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The purpose of this contribution is the time integration error estimation for continuous Galerkin schemes applied to the linear
semi-discrete equation of motion. A special focus is on the effort for the error estimation for large finite element models.
Error estimators for the global time integration error as well as for the local error in the last time interval are presented.
The Galerkin formulation in time allows the application of the well-known duality based error estimation techniques for the
estimation of the time integration error. The main effort of these error estimators is the computation of the dual solution. In
order to diminish the computational effort for solving the dual problem the error estimation is carried out in a reduced modal
basis. The relevant modes which have to remain in the basis can be determined via the initial conditions of the dual problem.

1 Local and global error estimation

For problems in linear elastodynamics usually a semi-discrete approach is chosen which yields a system of coupled ordinary

differential equations:

Md̈(t) + Cḋ(t) + Kd(t) = F(t) (1)

The continuous Galerkin method with quadratic polynomials is then well suited for the solution of this semi-discrete system.

In order to choose appropriate time step sizes error estimators are needed. In [6] an adaptive time stepping scheme is presented

which is based on the estimation of the local and the global time integration error. Therefore local and global time integration

error estimators based on the adjoint or dual problem can be used [1], [2],[3], [5],[6]. The dual problem is a backward problem

in time with initial conditions at the current time tm and can be derived from the primal problem via integration by parts. For

the error estimation the residual R of the primal problem is weighted with the solution of the homogeneous dual problem:

Mz̈(t) − Cż(t) + Kz(t) = 0 with z(tm) = zm and ż(tm) = żm (2)

Then the computed error quantity only depends on the initial conditions of the dual problem [1],[3],[6]. Here we restrict our-

selves on the estimation of the error at a particular degree of freedom i. For the arbitrary choice of zm = 0 the corresponding

initial velocities for the dual problem are:

ż(tm) = −M−11 with 1(i) = 1 for i = d and 1(i) = 0 for i �= d. (3)

Introducing these initial conditions into the weighted residual form of the error equation yields the following error representa-

tions of the local error el,i(tm) of the last time step and the accumulated global error eg,i(tm) of all time steps [6]

el,i(tm) =

tm∫
tm−1

z · R dt and eg,i(tm) =

tm∫
0

z · R dt (4)

The error estimators are now based on the direct computation of equation (4), i.e. the numerical solution of the dual problem

has to be determined. With the transformation t∗ = tm − t the dual problem can be formulated like the homogeneous primal

problem. Thus usually the dual problem is solved using the same time integration scheme as for the primal problem. Since for

the estimation of the local error the weighted residual only has to be computed in the corresponding time interval, the numerical

effort for the local error estimation is fairly small. On the other hand for global error estimation at each time at which the error

shall be estimated a complete backward integration of the dual problem has to be carried out. Thus the computational effort

for the dual solution is much higher than for the primal solution. This is a considerable drawback for the practical application

of the global error estimator especially for large finite element models. In addition for global error estimation the whole primal

solution – displacements and velocities – has to be stored. Another problem is that due to the phase error of the used time

integration scheme the time step size of the primal problem may not be suitable for the computation of the dual problem since

for the error estimation the dual solution should be determined as accurately as possible. As a result the efficiency of the

global error estimation strongly depends on the appropriate time step size.
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2 Global error estimation in a reduced modal basis

In order to reduce the computational effort of the global error estimation an alternative error estimator based on the modal

decomposition of the error equation is proposed. The solution of the dual problem can be computed exactly in the complete

modal basis, i.e. no time integration error is introduced into the dual problem. It should be noted that no complete modal

decomposition of the problem shall be carried out since then no time integration of the semi-discrete equation would be

necessary. For the error estimation only a strongly reduced modal basis is needed which can be determined from the intial

conditions of the dual problem.

The modal decomposition of the primal and the dual problem yields an error representation in modal coordinates where

the modal residual of the primal problem is tested with the modal solution qd of the dual problem

eg,i(tm) =

∫ tm

0

qd · (ΦTF −ΦTMΦq̈p −ΦTCΦq̇p −ΦT KΦqp)dt =

nmod∑
j=1

(∫ tm

0

qd,j · Rjdt

)
. (5)

In this representation all equations are decoupled and so the error can be split into the sum of the errors of the nmod modes. If

all modes are scaled such that all modal masses are 1 the initial conditions of the dual problem read

q̇d(tm) = ΦT (−1) = −

⎡
⎢⎣

X1,i

...

Xn,i

⎤
⎥⎦ (6)

i.e. no inversion of the massmatrix as in equation (3) is needed.

The first step of constructing the reduced modal basis is based on to the fact that for practical problems the solution is

dominated by the lower natural frequencies. Therefore only the first nlow < ndf natural frequencies need to be determined.

The dual problem provides further information on the relevant modes which have to be considered for the error estimation.

According to equation (5) the amplitudes of the dual solution qmax,j of each mode can be taken as an indicator of the possible

influence of the corresponding mode j on the time integration error at the particular node i. These amplitudes can be computed

directly from the initial velocities according to equation (6):

qmax,j =

∣∣∣∣∣∣
q̇d,j(tm)

ωj

√
1 − ξ2

j

∣∣∣∣∣∣ with ξj =
cj

2ωjmj

(7)

Now the largest amplitude is defined as the reference value qref = max(qd,max) and only modes for which holds

qd,max,j ≥ cqref with 0 < c < 1 (8)

remain in the modal basis for the error estimation. Since the time integration error also depends on the modal residual of the

primal problem the factor c in equation (8) should not be chosen too small. Numerical examples show that good results are

obtained with 0.1 < c < 0.5.

3 Conclusions

We presented a global time integration error estimator for continuous Galerkin schemes in a reduced modal basis. The main

effort of the proposed procedure is the construction of this reduced modal basis respectively the initial conditions of the dual

problem. A similar approach was chosen in [4] for the model reduction in structural dynamics. In the linear case the reduced

modal basis can be determined directly from the initial conditions of the dual problem in modal coordinates. For the evaluation

of the reduced error equation no time integration of the dual problem is needed which is the main effort of the classical time

integration error estimation described in section 1. Another advantage of the proposed global error estimator is that in contrast

to the classical approach the primal problem has only to be stored in the reduced modal basis.
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