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Abstract

Impacts in forced dynamic systems lead to non-smooth vibrations, showing a scenario of bifurcations. Mechanical and n
modelling is known for rigid body systems with distinct points of contact. In contrast, continuous systems can have a line of possible contact
As an example a vibrating beam with a delaminated layer will be considered. The objective is to establish a finite element formulation
stationary nonlinear oscillation arising from the evolution of impacts along the contact line between the delaminated layer and the r
beam. The objectives are focussed on the choice of the unknown values of a set of parameters that mainly describe energy d
A calibration of these parameters can be achieved by experimental results and by investigation of a minimal mechanical model.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Among mathematical and mechanical modelling as w
as experimental investigations, numerical simulation
been developed as an integral part of research in enginee
sciences. The results of suchsimulations depend on th
choice of several parameters and the sensitivity of both
model and the algorithm to these values. The parame
have to be calibrated by an experimental reference.

Sandwich materials are being increasingly used
engineering applications. The presence of damages
particular delaminations between adjacent plies, m
degrade the mechanical properties of a structure. Therefore
the ability of non-destructive testing and monitoring of
the structural integrity becomes an important issue [1,2].
There are many approaches for non-destructive evaluatio
structures from very different fields of science, e.g. acous
or ultrasonic methods [1] and vibration-based methods [2].
In the following, the vibration-based approach is consider
∗ Corresponding author. Tel.: +49 (0)721 608 2071; fax: +49 (0)721 608
7990.

E-mail address:mechanik@ifm.uni-karlsruhe.de(I. Müller).

0141-0296/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2004.10.003

tic
nse
y

EVA-STAR (Elektronisches Volltextar
http://digbib.ubka.uni-karlsruhe.de/vo
l

g

e
rs

n

f

.

Damage identification based upon changes in t
vibrational characteristics is one of the few metho
that monitor changes in the structure on a global bas
Currently available vibration-based methods are mos
linear methods, since these methods consider prope
of linear dynamic systems [2]. Experimental investigations
show that oscillations of delaminated structures a
dominated by nonlinear phenomena caused by unilate
constraints and impacts. The deliberate utilisation
these phenomena for the identification of delaminatio
is the crucialpoint of the present work. Furthermore, a
improvement of the efficiency of vibrational methods can
achieved by combining experimental methods and numer
simulation. Such model-dependent vibration-based meth
for damage identification needsuitable mechanical as well
as numerical models to capture the nonlinear phenom
within a stationary oscillation.

Previously published investigations which consid
nonlinear phenomena arising from delamination damages
are mostly aimed at capturing the vibrational characteris
during short-time processes, such as the transient respo
by impact loads [3]. Then, contact events are described b
chiv – Scientific Articles Repository) 
lltexte/1000006739 
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Fig. 1. Delaminated beam (measuring in mm).
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very simplified models, since there is a limited influenc
on the system behaviour within the short-time process
In contrast, the present work focuses on the modell
of dissipative, impact-like contact events within stationary
oscillations of a delaminated structure. In particular, th
suitable capturingof the energy dissipation during contac
is one essential premise for the accuracy of the numer
simulation,as can be seen later on.

The penalty method is a common procedure in t
FE formulation of bodies in contact (see e.g. [4,5]).
This method involves introducing a contact stiffness a
subsequently choosing a penaltyparameter. This procedure
can also be applied to oscillating systems where impa
occur during motion [6]. The observed energy loss du
to impact can be accounted for by introducing a conta
damper which implies the choice of a second pena
parameter. However, the two parameters cannot be cho
independently. Moreover, within the numerical integratio
of the equations of motion sufficiently small time steps have
to be taken for accurate description of all events in the time
interval during contact. This third parameter also depends o
the two other parameters, as has been shown in [7].

In the following the simulation of stationary nonlinea
oscillations arising from the evolution of impacts along
contact line is studied using finite element methods. T
aim of this paper is to illustrate the fundamental difficultie
and the procedure for the estimation of several numer
parameters tocapture the correct numerical result. The
considerations clarify that the set of appropriate parame
can be taken only from a small window. Leaving this ran
of parameters the computed type of motion is far aw
from the experimental reality. Summarising these facts
only an experimental reference can qualify a certain res
of computation to be correct. The work below has be
limited to the consideration of one typical type of oscillatio
discovered on delaminated structures. Here, the proced
of a systematical identification of numerical parameter
is outlined. The consideration is focussed on the m
important parameters for the present task which descr
energy dissipation.
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2. Experimental investigations

A sandwich beam with a distinct surface delamination
is considered as an example. In the stationary state o
forced motion, the gap betweenboth separated parts of th
beam opens and closes. This oscillation is dominated by
amount of energy dissipation due to the impact-like cont
phases. It is well known that externally excited vibro-
impacting systems have nounique solutions. Depending
on the system properties as well as the amplitude a
frequency of a harmonic excitation, a bifurcation scena
up to chaotic motion may occur. Thus, the calibration of
the three numerical parametersmentioned above is possible
only if information is given about the type of oscillation t
be analysed. The investigation in the following focuses on
the simplest type of motion, with identical input and outpu
frequency, without bifurcation and only one contact pha
during one period of excitation.

Experimental results allow the calibration of a
parameters needed for the numerical analysis. T
experimental setup and the geometrical quantities are giv
in Fig. 1.

The beam is made of aluminium with YOUNG’s modulus
E = 7.0 × 1010 N/m2 and density� = 2700 kg/m3. It is
suspended by soft springs at the nodes of the lowest natu
mode without contact. The given delamination is symmet
along the longitudinal axis of the beam with a maximum g
width of aboutgmax = 1 mm at thecentre. Vibrations are
induced by an uncontrolled shaker at one end of the be
In the present case, this excitation exhibits the characteristi
of a prescribed harmonic displacement. Low excitati
amplitudes lead to linear oscillations without conta
between the two delaminated parts. The correspond
lowest resonance frequency is 26.24 Hz. Internal dampin
in this case is very low. Experiments show a damping
coefficient of 0.4%. Taking the resonance frequency of t
linear system and increasing the amplitude of excitation
the value 1.5 mm causes periodic impacts which can
heard as continuous clapping. Displacements and velocities
of the two contacting points in the middle of the delaminat



I. Müller et al. / Engineering Structures 27 (2005) 191–201 193

f th
Fig. 2. Experimentally obtained time–displacement diagram (a) and phase curves (b) of the delaminated layer and the remaining beam at the middle oe
beam.
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zone are measured [8]. For the stationary oscillation, the
time response of the displacements (Fig. 2(a)) and the phase
curves (Fig. 2(b)) are obtained.

The delaminated layer and the remaining part of the be
move with the same frequency as the excitation. Only o
sudden impact occurs during one excitation period. T
following investigations focus on this type of oscillation.

3. Minimal model

A minimal mechanical model with 4 DOF is proposed t
obtain qualitative insight into the behaviour of the problem
under consideration. Especially, the influence of conta
damping on the numerical result is of major interest.

The minimal description consists of a beam model wi
four lumped masses. As can be seen inFig. 3, theouter intact
parts are assumed to be rigid. The inner delaminated parts
have the stiffnessesE I1 and E I2. All quantities are chosen
such that linear treatment gives a lowest natural frequen
of 26.24 Hz which coincides with the one obtained i
the experiment. The initial gap between these parts ha
constant width of 1 mm along the delamination.

Driving the system with sufficiently large amplitudes
discontinuities of the motion due to impacts occur leadin
to sudden changes of the velocitiesq̇2 andq̇3. The solution
must be patched together by a sequence of differ
states at unknown separation times which leads to t
strongly nonlinear behaviour of the system. The motion
characterised by three partial states, namely (1) a mot
where the remaining beam and the delaminated part
out of contact, (2) sudden impacts and (3) a motion wi
permanent contact of both subsystems.

The equations of motion valid for the time intervalt〈k〉
S ≤

t < t〈k〉
E of the 〈k〉-th state are given by a set of moda

equations

m̄i ẍi + d̄i ẋi + k̄i xi = f̄i (1)
Fig. 3. Minimal model with 4 DOF.

with i = 1(1)4 in thecase of a motion out of contact an
i = 5(1)7 for a motion in contact. Theseparation times
t〈k〉
S and t〈k〉

E of the 〈k〉-th state are determined from th
switching conditions. An impact law is needed for all thos
times when the two separated parts of the beam come
contact. The timet〈1〉

S characterises the very beginning o
the oscillation. Here, the initial conditions can be chos
arbitrarily. After a sufficiently large integration time, the
stationary solution is obtained. The general description o
the scheme of integration can be found in [9], in particular
the switching conditions for the several system states and t
computation procedure. Further details will be omitted he

Small excitation amplitudes lead to oscillations witho
contact. The results for this linear case can be easily co
puted and show 26.24 Hz as the lowest resonance freque
which is the same value as theexcitation frequency in the
experimental investigations. The amplitude of the forced e
citation is chosen such that the experimentally applied d
placement amplitude of̂q = 1.5 mm is obtained. More-
over, the internal damping 0.4% is taken from the experime
which was determined by the decrease of the amplitudes
the free vibration arranged on acorresponding undamaged
(linear) system. Therefore, only contact damping remains
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Fig. 4. Bifurcation diagram for the remaining beam (a) and the delaminated layer (b) depending on the coefficient of restitution.
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the unknown quantity. To simplify matters, NEWTON’s im-
pact formulation with a restitution coefficient 0≤ e ≤ 1
is used, wheree = 0 stands for maximum dissipation and
e = 1 for no dissipation. Moreover, the concentrated ma
m2 of the remaining beam is much larger than the massm3
of the delaminated layer. Thenthe velocity ofthe remaining
beam is hardly affected by any impact event. Thus, the m
m2 is assumed to be infinite concerning the computation of
the impact velocities. This is confirmed by the experimen
investigations.

Whent〈k〉
E is the time when an impact occurs, then the la

of impact reads

q̇〈k+1〉
2 = q̇〈k〉

2

for the velocity of the remaining beam,

q̇〈k+1〉
3 = q̇〈k〉

3 + (1 + e) (q̇〈k〉
2 − q̇〈k〉

3 )

for the velocity of the delaminated layer.

(2)

In this stage of approximation the problem is close
related to a ball bouncing on a sinusoidally vibratin
table [10]. It can therefore be expected that a bifurcation
scenario up to chaos exists. For this purpose, a bifurcat
diagram is needed. In contrast to common procedures,
excitation frequency and amplitude is kept constant while
the coefficient of restitutione is chosen as the controlling
parameter. The POINCARÉ section method isused to register
samples of responses of the displacementqi (nT), i = 2, 3
in a number ofn = 1000(1) 1100 excitation periodsT .

Fig. 4 shows the influence of contact damping on the
type of motion. A coefficient of restitution in the vicinity
of maximum loss of energye = 0 gives aunique solution.
Increasing the parametere, which corresponds to a decreas
in the energy loss, causes a bifurcation scenario w
intermittent windows of irregular motions.Fig. 5 exhibits
three typical phase curves for three exemplarily select
valuese = 0.05, e = 0.20 ande = 0.50. The time step
for all plots was chosen as�t = T

750, a rathersmall fraction
of the excitation periodT .
s

e

A closer look at the experimental result inFig. 2(b) and
a comparison with the numerical one given inFig. 5(a)
reveals that the numerical simulation based on the minim
model only provides aqualitative insight into the behaviour
of the system.The amplitudeq3 of the delaminated part
turns out to be too large. The minimal model contains only
a single point contact in the middle of the beam. Bot
neighbouring delaminated regions can move without a
constraints. Consequently, the sudden impact leads to a ju
of the velocity, which can be seen as a vertical line in th
phase plot.

In reality, during motion a contact line is continuousl
evolving from both ends of the delaminated region movin
toward the middle of thebeam.Fig. 2(b) shows a rapid but
continuous change of the velocity during the evolution o
contact. This continuous problem must be modelled, e
by FE methods. However, the minimal model provides a
essential hint concerning the numerical computation of t
delaminated beam problem by a regularised FE scheme:
amount of contact damping has a tremendous influence
the type of solution. Thus, the system’s response will b
highly sensitive to the choice of the parameters of the cont
model.

Additionally, there is another problem concerning th
determination of the transition times between state
of contact and no contact. The separation times we
determined with high precision by an iterative procedu
in all analyses mentioned above. It is knownthat incorrect
numerical determination of the separation times leads t
discrete numerical disturbances. Hence, depending on
size of the time step, the accuracy of the numerical resu
is limited.

As an example, the casee = 0.05 is considered
again.Fig. 6 exhibits a stationary phase plot of a quas
periodic motion gained by computations with an enlarge
time step�t = T

250 without determining the transition
times iteratively. The corresponding permanent numeric
disturbances lead to an inflation of the phase cur
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Fig. 5. Phase portraits for the delaminated layer and the remaining beam depending on the coefficient of restitutione ((a)e = 0.05, (b)e = 0.20, (c)e = 0.50.)
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(Fig. 5(a)) into a band as shown inFig. 6. This effect has
been discussed in detail in [11].

Physical disturbances lead to a similar development of t
stability scenario as shown in [11]. This type of disturbance
can also be expected in FE analyses, arising from high or
frequency oscillations induced by the impacts.

4. Finite element analyses

4.1. Finite element model

Within finite element programs, two methods based o
explicit (central differences) and implicit (NEWMARK type)
numerical time integration schemes are usually available to
compute the dynamic mechanical phenomena. Both meth
have second order accuracy with an appropriate choice of
NEWMARK schemeparameters, see e.g. [5].

The advantage of the implicit method is the possibili
to choose a relatively large time step without conflict wit
the stability of the numerical integration algorithm. Fo
nonlinear problems in each solution step a NEWTON type
r

s
eFig. 6. Phase portraits for the delaminated layer and the remaining bea
the casee = 0.05 for a large time step(�t = T/250) and without iteration
of transition times.

iteration is involved. Therefore, convergence problems m
occur. It iswell known that relatively large time steps lea
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Fig. 7. Two-dimensional model.
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to a large number of equilibrium iterations. Thus, for mos
nonlinear problems the choice of the time step depen
also strongly on the convergence rate within the equilibriu
iterations.

The central difference method is only conditionally
stable, which leads to very small time steps based on t
COURANT–FRIEDRICHS–LEWY [12] condition. But other
techniques developed to reduce the numerical effort with
the FE analysis, such as reducedintegration of the elements
together with correct stabilisation to prevent spurious mod
etc., make it advantageous for transient processes of sh
duration.

Two commercial finite element programs were chosen fo
pre-computation tests: LS-DYNA [16,17], which provides
a wide range of capabilities to control the solution within
an explicit integration, and ANSYS [15] with an implicit
NEWMARK integration. The goal of the computational
experiment is to find a periodical stable solution under th
external periodical excitation. A fairly long computation
time was therefore necessary.

As known from the experiments, the phenomena o
periodical impacts of the delaminated layer appear wi
relatively high frequency. Inthis case, a small time step
size is required even for the implicit method in order t
capture the contact–impact problem correctly. It was foun
from the computations that evenrelatively large time steps,
which would be efficient for the transient analysis of an
undamaged structure, lead to a large number of equilibriu
iterations in the case of the analysis of the delaminated beam.
This demands fairly long computing time. However, th
advantage of implicit schemes, the large time step size, is
longer present for the current problem. A test computatio
for the first second of the model time revealed the fact th
the implicit scheme was up to 10 times slower in compariso
with the explicit scheme. Thus, for the long duration process
in our example, the explicitscheme was chosen and all
further computations were made with LS-DYNA. The high
efficiency of LS-DYNA makes it possible to analyse a
problem within a quite long period of model time even
with very small time steps required for computation of the
stationary oscillation of the contact–impact problem.
rt

However, it is known that the numerical error, eve
for a linear system of ordinary differential equation
may increase distinctly in time, in particular for the high
frequency content of the solution. Additional artificia
damping is used as a possible approach to remove
high frequency response. This procedure is necessar
stabilise the solution concerning these frequencies and
achieve a stationary oscillation, since anyway these p
of the solution are poorly represented as a result of
discretisation.

The delaminated beam can be modelled in various wa
In the current contribution, a two-dimensional plane-stre
model is proposed, seeFig. 7.

Geometry and material parameters are taken according t
the experiment: YOUNG’s modulusE = 70× 103 MN/m2,
densityρ = 2700 kg/m3, POISSON’s ratio ν = 0.3. The
mesh consists of 582 plane-stress elements. The contact
(delaminated region) is modelled with 56 “master” elements
(on the remaining beam) and with 224 “slave” elements (on
the delaminated layer). The latter, higher number is the resul
of the finer spatial mesh necessary to correctly model
deformation behaviour of the delaminated layer.

As known from the experiment, a symmetrical motio
exists. Numerical experiments show a large sensitivity of
the solution in regard to boundary conditions. Therefo
the boundary conditions and excitations were chosen
enforce symmetry. The suspended nodes of the beam
therefore completely fixed(ux = 0, uy = 0) and all
nodes of the central section(x = 0) can move only in
the vertical direction(ux = 0). A prescribed harmonic
displacement is applied for excitation at the upper cen
node of the remaining beam. Its amplitude is chosen from
experimental measurement as 0.92 mm. A natural freque
of 26.51Hz is obtained with LS-DYNA for free oscillations
without contact. This value, which is sufficiently close to th
experimental result, is taken as excitation frequency of
vertically prescribed harmonic displacement.

The geometry of the initial gap (seeFig. 8) is modelled
by two cubic splines with horizontal tangents at the edg
and the middle of the delaminated zone. The maxim
gap width of gmax = 1 mm is located at the centre o



I. Müller et al. / Engineering Structures 27 (2005) 191–201 197

d

l
s.

e
nt

c
nd
ly

ng

of
he
ith
s f
ta
lk

he

th
f

s

r
cy
ng
r i

ia
ca
he
th
c f

s
ng

s

the

h
e

f
pe
ct

ct
o
lly

ient
be
on

d
ed
l

70
s
ct

ion

e
.

l
on

f

no
Fig. 8. Geometry of delamination gapwidth measured by experiments an
approximation in the numerical model.

delamination. This kind of characterisation allows a genera
modelling of the delamination gap for various example
Therefore, only the maximum gap widthgmax remains as
a quantity for any adjustment. In several regions of th
delamination some differences between the experime
and the modelled gap occur (seeFig. 8). As can be seen, a
small rectangular part of the gap arises along the interfa
of the delamination caused by the interrupted glue bo
However, its thickness appears hard to determine precise

4.2. Control parameters for contact definition in LS-DYNA

Several typical steps important for contact modelli
with LS-DYNA are discussed in [13,14,16] and [17]. As
known from the minimal model, contact damping is
great importance for the impact problem. Therefore, t
“surface-to-surface” penalty based contact element w
contact damping has been chosen. Important parameter
the contact element are the contact penalty and the con
damping. The contact penalty is proportional to the bu
elastic modulus of the contact body and can be furt
modified by a scale factorf . The contact dampingCcon is
defined as a percentage of the critical damping, where
critical dampingCcrit is obtained from the consideration o
the local contact conditions, see more in [16].

The RAY LEIGH damping in the standard form of mas
and stiffness proportional damping

C = αM + βK (3)

is definedby parametersα and β and must be added fo
stabilisation of the solution concerning the high frequen
content to establish stationary oscillations. Dampi
parameters have to be carefully chosen, in particula
velocity is needed as a result forthe further analysis. As
is known, poorly balanced damping can cause artific
oscillations, or vice versa, damps the main mechani
effect. In the current investigation, it is crucial because t
phase curve, which includes both the nodal velocity and
nodal displacement, was chosen as a main characteristi
the judgement of the results.

During analysis, a time step�tDy is automatically
computed in LS-DYNA by the stability criterion. It depend
on both the wave propagation velocity of the contacti
bodies (COURANT–FRIEDRICHS–LEWY criterion) and the
stiffness parameters of the contact. The time step�tDy can
al

e
.
.

or
ct

r

e

f

l
l

e
or

be modified either by enforcing it to be constant�tus or by
the scale factorf�t ≤ 1. In both cases it is controlled to
remain below the stability limit. Therefore, the time step i
given as

�t =
{

f�t · �tDy

min(�tus,�tDy)

}
. (4)

In summary, five parameters have to be chosen for
numerical computation, namelyα and β for RAY LEIGH

damping, a contact stiffness, a contact dampingCcon and
a time step�t . It is evident that experimental results suc
as those given inFig. 2 are necessary to calibrate thes
parameters.

4.3. Calibration of parameters

As is known from the minimal model, the amount o
contact damping plays the dominant role in regard to the ty
of motion. In addition, the contact stiffness and the conta
damping are closely interconnected. Decreasing the conta
stiffness while keeping the contact damping constant leads t
higher energy loss because the time of contact is artificia
increased. This will be the route to finding the correct set of
parameters.

Furthermore, the initial conditions for displacements and
velocities are assumed to be zero. Consequently, a trans
motion is encountered before a stationary state can
reached. The time interval for the transient state depends
the type of motion to be computed.

Some typical results are shown in the following. It shoul
be emphasised that many computations were perform
to obtain reasonable results. At the beginning, the globa
damping values were set toα = 5.0 andβ = 0.02, contact
dampingCcon was chosen as criticalCcrit, while the scale
factor for penaltyf was set to 0.10. The time step computed
by LS-DYNA as �t = 4.69 × 10−7 s was scaled with
parameterf�t = 0.66 to �t = 3.10 × 10−7 s. Fig. 9(b)
depicts the corresponding phase curves of approximately
excitation periods in a time range from 4.10 up to 6.74
which have been acquired on the two opposite conta
points at the centre section. In addition,Fig. 9(a) shows the
corresponding time response of approximately 10 excitat
periods. Obviously, the oscillation is irregular.

Now stif fness proportional damping is increased toα =
20.0 but the contact damping is lowered to 20% of th
critical value while keeping theother parameters unaltered
This leads to a bifurcated motion as shown inFig. 10. The
phase portraitsFig. 10(b) are depicted for a time interva
from 10.00 up to 12.64 s which corresponds to 70 excitati
periods.

Remembering the broad variety of different types o
motions shown in the bifurcation diagram (Fig. 4), it must
be emphasised here that the solution given inFigs. 9 and
10 could have been considered correct, if there was
informationfrom the experimental result.
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Fig. 9. Time responses (a) and phase portraits (b) for the delaminated layer and the remaining beam: irregular motion (parameter set:α = 5.0, β = 0.02,
f = 0.10,Ccon = Ccrit, �t = 3.10× 10−7 s).

Fig. 10. Time–displacement plots (a) and phase portraits (b) for the delaminated layer and the remaining beam: bifurcated motion (parameter set:α = 20.0,
β = 0.02, f = 0.10,Ccon = 0.2 Ccrit, �t = 3.10× 10−7 s).
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In order to increase contact damping, all parameters but
one valid for the result in Fig. 9are taken unmodified. Only
the penalty parameter is reduced by one power of ten to
f = 0.01. Low penalty parameters lead to a relative
large time for dissipation during contact. The result is a
quasi-periodical motion (Fig. 11, phase portraitsin the time
interval 2.00up to 4.64 s) with only one impact during
an excitation period. The oscillation qualitatively shows th
typical features of the one to be found in the experimen
result. The situation with these parameters is compara
to the result gained from the minimal model (seeFig. 5(a))
although the dissipation is not sufficiently large.

The last task is to find values for all parameters whi
provide a quantitatively correct result. For this purpose, t
values for theglobal damping as well as the value for th
contact damping are increased, corresponding to RAY LEIGH

dampingα = 500.0 andβ = 0.02 and contact dampingCcon
to be 5 times the critical one.
The result given inFig. 12 (phase portraits in the time
interval 2.00up to 4.64 s) indicates a periodical motio
without contact in the middle of the delaminated zon
considered to be the characteristic point. Contact occurs
neighbouring points, which can be seen from the disti
distortion of the time response of the delaminated lay
compared to a harmonic signal.

Summarising the previous computation results reve
that Fig. 11 shows a quasi-periodical solution which
is qualitatively close to the experiment. However, th
amplitudes of the delaminated layer are quite large in t
case. Increasing the damping parameterα in order to reduce
the size of this amplitude leads first to a bifurcated moti
(seeFig. 10) as a characteristic result for a certain rang
of damping. Subsequently, an oscillation without contact at
the middle point of the delamination follows (seeFig. 12).
In order to find the result correlating with the experimen
the computations were made by changing parameters in
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s

set
Fig. 11. Time–displacement plots (a) and phase portraits (b) for the delaminated layer and the remaining beam: quasi-periodical motion (parameteret:
α = 5.0, β = 0.02, f = 0.01,Ccon = Ccrit, �t = 3.10× 10−7 s).

Fig. 12. Time–displacement plots (a) and phase portraits (b) for the delaminated layer and the remaining beam: non-bifurcated motion (parameter:
α = 500.0, β = 0.02, f = 0.01,Ccon = 5.0 Ccrit, �t = 3.10× 10−7 s).
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following domain: 0 ≤ α ≤ 750, 0 ≤ β ≤ 1 and 0 ≤
Ccon ≤ 100Ccrit. Disregarding instable solutions, changing
both the contact dampingCcon and the damping parameter
α, β leads to the same characteristic motions, illustrat
by Figs. 10–12. Thequasi-periodical motion always occur
with a relatively large amplitude, as shown inFig. 11. This
disagreement may be due to an improper modelling of t
real mechanical system.

In order to handle this situation, the model is modifie
in a way that permits both contact along the length of the
whole delaminated zone and correct size of the amplitudes
This is performed in two steps. First, the maximum o
the geometrical gap width (seeFig. 8) is decreased to
the value gmax < 1.0 mm. Second, an option of the
program LS-DYNA to define the penetration via a uniform
specific distance shifts from the real geometrical surface
is employed. This shift is added to the geometrical gap
width to achieve a maximum aperture of 1.0 mm in a w
that s = 1.0 mm− gmax. Thus, the shape of the arising
gap is influenced in a way thatleads to a closer agreemen
concerning the description of the real mechanical behaviou
of the system under consideration. A physical justificati
of the procedure described above lies in the fact that the
amount of energy dissipation during one contact even
not constant along the delamination. Impact-like conta
accompanied by strong energy dissipation only occur i
region close to the centre section of the delamination.
contrast, on the edge of the delamination the amoun
energy loss is considerably lower. Moreover, the unifo
shif t partly represents the interrupted clue bond along
delamination which has not yet been sufficiently taken in
account (seeFig. 8). These two facts are captured by th
modified description of the delamination gap.
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Fig. 13. Time–displacement diagrams for the delaminated layer and the remaining beam: (a) unmodified model(gmax = 1.0 mm), (b) model with modified
gap(gmax = 0.5 mm) (parameter set:α = 500.0, β = 0.02, f = 0.01,Ccon = 5.0 Ccrit, �t = 3.10× 10−7 s).

Fig. 14. Time–displacement diagram (a) and phase portraits (b) for the stationary motion of the delaminated layer and the remaining beam: sufficiently accurate
result by modified model(gmax = 0.20 mm) (parameter set:α = 500.0, β = 0.02, f = 0.01,Ccon = 5.0 Ccrit, �t = 9.38× 10−8 s).
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In order to investigate the influence of the procedu
described above on the results of the simulation additio
computations were performed. For this purpose
numerical parameters are chosen to remain identical
given in Fig. 12. Fig. 13 shows a comparison of the result
with the pure geometrical gapgmax = 1.0 mm (seeFig. 12)
and a modified gapwith gmax = 0.5 mm. Ascan be seen
from Fig. 13(b) the modified model affects a contact eve
in the central section of delamination. However, the fi
time of contact within an excitation period is slightly shifte
compared to the experimental result (Fig. 2). Thus, the shape
of the gap turns out to be an additional parameter w
limited influence on the results of the simulation.

Finally, a combination of a geometrical gap widthgmax =
0.20 mm and a shifts = 0.80 mm allows to capture the
experimental result as shown inFig. 14. Again, all numerical
parameters are kept unaltered compared toFig. 12. Only
the time step size was decreased to determine the con
l

s

ct

times with sufficient accuracy. It is chosen to be constant
�t = 9.38 × 10−8 s. Fig. 14 depicts the time response o
approximately 5 excitation periods and the phase curves
the time interval of 70 excitation periods from 25.0 up t
27.64 s.

Comparing the result withthe experimental one (see
Fig. 2(b)) shows quantitatively sufficient conformity in the
shape as well as in the amplitudes of the displacements a
velocities.

Hence, the numerical parameters are calibrated now
the treated type of motion on the basis of the experimenta
results. Low penalty stiffness in combination with large
penalty damping leads to the necessary amount of ene
dissipation during contact. Small time steps within the
integration give orbitally stable results. The considered ty
of motion with one strong impact during the excitation
period is one of the most preferred types in regard to t
experimental identification process. Due to this fact it can
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re
expected that the set of parameters calibrated above remains
approximately constant for similar oscillations.

The present contribution reveals the difficulties
obtaining the experimentally proved results, especially
the simulation of the stationary regime in vibro-impacting
systems by means of industrial numerical approach
Several numerical parameters needed for the simula
have to be chosen carefully since the set of appropr
parameters almost appears in asmall window. Their correct
choice depends strongly on detailed information from
experimental reference.

5. Conclusions

This contribution describes a first investigation showi
the main difficulties arising from the natural desire
achieve numerical results as close as possible to
experimental ones. A stationary vibro-impacting motio
of a delaminated beam, which can be observed du
experiments, is chosen for this purpose. The main crite
for the numerical model are robustness of the solut
and efficiency concerning computing time. Thus, from t
variety of numerical models, an explicit time integration
scheme combined with a finite element model is chosen
Accessibility of both extensive experimental and numeri
results provide the presupposition to achieve this goal.

Besides the usual geometrical process of numeric
modelling, such as choosing element type, mesh den
etc., a set of additional numerical parameters are neces
to model the contact–impact problem. This set consists
five parameters primarily defining stiffness and dampi
of the system, which are closely interconnected. Th
five parameters appear to govern the type of motion
the numerical simulation result. In order to estimate t
parameters, an experimentallyobtained reference is neede
As a remarkable result a broad variety of the behaviou
of the numerical system, including regular, bifurcated a
irregular motions was observed. In order to obtain not o
qualitatively but also quantitatively correct results, havin
the chosen numerical model at hand, a time consum
process of parameter estimation was necessary. Finally
an additional parameter that adjusts the shape of
delamination gap was the key to achieve also a quantitativ
correct solution based on the before calibrated fundame
type of motion correlated with the experiment.

A simple 4-DOF mechanical model was found very he
ful to capture the characteristic numerical motions and to
give a direction of changing these five parameters in the full
.
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finite element model. Finally, success was achieved concer
ing the comparison of experimental and numerical result
but it was also found that these parameters can only be ta
from a rather small window. The treated example reve
also the numerical sensitivity concerning the simulation
stationary oscillations of vibro-impacting systems.
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