
Simulation of Hydroforming of Metal Sheets with an Efficient FE-
Formulation Based on an Analytical Meshfree Description of a Com-
pressible Fluid

Marc Haßler∗ and Karl Schweizerhof

Institut für Mechanik, Universität Karlsruhe (TH)
Englerstraße 2, D-76128 Karlsruhe, Germany

Hydroforming is very interesting for the automotive industry, as it offers a great variety to efficiently manufacture thin walled
structures. In order to simulate such static large deformation processes under hydraulic or pneumatic pressure, an analytical
meshfree description of a compressible heavy or weightless fluid is presented. Thus a fully nonlinear formulation of the
fluid-structure-interaction only based on the surface of the wetted membrane structure and the constitutive equations for the
fluid can be derived. Considering physically realistic boundary conditions this formulation finally leads for all combinations
of fluids and gas to a symmetric tangential stiffness matrix including several dyadic rank updates, which can be cast into a
very efficient solution procedure by sequential applications of the Sherman-Morrison formula. Furthermore other algorithms
such as mesh refinements and structural contact can be restricted to the models for the work piece and the matrix.

1 Virtual Work Expression

We consider a compressible fluid volume v in the gravity field g. The variation of its total potential energy δΠf is then given
by the variation of the gravitational potential δV f and the virtual work of the volume compression δW f .

δΠf = δV f − δW f = δ (ρg · s) − pkδv , with pk = −K
v − v0

v0
. (1)

The gravitational potential V f can be written in terms of the first order volume moment s and the fluid density ρ. Along with
the bulk modulus K Hooke’s law provides the connection between the volume compression and its internal pressure pk. As
already mentioned this approach aims at an analytical meshfree description of the heavy compressible fluid via the surrounding
wetted surface. In the derived variation of the fluid potential (1) the controlling variables v and s can be represented by surface
integrals, which yields along with the current normal vector n on the fluid boundary the following form:

δΠf =
∫

η

∫
ξ

(pc − px − pk)n · δu dξdη =
∫

η

∫
ξ

pfn · δu dξdη . (2)

In (2) the mass conservation and the variation of density yield the pressure variable pc = ρg ·xc in the fluid’s center of gravity
xc; the position dependent pressure px = ρg · x arises from the variation of s. All three pressure parts pc, px and pk can be
combined to the total pressure distribution pf in the fluid.

2 Linearization and Solution

After linearizing the variational form of the fluid potential (2) and separate transformations a symmetric system of equations
can be derived [1],[2],[4]. Using standard finite element isoparametric mapping with N denoting the matrix of shape func-
tions of the wetted surface elements and d the vector of the corresponding discrete nodal displacements the so-called load
stiffness matrix Kf

elem is obtained, which consists of the symmetric terms from the change of normal vector ∆n and a change
of the position dependent pressure ∆px. In addition a dyadic rank two update of Kf

elem with the vectors a and b, which
couple the increments of the discrete nodal displacents ∆d with the volume change ∆v, is achieved (for further details see
[3]). The residual at a time t yields the negative right hand side vector ff

elem. To simulate problems with more than one fluid
filled chamber for each chamber i the corresponding fluid arrays have to be computed and summed up. Assembling the local
vectors and matrices in their appropriate global arrays finally provides the fluid part to the linear set of equations describing
the equilibrium condition. Therefore conventional algorithms such as structural contact, non-linear material models or mesh
refinements for the adjoining shell elements can be easily applied.

Due to the dyadic rank-two update of the global load stiffness matrix Kf for each fluid filled chamber i = 1..n its charac-
teristic band structure, which is necessary for an efficient solution, is lost. Therefore a proper solution algorithm for this kind
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of problems can be found in the Sherman-Morrison formula, which provides the inverse of a dyadic updated matrix without
increasing the band width. In the case of a 2n rank update for the corresponding n fluid filled chambers this algorithm needs
to be applied sequentially. Thus the solution vector ∆d and the hybrid variables ∆pc

i , ∆pk
i and ∆ρi of chamber i can be

computed using this specific structure.

3 Numerical Example

As a typical example for fluid loaded shell structures a combined procedure of deep drawing with subsequent hydroforming
is chosen. For additional this example illustrates the versatility of the derived equations, because they can be applied after
previous loadsteps and combined with other conventional algorithms like structural contact in this example. Fig. 1 [a] and
[b] show the deep drawing process. The hydroforming process is initialized by a displacement controlled piston (Fig. 1 [c]),
which compresses the compressible fluid below the metal sheet and thus steadily increases the pressure on its lower side until
the final deformation (Fig. 1 [d]) is reached.

[a] Initial geometry

[b] Structure after deep drawing process

[c] Initializing the hydroforming process by piston motion

[d] Final deformation of structure

⇓

⇓

Metal sheet:
40 × 8-node solid-shells

Contact: penalty formulation

Fluid:
ρ0 = 1 × 10−6kg/mm3,
pf
0 ≈ 1 × 10−6N/mm2

Fig. 1 States of the hydroforming process of a thin
metal sheet
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Fig. 2 Volume ratios vs. density ratios for two different bulk
moduli K

Fig. 2 displays the change of the state variables for a very low compressible fluid with a bulk modulus of K = 5.0N/mm2

and a more compressible one with K = .05N/mm2. It can be seen that the more compressible fluid directly reacts to the
the pistion motion with an increase of density and the associated decrease of volume. Therefore with this fluid the desired
deformation cannot be achieved. Whereas the less compressible fluid almost keeps its initial volume and thus enables the
deformation of the metal sheet. Only from a time t = 1000 on, when contact between the sheet and the punch is established,
the fluid changes its volume and density. Further on the ratios of current fluid masses to the initial masses are close to 1.0.
Thus mass conservation is preserved, which was an essential assumption in the governing equations.

4 Conclusions

With the derived equations a meshless simulation of a heavy compressible fluid was presented, with the fluid pressure distri-
bution pf as the interface between the fluid boundary and the adjoining finite elements. An efficient solution algorithm was
given with the sequential application of the Sherman-Morrision formula. In future works it is intended to simulate chambers
with fluid and gas filling in arbitrary combination. Our aim is also on the possible separation of fluid chambers during the
deformation process.
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