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ABSTRACT

A critical obstacle for Ultra Wideband (UWB) communica-
tions is conformity to restrictions set on the allowed interfer-
ence with other wireless devices. Using trains of /N amplitude
modulated basic pulses gives an FIR filter like design when dis-
regarding the power spectral density (PSD) of the basic pulse.
These leads to implementation losses and should be avoided.
We quantify these losses and introduce an FIR filter design us-
ing semidefinite programming which can incorporate the basic
pulse PSD by introducing non-constant upper bounds in the
design. This leads to optimal designs and increases available
signal power at no extra implementation complexity, just by
choosing more optimal filter coefficients.

I. INTRODUCTION

Ultra Wideband (UWB) is a new technology for short range,
high data rate wireless communication [1]; inherently occupy-
ing an extreme bandwidth, UWB technology will have to be
implemented as an overlay scenario in order to coexist with
other existing communication systems. To avoid interference,
the Federal Communications Commission (FCC) has estab-
lished guidelines [2], enabling research and implementation of
first equipment by setting forth stringent regulations on the ra-
diated energy. Due to this the spectral shape of UWB signals
becomes an important implementation aspect, adhering to con-
straints and still maximizing available signal power, to enable
the targeted high data rate applications.

Since the employed ultra-short pulses are generated with
analog components, their spectral shape is not easy to design.
Replacing the analog pulses with digital designs is prohibited
by the huge bandwidth and resulting sampling rates. Using an
FIR prefilter before the pulse generators, the spectral shape can
be controlled. When assuming the pulse power spectral den-
sity (PSD) to be constant, the problem simplifies to a classic
FIR filter design problem [3,4]. We will take a closer look
at this simplification and show that assuming the pulse PSD
to be constant leads to considerable losses in available signal
power. When taking into account the particular shape of the
pulse PSD, the problem can still be formulated as a FIR filter
design, but the spectral constraints become non-constant which
can not be handled by typical FIR filter designs. We will ex-
tend a semidefinite programming FIR filter design to include
non-constant upper bounds to achieve a signal design which is
adapted to the basic pulse PSD and renders optimal results in
view of utilized signal power.
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II. SIGNAL MODEL AND PULSESHAPING PROBLEM

A.  Signal Model

Our signal model will be impulse radio (IR) with time hopping
(TH) and binary pulse amplitude modulation (PAM). Ultra-
short pulses are the building block of this transmission scheme;
the basic pulse on the channel is p(t), e.g., the Gaussian Mono-
cycle [5], with the power [ p?(t)dt = . One pulse is sent
during each frame duration 7T’y. Each data symbol consist of
N pulses, resulting in a total symbol length T = N;T'r. The
signal model can be expressed in the following way:

1
ut) = b S opt—I1Ty — kT —T.) (1)
& \/Nfé‘ 1—0

where by, are the PAM symbols {—1, 1} for each bit, T is the
chip period and ¢; are the user-specific TH codes, with ¢;T,. <
TVI.

The PSD can be calculated in a standard fashion to:

|P(f)|2 Z €j27r(7lechTc)f
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When assuming the TH code ¢; to be integer-valued, inde-
pendent und uniformly distributed, this can be approximated
as [6,7]:
1
P(f)].
=P

Thus, the PSD of the basic pulse p(t) is crucial to the PSD of
the complete UWB signal. Therefore, it is necessary to select
a pulse with optimal spectral properties.

Puu(f) = 3)

B. Linear Pulseshaping Problem

The basic pulses p(t) used in UWB systems are created with
analog RF components. Therefore, designing the pulse to com-
ply with some specific demands like the FCC spectral mask is
rather difficult. Basically only the pulse duration and ampli-
tude can be controlled which corresponds to the bandwidth and
power in the PSD. Different digitally created pulse shapes have
been suggested [8], whereby those pulses have to be generated
of digital samples. Since the pulses need bandwidths of several
GHz, sampling nanosecond length pulses is highly demanding.

Using transmit filters to adapt to spectral constraints is also
difficult to implement, since analog filters would have to be
used with an enormous bandwidth. Instead using an FIR fil-
ter like approach [3, 4], each basic pulse is repeated N times
with arbitrary amplitudes, created by the pulse generators used
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already for modulation. This is equivalent to prefiltering the
signal before using the basic pulse as a transmit filter.

1
ut) =S by S(t—1Ty —kTs— i T:) #p(t) (4)

Now p(t) includes the prefiltering with amplitudes w,,, which
will be design parameters, and the pulses ¢(t) created by the
usual pulse generators which can be chosen by hardware con-
straints,

N-1

p(t) = > wnq(t —nT) = w(t) *q(t) )

n=0

whereby w(t) = Zg;ol wpd(t — nT). Since the convolution
is associative, it is equivalent to first use w(t) as a prefilter and
then ¢(t) as the analog transmit filter. The PSD accordingly is,

IP()]? = Cuu(£) QA ©)
and @, (f) can be calculated as,
N-1 2 N-1
Doy (f) = Z Wy eS| =g 42 Z rn cos(2mnT f),
n=0 n=1

(N
with r,, = szv:—o1—n WEWg+rn, being the non-periodic autocor-
relation sequence of the w,,.

To formulate the pulseshaping problem, an optimality cri-
terion has to be chosen. The effective power usage ratio 7
is defined as the ratio of achieved signal power to the maxi-
mum power possible within the frequency interval of interest
Fp, limited by the FCC spectral mask S(f):

S 1P df
TS dr

The PSD ®,,,,(f) will be periodic in the additional design pa-
rameter 1/7, therefore we choose F,, to be [0, 1/2T] since this
is the interval we will be able to influence. Outside this interval
we will assume |Q(f)|? to be small enough to attenuate the pe-
riod repetitions of @, (f). Accordingly T and ¢(t) will have
to be chosen jointly which we will discuss later in detail.

The pulseshaping problem can now be formulated with re-
spect to the FCC spectral mask S(f) and the effective power
usage ratio:

®)

max7  subject to |[P(F)I? < S(f) fE€Fp, )

i.e., maximizing the transmitted power while adhering to all
spectral constraints. This is not a very practical problem for-
mulation, because it puts constraints on infinitely many f and
is highly non-linear. A problem formulation linear dependent
on the r,, can be achieved when noticing that

N-1

1
= — P 2df = 2 E
n Pg /]__p |P(f)|” df = roco + TnCn

n=1

(10)

with ¢, = P% ffp cos(2rnT'f) |Q(f)|* df being constants

and Ps = ffp S(f) df.

Under the additional constraint that r,, are a valid autocor-
relation sequence, which is equivalent to ®,,,,(f) > 0 Vf, we
can write the new optimization problem as,

N-1
max rocg + 2 E rnCn Subject to
Tn

n=0

IP(f)I? < S(f), ®uul(f) =0 feFp (11)

which is now linear with twice infinite many constraints. This
would require sampling of the constraints and introduction of
an additional relaxation to ensure compliancy for all f € Fp.
Instead when approximating the |Q(f)|? as constant within
Fp, |P(f)|? = ®uuw(f) we have only constraints on @, (f)
which is the PSD of an FIR filter. Accordingly FIR design
methods can be used to optimize @, (f), €.g., the Parks Mc-
Clellan algorithm [3].

Instead we will use linear matrix inequality formulation de-
rived for FIR filter design, which does not depend on equi-
ripple design and guarantees global optimal solutions for con-
vex problems [9]. The constraints on @, (f) can be expressed
as linear constraints on the autocorrelation coefficients r,, and
some positive semidefinite matrices. Since positive semidefi-
nite matrices form a convex set, all these problems are convex
and represent symmetric cones. Using an optimization pack-
age for symmetric cones [10], they can be solved optimally [4].
The results for 7' = 0.03 ns can be seen in Fig. 1, performance
can be seen for ; in Tab. 1.
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Figure 1: Optimized PSD assuming pulses with constant PSD

C. Losses Due to Assuming a Constant Pulse PSD

Assuming the pulse PSD |Q(f)|? to be flat over an area of eas-
ily 10 GHz is a very strong simplification, even when using a
pulse chosen to be as constant as possible at the frequencies of
interest (see |Q(f)|? Fig. 2). When calculating the real PSD of
the pulse |P(f)|> = ®uww(f)|Q(f)|?, the multiplication with
|Q(f)|? leads to considerable losses (see 72 and losses in Tab.



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

1 and Fig. 2). These losses are most noticeable when 7 ap-
proaches unity for high lengths of N, but they will be much
higher if the basic pulse ¢(t) can not be freely chosen, e.g., due
to hardware constraints, because any other pulse would be even
further from the constant spectrum assumption.

N 15 30 50
11 assuming constant pulse | 0.778 0.877 0.929
72 due to non-constant pulse | 0.633 0.698 0.726
losses [dB] 0.899 0989 1.073

Table 1: Performance assuming a constant pulse PSD and
losses due to real pulse PSD
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Figure 2: Losses in available signal power due to the non-
negligible basic pulse PSD

So a first evaluation of the simplification used in B. shows
losses which increase with the optimality of the solution. Since
this is contra productive to the goal of optimization, these
losses have to be countered. This leads to a new pulseshaping
problem.

III. NEW PULSESHAPING PROBLEM

A. Formulation of New Pulseshaping Problem

The original linear pulseshaping problem in B. needed to as-
sume the PSD of the basic pulse as constant over a large inter-
val. This was necessary to achieve a linear problem. To keep
a linear problem formulation, but not neglect the pulse PSD a
different approach can be taken,

N-1
n}ax roCo + 2 Z TnCn Subject to
" n=0
S(f)
PP < ===, ®uu(f) >0 Fp. (12

Dividing the FCC spectral mask by the PSD of the Gaussian
monocycle (see Fig. 3), as required in eq. (12), the optimiza-
tion problem remains linear, but new constraints need to be

implemented. These new constraints couldn’t be implemented
before, because the linear matrix inequalities borrowed from
FIR filter design [9] can only express piecewise-constant con-
straints. Therefore, the linear matrix inequalities will have to
be extended to cover more flexible constraints.

B. Review of Linear Matrix Inequalities

The linear matrix inequalities used before define the following
positive cones:

Kla) = {p e R+ En:pk cos(kf) > 0V 0 € [a, 7] } ,

k=0
13)

K(a) = {p € R**! zn:pk cos(kf) > 0V0 € [0, q] } :

k=0
(14)

Using the linear operators L* : R(»+Dx(n+1) _, Rr+l apd
A* RV — R™HL (9, egs. (35)-(36)], it can be shown [9]
that eqs. (13) and (14) are equivalent to:

K(a) = {p € R"H‘p =L"X)+ A"(Z,0, 27 — )

for some X € S TX () 7 ¢ Sﬁxn} (15)

Kla) = {p € R"H‘p =L"X) - A"(Z,0,27 — )

for some X € S TX () 7 ¢ Sixn} (16)

These positive cones can be used to implement piecewise
constant upper bounds on ®,,,,(f). For example, the equality
between eqgs. (13) and (15) results to ®,,(f) < v for f €

[%, %] by defining an auxiliary function

O(f) = preos(k2nTf) =~ — Cuu(f), (17

k=0

accordingly po = y—rgand p, = —2r, forn=1,..., N—1.
So the example constraint can be expressed as follows:

Bou(f) <~ for fe [ @ (18)

1
2T’ 2T |’
if two positive semidefinite, real symmetric matrices X, Z ex-
ist, for which

L*(X) + A*(Z, 0, 27 — a) =

(y—=r10,—2r1,...,—2rn_1). (19)
Since L* and A* are linear operators, eq. (19) only expresses
linear constraints on the elements of some positive semidef-
inite matrices. This can be solved efficiently by the already

mentioned optimization package [10].
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C. Non-constant Upper Bounds

By using a different auxiliary function, non-constant upper
bounds I'(f) can be implemented. This auxiliary function is
now defined as:

= Zpk cos(k2nT f)

k=0

= F(f) - q)ww(f)v (20)

withpg = v —roand p, = v, — 2r, forn=1,... ., N — 1,
whereby +,, is the Fourier series expansion of I'(f). This re-
sults in:

Byulf) <T(f) for f [ a @

1
2T’ 2T |’
if two positive semidefinite, real symmetric matrices X, Z ex-
ist, for which

L*(X)+ A" (Z,0,27m — ) =

(’70 —To,M _2T17"' (22)

S IN-1 = 2rN—1).
So I'(f) can define any upper bound that can be represented as
N terms of a Fourier series expansion and covers an interval of
the form [ - } for arbitrary a. Usmg eqgs. (14) and (16)

T’ 3T
intervals of complimentary shape [0, 727 | can be used as well.

) 9T

D. Finding appropriate Upper Bounds

It might seem possible to use only one constraint to repre-
sent the whole spectral mask. Although the function I'(f) can
approximate any spectral mask S(f) which might serve as a
constraint, the approximation is limited by the properties of
the Fourier series expansion. This is especially problematic at
discontinuities which lead to the Gibbs Phenomenon. Since
D (f) > 0 Vf is an implicit constraint when working with
the autocorrelation coefficients r,,, any negative value in an up-
per bound would make no solution possible.

So instead functions are defined, which serve as piecewise
continuous upper bounds. When approximating only part of
a given spectral mask S(f) or S(f)/|Q(f)|? the Fourier series
expansion can’t be used because the cosine functions are not or-
thogonal on any interval [«, 5]. Instead minimizing the squared
error for the base function system ¢, (f) = cos(2anT f) on
some particular interval,

min
Y

N-1

= men(H)| df, (23)
n=0

leads to solving a linear equation system. This is equivalent

to orthogonalizing the autocorrelation matrix of the base func-
tions on this interval and comes out to:

N—-1

153 15
S / or(Dnlf) df = / S(Fen(f)df.  4)

n=0

Very good approximations of any piecewise continuous func-
tion serving as an upper bound can be achieved this way.
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Figure 3: Newly implemented non-constant upper bounds

IV. IMPLEMENTATION

The interval [0,15.0] GHz covers the biggest part of the FCC
spectral mask S(f). To implement the spectral mask as piece-
wise continuous constraints without any simplifications, we
will have to use five constraints (see Fig. 3):

@ (f) <T1(f) € [0,1.61] GHz (25)
Do (f) < Ta(f) € [0,1.99] GHz (26)
Py (f) <T3(f) € [0,3.1]) GHz 27)
@y (f) < Tu(f) € [0,12.5] GHz (28)
Quuw(f) < Ts5(f) € [10.6,15.00/GHz  (29)

and those constralnts are represented by their respective coef-
ficients T;(f) = S0 Pl o ¥ cos(2wkT f), calculated through
eq. (24). The two possible interval types for the upper bounds,
either start at 0 GHz or end at 15.0 GHz. Consequently, when
using more than two constraints, the upper bounds overlap (see
Fig. 3). This can lead to difficulties since the uppers bounds are
only calculated dependant on a smaller continuous interval. In
fact, no problem arises as long as the discontinuities are posi-
tive jumps from one side or drops on the other side respectively.
The constraint in the middle actually even serves as an upper
bound on the whole interval.

Even when split up into piecewise-continuous intervals, to
receive good approximations, the needed upper bounds can-
not have a too high gradient. Especially when dividing by
the PSD of the Gaussian monocycle, the gradient can become
very high in T'; (f) and T'5(f). To avoid poor approximations,
S(f)/1Q(f)|? has to be limited, most easily accomplished by
cutting off values, e.g., when values in an interval reach a cer-
tain multiple of the smallest value. In Fig. 3 values were cut
off when 6 dB above the smallest value of their interval.

V. DESIGN EXAMPLE

Fig. 4 shows a design example of ®,,,,(f). It can be seen
how ®,,,,(f) approaches S(f)/|Q(f)|? very well (results are
plotted for different values of N). @, (f) is actually above
S(f) before being multiplied with |Q(f)|?, but this just shows
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Figure 4: Optimized PSD with non-constant upper bounds

to which extent the allowed energy radiation had not been ex-
ploited before by assuming the Gaussian monocycle to be con-
stant.

N 15 30 50
ns adapted to pulse 0.723 0.842 0.888
712 due to non-const. pulse | 0.633 0.698 0.726
gain [dB] 0.580 0.811 0.877

Table 2: Performance of optimization with non-constant pulses

The exact PSD of the waveform |P(f)|? is obtained after
multiplication with |Q(f)|? (see Fig. 5). This led to losses
before. Now, due to using the extended definition of the upper
bounds, results after multiplication fit the FCC spectral mask
perfectly and exploit it optimally. For rising pulse train length
N, results for 1 approach unity (see 13 in Tab. 2).

The gain in signal power compared to the design of the orig-
inal linear pulseshaping problem is between 15% and 20%,
which is between 0.6 dB and 0.9 dB. It should be pointed out
that this gain does not require any additional resources in im-
plementation. For the same pulse train length N, the gain is
achieved solely by equating more optimal coefficients w,,.

VI. CONCLUSION

Designing UWB signals using FIR prefiltering can achieve op-
timal solutions and account for real basic pulse PSDs. It is not
necessary to assume the basic pulse PSD as constant and losses
due to this assumption can be evaded by incorporating the pulse
PSD into the design.

We have achieved a design which gains about 1 dB of signal
power compared to designs disregarding the exact basic pulse
PSD. This does not need any extra implementation complexity,
since it uses the same filter length N. The performance in-
crease is only due to choosing more optimal filter coefficients.
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