zwischen den Modellen. Bei Modell 1 haben die beiden Gemeinden das geringste Risiko, bei Modell 2 das größte aller dargestellten Gemeinden. Da bei Modell 1 die Vulnerabilität aller Gemeinden konstant ist, ist das Risiko direkt proportional zur Gefährdung, was bedeutet, dass hohe Geschwindigkeiten hohes Risiko und niedrige - wie hier im Fall Schwetzingen - niedriges Risiko bedeuten.

Abb. 7.5. Risikokurven für den Gebäudeanteil für 6 Gemeinden (Oben: Schadensmodell 1, Mitte: Schadensmodell 2, Unten: Schadensmodell 3).

114 7. Schadensrisiko für Gemeinden

Im Gegensatz dazu ist bei Modell 3 die Schadensanfälligkeit proportional zur 50jährlichen Windgeschwindigkeit, weshalb das Risiko aller Gemeinden bei der Wahrscheinlichkeit p = 0.02 gleich ist. Die Unterschiede bei anderen p ergeben sich allein aus den unterschiedlichen Steigungen der Gefährdungskurven (vergleiche mit Abb. 7.2, wo besonders die Gefährdung von Donaueschingen von den anderen Kurven abweicht).

7.2 Ergebnisse

Es wurden für alle 1037 Gemeinden¹ in Baden-Württemberg Risikokurven für den Schadens- und den Gebäudeanzahl erstellt. Es ist nicht möglich, die Risikokurven für alle Gemeinden darzustellen, die Ergebnisse sollen deshalb anhand Abb. 7.6 erläutert werden. In dieser Abbildung sind die Wahrscheinlichkeitsflächen der Risikokurven für den Schadens- und Gebäudeanteil dargestellt, wie sie aus der Monte-Carlo Simulation berechnet wurden. Als Beispiel für diese Darstellung wurde die Gemeinde Metzingen gewählt, bei allen anderen Gemeinden sind jedoch ähnliche Verläufe hinsichtlich der Streuung zu beobachten.

Die Flächen werden jeweils durch die angegebenen Perzentilen begrenzt. Innerhalb der hellgrauen Fläche befinden sich somit 90% aller berechneten Ergebnisse, innerhalb der dunkelgrauen 68%. Der Median befindet sich innerhalb der schwarzen Flächen, welche von den 40% und 60% Perzentilen begrenzt werden. Die Größe der Fläche ist ein Maß für die Streuung der Ergebnisse der Monte-Carlo Simulation und somit für die Unsicherheiten, mit denen die Ergebnisse behaftet sind. Man erkennt, dass die Streuung der mit Modell 1 berechneten Ergebnisse am größten ist. 90% der Ergebnisse liegen immerhin innerhalb von mehr als einer Größenordnung, der Gebäudeanteil bei p = 0,01 liegt beispielsweise zwischen 0,026 und 0,302. Die Ergebnisse von Modell 2 streuen im Bereich hoher Wahrscheinlichkeiten ebenfalls stark, mit geringer werdenden Wahrscheinlichkeiten jedoch weniger. Bei Modell 3 ist die Streuung über den gesamten Wahrscheinlichkeitsverlauf am geringsten; beispielsweise liegen 90% der Gebäudeanteile bei p = 0,01 zwischen 0,061 und 0,191.

Die kleinere Streuung bei den Modellen 2 und 3 liegt zum einen an den geringeren Unsicherheiten bei der Angabe der relativen Geschwindigkeiten im Vergleich zu den absoluten Geschwindigkeiten und zum anderen an der besseren Schadensfunktion. Es lassen sich damit mit Modell 3 die genauesten Aussagen über das Risiko treffen.

Die Unstetigkeiten der Perzentilen hängen mit der gewählten Anzahl von 1000 Simulationsläufen zusammen. Für einen besseren Verlauf der Kurven müsste eine höhere Anzahl simuliert werden, was aber im Hinblick auf die Berechnungszeit im Rahmen dieser Arbeit nicht möglich ist².

Für alle Wahrscheinlichkeitsniveaus von p = 0.5 bis 0,002 lassen sich nun die Risiken der Gemeinden, wie sie mit den 3 Modellen berechnet wurden, vergleichend darstellen. Die quantitative Angabe des Schadensrisikos eines Wahrscheinlichkeitsniveaus für jede

¹ Insgesamt werden 1111 Gemeinden in Baden-Württemberg angegeben, bei 74 sind jedoch die bebauten Flächen kleiner als die Erfassungsgrenze der CORINE Daten. 20.000 von 2.457.000 Gebäuden wurden somit nicht berücksichtigt, dies entspricht weniger 1%.

² Auf einem aktuellen PC wird für die Berechnung von 1000 Simulationen für je 11 Wahrscheinlichkeiten und 1037 Gemeinden sowie 2 Schadenszahlen und 3 Modellen bereits ca. 1 Woche Rechenzeit benötigt.

Abb. 7.6. Risikokurven für die Gemeinde Metzingen. Darstellung der von den angegebenen Perzentilen begrenzten Flächen des Schadensanteils (SA) und des Gebäudeanteils (GA).

der 1037 Gemeinden in Baden-Württemberg findet sich in Tab. B.1 im Anhang. Für jede Gemeinde sind die mittleren Schadenshöhen und die mittlere Anzahl der betroffenen Gebäude für die jährliche Überschreitenswahrscheinlichkeit von p = 0.02 für die 3 Modellannahmen angegeben. Die Angabe der Gesamtzahl der privaten Wohngebäude und deren Wert nach Kleist et al. (2006) dient als Vergleich. Die angegebene Schadenshöhe und Anzahl der Gebäude sind also diejenigen Werte, die mit der Wahrscheinlichkeit von 2% innerhalb eines Jahres erreicht oder überschritten werden. Je nach Modell und Gemeinde liegen diese Werte zwischen mehreren Zehntausend und Millionen Euro, bzw. wenigen Gebäuden bis hin zu über tausend beschädigten Gebäuden. Macht man sich

116 7. Schadensrisiko für Gemeinden

klar, dass dieses Wahrscheinlichkeitsniveau eigentlich dem Auslegungsniveau für Gebäude gegen Windanfälligkeit entspricht - ohne zusätzlich Sicherheitsbeiwerte zu berücksichtigen - dann sind dies teilweise beträchtliche Summen, mit denen gerechnet werden muss. Diese können zudem als konservative Schätzung betrachtet werden, da die Schadensfunktionen von Versicherungen in diesem Geschwindigkeitsbereich (bis 40m/s) höhere Schäden berechnen und damit auch von noch höheren Schadensrisiken ausgehen.

Zur besseren Visualisierung werden auf den folgenden Seiten die Verteilungen des Risikos für eine jährliche Überschreitenswahrscheinlichkeit von 0.5% in Risikokarten dargestellt. Dieses Wahrscheinlichkeitsniveau entspricht einer durchschnittlichen Wiederkehrperiode von T = 200 Jahren und somit extremen Windgeschwindigkeiten, wie sie in Baden-Württemberg bisher nur bei Orkan Lothar aufgetreten sind. Für die verschiedenen Modellannahmen sind jeweils der Schadensanteil und der Gebäudeanteil pro Gemeinde dargestellt.

Die Verteilungen in den Abb. 7.7 und 7.8 wurden mit dem Modell 1 berechnet. Sie folgen der Verteilung der Gefährdungskarte (Abb. 3.5), nach der vor allem für den östlichen Schwarzwald und die Schwäbischen Alb mit hohen Geschwindigkeiten zu rechnen ist, während für das Rheintal wesentlich niedrigere Geschwindigkeiten angegeben werden. Dementsprechend ist auch das Risiko sehr unterschiedlich, in den Höhenlagen der Mittelgebirge werden bis über 100 Mal größere Schäden erwartet wie im Rheintal.

In Abb. 7.9 und 7.10 sind die mit dem Modell 2 berechneten Risikoverteilungen abgebildet. Der Schadensanteil schwankt hier zwischen 0,4 und 1,5%, der Gebäudeanteil zwischen 10 und 24\%. Die in Abb. 7.11 und 7.12 dargestellten Verteilungen sind die Ergebnisse der Risikoberechnung mit Modell 3. Sie sind ähnlich zu denen des zweiten Modells, wobei die Unterschiede der Risiken geringer ist. Der Schadensanteil variiert zwischen 0,7 und 1,5%, der Gebäudeanteil zwischen 13 und 22%.

Bei der Betrachtung der Verteilungen der Berechnungen mit den Modellen 2 und 3 fällt auf, dass im Schwarzwald und auf der Schwäbischen Alb niedrigere Schäden als in den restlichen Landesteilen zu erwarten sind. Die kommt daher, dass hier die Gefährdungskurven weniger steil sind, d.h. es treten hier häufiger hohe relative Geschwindigkeiten auf, so dass sich die Extremwerte nicht so deutlich von den restlichen Werten abheben. In Abb. 7.2 lassen sich als Beispiele für dieses Verhalten Bad Mergentheim und Donaueschingen heranziehen.

Abb. 7.7. Schadensrisikokarte Modell 1: Schadensanteil pro Gemeinde, welcher mit einer jährlichen Wahrscheinlichkeit von 0.5% überschritten wird.

Abb. 7.8. Schadensrisikokarte Modell 1: Gebäudeanteil pro Gemeinde, welcher mit einer jährlichen Wahrscheinlichkeit von 0.5% überschritten wird.

Abb. 7.9. Schadensrisikokarte Modell 2: Schadensanteil pro Gemeinde, welcher mit einer jährlichen Wahrscheinlichkeit von 0.5% überschritten wird.

Abb. 7.10. Schadensrisikokarte Modell 2: Gebäudeanteil pro Gemeinde, welcher mit einer jährlichen Wahrscheinlichkeit von 0,5% überschritten wird.

Abb. 7.11. Schadensrisikokarte Modell 3: Schadensanteil pro Gemeinde, welcher mit einer jährlichen Wahrscheinlichkeit von 0,5% überschritten wird.

Abb. 7.12. Schadensrisikokarte Modell 3: Gebäudeanteil pro Gemeinde, welcher mit einer jährlichen Wahrscheinlichkeit von 0,5% überschritten wird.
Als weitere Ergebnisgröße wird der durchschnittliche jährliche Schaden (average annual loss - AAL), welcher sich nach Gl. (2.24) berechnet, für alle Gemeinden angegeben. Die Risikokurve wird dabei von p = 1 bis $p_{min} = 0,002$ integriert. Für kleinere Wahrscheinlichkeiten stehen keine Angaben zur Verfügung, so dass in den AAL nur Ereignisse einfließen, deren Wahrscheinlichkeit größer als p_{min} sind. Seltenere, noch extremere Windgeschwindigkeiten werden somit nicht berücksichtigt.

In den Abb. 7.14 bis 7.16 sind für alle Gemeinden in Baden-Württemberg die durchschnittlichen jährlichen Schäden bezogen auf den jeweiligen Gesamtwert der Wohngebäude dargestellt. Je nach Modell ergeben sich unterschiedliche Verteilungen des Risikos. Die Verteilung des AAL nach Modell 1 (Abb. 7.14) ist ähnlich der Verteilung des Risikos der vorhergehenden Abbildungen für dieses Modell: bei größer Sturmgefährdung ist der durchschnittliche jährliche Schaden entsprechend hoch, bei kleiner entsprechend niedrig. Dabei lässt sich eine große Bandbreite des AAL feststellen, die vom 1E-6-fachen bis zum 400E-6-fachen der Gebäudewerte reicht. Diesem Modell zufolge muss also mit deutlichen räumlichen Unterschieden des Risikos gerechnet werden.

Die Ergebnisse der Berechnungen mit Modell 2 sind in Abb. 7.15 dargestellt. Man erkennt, dass die Verteilung genau umgekehrt zu der des Modells 1 ist. Im Rheintal sind die höchsten AAL zu erwarten, während in den Höhenlagen des Schwarzwaldes und der Schwäbischen Alb mit den niedrigsten AAL gerechnet werden muss. Diese Verteilung ist wiederum ähnlich zu den Verteilungen des Risikos bei einem Wahrscheinlichkeitsniveau (Abb. 7.9 und 7.10). Die Unterschiede in den durchschnittlichen jährlichen Schäden sind bei diesem Modell viel geringer und reichen vom 8e-6-fachen bis zum 60e-6-fachen der Gebäudewerte.

In Abb. 7.16 ist die Verteilung des AAL nach Berechnungen mit Modell 3 dargestellt. Die Ergebnisse dieser Berechnung zeigen, dass der durchschnittliche jährliche Schaden für die Gemeinden in Baden-Württemberg nahezu gleich ist. Die Werte streuen hier nur in sehr geringem Maße von 23E-6 bis 31E-6. Nur im Südwesten ist ein leicht erhöhtes Risiko zu erkennen.

Durch Division des AAL durch die Anzahl der Gebäude innerhalb einer Gemeinde erhält man denjenigen Wert, der jährlich pro Gebäude aufgewendet werden müsste, um alle zukünftigen Schäden bis zur minimalen Eintrittwahrscheinlichkeit p_{min} abzudecken. In Abb. 7.13 sind die Histogramme der Verteilungen der 3 Modelle abgebildet. Der Mittelwert aller Modelle liegt bei ca. $5 \in$, die Standardabweichung ist je nach Modell jedoch sehr unterschiedlich.

Der durchschnittliche jährliche Schaden lässt sich für alle Gemeinden in Baden-Württemberg summieren und somit eine Aussage über das gesamte Risiko treffen. Der Gesamtwert aller 2,43 Mio. privaten Wohngebäude aller Gemeinden in Baden-Württemberg beträgt 530 Mrd. €. In Tab. 7.1 sind die Schätzungen des AAL nach den 3 Modellen angegeben. Um einen Eindruck über die Zuverlässigkeit zu gewinnen, sind zusätzlich einige Perzentilen des jährlichen Schadens eingetragen. Dazu wurde für alle Gemeinden der AAL aus den entsprechenden Perzentilen des Schadensrisikos berechnet. Der Median des AAL liegt nach den Berechnungen mit allen 3 Modellen bei etwa 13 Mio. €. Dabei sind jedes Jahr mit ca. 15.000 beschädigten Gebäuden zu rechnen. Die Perzentilen geben die Wahrscheinlichkeiten an, mit der der angegebene Schaden unter Berücksichtigung der

Abb. 7.13. Histogramme des durchschnittlichen jährlichen Schadens pro privatem Wohngebäude aus den Risikoberechnungen der 3 Schadensmodelle.

Unsicherheiten unterschritten wird. Wie bei der Betrachtung Risikokurven liefert auch hier das Modell 3 die geringste Bandbreite des Risiko und ist somit am zuverlässigsten.

Schadens-			Perzentilen		
modell	5%	16%	Median (50%)	84%	95%
Gesamtsch	aden an	privaten	Wohngebäuden	[Mio. €]	
1	$2,\!005$	4,438	$13,\!389$	$35,\!834$	$64,\!377$
2	4,737	6,928	$12,\!251$	$21,\!931$	$31,\!909$
3	$5,\!415$	$7,\!672$	$12,\!885$	$21,\!143$	$28,\!985$
Gesamtzah	l beschä	digter pr	ivater Wohngebä	ude	
1	3308	6367	15529	33715	52925
2	6069	8618	14601	25176	35618
3	6624	8998	14145	22000	29105

Tab. 7.1. Perzentilen des durchschnittlichen jährlichen Schadens (AAL) für alle Gemeinden in Baden-Württemberg nach den 3 Schadensmodellen. Der AAL wurde bis zu einer jährlichen Wahrscheinlichkeit von p = 0.002 berechnet, der Schaden seltenerer Ereignisse ist nicht berücksichtigt.

7.3 Vergleich mit anderen Risikoberechnungen

In Radke & Tezlaff (2004) sind Sturmschadensrisikokurven für die Stadt Köln angegeben. Da für die Region Köln zu diesem Zeitpunkt keine Gefährdungskurven aus KAMM zur Verfügung stehen, kann mit der hier vorgestellten Methode noch keine Berechnung erfolgen und somit die Ergebnisse nicht direkt verglichen werden. Es soll jedoch zumindest versucht werden, die Größenordnungen abzuschätzen. Dazu sind in Tab. 7.2 für die un-

Tab. 7.2. Vergleich des Schadensrisikos für die Stadt Köln (aus Radtke 2004) und den durchgeführten Risikoberechnungen für Stuttgart. Die Schadenshöhen sind jeweils in Mio. € angegeben (*interpolierte Werte).

		Köln	Stuttgart				
	(Gesamtwerte 80 Mrd. $\in)$		(Gesamtwerte 28 Mrd. \in)				
	untere	oberer					
p	Schaden	Schaden	Modell 1	Modell 2	Modell 3		
0,2	20	29	$0,\!20$	$0,\!22$	0,22		
0,1	24	36	$0,\!61$	0,70	0,71		
$0,\!02$	37	60	5,3	6,4	7,1		
0,01	43	60	11,7	$14,\!4$	$15,\!8$		
0,0033	70	135	35^{*}	40^{*}	42^{*}		

terschiedlichen Wahrscheinlichkeitsniveaus berechneten unteren und oberen Schadensabschätzungen für Köln und mit den 3 Modellen berechneten mittleren Schäden für Stuttgart angegeben. Die Werte in Köln sind etwa 3 Mal so groß wie die in Stuttgart, so dass unabhängig von der unterschiedlichen Gefährdung, die in Stuttgart mit 37m/s für die 50-jährliche Windgeschwindigkeit zudem deutlich höher ist als in Köln mit ca. 33m/s- die Risiken für Stuttgart verdreifacht werden müssen. Man erkennt deutlich, dass vor allem bei den hohen Wahrscheinlichkeiten die Ergebnisse sehr weit auseinander gehen. Die Schäden für 5-jährliche Ereignisse (p = 0,2) werden in Köln über 30 Mal höher angegeben wie für Stuttgart berechnet, die für 50-jährliche Ereignisse (p = 0, 02) etwa 3-4 Mal so hoch. Dieser Unterschied deckt sich mit dem Unterschied in den verwendeten Schadensfunktionen, die in Abb. 6.15 verglichen werden. Das für Köln verwendete Modell der Münchener Rück gibt in den niedrigen Geschwindigkeitsbereichen Schäden an, die mehrere Größenordnungen über denen liegen die mit den hier entwickelten Modellen berechnet werden. Bei größer werdenden Geschwindigkeiten gleichen sich die Modelle jedoch an. Für extrem seltene Ereignisse (T=300 Jahre) liegen die mit den Modellen 1, 2 und 3 berechneten Schäden innerhalb der für Köln angegebenen Grenzen.

In Klawa & Ulbrich (2003) wird für den durchschnittlichen jährlichen Schaden für ganz Deutschland eine Summe von 600 Mio. \in^3 angegeben. Diese Summe beinhaltet jedoch außer den Schäden an privaten Wohngebäude den Gebäudeinhalt sowie Schäden an kommerziell genutzten Gebäuden wie Bürogebäuden oder Industrieanlagen. Nach Tab. 7.1 liegt der AAL für private Wohngebäude in Baden-Württemberg bei 13 Mio. \in . Nimmt man an, dass das Risiko in Deutschland gleichverteilt ist und dass in Baden-Württemberg etwa

 $^{^{3}}$ Diese Summe ist ebenfalls wie die in dieser Arbeit berechneten Risikosummen auf das Jahr 2000 bezogen.

126 7. Schadensrisiko für Gemeinden

 $\frac{1}{7}$ bis $\frac{1}{8}$ aller Werte in Deutschland verteilt sind, so lässt sich eine Summe für Deutschland von etwa 100 Mio. \in berechnen. Aus Klawa & Ulbrich (2003) geht nicht hervor, welchen Anteil Gebäudeinhalt und kommerzielle Schäden am Gesamtschaden besitzen, so dass der dort angegebene Wert etwa 3 bis 4 Mal höher ist als der in dieser Arbeit berechnete Schaden.

Abb. 7.14. Schadensrisikokarte Modell 1: Durchschnittlicher jährlicher Schaden

Abb. 7.15. Schadensrisikokarte Modell 2: Durchschnittlicher jährlicher Schaden

Abb. 7.16. Schadensrisikokarte Modell 3: Durchschnittlicher jährlicher Schaden

8. Zusammenfassung und Ausblick

In dieser Arbeit wurde das Schadensrisiko privater Wohngebäude für jede Gemeinde in Baden-Württemberg quantifiziert. Das Schadensrisiko lässt sich durch den monetären Schaden und die Anzahl der betroffenen Gebäude, mit denen durch Windgeschwindigkeiten mit unterschiedlichen Eintrittswahrscheinlichkeiten gerechnet werden muss, beschreiben. Dazu wurden Schadensdaten vergangener Sturmereignisse bezüglich der Korrelation mit meteorologischen (Windgeschwindigkeit und Windklima) und topographischen Parametern (Geländeform und Landnutzung) untersucht. Um die Schadensanfälligkeit von Wohngebäuden zu beschreiben, wurde ausgehend von der exakten Beschreibung der Anfälligkeit durch logische Vereinfachungen ein Schadensmodell entwickelt. Aufgrund der Ergebnisse der Analyse der Schadensdaten wurde das Modell mit 3 unterschiedlichen Annahmen an den vorhandenen Schadensdaten kalibriert. Die Validierung erfolgte an abgeleiteten Größen der Schadensdaten sowie durch Vergleich mit anderen existierenden Schadensmodellen. Das Schadensrisiko wurde aus der Sturmgefährdung und der Schadensanfälligkeit für jede Gemeinde in Baden-Württemberg berechnet. Das Risiko wurde in Schadens-Häufigkeitskurven und Risikokarten dargestellt und mit vorhandenen Angaben zum Schadensrisiko von Winterstürmen in Deutschland verglichen.

Im Folgenden werden die wichtigsten Ergebnisse dieser Arbeit zusammengefasst:

- Von allen untersuchten Parametern haben die während eines Sturmes maximalen aufgetretenen Böengeschwindigkeiten den größten Einfluss auf die entstehenden Schäden. Dabei sind jedoch nicht die absoluten Geschwindigkeiten, sondern die auf das lokale Windklima bezogenen relativen Geschwindigkeiten maßgeblich. Bei einer Windgeschwindigkeit, die der 50-jährlichen Geschwindigkeit entspricht, tritt durchschnittlich bei 6% aller Gebäude innerhalb einer Gemeinde Schaden auf, die Schadenshöhe beträgt dann durchschnittlich 0,25‰ des Gesamtwertes. Beim 1,1-fachen der 50-jährlichen Windgeschwindigkeit werden bereits 15% der Gebäude mit einem Schadensanteil von 0,83‰ beschädigt. Es sind jedoch erhebliche Abweichungen der Schäden vom Mittelwert zu beobachten.
- Um diese Abweichungen zu erklären wurden die lokale Orographie und die die bebauten Gebiete umgebende Landnutzung näher untersucht. Es konnte nachgewiesen werden, dass bei allen untersuchten Stürmen der Schaden bei orographisch exponierten Gebieten (Hügeln Kuppen, Kämmen) überdurchschnittlich und bei nicht exponierten Gebieten (Tälern) unterdurchschnittlich war. Bei Gebieten, die durchschnittlich 30 Meter unter ihrer Umgebung liegen, tritt nur etwa 70% des mittleren Schadens aller Gebiete auf, bei Gebieten, die 10 Meter über ihrer Umgebung liegen hingegen über 120%. Solch wenig oder stark exponierten Gebiete sind jedoch selten (in Baden-Württemberg), der

132 8. Zusammenfassung und Ausblick

Großteil der bebauten Gebiete (über 80%) liegt in orographisch neutralen Gelände für das kaum Einflüsse erkannt werden konnten.

Für die die bebauten Gebiete umgebende Landnutzung, welche großen Einfluss auf die lokalen Windgeschwindigkeiten hat, konnte keine eindeutiger Zusammenhang mit den Sturmschäden gefunden werden.

- Mit dem entwickelten Schadensmodell ist es möglich, die Gesamtsummen für mittlere und große Sturmereignisse (ab einer Schadenssumme von ca. 10 Mio. €) mit maximalen Abweichungen von 20% zu simulieren. Die Korrelationskoeffizienten der räumlichen Schadensverteilung zwischen simuliertem und beobachtetem Schaden liegen dabei mit Werten zwischen 0,35 bis 0,87 zufriedenstellend hoch. Zusätzlich werden auch die Verteilung der Größenklassen der Schäden sowie des Durchschnittsschaden gut wiedergegeben. Im Vergleich mit anderen existierenden Schadensmodellen für europäische Winterstürme berechnet das entwickelte Modell im Bereich niedriger Böengeschwindigkeiten bis 40m/s teilweise um 2 Größenordungen geringere Schäden. Im höheren Geschwindigkeitsbereich zeigen die Modelle jedoch sehr gute Übereinstimmung.
- Das Schadensrisiko für Gemeinden gibt an, dass beim Auftreten einer 50-jährlichen Windgeschwindigkeit mit 0,25‰ Schadensanteil und mit 6% Gebäudeanteil gerechnet werden muss. In absoluten Zahlen sind dies je nach Größe der Gemeinde Schäden zwischen mehreren Zehntausend Euro bis hin zu über einer Million Euro für die Großstädte, wie die Zusammenstellung aller Gemeinden in Anhang B belegt. Dies ist interessant in dem Zusammenhang, dass diese Windgeschwindigkeit nach der DIN 1055 der Auslegungsgeschwindigkeit hinsichtlich der Bemessung von Gebäuden gegen Windlasten entspricht.
- Das Risiko für weitere Wahrscheinlichkeitsniveaus hängt nach dem vorgeschlagenen Modell 3 maßgeblich von der Form der Gefährdungsfunktion ab. Bei der verwendeten Gumbel-Verteilung betrifft dies den Parameter α , der die Steigung der Gefährdungsfunktion festlegt und damit als ein Maß für die Unterschiede der erwarteten Geschwindigkeiten angesehen werden kann. Bei Gemeinden mit geringen Unterschieden der Gefährdungsgeschwindigkeiten wird vergleichsweise höherer Schaden bei häufigen Windgeschwindigkeiten erwartet und geringerer Schaden bei selteneren Windgeschwindigkeiten. Der durchschnittliche jährliche Schaden liegt dadurch bei diesem Gemeinde etwas höher als bei Gemeinden mit größeren Unterschieden in der Gefährdungsfunktion.
- Der durchschnittliche j\u00e4hrliche Schaden f\u00fcr alle Gemeinden in Baden-W\u00fcrttemberg betr\u00e4gt nach den Modellberechnungen ca. 13 Mio. €. Diese Summe m\u00fcsste jedes Jahr theoretisch aufgebracht werden, um den Schaden aller zuk\u00fcnftigen Sturmereignisse bis hin zu einer minimalen Eintrittwahrscheinlichkeit bezahlen zu k\u00fcnnen. Noch extremere und seltener St\u00fcrme sowie eine m\u00fcgliche \u00e4nderung des Risikos mit der Zeit sind dabei nicht ber\u00fccksichtigt. F\u00fcr ein Einzelgeb\u00e4ude betr\u00e4gt der durchschnittliche Schaden nach diesen Berechnungen ca. 5 Euro pro Jahr.

Vor allem bei der Analyse der Schadensdaten in Bezug auf die lokale Topographie hätte man sich aussagekräftigere Ergebnisse erhofft. Obwohl für die Orographie für den mittleren Schaden ein deutlicher Zusammenhang quantifiziert werden konnte, verbessert sich die Schadensabschätzung mit dem Schadensmodell nur um wenige Prozent (die räumlichen Korrelationen sind maximal 2% besser). Im Zusammenhang mit der Erstellung der Schadensfunktionen treten einige Fragestellungen auf, die im Folgenden kurz behandelt werden sollen und als Ausblick für weitere Forschungstätigkeiten sowie Anwendungen dienen können.

Wie durch die Analyse der Schadensdaten gezeigt wurde, gibt es große Abweichungen der einzelnen Schäden von der mittleren Schadenskurve. Die Einbeziehung des Windklimas und Geländeindizes konnten diese Abweichungen nicht vollständig erklären. Weitere mögliche Parameter wie die Gebäudestruktur, das Gebäudealter, Vorschädigungen durch vorhergehende Stürme und deren Reparaturen (Stewart 2003), die Sturmdauer usw. könnten hier weitere Erkenntnisse bringen und die Schäden besser erklären. Beispiele dafür gibt es vor allem in der Hurrikan-Forschung in den USA.

Ein weitere interessanter Aspekt betrifft das verwendete Windfeldmodell (KAMM). Durch Verwendung eines dynamischen Modells, welches beispielsweise die stündlichen Geschwindigkeiten während eines Sturmes angibt, kann sowohl die Dauer, als auch der Verlauf der maximalen Geschwindigkeiten miteinbezogen werden. Prinzipiell kann das Schadensmodell für alle Windfeldmodelle verwendet werden, es muss nur jeweils eine Kalibrierung an die neuen Windfelddaten durchgeführt werden. Da dynamische Modelle meist größere Gebiete abdecken und somit die räumliche Auflösung geringer wird, muss zuvor getestet werden, ob die dadurch entstehenden Ungenauigkeiten im akzeptablen Bereich liegen.

A. Schadensskalen

A.1 Auswirkungen nach der Torro-Skala in Mitteleuropa

Nach Dotzek et al. (2000) können anhand der Auswirkungen eines Tornados dessen Stärke auf der Torro-Skala abgeschätzt werden. Die Torro-Skala besteht aus 11 Klassen, die durch unterschiedliche Windgeschwindigkeitsbereiche definiert sind.

- T0 (76 \pm 14 km/h) Leichte Gegenstände werden vom Boden abgehoben. Äste beginnen abzubrechen, in Getreidefeldern ist der Zugweg erkennbar. Baugerüste können umstürzen, leichte Schäden an Markisen und Zelten auftreten. Dachziegel an exponierten Stellen können sich lockern. Keine Schäden an Gebäudetragwerken.
- T1 (104 \pm 14 km/h) Gartenmöbel und leichtere Gegenstände werden umgeworfen und können durch die Luft gewirbelt werden. Holzzäune werden umgeworfen. Windbruch an Bäumen. Leichte Schäden an Dachziegeln und Verblechungen. Geringe Schäden an Leichtbauten; keine strukturellen Schäden.
- T2 (135 \pm 16 km/h) Auch schwerere Gegenstände werden vom Boden aufgehoben und können zu gefährlichen Geschossen werden. Fahrzeuge und Anhänger können umgeworfen werden. Ziegel- und ungesicherte Flachdächer werden teilweise abgedeckt. Geringe bis mittelschwere Schäden an Leichtbauten; erste Schäden an strukturellen Elementen von Massivbauten möglich. An Bäumen werden einzelne starke Äste abgebrochen oder -geknickt, kleine Bäume entwurzelt.
- T3 (167 \pm 16 km/h) Einzelne größere Bäume werden entwurzelt. Zahlreiche Fahrzeuge und Anhänger werden umgeworfen. Ziegel- und ungesicherte Flachdächer erleiden größere Schäden. Mittelschwere Schäden an Leichtbauten; einzelne Schäden an strukturellen Elementen von Massivbauten. Fahrende Autos werden von der Strasse gedrückt.
- T4 (202 \pm 18 km/h) Schwerer Windbruch an freistehenden Bäumen und in Wäldern. Grosse Schäden an Fahrzeugen und Anhängern. Hohe Gefährdung und Schäden durch herumfliegende Teile. Ganze Dächer werden abgedeckt. Schwere Schäden an Leichtbauten; zunehmend Schäden an strukturellen Elementen von Massivbauten, Einsturz von Giebelwänden möglich.
- T5 (238 \pm 18 km/h) Schwere Schäden an Dächern und Anbauten. Schwere Schäden an Leichtbauten; weiter zunehmende Schäden an strukturellen Elementen von Massivbauten. Vollständiger Einsturz einzelner Gebäude, vor allem landwirtschaftlich genutzter Konstruktionen und Lagerhallen. Kraftfahrzeuge werden hochgehoben
- T
6 (275 \pm 20 km/h) Leichtbauten werden in größerem Umfang zerstört. Schwere Schäden an strukturellen Elementen von Massivbauten. Einsturz einzelner Gebäude. Schwere Kraftfahrzeuge werden hochgehoben.

- T7 (315 \pm 20 km/h) Verbreitet völlige Zerstörung von Leichtbauten und schwere Schäden an Massivbauten. Einsturz zahlreicher Gebäude. Deutliche Entrindung stehen bleibender Bäume durch umherfliegende Trümmer.
- T8 (356 \pm 22 km/h) Schwere Schäden an Massivbauten. Verbreiteter Einsturz von Gebäuden, deren Einrichtung weit verstreut wird. Kraftfahrzeuge werden über große Strecken geschleudert.
- T9 (400 \pm 22 km/h) Überwiegend Totalschäden an Massivbauten. Züge werden von den Schienen gerissen. Totale Entrindung stehen gebliebener Baumstämme.
- T10 (447 \pm 24 km/h) Überwiegend Totalschäden an Massivbauten.
- T11 (496 \pm 24 km/h) Überwiegend Totalschäden an Massivbauten. Unvorstellbare Schäden entstehen.

A.2 Torro-Skala angepasst für Holzgewächse in Mitteleuropa

Nach Hubrig (2001) kann Sturmschaden an Waldbeständen zur Abschätzung der Stärke eines Tornados verwendet werden.

- T0 (76 ± 14 km/h) Einzelne Äste beginnen abzubrechen. Kranke (z.B. Holzfäulen) oder besonders labile Bäume (lange dünne Stämme, hoch angesetzte Krone, geringes, flaches Wurzelwerk) können brechen oder entwurzelt werden (bei Wurzelfäulen und/oder auf labilen, durchnässten Standorten).
- T1 (104 \pm 14 km/h) Äste, auch starke und gesunde brechen vermehrt, insbesondere während der Vegetationszeit, in der Laubbäume belaubt sind. Kranke (z.B. Holzfäulen) oder besonders labile Bäume (lange, dünne Stämme, hoch angesetzte Krone, geringes, flaches Wurzelwerk) brechen häufig oder werden entwurzelt. Bäume mit Wurzelschäden/fäulen oder auf labilen, durchnässten Standorten werden geworfen.
- T2 (135 ± 16 km/h) Zahlreiche Äste, auch starke und gesunde brechen, insbesondere während der Vegetationszeit, in der Laubbäume belaubt sind. Kranke (z.B. Holzfäulen) oder labile Bäume (lange, dünne Stämme, hoch angesetzte Krone, geringes, flaches Wurzelwerk) werden nahezu immer gebrochen oder entwurzelt. Bäume mit Wurzelschäden, -fäulen oder auf labilen, durchnässten Standorten werden nahezu vollständig geworfen. Auch weniger fest verwurzelte, gesunde Bäume werden entwurzelt bei witterungsbedingt durchweichten Böden bestimmter, nicht unbedingt labiler Standorte (z.B. mächtige Lößlehme). Art- und rassenspezifisch weniger stabile Bäume, z.B. breitkronige Flachlandfichten werden geworfen oder bereits gebrochen, während schlanke Berglandfichten oder gesunde Eiche stehen bleiben. Bäume in Waldbeständen, die aufgrund der Bestandesstruktur keine gute Einzelbaumstabilität aufweisen (zu enge Verbände, unterlassene Pflegeeingriffe, insbesondere Nadelhölzer in Monokulturen) werden meistens geworfen oder gebrochen. Während der Zeit des Saftstromes treten an Bäumen mit stabiler Verwurzelung, aber labileren Stämmen häufiger Druckschäden auf.
- T3 (167 ± 16 km/h) Zahlreiche Äste, auch starke und gesunde brechen; auch außerhalb der Vegetationszeit, in der Laubbäume unbelaubt sind. Auch stabile und gesunde Bäume werden vermehrt geworfen oder bereits gebrochen. Während der Zeit des Saftstromes sind Druckschäden relativ häufig.

- T4 (202 ± 18 km/h) Auch stabile Bäume/Waldbestände werden fast immer/vollständig geworfen oder gebrochen. Großkronige Bäume werden, sofern besonders stabil verwurzelt, meistens gebrochen. Sofern Bäume noch stehen bleiben, wird die überwiegende Anzahl der Äste, auch die in unbelaubtem Zustand, abgerissen. Der Anteil an Druckschäden geht zugunsten gebrochener Bäume stark zurück.
- T5 (238 \pm 18 km/h) Auch stabilste Bäume oder Sträucher, wie Randbäume, winderprobte Hecken, Büsche und Feldgehölze werden fast zu 100% geschädigt; entweder durch entwurzeln (herausreißen), Stamm- oder Kronenbruch oder durch abreißen der überwiegenden Zahl der Äste, insbesondere fast allen Feinreisigs.
- T
6 (275 \pm 20 km/h) Kein heimisches Holzgewächs übersteht falls der Stamm
stehen bleibt solch einen Sturm ohne schwerste Schäden.
- T7 $(315 \pm 20 \text{ km/h}))$ oder T8 $(356 \pm 22 \text{ km/h})$ Beginnende Entrindung stehenbleibender Baumstämme oder Baumteile (bedingt durch mit hoher Geschwindigkeit umherfliegende Kleintrümmer wie Sand u. ähnliches).
- T9 (400 \pm 22 km/h) Totale Entrindung stehenbleibender Baumstämme oder Baumteile.

A.3 Saffir-Simpson Skala

The Saffir-Simpson Hurricane Scale is a 1-5 rating based on the hurricane's present intensity. This is used to give an estimate of the potential property damage and flooding expected along the coast from a hurricane landfall. Wind speed is the determining factor in the scale, as storm surge values are highly dependent on the slope of the continental shelf and the shape of the coastline, in the landfall region. Note that all winds are using the U.S. 1-minute average (http://www.nhc.noaa.gov/aboutsshs.shtml).

- Category One Hurricane: Winds 74-95 mph (64-82 kt or 119-153 km/hr). Storm surge generally 4-5 ft above normal. No real damage to building structures. Damage primarily to unanchored mobile homes, shrubbery, and trees. Some damage to poorly constructed signs.
- Category Two Hurricane: Winds 96-110 mph (83-95 kt or 154-177 km/hr). Storm surge generally 6-8 feet above normal. Some roofing material, door, and window damage of buildings. Considerable damage to shrubbery and trees with some trees blown down. Considerable damage to mobile homes, poorly constructed signs, and piers. Coastal and low-lying escape routes flood 2-4 hours before arrival of the hurricane center. Small craft in unprotected anchorages break moorings.
- Category Three Hurricane: Winds 111-130 mph (96-113 kt or 178-209 km/hr). Storm surge generally 9-12 ft above normal. Some structural damage to small residences and utility buildings with a minor amount of curtainwall failures. Damage to shrubbery and trees with foliage blown off trees and large trees blown down. Mobile homes and poorly constructed signs are destroyed. Low-lying escape routes are cut by rising water 3-5 hours before arrival of the center of the hurricane. Flooding near the coast destroys smaller structures with larger structures damaged by battering from floating debris. Terrain continuously lower than 5 ft above mean sea level may be flooded inland 8 miles (13 km) or more. Evacuation of low-lying residences with several blocks of the shoreline may be required.

138 A. Schadensskalen

- Category Four Hurricane: Winds 131-155 mph (114-135 kt or 210-249 km/hr). Storm surge generally 13-18 ft above normal. More extensive curtainwall failures with some complete roof structure failures on small residences. Shrubs, trees, and all signs are blown down. Complete destruction of mobile homes. Extensive damage to doors and windows. Low-lying escape routes may be cut by rising water 3-5 hours before arrival of the center of the hurricane. Major damage to lower floors of structures near the shore. Terrain lower than 10 ft above sea level may be flooded requiring massive evacuation of residential areas as far inland as 6 miles (10 km).
- Category Five Hurricane: Winds greater than 155 mph (135 kt or 249 km/hr). Storm surge generally greater than 18 ft above normal. Complete roof failure on many residences and industrial buildings. Some complete building failures with small utility buildings blown over or away. All shrubs, trees, and signs blown down. Complete destruction of mobile homes. Severe and extensive window and door damage. Low-lying escape routes are cut by rising water 3-5 hours before arrival of the center of the hurricane. Major damage to lower floors of all structures located less than 15 ft above sea level and within 500 yards of the shoreline. Massive evacuation of residential areas on low ground within 5-10 miles (8-16 km) of the shoreline may be required.

Tab. B.1: Schadensrisiko für alle Gemeinden in Baden-Württemberg für die jährliche Überschreitenswahrscheinlichkeit p = 0,02. (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude). Es sind zusätzlich die Anzahl und der Gesamtwert der Gebäude innerhalb der Gemeinde angegeben. Lesehilfe: Die angegebene Summe wird mit der Wahrscheinlichkeit von 2% innerhalb eines Jahres erreicht oder überschritten.

	Anzahl	Gesamt-	Mode	ell 1	Mode	ell 2	Mode	ell 3
Gemeindename	Gebäude	wert	S	G	S	G	S	G
Aach	614	91.6	0.016	30	0.0216	40	0.0233	39
Aalen	16983	3862.7	0.9531	1061	0.8159	1013	0.9821	1053
Abstatt	1228	223.7	0.012	23	0.0735	103	0.0569	77
Abtsgmünd	2209	370.2	0.0972	145	0.0765	130	0.0942	137
Achern	5802	1213	0.0802	127	0.3744	464	0.3085	360
Achstetten	1142	151.9	0.0623	105	0.0273	60	0.0387	71
Adelberg	679	95.1	0.0218	40	0.0207	42	0.0242	43
Adelmannsfelden	558	91.8	0.0158	27	0.0218	37	0.0234	35
Adelsheim	1579	289.9	0.0565	83	0.0657	100	0.0738	98
Affalterbach	1349	207.4	0.0469	79	0.0452	83	0.0528	84
Aglasterhausen	1437	241.7	0.0266	48	0.0653	104	0.0615	90
Ahorn	844	123.1	0.0588	87	0.0209	43	0.0313	53
Aichelberg	392	59	0.0438	56	0.0086	18	0.0151	25
Aichhalden	1274	191.2	0.3715	348	0.0184	41	0.0487	79
Aichstetten	882	133.7	0.0467	72	0.0252	49	0.034	55
Aichtal	2781	476.9	0.0911	143	0.1088	177	0.1213	173
Aichwald	2099	381.9	0.0593	91	0.0933	140	0.0971	131
Aidlingen	2460	437.3	0.17	218	0.0789	131	0.1112	153
Aitrach	852	127.6	0.0116	25	0.0363	64	0.0325	53
Albbruck	1771	348	0.0849	110	0.0739	106	0.0885	110
Albershausen	1159	188.8	0.0529	81	0.0381	67	0.0481	72
Albstadt	14326	2499.2	0.7872	1078	0.4888	804	0.6355	888
Aldingen	2043	349.4	0.0836	125	0.0746	123	0.0889	127
Alfdorf	2206	335.4	0.0657	116	0.0758	140	0.0853	137
Allensbach	1583	346.5	0.2097	194	0.054	75	0.0881	99
Allmendingen	1382	216	0.0306	56	0.0538	94	0.055	86
Allmersbach im Tal	1292	235.2	0.0335	53	0.0585	88	0.0598	81
Alpirsbach	2078	371.5	0.213	245	0.0591	100	0.0945	129
Altbach	1172	330	0.0359	39	0.0895	85	0.084	73
Altdorf	1139	214.8	0.0921	109	0.0379	59	0.0547	71
Altenriet	528	87.5	0.0104	19	0.0232	38	0.0223	33
Altensteig	2892	492.5	0.3589	407	0.0707	129	0.1253	180
Altheim	198	28.6	0.0172	25	0.0045	10	0.0073	13
Altheim	810	133.3	0.0332	51	0.0281	49	0.0339	51
Altheim(Alb)	621	92.7	0.0529	73	0.0148	30	0.0236	39
Althengstett	2151	367.8	0.3632	374	0.0476	87	0.0936	134
Althütte	1337	222.3	0.0923	124	0.0397	70	0.0566	83
Altlussheim	1458	262	0.0214	38	0.0769	112	0.0667	91
Altshausen	1087	190.4	0.0679	91	0.0356	59	0.0485	68
Ammerbuch	2969	496.1	0.1834	253	0.0914	160	0.1262	184
Amstetten	1201	184.7	0.0835	119	0.032	62	0.047	75
Amtzell	1122	165.4	0.0327	60	0.0373	71	0.0421	70
				Fo	rtsetzung	auf der	nächster	ı Seite

	Anzahl	Gesamt-	Mode	ll 1	Mode	ll 2	Mode	ll 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G
Angelbachtal	1472	249.2	0.0243	45	0.0692	109	0.0634	92
Appenweier	2496	455.3	0.0368	64	0.1339	192	0.1158	155
Argenbühl	1816	249.5	0.0512	99	0.0554	114	0.0635	113
Aspach	2260	378.2	0.053	91	0.0945	154	0.0962	141
Asperg	2732	538.3	0.1785	214	0.1034	152	0.1369	170
Assamstadt	638	96.2	0.0251	42	0.02	38	0.0245	40
Asselfingen	323	46.1	0.0193	31	0.0083	17	0.0118	21
Attenweiler	621	91.3	0.0578	79	0.014	29	0.0233	39
Au	315	51.4	0.0151	23	0.0102	18	0.0131	20
Au am Rhein	1010	158.2	0.0204	38	0.0407	71	0.0403	63
Aünwald	1957	341.4	0.0531	85	0.0834	131	0.0869	122
Auggen	631	112.1	0.0115	20	0.0306	47	0.0286	40
Aulendorf	2532	460.1	0.0818	123	0.1076	164	0.117	157
Backnang	7296	1826.8	0.2987	330	0.4391	481	0.4645	453
Bad Bellingen	912	174.1	0.0255	38	0.0429	62	0.0443	57
Bad Buchau	1161	221.9	0.0481	66	0.049	72	0.0565	72
Bad Ditzenbach	1106	189.6	0.1162	137	0.0294	52	0.0483	69
Bad Dürrheim	2704	572.3	0.3041	303	0.0925	132	0.1456	168
Bad Friedrichshall	4068	929.3	0.1056	138	0.2485	291	0.2363	253
Bad Herrenalb	2053	464.3	0.2623	239	0.0743	99	0.1181	128
Bad Krozingen	3009	693	0.0469	67	0.2124	240	0.1762	187
Bad Liebenzell	2378	572.5	0.2413	223	0.1016	124	0.1456	148
Bad Mergentheim	5649	1305	0.4188	432	0.2536	316	0.3318	351
Bad Peterstal-Griesbach	713	130.8	0.0337	46	0.0273	43	0.0333	45
Bad Rappenau	5612	1098.9	0.2474	326	0.2395	343	0.2794	348
Bad Rippoldsau-Schapbach	591	100.5	0.0589	71	0.0159	28	0.0256	37
Bad Säckingen	3032	920.1	0.1437	132	0.2244	202	0.234	188
Bad Saulgau	5076	1033.6	0.1701	231	0.248	334	0.2628	315
Bad Schönborn	2979	613.4	0.0341	57	0.1993	247	0.156	185
Bad Schussenried	2416	401.1	0.0538	94	0.1018	167	0.102	150
Bad Teinach-Zavelstein	1008	221.2	0.1467	133	0.0332	47	0.0563	63
Bad Überkingen	1208	235.4	0.3643	285	0.025	42	0.0599	75
Bad Urach	3315	716.4	0.2027	231	0.1437	191	0.1822	206
Bad Waldsee	4757	945.3	0.2282	292	0.2013	286	0.2404	295
Bad Wildbad	2639	585.6	0.3478	319	0.0919	125	0.1489	164
Bad Wimpfen	2066	416	0.0925	119	0.0911	127	0.1058	129
Bad Wurzach	3697	667	0.162	228	0.1417	222	0.1696	230
Baden-Baden	11289	3377.9	0.3658	367	0.9161	815	0.8589	700
Badenweiler	1066	206.9	0.0916	104	0.0361	55	0.0527	67
Bahlingen am Kaiserstuhl	968	154.7	0.0196	36	0.0401	68	0.0394	60
Baienfurt	1727	392.4	0.1018	113	0.0815	102	0.0998	108
Baiersbronn	3743	765.7	0.589	545	0.1091	164	0.1947	232
Baindt	1111	218.8	0.0799	94	0.0406	60	0.0557	69
Balgheim	353	49	0.0103	20	0.0109	22	0.0125	22
Balingen	9809	1660.4	0.4738	688	0.3319	564	0.4222	608
Ballendorf	187	27.3	0.0101	16	0.0051	11	0.007	12
Ballrechten-Dottingen	696	120.6	0.0547	69	0.0209	36	0.0307	44
Baltmannsweiler	1465	259.7	0.0312	52	0.0683	104	0.0661	91
Balzheim	589	82.5	0.0114	24	0.0208	41	0.021	37
Bammental	1607	335	0.011	20	0.1235	148	0.0852	100
Bartholomä	851	133.9	0.0421	64	0.0263	48	0.0341	53
Beilstein	1855	337.3	0.0422	68	0.0876	130	0.0858	115
Beimerstetten	719	121.9	0.0793	93	0.0185	34	0.031	45
Bempflingen	971	160.7	0.0545	78	0.0307	54	0.0409	61
Benningen am Neckar	1394	242.2	0.0414	66	0.0575	91	0.0616	87
Berg	1094	159.4	0.016	34	0.0438	81	0.0406	68
Bergatreute	842	150.4	0.0267	41	0.0353	55	0.0383	53
Berghaupten	611	118.1	0.0021	5	0.0508	63	0.0301	38
Berghülen	738	107.7	0.0336	56	0.0212	42	0.0274	46
Berglen	2056	328.5	0.0781	125	0.0704	124	0.0836	128
Berkheim	941	133.9	0.0226	44	0.0319	62	0.0341	59
				Fo	ortsetzung	auf de	r nächsten	Seite

Tab. B.1 – Fortsetzung	(S = Schaden in M	fio. €. $G = Anzahl$	der betroffenen Gebäude)

Tab. D.1 Fortsetzun	$\frac{1}{1}$		C, C = M	12 ann u			ibauuc)	11.9
Gemeindename	Anzahl Gebäude	Gesamt-	Mode S	G III	Mode S	II 2 G	Mode S	G G
Bermatingen	1033	165.3	0.0412	65	0.0349	62	0.0421	65
Bernau im Schwarzwald	911	201.8	0.0858	86	0.0357	48	0.0514	57
Bernstadt	623	100.5	0.0396	$\overline{56}$	0.0181	33	0.0256	39
Besigheim	2943	557.1	0.1563	204	0.1122	170	0.1417	183
Betzenweiler	256	34.1	0.0158	26	0.0059	13	0.0087	16
Betzweiler-Wälde	531	83	0.0495	65	0.013	26	0.0212	33
Beuren	1150	184.3	0.192	208	0.0233	46	0.0469	72
Beuron	316	46.5	0.0232	34	0.0078	16	0.0119	20
Biberach	890	169	0.0136	23	0.0499	69	0.043	56
Biberach an der Riss	7811	1910.5	0.6604	632	0.3613	428	0.4858	485
Bietigheim	1603	274.3	0.0347	60	0.071	112	0.0698	100
Bietigheim-Bissingen	7902	1965.7	0.3569	389	0.4563	508	0.4998	490
Billigheim	1939	291.5	0.053	96 19	0.0677	125	0.0742	121
Binau	446	78.8	0.0067	12	0.0229	34	0.0201	28
Bingen	917	159.9	0.0427	61	0.0329	54	0.0407	57
Binzen	(31	125.0	0.024	38 91	0.0287	41	0.032	40
Birkonfold	090 2807	91 594-1	0.0100	21	0.0243 0.078	40 129	0.0232 0.1222	180
Bischweier	2091 751	137.0	0.5528	- 504 - 91	0.070	102 57	0.1000 0.0351	100 47
Bisingen	2003	451 7	0.012 0.1011	$\frac{21}{282}$	0.0000	156	0 1149	186
Bissingen an der Teck	1097	169.3	0.0915	125	0.0272	54	0.0431	68
Bitz	1384	193.4	0.0564	99	0.0384	80	0.0492	86
Blaubeuren	3330	648	0.181	230	0.1307	193	0.1648	207
Blaufelden	1703	270.8	0.1761	220	0.041	79	0.0689	106
Blaustein	4063	831.9	0.2441	292	0.1644	232	0.2116	252
Blumberg	2879	484.6	0.1771	244	0.0897	156	0.1233	179
Bodelshausen	1580	281.1	0.087	118	0.0554	90	0.0715	98
Bodman-Ludwigshafen	1165	228.2	0.0551	72	0.0486	70	0.0581	73
Bodnegg	891	134.2	0.029	51	0.0297	55	0.0342	56
Böbingen an der Rems	1142	183.6	0.0644	94	0.0346	63	0.0467	71
Böblingen	7891	2467.6	0.9688	705	0.4433	417	0.6274	489
Böhmenkirch	1487	210.5	0.1376	193	0.0318	69	0.0536	93
Bonnigheim	1924	298	0.0658	110	0.0654	118	0.0758	120
Bortlingen	543 1019	((.(155.9	0.0139	27	0.0182	30 49	0.0198	34 62
Böttingen	576	100.0 84.4	0.1452 0.0417	61	0.0203 0.0141	42 20	0.0395 0.0215	26
Bötzingen	1062	264.4 264.1	0.0417	30	0.0141	29 75	0.0213 0.0672	50 66
Boll	1370	204.1 287 9	0.0551 0.152	153	0.0000 0.0467	67	0.0012 0.0732	85
Bondorf	1321	226.8	0.102 0.1876	203	0.0314	57	0.0102 0.0577	82
Bonndorf im Schwarzwald	1610	320.1	0.2608	$\frac{200}{245}$	0.0446	70	0.0814	100
Bopfingen	3999	667.1	0.104	174	0.1628	267	0.1697	248
Boxberg	2304	378.3	0.0791	128	0.0834	143	0.0962	143
Brackenheim	4275	762.3	0.2027	284	0.1567	251	0.1939	265
Bräunlingen	1673	271.2	0.1406	184	0.0443	82	0.069	104
Braunsbach	836	127	0.0506	76	0.0227	44	0.0323	52
Breisach am Rhein	2848	710.2	0.0649	81	0.2012	214	0.1806	177
Bretten	6334	1226	0.2667	358	0.2703	390	0.3118	393
Bretzfeld	3557	568.7	0.1171	194	0.1261	222	0.1446	221
Brigachtal	1281	231.3	0.2503	237	0.0288	51	0.0589	80
Bruchsal	9966	2270	0.2961	378	0.5811	690 047	0.5772	018
Drulli Bubshoim	2937 516	108.1 78 G	0.03/2	ට ර 20	0.2330 0.0167	247 21	0.1001	182
Buchen(Odenweld)	510	10.0 078 0	0.0195	34 350	0.0107	286 286	0.02	ี่32 211
Buchheim	250	32.4	0.200 0.0167	28	0.1950 0.0054	<u>⊿</u> 30 13	0.2400	16
Bühl	7006	15187	0.1823	248	0.3994	495	0.3862	435
Bühlertal	2212	416.2	0.0653	97	0.1014	148	0.1059	138
Bühlertann	917	161	0.04	58	0.034	55	0.041	57
Bühlerzell	675	108.4	0.0432	61	0.0194	36	0.0276	42
Büsingen am Hochrhein	414	93.2	0.0158	$\overline{20}$	0.0222	$\overline{28}$	0.0237	26
Buggingen	1021	161.4	0.0105	22	0.0502	83	0.0411	64
Burgrieden	1137	162.7	0.0469	81	0.0324	66	0.0414	71
				Fe	ortsetzung	auf de	r nächsten	Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

	Anzahl	Gesamt-	Mode	ell 1	Mode	ll 2	Mode	ll 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	S	G
Burgstetten	930	165.1	0.0433	61	0.0342	55	0.042	58
Burladingen	4695	645.3	0.2204	376	0.1226	258	0.1641	291
Calw	5417	1260.8	0.3664	386	0.2501	310	0.3206	336
Cleebronn	855	150.6	0.0528	70	0.0284	47	0.0383	53
Crailsheim	7641	1733.3	0.4782	522	0.3512	443	0.4407	474
Creglingen	1673	253.6	0.0977	148	0.046	89	0.0645	104
Daisendorf	446	71.2	0.0386	51	0.0115	22	0.0182	28
Dauchingen	906	177.4	0.0855	94	0.0299	46	0.0452	57
Deckenpfronn	724	120.7	0.0909	104	0.0174	32	0.0307	45
Deggingen	1626	264	0.0878	128	0.0507	90	0.0672	101
Deilingen	703	104.8	0.1196	135	0.0128	28	0.0267	44
Deisslingen	1885	307.7	0.1435	191	0.0526	96	0.0783	117
Deizisau	1531	283.4	0.0359	57	0.0734	107	0.0721	95
Denkendorf	2194	479.1	0.1184	138	0.1012	131	0.1219	136
Denkingen	749	111.8	0.0346	56	0.0221	43	0.0285	47
Denzlingen	2218	757.3	0.0755	68	0.2085	163	0.1926	138
Dettenhausen	1500	266.2	0.0667	95	0.056	90	0.0677	93
Dettenheim	2143	323.7	0.0318	65	0.0896	158	0.0824	133
Dettighofen	451	73.9	0.0234	35	0.0145	26	0.0188	28
Dettingen an der Erms	2566	433.9	0.0634	107	0.1068	173	0.1104	160
Dettingen an der Iller	735	109.8	0.0266	46	0.0234	45	0.028	46
Dettingen unter Teck	1407	257.9	0.0724	98	0.052	82	0.0656	88
Dielheim	2613	444.1	0.0533	93	0.1169	185	0.113	162
Dietenheim	1682	291.9	0.0859	121	0.0577	96	0.0743	105
Dietingen	1363	207.9	0.1046	147	0.0345	68	0.0529	85
Dischingen	1553	245.2	0.0416	73	0.0583	102	0.0624	97
Ditzingen	5353	1261.2	0.5703	530	0.2179	273	0.3207	332
Dobel	658	149.3	0.2956	182	0.0142	21	0.038	41
Dörzbach	899	129.5	0.0467	76	0.0241	49	0.033	56
Dogern	633	130.7	0.0119	18	0.0372	48	0.0333	40
Donaüschingen	5238	995.4	0.3649	444	0.184	283	0.2531	325
Donzdorf	3094	494.9	0.1297	203	0.1023	182	0.1259	192
Dormettingen	375	50.5	0.0358	52	0.0074	17	0.0129	24
Dornhan	2077	320.8	0.3172	361	0.0415	84	0.0816	129
Dornstadt	2423	465.6	0.2962	308	0.0711	112	0.1184	151
Dornstetten	1784	366	0.8283	536	0.033	54	0.0931	111
Dossenheim	2319	702.8	0.0171	22	0.2806	225	0.1787	144
Dotternhausen	584	81.9	0.092	111	0.0101	23	0.0209	37
Dürbheim	567	84.8	0.048	67	0.0136	28	0.0216	36
Dürmentingen	850	130.2	0.0382	61	0.0258	49	0.0332	53
Dürnau	610	95.6	0.0517	70	0.0154	30	0.0244	38
Dunningen	1779	291.4	0.2229	258	0.0417	78	0.0741	111
Durbach	1134	195	0.0126	25	0.0607	92	0.0496	71
Durchhausen	298	45.7	0.0153	24	0.0088	17	0.0117	19
Durlangen	791	136.7	0.077	92	0.0219	38	0.0348	50
Durmersheim	2568	530.4	0.0736	103	0.133	176	0.1349	160
Dusslingen	1426	246.2	0.0632	92	0.0513	85	0.0626	89
Ebenweiler	324	44.7	0.0114	21	0.0094	20	0.0114	21
Eberbach	3971	823.2	0.1168	162	0.2047	270	0.2093	247
Eberdingen	1796	310.7	0.1822	215	0.049	86	0.079	112
Eberhardzell	1255	186.3	0.0435	75	0.0402	76	0.0474	78
Ebersbach an der Fils	4080	749	0.193	264	0.1558	241	0.1905	253
Ebersbach-Musbach	537	74	0.0296	49	0.0132	29	0.0189	34
Eberstadt	975	157.8	0.0274	47	0.0372	64	0.0402	61
Ebhausen	1275	199.4	0.0826	118	0.0356	67	0.0507	80
Ebringen	645	105.6	0.0223	36	0.0232	40	0.0269	40
Edingen-Neckarhausen	3478	734.1	0.0166	32	0.2949	340	0.1867	216
Efringen-Kirchen	2376	374.2	0.051	94	0.0944	163	0.0952	148
Egenhausen	563	89.1	0.0507	66	0.0143	27	0.0227	35
Eggenstein-Leopoldshafen	3691	887	0.0946	120	0.2384	267	0.2256	229
Eggingen	468	80.4	0.0176	27	0.0178	29	0.0205	30
				Fo	ortsetzung	auf der	r nächsten	Seite

Tab. B.1 – For	rtsetzung ($S = Sch$	aden in Mio.	€. G = Anz	ahl der bet	roffenen Gebäude)

Cerneindename Gebäude souten 1 souten 1 souten 1 souten 1 souten 3 Elningen Elningen 16557 1233 0.3529 401 0.2407 377 0.314 447 Elningen Elninskrichen 1546 306.6 0.026 42 0.0889 118 0.078 96 Einschlüngen 1510 103.4 0.0137 24 0.0263 32 Einschlüngen 11070 155.8 0.0122 3 0.0135 28 0.0263 32 Eisenbach(Hochsehwarzwahl) 686 105.8 1.012 1.0278 37 0.0317 24 0.0243 72 0.0263 32 0.0376 73 1.03 1.04 1.042 0.0243 30 0.0477 53 51 55 51 53 0.012 24 0.0247 353 126 0.013 31 0.0107 126 0.013 31 0.0177 126 0.033 110 0.0171 120 0.	Tab. D.1 Tortsetzung	$\int (D = D chland)$	Casamat	C, G = AI	12.0111 0	Mada	11.0	Mode	.11.9
Ethinggen (Domai) 6557 1235 0.3529 461 0.2467 377 0.314 407 Ehringken 1546 306.6 0.026 42 0.0589 18 0.078 96 Eirdstetton am Kaiserstuhl 789 140 0.0137 24 0.0389 50 0.0356 49 Eigelingen 1070 155.8 0.0137 24 0.0389 57 0.0263 32 Eisenbachtgen 1070 155.8 0.0152 28 0.0293 32 0.0233 30 0.0433 79 0.0237 76 153 10.0251 78 0.0233 28 0.0477 55 10.0390 66 0.0376 57 10.251 78 0.0424 31 10.051 78 0.0424 32 0.0451 36 0.0477 55 11 10.077 126 0.073 110 0.077 126 0.073 110 10.0761 126 0.0733 110 110 <	Gemeindename	Gebäude	Gesamt- wert	S	G	S	II Z G	S	G G
Ehmingen 1655 226.1 0.1444 162 0.0688 85 0.088 118 0.078 96 Eichsterten am Kaiserstuhl 179 140 0.0137 24 0.0389 150 0.0337 67 Eineldingen 107 155.8 0.0132 33 0.0135 23 0.0233 32 0.0233 32 0.0233 32 0.0233 32 0.0233 32 0.0233 32 0.0233 32 0.0243 38 0.0477 55 Elchenderm-Hingen 913 147.7 0.0142 56 0.0136 24 0.0214 31 16.75 Elchenderg 1042 1002. 0.0133 31 0.0531 78 0.0446 56 0.0136 24 0.0214 65 110 111 10.0075 110 112 10.0751 110 0.0753 110 Ellewaler 1764 235.9 0.0135 24 0.0461 13 0.0492 16. 0.0145	Ehingen(Donau)	6557	1235	0.3529	461	0.2467	377	0.314	407
Ehrenkischen 1546 306.6 0.026 42 0.0389 118 0.078 96 Eichstetten ma Kaiserstuhl 789 140 0.0137 24 0.0383 79 0.037 67 Einschlugen 510 103.4 0.0111 17 0.0278 32 Eisenhach (Hochschwarzwald) 686 105.8 0.0192 123 0.0135 28 0.0247 75 Eisingen 913 147.7 0.0164 31 0.0396 66 0.0376 45 Elkhesheim-Illingen 913 147.7 0.0164 31 0.0391 67 0.2735 381 Elkhesheim-Illingen 142 1072 0.0183 31 0.0171 110 0.026 120 Elkral 1033 2.247 367 0.365 314 Elkral 1033 2.247 6.0376 310 Entral 133 2.44 30.39 0.0162 210 0.0164 119	Ehningen	1655	326.1	0.1444	162	0.0568	85	0.083	103
Elchsterten am Kaiserstuhl 780 140 0.0132 24 0.0389 59 0.0366 49 Eimeldingen 170 155.8 0.0152 33 0.0433 79 0.0376 67 Eisenbach(Hochschwarzwald) 686 105.8 0.0192 123 0.0135 28 0.0263 38 0.0477 55 Eisingen/Fis 4266 978 0.1941 210 0.0339 66 0.0376 475 Elchesheim-Illingen 913 147.7 0.0161 31 0.0339 66 0.0474 55 Ellhofon 1042 190.2 0.0183 31 0.0715 126 0.0735 110 Elzach 1768 288.1 0.0344 10 0.0464 43 0.0424 0.044 43 0.0424 0.0641 39 0.0324 14 0.044 91 Elzach 1758 0.0311 124 0.0664 43 0.0443 0.044 79	Ehrenkirchen	1546	306.6	0.026	42	0.0889	118	0.078	96
Eigeltingen 1070 155.8 0.0122 33 0.0433 79 0.0287 63 Eisenbach(Hochschwarzwald) 686 105.8 0.0102 123 0.0135 28 0.0263 32 Eisengen 873 187.6 0.1508 132 0.0263 38 0.0477 55 Elsingen/Fis 4266 978 0.1414 206 0.2199 268 0.2487 265 Elcheshein-Hilmen 113 147.7 0.0164 1 0.033 10.013 78 0.0444 65 Ellhofen 1642 1075.4 0.2647 383 0.2714 161 0.0735 110 Elstal 1933 324.7 0.0711 110 0.0715 119 0.0826 3110 Elstal 1933 324.7 0.0171 19 0.0363 311 Emmedingen 246 35.9 0.0141 19 0.453 397 0.366 311 Emmeding	Eichstetten am Kaiserstuhl	789	140	0.0137	24	0.0389	59	0.0356	49
Einnelach(Hochschwarzwald) 510 103.4 0.0111 17 0.0278 37 0.0263 38 0.0477 55 Eisingen/Fils 4266 978 0.1941 226 0.2199 268 0.2487 285 Elchasheim-Illingen 913 147.7 0.0164 31 0.0390 66 0.0376 57 Ellenberg 488 83.9 0.0462 56 0.0136 24 70.2755 381 Ellach 1076 288.1 0.0334 61 0.0767 126 0.0735 3110 Elzach 1768 288.1 0.034 61 0.0761 130 0.0092 16 Emmerkingen 246 33.9 0.0152 40 0.0064 39 0.0365 14 91 Emmingen-Liptingen 1269 215.5 0.2335 235 0.0264 51 0.0614 92 Endingen am Kaiserstuhl 220 14.48 0.0127 78 0.0811 <td>Eigeltingen</td> <td>1070</td> <td>155.8</td> <td>0.0152</td> <td>33</td> <td>0.0433</td> <td>79</td> <td>0.0397</td> <td>67</td>	Eigeltingen	1070	155.8	0.0152	33	0.0433	79	0.0397	67
Eisenbach (Hochschwarzwald) 686 105.8 0.1002 123 0.0135 28 0.0269 43 Eisingen (Fils 4266 978 0.1944 226 0.2199 268 0.2487 265 Elcheshein-Hillingen 913 147.7 0.0164 31 0.0399 66 0.0376 57 Ellenberg 480 88.9 0.0462 56 0.0136 24 0.0214 31 Ellbofen 1042 190.2 0.0183 31 0.0531 78 0.0484 65 Ellwangen (Jagst) 6142 1075.4 0.2647 383 0.2274 367 0.2735 181 Elztah 1933 324.7 0.0711 110 0.0715 119 0.0826 120 Emerkingen 246 35.9 0.0152 24 0.0064 13 0.0929 16 Emmendingen 5052 151.9.8 0.1094 119 0.4563 397 0.3865 314 Emmingen-Liptingen 1269 215.5 0.0335 250 0.0654 397 0.3865 314 Emmingen-Liptingen 1269 215.5 0.0335 250 0.0654 50 0.0614 91 Emgfnigen m 269 215.5 0.0353 253 0.0268 50 0.0614 91 Engfnigen m 269 215.5 0.0353 253 0.0268 50 0.0614 91 Engfnigen m 269 215.5 0.0354 24 0.0061 138 0.0611 92 Engelsbrand 1479 240.1 0.3894 360 0.0249 76 0.0614 91 Engleingen am Kaiserstuhl 2220 414.8 0.052 98 0.101 148 0.055 138 Engelsbrand 1479 240.1 0.3894 360 0.0249 51 0.0611 92 Engen 1604 250 0.1536 199 0.0387 75 0.0636 100 Eningen unter Achalm 2798 548.2 0.2497 279 0.0045 143 0.128 167 Epfendorf 1069 171.3 0.0957 124 0.0276 52 0.0436 67 Eppendorf 1069 171.3 0.0957 124 0.0276 52 0.0436 57 8 Erikenbrechtsweiler 684 111.3 0.1321 130 0.2479 342 Erbach 3431 Ef3.6 0.1905 281 0.1023 188 0.1383 213 Erbache 520 4364 50 0.0236 42 0.0237 38 Erikenbrechtsweiler 614 1115 203.4 0.0255 130 0.033 277 0.0283 43 Erikenbrechtsweiler 614 115 203.4 0.0255 130 0.033 277 0.0283 43 Erikenbrechtsweiler 614 1113 200.8 0.0435 77 0.0529 80 0.0325 51 Erikenbrechtsweiler 614 111.3 0.0321 135 0.0133 105 0.0132 58 Erikenbrechtsweiler 613 97.1 0.0533 58 0.0138 220 0.0261 42 Erikenbrach 527 86.4 0.0025 43 0.0157 30 0.0326 45 Erikenbrach 527 86.4 0.0025 51 0.0388 4105 Erikenbrach 521 81.2 0.0135 58 0.0387 63 Erikenbrach 521 81.2 0.0135 50 0.0383 420 0.0488 105 Erikenb	Eimeldingen	510	103.4	0.0111	17	0.0278	37	0.0263	32
Eisingen 873 187.6 0.1508 132 0.0263 38 0.0447 55 Elchesheim-Illingen 913 147.7 0.0164 31 0.0399 66 0.0376 57 Elchesheim-Illingen 193 0.0462 56 0.0136 24 0.0214 31 Ellwongen(Jagst) 6142 1075.4 0.2647 383 0.2274 367 0.2733 181 Elzad 1078 228.1 0.0334 61 0.0767 126 0.0733 110 Extral 1033 324.7 0.0711 110 0.0751 19 0.0865 120 Emerkingen 246 35.9 0.1041 113 0.4064 191 Endingen am Kaiserstuhl 220 414.8 0.1053 285 0.101 148 0.1051 138 Endingen unter Achalm 2798 548.2 0.247 70 0.0614 91 77.5 0.0636 100 Endingen	Eisenbach(Hochschwarzwald)	686	105.8	0.1092	123	0.0135	28	0.0269	43
Eislingen/Fils 4266 978 0.1941 226 0.2199 268 0.2487 265 Ellenberg 489 83.9 0.0462 56 0.0136 24 0.0214 31 Ellenberg 1442 190.2 0.0183 31 0.0531 78 0.0444 466 Ellwangen(Jagst) 6142 1075.4 0.2647 383 0.2274 367 0.3735 381 Elzach 0.033 324.7 0.0711 110 0.0661 13 0.0092 16 Emmendingen 246 35.9 0.0164 143 0.0422 76 0.0614 91 Empfingen 1266 21.14 0.1064 143 0.0422 76 0.0614 79 Endigen am Kaiserstuhl 2220 414.8 0.0652 98 0.1014 48 0.0536 100 Engelsnand 1479 240.0 0.336 0.06034 0.0333 24 0.2034 50 <td< td=""><td>Eisingen</td><td>873</td><td>187.6</td><td>0.1508</td><td>132</td><td>0.0263</td><td>38</td><td>0.0477</td><td>55</td></td<>	Eisingen	873	187.6	0.1508	132	0.0263	38	0.0477	55
Elchesheim-Illingen 913 147.7 0.0164 31 0.0339 66 0.0376 57 Ellenberg 489 85.39 0.0462 56 0.0136 24 0.0214 31 Ellbangen(Jagst) 6142 1075.4 0.2647 383 0.2274 367 0.2735 381 Elzach 1933 324.7 0.0334 61 0.0767 126 0.0664 13 0.0826 120 Emerkingen 246 35.9 0.0152 24 0.0604 13 0.0092 16 Emmingen-Liptingen 1466 241.4 0.1064 110 0.0548 70 0.0548 70 Endingon am Kaiserstuhl 220 414.8 0.0652 98 0.101 148 0.1055 138 Engen 2604 4.44.0 0.172 70 0.0914 158 0.112 24 Endingon am Kaiserstuhl 279 0.04914 158 0.112 25 0.6333<	Eislingen/Fils	4266	978	0.1941	226	0.2199	268	0.2487	265
Ellenberg 489 83.9 0.0462 56 0.0136 24 0.0214 31 Ellborgn 1075.4 0.2647 383 0.0531 78 0.0444 65 Ellvanch 1768 288.1 0.0334 61 0.0767 126 0.0733 110 Elztal 1933 324.7 0.0112 24 0.0064 13 0.0092 16 Emmendingen 246 35.9 0.0152 24 0.0064 13 0.0092 16 Empfingen 1269 215.5 0.2335 235 0.0268 50 0.0548 79 Endingen am Kaiserstuhl 2220 414.8 0.0652 98 0.101 148 0.1036 100 130 0.1366 100 Engen 2689 443.4 0.1172 178 0.0945 143 0.1394 174 Epfendorf 1069 17.13 0.0957 124 0.0276 52 0.0466 67 Epfendorf 1069 17.13 0.0342 54 0.0231	Elchesheim-Illingen	913	147.7	0.0164	31	0.0399	66	0.0376	57
Ellhoden 1042 190.2 0.0183 31 0.0051 7.8 0.0243 67 0.2733 381 Elzach 1768 288.1 0.0334 61 0.0767 126 0.0733 110 Elzath 1933 324.7 0.0711 110 0.0715 119 0.6826 120 Emmerkingen 246 35.9 0.0152 24 0.0064 13 0.0092 16 Emmendingen 1269 215.5 0.2335 235 0.0248 50 0.0548 91 Endingen am Kaiserstuhl 220 414.8 0.0624 80 0.011 48 0.1055 138 Engen 268 443.4 0.117 78 0.0944 158 0.1128 127 Engen 1604 250 0.1364 130 0.333 254 0.0246 66 Epfendorf 1069 171.3 0.0367 143 0.1391 310 0.0341 14	Ellenberg	489	83.9	0.0462	56	0.0136	24	0.0214	31
Ellwangen (Jagst) 6142 1075.4 0.2047 383 0.2274 367 0.2735 110 Ellzach 1768 2881 0.0334 61 0.0767 126 0.0753 110 Ellzatal 1933 324.7 0.0711 110 0.0715 119 0.0826 120 Emerkingen 246 35.9 0.0152 24 0.0064 13 0.0092 16 Emmendingen 1466 241.4 0.1064 143 0.0422 76 0.0614 91 Empingen 1269 215.5 0.235 235 0.0268 50 0.0548 79 Endingen am Kaiserstuhl 2220 414.8 0.0652 98 0.101 148 0.1055 138 Engelsbrand 1479 240.1 0.3894 360 0.0249 51 0.0651 132 Engen 2689 443.4 0.1172 178 0.0914 158 0.1128 167 Engengen 1604 250 0.1536 199 0.0387 75 0.0636 100 Enigen unter Achalm 2798 548.2 0.2497 279 0.0945 143 0.0394 174 Epfenbach 806 127.2 0.0342 54 0.0261 48 0.0324 56 Eppenderf 1069 171.3 0.0957 124 0.0261 48 0.0324 56 Eppelheim 2710 796.8 0.0234 30 0.303 254 0.2026 168 Eppelheim 5512 975 0.3054 413 0.1191 1310 0.2476 32 Erkabrechtsweiler 684 1113 0.1392 1135 0.0133 27 0.0587 88 Eriskirch 930 201.2 0.0464 57 0.0133 27 0.0518 78 Erikeirch 1069 27.1 0.0366 42 0.0133 27 0.0518 78 Erikeirch 816 125.8 0.0236 42 0.0133 27 0.0518 78 Erikeirch 1146 164.4 0.0265 52 0.0338 77 0.0512 58 Erikeirch 521 877 0.3064 413 0.0133 27 0.0518 78 Erikeirch 1146 164.4 0.0265 52 0.0338 27 0.0512 58 Erikeirch 521 842.0 0.0316 42 0.0289 52 0.032 51 Ericheirchtsweiler 684 1113 0.1321 135 0.0436 127 0.0528 98 Erikeirch 521 84.2 0.0316 42 0.0289 52 0.032 51 Ericheirchtsweiler 1146 164.4 0.0265 52 0.0398 76 0.0418 72 Erikeirch 521 84.2 0.0314 138 0.0133 27 0.0518 38 Erikeirch 521 84.2 0.0316 42 0.0261 42 0.022 33 Eschbach 521 84.2 0.0316 42 0.0289 52 0.032 51 Ericheiren 1767 2703 0.0894 138 0.052 98 0.0688 110 Eschach 521 84.2 0.0316 42 0.0261 42 0.022 33 Eschbronn 782 124.6 0.0127 155 0.0341 58 0.0317 49 Eschach 521 84.2 0.0311 45 0.0156 28 0.0317 49 Eschenbach 513 97.1 0.0513 58 0.0158 25 0.0247 32 Essingen am Neckar 1570 4915 90.6013 564 0.1284 91 0104 1.249 97 Etitlingen 1678 278.5 0.1488 324 0.0448 84 0.056 91 Eschach 513 97.1 0.0513 58 0.0158 25 0.0247 32 Essingen 1678 278.5 0.1488 224 0.0414 77 0.0709 104 Eschenbach 51	Ellhofen	1042	190.2	0.0183	31	0.0531	78	0.0484	65
Lizach168228.1 0.0334 0.0 0.0667 129 0.0733 110 Elztal1933 3247 0.0711 110 0.0715 119 0.0826 120 Emmendingen246 35.9 0.0152 24 0.0643 397 0.3866 314 Emmingen-Liptingen1466 241.4 0.1064 143 0.0423 76 0.0614 91 Endingen am Kaiserstuhl 2220 414.8 0.0652 98 0.011 148 0.1055 138 Engen2689 443.4 0.1172 178 0.0249 51 0.0611 92 Engen1604 250 0.1536 199 0.387 75 0.0636 100 Engen1604 250 0.1536 199 0.387 75 0.0636 100 Engen1109 711.3 0.0945 143 0.034 50 Epfenbach 806 127.2 0.0342 54 0.0226 48 0.324 50 Epfendorf 1069 171.3 0.0937 124 0.0276 32 0.4436 67 Ephenh2710 796.8 0.0344 30 0.33 254 0.2206 188 Erbarbach 3411 546.0 0.0435 72 0.0529 91 0.587 88 Erkabrechtsweiler 684 111.3 0.1321 135 0.0133 27 0.0235 88	Ellwangen(Jagst)	6142	1075.4	0.2647	383	0.2274	367	0.2735	381
Liztat 1933 324.7 0.0111 110 0.0715 119 0.0820 120 Emmendingen 5052 1519.8 0.1094 119 0.4563 314 Emmingen-Liptingen 1466 241.4 0.1064 143 0.0042 76 0.0614 91 Endingen am Kaiserstuhl 220 414.8 0.0652 98 0.01 148 0.1055 138 Engelsbrand 1479 240.1 0.3894 360 0.0249 51 0.0661 92 Engstingen 1664 250 0.1536 199 0.0387 75 0.0663 100 Engendender 1069 171.3 0.0957 124 0.0276 138 0.1324 50 Epfendach 806 127.2 0.3044 30 0.33 254 0.2026 168 Epfendach 1069 171.3 0.362 110 0.123 188 0.138 133 134 Erdm	Elzach	1768	288.1	0.0334	01 110	0.0767	126	0.0733	110
Emmendingen 240 35.9 0.0132 24 0.00432 13 0.0032 10 Emmingen 1265 0.215.8 0.1064 143 0.0423 337 0.03865 314 Emmingen 1269 215.5 0.2335 235 0.0268 50 0.0548 79 Endingen am Kaiserstuhl 2220 14.48 0.0652 98 0.011 148 0.0651 138 Engen 2689 443.4 0.1172 178 0.0914 158 0.1128 167 Engen 2689 443.4 0.1172 178 0.0045 143 0.1334 174 Epfendorf 1069 171.3 0.0757 124 0.0246 58 0.2246 68 Eppelheim 2710 796.8 0.0344 30 0.303 254 0.2026 168 Erbach 3431 543.6 0.1023 188 0.1333 131 543.6 0.1025 133	Eiztai Eusenlein neu	1933	324.7	0.0711	110	0.0715	119	0.0826	120
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Emerkingen	240 5052	30.9 1510 9	0.0152 0.1004	24 110	0.0004 0.4562	13	0.0092	10 214
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Emmingen Lintingen	0002 1766	1019.0 941-4	0.1094	142	0.4000	391 76	0.0000	014 01
LampengenLampengenLampengenLampengenLampengenLampengenLampengenLampengenLampengengenLampengengengengengengengengengengengengenge	Empfingen	1960	241.4 215.5	0.1004 0.2335	140 235	0.0422	50	0.0014	91 70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Endingen am Kaiserstuhl	2220	414.8	0.2355 0.0652	<u>2</u> 55 98	0.0200	148	0.0040	138
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Engelsbrand	1479	240.1	0.3894	360	0.0249	51	0.0611	92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Engen	2689	443.4	0.1172	178	0.0914	158	0.1128	167
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Engstingen	1604	250	0.1536	199	0.0387	75	0.0636	100
Epfenbach806127.2 0.0342 54 0.0261 48 0.0324 50Epfendorf1069171.3 0.0957 124 0.0276 52 0.0436 67Eppelheim2710796.8 0.0234 30 0.303 254 0.2206 168Eppelnen5512975 0.3054 413 0.1911 310 0.2479 342Erbach3431543.6 0.1905 281 0.1023 188 0.1383 213Erdmannhausen1419230.8 0.0435 72 0.0529 91 0.0587 88Erkenbrechtsweiler684111.3 0.1321 135 0.0133 27 0.0283 43Erlenbach1415263.4 0.0236 42 0.0289 52 0.0325 38Erlenbach1146164.4 0.0265 2980 0.067 88Erlenbach52184.2 0.0311 45 0.0156 29 0.0215 33Eschach52184.2 0.0311 45 0.0157 30 0.0296 45Eschebronn715116.4 0.1022 115 0.0157 30 0.0296 45Eschebronn782124.6 0.0127 25 0.0311 74 0.0279 73Eschebronn715116.4 0.1022 115 0.0151 38 0.0376 34Eschebronn725116.4 0.1027 25 0.0247 32 <tr< td=""><td>Eningen unter Achalm</td><td>2798</td><td>548.2</td><td>0.2497</td><td>279</td><td>0.0945</td><td>143</td><td>0.1394</td><td>174</td></tr<>	Eningen unter Achalm	2798	548.2	0.2497	279	0.0945	143	0.1394	174
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Epfenbach	806	127.2	0.0342	54	0.0261	48	0.0324	50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Epfendorf	1069	171.3	0.0957	124	0.0276	52	0.0436	67
Eppingen 5512 975 0.3054 413 0.1911 310 0.2479 342 Erbach 3431 543.6 0.1905 281 0.1023 188 0.1383 213 Erdmannhausen 1419 230.8 0.0435 72 0.0529 91 0.0587 88 Eriskirch 930 201.2 0.4644 55 0.0436 57 0.0512 58 Erkenbach 1415 263.4 0.0236 43 0.073 105 0.067 88 Erlenbach 1415 263.4 0.0236 42 0.0136 28 0.0235 38 Erligheim 816 125.8 0.0236 42 0.0398 76 0.0418 72 Ertingen 1767 270.3 0.0894 138 0.052 98 0.0628 33 0.273 33 Eschbach 521 84.2 0.0311 45 0.0154 29 0.0215 33 Eschabch 513 97.1 0.613 564 1.289 104	Eppelheim	2710	796.8	0.0234	30	0.303	254	0.2026	168
Erbach3431543.6 0.1905 281 0.1023 188 0.1383 213Erdmannhausen1419230.8 0.0435 72 0.0529 91 0.0587 88Eriskirch930201.2 0.0464 55 0.0436 57 0.0512 58Erkenbrechtsweiler684111.3 0.1321 135 0.0133 27 0.0283 43Erlenbach1415263.4 0.0258 43 0.073 105 0.0667 88Erlenboxo60692.1 0.0666 82 0.0136 28 0.0235 38Erligheim816125.8 0.0236 42 0.0289 52 0.032 51Erolzheim1146164.4 0.0265 52 0.0398 76 0.0418 72Ertingen1767270.3 0.0894 138 0.052 98 0.0688 110Eschach52184.2 0.0311 45 0.0156 29 0.0215 33Eschebronn7151164 0.1027 25 0.0341 58 0.0127 32Eschenbach51397.1 0.0513 58 0.0158 26 0.0247 32Essingen am Neckar157014915.9 0.6013 564 1.2849 1104 1.2499 973Ettenheim3015601.8 0.0403 67 0.185 241 0.1531 187Ettlingen82522435.9 0.473 429 $0.$	Eppingen	5512	975	0.3054	413	0.1911	310	0.2479	342
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Erbach	3431	543.6	0.1905	281	0.1023	188	0.1383	213
Eriskirch930201.2 0.0464 55 0.0436 57 0.0512 58Erkenbrechtsweiler 684 111.3 0.1321 135 0.0133 27 0.0283 43Erlenbach1415 263.4 0.0258 43 0.073 105 0.067 88Erlenmoos 606 92.1 0.0636 82 0.0136 28 0.0235 38Erligheim 816 125.8 0.0236 42 0.0289 52 0.032 51Erolzheim 1146 164.4 0.0265 52 0.0398 76 0.0418 72 Ertingen 1767 270.3 0.0894 138 0.052 98 0.0688 110 Eschach 521 84.2 0.0311 45 0.0156 29 0.0215 33 Eschebronn 715 1164 0.1022 115 0.0157 30 0.0296 45 Eschelbronn 782 124.6 0.0127 25 0.0341 58 0.0317 49 Eschenbach 513 97.1 0.0513 564 1.2849 1104 1.2499 973 Estingen am Neckar 15701 4915.9 0.6013 564 1.2849 1104 1.2499 973 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettingen 8252 2435.9 0.473 429 0.5521 522 0.6194 <td>Erdmannhausen</td> <td>1419</td> <td>230.8</td> <td>0.0435</td> <td>72</td> <td>0.0529</td> <td>91</td> <td>0.0587</td> <td>88</td>	Erdmannhausen	1419	230.8	0.0435	72	0.0529	91	0.0587	88
Erkenbrechtsweiler 684 111.3 0.1321 135 0.0133 27 0.0283 43 Erlenbach1415 263.4 0.0258 43 0.073 105 0.067 88 Erlenmoos 606 92.1 0.0666 82 0.0136 28 0.0235 38 Erligheim 816 125.8 0.0236 42 0.0289 52 0.032 51 Erolzheim 1146 164.4 0.0265 52 0.0398 76 0.0418 72 Ertingen 1767 270.3 0.0894 138 0.052 98 0.0688 110 Eschach 521 84.2 0.0311 45 0.0157 30 0.0296 45 Eschbronn 715 116.4 0.1022 113 0.0261 42 0.022 33 Eschelbronn 782 124.6 0.0127 25 0.0341 58 0.0317 49 Eschenbach 513 97.1 0.0513 58 0.0158 25 0.0247 32 Essingen 1678 278.5 0.1883 224 0.0414 77 0.0709 104 Essingen 8052 2435.9 0.473 429 0.521 522 0.6194 512 Eutingen in Gäu 1691 268.7 0.1494 195 0.433 82 0.0684 105 Fahrenbach 1005 151.9 0.226 43 0.0372 68 <	Eriskirch	930	201.2	0.0464	55	0.0436	57	0.0512	58
Erlenbach 1415 263.4 0.0258 43 0.073 105 0.067 88 Erlenbnoos 606 92.1 0.0636 82 0.0136 28 0.0235 38 Erligheim 816 125.8 0.0236 42 0.0289 76 0.0418 72 Ertingen 1767 270.3 0.0894 138 0.052 98 0.0215 33 Eschach 521 84.2 0.0311 45 0.0156 29 0.0215 33 Eschbach 527 86.4 0.0062 13 0.0261 42 0.022 33 Eschebronn 715 116.4 0.1022 115 0.0157 30 0.0296 45 Eschebronn 782 124.6 0.0127 25 0.0341 58 0.0317 49 Eschebronn 782 124.6 0.0123 58 0.0158 24 0.017 32 Eschebronn 782 124.6 0.0123 564 1.2849 1104 1.2499 973	Erkenbrechtsweiler	684	111.3	0.1321	135	0.0133	27	0.0283	43
Erienmoos 606 92.1 0.0336 82 0.0136 28 0.0235 38 Erligheim 816 125.8 0.0236 42 0.0289 52 0.032 51 Erolzheim 1146 164.4 0.0265 52 0.0388 76 0.0418 72 Ertingen 1767 270.3 0.0894 138 0.052 98 0.0688 110 Eschach 521 84.2 0.0311 45 0.0156 29 0.0215 33 Eschbach 527 86.4 0.0062 13 0.0261 42 0.022 33 Eschebronn 715 116.4 0.1022 115 0.0157 30 0.0296 45 Eschebronn 782 124.6 0.0127 25 0.0341 58 0.0317 49 Eschenbach 513 97.1 0.0513 58 0.0158 25 0.0247 32 Essingen am Neckar 15701 4915.9 0.6013 564 1.2849 1104 1.2499 973 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettlingen im Gäu 1605 151.9 0.0226 43 0.0372 68 0.0387 63 Feldbach 7023 2544.1 0.5767 410 0.532 428 0.6469 436 Fichtenau 1463 234.3 0.0698 106 0.0483 <td>Erlenbach</td> <td>1415</td> <td>263.4</td> <td>0.0258</td> <td>43</td> <td>0.073</td> <td>105</td> <td>0.067</td> <td>88</td>	Erlenbach	1415	263.4	0.0258	43	0.073	105	0.067	88
Eringheim816125.8 0.0236 42 0.0289 52 0.032 51Erolzheim1146164.4 0.0265 52 0.0398 76 0.0418 72Ertingen1767270.3 0.0894 138 0.052 98 0.0688 110Eschach521 84.2 0.0311 45 0.0156 29 0.0215 33Eschbach527 86.4 0.0062 13 0.0261 42 0.022 33Eschelbronn715 116.4 0.1022 115 0.0157 30 0.0296 45Eschelbronn782124.6 0.0127 25 0.0341 58 0.0317 49Eschenbach51397.1 0.0513 58 0.0158 25 0.0247 32Essingen1678278.5 0.1883 224 0.0414 77 0.0709 104Esslingen am Neckar157014915.9 0.6013 564 1.2849 1104 1.2499 973Ettenheim3015 601.8 0.0403 67 0.185 241 0.1531 187Ettingen im Gäu1691268.7 0.1494 195 0.0433 82 0.0684 105Fahrenbach1005151.9 0.0226 43 0.0372 68 0.0336 63Fichtenau1463234.3 0.0698 106 0.448 84 0.0596 91Fichtenberg831129.5 0.0431 66 <td>Erlenmoos</td> <td>606</td> <td>92.1</td> <td>0.0636</td> <td>82</td> <td>0.0136</td> <td>28</td> <td>0.0235</td> <td>38</td>	Erlenmoos	606	92.1	0.0636	82	0.0136	28	0.0235	38
Eroizneim1146104.40.0255.20.0398760.041872Ertingen1767270.30.08941380.052980.0688110Eschach52184.20.0311450.0156290.021533Eschbach52786.40.0062130.0261420.02233Eschbronn715116.40.10221150.0157300.029645Eschelbronn782124.60.0127250.0341580.0179104Eschenbach51397.10.0513580.0158250.024732Essingen1678278.50.18832240.0414770.0709104Esslingen am Neckar157014915.90.60135641.284911041.2499973Ettenheim3015601.80.0403670.1852410.1531187Ettingen Gäu1691268.70.14941950.0338820.0684105Fahrenbach1005151.90.0226430.0372680.038763Feldberg(Schwarzwald)722127.90.11951210.0168300.032645Fichtenbar1463234.30.06981060.0468840.059691Fichtenberg831129.50.0148230.0174280.019528Fischerbach<	Erligheim	816	125.8	0.0236	42	0.0289	52	0.032	51
Ertingen1767270.3 0.032 138 0.032 98 0.0088 110 Eschach521 84.2 0.0311 45 0.0156 29 0.0215 33 Eschach527 86.4 0.0062 13 0.0261 42 0.022 33 Eschbronn715 116.4 0.1022 115 0.0157 30 0.0296 45 Eschelbronn782 124.6 0.0127 25 0.0341 58 0.017 49 Eschenbach513 97.1 0.0513 58 0.0148 25 0.0247 32 Essingen 1678 278.5 0.1883 224 0.0414 77 0.0709 104 Essingen am Neckar 15701 4915.9 0.6013 564 1.2849 1104 1.2499 973 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettlingen 8252 2435.9 0.473 429 0.5521 522 0.614 105 Fahrenbach 1005 151.9 0.0226 43 0.0372 68 0.0387 63 Feldberg(Schwarzwald) 722 127.9 0.1195 121 0.0168 30 0.0326 45 Filderstadt 8294 1909.2 0.5205 561 0.3866 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174	Eroizneim	1140 1767	104.4 070.2	0.0205	02 199	0.0398	10	0.0418	110
Eschach5215426.0131436.0130296.021353Eschbach52786.40.0062130.0261420.02233Eschbronn715116.40.10221150.0157300.029645Eschenbach51397.10.0513580.0144770.0709104Eschenbach51397.10.0513580.0158250.024732Essingen1678278.50.18832240.0414770.0709104Esslingen am Neckar157014915.90.60135641.284911041.2499973Ettenheim3015601.80.0403670.1852410.1531187Ettlingen82522435.90.4734290.55215220.6194512Eutingen im Gäu1691268.70.14941950.0433820.0684105Fahrenbach1005151.90.0226430.0372680.038763Feldberg(Schwarzwald)722127.90.11951210.0168300.032645Fichtenau1463234.30.06981060.0468840.059691Fichtenberg831129.50.0431660.0249460.03352Filderstadt82941909.20.52055610.38864820.4855514Fischerbach	Ertingen	1707 591	270.3	0.0894 0.0211	138	0.052 0.0156	98	0.0088 0.0215	110
Eschbarn 524 50.4 60.002 135 0.0201 42 60.022 535 Eschbronn 715 116.4 0.1022 115 0.0157 30 0.0296 45 Eschelbronn 782 124.6 0.0127 25 0.0341 58 0.0317 49 Eschenbach 513 97.1 0.0513 58 0.0144 77 0.0709 104 Essingen 1678 278.5 0.1883 224 0.0414 77 0.0709 104 Essingen am Neckar 15701 4915.9 0.6013 564 1.2849 1104 1.2499 973 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettlingen 8252 2435.9 0.473 429 0.5521 522 0.6194 512 Eutingen im Gäu 1691 268.7 0.1494 195 0.0433 82 0.0684 105 Fahrenbach 1005 151.9 0.0226 43 0.0372 68 0.0387 63 Fellbach 7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau 1463 234.3 0.0698 106 0.0488 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 56	Eschlach	521 527	04.2 86.4	0.0311	40	0.0150	49 49	0.0210 0.022	22 22
Eachelbran115116.1 0.0127 215 0.0131 0.0250 0.0250 10 Eschelbran51397.1 0.0513 58 0.0158 25 0.0247 32Eschenbach51397.1 0.0513 58 0.0158 25 0.0247 32Essingen1678278.5 0.1883 224 0.0414 77 0.0709 104Esslingen am Neckar157014915.9 0.6013 564 1.2849 1104 1.2499 973Ettenheim3015601.8 0.0403 67 0.185 241 0.1531 187Ettlingen82522435.9 0.473 429 0.521 522 0.6194 512Eutingen im Gäu1691268.7 0.1494 195 0.0433 82 0.0684 105Fahrenbach1005151.9 0.0226 43 0.0372 68 0.0387 63Feldberg(Schwarzwald)722127.9 0.1195 121 0.0168 30 0.0326 45Fellbach70232544.1 0.5767 410 0.5532 428 0.6469 436Fichtenberg831129.5 0.0431 66 0.0249 46 0.033 52Filderstadt82941909.2 0.5205 561 0.3886 482 0.4855 514Fischerbach43976.5 0.0148 23 0.0174 28 0.0195 28Fischingen18527.9	Eschbronn	715	116.4	0.0002 0.1022	115	0.0201 0.0157	30	0.022	45
Eschenbach 102 1216 0.01513 58 0.0158 25 0.0247 32 Essingen 1678 278.5 0.1883 224 0.0414 77 0.0709 104 Essingen am Neckar 15701 4915.9 0.6013 564 1.2849 1104 1.2499 973 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Eutingen im Gäu 1691 268.7 0.1494 195 0.0433 82 0.0684 105 Fahrenbach 1005 151.9 0.0226 43 0.0372 68 0.0387 63 Feldberg(Schwarzwald) 722 127.9 0.1195 121 0.0168 30 0.0326 45 Fellbach 7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau 1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 <	Eschelbronn	782	124.6	0.1022 0.0127	25	0.0101	58	0.0250 0.0317	40 40
Existingen1678278.50.18832240.0414770.0709104Esslingen am Neckar157014915.90.60135641.284911041.2499973Ettenheim3015601.80.0403670.1852410.1531187Ettlingen82522435.90.4734290.55215220.6194512Eutingen im Gäu1691268.70.14941950.0433820.0684105Fahrenbach1005151.90.0226430.0372680.032645Feldberg(Schwarzwald)722127.90.11951210.0168300.032645Fichtenau1463234.30.06981060.0468840.059691Fichtenberg831129.50.0431660.0249460.03352Filderstadt82941909.20.52055610.38864820.4855514Fischerbach43976.50.0148230.0174280.019528Fischingen18527.90.007120.0059110.007112Fluorn-Winzeln1017154.10.17911980.0186390.039264Forbach1544245.90.0054140.09971520.062696Forchheim40166.30.0094170.0166280.016925F	Eschenbach	513	97.1	0.0121 0.0513	58	0.0011	$\frac{30}{25}$	0.0017 0.0247	32
Esslingen am Neckar157014915.9 0.6013 564 1.2849 1104 1.2499 973 Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettlingen 8252 2435.9 0.473 429 0.5521 522 0.6194 512 Eutingen im Gäu 1691 268.7 0.1494 195 0.0433 82 0.0684 105 Fahrenbach 1005 151.9 0.0226 43 0.0372 68 0.0387 63 Feldberg(Schwarzwald) 722 127.9 0.1195 121 0.0168 30 0.0326 45 Fellbach 7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau 1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.8088 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0166 39 0.0322 64 Forchheim 401 66.3 0.0094	Essingen	1678	278.5	0.1883	224	0.0414	$\frac{-6}{77}$	0.0709	104
Ettenheim 3015 601.8 0.0403 67 0.185 241 0.1531 187 Ettlingen 8252 2435.9 0.473 429 0.5521 522 0.6194 512 Eutingen im Gäu 1691 268.7 0.1494 195 0.0433 82 0.0684 105 Fahrenbach 1005 151.9 0.0226 43 0.0372 68 0.0387 63 Feldberg(Schwarzwald) 722 127.9 0.1195 121 0.0168 30 0.0326 45 Fellbach 7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau 1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.8088 113 0.0976 118 Fuorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 <	Esslingen am Neckar	15701	4915.9	0.6013	564	1.2849	1104	1.2499	973
Ettlingen 8252 2435.9 0.473 429 0.5521 522 0.6194 512 Eutingen im Gäu 1691 268.7 0.1494 195 0.0433 82 0.0684 105 Fahrenbach 1005 151.9 0.0226 43 0.0372 68 0.0387 63 Feldberg(Schwarzwald) 722 127.9 0.1195 121 0.0168 30 0.0326 45 Fellbach 7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau 1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.8088 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 504 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0027 40 </td <td>Ettenheim</td> <td>3015</td> <td>601.8</td> <td>0.0403</td> <td>67</td> <td>0.185</td> <td>241</td> <td>0.1531</td> <td>187</td>	Ettenheim	3015	601.8	0.0403	67	0.185	241	0.1531	187
Eutingen im Gäu1691268.7 0.1494 195 0.0433 82 0.0684 105Fahrenbach1005151.9 0.0226 43 0.0372 68 0.0387 63Feldberg(Schwarzwald)722127.9 0.1195 121 0.0168 30 0.0326 45Fellbach70232544.1 0.5767 410 0.5532 428 0.6469 436Fichtenau1463234.3 0.0698 106 0.0468 84 0.0596 91Fichtenberg831129.5 0.0431 66 0.0249 46 0.033 52Filderstadt82941909.2 0.5205 561 0.3886 482 0.4855 514Fischerbach43976.5 0.0148 23 0.0174 28 0.0195 28Fischingen18527.9 0.007 12 0.0059 11 0.0071 12Flein1889383.8 0.0959 120 0.8088 113 0.0976 118Fluorn-Winzeln1017154.1 0.1791 198 0.0186 39 0.0392 64Forbach40166.3 0.0094 17 0.0166 28 0.0169 25Forchheim40166.3 0.0027 40 0.1268 170 0.1002 128Forst2059393.8 0.0227 40 0.1268 170 0.1002 128	Ettlingen	8252	2435.9	0.473	429	0.5521	522	0.6194	512
Fahrenbach1005151.9 0.0226 43 0.0372 68 0.0387 63Feldberg(Schwarzwald)722127.9 0.1195 121 0.0168 30 0.0326 45Fellbach70232544.1 0.5767 410 0.5532 428 0.6469 436Fichtenau1463234.3 0.0698 106 0.0468 84 0.0596 91Fichtenberg831129.5 0.0431 66 0.0249 46 0.033 52Filderstadt82941909.2 0.5205 561 0.3886 482 0.4855 514Fischerbach43976.5 0.0148 23 0.0174 28 0.0195 28Fischingen18527.9 0.007 12 0.0059 11 0.0071 12Flein1889383.8 0.0959 120 0.8088 113 0.0976 118Fluorn-Winzeln1017154.1 0.1791 198 0.0186 39 0.0392 64Forbach40166.3 0.0094 17 0.0166 28 0.0169 25Forchheim40166.3 0.0094 17 0.0166 28 0.063 100Forst2059393.8 0.0227 40 0.1268 170 0.1002 128	Eutingen im Gäu	1691	268.7	0.1494	195	0.0433	82	0.0684	105
Feldberg(Schwarzwald)722 127.9 0.1195 121 0.0168 30 0.0326 45 Fellbach7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.8088 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Fahrenbach	1005	151.9	0.0226	43	0.0372	68	0.0387	63
Fellbach7023 2544.1 0.5767 410 0.5532 428 0.6469 436 Fichtenau1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.8088 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Feldberg(Schwarzwald)	722	127.9	0.1195	121	0.0168	30	0.0326	45
Fichtenau 1463 234.3 0.0698 106 0.0468 84 0.0596 91 Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.8088 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Fellbach	7023	2544.1	0.5767	410	0.5532	428	0.6469	436
Fichtenberg 831 129.5 0.0431 66 0.0249 46 0.033 52 Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.0808 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Fichtenau	1463	234.3	0.0698	106	0.0468	84	0.0596	91
Filderstadt 8294 1909.2 0.5205 561 0.3886 482 0.4855 514 Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.0808 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Fichtenberg	831	129.5	0.0431	66	0.0249	46	0.033	52
Fischerbach 439 76.5 0.0148 23 0.0174 28 0.0195 28 Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.0808 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Filderstadt	8294	1909.2	0.5205	561	0.3886	482	0.4855	514
Fischingen 185 27.9 0.007 12 0.0059 11 0.0071 12 Flein 1889 383.8 0.0959 120 0.808 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Fischerbach	439	76.5	0.0148	23	0.0174	28	0.0195	28
r rem 1889 383.8 0.0959 120 0.0808 113 0.0976 118 Fluorn-Winzeln 1017 154.1 0.1791 198 0.0186 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	r iscningen Elsin	185	27.9	0.007	12	0.0059	110	0.0071	12
Future winzem 1017 154.1 0.1791 198 0.0180 39 0.0392 64 Forbach 1544 245.9 0.0054 14 0.0997 152 0.0626 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	riem Fluorn Wingoln	1889	383.8 154 1	0.0959 0.1701	120	0.0808	113 20	0.0976	118 64
Forbach 1344 245.9 0.0034 14 0.0997 152 0.0020 96 Forchheim 401 66.3 0.0094 17 0.0166 28 0.0169 25 Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Fiuorii- wiiizeiii Forbach	1017	104.1 245 0	0.1791	198	0.0180	ა9 1⊑ე	0.0392	04 06
Forchtenberg 1601 247.6 0.063 103 0.0518 95 0.063 100 Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128	Forchheim	1044 /01	240.9 66 3	0.0004	14 17	0.0997	102 28	0.0020	90 25
Forst 2059 393.8 0.0227 40 0.1268 170 0.1002 128 Fortsetzung auf der nächsten Seite	Forchtenberg	1601	247 6	0.0094	103	0.0100	20 95	0.0109	20 100
Fortsetzung auf der nächsten Seite	Forst	2059	393.8	0.003	40	0.1268	170	0.1002	128
		2000	000.0	0.0221	F	ortsetzung	auf de	r nächster	Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. \in , G = Anzahl der betroffenen Gebäude)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Freiberg am Neckar 3670 739.9 0.133 179 0.1724 237 0.1882 228 Freiburg im Breisgau 25919 9609.8 1.1807 934 2.5081 1820 2.4433 1607 Freudenberg 1287 212.7 0.0365 61 0.0504 84 0.0541 80 Freudenstadt 4928 1249.6 0.7833 620 0.1918 229 0.3178 306 Freudental 633 106.5 0.073 85 0.0158 29 0.0271 40 Frickenhausen 2648 437.4 0.1201 180 0.0888 154 0.1113 165 Frickingen 895 147.3 0.0223 39 0.0358 60 0.0375 56 Fridingen an der Donau 1202 186.3 0.0306 55 0.0448 80 0.0474 75 Friedenweiler 548 97.6 0.1198 111 0.0115 21 0.0249 34 Friedrichshafen 10411 3354.3 0.4953 437 0.8219 700 0.8529 646 Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Frickingen 2040 437.4 0.1201 180 0.0308 154 0.1113 105 Frickingen 895 147.3 0.0223 39 0.0358 60 0.0375 56 Fridingen an der Donau 1202 186.3 0.0306 55 0.0448 80 0.0474 75 Friedenweiler 548 97.6 0.1198 111 0.0115 21 0.0249 34 Friedrichshafen 10411 3354.3 0.4953 437 0.8219 700 0.8529 646 Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
Frickingen 895 147.5 0.0225 59 0.0538 00 0.0575 50 Fridingen an der Donau 1202 186.3 0.0306 55 0.0448 80 0.0474 75 Friedenweiler 548 97.6 0.1198 111 0.0115 21 0.0249 34 Friedrichshafen 10411 3354.3 0.4953 437 0.8219 700 0.8529 646 Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
Fridingen an der Donau 1202 180.3 0.0306 55 0.0448 80 0.0474 75 Friedenweiler 548 97.6 0.1198 111 0.0115 21 0.0249 34 Friedrichshafen 10411 3354.3 0.4953 437 0.8219 700 0.8529 646 Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
Friedenweiler 548 97.6 0.1198 111 0.0115 21 0.0249 34 Friedrichshafen 10411 3354.3 0.4953 437 0.8219 700 0.8529 646 Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
Friedrichshaten 10411 3354.3 0.4953 437 0.8219 700 0.8529 646 Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
Friesenheim 3376 659.9 0.0633 100 0.1841 250 0.1678 210
Friolzheim 874 181.2 0.1312 123 0.0261 39 0.0461 55
Frittlingen 642 100.4 0.0141 26 0.0251 44 0.0256 40
From reute 1284 190.8 0.0302 57 0.0464 86 0.0486 80
Furtwangen im Schwarzwald 2022 429.1 0.2961 273 0.0632 92 0.1091 126
Gärtringen 2574 580.1 0.2636 256 0.1001 131 0.1475 160
Gäufelden 2339 394.4 0.1879 241 0.0668 118 0.1003 145
Gaggenau 7399 1534.5 0.1286 196 0.4463 564 0.3902 459
Gaiberg 768 126 0.0073 15 0.0406 64 0.0321 48
Gaienhofen 1268 233.4 0.038 58 0.0562 84 0.0594 79
Gaildorf 2758 552.4 0.0458 73 0.1612 211 0.1405 171
Gailingen am Hochrhein 731 120 0.0399 58 0.0231 41 0.0306 46
Gammelshausen 379 70.2 0.0329 39 0.012 20 0.0179 24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Cachingen $1501 - 500.4 - 0.0725 - 50 - 0.0149 - 154 - 0.0704 - 122$ Cachingan $1052 - 186.4 - 0.0704 - 100 - 0.033 - 55 - 0.0474 - 66$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Generating 1110 237.1 0.0976 139 0.0424 90 0.0005 107
Getsingen $2121 300.3 0.1071 243 0.0464 102 0.0765 132$
Geisningen an der Steige 6054 1378 0.0574 624 0.2331 304 0.3504 376
Gemmingen 1407 250.1 0.0944 122 0.0457 76 0.0636 88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Gengenbach 2213 509.3 0.0455 62 0.1454 167 0.1295 138
Gerabronn 1333 228 0.1255 153 0.0369 65 0.058 83
Gerlingen 4057 1038.9 0.2427 243 0.2237 246 0.2642 252
Gernsbach 3710 780 0.0384 64 0.259 315 0.1984 230
Gerstetten 3622 575.1 0.2716 370 0.0977 183 0.1463 225
Giengen an der Brenz 4559 933.2 0.3042 353 0.1804 254 0.2373 283
Gingen an der Fils 1207 188.3 0.0119 26 0.059 98 0.0479 75
Glatten 753 122.7 0.0963 112 0.0174 33 0.0312 47
Glottertal 709 131.7 0.0649 75 0.022 36 0.0335 44
Göggingen 661 117.2 0.0358 49 0.0232 38 0.0298 41
Göppingen 12126 3117.1 0.5945 621 0.7111 770 0.7926 752
Görwihl 1273 199.9 0.0858 121 0.0353 66 0.0509 79
Gomadingen 836 123.1 0.0247 45 0.0276 53 0.0313 52
Gomaringen 2249 415.6 0.2664 288 0.0632 104 0.1057 140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} \text{Costerin} & 1192 & 2211 & 0.2060 & 220 & 0.0211 & 41 & 0.0064 & 14 \\ \text{Costerinbairm} & 662 & 1116 & 0.0175 & 20 & 0.0279 & 45 & 0.0284 & 42 \\ \end{array}$
Gottemelin 002 111.0 0.0173 29 0.0272 49 0.0264 42
Gottmadingen 2500 525 0.1844 210 0.0987 140 0.1355 159
Graben-Neudorr 3087 322.5 0.0589 104 0.1401 221 0.1329 192
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Gratenau 1843 353.3 0.1161 144 0.0681 103 0.0899 115
Grafenberg 844 128.6 0.0501 75 0.0232 45 0.0327 53
Grafenhausen 681 107.2 0.0428 62 0.0192 36 0.0273 43
Grenzach-Wyhlen 3059 816.1 0.1426 146 0.192 199 0.2075 190
Griesingen 331 49.3 0.0211 32 0.0087 18 0.0126 21
Grömbach 186 29.2 0.0289 33 0.0038 8 0.0075 12
Grossbettlingen 1175 181 0.1025 138 0.029 57 0.0461 73
Grossbottwar 2271 368.7 0.0437 80 0.0974 161 0.0938 141
Grosselfingen 663 90 0.0443 70 0.0151 33 0.0229 42
Grosserlach 801 126 0.0575 80 0.0217 41 0.0321 50
Fortsetzung auf der nächsten Seite

Tab. B.1 – Fortsetzung	(S = Schaden	in Mio.€.	G = Anzahl	der betroffenen	Gebäude)

	Anzahl	Gesamt-	Mode	ell 1	Mode	ell 2	Mode	ll 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	\mathbf{G}	\mathbf{S}	G
Grossrinderfeld	1297	205.9	0.0882	124	0.0364	68	0.0524	81
Grünkraut	832	130.1	0.0163	31	0.0338	59	0.0331	52
Grünsfeld	1233	196.6	0.0576	89	0.0389	71	0.05	77
Gruibingen	714	116.9	0.2341	199	0.0111	23	0.0298	45
Gschwend	1876	278.8	0.0881	142	0.0545	106	0.0709	117
Güglingen	1642	294.5	0.11	141	0.0541	88	0.0749	102
Gütenbach	362	57.6	0.1392	114	0.005	11	0.0147	23
Gundelfingen	2109	656.5	0.0643	64	0.1818	156	0.167	131
Gundelsheim	2207	361.1	0.0587	100	0.087	146	0.0919	137
Gunningen	225	33.3	0.013	20	0.0061	12	0.0085	14
Gutach(Schwarzwaldbahn)	1035	177.1	0.0067	14	0.0637	93	0.0451	65
Gutach im Breisgau	853	186.8	0.0264	35	0.0466	58	0.0475	53
Gutenzell-Hürbel	642	96.7	0.0297	48	0.0191	37	0.0246	40
Gutsbezirk Münsingen	57	10.2	0.0086	9	0.0015	3	0.0026	4
Häusern	344	66.1	0.0282	33	0.0117	18	0.0169	22
Hagnau am Bodensee	466	86.1	0.0529	58	0.0134	22	0.0219	29
Haigerloch	3846	532.4	0.1979	329	0.0979	207	0.1354	239
Haiterbach	1642	243	0.174	228	0.0352	74	0.0618	102
Hambrücken	1441	225.7	0.0172	36	0.0676	113	0.0574	90
Hardheim	2071	363	0.173	214	0.0615	104	0.0923	129
Hardt	742	108.5	0.171	177	0.0114	26	0.0276	46
Hardthausen am Kocher	1203	206.9	0.0336	54	0.0499	80	0.0527	75
Hartheim	1048	174.8	0.0183	34	0.0474	77	0.0445	65
Hasel	319	45.1	0.0021	6	0.0154	28	0.0115	20
Haslach im Kinzigtal	1606	343.8	0.0963	111	0.0693	93	0.0875	100
Hassmersheim	1520	295.5	0.0235	39	0.0873	118	0.0752	95
Hattenhofen	884	138.4	0.0439	67	0.0271	50	0.0352	55
Hausach	1291	311.8	0.0441	53	0.0777	88	0.0793	81
Hausen im Wiesental	541	136	0.0108	14	0.0403	42	0.0346	34
Hausen ob Verena	271	39.8	0.0402	48	0.0051	11	0.0102	17
Havingen	787	123.1	0.0466	69	0.0225	43	0.0313	49
Hechingen	5221	931.6	0.2509	350	0.1906	305	0.2369	324
Heddesheim	2267	521.9	0.0093	17	0.2241	232	0.1327	141
Heidelberg	21127	6871.9	0.2697	299	2.4375	1872	1.7472	1310
Heidenheim an der Brenz	11769	2876.4	0.6516	687	0.6256	717	0.7314	730
Heilbronn	23575	5969.2	0.711	828	1.5732	1667	1.5177	1461
Heiligenberg	817	116.3	0.102	131	0.0157	35	0.0296	51
Heiligkreuzsteinach	935	145.9	0.0395	63	0.0299	55	0.0371	58
Heimsheim	1276	264.2	0.1385	142	0.043	63	0.0672	80
Heiningen	1308	220.4	0.0943	124	0.0389	68	0.0561	82
Heitersheim	1406	281.3	0.0232	37	0.0823	108	0.0716	88
Helmstadt-Bargen	1258	197.2	0.0469	77	0.0423	76	0.0502	78
Hemmingen	1231	319.3	0.1286	113	0.0568	65	0.0812	77
Hemsbach	2764	691.1	0.0367	51	0.2274	232	0.1758	172
Herbertingen	1629	255.4	0.0832	126	0.0494	91	0.065	101
Herbolzheim	2455	465.9	0.0479	77	0.1269	179	0.1185	153
Herbrechtingen	3495	676.9	0.2775	321	0.1213	183	0.1722	217
Herdwangen-Schönach	1125	169.1	0.046	76	0.0345	66	0.043	70
Hermaringen	681	116.1	0.0271	41	0.025	42	0.0296	43
Heroldstatt	870	134.2	0.0573	83	0.0237	46	0.0342	54
Herrenberg	7451	1562.4	0.5122	579	0.3013	414	0.3973	462
Herrischried	1014	153	0.0304	54	0.0345	64	0.039	63
Hessigheim	688	107.3	0.0064	14	0.0343	57	0.0273	43
Hettingen	711	105.8	0.0689	92	0.016	33	0.0269	45
Heubach	2126	460.7	0.1933	199	0.0819	111	0.1172	132
Heuchlingen	518	85.3	0.0305	43	0.016	29	0.0217	33
Hildrizhausen	913	171.9	0.05	65	0.0341	53	0.0438	57
Hilzingen	2340	386.1	0.1509	209	0.0695	124	0.0982	146
Hinterzarten	720	154.6	0.0862	83	0.0249	35	0.0394	45
Hirrlingen	925	146.8	0.1109	133	0.0211	41	0.0374	58
Hirschberg an der Bergstrasse	2333	534.5	0.0306	46	0.1722	193	0.1359	145
5 0 0				Fo	ortsetzung	auf der	nächsten	Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. $\in,$ G = Anzahl der betroffenen Gebäude)

	Anzahl	Gesamt-	Mode	ell 1	Mode	ell 2	Mode	ll 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G
Hochdorf	1227	272.2	0.0272	38	0.0749	91	0.0693	77
Hochdorf	647	98.8	0.044	64	0.0172	34	0.0252	41
Hockenheim	4921	1067.5	0.0932	135	0.3068	372	0.2715	305
Höchenschwand	579	128.8	0.3692	201	0.0104	16	0.0328	36
Höfen an der Enz	408	72.4	0.0142	22	0.0164	26	0.0185	26
Höpfingen	1048	171.2	0.065	${92}$	0.0312	56^{-6}	0.0436	65^{-5}
Hofstetten	398	66.1	0.0357	46	0.0107	20	0.0169	25
Hohberg	2052	336	0 1048	154	0.066	116	0.0855	128
Hohenstein	1244	190	0.1010	150	0.03	59	0.0484	78
Hohentengen	1398	233.2	0.0798	113	0.00	77	0.0101	87
Hohentengen am Hochrhein	983	164.2	0.0551	78	0.0315	55	0.0418	61
Holzgerlingen	2810	630	0.0001 0.2307	235	0.0010	152	0.0410 0.1625	175
Holzmaden	622	105.8	0.0514	65	0.1100 0.0178	32	0.1020	30
Horb am Neckar	7394	1347.4	0.0014 0.6937	807	0.0110	363	0.0205 0.3426	459
Hornborg	1201	250.1	0.0551	87	0.2200	60	0.0420	75
Hogskirch	357	57.6	0.0110	43	0.0010	17	0.0003 0.0147	10
Hüffenhardt	715	100.6	0.0335	45	0.0092 0.0107	28	0.0147 0.0270	20 45
Hüfngen	1025	207.4	0.0400	197	0.0197	100	0.0219	40
Hüralshoim	762	180.8	0.1431	20	0.0373	53	0.0000	120
IIIIban	102	109.0	0.0249 0.0715	29 106	0.0460 0.0257	00 E0	0.0400	40
Huiben Hiittigh ging	1028	101.0	0.0715	100	0.0237 0.0117	02 04	0.0360 0.0176	04
	404	00.9	0.0528	40	0.0117	24	0.0170	29 00
Huttingen	1047	201.2	0.0880	124	0.0498	80	0.0000	90
Inezneim	1194	208.9	0.0525	10	0.0439	(1	0.0532	(4
Igersneim	1439	280	0.0591	80	0.0615	89	0.0712	90
Iggingen	743	123.6	0.0238	39	0.0282	48	0.0315	47
Ihringen	1511	273.7	0.0399	63	0.0675	102	0.0696	94
Illerkirchberg	1391	202.8	0.069	112	0.0386	77	0.0516	87
Illerrieden	1017	161.5	0.0521	78	0.0314	57	0.0411	64
Illingen	2138	371	0.1494	195	0.066	113	0.0944	133
Illmensee	624	85.9	0.0673	92	0.0122	28	0.0219	39
Ilsfeld	2380	400.6	0.0585	99	0.0987	161	0.1019	148
Ilshofen	1861	317	0.1416	183	0.0551	96	0.0806	116
Ilvesheim	1738	374.7	0.013	23	0.1357	158	0.0953	108
Immendingen	1512	292.3	0.0821	105	0.0589	88	0.0744	94
Immenstaad am Bodensee	1418	325.2	0.1485	142	0.056	73	0.0827	88
Ingelfingen	1671	286.4	0.0493	79	0.0678	109	0.0729	104
Ingersheim	1507	268.6	0.0209	38	0.0799	117	0.0683	94
Ingoldingen	961	140.3	0.0204	40	0.0347	65	0.0357	60
Inzigkofen	861	135.4	0.0355	57	0.028	51	0.0345	54
Inzlingen	689	123.3	0.0745	85	0.0193	33	0.0314	43
Irndorf	321	46.4	0.0147	25	0.0091	18	0.0118	20
Isny im Allgäu	3304	765.2	0.0809	107	0.2063	240	0.1946	205
Ispringen	1513	301	0.1388	152	0.0517	77	0.0766	94
Ittlingen	691	114.2	0.0187	32	0.0275	46	0.0291	43
Jagsthausen	616	94.4	0.0149	27	0.023	41	0.0241	39
Jagstzell	704	110.9	0.0271	44	0.0236	43	0.0282	44
Jestetten	1239	271.6	0.0445	57	0.0653	82	0.0691	77
Jettingen	1968	325.9	0.2733	305	0.0448	84	0.0829	122
Jungingen	598	85.4	0.0569	79	0.0128	28	0.0218	38
Kämpfelbach	1749	290.2	0.1501	192	0.0475	86	0.0738	109
Kaisersbach	960	150	0.0407	65	0.0307	56	0.0382	60
Kandern	2328	383.7	0.0329	63	0.111	177	0.0976	145
Kanzach	187	25.6	0.007	13	0.0053	11	0.0066	12
Kappel-Grafenhausen	1292	241.5	0.0278	45^{-5}	0.0644	93	0.0615	81
Kappelrodeck	1782	301.7	0.0113	25^{-5}	0.1085	160	0.0768	111
Karlsbad	4154	809.5	0.5356	544	0.12000	190	0 2059	258
Karlsdorf-Neuthard	2431	433.9	0.0000	78	0.1214 0 1174	177	0.2000	151
Karlsruhe	41007	$14751 \ 1$	1 8057	1533	3 70//	28/10	3 7505	25/12
Kehl	7625	1687.8	0 1035	157	0.533	620	0 4909	473
Keltern	9751	178 G	0.1055	38/	0.000	1920	0.4292	171
Kenzingen	2101	410.0	0.0401	71	0.009	160	0.1217	126
1 SUIZINGUI	2130	740.1	0.0449	11 F~	rteotrung	100	nächster	Soito
				гО	1 useuzung	aur uer	nachstel	r Dene

Tab.	B.1 – Fortsetzung	(S =	Schaden	in	Mio.€,	G =	Anzahl	der	betroffenen	Gebäude)

1ab. B.1 – Fortsetzun	g(5 = Schade)	Cocomt	$\overline{e}, \overline{G} = AI$	izani de	er betrone Modo	$\frac{\text{nen } Ge}{11 \circ 2}$	baude) Mode	11.2
Gemeindename	Gebäude	wert	S	G	S	G	S	G
Kernen im Remstal	3067	732.3	0.0636	84	0.2108	233	0.1862	191
Ketsch	3458	641.5	0.0244	48	0.2295	$\frac{200}{309}$	0.1632	215
Kieselbronn	841	151.4	0.1018	112	0.0226	39	0.0385	53
Kippenheim	1457	287.6	0.0627	83	0.0634	90	0.0732	91
Kirchardt	1594	269.1	0.0985	135	0.0498	86	0.0685	99
Kirchberg an der Iller	815	112.4	0.0177	36	0.0274	55	0.0286	51
Kirchberg an der Jagst	1327	211.5	0.07	104	0.0407	74	0.0538	83
Kirchberg an der Murr	999	167.9	0.0368	57	0.037	62	0.0427	62
Kirchdorf an der Iller	1243	200	0.0671	99	0.0383	69	0.0509	78
Kirchentellinsfurt	1588	303	0.1099	134	0.0563	86	0.0771	99
Kirchheim am Neckar	1254	236.1	0.0671	88	0.0473	73	0.0601	78
Kirchheim am Ries	640	92.3	0.0356	57	0.0168	35	0.0235	40
Kirchheim unter Teck	8988	2097.2	0.3498	413	0.5009	589	0.5333	557
Kirchzarten	2281	468.2	0.1641	187	0.0881	125	0.1191	142
Kisslegg	2508	387.6	0.0428	83	0.1046	181	0.0986	156
Klettgau	2267	389.7	0.0799	124	0.0866	142	0.0991	141
Knittlingen	2374	378.3	0.1057	164	0.0763	138	0.0962	148
Köngen	2248	421	0.0839	120	0.0946	142	0.1071	140
Königheim	1028	165.6	0.0693	96	0.0295	54	0.0422	64
Königsbach-Stein	2933	512.2	0.1074	163	0.1128	182	0.1303	182
Königsbronn	2147	444.1	0.1232	148	0.0898	125	0.113	134
Königseggwald	208	29.2	0.0084	15	0.0059	12	0.0075	13
Königsfeld im Schwarzwald	1609	263.8	0.2872	299	0.0327	64	0.0671	100
Königsheim	211	30.7	0.0049	10	0.0075	14	0.0079	14
Kohlberg	780	120.6	0.0465	69	0.0219	42	0.0307	49
Kolbingen	457	65.9	0.0489	65	0.0096	21	0.0168	29
Konstanz	10924	4336.3	0.9563	625	0.9515	670	1.1026	677
Korb	2309	473.5	0.0577	83	0.124	163	0.1204	144
Korntal-Münchingen	3423	905.9	0.2522	236	0.1829	198	0.2304	213
Kornwestheim	4268	1572.1	0.3498	246	0.344	262	0.3998	265
Kraichtal	4388	696.1	0.0921	168	0.1774	303	0.177	272
Krauchenwies	1616	290.9	0.1255	155	0.0512	84	0.074	101
Krautheim	1899	277.8	0.0473	89	0.066	124	0.0707	118
Kressberg	1774	257.1	0.1138	173	0.0448	91	0.0654	110
Kressbronn am Bodensee	1796	404.3	0.0399	55	0.1117	133	0.1028	112
Kronau	1612	281.7	0.0198	38	0.0853	128	0.0717	100
Kuchen	1579	258.8	0.0339	60	0.0662	110	0.0659	98
Külsheim	1773	302.1	0.1351	174	0.0525	91	0.0769	110
Künzelsau	3352	702.9	0.0887	124	0.182	234	0.1788	208
Kürnbach	789	124.9	0.035	55	0.0252	46	0.0318	49
Küssaberg	1501	309.3	0.097	113	0.0606	85	0.0787	94
Kupferzell	1589	282.6	0.0758	106	0.0579	93	0.0719	99
Kuppenheim	1920	361.6	0.0446	70	0.0943	135	0.092	119
Kusterdingen	2196	370.5	0.1828	232	0.0619	110	0.0942	137
Ladenburg	2775	644.6	0.0096	18	0.2856	292	0.1639	172
Lahr/Schwarzwald	8349	2320	0.3351	344	0.5731	565	0.5899	518
Laichingen	3794	631.9	0.3024	392	0.1068	191	0.1607	236
Langenargen	1866	380.4	0.0521	74	0.0959	128	0.0968	116
Langenau	3944	651.6	0.1971	288	0.1293	224	0.1657	245
Langenbrettach	991	156.1	0.0252	45	0.0377	66	0.0397	62
Langenburg	740	117.7	0.1159	129	0.0153	30	0.03	46
Langenenslingen	1334	200.7	0.088	129	0.0351	69	0.0511	83
Lauchheim	1401	218.5	0.128	170	0.0345	68	0.0556	89
	1421	-	0.0400	55	0.0984	116	0.0938	101
Lauchringen	$1421 \\ 1619$	368.6	0.0422	55	0.0001			
Lauchringen Lauda-Königshofen	$1421 \\ 1619 \\ 4356$	$368.6 \\ 746.2$	0.0422 0.108	180	0.1842	295	0.1898	270
Lauchringen Lauda-Königshofen Laudenbach	$ 1421 \\ 1619 \\ 4356 \\ 1563 $	$368.6 \\ 746.2 \\ 303.2$	0.0422 0.108 0.0169	$\frac{180}{30}$	$0.1842 \\ 0.0986$	$295 \\ 130$	$\begin{array}{c} 0.1898 \\ 0.0771 \end{array}$	$270 \\ 97$
Lauchringen Lauda-Königshofen Laudenbach Lauf	$ 1421 \\ 1619 \\ 4356 \\ 1563 \\ 1064 $	$368.6 \\ 746.2 \\ 303.2 \\ 164.9$	$\begin{array}{c} 0.0422 \\ 0.108 \\ 0.0169 \\ 0.0165 \end{array}$	$ \begin{array}{r} 35 \\ 180 \\ 30 \\ 33 \\ \end{array} $	$\begin{array}{c} 0.1842 \\ 0.0986 \\ 0.0454 \end{array}$	$295 \\ 130 \\ 79$	$\begin{array}{c} 0.1898 \\ 0.0771 \\ 0.042 \end{array}$	$270 \\ 97 \\ 66$
Lauchringen Lauda-Königshofen Laudenbach Lauf Laufenburg(Baden)	$ 1421 \\ 1619 \\ 4356 \\ 1563 \\ 1064 \\ 2041 $	368.6 746.2 303.2 164.9 378.3	$\begin{array}{c} 0.0422\\ 0.108\\ 0.0169\\ 0.0165\\ 0.0881\end{array}$	$ \begin{array}{r} 35 \\ 180 \\ 30 \\ 33 \\ 122 \end{array} $	$\begin{array}{c} 0.1842\\ 0.0986\\ 0.0454\\ 0.0816\end{array}$	295 130 79 124	$\begin{array}{c} 0.1898 \\ 0.0771 \\ 0.042 \\ 0.0962 \end{array}$	$270 \\ 97 \\ 66 \\ 127$
Lauchringen Lauda-Königshofen Laudenbach Lauf Laufenburg(Baden) Lauffen am Neckar	$1421 \\ 1619 \\ 4356 \\ 1563 \\ 1064 \\ 2041 \\ 2617$	368.6 746.2 303.2 164.9 378.3 517.8	$\begin{array}{c} 0.0422\\ 0.108\\ 0.0169\\ 0.0165\\ 0.0881\\ 0.1044\end{array}$	$ \begin{array}{r} 35 \\ 180 \\ 30 \\ 33 \\ 122 \\ 141 \end{array} $	$\begin{array}{c} 0.1842\\ 0.0986\\ 0.0454\\ 0.0816\\ 0.1158\end{array}$	$295 \\ 130 \\ 79 \\ 124 \\ 164$	$\begin{array}{c} 0.1898 \\ 0.0771 \\ 0.042 \\ 0.0962 \\ 0.1317 \end{array}$	$270 \\ 97 \\ 66 \\ 127 \\ 163$
Lauchringen Lauda-Königshofen Laudenbach Lauf Laufenburg(Baden) Lauffen am Neckar Laupheim	$1421 \\ 1619 \\ 4356 \\ 1563 \\ 1064 \\ 2041 \\ 2617 \\ 4569$	368.6 746.2 303.2 164.9 378.3 517.8 885.2	$\begin{array}{c} 0.0422\\ 0.108\\ 0.0169\\ 0.0165\\ 0.0881\\ 0.1044\\ 0.342\\ \end{array}$	$ \begin{array}{r} 33 \\ 30 \\ 33 \\ 122 \\ 141 \\ 403 \end{array} $	$\begin{array}{c} 0.1842\\ 0.0986\\ 0.0454\\ 0.0816\\ 0.1158\\ 0.1601 \end{array}$	295 130 79 124 164 243	$\begin{array}{c} 0.1898\\ 0.0771\\ 0.042\\ 0.0962\\ 0.1317\\ 0.2251\end{array}$	$270 \\ 97 \\ 66 \\ 127 \\ 163 \\ 284$

		Anzahl	Gesamt-	Mode	ell 1	Mode	ll 2	Mode	ell 3
Lautersbach957150.10.1221450.0218420.038260Lauterstein855122.50.0492780.0218430.031253Lehrentignen798106.10.0372660.022440.02750Leinedin72811920.20.0373660.026440.02755Leinedin72811920.20.0373360.42654540.4883452Leinaglin668116.60.0285420.0284400.029742Leiningen2517405.30.0545960.0365770.070583Leankirch1336277.10.03282120.0376570.070583Lonberg9565224.1.81.094910030.37664770.57593Leutenbach2274451.20.0435530.0645940.064985Lichtenstein2555468.30.22342740.07931340.119165Lichtenstein2555468.30.2234720.0479840.061985Lichtenstein255468.30.22342740.07933140.119165Lichtenstein29375780.0541850.0632940.06496Lichtenstein29375780.0542840.061985Lichtenstein29375780.0549	Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G
Lauterstein 855 12.5 0.0407 21 0.0218 45 0.0312 42 Leihersteiningen 798 106.1 0.0372 66 0.023 44 0.0272 42 Leimegn 798 106.1 0.0355 67 0.521 466 0.3633 320 Leiningdieden-Echterdingen 7281 1920.2 0.3983 136 0.129 189 0.1035 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 17.4 0.1385 16.4 0.1385 17.4 0.1385 17.4 0.1385 16.4 18.4 11.4 1.44 1.44 1.42 1.44 1.43 1.44 1.44 1.44 1.44 1.42 1.43 1.44 1.44 1.44 1.44 1.42 1.44 1.43 1.44 1.44 1.44 1.44	Lauterbach	957	150.1	0.122	145	0.021	42	0.0382	60
Lehrentingen 666 106.8 0.017 21 0.0294 49 0.0272 42 Leimen 5151 1428.7 0.0355 67 0.521 466 0.0333 320 Leingarten 7291 1920.2 0.3333 306 0.4265 451 0.4383 452 Leingarten 2227 552.4 0.0388 143 0.129 180 0.1035 174 0.1031 156 Lemingen 2517 405.3 0.0534 96 0.1035 174 0.1031 156 Lecolberg 9365 2241.8 1.0949 1003 0.376 477 0.57 503 Leutkirch im Allgän 6216 1099.2 0.2383 300 0.3716 142 0.1148 141 Leithenstein 2265 408.3 0.2244 240 0.0733 14 0.1149 145 Lichtenstein 2267 468.3 0.0229 140 0.033 51	Lauterstein	855	122.5	0.0492	78	0.0218	45	0.0312	53
Leibertingen 798 106.1 0.0372 66 0.02 44 0.027 50 Leinfelden-Echterdingen 7281 1920.2 0.3333 306 0.4265 454 0.4883 452 Leinsparten 2227 552.4 0.0988 1.43 0.129 1.89 0.1405 182 Leinvall 668 1016.6 0.0285 42 0.0218 40 0.0376 57 0.0705 83 Learbrighen 9665 2241.8 1.0949 1003 0.3756 916 142 0.148 141 Leatkirch im Allgäu 6265 264.9 0.0345 53 0.0645 94 0.0313 50 Linkenheim-Hochstetten 1237 578 0.0345 50 0.042 84 0.0313 50 Linkenheim-Hochstetten 1237 578 0.0531 85 0.1632 20 0.147 182 Lobhach 809 133.1 0.0266 43 0.	Lehrensteinsfeld	666	106.8	0.0107	21	0.0294	49	0.0272	42
	Leibertingen	798	106.1	0.0372	66	0.02	44	0.027	50
	Leimen	5151	1428.7	0.0505	67	0.521	466	0.3633	320
	Leinfelden-Echterdingen	7281	1920.2	0.3933	396	0.4265	454	0.4883	452
	Leingarten	2927	552.4	0.0988	143	0.129	189	0.1405	182
	Leinzell	668	116.6	0.0285	42	0.0248	40	0.0297	42
	Lenningen	2517	405.3	0.0534	96	0.1035	174	0 1031	156
	Lenzkirch	1336	277.1	0.2398	212	0.0376	57	0.0705	83
	Leonberg	9565	2241.8	1.0949	1003	0.3756	477	0.57	593
Leutkirch im Allgäu6246 62461099.2 6246 0.2623 6380 380 6.2349 0.2349 640.064 376 6.2795 0.2795 885Lichtenau1356 254.9 0.0345 53 6.0045 0.0645 94 6.0061 95 653Lichtenstein2655 468.3 6.2234 2234 6.2740 274 6.0793 134 6.01191 1151 6.01191Linkach1523 1.2502398 6.00537 1255 6.064 0.0266 4.8 48 6.0132 0.0339 6.1632Löhchenheim-Hochstetten2937 1.257 578 6.0534 85 6.1632 0.1642 2.290 0.1161 1.82Löhtgan1539 1.267 1.267 Löhtgan 2167 2.289 399 0.0542 94 0.0664 0.0639 5.00Löftmau818 1.402 1402 0.2619 2289 0.0533 990 0.0106 1153 1.557Lorsce1371 1.202.4 20.248 0.1018 127 0.0357 0.0318 27 0.0367 0.0367 58 1.00357 0.0267 1.20357Lorsce1371 1.202.4 20.241 0.0131 1100 0.033 10.0287 1.203 1122 1.01033 1.337 1.337 1.233 1.0226 35 0.0666 1.00467 1.24 1122 1.0103Lorsch298 2.988 4.949.0 0.0311 1.0202 1.0033 10.0287 1.29 1122 1.0103Lorsch298 2.980 1.00477 10.0371 1.0337 10.0287 1.023Lorsch298 2.980 41.3 0.0217 10.0331 1.023 1	Leutenbach	2274	451.2	0.0919	123	0.1005	142	0 1148	141
Lichtenau 1356 254.9 0.0345 53 0.0645 94 0.0649 85 Lichtenstein 2655 468.3 0.2234 274 0.0733 134 0.1191 165 Linbrach 1523 239.8 0.0837 125 0.0452 48 0.0147 182 Linbrach 809 133.1 0.0266 43 0.0299 51 0.0339 51 Löcbgau 1539 251.5 0.0589 93 0.0542 94 0.064 96 Löffingen 2167 399.4 0.271 289 0.0593 99 0.1016 135 Lörrach 8130 2501 0.2868 277 0.6669 580 0.6355 51 Lorsene 1371 2204 0.1212 157 0.0357 67 0.0561 85 Lorsene 1371 2204 0.1212 157 0.0333 1.337 942 Malberg 1603 317.1 0.1347 170 0.0356 58 0.0263 10.0266	Leutkirch im Allgäu	6246	1099.2	0 2623	380	0 2349	376	0.2795	388
Lichtenstein2655468.30.22342740.07031340.1191165Lichtenwald7971230.0305500.026480.031350Limbach152323080.08371250.0452840.06195Linkenheim-Hochstetten29375780.0534850.16322200.147182Lobbach80913310.0266430.0299510.033951Löckgau1539251.50.0589930.0542940.06496Löftingen2167390.40.2712890.0533990.1016135Lörach818140.20.26182180.0138270.03575158Loffenau818140.20.261316010331800.1259180Lossburg1803317.10.13471700.0561940.0807112Lotstetteten584104.7700.0232340.023360.026737Ludwigsburg119052550.7416131.310710331.337942Mashistetten29840.00.081111070.0893120.10561940.066469Mahlberg110622550.7416131.310710331.337942940.666130.026469Mashistetten298440.60.023 <t< td=""><td>Lichtenau</td><td>1356</td><td>254.9</td><td>0.2020</td><td>53</td><td>0.2010 0.0645</td><td>94</td><td>0.0649</td><td>85</td></t<>	Lichtenau	1356	254.9	0.2020	53	0.2010 0.0645	94	0.0649	85
Lichtenwald7971230.0305500.026480.031350Limbach1523239.80.08371250.0452480.06195Limbach809133.10.0266430.0299510.033951Löcbgau1539251.50.0589930.0542940.06496Löffingen2167399.40.2712890.0593990.1016135Lörach813025010.26682770.66695800.035558Loffenau818140.20.2121570.0367670.056185Lorsee137122040.12121570.0367670.066185Lorse13710.3471700.0561940.0807112Lotstetten584104.70.0232340.023360.026737Ladwigsburg151905258.50.7416131.10710331.337942Malasch9834000.08111070.08931240.1018123Malaberg1106221.50.0226350.0666850.056469Mahlsetten29841.30.01271530.0494880.07104Mashsch395150.30.0166370.0392700.038362Malasch395150.30.0166370.136412	Lichtenstein	2655	468.3	0.0010 0.2234	274	0.0010 0.0793	134	0.1191	165
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lichtenwald	797	123	0.2201 0.0305	50	0.0100	48	0.0313	50
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Limbach	1523	239.8	0.0000 0.0837	125	0.020	84	0.0010	95
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Linkenheim-Hochstetten	2937	578	0.0001 0.0534	85	0.1632	220	$0.001 \\ 0.147$	182
Löchgau1539251.50.0589930.0512940.06496Löffingen2167399.40.2712880.0533990.1016135Lörrach813025010.28682770.66695800.6355584Löfrenau818140.20.26192180.0138270.035751Lonsee137120.40.12121570.0357670.056185Lorch2898494.90.10311600.10331800.1259180Lossburg1803317.10.13471700.0561940.080737Ludwigsburg151905258.50.7416131.310710331.337942Malberg1106221.50.0226350.0606810.066469Mahlberg1106221.50.0212330.0068150.010619Mahlberd1664275.30.11271530.0494880.07104Malsch3834767.40.1231710.1856590.030547Markach995150.30.0186370.0392700.038362Matcoff2865675.30.16741800.14251710.1717178Markach1923446.80.0518660.11881370.1136120Matcoff2865675.30.16741	Lobbach	809	133 1	0.0001 0.0266	43	0.1002 0.0299	51	0.0339	51
Dongsta 12167 339.4 0.271 289 0.1016 135 Lörrach 8130 2501 0.2868 277 0.669 580 0.6559 504 Lörrach 928 130.6 0.0178 35 0.0361 65 0.0355 55 Loffenau 818 140.2 0.2619 218 0.0133 27 0.0357 51 Lonsee 1371 20.4 0.1212 157 0.0357 67 0.0561 84 0.023 36 0.0267 37 Lotstetten 584 104.7 0.0232 34 0.023 36 0.0267 37 Lodwigsburg 15190 5258.5 0.741 613 1.3107 1033 1.337 942 Magstadt 1983 400 0.0811 107 0.0833 12.4 0.1018 103 Malherdigen 751 10.62 21.5 0.0266 15 0.0106 19 Malkash	Löchgau	1539	251.5	0.0589	93	0.0200 0.0542	94	0.064	96
Dormson 2501 0.2668 277 0.6669 580 0.6355 584 Lörrach 928 139.6 0.0178 35 0.0361 65 0.0355 584 Loffenau 818 140.2 0.2619 218 0.0137 77 0.0561 85 Lorch 2898 494.9 0.1031 160 0.1033 180 0.1259 180 Lossburg 1803 317.1 0.1347 170 0.0561 94 0.0807 112 Lotstetten 584 104.7 0.0226 35 0.0668 10.0264 69 Mahlsterten 298 41.3 0.0212 33 0.0066 15 0.0106 19 Mainbardt 1664 275.3 0.1127 153 0.0494 88 0.07 104 Malsch 995 150.3 0.0186 37 0.0392 70 0.0383 62 March 995 150.3 <	Löffingen	2167	399.4	0.0000	289	0.0593	99	0.001	135
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lörrach	8130	2501	0.211	$\frac{200}{277}$	0.0000	580	0.1010 0.6359	504
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Löwenstein	028	139.6	0.2000 0.0178	35	0.0000	65	0.0005	58
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Loffenau	818	135.0 140.2	0.0110	218	$0.0001 \\ 0.0138$	$\frac{00}{27}$	0.0357	51
	Lonsee	1371	220.4	0.2010 0.1212	157	0.0150	67	0.0561	85
Lorshurg180317131700.16541940.0807112Lotsburg151905258.50.7416131.310710331.337942Magstadt19834000.081111070.08031240.1018123Mahlberg1106221.50.0226350.0606810.056469Mahlstetten29841.30.0212330.0068150.010619Mainhardt1664275.30.11271530.0494880.07104Malsch3834767.40.1231710.18572540.1952238Malsch995150.30.0186370.0392700.038362Manheim4445015653.80.4174546.103142293.982755Marbach am Neckar3423693.80.14021840.1552150.1764213Markdorf2865675.30.16741800.14251710.162187Markdorf2865675.30.16741800.0336600.046569Maisenbeim1267189.70.068960.0336600.046569Maisenbeim1267189.70.0604970.0572680.053658Maulbronn1946335.40.15841990.057680.053658Maulbronn1946335.40.154	Lorch	2808	191 9	0.1212 0.1031	160	0.0007	180	0.0001 0.1250	180
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lossburg	1803	317.1	0.1001 0.1347	170	0.1055	9/	0.1200	112
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lottstetten	584	104.7	0.1347	34	0.0001	36	0.0007 0.0267	37
Introduct Magstadt19150 250.5 0.141 0.130 1.050 1.050 1.051 542 Magstadt1983400 0.0811 107 0.0891 1240 0.1018 123 Mahlberg1106 221.5 0.0226 35 0.0606 81 0.0564 69 Mahlstetten298 41.3 0.0212 33 0.0068 81 0.0564 69 Mainhardt1664 275.3 0.1127 153 0.0494 88 0.07 104 Malsch995150.3 0.0186 37 0.0392 70 0.0383 62 Malterdingen751 119.6 0.0089 19 0.0356 59 0.0305 47 Manheim44450 15653.8 0.417 454 6.1031 4229 3.98 2755 Marbach am Neckar 3423 693.8 0.1402 184 0.155 215 0.1764 213 March1923 446.8 0.0518 66 0.1438 137 0.1136 120 Markgröningen 3007 637 0.1604 97 0.037 71 0.162 187 Marselheim1267 189.7 0.0604 97 0.037 71 0.0483 79 Massenbachhausen1110 182.7 0.068 96 0.0336 60 0.0465 69 Mair949 184.5 0.0164 97 0.037 75 <td< td=""><td>Ludwigsburg</td><td>15100</td><td>5258 5</td><td>0.0252 0.741</td><td>613</td><td>1.3107</td><td>1033</td><td>1 337</td><td>042</td></td<>	Ludwigsburg	15100	5258 5	0.0252 0.741	613	1.3107	1033	1 337	042
Magibar1305130514050.00110.000110.000061810.010151205Mahlberg110629841.30.0212330.00606810.056469Mainhardt1664275.30.11271530.0494880.07104Maisch3834767.40.1231710.18572540.1952238Malsch995150.30.0186370.0392700.038362Matherdingen751119.60.0089190.0356590.030547Marnheim4445015653.80.4174546.103142293.982755Markdorf2865675.30.16741840.1552150.1764213Markdorf2865675.30.16741800.14251710.162187Markdorf2865675.30.166741800.14251710.162187Marxgröningen30076370.10604970.037710.048379Massenbachhausen1110182.70.0604970.037570.048379Maibronn1946335.40.15841990.0571980.0853121Maulbronn1946335.40.15841990.057980.0853121Maulburg927210.70.0213570.047591030.0572680.0	Magstadt	1083	400	0.141	107	1.0107	194	0 1018	1942
Mainberg1100221.3 0.0220 0.0220 0.0068 0.1 0.0064 0.9 Mainbardt1664275.3 0.1127 153 0.0068 15 0.0106 19 Mainhardt1664275.3 0.1127 153 0.00494 88 0.07 104 Malsch3834767.4 0.123 171 0.1857 254 0.1952 238 Malsch995150.3 0.0186 37 0.0392 70 0.0383 62 Matherdingen751 119.6 0.0089 19 0.0356 59 0.0305 47 Manheim4445015653.8 0.417 454 6.1031 4229 3.98 2755 Marbach am Neckar 3423 693.8 0.1402 184 0.155 215 0.1764 213 Markdorf2865 675.3 0.1674 180 0.1425 171 0.162 187 Markgröningen 3007 637 0.0604 97 0.037 71 0.0483 79 Massenbachhausen1110 182.7 0.068 96 0.0336 60 0.0465 69 Maiur927 210.7 0.0293 57 0.072 18 0.0551 75 0.047 59 Maulbronn1946 354 0.1584 199 0.057 98 0.0653 121 Maulbronn1946 355.9 0.0437 70 0.0692 89	Mahlborg	1106	201 5	0.0011	35	0.0895	81	0.1010 0.0564	60
Mainbetter25344.5 0.0212 35 0.0005 15 0.0100 15 Mainbetter164 275.3 0.1127 153 0.0494 88 0.07 104 Malsch995 150.3 0.0186 37 0.0392 70 0.0383 62 Malterdingen751 119.6 0.0089 19 0.0356 59 0.0305 47 Mannheim 44450 15553.8 0.417 454 6.1031 4229 3.98 2755 Marbach am Neckar 3423 693.8 0.1402 184 0.155 215 0.1764 213 March1923 446.8 0.0518 66 0.1425 171 0.1717 178 Markdorf2865 675.3 0.1674 180 0.1425 171 0.1717 178 Markgröningen 3007 637 0.1905 218 0.1269 171 0.162 187 Marszell 1428 272 0.1467 162 0.0437 70 0.0692 89 Masebachausen 1110 182.7 0.068 96 0.0336 60 0.0465 69 Maübronn 1946 335.4 0.1584 199 0.057 98 0.0853 121 Maulbronn 1946 335.4 0.1584 199 0.057 98 0.0853 121 Maulbronn 1946 335.4 0.0539 91 0.1545 224 <	Mahlstotton	208	41 S	0.0220 0.0212	33	0.0000	15	0.0004	10
Malsch1604213.3 0.1121 0.133 0.0347 0.0 0.0152 238 Malsch995150.3 0.0186 37 0.0392 70 0.0383 62 Malterdingen751 119.6 0.0089 19 0.0356 59 0.0305 47 Mannheim44450 15653.8 0.417 454 6.1031 4229 3.98 2755 Marbach am Neckar 3423 693.8 0.1402 184 0.155 215 0.1764 213 March1923 446.8 0.0518 66 0.1188 137 0.1136 120 Markdorf2865 675.3 0.1674 180 0.1425 171 0.1717 178 Markgröningen3007 637 0.1905 218 0.1269 171 0.162 187 Marschhausen1110 182.7 0.0604 97 0.037 71 0.0483 79 Massenbachhausen1110 182.7 0.068 96 0.0336 60 0.0465 69 Maibronn1946 335.4 0.1584 199 0.057 98 0.0853 121 Maulburg927 210.7 0.0219 30 0.0572 68 0.0365 58 Meckesheim 1683 261.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3030 555.9 0.0539 91 0.1545 224 <td< td=""><td>Mainbardt</td><td>290</td><td>975.3</td><td>0.0212 0.1197</td><td>153</td><td>0.0008</td><td>88</td><td>0.0100</td><td>19</td></td<>	Mainbardt	290	975.3	0.0212 0.1197	153	0.0008	88	0.0100	19
Malsch 3534 101.4° 0.125 111 0.1351 234 0.1352 235 Malsch 995 150.3 0.0186 37 0.0392 70 0.0383 62 Malsch 751 119.6 0.0089 19 0.0356 59 0.0383 62 Marbach am Neckar 3423 693.8 0.117 454 6.1031 4229 3.98 2755 Marbach am Neckar 3423 693.8 0.1402 184 0.155 215 0.1764 213 March 1923 446.8 0.0518 66 0.1188 137 0.1136 120 Markdorf 2865 675.3 0.1674 180 0.1425 171 0.1717 178 Markgröningen 3007 637 0.1005 218 0.1269 171 0.162 187 Marschleheim 1267 189.7 0.0604 97 0.037 71 0.0628 89 Masenbachhausen 1110 182.7 0.068 96 0.0336 60 0.0445 69 Maibron 1946 335.4 0.1584 199 0.057 98 0.0853 121 Maubron 1946 335.4 0.1584 199 0.057 88 0.0536 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0274 48 <	Malach	2824	215.5	0.1127 0.122	171	0.0494 0.1857	254	0.07	228
Malterdingen555100.50.0089100.03521000.008914Manheim4445015653.80.4174546.103142293.982755Marbach am Neckar3423693.80.14021840.1552150.1764213March1923446.80.0518660.11881370.1136120Markdorf2865675.30.16741800.14251710.1717178Markgöningen30076370.19052180.12691710.162187Marszell14282720.14671620.0437700.069289Massenbachausen1110182.70.068960.0336600.046569Mair949184.50.0136230.0551750.04759Maulbronn1946335.40.15841990.057980.0853121Maulburg927210.70.0219300.0572680.053658Meckenbeuren3030555.90.0539910.15452240.1414188Meckesheim1683261.20.0273570.07021210.0665105Mersturg14093230.19641740.0502670.082288Mehrstetten45469.50.0411550.011220.017729Meissenheim1026<	Malsch	005	150.3	0.125	37	0.1007	$\frac{204}{70}$	0.1952	238 62
Mantherin13113300.00501390.005053490.00505441Mantherin4445015653.80.4174546.103142293.982755Marbach am Neckar3423693.80.14021840.1552150.1764213March1923446.80.0518660.11881370.1136120Markdorf2865675.30.16741800.14251710.1717178Markgröningen30076370.19052180.12691710.162187Marszell14282720.14671620.0437700.069289Masenbachhausen1110182.70.0664970.037710.048379Massenbachhausen1110182.70.0624960.0336600.046569Mair949184.50.0136230.0571750.04759Maulborn1946335.40.15841990.057980.8853121Maulburg927210.70.0219300.0572680.053658Meckenbeuren3030555.90.0533910.15452240.1414188Meckesheim1683261.20.0293570.07021210.0665105Meersburg14093230.19641740.0502670.882288Metringen1	Malterdingen	751	110.6	0.0100	10	0.0352	50	0.0305	47
Marhnenn 44400 10053.5 0.471 454 0.1051 4229 3.56 2153 Marbach am Neckar 3423 693.8 0.1402 184 0.155 215 0.1764 213 March 1923 446.8 0.0518 66 0.1188 137 0.1136 120 Markdorf 2865 675.3 0.1674 180 0.1425 171 0.1717 178 Markgröningen 3007 637 0.1905 218 0.1269 171 0.162 187 Marxzell 1428 272 0.1467 162 0.0437 70 0.0692 89 Masenbachhausen 1110 182.7 0.068 96 0.0336 60 0.0465 69 Maür 949 184.5 0.0136 23 0.0551 75 0.047 59 Maulbronn 1946 335.4 0.1584 199 0.0572 68 0.0536 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0293 57 0.0702 121 0.0665 105 Mersburg 1409 323 0.1964 174 0.0502 67 0.0822 88 Mehrstetten 454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim 1026 163.2 0.0274 48 0.0	Mannhoim	44450	15653.8	0.0039 0.417	19	6 1021	4220	3.08	41 9755
Maroach an Neckar 3423 3523 3533 0.1674 1642 1643 0.1632 213 0.1104 213 March1923 446.8 0.0518 66 0.1188 137 0.1136 120 Markdorf2865 675.3 0.1674 180 0.1425 171 0.162 187 Markgröningen 3007 637 0.1905 218 0.1269 171 0.162 187 Marxzell 1428 272 0.1467 162 0.0437 70 0.0692 89 Masenbachhausen 1110 182.7 0.068 96 0.0336 60 0.0465 69 Maür 949 184.5 0.0136 23 0.0551 75 0.047 59 Maulborn 1946 335.4 0.1584 199 0.057 98 0.0853 121 Maulburg 927 210.7 0.0219 30 0.0572 68 0.0536 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0274 48 0.0389 68 0.0415 64 Mersturg 1409 323 0.1964 174 0.0502 67 0.0822 88 Mersturg 1026 163.2 0.0274 48 0.0315 49 0.0316 44 Mergen 3086 568.3 0.2008 254	Marbach am Nockar	3493	603.8	0.417 0.1409	18/	0.1031 0.155	4229 915	0.30 0.1764	2100
Marku1353140.30.010160.00.01031010.0103120Markdorf2865675.30.16741800.14251710.1717178Markgröningen30076370.19052180.12691710.162187Marxzell14282720.14671620.0437700.069289Maselheim1267189.70.0604970.037710.048379Massenbachhausen1110182.70.068960.0336600.046569Maür949184.50.0136230.0551750.04759Maulbronn1946335.40.15841990.057980.0853121Maulburg927210.70.0219300.0572680.053658Meckenbeuren3030555.90.0539910.15452240.1414188Mecksheim1683261.20.0293570.07021210.0665105Meersburg14093230.19641740.0502670.082288Mehrstetten45469.50.0411550.011220.017729Merdingen1026163.20.0274480.0385680.041564Mengen3086568.30.20082540.10661680.1445192Merkingen695103.3 <td< td=""><td>March</td><td>1023</td><td>446.8</td><td>0.1402</td><td>66</td><td>0.100</td><td>$\frac{210}{137}$</td><td>0.1136</td><td>1210</td></td<>	March	1023	446.8	0.1402	66	0.100	$\frac{210}{137}$	0.1136	1210
Markufi2003 515.3 615.3 616147 165 617142 111 61711 116 Markgröningen 3007 637 0.1905 218 0.1269 171 0.162 187 Marxzell 1428 272 0.1467 162 0.0437 70 0.0692 89 Masenbachhausen 1110 182.7 0.068 96 0.0336 60 0.0465 69 Maür 949 184.5 0.0136 23 0.0551 75 0.047 59 Maubronn 1946 335.4 0.1584 199 0.057 98 0.0853 121 Mauburg 927 210.7 0.0219 30 0.0572 68 0.0536 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0293 57 0.0702 121 0.0665 105 Meersburg 1409 323 0.1964 174 0.0502 67 0.0822 88 Mehrstetten 454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 706 124 0.0166 28 0.0315 </td <td>Markdorf</td> <td>2865</td> <td>675.3</td> <td>0.0010 0.1674</td> <td>180</td> <td>0.1100 0.1425</td> <td>171</td> <td>0.1130 0.1717</td> <td>178</td>	Markdorf	2865	675.3	0.0010 0.1674	180	0.1100 0.1425	171	0.1130 0.1717	178
Markgronnigen 5001 5071 60.1303 2163 61.1203 1711 0.1022 181 Marxzell 1428 272 0.1467 162 0.0437 70 0.0692 89 Maselheim 1267 189.7 0.0604 97 0.037 71 0.0483 79 Massenbachhausen 1110 182.7 0.068 96 0.0336 60 0.0465 69 Maür 949 184.5 0.0136 23 0.0551 75 0.047 59 Maulbronn 1946 335.4 0.1584 199 0.057 98 0.0853 121 Mauburg 927 210.7 0.0219 30 0.0572 68 0.0366 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0293 57 0.0702 121 0.0665 105 Mersburg 1409 323 0.1964 174 0.0502 67 0.8822 88 Mehrstetten 454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 695 103.3 0.0739 97 0.015	Markgröningen	2005	637	0.1074	218	0.1420 0.1260	171	0.162	187
MaxZell 1423 212 0.1401 102 0.0431 10 0.0502 037 Maselheim 1267 189.7 0.0604 97 0.037 71 0.0483 79 Massenbachhausen 1110 182.7 0.068 96 0.0336 60 0.0465 69 Mair 949 184.5 0.0136 23 0.0551 75 0.047 59 Maulbronn 1946 335.4 0.1584 199 0.057 98 0.0853 121 Maulburg 927 210.7 0.0219 30 0.0572 68 0.0536 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0293 57 0.0702 121 0.0665 105 Meersburg 1409 323 0.1964 174 0.0502 67 0.822 88 Mehrstetten 454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merklingen 1018 258.9 0.0411 45 0.0629 68 <td>Maryzoll</td> <td>1428</td> <td>007</td> <td>0.1305 0.1467</td> <td>162</td> <td>0.1203 0.0437</td> <td>70</td> <td>0.102</td> <td>80</td>	Maryzoll	1428	007	0.1305 0.1467	162	0.1203 0.0437	70	0.102	80
Massenbachhausen110182.7 0.004 0.004 0.001 11 0.0465 15 Massenbachhausen949184.5 0.0136 23 0.0551 75 0.0465 75 Maulbronn1946 335.4 0.1584 199 0.057 98 0.0853 121 Maulburg927 210.7 0.0219 30 0.0572 68 0.0336 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim1683 261.2 0.0293 57 0.0702 121 0.0665 105 Meersburg1409 323 0.1964 174 0.0502 67 0.0822 88 Mehrstetten454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merklingen 3777 628.7 0.3678 452 0.992 179 0.1599 235 Messkirch 2487 460 0.196 235 0.0813 129	Maselheim	1920	189.7	0.1407	97	0.0457	70	0.0092	70
Mastendamination11101021 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 $0.00000000000000000000000000000000000$	Massenbachbausen	1110	182.7	0.0004	96	0.001	60	0.0465	60
Mail946335.40.0150250.0001160.04165Maulborn1946335.40.15841990.057980.0853121Maulburg927210.70.0219300.0572680.053658Meckenbeuren3030555.90.0539910.15452240.1414188Meckesheim1683261.20.0293570.07021210.0665105Meersburg14093230.19641740.0502670.082288Mehrstetten45469.50.0411550.011220.017729Meissenheim1026163.20.0274480.0389680.041564Mengen3086568.30.20082540.10661680.1445192Merdingen7061240.0166280.0315490.031644Merklingen695103.30.0739970.015310.026344Merklingen1018258.90.0411450.0629680.065964Messkirch24874600.1962350.08131290.117155Messkirch24874600.1962350.08131290.117155Metzingen51891002.60.23163080.21673150.255322Michelbach an der Bilz876150.1	Majir	9/9	184.5	0.000	23	0.0550 0.0551	75	0.0400	50
Mathronn1540560.4 0.1654 155 0.061 56 0.0505 121 Maulburg927210.7 0.0219 30 0.0572 68 0.0536 58 Meckenbeuren 3030 555.9 0.0539 91 0.1545 224 0.1414 188 Meckesheim 1683 261.2 0.0293 57 0.0702 121 0.0665 105 Meersburg 1409 323 0.1964 174 0.0502 67 0.0822 88 Mehrstetten 454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 706 124 0.0166 28 0.0315 49 0.0316 44 Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merklingen 1018 258.9 0.0411 45 0.0629 68 0.0659 64 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Metzingen 5189 1002.6 0.2316 308 0.2167 315	Maulbronn	1946	335 /	0.0100	100	0.057	98	0.011	121
Mathematic 3030 555.9 0.0213 50 0.0512 50 0.0512 50 0.0502 50 0.0652 60 0.0652 64 Mershemen 1026 163.2 0.0274 48 0.0315 49 0.0316 44 Mershingen 695 103.3 0.0739 97 0.0155 31 0.0263 44 Mershingen 2487 460 0.196 235 0.0813 129 0.117 155 Messkirch <td>Maulburg</td> <td>927</td> <td>210.7</td> <td>0.1004</td> <td>30</td> <td>0.001 0.0572</td> <td>68</td> <td>0.0000</td> <td>58</td>	Maulburg	927	210.7	0.1004	30	0.001 0.0572	68	0.0000	58
Meckenber 1683 261.2 0.0293 57 0.0702 121 0.01111 150 Meeksheim 1409 323 0.1964 174 0.0502 67 0.0822 88 Mehrstetten 454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 706 124 0.0166 28 0.0315 49 0.0316 44 Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merkhausen 1018 258.9 0.0411 45 0.0629 68 0.0659 64 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messstetten 3777 628.7 0.3678 452 0.0922 179 0.1599 235 Metzingen 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Meckenbeuren	3030	555.9	0.0210 0.0539	91	0.0012 0.1545	224	0.0000 0.1414	188
Meersburg1409 323 0.1964 174 0.0502 67 0.0822 88 Mersburg454 69.5 0.0411 55 0.011 22 0.0177 29 Meissenheim1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 706 124 0.0166 28 0.0315 49 0.0316 44 Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merkhingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merkhausen 1018 258.9 0.0411 45 0.0629 68 0.0659 64 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Metzingen 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Meckesheim	1683	261.2	0.0000	57	0.1010 0.0702	121	0.0665	105
Metrisbing1405525 0.1304 144 0.0002 01 0.0022 00 Mehrstetten45469.5 0.0411 55 0.011 22 0.0177 29Meissenheim1026 163.2 0.0274 48 0.0389 68 0.0415 64Mengen3086568.3 0.2008 254 0.1066 168 0.1445 192Merdingen706124 0.0166 28 0.0315 49 0.0316 44Merklingen695103.3 0.0739 97 0.015 31 0.0263 44Merzhausen1018258.9 0.0411 45 0.0629 68 0.0659 64Messkirch2487460 0.196 235 0.0813 129 0.117 155Messstetten3777628.7 0.3678 452 0.0922 179 0.1599 235Metzingen51891002.6 0.2316 308 0.2167 315 0.255 322Michelbach an der Bilz876150.1 0.0976 114 0.0227 41 0.0382 55Michelfeld966173.2 0.0387 56 0.0379 60 0.0441 60	Meersburg	1/09	323	0.0255	174	0.0702	67	0.0000	88
Meinstetten 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Meissenheim 1026 163.2 0.0274 48 0.0389 68 0.0415 64 Mengen 3086 568.3 0.2008 254 0.1066 168 0.1445 192 Merdingen 706 124 0.0166 28 0.0315 49 0.0316 44 Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merzhausen 1018 258.9 0.0411 45 0.0629 68 0.0659 64 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messkirch 3777 628.7 0.3678 452 0.0992 179 0.1599 235 Metzingen 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Mehrstetten	454	69.5	0.1001	55	0.0002	22	0.0022 0.0177	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Meissenheim	1026	163.2	0.0411 0.0274	48	0.011	68	0.0111 0.0415	64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mengen	3086	568.3	0.0211	254	0.1066	168	0.0110 0.1445	102
Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merklingen 695 103.3 0.0739 97 0.015 31 0.0263 44 Merzhausen 1018 258.9 0.0411 45 0.0629 68 0.0659 64 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messtetten 3777 628.7 0.3678 452 0.0992 179 0.1599 235 Metzingen 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Merdingen	706	124	0.0166	28	0.0315	49	0.0316	44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Merklingen	695	103.3	0.0100	97	0.0010	31	0.0010	11
Mcr2nadsen 1010 256.5 0.0411 45 0.0029 06 0.0039 04 Messkirch 2487 460 0.196 235 0.0813 129 0.117 155 Messkirch 3777 628.7 0.3678 452 0.0992 179 0.1599 235 Metzingen 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Merzhausen	1018	258 G	0.0739	45	0.010	68	0.0200	-1-1 64
Messarien 2461 460 0.1360 235 0.0615 125 0.111 135 Messatetten 3777 628.7 0.3678 452 0.0992 179 0.1599 235 Metzingen 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Mesekirch	2/87	200.9 760	0.0411	-10 925	0.0029	120	0.0009	155
Michelfeld 5777 526.7 6.5076 452 6.6952 175 6.1599 253 Michelfeld 5189 1002.6 0.2316 308 0.2167 315 0.255 322 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Messetetten	2401	628 7	0.130	⊿00 ∕/59	0.0013	170	0.117	232
Michelbach an der Bilz 876 150.1 0.0976 114 0.0227 41 0.0382 55 Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60	Metzingen	5180	020.7 1002 G	0.0070	402 308	0.0992 0.2167	119 315	0.1099	∠əə 399
Michelfeld 966 173.2 0.0387 56 0.0379 60 0.0441 60 Fortsetzung auf der nöcksten Soite	Michelbach an dor Bilz	876	150 1	0.2310	114	0.2107	/1	0.200	55
Fortsotzung auf der nöchsten Soite	Michelfeld	066	173.9	0.0970	56	0.0227	-41 60	0.0362	60 60
	michelielle	300	110.4	0.0001		rteotrung	auf der	nächster	Soito

Tab. E	B.1 –	Fortsetzung	(S =	Schaden	in	Mio.€.	G =	Anzahl	der	betroffenen	Gebäude)
--------	-------	-------------	------	---------	----	--------	-----	--------	----------------------	-------------	---------	---

Tab. D.1 – Fortsetzung	$\frac{1}{1}$		$c, \sigma = \pi$	12ann u			vi i	11.9
Gemeindename	Anzahl Gebäude	Gesamt-	Mode S	G III	Mode S	II 2 G	Mode	G G
Mietingen	1156	159	0.0556	95	0.03	64	0.0405	72
Mittelbiberach	1419	249.2	0.1076	136	0.0439	74	0.0634	88
Möckmühl	2125	407.7	0.0468	73	0.1087	152	0.1037	132
Mögglingen	1093	183.9	0.0741	100	0.0327	58	0.0468	68
Möglingen	1679	482.5	0.3237	222	0.072	77	0.1227	105
Mönchweiler	804	166.6	0.1335	121	0.0234	35	0.0424	50
Mönsheim	873	146.2	0.0976	115	0.0219	40	0.0372	55
Mössingen	5004	953.4	0.4239	489	0.1658	257	0.2425	311
Mötzingen	976	172.7	0.1073	122	0.0267	46	0.044	61
Moos	952	165.6	0.0472	67	0.0332	55	0.0422	59
Mosbach	6202	1325.2	0.1999	265	0.3221	415	0.337	385
Mudau	1647	264	0.1166	160	0.0461	85	0.0672	103
Muhlacker	6692	1353.2	0.6942	729	0.2221	329	0.3441	415
Munienbach	420	(3.2 277 F	0.0325	41	0.0128	22	0.0187	27
Mühlhausen im Täle	2099 200	577.0	0.0594	16	0.1023 0.0118	170	0.090	149 91
Mühlhausen Ehingen	529 1017	00 160 1	0.0089	10	0.0118	22 71	0.0128	21 64
Mühlheim an der Donau	1915	107.8	0.0212 0.0746	106	0.0408	65	0.0408	76
Müllheim	3647	878.5	0.0435	64	0.291	309	0.2234	226
Münsingen	4048	680	0.3537	446	0.111	199	0.1729	$\frac{250}{251}$
Münstertal/Schwarzwald	1181	215.7	0.032	50	0.0528	80	0.0549	74
Muggensturm	1700	288.8	0.0369	64	0.0745	119	0.0735	106
Mulfingen	1429	208.3	0.0547	94	0.0431	84	0.053	89
Mundelsheim	1010	154.2	0.0352	60	0.0335	62	0.0393	63
Munderkingen	1651	274.6	0.0868	125	0.0537	93	0.0699	103
Murg	1686	315.9	0.0595	86	0.0725	108	0.0804	105
Murr	1432	278.8	0.0235	38	0.081	110	0.0709	89
Murrhardt	3741	672.3	0.1047	163	0.1641	250	0.171	232
Mutlangen	1442	241	0.0797	113	0.0464	80	0.0613	90
Nagold	5240	1210.7	0.682	609	0.1938	251	0.3079	325
Nattneim	1091	317.7 207.1	0.0730 0.0277	101 62	0.0080	103	0.0808	105
Neckargomiind	1277	207.1 700.6	0.0377	03 114	0.0481 0.2203	$\frac{02}{285}$	0.0527 0.2011	00 230
Neckargerach	813	130.0 117 7	0.070	17	0.2203 0.0376	200 67	0.2011	209 51
Neckarsulm	5763	1442.3	0.2026	232	0.36	393	0.3668	358
Neckartailfingen	1156	204	0.0222	38	0.0553	84	0.0519	72
Neckartenzlingen	1640	312.9	0.0648	90	0.0693	102	0.0796	102
Neckarwestheim	1006	182.4	0.0525	71	0.0364	58	0.0464	63
Neckarzimmern	500	133	0.02	22	0.0324	34	0.0339	31
Neenstetten	301	43	0.0204	31	0.0074	16	0.011	19
Nehren	1035	172.5	0.0469	70	0.0352	61	0.0439	65
Neidenstein	662	107.7	0.0123	23	0.0288	48	0.0274	42
Neidlingen	568	96.4	0.019	30	0.0218	36	0.0246	36
Nellingen	567	83.2	0.0515	71	0.0129	27	0.0212	36
Neresneim	2480 1697	437.3	0.1080 0.1077	209	0.0812	135	0.1112	100
Neudonau	1027	240	0.1977	$\frac{240}{71}$	0.0540 0.0500	104	0.0020 0.0632	101
Nojinbijrg	2067	240.2	0.0401 0.1065	71 210	0.0599	104	0.0032 0.1011	90 120
Neünburg am Bhein	2769	504.2	$0.1300 \\ 0.0479$	82	0.0003 0.1411	206	$0.1011 \\ 0.1282$	$123 \\ 172$
Neünstadt am Kocher	2602	462.4	0.0419 0.0662	107	0.1411 0.1147	177	0.1202 0.1176	162
Neünstein	1859	289.1	0.1131	166	0.0521	99	0.0736	116
Neuffen	1864	300.3	0.0792	123	0.062	110	0.0764	116
Neufra	836	112.8	0.0284	53	0.0237	50	0.0287	52
Neuhausen	1817	282	0.15	204	0.0456	89	0.0717	113
Neuhausen auf den Fildern	2642	585.9	0.2402	243	0.105	139	0.149	164
Neuhausen ob Eck	1224	208.1	0.0419	66	0.0466	77	0.053	76
Neukirch	697	114.6	0.0088	18	0.0343	55	0.0292	44
Neuler	850	132.4	0.0475	71	0.0247	47	0.0337	53
Neulingen	1771	302.8	0.1713	207	0.0484	85	0.077	110
Neulussheim	1701	289.3	0.0227	43	0.0859	132	0.0736	106
ineunkircnen	007	95.6	0.0118	 	0.025	45	0.0244	38
				FO	ntsetzung	aur de	i nachster	seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

	Anzahl	Gesamt-	Mode	ell 1	Mode	ll 2	Mode	11 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G
Neuried	2408	388.3	0.0597	104	0.0952	161	0.0988	150
Neustetten	920	147.8	0.0824	107	0.0238	45	0.0376	58
Neuweiler	1034	157.7	0.139	166	0.0212	44	0.0401	65
Niedereschach	1618	276.9	0.2171	239	0.0392	71	0.0705	101
Niedernhall	967	189.1	0.0242	36	0.0488	68	0.0481	60
Niederstetten	1726	283.7	0.0816	122	0.0566	99	0.0722	107
Niederstotzingen	1407	246	0.1423	167	0.039	67	0.0626	88
Niefern-Öschelbronn	2902	630.5	0.3581	340	0.1007	139	0.1604	180
Nordheim	2108	368.4	0.0715	110	0.0836	134	0.0937	131
Nordrach	803	133.6	0.0284	45	0.0293	50	0.034	50
Notzingen	1048	162.3	0.0473	75	0.0322	60	0.0413	65
Nürtingen	9759	1834.8	0.3651	518	0.4121	613	0 4665	605
Nufringen	1390	258.9	0.1116	133	0.0456	72	0.0659	87
Nusplingen	751	108.9	0.0409	65	0.02	41	0.0277	47
Nussloch	2694	561.4	0.0379	60	0.1723	215	0.1428	167
Oberboihingen	1585	271.9	0.0463	74	0.0646	104	0.0692	99
Oberderdingen	2917	512.3	0.0882	138	0.1211	190	0.1303	181
Oberdischingen	613	104.5	0.0362	50	0.0198	34	0.0266	38
Oberharmersbach	657	105.0	0.0357	53	0.0201	37	0.0268	41
Oberhausen-Bheinhausen	2722	452.1	0.0322	64	0.1363	215	0.115	169
Oberkirch	4384	861.2	0.0407	73	0 2895	375	0.219	272
Oberkochen	2006	494.7	0.0718	83	0.1221	136	0.1258	125
Obermarchtal	416	60	0.0202	33	0.0115	23	0.0153	26
Oberndorf am Neckar	3975	744.6	0.4136	458	0.1199	192	0.1894	247
Obernheim	597	87	0.0523	73	0.0136	29	0.0222	37
Oberreichenbach	888	137.5	0.1366	155	0.0178	$\frac{-5}{36}$	0.035	56
Oberried	737	134.9	0.0037	8	0.0523	70	0.0343	46
Oberriexingen	919	150.6	0.0555	79	0.0278	50	0.0383	57
Oberrot	1069	178.9	0.0154	29	0.0517	82	0.0455	67
Obersontheim	1287	227.4	0.075	101	0.0438	72	0.0579	80
Oberstenfeld	2383	375.5	0.0654	114	0.0885	155	0.0955	148
Obersulm	3951	704.9	0.1655	238	0.1516	239	0.1793	245
Oberteuringen	1054	228.7	0.0477	58	0.0505	66	0.0582	66
Oberwolfach	705	119.3	0.0105	20	0.0342	54	0.0304	44
Obrigheim	1676	303	0.0179	34	0.0969	138	0.0771	104
Ochsenhausen	2607	433.2	0.1709	234	0.0777	138	0.1102	162
Ödheim	1701	281.1	0.0366	65	0.0721	118	0.0715	106
Offenau	733	146.3	0.0147	23	0.0402	54	0.0372	46
Offenburg	11425	3656.4	0.2221	233	1.158	930	0.9297	708
Ofterdingen	1247	210.2	0.0632	91	0.0418	71	0.0535	78
Oftersheim	2152	552	0.022	31	0.1951	191	0.1404	134
Oggelshausen	322	47.6	0.0243	35	0.0079	16	0.0122	20
Ohlsbach	813	148.2	0.0119	21	0.0437	63	0.0377	51
Ohmden	545	82.3	0.0251	40	0.0163	31	0.021	34
Öhningen	1355	238	0.0666	94	0.048	79	0.0606	84
Öhringen	4856	1082 7	0 1860	230	0.2557	316	0.2753	301
Ölbropp Dürr	1072	169.4	0.1005	109	0.2001	55	0.2100	67
	1075	100.4	0.0110	108	0.0289	00	0.0429	40
Opfingen	662 1900	102.7	0.0382	57	0.0189	30	0.0262	42
Oppenau	1299	237.1	0.0510	(4	0.0523	80	0.0603	81
Oppenweiler	1195	199.8	0.01/4	33	0.0576	91	0.0508	() 50
Orsingen-Nenzingen	841	122.1	0.0235	44	0.028	54 CO	0.0312	53 50
Ortenberg	801	147.6	0.014	24	0.0414	60	0.0376	50
Ostersneim	050	100.7	0.0552	(Z 149	0.0175	32 107	0.0272	41 110
Osterburken	1891	334.2	0.1048	142	0.0055	107	0.085	118
Ostnidern	0383	1587.3	0.5648	528	0.2969	347 195	0.4036	396 195
Östracn	21/2	353.5	0.1008	153	0.0707	125	0.0899	135
Östringen	3760	677.6	0.0991	157	0.1667	254	0.1723	233
Otigheim	1169	202.7	0.0185	34	0.0576	88	0.0516	73
Otisheim	1553	245.1	0.126	170	0.0402	77	0.0624	97
Ottenbach	668	106.2	0.0204	35	0.0242	43	0.0271	42
				Fo	ortsetzung	auf de	r nächsten	Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

Tab. D.1 Fortsetzun	g(b) = bchauce		C, G = AI	11 1	Mada	11.0	Mada Mada	11.9
Gemeindename	Gebäude	Gesamt- wert	S	G	S	G G	S	G G
Ottenhöfen im Schwarzwald	900	144.3	0.0021	6	0.0644	95	0.0367	56
Ottersweier	1621	286.9	0.0169	32	0.0918	133	0.073	101
Owen	1016	164.9	0.1271	148	0.0235	45	0.042	63
Owingen	1074	208.1	0.0134	23	0.0649	87	0.053	67
Pfaffenhofen	767	123.2	0.0485	69	0.0222	41	0.0314	48
Pfaffenweiler	649	105.9	0.0389	55	0.0196	35	0.027	41
Pfalzgrafenweiler	1744	319.7	0.2855	283	0.0427	73	0.0813	109
Pfedelbach	2595	439.9	0.1152	170	0.091	153	0.1119	161
Pfinztal	4798	907.5	0.1354	204	0.2215	322	0.2308	298
Pforzheim	18201	5732.3	2.4755	1738	1.0075	939	1.4575	1128
Pfronstetten	583	87.8	0.0393	58	0.0153	30	0.0224	37
Pfullendorf	3123	698.5	0.1928	214	0.1415	181	0.1776	194
Pfullingen	4530	1013.4	0.2846	314	0.2039	262	0.2577	281
Philippsburg	3241	650.7	0.072	108	0.1754	233	0.1655	201
Plankstadt	2337	448.4	0.0185	35	0.1571	206	0.1141	145
Pleidelsheim	1476	265	0.0105	21	0.094	131	0.0674	92
Pliezhausen	2052	325.7	0.0531	93	0.0784	136	0.0829	128
Plochingen	2530	624.9	0.3134	271	0.1036	126	0.1589	157
Plüderhausen	2303	438.6	0.0498	78	0.1174	165	0.1116	143
Radolfzell am Bodensee	6059	1826.8	0.3199	290	0.4294	393	0.4645	376
Rainau	1115	169.5	0.0535	84	0.0332	63	0.0431	70
Rammingen	423	64	0.0336	47	0.0104	21	0.0163	27
Rangendingen	1681	226.5	0.0876	149	0.041	90	0.0576	105
Rastatt	7641	2467.4	0.3463	308	0.6159	521	0.6274	474
Ratshausen	280	38.3	0.0137	24	0.0072	16	0.0098	18
Raunberg	2152	357.3	0.0241	48	0.1097	172	0.0909	134
Ravensburg	10079	2757	0.4547	459	0.6608	663	0.701	625
Ravenstein	1049	150.8	0.0576	92	0.0275	20 84	0.0384	00
Rechberghausen	1453	270.8	0.0787	102	0.0000	84	0.0704	91
Reichartshausen	040 1159	261.0	0.0152 0.1527	27 120	0.0203 0.0412	44 55	0.021	41 70
Reichenbach am Heuberg	1100	201.9	0.1557	159	0.0413 0.0041	0	0.0000 0.0072	12
Reichenbach an der Fils	1700	20.0 383 5	0.0211 0.0422	20 57	0.0041 0.1036	9 193	0.0072 0.0076	106
Roilingon	1050	303.5	0.0422 0.0271	52	0.1030	120	0.0970	100
Remchingen	3157	552.0	0.0271	214	0.0340 0.1196	18/	0.0024 0.1406	196
Remseck am Neckar	4334	922.6	0.1300	186	0.1120 0.224	290	0.1100 0.2346	269
Bemshalden	3530	630.4	0.1311	194	0 1393	$\frac{230}{220}$	0.2010 0.1603	219
Renchen	1906	315.1	0.0199	40	0.0987	154	0.0802	119
Renningen	3827	827.6	0.2688	295	0.1602	213	0.2105	238
Renquishausen	274	38.7	0.0297	40	0.0056	12	0.0099	17
Reute	746	136.2	0.011	20	0.0401	58	0.0347	47
Reutlingen	25089	5359.7	1.8038	1987	1.0236	1383	1.3628	1555
Rheinau	3473	585.1	0.0654	116	0.1573	250	0.1488	216
Rheinfelden(Baden)	6256	1667.7	0.2083	229	0.433	438	0.4241	388
Rheinhausen	1009	143.4	0.0255	49	0.0336	66	0.0365	63
Rheinmünster	1740	327.9	0.0544	80	0.0785	115	0.0834	108
Rheinstetten	4885	1044.9	0.1346	183	0.2687	340	0.2657	303
Rickenbach	1109	169.8	0.1399	170	0.0236	48	0.0432	69
Riederich	1136	202.9	0.0403	60	0.0457	72	0.0516	71
Riedhausen	169	24.7	0.0122	18	0.0042	9	0.0063	11
Riedlingen	2982	572.6	0.1543	200	0.1171	174	0.1456	185
Riegel am Kaiserstuhl	773	185.8	0.0414	45	0.0407	48	0.0473	48
Rielasingen-Worblingen	2678	600.4	0.2052	215	0.1141	147	0.1527	166
Riesbürg	758	130.4	0.1137	121	0.0177	32	0.0332	47
Rietheim-Weilheim	905	148.7	0.0632	86	0.0263	47	0.0379	57
Ringsheim	665	123.3	0.0319	44	0.0257	40	0.0314	42
Römerstein	1424	211.9	0.1119	159	0.0344	70	0.0539	89
Rohrdorf	569	102.5	0.1005	99	0.0133	24	0.0261	36
Roigheim	528	86.2	0.0109	20	0.0224	37	0.022	33
Rosenberg	866	148.3	0.0376	56 - 56	0.0311	52	0.0378	54
Rosenberg	809	128.4	0.0552	77	0.0227	42	0.0327	51
				Fo	ortsetzung	auf de	r nächster	ı Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

5	Anzahl	Gesamt-	Mode	ell 1	Mode	ll 2	Mode	11 3
Gemeindename	Gebäude	wert	S	G	S	G	S	G
Rosenfeld	2164	321.3	0.1261	194	0.0578	115	0.0817	135
Rosengarten	1360	237.6	0.054	80	0.0517	83	0.0605	85
Rot am See	1573	257.6	0.1213	161	0.0438	80	0.0655	98
Bot an der Bot	1921	260.5	0.0742	135	0.0522	111	0.0663	120
Bottenacker	794	114.2	0.0476	74	0.0022 0.0204	42	0.0000	50
Rottenburg om Nockor	10757	2007.0	0.0470	1051	0.0204	551	0.5106	667
Rottenburg and Neckar	5054	2007.9	0.8931	415	0.3491 0.3053	343	0.3100	360
Rottwell De dauch aus	0904 2005	1021.0	0.4303	410	0.3033	040 000	0.307	100
Rudersberg	3203	001.0	0.0502	104	0.1454	200	0.1555	199
Rummingen	389	66.1	0.0116	19	0.0156	26	0.0169	25
Ruppertshofen	529	87.1	0.0407	54	0.0149	27	0.0222	33
Rust	831	163	0.0201	31	0.0425	59	0.0415	52
Rutesheim	2373	485.9	0.1377	166	0.0974	137	0.1236	148
Sachsenheim	4481	799.3	0.2046	288	0.1667	265	0.2033	278
Salach	1913	339.5	0.02	38	0.1087	157	0.0864	119
Salem	2920	535.6	0.1182	167	0.1176	180	0.1362	181
Sandhausen	3282	747	0.0193	33	0.294	315	0.19	204
Sankt Georgen im Schwarzwald	3081	613.6	0.8506	674	0.0688	112	0.1561	191
Sankt Leon-Rot	3801	628.1	0.0274	59	0.2163	330	0.1597	236
Sasbach	1326	222.7	0.0059	14	0.0872	127	0.0567	83
Sasbach am Kaiserstuhl	972	158.9	0.0137	27	0.046	74	0.0405	61
Sasbachwalden	716	129	0.0124	22	0.036	53	0.0328	45
Satteldorf	1607	273	0.1074	144	0.000	85	0.0695	100
Sauldorf	1051	149	0.1074	02	0.045	57	0.0055	66
Sahallhaah	205	22.0	0.0007	92 5	0.020	10	0.0302	14
Schallbach Calaillata dt	220 1500	00.9 000 9	0.0022	5	0.0100	19	0.0087	14
Schalistadt	1500	209.3	0.0297	50	0.0727	109	0.0685	94
Schechingen	620	105.4	0.0187	30	0.0247	41	0.0268	39
Scheer	869	141.9	0.0255	43	0.0331	56	0.0361	54
Schefflenz	1514	232	0.0598	98	0.0483	90	0.059	94
Schelklingen	2121	355.5	0.1044	153	0.0703	121	0.0904	132
Schemmerhofen	2251	323.3	0.1147	186	0.0606	123	0.0822	140
Schenkenzell	630	95.4	0.034	53	0.0179	35	0.0243	40
Schiltach	1210	207.9	0.0549	80	0.0429	71	0.0529	75
Schlaitdorf	609	96.4	0.0166	29	0.0228	40	0.0246	38
Schlat	520	72.3	0.039	59	0.0117	26	0.0184	33
Schliengen	1539	227.6	0.0129	30	0.0736	128	0.0579	96
Schlier	1048	171.3	0.028	48	0.0413	70	0.0436	65
Schlierbach	1060	166.4	0.0545	83	0.0321	59	0.0424	66
Schluchsee	1004	204 7	0.2143	182	0.0259	40	0.0521	63
Schnürpflingen	456	72	0.2110	102	0.0129	24	0.0184	20
Schömborg	1443	275.2	0.0200	263	0.0125	58	0.0104	00
Schömberg	1960	210.2	0.2303	100	0.0340	71	0.07	90 95
Schömsich	1300	201.5 450.6	0.0040	120	0.0358	110	0.0313 0.1160	140
Schonalch Cali in an	2387	439.0	0.2321	201	0.076	118	0.1109	148
Schonau	1495	249.5	0.0419	69	0.0595	98	0.0635	93
Schonau im Schwarzwald	586	128.5	0.0302	36	0.0277	36	0.0327	37
Schonbrunn	1105	165.1	0.0429	72	0.0343	66	0.042	69
Schöntal	2388	331.9	0.1204	201	0.0616	129	0.0844	148
Schönwald im Schwarzwald	1009	173.4	0.2202	208	0.0203	38	0.0441	63
Schonach im Schwarzwald	1065	205.9	0.4065	294	0.0196	34	0.0524	66
Schopfheim	3696	792.3	0.075	109	0.2219	275	0.2015	230
Schopfloch	708	112.9	0.1817	172	0.0118	25	0.0288	44
Schorndorf	8627	1775	0.3257	428	0.4106	553	0.4513	535
Schramberg	4441	912.3	1.0901	880	0.1081	169	0.232	276
Schriesheim	3542	750	0.0922	128	0.1958	249	0.1907	220
Schrozberg	1779	301.9	0.1866	222	0.0466	83	0.0768	111
Schutterwald	1822	20/ 0	0.0365	66	0.0769	128	0.075	113
Schwähisch Gmünd	197/0	204.9 3078 5	0.0000	819	0.0709	825	0.010	850
Schwäbisch Hall	10749 8176	1770	0.700	591	0.0002	48E	0.1020	50Z
Schwabisch Häll	2020	1119	0.40	044 044	0.3723	400 100	0.4024	007 901
Schwaigern Calana ille aine	3230	209.1 276 2	0.1798	244	0.1112	182	0.1447	201 107
Schwalkneim	1/20	376.2	0.0823	98	0.0828	100	0.0957	107
Schwanau	1803	302.7	0.0443	76	0.0745	122	0.077	112
Schwarzach	645	107.3	0.0074	15_	0.0327	52	0.0273	40
				Fo	ortsetzung	auf der	nächsten	Seite

Tab B 1 – Fortsetzung	(S - Schaden in	$Mio \in G -$	Anzahl der	hetroffenen	Gebäude)

	Anzahl	Gesamt-	Mode	ell 1	Mode	ell 2	Mode	11 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G
Schwendi	1992	271.8	0.09	156	0.0523	111	0.0692	124
Schwenningen	536	82.1	0.0303	46	0.0152	29	0.0209	34
Schwetzingen	3942	1402.2	0.0461	49	0.5154	361	0.3566	245
Schwieberdingen	2063	436.9	0.2261	226	0.0715	102	0.1111	128
Schwörstadt	624	100.3	0.0061	13	0.0319	51	0.0256	39
Seckach	1381	207	0.0801	122	0.0375	74	0.0527	86
Seelbach	1358	258.7	0.0261	42	0.071	100	0.0658	85
Seewald	760	113.5	0.432	311	0.0079	19	0.0289	48
Seitingen-Oberflacht	790	118.9	0.0365	59	0.0235	45	0.0303	49
Sersheim	1346	232	0.0973	126	0.0413	71	0.059	84
Setzingen	190	27.6	0.0091	15	0.0054	11	0.0071	12
Sexau	814	141.5	0.0105	20	0.0421	64	0.036	51
Siegelsbach	472	88.3	0.0298	38	0.0169	27	0.0225	30
Sigmaringen	3877	881.5	0.2375	260	0.1803	227	0.2242	241
Sigmaringendorf	1183	207.1	0.0554	(9	0.0425	10	0.0527	(4
Simmersield	620 606	91.0 191.0	0.0929 0.0752	110	0.0118	20 22	0.0233	39
Simonawald	090	121.9	0.0735	01	0.0169 0.0710	აა 107	0.031	44 61
Simonswald	972	101.3	1.0018	0 049	0.0719	107	0.0380 0.7506	01 579
Singen (Hebentwiel)	9210 7617	2902	1.2050	040 491	0.3298	464	0.7000	072 472
Singhoim	7017	2020.3 1627 1	0.4411 0.2067	451	0.4400 0.2750	409	0.3132 0.4162	475 505
Sinsheim	9090	1057.1	0.3007	404	0.3739	150	0.4105 0.1490	090 176
Sinzheim	2021	105.4	0.1090	210	0.1134	100	0.1469	170
Silden	047	120.7	0.0300	$\frac{40}{77}$	0.0240 0.0056	२ ११	0.052	41
Sonnonbjihl	019 0505	383 G	0.0349 0.9977	305	0.0000	11	0.0130	20 157
Sonthoim on der Bronz	2525	270.8	0.2211 0.0417	60	0.0002 0.0684	120	0.0970	100
Spaichingen	2186	279.0 505.1	0.0417 0.1104	170	0.0004	200	0.0712 0.1514	100
Spachhach	548	87.0	0.1194	10	0.1333 0.0237	200	0.1014 0.0224	34
Spiegelberg	730	117.6	0.0038	17	0.0251	40 50	0.0224	46
Spreitbach	1034	181	0.0002 0.1307	151	0.0358	46	0.0233 0.0461	40 65
St Blasion	8/0	224.8	0.1337	106	0.0208	40	0.0401 0.0572	53
St. Johann	1988	302.1	0.1402 0.2287	286	0.0040	88	0.0012	124
St. Peter	572	98.1	0.0395	53	0.0454 0.0175	31	0.0705	36
Staig	1080	162.9	0.0555 0.0511	81	0.0110	61	0.020 0.0415	67
Starzach	1450	211.6	0.0011 0.2289	268	0.002 0.0263	57	0.0110 0.0538	90
Staufen im Breisgau	1704	454 7	0.1285	119	0.0200	99	0.0000	106
Stegen	925	209.7	0.1200 0.0527	59	0.0441	55	0.0534	58
Steinach	1048	178	0.0021 0.0152	29	0.0515	80	0.0453	65
Steinen	2491	464.3	0.0693	106	0.1134	168	0.1181	155
Steinenbronn	1348	268.6	0.1213	134	0.0465	69	0.0683	84
Steinheim am Albuch	2425	387.7	0.0968	153	0.0816	145	0.0986	151
Steinheim an der Murr	3129	535.9	0.0636	110	0.1415	222	0.1363	194
Steinmaürn	777	121.7	0.0202	36	0.0292	51	0.031	49
Steisslingen	1172	191.3	0.0612	90	0.0373	66	0.0487	73
Sternenfels	1043	156.4	0.1123	145	0.0226	47	0.0398	65
Stetten am kalten Markt	1632	302.3	0.1393	164	0.0519	83	0.0769	102
Stimpfach	861	147.2	0.0637	83	0.0259	45	0.0375	54
Stockach	4163	794.1	0.1407	201	0.186	269	0.202	258
Stödtlen	561	91.2	0.0551	69	0.0143	27	0.0232	35
Strassberg	883	133.7	0.0329	55	0.0283	53	0.034	55
Straubenhardt	3150	545.3	0.512	529	0.0711	130	0.1387	196
Stühlingen	1525	246.2	0.055	88	0.0539	94	0.0626	95
Stutensee	5362	1078.7	0.0795	129	0.3212	419	0.2743	333
Stuttgart	79132	28250.6	5.3473	4025	6.4621	5029	7.1828	4904
Süssen	2445	438.9	0.0655	104	0.1072	164	0.1116	152
Sulz am Neckar	4065	668	0.3766	473	0.1069	195	0.1699	252
Sulzbach an der Murr	1494	250.6	0.0301	53	0.0659	106	0.0638	93
Sulzbach-Laufen	778	127.2	0.0322	50	0.0267	47	0.0324	49
Sulzburg	765	124.9	0.0283	45	0.0272	47	0.0318	48
Sulzfeld	1496	237.1	0.0511	84	0.0525	93	0.0603	93
Talheim	1502	258.9	0.0682	99	0.0535	89	0.0659	94
				Fo	rtsetzung	auf der	[.] nächsten	Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

	Anzahl	Gesamt-	Modell 1		Mode	Modell 2		Modell 3	
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G	
Talheim	417	60.1	0.0099	19	0.0145	28	0.0153	26	
Tamm	2652	550.3	0.1814	207	0.1059	147	0.14	165	
Tannhausen	584	89	0.0593	77	0.0134	27	0.0227	37	
Tannheim	1227	167.8	0.0179	40	0.0451	89	0.0427	77	
Tauberbischofsheim	3471	670.6	0.1001	147	0.1637	233	0.1706	216	
Tengen	1382	202.2	0.0673	109	0.0388	77	0.0515	86	
Teningen	2819	573.6	0.0796	113	0.1438	193	0.1459	175	
Tennenbronn	1190	182.3	0.1848	211	0.0234	48	0.0464	74	
Tettnang	4180	937	0.1145	150	0.245	294	0.2383	260	
Tiefenbronn	1688	267.8	0.0852	128	0.0523	95	0.0681	105	
Titisee-Neustadt	2693	638.3	0.7833	544	0.0746	102	0.1623	167	
Todtmoos	675	121	0.0648	76	0.0195	33	0.0308	42	
Todtnau	1470	257.5	0.0698	99	0.0526	86	0.0655	92	
Triberg im Schwarzwald	1309	239.4	0.0647	88	0.049	77	0.0609	82	
Trochtelfingen	2043	323.7	0.1607	217	0.0539	102	0.0824	127	
Trossingen	3995	768.6	0.3444	393	0.1333	204	0.1955	248	
Tübingen	13793	3961	0.9674	855	0.8397	825	1.0071	855	
Tuningen	884	131.8	0.0635	92	0.0223	45	0.0336	55	
Tuttlingen	8143	1784.1	0.4867	551	0.3631	474	0.4537	505	
Überlingen	4898	1135.6	0.4342	429	0.2063	261	0.2888	304	
Ubstadt-Weiher	3757	610 7	0.1012	73	0.1966	310	0.1553	233	
Uhingen	3605	673	0.0501 0.1578	217	0.1300	218	$0.1000 \\ 0.1712$	$\frac{200}{224}$	
Uhldingen Mühlhofen	1000	430.2	0.1070	105	0.0764	102	0.1112 0.1117	194	
Ühlingen Dinken denf	1990	409.2	0.1901	150	0.0704	60	0.1117	07	
Uningen-Birkendori	1390	233 5799 5	1.2005	108	0.0374	08	0.0595	8/	
Ulm Llus lain als	20181	0783.0 914 F	1.3080	1212	1.2384	1207	1.4705	1289	
	830	314.0	0.0303	29	0.0837	00	0.08	02 72	
Ummendori	1173	202	0.0444	67	0.0444	(3	0.0514	73	
Uningen	814	138.8	0.0330	- - 	0.029	49	0.0303	01 C1	
Untereisesneim	979	198.9	0.0119	20	0.0635	81	0.0500	01	
Unterensingen	1174	197.3	0.0349	81	0.0399	08	0.0302	150	
Untergruppenbach	2444	435.3	0.1031	148	0.0933	148	0.1107	152	
Unterkirnach	020	121.3	0.0820	80	0.0193	29	0.0324	39	
Untermarchtal	221	33.7 1971	0.0228	31	0.0051	11	0.0080	15	
Untermunkneim	805	137.1	0.041	63	0.0274	50	0.0349	54	
Unterreichenbach	689 1409	119.8	0.0243	37	0.0268	44	0.0305	43	
Unterschneidheim	1498	231	0.1091	153	0.0393	76	0.0588	93	
Unterstadion	240	35.8	0.0126	20	0.0068	14	0.0092	15	
Urbach	2215	368.3	0.092	140	0.0775	132	0.0937	138	
Uttenweiler	1288	193.6	0.0824	122	0.0343	67	0.0493	80	
Utzenfeld	174	35.1	0.0577	43	0.0037	6	0.009	11	
Vaihingen an der Enz	7581	1320	0.4456	602	0.2519	418	0.3357	470	
Vellberg	1268	215.8	0.0526	79	0.0458	76	0.0549	79	
Veringenstadt	885	136.4	0.03	51	0.03	55	0.0347	55	
Villingendorf	894	149.8	0.0648	80	0.0264	47	0.0381	50	
Villingen-Schwenningen	16162	4740.5	2.0822	1563	0.828	830	1.2053	1002	
Vohrenbach	1089	164.1	0.1751	200	0.0206	43	0.0418	68	
Vohringen	1412	223.8	0.1299	168	0.0355	68	0.057	88	
Vorstetten	753	145	0.0132	22	0.0412	57	0.0369	47	
Vogt	2058	360.4	0.0751	114	0.0796	128	0.0917	128	
Vogtsburg im Kaiserstuhl	1776	272.5	0.0468	84	0.0645	116	0.0693	111	
Volkertshausen	707	114.2	0.0151	28	0.0292	49	0.0291	44	
Waschenbeuren	1085	172.9	0.0427	68	0.0366	65	0.044	68	
Waghausel	5274	954.6	0.0608	112	0.2982	426	0.2428	327	
Waiblingen	9579	2839.2	0.2333	249	0.8305	734	0.7219	594	
Waibstadt	1759	304.8	0.0532	84	0.0718	114	0.0775	110	
Wain	485	73.2	0.015	27	0.0163	31	0.0187	31	
Wald	842	125.5	0.0352	59	0.0253	49	0.032	53	
Waldachtal	1867	303.5	0.2073	251	0.0449	85	0.0772	116	
Waldbronn	3038	656.4	0.3662	351	0.1055	146	0.1669	189	
Waldbrunn	1793	278.1	0.119	170	0.0491	93	0.0708	112	
Waldburg	932	136.1	0.0281	51	0.0302	58	0.0347	58	
Fortsetzung auf der nächsten Seite									

Tab B 1 – Fortsetzung	(S = Schaden)	in Mio € G =	= Anzahl der	betroffenen	Gebäude)

	Anzahl	Gesamt-	Modell 1		Mode	Modell 2		ll 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	\mathbf{G}	\mathbf{S}	G
Walddorfhäslach	1352	218.5	0.0551	86	0.0459	81	0.0556	84
Waldenbuch	2300	454	0.208	230	0.0781	117	0.1155	143
Waldenburg	871	152.3	0.064	82	0.0271	46	0.0388	54
Waldkirch	3672	938.9	0.1601	172	0.2226	240	0.2388	228
Waldshut-Tiengen	4965	1346.7	0.2432	243	0.3133	320	0.3424	308
Waldstetten	1936	297	0.059	103	0.0668	122	0.0756	120
Walheim	841	146.8	0.0085	17	0.0472	70	0.0374	53
Walldorf	3546	797.4	0.036	57	0.2719	306	0.2028	220
Walldürn	3407	617.3	0.1573	219	0.1289	202	0.157	212
Wallhausen	1178	229.2	0.122	132	0.037	58	0.0583	73
Walzbachtal	2539	409.6	0.0732	124	0.0957	164	0.1042	158
Wangen	880	135	0.0281	49	0.0299	55	0.0344	55
Wangen im Allgäu	6281	1200.6	0.186	272	0.2935	419	0.3053	390
Wannweil	1431	281.1	0.0659	86	0.0605	87	0.0715	89
Warthausen	1429	250	0.0357	59	0.0621	97	0.0636	89
Wehingen	1146	188.1	0.0712	100	0.0344	62	0.0479	72
Wehr	2692	692.6	0.0192	29	0.2674	255	0.1761	167
Weidenstetten	403	62.4	0.0258	38	0.0112	22	0.0159	25
Weikersheim	2385	407.3	0.075	119	0.0942	153	0.1036	148
Weil am Rhein	5691	1213.9	0.1075	158	0.3473	429	0.3087	353
Weil der Stadt	5011	972.5	0.2905	362	0.1938	285	0.2473	311
Weil im Schönbuch	2694	463.1	0.2041	262	0.0808	139	0.1178	167
Weilen unter den Rinnen	331	43.7	0.0212	35	0.0074	17	0.0112	21
Weilheim	791	121.1	0.0298	50	0.0257	48	0.0308	50
Weilheim an der Teck	2625	462.2	0.1478	200	0.09	147	0.1176	163
Weingarten	4138	1197.8	0.1978	189	0.287	272	0.3046	257
Weingarten(Baden)	2508	446.3	0.0466	80	0.121	183	0.1135	156
Weinheim	10344	2664	0.1485	196	0.8646	857	0.6774	641
Weinsberg	3042	637.3	0.0557	84	0.1831	230	0.1621	189
Weinstadt	5833	1315.9	0.1889	239	0.3259	395	0.3346	362
Weisenbach	815	132.2	0.0061	14	0.0448	70	0.0337	51
Weissach	2257	363.7	0.1894	249	0.0593	111	0.0925	140
Weissach im Tal	1982	338.9	0.0464	78	0.0854	136	0.0862	123
Weissbach	676	112.1	0.0236	38	0.0247	42	0.0286	42
Weisweil	572	92	0.0096	19	0.025	42	0.0234	36
Wellendingen	998	154.2	0.0229	43	0.0378	68	0.0393	62
Welzheim	2674	498.3	0.1742	219	0.0939	146	0.1267	166
Wendlingen am Neckar	3310	662.8	0.0924	133	0.1659	226	0.1686	206
Werbach	1198	188.5	0.0199	39	0.0509	87	0.048	75
Wernau(Neckar)	2328	606.6	0.0934	101	0.1486	156	0.1543	145
Wertheim	5990	1228.5	0.1855	257	0.2985	401	0.3124	372
Westerheim	913	151.6	0.1093	128	0.0219	41	0.0386	57
Westerstetten	655	100	0.0556	76	0.0161	32	0.0255	41
Westhausen	1722	263.3	0.0784	125	0.0526	98	0.067	107
Widdern	649	102.1	0.0108	21	0.0276	48	0.026	41
Wiernsheim	1922	340.2	0.1234	162	0.0632	104	0.0865	120
Wiesenbach	847	156.6	0.0102	19	0.0486	68	0.0399	53
Wiesensteig	642	106	0.1873	165	0.0107	22	0.027	40
Wiesloch	5731	1254.3	0.0746	115	0.3997	469	0.319	356
Wildberg	2980	494.1	0.2484	320	0.0818	148	0.1257	185
Wilhelmsdorf	1258	186.7	0.0211	43	0.0501	91	0.0475	78
Wilhelmsfeld	1032	174.6	0.0637	87	0.0324	56	0.0444	64
Willstätt	2369	451.5	0.0343	58	0.1351	185	0.1148	147
Wimsheim	747	137.7	0.0462	59	0.0264	42	0.0351	47
Winden im Elztal	674	109.6	0.0473	65	0.0193	35	0.0279	42
Winnenden	5440	1257.4	0.1558	198	0.3274	382	0.3197	338
Winterbach	1916	376	0.0793	107	0.0826	119	0.0956	119
Winterlingen	2470	374.7	0.2788	351	0.0542	110	0.0953	154
Wittighausen	644	101.3	0.0338	51	0.0195	36	0.0258	40
Wittlingen	255	36.5	0.0051	11	0.0092	18	0.0093	16
Wittnau	345	54.3	0.0773	77	0.0061	13	0.0139	22
				Fo	ortsetzung	auf der	r nächsten	Seite

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

	Anzahl	Gesamt-	Modell 1		Mode	11 2	Mode	11 3
Gemeindename	Gebäude	wert	\mathbf{S}	G	\mathbf{S}	G	\mathbf{S}	G
Wört	379	78	0.0266	31	0.0149	21	0.0199	24
Wolfach	1661	320.9	0.1269	150	0.0575	88	0.0816	103
Wolfegg	1039	156	0.0356	61	0.0339	64	0.0397	65
Wolfschlugen	1502	285.9	0.1442	162	0.0473	75	0.0727	94
Wolpertswende	1054	186.5	0.0338	52	0.0434	68	0.0475	66
Wüstenrot	2290	378.9	0.1304	185	0.0718	126	0.0964	142
Wurmberg	815	135.7	0.0911	108	0.0203	38	0.0346	51
Wurmlingen	1247	199.4	0.1395	170	0.0292	57	0.0507	78
Wutach	369	54	0.0632	73	0.0065	15	0.0138	23
Wutöschingen	1496	295.2	0.0666	87	0.0644	92	0.0751	93
Wyhl am Kaiserstuhl	966	167.9	0.0113	22	0.0517	78	0.0427	60
Zaberfeld	1374	214.4	0.0743	112	0.0406	76	0.0546	86
Zaisenhausen	505	81.3	0.027	40	0.0157	28	0.0207	32
Zell am Harmersbach	1821	358	0.0788	104	0.0787	112	0.0911	113
Zell im Wiesental	1443	339.6	0.072	81	0.0745	90	0.0864	90
Zell unter Aichelberg	789	132.1	0.0508	70	0.024	42	0.0336	49
Zimmern ob Rottweil	1780	307	0.1596	196	0.0501	88	0.0781	111
Zuzenhausen	660	106.9	0.0225	37	0.0236	41	0.0272	41
Zwiefalten	819	127.9	0.0546	78	0.0226	43	0.0326	51
Zwingenberg	239	36.2	0.0016	4	0.0125	21	0.0093	15

Tab. B.1 – Fortsetzung (S = Schaden in Mio. €, G = Anzahl der betroffenen Gebäude)

Literatur

- Adrian, G. & Fiedler, F. (1991), 'Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations', *Beitr. Phys. Atmos.* **64**, 27–48.
- An, Y. & Pandey, M. (2005), 'A comparison of methods of extreme wind speed estimation', J. Wind Eng. Ind. Aerod. 93(7), 535–546.
- Angermann, A. (1993), Sturmszenarien und Schadenshäufigkeit von Stürmen über Deutschland, Diplomarbeit, Universität zu Köln, Institut für Geophysik und Meteorologie.
- Ashcroft, J. (1994), 'The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed', J. Wind Eng. Ind. Aerod. 53, 331–355.
- Axer, T. (2004), Sturmdokumentation Deutschland, Deutsche Rück.
- Berz, G. (2005), Wetterkatastrophen und Klimawandel sind wir noch zu retten?, pg-Verl.
- Bill, R. (1994), Grundlagen der Geoinformationssysteme, Wichmann.
- Blackmore, P. & Tsokri, E. (2004), 'Windstorm damage to buildings and structures in the UK during 2002', Weather **59**(12), 336–339.
- Blong, R. (2003a), 'A new damage index', Nat. Hazards 30, 1–23.
- Blong, R. (2003b), 'A review of damage intensity scales', Nat. Hazards 29, 57-76.
- Braas (2004), Handbuch geneigte Dächer, Larfarge Dachsysteme.
- Bresch, D., Bisping, M. & Lemcke, G. (2000), Sturm über Europa: Ein unterschätztes Risiko, Technical report, Schweizer Rückversicherungs-Gesellschaft, Zürich.
- Britter, R., Hunt, J. & Richards, K. (1981), 'Air flow over a two-dimensional hill: studies of velocity speed-up, roughness effects and turbulence', Q. J. Roy. Meteor. Soc. 107, 91–110.
- Brockhagen, D. (2002), Klimaänderung 2001, Dt. IPCC-Koordinierungsstelle des BMBF und des BMU.
- Buller, P. (1978), Wind damage to buildings in the United Kingdom 1970-1976, Technical Report CP42/78, Building Research Establishment, Garston.
- Carpenter, P. & Locke, N. (1999), 'Investigation of wind speeds over multiple two-dimensional hills', J. Wind Eng. Ind. Aerod. 83, 109–120.
- Chock, G. (2005), 'Modeling of hurricane damage for hawaii residential construction', J. Wind Eng. Ind. Aerod. **93**(8), 603–622.
- Cook, N. (1985), The designer's guide to wind loading of building structures, Part 1, British Research Establishment, London.
- Cope, A., Gurley, K., Pinelli, J.-P. & Hamid, S. (2003), A simulation model for wind damage predictions in Florida, *in* 'Proc. 11th Int. Conf. on Wind Engineering', Lubbock, Texas.
- Davenport, A. (1965), The relationship of wind structure to wind loading, *in* 'Wind effects on buildings and structures, Proc. of the conf.', Vol. 1, Teddington, pp. 54–103.
- DIN 1055 (1986), Einwirkungen auf Tragwerke Teil 4: Windlasten, Technical report, Deutsches Institut für Normung, Berlin.
- DIN 1055 (2005), Einwirkungen auf Tragwerke Teil 4: Windlasten, Technical report, Deutsches Institut für Normung, Berlin.
- Dorland, C., Tol, R. & Palutikof, J. (1999), 'Vulnerability of the Netherlands and Northwest Europe to storm damage under climate change', *Climatic Change* **43**, 513–535.
- Dotzek, N. (2000), Tornados in Deutschland, in 'Symposium Naturkatastrophen in Mittelgebirgsregionen'.
- Dotzek, N. (2004), Tornado- und Downburstklimatologie, in 'Klimastatusbericht 2004', DWD.
- Dotzek, N., Berz, G., Rauch, E. & Peterson, R. (2000), 'Die Bedeutung von Johannes P. Letzmanns "' Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben "' für die heutige Tornadoforschung', *Meteorol. Z.* 9, 165–174.
- Drayton, M., Page, B. & Muir-Wood, R. (1999), Building a stochastical model of windstorm loss in North-West Europe, *in* Larsen, Larose & Livrey, eds, 'Wind Engineering into the 21st Century', Rotterdam, pp. 1395–1400.
- DSTATIS (2004), Preise: Baupreisindizes November 2003, Technical Report Fachserie 17, Reihe 4, Statistisches Bundesamt, Wiesbaden.
- Efron, B. & Tibshirani, R. (1993), An Introduction to the Bootstrap, Chapman and Hall, New York.
- Etling, D. (2002), Theoretische Meteorologie, 2. edn, Springer.
- Eurocode (1991), Eurocode 1: Basis of design and actions on structures, part 2.4: Wind actions, Technical report. Führer, E. & Nopp, U. (2001), Ursachen, Vorbeugung und Sanierung von Waldschäden, Facultas, Wien.

158 Literatur

- Friedman, D. (1979), Economic impact of wind storms in the United States, in J. Cermak, ed., 'Proc. of the Fifth Int. Conf. on Wind Engineering', Vol. 1.
- Friedman, D. (1984), 'Natural Hazard Risk Assessment for an Insurance Program', The Geneva Papers in Risk and Insurance 9(30), 57–128.
- Fruehwirth, R. & Regler, M. (1983), Monte-Carlo-Methoden, Bibliograph. Inst.
- Fujita, T. T. (1981), 'Tornadoes and downbursts in the context of generalized planetary scales', J. Atmos. Sci. 38(8), 1511–1534.

Gerth, W.-P. & Christoffer, J. (1994), 'Windfeldkarten von Deutschland', Meteorol. Z. 3(2), 67–77.

- Glowienka-Hense, R. (1990), 'The North Atlantic Oscillation in the Atlantic-European SLP', Tellus A 42, 497–507.
- Greenwood, J., Landwehr, J., Matalas, N. & Wallis, J. (1979), 'Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form', *Water Resources Research* **15**(5), 1049–1054.
- Hanewinkel, M. (2005), 'Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany', *European Journal of Forest Research* **124**(3), 243–249.
- Hart, G. (1976), Natural Hazards: Tornado, Hurricane, Severe Wind Loss Models, Technical Report NTIS No. PB 294594/AS, National Science Foundation, Redondo Beach, California.
- Hazelwood, R. (1980), The influence of the two prinzipal wind forces on roof tiles, *in* C. Kramer, ed., 'Proc. of the 4th Coll. on Industrial Aerodynamics', Aachen, pp. 119–130.
- Häckel, H. (1999), Meteorologie, 4. edn, UTB, Stuttgart.
- Heerdegen, G. & Beran, M. (1982), 'Quantifying source areas through land surface curvature and shape', J. Hydrol. 57, 359–373.
- Heneka, P., Hofherr, T., Ruck, B. & Kottmeier, C. (2006), 'Winter storm risk of residential structures model development and application to the German state of Baden-Württemberg', Nat. Hazard Earth Sys. 6, 721–733.
 Hengartner, W. & Theodorescu, R. (1978), Einführung in die Monte-Carlo-Methode, 1. edn, Hanser.
- Hütte, P. (1967), 'Die standörtlichen Vorraussetzungen der Sturmschäden', Forstw. Chl. 86, 276–295.
- Huang, Z., Rosowsky, D. & Sparks, P. (2000), 'Hurricane Hazard Assessment System for Damage to Residential Structures in South Carolina', *Environ. Eng. Geosci.* 7(1), 57–65.
- Huang, Z., Rosowsky, D. & Sparks, P. (2001), 'Long-term hurricane risk assessment and expected damage to residential buildings', *Reliab. Eng. Syst. Safe.* 74, 239–249.
- Hubrig, M. (2001), Tornado- und Downburst-Schadenskala für Holzgewächse basierend auf der Skalierung nach TORRO angepasst für Mitteleuropa (TorDACH), *in* '2nd Forum Katastrophenvorsorge', Leipzig.
- Jackson, P. & Hunt, J. (1975), 'Turbulent wind flow over a low hill', Q. J. Roy. Meteor. Soc. 101, 929-955.
- Kasperski, M. (2001), Extremwertanalyse der Windgeschwindigkeiten für das Gebiet der Bundesrepublik Deutschland, Technical report, Fakultät für Bauingenieurwesen, Ruhr-Universität Bochum, Fraunhofer IRB Verlag.
- Kasperski, M. (2002), 'A new wind zone map of Germany', J. Wind Eng. Ind. Aerod. 90, 1271–1287.
- Katz, R. (2002), 'Stochastic Modeling of Hurricane Damage', J. Appl. Meteorol. 41(7), 754–762.
- Klawa, M. (2001), Extreme Sturmereignisse in Deutschland: Entwicklung, Zusammenhang mit NAO und Auswirkungen auf die Versicherungswirtschaft, Dissertation, Universität zu Köln, Institut für Geophysik und Meteorologie.
- Klawa, M. & Ulbrich, U. (2003), 'A model for the estimation of storm losses and the identification of severe winter storms in Germany', Nat. Hazard Earth Sys. 3, 725–732.
 Kleist, L., Thieken, A., Köhler, P., Müller, M., Seifert, I., Borst, D. & Werner, U. (2006), 'Estimation of the
- Kleist, L., Thieken, A., Köhler, P., Müller, M., Seifert, I., Borst, D. & Werner, U. (2006), 'Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in germany', *Nat. Hazard Earth Sys.* 6(4), 541–552.
- Kraus, H. & Ebel, U. (2003), Risiko Wetter, Springer.
- Kuhn, M. (1989), Föhnstudien, Wiss. Buchges.
- Kunz, M. & Hauck, C. (2005), Meteorologische Naturgefahren, Vorlesungsskript, IMK Universität Karlsruhe.
- Lamb, H. (1991), Historic storms of the North Sea, British Isles and Northwest Europe, Cambridge University Press, Cambridge.
- Leicester, R. & Reardon, G. (1976), 'A statistical analyses of the structural damage by cyclone Tracy', *Civil Eng. Trans.* **18**(2), 50–54.
- Leicester, R., Bubb, C., Dorman, C. & Beresford, F. (1979), An assessment of potential cyclone damage to dwellings in Australia, *in* J. Cermak, ed., 'Proc. of the Fifth Int. Conf. on Wind Eng.', Vol. 1, pp. 23–36.
- Lemelin, D. & Surry, D. (1988), 'Simple aproximations for wind speed-up over hills', J. Wind Eng. Ind. Aerod. 28, 117–127.
- Lenz, C.-J. (1996), Energieumsetzungen an der Erdoberfläche in gegliedertem Gelände, PhD thesis, IMK, Universität Karlsruhe.
- Lowinski, L. (n.d.), Der große März-Orkan vom 12.03.1876, http://www.bavariastormteam.com/.
- Lozano, I., Devoy, R., May, W. & Andersen, U. (2004), 'Storminess and vulnerability along the Atlantic coastlines of Europe: analysis of storm records and of a greenhouse gases induced climate scenario', Mar. Geol. 210(1), 205–226.
- Meaden, G. T. (1976), 'Tornadoes in britain: their intensities and distribution in space and time', J. Meteorol. 1, 242–251.
- Menzies, J. (1971), Wind damage to buildings in the United Kingdom 1962-1969, Technical Report CP35/71, Building Research Establishment, Garston.
- Merz, B. & Thieken, A. (2004), 'Flood risk analysis: Concepts and challenges', Österreichische Wasser- und Abfallwirtschaft **56**(3-4), 27–34.
- MunichRe (1990), Sturm, Münchener Rückversicherungs-Gesellschaft.
- MunichRe (1993), Winterstürme in Europa, Schadenanalyse 1990 Schadenpotentiale, Münchener Rückversicherungs-Gesellschaft, München.
- MunichRe (1999), Naturkatastrophen in Deutschland, Münchener Rückversicherungs-Gesellschaft.
- MunichRe (2001), Winterstürme in Europa, Schadenanalyse 1999 Schadenpotentiale, Münchener Rückversicherungs-Gesellschaft, München.
- MunichRe (2005), 'Naturkatastrophen in Deutschland 1970-2004', GeoRisikoForschung.
- Murlidharan, T., Durgaprasad, J. & Appa Rao, T. (1997), 'Knowledge-based expert system for damage assessment and vulnerability analysis of structures subjected to cyclones', J. Wind Eng. Ind. Aerod. 72, 479–491.
- Nateghi-A, F. (1996), 'Assessment of Wind Speeds that Damage Buildings', Nat. Hazards 14, 73–84.
- NEN 6707 (1991), Befestigung von Dachsteinen, Technical report, Nederlands Normalisatie Instituut, Delft.
- Palutikof, J., Brabson, B., Lister, D. & Adcock, S. (1999), 'A review of methods to calculate extreme wind speeds', *Meteorol. Appl.* 6(2), 119–132.
- Panofsky, H. & Dutto, J. (1994), Atmospheric turbulence models and methods for engineering applications, Wiley.
- Peltole, H., Kellomäki, S. & Vaisanen, H. (1999), 'Model computations of the impact of climatic change on the windthrow risk of trees', *Climatic Change* 41, 17–36.
- Petak, W. & Atkisson, A. (1982), Natural Hazard Risk Assessment and Public Policy, Springer.
- Petak, W. & Hart, G. (1979), Damage and decision making in wind engineering, in J. Cermak, ed., 'Proc. of the Fifth Int. Conf. on Wind Engineering', Vol. 1.
- Pielke, R. (1990), The hurricane, 1. edn, Routledge.
- Pinelli, J., Simiu, E., Gurley, K., Subramanian, C., Zhang, L. & Cope, A. (2004), 'Hurricane Damage Prediction Model for Residential Structures', J. Struct. Eng. 130(11), 1685–1691.
- Plate, E. (1993), Statistik und angewandte Wahrscheinlichkeitslehre für Bauingenieure, Ernst&Sohn.
- Quine, C. & White, I. (1998), 'The potential of distance-limited topex in the prediction of site windiness', *Forestry* **71**(2), 325–332.
- Radke, K. & Tezlaff, G. (2004), DFNK Risiken durch Naturgefahren in Deutschland, Merz, B. and Apel, H., chapter Quantitative Ermittlung des Sturmrisikos für repräsentative Gebiete Deutschlands, pp. 119–125.
- Rootzén, H. & Tajvidi, N. (1997), 'Extreme Value Statistics and Wind Storm Losses: A Case Study', Scand. Act. J. 1, 70–94.
- Rottmann, M. (1986), Wind- und Sturmschäden im Wald: Beiträge zur Beurteilung der Bruchgefährdung, zur Schadensvorbeugung und zur Behandlung sturmgeschädigter Nadelholzbestände, JD Sauerländer's Verlag.
- Ruck, B. & Adams, E. (1991), 'Fluid mechanical aspects of the pollutant transport to coniferous trees', *Bound-Lay.* Meteorol. 56, 163–195.
- Ruck, B., Schmitt, F. & Kihm, G. (1988), 'Aspekte zum Schadensverlauf in Waldbeständen mit windexponierten Träufen', Forst und Holz 43(10), 242–245.
- Sacré, C. (2002), 'Extreme wind speed in France: the '99 storms and their consequences', J. Wind Eng. Ind. Aerod. 90, 1763–1771.
- Schüepp, M., Schiesser, H., Huntrieser, H., Scherrer, H. & Schmidtke, H. (1994), 'The winterstorm Vivian of 27 february 1990: About the meteorological development, wind forces and damage situation in the forests of switzerland', *Theor. Appl. Climatol.* 49, 182–200.
- Schmoeckel, J. (2006), Orographischer Einfluss auf die Strömung abgeleitet aus Sturmschäden im Schwarzwald während des Orkans Lothar, PhD thesis, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe.
- Schraft, A., Durand, D. & Hausmann, P. (1993), Stürme über Europa Schäden und Szenarien, Schweizer Rückversicherungs-Gesellschaft, Zürich.
- Schroers, H. & Lösslein, H. (1983), 'Extremwertextrapolation und Windprofile bei Starkwind und Sturm', Meteorol. Rdsch. 36, 205–213.
- Schroers, H., Lösslein, H. & Zilch, K. (1990), 'Untersuchung der Windstruktur bei Starkwind und Sturm', *Meteorol. Rdsch.* **42**, 202–212.
- Shanmugasundaram, J., Arunachalam, S., Gomathinayagam, S., Lakshmanan, N. & Harikrishna, P. (2000), 'Cyclone damage to buildings and structures - a case study', J. Wind Eng. Ind. Aerod. 84(3), 369–381.
- Sill, B. & Kozlowski, R. (1997), 'Analysis of Storm-Damage Factors for Low-Rise Structures', J. Perf. Construc. Fac. 11(4), 168–177.
- Simiu, E. & Scanlan, R. (1986), Wind effects on structures, John-Wiley & Sons, New York.
- Sockel, H. (1984), Aerodynamik der Bauwerke, Vieweg, Braunschweig.
- Sparks, P., Liu, H. & Saffir, H. (1989), 'Wind damage to masonry buildings', J. Aerospace Eng. 2(4), 186–198.
- Sparks, P., Schiff, S. & Reinhold, T. (1994), 'Wind damage to envelopes of houses and consequent insurance losses', J. Wind Eng. Ind. Aerod. 53, 145–155.
- Spence, R., Fawcett, W. & Brown, A. (1998), Windstorm vulnerability of the UK building stock, in 'Proceedings of the Wind Engineering Society Conference', WES, pp. 233–238.
- Stewart, M. (2003), 'Cyclone damage and temporal changes to building vulnerability and economic risks for residential construction', J. Wind Eng. Ind. Aerod. 91(5), 671–691.
- Taylor, R. (1962), 'Small-scale advection and the neutral wind profile', J. Fluid Mech. 13, 529-539.
- Tennekes, H. (1973), 'The logarithmic wind profile', J. Atmos. Sci. 30(2), 234–238.

160Literatur

Tetzlaff, G. (2001), Cluster: Risikoanalyse Sturm, in 'DFNK Jahresbericht', pp. 23-27.

Unanwa, C., McDonald, J., Mehta, K. & Smith, D. (2000), 'The development of wind damage bands for buildings', J. Wind Eng. Ind. Aerod. 84, 119-149.

Uppala, S., Kallberg, P., Simmons, A., Andrae, U., da Costa Bechtold, V., Fiorino, M. et al. (2005), 'The ERA-40 re-analysis', Q. J. Roy. Meteor. Soc. 131, 2961–3012.

van Staalduinen, P. (1994), Sturmsicherheit von Dachziegeln und Dachsteinen auf geneigten Dächern - Prüfung eines Berechnungsverfahrens, in E. Plate, ed., 'Windprobleme in dichtbesiedelten Gebieten', WtG, pp. 147-157.

Wegener, A. L. (1917), Wind- und Wasserhosen in Europa, Vieweg, Braunschweig.

Wieringa, J. (1973), 'Guts factors over open water and built-up country', *Bound-Lay. Meteorol.* **3**, 424–441. Wieringa, J. (1992), 'Updating the Davenport roughness classification', *J. Wind Eng. Ind. Aerod.* **41-44**, 357–368.

Zevenbergen, L. & Thorne, C. (1987), 'Quantitative analyses of land surface topography', Earth Surf. Proc. Land. **12**, 47–56.

Universität Karlsruhe (TH) Institut für Hydromechanik

Winterstürme verursachen in Deutschland jedes Jahr Schäden in Millionenhöhe. Besonders betroffen sind neben Infrastruktur und Waldbeständen vor allem Wohngebäude. Bei Wintersturm Lothar (26.12.1999) wurden alleine in Baden-Württemberg über 200.000 Gebäude beschädigt. Um für zukünftige Ereignisse Vorsorgemaßnahmen zu entwickeln muss zuerst eine Quantifizierung des Schadensrisikos, also der zu erwartenden Schäden, durchgeführt werden.

In der vorliegenden Arbeit wird hierzu eine Methode zur Risikoberechnung entwickelt und am Beispiel von Wohngebäuden in Baden-Württemberg durchgeführt. Dazu wird anhand von Schadensdaten vergangener Sturmereignisse untersucht, inwiefern sich die Schadenshöhe durch meteorologische und topographische Faktoren erklären lässt. Zur Simulation der Schadensanfälligkeit von Gebäuden wird ein Schadensmodell entwickelt und anhand von Schadensdaten vergangener Sturmereignisse in Baden-Württemberg kalibriert. Das Schadensrisiko wird anhand von Risikokurven und Risikokarten für alle Gemeinden Baden-Württembergs dargestellt.

ISSN: 1439-4111 ISBN: 978-3-86644-117-0

www.uvka.de