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Abstract—In established communication systems prices After refering to related work in Section I, in Section
are determined in a quasi-static way and for a large area ||| it will be proven that the extension of CR abilities
according to a fixed price model. Additionally, the main 5 the combined functionality of pricing, allocation and
decision criteria of resource allocation is the arrival time bill d it loitati . AS f I fi
of resource requests. This system approach is not able to 2!'"Ng and Its exploitation requires or aflocation.
respond to the spatially distributed and dynamic users’ 1he application of the CR is extended to several different
demand and willingness-to-pay. In this paper a system environments, whereas its abstraction is discussed in Sec-
will be proposed to combine pricing, allocation and billing  tion IV. In Section V the RRG properties are determined
in order to react dynamically and locally to the market 555, ming multi-homing. Afterwards, a system which is
assuming that the user terminal has cognitive radio abilities ble t te the AS d ,th CR fi
and multiple interfaces. capable to execute the under the assumption

is described in Section VI and simulation results are

Index Terms—Dynamic and Distributed Resource Al- discussed in Section VII

location, Auction Theory, Cognitive Radio, Multi-homing,
Artificial Intelligence, Multi-Agent System, Communication

System Il. RELATED WORK

. INTRODUCTION In communication networks, the access and allocation

In established communications systems with an unmechanisms can be divided into deterministic and statis-

derlying provider infrastructure the market is designeoIICaI procedures. ALOHA and the time discrete version
according to theFixed Price Model (FPM). A user slotted ALOHA represent the latter case. Deterministic

can get access to the network only if there are fre echanisms possess the advantage, that both access and

resources controlled by thBase Statior(BS) within a allocation are determined and thus the interference is
cell. Furthermore, he has to accept the fixed price for 5educed. Besides CSMA/CA and CSMA/CD [4], mech-

wide area and quasi-static in time. The user has to pa nisms were proposed b_ased on repeated auctions. The
the same price whether there is a high or a low deman p-called Res_ou_rce AUC“QH Multiple ACCG.S@AM.A)

in the cell. Thus, if his preferences and purchase pow 1.15],[6] periodically auctions access credits. This pro-
allow him to spen’d more money for usif@dio Resource tocol is based on sequential single-unit auctions and bids

Goods(RRG), he is not able to influence the allocation.that are rgndomly chosen. _In this context the user Cia””‘“

For the same reason the operator misses the chance lfgef[_ the IEIdtSh to expretis his Peeds or gonvey ar;y infor-

increase his monetary gain by adapting the price for RR@"ation. FUrtn€rmore, the auction procedure can be more

to the users’ RRG evaluation. eff|_C|ent in ter_ms of t!me and S|gnaI|ng_ by applying multi-
To overcome these problems, this paper will introduce’™ seale?]-bld agctmn as p;opﬁosg%ln [211' DliRAM'ﬁ [7]

a distributed, dynamical and combined pricing, allocatior{ 8MoVes ehrag fc;mne_ss Obt eh |b_sdan I a ovx_sht N U.T

and billing system [1], suitable for wireless infrastructurel© €XPress the buffer sizes by the bid values. The main

communications systems which are capable to mana

qﬁea is to improve thQuality of Servic§QoS), to divide
multi-homing. By applyingCognitive Radio(CR) abili- e resources depending on the buffer sizes and the QoS
ties not only to the allocation but also to this combine

dparameters.

architecture, it is mandatory to dynamically allocate RRG '€ aforementioned protocols do not allow the users
by anAuction SequencéAS) to exploit the CR abilities to incorporate the purchase power and the preferences for

[2]. The repetition of auctions should happen very fasihe different QoS classes, the experience of past auctions

up to milliseconds to react on the load dynamic. A clas@nd future events. In this paper, an auction sequence
of auctions, the multi-unit sealed-bid auction, is suitablemeChan'sm and a system will be presented which extends

to execute the auction within specified time and with arthe past work by allowing the users to express their ur-
acceptable signaling effort in comparison to sequentia#©NCY: Needs, purchase power and preferences combined
auctions [3]. with a QoS-aware buffer management.

Besides the access and allocation mechanism, the ex-

Based on "Dynamic and Local Combined Pricing, Allocation and pIoitation of CR abilities enhance the system dynamic
Billing System with Cognitive Radios”, by Kloeck C., Jaekel H. and L I ML A '
Jondral F. K. which appeared in the Proceedings of the IEEE DySPAl\pecause a communication cell converges I Agent

2005, Baltimore, USA, September 20082005 |EEE System(MAS). Especially, in the fields of resource allo-
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cation, utility functions, language efficiency and envy-
freeness have to be considered.

The economical field auction theory mainly deals with
single shot auction, but not with auction repetition. The
framework of the optimal multi-unit auction is proposed
in [8], but does not deal with repetitions and does not
include learning facilities of the UTs. Gaining experience
of the past and applying it in the current auction destroy

the independence of the single shot auctions. 1 \U/ || o
nput utput

Gaining . )
L Act
Information —>| Leaming —3 cting

Environment

Subenvironment

-~ Subenvironment

IIl. AUCTION SEQUENCES FORRESOURCE
ALLOCATION

The system presented in Section VI will offer the
RRG locally and dynamically in time to respond to the
demand changes in space and time. Considering hotspots
like congresses or soccer events, which occur only for a
certain time and in a certain area covered by at most %}1
few BSs, the RRG of these BS will be highly demanded, .
whereas, if users move away, the RRG of the other BS ubset of the whole EV. Examples can be a technical

; - - ; V to detect occupied spectrum as defined by the FCC
will then be wanted. This moving hotspots show a highly . .
dynamical demand graph in space and in time. Thereforé?]' For gxample, this SUBEV could conS|_st of the_ FFT
the RRG of each BS should be offered to the userém‘ormanon of the spectrum, the SNR and information of

attended in the cell and the price depends on the dem é)ssible spectrum occupation dyration and shapes of dif-
of the prolger ielle an pr pends on ar?erentRadlo Access TechnologiéRATs). The SUBEVs

If the operator wants to maximize his gain, he has toneed not to be disjoint, i.e., they can overlap. The SUBEV

; ; ... _Wwhich is tackled by the AS consists of 1) operator’'s
charge each user by the maximum price the user is willin . . .
g y P nd 2) user’s behavior, 3) technical, 4) physical and 5)

to pay. In order to find this upper border, a negotiation ha :
?econommal SUBEVSs:

to take place. On the other hand, the user can incorporal ’ o . o
his preferences and purchase power into the negotiationt) OPerator's behavior is mainly focused on optimizing

Fig. 1. Cognitive Radio in subenvironments

Definition of Subenvironments

The awareness of a CR can be abstracted in a way
at the CR acts in a specific SUBEV. A SUBEV is a

to get access to the network, in comparison to FPM. his monetary gain, offering and charging services.
Because the demand changes very fast, agents located) USers behavior can be represented by his prefer-
in the MAC of the BS and theJser Terminal (UT) ences, purchase power and the action characteristics

side will negotiate among each other. These agents are Which can be categorized in risk-neutral, risk-averse
algorithms which need a proper protocol and rules to ~ and risk-encouraged depending on the other suben-

negotiate. A negotiation following proper instructions, vironments. _ _
which can be implemented in a predefined algorithm, is 3) The_ technical environment includes the demand oc-
referred to as the auction. curring from the data a user wants to sent and the

Considering FPM, the UT needs not to be intelligent  Characteristics of the RATs available.
with respect to pricing, allocation and billing, because 4) The channel influences the data transmission and can
the price is fixed and the BS assigns RRG to the UT,  be described by SNR and SNIR, respectively.
if available, regardless of the other users. On the other®) The economical aspects include the purchase power,
hand, by an underlying auction sequence, the UT can use '€action, number and demand of the competitors,
experiences gained in past auctions in order to estimate the outcomes of the auctions, the reserve prices, the
the behavior of the other UTs and to modify its bidding offered RRG, etc.
strategy. This requires the ability to learn about the
EnVironment(EV) and to modify the action in order to B. Cognitive Radio within a Subenvironment
optimize its utility. Both, gaining cognition and acting  The abilities of a CR can be mainly categorized in three
accordingly, are part of the definition of a CR. Therefore functions: Gaining Information(Gl), Learning Process
maximizing of user’s utility mandatorily requires CR (LP) andActing Function(AF) as depicted in Figure 1.
abilities in a distributed pricing, allocation and billing The Gl extracts information out of the incoming SUBEVs

system. parameters and provides the information to LP. Based on
past and current information the LP makes specific con-

IV. COGNITIVE RADIO IN A clusions with respect to preferences and utility functions
TECHNOLOGICAL-ECONOMICAL ENVIRONMENT The AF receives the conclusions of the LP and does not

A CR is basically defined as an intelligent entity which necessarily act in the same SUBEV. AF can also influence
is sophistically seeking for bandwidth in order to set upmore than one SUBEYV, e.g., the CR does not act in the
a communication connection [9]. In this section, the CRtechnical EV mainly limited to the spectrum, but also
definition will be extended to a general usage in arbitraryinfluences the economical EV with its decision to use a
SUBEnNnVironment§SUBEVS). proper bandwidth.
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C. Cognitive Radio applying to Auction Sequence data rate no matter over which RATs the operator will
The CR abilities in theAuction Sequence EnVironment transmit the data. But, following the same argumentation

(ASEV) have to be divided into the network side, that is3S Pefore, even in this case, the operator can only offer
the BS, and the user side, that is the UT. Bmnomic RRG. The RRG of different RATs need not mandatory

Manager(EM) including the CR functions is responsible [©© Pe the same and keeping in mind that each RAT

for the auction process in the MAC of the BS. On the'S only specialized for a few services and not all UTs
other hand th&®RG Auction Ager(RAA) represents the &'€ able to transmit over all RATs, the demand per
user's demand and interests within the auction and is alsgPeCific service and resources available can only result
equipped with CR abilities. in a competition, if the UTs bid for the RRG of each
The ASEV comprises the interests of the operator anRAT solely. Nevertheless, the traffic splitting over the

users, the physical conditions of the data transmissioRRC ©f the RATs, accessible to the user, data traffic
and the technical and economical aspects. The ASEan be optimized by doint Radio Resource Management

can be further divided into SUBEVs:Neither the usersdRRM) [11]. It can also be envisaged that if a user won

nor the operators can detect the whole ASEV, since thefRG Of @ RAT and the connection becomes worse, the
do not have access to the complete information data RRM exchanges parts or the whole RRG of another RAT
Furthermore, assuming an identical ASEV for different!! @vailable and UT possesses an interface in order to
users [10], the different Gls do not necessarily extract thécrease the QoS. Therefore, the UT bids for RRG of

same information. Moreover, some data and parametefRCh RAT available and gets a certain numbeBeheral
of the ASEV are only known to one RAT and thus are Resource Elementary Credi&RECs) per RAT, kind of

private information. This leads to different information vouchers, which are exchgngeable if increasing the QoS
provided to the different Gls, whereas there is alsc®f the UT and not decreasing the revenue of the operator.

common information like the reserve priceand the

maximum RRGN,,.. offered per RAT. One major task VI. SYSTEM DESCRIPTION

of the LP is to estimate the behavior of the other userg, oyerview

in order to conclude the most opportune action following ) _ o
game theory [10]. The AF transforms the conclusion into 1 N€ System proposal describes a spatially distributed

an action and, especially in the sense of the aforemef@nd dynamical RRG pricing, allocation and billing
tioned ASEV, these actions will afterwards affect theth€reby applying CR abilities to a UT which is capable
same SUBEV, thus creating a recursive behavior. to communicate over more than one RAT simultaneously

(see Figure 2).

The UT attends taV cells of N different BS. Without
loss of generality, it could also envisaged that both the
RATs are not necessarily need to be different and the

The auction repetition can be both periodically andUT only attends to a subset of RATs available. The
spontaneously. Based on the underlying periodical repRAA is distributed within the MAC of the UT. Based on
etition of logical control protocols in communication the multi-homing ability the RAA needs a convergence
systems, like TDMA systems, the implementation of fastentity called Inter MAC (IMAC) which manages the
auction repetitions up to frame-based auctioning is moreoordination between the single MACs of the RATSs in
suitable than undetermined auction sequences. Moreovender to provide a common interface for tB& layer of
the probability of a certain number of participants at-the OSI model. The IMAC comprises of @dser Profile
tending the spontaneous auction is lower than the on®lanager (UPM) and aninter Data GREC Mapping
of periodical auctions. In the following only periodical (IDGM). The user can adjust his preferences, behavior
auction repetition is considered. and purchase power for each QoS class through an GUI

Generally, a seller can only offer a good if he can sellof the UPM. This data will be mapped in a set of suitable
it for sure. Applying this to the auction mechanism andparameters and if necessary transformed for &dHing
first assuming the user cannot perform multi-homing, thisStrategy (BIS) by the UPM. The IDGM manages the
mechanism can only offer goods which are not dependind QoS buffers. Based on the parameters of each QoS
on the user's environment. E.g., if the EM offers dataclass Qog IDGM categorizes the data in each buffer
or data rate and the user enters a radio shadow, thie two main categories: the critical data which should
offered good cannot be provided by the operator due tbe mandatorily sent within the auction period in order
bad SNR. Thus, the RRG can be frequency time bits ino fulfill the QoS requirements and the uncritical data
an FDMA/TDMA system, code time bits in an CDMA which can remain in the buffer a little longer without
system like UMTS or time bits in a TDMA system like violating the QoS requirements. The IDGM maps the
WLAN IEEE 802.11a. categorized data into RRG for each BIS of a specific

As a second possibility, the user is able to send th&®AT regarding the current reserve priceof each RAT,
data over more than one RAT simultaneously, that ighe proper demand and the success of the proper BIS. The
its UT can get data by multi-homing. For the sake ofBIS gets the preference, behavior and purchase power
simplicity, assuming that multi-homing occurs only by parameters from the UPM, the part of GRECs needed
RATs of one operator, it seems a UT can bid for data ofrom the IDGM as input and reserve priecefrom the

V. INFLUENCE OF THERRG TO THE MULTI-HOMING
SYSTEM STRUCTURE
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Fig. 2. Distributed allocation and pricing system

Reserve Price CalculatofRPC) as input. Furthermore, this would increase the computational power and duration

the results of past auctions may be used to calculate thenormously, therefore a modular approach is presented

bidding vector in order to minimize the difference of thein which the RAA functionalities are divided in the

utility expected to the one wanted. inter MAC layer and the MAC of each RAT. The inter
Each BS possesses an EM which is responsible for th®1AC layer comprises the UPM, IDGM, QoS buffers and

auction process. Its main two functionalities are includedscheduler, whereas the BIS for each RAT is located in

in the two subentities RPC amtuction MechanisnfAM)  the proper MAC. This functionalities and their interfaces

in which the CR abilities are spread. The RPC is thewill be described below.

leverage of the operator in the auction process, because

each bid has to exceed the reserve priceThus, the < ser Profile Manager

RPC adaptsr dynamically to the market in order to
P Y y The UPM is the interface between the user and the

increase the operator's gain. The AM must be known .
to all participants in order to calculate the proper bids RAA: The parameters a user has to adjust should not be

All the RAAs which want to participate at the auction :00 ?uchtregarcilhng S'mPl'nghOf .SerV'.th]’ but su:ﬂ?e?kt]
submit their bid vector to the AM. The AM chooses its ‘0 characterize the users behavior with réspect 1o the

bids and assigns them GRECs in order to maximize thguction. The user properties can be categorized in three

operator's gain regarding the technical characteristic ofnain topics: o
the underlying RAT. In the allocation vector, the number 1) Preferences: For example, a user may prioritize the

of GRECs won, the proper price, link, QoS class & QoS class mainly used for phone calls. Whereas,
IDentification (UTID) are transmitted. Depending on the maybe due to his bad eyes, it does not matter if the
AM, the information of other UTs are partially or not ~Video conference images are disturbed. Therefore,
at all available for a UT. The more information an RAA ~ the preference for the video QoS class will be lower

gets of the others, the better it can estimate the behavior than for the voice class. It could be envisaged only to
of the competitors. The allocation vector is also conveyed ~ Set one preference paramelfg}‘r per data category
to the MAC scheduler and the PHY, both in the UL and %, QO0S class QoSand link y of the IDGM as

the DL to read out the data of the buffers and adjust the  Suggested in [2].
transmission modules. 2) Purchase Power: The purchase power can be both, an

averaged value of certain number of auctions to al-
low purchase peaks or a strong budget border which

B. RRG Auction Agent must be exceeded in any auction. Furthermore, both

The aim of the RAA is to satisfy the user's needs, approaches can be applied for all or for each QoS
because in this system the user can mainly influence The second possibility has the advantage to be able
and is responsible for the fulfillment of the QoS de- to differentiate between QoS classes, e.g., the user

pending on his purchase power and preferences. This can differentiate how to spent money for a real-time
responsibility has been shifted from the network side in QoS class for calls and for a best effort class whose
past and current system to the user side in this system budget constraint hence is lower based on the relaxed
description regarding the auction mechanism and the CR  time constraints.

awareness. Nevertheless, the network side can also offeB) Utility for UL and DL: The utility is expressed
functionalities which improve the QoS as the JRRM [11], by the utility function n(«;"?,-) and states the

but this can be seen as an additional service. utility a user gets if data of a certain categary
Normally, the bidding strategy should be an overall will be transmitted with respect to the preference
function in which a common optimization of all bid a;". The function clearly depends on the preference

vectors for all RATs available should take place. But parameters [10]. The user can select between a
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risk averse, risk neutral and risk encouraging be- In principle, the user is self-responsible for the QoS,
havior. Normally, the behavior regarding the critical thus he can individually adjust the QoS criteria and
data will be risk-neutral, because each data will beparameters, even different for UL and DL. Originally, the
equally important to fulfill the QoS. Additionally, operator has designed the network regarding the services
the function for uncritical data will generally be risk to be offered with a certain QoS. The system should
neutral or risk averse, but the different utility will be clearly be capable to transport at least the critical data
clearly less for each uncritical data than for a critical D¢, If the network is not overloaded and the user has
data of the same QoS classes, because of the Qa®onger/weaker QoS criteria resulting in higher/lower
fulfillment. Thus the utilityn is a concave function number of critical RRG, the BIS will bid higher/lower
over the data of the QoS buffer QoS leading to higher cost/data loss. For this reason the
user should accept the QoS parameter the network was
designed for, because he can also express its preferences
through the UPM by choosing the proper QoS class.

2) Data GREC Mapping:The Data GREC Mapping

D. Inter Data GREC Mapping

Generally, all bid vectordid; for each RAT, can be
commonly calculated to optimize the data transfer with(CGM) converts an amount of dat®; to the RRG;
respect to the utility), the preference, cost constraine, ~ Ne€€ded to send this data with the RATThe transfor-

dataD; in the QoS-buffers)oS; and the EV properties. mation functionf(-_) erenQS on the RAT properties and
This function inherently includes the IDGM and all BIS channel characteristics which represent the EV. The RAT

The computational effort would be tremendous to solvéPrOPerties are mainlChannel CodindCC), Modulation

such a nonlinear optimization problem. Therefore, thdMOD) andMAC/PHY Control OverheadCO). Further
tasks are separated into a global part realized in IDGMttributes can specify the QoS clgsses and their mandatory
and local parts BISfor each RAT, including the bidding RRG needs._Some RAT properties can also be de_pendent
strategy. The bidding strategy is independent of the RATON the EV, like CC and MOD which can be adjusted

The IDGM instructs the BISto bid for a certain number With respect to theSignal to Noise and Interference
N; of RRG;. Thus, the BIS can simply be instances of Ratio (SNIR). The EV can adequately be described by
one algorithm. the SNIR. Thus, the transformation fa&® AT; can be

The IDGM is designed to solve three main tasks whichdescribed as follows:
will be described in Sections Vl-Dl, VI-D.2 and VI-D.3: Ni — fz (RAT properties1 EV propertiegp) (1)

o The dataD; in the QoS-bufferQoS; has to be ~ fi(CC,MOD,CO,SNIR, D)

categorized depending on the user’'s needs and QoS ) )
criteria. f(-) can be approximated based on past observations

« The dataD; in the QoS-bufferQoS; has to be O©f the data transmission. Considering simple RATs it
mapped to the numbel,; of RRG; needed for Can also be envisaged that there exists an analytical

each RAT. In turn, the inverse function assists €xpression, e.g., calculating BER from SNR, CO and
in assigning data which will be transmitted to the MOD. The numbetV; of RRG, is an estimation because

RATS. of the unknown and random EV.
The IDGM is responsible for allocating the data For the computation of the RRG allocation to the RATs
D, in the QoS-bufferQoS; as good as possible to N the IRA and the allocation of data to the RATS after
satisfy the user's needs resulting in an non-lineaP@ving gained GRECs for the specific RAT the inverse
optimization problem in general. transformationf ™" is necessary:

1) Data Categorization (DC):One of the main tasks D
of IDGM is to categorize the data which are in the ~
QoS bufferQoS; in order to decide the numbeV;
of RRG; needed per RATand per data category ¢  The inverse transformation describes the estimated
{eri,ucriy, ..., ucris}. The data is distinguished be- amount of data which may be transmitted assumig
tween critical dataD*"* which should be urgently sent in RRG.
this auction periodl’ in order to fulfill the QoS criteria  3) Inter RRG Allocation: The Inter RRG Allocation
and uncritical dataD“<", If D" is not sent, the QoS (IRA) has to assign the BISs the numb¥[’;* of RRG
is not injured duringZ. The uncritical classes can be in order to fulfill the user's needs which can be separated
subdivided into prioritized subclasség““"i depending into two different goals:
on the urgency to send them in advance to fulfill theG1) Favoring the QoS, the QoS measu(€oS;) should
QoS! and avoid high traffic time. ThiBata Categorizing be maximized and ideally the QoS should always
Function (DCF) is situated in the Inter-MAC in order to be fulfilled. Thus, the critical dataD{™* will be
categorize the UL data%w’UL and also in the RNC to prioritized. The allocation algorithm can be logically
classify the DL dataD;” L The information about the separated into two parts: first the allocation of the

f;! (RAT properties, EV propertiesy;) (2)
7t (cc, MOD,CO,SNIR, N;)

number of dataD;"¥ for each category:, QoS clasd
and each linky is conveyed to thénter RRG Allocation
(IRA).
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G2)

the utility of uncritical data would be higher than 7" (af*y,Df;y*p> resulting from the dataD;;”"” pro-
the one of critical data, the allocation algorithm will . ey [ o g\

firstly assign the critical data to the RATs and thepOSEd to the utility wanted”” (a? J’D?ﬂ'J q) [2] of the
IGM transforms it to RRGin order to maximize the dataD;;”? in the QoS buffer QoS

user's needs with respect to minimal costs. Data in ooy Ty Ty T

a category which has no preferences at(all= 0) An(DP, DY) = Zl (" (e®, D7) (8)
will be neglected. In the second part, the same xfy e o2
instance of the algorithm used for the critical data = (oY, D)

can be applied to the uncritical data. The algorithMryg minimization of eq. (5) leads to the highest satis-
also aims at maximizing the utility and chooses thegaction of the users needs with respect to cost and to
econo_m|ca||y best solution. . ) _ other users’ needs as well. If a user can send more data
In_adn‘ferent approach only the ut|I|t¥ will be maxi- D than wanted regarding a specific QoS class, this
mlzeql _regardless of the Q(_JS. There is no .pr_efergncgdditionm purchase power could be saved. Moreover, if
for critical data. The algorithm does not distinguish every user takes more RRG than wanted, the price wil

between critical and uncritical data. Therefore thejncrease, thus an equilibrium exists when all users aspire

algorithm is not separated into different parts andy, the tility wanted and not maximize the utility.
the main parameters are the utility functigfi” and To write the algorithm in a more overall compact

the preference parametesg™”. manner an additional description is needed. The function

To decide which BI$should bid for how many RRG g maps all the input to the proposed RRG allocation

the

IRA need information from each BiSabout the NP

techno-economical environment, specifically:
i) the efficiencyp;;” of the BIS which is defined as g9(x,y,1,4,D;"Y, BISPR) = (Nfiy’p> ;o (6)

the ratio of the numbeN;’;*"* of RRG won to the

b L whereas the BlSproperties are described by the 5-tuple:
numberN;’*” of RRG bidden:

N BISPR = (p;f;y,agf;y,Niy,N;"W,Ngf’W) . @)
y L

i T awub
Ny

Pf, 3) Generally, there does not exist a closed analytical rep-

resentation ofg. In fact, ¢ has to be estimated and
pY is a measure of how good the BIS works in the@pproximated. N

current EV and serves as a main parameter to decide €oming back to the goal opportunities G1 and G2,
whether this BIS could be bid for more/less RRG the algorithms can be written as an optimization problem

depending on high/low efficiency. with some side constraints (s.c.):
i) the pricep; payed for theN;";" RRG won. The Al cost™ — min _
IRA divides this price by the actual dafa;’;""* sent s.c.  A,(DP D) — min
in order to get a measuziﬁ;y of the cost per bit: s.C. ch”i'l»y»l’ =3, it (.7le;‘1=%1’
2,y criyy ) cri,Y,p
) o sc g (D ,BISPRZ> - (N ’ )
oY = @) Y ’
’ Dy j i
cost“"* — min
iii) the maximal numberN/, the numberN;/"* won s.c. Ay(Duertp pueri-a) — min
and the cumulative numbeN?“* won of RRG. s DRriue — oo (.’Nﬁicri,y,p)
The relationships between these figures are useful woriy werig.p
to predict the load of the celland to determine the s.c. g (Dl ’ »BISPRi> = (Nl,i s )

iv)

Moreover, the UPM provides the IRA with the prefer-
ence parameter@f;y which serve as parameters of the

increment/decrement of the€,";” RRG proposed to
the BIS by the IRA. For example, iy — N > At first, the algorithm will minimizeA,, which is the side
0, i.e., in case of more supply than demand, the IRAcondition (s.c.) to the cost minimization with respect to
will clearly prefer this RAT in comparison to another the critical data, that is, the minimization 4f, constricts
one assuming the other conditions are the same. the solution set of the cost minimization. The second part
the QoS classes supported by this RAT. is the same algorithm for the uncritical data regarding the
solution of the first part as side constraint.

Dropping the aspiration to fulfill the QoS and act
purely to satisfy the user’s needs, there is no preference

specific utility functions;,;* (alw.,%y’ ) The DCs of both {4/ the data categorized based on the QoS parameters:
the UL and DL side convey the categorized d&g”. A2 cost— min

Following the aforementioned two goals, the satisfaction s.c. Ap(D®P, D7) — min
, X . VAN ,

of the user's needs has to be quantized in order that the periuR 5 ( N””’y’p)

algorithm can optimize it. A measure of this satisfaction L i L

is defined as the quadratic utility error functiah,, s.c. g(DjY,BISPR;) = (Nfl?y’p>

that is the quadratic difference of the utility expected
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The optimal functiony,,; can be approximated by sev-
eral Artificial Intelligences(Als), like Bayesian learning
based on experience or knowledge based complex differ-
ential controller. For the last item, a possible realizatio
of IRA is shown in the following.

The differential strategy looks only 2 steps back into
the past, in order to exploit the tendency of the situation.
The aim of this algorithm is to decide the data allocation
per RAT based on his own information without using any
information about the other users behavior, because their
behavior are implicitly included in the own goods won
depending on the bids. Moreover, based on the very short-
time repetition a strategy is proposed whose execution is
very fast and linear in the number of bid strategies. The
difficulties are to predict the market behavior, to evaluate -
the bidding strategy performance and finally to make a

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 1, APRIL 2006

amount of dataD,,,,; is a proportionds2;
of the difference between the maximum data
Dnqz,; available for this RAT: and the amount

of data needed; r assigned in the last auction:
Dprop,i = (Dmax,i - Di,T) -opos + Di,T- (9)

prop
This is chosen, because the difference is a mea-
sure of the capacity which could be occupied
by the user terminal. To explore this capacity, a
fraction of this difference is added with respect
of the unknowledge of the other bidders’ market
behaviors. Moreover, this expression converges
t0 Diaz,; @ssuming always gaining the pro-
posed dataD; .
If the recommended tendency is negative <
0 the proposed amount of daid,, ., ; is the

decision. Therefore, the algorithm can be divided into
three steps:

S1 Based on the feedback of the bidding strategy, a
recommendation will be given wether the bidding
strategy is able to gain more data or not. The algo-
rithm recommends for each QoS cldsdink y and
categoryz. For the sake of simplicity these indices
will be neglected in the following. The criteria are
the tendencies of the efficiencigg,pr_1 and data
won D; r, D; r_; for the past two auctions before
T andT — 1. At first the difference of the data has
to be computed

data needed in the last auction reduced by a

fractional amount described by the parameter

neg -
Oprdy

= (1= 6prap)Dir. (10)

DPTOP-,i

S3 The proposed amounts of data based on the soft
decision reflect the relative weights to allocate the
real amounts of data in order to avoid redundancy
and consequently less utility and higher costs. Con-
cludingly, the amounts of data the IRA assigns to the
bidding strategies are, recalling that this is executed
for all QoS classed, links y and categoriesr

categoriesr:

AD;r=D;r—D;7r_1. (8)

A preliminary predecision which recommends the
data allocation tendencAD will be calculated
according to the following rules which can be seen
as a defuzzying approach:

- pr > pr-1 NAD;r > 0= AD; >0

- pT<pT71/\ADi,T >0=AD; <0

- PTZPT—l/\ADi,T <0=AD; <0

Dprop,i

Dy = Pt
Zi Dp7'0p7i

D. (11)

E. Bidding Strategy

The BIS bids periodically for RRG of RAT; in only
one cel] based on the argumentation in Section V. The
bidding strategy is independent of the RAT, thus for each
— pr < pr—1 AAD; 7 <0 = AD; >0 RAT; instances of the same bidding algorithm can be
— pr>0A pr_1 =nan= AD; >0 applied. Nevertheless, the bidding strategy can clearly be
That is if there is no intention possible becausedifferent and could be modified or exchanged in order to

the last but one efficiency is not available, butimprove the allocation if the performance is worse.

strategy will be awarded with a positive ten- data, because based on the application diversity of the
dency, otherwise not. different RATs the ASEV will differ. But, if a UT is
— pr=0Apr_1 =nan= AD, <0 connected to more cells of the same RAT simultaneously,
— pr =nan= AD; > 0 the ASEV can be quiet similar. Considering a soft han-
If there is no information about the last bidding dover scenario, the user will enter the new cell and the

strategy behavior, the algorithm assigns a posi"€W BIS instance can use the past experience of the old
tive tendency. neighborhood cell because of the continuous change.

S2 After making this hard decision the second part 1) Input: The bidding strategy needs informatidn

, Y H z,Yy
will quantize the tendencies in a data incremen-2P0Ut the user's preferenceg”, behaviors;"" and

T,y H
tation/decrementation resulting in a data proposaPurChase powei;”® provided by the UPM and the

Dprop,i- This can be seen as a consecutive soft decir-1umber N™ of RRG needed and calculated by the

sion. Taking into account a less computational, bugDGM. To incorporate the user’s behavior into the BIS,

efficient decision, the proposals will be determinedthe information should be available for all necessary QoS
without any Ioopé classes QoSand categories: and can be expressed by

1
— If a bidding strategy for RAT: got a positive ©se

tendencyAD; > 0, the positive recommended I={(a)Y,nY, ¢V, N> Lz, y) W,z y}  (12)
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Besides this user-based information, the BIS also receivesvailable during the calculation, because the other bids
information about past auctions as long as the UT attendsid_; are not known to biddef. The auction algorithm
to a proper cell. Depending on the AM implementation A has to be known to adjust and choose the most suitable
the BIS only gets information about the outcome of theBIS. Thus, ifbid_; are known N* = A; (bid;, bid_})
auction if it actively participates and not only listen. is a determined function of all bids and the minimum of
Furthermore, the allocation vectarbroadcasted by the A, can be calculated. Focusing on the multi-unit sealed-
EM offers information about the auction result and trans-bid auction only statistical parameters and functions of
mission. In turn, the EM decides about the degree othe other bidsbid_; like histograms can be used to
information a UT gets from the other users, to calculatepredict N by N¢. Therefore, the minimization can only
the bid vectorbid;. be reached by a bid vector with a certain probability.
After the computation, the BIS conveys the bid vector Additionally, the bidbid; which minimizes the cost
bid; to the AM. The AM gets the information for which can only be determined if all bids are known. Facing the
link y and QoS-claséthe user wants to bitl; per RRG ~ same problem as mentioned above, the ideal expression

for the numbedvl“fj_yi: has to be modified to work with the uncertainty of the
’ other bids. One opportunity is to choose this bid for which
bid; = X; (Nl”fﬂ,bj_yi,xj_yi,ljyi) (13) the maximum expected costs are minimal.

3) Algorithm Concepts: The optimization can fall
2) Goals: The bidding strategy can be designed topack on history, experience and current data. Different
fulfill two distinct goals, that is, Al) with and A2) Al methods can be applied like neuronal networks,
without respect to the QoS similar to the IDGM goal fuzzy logic, Bayesian networks, generic algorithms or a

opportunities: combination of them [2]. To implement the right Al is
Al) _ the questions of computational power, memory and data
bid™" € 87" = {bid| argmin,;qcggr COSE available. In the following two concepts of possible bid
s.c. 8§ = {bid| argminpig A, (N N")} strategies will be presented.

s.c.  budget constraint Bayes Optimal ClassifierThe Bayes optimal classifier

) A states, which classificatiobid of the new instance, i.e.,

bid? "< €8y = {bid| argming,;qeguer: CO_SI} auction, is most probable, given the dafa of past
s.c. 85" = {bid|argming;gegers Ay (N, N")} auctions [12]:

s.c. budget constraint . 1ot .
~ bid = bid“cri? bid"" = arg max > P(bid|hj) P(h;|D)  (14)
Ideally, this first opportunity chooses the bid which h;

minimizes the cost with respect t_o maximiz<_a the user’%hereashj is a hypothesis of the targeid®”! € S, .
nee_ds measured k¥, under the S|d_e constraint qf QOS An instancet can be described by the 5-tuple:
fulfilment and the budget constraint. The algorithm is

divided in two parts. First the bid vector propobdd“"*” E= (bid_j,Ni“j, T DS) , (15)
will be calculated for the critical RRG, then the proposed , .

bid vectorbid““’** regarding the uncritical RRG will be Including the other bidbid_;, the N*’; RRG won by the

determined depending on the result of the first part, e.g(.)thers, thev;* RRG won by it;elf, the reserve priceand
budget constraint. The bid vectdid““"? is the final the demand/supply informatioS. If ¢ is completely

+ jopt __ H
bid vector. For each part the bid will be computed whichknown thebid™” = c(¢) can be determined whereas
minimizes the cost with respect to maximize the user<() iS the mapping of the ideal algorithm of the bidding

needs under the side constraint of the budget constrainf'at€gy. The unawareness of the current bid and the

Without respect to the QoS, a bidding strategy doegorresponding RRG numbers, leads to an approximation
) . w _ s 3D H
not need to prioritize the RRG which should carry the®f ¢(§) by the hypothesig (N}“,r, DS) = bid” which

. . yopt . e
critical data. Thus, the algorithm is: is bid”" for a certain probability

A2) P (bid?|h (N, r, DS)) (16)
bid € S; = {bid| aI‘ngiIlbides2 COS'}
s.c. Sy = {bid|argmingiq A,(N", N®)} assumingh (N;*,r, DS) the valid hypothesis. In order
s.c. budget constraint to get a measure of the correctnesshafN*,r, DS),

The budget constraintan be both an integral limit over the probabilityP (4 (-,r, D.S)|D) that the hypothesis is

time to combat price peaks and an upper bound for eactorrect givenD has to be determined, e.g., if uses

bid depending on the QoS class Qashd categoryr.  histograms based on D, the accuracy has to be determined

The last proposal is simpler to implement, but cannotregarding the use as probability like (bid_;).

react flexibly if temporarily the prices are higher than The set of instances could be very large and sparse

these bounds resulting in a worse QoS fulfillment. during the auction sequence. Thus, if there are new
The minimization of the quadratic utility errak, of  instances for which there is no experience, the infor-

the N*¥ RRG won (ideal) andV¢ estimated (real) and mation of the others should be weighted and applied

the N™ RRG needed is the quantized maximization of theto the new instances if possible. One example could

user’s needs. BUv® is a future information which is not be the interpolation or extrapolation of the histogram
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H (bid_;|r, DS). Therefore, an additional condition will  Its aim is to find this reserve prieewhich maximizes
be included in eq. (16): the operators gaidr. Ideally, this can be mathematically

: , expressed by:
P = P (bid?|h (N2, 1, DSw) , (N2, 7, DSL)) 0 y

a7 r°P € S = {r|argmax G (j, BIS; (I;,7,DS), A)},
with N"¢,r. and DS, as the current parameters. Eq. " (19)
(17) describes the probability, thatid” is the optimal whereass depends on the action of the bidding strategies
bid using the hypothesis (N}*, r,,, DS,,), whereas the  BIS; including the numberN™ of RRG wanted and
actually current parametefsV,"“, ., DS.) differ from  the auction mechanism. Parts of this information are

the hypothesis onegN", 7., DSy, ). not available for the EM, because it is in future or
Finally, the Bayes Optimal Classifier in eq. (14) cannot accessible for the EM. Thus the optimal solution in
be written as: eg. (19) can only be approximated by exploiting past

information. The approximation results in choosing the

« yopt __ .
bid™" = arg max Y. PueP(h(mm DSn) D) rog appropriate hypothesgsin the hypotheses space:

1d€Bl DS
(18) P =h(t <to:Irpcy,A). (20)
Expectation ClassifierThe Expectation Classifier [2] ) ) _
replaces theN™ by its expectationN¢ = E{Nw}. The inputs of the hypotheses are the kind of auction

Additionally the minimum of the cost in the worst case MeéchanismA and the information triple/zpc. at the

will lead to thebid” proposed: time point¢ including all bid vectorsx;bid; of each
bidP € S¢7i = {bid|argminbidesgri max COSt b|dd_erj, the reserve pl’l(‘:e‘, and the outcome of the
s.c. S5 = {bid|argmingia A, (N“" N")} auction mechanismt (x ;bid;, r):

s.c. budget constraint Irpcos = (x;bidj, r, A (x;bid;, 7). (21)

_ I
bid? """ € Sueri — {bid|argming;qcguer max Cosl In contrast to the BIS the RPC knows &lid, thus the
ueri _ [h3 : N Iaresucri arn prediction of the future bidding behavior can be better

s.c. 83 = {bid|argming;qeger: Ay(N ,N™)} : q

s.c.  budget constraint estimated.

Based on the approximation @ from h the out-
gome r” only belongs to the solution se& with a
certain probabilityP (h|t < to : Irpc,, A) that his cor-
rect based on the experience of past auctions. There-

= bid = bid“""?

The hypothesis as defined include histograms which buil

upon D. If there is no value of the histogram available,

a weighted extrapolation/interpolation will provide expe .

rienceg of other initanc{soccurr)red P P fore, 7 belongs to the fuzzy set’ described by
The main difference between these two methods i%S’PrE.hﬁ;?O : IRP.C’“I_A))' This ¥ has to be chosen

either the decision according to the probability or the or whic IS maxima:

expectation. r? ={r € F|P (h|Vt < to : Irpc+,A) = max} (22)

) In [2] is a RPC proposed which possesses an integral

F. Economic Manager and a differential part. The integral part is responsible

The EM is logically located in the MAC of each forincorporating and for evaluating the importance of the
BS. lIts functionalities should represent the operator'sxperience. On the other hand, the differential part reacts
behavior. The main goal of an operator is to maximizeon shortterm actions on the market. In this algorithm the
his revenue which is reflected in the EM subentitieshypothesis will be implicitly evaluated and selected from
RPC and AM. Based on the EM’s location this systemthe proper hypothesis spaces.
is spatially distributed. Normally, the EMs of different 2) Auction MechanismThe AM should be designed
operators are not connected and work independently ab fulfill the high dynamic, repetition and minimum of
each other, but it can also be imagined that EMs of thesignaling effort. As discussed in [13], the multi-unit
same operator collaborate which increases the revenwsealed-bid auction is the most suitable regarding the
according to game theory [10]. The output of the EM,open and sequential multi-unit sealed-bid auctions. These
i.e., the allocation vector, is used to assign the users th&uctions belonging to the standard auctions can only be
resources and the transmission conditions, e.g., when twmpletely implemented into the system if the allocation
send at which channel. is ideal, that is each RRG can be assigned to DL or

The RPC is the leverage of the operator to influenc&JL independently of technical constraints. Otherwise,
the auction and the AM is the common known auctionthe allocation mechanism has to be adapted to these
mechanism. technical constraints in order to optimize the operator’s

1) Reserve Price CalculatorThe RPC is the same gain leading to a no-standard, but RAT standard specific
important entity comparable in Al, computational powerauction.
and decision emphasize as the BIS. In comparison to the The EM offers multiple RRG which are auctioned
BIS, the RPC can elaborate on more historical informasimultaneously. These RRG can be identical or may have
tion, because all bid vectoisid; and allocation vectors different evaluations, e.g., code auctioning in a CDMA
are accessible. system. For the sake of simplicity, the first method is
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valid in the following if nothing else is stated otherwise. I8
The EM broadcasts the announcement of the auction and

sends the reserve priceand the number of RRG offered. 091
The RAAs calculate the bid vectors and submit them to 0.8f
the EM. After collecting all bids, the AM calculates the 0.7

RRG allocation and assigns the RAAs won the proper
number of GRECSs. First, assuming no joint radio resource
optimization tool, the BS can only assign the UT RRG 0.5
from its RRG whether the channel is disturbed or not. 0.4l
Second, if there is a joint radio resource optimization
entity like JRRM in [11], GRECs interchanges between
BS are possiple under the premise that the operator does 02 -——2--— > 1600 2000 2400 2800
not reduce his revenue and the user gets an enhance( D, /bit

QoS. The allocation vector conveys to both the PHY and

scheduler in UL and DL to adjust the transmission entitiegig. 3. Scenario 1: Comparison of the equal IRA (dashed lare)
and to read out the data of the QoS buffers in UL andhe proposed IRA (solid line)

DL regarding the minimum utility error function.

0.3f

VIl. SIMULATION POISSON process characterized by the averaged arrival
ntl_jme 7, after sending a packet.

The proposed IRA algorithm which is responsible for
the assignment of the resources to the bidding strategies

The whole system is implemented in a discrete eve
simulation tool. The environment consists of two different
base stationd3.S;, B.S; and radio access technologies..

For each cell an economical managenf, and EM, is compared with the sq-called equal .IRA: The equal
is responsible for pricing, allocation and billing the cell IRA divides the categorized data equiportional to the

capacity Cynas 1 and Chyos 0. The capacities are auc- bidding strategies. This is the algorithm which does not
tioned by multi-unit sealed-bid discriminatory auctions.eXpIOit any information. In contrast to this, the proposed

The capacity ofBS; is two times the capacity oB.Ss. IRA tries to balance th(_e load for_ the biddin_g strategy
Both are clustered in RRGs, whereas each RRG can car .th.respect of the maximum available capC|ty_ and Fh.e
the same amount of data. For the sake of simplicity, bu idding startegy performance. It does not exploit explicit

without loss of generality, the channels are ideal. information of th? other UTs ma.rket pe_hawor.

A certain number of clientsV, attended both cells For the following two scenarios, it is assumed that
and all clients are capable for multi-homing, that is theyEM1 offers_ Nmaz,1 = 8RRG clusters 0fCinqs,1 and
are simultaneously connected to both base stations aﬁ:éarrespondmglyEMQ N,m‘“”? - 16_RRG‘ E?Ch clustgr
participate in both auctions. The auctions within bothC@N CamyDrra = 200bit resulting in a relative capacity
cells occurs contemporarely and the auction repetitior?m‘”%1 andCinas,2 depending on the auction perid:
is the same timel’y. Each Radio Auction Agent pos-
sesses one instance of the same bidding strategy for Ty
each auction. This bidding sFrate_g.y as prqposed in [Z]I'hat isBS; can transmit at mosit600b:t per auction and
learns _about the past by ma_un.talnmg an histogram a.”%sz at Most3200bit.
approximately calculates statistical measure to determin
a suitable bid vector which maximizes the fulfillment _
of the criteria. The utility functions are assumed to beA- Scenario 1
linear resulting in a risk-averse user behavior by account In this scenario there are certain number of clielts
both the critical and uncritical data. This involves that th The traffic into their QoS buffers is equal and the same as
scheduling algorithm and the DATA-GREC Mapping canthe minimum data rate of the Qo8.(1 = d¢,2 = dpmin)-
be executed in linear time to gain an optimal assignmenfThe minimum delay is1.7574. Consequently, after 2
The scheduler is responsible for reading out the data aductions without sending the data the QoS is injured
the QoS buffers and send it down to the PHY, whereaand the data will be removed from the buffers. The
the DGM maps the data of the QoS buffer into an optimabreferencesy and the maximum coSt8,,q, i+ per bit
RRG constellation satisfying the bid protocol policy. are randomly choosen. The relation of the preferences

The QoS is characterized by two parameters, a minee and maximum costs, ., »i+ are equivalent. Figure 3
imum data rated,,,;, and a minimum delay-,.;,. Two  shows the overall throughputdefined as the cumulative
cases of traffic has been considered: real-time and packdata sentD; in relation to the cumulative data needed
traffic. There are two scenarios in which for each of themD,, from the upper layer depending on the data needed
there are two QoS classégS; and QoSs. In the first  Dp, per UT and per auction peridtly for 3 to 6 clients
scenario both classes are real time traffic classes withttending the cells. For smalD,, the two allgorithms
incoming traffic data ratel.; and d.». In the second perform equal, because the load is as small as by equally
scenario theQoS; traffic is realtime and the input of dividing data to the® M; and the cells are not overloaded.
the QoS> buffer are packets arriving according to aThe graph of the equal IRA starts to decrease faster

Nmar,i ' DRRG (23)

Cmax,i =
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A system proposal is described in which the RRG

1 ‘
- - -equal IRA are priced, allocated and billed by a periodic auction
0.8} ——prop IRA sequence and CR abilities are applied. The UT possesses
the opportunity to split the traffic over more than one
0.965 _ RAT, thus services can be used by multi-homing.
= 0.94 APPENDIX |
0.2k N ABBREVIATIONS
Abb. [ Definition
0.9 BREN o Preference parameter
Al Artificial Intelligence
0885 800 D Jbit 700 800 AM Auction Mechanism
Tw? AS Auction Sequence
Fig. 4. Scenario 2: System behavior by mixed traffic QEEV gil:jctllzzt;equence EnVironment
BIS Bldding Strategy
than the proposed IRA if the load is now more than | BISPR | BIS PRoperties
2-Cynae.1 and thus losses occur. In this state the balancing | BS Base Station
functionality of the proposed IRA takes effect resulting | €€ Channel Coding
in an overall better capacity. Towards larfg-, the sum co MAC/PHY Control Overhead
of the capacities of all UTs exceed the sum@f,.. 1 CR Cognitive Radio
andC,,...2, therefore the performance of both algorithm | & Price per bit
converges. For example, consideuser, then the equal D Amount of data
IRA gets worse aB00bit /T4 and it approaches the graph | DCF Data Categorizing Function
of the proposed IRA at200bit/T 4. DGM Data GREC Mapping
N utility
. AF Acting Function
B. Scenario 2 EM Economic Manager
4 users will attend the cells and the QoS buffers | EV EnVironment
have different traffic.QoS; gets real time traffic with FPM Fixed Price Model
Dr, 1 = 400bit and data packtes arrive @S, with the Gl Gaining Information
durationT}, = 5Ty and the length oD, = 400bit - T},. GREC | General Resource Elementary Credi
The average arriving duration is exactly chosen to get [ Index of RAT
in averageDr, » = 400bit. That is the same averaged IDGM Inter Data GREC Mapping
load as for the constant rate case for which there is MAC Inter MAC
no performance difference of the algorithms. The mixed |RA Inter RRG Allocation
traffic as occuring for multl-servu_:e er_mtles qus not ] Index of user
possess a smpqth data rate over time, in fact it is bursty. "3JRRM T Joint Radio Resource Management
This load variation lowers the_performance of the. equal | Index of thel”™ QoS class
IRA to the proposed IRA. Figure 4 shows again the P Learning Process
overall throughpup: depending on the data needBég, - MAC Medium Access Control
per UT, per auction duration and p&osS,. Besides the i
performance difference, the graphs decrease for larger MOD MODulation
; N Number of RRG
Dr, o because if users send contemporarely, greater '
losses occur loss than for smallér;, » recalling the p Price —
storing of uncritical data. / P BIS eff|0|en_cy
r Reserve price
RAA RRG Auction Agent
RAT Radio Access Technology
VIII.  CONCLUSION RPC Reserve Price Calculator
The awareness and cognition of a CR allows to give | RRG | Radio Resource Goods
intelligent terminals responsibility to express the users | SNIR | Signal to Noise and Interference Ratio
needs, to fulfill the QoS and finally to satisfy the needs | SUBEV | SUBEnVironment
by evaluating the urgency to send the data. The multi-unit | UPM User Profile Manager
sealed-bid auction is suitable for short-term auctionmgi | UT User Terminal
communication systems and combines dynamic and local | UTID UT IDentification
RRG pricing, allocation and billing allowing to apply the x Index of data category
CR abilities. Yy Index of link {UL, DL}
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