First published in:

Available online at www.sciencedirect.com

ccrence ()oinects ENGINEERING
@ QTRUCTURES

ELSEVIER Engineering Structures 27 (2005) 191-201

www.elsever.com/locate/engstruct

Paameter estimation for finite elememntalyses of stationary oscillations
of a vibro-impacting system

Ingolf Muller*, Alexander Konyukhov, Peter Vielsack, Karl Schweizerhof

Institute of Mechanics, University of Karlsruhe, D-76131 Karlsruhe, Germany

Received 16 April 2004; received in revised form 5 October 2004; accepted 6 October 2004

Available online 18 November 2004

Abstract

Impacts in forced dynamic systems lead to non-smooth vibrations, showing a scenario of bifurcations. Mechanical and numerical
modelling is known for rigid body systems withgtiinct points of contact. In corgst, continuous systems can bavline of possible contact.
As an example a vibrating beam with a delaminated layer will beideresl. The objective is to establish a finite element formulation for
stationary nonlinear oscillation arising from the evolution of impacts along the contact line between the delaminated layer and the remaining
beam. The objectives are focussed on the choice of the unknown values of a set of parameters that mainly describe energy dissipation.
A calibration of these parameters can be achieved by experimental results and by investigation of a minimal mechanical model.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction Damage identification based upon changes in the
vibrational characteristics is one of the few methods
Among mathematical and mechanical modelling as well that monitor dlanges in the structure on a global basis.
as experimental investigations, numerical simulation has Currently available vibration-based methods are mostly
been developed as an integral part of research in engineeringinear methods, since these methods consider properties
sciences. The results of susiimulations depend on the  of linear dynamic systems]. Experimental investigations
choice of several parameters and the sensitivity of both theshow that oscillations of delaminated structures are
model and the algorithm to these values. The parametersjominated by nonlinear phenomena caused by unilateral
have to be calibrated by an experimental reference. constraints and impacts. The deliberate utilisation of
Sandwich materials are being increasingly used in these phenomena for the identification of delaminations
engineering appl'lcat.lons. The presence of damages, Nis the crucialpoint of the present work. Furthermore, an
particular delaminations between adjacent plies, may jmnrovement of the efficiency of vibrational methods can be
degrade the mechanical propes of a structure. Therefore, . piayeq by combining experimental methods and numerical
the ability of non-destructy ®sting and monitoring of g iation. Such model-dependent vibration-based methods

the structural integrity becomes an importqnt issm,@][' for damage identification neesuiitable nechanical as well
There are many apprgachesfprnon-degtructwe evaluatlon Ofas numerical models to capture the nonlinear phenomena
structues from very different fields of science, e.g. acoustic within a stationary oscillation
or ultrasonic methodsl] and vibration-based methodg][ '

In the following, the vibration-based approach is considered. ~ Previously published investigations which consider
nonlinear phenomena arising fmodekmination damages

~* Comespondi thor. Tel.: +49 (01721 608 2071: fax: 449 (V721 608 are mostly aimed at capturing the vibrational characteristic
. ot ) L+ . . .
7990.°rre5p0n g aufnor. 1€ © X © during short-time processes, such as the transient response
E-mail addressmechanik@ifm.uni-kdsruhe.de(l. Miller). by impact loads [B Then, contact events are described by
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Fig. 1. Delaminated beam (measuring in mm).

very simgified models, since there is a limited influence 2. Experimental investigations

on the system behaviourithin the short-time process.

In contrast, the present work focuses on the modelling o sendwich beam ith a distinct surface delamination
of dissipative, impact-like coatt events within stationary s considered as an example. In the stationary state of a
oxcillations of a delaminated structure. In particular, the t5,ced motion. the gap betwednth separated parts of the
suitable capturingf the energy dissipation during contact peam gpens and closes. This oscillation is dominated by the
is one essential premise for the accuracy of the numerical 3 ount of energy dissipation due to the impact-like contact

simulation,as can be seen later on. _ phases. It is well known that eernally excited vibro-
The penalty method is a common procedure in the jmpacting systems have nenique solutions. Depending
FE formulation of bodies in contact (see e.gd.d). on the system properties as well as the amplitude and

This method involves introducing a contact stiffness and frequency of a harmonic excitation, a bifurcation scenario
subsequently choosing a penaftgrameter. This procedure yp to chaotic motion may occuThus, the caliketion of
can also be applied to oscillating systems where impactsthe three numerical parametenentioned above is possible
occur during motion §]. The observed energy loss due only if information is given about the type of oscillation to
to impact can be accounted for by introducing a contact pe analysed. The instigation in the following focuses on
damper which implies the choice of a second penalty the smplest type of motion, with identical input and output

parameter. However, the two parameters cannot be chosefrequency, without bifurcation and only one contact phase
independently. Moreover, within the numerical integration during one period of excitation.

of the equations of motion suffently small time steps have Experimental results allow the calibration of all
to be taken for accurate desdign of all events in the time  parameters needed for the numerical analysis. The
interval during contacfThis third parameter also depends on  experimental setup and the geometrical quantities are given
the two other parameters, as has been showrin [ in Fig. 1

In the fdlowing the simulation of stationary nonlinear The beam is made of aluminium withdUNG's modulus
oxillations arising from the evolution of impacts along a E = 7.0 x 10'° N/m? and densityp = 2700 kgm®. It is
contact line is studied using finite element methods. The suspended by soft springs at the nodes of the lowest natural
aim of this paper is to illustrate the fundamental difficulties mode without contact. The given delamination is symmetric
and the procedure for the estimation of several numerical along the longitudinal axis of the beam with a maximum gap
parameters tacapture the correct nuenical result. The  width of aboutgmax = 1 mm at thecentre. Vibrations are
considerations clarify that the set of appropriate parametersinduced by an uncontrolled shaker at one end of the beam.
can be taken only from a small window. Leaving this range In the present case,ithexcitation exhibits the characteristic
of parameters the computed type of motion is far away of a prescribed harmonic displacement. Low excitation
from the experimental reality. Summarising these facts, amplitudes lead to linear oscillations without contact
only an experimental reference can qualify a certain result between the two delaminated parts. The corresponding
of computation to be correct. The work below has been lowest resonace frequency is 26.24 Hz. Internal damping
limited to the consideration of one typical type of oscillation in this case is very low. Expignents show a damping
discovered on delaminated structures. Here, the procedurecoefficient of 0.4%. Taking the resonance frequency of the
of a systematial identification of numerical parameters linear system and increasing the amplitude of excitation to
is outlined. The consideration is focussed on the most the value 1.5 mm causes periodic impacts which can be
important parameters for the present task which describe heard as continuous clapping.dpiacements and velocities
energy dissipation. of the two contacting points in the middle of the delaminated
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Fig. 2. Experimentally obtained time—displacement diagram (a) and phasesdiijvof the delaminated layer and the remaining beam at the middle of th
beam.

zone are measured][ For the stationary oscillation, the M bl e El, m, El s ™
time response of the displacemerfgy( 2(a)) and the phase ® | 4 1 ® 1
curves Fig. 2(b)) are obtained. El, m,
The delaminated layer and the remaining part of the beam . 1200
move with the same frequency as the excitation. Only one ‘ ' 3000

sudden impact occurs during one excitation period. The
following investigations focus on this type of oscillation.

3. Minimal model

A minimal mechanical model with 4 DOF is proposed to
obtain qualitative insight into the behaviour of the problem Fig. 3. Minimal model with 4 DOF.
under consideration. Especially, the influence of contact
damping on the numerical result is of major interest.

The minimal description consists of a beam model with W'th '5_1 %(3)4 in thtecase of atmct)tlt_)r?] out of ctontatct and
four lumped masses. As can be seeRim 3 theouter intact ® ( )(k> or a fotion n contact. esepa_lra lon times
parts are assumed to be rigichd inner delaminated parts s andtg’ of the (k)-th state are determined from the
have tfe diffnessesE I; and E I,. All quantities are chosen switching conditions. An impact law is needed for all thoge
such that linear treatment gives a lowest natural frequencyimes when the tWO separated parts of the beam come into
of 26.24 Hz which coincides with the one obtained in contact. The tima§’ characterises the very beginning of
the experiment. The initial gap between these parts has athe oscillation. Here, the initial conditions can be chosen
constant width of 1 mm along the delamination. arbitrarily. After a sufficiently large integration time, the

Driving the System with Sufﬁcienﬂy |arge amplitudeS, Stationary Solqtioné Ok-)tained. The gene_l’al_descr_iption of
discontinuities of the motion due to impacts occur leading the sheme of integration can be found i8][in patticular
to sudden changes of the velocitigsandds. The sdution the switching conditins for the several system states and the
must be patched together by a sequence of diﬂ’erentcomputaﬁon procedure. Further details will be omitted here.
states at unknown Separation times which leads to the Small excitation amplitudes lead to oscillations without
stongly nonlinear behaviour of the system. The motion is contact. The results for this linear case can be easily com-
characterised by three partial states, namely (1) a motionPuted and show 26.24 Hz as the lowest resonance frequency
where the remaining beam and the delaminated part arewhich is the same value as tleedtation frequewcy in the

out of contact, (2) sudden impacts and (3) a motion with e)(perimental investigations. The amplitude of the forced ex-
permanent contact of both subsystems. citation is chosen such that the experimentally applied dis-

The equations of motion valid for the time inter\iré‘l> < placement amplitude off = 1.5 mm is obtained. More-
t < t% of the (k)-th state are given by a set of modal over, themérnalda_mplng 0.4% is taken from the exp(_arlment
equatigns which was de’Fermmed by the decrease of_ the amplitudes of
the free vibration arranged on @rresponding undamaged
mi% +dix +kx = fi D (linear) system. Therefore, only contact damping remains as
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Fig. 4. Bifurcation diagram for the remaining beam (a) and thardalated layer (b) depending on the coefficient of restitution.

the unknown guantity. To simplify matters,EM/TON'S im- A closer bok at the experimental result Fig. 2(b) and

pact formulation with a restitution coefficient@ e < 1 a conparison with the numerical one given Ifig. 5a)

is used wheree = 0 stands for maximum dissipation and reveals that the numerical simulation based on the minimal
e = 1 for no dissipation. Moreover, the concentrated mass modd only provides aquditative insight into the behaviour

my of the remaining beam is much larger than the nmags  of the system.The amplitudeqs of the delaminated part

of the delaminated layer. Thehe velocity ofthe remaining turns out to be toodrge. The minimal model contains only
beam is hardly affected by any impact event. Thus, the massa single point contact in the middle of the beam. Both
mp is assumed to be infinite coarning the computation of  neighbouring delaminated regions can move without any
the impact velocities. This is confirmed by the experimental constraints. Consequently, the suddenimpact leads to ajump

investigations. of the velocity, which can be seen as a vertical line in the
Whentfzk> is the time when an impact occurs, then the law phase plot.
of impact reads In reality, during motion a contact line is continuously

evolving from both ends of the delaminated region moving

g =af toward the midd# of thebeam.Fig. 2(b) shows a rapid but
for the velocity of the remaining beam, continuous change of the velocity during the evolution of
q<k+1> _ q(k) Y (1+e (q(k) _ q(k)) (@) contact. This continuous problem must be modell_ed, e.g.
3 . A by FE methods. However, the minimal model provides an
for the velodty of the delaminated layer. essential hint concerning the numerical computation of the

In this stage of approximation the problem is closely delaminated beam problgm by a regularised FE_scheme: the
related to a ball bouncing on a sinusoidally vibrating amount of contact damping has a tremendous influence on

table [L0]. It can therefore be exgzted that a bifurcation  the type of solution. Thus, the system’s response will be
scenario up to chaos exists. For this purpose, a bifurcation highly sensitive to the choice of the parameters of the contact
diagram is needed. In contrast to common procedures, themodel.
exdtation frequency and amplitle is kept constant while Additionally, there is another problem concerning the
the coefficient of restitutiore is chosen as the controlling determination of the transition times between states
parameter. The ®INCARE section method igsed to register ~ Of contact and no contact. The separation times were
samples of responses of the displacemennT),i = 2,3 determined with high precision by an iterative procedure
in anumber ofn = 1000(1) 1100 excitation periods. in all analyses mentioned ate. It is knownthat incorrect
Fig. 4 shows the inflence of contact damping on the numerical determiation of the separation times leads to
type of motion. A coefficient of restitution in the vicinity — discrete numerical disturbances. Hence, depending on the
of maximum loss of energg = 0 gives aunique solution. size of the time step, the accuracy of the numerical results
Increasing the parameterwhich corresponds to a decrease is limited.
in the energy loss, causes a bifurcation scenario with As an example, the case = 0.05 is considered
intermittent windows of irregular motions:ig. 5 exhibits again. Fig. 6 exhibits a stationary phase plot of a quasi-
three typical phase curves for three exemplarily selected periodic motion gained by computations with an enlarged
valuese = 0.05,e = 0.20 ande = 0.50. The tine step time stepAt = 2L5o without determining the transition
for all plots was chosen ast = 7l50, a rathersmall fraction times iteratively. The corresponding permanent numerical
of the exdtation periodT . disturbances lead to an inflation of the phase curve



I. Muller et al. / Engineering Structures 27 (2005) 191-201 195

-0.4 T T T T T -0.4
(a) Remaining beam ——— (b) Remaining beam ——
Delaminated layer Delaminated layer
-0.2 -0.2
Q) o)
£ E
Rea o
> 00f O > 00 @
£ =
o o
[T ]
> >
0.2F 1 02t
0.4 . . . . . 0.4 : L . . :
4.0 3.0 2.0 1.0 0.0 -1.0 4.0 3.0 2.0 1.0 0.0 -1.0
Displacement g [mm] Displacement q [mm)]
-0.4 T T T . -
(c) Remaining beam ——
Delaminated layer
-0.2

Velocity ¢ [m/s]
o
o

0.2}

L

4.0 3.0 2.0 1.0 0.0 -1.0
Displacement g [mm]

Fig. 5. Phase portraits for the delaminated layer and the remaining beam depending on the coefficient of re¢(aligen 0.05, (b)e = 0.20, (c)e = 0.50.)

(Fig. 5@)) into a bad as shown irFig. 6. This effect has -04 J =

been discussed in detail in]]. gggmggegﬁ;’gr -
Physical disturbances lead to a similar development of the

stability scenario as shown idf]. This type of disturbance

can also be expected in FE analyses, arising from high order

frequency oscillations induced by the impacts.
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4.1. Finite element model 02} ]

4. Finite element analyses

Velocity q [m/s]
(=]
o

Within finite element programs, two methods based on
explicit (central differences) and implicit (8&WMARK type) 0.4 : : : . :
. . . . . 4.0 3.0 2.0 1.0 0.0 -1.0
numerical time mtegratlon sch_m are usually available to Displacaiment d [fm]
compute the dynamic mechanical phenomena. Both methods
have second order accuracy with an appropriate choice of theFig. 6. Phase portraits for the delaminated layer and the remaining beam in
NEWMARK schemeparameters, see e.@][ the casee = 0.05 for a large time stepAt = T/250) and without iteration
The advantage of the implicit method is the possibility ©°f transition times.
to choose a relatively large time step without conflict with
the stability of the numerical integration algorithm. For iteration is involved. Therefore, convergence problems may
nonlinear problems in each solution step awWdron type occur. It iswell known that relatively large time steps lead
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Fig. 7. Two-dimensional model.

to a large number of equilibrium iterations. Thus, for most However, it is known that the numerical error, even
nonlinear problems the choice of the time step dependsfor a linear system of ordinary differential equations,
also strongly on the convergence rate within the equilibrium may increase idtinctly in time, in particular for the high
iterations. frequency content of the solution. Additional artificial
The central difference method is only conditionally damping is used as a possible approach to remove the
stable, which leads to very small time steps based on thehigh frequency response. This procedure is necessary to
COURANT—FRIEDRICHS-LEWY [12] condition. But other  stabilise the solution concerning these frequencies and to
techniques developed to reduce the numerical effort within achieve a stationary oscillation, since anyway these parts
the FE analysis, such as redudetigration of the elements ~ of the solution are poorly represented as a result of the
together with correct stabilisation to prevent spurious modes discreisation.
etc., make it advantageous for transient processes of short The delaminated beam can be modelled in various ways.

duration. In the current contribution, a two-dimensional plane-stress
Two cammerecial finite element programs were chosen for model is proposed, sdeg. 7.
pre-computation tests: LS-DYNALB,17], which provides Geometry and material paraters are taken according to

a wide range of capabilities to control the solution within the experiment: YOUNG's modulusE = 70 x 10° MN/m?,
an explicit integration, and ANSYSLp] with an implicit densityp = 2700 kgm3, PoISSONSs ratio v = 0.3. The
NEWMARK integration. Tl goal of the computational mesh consists of 582 plane-stress elements. The contact zone
experiment is to find a periodical stable solution under the (delaminated region) is motiied with 56 “master” elements
external peiodical excitation. A fairly long computation (on the remaining beam) andtiv 224 “slave” elements (on
time was therefore necessary. the delaminated layer). Thettar, hgher number is the result
As known from he experiments, the phenomena of of the finer spatial mesh necessary to correctly model the
periodical impacts of the delaminated layer appear with deformation behaviour of the delaminated layer.
relatively high frequency. Irthis case, a small time step As known from he experiment, a symmetrical motion
size is required even for the implicit method in order to exiss. Numerical expements show a lamg seniivity of
capture the contact—impact problem correctly. It was found the solution in regard to boundary conditions. Therefore,
from the computations that evealaively large time steps, the boundary conditions and excitations were chosen to
which would be efficient for the transient analysis of an enforce symmetry. The suspended nodes of the beam are
undamaged structure, lead to a large number of equilibriumtherefore completely fixedux = 0,uy = 0) and all
iterations in the case of the agais of the delaminated beam. nodes of the central sectiolx = 0) can move only in
This demands fairly long computing time. However, the the vertical direction(ux = 0). A presribed harmonic
advantage of implicit schemes, the large time step size, is nodisplacement is applied for excitation at the upper central
longer present for the current problem. A test computation node of the remaining beam. Its amplitude is chosen from the
for the first second of the model time revealed the fact that experimental measurementas 0.92 mm. A natural frequency
the implicit scheme was up to 10 times slower in comparison of 2651 Hz is obtained with LS-DYNA for free oscillations
with the explicit scheme. Thufor the ong duration process ~ without contact. This value, which is sufficiently close to the
in our example, the explicischeme was losen and all  experimental result, is taken as excitation frequency of the
further computations were made with LS-DYNA. The high vertically prescribed harmonic displacement.
efficiency of LS-DYNA makes it possible to analyse a The geometry of the initial gap (séeg. 8) is modelled
problem within a quite long period of model time even by two cubic splines with horizontal tangents at the edges
with very small time steps tpiired for computation of the  and the middle of the delaminated zone. The maximum
stationary oscillation of the contact—impact problem. gap widh of gmax = 1 mm is lcated at the centre of
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Delaminated zone : be modified either by enforcing it to be constatt,s or by

0.0 Glue bond the scale factorfo; < 1. In both cases it is controlled to
E reman below the stability limit. Therefore, the time step is
E o6 _ given as
% ] . :
(0] ! Experiment \‘\\\ e .
12l . j . i At:{ far - Alpy } (4)
2600 ~300 0 300 600 min(Atys, Atpy)

Length x [mm] In summary, five parameters have to be chosen for the

Fig. 8. Geometry of delamination gayidth measured by experiments and nume.rical computatiop, namely and g for RAYLEIGH
approximation in the numerical model. damping, a contact stiffness, a contact dampihkg, and
atime stepAt. It is evident that experimental results such

delamination. This kind of chacterisation allows a general as those given irFig. 2 are necessary to calibrate these
moddling of the delamination gap for various examples. Parameters.
Therefore, only the maximum gap width,ax remains as
a quantity for any adjustment. In several regions of the
delamination some differences between the experimental
and the modelled gap occur (sew@. 8). As can be seen, a
small rectangular part of the gap arises along the interface  As is known from the minimal model, the amount of
of the delamination caused by the interrupted glue bond. contactdamping plays the dominantrole in regard to the type
However, its thickness appears hard to determine precisely. of motion. In addition, the contact stiffness and the contact
damping are closely inteotinected. Decreasing the contact
4.2. Control parameters for contact definition in LS-DYNA  stiffness while keeping theomitact damping constant leads to
higher energy loss because the time of contact is artificially
Several typical steps important for contact modelling increased. This will be the roaito finding the correct set of
with LS-DYNA are discussed in1314,16] and [17]. As parameters.
known from the minimal model, contact damping is of Furthermore, the initial contions for displacements and
great importance for the impact problem. Therefore, the velocities are assumed to be zero. Consequently, a transient
“surface-to-surface” penalty based contact element with motion is encountered before a stationary state can be
contact damping has been chosen. Important parameters foreached. The time interval for the transient state depends on
the contact element are the contact penalty and the contacthe ype of motion to be computed.
damping. The contact penalty is proportional to the bulk ~ Some typical results are shown in the following. It should
elastic modulus of the contact body and can be further be emphasised that many computations were performed
modified by a scale factof. The mntact dampingCcon is to obtain reagnable results. At the beginning, the global
defined as a percentage of the critical damping, where thedamping values were set o= 5.0 andg = 0.02, contact
critical dampingCcit is obtained from the consideration of dampingCeon Was dosen as criticaCerit, while the scale

4.3. Calibration of parameters

the local contact coritions, see more inl[g)]. factor for penaltyf was set to @0. The time step computed
The RaYLEIGH damping in the standard form of mass by LS-DYNA as At = 4.69 x 10~7 s was saled with
and stiffness proportional damping parameterfy; = 0.66 to At = 3.10 x 10~/ s. Fig. 9(b)

depicts the corresponding phase curves of approximately 70
exdtation periods in a time range from 4.10 up to 6.74 s
is definedby parameters: and 8 and must be added for which have been acquired on the two opposite contact
stabilisation of the solution concerning the high frequency points at the centre section. In additi¢tig. (a) shows the
content to establish stationary oscillations. Damping corresponding time response of approximately 10 excitation
parameters have to be carefully chosen, in particular if periods Obviously, the oscillation is irregular.
velodty is needed as a result fdhe further analysis. As Now stiffness proportional damping is increasedte=
is known, poorly balanced damping can cause artificial 20.0 but the ontact damping is lowered to 20% of the
ogillations, or vice versa, damps the main mechanical critical value while keeping thether parameters unaltered.
effect. In the current investigation, it is crucial because the This leads to a bifurcated motion as showrFig. 10. The
phase curve, which includes both the nodal velocity and the phase portraitsig. 10(b) are depicted for a time interval
nodal displacement, was chosen as a main characteristic fofrom 10.00 up to 12.64 s which corresponds to 70 excitation
the judgement of the results. periods.

During analysis, a time step\tpy is automatically Remenbering the broad variety of different types of
computed in LS-DYNA by the stability criterion. It depends motions shown in the bifurcation diagrarig. 4), it must
on both the wave propagation velocity of the contacting be emphasised here that the solution giverrigs. 9 and
bodies (WURANT—FRIEDRICHS-LEWY criterion) and the 10 could have been considered correct, if there was no
stiffness @rameters of the contact. The time sigfpy can informationfrom the experimental result.

C =aM + BK (3
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Fig. 9. Time responses (a) and phase portraits (b) for the deladiteyer and the remaining beam: irregular motion (parameterset:5.0, 5 = 0.02,
f =0.10, Ccon = Cerit, At = 3.10x 1077 s).
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Fig. 10. Time—displacement plots (a) and phase portraits (b) for the deltedifayer and the remaining beam: bifurcated motion (parameter se20.0,
B =0.02, f =0.10,Ccon = 0.2 Cgyit, At =3.10x 1077 s).

In order to increase contactm@ing, all parameters but The result given inFig. 12 (phase portrigs in the time
one valid for he resit in Fig. 9 are taken unmodified. Only interval 2.00up to 4.64 s) indicates a periodical motion
the penalty parameter iduced by one power of ten to without contact in the middle of the delaminated zone,
f = 0.01. Low penalty parameters lead to a relatively considered to be the characteristic point. Contact occurs on
large time for disgation during contact. The result is a neighbouring points, which can be seen from the distinct
quasi-periodical motionFig. 11, phase portraiti the time distortion of the time response of the delaminated layer
interval 2.00up to 4.64 s) with only one impact during compared to a harmonic signal.
an excitation period. The oscillation qualitatively shows the ~ Summarising the previous computation results reveals
typical features of the one to be found in the experimental that Fig.11 shows a quasi-pegiical soldion which
resut. The situation with these parameters is comparable is qualitatively close to the experiment. However, the
to the result gained fra the mnimal model (sed-ig. 5a)) amplitudes of the delaminated layer are quite large in this
although the dissipation is not sufficiently large. case. Increasing the damping parameter order to reduce

The last task is to find values for all parameters which the size of this amplitude leads first to a bifurcated motion
provide a quantitatively correct result. For this purpose, the (seeFig.10) as a claracteristic result for a certain range
values for theglobal damping as well as the value for the of damping. Subsequentlynasdllation without contact at
contact damping are increased, correspondingtolR IGH the middle point of the delamination follows (sEg&. 12).
dampingy = 5000 andg = 0.02 and contact dampir@con In order to find the result correlating with the experiment,
to be 5 times the critical one. the conputations were made by changing parameters in the
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Fig. 11. Time—displacement plots (a) and phase portraits (b) for the delaaiifeter and the remaining beam: quasi-periodical motion (parametter s
a=50,8 =002, f =0.01,Ccon= Crit, At =3.10x 1077 s).
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Fig. 12. Time—displacement plots (a) and phase portraits (b) for the deladhifegter and the remaining beam: non-bifurcated motion (parameter set
o = 5000, 8 = 0.02, f = 0.01,Ccon= 5.0 Cgyit, At =3.10x 1077 s).

following domain: 0< o« < 750,0< 8 < l1and 0< width to achieve a maximum aperture of 1.0 mm in a way
Ccon < 100Cct. Disregading instable solutions, changing thats = 1.0 mm — gmax. Thus, he shape of the arising
both the contact dampin@con and the damping parameters  gap is influenced in a way thé&ads to a closer agreement
a, B leads to the same characteristic motions, illustrated concerning the description df¢ real mechanical behaviour
by Figs. 16-12. The quasi-periodical motion always 0cCurs  of the system under consideration. A physical justification
with a relatively large amplitude, as shownFig. 11 This of the procedure described @t lies in the &ct that the
disagreement may be due to an improper modelling of the amount of energy dissipation during one contact event is

real mechanical m. - .
eal mechanical syste not constant along the delamination. Impact-like contacts

In order to handle this situation, the model is modified accompanied by strona enerav dissipation onlv occur in a
in a way that perits both ontact along the length of the : P y g gy. b y S
region close to the centre section of the delamination. In

whole delaminated zone andrecect size of the amplitudes. o

This is performed in two steps. First, the maximum of contrast, on the edge of the delamination the amount of
the geometrical gap width (seEig. 8 is decreased to  €nergy loss is considerably lower. Moreover, the uniform
the valuegmax < 1.0 mm. Second, an option of the  Shft partly represents the interrupted clue bond along the
program LS-DYNA to define the penetration via a uniform delamination which has not yet been sufficiently taken into
specific disance shifts from the real geometrical surface account (sed-ig. 8. These two facts are captured by the

is employed. This lft is added to the geometrical gap modified descripion of the delamination gap.
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Fig. 14. Time—displacement diagram (a) and phase portraits (b) for the stgtioogon of the delaminated layer and the remaining beam: suffigietturate
result by modified mod&lgmax = 0.20 mm) (pammeter setr = 5000, 8 = 0.02, f = 0.01, Ccon = 5.0 Cgit, At = 9.38 x 108 S).

In order to investigate the influence of the procedure times with sufficient accuracy. It is chosen to be constant as
described above on the results of the simulation additional At = 9.38 x 108 s. Fig. 14 depicts the time response of
computations were performed. For this purpose all approximately 5 excitation periods and the phase curves in
numerical parameters are chosen to remain identical, asthe time interval of 70 excitation periods from 25.0 up to
given in Fig. 12 Fig. 13 shows a comarison of the result
with the pure geometrical gaginax = 1.0 mm (sedrig. 12)
and a modifid gapwith gmax = 0.5 mm. Ascan be seen
from Fig. 13(b) the modified model affects a contact event shape as well as in the amplitudes of the displacements and
in the central section of delamination. However, the first velocities.

time of contact within an excitation period is slightly shifted

compared to the experimental resilig. 2). Thus, the shape
of the gap turns out to be an additional parameter with resuts. Low penalty stiffness in combination with large
limited influence on the results of the simulation.

Finally, a combination of a geometrical gap widfhax =
0.20 mm and a shifs = 0.80 mm dlows to capture the
experimental result as shownkig. 14. Again, all numerical
parameters are kept unaltered comparedrign 12. Only
the time step size was decreased to determine the contacéxperimental identification process. Due to this fact it can be

27.64 s.
Comparing the result wittthe perimental one (see
Fig. 2b)) shows quantitatively sufficient conformity in the

Hence, the numerical parameters are calibrated now for
the treated type of motion ome basis of the experimental

penalty damping leads to the necessary amount of energy
dissipation during contact. nfall time steps within the
integration give orbitally stable results. The considered type
of motion with one strong imgct during the excitation
period is one of the most preferred types in regard to the
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expected that the set of parametealibraed above remains  finite element model. Finallyugcess was achieved concern-
approximately constant for similar oscillations. ing the comparisn of experimental and numerical results,
The present contribution reveals the difficulties in butit was also found that these parameters can only be taken
obtaining the experimentally proved results, especially in from a rather small window. The treated example reveals
the simulation of the statioma regime in vibro-impacting  also the numerical sensitivity concerning the simulation of
systtms by means of industrial numerical approaches. stationary oscillations of vibro-impacting systems.
Several numerical parameters needed for the simulation
have to be chosen carefully since the set of appropriate
parameters almost appears ismaall window. Their correct
choice depends strongly on detailed information from the (1} 7heng v, Maev RG, Solodov IY. Brlinear acoustic applications for
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