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Abstract

In the computation of solid structures under long duration transient loading it is often advisable to treat parts of the

structure at least for some time of the analysis as rigid bodies. Such a procedure increases first the efficiency of the ana-

lysis considerably and second the numerical condition of the system of equations benefits substantially within the

numerical solution process. In particular structural modeling capabilities concerning boundary conditions and load

transfer are considerably extended compared to a straightforward modeling with rigid bodies. The parts assumed rigid

with small strains and sharing almost only a rigid body motion can be found in systems with high difference in stiffness

as well as in systems with modestly loaded parts.

A methodology based on the Energy Momentum Method is developed for creating occasionally rigid bodies within

the computation. A criterion based on strain rates is used to decide for the modification from flexible to rigid. For opti-

mal reduction of the number of degrees of freedom the rigid bodies are formulated using a transformation to minimal

coordinates, also called master slave concept. The numerical examples involving long duration motion and large rota-

tions demonstrate the possibilities of the developed procedure.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the computation of solid structures under long

duration transient loading it is often advisable to treat

parts of the flexible structure at least for some time of

the analysis as rigid. Such a procedure increases first

the overall efficiency of the analysis considerably and
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second the numerical condition of the system of equa-

tions benefits substantially within the numerical solution

process. The modeling as a rigid body has also more

advantages than an increase of the mesh coarseness, as

with a rigid body the boundary conditions and the distri-

bution of the masses can be further modeled with the

accuracy of the fine mesh whereas the final number of

degrees of freedom is considerably reduced. The parts

assumed to become rigid with small strains and sharing

almost only a rigid body motion can be found in systems

with large differences in stiffness as well as in systems

with modestly loaded parts.

Furthermore, the identification and visualization of

parts that behave almost as rigid bodies improve the
ed.

iv – Scientific Articles Repository) 
exte/1000006738 

mailto:karl.schweizerhof@bau-verm.uni-karlsruhe. de
mailto:karl.schweizerhof@bau-verm.uni-karlsruhe. de
http://www.ifm.uni-karlsruhe.de
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understanding of the basic dynamic behavior of a struc-

ture. Suitable continuous flexible structures can be re-

duced to simple multibody structures with the help of

interim results. In such a case the transition from the

originally completely deformable structure model to

the simplified rigid body model depends also on the

external load. The automatic setting to rigid can be used

particularly for systems in which the boundary condi-

tions (neither by external loading nor by support) do

not change too frequently.

The general procedure allows a complete adaptation

of the simulation model that can partially also be used

for an optimization of the structure. The method itself

represents in this case a combination of the Finite Ele-

ment Method and Rigid Body Dynamics. Thus the

points of interest concerning the proper selection resp.

definition as �rigid� parts are:

First: The detection of parts that are qualified to be

simplified to rigid bodies within the analysis

of the transient problem.

Second: The reduction of the data describing the

behavior of the actual flexible part to the data

describing the rigid body behavior.

Within the analysis, the rigid bodies are modeled by

reducing all data describing the motion of the corre-

sponding flexible structural part to the degrees of free-

dom of a rigid body. Therefore the structural parts to

be set to rigid are �frozen� at the actual configuration.

The fulfillment of linear and angular momentum should

be guaranteed when switching to rigid. However, there is

no perfect energy conservation possible in the process as

the model changes.

The necessary coupling can be realized by Penalty-,

Augmented Lagrange- or Lagrange Multiplier methods

which all have in common that the number of degrees of

freedom is mostly not optimally reduced and in addition

problems concerning the condition of the equation sys-

tems are introduced. Most of the cited problems can be

avoided by direct transformation to minimal coordinates

using nonlinear constraint conditions as described in [16].

Of vital importance is also a proper treatment of the com-

bined problem within the numerical time integration.

The coupling of rigid and flexible structures in the so-

called EnergyMomentumMethod using the Penalty pro-

cedure is described in [3–5]. A corresponding procedure

using Lagrange multipliers was worked out in detail in

[2,15] and can also be found in [10]. The latter article

includes an efficient formulation for the integration of

general constraint conditions on the basis of minimal

coordinates that are explained more closely in [8]. For

an extensive discussion we also refer to Göttlicher [6].

Because of the additional transformation work re-

quired for the reduction i.e. for reasons of numerical effi-
ciency, it is not recommended to set parts to rigid that

consist of individual or only few elements. Further the

setting to rigid of suitable parts of the structure might

produce configurations where rigid bodies are linked

to each other kinematically i.e. with joints of different

formation. As modeling the pertaining kinematics re-

quires quite laborious calculations, the formation of

kinematic rigid body chains should be avoided by omit-

ting to set parts of the structure to rigid that are within

the part of kinematic couplings. In this case, the rigid

bodies have no direct connection.

As time integration scheme the �Energy Momentum

Method� proposed by Simo et al. (see e.g. [13,14]) or

the implicit midpoint rule are suited, as it is important

for an efficient procedure, that accelerations are not part

of the weak form. Within the current contribution, we

will focus on the �Energy Momentum Method�. Its pro-
perty of fulfilling the conservation laws within the time

step makes it particularly suitable for long duration

analysis. If damping is introduced, which is advisable

to avoid high frequency effects, the numerical damping

scheme proposed by Armero and Petöcz [1] provides lin-

ear and angular momentum conservation. An expansion

to finite rotations of beams is presented in [9].

The flexible structures are modeled with displacement

based 3D continuum elements. Besides 3D-volume ele-

ments, the so called �solid-shell� elements (see e.g. [7]),

based on an enhancement of the strain, can be used

for the structural discretization, as they are formulated

with the same degrees of freedom. The formulation for

so-called enhanced elements within the Energy Momen-

tum Method is generally described in [12]). The motion

of the generated 3-D rigid bodies is described as usual

with three translational and three rotational degrees of

freedom. The modeling with arbitrarily connected flexi-

ble and rigid parts allows the handling of geometrically

nonlinear problems with arbitrarily large rotations. Fi-

nally, the application of the proposed modeling and

integration scheme is discussed using representative

numerical examples on the basis of geometrically nonlin-

ear 3D continuum problems.

The outline of the paper is as follows: In Section 2,

the time integration of the coupled structure with the

Energy Momentum Method is presented using a trans-

formation on minimal coordinates. In Section 3, the pro-

cedure for the automatic setting to rigid of a suitable

flexible part of the structure is outlined. In Section 4,

instructions for the calculation of the mass, for the cen-

ter of mass and for the inertia tensor of the parts of the

structure to be set to rigid are given. In Section 5, the

computation of the mass center velocities of the parts

of the structure that are to be set to rigid while conserv-

ing the linear and angular momentum is discussed. In

Section 6, a method is proposed that permits the realiza-

tion of energy conservation for the complete process
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throughout a repetitive process of setting to rigid and

resetting to flexible. In Section 7, numerical examples

with special emphasis on the fulfillment of the conserva-

tion laws and an overview over a complete modification

process from flexible to rigid and back to flexible are

given. Section 8 contains some concluding remarks.
2. Time integration of the coupled structure

As time integration scheme the so-called �Energy
Momentum Method� proposed by Simo et al. (see e.g.

[13,14]) is chosen. In the following section we describe

the time integration of the coupled rigid flexible system

in minimal coordinates with the Energy Momentum

Method with a specific reference to Zienkiewicz and

Taylor [16], Ibrahimbegovic et al. [10] and Ibrahimbego-

vic and Mamouri [8]. The formulation of the weak form

requires the expression of the displacement degrees of

freedom ug of the nodes of those flexible elements that

are directly adjacent to rigid bodies (in global coordi-

nates) by the translational and rotational degrees of free-

dom of the rigid body rs and hs for the discretized

structure in accordance with Fig. 1. Thus, the following

constraint conditions concerning displacements are re-

quired for e.g. node i:

zi :¼ ri þ ðRV i � V iÞ � ugi ¼ 0. ð1Þ

With R as the rotation tensor of the corresponding rigid

body and Vi the connection vector at the beginning of

the analysis at time 0.

In addition, the time derivative of Eq. (1) is required

for proper transformation of the mass matrix. This is the

constraint condition with regard to the velocities:

_zi :¼ _ri þ _RV i � _ugi ¼ 0;

_ri þ x� RV i � _ugi ¼ 0 ð2Þ

with the vector of the angular velocities x.
constraint

rigid flexible

Degrees of freedom

uncoupled system

conditions

Fig. 1. 3D continuum with partially rigid part. Reduction of de

displacement degrees of freedom for nodes of flexible elements.
For the description of the coupling within one-step

time integration procedures, the connection vector is as-

sumed from the center of mass of the rigid body to the

coupling node i in the time step as arithmetical mean

of its components at the beginning of the time step

(index n) and at the end of the time step (index n + 1).

vi;av ¼
1

2
ðvi;n þ vi;nþ1Þ ¼ RavV i. ð3Þ

Accordingly, the rotation tensor describing the spatial

rotation of the rigid body is defined as follows:

Rav ¼
1

2
ðRn þ Rnþ1Þ. ð4Þ

These pre-calculations lead to the virtual form of the

constraint conditions for the coupling of the node i to

the rigid body j as follows

dui ¼ drj � vi;av � dhj ¼ drj � v̂i;avdhj ð5Þ

with v̂i;av defined as the skew symmetric tensor to vi,av as

v̂i;av ¼
0 �vi;av;3 vi;av;2

vi;av;3 0 �vi;av;1
�vi;av;2 vi;av;1 0

2
64

3
75. ð6Þ

Only this approach allows the fulfillment of linear and

angular momentum and energy conservation within a

time step, see Chen [2] for the pertaining proofs.

In order to be able to formulate the virtual opera-

tions, as shown in Fig. 1, the vector of the degrees of dis-

placement and/or rotation freedom u is split into

uu ¼ ½uu1; . . . ; uunu �;
ug ¼ ½ug1; . . . ; ugng �;
rs ¼ ½rs1; h

s
1; . . . ; r

s
ns
; hsns �. ð7Þ

In this connection uu is composed of the nu node dis-

placement vectors of the uncoupled flexible parts of the

structure (not adjacent to a rigid body), ug is composed

of the ng nodal displacement vectors of the flexible parts
rigid flexible

 of

coupled system

grees of freedom by coupling with minimal coordinates. uu
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of the structure, directly located at the boundary of the

rigid body parts, and rs is composed of the ns displace-

ment and rotation vectors of the rigid bodies.

The momentum vector

p ¼ ½p1; . . . ; pnf � ¼ M _u ð8Þ

can analogously be split into the vectors pu, pg and ps.
The weak form of the momentum balance for the un-

loaded, coupled system discretized in space and time

leads for the uncoupled (u), coupled (g) and rigid parts

(s) to the following results:

dPu þ dPg þ dPs ¼ 0 ð9Þ

with the corresponding parts of the virtual form

dPuDt ¼ ðpunþ1 � punÞ � duu þ Dtf unþ1
2
� duu; ð10Þ

dPgDt ¼ ðpgnþ1 � pgnÞ � dug þ Dtf g
nþ1

2

� dug; ð11Þ

dPsDt ¼
Xns

j¼1
fM s

jð_rsj;nþ1 � _rsj;nÞ � drsj
þ ðI sj;nþ1;w

s
j;nþ1 � I sj;nw

s
j;nÞ � dh

s
jg. ð12Þ

In the portions of the virtual operations for each

node i coupled to the rigid body j, the displacements

of the nodes i can be eliminated using the constraint con-

dition (5) as follows:

f g
i;nþ1

2

� dugi ¼ f g
i;nþ1

2

� drsj þ ðvi;av � f g
i;nþ1

2

Þ � dhsj; ð13Þ

pgi � dugi ¼ pgi � drsj þ ðvi;av � pgi Þ � dhsj. ð14Þ

In the above equations, _rs and ws refer to the transla-

tional and rotational velocity vectors of the rigid bodies

centers of mass, Ms = ms, 13·3 refers to the (diagonal)

mass matrix and Is to the mass inertia tensor of the rigid

body. f u and f g refer to the nodal vectors of the residual

forces of the uncoupled resp. coupled degrees of free-

dom, evaluated in the middle between time n and n + 1.

2.1. Simplification for diagonal mass matrices

If the mass matrices of the flexible elements that are

adjacent to rigid bodies have diagonal structures, the

mass matrices of the rigid parts of the structure (includ-

ing the nodes coupled to them) and of the flexible parts

are consequently uncoupled in the mass matrix also after

the transformation to minimal coordinates. In the fol-

lowing we will take a look at the influence of the trans-

formation on the mass matrix at the end of the time step.

The nodal mass mi is coupled to the mass matrix of the

(uncoupled) rigid body j by means of the constraint con-

dition (14). The mass matrix of the rigid body is defined

as:

M s;u
nþ1 ¼

ms
j13�3 03�3

03�3 Isj;nþ1

 !

with the identity matrix 13·3. The introduction of the

momentum vector
pgi;nþ1 ¼ mi _u
g
i;nþ1

¼ mið_rsj;nþ1 þ v̂Ti;nþ1x
s
j;nþ1Þ because of (2) ð15Þ

in (14) leads to

pgi;nþ1 � du
g
i ¼ mi _r

s
j;nþ1 � drsj þ miv̂

T
i;nþ1x

s
j;nþ1 � drsj;nþ1

þ miv̂i;av _r
s
j;nþ1 � dh

s
j þ miv̂i;avv̂

T
i;nþ1x

s
j;nþ1 � dh

s
j.

ð16Þ

If this is inserted in (9), the enhanced mass matrix of the

rigid body is found as

M s;g
nþ1 ¼

ðms
j þ miÞ13�3 miv̂

T
i;nþ1

miv̂i;av miv̂i;avv̂
T
i;nþ1 þ I sj;nþ1

 !
. ð17Þ

The coupling terms between the mass portions for

displacements and rotations result from the fact that

the position of the rigid bodies center of mass changes

as a consequence of the coupling of a mass to the rigid

body. When using the constraint condition (14), the cen-

ter of mass of the original rigid body is continued to be

used as reference point, as it is done here.

2.2. Numerical damping

In the Energy Momentum Method [13], the weak

form of the momentum balance in the time step

tn ! tn+1 for an unloaded and undamped structure

becomes:

1

Dt

Z
B0

.0ð _unþ1 � _unÞ � dudV þ
Z
B0

F1
2
Sav : graddudV ¼ 0

ð18Þ

with

F1
2
¼ Fðu1

2
Þ; ð19Þ

u1
2
¼ 1

2
ðun þ unþ1Þ; ð20Þ

Sav ¼
1

2
ðSnþ1 þ SnÞ. ð21Þ

In these equations, F is the deformation gradient, S
the second Piola Kirchhoff stress tensor, .0 the density

and u the displacement vector. This approach allows

to prove linear and angular momentum as well as energy

conservation in the time step (see [13]) for St. Venant–

Kirchhoff material law.

As an extension, Armero and Petöcz [1] proposed the

following form to control energy dissipation by a mod-

ification of the second PK stress tensor introduced then

in (21), fulfilling linear and angular momentum

conservation:

S ¼ Sda ¼
1

2
� n

� �
Sn þ

1

2
þ n

� �
Snþ1

� �
. ð22Þ

For positive values of n energy is dissipated in parti-

cular for the higher modes.
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3. Procedure for the automatic setting of flexible

parts to rigid

The identification of flexible parts that can be set to

rigid requires the observation of the behavior of the

structure throughout a certain period of time. For an effi-

cient algorithm the time interval I = [t0, t0 + Tges] to be

integrated is subdivided into a sequence of Nred time inter-

vals T redn ¼ tn � tn�1 that consist for their part of Mred

time intervals Dtm = tm � tm�1 (of the time discretization

for the solution of the motion equation) resulting inZ t0þT ges

t0

½. . .�dt ¼
XN red

n¼1

Z tn

tn�1

½. . .�dt

¼
XN red

n¼1

XM red

m¼1

Z tm

tm�1

½. . .�dt. ð23Þ

Within each time interval Tred, the behavior of the struc-

ture is checked in each time step Dt on compliance with a

criterion that will be introduced in the following sec-

tions. At the end of the time interval, those flexible parts

of the structure are set to rigid that have always com-

plied with the criterion throughout the time interval.

If the boundary conditions (Dirichlet or Neumann)

should change, after individual parts have been set to

rigid, the rigid body system obtained up to this point

in time is in general not suitable for further analyses.

As the influence of such a change on the system can

hardly be estimated a priori, all rigid bodies have to be

dissolved in this case and the computation has to be

repeated for the time step in which the changes have

occurred. Afterwards, the algorithm of the setting to

rigid can be resumed. The course of the procedure is

presented in the flow diagram Fig. 2, and will be dis-

cussed in detail in the following sections.

3.1. Pre-conditions concerning the observation

period Tred

The choice of Tred should provide for the possibility

that the most undesirable event (greatest deviation from

the behavior of a rigid body) for the selected criterion

might occur during the observation period. This ensures

adequate conditions as with periodical vibration pro-

cesses for example, Tred must be greater than the dura-

tion of the period. As the examined processes are in

general not periodical and, as the duration of the period

is often unknown, even in case of periodical processes,

we can only recommend the fulfillment of the following

necessary conditions:

The value selected for the observation period Tred

should be larger than the duration of the period pertaining

(a) to the lowest (exited) natural frequency or

(b) to the lowest frequency of a modification of any

boundary condition.
3.2. Criterion for the identification of flexible parts
that behave like rigid bodies

A possible rigid body criterion to check the relative

deformations of a deformable body is: A part of the

structure is considered as a rigid body if the changes in

its geometry during the observed time interval Tred are

sufficiently small. The changes in geometry can be con-

trolled via the changes of the strains.

Accordingly, the normalized strain rate

and Structures 83 (2005) 2035–2051 2039
ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ðEnþ1 � EnÞ : ðEnþ1 � EnÞdV e

0

p
Dt V e

0

6 tol ð24Þ
is computed in each time interval for each flexible Fi-

nite Element. In this equation, En, En+1 are the Green

strain tensors at the beginning and at the end of the

time step, V e
0 refers to the initial element volume at

time 0. The criterion is objective, i.e. independent of

the rotations of the rigid body. With respect to the dis-

cretization in space and time, a dependency exists only

so far as the mean of the strain changes has to be taken

within the selected part of the structure and the se-

lected time domain. The criterion can be controlled

very efficiently as the values to build the element stiff-

ness matrices and residual vectors have to be computed

anyway. Merely the computation of the integral, of

which the weighting factors have to be determined any-

way, is required in addition. All elements that do not

comply with this criterion in any time step within Tred

are marked. After the end of the time interval Tred rigid

bodies can be build up from all elements that are not

marked.

3.3. Modification due to loading or contact of

rigid bodies

It should however be retained that the described pro-

cedure is not suitable to verify whether the reduction of

kinematics to the values of a rigid body after the setting

to rigid of a flexible part of the structure is admissible

within a continuing analysis. Only the entirely flexible

model is generally valid for the comprehensive determi-

nation of general changes of the loading or contact/

impact with other bodies, though even then the discreti-

zation should be adjusted. As internal stresses and

deformations cannot be computed for rigid bodies, the

model modified with rigid body parts looses its general

validity. Therefore, the parts previously set to rigid have

to be transformed back into flexible parts as is also shown

in the flow diagram. However, then we have to note that

even, when the full relative velocity distribution for the

obtained rigid bodies is stored in the analysis, there is

no unique way to regain the correct phase of the

vibration.



Fig. 2. Flow chart of a controlled setting of flexible parts to rigid.
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4. Rigid body data of the structure parts to be set

to rigid

As the parts to be set to rigid might contain strains

that could be significant for other subsequent analyses

e.g. they lead to a large deformation changing the shape

of the body considerably and maybe important for a

modified loading later, they are frozen in the current

configuration. By doing so the number of degrees of

freedom of each rigid part is reduced to 6 degrees of

freedom of the rigid body as shown in Fig. 3. The infor-

mation on the state of strain has to be stored immedi-

ately before the setting to rigid. In addition, further

required variables e.g. for the description of nonlinear
material behavior should also be stored. In case the

parts should be reset to flexible, their portion of the

strain energy of the total structure can be reconstructed

in a unique fashion different from the velocity terms.

This ensures that the analysis with the original FE mesh

can be continued without problems concerning the

strain energy.

We assume in the following sections that the flexible

parts are computed either completely with a consistent

mass matrix or completely with a diagonalized mass ma-

trix. It is not meaningful in this case to achieve the

decoupling of the rigid bodies mass matrices by assum-

ing a diagonalized mass matrix for the adjacent flexible

elements only, whereas for the remaining structure a



Fig. 3. Reduction of degrees of freedom after setting of parts to be rigid.
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consistent formulation will be used, because it is not

known in advance which parts will become rigid in the

course of the examination. In addition, the model is

not allowed to be modified in this respect during the

complete analysis, as this would otherwise affect the

angular momentum conservation.

In order to satisfy the angular momentum conserva-

tion, the computation of the rigid body data of previ-

ously flexible parts should always be based on the same

distribution of masses (consistent or lumped) as the com-

putation of the mass matrices of the flexible elements.

If in the course of an analysis the automatic setting to

rigid is carried out, it should be assumed that some rigid

parts may have existed before. Thus the rigid bodies for

the subsequent analysis will therefore in general not be

identical to the existing ones. Any change will only lead

to an increase of the rigid parts as the proposed proce-

dure will never lead to the dissolution of rigid parts ex-

cept when the boundary conditions are changed. It may

also happen that previously separated rigid bodies are

combined. This means that in case of any modification

the rigid body data of the rigid parts have to be recom-

puted from the original FE data as the direct restructur-

ing of the global mass matrix would be too complex.
5. Center of mass velocities of the structure parts

to be set to rigid

When transforming a flexible part into a rigid body,

the nodal velocities of the initially flexible part have to

be represented by the velocities and angular velocities

of the center of mass of the new rigid body. This also in-

volves the reduction of the velocity field. The velocity of

an arbitrary point i of the rigid body results from the

translational velocity _rs and the angular velocity xs of

the rigid body with the vector pointing from the center

of mass to the considered point vi, as follows

_ui ¼ _rs þ xs � vi. ð25Þ

If the mass center velocities are directly computed

from the nodal velocities using Eq. (25), strongly varying

results depending on the selection of the nodes are ob-

tained. The occurrence of high-frequency vibrations
with very small amplitudes may lead to considerable

deviations of the nodal velocities from the velocities of

a rigid body. An analysis using Eq. (25) that is based

on several arbitrarily selected nodes will therefore under

normal conditions not fulfill linear and angular momen-

tum balance between the original flexible state and the

modified rigid state.

5.1. Conservation of linear and angular momentum

The above observations suggest to include linear and

angular momentum conservation while determining the

mass center velocities for the system in a consistent fash-

ion. This leads to a 6 · 6 equation system for each rigid

body. Then, linear and angular momentum after the set-

ting to rigid can be computed either by means of the

mass center velocities and the rigid body data or through

the mass matrix of the system before the setting to rigid

and the mass center velocities converted on the nodes of

the original discretization, see Eq. (25).

Thus we get for the total structure:

Linear momentum conservation vL ¼ nL ð26Þ
Angular momentum conservation vJ ¼ nJ ð27Þ

with the index v top left referring to values immediately

before the setting to rigid and n accordingly to values

after the setting to rigid. As the global mass matrix of

a flexible system discretized with FE with n nodes can

also be represented by n2 3 · 3 node mass matrices Mij

with i, j � 1, . . . ,n, for a flexible system with n nodes, lin-

ear and angular momentum are given as:

L ¼
Xn
i¼1

Xn
j¼1

M ij _uj; ð28Þ

J ¼
Xn
i¼1

xi �
Xn
j¼1

M ij _uj

 !
. ð29Þ

When setting to rigid only the nodal velocity vectors

of the nodes of the subsequent rigid bodies change. For

this reason, only the pertaining portions have to be

compared concerning Eqs. (28) and (29). Thus

Eqs. (26) and (27) may be reduced to
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Xn
i¼1

Xnrb
j¼1

Xnjr
r¼1

M ir
v _ur ¼

Xn
i¼1

Xnrb
j¼1

Xnjr
r¼1

M ir
n _ur; ð30Þ

Xn
i¼1

xi �
Xnrb
j¼1

Xnjr
r¼1

M ir
v _ur

0
@

1
A

¼
Xn
i¼1

xi �
Xnrb
j¼1

Xnjr
r¼1

M ir
n _ur

0
@

1
A. ð31Þ

The index r is a pointer from node r to the currently

considered rigid body j with njr nodes. nrb rigid

bodies shall exist in the system. The sum can be split

up over all subsequent rigid body nodes in the above

double sum as no direct coupling between the rigid

bodies is allowed in the proposed strategy as outlined

in Section 1. Thus every nodal velocity _ur of rigid

body nodes can be assigned uniquely to one rigid

body.

The nodal velocities v _ur are known. The unknown no-

dal velocities n _ur will be expressed with Eq. (25) through

the unknown velocities _us resp. angular velocities xs of

the rigid bodies. Now Eqs. (30) and (31) are transformed

into
Xnrb
j¼1

Xn
i¼1

Xnjr
r¼1

M irð _usj þ xs
j � vjrÞ

2
4

3
5

¼
Xnrb
j¼1

Xn
i¼1

Xnjr
r¼1

M ir
v _ur

2
4

3
5; ð32Þ

Xnrb
j¼1

Xn
i¼1

xi �
Xnjr
r¼1

M irð _usj þ xs
j � vjrÞ

0
@

1
A

2
4

3
5

¼
Xnrb
j¼1

Xn
i¼1

xi �
Xnjr
r¼1

M ir
v _ur

0
@

1
A

2
4

3
5; ð33Þ
vjr refers to the vector from the mass center of the

subsequently created rigid body j to the considered

node r.

The equation system consisting of (32) and (33) can

now be evaluated separately for each rigid body. In each

case, an equation system with 6 equations and 6 un-

knowns results.

5.1.1. Flexible system with consistent mass matrix

As Eq. (33) can be determined separately for each

rigid body, a different reference point for the determina-

tion of the global angular momentum can consequently

be selected for each rigid body. If the center of mass of

the current rigid body is selected in the respective equa-

tion, then with the afore-mentioned definition for the

running index r, the equation system for the rigid body

j reads:
Xn
i¼1

Xnjr
r¼1

M ir M irðv̂jrÞ
T

v̂jiM ir v̂jiM irðv̂jrÞ
T

 !
_usj
xs

j

 !

¼
Xn
i¼1

Xnjr
r¼1

M ir
v _ur

v̂jiM ir
v _ur

� �
. ð34Þ

The 6 · 6 equation system to be solved is in general filled

and unsymmetrical. v̂ji is the skew symmetric tensor de-

fined in Eq. (6).

Remark. With Eq. (34), the rigid body data for a part

with n nodes can be developed from the consistent mass

matrix of this part. Then the index i runs exclusively

over rigid body nodes. The matrix on the left side

describes for such a part the mass matrix for an

arbitrary reference point b. vj refers to the vector from

this reference point to node j. The general equation for

the mass matrix becomes:

M tot ¼
Xn
i¼1

Xn
j¼1

M ij M ijðv̂bj Þ
T

v̂biM ij v̂biM ijðv̂bj Þ
T

 !

¼
ms13�3 03�3

03�3 I s

� �
. ð35Þ

Now, the rigid body data can be found through a di-

rect comparison of the components. As the nodal mass

matrices of the consistent mass matrix have the form

Mij = mij13·3, the comparison of the matrix elements

on top left in Eq. (35) results directly in:

ms ¼
1

3

Xn
i¼1

Xn
j¼1

mij. ð36Þ

A comparison of the portions on top right resp. on

bottom left in Eq. (35) leads to the following equation

after replacing vbi ¼ xi � xs for the center of mass as ref-

erence point:

xs ¼
Pn

i¼1

Pn
j¼1mijxj

ms
. ð37Þ

From the portion on bottom right in Eq. (35) directly

follows:

I s ¼
Xn
i¼1

Xn
j¼1

v̂siM ijðv̂sjÞ
T
. ð38Þ

From this equation the advantages of the selection of

the center of mass as reference point become obvious

providing as well the reduction of the entries of the sec-

ondary diagonals in the mass matrix to the smallest pos-

sible values as also the decoupling of the portions for

displacements and rotations. If the rigid body is, how-

ever, combined and coupled with flexible elements with

consistent mass matrices, coupling terms between dis-

placements and rotations become unavoidable.
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5.1.2. Flexible system with diagonal mass matrices

When using diagonal mass matrices, the mass matri-

ces of the rigid bodies are decoupled from those of the

remaining structure. In this case, the rigid body data

can be directly accounted for in the left side of (34). With

the mass ms
j and the inertia tensor I sj of the rigid body j

as well as the nodal mass mr for the rigid body node njr
before the setting to rigid, the following equation results:

ms
j13�3 03�3

03�3 I sj

 !
_usj
xs

j

 !
¼
Xnjr
r¼1

mr
v _ur

mr v̂
j
i
v _ur

� �
. ð39Þ

Then the equation system is decomposed into two

decoupled systems, a 3 · 3 equation system and three

equations with one unknown each.
6. Energy conservation within the total process

If a part of a flexible structure is set to rigid, e.g. at

time t1, the state of deformation is frozen at this point

in time, and the strain energy of this part of the structure

is stored in the newly generated rigid body. The kinetic

energy is transformed to the new rigid body as discussed

in Section 5. If this part is reset to flexible later in the

analysis, e.g. at time t2, the strain energy stored in the

rigid body can be completely reconstructed and be

restored to the part of the structure that has become

flexible again. The kinetic energy is then retransferred

with the help of Eq. (25). Within the following subsec-

tions we discuss under which pre-conditions this method

provides for the conservation of the total energy

throughout the total process of setting to rigid and reset-

ting to flexible.

Now the situation is described that a flexible part will

be transformed into a rigid body j at time t = t1. The

velocity of a node r of this flexible part is then v1 _ur. This
material point has now, immediately after the setting to

rigid using linear and angular momentum conservation,

the velocity n1 _ur. In general, it differs slightly from the

velocity v1 _ur of the initially flexible node, as the strain

rates in the part to be set to rigid are not exactly zero.

They are in compliance with the criterion (24) very small

but, however, unequal to zero.

The difference velocity

t1D _ur ¼ v1 _ur � n1 _ur ¼ v1 _ur � ð _usj þ xs
j � vrjÞt¼t1

ð40Þ

can now be stored for the time t1 < t < t2. It describes the

relative velocity of the nodes between the flexible and ri-

gid state at the time state of the modification. The rigid

body j is then e.g. retransformed into a flexible part at

time t = t2. Then immediately after the setting back to

flexible the velocity vector for the node r becomes:

n2 _ur ¼ v2 _ur þ t2D _ur

¼ ð _usj þ xs
j � vrjÞt¼t2

þ Rt1!t2
t1D _ur. ð41Þ
In this equation, the relative velocities are rotated

with the rigid body; Rt1!t2 refers to the rotation tensor

of the rigid body between the times t1 and t2. In the fol-

lowing section we will find out under which conditions

this method can ensure the conservation of the total en-

ergy of the flexible structure before and after the setting

to rigid. For this the following pre-conditions are

assumed:

(1) Energy conservation shall be ensured for the anal-

ysis of the structure with the rigid body in the time

interval t1 < t < t2 due to the time integration

method selected for this procedure.

(2) If a flexible part of the structure with D _ur ¼ 0 for

all nodes, i.e. with a purely static behavior, is set

to rigid and reset to flexible, energy conservation

is fulfilled for the conditions before and after the

setting to rigid. (In the rigid state the strain energy

is stored in the rigid body!)

Because of pre-condition (2) ensuring the conserva-

tion of the strain energy, proof must be furnished that

the difference of kinetic energies when setting to rigid

at time t1 is as large as the corresponding energy diff-

erence when setting to flexible at time t2. If it can be

shown, that adding the difference velocity D _ur to the

(recomputed) nodal velocities of the rigid body leads

to a difference in energy that only depends on D _ur
(and is therefore independent of the nodal velocities of

the rigid body that can change between t1 and t2), the de-

sired proof is established. In addition we have to note

that the phase correlation between the rigid body velo-

cities and the nodal velocities is lost.

6.1. Flexible system with diagonal mass matrix

In the case of diagonal mass matrices for the flexible

body parts, the diagonal mass matrices of the subse-

quently created rigid bodies are neither coupled to each

other nor to the mass matrices of the flexible parts. For

this reason, the modification of the kinetic energy that

occurs when flexible parts are set to rigid can be com-

puted separately for each rigid body. The modification

of the kinetic energy DK during the transformation of a

part with n nodes into a rigid body at time t becomes then

DK ¼ 1

2

Xn
r¼1

mrðt _ur þ tD _urÞ � ðt _ur þ tD _urÞ � mr
t _ur � t _ur½ �

¼ 1

2

Xn
r¼1

mrðtD _ur � tD _ur þ 2t _ur � tD _urÞ½ �

¼ 1

2

Xn
r¼1

mr
tD _ur � tD _ur ð42Þ

with the nodal velocity vectors _ur resulting from the

rigid body velocity and the velocity increment tD _ur



Fig. 4. Free flying rigid body, system, loading, algorithmic

information.
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representing the difference from _ur to the velocity of the

former flexible part. The mixed term in the second line

of Eq. (42) disappears, as we can write with the vector

vr from the center of mass to node r and the respective

velocity vectors t _us and txs of the center of mass:Xn
r¼1

mr
t _ur � tD _ur ¼

Xn
r¼1

mrðt _us þ txs � vrÞ � tD _ur

¼ t _us �
Xn
r¼1

mr
tD _ur

þ txs �
Xn
r¼1

mrðvr � tD _urÞ ¼ 0. ð43Þ

This is due to the fact that both sums describe the lin-

ear momentum resp. the angular momentum of the rigid

part based on the difference velocities of the nodes. As

the center of mass velocities have been determined satis-

fying the momentum conservation when setting to ri-

gid—see Section 5, especially (39), both portions must

consequently disappear by definition. As shown above

adding up D _ui to the nodal velocities _ui of the pertaining
rigid body always leads to the same kinetic energy

modification regardless of the components of _ui as far

as these describe the velocity condition of a rigid body.

As this is valid without restrictions analogously when

adding up the difference velocities after the resolution of

the rigid bodies, the described method ensures the con-

servation of the energy in the total process of setting

to rigid and resetting to flexible. It must be noted that

the kinetic energy is not modified by the rotation of

the vector of the differential velocities. Thus neither

linear and angular momentum conservation are affected

by the differential velocities, because of the procedure

described in Section 5.1.

It should be pointed out, however, that the lumped

mass concept leads to an error in the computation of

the moment of inertia (see [11]). The absolute values of

energy and angular momentum are affected by this

error. Nevertheless, conservation of these quantities

within a time step is guaranteed, using the �Energy
Momentum Method�.

6.2. Flexible system with consistent mass matrix

When using consistent mass matrices for the flexible

parts, the subsequent rigid and flexible parts are cou-

pling in the mass matrix. As a consequence, there are

coupled terms between the rigid body velocities and

the nodal velocities of adjacent still flexible parts, when

computing the kinetic energy. As the velocity vectors of

these flexible parts cannot be described via the center of

mass velocities of the rigid body (25), the terms consi-

dered in Eq. (43) will not disappear in this case. The en-

ergy frozen when a body is set to rigid is consequently

not identical in this case to the energy supplied when

resetting to flexible due to the afore-mentioned coupling
terms. Therefore, energy conservation in the total

process can in general not be achieved when consistent

mass matrices are used with the proposed rigidizing

procedure.
7. Numerical examples

7.1. Free-flying rotating body

In the following example, we will examine the dy-

namic behavior of a system consisting of a block and

a cantilever as shown in Fig. 4. Both structural parts

consist of the same material, for which a St.Venant–

Kirchhoff material law is used within the analysis.

As no boundary conditions are applied, the charac-

teristics of the proposed criterion concerning constant

strains caused by centrifugal forces as well as strain rates

caused by elastic behavior can be demonstrated in this

example. The specified, constant forces are applied to

the structure for the time interval t = 2s. The loading

of the left block is achieved through identical nodal

loads on all nodes on the top resp. bottom. To the can-

tilever, the force is applied in identical portions to the 20

nodes on the top side next to the free end. Thus the

external forces only generate an angular momentum

around the y-axis. The time integration is realized with

the Energy Momentum Method as described in Section

2. For demonstration purposes the rigid bodies are

retransformed to flexible parts after t = 500 s.
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Fig. 5. Deformed structure at defined points in time.
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The discussion of the solution focuses on the

consideration of the conservation rates as well as the

possibility to distinguish between time-independent and

time-dependent objective strains with the selected

criterion.

As the structure is rather soft, large strains with fairly

large strain rates occur immediately after the end of the

period during which the external forces were acting, thus

at (t > 2.0 s). In Fig. 5 these effects are shown for specific

points in time.

The deformation rates decay rapidly as a conse-

quence of the very strong numerical damping. The appli-
Fig. 6. Evolution of rigid (dark) and fle
cation of the rigid body identification check on possible

rigid parts in the time interval Tred leads to the succes-

sive formation of rigid parts within the structure. Fig.

6 shows the distribution of rigid and flexible parts at

particular points in time.

The numerical damping according to Armero and

Petöcz [1] applied in this case leads as expected to stron-

ger damping of high-frequency strain rates than of

low-frequency ones. The process of setting to rigid is

therefore determined by the slow decay of the ampli-

tudes generated by the bending vibrations of the cantile-

ver. These vibrations generate only small strain rates at

the free end of the block. Thus, the criterion leads to the

first possible rigid bodies in this part. In the transition

part between the block and the cantilever, high strain

rates occur as a result of the bending vibrations. There-

fore, this part remains flexible for almost the complete

time interval. The amplitudes of the strain rates resulting

from the bending vibrations are smaller at the end of the

cantilever than in the transition part to the block. They

are also smaller in the center of the cross-sections than

on the top or bottom surfaces. This explains the chrono-

logical order in which the rigid parts are generated. All

elements have complied in all time steps with the crite-

rion given in Eq. (24) between t = 410 s and t = 415 s

as can be seen in Fig. 6. The flexible elements still pres-

ent beyond t = 410 s cannot not be distorted any longer,

as all nodes of these elements are already linked to one
xible (light) parts in the structure.
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single rigid body, i.e. the degrees of freedom of the

system for t > 410 s are already reduced to the 6 degrees

of freedom of the rigid body.

As the structure still has stationary strains, even after

the decay of the strain rates, resulting from themass forces

generated by the rotation, these strains are frozen in the

rigid body for the case of a transformation back to flexi-

ble. This takes place at t = 500 s. The selection of the

parameters for the rigid-body criterion should be per-

formed such that the relatively slow strain changes result-

ing from the cantilever vibration can be detected.

Therefore, the observation time Tred should be selected

taking the duration of the period of this vibration into

account.

The energy curves in Fig. 7 show the very large

change between kinetic energy and strain energy after
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the end of the rather short period during which the

forces acted upon the structure. The total energy de-

creases rapidly during this phase as a result of the

numerical damping. However, the formation of the first

rigid parts is not visible in this figure. These parts are lo-

cated furthest away from the axis of rotation and there-

fore, contain hardly any time-dependent strains resulting

from the rotation of the total structure. The parts close

to the axis of rotation containing the major portion of

the time independent strains, are set to rigid in the time

domain 300 s < t < 415 s. Therefore, a relatively high

quantity of strain energy is taken out from the system

in the latter phase.

Kinetic and total energy are therefore finally identical

for the rotating rigid body (415 s < t < 500 s). The ki-

netic resp. strain energy stored in the rigid body as well
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as the total energy with respect to these energies are

clearly visible. The strain energy is recovered, when at

t = 500 s the rigid body is transformed back to a com-

pletely flexible part, using the procedure developed in

Section 6. As reference, the strain energy and total en-

ergy of an analysis without rigid parts is added to the

diagram. The creation of rigid bodies has a very small

effect on the development of the energies, as the damp-

ing cannot act on the frozen part of the strain energies

in the rigid bodies. As the tolerance criterion for the

transformation to rigid is very sharp, the mentioned dif-

ference will remain too small to be visible in the dia-

gram. The evolution of the angular momentum around

the global y-axis for the total structure given in Fig. 8

shows clearly—as proposed by Armero and Petöcz

[1]—that neither the numerical damping nor the cou-

pling nor the process of the automatic setting to rigid

or setting back to flexible is affecting the angular
Fig. 9. Spatial frame, system, boundary cond
momentum conservation. The course of the angular

momentum for the rigid parts gives a direct insight into

the transition from the flexible to the rigid structure.

Focussing on the angular momentum of a part of the

structure, we can see that even in case of a rigid body

rotation of the total system with angular momentum

conservation, the considered angular momentum de-

pends on the position relative to the global axes unless

the axis of rotation is identical to one of the global axes.

The uniform variations in the course of the angular

momentum shown in Fig. 8 are caused by the rotation

of the total system.

The diagram also contains the reduction of the num-

ber of degrees of freedom within the course of the analy-

sis from initially 1722 to the final 6 degrees of freedom of

the rigid body. The computation time for the interval

140 s < t < 500 s was reduced to 38% of the time needed

for a computation without rigid parts. The comparison
itions, loading, algorithmic information.
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of the results between an analysis with and without rigid

parts shows that neither the energies nor the angular mo-

menta are significantly affected by the proposed method.

So the physical behavior is computed correctly although

the computational expense is decreasing significantly.

7.2. Spatial frame with horizontal shock load

In this example, we will examine the dynamic behav-

ior of a frame structure consisting of a plate and four

columns. Again St.Venant–Kirchhoff material law is

used within the analysis.

The frame is loaded by a constant uniform surface

load acting on the side of the plate in x-direction for

0.0 s 6 t 6 0.05 s as shown in Fig. 9. As structure and

loading pattern are symmetric, symmetry boundary

conditions are applied and only half of the system is

analyzed. To ensure numerical stability, the Energy

Momentum Method described in Section 2 is chosen

in combination with numerical damping according to

Armero and Petöcz [1]. Due to the high natural frequen-

cies of this very stiff structure the time step size needs to

be rather small (Dt = 0.01 s) in order to compute the

strain rates with sufficient accuracy.

The following discussion focuses on the increase of

efficiency within the analysis, the error, occurring from

switching to rigid and the possibilities to study and visu-

alize the kinematic behavior of the oscillating structure.

In Fig. 10 the influence of the checking criterion (24)

on the total energy and the number of unknowns is

depicted. The oscillation of the energy curves is caused

by the horizontal vibration in x-direction which is the

first excited natural frequency. This vibration leads to

changing strain rates which again cause corresponding
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changes in the damping behavior. As the vibration en-

ergy is frozen in the rigid body, the fully elastic analysis

(crit = 0.0) shows the highest energy level. Obviously

higher values of the tolerance criterion lead to an earlier

creation of rigid elements and to a larger error in total

energy as the part of the energy that is �frozen� within
the rigid bodies increases. The lower end of the curves

is determined by the maximum number of rigid elements

within the structure.

Focussing on the curves for the tolerance criterion

crit = 0.00005 which show a very small energy error,

the first rigid part appears after t = 1.2 s. From this time

step to the end of the analysis at t = 2.4 s, the computa-

tion using rigid bodies only needs 18% of the time for a

fully elastic analysis.

At t = 2.4 s only the elements located at a Dirichlet

boundary condition remain elastic to prevent the deve-

lopment of kinematic chains. The latter are suppressed

within the proposed procedure as the solution of kine-

matic chains with a master slave concept is very ineffi-

cient. This is also shown in Fig. 11 at the symmetry

boundary conditions in the plate. Here the development

of rigid parts due to the decay of energy is presented. As

the numerical damping leads to stronger damping of

high frequency strain rates the first rigid parts appear

at the center of the plate. The dominating horizontal

vibration leads to a hinge like situation at the top and

the bottom of the columns. Therefore the middle parts

of the columns begin to turn to rigid. The process is fin-

ished when the number of rigid bodies is reduced to one

and all elements except the ones connected to the bound-

aries are rigid.

In order to compare the dynamic behavior with and

without rigid parts, amplitude spectra for one reference
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Fig. 11. Evolution of rigid (dark) and flexible (light) parts in the frame structure.
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point �a� at the frame are presented in Fig. 12. At time

t = 2.20 s the damping in an analysis with switching

to rigid and in a fully elastic one is set to zero. The dis-

placement of the reference point in x-direction is com-

puted for another eight seconds using a time step size
Dt = 0.002 s. A Fourier transformation on the displace-

ments computed with a transient analysis within

2.20 s 6 t 6 10.20 s leads to the presented spectrum.

As expected, after t = 2.20 s only the horizontal

vibration is left. Using rigid bodies, the frequency of
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the first mode has increased as parts with small strain

rates have lost their flexibility being modified to rigid.

The decay of the amplitude is caused by the loss of strain

energy within the rigid parts, combined with the higher

stiffness. Obviously the dominant dynamic behavior

concerning the x-motion in point a is not significantly

altered by the switching to rigid.
8. Conclusions

The intention of this contribution is to develop a pro-

cedure that allows the automatic identification of parts

in flexible structures that can be treated in the subse-

quent analysis approximately like rigid bodies as a direct

consequence of their mechanical behavior. In order to

find the appropriate model, the flexible parts of the

structure are analyzed during a defined period of time

on compliance with e.g. the proposed criterion that is

based on strain rates. If the strain rates of a particular

part of the structure are below a certain threshold during

the considered period, the part is set to rigid for the

subsequent analysis. The compliance with mechanical

conservation laws when changing the model is of partic-

ular importance in this context. The proposed method

allows the fulfillment of linear and angular momentum

conservation for the total system. As the strains of the

flexible parts that should be set to rigid are in general

not equal to zero the energy conservation is fulfilled at

the setting to rigid, only if the strain energy is somehow

stored in the rigid body. We have to note that though

the criterion is based on small strain rates, the strains

themselves do not necessarily have to be small. If the

rigid body is subsequently transformed back into a

flexible part, energy conservation can be achieved in
the total process of modifying the model twice. To

achieve this, the respective strains as well as the relative

velocities in the rigid body have to be stored as addi-

tional rigid body data. The numerical—fairly simple—

examples show that the developed procedure performs

very well.
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[1] Armero F, Petöcz E. Formulation and analyses of

conserving algorithms for frictionless dynamic contact/

impact problems. Comput Meth Appl Mech Eng

1998;158:269–300.

[2] Chen AJ. Energy–momentum conserving methods for

three dimensional dynamic nonlinear multibody systems.

PhD thesis, Division of mechanics and computation,

Stanford University, 1998.

[3] Garcia Orden JC, Goicolea JM. Non-frictional contacts in

multibody dynamics with conserving schemes. In: ECCM

1999, European Conference on Computational Mechanics,

Munich, Germany, 1999.

[4] Garcia Orden JC, Goicolea JM. Conserving properties in

constrained dynamics of flexible multibody systems. Mul-

tibody Syst Dyn 2000;4:225–44.

[5] Garcia Orden JC, Goicolea JM, Arribas JJ. Conserving

properties in multibody dynamics with the penalty method.

In: Computational Mechanics, New Trends and Applica-

tions, Barcelona, Spain, 1998.
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