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ihrer Erziehung und Zuneigung zu verdanken, weshalb Ihnen diese Arbeit gewidmet ist.

Karlsruhe, April 2007 Marc Schleyer

iv



Kurzfassung

Marc Schleyer

Zeitdiskrete Modellierung von Batch-Prozessen in
Materialflusssystemen

Diese Arbeit beschäftigt sich mit der Entwicklung von analytischen Verfahren für die
Leistungsbewertung von Batch-Prozessen in Materialflusssystemen. Die praktische An-
wendung der entwickelten zeitdiskreten Modelle ist vor allem in der Grobplanungsphase
von Logistiksystemen zu sehen. Für diese Planungsaufgabe weisen sie einen ausreichen-
den Detailierungsgrad auf und es können in kurzer Zeit verschiedene Planungsszenarien
quantitativ untersucht und bewertet werden. Die für die verschiedenen Planungsszena-
rien erforderlichen Systemkapazitäten können berechnet werden.

Im Gegensatz zu einer herkömmlichen zeitkontinuierlichen Modellierung eröffnet die
Diskretisierung der Zeit neue Möglichkeiten für die Modellierung und Analyse von
stochastischen Systemen. Anstatt mit Mittelwerten und Varianzen können nun Leis-
tungskenngrößen (z.B. Wartezeiten, Durchlaufzeiten, Bestände etc.) mit Wahrschein-
lichkeitsverteilungen beschrieben werden, wodurch ihre Aussagekraft erhöht wird. Dies
eröffnet dem Planer die Möglichkeit Materialflusssysteme so auszulegen, dass Kunden-
aufträge in einer vorgegebenen Zeit und mit einer vorgegebenen Wahrscheinlichkeit, die in
der industriellen Praxis gewöhnlich zwischen 95% und 99% liegt, erfüllt werden können.

Es besteht Forschungsbedarf geeignete zeitdiskrete analytische Methoden für die Ana-
lyse von Materialflusssystemen unter generellen stochastischen Verteilungsannahmen zu
entwickeln. Vor allem in Materialflusssystemen kommt es bedingt durch die Zusam-
menfassung von Aufträgen, durch Transporte und durch Sortiervorgänge zur Bildung
von Batches. Daher werden in der vorliegenden Arbeit verschiedene analytische Mo-
delle entwickelt, die Batch-Prozesse in der Evaluierung von Materialflusssystemen mit
berücksichtigen.

Zunächst werden drei verschiedene Prozesse der Batch-Bildung im Detail untersucht.
Es können zwei grundlegende Batch-Bildungs Prozesse, nämlich zum einen die Batch-
Bildung nach Menge und zum anderen nach Zeit, identifiziert werden. Diese beiden
Prozesse können in verschiedenster Art modifiziert werden. So wird zusätzlich die Batch-
bildung nach Mindestmenge betrachtet, bei der innerhalb einer vorgegebenen Zeit das
Batch gebildet wird, aber der Prozess erst abgeschlossen ist, bis eine Mindestmenge er-
reicht ist. Für die genannten Batch-Bildungsprozesse werden unter generellen stochasti-
schen Verteilungsannahmen die Warte- und Zwischenabgangszeitverteilung exakt be-
stimmt.

Des Weiteren werden Modelle zur Leistungsbewertung des G/G/1-Bediensystems mit
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Kurzfassung

Batch-Ankünften, des G/G[K,K]/1-Bediensystems, des G/G[L,K]/1-Bediensystems und
der Sortierung von Batches eingeführt. Verfahren für die Berechnung der Warte-
und Zwischenabgangszeitverteilung werden vorgestellt. Der Systemzustand des G/G/1-
Bediensystems mit Batch-Ankünften wird zum Ankunftszeitpunkt eines Kundenauftrags
und der Systemzustand des G/G[L,K]/1-Bediensystems zum Abgangszeitpunkt eines
bearbeiteten Kundenauftrags analysiert.

Zusätzlich zu der analytischen Modellbeschreibung wird das Systemverhalten jedes
einzelnen Modelles untersucht. Sowohl mathematisch als auch in einer Reihe von
nummerischen Beispielen werden die Zusammenhänge zwischen Eingangs- und Ergeb-
nissgrößen aufgezeigt. Es ist ersichtlich, dass die Wahrscheinlichkeit einen Auftrag
rechtzeitig zu erfüllen sensitiver auf Parameteränderungen reagiert als die mittlere Sys-
temverweilzeit. Es wird gezeigt, dass eine Analyse, die auf die Berechnung von Mittel-
werten beruht, die Konsequenzen eines instabilen Prozessverhaltens auf die Wahrschein-
lichkeit der rechtzeitigen Auftragerfüllung unterschätzt. Dies motiviert den Einsatz der
vorgestellten zeitdiskreten analytischen Verfahren für die praktische Anwendungen.
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Abstract

Marc Schleyer

Discrete Time Analysis of Batch Processes in Material
Flow Systems

Scope of this doctoral thesis is the development of appropriate models for the evaluation
of batch processes in material flow systems. The presented analytical methods support
the long range planning in an early planning stage, in which capacities are determined
to minimize the facility costs under the condition of cycle time targets. In this planning
stage a rough and extensive “what-if” analysis is required in order to find a competitive
solution. We choose an analytical approach for a performance evaluation of material flow
systems since it is more time efficient and allows deep insights into the general system’s
behavior.

Performance measures based on system averages are not sufficient to verify whether the
requested shipping times can be met with an acceptable probability, which usually lies
between 95% and 99%, possibly depending on order types. Therefore, for the evaluation
of design alternatives in respect to their ability to reach the requested sojourn time from
order entry to exit, discrete time queueing models are proposed. These models enable
an analysis of general distributed process on the basis of distributions.

Since there is still a lack of appropriate discrete time models for the analysis of mate-
rial flow processes, we are motivated to find new solutions for problems in this field.
Especially, models for the description of batch processes are missing. Due to efficiency
reasons batch processes are very common in material flow systems. Therefore, we develop
a variety of batch queueing models in the discrete time domain.

At first, we study different batch building processes in detail. Two basic batch building
modes, the capacity and the timeout rule, and additionally a possible modification called
the minimum batch size rule, are analyzed. For the named batch building modes we
derive both interdeparture and waiting time distribution.

Next, we introduce analytical models for an evaluation of the G/G/1-queue with batch
arrivals, G/G[K,K]/1-queue, G/G[L,K]/1-queue, and batch split operation. Again, each
model provides methods for a detailed analysis of the waiting and departure process on
the basis of discrete distributions. Furthermore, the system’s state of the G/G/1-queue
with batch arrivals is investigated at the arrival instant and the system’s state of the
G/G[L,K]/1-queue at the departure instant.

In addition to the analytical descriptions we point out the system’s behavior of each
analytical model. We show both, mathematically and numerically, the dependence of
performance measures on the input parameters. Various numerical experiments explain
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that the probability of an on-time order fulfillment react more sensitively on parame-
ter changes than mean values. We present that an analysis focusing on mean values
underestimates the consequences of an instable process behavior on the on-time order
fulfillment.
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Glossary of Notation

[τn+k+1 − τn](l) time interval between τn+k+1 and τn depending on the position l
of customer n

αni (k,l) distribution which describes the probability that the time interval
between τn+k+1 and τn is i time units depending on the position
l of customer n

βi idle time distribution

∆m(fx) operator which shift the elements of a the distribution fx down
by m units

δn departure instant of the nth customer

ηi distribution of the number of customers at the arrival instant

λ arrival rate

λbatch batch arrival rate

νi distribution of the number of customers at the departure instant

⊗ convolution operator

ai probability that the random variable A is at least i

Φn
k,m(l) distribution that the time interval [τn+k+1− τn](l) is composed of

m interarrival time intervals

πm(fx) operator which sums up all values of the distribution fx with
x < m and adds their sum to πm

σu u%-quantile (0 ≤ u ≤ 1)

τn arrival instant of the nth customer

$i distribution of the number of customers in the queue immediately
after the service start

ξ probability that the sum of at least one random variable is j

A interarrival time

ah→ji interarrival stream from node h to j
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Glossary of Notation

ai interarrival time distribution

B service time

bi service time distribution

bbatch,i service time distribution for a whole batch (i = 1, . . . ,bbatch,max)

Bbatch time to serve a whole batch

c2
X squared coefficient of variation (scv) of the random variable X

cbatch,i working balance distribution

D interdeparture time

di interdeparture time distribution

E(X) expectation of the random variable X

E(Xn) nth moment of the random variable X

ei distribution of the number of still missing customers

H number of customers in the queue immediately after the service
start

K server capacity

k collecting size

L minimum batch size

N(τ) number of customers at the arrival instant

N(t) number of customers in the queue at time instant t

Na number of arrivals during one collecting process

Nc number of missing arrivals at the timeout instant if batch building
according to the minimum batch size rule is applied

ol distribution which describes the probability that an arbitrary cho-
sen customer is located at position l within a batch

P probability measure

P (A) probability of the event A

P (Gc = q) probability that an arbitrary customer is part of a batch building
process which requires q additional arrivals if the batch building
process according to the minimum batch size rule is applied

phj probability splitting from node h to j
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Glossary of Notation

pij transition probabilities

ql distribution which describes the probability that an arbitrary cho-
sen customer is element of a batch of size l

R residual lifetime of a renewal process

Ra residual interarrival time

Rtout
a residual interarrival time at the timeout instant if batch building

according to the minimum batch size rule is applied

Ry remaining customers at the end of a collecting process

ra,i residual interarrival time distribution

ri residual lifetime distribution

ry,i remaining customer distribution

tout collecting time

U age of a renewal process

ui distribution of the age

V (l) sojourn time of an arbitrary customer depending on position l
within his batch

vi sojourn time distribution

vi(l) sojourn time distribution of an arbitrary customer depending on
position l within his batch

V AR(X) variance of the random variable X

W (l) waiting time of an arbitrary customer depending on position l
within his batch

W II waiting time of an individual customer during the service of his
batch

wIIi waiting time distribution of an arbitrary individual customer dur-
ing the service of the his batch

W k,l+q waiting time for the customers who arrive with batch k (1 ≤ k ≤
l + q); l number of arrivals before the timeout ends; q number of
additional arrivals in order to complete the collecting process; the
batch building process according to the minimum batch size rule
is applied
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W q waiting time of the qth arrival encountered after the start of a
service period if a batch service according to the minimum batch
size rule is applied

wi(l) waiting time distribution of an arbitrary customer depending on
position l within his batch

wIbatch,i batch waiting time distribution

W I
batch batch waiting time

wi waiting time distribution

wIIi (l) waiting time distribution of an individual customer during the
service of his batch depending on position l within his batch

Xn
batch working balance of the nth batch

Y batch size

Y tout number of customers collected within tout if batch building ac-
cording to the minimum batch size rule is applied

Yd batch size of the collected batch

yi batch size distribution

yd,i batch size distribution of the collected batch

Z number of customers who arrive during a service period

zi distribution of the number of customers who arrive during a ser-
vice period

W waiting time
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1. Introduction

Tout vient à qui sait attendre.

Mary M. Curie

Waiting. We are in a permanent condition of waiting. Waiting for a great variety
of events, both important and less important events. Waiting entails uncertainty and
this uncertainty can often grow and evoke certain emotions within us, be it a flurry of
excitement, fear and anxiety, or even pleasure. So, the situation of being caught in a
traffic congestion with a seemingly endless queue of cars standing bumper to bumper,
compounded by the urgency to reach a particular destination can often transform a
usually calm person into a case of rage. In another situation, a hospital patient who
waits for a critical surgery suffers fear of not knowing the outcome and will pin all hopes
on a successful surgical procedure. In contrast, just like the saying “pleasure caused by
anticipation is the best pleasure” suggests, there are so many waiting situations which
cause the purest pleasure. Thus, the nine month awaiting the arrival of the newborn is
a period of joy and happiness for the expectant parents.

Whether waiting is pleasant or unpleasant depends strongly on the expected outcome.
However, an unpleasant waiting situation can be mitigated if we stay patient. Often, our
impatience is unfounded. Therefore we refer to the opening quote: “All things come to
those who know to wait”. Especially, good ideas require patience.

The fact that waiting is omnipresent spurs many philosophers and other intellectuals to
create a large amount of literature dealing with the subject of waiting. One such work
is the famous drama “Waiting for Godot” by Samuel Beckett, which deals just about
a waiting situation. This absurd play confronts the reader with the agony of Vladimir
and Estragon awaiting the arrival of Godot. Beckett describes two evenings of paralyzed
waiting in an endless sequence of similar evenings. Nothing happens, Godot never arrives.

In the sense of Beckett, waiting is static and is not activity, it is “inactivity”. Many
people esteem waiting time as lost time. However, when put it in a different light, we
can see it inversely: Waiting is gained time, time for doing something which we wished
to do for a long time. Therefore, we can use this gained time, for example, to think
thoroughly about problems we have in order to make well-grounded decisions.

In material flow systems, we have to recognize unfortunately that material units, cus-
tomer orders, and information are unable to gain any additional value through waiting.
In this context, waiting time is considered as lost time. In addition, inventories and
buffers have to be provided in order to bridge the waiting time. The purpose of this
work is to introduce analytical models which allow a quantitative analysis of waiting
phenomena in material flow systems. The presented insights into the system’s behav-
ior can be used to reduce waiting times in real world material flow systems, such that

1



1. Introduction

the gained time can be used for more meaningful activities, e.g. thinking and making
well-grounded decisions.

1.1. Problem Description and Scope of the Book

In the current work we focus on the performance analysis of material flow systems. Let
us exemplify the main criteria of such a performance analysis by means of two questions:

What does a company profit from the manufacture of high quality products if the resulting
demand is low due to the prices being too expensive? Therefore, companies are forced
to reduce their costs in order to offer at competitive prices. In this context, companies
should focus on minimizing all activities which have no additional value for their prod-
ucts: Inventory, rework due to problems in product quality, scrap, customer claims etc.
are all examples for such activities. However, before valueless activities can be minimized,
processes which provide no additional value have to be identified and analyzed.

In general, processes which are related to the material flow provide no additional value
in contrast to production processes. Thus, customers are not willing to pay more if
material units are transported from machine A to B or if finished products are stored
in an automated high rack warehouse. However, it is absolutely necessary to transport
material units from machine A to B, since the manufacturing process on machine B has
to follow the process on machine A. In addition, it is necessary to hold a stock of finished
goods as means of reacting quickly to customer orders. It follows that the distance from
machine A to B has to be kept to the minimum, that the transportation from machine
A to B has to be carried out reliably, and that a sufficient buffer of material units has
to be present at each machine in the production process. Equally, given the customer
demand the required stock of finished goods has to be computed.

In the recent years companies have realized that their competitiveness depends crucially
on the performance of their material flow system. In order to organize the material
flow, practitioners and researchers introduced different strategies such as Just-in-Time,
Kanban, CONWIP, Control Point Policy, Continuous Flow, Heijunka etc. in order to
organize the material flow. The purpose of all these policies is the same, the reduction of
valueless activities. In these cases in which analytical methods for a system’s evaluation
under general assumptions exist, it is addressed by a mean value analysis of the work
in progress. In the current work, we propose models for the determination of the mean
work in progress as well, however, let us ask a further question.

What does a company profit from the manufacture of high quality products if they are un-
able to deliver them on-time? Therefore, companies have to ensure an on-time delivery of
orders to fulfill customer expectations. Material flow systems should be designed in such
a way it guarantees the on-time order fulfilment with a given high probability which lies
usually between 95% and 99%, depending on order types. Performance measures based
on system averages are not sufficient to verify whether the requested shipping times can
be met with an acceptable probability. We recognize that there is a lack of appropri-
ate analytical methods to analyze material flows on the basis of general distributions.
By means of this work we provide analytical methods on the basis of general distribu-
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tions which allow the determination of the sojourn time distribution and therefore the
calculation of the probability of an on-time order fulfillment.

Furthermore, batch processes are very common in material flow systems. We identify
a requirement for research to develop appropriate models for the evaluation of batch
processes. The purpose of the current work is to provide a toolkit of analytical models
to analyze a variety of batch processes in material flow systems. Different batch building
modes, batch arrival processes, batch service processes, and finally sorting of batches
have to be investigated. The waiting and the departure process for each material flow
element have to be analyzed in detail. We assume that time is discrete since this deliv-
ers advantages regarding modeling of material flow systems. These advantages will be
pointed out in this work.

By means of our approach we address the following scope of application. The presented
analytical methods support the long range planning in an early planning stage, in which
capacities are determined to minimize the facility costs under the condition of cycle time
targets. In this planning stage a rough and extensive “what-if” analysis is required in
order to find a competitive solution. In this context, we have to state that material flow
systems can be evaluated by discrete event simulation as well. We choose an analytical
approach for a performance evaluation of material flow systems since it is more time
efficient and allows deep insights into the general system’s behavior.

Recapitulating, the following problems are addressed:

• Performance evaluation of material flow systems with the focus on batch processes

• Design and redesign of material flow systems under the constraint of an on-time
order fulfillment

• Long range planning of material flow systems in an early planning stage

• Extensive “what-if” analysis

• Explanatory statements of material flow phenomena in a stochastic environment

Thus, the research purpose is to add new model approaches to the existing tool-kit of
analytical models found in the literature and give explanations for the system’s behavior
in material flow systems not investigated so far.

1.2. Organisation of the Book

The overall structure of the current work is depicted in Figure 1.1.

The Chapters from 1 to 3 intend to familiarize the reader with fundamentals and the
motivation behind our work. After an introduction, Chapter 2 presents definitions of
probability theory focusing on the discrete time domain. In addition, we give a sum-
mary of some basic discrete time queueing models which allow the modeling of one-piece
flows in material flow systems. We conclude this chapter presenting the advantages of
modeling material flow systems using discrete time analysis. These advantages moti-
vate strongly our research. Afterwards, in Chapter 3, we exemplify a variety of reasons
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why batch processes occur in material flow systems. A literature review relevant to the
current work is provided. We distinguish between batch arrival, batch service, batch
building, and queueing network analysis with respect to batch processes. The main part

1. Introduction

Motivation and Fundamentals

2. Discrete Time Queueing Analysis of Material Flow Systems

3. Queueing Analysis of Batch Processes

Toolkit of Analytical Model Approaches in the Discrete Time Domain

4. Batch Building
5. Batch Arrivals, Batch Service Queues, 

and Batch Split

a) Capacity Rule

Analysis of the System’s Behavior

6. Batch Processes in Queueing Networks

Software-Tool; Numerical Case

b) Timeout Rule

c) Minimum Batch Size Rule

a) G/G/1-queue with Batch Arrivals

b) G|G         |1-queue
[K,K]

b) G|G         |1-queue
[K,K]

c) G|G         |1-queue[L,K]

d ) Sorting: Batch Split

7. Conclusion and Further Research

Figure 1.1.: Organisation of the book

of this work are the Chapters 4 and 5. Here, we introduce a comprehensive toolkit of
analytical approaches for the analysis of material flow systems in which batch processes
are involved. Normally, a toolkit has the property that an user can choose the required
tool independent of the other tools which are else provided in the toolkit. Therefore,
we construct Chapters 4 and 5 in a way that the sections in which one of the tools is
described can be read, understood and used separately from one another. As such, each
tool is explained with the given parameters and assumptions, and exemplified briefly
with a few real world applications. The proposed tools for the analysis of material flow
systems are: Batch building under the capacity rule, batch building under the time-
out rule, batch building under the minimum batch size rule, G/G/1-queue with batch
arrivals, G/G[K,K]/1-queue, G/G[L,K]/1-queue, and batch split. Each tool provides meth-
ods for a detailed analysis of the waiting and departure process on the basis of discrete
distributions. Furthermore, the system’s state of the G/G/1-queue with batch arrivals is
investigated at the arrival instant and the system’s state of the G/G[L,K]/1-queue at the
departure instant. In addition to the analytical descriptions we point out the system’s
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behavior of each analytical model. We show both, mathematically and numerically, the
dependence of performance measures on the input parameters.

Chapter 6 illustrates how the different tools presented in the previous chapters can be
taken to model material flow networks. In order to make a network analysis possible we
developed a software solution well-suited for the application to practical problems. A tool
library supports the modeling of both one-piece and batch flows. Arbitrary material flow
networks can be modeled user-friendly via “drag and drop” and can be parameterized
via provided windows. This chapter is concluded by presenting a numerical example.

The final chapter of this work provides a concluding discussion of the contribution of this
research, summarizes the main results, and also discusses limitations of this approach.
Finally, an outlook on further research is given.
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2. Discrete Time Queueing Analysis of
Material Flow Systems

“What does it profit a man to study such unpleasant phenomena?” The
answer, of course, is that through understanding we gain compassion, and it

is exactly this which we need since people will be waiting in longer and
longer queues as civilization progresses, and we must find ways to tolerate

these unpleasant situations.

Leonard Kleinrock about queueing theory

This chapter familiarizes the reader with fundamentals of discrete time queueing analysis
and presents advantages for the evaluation of material flow systems using discrete time
queueing analysis.

Section 2.1.1 gives a brief overview of basic definitions of probability theory, which we
will use in the approaches presented later.

In Section 2.1.2 the issue of renewal processes in the discrete time domain is addressed.
We show how the residual lifetime distribution of a renewal process can be determined,
playing an important role in our subsequent analysis.

Section 2.1.3 presents a literature review concerning queueing models in the discrete
time domain. We choose models which are elementary for the analysis of material flow
systems. Batch processes are not considered. Understanding these models helps the
reader with the study of our analysis of batch processes in Chapters 4 and 5.

Finally, in Section 2.2 we discuss the main advantages of discrete time queueing analysis
for modeling material flow systems, which serves as the main motivation of our work to
find new analytical approaches for a better analysis. Such advantages are exemplified in
comparison with queueing methods in the continuous time domain and simulation.

2.1. Basic Definitions of Probability Theory in Discrete
Time Domain

It is intended to familiarize the reader with the notations used and provide some basic
relations of probability theory, focusing on the discrete time domain. However, it is
assumed that the reader is familiar with the basic properties and methods of probability
and queueing theory. For a detailed study of probability and queueing theory we refer
to Feller (1968) and Kleinrock (1975). We recommend the book of Tran-Gia (1996) for
an introduction to the analysis of queueing systems in the discrete time domain.
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2. Discrete Time Queueing Analysis of Material Flow Systems

2.1.1. Definitions

In our analysis we assume that time is discrete. This means that we observe our system
at spaced time instants sequentially numbered by 0,1,2, . . .. The time period between two
subsequent time instants is called the time unit length and is assumed to be constant.
Hence, events in a discrete time domain will only be recorded at time instants which are
multiples of the time unit length.

In our analysis events are described by a discrete random variable. Given a discrete
random variable X, we denote its distribution which is also called probability mass
function (pmf) by

P (X = i) = xi ∀i = 0,1,...,xmax. (2.1)

P denotes a probability measure and its possible range of values is from zero to a finite
bound xmax. We assume a finite value range xmax since this is in accordance with real
applications. The distribution function of X, which is called cumulative distribution
function abbreviated with CDF, is given by

P (X ≤ i) =
i∑

j=0

xj ∀i = 0,1,...,xmax. (2.2)

Subsequently, when we use the notion distribution, we refer to the pmf. Several important
parameters can be derived from the distribution of a discrete random variable. We get
the mean value of X by

E(X) =
xmax∑
i=0

i · xi. (2.3)

The nth moment of X is defined as

E(Xn) =
xmax∑
i=0

in · xi. (2.4)

The second central moment of X is referred to as the variance and it is obtained by

V AR(X) = E([X − E(X)]2) = E(X2)− E(X)2. (2.5)

The squared coefficient of variation (scv) is denoted by c2
X as a normalized measure of

statistical dispersion and is defined as

c2
X =

V AR(X)

E(X)2
. (2.6)

We use c2
X in our analysis to measure the process variability. Processes with low values

of c2
X indicate stable processes. Otherwise, processes with high values of c2

X indicates
unstable processes.

Managers of material flow systems are often interested to know if a process can be
performed within a given time period with a given probability. If the distribution of a

8



2.1. Basic Definitions of Probability Theory in Discrete Time Domain

process is known, this can be indicated by the appropriate quantile. The u%-quantile of
a discrete distribution, denoted by σu, gives then the value at which the CDF exceeds u.
Therefore, we define

σu ⇔
σu∑
j=0

xj ≥ u ∧
σu−1∑
j=0

xj < u. (2.7)

The distribution of the sum of two independent nonnegative random variables X and Y
is called the convolution of their distributions and can be computed by

zi =
i∑

j=0

xj · yi−j = xi ⊗ yi i = 0,1, . . . ,zmax, (2.8)

where ⊗ is defined as the convolution operator. Furthermore, we get the difference of
two independent nonnegative random variables X and Y by

zi =
∞∑
j=0

xi+j · yj = xi ⊗−yi i = 0,1, . . . ,xmax. (2.9)

This operation is called the negative convolution.

In Chapters 4 and 5 conditional probabilities are frequently needed for our analysis. This
is a powerful tool which eases the description of stochastic processes. Let P (A) denote
the probability that the event A occurs, where P (A) is a real number in the range of
0 ≤ P (A) ≤ 1. The probability of the event A under the condition that the event B has
happened is denoted by P (A|B) and is defined as

P (A|B) =
P (A ∩B)

P (B)
. (2.10)

Given is the sequence of events {Ai}. If P (Ai) and the conditional probabilities P (B|Ai)
are known, P (B) can be calculated by the law of total probability:

P (B) =
∑
i

P (Ai,B) =
∑
i

P (B|Ai) · P (Ai). (2.11)

Equation (2.10) and (2.11) lead to Bayes theorem written as

P (Ai|B) =
P (B|Ai) · P (Ai)

P (B)
=

P (B|Ai) · P (Ai)∑
i P (B|Ai) · P (Ai)

. (2.12)

2.1.2. Discrete Time Renewal Process

In the following, we define the renewal process in the discrete time domain. In addition,
we derive the residual lifetime distribution which we will need in our further work.

Given is a sequence of events on a discrete time axis. The time interval between event
n and n− 1 is described by the random variable Xn and its distribution is given by xni ,
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2. Discrete Time Queueing Analysis of Material Flow Systems

i = 0,1,2, . . . ,xmax. We define this sequence of events as a discrete time renewal process
if the length of all intervals are independent from each other and identically distributed
(see Tran-Gia (1996)). It follows that

xni = xi ∀ n = 0,1,2, . . . and ∀ i = 0,1,2, . . . . (2.13)

Since Xn is independent and identically distributed (iid), each event marks a renewal
point. The process is reset at the renewal point and the time interval to the next event
is described by xi.

Let us assume that a renewal process is observed at an arbitrary time instant t∗. This
arbitrary time instant is equally distributed on every possible time instant on the un-
derlying time axis. The time interval from t∗ to the succeeding event is defined as the
residual life time, denoted by R, and the time interval from t∗ to the preceding event is
defined as the age, denoted by U . The residual lifetime and the age of a discrete time
renewal process are depicted in Figure 2.1.

t

1−n
X

n
X

1+n
X

residual lifetime Rage U

: arbitrary

time instant

*
t : arbitrary

time instant

*
t

time unit 

length

event

n-1

event

n

event

n+1

Figure 2.1.: Discrete time renewal process

Since time is assumed to be discrete, we have to distinguish if the arbitrary observation
instant t∗ lies immediately before or immediately after discrete time instants. First, let
us assume that t∗ lies immediately before discrete time instants. If an event takes place
at the observation instant t∗, the occurrence of this event is observed and the residual
lifetime is zero. In this case, the age is the time period from the preceding event to
t∗. Secondly, if we assume that t∗ lies immediately after discrete time instants, the
occurrence of this event is not observed and the residual lifetime is the time period until
the occurrence of the succeeding event. In this case, the age is zero.

If t∗ lies immediately before discrete time instants, we conclude that the value range of R
is from 0 to xmax−1 and that of U is from 1 to xmax. If t∗ lies immediately after discrete
time instants, R is defined from 1 to xmax and U from 0 to xmax − 1. In the following,
we derive the distribution of the residual lifetime and the age. Since the age has the
same statistical properties as the residual lifetime, the age is identical to the residual
lifetime except that the value range is shifted by one time unit length. Therefore, only
the derivation of the residual lifetime distribution is required.
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2.1. Basic Definitions of Probability Theory in Discrete Time Domain

Observation Immediately Before Discrete Time Instants

We assume that t∗ lies immediately before discrete time instants. The residual lifetime
distribution is denoted by ri and its derivation can be found in Tran-Gia (1996). It
follows that

ri =
xmax∑

h=i+1

P (R = i|Q = h)P (Q = h), (2.14)

where P (Q = h) is the probability that t∗ lies in an interval of length h.

P (Q = h) is proportional to xh. Furthermore, P (Q = h) is proportional to the interval
length h because it is more probable to observe a long interval than a short one. Thus
we get

P (Q = h) = C · h · xh, (2.15)

where C is a constant. Since the sum of all probability has to be one, we can determine
C:

1 =
xmax∑

h=0

P (Q = h) = C

xmax∑

h=0

h · xh = C · E(X)⇒ C =
1

E(X)
. (2.16)

If the observed interval X is of length h, there are h possible observation points which
can all be met with the same probability 1/h. It follows that

P (R = i|Q = h) =
1

h
∀i = 0,1, . . . ,k − 1. (2.17)

Combining Equations from (2.14) to (2.17) yields

ri =
1

E(X)

xmax∑

h=i+1

xh =
1

E(X)
(1−

i∑

h=0

xh) ∀i = 0, . . . ,xmax − 1. (2.18)

The derivation of the distribution of the age is analogous. The value range is shifted by
one time unit length. We get

ui =
1

E(X)
(1−

i−1∑

h=0

xh) ∀i = 1, . . . ,xmax, (2.19)

and we can write

ri = ui+1 ∀i = 0, . . . ,xmax − 1. (2.20)

Observation Immediately After Discrete Time Instants

We assume that t∗ lies immediately after discrete time instants. The derivation of ri and
ui is analogous to the case that t∗ lies immediately before discrete time instants. Now,
the value range of R is from 1 to xmax and that of U is from 0 to xmax − 1. It yields

ri =
1

E(X)
(1−

i−1∑

h=0

ah) ∀i = 1, . . . ,xmax (2.21)

and

ri = ui−1 ∀i = 1, . . . ,xmax. (2.22)
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2. Discrete Time Queueing Analysis of Material Flow Systems

2.1.3. Material Flow Modeling

In this section we summarize briefly some basic queueing models in the discrete time
domain, which allow the modeling of simple problems in material flow systems. These
models are restricted to an one-piece flow.

As in the famous Queueing Network Analyzer of Whitt (1983) for the analysis of general
open queueing networks in the continuous time domain, we have to model the following
basic operations in the discrete time domain as well:

• The service operation by means of the G/G/1-queue1; the interarrival and the
service time are iid

• The split operation in order to split an incoming stochastic stream into two or more
outgoing streams

• The merge of independent stochastic streams

In Figure 2.2 the named basic operations are depicted.

M S

Service operation

G/G/1-queue Merge operation Split operation

Stochastic

stream 1

Stochastic

stream 2

Merged

stream
Stochastic

stream

Splited

stream 1

Splited

stream 2

Figure 2.2.: Basic operations for modeling material flow networks in the discrete time
domain

As by Whitt it is assumed that the nodes of a material flow network are treated as stochas-
tically independent. In order to connect the nodes, the departure process of each of the
named model elements has to be known. Furthermore, for a performance evaluation
the waiting times of the G/G/1-queues has to be determined. Thus, Konheim (1975),
Ackroyd (1980), Grassmann and Jain (1989), and Tran-Gia (1996) present analytical
approaches to estimate the waiting time distribution of the discrete time G/G/1-queue.
Grassmann and Jain (1989) give a numerical method which is based on the Wiener-Hopf
factorization of the underlying random walk. They compare their method with related
methods suggested in the literature of queues and show that their method performs very

1The Kendall’s notation is widely used to classify elementary queueing systems:

A/B/m - queueing discipline,

where A indicates the interarrival time distribution, B the service time distribution and m the number
of servers. E.g. M denotes exponential (Markov process), D deterministic (Dirac), G general, Ek k-
Erlang and H hyperexponential. Implicit with this notation is the assumption that the interarrival
times and the service times are independent and that the random variables of each sequence are
identically distributed. The queueing discipline determines which customer is selected from the
queue for service when a server becomes idle. Generally, if the queueing discipline is not indicated,
it is assumed that the queueing discipline is First-Come-First-Served.
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2.2. Advantages of Modeling Material Flow Systems in Discrete Time

well and is often faster by several orders of magnitude. Grassmann and Jain develop
three algorithms for the calculation of the waiting time distribution. Algorithm 3 con-
verges faster than algorithm 1 and 2. However, they have no proof of convergence for
algorithm 2 and 3. In contrast, they show that algorithm 1, which converges slower than
algorithm 2, always converges.

Once the waiting time distribution is known, the interdeparture time distribution can
be determined (see Grassmann and Jain (1988)). It has to be distinguished between
two cases. First, if customer n + 1 arrives at the queueing system and has to wait, the
interdeparture time between customer n and n+ 1 will be the service time. However, if
customer n+ 1 arrives at an empty system and initiates a busy period, his waiting time
is zero and the interdeparture time between customer n and n+ 1 will be the sum of the
service and the idle time.

Furmans (2004a) presents a model for the stochastic split of material- and information
flows in the discrete time domain, which is based on the ordinary Markovian split in the
literature (see Whitt (1983)). In the current work this approach is extended in order to
model the split of batch arrivals (see Section 5.5).

There is no exact method to calculate the distribution of a merged stochastic stream.
Again, Furmans (2004a) introduces an approximation method which assumes that the
merged stream is again a renewal process.

The three briefly presented basic operations (see Figure 2.2) allow a rough and a fast
analysis of material flow systems. With the aim to increase the level of detail regarding
modeling of material flow processes, this work introduces a variety of new models for the
description of batch processes.

2.2. Advantages of Modeling Material Flow Systems in
Discrete Time

Queueing analysis for general networks in the continuous time scale is well studied. An
enormous amount of literature with regard to this topic exists. Some of them which
provide a comprehensive insight and an overview about queueing theory, are the works
of Kleinrock (1975), Gnedenko and König (1983), Wolff (1989), and Buzacott and Shan-
thikumar (1993). There are a variety of literature modeling material flow systems by
means of queueing systems in the continuous time scale as well, as such Greiling (1997),
Rall (1998), and Furmans (2000).

Since the transmission of data packets in communication networks, such as in ATM
(Asynchronous Transfer Mode) networks, occurs in slots, scientists in telecommunica-
tion science have been investigating discrete time queueing models intensively since the
1980s. Among them are Ackroyd (1980), Bruneel and Kim (1992), and Hübner and
Tran-Gia (1995). Discrete time queueing models are well suited to describe material
flow systems as well. As a motivation to find appropriate solutions for problems in this
field, we shall subsequently discuss advantages of analyzing material flow systems using
discrete time queueing models.
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2. Discrete Time Queueing Analysis of Material Flow Systems

Accuracy

An analysis of material flow systems by means of general queueing systems in a continuous
time domain is based on the description of stochastic processes by the first two moments
(see Shanthikumar and Buzacott (1981), Whitt (1983), Whitt (1993), and Hopp et al.
(2002)). Concerning the G/G/1-queue, the first two moments of the interarrival and
service time are used to calculate the mean waiting time and the first two moments of
the interdeparture time using approximations (see Whitt (1993) and Bolch et al. (1998)).

In contrast, the before mentioned approach of Grassmann and Jain (1989) for the de-
termination of the waiting time distribution of the discrete time G/G/1-queue is exact
within an ε-neighborhood.

Since the queueing systems in our work are analyzed on the basis of discrete distributions,
we have the possibility to explain the influence of further standardized moments like
skewness, which is a measure for the asymmetry, and kurtosis, which is a measure for the
“peakedness”. Moments higher than the second influence the accuracy of computation.
This fact can be illustrated by the subsequent numerical examples analyzing the G/G/1-
queue.

In each of the four examples given in Table 2.1, we varied the service time distribution,
but kept its mean value and scv constant. We calculated the mean waiting time using
the approach of Grassmann and Jain (1989), which is exact within an ε-neighborhood.
As shown in Table 2.1, the mean waiting time E(W ) is obviously different for each of
the five service time distributions. The maximum relative deviation is denoted by ∆max.
It yields ∆max = 0,073 for the first example. This result demonstrates the fact that
more information is required for an accurate determination of E(W ) than the first two
moments of the interarrival and service time distribution.

However, by an analysis with standard 2-parameters-approximation methods for the
G/G/1-queue, in which general processes are described by the first two moments, we get
the same result for each of the five service time distributions. Thus, we calculated E(W )
by means of the well known G/G/1-approximation formulas of Marchal (1976), Reiser
and Kobayashi (1974), Buzacott and Shanthikumar (1993), Krämer and Langenbach-Belz
(1976), and Page (1972). The relative deviation of each of these approaches compared to
the solution of Grassmann and Jain is illustrated in Table 2.1. The minimum deviation
is marked bold.

The accuracy of the 2-parameter approximations is dependent on the scv of the inter-
arrival and service time distribution as well as the utilization (see Shanthikumar and
Buzacott (1980)). Therefore, in some cases one approximation works better than an-
other. Shanthikumar and Buzacott (1980) provide a guide to select the appropriate
approximation for different ranges of the scv of the interarrival and service time distri-
bution. Just as Shanthikumar and Buzacott, we observe that the approach by Reiser
and Kobayashi (1974) seems to give a high percentage of error.

Comparing the 2-parameter approximations with the results obtained by Grassmann and
Jain, we observe that the deviations are remarkably high in some cases. In particular,
there is a high percentage of error yielded by all approximations in example 2.

Although the number of experiments we performed is not sufficient in order to statistically
quantify the deviation of 2-parameter approximations against discrete time approaches,
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2.2. Advantages of Modeling Material Flow Systems in Discrete Time

the data in Table 2.1 shows clearly that the deviations can be remarkable. This fact drives
us to develop new discrete time queueing models which describe real world material flow
processes more accurately.

We conclude that discrete time queueing analysis is a highly accurate analytical tool
with respect to interpret stochastic processes.

Level of Detail

Material flow systems should be designed in a way such that it guarantees the order
fulfillment in a predetermined time with a chosen probability (e.g. 95%). Hence, the
distribution of the time for which an order remains in a system, defined as the sojourn
time, has to be known in order to determine its quantiles. For example, this is very
crucial in warehouses and distribution centers in which the requested shipping times
should be met with an acceptable probability, which usually lies between 95% and 99%,
depending on order types.

Figure 2.3 exemplifies the distribution of the sojourn time in an arbitrary material flow
process. By means of this distribution, we can determine the minimum time length so
that the concerned process is finished with a chosen probability. This minimum time
length which corresponds to the quantile is marked by a bold line in Figure 2.3. The
chosen quantile in this case is the 95%-quantile.

sojourn time
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Figure 2.3.: Illustration of the 95%-quantile using an arbitrary sojourn time distribution

Thus, an analysis on the basis of distributions is required. This can be achieved by
means of discrete time queueing analysis. An objective of our work is the determination
of the waiting time distribution of different queueing models in which batch processes
are involved. Since the service time distributions are given, the sojourn time distribution
can be determined and with it the probability of an on-time order fulfillment.

We conclude that the analysis of material flows by means of discrete time queueing meth-
ods enables a more detailed description of the system’s behavior than analytical methods
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2.2. Advantages of Modeling Material Flow Systems in Discrete Time

in the continuous time domain.

Processes in Real Material Flow Systems are “Discrete”

i

i
b

i

i
b

material

handling device

conveyor

λ

λ
1

λ
2

λ
3

FE

service time description of this 

material handling device

Figure 2.4.: Process description in material flow systems by means of discrete distribu-
tions; example: Service time description of a material handling device

The assumption that time is not continuous but discrete is essentially not a restriction
for modeling material flow systems. For example, the travel time of a material handling
device can only adopt a few time values, which can be very well described by a discrete
distribution. Figure 2.4 demonstrates that, given the travel times for each possible
direction and the probability choosing a direction, the service time distribution can be
easily derived.

In contrast, the modeling of stochastic processes in the continuous time scale requires
the existence of a theoretical distribution function or the description by their moments.
The derivation of the theoretical function is time consuming and this function describes
the real stochastic process with imprecision. Especially, the description of multi-modal
functions is difficult. On the other hand, using discrete time queueing analysis arbitrary
distribution functions, in the way they exist after an as-is analysis for a material flow
system, can be used. Generally, the results of an as-is analysis of a material flow system
are available in the form of histograms. The normalization of these histograms yields
discrete distributions functions which are the input for the analysis.

We conclude that a discrete time queueing analysis represents real processes with a high
degree of accuracy, since data ascertained in an as-is analysis is generally on a discrete
basis. Furthermore, low effort is required in data acquisition.

Efficiency

In industrial practice, the analysis of material flow systems is often addressed via simu-
lation. Simulation is a very powerful tool with an enormous degree of freedom regarding
modeling. Simulation models can be used for any desired level of detail. However,
simulation is very time consuming and therefore expensive. It requires a lot of time
for modeling, validation and performing experiments. Numerous simulation runs are re-
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2. Discrete Time Queueing Analysis of Material Flow Systems

quired for a single experiment in order to achieve correct results within a given statistical
range.

Analytical approaches are well-suited to support the long-range planning of material
flow systems in an early planning stage, in which the capacities are searched to minimize
facility costs under the condition of cycle time targets. In this planning stage, detailed
input data2 is not available and often based on rough approximations. Therefore, a rough
and extensive “what-if” analysis is required (see Hopp et al. (2002)). For this kind of
analysis, analytical models are well suited since they require considerably less time for
conduction the numerical experiments.

For example, to calculate the waiting, interdeparture and idle time distribution of a
G/G/1-queue with batch arrivals (see Section 5.1), it takes a few milliseconds for a
problem of reasonable size using the analytical approach and a few minutes for the
corresponding simulation.3

We conclude that analytical methods are much more time efficient than simulation.

Classification of Queueing Analysis in Discrete Time

We have so far explained the advantages of queueing analysis in discrete time. However,
some of its limitations have also to be mentioned. We take for granted that the user
considers both advantages and limitations to choose the right tool for his analysis.

Level of detail

Required computing  times

low highmiddle

low

middle

high

continuous

time queueing

analysis

simulation

discrete time

queueing

analysis

Level of detail

Required computing  times

low highmiddle

low

middle

high

continuous

time queueing

analysis

simulation

discrete time

queueing

analysis

Figure 2.5.: Classification of queueing analysis in discrete time with regard to queueing
analysis in continuous time and simulation

The level of detail and the accuracy of queueing analysis in discrete time is limited
compared to simulation. The user is restricted to analytical models which have been de-

2Input data such as demand, processing times, quality rates, failure rates etc.
3Both the analytical calculations and the simulation runs are performed on a computer with an Intel

Centrino processor. We used the simulation tool emPlant.
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veloped so far. The input data has to be prepared such that it can be used as parameters
for discrete time queueing models. For example, the breakdown behavior of a machine
has to be included in the service time distribution. Furthermore, the models are based
on assumptions in order to reduce the difficulty of developing. If an exact analytical
solution cannot be found or requires too much computing time, analytical approxima-
tions are used. Thus, by the use of analytical approaches we get a simplified model of
reality and the obtained results will deviate from the results which are observed in real
processes. In contrast, using simulation highly detailed models can be developed which
are quite close to the real world process behavior. Recall that this is very time consum-
ing and the models are inclined to be quite large and intransparent. The requirements
concerning data quality and availability increase and the model validation becomes more
difficult.

If we compare discrete with continuous time queueing models, we recognize that continu-
ous time queueing models require generally less computing time. Especially, 2-parameters
approximations are easy to handle. Using discrete time queuing models, a higher level
of detail and accuracy is often obtained at the expense of longer computing times. In
several cases of our subsequent analysis, we propose combinatorial solutions to reach the
renewal point in a renewal process. If the vectors representing discrete distributions be-
come large, the number of possibilities to get from one renewal point to the next increase
and therefore the time for computing.

Finally, if we take the level of detail and the required computing time as a criterion for
the classification of queueing analysis in discrete time with regards to queueing analysis
in continuous time and simulation, it results in the following classification as illustrated
in Figure 2.54. The modeler of material flow systems has to carefully consider the level of
detail and accuracy which is required for his analysis, before he chooses his tool. He has
to asses the advantages and limitations of each approach. Often, it is worthwhile to use
both analytical methods and simulation for a systems analysis, since analytical methods
perform an essential role in validating subsystems and special cases of a simulation model.

2.3. Chapter Conclusion

This chapter gave a brief introduction in probability theory focusing on the discrete time
domain. We explained how the residual lifetime distribution of a discrete time renewal
process can be derived, both for an observation immediately before and after discrete
time instants.

We introduced three basic discrete time queueing models which enables the modeling of
simple problems in material flow systems. Generally, material flows can be decomposed
in three basic operations, namely the service, merge and split operation. For the analysis
of these operations we referred to known approaches from the literature. However, these
basic models are restricted to one-piece flows. In this work we will relax this assumption.
Thus, we will present models for batch processes in order to increase the level of detail
regarding modeling.

4Rall (1998) presents a similar figure, where discrete time queueing analysis is not considered.
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Section 2.2 emphasized advantages of modeling material flow systems in discrete time.
An analysis in the discrete time domain delivers advantages regarding accuracy, level of
detail and efficiency. In addition, we observed that processes in material flow systems
are often of a discrete time nature. Furthermore, we performed a numerical analysis
of the G/G/1-queue in which we compared results using standard 2-parameter approxi-
mations compared to discrete time methods. We identified that the percentage of error
of the standard 2-parameter approximations can be remarkable high and that moments
higher than the second can influence the results significantly. We concluded this chapter
discussing limitations of discrete time queuing analysis. This led to a classification of
queueing analysis in discrete time.
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3. Queueing Analysis of Batch
Processes

The larger the island of knowledge, the longer the shoreline of wonder.

Ralph W. Sockman

In Section 3.1 we explain the reasons to build batches in material flow and production
systems. We emphasize that batch building problems arise not only in these systems,
but also in many other systems, like transportation and information systems. Thus, our
analytical approaches are well suited to describe a wide variety of real world problems. In
Section 3.2 we present a review of the literature which is done in the field of the analysis
of batch processes in a stochastic environment and which is relevant to our work. In the
literature review we distinguish between the analysis of batch arrival, batch service and
batch building processes, and the analysis of queueing networks with respect to batch
processes.

3.1. Batch Processes in Material Flow Systems

Many operations in material flow systems1 are done in batches. The reason for building
batches is clear and evident: capacity. In most cases, it is more efficient to transport or
to process a batch of entities instead of transporting or processing a single entity. Often,
the operation costs for processing or transporting one entity or a batch of entities are the
same. Therefore, the operation costs per entity decrease with an increasing batch size.

In contrast, the batch building process causes a waiting process which results in an
increase of inventory. Furthermore, the cycle time to produce one product type increases
with increasing batch sizes. For example, the use of small batch sizes makes it possible
to produce all different product types within one day, in comparison to several days
required for the production involving huge batch sizes. Subsequently, the ability to react
rapidly on demand changes decreases with increasing batch sizes. Thus, in material flow
systems originates always the problem to determine the optimum batch size.

Let us exemplify the necessity of building batches in more detail by presenting four basic
reasons which are related to material flow and production systems:

• Transport/Handling: To reduce the handling effort, a specific number of mate-
rial units are gathered to one transport unit. The maximum batch size is given by

1Generally, if we talk about material flow systems, we mean first and foremost the material flow in a
production or service facility
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the capacity of the transport carrier. Examples of transport carriers are pallets,
wire cages, plastic bins, etc.

• Setup: It is often necessary for industrial operations to set up machines at the
beginning of a batch service. Setup operations are tool changes, cleaning operations
or programming setups. The larger the batch size, the less setup operations are
required and less capacity is lost. But in the same step, the inventory increases
and the ability of the company to react to the changes in demand decreases.

• Batch service: There are different types of production operations in the industrial
production environment, in which a certain amount of units is processed simulta-
neously. Examples are heating treatments in an oven or surface treatments of
semiconductors in chemical washings.

• Order Pooling: The picking operation is a main task in warehouses and dis-
tribution centers. The picking time can be reduced significantly by a thoughtful
grouping of the picking orders. The time per pick has to be minimized. This in-
cludes minimal ways for the picker through the picking zone and the pooling of
same articles which belong to different customer orders.

Due to the fact that there are batch building processes because of fundamental eco-
nomic interests, it is worthwhile to develop analytical methods in order to determine
performance measures of high precision for material flow systems.

Moreover, we find batch processes in other systems besides material flow systems. The
motivation to build batches remains the same, capacity. A further example are trans-
portation systems. Goods and public passengers transportation require a specific amount
of goods/passengers to be collected before the transport is released. This measure re-
duces the cost per good/passenger. Equally, we can model a traffic light which controls
the traffic flow at a crossing by a batch server system. In this case, the batch service is
rendered in terms of the ability of a group of cars to pass the phase of green light.

We know that there is limited capacity in information and communication systems. The
memory, the processor performance, and the capacity of the communication network have
all their physical limitations. Thus, it is common in such systems to collect packages of
data before it is sent or processed.

Finally, the daily life is abound in examples of batch processes. For example, people
arrive in groups for visiting a museum and the museum guide waits until a quota of
persons to arrive before he starts his guiding tour. Furthermore, letters are delivered in
batches at the post office for sorting and the subsequent distribution. Also, an elevator
serves a “batch” of persons. The list is endless and too often the queues as well.

Later, when we introduce our analytical approaches for different batch processes, we will
again describe briefly some appropriate application possibilities at the beginning of each
model description. Before we start with the introduction of analytical models, we give a
review of the literature which is done in this field.
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3.2. Literature Review

There is a long tradition of studying batch processes, developed for the analysis of a
great variety of applications. Bailey (1954) is the first who studies a queueing model
for batch processes and its application to practical problems. Since this work, there is a
large, scattered literature about batch queues. In most of the cases, classical transform
techniques2 are used to find the transforms of queue length and waiting time distribution.
Chaudhry and Templeton (1983) were motivated to publish a book about batch queues,
in which they summarize, synthesize and, in some instances, extend the major topics.
They study different models of batch arrival, batch service, and multichannel batch
queues in detail. Before analytical models about batch queues are presented, they give
a comprehensive introduction to the basic techniques used in their book. For batch
arrival queues they study methods with fixed and random batch sizes. Furthermore, the
authors consider a set of batch service models in which the batch size is fixed or random or
controlled by a service strategy. Finally, they discuss relations among different queueing
systems.

Subsequently, we give a review over basic work studying batch queues. We distinguish
between batch arrival, batch service and batch building processes. Finally, we refer to
contributions about the analysis of queueing networks regarding batch processes.

3.2.1. Batch Arrival

The study of batch arrival queues begins with the work of Gaver (1959). He investigates
the MX/G/1-queue in which a batch of random size X enters the system following a
Poisson process. The individual customers are processed by a single server system whose
service time is generally distributed. He uses the embedded Markov chain technique
which is introduced by Kendall (1951), (1953), and the renewal theory (see Feller (1968))
to discuss the waiting process of an arriving customer in the continuous time domain.
The mean waiting time E(W ) and the variance of the waiting time V AR(W ) is derived
from the transform of the waiting time. Furthermore, he presents the transform of the
busy period duration and derives an expression for the number of departures during
the busy period. The work of Gaver is completed by the contributions of Burke (1975)
and Chaudhry (1979) who study the waiting time distribution and the distribution of
the number of customers in the system at an arbitrary time instant. Ommeren (1990)
presents approximations for the waiting time probabilities of individual customers in a
MX/G/1-queue, which are easier to handle than exact solutions.

Brière and Chaudhry (1987) deliver numerical computations for the batch arrival queue-
ing model GIX/M/1. They introduce an approach to calculate both the moments and
the steady state distribution of the number of customers in the system at the customer
arrival instant.

Chaudhry and Gupta (1997) introduce an approach in order to solve the discrete time
GIX/Geom/1-queue with batch arrivals. They calculate the queue length and waiting

2It is common in queueing theory to calculate the transform of a random variable since the parameters
of a random variable are often more easily computed from the transform.
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time distribution for early and late arrivals. If a departure has precedence over an arrival,
then it is referred to as early arrival system, otherwise it is referred to as late arrival
system.

The GIX/Geom/m-queue in the discrete time domain is investigated by Chaudhry et al.
(2001). They analyze the system’s steady state using the embedded Markov chain tech-
nique and derive the average number of customers in the system. In addition, the waiting
time distribution of a random customer of a batch in the queue is given.

3.2.2. Batch Service

The pioneer work to analyze batch services is done by Bailey (1954). He investigates
the M/G[1,K]/1-queue in which at most K customers can be served. When the service
process ends, it is controlled how many customers are waiting in the queue. If at most
K customers are present in the queue, all customers can be served and the waiting room
of the queue will be empty. If there are more than K customers waiting, the number of
customers in the queue is reduced by exactly K and there are customers remaining in
the queue. Bailey studies the queue length distribution by using the embedded Markov
chain technique. The embedded Markov chain is generated by the length of the queue
at instants just before the service takes place. Expressions of the mean waiting time,
the mean and the variance of the queue length are derived. Bailey assumes that the
server continues to serve even when there are no customers waiting in the queue. In
such a case, the service is virtual. If a customer arrives at an empty system, he has to
wait until the beginning of the succeeding service process. Bailey was motivated by the
idea of designing a hospital outpatient department, where it was required to estimate
the waiting time of arriving patients. He also refers to other applications in which batch
services occur such as transport processes.

Bailey’s work is followed by the contribution of Downtown (1955). Based on Bailey’s
results, he derived the Laplace transform of the waiting time distribution in equilibrium
using the embedded Markov chain technique. He gives expressions for the mean and the
variance of the waiting time. Further moments could be derived from the given transform
if necessary.

Jaiswal (1960) uses the phase technique to calculate the waiting time distribution in
the steady state case for the M/G[1,K]/1-queue. He assumes that the service time is
composed ofR phases and the service time of each phase is independent and exponentially
distributed. From this assumption it follows that Jaiswal’s approach is less general than
Downtown’s.

In contrast to the previous authors, Foster and Nyunt (1961) investigate with the
M/G[K,K]/1-queue a somewhat different system in which they assume that the cus-
tomers are served in batches of exactly size K. Thus, the service process starts only
if K customers are available in the queue. They derive the equilibrium distribution of
the number of customers in the system at the departure instant. Furthermore, they relate
their results to the EK/G/1-queueing model, where E indicates an Erlang distribution
with parameter K.

Neuts (1965) studies the busy period of the M/G[1,K]/1-queue. He derives the transform
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of the distribution of the busy period by means of an embedded Markov chain. Addi-
tionally, he shows that the busy period is equal to the time elapsed between successive
visits to the state “zero customers in the system” in a semi-Markov process.

It is again Neuts (1967) who introduces a batch server system controlled by a control
strategy called the minimum batch size rule. This strategy is driven by the number
of customers in the queue. The minimum batch size rule means that the service is
triggered immediately if there are at least a predefined number of L waiting customers.
Otherwise, the batch server, which has a capacity of K, remains idle until L customers
are accumulated in the queue. L is an arbitrary constant and 1 ≤ L ≤ K. Kendall’s
notation of the described system is M/G[L,K]/1. Using the theory of embedded semi-
Markov processes Neuts obtained a description of the output process, of the queue length,
and the busy period in transform terms.

Chaudhry et al. (1987) present a computational analysis of the steady state probabilities
of the M/G[L,K]/1-queue. Thereby, they deliver insights into the system’s behavior by
means of numerical experiments in which they use the deterministic, uniform, Erlangian,
and two-form hyperexponential distribution for the service time description.

Gold (1992) analyzes the M/G[L,K]/1-S-system in which he considers a limited capacity
S of the waiting room. In contrast to Neuts (1967), he derives performance measures
in the time domain and not in transform terms. Gold is motivated to develop models
for production systems and in this context he presents methods for the M/G[L,K]/1-S-
system which operates both according to the “push” and “pull” mode. In addition to the
M/G[L,K]/1-S-system, he analyzes multi-channel systems, denoted by M/M[Li,K]/N-S, in
which the service process is a Markov process. The state probabilities in equilibrium of
the introduced systems are calculated by means of the embedded Markov chain tech-
nique. Furthermore, Gold provides insights into the system’s characteristics by studying
the mean waiting time, the mean number of customers per service start, and the block-
ing probability depending on both the system’s utilization, the scv of the service time
distribution, and the batch server control strategy.

Dümmler (1998) uses discrete time analysis to model the M/G[L,K]/1-queue controlled
by the minimum batch size rule. Since the arrival process is a Markov process, the
system can be analyzed by the embedded Markov chain technique. He determines the
distribution of the interdeparture time and size of the departing batch. We will drop
the Markovian property of the arrival process in our work (see Chapter 5) and derive an
approximation method for the analysis of G/G[L,K]/1-queue. Moreover, we will present
the waiting time distribution for this more general queueing system.

Powell and Humblet (1986b) and Powell (1985) use batch queueing systems for the
investigation of vehicle dispatching strategies in transportation systems3. Their idea is
to control the queue in order to avoid sending vehicles with uneconomical workloads.
Powell and Humblet (1986b) analyze four basic dispatching strategies. First of all, they
describe the strategy with no control, in which vehicles depart regardless of the queue
length. This model corresponds to the basic model introduced by Bailey (1954). The
second queueing control mechanism is the minimum batch size rule first treated by Neuts
(1967). This strategy is referred to as a vehicle holding strategy. In addition, Powell

3To avoid confusion, Powell and Humblet (1986b) was formulated earlier than Powell (1985).
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and Humblet (1986b) introduce the vehicle cancelation strategy. This means, if x < K
customers are present at the end of a service period, the departure of the vehicle is
canceled in favor of waiting for an additional service period. Finally, they combine the
vehicle holding and the vehicle cancelation strategy. If x < K customers are waiting
in the queue at the end of a service period, the vehicle is held for an additional time
period t. If the number of waiting customers is at least K after an additional time
period is elapsed, the vehicle is dispatched, otherwise it is canceled. Powell and Humblet
(1986b) and Powell (1985) also consider batch arrivals in their models. In Powell (1985),
the relative performance of alternative vehicle dispatching strategies is discussed. In a
later work, Powell (1986a) derived approximations for closed form moment formulas for
batch arrival, bulk service queues by means of standard techniques as the embedded
Markov chain. The approximations allow an application without any special knowledge
of transforms or complex variables.

Alfa (2005) investigates a batch server system in the discrete time domain in which
the interarrival and service times are general distributed. The service is provided in
batches, depending on the number of customers waiting when the server becomes free.
The interarrival and service times are written as remaining time representations using
phase type distributions. Thus, Alfa represents them as remaining time Markov chains.
Subsequently, he analyzes the system by means of matrix-geometric methods. For an
introduction in matrix-geometric methods see Neuts (1981).

3.2.3. Batch Building

We devote a whole chapter of our work to the analysis of the batch building process. In
this chapter we present approaches of three different batch building modes. Although
the time analysis of the batch building process in a stochastic environment is very crucial
for the evaluation of material flow systems, we have to recognize that it has attracted
little attention in the literature so far.

Bitran and Tirupati (1989) investigate the G/G[K,K]/1-system which is decomposed in
a batch building node and in a server node. The arriving customers are collected to a
fixed size at the batch building node before they are transferred immediately further to
the server node. They compute the first two moments of the interdeparture time after
the batch building operation.

For analyzing the optimal batching in a wafer fabrication facility, Fowler et al. (2002)
take a multiproduct G/G/c-queue with batch processing. Like Bitran and Tirupati,
they also use a decomposition approach. Thus, the queueing system consists of a batch
building node, a sever node and a “unbatch” node. In the scope of their analysis, they
derive the mean waiting time of a customer arriving at the batch building node.

Meng and Heragu (2004) study in their work the batch building operation in which
a given amount of customers is collected. However, their analysis is restricted to the
description of the batch building process by the first two moments.

All the above cited contributions concerning the batch building process are done in the
continuous time domain.
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3.2.4. Network Analysis

Material flow systems can be modeled by means of general queueing networks (see Reiser
and Kobayashi (1974), Chandy and Sauer (1978), Kuehn (1979), Shanthikumar and
Buzacott (1981), and Whitt (1983)). They propose a parametric decomposition approach
which is used to approximately calculate performance measures such as the mean number
of customers and the mean waiting time at each queueing system. These results are
aggregated to network-wide performance measures. The methodology of the analysis
of general queueing network relies on the following two notions: Assumption that the
nodes of the network can be treated as stochastically independent and the 2-parameter
approximation of the arrival process at each node provides reasonably accurate results.

Karmarkar et al. (1985) explicitly considers batch processes in a parametric decomposi-
tion approach for the analysis of queueing networks. However, they use M/M/1-queueing
systems which generally do not meet the characteristics of real material flow systems.
He holds the batch size of each operation on a product type constant.

Calabress and Hausmann (1991) develop a model to investigate the interactions of batch
sizing decisions and the routing of the batches through a job shop which is modeled by
a closed queueing network. The server stations are described by M/M/c-queues.

Bitran and Tirupati (1989) derive approximations for the departure process from a server
station with batch processing in multiproduct queues. They assume that the interarrival
and service time within each product class is iid and present methods to calculate the
scv of the interdeparture time and the distribution of the size of the departing batch.
The obtained solution can be used to analyze queueing networks with batch processing.

An optimized queueing network model to support the design of new and reconfigured
semiconductor fabrication facilities is suggested by Hopp et al. (2002). Their solution
minimizes the facility costs under the condition that the required throughput is satis-
fied for all products and the mean manufacturing cycle times for all products are short
enough to meet the customer expectations. For estimating the manufacturing cycle times
they use G/G/m queueing systems in which batching and setup operations are consid-
ered. The approximation results for the G/G/m queue are computed by the approach
introduced by Whitt (1993).

Furthermore, Curry and Deuermeyer (2002), and Meng and Heragu (2004) analyze gen-
eral queueing networks with batch processes. The research of these authors is based
on the methods of the Queueing Network Analyzer (QNA) by Whitt (1983) and they
derive analytical expressions for the three network operations (merge, split, departure)
which are required to calculate the scv of the interarrival time at each node. Curry and
Deuermeyer (2002) consider in their paper three different batch service models: one in
which batches of constant size arrive at a service station and the customers of the batch
are served individually, another in which setup occurs, and lastly one in which batches
of constant sizes are served. Meng and Heragu (2004) achieve the same results with a
somewhat different approach. They introduce the concept of a relative batch size which
puts the batch size of an operation relative to the batch size of the succeeding operation.

In our work we will derive different queueing models which include batch processes. In
contrast to the above named authors who develop models for queueing networks with
batch processing in the continuous time domain, we do our analysis in the discrete time
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domain. We derive for each model the waiting time distribution, which can be used for
a performance evaluation, and the interdeparture time distribution, which can be taken
for a network analysis.

3.3. Chapter Conclusion

In this chapter we exemplified the necessity to build batches. Thus, the main reasons
related to material flow systems are: Transport/handling, setup, batch service, and
order pooling. By means of numerous application examples we underlined the relevance
to develop analytical models for a performance evaluation of batch processes.

Furthermore, we gave a review of literature about the analysis of batch queues. The
literature review was structured in batch arrival, batch service, batch building, and
network analysis. It became apparent that there is a lack of appropriate batch queueing
models for the analysis of batch processes. Especially, a detailed analytical description of
batch building processes is missing so far. In Schleyer and Furmans (2005) we presented
already an initial approach for the analysis of the batch building process until a defined
collecting capacity is reached. However, there is much research work left to analyze
batch processes under general distribution assumptions. In addition, an analysis of batch
processes focusing on the calculation of the probability of an on-time order fulfillment is
still missing as well. The logical consequence is the current work which provides a toolkit
of batch models in the discrete time domain in order to allow a more detailed analysis
and to achieve a better understanding of batch processes.
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The important thing is not to stop questioning. Curiosity has its own
reason for existing.

Albert Einstein

We highlighted in the previous chapter the economical necessity to build batches. There-
fore, the correct batch building decisions are of prime importance for planning and op-
erating material flow systems. As such, optimal batch sizes and an appropriate batch
building mode have to be determined.

There are planning decisions which are strongly related to the selection of correct batch
sizes.

• For example, what should be the capacity of the transport carriers for a given
material flow system? After the transport carrier capacity is determined and the
carriers are bought, it is not possible to annul this decision in short-term without
enormous expenses.

• Furthermore, what type of machine is the best for a given production system? In
the first case, should we choose the one with a greater capacity, but longer setup
times? In the second case, should we choose the one with a lower capacity, but
lower setup times? In the first case, the batch sizes are large in order to utilize the
available capacity and to avoid setup operations. This results in low processing
costs per unit, but also in a poor ability to react quickly to demand changes. The
inventory level has to be large to sustain a given service level. In the second case,
the processing costs per unit are obviously greater. However, the inventory can be
reduced and the ability to react rapidly to demand changes increases.

Since real world material flow systems are exposed to stochastic events as demand
changes, machine failures, scrap etc., the decision makers must be aware of the con-
sequences arising from their decisions. In this chapter we provide a detailed discrete
time analysis of different batch building processes in such a stochastic environment.

It is worthwhile to mention that collecting stations exist not only in material flow systems
but also in information systems. An example is the collection of a specific amount of data
before these data are released for processing. The reasons for batch building processes
in information systems are the same as in production systems, namely an economic
utilization of the available resources. We even find many batch building processes in
our daily life. Buses, trains and ferries transport “batches” of passengers accumulated
at the waiting stations. It becomes evident that the batch building process is a very
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basic process. Therefore, the economic need to analyze these processes calls for the
development of analytical methods for a detailed quantitative performance evaluation of
the batch building process in a stochastic environment.

In contrast to the literature known so far, we perform a more detailed analysis of the
batch building process. Our work is not restricted to a mean value and a second moment
analysis, since we derive both the interdeparture time and the waiting time distribution
caused by the batch building operation. The waiting time distribution allows a perfor-
mance analysis of the batch building operation and the interdeparture time distribution
enables us to include the batch building process in a queueing network, where the de-
parture process at the collecting station is the arrival process of the succeeding station.
Furthermore, we allow batch arrivals instead of single arrivals at the collecting station.

The current chapter is structured as follows: Section 4.1 introduces basic notations for
modeling batch processes used throughout the work. In Sections 4.2 and 4.3 we present
exact models for two basic batch building modes, the capacity rule and the timeout
rule. In a subsequent discussion in Section 4.4 we give further insights into the system’s
behavior of the introduced batch building modes. The relation between input parameters
and results is investigated in order to understand the stochastic nature of batch building
processes better. Furthermore, Section 4.5 presents a batch building control strategy
which is called the minimum batch size rule. This introduced analytical approach is
exact as well. We show how this approach can be applied to optimization problems.

4.1. Modeling of Batch Processes

The batch building process happens at the so called collecting station (see Figure 4.1).
In the following, material units, jobs or information arriving at the collecting station are
referred to as customers, as it is common in queueing theory.

We model the batch building process as general as possible. Thus, we allow batch arrivals
at the collecting station and therefore, the arrival process is described by two discrete
random variables, A, the interarrival time and Y , the batch size. Both random variables,
A and Y , are iid and their distributions are

P (A = i) = ai ∀i = 1, . . . ,amax, (4.1)

and

P (Y = i) = yi ∀i = 1,...,ymax. (4.2)

Given the mean interarrival time E(A), we can determine the batch arrival rate by

λbatch =
1

E(A)
. (4.3)

The arrival rate λ results from the product of the mean batch size and the batch arrival
rate:

λ = E(Y ) · λbatch =
E(Y )

E(A)
. (4.4)

Let us begin with the analysis of the collecting process using the capacity rule.
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collecting size: 

transportation

amount k = 9

collecting

station

batch size Y

interdeparture time Dinterarrival time A

Figure 4.1.: Collecting process using the capacity rule: Exact k customers are collected
at the collecting station

4.2. Batch Building - Capacity Rule

In this section we introduce our first batch building mode called capacity rule. This rule
means that a specific amount of k is always collected at the collecting station. We denote
k as the collecting size. In material flow applications k is for example the capacity of
the transportation carrier. The collecting process under the capacity rule is illustrated
in Figure 4.1.

Given k, ai and yi, the waiting time distribution of an arriving customer wi and the
interdeparture time distribution of the collected batches di can be determined. Both di
and k can be used to describe the arrival stream for the succeeding node in a network.
In the following, we present an exact analytical approach for deriving di and wi.

4.2.1. Interdeparture Time Distribution

Since we allow the arrival of batches of stochastic size at the collecting station, a number
of combinatorial possibilities to fill the collecting batch arises.

The arriving batch which fills the collecting batch to size k “sees” at its arrival instant
k − i collected customers and must have a size of at least i customers (1 ≤ i ≤ k).
If its size is greater than i, there are remaining customers after filling the collecting
batch. These customers will be used for the subsequent collecting process. The greater
the amount of remaining customers, denoted by Ry, the lesser the amount of customers
needed to fill the subsequent batch and the expected time for filling decreases. The
time for collecting k customers and therefore the interdeparture time of the collected
batch depends on the amount of remaining customers. Thus, we have to analyze the
probability that an amount of Ry = i remaining customers arises. The distribution of
the number of remaining customers is called the remainder distribution and is denoted
by ry,i, i = 0, . . . ,ymax−1. We assume that the maximum batch size of an arriving batch,
ymax, is at most the collecting size k. This implies that at least one arrival is required to
build a batch.

Let us consider the nth collecting process. The probability of getting a remainder Rn
y = i

after the completion of the nth collecting process depends on the remainder of the pre-
ceding (n−1)th collecting process, but not on the (n−2)th collecting process. Thus, we
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4. Batch Building

identify a Markov process and calculate ry,i by use of a discrete homogeneous Markov
chain. A remainder of size i corresponds to the state Ry = i. The maximal remainder
follows from the maximum batch size of an arriving batch, ymax, minus one. This situa-
tion arises if a batch of size ymax arrives and encounters k−1 customers at the collecting
station. Therefore, the state number of the considered discrete Markov chain is finite
and the state space is defined by a subset of the set S = {0,1, . . . ,ymax − 1}.

0 3 1 2 

00 
p

03 
p

30 
p

23 
p

0 3 1 2 

00 

03 

30 

23 

Figure 4.2.: Discrete Markov chain with possible states and transitions for a chosen
example: The batch size distribution is given by yi, with yi > 0 for
i = 1, . . . ,ymax = 4.

The transition from the current state to the succeeding state takes places only at discrete
points of time. The probability of the transition from state i to state j is called the
transition probability pij. The transition probability pij is independent of n, what is
referred to as a homogenous Markov chain (see Kleinrock (1975)). It follows that the
transition probabilities are stationary and we denote

pij = P (Rn+1
y = j|Rn

y = i), ∀i = 0, . . . ,ymax − 1, ∀j = 0, . . . ,ymax − 1. (4.5)

Due to the given description of the collecting process, we can derive the remainder
distribution ry,i by the use of a discrete homogeneous Markov chain.

Here, it is worthwhile to mention that various stochastic problems in material flow sys-
tems can be solved by a discrete homogeneous Markov chain. An application can be
found in Lippolt (2003) who calculates the expected travel times in automated stor-
age/retrieval systems with double-deep storage.

Figure 4.2 shows a discrete homogeneous Markov chain with all possible states and
transitions of a collecting process. The batch size distribution is given by yi, with yi > 0
for i = 1, . . . ,ymax = 4. In this example, there are four states and there are direct
transitions possible from every state to each other state.

In some special cases, it would be possible to construct a periodic Markov chain for
our collecting process, but this would be quite a rare phenomenon in the context of
real applications. Let us explain this using the following example: The collecting size
is k = 3 and the batch size is Dirac distributed with y2 = 1. Thus, the remainder
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4.2. Batch Building - Capacity Rule

Ry is periodically alternating between 1 and 0. The resulting periodic Markov chain is
depicted in Figure 4.3.

0 1 

01 
p

10 
p

Figure 4.3.: Example of a discrete periodic Markov chain with period 2

Thus, we assume that the discrete Markov chain applied for modeling the collecting
process is of an aperiodic nature. Due to Markov, an irreducible1 and aperiodic Markov
chain with a finite state space is ergodic (see Gnedenko and König (1983)). For an
ergodic Markov chain, the limit Ry = limn→∞Rn

y exists and is independent of the initial
probability distribution. The stochastic process is stationary for n → ∞ and we can
calculate the steady state distribution using the stationary equations defined as follows
(see Gross and Harris (1985)):

P (Ry = s) = ry,s =

ymax−1∑
u=0

pusry,u ∀s = 0, . . . ,ymax − 1. (4.6)

A further equation results from the sum of the steady state probabilities:

ymax−1∑
s=0

ry,s = 1. (4.7)

In order to analyze the batch collecting problem we get an over-determined equation
system with ymax + 1 equations, so that one equation from (4.6) has to be omitted.

Before solving the stationary equations, the transition probabilities pij have to be known,
which can be computed by some combinatorics. All possibilities for reaching state j
starting from state i are considered. Thus, we obtain with

pij = yj+k−i+
ymax−j∑

l=1

yj+l

dk/amine∑
u=1

yu⊗k−l−i ∀i = 0, . . . ,ymax−1, ∀j = 0, . . . ,ymax−1 (4.8)

the equation for the transition probabilities.2 The expression yj+k−i is only greater than
0 if j + k − i ≤ ymax, otherwise yj+k−i = 0.

Based on ri, the number of arriving batches Na necessary to form one collecting batch
are determined in the following. We assume that a collecting process has resulted in a

1Irreducible means that every state can be reached directly or indirectly from every other state.
2yu⊗j is the probability that the sum of u random variables, all described by yi, is j time units; amin

is the minimal value of A
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4. Batch Building

remainder of size Ry = m. Therefore, at least k −m customers are required to fill the
subsequent collecting batch of size k. We have to analyze the probability that Na = l
arrivals are required to fill the k −m places. Let us denote this conditional probability
by P (Na = l|Ry = m). We obtain

P (Na = l|Ry = m) =

ymax∑

j=k−m
yj if l = 1 (4.9)

P (Na = l|Ry = m) =
k−l−m+1∑

i=1

y
(l−1)⊗
k−i−m

ymax∑
j=i

yj ∀l > 1. (4.10)

If l > 1, the first part of equation (4.10) describes the probability that l − 1 arrivals fill
the collecting batch to k− i, i < k−m under the condition that the remainder is of size
m. Then, the batch size Y = j of the lth arrival has to be greater than or equal to i.
Now, the next collecting process starts with a remainder of size j − i.
Given ry,i and the results of Equations (4.9) and (4.10), the law of total probability leads
to the distribution of the number of arrivals required to fill a collecting batch. We derive

P (Na = l) =
k−1∑
m=0

P (Na = l|Ry = m) · ry,m. (4.11)

The result of the l-fold convolution of ai weighted with the probability P (Na = l) leads
to the interdeparture time distribution di. It yields

di = P (Na = l) · al⊗i . (4.12)

Considering a single arrival stream instead of a batch arrival stream, the derivation of
di via the discrete homogenous Markov chain is not necessary, because there are no
remaining customers after the departure of a collected batch. Thus, we obtain di easily
by the k-fold convolution of ai, since k arrivals are required to fill the collecting batch.
Therefore, we obtain

di = ak⊗i . (4.13)

4.2.2. Waiting Time Distribution

A collecting process causes a waiting process for the arriving customers. We make the
same assumptions for the derivation of the waiting time distribution as we did for the
derivation of the interdeparture time distribution.

Observing the nth collecting process, we recognize that all these customers of the arriving
batch which fill the collecting batch to the amount k do not have to wait. We identify
them as “lucky” customers. Those customers who are remaining for the collection of the
succeeding batch have to wait until the succeeding (n + 1)th collecting process is com-
pleted. We define them as “unlucky” customers. The described situation is illustrated
in Figure 4.4.

The other arriving customers have to wait depending on the fact that they arrive at the
beginning or at the end of a collecting process. If a collected batch is composed of l batch
arrivals, the waiting time of an individual customer depends on the following events:
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collecting station

“lucky” customer

waiting time =0

“unlucky”

customers

interdeparture time: D

Figure 4.4.: Collecting process: “Lucky” customers who complete the batch and have no
waiting time, and “unlucky” customers who have to wait at the collecting
station until the next batch is completed

• the event that customers can be immediately transferred to the succeeding station
→ “lucky” customers; their waiting time is zero

• the event that there are customers remaining
→ “unlucky” customers; their waiting time is the duration of a complete collecting
process

• the event that customers arrive with the ith batch arrival with i < l
→ these customers have to wait for l − i further batch arrivals until the collecting
process is completed

We conclude that the distribution of the number of arrivals to fill one collecting batch
P (Na = l) (see Equation (4.11)) is required for the derivation of the waiting time distri-
bution.

Figure 4.5 illustrates an example, where four arrivals are used to fill a batch of nine units.
The waiting times of the customers as multiples of the interarrival time are highlighted.

First, we compute E(R|Na = l), the mean number of remaining customers under the
condition that l arrivals are required for the collecting process. These are the “unlucky”
customers who have to wait for the duration of a complete collecting process. Using
expressions P (Na = l|Ry = m) and P (Na = l) known from Equations (4.9), (4.10) and
(4.11), we obtain by the use of Bayes formula

P (Ry = m|Na = l) =
P (Na = l|Ry = m) · ry,m

P (Na = l)
, (4.14)

and furthermore

E(Ry|Na = l) =

ymax−1∑
m=1

P (Ry = m|Na = l) ·m. (4.15)

The customers who arrive with the ith arrival, i < l, have to wait for further l− i arrivals
until the nth collecting process is completed. For these customers the waiting time
distribution results from the (l− i)-fold convolution of the interarrival time distribution.
Thus, we have to consider the probability that an arbitrary customer belongs to the ith
arrival under the condition that l arrivals, l > i, are required to fill the collecting batch.
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Figure 4.5.: Example of a batch building process with l = 4 batch arrivals to fill up a
batch of size k = 9. Illustrated is the waiting time of the arriving customers
as multiples of the interarrival time.

E(Y |Na = l) is referred to as the expected batch size of an arriving batch under the
condition that l > 1 arrivals are required to fill the collecting batch. This leads to

E(Y |Na =l) =
1

P (Na = l)

ymax−1∑
m=0

ry,m

k−m−ymin∑
i=ymin

yk−i−m · (k − i−m)

ymax∑
j=i

yj if l = 2

(4.16)

and

E(Y |Na = l) =
1

P (Na = l)

ymax−1∑
m=0

ry,m

k−m−ymin·(l−2)∑
x=ymin

yx · x
k−m−x−ymin·(l−2)∑

i=ymin

ymax∑
j=i

y
(l−2)⊗
k−i−m−x · yj if l > 2.

(4.17)

Due to the fact that the batch size y is iid, the expected size of all the arriving batches
E(Y |Na = l) is equal for the first to the (l − 1)th batch arrival (l ≥ 2).

The quotient of E(Y |Na = l) and k is the sought probability that an arriving customer
belongs to the ith arrival with i = 1, . . . ,l− 1 and l > 1. Thus, we determine the waiting
time distribution of an individual customer under the condition that Na = l arrivals are
required for one collecting process by

P (W = 0|Na = l) =

(
1− E(Ry|Na = l) + (l − 1) · E(Y |Na = l)

k

)
(4.18)
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and

P (W = i|Na = l) = al⊗i ·
E(Ry|Na = l)

k
+

l−1∑
j=1

a
(l−j)⊗
i · E(Y |Na = l)

k

if i ≥ 1.

(4.19)

The law of total probability leads to the waiting time distribution given as follows:

wi = P (W = i) =
lmax∑

l=1

P (W = i|Na = l) · P (Na = l) i = 0,1, . . .

lmax = d k

ymin
e,

(4.20)

If only single arrivals are considered instead of batch arrivals, the calculation of the
waiting time distribution can be done quite easily. Generally, if a customer arrives at the
collecting station, he encounters x waiting customers, with 0 ≤ x < k. If 0 ≤ x < k − 1,
he has to wait for the missing k − x − 1 customers. On the other hand, if x = k − 1,
the customer does not have to wait, because the collected batch is filled to size k and
is transferred immediately to the succeeding station. The probability that an arriving
customer encounters x customers is 1/k. Thus, the waiting time distribution can be
determined by

wi = P (W = i) =
1

k

k−1∑
j=1

a
(k−j)⊗
i if i ≥ 1

w0 = P (W = 0) =
1

k
if i = 0.

(4.21)

In the subsequent section we introduce a further batch building mode, the timeout rule.
We present an exact analytical approach to calculate the interdeparture and waiting time
distribution.

4.3. Batch Building - Timeout Rule

In the preceding section we analyzed the batch building process under the capacity rule,
where a fixed collecting size k was given. Under the timeout rule, we assume that the
time for the batch building process is given by the time tout and there is no limiting
capacity. This means that the arriving customers are collected within a constant time
tout. As in the preceding section the arrival stream is described by ai, i = 1, . . . ,amax and
yi, i = 1, . . . ,ymax.

For example, this type of collecting mode is common in production systems, especially in
lean production systems, where it is referred to as “milkrun”. The term milkrun describes
a transport mode, where predetermined loading and unloading stations are visited by a
transport vehicle according to a predefined time table. The milkrun route is repeated
in regular small time intervals. With the following method it is possible to calculate
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4. Batch Building

the number of units collected at the loading stations within a determined time interval.
The results can be used for the buffer dimensioning at the loading stations and for the
configuration of a suitable frequency of milkruns. Figure 4.6 illustrates the concept of a
milkrun.

milkrun
transportation

vehicle

loading

station

unloading

station

Figure 4.6.: Example for an application of the collecting process using the timeout rule:
The milkrun transport mode: Predetermined loading and unloading stations
are visited by a transportion vehicle according to a predefined time table

Moreover, the following analytical approach can also be used for the investigation of
stochastic processes in other fields, like traffic research. Let us consider a bus timetable
in which visits at predetermined bus stops on a predetermined route are listed. At each
of these stops, passengers arrive in stochastic interarrival time intervals within the time
interval tout. Furthermore, they often arrive in groups, that means in batches. Now, with
the given arrival process at each bus stop, we can compute the required capacity for the
buses on their routes and the required stop frequency at a bus stop with the objective
to fulfill a predefined service level.

Since tout is constant, the departure process at the collecting station is described by
a constant interdeparture time of D = tout (dtout = 1) and a stochastic batch size Yd
distributed by yd,i. Subsequently, we investigate the collecting process according to the
timeout rule and derive yd,i and wi.

4.3.1. Batch Size Distribution of the Departing Batch

The batch size of the collected batch depends on the number of arrivals within tout and
the sizes of the arriving batches. If large batches arrive in short intervals, the collected
batch becomes huge. A collecting process according to the timeout rule is illustrated in
Figure 4.7.
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Figure 4.7.: Collecting process according to the timeout rule: Arriving customers are
collected within a constant time tout

In addition, Figure 4.8 emphasizes the time behavior of the collecting process in more
detail. Possible events of the nth, n > 1, collecting process are depicted on a time axis.

Subsequently, we consider the nth collecting process. The time instant at which the
nth collecting process ends is denoted by δnout, which corresponds to the time instant at
which the (n + 1)th collecting process starts. The time instant at which the arriving
batch sees the collecting station empty, is denoted by τn (see Figure 4.8). The time
interval from τn to δn−1

out is either a complete interarrival time interval or a residual of
it. We refer to this time period as the residual interarrival time interval Ra, distributed
by ra,i, i = 1, . . . ,amax. The greater the residual interarrival time interval of the nth
collecting process Rn

a = τn − δn−1
out , the less time units remain for collection. Therefore,

the batch size of the collected batch depends on the residual interarrival time interval
length. Thus, we have to analyze the probability that a residual interarrival time interval
of length i arises.

out
t

:
n

a

R

: collecting time

residual inter-

arrival time

batch arrivals

of collecting process n
:

1+n

a

R

residual inter-

arrival time

:
n

τ time instant at which 

the arriving batch 

sees the collecting 

station empty
1−n

out
δ

n

out
δ

t

batch size = 3 batch size = 2

Figure 4.8.: Time axis of a collecting process according to the timeout rule

Since the nth collecting process depends on Rn
a and not on Rn−1

a , we identify a Markov
process. This observation is analogous to the observation we made in the analysis of
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the batch building process according to the capacity rule (see Section 4.2). Now, we
observe a residual time at the beginning of the collecting process, whereas in Section 4.2
we observed a residual amount. Again, the considered collecting process can be modeled
by a discrete homogenous Markov chain.

The state number is finite and the state space is defined by a subset of the set S =
{1, . . . ,amax}. Analogous to the collecting process according to the capacity rule, we
have an irreducible and an aperiodic Markov chain with a finite state space (see the
argumentation in Section 4.2). Thus, it follows that the Markov chain is ergodic and the
steady state distribution which corresponds the residual interarrival time distribution,
ra,i, can be computed by the Equations (4.6) and (4.7).3 The transition probabilities can
be determined by

pij = aj+tout−i +

amax−j∑

l=0

aj+l

dtout/amine∑
n=1

an⊗tout−l−i

∀i = 1, . . . ,amax ∀j = 1, . . . ,amax.

(4.22)

By computing pij we have to take into account the time interval between the last batch
arrival of a collecting process and the first batch arrival of the succeeding collecting
process. The time interval between these two events must have a length of at least j time
units. The expression aj+tout−i in Equation (4.22) is only greater than 0 if j + tout − i ≤
amax, otherwise aj+tout−i = 0. We assume that amax ≤ tout, which guarantees that at
least one arrival occurs within tout. Otherwise, Equation (4.22) has to be extended for
the case that no arrival occurs within tout.

The number of batch arrivals within the time tout, denoted by Na, can be calculated
based on ra,i. First, we determine P (Na = l|Ra = s), the probability that l batches
arrive within tout under the condition that Ra is s time units, 1 ≤ s ≤ amax. We obtain

P (Na = l|Ra = s) =
amax∑

j=tout−s+1

aj if l = 1 (4.23)

P (Na = l|Ra = s) =

j=tout−s−1∑
i=0

a
(l−1)⊗
tout−i−s

amax∑
j=i+1

aj if l > 1. (4.24)

• Equation (4.23) describes the case that exactly one batch arrival is recorded within
tout. This occurs if A is greater than tout − s time units.

• Using Equation (4.24) we calculate the probability that l > 1 batches arrive within
the collecting time tout and the (l+ 1)th batch arrives when tout is already passed.

Given P (Na = l|Ra = s) and P (Ra = s) by solving Equation (4.22), we get P (Na = l)
by

P (Na = l) =
amax∑
s=1

P (Na = l|Ra = s) · ra,s. (4.25)

3Note that the smallest residual interarrival time is one due to the definition made previously. This
leads in comparison with the capacity rule to some small differences in the derivation of the transition
probabilities and of the number of batch arrivals within the time tout.
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The result of the l-fold convolution of yi weighted by the probability P (Na = l) leads to
the batch size distribution of the collected batch yd,i. We compute

yd,i = P (Na = l) · yl⊗i . (4.26)

The batch size distribution yd,i and tout describe the departure process at the collecting
station, which can be used for the analysis of the succeeding node in a queueing network.

4.3.2. Waiting Time Distribution

The considered collecting process causes a waiting process for the arriving customers,
which is bounded to tout − 1 time units. If a batch arrives at the collecting station
immediately one time unit after the preceding collecting process was completed, these
customers have to wait for the maximum possible time of tout−1 time units. In contrast,
the customers who arrive exactly at the end of the collecting process have to wait zero
time units. In this case, we observe the favorable situation that all arriving customers
can be transferred to the succeeding station without any delay.

At first, we derive the waiting time distribution of an arbitrary customer depending on
the residual interarrival time interval, Ra.

The arriving batch which sees the collecting station empty arrives s time units (s =
1, . . . ,amax − 1) after the completion of the preceding collecting process. Therefore, the
customers of this batch have to wait exactly tout − s time units with the probability of
one. We conclude

P (W 1 = tout − s|Ra = s) = 1. (4.27)

Analyzing the second arriving batch, we derive with

P (W 2 = tout − i|Ra = s) = ai−s i = s+ 1, . . . ,tout (4.28)

its waiting time distribution. In general, this yields

P (W l = tout − i|Ra = s) = a
(l−1)⊗
i−s i = s+ 1, . . . ,tout, l = 2, . . . ,lmax. (4.29)

P (W l = tout− i|Ra = s), l > 1 is a defective distribution, since i is bounded by tout. The
index l is bounded by the maximum possible number of batch arrivals within tout, which
can be calculated by

lmax = d tout
amin
e, (4.30)

where amin is the minimum interarrival time. For the waiting time of an arbitrary
customer under the condition of Ra = s, we obtain the following equivalence relation:

P (W = tout − i|Ra = s)

∼
{

1 if i = s∑
l=2 P (W l = tout − i|Ra = s) =

∑lmax
l=2 a

(l−1)⊗
i−s if i > s

= P (W ∗ = tout − i|Ra = s).

(4.31)
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By resolving the dependence on Ra we obtain

P (W ∗ = tout − i) =
amax∑
s=1

P (W ∗ = tout − i|Ra = s) · ra,s. (4.32)

Finally, we have to normalize P (W ∗ = tout − i) and compute the waiting time by

P (W = tout − i) =
P (W ∗ = tout − i)∑tout
i=1 P (W ∗ = tout − i)

i = 1, . . . ,tout. (4.33)

We note additionally that

P (Na ≥ l|Ra = s) =

{
P (W l = tout − s|Ra = s) = 1 if l = 1∑tout

i=s+1 P (W l = tout − i|Ra = s) if l > 1
(4.34)

represents the probability that at least l batches arrive within the collecting time tout
under the condition of Ra = s. Due to

E(Na|Ra = s) =
lmax∑

l=1

P (Na ≥ l|Ra = s)

= 1 +
lmax∑

l=2

tout∑
i=s+1

P (W l = tout − i|Ra = s)

= 1 +
lmax∑

l=2

tout∑
i=s+1

a
(l−1)⊗
i−s

= 1 +
tout∑
i=s+1

P (W ∗ = tout − i|Ra = s)

=
tout∑
i=s

P (W ∗ = tout − i|Ra = s)

(4.35)

we derive the mean number of batch arrivals within tout under the condition of Ra = s.

Further, we obtain

E(Na) =
tout∑
i=1

P (W ∗ = tout − i) (4.36)

and we can simplify Equation (4.33) as follows:

wtout−i = P (W = tout − i) =
P (W ∗ = tout − i)

E(Na)
i = 1, . . . ,tout. (4.37)

Finally, it is worthwhile to mention that the batch size distribution has no influence on
the waiting time distribution of an arbitrary customer since the batch size is iid.

42



4.4. System’s Behavior of the Basic Batch Building Modes

Additional note to Equation (4.35):

Proof of

E(Na|Ra = s) =
lmax∑

l=1

P (Na ≥ l|Ra = s). (4.38)

Generally, we conclude that

lmax∑

l=1

P (x ≥ l) =
lmax∑

l=1

(
lmax∑

k=l

P (x = k)

)

=
lmax∑

k=1

P (x = k) +
lmax∑

k=2

P (x = k) +
lmax∑

k=3

P (x = k) + . . .

= P (x = 1) + 2 ·
lmax∑

k=2

P (x = k) +
lmax∑

k=3

P (x = k) + . . .

= P (x = 1) + 2 · P (x = 2) + 2 ·
lmax∑

k=3

P (x = k)

+
lmax∑

k=3

P (x = k) + . . .

= P (x = 1) + 2 · P (x = 2) + 3 ·
lmax∑

k=3

P (x = k) + . . .

=
lmax∑

l=1

l · P (x = l) = E(x).

(4.39)

4.4. System’s Behavior of the Basic Batch Building
Modes

After the presentation of the analytical approaches for the batch building mode under
the capacity and the timeout rule, it is intended to provide further insights into the
system’s behavior of these basic batch building modes through the following discussions.
These insights aid in obtaining a profound understanding of the stochastic nature of
batch building processes in real life applications.

In Section 4.4.1 we explain in detail why wi under the timeout rule can be easily de-
termined by 1/tout, i = 0, . . . ,tout − 1. This in turn leads to intuitive solutions for the
calculation of Ry at the capacity rule and of Ra at the timeout rule. It can be proved
that this intuitive approach is correct by applying the previous approach for the deter-
mination of Ry and Ra via the discrete Markov chain. Both approaches lead to the same
numerical results. However, the intuitive approach leads to a significant reduction in
computing times of nearly 50%.
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Furthermore, we provide in Sections 4.4.2 and 4.4.4 insights into the system’s perfor-
mance depending on the input parameters, which can be used to support management
decisions regarding the design and operation of material flow systems. The equivalencies
between the capacity and the timeout rule are shown in Section 4.4.3.

4.4.1. Waiting Time Behavior under the Timeout Rule

By studying the numerical results of wi under the timeout rule, it is remarkable that the
waiting time distribution can be easily calculated by

wi = P (W = i) =
1

tout
i = 0, . . . ,tout − 1. (4.40)

To confirm this observation we have to transform the derived solution in Equation (4.37)
to 1/tout. However, for this transformation a closed solution of ra,i is required, which we
present subsequently by an intuitive approach.

We consider the batch arriving instants on a time axis which continues to infinity (see
Figure 4.9). It is assumed that the interarrival time distribution ai has a scv greater
than zero (c2

A > 0). The time instants of the timeouts are also depicted in Figure 4.9.
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Figure 4.9.: Probability to meet a large number by the sum of n iid random variables,
where n is a large number

We consider a truncated section of the time axis after sufficient time is elapsed. We
notice that an arrival event coincides with an arbitrary time instant within the collecting
period with the same probability as with any other time instant within the same collecting
period. This is due to the fact that the probability of meeting a very large number x
resulting from the sum of a sufficient amount of iid random variables is the same that
of meeting the number x + 1.4 Therefore, the probability to meet a number x with
n · k ≤ x < (n+ 1) · k (n is a large number) is uniformly distributed within the interval
[n · k; (n+ 1) · k).

See Figure 4.9 for an illustration.5 The probability that the arrival meets a time instant is
sketched. Thus, the first arrival takes place within a time interval beginning at amin and
ending at amax. The next time period which can be met by an arrival is between 2 · amin
and 2 · amax. Its probability is given by the 2-fold convolution of ai. The value range of

4If all possible values of the iid random variable are multiples of l, we can consequently meet only
numbers of multiples of l. If the value scale is then divided by l, our observation is again valid.

5We used a continuous distribution for ai since it simplifies the drawing of the figure and makes it
better readable. Furthermore, our observation is valid both in the discrete and continuous time
domain.
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4.4. System’s Behavior of the Basic Batch Building Modes

the k-fold convolution superposes on the value range of the (k − 1)-fold convolution if k
is great enough. This superposition is apparent in Figure 4.9 if k = 3 and increases with
an increasing k. It is to be noted that independent of the distribution of ai (c2

A > 0)
the k-fold convolution of ai is normally distributed if k tends to infinity. Due to the
symmetry of the normal distribution, the height of the area formed by the superposed
graph and the time axis is uniformly high if sufficient time is elapsed. Therefore, each
time instant between two subsequent timeout instants which results from the sum of
a suitable amount of arrival intervals has the same probability to become an arrival
instant. The time between an arrival and the timeout instant is the waiting time of the
arriving customers. Due to the collecting time length of tout, a waiting time distribution
of wi = 1/tout, i = 0, . . . ,tout − 1 results.

In the following, we prove that Equation (4.37) leads to wi = 1/tout, i = 0, . . . ,tout −
1. We have identified that every arrival instant within the collecting time period is
equally probable. It follows that every possible timeout instant placed between two
succeeding batch arrivals is equally probable as well. Therefore, Ra, the time between a
timeout instant and the succeeding arrival instant, corresponds to the residual lifetime
of a renewal process observed immediately after the event occurrence. We illustrate our
observation in Figure 4.10.

 interarrival time

of length z

Timeout instant:

end of the collecting process

residual interarrival time

The last batch arrival

before the timeout

renewal point
renewal point

iz-i

renewal point

interarrival time

The first arrival of

a collecting process

Figure 4.10.: Renewal process at the batch building process according to the timeout rule

The derivation of the distribution of the residual lifetime of a renewal process observed
immediately after discrete time instants is presented in Section 2.1.2. This leads to the
distribution of Ra derived by

ra,i =
1

E(A)
· (1−

i−1∑

k=0

ak) i = 1, . . . ,amax. (4.41)

Expression

ai = (1−
i−1∑

k=0

ak) (4.42)

describes the probability that the interarrival time interval has a length of at least i and
is used to ease the notation. Thus, Equation (4.41) is simplified by

ra,i =
ai

E(abatch)
i = 1, . . . ,amax. (4.43)
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It follows to proof that

P (W = tout − i) =
P (W ∗ = tout − i)

E(Na)
=

1

tout
i = 1, . . . ,tout.

We conclude

P (w = tout − i) =
P (W ∗ = tout − i)

E(Na)

=
P (W ∗ = tout − i|Ra = s) · ra,s

E(Na)

=





1
E(Na)

[
ra,i +

∑i−1
s=1 ra,s ·

∑lmax
l=2 a

(l−1)⊗
i−s

]
1 ≤ i ≤ ra,max

1
E(Na)

[∑ra,max
s=1 ra,s ·

∑lmax
l=2 a

(l−1)⊗
i−s

]
ra,max < i ≤ tout − 1

=





1
E(Na)·E(A)

[
ai +

∑i−1
s=1 as ·

∑
l=2 a

(l−1)⊗
i−s

]
1 < i ≤ ra,max

1
E(Na)·E(A)

[∑ra,max
s=1 as ·

∑
l=2 a

(l−1)⊗
i−s

]
ra,max < i ≤ tout − 1

(4.44)

In addition, we use

ξj =
lmax∑

l=1

al⊗j , (4.45)

which describes the probability that the sum of at least one random variable, here
described by ai, is j. Finally, since

E(Na) =
tout
E(A)

, (4.46)

we simplify Expression (4.44) to

P (w = tout − i) =

{
1
tout

[
ai +

∑i−1
s=1 as · ξi−s

]
1 < i ≤ ra,max

1
tout

[
∑ra,max

s=1 as · ξi−s] ra,max < i ≤ tout − 1.
(4.47)

Equation (4.47) is equal to 1/tout if the expression inside the brackets equals 1. For our
proof we use the subsequent expression which is obtained by

ξj =

j∑
i=1

aiξ
j−i = a1ξ

j−1 + a2ξ
j−2 + . . .+ aj j = 1, . . . (4.48)

Let us first analyze the case of 1 < i ≤ ra,max. We obtain

ai +
i−1∑
s=1

as · ξi−s = ai + a1ξ
i−1 + a2ξ

i−2 + . . .+ ai−2ξ
2 + ai−1ξ

1.
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= ai + a1︸︷︷︸
=1

(a1ξ
i−2 + a2ξ

i−3 + . . .+ ai−2ξ
1 + ai−1)

+ a2ξ
i−2 + . . .+ ai−2ξ

2 + ai−1ξ
1

= ai + ai−1 + a2ξ
i−2 + a1ξ

i−2 + . . .+ ai−1ξ
1 + ai−2ξ

1

= ai−1 + a1︸︷︷︸
=1

ξi−2 + . . .+ ai−2ξ
1

= ai−1 + (a1ξ
i−3 + a2ξ

i−4 + . . .+ ai−3ξ
1 + ai−2) + . . .+ ai−2ξ

1

= ai−2 + a1︸︷︷︸
=1

ξi−3 + . . .+ ai−3ξ
1

...

= a2 + a1ξ
1 = a2 + a1 = a1 = 1 q.e.d.

For ra,max < i ≤ tout − 1 we obtain

ra,max∑
s=1

as · ξi−s

=a1ξ
i−1 + a2ξ

i−2 + a3ξ
i−3 + . . .+ ara,max−1ξ

i−ra,max−1 + ara,maxξ
i−ra,max

=a1(a1ξ
i−2 + a2ξ

i−3 + . . .+ ara,max−1ξ
i−ra,max + ara,max−1ξ

i−ra,max−1)

+ a2ξ
i−2 + a3ξ

i−3 + . . .+ ara,maxξ
i−ra,max

=a1ξ
i−2 + a2ξ

i−3 + . . .+ ara,max−1ξ
i−ra,max + ara,maxξ

i−ra,max−1

...

After u steps, with u = i− ra,max > 0, we get

=a1ξ
i−u + a2ξ

i−u−1 + . . .+ ara,max−1ξ
i−ra,max−u+2 + ara,maxξ

i−ra,max−u+1

=a1(a1ξ
i−u−1 + a2ξ

i−u−2 + . . .+ ara,max−2ξ
i−ra,max−u+2

+ ara,max−1ξ
i−ra,max−u+1 + ara,max) + a2ξ

i−u−1 + a3ξ
i−u−2+

. . .+ ara,max−1ξ
i−ra,max−u+2 + ara,maxξ

i−ra,max−u+1

=ara,max + a1 ξi−u−1

︸ ︷︷ ︸
ξra,max−1

+a2 ξi−u−2

︸ ︷︷ ︸
ξra,max−2

+ . . .+ ara,max−2 ξ
i−ra,max−u+2

︸ ︷︷ ︸
ξ2

+ ara,max−1 ξ
i−ra,max−u+1

︸ ︷︷ ︸
ξ1

=ara,max + a1(a1ξ
ra,max−2 + a2ξ

ra,max−3+

. . .+ ara,max−3ξ
2 + ara,max−2ξ

1 + ara,max−1)

+ a2ξ
ra,max−2 + . . .+ ara,max−2ξ

2 + ara,max−1ξ
1

=ara,max + ara,max−1 + a1ξ
ra,max−2 + a2ξ

ra,max−3 + . . .+ ara,max−3ξ
2

+ ara,max−2ξ
1

=ara,max−1 + a1ξ
ra,max−2 + a2ξ

ra,max−3 + . . .+ ara,max−3ξ
2 + ara,max−2ξ

1

...

ara,max−ra,max+2 + a1ξ
1 = a2 + a1 = 1 q.e.d.
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4. Batch Building

The above conducted proof shows that the waiting time of one arbitrary customer is
1/tout and that Ra can be described by a closed solution obtained by Equation(4.41).

Next, we identify the influence of the input parameters on the waiting time if the capacity
rule is used. We show that the mean waiting time depends only on the first moments
of the arrival process and the collecting size k. In contrast, quantiles as the 95% and
99%-quantile depend on moments higher than the first.

4.4.2. Waiting Time Behavior under the Capacity Rule

The insights obtained in the previous subsection can be applied to the capacity rule as
well. The number of remaining customers at the end of a collecting process, denoted
by Ry, can also be calculated by a closed solution. Now, the considered renewal process
is described by yi, i > 0,1, . . . ,ymax − 1. The residual lifetime of yi corresponds to the
number of “unlucky” customers. Now, the observation of the residual lifetime takes places
immediately before discrete time instants6. Thus, the values of the residual lifetime range
from i = 0, . . . ,ymax − 1 and we get analogous to Equation (4.41)

ri =
1

E(Y )
· (1−

i∑

k=0

yk), i = 0, . . . ,ymax − 1. (4.49)

This fact leads to some interesting insights about the batch building process under the
capacity rule (see Figure 4.11).

batch size of an

arriving batch Y=z

end of the collecting process since 

k customers could be collected

residual = i “unlucky” customers“age”

= z-i “lucky” customers

renewal point
renewal point

iz-i

renewal point

batch size

distributed by i
y

Figure 4.11.: Renewal process at the batch building process according to the capacity
rule

If the residual lifetime distribution of a renewal process is known, the distribution of the
age is also known (see Section 2.1.2). Since the residual lifetime is observed immediately
before discrete time instants, it implies that the age is observed immediately after discrete
time instants. Thus, we obtain the distribution of the age by

ui =
1

E(Y )
· (1−

i−1∑

k=0

yk), i = 1, . . . ,ymax. (4.50)

6Recall considering the timeout rule the observation of the residual lifetime takes place immediately
after discrete time instants.
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In our analysis of the collecting process under the capacity rule the age corresponds to
the number of “lucky” customers who can be transferred immediately further to the
succeeding station. Comparing the distribution of the “lucky” customers (see Equation
(4.50)) with the “unlucky” customers (see Equation (4.49)), we recognize that both
distributions are equal unless the value range is shifted by one:

⇒ ui = ri+1. (4.51)

Thus, it follows that the mean number of “lucky” customers is exactly one greater than
the mean number of “unlucky” customers.

Subsequently, we show that E(W ) is only dependent on the collecting size k, the mean
batch size E(Y ), and the mean interarrival time E(A). The scv of the interarrival time c2

A

and scv of the batch size c2
Y have no influence on E(W ). E(W ) leads to the expected work

in progress (WIP) by use of Little’s Law (Little (1961)) and is an important performance
indicator for the collecting process.
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Figure 4.12.: Batch building under the capacity rule: Mean value analysis of the waiting
time

The derivation of E(W ) is depicted in Figure 4.12. Since the number of “lucky” and
“unlucky” customers are described by the same distribution unless the value range is
shifted by one, the probability that the first arrival sees i, i = 0, . . . ,ymax − 1 customers
at the collecting station is equal to the probability that the last arrival sees k − 1 − i,
i = 0, . . . ,ymax− 1 customers. This fact and the mean number of customers observed by
the first batch arrival, denoted by E(R), and the mean number of customers observed
by last batch arrival, denoted E(U), are sketched out in Figure 4.12. Consequently, the
probability that the second arrival sees i, i = 1, . . . ,min(2 · ymax − 1,k − 1) customers is
equal to the probability that the second last customer sees k−1−i i = 1, . . . ,min(2·ymax−
1,k − 1) customers. This observation continues accordingly. Therefore, one arbitrary
customer has to wait on an average for the arrival of (k − 1)/2 customers. Considering
that the mean batch size of an arrival is E(Y ), we obtain the mean waiting time by

E(W ) =
(k − 1)

2 · E(Y )
· E(A). (4.52)
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4. Batch Building

This result is in accordance with the observation reported by Fowler et al. (2002) who
present an expression for E(W ) for a collecting process with single arrivals.

Equation (4.52) shows that the variability of the arrival process, i.e. both the scv of the
interarrival time, c2

A, and of the batch size, c2
Y , has no influence on the mean waiting time

of a customer at the collecting station. However, for the performance of a logistic system
it is crucial that a process can be performed on-time with a sufficiently high probability
(e.g. 95%). Therefore, let us discuss the influence of unstable arrival processes, described
by increasing values of c2

A and c2
Y , on the 95% and 99%-quantile of the waiting time

distribution.
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Figure 4.13.: The influence of the variability of the batch arrival process on the 95% and
99%-quantile of the waiting time distribution for a given example

We performed a set of experiments, where we increased simultaneously c2
A and c2

Y . We
observe that the 95% and 99%-quantile of the waiting time distribution increase with
increasing c2

A and c2
Y . The influence on the 99%-quantile is greater than on the 95%-

quantile. This is depicted in Figure 4.13.7 We conclude that an unstable process behavior
of the arrival stream increases clearly the quantiles of the waiting time distribution. This
means in turn that stable arrival processes with low values of c2

A and c2
Y improve the

probability of the on-time order fulfillment of material flow systems.

4.4.3. Equivalence between the Basic Batch Building Modes:
Capacity vs. Timeout Rule

In our analytical studies of the basic batch building algorithms, we identify some equiv-
alences between the capacity rule and the timeout rule. Table 4.1 gives an overview of
the equivalences between both basic batch building modes.

For the study of the capacity rule, we determine the number of arrivals for collecting k
customers, and for the study of the timeout rule, we determine the number of arrivals

7The input values for the different distributions of ai and yi can be found in Table A.1 in the Appendix.
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4.4. System’s Behavior of the Basic Batch Building Modes

Capacity Rule Timeout Rule
parameters interarrival time ai ⇔ batch size yi

batch size yi ⇔ interarrival time ai
collecting size k ⇔ collecting time tout

results waiting time wi i = 0,1, . . . ⇔ number of still missing
customers (0,1, . . .)

number of still missing ⇔ waiting time
customer (0, . . . ,k − 1) wi i = 0, . . . ,tout
time for the batch ⇔ size of the collected batch
collecting process bi yd,i

Table 4.1.: Equivalence between the basic batch building modes: Capacity vs. timeout
rule

within tout time units. In both cases, the number of arrivals obtained are results of a
combinatorial solution using the batch size distribution in the first case and the interar-
rival time distribution in the other case (see Equations (4.8) and (4.22)). We remarked
that the value ranges of Ry, (0,...,ymax − 1) and Ra, (1,...,amax) are slightly different.
If we define the value range of Ra by (0,...,amax − 1), the approach for calculating the
number of arrivals of one collecting process would be analogous. However, we maintain
the definition which we made for Ra since this meets the real process description better.
We conclude that in the case of the timeout rule di corresponds to yd,i of the capacity
rule and vice versa. We have only to exchange k for tout, ai for yi and yi for ai, and we
obtain the same result for yd,i as before for di. A numerical example is presented in Table
4.2, in which ei denotes the distribution of the number of still missing customers; the
waiting time calculated using the capacity rule corresponds to the number of still missing
customers calculated using the timeout rule; finally, the waiting time calculated using
the timeout rule is equivalent to the number of still missing customers calculated using
the capacity rule. For the timeout rule, we calculate wi by 1/tout and for the capacity
rule, we compute the number of still missing customers by 1/k.

Capacity Rule Timeout Rule
input results input results

i ai yi k di yd,i wi ei ai yi tout di ydep,i wi ei
0 0 0 8 0.0000 0.0000 0.2063 0.1250 0 0 8 0.0000 0.0000 0.1250 0.2063
1 0.5 0.3 0.0000 0.0000 0.1250 0.1250 0.3 0.5 0.0000 0.0000 0.1250 0.1250
2 0.3 0.4 0.0034 0.0000 0.1371 0.1250 0.4 0.3 0.0000 0.0034 0.1250 0.1371
3 0.2 0.3 0.0386 0.0000 0.1491 0.1250 0.3 0.2 0.0000 0.0386 0.1250 0.1491
4 0.0945 0.0000 0.1214 0.1250 0.0000 0.0945 0.1250 0.1214
5 0.1551 0.0000 0.0986 0.1250 0.0000 0.1551 0.1250 0.0986
6 0.1851 0.0000 0.0713 0.1250 0.0000 0.1851 0.1250 0.0713
7 0.1773 0.0000 0.0443 0.1250 0.0000 0.1773 0.1250 0.0443
8 0.1411 1.0000 0.0250 1.0000 0.1411 0.0250
9 0.0958 0.0127 0.0958 0.0127

10 0.0568 0.0056 0.0568 0.0056
11 0.0296 0.0023 0.0296 0.0023
12 0.0138 0.0009 0.0138 0.0009
13 0.0058 0.0003 0.0058 0.0003
14 0.0022 0.0001 0.0022 0.0001
15 0.0008 0.0008
16 0.0002 0.0002
17 0.0001 0.0001

Table 4.2.: An example to illustrate the equivalence between the batch building mode
under the capacity and the timeout rule; ei denotes the distribution of the
number of still missing customers
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In the following, we analyze the influence of the input parameters of a batch building
operation on the variability of the departure process. The study of these influences
supports the design of stable processes with low variabilities in material flow systems.

4.4.4. Departure Process Behavior

Recall that the description of the departure process of one node can be used as the
arrival process for the succeeding node in a queueing network. This allows the analysis
of queueing networks in which a collecting process is embedded. We will investigate
the influence of the input parameters on the departure process, in particular with focus
on the analysis of the stability of the departure processes described by the scv of the
interdeparture time distribution and the scv of the collected batch size distribution.

Since we showed the equivalence between the capacity and the timeout rule, it is sufficient
to analyze one of these methods. In the following, we choose the capacity rule.

By the use of an approximate expression for the determination of c2
D, we can show that c2

Y

has a greater influence on the stability of the departure process than c2
A. If the timeout

rule is chosen, this relation is exactly inverse. This should be considered for the design
and planning of material flow systems in real applications.

It is obvious that c2
D is positively correlated with c2

A and c2
Y .

First, we investigate the correlation between c2
D and c2

A. We assume that there is a
single arrival stream and therefore c2

Y = 0. It follows that a collecting process is always
composed of k arrivals and yields a collecting time distribution di resulting from the
k-fold convolution of ai. Therefore, the scv of the interdeparture time distribution is
obtained by

c2
D =

c2
A

k
, (4.53)

(see also Fowler et al. (2002)). Furthermore, in order to derive the dependence of c2
D on

c2
Y , we assume that c2

A = 0, so that c2
A has no influence on c2

D. Recall the analysis done in
Section 4.2.1 in which we concluded that di can be derived from the probability that Na

batches are required for a collecting operation (see Expressions (4.9), (4.10), (4.11) and
(4.12)). If we assume that the interdeparture time is always one time unit, the departure
process depends only on yi, and c2

D corresponds to the scv of P (Na = l), denoted by
c2
N . We identified earlier that P (Na = l) depends on the distribution of the number of

remaining customers at the beginning of each collecting process, Ry. The lower the mean
number of arrivals required for one collecting process, E(N), which can be calculated by

E(N) =
k

E(Y )
, (4.54)

the greater is the influence of Ry on P (Na = l). Since Ry has influence on c2
D as well, it

is not possible to derive easily an exact expression for the dependence of c2
D on c2

A as we
did in Expression (4.53).

Subsequently, we present a simple approximation for which the calculation of P (Na = l)
is not required and the quantitative influence of the input parameters on c2

D becomes
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Figure 4.14.: c2
D, depending on k; comparison of approximations to exact results; the

input values are given in Table A.2 in the Appendix
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nevertheless apparent. Since the greater is k the greater is E(N) (see Equation (4.54)).
Thus, we conjecture that c2

D decreases with increasing E(N) respectively k. This is
analogous to the dependence of c2

D on c2
A as we showed in Equation (4.53). In a numerical

study we identify Expression (4.55) as a lower bound8:

c2
D >

c2
Y

E(N)
=
c2
Y · E(Y )

k
. (4.55)

In a set of numerical experiments we obtain an useful approximation by

c2
D ≈

c2
Y · E(Y )

k − E(Y )√
2·c2Y

. (4.56)

In Figure 4.14 we present different examples and illustrate the dependence of c2
D on

k. The exact results computed by the approach presented previously and the results
obtained by the approximation (4.56) are compared. The list with the input parameters
for the presented examples can be found in Table A.2 in the Appendix.

Recall that if di is computed, P (Na = l) is determined first which depends only on
yi. This causes the variability of the departure process induced by yi. In the second
calculation step, P (Na = l) is multiplied by the l-fold convolution of ai. This induces
the variability caused by ai. The two steps are independent of each other and lead to an
approximation for c2

D obtained by

c2
D ≈

c2
A · E(Y )

k
+
c2
Y · E(Y )

k − E(Y )√
2·c2Y

, (4.57)

where we use approximation (4.56).

Finally, the quintessence of this section is the following: Since Equation (4.55) is a lower
bound and the influence of c2

A on c2
D is independent of the influence of c2

Y on c2
D, we

conclude that the influence of c2
Y on the stability of the departure process is greater than

the influence of c2
A. This conclusion is reversed if the timeout rule is applied. Thus, the

influence of c2
A on the stability of the departure process is greater than that of c2

Y . This
conclusion has to be kept in mind for the design of material flow systems.

4.5. Batch Building - Minimum Batch Size Rule

With the capacity and the timeout rule we investigated two basic batch building modes.
In real material flow systems we can find various modifications of both basic batch
building modes. For example, when applying the timeout rule, there could be a maximum
capacity or a required minimum batch size. Equally, when applying the capacity rule,
the collecting time could be bounded by a maximum time. Subsequently, we will analyze
one of this modified batch building rules, where we choose the minimum batch size rule.

8It was not possible yet to proof mathematically Expression (4.55) as lower bound. However, in a great
variety of experiments we did not find any counter-example which shows the opposite.
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Analyzing all possible modifications of the presented basic batch building modes would
go beyond the scope of this work. This is left open for future research. However, the
procedure for deriving performance measures for all this modifications would be similar.
So, the subsequent analysis could be taken as foundation for the study of further batch
building modes.

The minimum batch size rule guarantees a minimum collecting size of L customers and
works as follows. The collecting process according to the minimum batch size rule lasts
for at least tout time units. When tout ends and less than L customers were collected, the
batch building process continues until the required number of L customers is attained.
If at least L customers were accumulated within tout, the batch building process is com-
pleted and the collected batch is transferred immediately further. See Figure 4.15 for an
illustration. The principle of the minimum batch size rule is introduced by Neuts (1967)
who applies this rule to control a M/G[L,K]/1-queue.

LY
d
≥

batch size of the

departing batch

collecting station

à timeout

and mimimum

batch size L

out
t

collecting station

à timeout

and mimimum

batch size L

out
t

batch size Y 

out
tD ≥

interdeparture 

timeinterarrival time A

Figure 4.15.: Batch building: Collecting process according to the minimum batch size
rule

The collecting process under the minimum batch size rule is a batching mode well-suited
for transportation problems. It ensures a minimum utilization of the transport carrier
or the transport vehicle. The higher the fixed costs of transportation, the higher is the
targeted utilization. This leads to a value of L close to K.

In addition to the description of material flow phenomena, the minimum batch size rule
is applicable to problems in daily life. An example is the description of guided tours in
museums or for exhibitions. A guide offers a museum tour which lasts tout time units.
Within the guiding period of tout time units, the visitors arrive in stochastic time intervals
and often in batches to attend the guided tour. When the time tout is elapsed, the guide
checks if a minimum number of L visitors have arrived. If not, he waits until a sufficient
number of L visitors is reached. If the guide chooses the minimum group size L to be
too low, the average number of visitors per tour will be low and the guide will have a
poor yield of his efforts. If he chooses L too high, the waiting time for the visitors will
arise. This might lead to frustrated visitors with negative effects on the business of the
museum.

The arrival process at the collecting station is, as in the preceding sections, described by
the interarrival time distribution ai and the batch size distribution yi. Both distributions
are iid.
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Subsequently, we perform a detailed time analysis of the batch building process under
the minimum batch size rule and present an exact approach. The distributions of the
size of the departing batch (Section 4.5.1), of the interdeparture time (Section 4.5.2)
and of the waiting time of an arbitrary customer (Section 4.5.3) are determined. Section
4.5.4 shows the influence of the minimum batch size L on the interdeparture time, the
collected batch size and the waiting time. Furthermore, we detect a paradox: E(W )
can decrease with an increasing process instability. The reason for this phenomenon is
explained. Finally, a simple example of an optimization problem is presented.

4.5.1. Batch Size Distribution of the Departing Batch

Let us discuss the nth batch building process. We consider the beginning of the collecting
process. At this instant, the last batch arrival is dated back to at least zero and maximum
amax− 1 time units and the next batch arrival lies at least one and maximum amax time
units ahead. The time between the start of the collecting process and the first batch
arrival is a residual of the interarrival time interval. As in Section 4.3, this time period
is called residual interarrival time and is denoted by the random variable Ra, distributed
by ra,i, i = 1, . . . ,amax. If the (n− 1)th collecting process ends with a batch arrival, the
next batch arrives after a full interarrival time interval, described by the random variable
A. This happens always if the batch building time is longer than tout time units, or if
there is a batch arrival at the timeout instant and the amount of collected customers is
≥ L. If the batch building time is tout time units and there is no batch arrival at the
timeout instant, the next batch arrives in less than a full interarrival time interval but
in at least one time unit.

Now, we analyze the number of collected customers within one collecting process, denoted
by Yd. Under the condition that Ra = s, s = 1, . . . ,amax, we determine the number of
arriving batches at the instant when tout is elapsed. Ra = s implies that the first batch
arrives after s time units, measured from the beginning of the collecting process. If
a batch arrives at the timeout instant of the nth collecting process, its customers are
included in the nth collecting process. We obtain

P (Na = l|Ra = s)tout =
tout−s−1∑
i=0

a
(l−1)⊗
tout−s−i

amax∑
j=i+1

aj ∀s = 1, . . . ,amax, (4.58)

where Na is the number of batch arrivals. Combining Equation (4.58) with yi, we obtain
the probability of Y tout = x collected customers within tout time units under the condition
that Ra = s by

P (Y tout = x|Ra = s)tout =
lmax∑

l=0

yl⊗x · P (Na = l|Ra = s)tout ∀s = 1, . . . ,amax,

lmax = dtout/amine.
(4.59)

The collecting process is completed if at least L customers are collected. If less than
L customers are collected within tout, the collecting process continues. The probability
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that there are less than L customers collected when tout is elapsed is

P (Y tout < L|Ra = s) =
L−1∑
x=0

P (Y tout = x|Ra = s) ∀s = 1, . . . ,amax. (4.60)

For solving Equations (4.58), (4.59) and (4.60) we have to compute the distribution of Ra.
Based on a discrete Markov chain (see Section 4.2.1 and 4.3.1), we solve the equilibrium
equation system

P (Ra = s) = ra,s =
amax∑
u=1

pus · ra,u, (4.61)

where pus is the transition probability. We obtain

pus = P (Y tout ≥ L|Na = 1) · atout−u+s +
lmax∑

l=2

P (Y tout ≥ L|Na = l)
tout−u−1∑
n=0

a
(l−1)⊗
tout−u−n · an+s

+ P (Y tout < L|Ra = u) · as
∀s = 1, . . . ,amax ∀u = 1, . . . ,amax.

(4.62)

For the derivation of Equation (4.62) we have to distinguish if at least L customers can
be collected within tout or not. The case that the minimum batch size L is attained at
the timeout instant is considered by the first two summands of Equation (4.62). The
probability that at least L customers are collected within tout on the basis of l batch
arrivals is given by

P (Y tout ≥ L|Na = l) =

y
tout
max−L∑
x=0

yl⊗L+x ∀s = 1, . . . ,amax, ytoutmax = lmax · ymax. (4.63)

The third summand of Equation (4.62) describes the case that less than L customers are
collected at the instant when the timeout is passed and the collecting process continues
until the number of L customers is attained. From this it follows that the collecting
process ends with an arrival. Hence, the batch which completes this collecting process
will be transported further immediately and the time interval to the next arrival is a
complete interarrival time interval. The transition probability for the described case is
computed by the product of P (Y tout < L|Ra = u), given by Equation (4.60), and as,
s = 1, . . . ,amax.

Using Equations (4.61) and (4.59) leads to

P (Y tout = x) =
amax∑
s=1

P (Y tout = x|Ra = s) · ra,s, (4.64)

which is the probability that the number of collected customers at the timeout instant
is x. If x < L, the collecting process continues until the required minimum number of L
customers is attained. Let us assume that exactly one customer is missing at the timeout
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instant. If the size of the succeeding arriving batch is z, it follows that the batch size of
the collected batch is L− 1 + z. Generally, if there are L−x customers missing, we have
to consider possible combinations to attain the number L by q = 1, . . . ,qmax additional
arrivals. Thus, we derive the distribution of the batch size at the collecting station by

yd,L+z = P (Y tout = L+ z) +
L−1∑
x=1

yL−x+z · P (Y tout = x)

+

ymax−z∑
i=1

qmax∑
q=2

L−1−i∑
x=1

y
(q−1)⊗
L−x−i · yi+z · P (Y tout = x) ∀z = 0, . . . ,ymax − 1

qmax = d(L− tout · ymin
amax

)/ymine.

(4.65)

After deriving the batch size distribution of the departing batch, we present in the next
section an approach for computing the interdeparture time distribution at the collecting
station.

4.5.2. Interdeparture Time Distribution

The interdeparture timeD corresponds to the collecting time. The fact that the collecting
process lasts at least tout time units is trivial. The process lasts exactly tout time units
if at least L customers are collected at the timeout instant, otherwise it lasts more. If
there are still L−x, x = L− 1,L− 2, . . . ,1 customers missing at the timeout instant, the
additional time to complete the collecting process has to be analyzed. For this analysis
we introduce Rtout

a , s > 1, . . . ,amax which describes the residual interarrival time at the
timeout instant (recall that Ra is the residual interarrival time measured at the beginning
of a collecting process). Both Ra and Rtout

a are illustrated by means of Figure 4.16.

t

last arrival

before the

timeout

i: additional time to complete

the collecting process

1. arrival

out
t

i

interarrival time

interval A

last arrival

a
R

: residual time
out

a
R

interarrival time

interval A

: residual time at 

the beginning of the 

collecting process

time interval of       time units

timeout

instant

Figure 4.16.: Illustration of the residual times Ra and Rtout
a at the collecting process under

the minimum batch size rule

P (Rtout
a = s|Y tout

y = x) is the probability that the next batch arrives s time units after
the timeout instant, in the case that there are Yy = x customers collected at the timeout
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instant. If an arrival takes place at the timeout instant, the next arrival occurs in an
interarrival time interval A. We compute the probability for the event that Rtout

a = s
and that there are Y tout = x customers collected at the timeout instant. Combinatorics
yields

P (Rtout
a = s ∧ Y tout = x) =

amax∑
u=1

ra,u

lmax∑

l=1

tout−u−1∑
j=1

a
(l−1)⊗
tout−u−j · as+j · yl⊗x

∀s > 1, . . . ,amax.

(4.66)

Furthermore, we obtain

P (Rtout
a = s|Y tout = x) =

P (Rtout
a = s ∧ Y tout = x)

P (Y tout = x)
. (4.67)

Before calculating the interdeparture time D, we have to consider how many arrivals are
required to complete the collecting process if z = L− x, x = 1, . . . ,L− 1 customers are
still missing. The number of still missing arrivals is denoted by Nc. Therefore, we derive

P (Nc = q|Z = z) =

{∑ymax−z
i=0 yz+i if q = 1∑z−1
j=1

∑ymax−j
i=0 y

(q−1)⊗
z−j · yj+i if q > 1,

(4.68)

where P (Nc = q|Z = z) is the probability that Nc = q, q ≥ 1 arrivals are sufficient to
complete the collecting process under the condition that Z = z, z ≥ 1 customers are
missing. Under the condition that Y tout = L − z customers are present at the timeout
instant, we obtain the interdeparture time using Equations (4.67) and (4.68) by

P (D = tout + i|Y tout = L− z)

= P (Nc = 1|Z = z) · P (Rtout
a = i|Y tout = L− z)

+
z∑
q=2

amax∑
s=1,i>s

P (Nc = q|Z = z) · a(q−1)⊗
i−s · P (Rtout

a = s|Y tout = L− z)

∀i = 1, . . . and ∀z = 1, . . . ,L− 1.

(4.69)

The first term of Expression (4.69) considers the case that one arrival is sufficient to
complete the collecting process and the second term describes the case that at least two
arrivals are required. After solving Equation (4.69), it follows for the distribution of D,
denoted by di, i = tout,tout + 1, . . .,

dtout =
xmax∑
x=L

P (Y tout = x) xmax = max{L+ ymax − 1,lmax · ymax}, (4.70)

which describes the case that at least L customers can be collected within tout. If not,
we get

dtout+j =
L−1∑
z=1

P (D = tout + j|Y out = L− z) · P (Y tout = L− z) ∀j = 1, . . . (4.71)

Subsequently, the waiting time distribution for one arbitrary customer who arrives at
the collecting station is derived.
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4.5.3. Waiting Time Distribution

Using the minimum batch size rule we have to regard whether the batch building process
ends after tout time units or continues until a collecting size of at least L customers is
reached. Let us consider the state at the timeout instant in which Y tout = x customers
are collected. If x ≥ L, the collecting process is completed, otherwise it continues. The
probability that an arbitrary customer is part of a batch building process which requires
q additional arrivals is denoted by P (Gc = q), q = 0,1, . . .. If q = 0, at least L customers
are present at the timeout instant and no additional arrival is required to complete the
collecting process.

First, we determine the waiting time distribution for an arbitrary customer, assuming
that he is part of a collecting process where q additional arrivals are required. The
number of batch arrivals within tout is denoted by l, (l = 1,2, . . .). Thus, we observe that
l+ q batches arrive to form one collecting batch with the size of at least L. Considering
one collecting process, the waiting time for the customers who arrive with batch k (1 ≤
k ≤ l + q) is denoted by W k,l+q.

A process description of a batch building process according to the minimum batch size
rule is shown in Figure 4.17. The waiting times of the arriving customers are illustrated.
The l batches which arrive before tout and the q batches which arrive after tout are
sketched. We use the same indexes s,i,j,h,g, and z in this figure as subsequently in the
equations.

i
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interarrival time

lth arrival
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z: additional time to complete
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(l+y)th arrival

out
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z

waiting time of the 1. arrival =       -s+z
out
t

waiting time of the 2. arrival =       -s+z-i
out
t

waiting time of the lth arrival = j+z

waiting time of the (l+1)th arrival = z-h

waiting time of the
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interarrival time
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Figure 4.17.: Illustration of the waiting time if batch building according to the minimum
batch size rule is applied

For the derivation of the waiting time distribution we choose a similar approach as in
Section 4.3.2. Given a collecting time of D = tout + z with z ≥ 0, we determine all
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the possibilities that a batch arrives at the time instant i with i = 1, . . . ,tout + z, which
causes a waiting time of tout+z− i. We have to regard the given constraints of a required
minimum batch size and the fact that a residual interarrival time of length s arises at
the beginning of a collecting process. The waiting time for one arrival has to be weighted
by its batch size. This finally leads to the waiting time of one individual customer.

Now, let us assume that Gc = 0 and that there are l arrivals within tout. If the batch
size of the collected batch is L + m, the L + m customers are uniformly distributed to
the l arrivals. The mean batch size of an arriving batch is (L+m)/l. The waiting time
W k,l of the customers who arrive with the kth arrival (k = 1, . . . ,l) is proportional to
the following expressions. For l = 1 we obtain

P (W 1,1 = tout − s|Gc = 0) ∼
amax∑
s=1

ra,s · atout−s+1. (4.72)

The residual interarrival time distribution, ra,s, is calculated by Equation (4.61). Note
that the first batch arrives always after s time units (see also Figure 4.17). If l ≥ 2, it
yields

P (W k,l = tout − s|Gc = 0) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j · aj+1

if k = 1,

(4.73)

P (W k,l = tout − s− i|Gc = 0) ∼
amax∑
s=1

ra,s

amax−1∑
j=0

tout−s−j−1∑
i=1

a
(k−1)⊗
i · a(l−k)⊗

tout−s−i−j · aj+1

if 2 ≤ k ≤ l − 1

(4.74)

and

P (W k,l = j|Gc = 0) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j · aj+1

if k = l

(4.75)

Next, we assume that Gc = 1. This implies that, after the instant when the timeout
is elapsed, one additional arrival is required to complete the collecting process. The
collecting process is composed of l + 1 batch arrivals and lasts tout+z time units (z ≥ 1).

If l = 1, there is exactly one arrival within tout and a total of two batch arrivals. Thus,
the waiting time for the first arrival is tout − s + z and for the second it is zero. Due
to a batch size of L − n of the first arrival and n + m of the second, the waiting times
have to be weighted by the batch size. The waiting times are proportional to following
expressions:

P (W 1,2 = tout − s+ z|Gc = 1) ∼
amax∑
s=1

ra,s

tout−s−1∑
z=1

atout−s+z

[
L−1∑
n=1

ymax−n∑
m=0

yL−n · yn+m · (L− n)

] (4.76)
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and

P (W 2,2 = 0|Gc = 1) ∼
amax∑
s=1

tout−s−1∑
z=1

ra,s · atout−s+z
[
L−1∑
n=1

ymax−n∑
m=0

yL−n · yn+m · (n+m)

]
.

(4.77)

If l ≥ 2 and Gc = 1, the batches from 1 to l have together a size of L − n customers
uniformly distributed to the l batches. Furthermore, batch l + 1 has a size of L + m.
The waiting time of the kth arrival (k = 1, . . . ,l,l + 1) has to be weighted by its batch
size. It yields

P (W k,l+1 = tout − s+ z|Gc = 1) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j

amax−j∑
z=1

aj+z

[
L−1∑
n=1

ymax−n∑
m=0

yl⊗L−n · yn+m · (L− n)

l

]

if k = 1,

(4.78)

P (W k,l+1 = tout − s+ z − i|Gc = 1) ∼
amax∑
s=1

ra,s

amax−1∑
j=0

tout−s−j−1∑
i=1

a
(k−1)⊗
i · a(l−k)⊗

tout−s−j

amax−z∑
z=1

aj+z

[
L−1∑
n=1

ymax−n∑
m=0

yl⊗L−n · yn+m · (L− n)

l

]

if 2 ≤ k ≤ l − 1,

(4.79)

P (W k,l+1 = j + z|Gc = 1) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j

amax−j∑
z=1

aj+z

[
L−1∑
n=1

ymax−n∑
m=0

yl⊗L−n · yn+m · (L− n)

l

]

if k = l

(4.80)

and

P (W k,l = 0|Gc = 1) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j

amax−j∑
z=1

aj+z

[
L−1∑
n=1

ymax−n∑
m=0

yl⊗L−n · yn+m · (n+m)

]

if k = l + 1

(4.81)
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Finally, we assume that Gc = q, q ≥ 2. We observe a total of l + q batch arrivals. The
batches from 1 to l+ q− 1 have together a size of L−n customers uniformly distributed
to the l+ q− 1 batches. The last arriving batch, batch l+ 1, has a size of L+m. As we
mentioned before, the waiting time of the kth arrival (k = 1, . . . ,l+q) has to be weighted
by its size.

If l = 1, we obtain

P (W 1,1+q = tout − s+ z|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑

h=1

atout−s+h
zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q

]

zmax = dmax − tout,

(4.82)

P (W 2,1+q = z − h|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑

h=1

atout−s+h
zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q

]
,

(4.83)

P (W k,1+q = z − h− g|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑

h=1

atout−s+h

gmax∑
g=1

a(k−l−1)⊗
g

zmax∑

z=h+g+1

a
(q+l−k)⊗
z−h−g

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q

]

if l + 2 ≤ k ≤ l + q − 1 gmax = zmax − 1

(4.84)

and9

P (W l+q,1+q = 0|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑

h=1

atout−s+h
zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (n+m)

] (4.85)

Furthermore, if q ≥ 2 and l ≥ 2, we get the following expressions:

P (W k,l+q = tout − s+ z|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

amax−j∑

h=1

a
(l−1)⊗
tout−s+j · aj+h

zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q + l − 1

]

if k = 1,

(4.86)

9zmax denotes the maximum possible time elapsed from the timeout instant to the end of the collecting
process
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P (W k,l+q = tout − s+ z − i|Gc = q) ∼
amax∑
s=1

ra,s

amax−1∑
j=0

tout−s−j−1∑
i=1

a
(k−1)⊗
i

amax−j∑

h=1

a
(l−k)⊗
tout−s−i−j · aj+h

zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q + l − 1

]

if 2 ≤ k ≤ l − 1,

(4.87)

P (W k,l+q = j + z|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

amax−j∑

h=1

a
(l−1)⊗
tout−s+j · aj+h

zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q + l − 1

]

if k = l,

(4.88)

P (W k,l+q = z − h|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

amax−j∑

h=1

a
(l−1)⊗
tout−s+j · aj+h

zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q + l − 1

]

if k = l + 1,

(4.89)

P (W k,l+q = z − h− g|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

amax−j∑

h=1

a
(l−1)
tout−s+j · aj+h

gmax∑
g=1

a(k−l−1)⊗
g

zmax∑

z=h+g+1

a
(q+l−k)⊗
z−h−g

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L− n)

q + l − 1

]

if l + 2 ≤ k ≤ l + q − 1

(4.90)

and

P (W k,l+q = 0|Gc = q) ∼
amax∑
s=1

ra,s

tout−s−1∑
j=0

amax−j∑

h=1

a
(l−1)⊗
tout−s+j · aj+h

zmax∑

z=h+1

a
(q−1)⊗
z−h

[
L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (n+m)

]

if k = l + q

(4.91)

We derived the proportional values for P (W k,l+q = i|Gc = q), i = 0,1,2, . . . by the
Expressions from (4.72) to (4.91). Let us denote these expressions which are proportional
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to P (W k,l+q = i|Gc = q) by P ∗(W k,l+q = i|Gc = q). Thus, we normalize and compute

P (W = i|Gc = q) =

∑
l=1

∑l+q
k=1 P

∗(W k,l+q = i|Gc = q)∑
i=0

∑
l=1

∑l+q
k=1 P

∗(W k,l+q = i|Gc = q)
. (4.92)

By use of Equation (4.92) we calculate the probability that an arbitrary customer has to
wait i time units under the condition that he is part of a batch building process requiring
q additional arrivals to fulfill a minimum batch size of L. We recall that the probability
that an arbitrary customer is part of a batch building process requiring q additional
arrivals is denoted by P (Gc = q). For q = 0, we obtain

P (Gc = q) =
1

E(Yd)

amax∑
s=1

ra,s


atout−s+1

ymax−L∑
m=0,yL+m≤ymax

yL+m · (L+m)

+
lmax∑

l=2

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j · aj+1

ymax−1∑
m=0

yl⊗L+m · (L+m)

)

if q = 0

(4.93)

The first summand of Equation (4.93) represents the case that there is exactly one arrival
within tout and the second one represents the case that there are more than one. Recall if
q = 0, at least L customers arrive within tout. The greater the collected batch size L+m
(m = 0,1, . . .) the greater is the probability that an arbitrary customer is part of a batch
building process requiring q additional arrivals. Since P (Gc = q) is proportional to the
collected batch size L+m, we have to weight Expression (4.93) by the batch size of the
collected batch L+m in relation to E(Yd). Analogous to Equation (4.93), we derive the
case for q > 0. It yields

P (Gc = q) =
1

E(Yd)

amax∑
s=1

ra,s

(
atout−s+1

L−1∑
n=1

ymax−n∑
m=0

yq⊗L−n · yn+m · (L+m)

+
lmax∑

l=2

tout−s−1∑
j=0

a
(l−1)⊗
tout−s−j · aj+1

L−1∑
n=1

ymax−n∑
m=0

y
(l+q−1)⊗
L−n · yn+m · (L+m)

)

if q ≥ 1.

(4.94)

Finally, we obtain the waiting time distribution by

wi = P (W = i) =

qmax∑
q=0

P (W = i|Gc = q) · P (Gc = q). (4.95)

After deriving an exact approach for the analysis of the batch building process under the
minimum batch size rule, we will present some numerical results in the following section.

4.5.4. Analysis

The derived method for the minimum batch size rule allows us to investigate the influ-
ence of the input parameters on the output. Thus, we study the influence of L on the
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Figure 4.18.: Dependency of the interde-
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Figure 4.19.: Dependency of the collected
batch size on the minimum
batch size L

interdeparture time D, the collected batch size Yd and the waiting time W . The results
are presented in Figures 4.18, 4.19 and 4.21. The input parameters and the obtained
numerical results are printed in Table A.8 in the Appendix. If L is chosen to be small
enough, the collecting process ends always after tout time units. This corresponds to the
timeout rule (see Section 4.3). This is the case in our example for L = 1 and L = 2.

Waiting time depending on the minimum batch size L

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12

Minimum batch size L

ti
m

e
 u

n
it

s

E(w) 95%-quantile 99%-quantile

Figure 4.20.: Dependency of the waiting time on the minimum batch size L

It is interesting to note that the minimum mean waiting time is attained for a minimum
batch size of L = 5 (see also the numerical results in the Appendix: Table A.8). This
can be explained as follows: It is clear that greater L results in a longer duration of the
collecting process leading to an increasing waiting time. However, if we increase L we
increase also the proportion of customers having a waiting time of zero. This influence
on E(W ) is weak, but leads to the fact that E(W ) is not minimal for a minimum size of L.

The Paradox of Decreasing E(W ) with Increasing Process Instability

In a further experiment, we analyze the influence of the variability of the batch arrival
process on performance measures. We study the behavior of E(W ), σw,0.95, and σw,0.99

depending on both c2
A and c2

Y .10 In the analyzed example, we choose a minimum batch

10The first and third moment of ai and yi were held constant. Thus, symmetrical distributions are
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4. Batch Building

size of L = 8 and a timeout of tout = 10. The graph on the left in Figure 4.21 shows
E(W ) depending on both c2

A and c2
Y . It is astonishing to note that E(W ) does not

increase with an increasing variability within a certain range of c2
A and c2

Y . In contrast,
it is trivial to note that the probability that less than L customers are collected when
tout is elapsed increases with increasing c2

A and c2
Y (see right graph of Figure 4.21). This

probability corresponds to 1 − dtout and in the chosen example it is almost zero for low
values of c2

A and c2
Y .

Having the system’s behavior of the G/G/1-queue in mind, where increasing process
instability causes always increasing E(W ), the phenomenon that E(W ) decreases with
an increasing variability regarding the collecting process under the minimum batch size
rule seems to be paradoxical. Let us explain this paradox by the following consideration:

First, let us consider the case that at least L customers can be collected within tout.
This corresponds to the timeout rule discussed previously. In the considered numerical
example, this situation is very probable for low values of c2

A and c2
Y . Applying the timeout

rule we know that E(W ) is computed by (tout − 1)/2, that means 4.5 time units in the
considered numerical case. The fact that wi = 1/tout, i = 0,1, . . . is illustrated in the
graph on the right in Figure 4.22 for the case that c2

A and c2
Y is 0.0056.

If c2
A and c2

Y increases slightly, the probability that there are less then L customers present
when tout is elapsed increases as well (see the graph on the right in Figure 4.21). If there
are less then L customers at tout, it is highly probable that one additional arrival is
sufficient to terminate the collecting process. In this situation, E(Y ) customers arrive in
the mean in order to complete the collecting process and they have all a waiting time of
zero. Roughly considered, these customers arrive E(A)/2 time units after tout. Thus, all
these customers who have arrived before tout have an additional waiting time of E(A)/2,
and in the considered numerical case this is 1.5 time units. In the worst case, L − 1
customers have to wait for an additional arrival. Since we expect E(Y ) customers with
the subsequent arrival, the mean waiting time is given by

E(W ) =
(L− 1)

(L− 1 + E(Y ))
· (tout − 1 + E(A))

2
. (4.96)

In order to show that E(W ) decreases, Equation (4.96) has to be smaller then (tout −
1)/2. After some algebra, we obtain the following condition that E(W ) decreases with
increasing c2

A and c2
Y :

E(A)

E(Y )
<
tout − 1

L− 1
≈ tout

L
⇒ tout · E(Y )

E(A)
> L. (4.97)

However, if c2
A and c2

Y exceed a certain threshold, E(W ) increases since the probability
that more than at least two additional arrivals are required to finish a collecting process
increases.

In summary, it can be ascertained that E(W ) can decrease with increasing variability of
the arrival process within a certain range of c2

A and c2
Y . Thus, E(W ) can be optimized

depending on c2
A and c2

Y . If the probability that there are less then L customers available

chosen (see Table A.4 in the Appendix). The influence of the fourth and higher moments are not
considered.
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when tout is elapsed is high for low values of c2
A and c2

Y , we observe no decreasing behavior
of E(W ) depending on c2

A and c2
Y . In this case, the number of arrivals within tout, roughly

given by tout · E(Y )/E(A) is clearly less then L. In this case, the condition set up in
Expression (4.97) is violated.

In contrast to the observation above, if we analyze “high percentage”-quantiles such as
σ0.95 and σ0.99 depending on c2

A and c2
Y , we note that σ0.95 and σ0.99 increases nearly

linearly with increasing c2
A and c2

Y (see the left graph in Figure 4.22). Since the left
graph of Figure 4.23 shows that the interdeparture time gets longer with increasing c2

A

and c2
Y , the probability to observe long waiting times increases. Furthermore, the scv

of the waiting time distribution increases with c2
A and c2

Y too (see right graph of Figure
4.23). These contribute to the fact that increasing c2

A and c2
Y leads to increasing σ0.95

and σ0.99. Therefore, the responsible planers of material flow systems have to be aware
that planning decisions based solely on E(W ) can be misleading in some cases. High
performance material flow systems with short order sojourn times targets and a high
degree of on-time order fulfillment can only be achieved by stable processes. In order to
optimize the decision making process a thorough understanding of the stochastic system’s
behavior is required.

In order to conclude this discussion, three waiting time distributions for different values
of c2

A and c2
Y are depicted in in the right graph of Figure 4.22. As above mentioned,

if c2
A and c2

Y are very low, the system’s behavior corresponds to the timeout rule and
wi = 1/tout, i = 0,1, . . .. If c2

A and c2
Y increases, the probability that the waiting time is

zero and the probability that long waiting times arise increases too.

Application: Optimization of the Batch Building Operation

Subsequently, we present an optimization model for a basic transportation system which
can be found in material handling systems and runs under the minimum batch size rule.

collecting

station
material handling device

(cycle time = t_out)

receiving 

station

Figure 4.24.: Basic transportation system: A material handling device picks up collected
material units at the collecting station to transfer them to the receiving
station

Given is a material handling device which picks up the collected material units at a
collecting station to transfer them to their destination station. The transportation time
of the material handling device is tout time units. The material handling device, returning
after tout time units, waits if less than L material units are collected. We assume that
the capacity of the material handling device is sufficient. The batch arrival stream at
the collection station is given by A and Y . The described system is illustrated by Figure
4.24.
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Systems costs: Material handling device operating under the minimum 

batch size rule
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Figure 4.25.: The optimal minimum batch size L regarding the given systems costs

Subsequently we search the optimal minimum batch size L such that the system’s costs
for the described system are minimal.

arrival process system figures
i ai yi
0 0.0 0.0 transfer operation
1 0.2 0.6 time (= tout) 10
2 0.4 0.3 cTrans 10
3 0.2 0.1 cIn 25
4 0.2 time period 100

mean 2.4 1.5

Table 4.3.: Input values for an optimization problem for a basic transportation system

Two types of costs can be observed: The costs for the transportation process cTrans and
the inventory costs for one material unit within the time period T , denoted by cIn. The
average number of transportation processes per time period, denoted by E(NTrans), can
be calculated by

E(NTrans) =
T

E(D)
. (4.98)

Furthermore, using Little’s Law the average amount of inventory E(NIn) can be deter-
mined. We obtain

E(NIn) =
E(Y )

E(A)
· E(W ). (4.99)

Finally, we get the total system’s costs by

Ctot = cTrans · E(NTrans) + cIn · E(NIn). (4.100)
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If ctrans and cIn are given, we can compute the total costs depending on the minimum
batch size L using the analysis presented previously. A numerical example is presented
for illustration. The input values for the transportation system are given in Table 4.3
and the system’s costs are depicted in Figure 4.25, where the optimal minimum batch
size is apparent for a value of L = 7.

4.6. Chapter Conclusion

In this chapter we presented a detailed discrete time analysis of batch building processes.
We studied two basic batch building modes, the capacity and the timeout rule, and
additionally a possible modification of these two basic batch building modes, called the
minimum batch size rule. We summarize:

• Capacity rule: A given amount of k customers is collected at the service station.

• Timeout rule: The duration for the batch building process is given by a timeout,
denoted by tout.

• Minimum batch size rule: The collecting process lasts at least tout time units.
When tout ends and less than L customers were collected, the batch building process
continues until the required L customers are attained.

For the named batch building modes we assumed a batch arrival stream, described by
the iid random variables A and Y . We presented exact solutions for wi, di and yd,i. The
process behavior of both the capacity and timeout rule is discussed in detail studying the
influence of the input parameters on the waiting and departure process. Equivalences
between the capacity and the timeout rule could be identified (see Table 4.1). We proved
that wi under the timeout rule is easily given by 1/tout, i = 0,1, . . . ,tout−1. Furthermore,
it is shown that E(W ) under the capacity rule is independent of the variability of the
arrival process, however not the quantiles of wi as the 95% and 99%-quantile. If the
capacity rule is applied, it is explained that the influence of c2

Y on the stability of the
departure process is greater than the influence of c2

A. Otherwise, if the timeout rule is
applied, this is inverse.

Applying the minimum batch size rule, we detected and explained the paradox of de-
creasing E(W ) with increasing process instability within a certain range of c2

A and c2
Y .

We concluded this chapter with a numerical example discussing an optimization problem.
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5. Batch Arrivals, Batch Service
Queues, and Batch Split

Millions saw the apple fall, but Newton asked why.

Bernard Baruch

The focus in the previous chapter was on the batching process itself. In the subsequent
chapter we analyze queueing systems in which a service process, described by a random
variable, is performed. At first, an analytical approach for the performance analysis
of the G/G/1-queue with batch arrivals is presented. Thereafter, we investigate batch
server systems, in particular the batch server system running under the minimum batch
size rule. In addition to service queues, we devote Section 5.5 to the stochastic split
operation required to split a stochastic batch arrival stream.

5.1. G/G/1-Queue with Batch Arrivals

In the “basic” queueing models well known from the literature it is assumed that the
customers arrive singly at a service facility. However, this assumption does not hold for
arrival processes in the real world, which occur often in batches: The raw materials for
a production facility are shipped by trucks and the material flow within the production
facility is often performed by means of transportation carriers which contain more than
one piece. Furthermore, customer orders arrive naturally in batches. Recall that there is
an uncountable amount of queueing examples in information systems and in our everyday
life, where the customers arrive in batches (see Section 3.1). From this it follows that
suitable models for analyzing batch arrivals at a service station are required. This will
be done by the introduction of analytical methods in order to compute performance
measures for the G/G/1-queue with batch arrivals.

The analysis of the G/G/1-queue with batch arrivals is structured as follows. At first,
in Section 5.1.1 we investigate the G/G/1-queue with batch arrivals of constant size and
calculate the waiting time distribution. In Section 5.1.2 it is assumed that the batch size
is an iid random variable and an approach for computing the waiting time distribution
is presented. These methods for the determination of the waiting time distribution have
been already introduced by Schleyer and Furmans (2006a). The departure process of
the G/G/1-queue with batch arrivals is analyzed in Section 5.1.3. In order to dimension
material flow buffers the distribution of the number of customers in the queue at the
arrival instant has to be known. Section 5.1.4 is dedicated to this topic.

The G/G/1-queueing system with batch arrivals can be described as follows. The arrival
stream is given by the interarrival time, A, and the batch size, Y . Both are random
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variables which are iid with ai, i = 1, . . . ,amax and yi, i = 1, . . . ,ymax. One customer
can be served at the G/G/1-queueing station and the service time B is iid with bi,
i = 1, . . . ,bmax. When the server is idle at the arrival instant, one arbitrary customer
from the arriving batch can be served immediately. The remaining customers have to
wait until the server becomes idle again. Then the next customer is served and so on.
When a customers arrives at the same time increment as the service of a customer is
finished, it is assumed that the served customer leaves the system before the arriving
customer it enters.

5.1.1. Waiting Time Distribution: Batch Arrivals of Constant Batch
Size

Ackroyd (1980), Grassmann and Jain (1989), and Tran-Gia (1996) present analytical
methods for calculating the waiting time distribution of a G/G/1-queueing system, where
the arrival stream is a single arrival stream and the arrival of each individual customers
marks a renewal process. However, if we consider batch arrivals, we recognize that the
arrival in batches influences the waiting time distribution of the “individual” customers
the batch is composed of. Considering the individual customers within a batch (see
Figure 5.1), it follows that the arrival stream is a correlated stochastic stream. This
means that the time interval between the arrivals of two individual customers depends on
the preceding time interval. For example, if every batch arrival consists of two customers,
then every second time interval is equal to zero time units. Generally, if an individual
customer is considered, a batch arrival of size l results in a stochastic arrival stream with
l − 1 succeeding time intervals of length zero and one of length A = i with probability
ai.

We present subsequently an approach which takes into account the influence of the batch
size on the waiting time. We distinguish between two cases: The batch size is constant
and the batch size is distributed stochastically.

At first, let us consider the case that the incoming batches consist always of exactly
Y = l customers, that means yl = 1. This is illustrated in Figure 5.1.

G|G|1-service station

waiting room

Interarrival time: A

batchindividual

customer

Figure 5.1.: G/G/1-queueing system at which batches of size l = 4 arrive

In order to calculate the waiting time distribution, the incoming batch is modeled as one
individual customer. The service time of this customer results from l sequential service
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operations of all customers the batch is composed of. Thus, we assume that all customers
of the batch are in service, regardless of the customers still waiting for service. Figure 5.1
shows that exactly two customers of the batch which is in service waiting for their service.
The discrete service time distribution for the batch is given by bbatch,i, i = 1, . . . ,l · bmax,
which results from the l-fold convolution of the service time distribution:

bbatch,i = bl⊗i . (5.1)

If one batch is modeled as an individual customer, we can determine the difference be-
tween the incoming work (time Bbatch required to serve the batch) and the outgoing work
(time A which is provided for service until the arrival of the next batch). Considering
the nth batch we obtain:

cnbatch,i = P (Xn
batch = Bn

batch − An = i · tinc) ∀i = −amax + 1, . . . ,l · bmax − 1 (5.2)

Xn
batch is called working balance of the nth batch, which can have both positive and

negative values. Since the interarrival time An and the batch service time Bn
batch are

independent of each other, the probability distribution of the working balance is given
by

cbatch,i =
l·bmax∑
j=1

bbatch,j · aj−i. (5.3)

We can omit the index n in Equation (5.3), since the distributions of A and Bbatch are
independent of n. We use Lindley’s equation in discrete form to determine the waiting
time distribution of an incoming batch wIbatch,i:

wIbatch,i =

{∑∞
j=0w

I
batch,j · cbatch,i−j ∀i = 0,1,2, . . .

0 ∀i < 0
(5.4)

The algorithms of Grassmann and Jain (1989) based on the Wiener-Hopf factorization
using ladder height distributions can be used to solve Equation (5.4). Grassmann and
Jain present three algorithms and show the convergence of algorithm 1. Algorithm 1,
applied to compute the waiting time distribution for an arbitrary arriving batch, wIbatch,i,
includes the following steps:

1. Initialize β0
i = 0,i = 1,2, . . . ,amax and α0

i = 0,i = 1,2, . . . ,l · bmax − 1

2. For m = 0,1,2, . . .

a)

βm+1
i = cbatch,−i +

∞∑
j=1

αmj β
m
i+j

(1− βm0 )
i = 0,1 . . .− cbatch,min (5.5)

b)

αm+1
i = cbatch,i +

∞∑
j=1

αmi+jβ
m
j

(1− βm0 )
i = 1 . . . cbatch,max (5.6)
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3. Iterate until max(|αmi − αm+1
i |) < ε

4. It follows:

wIbatch,0 = 1−
∑l·bmax

j=1 αj

1− β0

(5.7)

wIbatch,i =

∑l·bmax
j=1 wbatch,i−jαj

1− β0

(5.8)

5. βi corresponds to the idle time distribution

In addition to the waiting time of the batch, W I
batch, distributed by wIbatch,i, the waiting

time of an individual customer during the service of the batch itself has to be considered.
We denote this additional waiting time by W II and its distribution by wIIi . The customer
first chosen from the batch for service has to wait only for the same amount of time which
the whole batch has to wait for. The customer who is taken second has to wait for the
service time of the first taken customer additionally. Therefore, the lth customer has
to wait for the additional duration of l − 1 service processes. Thus, the waiting time
distribution for the lth customer is determined by the (l − 1)-fold convolution of bi.

The probability that an individual customer is placed at the kth position within a batch
of size l, has to be considered. At constant batch sizes, this probability is 1/l. The addi-
tional waiting time of an individual customer of a batch, who is in service, is calculated
by

wIIi =
1

l

l−1∑
j=1

b
(l−j)⊗
i ∀i = 1,2 . . .

wIIi =
1

l
i = 0.

(5.9)

The waiting time of an individual customer, W , is the sum of W I and W II since W II

is independent of W I . Thus, we get the waiting time distribution by the convolution of
the distributions wIbatch,i and wIIi :

wi = P (W = i) = P (W I
batch +W II = i) = wIbatch,i ⊗ wIIi (5.10)

5.1.2. Waiting Time Distribution: Batch Arrivals of Stochastic
Batch Size

Next, we develop a method for computing the waiting time distribution, wi, considering
batch arrivals of stochastic size. The batch size is a random variable, denoted by Y ,
and its distribution given by yi, i = 1, . . . ,ymax. Figure 5.2 illustrates a G/G/1-queueing
system in which the size of the arriving batch is between one and four.

In the first step, the whole batch is analyzed as an individual customer as we did in the
case of batch arrivals of constant size. However, for the derivation of the batch service
time distribution, bbatch,i, we have to take into account the stochastic batch size. For a
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G|G|1-service station

waiting room

customers still 

waiting for service

batch size Y

interarrival time A

Figure 5.2.: G/G/1-queueing system, where the size of the arriving batch is stochastic

batch size of one, the service time distribution of a batch is the same as that of a single
customer that is bi. Therefore, for a batch size of l the service time distribution results
from the l-fold convolution of bi. To obtain the service time distribution for an arbitrary
batch, we have to weight the service time of a batch of size l by the probability that a
batch of size l arrives at the service station. Thus, we obtain

bbatch,i =

ymax∑

l=1

yl · bl⊗i . (5.11)

Equation (5.3) yields the distribution of the working balance, cbatch,i, under the condition
that the whole batch is considered as an individual customer. Lindley ’s equation in
discrete form can be set up by Equation (5.4). Next, we compute the waiting time
distribution of the whole batch, wIbatch, by Equations (5.5), (5.6), (5.7) and (5.8).

As described previously, an individual customer has to wait an additional time during
the service of his batch depending on the sequence in which the individual customers
are taken for service. In Figure 5.2 two customers are shown having to wait when their
batch is already in service. If a customer is taken at the mth position of a batch, he has
to wait an additional duration of m− 1 service processes.

Thus, the distribution for this additional waiting time, denoted by wIIi , depends on the
position of an arbitrary individual customer and that this customer belongs to a batch of
size l. The probability that an arbitrary individual customer belongs to a batch of size
l, denoted by ql, is proportional to the probability yl and to the size l itself. We develop

ql ∼ l · yl (5.12)

and this yields

ql = C · l · yl, (5.13)

where C is a constant. As the sum of the probabilities ql for l = 1, . . . ,ymax has to be 1,

77



5. Batch Arrivals, Batch Service Queues, and Batch Split

it follows that

ymax∑

l=1

ql = 1 = C

ymax∑

l=1

l · yl = C · E(Y )

⇒ C =
1

E(Y )
.

(5.14)

Thus, we get

ql =
l · yl
E(Y )

. (5.15)

If an arbitrary customer belongs to a batch of size l with probability ql and is taken out
of the batch for service first, he does not have to wait for an additional time period.
This customer is taken first with probability 1/l. Accordingly, the probability that an
arbitrary customer does not have to wait additionally can be specified by

P (W II = 0) = wII0 =

ymax∑

l=1

ql
l
. (5.16)

For a customer who is taken at the mth position with 1 < m ≤ l we develop Equation
(5.17). The probability ql and the probability that a customer is taken from the mth
position under the condition that the batch has a size of l is taken into account. We
obtain for the probability that the additional waiting time is i time units

P (W II = i) = wIIi =

ymax∑
j=1

bj⊗i

ymax∑

l=j+1

ql
l
. (5.17)

Due to the independence of W II from W I the convolution of the distributions wIbatch,i
and wIIi yields the waiting time distribution for the G/G/1-queueing system with batch
arrivals of stochastic size. Thus, it follows that

wi = wIbatch,i ⊗ wIIi . (5.18)

The sojourn time of a customer in the system is the sum of the waiting and service time.
If wi is known, the sojourn time can be easily determined by

vi = wi ⊗ bi. (5.19)

5.1.3. Interdeparture Time Distribution

Once the waiting time distribution is known, the interdeparture time distribution can be
determined (see Grassmann and Jain (1988)). We have to distinguish between two cases.
First, if customer n+1 arrives at the queueing system and has to wait, the interdeparture
time between customer n and n+1 corresponds to the service time. However, if customer
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n + 1 arrives at an empty system and initiates a busy period, his waiting time is zero
and the interdeparture time between customer n and n+ 1 is the sum of the service time
and the idle time. Thus, we obtain

di = w0 · (
∑
j=0

βj · bi−j) + (1− w0) · bi, (5.20)

where di is referred to as the interdeparture time distribution. In the following section
we study the number of customers at the arrival instant.

5.1.4. Distribution of the Number of Customers at the Arrival
Instant

In material flow systems, there is a limited space close to a machine or a group of
machines for buffering unfinished goods. Therefore, it is of vital importance to analyze
the number of customers in the queue at the arrival instant for the dimensioning of
material flow buffers. It is crucial that there is enough free buffer capacity to receive
arriving customers. If the distribution of the number of customers at the arrival instant
is known, the required dimension of the buffer can be determined on the basis of a given
confidence level σ, 0 ≤ σ < 1.

With τn we denote the arrival instant of the nth customer, with δn the departure instant
of the nth customer, and with N(t) the number of customers at the time instant t,
t = 0,1,2, . . .. The following analytical approach is based on the idea that the probability
to encounter k customers in the system at the arrival instant of the (n+k+1)th customer,
τn+k+1, is equal to the probability to encounter k customers at the departure instant of
the nth customer, δn. Therefore, we obtain

P{N(τn+k+1) ≤ k} = P{N(δn) ≤ k}. (5.21)

Furmans and Zillus (1996) analyzes the distribution of the number of customers at the
arrival instant in a G/G/1-queue with single arrivals. He explains the equivalence of
N(τn+k+1) and N(δn) as follows. It is assumed that N(τn+k+1) ≤ k and under this
condition, the nth customer is already served before the (n+ k + 1)th customer arrives.
Thus, it follows that there are no more than k customers in the system immediately
after the departure of customer n. Otherwise, if customer n encounters no more than k
customers at the departure instant, δn, it is impossible for customer n+k+1 to encounter
more than k customers at his arrival. Thus, we summarize:

if N(τn+k+1) ≤ k ⇒ N(δn) ≤ k and

if N(δn) ≤ k ⇒ N(τn+k+1) ≤ k,

it follows that N(τn+k+1) ≤ k ⇔ N(δn) ≤ k.

(5.22)

At first, let us assume that customers arrive singly. If the (n + k + 1)th customer
encounters less than or equal to k customers in the queueing system at his arrival, the
time interval between the arrival of customer n and n + k + 1, denoted by τn+k+1 − τn,
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has to be at least the sojourn time of the nth customer. The sojourn time is the sum of
the waiting and service time. We conclude that

P{N(τn+k+1) ≤ k} = P{N(δn) ≤ k} = P{τn+k+1 − τn ≥ Wn +Bn}. (5.23)

However, if batch arrivals are considered, the time interval τn+k+1 − τn and the waiting
time of customer n are dependent on the position l of customer n within his batch. For
example, if the nth customer is in the last position within his batch, his waiting time
and the time interval until the arrival of customer n + k + 1 is differently distributed
as compared to the case that the nth customer is placed at the first position within his
batch. Therefore, we have to consider the dependency of P{N(δn) ≤ k} on the position
l of customer n within his batch. Equation (5.23) has to be extended as follows:

P{N(δn(l)) ≤ k} = P{[τn+k+1 − τn](l) ≥ Wn(l) +Bn}. (5.24)

customer on 

position 1
customer on 

position 2
customer on 

position 3

interarrival time A interarrival time A interarrival time A

Figure 5.3.: Batch arrivals in a G/G/1-queue: Mode of numbering the individual cus-
tomers of a batch

Let us number the individual customers of a batch using the following procedure. The
customer who is chosen last to be served is assigned the number one. The customer who
is chosen before is assigned the number two and so on. Finally, the customer who is
chosen first is assigned the number of the batch size. See Figure 5.3 which clarifies the
modus of numbering. We choose this mode, since this simplifies the derivation of the
distribution of the interval length [τn+k+1 − τn](l). First of all, we compute the waiting
time distribution depending on the position l, denoted by wi(l), i = 0,1, . . ..

The probability that an arbitrary chosen customer is located at position l is computed
by

ol =

ymax∑

m=l

qm
m

∀l = 1, . . . ,ymax, (5.25)

where qm denotes the probability that an arbitrary customer is an element of a batch of
size m and is calculated by Equation (5.15).1

If a customer is on the last position (that means l = 1), his waiting time depends on the
size of his batch. Therefore, we calculate the probability that an arbitrary customer is

1It has to be noted that the probability to be on the last position of a batch is the same as to be on
the first position. Furthermore, the probability to be on the second last position is the same as to
be on the second position and so on. Thus, it is only dependent on the viewing angle.
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element of a batch of size m under the condition that this customer is at position l. The
described probability is denoted by P (Q = m|O = l) and is given by

P (Q = m|O = l) =
P (O = l|Q = m) · qm

ol
m = 1, . . . ,ymax l ≤ m. (5.26)

If a batch of size m is given, an arbitrary customer is at position l, 1 ≤ l ≤ m with
probability 1/m. Thus we obtain

P (O = l|Q = m) =
1

m
. (5.27)

Using the Equations (5.15) and (5.27) we simplify Equation (5.26) as

P (Q = m|O = l) =
m · ym

E(Y ) ·m · ol =
ym

E(Y ) · ol . (5.28)

The waiting time W (l) is computed by the sum of the waiting time of the whole batch,
W I
batch, and of the additional waiting time of an individual customer who is placed at

position l, W II(l). W I
batch is independent of l and is obtained using the Equations from

(5.4) to (5.8). The distribution of WII(l) is solved by

wIIi (l) = P (Q = l|O = l) i = 0 (5.29)

wIIi (l) =

ymax−l∑
m=1

P (Q = l +m|O = l) · bm⊗i i = 1,2, . . . . (5.30)

The waiting time of a customer who is at position l is zero if he is an element of a batch
of size l. This is given by Equation (5.29). Equation (5.30) describes the case that a
customer who is at position l has to wait for m > 0 service processes since the service
start of his batch. Analogous to Equation (5.18) we get

wi(l) = wIbatch,i ⊗ wIIi (l). (5.31)

The sum of W (l) and B leads to the sojourn time of a customer depending on l, which
is denoted by V (l). The distribution of V (l) is given by

vi(l) = P (W (l) + B = i) = wi(l)⊗ bi i = 1,2, . . . . (5.32)

The length of the time interval [τn+k+1 − τn](l) is dependent on the position l. The
distribution αni (k,l) denotes the probability that the time interval [τn+k+1 − τn](l) is i
time units.

Figure 5.4 shows the time interval [τn+k+1 − τn](l) in which customer n is located at
position l = 1. The time interval [τn+k+1 − τn](l) is composed of multiple interarrival
time intervals, each distributed by ai. In Figure 5.4 [τn+k+1 − τn](l) is composed of
five interarrival time intervals. The number of interarrival time intervals depends on
the sizes of the arriving batches. For example, if batches with large sizes arrive within
[τn+k+1− τn](l), we encounter less arrivals in the considered time interval as if the batch
sizes are small.
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customer n

on position l=1

customer n+k+1

interarrival

time A

[ ]( )l
nkn
ττ −

++ 1
time interval

A
A AA

Figure 5.4.: Time interval between the arrival instant of customer n and customer n+k+1
depending on the position l of customer n

The distribution that the time interval [τn+k+1 − τn](l) is composed of m interarrival
time intervals is denoted by Φn

k,m(l). Since Φn
k,m(l) depends only on l and k, we omit the

index n and write subsequently Φk,m(l). We determine the number of interarrival time
intervals for k = 0,1, . . . ,kmax and l = 1, . . . ,ymax, where kmax is the next greater integer
of the fraction of the maximum waiting time and minimum service time. We get

kmax =

⌈
wmax

bmin

⌉
. (5.33)

If l > k + 1, it means that customers n and n+ k + 1 are located in the same batch and
therefore the number of interarrival time intervals between the arrival of customer n and
n+ k + 1 is zero. The described situation is illustrated in Figure 5.5. It yields

Φk,m(l) =

{
1 m = 0 and l > k + 1

0 m > 0 and l > k + 1.
(5.34)

If l = k + 1, customer n is at position k + 1 within his batch and customer n + k + 1
is located on the first position of the succeeding batch. See Figure 5.6 to visualize this
situation in which the time interval between customer n and n + k + 1 is exactly one
interarrival time interval. We obtain

Φk,m(l) =

{
1 m = 1 and l = k + 1

0 else and l = k + 1.
(5.35)

If l < k+1, there is at least one interarrival time interval between the arrival of customer
n and n+ k + 1. If the succeeding batch has a size of at least k − l + 2, there is exactly
one interarrival time interval (see Figure 5.7). If l < k+ 1 and the size of the succeeding
batch is less than k− l+ 2, the interval between the arrival of customer n and n+ k+ 1
consists of more than one interarrival time interval.
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customer n 

on position l 

(here l=4)

customer n+k+1 

(here k=2)

interarrival time A

Figure 5.5.: Time interval between
the arrival of customer
n and n+k+1; l > k+1

customer n 

on position l 

(here l=3)customer n+k+1 

(here k=2)

interarrival time A

Figure 5.6.: Time interval between
the arrival of customer
n and n+k+1; l = k+1

customer n 

on position l 

(here l=2)

customer n+k+1 

(here k=3)

interarrival time A

Figure 5.7.: Time interval between the arrival of customer n and n+ k + 1; l < k + 1

Given l and k with l < k + 1, it yields

Φk,m(l) = 0 m = 0 and l < k + 1

Φk,m(l) =

ymax∑

j=k+1

yj−(l−1) m = 1 and l < k + 1

Φk,m(l) =

ymax∑
i=1

y
(m−1)⊗
k+1−i−(l−1)

ymax∑
j=i

yj m > 1 and l < k + 1.

(5.36)

Based on the results of Equations (5.34), (5.35) and (5.36), αnk,i(l) can be determined.
Since αnk,i(l) can be denoted independently of n, we write subsequently αk,i(l). The
distribution of the interval length [τn+k+1 − τn](l) can be calculated by

αk,i(l) =

{
Φk,0(l) i = 0∑∞

m=1 Φk,m(l) · am⊗i i > 0.
(5.37)

Hence, we can solve Equation (5.24) by

P{N(δn(l)) ≤ k} = P{[τn+k+1 − τn](l) ≥ W n(l) + Bn}
= P{[τn+k+1 − τn](l) ≥ V n(l)}

=
∞∑
i=0

vni (l)

[ ∞∑
j=i

αk,j(l)

]
.

(5.38)

The probability that an arriving customer sees exactly k customers in the queue depend-
ing on l is determined by

P{N(δn(l)) = k} = P{N(δn(l)) ≤ k} − P{N(δn(l)) < k}. (5.39)
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The law of total probability leads to

P{N(δn) = k} =

ymax∑

l=1

P{N(δn(l)) =)} · ol. (5.40)

Since we consider the system in the steady state, we can omit the index n in Equation
(5.38). This yields

P{N(δ(l)) ≤ k} =
∞∑
i=0

vi(l)

[ ∞∑
j=i

αk,j(l)

]
, (5.41)

and finally leads to the distribution of the number of customers at the arrival instant of
the G/G/1-queue with batch arrivals. The distribution of the number of customers at
the arrival instant is denoted by ηi, i = 0,1, . . .

In order to complete this section about the G/G/1-queue with batch arrivals, we present
subsequently numerical results of the experiments we conducted.

5.1.5. Analysis
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Figure 5.8.: Experiment 1: The influence of the batch size on performance measures of
the G/G/1-queue; left: Waiting process; right: Number of customers at the
arrival instant

Since the calculation of wi is exact within an ε-environment (see Grassmann and Jain
(1989)), the presented analytical approach is exact as well. In addition, the computing
times are very short.2 Therefore, it is possible to perform a large set of computations
within a short time.

Subsequently, we present some numerical examples in which we analyze the influence
of the input parameters on the output. At first, we investigate the influence of the
batch size on the waiting process of a G/G/1-queue. We start with a batch size of
one, the interarrival time distribution ai is (0.3,0.4,0.3), i = 1,2,3, and the service time
distribution is (0.5,0.4,0.1), i = 1,2,3. This results in an utilization of ρ = 0.8. We

2A few milliseconds on an Intel Centrino processor
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increase the batch size by one in each of the following experiments. The service time
distribution is kept constant and the interarrival time is changed in such a way that only
the batch size itself influences the waiting process. In the case that the batch size is two,
we have to multiply the indices of ai by two and obtain (0,0.3,0,0.4,0,0.3), i = 1, . . . ,6 as
the new interarrival time distribution. If the batch size is three, we take an interarrival
time distribution of (0,0,0.3,0,0,0.4,0,0,0.3),i = 1, . . . ,9. As you can see in the left graph
of Figure 5.8, the mean waiting time increases linearly with an increasing batch size.
Since the presented approach enables the calculation of the waiting time distribution, its
quantiles can be determined as well. In the left graph of Figure 5.8, σw,0.95 and σw,0.99

as quantiles of the waiting time distribution are shown as a function of the batch size.
It is observable that σw,95 and σw,99 are more affected by an increasing batch size than
E(W ).

Next, we study the influence of the batch size on the distribution of number of customers
at the arrival instant, ηi. We perform the same experiment as described above and
compute the mean number of customers at the arrival instant, E(N(τ)), and the 95%
and 99%-quantiles of ηi. The results are depicted in the right graph of Figure 5.8. In order
to choose the suitable buffer size in front of the G/G/1-server with a given probability,
the quantiles of ηi are required.

In experiment 2, the influence of an increasing utilization on E(w) and σv,0.95 is ana-
lyzed. We choose the quantiles of the sojourn time distribution, since this delivers the
probability of the on-time order fulfillment of the G/G/1-queueing system with batch
arrivals. For example, the 95%-quantile of vi, σv,0.95, means that 95% of the orders can
be fulfilled in less than or equal to σv,0.95 time units. The graphs of experiment 2 in Fig-
ure 5.9 illustrates that E(w) and σv,0.95 increase disproportionately with an increasing
utilization. The greater the scv of the batch size distribution, the greater E(W ) and
σv,0.95.

In experiment 3, we investigate the effect of increasing utilization on the number of
customers. The results are depicted in Figure 5.10 and are analogous to the results
of experiment 2. In addition, we analyzed the 99%-quantile of ηi depending on the
utilization (see the left graph of Figure 5.11) and thereafter we calculated the probability
that the queue is empty at arrival (see the right graph of Figure 5.11). The higher the
utilization, the lower is this probability. The higher the scv of the batch size distribution,
the lower the probability that the queue is empty at arrival.

Finally, in the experiments from 5 to 7 we study the dependence of E(W ), σv,0.95,
E(N(τ)) and ση,0.95 on the process stability, described by the scv of the batch size or in-
terarrival time distribution. Thus, the Figures from 5.12 to 5.14 show that E(W ), σv,0.95,
E(N(τ)) and ση,0.95 increase with an increasing unstable behavior of arrival processes.
Thereby, the 95%-quantiles are influenced greater than the mean values.

Therefore, focusing on mean values, the consequences of varying scv’s on the
on-time order fulfillment will be underestimated. This is a further argument using
discrete time queueing models for the analysis of material flow problems.

Furthermore, stable arrival and service processes characterized by low values of the scv
lead to a significant reduction in E(W ), σv,0.95, E(N(τ)) and ση,0.95. Thus, it would be
worthwhile for the management of material flow systems to make efforts to create stable
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Figure 5.9.: Experiment 2: left: Mean waiting time depending on the utilization; right:
95%-quantile of the sojourn time distribution depending on the utilization
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Figure 5.10.: Experiment 3: left: Mean number of customers in the queue at arrival
depending on the utilization; right: 95%-quantile of ηi depending on the
utilization
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Figure 5.11.: Experiment 4: left: 99%-quantile of ηi depending on the utilization; right:
The probability that the queue is empty at arrival
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Figure 5.12.: Experiment 5: left: Mean waiting time depending on c2
Y ; right: 95%-

quantile of the sojourn time distribution depending on c2
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Figure 5.13.: Experiment 6: left: Mean waiting time depending on c2
A; right: 95%-

quantile of the sojourn time distribution depending on c2
A

Mean number of customers at arrival

0

5

10

15

20

0,00 0,05 0,10 0,15 0,20 0,25 0,30

scv_Y

ti
m

e
 u

n
it

s

utilization = 0.85 utilization = 0.93

95%-quantile, number of customers at arrival

0

10

20

30

40

50

0,00 0,05 0,10 0,15 0,20 0,25 0,30

scv_Y

ti
m

e
 u

n
it

s

utilization = 0.85 utilization = 0.93
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processes. Examples of measures to create stable processes: Reduction of failure rates,
reduction of scrap, introduction of equal batch sizes and customer collaboration with the
objective to reduce demand fluctuations.

5.2. Batch Service Queues

A batch server is able to serve a specific number of customers simultaneously. The num-
ber of customers who can be served simultaneously is bounded by the server’s capacity
K. Batch service queues arise in a variety of settings in material flow systems due to the
need of demand consolidations. Some examples from the manufacturing environment are
furnace treatment in chemical washings, oven treatment in the semiconductor manufac-
turing, metallization steps, and painting operations. On the other hand, many trans-
portation processes involving trucks, buses, ships, trains, and airplanes occur in batches.
Conveying systems such as material handling devices, shuttles, automated guided vehi-
cles, elevators, and gondulas also transfer batches. Furthermore, we can model a traffic
light which controls the traffic flow at a crossing by a batch server queue. In this case,
the batch service is rendered in terms of the ability of a group of cars to pass the phase of
green light. Regardless of the various applications of batch server systems, the purpose
is always to make an effectively use of the available capacity.

There are different variations of batch service systems. We discuss the full batch policy
in Section 5.3, where always a batch of the maximal capacity K is collected and served.
Section 5.4 introduces the minimum batch size policy which is a server control strategy,
where a service process is initiated only if at least L customers are waiting in the queue.

5.3. Full Batch Policy

Firstly, we discuss the model for the full batch policy which can be decomposed into
known subsystems.

The Kendall notation for the full batch policy is G/G[K,K]/1. With this policy, a service
operation is only initiated when a batch of size K corresponding to the server’s capacity
is present in the queue. The G/G[K,K]/1-queueing system consists of two subsystems
connected in series. The first subsystem is a station collecting the arriving customers
up to a number K. The second subsystem is the batch server itself, where the batch
departing from the collecting station is processed. A G/G[K,K]/1-system consisting of its
two subsystems is illustrated in Figure 5.15.

We assume an arrival stream with interarrival time A, distributed by ai, i = 1,2, . . . with
either single arrival or batch arrival with batch size, Y distributed by yi, i = 1,2, . . ..
The service time B is distributed by bi, i = 1,2, . . .. Each distribution, ai, yi and bi, is
iid. The capacity of the batch server and subsequently the collecting size is K.

The G/G[K,K]/1-system can be investigated by the analysis of the two named subsystems.
The idea of separately analyzing these subsystems is known from the literature and can
be found by Bitran and Tirupati (1989), and Fowler et al. (2002). In their work, they
investigate batch processing in multi-product queues in the continuous time domain.
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batchsize Y

interarrival time A interdeparture time D

subsystem 1: collecting station

G|G      |1-queueing system
[K,K]

G|G      |1-queueing system
[K,K]

subsystem 2: server station

capacity K

batchsize of the

collected batch K

Figure 5.15.: G/G[K,K]/1-queueing system which consists of two subsystems: The col-
lecting station, where the batch is built and the batch server station, where
the batch is processed

However, they investigate only single arrivals at the collecting station and perform a
mean value analysis.

The discrete time analysis of the collecting process can be done by the presented batch
building model using the capacity rule (see Section 4.2). This approach delivers the
interdeparture time D, distributed by di, which corresponds to the interarrival time for
the service station. In addition, we can calculate the waiting time distribution of an
arbitrary customer at the collecting station. The batch server station can be modeled as
an ordinary G/G/1-queue in which a batch corresponds to an individual customer. We
suggest the approaches of Grassmann and Jain (1988), and Grassmann and Jain (1989)
for the determination of the waiting and interdeparture time distribution. Finally, the
waiting time W of an arbitrary customer in a G/G[K,K]/1-system can be computed by
the sum of the waiting time of an arbitrary customer at the collecting station and the
waiting time of the collected batch at the batch service station. The distribution of W
is determined by the convolution of both waiting time distributions.

The next section introduces a batch server system operating under the minimum batch
size rule.

5.4. Batch Service Control Strategy - Minimum Batch
Size Policy

A batch server operating under the minimum batch size rule works as follows. The
batch server has a maximum capacity of K customers. When the batch service ends and
there are less than L customers waiting, the server remains idle until L customers are
accumulated in the queue. If there are ≥ L and ≤ K customers waiting, the entire queue
is served and if there are > K customers accumulated, the queue length is reduced by K.
The minimum batch size L is an arbitrary constant between 1 and K. If L = 1, at least
one single customer is able to trigger a service operation. This special case is called the
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“greedy” policy (see Bolch et al. (1998)). The Kendall notation of the described system
is G/G[L,K]/1. In contrast to the G/G[K,K]/1-queue, we allow the arrival of single units.
The analysis of the G/G[L,K]/1-queue with batch arrivals is for future research. Note
that the G/G[K,K]/1-queue is a special case of the G/G[L,K]/1-queue if L = K.

In particular, the G/G[L,K]/1-queueing model can be applied for all the various trans-
portation of manufacturing processes named above (see Section 5.2). Generally, for all
the named batch service processes, it is not obligatory to operate only batches of a
maximum size K. In contrast, a minimum batch size can be chosen in a way such that
the optimal system configuration can be determined considering inventory and operation
costs under the constraint of an on-time order fulfillment.

G|G      |1-queuing station
[L,K]

waiting room

batches

interdeparture time D
interarrival time: A

Figure 5.16.: The G/G[L,K]/1-batch server system

Dümmler (1998) presents a model for the departure process of a discrete time M/G[L,K]/1-
system in which he assumes that the arrival process is a Markov process. In our work
we drop the Markovian property of the arrival process and take Dümmler’s approach as
foundation for deriving an approximate method for the G/G[L,K]/1-queue. In addition
to Dümmler, we calculate the idle and waiting time distribution.

As in the previous models, the interarrival time is denoted by A and the service time by
B. Both A and B are iid and described by the distributions ai and bi, i = 1,2, . . ..

In Section 5.4.1 we analyze the number of customers at the departure instant which
leads to the batch size and interdeparture time distribution presented in Section 5.4.2
and 5.4.3. Thereafter, Section 5.4.4 introduces an approach to compute the waiting time
distribution.

5.4.1. Distribution of the Number of Customers at the Departure
Instant

N(δn−1) denotes the number of customers in the queue immediately after the departure
of the (n − 1)th batch. The distribution of N(δn−1) is written as νn−1

x , x = 1, . . .. If
N(δn−1) ≤ K, the queue will be empty when the server starts operating again. If there
are more than K customers waiting at the departure instant, the customers waiting in
the queue are immediately reduced by K. Thus, the number of customers immediately
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after the nth service start is described by

Hn =

{
N(δn−1)−K, if N(δn−1) > K

0, if N(δn−1) ≤ K.
(5.42)

We introduce the operator πm (see Kleinrock (1975) and Dümmler (1998)) which sums
up all values of the distribution fx with x < m and adds their sum to πm. Thus, the
operator is defined as

πm(fx) =





0, if x < m∑m
j=−∞ fj, if x = m

fx, if x > m.

(5.43)

With ∆m(fx) we use an additional operator defined as

∆m(fx) = fm+x (5.44)

and is used to shift the elements of a distribution down bym units. Thus, the distribution
of Hn can be written as

$n
x = π0(∆K(νn−1

x )). (5.45)

Now, the time instant immediately after the start of the nth batch service, when Hn

customers are waiting in the queue, is considered. We denote with Zn, the number of
customers who arrive during the nth service period. If N(δn−1) < L, it follows that the
batch server was idle and waited until L customers had arrived. Since the last customer
arrived at the same time instant, when the nth service process started, the next customer
will arrive after A time units. Within the batch service time of m time units exactly x
customers arrive if the sum of x interarrival time intervals is less than or equal to m time
units and the (x+ 1)th customer arrives after at least m+ 1 time units elapsed since the
service start. We derive with

P (Zn = x|(Bn = m ∧N(δn−1) < L)) =
m−1∑
i=0

ax⊗m−i

amax∑
j=i+1

aj (5.46)

the probability that x customers arrive during the nth batch service process under the
condition that the service time lasts m time units and that N(δn−1) < L.

If N(δn−1) ≥ L, it follows that the server has not been idle before starting the nth
service. Thus, after the start of the nth service the next customer arrives in an interval of
shorter or equivalent length of an interarrival time interval. We approximate this residual
interarrival time interval by the residual lifetime of a renewal process. A customer who
arrives at the finish of the nth service process is included in N(δn−1). Therefore, we
consider arrival events immediately after discrete time instants for the calculation of the
residual lifetime distribution, denoted by ra,i. For deriving ra,i see Section 2.1.2. Under
the condition that the batch service time is m time units and N(δn−1) ≥ L, we obtain
the probability of x arriving customers during the nth service period by

P (Zn = x|(Bn = m ∧N(δn−1) ≥ L)) =
amax∑
s=1

m−s−1∑
i=0

ra,s · a(x−1)⊗
m−s−i

amax∑
j=i+1

aj. (5.47)
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Due to the independence of B and A, we obtain

P (Zn = x|N(δn−1) < L) =
bmax∑
m=x

P (Zn = x|(Bn = m ∧N(δn−1) < L)) · bm

P (Zn = x|N(δn−1) ≥ L) =
bmax∑
m=x

P (Zn = x|(Bn = m ∧N(δn−1) ≥ L)) · bm,
(5.48)

where we use Equations (5.46) and (5.47). Note that bm is independent of n.

Considering that the server becomes idle with the probability un−1 = P (N(δn−1) < L),
we get the probability that x customers arrive during the nth service period by

znx = P (Zn = x) = P (Zn = x|N(δn−1) < L) · un−1

+ P (Zn = x|N(δn−1) ≥ L) · (1− un−1).
(5.49)

From Equation (5.49) we can derive N(δn) which follows from the sum of Hn and Zn.
Therefore, we write

νnx = $n
x ⊗ znx . (5.50)

For the calculation of $n
x we use Equation (5.45). It yields

νnx = π0(∆K(νn−1
x ))⊗ znx . (5.51)

Thus, we get νnx in dependence on νn−1
x . Assuming that there are zero customers in the

queue at the analysis start, we can iterate starting with

ν0
x =

{
1, if x = 0

0, if x 6= 0.
(5.52)

From Equation (5.43) it follows that

$1
x =

{
1, if x = 0

0, if x 6= 0.
(5.53)

Using Equation (5.49) we compute z1
x and subsequently we get ν1

x by Equation (5.51).
We iterate over n until we obtain the distribution of the number of customers in the
queue at the departure instant:

νx = lim
n→∞

νnx . (5.54)

5.4.2. Batch Size Distribution of the Departing Batch

The distribution of the number of customers in a batch, denoted by yd,x, x = L, . . . ,K,
can be derived using νx, (see Dümmler (1998)). If there are less than L customers in
the queue at the end of a service process, the server will wait until L customers are
accumulated in the queue, resulting in a batch of size L. Whereas, a batch size of
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L < x < K is obtained if more than L and less than K customers are observed in the
queue. Finally, at least K customers in the queue at the end of a service process leads
to a batch size of K. We obtain

yd,x =





∑L
j=0 νj, if x = L

νx, if L < x < K∑∞
j=K νj, if x = K.

(5.55)

5.4.3. Interdeparture Time Distribution

The interdeparture time distribution is given by di, which describes the time between two
consecutive batch departures. If there are at least L customers waiting in the queue at
the end of a service process, the time to the next departure instant will be a service time
interval. However, if there are less than L customers in the queue, the time length to the
next departure instant is the sum of the idle time period and the service time. Therefore,
we derive firstly the distribution of the idle time, denoted by βi, i = 1, . . . ,βmax. It is
given by

βi =
1∑L−1

x=0 νx
·
[
ra,i · νL−1 +

L−1∑

l=1

i−1∑
j=1

al⊗j · ra,i−j · νL−(l+1)

]
, (5.56)

where νx, x = 0,...,L− 1 delivers the probability that there are L− x customers missing
at the end of a service process in order to trigger the succeeding service process. Thus,
the idle time can be calculated by the sum of one residual interarrival time period and
L − x − 1 full interarrival time periods (see Equation (5.56)). We have to divide the
expression in the brackets of Equation (5.56) by the probability that an idle time period
at the end of a service process arises. This probability is given by

∑L−1
x=0 νx.

Given the idle time distribution, we can compute the interdeparture time distribution
by

di = bi ·
ymax∑
x=L

νx +
i−1∑
j=1

βj · bi−j
L−1∑
x=0

νx. (5.57)

5.4.4. Waiting Time Distribution

Subsequently, we present an approximate approach to calculate the waiting time distri-
bution of an arbitrary customer, denoted by wi. As in the derivation of di we approximate
the residual interarrival time by the residual lifetime of a renewal process.

The number of customers at the end of a batch service operation, distributed by νx (see
Equation (5.54)) marks the initial situation for the subsequent analysis. First, we derive
the waiting time depending on the fact that N(δn) customers can be observed at the
end of the nth service process. We analyze the waiting time of the customers who arrive
within the time period elapsed from the service start to its end. The principle procedure
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for deriving wi is similar to the derivation of wi for the collecting process according to
the minimum batch size rule (see Section 4.5.3).

First, we consider the situation that N(δn) < L. If N(δn) < L, an idle time period follows
and the time period from the beginning of the succeeding (n + 1)th service process to
the next arrival is a complete interarrival time interval, distributed by ai. We number
the arrivals starting at the beginning of a service period with q = 0,1, . . . . The value of
l denotes the number of arrivals which are present in the queue at the end of a service
process. If l < L, the l customers in the queue have to wait for an additional time period
until the L − l still missing customers have arrived. If L ≤ l ≤ K, the waiting time for
these l customers ends with the completion of the service process. However, if l > K,
the qth arrival with q > K has to wait until the completion of further dq/Ke− 1 service
periods. The analytical expressions for the described cases are given in the following.

P (W q = i|N(δn) < L) denotes the probability that the waiting time of the qth arrival
after the start of the (n + 1)th service period is i time units under the condition that
there were N(δn) < L customers present at the end of the preceding service process.

If N(δn) < L, we get for l = 1, . . . ,L− 2

P (W l = k + j + i|N(δn) < L) = P (W l+1 = k|N(δn) < L) = P (WL = 0|N(δn) < L)

∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

al⊗m−i · ai+j
kmax∑

k=1

a
(L−(l+1))⊗
k

]

kmax = (L− (l − 1)) · amax
(5.58)

P (W q = k + j +m− s|N(δn) < L)

∼
bmax∑

m=bmin

bm

[
m−1∑
s=1

aq⊗s

m−s−1∑
i=0

amax−i∑
j=1

a
(l−q)⊗
m−i−s · ai+j

kmax∑

k=1

a
(L−(l+1))⊗
k

]

for q = 1, . . . ,l − 1

(5.59)

and

P (W q = k − h|N(δn) < L)

∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

al⊗m−i · ai+j
hmax∑

h=1

kmax∑

k=h+1

a
(q−(l+1))⊗
h a

(L−q)⊗
k−h

]

for q = l + 2, . . . ,L− 1, hmax = kmax − 1,

(5.60)

In Figure 5.17 the waiting times of the arriving customers are illustrated if N(δn) < L
and l < L− 1.

For l = L− 1, we obtain

P (W q = j +m− s|N(δn) < L) ∼
bmax∑

m=bmin

bm

[
m−1∑
s=1

aq⊗s

m−s−1∑
i=0

amax−i∑
j=1

a
(l−q)⊗
m−i−s · ai+j

]

for q = 1, . . . ,l − 1
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service time period: m time units

waiting time of the 2. arrival = m+j+k-s
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Figure 5.17.: G/G[L,K]/1-batch server operating under the minimum batch size rule; il-
lustration of the waiting times if N(δn) < L and l < L− 1

(5.61)

and

P (W l = j + i|N(δn) < L) = P (WL = 0|N(δn) < L)

∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

al⊗m−i · ai+j
]
.

(5.62)

For L ≤ l ≤ K, there is no idle time after the completion of the (n+1)th service process.
The (n+ 2)th service process starts immediately. Hence, we get

P (W q = m− s|N(δn) < L) ∼
bmax∑

m=bmin

bm

[
m−1∑
s=1

aq⊗s

m−s−1∑
i=0,i<amax

a
(l−q)⊗
m−i−s · ai+1

]

for q = 1, . . . ,l − 1

(5.63)

and

P (W l = i|N(δn) < L) ∼
bmax∑

m=bmin

bm

[
m−1∑

i=0,i<amax

al⊗m−i · ai+1

]
. (5.64)

If l > K, the qth arriving customer, with q > K, has to wait for at least dq/Ke − 1
complete service periods. It results in

P (W q = m− s|N(δn) < L) ∼
bmax∑

m=bmin

bm

[
m−1∑
s=1

aq⊗s

m−s−1∑
i=0,i<amax

a
(l−q)⊗
m−i−s · ai+1

]

for q = 1, . . . ,K,

(5.65)
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P (W q = m− s+ t|N(δn) < L)

∼
tmax∑
t=1

b
(dq/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
m−1∑
s=1

aq⊗s

m−s−1∑
i=0,i<amax

a
(l−q)⊗
m−i−s · ai+1

]

for q = K + 1, . . . ,l − 1 tmax = (dq/Ke − 1) · bmax

(5.66)

and

P (W l = i+ t|N(δn) < L) ∼
tmax∑
t=1

b
(dq/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
m−1∑

i=0,i<amax

al⊗m−i · ai+1

]
. (5.67)

Next, we discuss the waiting time if L ≤ N(δn) ≤ K. We have to distinguish between
the same cases again we did if N(δn) < L. However, the time period from the start of a
service process to the succeeding arrival instant is a residual of the interarrival time. We
approximate this residual time, as in Section 5.4.1, by the residual lifetime of a renewal
process. The residual lifetime is denoted by ra,i. Otherwise, the waiting time can be
derived analogically as before (see Equations from (5.58) to (5.67)).

For l = 1, we obtain

P (W l = k + j + i|L ≤ N(δn) ≤ K) = P (W l+1 = k|L ≤ N(δn) ≤ K)

= P (WL = 0|L ≤ N(δn) ≤ K) ∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

ra,m−i · ai+j
kmax∑

k=1

a
(L−(l+1))⊗
k

]

(5.68)

and

P (W q = k − h|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

ra,m−i · ai+j
hmax∑

h=1

kmax∑

k=h+1

a
(q−(l+1))⊗
h a

(L−q)⊗
k−h

]

for q = l + 2, . . . ,L− 1.

(5.69)

For l = 2, . . . ,L− 2, we get

P (W 1 = k + j + i− u|L ≤ N(δn) ≤ K) + P (W l = k + j + i|L ≤ N(δn) ≤ K)

=P (W l+1 = k|L ≤ N(δn) ≤ K) = P (WL = 0|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0

amax−i∑
j=1

a
(l−1)⊗
m−u−i · ai+j

kmax∑

k=1

a
(L−(l+1))⊗
k

]
,

(5.70)

P (W q = k + j +m− u− s|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0

amax−i∑
j=1

a
(l−q)⊗
m−i−u−s · ai+j

kmax∑

k=1

a
(L−(l+1))⊗
k

]

for q = 2, . . . ,l − 1
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(5.71)

and

P (W q = k − h|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0

amax−i∑
j=1

a
(l−1)⊗
m−u−iai+j

hmax∑

h=1

kmax∑

k=h+1

a
(q−(l+1))⊗
h a

(L−q)⊗
k−h

]

for q = l + 2, . . . ,L− 1.

.

(5.72)

In Figure 5.18 the waiting times for the case L ≤ N(δn) ≤ K and l = 2, . . . ,L − 2 are
depicted.

t

lth arrival

i j k

1. arrival

service time period: m time units

waiting time of the 2. arrival = m+j+k-s-u

waiting time of the lth arrival = i+j+k

residual interarrival

time interval

end of the nth

service process

s

idle time

end of the (n-1)th

service process

u

waiting time of the 1. arrival = m+j+k-u

Figure 5.18.: G/G[L,K]/1-batch server operating under the minimum batch size rule; il-
lustration of the waiting times if L ≤ N(δn) ≤ K and l = 2, . . . ,L− 2

Furthermore, for l = L− 1, we obtain

P (W 1 = m− u|L ≤ N(δn) ≤ K) = P (W l = j + i|L ≤ N(δn) ≤ K)

= P (WL = 0|L ≤ N(δn) ≤ K) ∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0

amax−i∑
j=1

a
(l−1)⊗
m−u−i · ai+j

]
,

(5.73)

and

P (W q = j +m− s|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0

amax−i∑
j=1

a
(l−q)⊗
m−i−s · ai+j

]

for q = 2, . . . ,l − 1,

(5.74)
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For L ≤ l ≤ K, it yields

P (W 1 = m− u|L ≤ N(δn) ≤ K) = P (W l = i|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
(5.75)

and

P (W q = m− s|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = 2, . . . ,l − 1.

(5.76)

If l > K, the qth arriving customer, with q > K, has to wait for additional dq/Ke − 1
complete service periods after the end of the (n+ 1)th service process. It results in

P (W 1 = m− u|L ≤ N(δn) ≤ K) ∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
,

(5.77)

P (W q = m− s− u|L ≤ N(δn) ≤ K)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = 2, . . . ,K,

(5.78)

P (W q = m− u− s+ t|L ≤ N(δn) ≤ K)

∼
tmax∑
t=1

b
(dq/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = K + 1, . . . ,l − 1

(5.79)

and

P (W l = i+ t|L ≤ N(δn) ≤ K)

∼
tmax∑
t=1

b
(dl/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
.

(5.80)

Subsequently, we consider the case that there are already z ≥ 1 customers waiting at
the start of the (n+ 1)th service process. It follows that N(δn) = K + z. The derivation
of the waiting time is analogous to the case L ≤ N(δn) ≤ K, except that there are z
arrivals less required to trigger the succeeding service process. If z ≥ K, all the arriving
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customers during the (n+1)th service have to wait for at least a complete service period.
The time period from the start of the (n+ 1)th service process to the first arrival instant
is a residual of the interarrival time, distributed by ra,i.

An idle time period occurring after the completion of the considered service process is
possible if l < L − z. This case is modeled by the Expressions from (5.81) to (5.87).
In the case of an idle time period, we have to differentiate between l < L − 1 − z and
l = L − 1 − z. If l < L − 1 − z, there is more than one customer missing at the end of
the (n+ 1)th service process and if l = L− 1− z, there is exactly one customer missing.

Thus, for l = 1 and l < L− 1− z, we obtain

P (W l = k + j + i|N(δn) = K + z) = P (W l+1 = k|N(δn) = K + z)

= P (WL−z = 0|l = K + z) ∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

ra,m−i · ai+j
kmax∑

k=1

a
(L−(l+1)−z)⊗
k

]

kmax = (L− (l + 1)− z) · amax
(5.81)

and

P (W q = k − h|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
m−1∑
i=0

amax−i∑
j=1

ra,m−i · ai+j
hmax∑

h=1

kmax∑

k=h+1

a
(q−(l+1))⊗
h a

(L−q−z)⊗
k−h

]

for q = l + 2, . . . ,L− z − 1.

(5.82)

Furthermore, for l = 2, . . . ,L− 2− z, it yields

P (W 1 = k + j + i− u|N(δn) = K + z) + P (W l = k + j + i|N(δn) = K + z)

= P (W l+1 = k|N(δn) = K + z) = P (WL−z = 0|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0

amax−i∑
j=1

a
(l−1)⊗
m−u−i · ai+j

kmax∑

k=1

a
(L−(l+1)−z)⊗
k

]
,

(5.83)

P (W q = k + j +m− u− s|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0

amax−i∑
j=1

a
(l−q)⊗
m−i−u−s · ai+j

kmax∑

k=1

a
(L−(l+1)−z)⊗
k

]

for q = 2, . . . ,l − z − 1

(5.84)

and

P (W q = k − h|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0

∑
j=1

a
(l−1)⊗
m−u−iai+j

hmax∑

h=1

kmax∑

k=h+1

a
(q−(l+1))⊗
h a

(L−q−z)⊗
k−h

]

for q = l + 2, . . . ,L− z − 1.

.
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(5.85)

In Figure 5.19 the waiting times for the case N(δn) = K + z and l = 2, . . . ,L− 2− z are
depicted.

t

lth arrival à z+l customers

in the queue

i j k

1. arrival à z+1 customers

in the queue

(L)th arrival

service time period: m time units

waiting time of the 2. arrival = m+j+k-s-u

waiting time of the lth arrival = i+j+k

waiting time of the (l+1)th arrival = k

residual interarrival

time interval

end of the nth

service process

s

idle time

end of the (n-1)th

service process

u

waiting time of the 1. arrival = m+j+k-u

Figure 5.19.: G/GK/1-batch server operating under the minimum batch size rule; illus-
tration of the waiting times if N(δn) = K + z and l = 2, . . . ,L− 2− z

If l = L−1−z, there are L−1 customers waiting in the queue at the end of the (n+1)th
service process. The service station will start to work when the next customer arrives.
The waiting times in this case can be determined by

P (W 1 = m− u|N(δn) = K + z) = P (W l = j + i|N(δn) = K + z)

= P (WL = 0|N(δn) = K + z) ∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0

amax−i∑
j=1

a
(l−1)⊗
m−u−i · ai+j

]
,

(5.86)

and

P (W q = j +m− s|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−s−u−1∑
i=0

amax−i∑
j=1

a
(l−q)⊗
m−i−s · ai+j

]

for q = 2, . . . ,l − 1.

(5.87)

However, if l ≥ L−z, it results in no idle time period after the completion of the (n+1)th
service process.

If L− z ≤ l ≤ K − z, all customers who arrive during the (n+ 1)th service period, can
be served by the succeeding service process. We derive

P (W 1 = m− u|N(δn) = K + z) = P (W l = i|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
(5.88)

100



5.4. Batch Service Control Strategy - Minimum Batch Size Policy

and

P (W q = m− s− u|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = 2, . . . ,l − 1.

(5.89)

For l > K − z and z < K, the customers who arrive at position q = 1, . . . ,K − z during
the (n + 1)th service operation can be served by the succeeding service process. These
customers who arrive at position q > K − z have to wait for further d(q + z)/Ke − 1
service processes. It yields

P (W 1 = m− u|N(δn) = K + z) ∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
,

(5.90)

P (W q = m− s− u|N(δn) = K + z)

∼
bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = 2, . . . ,K − z,

(5.91)

P (W q = m− s− u+ t|N(δn) = K + z)

∼
tmax∑
t=1

b
(d(q+z)/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
umax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = K − z + 1, . . . ,l − 1.

(5.92)

and

P (W l = i+ t|N(δn) = K + z)

∼
tmax∑
t=1

b
(d(l+z)/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
.

(5.93)

Finally, if z ≥ K, it follows that the first arriving customer has to wait for additional
bz/Kc complete service processes. Thus, we obtain

P (W 1 = m− u+ t|N(δn) = K + z)

∼
tmax∑
t=1

b
(b(z)/Kc)⊗
t

bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
,

(5.94)
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P (W q = m− s− u+ t|N(δn) = K + z)

∼
tmax∑
t=1

b
(d(q+z)/Ke−1)⊗
t

bmax∑

m=bmin

bm

[
amax∑
u=1

ra,u

m−u−1∑
s=1

a(q−1)⊗
s

m−u−s−1∑
i=0,i<amax

a
(l−q)⊗
m−u−i−s · ai+1

]

for q = 2, . . . ,l − 1

(5.95)

and

P (W l = i+ t|N(δn) = K + z)

∼
tmax∑
t=1

b
(d(l+z)/Ke−1)⊗
t

bmax∑

m=bmin

bm

[∑
u=1

ramaxa,u

m−u−1∑
i=0,i<amax

a
(l−1)⊗
m−u−i · ai+1

]
.

(5.96)

We derived by means of the Expressions from (5.58) to (5.96) proportional values for
P (W q = i|N(δn) < L), P (W q = i|L ≤ N(δn) ≤ K) and P (W q = i|N(δn) = K + z).
Let us denote these proportional expressions by P ∗(W q = i|N(δn) < L), P (∗W q =
i|L ≤ N(δn) ≤ K) and P ∗(W q = i|N(δn) = K + z). Thus, after normalization of these
expressions we obtain

P (W = i|N(δn) < L) =

∑max{ bmax
amin

,L}
q=1 P ∗(W q = i|N(δn) < L)

∑
i=0

∑max{ bmax
amin

,L}
q=1 P ∗(W q = i|N(δn) < L)

, (5.97)

P (W = i|L ≤ N(δn) ≤ K) =

∑max{ bmax
amin

,L}
q=1 P ∗(W q = i|L ≤ N(δn) ≤ K)

∑
i=0

∑max{ bmax
amin

,L}
q=1 P ∗(W q = i|L ≤ N(δn) ≤ K)

(5.98)

and

P (W = i|N(δn) = K + z) =

∑max{ bmax
amin

,L}
q=1 P ∗(W q = i|N(δn) = K + z)

∑
i=0

∑max{ bmax
amin

,L}
q=1 P ∗(W q = i|N(δn) = K + z)

. (5.99)

Finally, we calculate the waiting time distribution by

wi = P (W = i) = P (W = i|N(δn) < L) · P (N(δn) < L)

+ P (W = i|L ≤ N(δn) ≤ K) · P (L ≤ N(δn) ≤ K)

+
zmax∑
z=1

P (W = i|N(δn) = K + z) · P (N(δn) = K + z)

= P (W = i|N(δn) < L) ·
L−1∑
x=0

νx

+ P (W = i|L ≤ N(δn) ≤ K) ·
K∑
x=L

νx

+
zmax∑
z=1

P (W = i|N(δn) = K + z) · νK+z,

(5.100)

where νx is obtained by Equation (5.54).
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5.4.5. Analysis

Since we presented an approximate solution for the analysis of G/G[L,K]/1-queue, we have
to evaluate the quality of the introduced method. Therefore, we compare the analytical
results derived by the described analytical models to results obtained by simulation. For
all examples we calculate the values for νx, yd,x, di, and wi. The resulting distributions
of four different examples3 are depicted in Figure 5.20 and 5.21. We find the results very
promising since the deviations are small. Table 5.1 gives an overview of the obtained
numerical results. In this table the mean values, scv, 95% and 99%-quantiles are listed. In
addition, the deviations of the analytical results from the simulation results are presented.

Convinced of the accuracy of the analytical approach we analyze the influence of input
parameters on output figures analogous to the analysis we performed in Section 4.5.4.

First, we investigate the dependency of performance figures on the minimum batch size
L. Figure 5.22 shows the dependency of the waiting time on L for a numerical exam-
ple4. As expected, the waiting time increases disproportionately with increasing L. The
same result is observed for the 95%-quantile. In addition, Figure 5.23 illustrates the
mean batch size and the probability that the server becomes idle at the end of a service
operation depending on L. Again, both output figures increase disproportionately with
increasing L. To gain further insight into the system’s behavior of the G/G[L,K]/1-queue,
we show in Figure 5.24 the waiting time distribution for three different configurations of
L, namely, for L = 5, L = 10, and L = 15. Since the probability that the server becomes
idle at the end of a service operation increases disproportionately with increasing L, the
probability that the waiting time is zero increases too. When the server becomes idle it
always follows that exactly one customer of the batch has the waiting time zero. If the
number of customers at the departure instant is low, the waiting time for the customers
who already arrived could be long if L = 15. This fact is also observable in Figure 5.24.
It is required to note that the higher the utilization, the closer the system’s behavior of
the G/G[L,K]/1-queue with low values of L is to the system’s behavior of the G/G[L,K]/1-
queue with high values of L. If the utilization is close to one, the G/G[L,K]/1-queue serves
almost batches of size K, which is close to the system’s behavior of the G/G[K,K]/1-queue.

Studying the batch building mode under the minimum batch size rule in Section 4.5.4 we
detected a paradox of decreasing E(W ) with an increasing variability within a certain
range of c2

A and c2
Y . Now, we performed a set of numerical examples in which we increased

c2
A and investigated the influence on different performance figures. In contrast to the

batch building mode under the minimum batch size rule, the process behavior of the
G/G[L,K]/1-queue is as expected and shows no paradoxical behavior. In order to illustrate
the process behavior of the G/G[L,K]/1-queue depending on c2

A, we present subsequently a
numerical example. The input data of this example is given in Table ... in the Appendix.

Figure 5.25 shows the mean waiting time and the 95% and 99%-quantile of the waiting
time distribution depending on c2

A. These performance figures increase slightly dispro-
portionately with increasing c2

A. The behavior of the number of customer in the system
at the departure instant is analogous (see Figure 5.26). Finally, it is observable in Figure
5.27 that both the mean batch size of the served batch and the mean interdeparture time

3The input values of theses four examples are given in Table A.5 in the Appendix
4We choose the input values of example 4 given in Table A.5 in the Appendix
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Figure 5.20.: Examples 1 and 2: Analysis of the G/G[L,K]/1-queue; comparison of ana-
lytical results with simulation results
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Example 3: Customers at  Departure
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Figure 5.21.: Examples 3 and 4: Analysis of the G/G[L,K]/1-queue; comparison of ana-
lytical results with simulation results
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example 1 Nd D

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 4.661 22.589 0.040 5 5 14.191 205.176 0.019 17 17

sim 4.643 22.400 0.039 5 5 14.149 203.760 0.018 17 17

∆abs 0.018 0.189 0.001 0.043 1.416 0.001

∆rel 0.004 0.008 0.018 0.003 0.007 0.047

yd W

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 4.728 22.916 0.025 6 6 6.508 59.941 0.415 12 13

sim 4.717 22.787 0.024 6 6 6.577 61.389 0.419 12 14

∆abs 0.012 0.129 0.001 0.069 1.448 0.004

∆rel 0.002 0.006 0.029 0.011 0.024 0.010

example 2 Nd D

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 4,363 19,925 0,047 6 6 18,092 331,338 0,012 21 22

sim 4,331 19,632 0,047 6 6 18,008 327,745 0,011 21 21

∆abs 0,033 0,293 0,000 0,084 3,593 0,002

∆rel 0,007 0,015 0,003 0,005 0,011 0,130

yd W

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 4,522 20,923 0,023 6 6 8,105 92,978 0,415 15 16

sim 4,503 20,728 0,022 6 6 8,193 95,241 0,419 15 17

∆abs 0,020 0,195 0,001 0,088 2,263 0,003

∆rel 0,004 0,009 0,024 0,011 0,024 0,008

example 3 Nd D

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 4.936 25.970 0.066 7 7 19.066 377.372 0.038 24 26

sim 4.916 25.752 0.065 7 7 19.019 374.983 0.037 24 25

∆abs 0.020 0.218 0.001 0.047 2.389 0.001

∆rel 0.004 0.008 0.008 0.002 0.006 0.037

yd W

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 5.447 30.229 0.019 7 7 8.502 104.359 0.444 16 18

sim 5.436 30.089 0.018 7 7 8.489 104.643 0.452 16 18

∆abs 0.011 0.140 0.000 0.013 0.284 0.008

∆rel 0.002 0.005 0.025 0.001 0.003 0.019

example 4 Nd D

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 11.032 131.821 0.083 15 15 28.520 860.200 0.058 36 39

sim 11.083 132.394 0.078 16 16 28.513 859.626 0.057 36 39

∆abs 0.051 0.573 0.005 0.007 0.574 0.000

∆rel 0.005 0.004 0.064 0.000 0.001 0.003

yd W

E E2 scv σ0.9 σ0.95 E E2 scv σ0.9 σ0.95

analy 11.707 141.139 0.030 15 15 13.960 272.260 0.397 27 29

sim 11.762 141.776 0.025 15 15 14.002 273.353 0.394 26 29

∆abs 0.055 0.637 0.005 0.042 1.093 0.003

∆rel 0.005 0.005 0.171 0.003 0.004 0.007

Table 5.1.: Analysis of the G/G[L,K]/1-queue; comparison of analytical results with sim-
ulation results
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Figure 5.22.: Dependency of the waiting time on the minimum batch size L; left: Mean
waiting time; right: 95%-quantile of the waiting time distribution
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Figure 5.23.: Left: Mean batch size of the served batch depending on the minimum batch
size L; right: Probability that the server becomes idle at the end of a service
operation depending on the minimum batch size L
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Figure 5.24.: Waiting time distribution for different configurations of the minimum batch
size L (L=5, L=10, L=15)
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increase linearly depending on c2
A. Since the conservation of flows has to be guaranteed,

E(Yd) and E(D) are directly dependent on each other and the value of E(D)/E(Yd) has
to corresponds to the value of E(A).
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Figure 5.25.: Waiting time depending on the scv of the interarrival time distribution;
left: Mean waiting time; right: 95% and 99%-quantile
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Figure 5.26.: Number of customers in the queue at the departure instant depending on
the scv of the interarrival time distribution; left: Mean number of cus-
tomers; right: 95% and 99%-quantile

Application: Optimization of the G/G[L,K]/1-queue

In Section 4.5.4 we modeled a material handling device which transfers collected material
units from a collecting station to its destination. The material transfer is released if
at least L customers are collected. Now, we model an arbitrary batch server system
which operates under the minimum batch size rule. This can be a service process in a
distribution center, a batch production process, or a transportation process etc.

As in Section 4.5.4 we can evaluate the system’s costs depending on L. Then, the optimal
L can be determined.
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Figure 5.27.: Left: Probability that the server becomes idle at the end of a service op-
eration depending on the scv of the interarrival time distribution; right:
Mean interdeparture time depending on the scv of the interarrival time
distribution

Two type of costs are observed, the operation costs and the inventory costs. The oper-
ation costs arise for each service operation and are represented by cO. We consider all
customers in the G/G[L,K]/1-system as inventory. For each time period T we observed
costs of cIn per customer.

Systems Costs: G/G^[L,K]/1-queueing system
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Figure 5.28.: Optimal minimum batch size L regarding given systems costs

The expected number of service operations within T is denoted by E(NO) and is given
by

E(NO) =
T

E(D)
. (5.101)

Using Little’s Law we obtain the mean number of customers in system, E(NIn), as
follows:

E(NIn) =
E(W )

E(A)
+ ρ · E(Yd), (5.102)
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where E(W )/E(A) is the mean number of customers in the queue and ρ · E(Yd) is the
mean number of customers in the service station. Finally, we get the system’s total costs
by

Ctot = cO · E(NO) + cIn · E(NIn). (5.103)

Subsequently, we present a small numerical example to illustrate the optimization prob-
lem. The input values for this example are given in Table A.7 in the Appendix. Figure
5.28 shows the total system’s costs, in which the optimal minimum batch size is six.

5.5. Stochastic Split of Batches

In contrast to the analysis of the batch building operation introduced in Chapter 4, we
present in this section the batch split operation which branches a batch arrival stream
in several directions. The stochastic split operation with arrival of single customers is
already described by Furmans (2004b). The model presented in this section extents the
stochastic split for batch arrivals.

The split operation is modeled by a node in a network which has one input stream from
node h and several output streams. The input stream is described by the interarrival
time distribution ai, i = 1, . . . ,amax and the batch size distribution yi, i = 1, . . . ,ymax.
We assume that the split operation is stochastic. Modeling batch arrival streams, two
different cases can be distinguished. In the first case, the entire batch is assigned to
direction j with probability phj, and in the second case, one customer of the arriving
batch is assigned to direction j with probability phj. The event that the batch/customer
n is assigned to direction j is independent of the assignment of the batch/customer
n− 1. Subsequently, the split of entire batches is presented in Section 5.5.1 and the split
of individual customers of a batch in Section 5.5.2.

5.5.1. Split of Entire Batches

Considering the split operation of entire batches, the method for analyzing the split
operation of a single arrival stream can be taken without modifications briefly discussed
in the following.

h

hj
p

j

interarrival time: A
interdeparture time: D

batch size: Y

…

Figure 5.29.: Stochastic split of entire batches arriving at the split node

In order to mark the flow from node h to j, we denote the interarrival stream from node
h to j by ah→ji , i = 1, . . . ,amax. It is assumed that the nth batch is directed to stream j.
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The probability that the succeeding batch is assigned to the same stream j is phj. This
event generates an interarrival time of A at node j, distributed by ai. Furthermore, the
probability that the (n + 1)th batch is not assigned to node j however the subsequent
(n+2)th batch, is (1−phj)·phj. Thus, the generated interarrival time at node j is the sum
of two interarrival time intervals. The distribution of this interval is given by the 2-fold
convolution of ai. Accordingly, the interarrival time distribution of ah→ji is calculated by
an iterative convolution of ai, weighted with the probability of it’s occurrence. Thus, it
yields

ah→ji =
∞∑
x=0

(1− phj)x · phj · a(x+1)⊗
i . (5.104)

The batch size distribution of stream j is the same as of the given batch size distribution
of stream h since the batch size is not affected through the split operation.

5.5.2. Split of a Stream of Individual Customers

If one individual customer of the arriving batch is assigned to node j with probability
phj, the batch size is changed due to the split operation. The stochastic split of a stream
of individual customers is depicted in Figure 5.30.

h

hj
p

j

interarrival time: A

interdeparture time: D

batch size: Y

Figure 5.30.: Stochastic split of a stream of individual customers: The individual cus-
tomers of a batch are assigned to one of the possible directions j

Let us analyze the (n + 1)th batch arrival at the split node. If x customers arrive
simultaneously at the split node, z = 0, . . . ,x customers are directed further to node j.
If at least one customer from the (n + 1)th batch is directed to node j, an interarrival
time of A, distributed by ai, at node j is generated. The probability that no customer
from a set of x customers is chosen is denoted by q(x) and is given by

q(x) = (1− phj)x x = 1, . . . ,ymax. (5.105)

Since the batch size is a random variable, the probability that no customer is directed
to node j is calculated by the summation of q(x) weighted by yx:

q =

ymax∑
x=1

yx · q(x). (5.106)
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The interarrival time ah→ji at node j is a multiple of ai. For example, if no customer
of batch n + 1 is transferred to direction j, but at least one customer of batch n + 2,
ah→ji results from the 2-fold convolution of ai. For the general case, the interarrival time
distribution can be developed by

ah→ji =
∞∑

l=0

ql · (1− q) · a(l+1)⊗
i . (5.107)

The batch size distribution yh→jz (z = 1,...,ymax) for the arrival stream at node j is
derived using the Bernoulli distribution. It has to be considered that the batch size after
the split operation can vary between 1 and x. The probability that z from x customers
are chosen has to be weighted by the event that a batch of size x arrives at the split
node. Therefore, the probability that exactly z from x arriving customers are chosen for
the transfer to node j is obtained by

yh→jz =
x∑
z=1

yx
(
x
z

)
pzhj(1− pij)x−z

1− (1− phj)x . (5.108)

Since the summation index in Equation (5.107) goes to infinity, we have to truncate the
summation after an appropriate number of steps. Therefore, the stochastic split is exact
within an ε-environment.

For example the sorting operation in warehouses and distribution centers can be modeled
by the stochastic split of batches. Picked articles arrive in batches at the sorting area,
where they are assigned to a customer order. The quality control can be modeled by the
stochastic split of batches as well. Depending on the quality of the arriving “customer”
(item), he (it) can be assigned to a succeeding node. For example, defect items are sorted
out with probability ph,j and non defect items are transferred further into the storage
area with probability 1− ph,j.
Finally, we have to note that the approach of Furmans (2004a) for the merge of single
arrival streams can be taken to model the merge of batch arrival streams as well. The
interdeparture time distribution at the merge node can be approximated by the method
of Furmans, in which he assumes that the merged flow is a renewal process. Under
this assumption, the batch size distribution of the merged stream is determined by the
combination of the batch size distributions of the arrival streams each weighted by the
batch arrival rate. Given two arrival streams, indicated by h and j, the batch size
distribution of the merged stream, indicated by merge, can be calculated as follows:

ymergei =
λhbatch · yhi + λjbatch · yji

λhbatch + λjbatch
i = 1, . . .max{yhmax,yjmax}. (5.109)

5.6. Chapter Conclusion

In the current chapter we introduced analytical models for the G/G/1-queue with batch
arrivals, the G/G[K,K]/1-queue, the G/G[L,K]/1-queue and the batch split operation.
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• G/G/1-queue with batch arrivals: We presented methods to compute the waiting
time distribution and the distribution of the number of customers in the system
at the arrival instant. The sojourn time distribution was derived from the waiting
time distribution, which gives the probability that an order is fulfilled in a given
time period.

• G/G[K,K]/1-queue: This queueing system can be decomposed into two subsystems,
namely a collecting station running under the capacity rule and a G/G/1-queueing
system. Thus, analytical descriptions of these two subsystems can be applied to
analyze the G/G[K,K]/1-queue.

• G/G[L,K]/1-queue: With this queueing system we introduced a server system in
which a service operation is initiated if at least L customers are present in the
queue. Several distributions to describe performance figures were derived, such
as the number of customers in the queue at the departure instant, batch size,
interdeparture time, idle time, and waiting time. In contrast to the other methods
in this work, we developed an approximate model for the G/G[L,K]/1-queue.

• In order to model sorting processes in material flows systems the batch split oper-
ation was presented. We modeled both the split of entire batches and the split of
individual customers within a batch.

For both the G/G/1-queue with batch arrivals and the G/G[L,K]/1-queue we presented a
set of numerical examples in which the dependence of the system behavior on the input
parameters became apparent.
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6. Analysis of Batch Processes in
Queueing Networks

Equipped with his five senses, man explores the universe around him and
calls the adventure Science.

Edwin Powell Hubble

Equipped with his five senses, man explores the universe around him and calls the ad-
venture Science.

G/G/1-queue with batch arrivals

(Section 5.1)

Batch building: Capacity rule

(Section 4.2)

Batch building : Minimum batch size rule

(Section 4.5)

timeout

+  minimum batch size L

collecting time  t_out

….
Stochastic split of batches

(Section 5.5)

collecting size k

Batch building: Capacity rule

(Section 4.1)

capacity K

G|G      |1-queue

(Section 5.3)

[K,K]
G|G      |1-queue

(Section 5.

[K,K] G|G      |1-queue 

(Section 5.4)

[L,K]

capacity K

minimum batch size L

Figure 6.1.: Discrete time models for the analysis of batch processes
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In the previous chapters we introduced different models for the analysis of batch pro-
cesses. Figure 6.1 gives an over all overview of the different models presented. For each
analytical problem we determined the interdeparture time distribution which enables
us to investigate open queueing networks where batch processes are involved. Thus, a
network can be composed from a given library of stochastic model elements. Thereafter,
the network can be analyzed under various parameter configurations.

In modeling queueing networks, it is assumed that the network nodes are stochastically
independent, which is a common assumption in queueing theory (see Whitt (1983) and
Buzacott and Shanthikumar (1993)). It is to note that the departure stream of a queueing
system is generally a correlated stochastic stream. Livny et al. (1993) investigates this
effect using simulation.

In Section 6.1 we present a software solution which is well suited to model and analyze
material flow networks. It is easy to handle and can be applied to practical problems.
In Section 6.2 a numerical case analyzing the material flow in a warehouse is presented.
The analytical results are compared to results obtained by simulation.

6.1. Software Tool

Figure 6.2.: Software solution for a numerical analysis of batch processes: Screenshot of
the user interface
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Unfortunately, the application of queueing models in industry is not quite widespread
even though the basic stochastic phenomenons are easily understandable and traceable.

With the aim to simplify the usage of discrete time stochastic models, we developed a
software tool. The user has access to a variety of algorithms via the user interface shown
in Figure 6.2. This tool allows easy modeling, parameterizing and analyzing of material
flow systems. Both one-piece flows and batch flows can be modeled. All stochastic model
elements are clearly arranged in an object library, separated by elements for one-piece
flows and batch flows. Arbitrary networks can be modeled via “drag and drop”. Only
those network elements can be connected whose departure stream is compatible to the
arrival stream of the succeeding element. For example, if the departure process is a batch
flow, the arrival process of the succeeding element has to be a batch flow as well.

Network parameters such as arrival and service time distributions, collecting sizes, time-
out etc. can be easily entered via provided windows. Distributions can be imported from
Microsoft Excel-sheets. Thus, data obtained by an as-is analysis of a material flow sys-
tem, generally available in the form of histograms, can be used directly. After a network
is modeled and parameterized, it can be saved as a XML-file and uploaded for later use.
The calculation results are illustrated using diagrams. In addition, all results can be
exported as a Microsoft Excel-file for further analysis.

The presented software is developed in the Java programming language. The user inter-
face is developed using SWT 1 due to performance reasons. We paid great attention to
an easy extensibility during the development of the software solution. This is realized by
a plug-in based software architecture. Thus, new algorithms can be connected to the API
without any difficulty and they are immediately applicable after copying the algorithm’s
source code in the therefore directory.

In the next section we present a numerical case in which we used the introduced Software-
Tool.

6.2. Numerical Case: Material Flow Network in a
Warehouse

Using the earlier presented stochastic model elements, the sojourn time distribution of
each element and therefore the sojourn time distribution for a customer in the network
can be computed. Thus, we model an order flow in a warehouse by means of the intro-
duced stochastic model elements. Let us recall that the order flow in warehouses and
distribution centers should be designed in such a way that it guarantees the order ful-
fillment in a predetermined time with a chosen probability (e.g. 95%). In the numerical
case, we compare the analytical results with results obtained by simulation. Figure 6.3
shows the order flow in our case. It is a rough process description which is often sufficient
in an early planning stage. Likewise, the data available at this point is rough as well. For

1SWT is an open source widget toolkit for Java designed to provide efficient, portable access to the user-
interface facilities of the operating systems on which it is implemented. The SWT implementation
accesses the native GUI libraries of the operating system using JNI (Java Native Interface) in a
manner that is similar to those programs written using operating system-specific APIs.
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Figure 6.3.: Example of an order flow in a warehouse

these reasons, an analytical tool, like the one we present here, is a practical supplement
to simulation. We identify processes like receiving incoming orders, differentiated by
ordinary and large goods, collecting of orders, sorting, picking, control and packaging,
and outgoing orders. Given the arrival stream of the incoming orders, service times of
the underlying processes and batch sizes for the collecting processes, the sojourn time
of orders in the system can be determined. Our approach enables the calculation of the
probability of the on-time order fulfillment given sojourn time targets.

GG1 with 

batch arrivals

GG1

Source

Drain

Batch

Split

Merge

Source

Batch building:

Capacity rule

GG1 with 

batch arrivals

Batch building:

Capacity rule

GG1 with 

batch arrivals

GG1

Drain

Batch building:

Capacity rule

Batch building:

Timeout rule

GG1

Figure 6.4.: Network of discrete time queueing elements for an order flow in a warehouse
shown in Figure 6.3

The order flow of Figure 6.3 can be transferred to a queueing network using model
elements presented previously. As such, we use the elements “batch building: capacity
rule”, “stochastic split of batches”, “G/G/1-queue with batch arrivals”, “G/G/1-queue”,
“stochastic merge” and “batch building: timeout rule”. The resulting network is illus-
trated in Figure 6.4. We identify three different order flows through the network, the
first from “Incoming orders 1” to “Outgoing orders 1”,the second from “Incoming orders
1” to “Outgoing orders 2”, and the third from “Incoming orders 2” to “Outgoing orders
2”. We number them “order flow 1”, “order flow 2” and “order flow 3” accordingly.
The input parameters for the network nodes are given in Table A.6 in the Appendix.
The throughput of the three flows can be calculated by Equation (4.4) and it yields
λ1 = 0.427, λ2 = 0.284 and λ3 = 0.405 orders per time unit.

Since the departure stream of a queueing system is generally a correlated stochastic
stream, we expect that there is a deviation between the analytical results and the results
obtained by simulation.
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Figure 6.5.: The sojourn time distribution of the three order flows; analytical results
versus simulation

In order to test the accuracy of our analytical case we use discrete event simulation. We
computed the sojourn time distributions for all three flows. The results are illustrated
in Figure 6.5. Due to correlation effects there is a deviation between the analytical and
simulation results. This deviation increases if the network becomes larger and more
complex. However, we find the results very promising and well suited for the analysis
of material and information flows. In Table 6.1 the mean sojourn time of orders in
the network, E(v), the scv of the sojourn time distribution, c2

v, and the 90%, 95% and
99%-quantile of the sojourn time distribution are given. Furthermore, its deviation from
simulation results are illustrated.

order flow 1 order flow 2 order flow 3
analy sim %-error analy sim %-error analy sim %-error

mean 42.05 41.46 1.42 25.86 25.95 0.32 32.20 31.89 0.98
scv 0.17 0.16 6.47 0.13 0.13 1.94 0.12 0.11 7.07

90-quantile 66 64 3.03 24 24 0.00 35 34 2.13
95-quantile 72 70 2.78 27 27 0.00 39 37 1.96
99-quantile 86 81 5.81 33 33 0.00 47 44 5.08

Table 6.1.: Numerical case results; percentage error in the sojourn time; analytical ap-
proach versus simulation

Since the computing times for the analytical methods are low 2, it enables a “what-if”
analysis for material flow systems which is necessary in the decision process at an early

2Varying milliseconds to seconds depending on the vector size of the input parameters.
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planning stage. This is an enormous advantage compared to simulation which is a very
time consuming approach.
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Figure 6.6.: The effect of reducing batch sizes on the mean sojourn time of an arbitrary
order

Let us illustrate the possibility of a “what-if” analysis by a small example. We change
the batch size resulting from “Collecting of orders 1” and “Collecting of orders 2” and
calculate the resulting sojourn time distribution. We compared the performance of the
different batch size configurations by means of the mean sojourn time of an arbitrary
order. Given the batch size configuration of Table A.6, we reduced stepwise the batch
size by one until the initial batch sizes were halved. The results are shown in Figure 6.6.
It is obvious that the sojourn time decreases with decreasing batch sizes and by Little’s
law equally the work in progress. In contrast, small batch sizes lead to less efficiency, that
means less use of the available capacity. This causes an increase in transports, setups
and service operations. Subsequently, with given system’s costs, an optimization model
can be set up.

A frame of such an optimization model looks as follows:

min Total cost (storage, capacity, operation etc.)

subject to:
X%-quantile of the sojourn time ≤ Max sojourn time for all order types

Throughput = Required Throughput for all order types

However, the introduction of detailed optimization models for material flow systems
where batch processes are involved have to be left open for future research.

For a more detailed description of modeling material handling systems using stochastic
model elements in discrete time see Schleyer and Furmans (2006b).
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6.3. Chapter Conclusion

In this chapter we exemplified how the stochastic models we have introduced in the
current work can be used to analyze material flow networks. In this context we presented
a software tool. We made efforts to develop an user-friendly solution which allows easy
modeling, parameterizing and analyzing of material flow systems.

Using a numerical case we showed how an order flow in a warehouse is modeled and
analyzed. We determined the sojourn time distribution for three given order flows. In
addition, we tested the accuracy of the introduced analytical approach against simulation.
The low deviation between analytical and simulation are very promising. Furthermore,
we explained the possibility of “what-if” analysis using a small example. At the end of
this chapter, a frame of an optimization model was sketched out.

121



6. Analysis of Batch Processes in Queueing Networks

122



7. Conclusion and Outlook

He who enjoys doing and enjoys what he has done is happy.

Johann Wolfgang von Goethe

Planning the material flow is a crucial task for many companies. Decisions about the
appropriate capacities, buffer places, material flow layout, transport carrier etc. influence
strongly the success of companies. Since material flow systems are exposed to stochastic
events as demand changes, machine failures, scrap, varying processing times etc., suit-
able models are required for a system’s analysis in order to make best decisions. In
addition, the understanding of the system’s behavior and of the dependencies between
input parameters and output allows an appropriate reaction on system’s changes. The
purpose of the current work was to give such insights into the behavior of various batch
processes occurring in material flow systems. Thus, a comprehensive toolkit of discrete
time queueing models for different batch flow problems was provided. Now, it remains
for the user to apply the appropriate tool for a given problem.

Furthermore, we focused on the determination of the probability of an on-time order
fulfillment given time targets, since this is of vital importance for the design of material
flow systems. We calculated the waiting and sojourn time distribution for each pre-
sented stochastic model using discrete time analysis. Quantiles such as σv,0.95 and σv,0.99,
and thereby the probability of an on-time order fulfillment, can be estimated. Various
numerical examples showed that σv,0.95 and σv,0.99 react more sensitively on parameter
changes than E(V ). We concluded that an evaluation on the basis of distributions has
essential advantages compared to the classical mean value analysis using 2-parameter
approximations of general processes.

The presentation of analytical models was structured in two parts. First, the analysis of
batch building modes and second, the analysis of server systems.

We provided a detailed time analysis of three different batch building modes: The capac-
ity rule, timeout rule, and minimum batch size rule. All proposed approaches are exact.
Recapitulating, we summarize the following insights gained through the analysis:

• There are equivalences between the capacity and timeout rule. Knowing this equiv-
alences both batch building modes can be investigated by means of just one ap-
proach.

• We showed that the residual interarrival time distribution (timeout rule) respec-
tively the remaining distribution (capacity rule) corresponds to the residual lifetime
distribution of a renewal process.
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• Applying the capacity rule, the influence of c2
Y on the stability of the departure

process is greater than the influence of c2
A. If the timeout rule is applied this

conclusion is inverse.

• Applying the capacity rule, E(W ) is independent of c2
A and c2

Y . However, quantiles
such as σw,0.95 and σw,0.99 increase with increasing c2

A and c2
Y . From this it follows

that low values of c2
A and c2

Y improve the probability of an on-time order fulfillment.

• Applying the timeout rule, E(W ) is independent of the arrival process. E(W )
depends just on the timeout tout.

• Applying the minimum batch size rule, we explained the paradox of decreasing
E(W ) with increasing c2

A and c2
Y within a certain range of c2

A and c2
Y . We exempli-

fied the condition for the occurrence of this paradox.

• Applying the minimum batch size rule, we showed the influence of the minimum
batch size L on output figures. Furthermore, a collecting process running according
the minimum batch size rule can be optimized by the appropriate choice of L.

In addition to the analysis of batch building processes, we investigated queueing systems
such as the G/G/1-queue with batch arrivals, the G/G[K,K]/1-queue, and the G/G[L,K]/1-
queue. Recapitulating, we summarize the following insights gained through the analysis:

• In addition to the waiting and departure process, the system’s state of the G/G/1-
queue with batch arrivals at the arrival instant was studied. The distribution of the
number of customers at the arrival instant can be used for a buffer dimensioning
in material flows.

• The analysis of G/G/1-queue with batch arrivals illustrated that σw,0.95, σv,0.95 and
ση,0.95 react more sensitively on parameter changes than E(W ), E(V ) and E(N(τ)).

• The G/G[K,K]/1-queue can be decomposed into two subsystems, namely a collect-
ing station running under the capacity rule and a G/G/1-queueing system. The
G/G[K,K]/1-queue can be evaluated by the analysis of these two subsystems.

• Approximating the residual interarrival time by the residual lifetime of a renewal
process results in a well-fitting system description of the G/G[L,K]/1-queue.

• In addition to the waiting and departure process, the system’s state of the
G/G[L,K]/1-queue at the departure instant was studied.

• Analyzing the G/G[L,K]/1-queue, we showed the influence of the minimum batch
size L on output figures. The G/G[L,K]/1-queue can be optimized by the appropri-
ate choice of L.

We showed how the presented discrete time models can be applied for a network analysis.
A software solution for modeling and analyzing material flow networks was presented.

Finally, let us name some limitations of our approach and give an outlook on further
research.
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We explained that our models are well-suited to support the long range planning in
an early planning stage, in which capacities are searched to minimize the facility costs
given cycle time targets. Since queueing models are generally rough descriptions of the
underlying reality, the application on a detailed planning level is limited. Then simulation
or other methods from the operations research are more appropriate.

By means of a numerical case we showed how an order flow in a warehouse can be modeled
and analyzed. Due to correlation effects there is a deviation between the analytical
and simulation results. The deviation in this numerical example was small, however it
increases if the network becomes larger and more complex. Therefore the application of
discrete time queueing models to very large and complex networks is limited.

Using the batch building mode under the minimum batch size rule or the G/G[L,K]/1-
queue, the calculation of wi performs rapidly for problems of reasonable size. If the
vectors describing the arrival and the service process become large, the computing time
increases significantly. It seems to be within reach to overcome this limitation by a more
rough analysis. Thus, approximations for wi are searched, which perform faster than the
existing approaches and are nevertheless adequately accurate.

The current work focuses on the analysis of material flow systems. We mentioned that
the approach can be used to support best decisions regarding the design of material flow
systems. Future work could address setting up and solving optimizations problems using
discrete time models.

The purpose of the work was to find new analytical approaches in the discrete time
domain not known so far for the description of material flow processes. It is important
to mention that there are still many problems left which can be addressed by further
research; for example, the analysis of further batch building modes. As such, we studied
not the timeout rule if a maximum capacity is given, and not the capacity rule if the
collecting time is bounded by a maximum time. The presented approach of the minimum
batch size rule can be taken as foundation for the analysis of further batch building
modes. Further research can also be done in the field of discrete time priority queueing,
discrete time inventory models (see Zillus (2003)), study of sorting strategies in material
flows etc.. Furthermore, there is a need to develop application models using basic discrete
time queueing methods. As such, the proposed batch queueing models can be used for an
extension of the lot size decision model of Greiling (1997) considering cycle time targets.
Furthermore, discrete time methods can be involved in the planning of hub and spoke
networks (see Blunck (2003)). Finally, the proposed batch building models can be used
after some modifications to analyze demand fluctuations in supply chains caused by lot
size decisions.
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A. Appendix: Input Data

A.1. Input Data

i 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0.000 0.0 0.0 0.00 0.0 0.0 0.000 0.0 0.000 0.00 0.0 0.0 0.0

1 0.000 0.0 0.0 0.00 0.0 0.1 0.125 0.2 0.200 0.30 0.3 0.4 0.5

2 0.000 0.0 0.1 0.15 0.2 0.1 0.150 0.1 0.175 0.10 0.2 0.1 0.0

3 0.025 0.3 0.2 0.20 0.2 0.2 0.150 0.1 0.100 0.05 0.0 0.0 0.0

4 0.950 0.4 0.4 0.30 0.2 0.2 0.150 0.2 0.050 0.10 0.0 0.0 0.0

5 0.025 0.3 0.2 0.20 0.2 0.2 0.150 0.1 0.100 0.05 0.0 0.0 0.0

6 0.1 0.15 0.2 0.1 0.150 0.1 0.175 0.10 0.2 0.1 0.0

7 0.1 0.125 0.2 0.200 0.30 0.3 0.4 0.5

mean 4 4 4 4 4 4 4 4 4 4 4 4 4

scv 0.003 0.038 0.075 0.100 0.125 0.188 0.234 0.288 0.325 0.394 0.438 0.500 0.563

Table A.1.: Time discrete symmetric distributions for A and Y with different scv’s. These
distributions are used to demonstrate the influence of c2

A and c2
Y on the 95%

and 99%-quantile of the waiting time distribution. The batch size k was 15
in this set of experiments; the results are shown in Figure 4.13

example 1 example 2 example 3 example 4 example 5 example 6 example 7 example 8

i yi yi yi yi yi yi yi yi

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.300 0.400 0.000 0.200 0.100 0.200 0.100 0.100

2 0.400 0.300 0.300 0.200 0.150 0.000 0.250 0.100

3 0.300 0.200 0.400 0.200 0.175 0.300 0.150 0.100

4 0.100 0.300 0.200 0.250 0.150 0.100 0.200

5 0.200 0.150 0.100 0.000 0.100

6 0.100 0.050 0.000 0.150

7 0.073 0.000 0.050 0.100

8 0.003 0.100 0.200 0.100

9 0.050 0.100 0.050

10 0.050 0.050

mean 2.000 2.000 3.000 3.000 4.250 3.803 4.800 4.750

scv 0.150 0.250 0.067 0.222 0.387 0.199 0.406 0.234

Table A.2.: Examples for the calculation of the variability of the departure process (de-
scribed by c2

D or c2
Yd

) depending on k; the results are shown in Figure 4.14
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ai yi tout

i

0 0.0 0.0 10

1 0.2 0.6

2 0.4 0.3

3 0.2 0.1

4 0.2

mean 2.400 1.500

scv 0.181 0.200

Table A.3.: Input data in order to study the influence of the minimum batch size on the
interdeparture time D, the collected batch size Yd, and the waiting time W
applying the batch building mode under the minimum batch size rule; the
results are illustrated in Figures from 4.18 to 4.21

i 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0.000 0.000 0.0 0.0 0.0 0.000 0.00 0.000 0.00 0.00 0.00 0.00 0.00

1 0.000 0.000 0.0 0.0 0.0 0.100 0.15 0.200 0.25 0.30 0.35 0.45 0.50

2 0.025 0.125 0.2 0.3 0.4 0.175 0.20 0.175 0.15 0.15 0.15 0.05 0.00

3 0.950 0.750 0.6 0.4 0.2 0.450 0.30 0.250 0.20 0.10 0.00 0.00 0.00

4 0.025 0.125 0.2 0.3 0.4 0.175 0.20 0.175 0.15 0.15 0.15 0.05 0.00

5 0.100 0.15 0.200 0.25 0.30 0.35 0.45 0.50

mean 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

scv 0.006 0.028 0.044 0.067 0.089 0.128 0.178 0.217 0.256 0.300 0.344 0.411 0.444

Table A.4.: Distributions which have the same mean value however a varying scv. This
data is used to to study E(W ), σw,0.95 and σw,0.99 depending on both c2

A and
c2
Y applying the batch building mode under the minimum batch size rule; the

results are illustrated in Figures from 4.21 to 4.23.
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Example 1 Example 2 Example 3 Example 4

L 4 L 4 L 5 L 10

K 6 K 6 K 8 K 15

ai bi ai bi ai bi ai bi
0 0.0 0.00 0.0 0.00 0.0 0.00 0.000 0.000

1 0.0 0.00 0.0 0.00 0.0 0.00 0.250 0.000

2 0.3 0.00 0.2 0.00 0.3 0.00 0.400 0.000

3 0.4 0.00 0.2 0.00 0.3 0.00 0.175 0.000

4 0.3 0.00 0.2 0.00 0.1 0.00 0.075 0.000

5 0.00 0.2 0.00 0.2 0.00 0.050 0.000

6 0.00 0.2 0.00 0.1 0.00 0.050 0.000

7 0.00 0.00 0.00 0.000

8 0.00 0.00 0.00 0.000

9 0.00 0.00 0.00 0.000

10 0.00 0.00 0.00 0.000

11 0.10 0.00 0.00 0.000

12 0.15 0.00 0.05 0.000

13 0.15 0.00 0.05 0.000

14 0.20 0.00 0.05 0.025

15 0.15 0.10 0.10 0.050

16 0.15 0.15 0.05 0.025

17 0.10 0.20 0.15 0.000

18 0.30 0.20 0.000

19 0.15 0.05 0.025

20 0.05 0.15 0.025

21 0.05 0.05 0.050

22 0.05 0.075

23 0.05 0.100

24 0.025

25 0.000

26 0.000

27 0.025

28 0.025

29 0.050

30 0.100

31 0.150

32 0.125

33 0.100

34 0.025

mean 3.000 14.000 4.000 17.600 3.500 15.400 2.425 26.700

scv 0.067 0.017 0.125 0.008 0.151 0.026 0.305 0.048

Table A.5.: Analysis of the G/G[L,K]/1-queue: Input values for different examples; the
results are illustrated in Figure 5.20 and 5.21

Income Income Collecting 1 Collecting 2 Order split

orders 1 orders 2

i ai yi ai yi k = 12 k = 8 pi,j
0 0.00 0.0 0.00 0.0 0.6

1 0.00 0.1 0.10 0.5 0.4

2 0.40 0.4 0.05 0.4

3 0.15 0.3 0.20 0.1

4 0.10 0.2 0.30

5 0.15 0.20

6 0.15 0.10

7 0.05 0.05

mean 3.650 2.600 3.950 1.600

scv 0.212 0.124 0.150 0.172

Picking Picking Picking Packaging Packaging Packaging Collecting

1 2 large goods 1 2 3 transport

i bi bi bi bi bi k = 20

0 0.0 0.0 0.00 0.00 0.0 0.00

1 0.5 0.3 0.40 0.55 0.6 0.50

2 0.4 0.4 0.25 0.30 0.3 0.30

3 0.1 0.3 0.30 0.05 0.1 0.15

4 0.05 0.10 0.05

5

6

7

mean 1.600 2.000 2.000 1.700 1.500 1.750

scv 0.172 0.150 0.225 0.315 0.200 0.257

Table A.6.: Input values for the numerical case: Material flow analysis in a warehouse;
the results are illustrated in Figure 6.5 and Table 6.1
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A. Appendix: Input Data

arrival and service process systems figures

K 8

i ai bi
0 0.0 0.00 cO 15

1 0.0 0.00 cIn 40

2 0.3 0.00 time period 100

3 0.3 0.00

4 0.1 0.00

5 0.2 0.00

6 0.1 0.00

7 0.00

8 0.00

9 0.00

10 0.00

11 0.00

12 0.05

13 0.05

14 0.05

15 0.10

16 0.05

17 0.15

18 0.20

19 0.05

20 0.15

21 0.05

22 0.05

23 0.05

mean 3.50 16.55

Table A.7.: Input values for a G/G[L,K]/1-queue optimization problem; the results are
illustrated in Figure 5.28
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A.2. Results

A.2. Results

D Yd W

L mean 95%-quantile 99%-quantile mean 95%-quantile 99%-quantile mean 95%-quantile 99%-quantile

1 10.000 10 10 6.250 10 12 4.500 9 9

2 10.000 10 10 6.250 10 12 4.500 9 9

3 10.007 10 10 6.255 10 11 4.492 9 9

4 10.110 11 13 6.319 10 11 4.454 9 9

5 10.465 13 15 6.541 10 11 4.438 9 10

6 11.192 15 17 6.995 10 11 4.572 10 12

7 12.281 17 20 7.676 10 11 4.934 12 14

8 13.606 19 22 8.516 10 11 5.497 13 16

9 15.097 21 24 9.444 11 11 6.184 15 18

10 16.656 23 26 10.416 12 12 6.935 16 20

11 18.242 25 28 11.405 13 13 7.715 18 22

Table A.8.: Results which show the dependency of the interdeparture time D, the col-
lected batch size Yd, and the waiting time W on the minimum batch size L
applying the batch building mode under the minimum batch size rule; the
results are illustrated in Figures from 4.18 to 4.21
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