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Chapter 1

Introduction

We will probably see the spread of “computer utilities”, which, like present electric and
telephone utilities, will service individual homes and offices across the country.
(Kleinrock 1969)

1.1 Motivation

The increasing interconnection between computers has created the vision of Grids: In anal-
ogy to the power grid, resources such as processing power, storage space, or software ser-
vices are accessible in a plug-and-play environment. A user has access to any form of compu-
tational resources which are hosted on distributed machines. These resources are not visible
to the user — such as a consumer of electric power is unaware of how the demanded electricity
is being generated and thereafter transmitted to the power socket.

The implementation of Grids has major ramifications for organizations since they can re-
duce costs by outsourcing nonessential elements of their IT infrastructure to various forms of
computing and application service providers. Such emerging e-utilities — providers offering
on-demand access to computing resources — enable organizations to perform computational
jobs spontaneously through other resources in the Grid that are not under the control of the
user (Foster et al. 2002a).

Most Grid research has been devoted to the development of hard and software infras-
tructures so that access to resources is dependable, consistent, and pervasive (Foster and
Kesselman 2004b). Currently, various open standards define interactions between different
computing resources across organizational entities. With the Open Grid Services Architec-
ture (OGSA), which specifies fundamental middleware components for the Grid, the Grid
community has laid the foundation for future developments. OGSA defines computer and
storage resources as well as networks, programs, and databases as services. Using compu-
tational resources as services paves the road for interoperability among heterogeneous com-
puting and application environments (Foster et al. 2002a). OGSA and one of its reference
implementations, Globus Toolkit 4, provide the technical infrastructure for accessing compu-
tational resources over the Grid. Computers equipped with a Globus installation can access
computational resources over the Grid, with transparency for the user. Resource owners can
become providers by offering their resources using standardized interfaces and communica-
tion protocols.



4 CHAPTER 1. INTRODUCTION

The technical infrastructure is a necessary requirement to implement Grids in practice.
Technical feasibility, however, is not equivalent to actual realization, as also economic is-
sues are important. On the one hand, resource owners will only offer their computational
resources if they are adequately compensated. In this context, compensation requires a func-
tioning pricing infrastructure. On the other hand, current resource allocation managers em-
ploy batch algorithms which determine allocations based on either naive heuristics such as
first-come first-serve or on idiosyncratic cost functions (Buyya et al. 2002). Consequently,
these algorithms cannot determine economic efficient resource allocations as they do not
guarantee that consumers who have high values for some resources will really receive them.

Market-based approaches are considered to work well in Grid settings (Wolski et al.
2001; Buyyaetal. 2005). By assigning values (also called utilities) to their resource requests,
users can express their preferences for resources which are subject to usage constraints. If the
market mechanism is properly defined, users may be provided with incentives to express their
true values for resource requests and offers. This in turn marks the prerequisite for attaining
an efficient allocation of resources which maximizes the sum of aggregated valuations.

In recent times, the idea of incorporating market mechanisms into Grid technology has
increasingly gained attention. Among others, the proposals include the establishment of
Open Grid Markets, where either idle or all available resources can be traded (Shneidman
et al. 2005; Lai 2005). Despite this recent interest in market-based approaches, research re-
garding market mechanisms for Grid resources remains in its infancy. The canon of available
market mechanisms only insufficiently copes with the requirements imposed by the Grid.

1.2 Objectives and Contributions

The central objective for this work is the design, implementation, and evaluation of a market
mechanism that copes with the requirements upon a resource management system in Grids.

The difficulties in designing and implementing markets for the Grid arise from interde-
pendencies between technical and economical objectives (Weinhardt et al. 2006). When
applying markets to the Grid, it is essential to consider these influences that arise from tech-
nical fundamentals of Grid systems, potential user requirements, business constraints, and
economic objectives. Each of these influencing factors has a profound impact on the out-
come and, as a consequence, on the acceptance of the market. The market engineering
approach manages these influences by means of a structured, systematic, and theoretically
founded procedure of designing, implementing, evaluating, and introducing electronic mar-
ket platforms (Weinhardt et al. 2003). Using the methodology of market engineering allows
a refinement of the central objective into more specific questions.

Research Question 1: Environmental Analysis for the Grid
What are the characteristics of a potential Grid marketplace, and what are the technical and
economical requirements upon its underlying mechanism?

Answering this question requires an analysis of the economic environment that comprises
the market participants, their preferences as well as the characteristics of Grid resources. The
result of this analysis reveals a set of requirements that have to be fulfilled by a Grid market
mechanism.

The contribution is a thorough extraction of the requirements concerning the resource
allocation problem and the environmental side-constraints for markets in the Grid.
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Research Question 2: Design of a Market Mechanism for the Grid
What is the nature of a market mechanism that can be applied to the resource allocation
problem in Grids?

The problem of designing a market mechanism is a critical hurdle towards market based
resource allocation in Grids. As a solution to this problem, a novel auction mechanism
called Multi-Attribute Combinatorial Exchange (MACE) is presented. The auction accounts
for bundle bids, quality attributes, time restrictions, and co-allocation constraints of Grid re-
sources. In addition, the bid specification is based on a standardized service level agreement
language which makes the auction compliant with common Grid middleware. Finally, a new
pricing schema is introduced that is computationally more efficient than other mechanisms
proposed for combinatorial exchanges.

The contribution is the derivation of MACE, the first auction mechanism that simultane-
ously addresses several Grid specific requirements. In addition, the proposed pricing schema
is a step towards the design of computationally tractable combinatorial exchanges.

Research Question 3: Implementation into a Software System
How can a Grid market mechanism be implemented into a Grid compliant software system?

This question addresses the problem of implementing combinatorial exchanges into a
software system and integrating the system into existing Grid infrastructures. An answer to
this question requires the identification of adequate algorithms that can be used to compute an
outcome of the auction schema. Subsequently, the implementation requires open interfaces
that are compatible with common Grid communication standards.

The contribution is a generic and flexible software system that implements MACE as well
as alternative combinatorial mechanisms. The system supports WS-Agreement as a bidding
language which allows an integration into service-oriented Grid systems such as OGSA.

Research Question 4: Evaluation of a Grid Market Mechanism
How can a Grid market mechanism be evaluated by means of a simulation?

After the design and implementation of the mechanism, it has to be evaluated with respect
to its technical and economical properties. The use of computer simulations is applied to an-
alyze whether or not MACE fulfills the elicited requirements upon a Grid market mechanism.
The first challenge of this problem is caused by the lack of empirical data concerning Grid
markets. Consequently, one has to adapt and combine existing work proposed in the area of
Grid computing and combinatorial auction design. Furthermore, no simulation framework
exists that can be used to simulate participants in a Grid market submitting multi-attribute
combinatorial bids. Finally, evaluation metrics have to be defined that reflect the technical
and economical requirements upon the mechanism.

The contribution of the mechanism evaluation is the design of a simulation model that
imitates a Grid marketplace. In addition, a new simulation framework called jCase is devel-
oped that can be applied to study various types of combinatorial mechanisms in the context
of computer aided market engineering (Weinhardt et al. 2006). Finally, the results of the sim-
ulation study are a step towards understanding effects and strengths of combinatorial auction
mechanisms and has potential to learn more about combinatorial auctions.
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1.3

Outline

The work at hand is structured into three main parts as depicted in Figure 1.1. Part I in-
troduces the most important foundations of Grids and markets. Subsequently, Part II is
concerned with the design and implementation of a Grid market mechanism. Finally, Part
III covers the numerical evaluation of the technical and economical properties of the mecha-

nism.
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Figure 1.1: Structure of this work

Part I — Foundations: Chapter 2 introduces the basic concepts and terminologies of Grid

computing and Grid resource management. Next, Chapter 3 motivates why markets
should be applied to coordinate resource allocations in Grids. Furthermore, the chap-
ter provides a common understanding of markets and market engineering. Chapter
4 analyzes the economic environment of a Grid marketplace, elicits a set of require-
ments upon an apt mechanism, and reviews related work. The result of the first part
is a common understanding of Grid technologies and markets. In addition, the first
research question is answered by an extraction of the environmental side-constraints
and the requirements upon Grid market mechanisms.

Part II — Design and Implementation: The second part of the work is concerned with the

design and implementation of a Grid market mechanism. First, Chapter 5 outlines the
basic concepts of combinatorial auction design and introduces MACE as an auction
for the Grid. After that, Chapter 6 presents a set of algorithms that are required to
implement the conceptual model into a software system. This part answers the second
and third research question by designing and implementing a market mechanism that
accounts for Grid specific requirements.
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Part III — Evaluation: The evaluation of the proposed mechanism is described in the third
part of this work. Chapter 7 provides a set of evaluation metrics that measure the
adherence of the mechanism to economical and technical properties. In addition, a
simulation model is introduced that imitates a Grid marketplace and that can be used
to measure the defined metrics. A simulation framework called jCase is described
that is applied to perform the simulation study. Chapter 8 describes and analyzes the
results of the simulation with regard to the elicited list of requirements. This part
answers the last research question by providing a set of metrics, a Grid market model,
and a simulation framework to evaluate Grid market mechanisms.

Chapter 9 concludes with a summary, an overview of open questions, and an outlook on
future research.
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Chapter 2

Grid Technologies

Sceptics may wonder why private companies would ever want to share computing resources
co-operatively, as particle physicists are doing. The security risks may seem
insurmountable, and the economic benefits questionable. Yet sceptics beware. Twelve years
ago [...] a young CERN engineer named Tim Berners-Lee gave out T-shirts advertising a
new and rather obscure scientific-networking tool of dubious economic value: it was called
the world wide web.

(The Economist 2004b)

Over the past few years, the emergence and popularity of Grids have been driven by an
increased development of technologies that support geographically distributed computing.
Several different types of middleware, programming libraries, and toolkits have been pro-
posed that allow single applications to utilize multiple computing resources. On the one
hand, this is achieved by the design of flexible architectures, which incorporate technical
issues like resource heterogeneity, as well as social issues like organizational policy restric-
tions. On the other hand, resource management systems have been developed to discover,
allocate, monitor, and negotiate the required resources. For a wide application of Grids, both
the underlying architecture, as well as the resource management system represent crucial
building blocks. Therefore, the aim of this chapter is to outline the basic concepts and re-
lated terminologies of current state of the art Grid architectures and resource management
systems.

The chapter is structured as follows: Section 2.1 outlines the evolution of Grid tech-
nologies from proprietary, scientific computing infrastructures towards holistic systems for
coordinated resource sharing based on standardized and open protocols. Section 2.2 de-
scribes the Open Grid Services Architecture (OGSA) as the current standard architecture
for the Grid. Section 2.3 introduces the most important concepts of resource management
systems. Finally, Section 2.4 summarizes and concludes the chapter.

2.1 Evolution of Grid Technologies

Grid technologies emerged in the mid-1990s to provide a distributed computing infrastruc-
ture for advanced science and engineering (Foster and Kesselmann 2004). In the meantime,
the term Grid and its related technology stack have undergone a change: Grids evolved from
a proprietary infrastructure for distributed high-performance computing towards a flexible

9
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Figure 2.1: Evolution of Grid Technologies following Foster and Kesselmann (2004, p. 9)

approach for coordinated resource sharing, by means of standardized and open protocols
(Foster 2002). Moreover, the target of Grid technologies has moved from pure scientific ap-
plications towards a multitude of different areas, including business domains. Representative
examples for Grid business applications comprise, among others, risk analysis for portfolio
management and crash test simulations for automobiles.

De Roure et al. (2003) sketch three different stages in the evolution of Grid technologies,
which are depicted in Figure 2.1 following Foster and Kesselmann (2004): first generation
Grids deploy proprietary systems in order to connect high performance supercomputers be-
tween scientific institutions. Second generation Grids focus on middleware technology, to
overcome the heterogeneity and scalability challenges of distributed systems. Most of these
systems are built upon Internet protocols to foster standardized communication processes.
Third generation Grids amplify the standardization process of Grid technologies and enlarge
their target application domains. They are designed according to the principles of service
oriented architectures (SOAs) and make use of the Web service technology stack. These
technologies facilitate a flexible and dynamic deployment of Grids. In the following sec-
tions, this evolution of Grid technologies and its corresponding technology stack are briefly
outlined.

2.1.1 First Generation Grids

Early Grid developments originated from the efforts of linking supercomputing sites within
the U.S. Gigabit testbed (De Roure et al. 2003). The objective of these efforts was the pro-
vision of computational resources to enable the execution of high performance applications.
These developments are called metacomputing systems, i.e., networks of heterogeneous,
computational resources linked by software (Catlett and Smarr 1992). Several architectures
and implementations have been proposed to enable metacomputing. The two representative
projects of the first generation are FAFNER (Factoring via Network-Enabled Recursion) and
I-WAY (Information-Wide-Area-Year):
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FAFNER: FAFNER is aimed at factorizing very large numbers.! A parallel algorithm has
been developed to break down the factorization problem into smaller subproblems.
These subproblems are solved independently on several distributed machines in par-
allel. FAFNER was one of the first web-based metacomputing projects and paved the
way for a wave of successor projects such as SETI@Home (Sullivan et al. 1997).

I-WAY: [-WAY is the effort of linking high performance computers and visualization envi-
ronments via a network (DeFanti et al. 1996). I-WAY is designed to execute individual
high performance applications, such as simulation or video rendering jobs. As one of
the innovations, I-WAY applies a resource broker to discover and allocate jobs auto-
matically and to maintain status information of different machines. Most components
of the [-WAY system are integrated into its successor system Globus Toolkit 1 (GT 1)
(Foster and Kesselman 1997).

Both proposed systems are designed to fulfill individual requirements: factorizing large
numbers and executing specialized high performance applications which require powerful
resources. However, a large-scale deployment of these systems is hampered by their lack
of flexibility and scalability (De Roure et al. 2003). For instance, FAFNER requires human
interaction to distribute the subproblems and to collect results. I-WAY focuses on specialized
supercomputing sites and is thus hard to deploy on standard machines. Moreover, both
systems only provide limited functionality concerning security, scalability, and robustness
(Foster and Kesselman 2004a).

Despite the aforementioned weaknesses of first generation systems, FAFNER and [I-WAY
were both highly innovative and successful. The experiences gained with the development
and deployment of these systems yielded towards second generation Grids.

2.1.2 Second Generation Grids

Second generation Grids expand on earlier approaches by providing systems that can be de-
ployed in large-scale settings. For this purpose, several components are developed covering
common problems that arise in distributed computing systems. For instance, such compo-
nents comprise functions for authentication, resource discovery, and resource access (Foster
and Kesselman 2004a). Infrastructures building upon such components were called Compu-
tational Grids, a term coined in analogy to the electrical power grid (Stevens et al. 1997).
At that time, Foster and Kesselman (1998, p. 17) characterized a Computational Grid as a
“hardware and software infrastructure that provides dependable, consistent, pervasive, and
inexpensive access to high-end computational capabilities”. In contrast to current definitions
of Grids that emphasize the controlled sharing of any computational resource (cf. Definition
2.2), this early characterization focused on high-end computational resources.

The design and implementation of reusable and flexible software components that are
mostly encapsulated in form of middleware realizes the aforementioned access to computa-
tional resources. This hides the heterogeneity of resources running on different machines.
The two most prominent Grid middleware implementations of the second generation are GT
1 (Foster and Kesselman 1997) and Legion (Grimshaw et al. 1997). Both systems are used
in several different scenarios, e.g., a distributed interactive simulation and a tele-immersion?

ISee http://cs—www.bu.edu/cgi-bin/FAFNER/factor.pl for details (accessed 09.01.2006).
2Tele-immersion combines video conferencing and virtual reality to enable users in different locations the
collaboration in a shared, virtual, or simulated environment (Kauff et al. 2000).
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system deployed in GUSTO? (Brunett et al. 1998) or for clustering geographic environmen-
tal data (Mahinthakumar et al. 1999).

Social and policy issues concerning resource sharing arose with an increasing interest in
Grid computing and the practical feasibility of existing middleware implementations. The
emphasis of Grids moved from computing driven infrastructures for scientists towards the
controlled sharing of any network enabled entity, such as processing power, storage space,
and application services for business and scientific areas of interest. In such settings, re-
source providers and consumers control the sharing of resources: they define what is shared,
who is allowed to use the shared resources, and the conditions under which sharing occurs
(Foster and Kesselmann 2004). Former Grid definitions and implementations did not meet
the arisen requirements of distributed resource sharing. For this reason Foster et al. (2001)
refined the definition and objective of Grids to support “coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations” (Foster et al. 2001,
p- 200). In this context, a set of individuals defined by such sharing rules is denoted as a
virtual organization (VO). In literature, the term virtual organization is widely discussed and
its meaning oftentimes defined differently (Davidow and Malone 1992). Common to most
definitions is that a VO is defined as a federated collection of distributed individuals that
collaborate concerning a common interest by means of agreements (Boudreau et al. 1998).
Grids focus on virtualizing computing infrastructures and software applications, and thus,
Grids provide the technological foundations for individuals to collaborate independently of
geographic matters. Furthermore, Grids foster the compliance with contracted agreements
for any form of computational jobs in a standardized fashion.

Foster et al. (2001) propose an architecture supporting such a controlled sharing within
VOs: Its objective is the conceptual definition of fundamental components and protocols
required for a variety of Grid application scenarios (Foster and Kesselman 2004a). The
architecture — as depicted in Figure 2.2 — is organized by means of layers, i.e., modular com-
ponents that build upon each other. Layering provides insulation so that changes in different
parts of the system can occur independently (Clark and Pasquale 1996). The architecture
comprises the following five layers (Foster et al. 2001):

Fabric Layer: The fabric layer includes protocols and interfaces that provide sharing facili-
ties of logical resources®, such as computational resources, storage systems, networks,
and sensors. These logical resources, however, use internal protocols that are not con-
cerned with the architecture. For instance, the fabric provided by a logical storage
resource cannot be represented by a raw hard disk but has to provide a corresponding
file system.

Connectivity Layer: The connectivity layer defines basic Grid specific network protocols.
This includes communication protocols to exchange messages with resources provided
by the fabric layer. Furthermore, authentication protocols ensure a controlled resource
sharing. Existing standardized Internet protocols such as routing or transport protocols
facilitate the functions offered by this layer.

3The Globus Ubiquitous Supercomputing Testbed (GUSTO) is a large-scale testbed that spans over 20 sites
and includes over 3000 nodes for a total compute power of over 2 TFLOPS (Brunett et al. 1998).

*A physical resource is an entity that exists physically, e.g., a CPU of a server (Song and Li 2005). In
contrast, a logical resource represents a set of distributed physical resources that a VO posses according to their
underlying policies, rules, and availability (Xing et al. 2005).
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Figure 2.2: Layered Grid architecture (Foster et al. 2001, p. 207)

Resource Layer: The resource layer consists of protocols for a secure negotiation, sharing,
initiation, monitoring, control, accounting, and payment of resources. Protocols of this
layer are only responsible for local resources: hence, they ignore issues concerning
collections of distributed resources within a network.

Collective Layer: The collective layer defines protocols and services for global resource
management. It provides functions and interaction protocols required for collections
of distributed resources. While the resource layer is concerned with the interaction of
single and local resources, the collective layer is associated with global interactions
across several distributed resources. For instance, the collective layer provides a di-
rectory for discovering resources and a resource broker for allocating and monitoring
them.

Application Layer: The application layer comprises of a variety of Grid enabled user ap-
plications. These applications make use of the protocols provided at each layer, i.e.,
protocols for authentication, resource access, and resource discovery.

The layered Grid architecture is implemented in the Globus Toolkit 2 (GT 2), the succes-
sor of I-WAY and GT 1. By providing modular software components for common problems,
such as authentication, resource discovery, and resource access, GT 2 facilitates the con-
struction of various different Grid applications (Foster and Kesselmann 2004).

In summary, second generation Grids evolved from propriety solutions (I-WAY) over par-
tially flexible implementations (GT 1) towards protocol driven middleware systems (GT 2).
These implementations enable the building of large-scale applications for different domains.

However, in order to build new and flexible Grid applications covering business domains,
one must reuse existing components, assemble them in a flexible manner, and extend and re-
place them easily. Unfortunately, this flexibility is hardly given by GT 2 and comparable
efforts, such as Condor, a workload management system for compute-intensive jobs (Frey
et al. 2001), or Legion, a framework for aggregating several computers into one single vir-
tual machine (Grimshaw et al. 1997; Natrajan et al. 2001). Most parts of second generation
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implementations are neither formally standardized nor publicly reviewed (Foster and Kessel-
mann 2004). Furthermore, most interfaces of these systems are incompatible with other ex-
isting Grid implementations. The lack of standardization, reusability, and interoperability of
second generation Grids, on the one hand, and the emergence of Web service technologies,
on the other hand, drove the evolution of Grids towards the third generation.

2.1.3 Third Generation Grids

Second generation Grids enable the sharing of computational resources, in order to achieve
large-scale computation. With an increasing number of new Grid applications, however,
additional requirements became apparent from business and scientific areas of application.
In order to deploy new Grid applications, one must reuse existing software and information
components and assemble them in a flexible manner. Second generation systems such as GT
2 do not achieve this flexibility. Furthermore, it is often required that resources guarantee
certain quality characteristics, such as an average response time, a lower limit for free storage
space, or a minimum security provision. When a resource offers such a guarantee to an
application, it also offers quality of service (QoS) (Foster and Kesselman 2004a). Although
proprietary QoS solutions are implemented in second generation Grids (Roy and Sander
2004), they lack standardization and generalization.

Third generation Grids address these requirements by applying the principles of SOAs
to the Grid. A SOA is defined as a set of loosely-coupled services in a network which have
well-defined interfaces and which can communicate with each other (Kaye 2003). Such a
design principle allows a flexible composition of distributed services in a network and a
standardized message exchange between the entities involved. This standardized process
enables the exchange of resource information, such as its capability descriptions and its
offered QoS levels.

Building Grid architectures based on a SOA implicates that computer and storage re-
sources, as well as networks, programs, and databases are virtualized as services, i.e.,
network-enabled entities that provide some capability. Thereby, the underlying technical
complexity of different computational resources and applications is hidden by standard ser-
vice interfaces (Taylor 2004). In Grids, it is required that interaction with resources is re-
alized by standardized interfaces. Such an interaction comprises administrative processes,
such as deploying, configuring, monitoring, metering, tuning, and troubleshooting the re-
source (Global Grid Forum 2005b). If a resource allows such a standardized interaction, it
is considered to be manageable. Derived from service orientation and standardized resource
interaction, a general definition of a Grid resource is formulated as follows:

Definition 2.1: Grid Resource
A Grid resource is a computational entity that provides manageable interfaces (Global Grid
Forum 2005c¢, p. 4).

For better readability and in terms of maintaining common terminologies, the term re-
source is used to denote any Grid resource, that is — in most cases — a manageable Web
service®. The term service is only used when a concrete service representation of a logical
entity is discussed. For instance, the term service is used to denote a storage service.

The virtualization of resources enables interoperability among heterogeneous computing
and application environments (Foster et al. 2002a). While second generation Grids focus

31t is not mandatory that a Grid resources is based on a Web service.
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on protocols required for interoperability among distributed resources, third generation ar-
chitectures specify the nature of resource interfaces that respond to these protocol messages.
Third generation systems stress behavior and functionality of Grid components and comple-
ment former protocol-oriented concepts (Foster et al. 2002b).

As a result of these developments reflecting a holistic view on distributed resource shar-
ing, the term Grid is defined as follows (Foster 2002, p. 2-3):

Definition 2.2: Grid
A Grid is a system that uses open, standardized, and general-purpose protocols to federate
distributed computational resources and to deliver nontrivial qualities of services.

Systems of the third generation focus on open and generalized protocols in order to en-
able information exchange between heterogeneous and distributed entities. In addition, the
specification of open protocols fosters the automation and self-organization of Grid systems.
This is necessary as humans can no longer deal with the scale and heterogeneity, but delegate
to software to do so (De Roure et al. 2003). For instance, resource discovery cannot remain
a manual task in a large-scale environment and thus must to be automated. This can only
be achieved if essential information, such as resource capabilities and user requirements, is
described and exchanged by the use of standardized communication protocols.

The de facto architecture of the third generation is OGSA. Its design principles and its
implications on Grids are discussed in the following section.

2.2 Open Grid Services Architecture — State of the Art

Grids are concerned with the creation, management, and application of distributed resources.
Within a Grid, resources can vary in their functionality, quality, and lifespan. For instance,
storage services can have different sizes and seek times. Common to all shared resources 1is,
however, the delivery of the service on a contracted level of QoS which comprises service-
level management, security semantics, and failover functionality (Joseph and Fellenstein
2004). The provision of a desired QoS level spanning heterogeneous services deployed on
different machines requires the specification of a well-defined and standardized architecture.
OGSA as proposed by Foster et al. (2002b) addresses these requirements. The architecture is
supported by the Open Grid Forum (OGF)® in order to expedite the standardization process
of Grid technologies.

Building on existing Grid technologies, such as GT 2, OGSA aligns Grid concepts with
SOAs and Web services. This alignment is originated from the similarities of Grids and Web
services: both technologies have the objective of distributed resource sharing (Abbas 2004).
In case of a Web service this includes the sharing of business and process logics to external
partners. Grid sharing concerns physical and logical resources such as computation, storage,
and application services. In both cases the access to resources is distributed and independent
of the resources’ physical location.

OGSA builds on the principles of SOAs and Web services. These principles and concepts
are outlined in Section 2.2.1. Subsequently, Section 2.2.2 introduces the OGSA platform
architecture and Section 2.2.3 gives an overview over Globus Toolkit 4 (GT 4) as one of its
reference implementations.

%OGF is an organization that leads the global standardization effort for Grids. OGF resulted from the merger
of the Global Grid Forum (GGF) and the Enterprise Grid Alliance (EGA). See http://www.ogf.org/ for
details (accessed: 12.10.2006).
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2.2.1 Service Oriented Architectures and Web Services

Service-Oriented Architecture (SOA): A SOA is a specific type of distributed system
in which all entities are services that perform some well-defined operations (Joseph et al.
2004). These services have to provide network-addressable interfaces and communicate via
standard protocols and standard data formats. The communication process between entities
involved is based on a well-defined message exchange, independent of the service’s under-
lying platform and vendor-specific implementation details.

SOAs enable the deployment of applications composed by loosely-coupled services
rather than appearing as monolithic systems (Kaye 2003). As such, their application facili-
tates the reuse of existing application components. SOAs address fundamental challenges of
open systems, that are to operate efficiently and to achieve autonomy in heterogeneous envi-
ronments (Huhns and Singh 2005). As such, a Grid architecture based on the principles of a
SOA is deemed promising to fulfill the requirements upon third generation Grid systems.

In a SOA, application providers can publish their services in a global registry. Sub-
sequently, these services are discovered dynamically and utilized by service requesters at
run-time. For instance, a service provider can publish a storage service in such a registry.
A simulation application that requires disk space to store some data can discover this stor-
age service and invoke it by standardized interfaces. Subsequently, it can store data without
being aware of how this data is stored, e.g., by the use of a distributed file system.

Web Services: SOAs are typically realized by means of Web services. A Web service is a
software system that supports interoperable machine-to-machine interaction over a network
(W3C 2003). This is realized by transferring XML documents between applications and
the use of standard Internet protocols. Web services are embedded into the Web service
technology stack which comprises a set of relevant specifications for communication, service
description, and service discovery.” In the context of SOAs, the following three standards
are the most salient ones (Curbera et al. 2002):

* the Simple Object Access Protocol (SOAP) for enabling communication between Web
services,

* the Web Service Description Language (WSDL) for describing the interface of a Web
service, and

e the Universal Description, Discovery, and Integration (UDDI) mechanism as a repos-
itory for publishing and discovering Web services.

SOAP is an XML-based protocol to exchange information in distributed systems. It
provides an enveloping mechanism that defines the content of a message. The standard
determines which messages are processed by defining a set of encoding rules for expressing
data types and a convention for representing remote procedure calls and responses (W3C
2000). SOAP messages are exchanged using a wide set of transport protocols, such as HTTP,
FTP, or Java Messaging Service (JMS) (Foster et al. 2002b).

SOAP enables communication between services. However, the standard does not define
which messages have to be exchanged in order to communicate with a service successfully.

"The specifications and standards are defined by the Web Services Activity group of the World Wide Web
Consortium (W3C). See http://www.w3.0rg/2002/ws/ for details (accessed: 14.10.2004).
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Figure 2.3: Interplay of SOAP, WSDL, and UDDI

Thus, standard conventions for describing the name of a Web service and its input and out-
put parameter are defined. This information is made explicit by WSDL. WSDL is an XML
encoded specification that is used to describe a service interface independent of its imple-
mentation. WSDL documents contain information about the functionality of services, their
location (e.g., their IP-addresses), and the protocol required for contacting them (e.g., using
HTTP). WSDL documents are separated in an abstract and concrete part. The abstract part
describes the service interface, i.e., the supported methods and parameters. The concrete part
defines protocol bindings and other information. Suppose, for instance, a WSDL document
that describes a storage service. The abstract part specifies the operations supported by the
service (e.g., an operation to retrieve files), the required input message (e.g., the filename),
and output message (e.g., the file content encoded as a string).> The concrete part specifies
the message encoding and the protocol bindings for all operations, e.g., the use of SOAP and
HTTP.

SOAP and WSDL are used for the invocation and description of Web services. For a far-
reaching deployment of Web services in a SOA, service requesters need further knowledge
about the existence of services and their providers. UDDI provides a framework to discover
services and to publish their descriptions. The core element of UDDI is a repository, more
specifically, an XML document that contains information about service capabilities and its
supplier. A UDDI repository is queried using a predefined API in combination with a query
language.” The UDDI registry itself is also a Web service which is invoked by the use of
WSDL and SOAP.

Figure 2.3 depicts the interplay of SOAP, WSDL, and UDDI (Wojciechowski and Wein-
hardt 2002). A service provider is publishing a particular Web service in the UDDI registry
using SOAP and WSDL.. After that, a service requestor queries the registry for this particular

service. Finally, the requestor invokes the service at the providers hosting environment using
SOAP and WSDL.

Web Service Resource Framework (WSRF): Web services in combination with WSDL,
SOAP, and UDDI are fundamental specifications for targeting SOAs. The specifications

8The concrete names of the operators are ambiguous. Service requesters have to know the meaning
of each parameter. The ontology community provides amendment description languages such as OWL-
S (http://www.daml.org/services/owl-s/1.1/) and WSMO (http://www.wsmo.org/) to
model explicit meanings of these parameters.

°Currently, only few and rather simple query languages exists for UDDIL. As such, the process of querying
a UDDI is seen as cumbersome (Alonso et al. 2004).
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Figure 2.4: WSRF approach to statefulness following Sotomayor and Childers (2006, p.
32-33)

determine how service providers and consumers interact over a network. However, no fur-
ther status concerning this interaction is stored as Web services are stateless. Messages
exchanged between a service provider and a consumer rest exclusively upon the information
contained in the input messages.

A Grid system, however, must maintain the status of its managed resources. Considering
a computation service, such a status includes information about current workload, processor
status, and reservations made by consumers. Grid resources require a stateful management,
as their behavior is dependent of their underlying status (Joseph et al. 2004). Grid resources
necessarily require standardized interfaces that provide access to the status of the service.

In order to enable a standardized management of stateful services, OGSA is based on
the Web Service Resource Framework (WSRF).!® WSRF models the stateful management
of Web services by introducing a separate entity which is referred to as state entity'!. A state
entity is used to store status information for the interaction with a particular Web service.
Each state entity has a unique identifier that is concatenated with its service. This identifier
is known to the service consumer and is used for the entire interaction session with the
service. Thus, the Web service has access to the corresponding resource and can use it to
retrieve and store relevant status information.

Example 2.1: WSRF

Figure 2.4 exemplifies the interaction of a service consumer, a Web service, and its state
entity. A consumer invokes a service which is capable of adding up numbers. The cor-
responding state entity for the session is B. The consumer has already submitted several
numbers to the service so that the current sum in state entity B is 21. Thus, a service request
with the parameter add 4 to the current status in state entity B results in a response of 25.

The pairing of a Web service and a state entity is called WS-Resource. The communi-
cation with a WS-Resource, i.e., communicating to the Web service which state entity is to

9Former specifications of OGSA based on the Open Grid Services Infrastructure (OGSI). OGSI is a com-
parable effort for dynamic and stateful management of Web services. However, OGSI is not integrated into
the family of Web service standards and is seen as too complex (Joseph et al. 2004). Thus, it was replaced by
WSRE. For a detailed comparison of WSRF and OGSI, the reader is referred to Czajkowski et al. (2004).

n literature, this state entity is usually called resource. However, it is refrained from this common termi-
nology in favour of a clear separation of a state entity and a Grid resource.
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Figure 2.5: OGSA platform architecture (Joseph et al. 2004, p. 628)

be used, is realized by means of WS-Addressing. The WS-Addressing specification defines a
construct called endpoint reference that contains, among others, a URI pointing to the Web
service and a pointer to the state entity identifier. On the basis of this addressing schema, a
WS-Resource is defined as follows:

Definition 2.3: WS-Resource

A WS-Resource is a composition of a Web service and a state entity that is [...] addressed and
accessed according to the implied resource pattern, a conventional use of WS-Addressing
endpoint references (Czajkowski et al. 2004, p. 5).'?

A WS-Resource represents both, a Web service and its state entity. The service represents
a logical or physical entity and has a number of interfaces to reserve, access, and monitor the
resource. The state entity is responsible for managing the status of an interaction with a Web
service.

For global management of such interfaces, WSRF provides a collection of specifications
which support access and creation of WS-Resources, as well as lifetime and fault manage-
ment (Czajkowski et al. 2004). WS-Resources and WSRF provide manageable interfaces
which are required for Grid resources (cf. Definition 2.1). As such, a WS-Resource is an
example for a Grid resource.

2.2.2 OGSA Platform Architecture

OGSA is the conflation of SOAs and Grid computing efforts. Figure 2.5 outlines the OGSA
platform architecture, according to Foster et al. (2002b) and Joseph et al. (2004). The
architecture consists of four layers: a hosting environment and protocol layer, a Web services
and WSRF layer, an OGSA services layer, and an application layer.

Hosting Environment and Protocols: A hosting environment is responsible for instanti-
ating and executing services. It includes physical and logical resources, operating
systems, and a service container, such as J2EE or .NET. Furthermore, fundamental

21n the original definition, the term resource is used instead of state entity.
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communication protocols are provided, such as routing and transport protocols, for
exchanging messages between OGSA instances.

Web Services and WSRF: The Web services and WSRF layer virtualizes physical and log-
ical entities as WS-Resources. The layer hides the heterogeneity and complexity of the
underlying hosting environment to higher-level layers by providing standardized and
manageable interfaces.

OGSA Services: OGSA services are core services required to maintain Grid applications.
These services cover general management functions for Grids. Among others, the set
of OGSA services comprises of resource management functionalities which are used
to discover, monitor, bill, and account services.

Applications: The application layer represents a set of services developed for the Grid.

The OGSA platform architecture is a uniform SOA for the Grid. It integrates Web service
standards into emerging Grid technologies. The architecture virtualizes all components of a
Grid environment and enables the provisioning of logical and physical resources, regardless
of their implementation and hosting platform. OGSA fosters interoperability and reusability
of services. Thus, the architectural concepts of OGSA qualify to accomplish the require-
ments upon third generation Grids. Its reference implementation Globus Toolkit 4 (GT 4) is
discussed in the following.

2.2.3 Globus Toolkit 4 as a Reference Implementation

GT 4" is an open source toolkit which can be used to build Grid applications. The toolkit is
organized as a set of loosely-coupled components which provide common functionality for
the deployment and execution of Grid applications. These components comprise of security
issues, services for data and execution management, information services, and a common
runtime library. GT 4 is an implementation of the OGSA requirements and is currently the
de facto standard toolkit for most Grid applications (Sotomayor and Childers 2006).'4

The architectural outline of GT 4 is depicted in Figure 2.6. GT 4 is divided into three
sets of components: infrastructure services, containers, and clients.

Infrastructure services: These services implement interfaces for the management of com-
putational, storage, and application services. For instance, they include execution man-
agement services (such as GRAM), monitoring and discovery services (such as Index),
and services for data access and movement (such as GridFTP). Most of these services
are implemented as Java Web services using Apache Axis'> and communicate via Web
service compliant protocols. However, some of them are implemented by the use of
alternative transport and security protocols. For instance, GridFTP is implemented in
C.

BFormer specifications of OGSA based on OGSI are implemented in the Globus Toolkit 3 (GT 3).

14Several alternative implementations of OGSA based recommendations are currently under development.
For instance, Brooke et al. (2004) and Humphrey (2003) each develop an OGSA compliant Grid service
middleware.

15 Apache Axis is a Java based implementation of SOAP. See http://ws.apache.org/axis/ for
details (accessed 21.10.2005).
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Figure 2.6: GT 4 architecture (Foster 2005, p. 2)

Containers: GT 4 provides three different containers for user-developed services. These
services are implemented either in Java, Python, or C. A container provides com-
monly required functionalities for developing and deploying Grid services. Among
others, these functions concern security, discovery, and status management mecha-
nisms. A container extends the underlying hosting platform by adding a set of Web
service specifications such as WSRF and WS-Security. Grid applications, just as a
storage service or a SAP R/3 service, are managed within this container.

Clients: A client can use a set of predefined libraries which are typically required for the
invocation of a distributed service. Subsequently, the client can access any user-
developed service from a service provider using either Web service messaging or al-
ternative communication protocols.

GT 4 is a fundamental technological enabler for deploying Grids in scientific and busi-
ness domains. The toolkit enables the building of different applications for sharing any kind
of services.

2.3 Resource Management in Grids

OGSA and its reference implementation GT 4 enable the formation of loosely-coupled high-
performance computational environments. As pointed above, fundamental to such systems
is the ability to discover various types of computational and application resources, to arrange
for their use, to utilize them, and to monitor their state (Czajkowski et al. 2004). This pro-
cess is usually referred to as resource management. Among others, resource management is
responsible for typical management operations of distributed systems, such as resource reser-
vation and allocation, security management, monitoring functionalities, billing and account-
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ing, fault management, and resource aggregation (Global Grid Forum 2005c). Following
Czajkowski et al. (2004, p. 259), resource management in the Grid defined as follows:

Definition 2.4: Resource management
Resource management in the Grid refers to the operations applied to control the behavior of
Grid resources that are made available to other entities.

A key issue of resource management in Grids is the ability to decide which resources
are allocated to which consumer and scheduled at what time. In Grids, this process is called
resource allocation.'® It comprises functionalities to describe the capabilities of resources,
to discover candidate resources fulfilling the required capabilities, and to schedule the allo-
cation of them.

Definition 2.5: Resource allocation
Resource allocation in the Grid comprises all functionality that is required to determine
which Grid resources are allocated from which providers to which consumers.

With regard to local resources in traditional computing systems, such as desktop or clus-
ter machines, resource management and allocation is a well-studied problem (Foster and
Kesselmann 2004). Several local management systems are implemented for different appli-
cation scenarios as batch schedulers, workflow engines, and operating systems (Czajkowski
et al. 2004). These systems have full control over each of their underlying resources and have
complete knowledge of their state and utilization. Resource allocation decisions are usually
based on system specific objective functions, such as the maximization of total resource uti-
lization. Local resource managers work fairly well in closed and controlled environments. In
a distributed system, such as the Grid, however, these managers fail as they do not have full
control over a set of distributed resources. Resources in the Grid are heterogeneous and have
a multitude of different characteristics with varying configurations (Czajkowski et al. 2004).
For instance, the local resource manager implemented in a Linux operating system cannot
allocate a processing unit on a Solaris system. Among others, both systems implement dif-
ferent job management engines that cannot communicate directly with each other. As such,
the Linux system neither has information concerning the status of the resources controlled by
the Solaris system, nor the Linux system is capable of determining an allocation of resources
on it. Furthermore, Grid resources are subject to various organizational and administrative
policies (Foster et al. 2002b). For instance, such policy restrictions of an organization can
prohibit the allocation of a resource from outside the European Union. In summary, local
resource managers can neither manage the status and the allocation of distributed resource,
nor respect policy restrictions of the participants.

The objective of resource management systems in Grids is to overcome these barriers
and to provide basic management functionalities in order to discover, allocate, schedule, and
monitor a wide range of different distributed resources (Czajkowski et al. 2004). Ground-
work for achieving this goal lies in the development of efficient and flexible resource allo-
cation systems. On that note, Subsection 2.3.1 describes a set of common technical require-
ments of a resource allocation system for the Grid. Subsequently, Subsection 2.3.2 intro-
duces a generic resource allocation process and a selection of corresponding technologies
which are required to fulfill the elicited requirements.

161n literature, this process is sometimes also called resource scheduling (e.g., in Schopf (2004)).
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2.3.1 Requirements upon a Resource Allocation Manager

In literature, several requirements upon resource allocation managers for Grids are discussed.
These requirements are mostly based on experiences with Grid test beds (Russell et al. 2004)
and cluster and parallel computing infrastructures (Czajkowski et al. 1998). Besides ap-
plication and domain specific requirements, the following generic requirements upon re-
source allocation managers are specified: (Czajkowski et al. 2004; Russell et al. 2004;
Schwiegelshohn and Yahyapour 2004)

Requirement 2.1: Computational Tractability

The apt resource allocation manager has to determine an allocation within a meaningful time
frame. In the context of trading Grid resources, a meaningful time frame is consistent with
the maximum time limit that an allocation process may last. The review of related literature
suggests that an allocation process that is shorter than 5 minutes for 500 job requests and
offers is adequate (Shan et al. 2003; Shan et al. 2004)."

Requirement 2.2: Automated Resource Allocation
In order to facilitate the automation of Grid systems as introduced by third generation sys-
tems, a resource allocation mechanism has to select appropriate resources automatically.

Requirement 2.3: Double sided Mechanism
A resource allocation mechanism apt for the Grid has to enable multiple resource owners to
publish their resources and multiple resource requesters to discover them.

Requirement 2.4: Support for Heterogeneous Resources

In the Grid, different heterogeneous types of resources have to be managed by the resource
allocation system. For instance, the manager has to provide functionalities which can be
used to allocate storage services as well as computation services.

Requirement 2.5: Support for Different Resource Characteristics

Resources in the Grid are typically not completely standardized. Similar resources can differ
in their quality characteristics. For instance, storage services can differ by their capacity and
access time. Resource consumers require different quality characteristics of the same type of
resource. A complex rendering application, for instance, requires more capacity of a storage
service than a conversion tool for single music files. As such, a resource allocation manager
must support the specification and adherence of minimum capability requirements. '

Requirement 2.6: Bundling of Resources

Resource consumers usually demand a combination of different resources as a bundle in
order to perform a task (Subramoniam et al. 2002; Cheliotis et al. 2005). Grid resources
are complementarities, meaning that participants have super-additive valuations for the re-
sources, since the sum of the utilities for single resources is less than the value for the whole
bundle. Suppose a consumer requires a storage service and a computation service in order
to perform a rendering job. If any of the two services, e.g., the storage service, is not allo-
cated to him, the remaining bundle has no value for him. In order to avoid this exposure risk
(i.e., receiving only a subset of the bundle), the resource allocation manager must support
the simultaneous allocation of multiple resources in form of bundles.

171t is to note that this value is estimated and should only serve as a clue for the maximum runtime of an
allocation manager.
8This assumes, that resource providers can estimate their available resource capacities, e.g., by the use of
erformance prediction models such as proposed by Wolski (1998) or Schopf and Yang (2004). Furthermore,
p p prop y p g
it is assumed that resource consumers can specify their capability requirements (Smith 2004), e.g., that an
application requires a storage service with 300 GB of capacity.
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Requirement 2.7: Co-Allocation of Resources

Capacity-demanding applications usually require the simultaneous allocation of several ho-
mogenous resources from different providers. For example, a large-scale simulation can re-
quire several computation services to get completed in time. Research literature often refers
to the simultaneous allocation of multiple homogenous resources as co-allocation. In this
context, two cases must be considered: First, it is desirable to limit the maximum number
of resource co-allocations, i.e., the maximum number of resource divisions. Second, it may
be logical to couple multiple resources of a bundle in order to guarantee that these resources
are allocated from the same provider and — more importantly — will be executed on the same
machine.

Requirement 2.8: Guaranteed Resource Usage Time

Resource consumers usually require resources for a certain time span, e.g., a storage service
is required for 3 hours. A resource manager must support the specification of resource usage
time and must manage these confirmations in the allocation process.

Requirement 2.9: Advanced Reservation of Resource

Resource consumers may want to express their future resource requirements, e.g., the con-
sumer may require a set of resources in 5 hours. In some cases, resource consumers may
want to express boundaries in form of start and end time slots. For instance, the consumer
may be indifferent whether the resource is allocated at 10 a.m. or at 11 a.m., as long as the
whole job is finished at a certain time, say 3 p.m. Likewise, resource providers may also ex-
press their idle resources in the future, e.g., a computer center may want to offer its resources
at night. Such scheduling of resources in the future is referred to as advanced reservation.

Requirement 2.10: Substitutability of Resources

In the Grid, resource consumers may be indifferent between several resource configurations.
For instance, a consumer is indifferent whether a storage service with 300 GB is allocated
to him for 4 hours or a different storage service with only 200 GB is allocated to him for 7
hours. However, the consumer may want to be ensured that only one service is allocated at
most. In this case, the resources are substitutes, i.e., a consumer has sub-additive valuations
for them. To express the substitutability of resources, the resource allocation manager must
allow consumers to express XOR?® dependencies between several resource configurations.
For resource providers, such an operator may not be necessary as Grid resources are non-
storable commodities, e.g., a computation service currently available cannot be stored for a
later time.

Requirement 2.11: Network Quality

The performance of applications in the Grid can be subject to numerous network constraints
(Russell et al. 2004). Thus, a resource allocation manager has to take the given network qual-
ity into account when allocating resources. For instance, it is inefficient to allocate a storage
service hosted on a node with a slow network connection to a data intensive application.

On the basis of these requirements, a general resource allocation process is introduced
in the following. The process builds the basis for any resource management system that
attempts to fulfill the above elicited requirements.

19 Advanced reservation of resources and the ability to submit time boundaries may require that the underly-
ing Grid middleware supports checkpointing in order to perform jobs discontinuously. For this, a checkpoint
file of the job is generated to allow for a later continuation (Schwiegelshohn and Yahyapour 2004). Further-
more, application migration techniques are required to port an application from one resource to another one.

20 4 XOR B (A & B) means either (), A, or B, but not AB.
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Figure 2.7: Resource allocation process following Schopf (2004, p. 18)

2.3.2 Resource Allocation Process

In the Grid, a resource allocation manager has to provide functionality to specify, discover,
allocate, and schedule distributed resources. Following Schopf (2004) a general resource al-
location process is depicted in Figure 2.7. Furthermore, the figure pinpoints the intersections
of the resource allocation process and general resource management functionalities.

The objective of the given process is to reach a QoS level agreement between a resource
provider and a consumer. Such an agreement specifies which resources are allocated from
which provider to which consumer, with respect to a specified QoS level. On that note, an
intention to establish such an agreement is submitted to the resource allocation manager. This
intention is the input for the discovery mechanism (1) to find candidate resources which fulfill
the user’s requirements (2). Based on the resulting candidate list, an appropriate resource has
to be selected and an agreement has to be negotiated (3). If such an agreement is established
(4a), the resource can be used (5), i.e., the service can be executed. Otherwise (4b), the user
may submit an alternative intention.

These three stages of the resource management process and their corresponding technol-
ogy stacks are discussed in the following.

2.3.2.1 Stage 1 — Resource Discovery

In order to utilize a resource, a consumer has to be aware of the resource’s existence, its char-
acteristics, and its usage conditions. Likewise, a resource provider must have the opportunity
to publish relevant characteristics and details about its provided resources. This information
is managed and provided by a resource registry. Applications or users can query this registry
to discover relevant services.

A prerequisite for publishing and discovering resources, as well as describing resource
capabilities and organizational policies are standardized specification languages. Such lan-
guages are used to express intentions for providing and obtaining resources which fulfill
required characteristics and usage conditions. In Grids, these intentions, in terms of service
level agreements (SLAs), are usually formalized by means of the WS-Agreement specifi-
cation (Andrieux et al. 2005). WS-Agreement provides a language and a protocol for ad-
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vertising capabilities of Web services and creating agreements based on offers, as well as
for monitoring agreement compliance at runtime. Initially, an agreement initiator (e.g., a
resource consumer) receives an agreement template from a provider. Subsequently, the ini-
tiator fills out all relevant parameter and submits the filled template to the provider (Ludwig
et al. 2004). If the provider accepts the parameter specifications, an agreement is established.
Likewise, it is also possible that a resource consumer can specify the resource requirements
and policy restrictions in an agreement template and submit it to a resource provider. In both
cases, the objective of the discovery mechanism is to find candidate counterparts.

An essential part of an agreement between a resource provider and consumer is the type
of resource being provided and the underlying policy restrictions under which the provi-
sion occurs.?! For describing the type of resources, several generic languages exist, such
as WSDL, OWL-S, and WSMO. Furthermore, for computational resources, specialized re-
source description languages can be applied in order to express resource attribute metrics,
such as bandwidth, latency, and space. The Resource Description Language (RSL) (Cza-
jkowski et al. 1998) and ClassAds (Raman et al. 2004) are the two most common languages
applied in several Grid implementations. Furthermore, the OGF impels the standardiza-
tion of the Job Submission Description Language (JSDL) for specifying requirements of
computational jobs (Global Grid Forum 2005a). In addition, the Grid Laboratory Uniform
Environment (GLUE) defines a model for describing Grid resources such as computing and
storage elements (Andreozzi et al. 2005). In order to describe policy restrictions, several pol-
icy languages from Web service developments can be applied to Grids, e.g., the WS-Policy
specification (Bajaj et al. 2006).2 Most common service descriptions and policy languages
can be integrated into WS-Agreement.

Example 2.2: WS-Agreement

Figure 2.8 depicts a part of an exemplarily WS-Agreement intention. By means of this
intention, a user is requesting a computational service in order to execute an application.
The service capabilities are described using JSDL and denote that the service must either
have 32 or 8 processors (XOR constraint). The latest possible end time of the computational
job is February, 2nd, 2006.

After the specification of the requirements and conditions, the intention document is
submitted to a resource discovery mechanism which can be queried for a set of candidate
resources. Such discovery mechanisms are either implemented in a centralized, hierarchical,
or in a decentralized manner. For instance, Condor applies a centralized information pool
for collecting resource requests and offers (Thain et al. 2005). The MDS2 system as part of
the Globus Toolkit 2 is organized as a hierarchical architecture including several distributed
resource information servers (Czajkowski et al. 2001). In addition, Curbera et al. (2002), Al-
Alietal. (2003), and Aloisio et al. (2005) propose UDDI registries in a central or hierarchical
manner as Grid discovery mechanisms. Decentralized resource discovery mechanisms, such
as proposed by Kashani et al. (2004) and Iamnitchi and Foster (2001), are usually based on
Peer-to-Peer technologies.

21 Further parts of an agreement such as security, monitoring, accounting, and addressing issues play also a
crucial role in Grid settings. They are, however, out of scope for the work at hand.
22For a comparison of different policy description languages, the reader is referred to Anderson (2005).
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<wsag:AgreementOffer> [...] <wsag:Terms> <wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="executable"
wsag:ServiceName="Compute">
</wsag:ServiceDescriptionTerm>
<wsag:ExactlyOne>
<wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="numberOfCPUs"
wsag:ServiceName="Compute">
<job:numberOfCPUs>32</job:numberOfCPUs>
</wsag:ServiceDescriptionTerm>
</wsag:All>
<wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="numberOfCPUs"
wsag:ServiceName="Compute">
<job:numberOfCPUs>8</job:numberOfCPUs>
</wsag:ServiceDescriptionTerm>
</wsag:All>
</wsag:ExactlyOne>
<wsag:GuaranteeTerm wsag:Name="MaxEndTime">
<wsag:ServiceScope>
<wsag:ServiceName>ComputeJobl</wsag:ServiceName>
</wsag:ServiceScope>
<wsag:ServicelevelObjective>endTime IS_BEFORE 2006-02-02
</wsag:ServiceLevelObjective>
</wsag:GuaranteeTerm>
</wsag:All> </wsag:Terms> [...] </wsag:AgreementOffer>

Figure 2.8: Part of a WS-Agreement intention

2.3.2.2 Stage 2 — Resource Selection

Given a list of possible resources which meet minimum requirements, a set of resources
has to be selected to perform a job. This selection stage is sometimes combined with a
second information step in order to gather further dynamic information about the preferred
resource, e.g., its network connectivity (Schopf 2004). Several different strategies of how to
select an appropriate resource are discussed in literature. These strategies usually depend on
user and application requirements. They can be classified as manual and automatic selection
strategies:

Manual Selection: A manual selection strategy is often applied when a user wants to have
full control over the resource selection. This strategy is advantageous if the variety
of offered services is low (e.g., in an in-house Grid as applied in Meliksetian et al.
(2004)) or the required services are rare and highly specialized. For instance, sup-
pose a biochemist wants to use a specialized database service that provides results of
a specific biochemical experiment. Such a resource is a rare and a non standardized
commodity. Furthermore, its capabilities are hard to describe using standardized de-
scription languages. In such cases, the biochemist may select an appropriate resource
manually in order to ensure that the minimum capability requirements are met.

Automated Selection: In most Grid scenarios, however, an automatic selection of candidate
resources is advantageous compared to a manual selection strategy. This is especially
the case if the candidate resources are commodities such as computation or storage
services, that can be described using standardized specification languages. Most of
the proposed automatic selection strategies for the Grid are based on matchmaking
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algorithms. In such systems, the values of the capabilities of resource providers are
compared with those required by consumers (Veit 2003). One of the most famous
matchmaking systems in the Grid is the Condor matchmaking framework (Raman
et al. 1998) and its extension Gang-Matching (Raman et al. 2003). Furthermore,
ontology based matchmakers, such as proposed by Tangmunarunkit et al. (2003), are
applied for a semantic matchmaking of resource offers and requests. In case multi-
ple resources match the required capabilities, matchmaking algorithms usually select
a resource according to a system specific strategy, e.g., using a first-come first-serve
mechanism.?* In most automatic resource selection strategies, the resource discovery
and selection stage are intertwined and realized in one single component. As such, a
clear distinction between resource discovery and selection does not exist.

Besides manual and automatic selection algorithms, several hybrid strategies exist in
literature and practice. Such algorithms usually restrict the set of candidate services to a
smaller subset of potential resources. Subsequently, the user decides which resource should
be obtained (Meliksetian et al. 2004).

Having selected a specific resource, the counterparts can reach an agreement upon re-
source usage. If such an agreement is established, the resource can be used by the consumer.

2.3.2.3 Stage 3 — Resource Usage

After an agreement is established between a resource provider and consumer, a job can be
performed using the allocated resources. Before a job is started, the resource provider has
to reserve local resources in order to fulfill the agreed QoS level. This is typically realized
using a Grid middleware in combination with a local resource manager. Having reserved
the resources, the job is executed. In some cases, it is necessary to transfer data to the
resource provider in order to perform the job. For instance, suppose a computational service
provider that offers a cluster to a consumer. In this case, it may be required to transfer a
specific application to that node, e.g., using GridFTP (Allcock et al. 2002). When the job
is executed, the user can monitor the status of the job and of the resource. After the job is
finished, the user is notified and if necessary retrieves files from the resource.

2.4 Summary

This chapter introduced the basic concepts of Grid architectures and resource management
systems. Section 2.1 outlined the historical evolution of Grid technologies which shifted
from proprietary high-performance computing infrastructures towards holistic systems for
coordinated resource sharing based on standardized and open protocols. The evolution fur-
ther showed an increased functionality, standardization, and commercialization of Grid tech-
nologies. As a result, current Grid architectures rely on principles of SOAs in order to
achieve flexibility in heterogeneous environments.

Section 2.2 introduced OGSA as the current state of the art Grid architecture. For this,
basic principles of SOAs, Web services, and WSREF are first discussed. Furthermore, it is
outlined how these specifications complement and refine existing Grid technologies. Based

Z3For a comprehensive study on automatic resource selectors in the Grid, the reader is referred to Krauter
et al. (2002).
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on these specifications, the OGSA platform architecture, as well as its reference implementa-
tion GT 4, are briefly outlined. These technologies enable the formation of loosely-coupled,
high-performance computational environments.

Essential for a wide application of Grid technologies is the ability to discover, arrange,
utilize, and monitor resources. These functionalities are comprised by resource management
systems which are discussed in Section 2.3. At first, general requirements of a resource
allocation system for the Grid are elicited. Subsequently, a resource allocation process is
introduced which builds the base for fulfilling the specified requirements.

In the following Chapter 3 it is argued why current technical resource management sys-
tems fail to achieve an economically efficient outcome. Furthermore, it is discussed why the
use of market mechanisms for allocating Grid resources is deemed promising.
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Chapter 3
Moving Markets to the Grid

In the long term, the real test of our success will be not merely how well we understand the
general principles which govern economic interactions, but how well we can bring this

knowledge to bear on practical questions of microeconomic engineering.
(Roth 1991, p. 113)

Most of the research carried out in the area of Grids has been devoted to the hardware and
software infrastructure to provide access to any form of distributed resources. Technical in-
frastructure is a necessary requirement to implement Grids in practice. Technical feasibility,
however, is not equivalent to actual realization, as also institutional arrangements are becom-
ing increasingly important. In essence, current middleware provides insufficient incentive to
participate in the Grid. This lack of incentive stems from the fact that most Grid middle-
ware resource management systems employ batch algorithms which determine the alloca-
tion based on either naive heuristics or on idiosyncratic cost functions (Buyya et al. 2002).
From an economic point of view, however, these algorithms are suboptimal as they strive to
maximize a system-wide performance objective, such as throughput or mean response time,
rather than determining an economically efficient allocation of resources by maximizing the
total value over all participants. Thus, these batch algorithms cannot guarantee that buyers
with a high valuation for some resources will really receive them.

Recently, researchers have increasingly suggested employing markets for the resource
allocation problem in Grids (Wolski et al. 2001; Buyya et al. 2001). If the market rules are
properly designed, users may be provided incentives to express their true values for service
requests and offers. This, in turn, marks the prerequisite for attaining an efficient allocation
of Grid resources.

The objective of this chapter is threefold: First, the chapter motivates the use of markets
for allocating resources in the Grid. Second, it introduces the foundations and functionality
of markets with a focus on concepts that are related to Grid markets. Third, the chapter
outlines a systematic approach to design, implement, and evaluate markets. The structure
of this chapter is as follows: Section 3.1 provides an answer to the question why markets
should be applied to allocate and schedule resources in the Grid. Subsequently, Section 3.2
outlines the general structure of a market and introduces a theory to analyze the impact of
different market rules. As the design of a market for the Grid is rather difficult, Section 3.3
outlines the market engineering approach, a systematic procedure for engineering markets.
Finally, Section 3.4 concludes with a summary.
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Incentive mechanism
Static Dynamic
Cooperation | Community sharing | Priority sharing
Focus e - —
Competition Fixed pricing Markets

Table 3.1: Classification of resource allocation models

3.1 Why Markets for the Grid?

In literature and practice, various mechanisms have been proposed to allocate resources in
distributed computing systems. In order to determine an allocation of resources, each mech-
anism attempts to implement a particular social choice function, that is, they implement a
rule to determine which resources are allocated to which requesting participant (Shneidman
et al. 2005). Such a social choice function may maximize the overall system utilization or the
total revenue of a particular Grid operator.! From an economic point of view, a social choice
function that determines an efficient allocation typically meets the goal that the mechanism
designer wants to achieve (Neumann 2004). An efficient resource allocation maximizes the
total utility of all participants.

Independent from their particular peculiarities, one can classify resource allocation
mechanisms by their focus and their incentive mechanism: The focus of a resource allo-
cation mechanism can be either cooperation or competition. Cooperative models assume
that rational individuals will “cooperate in pursuing their common interests if the conditions
permit them to do so” (Harsanyi and Selten 1998, p. 356). An example for a coopera-
tive model is the sharing of computing power to perform a corporate physical experiment
among scientists. In contrast, competition assumes that there is a “contest between rivals”
(Merriam-Webster 2006). As an example for a competitive behavior of agents suppose two
rival companies that compete for the access to one single supercomputer. Aside from their
focus, resource allocation mechanisms differ from their underlying incentive mechanism.
This mechanism impels the willingness of agents to participate in the system. Such mech-
anisms can be either static or dynamic. Static models constitute fixed entry fees or fixed
accounting schemes such as a fixed price to access a computer node. Dynamic mechanisms
adapt their participation conditions according to the change of available resource quantities.
A common example for a dynamic mechanism is a market mechanism whose price system
dynamically reflects information about supply and demand for a resource.

Table 3.1 illustrates the classification of resource allocation models for the Grid and con-
stitutes a practical mechanism for each criterion. These mechanisms and their applicability
to Grids are briefly reviewed in the following.

3.1.1 Community Sharing

Currently, most resource allocation mechanisms that are applied in practice base on com-
munity sharing models known from Peer-to-Peer networks such as Gnutella? or BitTorrent’.
The principle of such models is that agents can participate in the network if they offer a part
of their idle resources as a fixed entry fee. Usually this entry fee is only a small and static

'Likewise to financial markets, there may be several different Grid operators in the future.
2See http://www.gnutella.org/ for details.
3See http://www.bittorrent .com/ for details
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fraction of the consumable resources. The entry fee could prescribe that one computer has
to be shared to get access to a cluster of machines. In this situation, the term agent is used to
denote any participating user such as an individual, an agency, a government department, or
a company.

The basis for sharing models is cooperation rather than competition. From a social-
psychological point of view, the willingness to share resources or information as public
goods is explained by altruistic or reciprocal behavior (Antoniadis et al. 2004). In practice,
however, such behavior rarely exists: Adar and Huberman (2000) report that nearly 70% of
the Gnutella agents share no files.* Furthermore, nearly 50% of all responses are returned
by the top 1% of sharing nodes. This is explained by the fact that agents act rationally by
reducing their shared resources to a minimum and only consume offered resources (Becker
and Clement 2004). Current community sharing models do not provide sufficient incentives
to share more than a minimum resource endowment. One can transfer these experiences to
the Grid and come to the assumption that the willingness to share computer resources as
public goods is small. Most computational resources, such as clusters, are cost-intensive and
require outlays for their permanent administration. As such, it is not reasonable to believe
that agents share more Grid resources than required.

If agents request more resources than shared, demand exceeds supply. In such cases, a re-
source allocator must decide which agents are supplied with the given resource endowment.
This decision reflects its implemented social choice function. Traditionally, within commu-
nity sharing models, resource managers base either on naive heuristics, such as first-come
first-serve, or on idiosyncratic cost functions, such as the maximization of system utilization
(Buyya et al. 2005). However, these functions do not guarantee that users who value the
resources most will also receive them. For instance, suppose a company runs two concurrent
applications that require computational resources. One application, a stock portfolio opti-
mizer, is very critical for the company; another application, for instance an annual report
generator, is not that important at that instance. A first-come first-serve strategy does not
guarantee that the portfolio optimizer is preferred by the allocation decision, as priorities are
not taken into account. As a result, the described resource managers cannot guarantee the
achievement of economically efficient outcomes.

The use of community sharing models for the Grid has two main shortcomings: First,
resource owners only offer a small fraction of their available resources to the Grid. Second,
allocation decisions can be inefficient due to first-come first-serve strategies. Unfortunately,
the first shortcoming makes the second one more severe, as only a minimum of resources are
contributed to the Grid and demand for resources may be very large®. Consequently, there
will be a situation of an extremely large excess demand for resources (Schnizler et al. 2005).

3.1.2 Priority Sharing

Priority sharing models extend community based mechanisms by including dynamically
adaptable agent weight functions into the allocation decision. As such, the importance of
different jobs competing for resources can be rated. This may lead to efficient allocations.

“In the Gnutella network, users can participate even without sharing files.

SFor instance, in PlanetLab — a test bed for scientific networking and distributed computing — demand is
usually higher than supply a few weeks before the submission deadlines of popular conferences (Fu et al.
2003).
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Proportional Share is a frequently discussed example of a priority based model applied in
distributed systems (Waldspurger and Weihl 1994; AuYoung et al. 2004):

Proportional share accounts for job priorities by assigning a weight function w; to each
agent 7 € Z. On the basis of these weight functions, the mechanism allocates each agent
i aw;/ ) ,.;w; share of all resources. For instance, if the portfolio optimizer i = 1 of
the aforementioned example has a priority value of w; = 2 and the report generator ¢ = 2
has a priority value of wy = 1, the optimizer gets two-thirds and the report generator gets
one-third of the resources. Assume the weights simultaneously reflect the true value of each
application, the resulting allocation is efficient. Now, suppose the report generator becomes
more important, as annual financial statements have to be generated. Furthermore, the stock
portfolio optimizer becomes a non-critical application for the company. In such a case,
proportional share will still be efficient if the stock portfolio optimizer reduces the weight
w; and the report generator increases the weight w,. Thus, the report generator will get a
higher value and will be allocated to more resources. However, there is no incentive for
the portfolio optimizer to reduce the weight w;. A faster optimization of the portfolio due to
more resources still creates a small benefit for the application maintainer, although the benefit
for the whole company would be higher if the weight of the optimizer was reduced. The
application maintainer of the portfolio optimizer behaves in a non-cooperative manner that
leads to inefficient outcomes. This socioeconomic phenomenon — actions of an individual
that cause the society as a whole to suffer — is known as the tragedy of the commons (Hardin
1968). With regard to a free market economy, this phenomenon mainly applies to resources
which are not suitable for private ownership. Suppose, for example, the pollution problem
in an economy. If an agent puts his waste into a river, his individual share of the costs for the
whole economy is less than the costs of purifying the waste before releasing it. This fact is
true for every agent in the economy. Hardin (1968, p. 1245) summarizes that “we are locked
into a system of fouling our own nest, so long as we behave only as independent, rational,
free-enterprisers.”.

One solution for the tragedy of the commons is to install an administrator as a central
entity who controls the system and dynamically adapts the weight values for the resources.
For the Grid, however, such a manual task is seen as to too expensive and error prone (Lai
2005). Moreover, a central monitoring of application requirements is almost impossible to
realize if organizational barriers are crossed.

Another way to preclude a tragedy of the commons situation in Grids is to price the
access to resources (Cheliotis et al. 2005). This shifts the focus from cooperative based
models towards competitive mechanisms.

3.1.3 Fixed Pricing

In practice, fixed pricing schemes are applied to control and to price access of resources.
Popular examples for such schemes are flat rates for pricing network bandwidth and fixed
prices for the use of computer resources.®

In the example mentioned above, a fixed pricing scheme clearly reduces the demand
of the portfolio optimization application due to budget restrictions. Moreover, such pric-
ing schemes can lead to efficient outcomes if values for resources are static. Fixed pricing

®For instance, Sun Microsystems sells unused CPU cycles for $1 per CPU hour and storage at $1 per
gigabyte per month. See http://www.network.com/ for details (accessed 11.12.2006).



CHAPTER 3. MOVING MARKETS TO THE GRID 35

buyer 2 enters

15 the market i
i unrealized .
utility curve i utility utility
buyer 1 \ i curve
10 | | buyer 2
@ fixed price unrealized
o P profit
ke; |
o 4 ....................... nCLLLEEEECEEEEELE L CEEEEECEEELECERELELE
|
i realized
unrealized | utility
0 utility i ‘
0 3 8 10
Time (s)

Figure 3.1: Utility curves of two buyers competing for a fixed price resource following Lai
(2005, p.2)

schemes are, however, inefficient if these values change dynamically. This obstacle is de-
picted in Figure 3.1 following Lai (2005, p. 2): The graph shows the utility curves of two
buyers for the same resource which is offered by a seller for a fixed price of p = 4 €. Until
time step ¢ = 3, buyer 1’s utility is below the fixed price and, as a consequence, buyer 1
is unwilling to pay the fixed price for the resource. In these time steps, the outcome of the
mechanism is inefficient, as the (small) utility of buyer 1 is not realized. After time step
t = 3, buyer 1 is willing to pay more than the fixed price for the resource. Consequently,
buyer 1 can use the resource and can realize some utility. Although an efficient allocation
is achieved, the seller does not realize all potential profit, i.e., the seller is not realizing the
difference between the utility curve of buyer 1 and the fixed price. In time step ¢ = 8, buyer
2 enters the market and also wants to purchase the resource. In this case, the seller cannot
distinguish among the utility curves of both buyers, as this information is private. As such,
the seller cannot guarantee to allocate the resource efficiently. For instance, if the seller al-
locates the resource to buyer 2, the outcome is inefficient as buyer 1 has a higher utility for
it.

In general, the more dynamic the values, the higher the efficiency loss caused by the
fixed pricing scheme (Lai 2005). Grid resources have a dynamic value which depends on a
combination of workload requirements and scarcity (Cheliotis et al. 2005). For instance, the
computational workload of an automotive producer is high during a crash-test simulation and
low during summer, when the employees are on holidays. Likewise, the idle resources are
scarce during the simulation and plentiful during the holidays. Such a variation of workload
and availability of idle resources influences the values for the resources. In order to allocate
resources efficiently, a pricing scheme has to take such dynamics into account. Thus, the
application of a fixed pricing mechanism for the Grid is limited.
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3.1.4 Markets

In contrast to sharing models and fixed price mechanisms, markets can be an effective insti-
tution for allocating resources efficiently that have a dynamic value. This is achieved by the
interplay of supply and demand and due to the information feedback inherent to the price
system (Hurwicz 1972). By assigning a value to their resource requests, agents can reveal
their relative urgency or costs, which in turn is subject to resource usage constraints.

If the market mechanism is designed properly, agents may be provided with incentives
to express their true values for resource requests and offers. As such, markets can be an
adequate mechanism to determine efficient resource allocation decisions and, thus, make the
Grid attractive for agents. In addition, markets inherently offer a business model for resource
owners as they are payed for their resource provision (Schnizler et al. 2006a).

3.2 Foundations of Markets

An application of markets to the Grid requires an understanding of what a market is and
how it determines allocations and prices. This knowledge builds the basis for the subsequent
engineering of a Grid market. This section aims to provide a consistent understanding of
markets: Section 3.2.1 introduces the terminology of markets that is used throughout this
work. It introduces a formal microeconomic framework that provides a common view on
the structure and the concepts of markets. Although the framework offers ways to describe
a set of different markets and their implemented rules, it does not give any hint on the con-
sequences of the underlying rules. Section 3.2.2 introduces mechanism design, a theory that
questions the consequences of different types of rules (Bichler 2001). Finally, Section 3.2.3
outlines how these theoretical concepts are practically implemented.

3.2.1 Microeconomic System Framework

The microeconomic system framework proposed by Smith (1982) sketches a common view
on the structure of any economic system.” It provides very few well-accepted concepts and
denotes their interactions (Smith 2003). The framework serves as a starting point to define a
consistent terminology and a common understanding of markets.®

The framework, as depicted in Figure 3.2, is comprised of five basic concepts and denotes
their dependencies: The economic environment embraces all factors that affect supply and
demand and that are exogenously given. This includes, among others, the agents and their
preferences, as well as the traded resources and their characteristics. Agents communicate
their preferences to other agents on the basis of a market language® that is defined by the
institution. The potential message space is usually restricted by the institution and limits the
choice behavior of the agents. Aside from the market language, the institution defines a set
of rules to establish an outcome, i.e., it defines ways to determine allocations and prices. The
system performance denotes the quality of the outcome with respect to the environment. In
the following paragraphs, these concepts are discussed in more detail.

"In this context, the term system is understood as a collection of entities that act and interact towards the
achievement of some logical end (Law and Kelton 2000).

8Holtmann and Neumann (2003) provide an extended version of this framework that accounts for business
structures and technical infrastructures.

“Without loss of generality, the market language is understood as a way to encode and decode information
of agents.
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Figure 3.2: Microeconomic system framework (Smith 1989; Neumann 2004)

3.2.1.1 Economic Environment

The economic environment summarizes all factors that influence the performance of the sys-
tem but are outside of the mechanism designer’s control. This includes information about
the agents, their initial information and their preferences for different outcomes, the resource
characteristics, and legal restrictions. With regard to a market for the Grid, technical limita-
tions of middleware systems are also part of the economic environment.

Definition 3.1: Economic Environment

The economic environment e = (e1, ..., ey) describes the set of circumstances that have an
impact on the performance of the system but are exogenously given, where e; defines the
individual environment characteristics of agent i and I is the number of agents.

For a Grid market, the focus of the economic environment lies on the agents and their
preferences, as well as the resources and their characteristics.

Agents: The environment comprises a set of agents Z, where ¢ € Z denotes an agent that
participates in the resource allocation process. Agents have different preferences concerning
the outcome o € O that is determined by an institution. For instance, an agent ¢ might prefer
the outcome o0, over the outcome 0, (07 > 09), whereas agent j might prefer o, over o,
(01 = 02). Such a diversity of preferences is formalized by the introduction of the type of
an agent, more specifically, §; € ©; denotes the type of agent ¢ from the set of all potential
types ©;. The type determines the preferences of an agent over different outcomes and is
assumed to be private information. Based upon this type, preferences are expressed by a
utility function u;(o, 6;). For instance, if an agent i prefers o; = o9, the utility function
fulfills the inequality u;(o1, 6;) > u;(02,6;).

Agents express their values for an outcome o by their valuation function: Let 6; be the
type of agent ¢ and let P; denote a set of public information that is available to the agent. In
this case, the set of public information P; comprises real-valued variables that influence the
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valuation of an agent. For instance, this could be the current market price for a hard disk. The
value of an agent ¢ for an outcome o thus depends on the type 6; and the public information
P;. As a consequence, it is denoted as v;(o, 6;, P;) with v; : O x ©; x P; — IR (Milgrom
and Weber 1982). Besides his valuation, the risk attitude of an agent further influences the
behavior. The most common model applied in literature is that of risk neutral agents: Agents
are indifferent between an amount of money that is certain and an equal expected value of
an allocation (Milgrom 2004). If the agent is risk averse, he would prefer the sure amount
of money. In case of risk seeking models, the agent would prefer the allocation decision.
As a special case, consider risk neutral agents that do not have any public information. This
case is referred to as independent private value model, whereby the valuation of an agent i is
simplified denoted as v;(0, 6;).

Resources: The second parameter set of the environment describes the resources. These
are the commodities that are to be allocated by the institution. Resources may have dif-
ferent peculiarities that have an impact on both the valuations of agents and the rules of
the institution. The most salient characteristics of Grid resources are briefly outlined in the
following:!”

Let G be the set of resources that are comprised by the environment, where g, € G de-
notes a particular resource that can be either physical or logical. Resources can be consumed
in discrete amounts or continuously. A resource is said to be discrete when only integer units
of the resource can be allocated. An allocation of discrete items is formalized as follows:
Let z;(gr) = ¢ denote a variable that denotes the number of units ¢ € IN of resource gy, that
are allocated to agent ¢. If real-valued allocations of a resource are possible, it is said to be
continuous. This is denoted by y;(gx) = [, where | € IR*. As a special case, suppose there
is at most one unit of each resource g, to be allocated (¢ A [ < 1). Thus, z;(gx) becomes a
binary variable with z;(gx) € {0, 1} and y;(gx) gets restricted to y;(gx) € [0, 1].

If an agent considers two resources as identical, the resources are characterized as ho-
mogeneous. When there are differences between them, they are called heterogeneous. If
resources are heterogeneous, there may be interdependencies between them. As a result,
the utility of an agent changes if it consumes them simultaneously. If the resources are
complements, the utility of receiving multiple resources is greater than the sum of the util-
ities for each item. As a consequence, the agent has a super-additive utility function as
wi(gr) + ui(g;) < wi(gr U gj). At this, the term u;(gy) denotes the utility of agent ¢ with
type 6; if an outcome o is computed that allocates resource g; to agent i. Resources are
substitutes if the utility of receiving a set of resources is less than the values attached to the
single items (Varian 1992). In such a case, an agent has a sub-additive utility function as
wi(gr) +wi(g;) > ui(gr U g;). If there are no dependencies between the resources, the agent
has an additive utility function that is characterized as u;(gx) + wi(g;) = wi(gx U g;)-

If the valuation for a resource only depends on its price, the resource has a single attribute.
If physical or material conditions also affect the preferences of an agent, the resource has to
be described by multiple attributes. For instance, not only the price for a storage service may
influence the agent’s valuation but also its available space. Such additional attributes can be
formalized by a set of attributes .A4,, that are associated with the resource gy, where af € A,
denotes a particular attribute ¢ of the resource gy.

1Neumann (2004) analyzes further characteristics of resources. Such a detailed view is, however, out of
scope for the work at hand.
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This formal description helps to characterize and to analyze the resources that are to be
allocated by the institution. Furthermore, the description is indispensable for the design of
the message space and the choice rules of the institution.

3.2.1.2 Institution

In a resource allocation problem, an institution defines the set of rules (i) that specifies the
message exchange between agents and (i1) that determines which messages lead to alloca-
tions and prices (Smith 2003). These rules can be either formal such as in organized stock
exchanges or informal due to traditional or implicit norms.

The institution provides a language M = (M;,..., M) that consists of messages
m = (mq,...,my), where m; € M; is the set of messages that can be submitted by
an agent ¢ and / denotes the number of agents. For example, such a message might
be a bid in an English auction. Furthermore, the institution defines a set of allocation
rules £ = (ki(m),...,kr(m)), where k;(m) denotes an allocation to agent ¢ on the ba-
sis of all messages m. The payment rule P = (p;(m),...,p;(m)) denotes the payments
(or transfers) that have to be made by each agent depending on the submitted messages
m. Suppose an agent ¢ bids 10 € in a first-price sealed-bid auction and is allocated
the resource g;. The corresponding payment rule would imply that the agent has to pay
pi(m) = 10 € for the resource. Finally, the institution defines a set of adjustment rules
R = (ri(to,t,T),...,r1(te,t,T)) that specify under which conditions messages can be
submitted or modified during the exchange process. Thereby, a particular adjustment rule
ri(to, t,T) consists of a starting rule, a transition rule, and a closing rule. The starting rule
ri(to, -, -) determines the start of the message exchange. For instance, this specifies the open-
ing time in an English auction. The transition rule r;(-,¢,-) governs the sequencing and
exchange of messages. This rule can specify when an agent is allowed to resubmit a bid in
an English auction. The closing rule r;(-, -, T") specifies when the message exchange process
is stopped. Based upon these rules, an economic institution is defined as follows:

Definition 3.2: Institution
An institution is defined as H = (Hy, ..., Hy), where

H; = (M;, k;(m), p;(m),ri(to,t,T))

defines agent i's rights in communication and in exchange (Smith 1982, p. 925).

The definition of an institution helps to define the term market. Traditionally, a market
is defined as a virtual or physical meeting point of supply and demand which are balanced
by means of a price mechanism. Referring to the aforementioned concepts, the environment
determines supply and demand. Furthermore, the price mechanism that is specified by the
institution brings them into balance (Neumann 2004):

Definition 3.3: Market
A market is a combination of the economic environment and the price system that is specified
by the institution.

A special case of this definition is an electronic market which uses an information system
for communication and determining an outcome.
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3.2.1.3 Agent Behavior

The behavior of agents connects their individual motivation with the institution in order to
yield an outcome (Smith 2003). Agents have different preferences, knowledge, and priorities
when they want to acquire a resource. They use messages to communicate their motivations
and interests to other agents. The message space is, however, limited by the institution.
Thus, agents are restricted when expressing their preferences. Agent behavior characterizes
these restrictions as a mapping from individual circumstances and institutional restrictions
into messages.

Agent behavior can be described by means of a static description (outcome behavior) or
by means of a dynamic description (response behavior). A static description of agent behav-
1or is applied when the communication process takes place in a single step (one-shot). Agents
communicate their messages once. After that, an allocation is determined with respect to the
rules defined by the institution. As an example, such a description is applied in a first-price
sealed-bid auction. Agents submit their bids to the auctioneer who subsequently determines
an allocation and a price. Formally denoted, a static description of messages is realized by
a function [3(e;|H) with m; = ((e;|H), where e; represents the local environment of agent
1 and H denotes the institution. A dynamic description of agent behavior is used when the
communication process is iterative. Agents can submit several messages, where the message
content bases on historical information. An example for a dynamic description of agent be-
havior is an English auction where agents can submit multiple bids to the auctioneer based
upon the highest bid of the previous round. In mathematical terms, a dynamic description of
agent behavior is given by m;(t) = fi(m(t — 1)|e;, H), where t is the time when an agent
submits a message, m(t — 1) denotes the messages received along the market process, e;
denotes the local environment of agent ¢, and H represents the institution.

One way to describe and analyze the behavior of agents is the use of game theory. Game
theory is used to study systems of agents that make strategic decisions. The choices and
behavior of agents are described by means of strategies. A strategy represents a complete
and contingent plan that defines the actions an agent will select in every distinguishable state
of a game (Parkes 2001). In formal terms, a strategy s; of agent i is defined as s;(6;) € €,
where 6; denotes the type of an agent ¢ and (2; represents all possible strategies of the agent.
Modelling agent behavior by means of game theory is advantageous, as existing concepts
and solutions from this theory can be applied to the study of markets.

Game theory strives to find equilibriums in games. States where no agent gains an ad-
vantage by changing his own strategy unilaterally are constituting such an equilibrium. In a
market setting, the concept of equilibrium is interpreted as a state where no agent can im-
prove his utility by submitting another message to the institution. For instance, equilibrium
in an English auction is constituted if no agent bids higher than the current highest price.

Another important concept of game theory regards dominant strategy, the maximization
of the expected utility of an agent for all possible strategies of other agents (Parkes 2001).
Formally expressed, let u”(-) denote the expected utility of an agent i, s;(6;) be the own
strategy, and s_;(f_;) denote the strategy of every other agent. If s;(6;) is a dominant strategy,
the following inequality holds:

up (5i(0:), 5-i(0-3),05) > i’ (57(0:),5-4(0-:),05),
Vsi(0;) # s:(0:), 8i(0:) N si(6;) € Qi s4(0-;) € Q_
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The expected utility of an agent 7 that plays strategy s;(6;) is always greater or equal
than the expected utility of every other strategy s/ (6;), independent of the strategies s_;(6_;)
selected by other agents. The concept of a dominant strategy is a desirable property of
agent behavior as their message exchange with the institution is not affected by other agents.
Equilibrium in dominant strategies denotes the situation in which every agent has the same
utility maximizing strategy for all strategies of other agents (Parkes 2001). In such case, all
agents in the system do best in playing their dominant strategy.

The concept of strategies allows the introduction of a mechanism that is used to combine
the economic environment that comprises of a set of agents ¢ € Z, their behavior, and the
institution. The message space that influences the agent’s behavior is represented as a set of
strategies (); that are available to each agent ¢. Furthermore, the institution is denoted as an
outcome function 0,4(-) that consists of a choice rule k(-) and a payment rule p(-). Based
upon these definitions, a mechanism is defined as follows (Parkes 2001, p. 30):

Definition 3.4: Mechanism

A mechanism M = (Q,...,S,00) defines the set of strategies Q; that are available to
each agent i and defines an outcome rule oy : Q1 %, ..., xQ; — O that determines the
allocation and payments.

The mechanism determines the strategy space of the agents (e.g., bid at least higher than
the current highest bid) and a function to compute an outcome (e.g., the bidder with the
highest bid receives the resource and has to pay the second highest bid).

3.2.14 System Performance

Mechanisms are installed to attain a desired outcome. On the basis of the outcome (allo-
cation and prices) and the economic environment (preferences of agents), a set of system
performance metrics can be measured. This performance strongly depends on the behavior
of the agents. To control this behavior, the objective of designing a mechanism is to install
the right incentives for agents to behave in a certain way (Neumann 2004). With the knowl-
edge of the agents’ behavior, the mechanism designer can specify a set of institutional rules
that attempt to achieve the desired outcome.

The desired outcome of a mechanism is defined by a social choice function f : ©1 x ... X
©; — O. This function selects the optimal outcome f(6) € O on the basis of the agents’
types 0 = (0; x ... x 0r) (Parkes 2001). As the fype of an agent is private information,
the agent is not willing to reveal it to other agents. The objective of a mechanism is to
implement a set of adequate rules so that agents reveal some of their private information to
the mechanism. If an agent reveals sufficient information, the mechanism will attain the same
outcome f(#). Reiter (1977) illustrates this problem as depicted in Figure 3.3: The social
function f(6) determines the optimal outcome on the basis of the agents’ types 6. However,
such an abstract function is unrealistic as agents may not reveal their private information.
They rather submit partial, and not necessarily truthful, information to maximize their own
utility. It is denoted as the mechanism design problem to provide a strategy space s(f) in a
way that the outcome of the social function can also be attained by the mechanism such as
f(68) = 6(s(0)). This is usually achieved by providing incentives in attempt to have agents
revealing sufficient private information that is required to achieve a desired goal.

Having defined the construct of a mechanism, a set of objectives upon its outcome is
formulated. In essence, the idea is to define a social choice function that meets the specified
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Social Choice Function f(0)

s(6) Mechanism 5(s(0))

Figure 3.3: Connection between a social choice function and a mechanism (Reiter 1977)

requirements and, subsequently, to implement a mechanism that attains the same outcome.
The following discussion outlines the most significant desiderata for a Grid market (Schnizler
et al. 2006b). For a comprehensive discussion on alternative objectives, the reader is referred
to Neumann (2004).

Desiderata 3.1: Allocative efficiency

A mechanism is allocative efficient if the total value over all agents is maximized. If o € O
is an efficient allocation, no alternative outcome o’ € O would attain a higher utility for the
agents:

Z%‘(O, 0;) > Zui(o’,@), Yo' € O (3.1)
€T 1€l
In most cases, a mechanism can only attain allocative efficiency if the market agents report
their valuation truthfully. This requires incentive compatibility in equilibrium.

Desiderata 3.2: Incentive compatibility

A mechanism is incentive compatible if every agent’s expected utility maximizing strategy
in equilibrium with respect to every other agent is to report his true preferences (Parkes
2001). Agents may not have an incentive to untruthfully report their preferences in order to
increase their individual utility. A mechanism is strategy-proof when truthful revelation of
the preferences constitutes a dominant-strategy equilibrium.

Desiderata 3.3: Budget-balance

The property of budget-balance is concerned with the question whether the mechanism re-
quires payments from outside the system or not. A mechanism is budget-balanced if all
payments made to the mechanism are redistributed among the agents. Let p;(0) be the pay-
ment made by agent ¢, a mechanism is budget-balanced if

> pi6) =0. (32)
i€
Payments are positive for buyers and negative for sellers. Funds are neither removed from
the system, nor is the system subsidized from outside. A weaker property is the concept of
weak budget-balance: Net payments are made from the agents to the mechanism, but no net
payment from the mechanism to the agents. In mathematical terms, a mechanism is weak
budget-balanced if

> pi6) > 0. (3.3)

€T
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Desiderata 3.4: Individual rationality

The constraint of individual rationality requires the utility after participating in the mecha-
nism to be greater or equal than before. Let u;(o0, 6;) be the utility of agent i for participating
in the mechanism and let u;(o, ;) be the utility for non-participation. A mechanism is indi-
vidually rational if

ui(o, 92) 2 ﬂi(O, 97,), VieT. (34)

A weaker property is that of interim individual rationality. A mechanism is interim individ-
ually rational if the expected utility u” (o, 6;) for participating in the mechanism is greater or
equal than the expected utility %7 (o, §;) from non-participating:

uf(0,0;) > ur(0,0;), Viel. (3.5)

Desiderata 3.5: Computational tractability

Computational tractability considers the complexity of computing the outcome of a mecha-
nism based on the agent’s strategies (Kalagnanam and Parkes 2004). With an increasing size
of the message space, the allocation problem can become very demanding. Computational
constraints may delimit the design of choice and transfer rules.

In general, an allocative efficient outcome is the objective a mechanism designer wants
to achieve (Neumann 2004). The remaining desiderata are side-constraints which are essen-
tial in fulfilling this objective. However, the goal of achieving allocative efficiency usually
conflicts with revenue maximization (Myerson 1981; Jehiel and Moldovanu 2003): In a rev-
enue maximization problem — also called optimal auction design — an outcome function is
specified which maximizes the revenue of the agents. The argumentation towards revenue
maximization stems from auction theory and means that a seller in an auction is not inter-
ested in efficiency, rather in profit maximization. On the other hand, Parkes (2001, p. 60)
argues that if a mechanism “does not compute efficient allocations then agents will go else
where.”'! Although there are settings in which the efficient allocation also maximizes the
expected revenue (Krishna and Perry 2000), it is often not possible to attain both objectives
simultaneously. For the work at hand, the desired objective is to attain an efficient allocation.

3.2.2 Mechanism Design

Mechanism design considers the design of institutions and how the design affects the out-
comes of interactions (Jackson 2002). The focus of mechanism design lies on the design of
institutions that attain a set of objectives, assuming that agents interacting through institu-
tions are self-interested and have private information about their preferences (Parkes 2001).
Mechanism design provides a set of theories that give insight into which type of social func-
tion can or cannot be implemented by a mechanism.

In the following, the basic concepts of mechanism design are outlined: Section 3.2.2.1
introduces the revelation principle as a central tool used to analyze possible and impossible
results of mechanism design. Section 3.2.2.2 outlines the Vickrey-Clarke-Groves mechanism
as an efficient, strategy-proof, and individually rational mechanism for agents with specific
utility functions. Finally, Section 3.2.2.3 briefly introduces two important impossibility the-
orems that show what cannot be achieved by a mechanism.

"'This assumes that the market operator is not a monopolist.
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3.2.2.1 Revelation Principle

One can distinguish between direct and indirect mechanisms: In a direct mechanism, agents
submit their messages once and, subsequently, an outcome is computed. In an indirect mech-
anism, agents can submit several messages and receive information feedback from the mech-
anism. In a direct mechanism, the behavior of agents is modeled by the use of a static de-
scription, whereas an indirect mechanism is designed utilizing a dynamic description (cf.
Section 3.2.1.3).

Assume that agents of type 6; report their private information (possibly untruthful) as 0;.
Then, a direct mechanism computes the outcome 6(6), where = (6;, . .., 0y) denotes the
reported types of the agents. In an indirect mechanism, the mechanism computes a provi-
sional outcome 8(A(6(t — 1)), t) in each round ¢, where 6((t — 1), t) represents the reported
types of the agents in time ¢. This reported type depends on the feedback information 6(¢—1)
received by the mechanism. The rules of the mechanisms imply the amount of information
that is revealed to the agents. In an English auction, for instance, the revealed information is
the current highest bid for a resource.

The revelation principle implies that it is sufficient to restrict to direct incentive compat-
ible mechanisms.'? The principle states that any mechanism M (direct or indirect) which
implements a social choice function f(-) in dominant strategies is also implementable by
a strategy-proof direct mechanism (Parkes 2001). The intuition behind the principle is as
follows: Suppose a mechanism M that leads to an outcome §(s*(0)) = f(0), where s*(0)
denotes the strategy profiles of the agents in equilibrium. Now, the behavior of these agents,
i.e., their strategies, is simulated by another mechanism M’. This mechanism computes the
optimal strategies of the agents based on their reported preferences. It is a dominant strategy
that every agent reports the preferences truthfully to M’, as the simulator M’ computes the
optimal strategies on the basis of the report type. As a consequence, the direct incentive
compatible mechanism M’ implements the same social choice function f(-) as M.

The implication of the revelation principle is as follows: If a social choice function can
be implemented by any mechanism, it is sufficient to restrict to direct mechanisms (Jackson
2002). An indirect mechanism, for example, can become quite complex as no assumptions
on the set of strategies are made. An analysis of such mechanisms can become impossible,
as agents play complex strategies by reacting to historical information ¢ (¢ — 1) in each round.
The revelation principle states that it is sufficient to concentrate on a simpler class of mech-
anisms, namely the class of direct mechanisms (Krishna 2002). The computations made by
agents during their strategy formulation in an indirect mechanism can thus be shifted to the
direct mechanism: An indirect mechanism can only attain a particular property if a direct
mechanism can be constructed with the same property (Kalagnanam and Parkes 2004).

The revelation principles simplifies the design and analysis of mechanisms. For instance,
the transition rules r;(to, ¢, T") that model dynamic behavior of agents can be neglected for
analyzing the properties that a mechanism attains. Hence, it is useful for the designer to re-
strict to direct mechanisms as a simple class of mechanisms (McAfee and McMillan 1987).13

12The principle was originally developed by Gibbard (1973) and later extended by Green and Laffont (1977),
and Myerson (1979, 1981) .

13The principle assumes that a direct mechanism that is computational tractable always exists. However, this
assumption may fail in settings that require complex mechanisms. A detailed discussion of the computational
practicability of the revelation principle is given in Conitzer and Sandholm (2003).
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3.2.2.2 Vickrey-Clarke-Groves Mechanism

An important direct mechanism is the Vickrey-Clarke-Groves (VCG) mechanism as pro-
posed by Vickrey (1961), Clarke (1971), and Groves (1973).

In the following discussion, the independent private value model and agents with quasi-
linear utility functions are assumed (cf. Section 3.2.1.1). Thus, utility can be transferred
across all agents by means of side-payments (Parkes 2001). Quasi-linear utility functions
have the form

u;(0,0;) = Uz‘(0> 0i) — pi, (3.6)

where v;(0, 6;) is the valuation of an agent 7 and p; the payment. This type of function allows
a separation of the choices k;(+) and the corresponding payments p;(-).

Groves Mechanisms: A VCG mechanism is a special case of a Groves mechanism
(Groves 1973). In a Groves mechanism, agents communicate their preferences éz = 5,(0;)
directly to the mechanism, where 6; denotes the reported type of agent ¢, which is not neces-
sarily truthfully reported. Subsequently, the mechanism computes an allocation by solving
the choice function

k*(0) = argmax > vi(k, 0;). 3.7)

hek 1€l

The function k*(é) maximizes the total reported valuations over all agents. On the basis
of the computed allocation, the payment rule pl(é) determines the payments of each agent,
where p;(0) is defined as

pi(0) = m(0-3) = > v;(k*(6),6)).
J#
The first term ;(0_;) denotes the transfer rule, an arbitrary function 7; : ©_; — IR that

depends on all but agent ¢ reported types (Parkes 2001). This freedom of defining Wi(é,i)
leads to a set of different mechanisms that all belong to the Groves family.

Groves mechanisms are important for the design of mechanisms, as they have some
desirable economic properties discussed below.

Theorem 3.1: Efficiency of Groves Mechanisms
For agents with quasi-linear utility functions, Groves mechanisms are allocative-efficient
and strategy-proof (Green and Laffont 1977).

Proof. As long as agents report their types truthfully, the implemented choice rule (Equation
3.7) of a Groves mechanism computes an efficient allocation (cf. Equation 3.1). As such, it
is sufficient to show that the mechanism is strategy-proof: Following the argumentation of
Parkes (2001), the utility of agent ¢ that reported the type él- is defined as

wi(0;) = vi(k*(0),0;) — pi(0) = vi(k*(0),0,) — mi(O_) + > v;(k*(0).0)
JF#i

In order to determine the best strategy selection of agent ¢, the term Wi(é_i> can be ignored,
as it is independent from :. The utility of agent ¢ is thus maximized by

max|v;(k ) + ZUJ (k*(9),6,)]
QiE@)i ]7&
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Thus, the reported type 0; of agent ¢ only affects the allocation function £* (é) From agenti’s
perspective, the function k£*(#) is only maximized if the agent reports the true type 0; = 6.
As a result, the mechanism solves

k*(6;,0_;) = arg Il?ealé{[vi(k’ ;) + Zvj(k', 9;)].
J#
As a consequence, it is a dominant strategy for agent ¢ to report its type truthfully. [

Moreover, it is proven that Groves mechanisms are the only mechanisms that are alloca-
tive efficient and strategy-proof:

Theorem 3.2: Uniqueness of Groves Mechanisms
Groves mechanisms are the only mechanisms that are allocative efficient and strategy-proof
for agents with quasi-linear utility functions (Green and Laffont 1977, p. 432).

A proof for this theorem can be found in Green and Laffont (1977, p. 432-33).

In regard to the revelation principle, this theorem also states that any iterative mechanism
that is allocative efficient and strategy-proof implements a Groves mechanism.

Aside from these strong economic characteristics, the property of individual rationality
strongly depends on the choice of m;(f_;). For instance, defining m;(0_;) = 0 results in a
mechanism that is not individually rational for agent 7. In this case, he has to transfer a
positive value to other agents if he is not part of the allocation.

VCG Mechanism:  One individually rational mechanism of the Groves family is the VCG
mechanism.'* The mechanism defines the transfer rule ;(6_;) as

mi(0-5) =Y (k" ,(0-5),0;),
J#
with
k*.(0_;) = arg max Z v (k

kek
J#i

The function kii(é_i) denotes the outcome with all agents except agent :. As a consequence,

m(é,i) determines the value of the outcome that would have been computed in absence of
agent i. In other words, the transfer function 7;(6_;) reflects the impact of the participation
of agent .. When an agent ¢ is not part of the allocation, the transfer is zero.

Theorem 3.3: Individual Rationality of VCG Mechanism
The VCG mechanism is individually rational for agents with quasi-linear utility functions.

Proof. Given the utility of agent 7 with u;(0*,0;) = vz(k:*(é) 0; i) — pi(0) and the VCG pay-
ment function p;(4) = > iz Vi (K25(0-4), 0,) — > it v;(k*(),6;). On the basis of this, the
utility of an agent ¢ is computed as

ui(0,0;) = v;(k*(0),6;) [Zv] Z’Uj (k*(9),6,) ] (3.8)

1751 JF

0:) = > (k™ (0-0),0;) = > v;(k",(0-,),6;) (3.9)

€T JFi

14The VCG mechanism is sometimes also referred as Pivotal or Clarke mechanism.
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~

The term ), _; v;(k*;(A_;), ;) values the allocation with agent i and > iz v;(k*,(6-,),0,)
values the attained allocation without agent i. Thus, u;(0*,6;) > 0 as the best solution with
1, cannot be worse than the solution without agent 7. O]

Furthermore, the VCG mechanism is an instance of a Groves mechanism and, as a con-
sequence, it is allocative efficient and strategy-proof.'>

3.2.2.3 Impossibility Theorems

The family of Groves mechanisms and in particular the VCG mechanism demonstrate what
can be achieved by a mechanism. In the following section, two important impossibility
theorems are discussed that show what cannot be achieved by a mechanism. The general idea
behind these theorems is to show the impossibility of a direct mechanism and, subsequently,
to generalize the results to all mechanisms by means of the revelation principle.

Hurwicz (1972) was one of the first to demonstrate the trade off between efficiency and
incentive compatibility: Hurwicz (1972) and Green and Laffont (1977) show, that it is impos-
sible to design a mechanism that is allocative efficient, budget-balanced, and strategy-proof
in an exchange with agents that have quasi-linear utility functions. Here, the term exchange
refers to an economic environment with multiple buyers and sellers that act simultaneously.

Theorem 3.4: Hurwicz-Green-Laffont
There exists no mechanism that is allocative efficient, budget-balanced, and strategy-proof
in an exchange with agents that have quasi-linear utility functions (Parkes 2001, p. 52).

The theorem is based on a set of theorems that are derived by Hurwicz (1972) and Green
and Laffont (1977)

Myerson and Satterthwaite (1983) extend the Hurwicz-Green-Laffont theorem to
Bayesian implementation problems in which individual rationality is also required. The
dominant strategy property for truth-telling is formulated by means of Bayesian-Nash incen-
tive compatibility. A mechanism is Bayesian-Nash incentive compatible when any agent’s
expected utility maximizing strategy in equilibrium with every other agent is to report pref-
erences truthfully (Parkes 2001).

Theorem 3.5: Myerson-Satterthwaite
There exists no mechanism that is allocative efficient, budget-balanced, individually rational,
and Bayesian-Nash incentive compatible (Myerson and Satterthwaite 1983).

The theorem holds even for interim individual rationality, where every agent participates
in the mechanism if the expected utility from participating is not negative (Jackson 2002).

Both theorems emphasize, that it is impossible to design an exchange that is allocative
efficient, budget-balance, and individually rational. As such, the goal of the mechanism
designer is to find mechanisms where at least two of these properties are in effect (Parkes
2001).

3In some cases, the VCG mechanism is also budget-balanced: In settings with one seller and multiple
buyers, the VCG mechanism determines a budget-balanced outcome.
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3.2.3 Practical Mechanism Design

Negotiations and auctions are specific mechanisms that have gained practical importance
within mechanism design. Literature and practice emphasize several successful applications
of negotiations and auctions for different domains that have different requirements and ob-
jectives.

The differences between negotiations and auctions have diminished with the emergence
of Internet technologies. Whereas traditional negotiations (also denoted as bargaining sit-
uations) have been conducted face-to-face, the use of information systems allows for more
activities undertaken in negotiations (Bichler et al. 2003). Current negotiation support sys-
tems implement sophisticated tools that help agents to discover and match relevant coun-
terparts and that support them during the negotiation process. As such, a clear distinction
between negotiations and auctions can no longer be made. The most fundamental difference
is pointed out by Kersten et al. (2000, p. 6) stating that “auctions deal with known and
well-defined objects while negotiations may be about defining these objects and collaborat-
ing in order to obtain a common definition.” One possible deduction from this statement
could be that negotiations may be superior to auctions if the underlying resource is complex
and not defined precisely. Examples for such resources are houses or business contracts.
Counteractively, the use of auctions may be advantageous if the traded resources are mostly
standardized, such as DVD players or stocks.

3.2.3.1 Negotiations

The analysis of negotiations is focused by many different research disciplines, such as eco-
nomic and social science, computer science, as well as information systems. As a conse-
quence, the definition and meaning of negotiations is widely and sometimes diversely dis-
cussed. A definition that attempts to encompass most of the different research directions
is given by Bichler et al. (2003, p. 316): They define a negotiation “as an iterative com-
munication and decision making process between two or more agents [...] who (1) cannot
achieve their objectives through unilateral actions, (2) exchange information comprising of-
fers, counter-offers and arguments, (3) deal with interdependent tasks, and (4) search for
a consensus which is a compromise decision”. The process of communicating offers and
counter-offers is often called a “negotiation dance” (Raiffa 1982): In a negotiation, agents
may not accept the initial offers from their counter parties. An agreement can only be reached
if agents adapt their offers slightly towards mutual improvements. One objective of nego-
tiation theory is to analyze whether or not such agreements can be found in a particular
negotiation setting. Furthermore, negotiation theory provides techniques that support agents
in their strategy selection in order to achieve such improvements.

The communication and decision making process that is applied to reach an agreement
can be implemented in different ways: Some negotiations ignore them (unstructured nego-
tiation), some implement them in a flexible manner (semi-structured negotiation), and some
specify the underlying message space as well as the choice and transfer rules in detail (struc-
tured negotiation). The type of negotiation applied to a particular setting strongly depends on
the economic environment, i.e., on the requirements of the agents and on the characteristics
of the negotiated resource.

Negotiations are oftentimes supported by the use of information systems: These systems
may support the whole negotiation process (negotiation support system) (Kersten 2004), an
individual negotiator in its decision making process (Kersten and Noronha 1999; Thiessen
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and Soberg 2003), the negotiators by means of a communication channel (Schoop et al.
2004), or may automate the process completely by means of software agents (Jennings et al.
2001).

The key advantage of negotiations is their ability to adapt the objectives between the
participating agents during the process (Kersten et al. 2000). However, a drawback of most
negotiation processes is their high communication effort that is required to reach an agree-
ment. For instance, in multilateral negotiations, the communication effort rises the more
negotiators are contacted. In settings, where multiple sellers offer a single buyer the same
resource, the communication effort can become the bottleneck of the system. The buyer
may be unable to negotiate with all potential sellers simultaneously, leading to economically
inefficient outcomes.

3.2.3.2 Auctions

Auctions are popular mechanisms for conducting market transactions. They have been suc-
cessfully applied in private, industrial, and governmental domains. With the emergence of
Internet technologies, the application area of auctions even increased: Auction sites such as
eBay, Yahoo!, and Amazon list millions of items for sale and attract a multitude of users.

In general, agents (either buyers or sellers) submit their preferences to the auctioneer by
means of bids. Bids are formulated according to a pre-defined bidding language that denotes
the message space of the auction institution. Subsequently, the auctioneer determines the
winners of the auction (clearing, winner determination) and computes the corresponding
prices (price determination). On the basis of this process, an auction is defined as follows:

Definition 3.5: Auction

An auction is a market institution with an explicit set of rules determining resource allocation
and prices on the basis of bids from the market participants (McAfee and McMillan 1987, p.
701).

The most common types of auctions are single sided and double sided auctions. In the
following paragraphs, these two types and some of their instances are discussed. For further
descriptions of the capabilities and properties of different auction mechanisms, the reader is
referred to Wurman et al. (2001) and Krishna (2002).

Single Sided Auctions: Single sided auctions are mechanisms, where only buyers or sell-
ers can submit bids (1 : n or m : 1 relations). In the following, the most prominent single
sided auctions are outlined:

* Vickrey Auction: The Vickrey auction is an instance of a VCG mechanism. The
auction is organized as a sealed bid auction where bidders submit one single bid to
the auctioneer. Finally, the bidder who submitted the highest bid is awarded with the
resource at the price of the second highest bid. It can be shown that truthful bidding is
a dominant strategy in a Vickrey auction (Green and Laffont 1977).

* First-Price Sealed-Bid: In the first-price sealed-bid (FPSB) auction, bidders submit
one single bid to the auctioneer without knowing the other’s bids (sealed bid). The
bidder with the highest bid wins the auction and pays the amount of the winning bid.
In general, there is no dominant strategy for agents in the FPSB auction.
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* Dutch Auction: In the Dutch auction, the auctioneer calls out a price and lowers this
price incrementally as long as no bidder is willing to accept it. Once a bidder accepts
the announced price, he wins the auction and has to pay his bid. As a strategy in the
Dutch Auction, the bidder has to define a price that he is willing to accept (Milgrom
1989). This price is below the valuation in order to draw positive utility from the
auction.

* English Auction: In the English auction, the auctioneer announces a price and in-
creases that price incrementally as long as there are at least two bidders interested.
When the second last bidder refuses to stay in the bidding process, the last bidder re-
ceives the item. Obviously, the price the winner has to pay (approximately) equals the
second highest bid. The dominant strategy of the English auction under private value
settings is thus to bid as high as the private valuation.

¢ Combinatorial Auction: Combinatorial auctions are multi-item auctions, where an
agent can submit bids on multiple heterogeneous resources as a bundle. As such, the
agent can express super-additive utility functions by means of expressing the valuation
for a bundle of resources. A bundle consists of logical AND concatenated bids on a
set of resources. Such bids ensure that an agent is allocated to either all resources of
the bundle or to none of it. A practical example for a combinatorial auction is to bid
for a bundle that comprises of a hotel room, a flight, and a rental car. If the agent
would only receive the rental car without the hotel and the flight, the allocation would
be useless. By means of bidding on these items in the form of a bundle, the agent can
ensure that he gets all or none of the resources. Furthermore, combinatorial auctions
allow expressing sub-additive valuations. This is realized by allowing multiple XOR
concatenated bids on a set of bundles, where the XOR operator ensures that at most
one bundle is allocated to an agent. Extending the aforementioned example, this allows
the agent to bid on both, a holiday bundle in Greece as well as on a holiday bundle in
Cuba. The XOR operator ensures, that at most one package is allocated. Combinatorial
auctions are implemented as direct auctions (e.g., the Generalized Vickrey Auction
(GVA) (Varian 1995)) or as iterative auctions (e.g., iBundle (Parkes 2001)).

Single sided auctions are — from an economic point of view — well understood and ap-
plied successfully in different domains. They attain (approximate) efficient outcomes if the
distribution of the agents in the economic environment represents the 1 : n or m : 1 rela-
tions. For instance, this is the case when an art dealer sells a painting or an enterprise wants
to commission a project by means of an auction. If the relations of the agents are violated,
single sided auctions may lead to inefficient outcomes. The relation is violated if there are
multiple buyers and multiple sellers trading the same type of resource. In such a case, the
application of a double side auction is superior.

Double Sided Auctions: Double sided auctions or short exchanges are those auctions
where competitive bidding takes place on both sides (m : n relation). In comparison to
traditional single sided auctions, exchanges have received much less attention by modern
economic theory. One reason for this is given by McAfee and McMillan (1987): They argue
that the strategic behavior of multiple buyers and sellers that compete against each other is
difficult to model game-theoretically. Another hurdle in the design of exchanges is the im-
possibility theorem by Myerson and Satterthwaite (1983) (cf. Section 3.2.2.3): The authors
show that there cannot be any exchange which is efficient, budget-balanced, and individually
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rational at the same time. As such, at least one of the desired economic properties must be
leveraged. An example for this is given by Parkes et al. (2001): The efficiency of an ex-
change can be approximated, while cleaving on the budget-balance and individually rational
properties.

A key consideration of exchanges is the timing of the clearing process which determines
the auction winners and thereby the allocation of the resources. Exchanges can be either
cleared continuously (continuous double auction) or periodically (periodic double auction,
call market): A continuous double auction (CDA) is an exchange where buyers and sellers
simultaneously and asynchronously announce their bids. Whenever a new bid enters the
market, the auctioneer tries to clear the market immediately. Thus, the CDA 1is especially
advantageous in terms of immediacy. A call market is an exchange with periodic clearing,
e.g., the auctioneer clears the market every fives minutes. All bids that arrive during this
period are collected in an order-book and cleared periodically.

Following literature and practice, single item exchanges and combinatorial exchanges
represent the most prominent instances of double sided auctions:

* Single Item Exchange: A single item exchange denotes a double auction, where a

single type of resource is traded. The k-double auction is thereby the simplest form
of a single item exchange (Friedman 1991): Buyers and sellers submit their bids to
the auctioneer. On the basis of the individual bids, the auctioneer subsequently forms
supply and demand curves and determines the prices where supply and demand are
balanced. Using a given parameter k € [0, 1], a market clearing price p = (1—k)a+kb
is chosen from the interval [a, b] that bounds the range of all possible clearing prices.
Buyers which submit bids that are higher than this market-clearing price will trade
with those sellers, who submitted lower bids than the clearing price (Satterthwaite and
Williams 2002).
Traditionally, single item exchanges are applied to trade standardized resource such as
stocks (Friedman 1991) or electricity (Nicolaisen et al. 2001). Recently, there has been
a huge interest in applying exchanges to alternative application areas: One example for
this are forecasting markets, where agents trade their exceptions on future events by
means of an exchange (Luckner et al. 2005).

* Combinatorial Exchange: A combinatorial exchange is the conflation of a combina-

torial auction and a single-item exchange. In essence, a combinatorial exchange allows
multiple buyers and sellers to trade a set of heterogeneous resources simultaneously.
It allows agents to express complex utility functions such as additive, sub-additive, or
super-additive functions. For instance, an agent can express the value for the transac-
tion sell stock A and buy stock B and C' by means of a bundle bid.
The theoretical study of combinatorial exchanges has invited much less attention than
single item exchanges (Parkes et al. 2001; Jain and Varaiya 2004; Parkes et al. 2005).
One reason for this lies in the complexity of such exchanges: Solving the winner de-
termination problem in such an exchange can become intractable in many settings.
However, if such problems can be solved, combinatorial exchanges have several ap-
plication domains, such as trading stocks (Fan et al. 1999; Grunenberg et al. 2004) or
for allocating airport takeoff and landing rights (Ball et al. 2006).

In summary, there exists several different areas for an application of auctions. Moreover,
recent advances in auction theory and information technology paved the way towards the de-
velopment of new mechanisms that allow agents to express complex preference structures.
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The design and implementation of such complex mechanisms has become an emerging and
interdisciplinary research field combining economics, game theory, optimization, and com-
puter science (Cramton et al. 2006).

3.3 Market Engineering

The difficulty in designing and implementing markets for the Grid is the interdependence
of technical and economical objectives (Weinhardt et al. 2006). From an economic view-
point, a market for the Grid must encompass common economic performance desiderata
such as allocative efficiency (cf. Section 3.2.1.4). Relying on existing market mechanisms
known from other contexts may, however, result in poor efficiency (Lai 2005). The mecha-
nism designer also has to account for the technical conditions of the target domain. These
conditions comprise the underlying environment in terms of Grid middleware and the re-
quirements of potential Grid users and applications. The market should act as a resource
allocation manager, hence, fulfilling general requirements upon such a manager. This allows
the introduction of the precondition that a market apt for the Grid has to be realized as an
electronic market. Otherwise, the market cannot fulfill an automated resource allocation as
required by a Grid resource management system (cf. Requirement 2.2).

Different requirements from technical and economical viewpoints may lead to different
and oftentimes conflicting objectives. Lai (2005, p.4) points out that "a pure mechanism
designer is likely to design an economic mechanism with high economic efficiency, but with
little concern for traditional metrics of computational efficiency, reliability, security, com-
plexity, and ease-of-use. Pure system designers have generally done the inverse.” As such,
neither a pure mechanism design driven nor a pure system design driven approach may lead
to a useful overall design and implementation of an adequate Grid market.

When applying markets to the Grid, it is essential to comprise different influences that
arise from technical fundamentals of Grid systems, potential user requirements, business
constraints'®, and economic objectives. Each of these influences has a profound impact
on the outcome and, as a consequence, on the acceptance of the market (Weinhardt et al.
2003). The market engineering approach manages these influences by means of a structured,
systematic, and theoretically founded procedure of designing, implementing, evaluating, and
introducing electronic market platforms (Weinhardt et al. 2003; Neumann 2004; Holtmann
2004). As such, the application of the market engineering approach is suitable for moving
markets to the Grid.

The market engineering approach is structured by means of a process as depicted in
Figure 3.4: In the first stage, the requirements of the new market mechanism are deduced.
Subsequently, the new market mechanism is designed and implemented in the second stage.
After the implementation, the mechanism is tested on its technical and economical prop-
erties. Finally, the market platform is introduced. At any stage of the market engineering
process, there is a decision whether to proceed with the next step or more advantageous to
repeat the prior one. The market engineering process does not only structure the design pro-
cess as it also provides the designer with a whole array of methods that may support separate
sub-tasks. In the following, these stages and a selection of supporting methods are outlined
briefly on the basis of Neumann (2004).

oMarket engineering also comprises the structured design of business models for market operators (Wein-
hardt et al. 2003). For the work at hand, however, the design of such business models for Grid market operators
is out of scope.
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Figure 3.4: Stages of the market engineering process (Neumann 2004, p. 155)

3.3.1 Stage 1 — Environmental Analysis

The objective of the environmental analysis is to formalize the strategies and objectives of
the new electronic market. The stage comprises two phases: the environment definition and
the requirement analysis.

The goal of the environment definition is to characterize the economic environment for
which the market mechanism is to be engineered. This phase comprises the collection and
analysis of potential trading objects, market segments, and agents that may interact on a
particular segment. The environment definition usually starts with the analysis of potential
trading objects. On the basis of this analysis, potential market segments for trading these
resources are identified and evaluated comparatively. Having selected a target market, infor-
mation about potential agents is deduced.

The target market reveals the economic environment for which the market is intended.
In order to gain potential agents acting on it, the market mechanism must fulfill the needs
and requirements of these agents. The requirement analysis consists of a thorough extrac-
tion of these needs concerning the resource allocation problem and the environmental side-
constraints. Cramton (2003, p. 8) motivates the requirement analysis as follows: "Good
market design begins with a thorough understanding of the market participants, their incen-
tives, and the economic problem that the market is trying to solve."

On the basis of the requirement analysis, the market engineer decides whether to engineer
a new mechanism from scratch or to reuse and adapt an existing one for the target problem.
This decision is usually supported by a literature review.
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3.3.2 Stage 2 — Design and Implementation

The second stage of the process comprises the design of the market mechanism and its im-
plementation into an information system. Analogous to the engineering design process from
mechanical engineering (Pahl and Beitz 1984), the design stage is decomposed into four
major phases known as the conceptual design, embodiment design, detail design, and imple-
mentation.

In the conceptual design stage, the market mechanism is deduced as an allocation and
payment function. At this stage, the engineer is supported by different tools and methodolo-
gies such as mechanism design and linear programming!’. These purely conceptual func-
tions are refined in the embodiment design phase into a practical market scheme which is
subsequently transformed into a formal process model. In the detail design phase, all re-
maining design issues are tackled and subsequently implemented. This phase is supported
by traditional software engineering concepts and tools, such as UML (Arlow and Neustadt
2005), design patterns (Gamma et al. 1995), or the Rational Unified Process (Kroll and
Maclsaac 2006). The output of this phase is a fully implemented prototype of an electronic
market.

Market engineering provides different tools that assist the engineer in designing and im-
plementing market mechanisms. For instance, the market engineer can rely on the generic
market system meet2trade!® that supports different auction mechanisms and negotiation
schemes (Weinhardt et al. 2006).

3.3.3 Stage 3 — Testing

Having implemented the market mechanism, it is tested upon its technical and economical
properties. The testing stage comprises functionality tests to ensure the correctness of the
software implementation and economic tests to measure the outcome performance of the
market.

Functionality tests are made to ensure that the information system works as it is designed.
In other words, these tests ensure that the information system correctly reflects the institu-
tional rules. This phase is also supported by traditional software engineering techniques
(Whittaker 2000). Depending on the complexity of the underlying information system, this
phase also comprises of technical performance tests such as runtime analysis.

The objective of the economical tests is to ascertain whether or not the electronic market
attains the desired economic outcome. This phase is supported by analytical and experi-
mental evaluation methods. Experimental methods are comprised of laboratory experiments
(Weber 2006; Gimpel 2007), numerical simulations (Kunzelmann 2006), or agent-based
simulations (van Dinther 2006).

After functional and economical tests are performed, additional pilot runs are made.
These runs provide information about the agent’s acceptance of the market and, if neces-
sary, allow the engineer to adjust the underlying institutional rules.

7For instance, most auction schemes can be represented as a linear program (Bikhchandani et al. 2001).
8For more more details refer to http: //www.meet2trade.de/.
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3.3.4 Stage 4 — Introduction

In the last stage of the process, the electronic market is introduced. The design and refine-
ment of the institutional rules ends with this stage. The introduction of the electronic market
initiates its operation cycle (Neumann 2004).

3.4 Summary

In the context of engineering Grid markets, this chapter outlined three prerequisites for the
engineering of a Grid market: (i) a clarification to whether or not markets should be ap-
plied in Grids, (ii) a brief overview of the theoretical background of markets, and (iii) an
introduction into a structured approach for engineering them.

Section 3.1 answered the question why markets should be applied in Grids: Different
resource allocation models for distributed systems are analyzed in regard to their ability to
allocate resources in the Grid efficiently. As a result of the discussion, markets are empha-
sized as a resource allocation mechanism for the Grid, as they can be an effective institution
to efficiently allocate resources that have a dynamic value.

Subsequently, Section 3.2 introduced a common understanding of the foundations and
functionalities of markets: Firstly, Section 3.2.1 outlined a formal microeconomic framework
that provides a common view on the structure and the concepts of markets. Secondly, Section
3.2.2 introduced mechanism design, a theory that supports the design and analysis of market
mechanisms. Finally, Section 3.2.3 showed how these theoretical concepts are practically
implemented as negotiations and auctions.

As the design of a market for the Grid is a rather complex and interdependent task, Sec-
tion 3.3 outlined the market engineering approach. This view provides a structured, system-
atic, and theoretically founded procedure of designing, evaluating, and introducing electronic
market platforms.

The concepts that are presented in this chapter serve as a basis for the further engineering
of a Grid market. Following the lines of market engineering, the subsequent chapters are
structured as follows: Chapter 4 analyzes the environment of a potential Grid market. On the
basis of the resulting requirement list, Chapter 5 outlines the design of a new Grid market and
Chapter 6 shows how this is implemented in an information system. Finally, the implemented
mechanism is evaluated in Chapter 7 and Chapter 8.
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Chapter 4

Environmental Analysis

Some day, firms will indeed stop maintaining huge, complex and expensive computer
systems that often sit idle and cannot communicate with the computers of suppliers and
customers. Instead, they will outsource their computing to specialists and pay for it as they
use it, just as they now pay for their electricity, gas and water.

(The Economist 2004a)

The previous chapter motivated the application of markets for coordinating the allocation
of resources in the Grid. For the design of such a market, the discussion further suggested
the use of a market engineering approach to encompass the interdependencies of technical
and economical requirements.

Corresponding with the market engineering process, the aim of this chapter is to pro-
cess an environmental analysis of a Grid market. At this point, the environmental analysis
comprises two different phases: the environment definition and the requirement analysis.
The objective of the environment definition is to collect information about transaction ob-
jects (e.g., what resources are traded), participants (e.g., who are the potential participants),
as well as their preferences, endowments, and constraints. This information helps to deter-
mine a set of potential market segments for which mechanisms could be engineered. These
segments are evaluated against each other and, as a result, a target market segment is se-
lected. Subsequently, the needs and requirements of the participants for the target market
are extracted in the requirement analysis. As a last step of the analysis, there is a survey
probing into whether an existing market mechanism fulfills the specified requirements or a
new mechanism must be engineered.

The outline of this chapter is as follows: Section 4.1 starts the analysis with an environ-
ment definition. The result of this phase is a clear trading object definition, a target market
selection, and an analysis of potential participants. Section 4.2 specifies the requirements
upon a suitable mechanism for the target market. Section 4.3 reviews state of the art mar-
ket mechanisms that are applied to the Grid. The review analyzes these mechanisms with
regard to their adherence of the elicited requirements. Finally, Section 4.4 summarizes and
concludes the chapter.
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4.1 Environment Definition

Engineering an adequate market mechanism requires a full understanding of the trading ob-
ject and its characteristics. The specification of the trading object has a profound impact
on the choice of the target market and, as a consequence, on the number of potential agents
and their needs. Several economics oriented papers suggest market mechanisms used for an
abstract good which is called “Grid”. Those papers are well founded from the market design
perspective, but they miss a clear definition of the trading object. When referring to markets
in the Grid, it is essential to understand the technical fundamentals to understand what can
really be traded and how.

In the following, potential trading objects in a Grid are identified and characterized.
Based on this, potential market segments are highlighted and evaluated and, subsequently, a
target market segment is selected. Finally, the number of potential agents and their needs in
the target market are elicited.

4.1.1 Trading Object Definition

Trading objects in a Grid market constitute rights to use certain computational resources on
different machines (Shneidman et al. 2005). Such resources are heterogeneous in regard to
their capabilities and their potential fields of application. Some of them may attract vari-
ous agents while others are irrelevant for most users. Accordingly, the number of potential
market participants depends on the type of resource being traded. As the number of market
participants has a profound impact on the design of a market mechanism, different types of
resources are analyzed with respect to their expected degree of supply and demand.

Figure 4.1 depicts a three layered view on potential resources in the Grid: Standardized
elementary services, standardized application services, and non-standardized application
services construct each layer respectively.! Furthermore, the bottom line represents physical
resources through which the service is performed. These resources can be either primitive
resources (e.g., a CPU or a sensor) or a set of resources in the form of a cluster. Physical
resources are, however, not potential trading objects in the Grid, as they become virtualized
by the middleware.

Standardized Elementary Services: The first layer comprises services that virtualize phys-
ical resources. This includes, for instance, a computational service that virtualizes a
cluster or a desktop machine. These resources are denoted as standardized elementary
services. Although type and behavior of these services are mostly standardized, the
services have multiple attributes in which the characteristics may vary. For instance,
storage services may differ according to their capacity (in Gigabyte (GB)), access time
(in milliseconds (ms)), and data throughput (in bits per second (bits/s)). These vary-
ing characteristics of the same type of resource, as well as the resource itself can be
described by means of standardized description languages such as RSL or GLUE. As
these services virtualize physical resources, they constitute elementary entities for a
Grid that are required by various different users and applications.

Standardized Application Services: Application services with a broad scope of applica-
tion are represented by the second layer. The input and output semantics of these

IResources can also be classified by a more granular distinction. However, for the work at hand, the
proposed three-layered view suffices.
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Figure 4.1: Layered view on different resource types in the Grid

so-called standardized application services are well-accepted and interpretable by a
major part of Grid users.> Exemplary services of this layer are database services and
XML transformation services. Services in this layer are required for several different
higher-level applications and, as a consequence, are utilized by a multitude of different
users. They may further utilize services of the layer below. For instance, a database
service makes use of a storage service. Similar to elementary services, the provided
quality of service levels for the same type of service may vary. For instance, a set of
XML transformation services may vary from their offered response time (in ms); how-
ever, it is assumed that these characteristics can also be described in a standardized
form.

Non-Standardized Application Services: Services represented by the third layer are non-
standardized application services. Such services are only used for specific application
areas such as a simulation service that is is required for medical research. Hence, these
services are oftentimes only utilized by a small number of Grid participants. Usually,
their characteristics and capabilities cannot be described by means of standardized,
well-accepted, and interpretable description languages.

Non-standardized services as described above are highly specialized. In consequence,
only few market agents will be interested in trading them. In contrast, services from the first
and second layer are mostly standardized and attract many agents in a market. Thus, these
two layers can be summarized by one layer for standardized services.

4.1.2 Market Segmentation

Markets as coordination mechanisms for using Grid resources can be established for stan-
dardized and for non-standardized services. However, the requirements upon each under-

’In some cases, this can also be realized by the use of ontology-based description languages such as OWL-S.
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Market for trading
Standardized Services | Non-Standardized Services
Number of providers and requesters high low
Commodity type standardized unstandardized, scarce
Different types of resources low high
Degree of automated usability high low

Table 4.1: Characterization of standardized and non-standardized services

lying market mechanism differ due to the various characteristics of the transaction objects.
Table 4.1 illustrates these differences: For standardized services, on the one hand, the num-
ber of potential providers and consumers is assumed to be high. The target resources are
standardized transaction objects and, in some cases, even standard commodities. The num-
ber of different types of standardized services is limited, as only few services exist that are
generic and fundamental enough to utilize in various different fields of application. Due to
their high degree of standardization, the provision and utilization of these services can both
be automated. Non-standardized services of the same type are, on the other hand, scarce.
For instance, only few providers can offer highly specialized medical simulation services of
the same type with the same functionality. As a result, the number of potential providers
and consumers for such services is assumed to be low. In contrast to standardized services,
various different types of non-standardized services exist; however, due to their specificity
and their lack of standardized descriptiveness, they can hardly be discovered and invoked
automatically.

The different characteristics of standardized and non-standardized services result in di-
ametrical requirements upon a market for trading them. With respect to these differences,
experiences gained from traditional procurement scenarios such as reported in Bajari et al.
(2004) can be transferred: Standardized services in the Grid can be compared to manufac-
tured goods in procurement, such as rubbers and DVD players. For such commodities, litera-
ture emphasizes the benefits of auctions as adequate transaction mechanisms (Krishna 2002;
Milgrom 2004). Auctions, however, may not be appropriate for trading non-standardized
services. These services, just as airplanes or buildings in procurement scenarios, are charac-
terized by their complexity and their individual natures. A consumer of a non-standardized
service may require several interaction steps with a supplier in order to clarify configurations
and properties of the traded service. As such, communication and coordination interactions
between the service counterparts are important requirements for trading non-standardized
services. Such interaction capabilities are, however, not given by traditional auctions. For
instance, in a sealed-bid auction, bids are the only messages exchanged by the market par-
ticipants. In such cases, the use of bilateral negotiations may be superior to auctions, as
negotiations facilitate communication and coordination among agents.’

A holistic market mechanism that meets the requirements of both types of services may
not exist. As a result, the different characteristics of potential markets for trading standard-
ized and non-standardized services require individual and contrarily market mechanisms. As
such, a target market segment will be selected in the following.

3Comprehensive studies comparing auctions and negotiations in different applications scenarios can be
found in Thomas and Wilson (2002) and Bajari et al. (2004).
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4.1.3 Market Targeting

The work at hand targets a market for trading standardized services. This is rationalized by
the fact that such a market attracts many different agents and pertains to different application
areas. For instance, such a market can be used to coordinate the computational resources of a
single company by means of an in-house Grid such as proposed by Meliksetian et al. (2004).
In addition, the market can be applied to facilitate the vision of an Open-Grid market which
is the most holistic scenario for applying markets to the Grid. An Open-Grid market allows
all interested parties to access the platform and trade their resources (Neumann 2006).

On the basis of the general Definition 2.1 of a Grid resource and the properties of stan-
dardized elementary services and standardized application services, the trading object in the
target Grid market is defined as follows:

Definition 4.1: Trading Object in the Grid

A trading object in the envisioned Grid market is a Grid resource that belongs to the group
of standardized elementary or standardized application services. The characteristics of a
particular resource can be described by a set of quality attributes A, where a¥ € A,,
denotes a particular attribute of the resource gy.

Based upon this definition, potential market participants and their needs are identified
and characterized in the following.

4.1.4 Potential Participants

The characteristics of the major players in the targeted Grid market are manifold: On the
one hand, telecommunication companies (e.g., British Telecom) have a great need for a Grid
market aimed at in-sourcing the entire IT hardware of their clients as new business model
(Schnizler et al. 2006a). Resource owners like SUN or IBM also investigate the development
of the Grid in order to offer their hardware and software infrastructure to potential customers.
On the other hand, customers in a Grid are resource consumers who require computational
resources. This includes, for instance, scientists at universities who require storage services
for their experiments or SMEs who need a data mining service to analyze their marketing
data.

Although the participants of the envisioned Grid market stem from different domains,
their common requirements for a Grid market mechanism include its seamless integration
into the given Grid middleware. In order to enable such an integration into existing middle-
ware, the market has to replace the resource allocation manager and, as such, account for the
general requirements upon a resource allocation manager (cf. Section 2.3.1). In addition,
the market should enable an automation of the whole transaction process. It is assumed that
market participants are not willing to submit bids for resources and monitor the state of the
market manually (Neumann et al. 2006; Schnizler et al. 2006).*

Besides the needs of the potential participants, the average number of buyers and sellers
in such a market plays another crucial role. The number of participants, however, strongly
depends on the focus of the underlying application area. For instance, in an in-house Grid
market, the number of potential participants is assumed to be low. Conversely, scenarios
that envision an Open-Grid market assume a high number of potential participants. At the
moment, neither an in-house market, nor an Open-Grid market in practice exist. As such,

“For this work, further requirements of potential participants such as security standards are out of scope.
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the options to perform an empirical analysis to determine the number of agents are limited.
However, several test beds and experimental evaluation studies which serve as clues exist.
Distinctive projects and infrastructure in this area are, among others, the Grid 2003 Project
(Foster et al. 2004), the NorduGrid project (Eerola et al. 2003), and PlanetLab (Bavier et al.
2004).

In the following, PlanetLab’ serves as a destination test bed for an empirical analysis of
the user characteristics. Essentially, PlanetLab is a test bed for networking and distributed
computing among several scientific institutes worldwide. The network is currently the largest
infrastructure for sharing distributed resources. Although the network is mainly restricted
to scientific purposes, PlanetLab is considered suitable as a forerunner of an Open-Grid
platform.

The user information of PlanetLab was obtained using the data provided by the All-Pairs-
Pings project. Every 15 minutes, all registered nodes are contacted to check their availability
status.® The available data from November 2005 until March 2006 was collected and an-
alyzed. As a result of the study, PlanetLab has, on average, p = 170.89 active machines
which can be used to perform computational jobs (with a standard deviation of o = 21.33).
The coefficient of variation (CV) for the values C'V = ¢ /p = 0.12 shows that the variability
in reference to the size of the mean is low. Thus, the determined average constitutes to be a
stable value. Transferring the PlanetLab characteristics to a market scenario schema implies
170 sellers on average. Assuming an equal number of buyers and sellers, the average num-
ber of agents in the PlanetLab scenario is 340. As such, the number of agents measured in
PlanetLab denotes a lower boundary of potential participants in a market platform targeted
in the work at hand.

Based on this environment definition, the requirements upon a Grid market mechanism
are elicited in the following.

4.2 Requirement Analysis

In order to become practicable, a market mechanism for the Grid must match the require-
ments upon a resource allocation manager as described in Section 2.3.1. Furthermore, the
outcome of the mechanism should have desirable economic properties as outlined in Section
3.2.1.4. Thus, the requirement specification for a Grid market mechanism is a conflation
of desirable mechanism design properties and general requirements upon a resource alloca-
tion manager. The result of this conflation is summarized in Table 4.2. The focus of each
requirement is assigned to either mechanism design properties or resource management re-
quirements.’

The general objective that a mechanism designer desires to achieve is allocative efficiency
(R1) (cf. Section 3.2.1.4). Other requirements (R2-R15) are side-constraints to fulfill this
objective. As an example for the requirements suppose R9 that addresses complementarities
of resources. A market mechanism which is not able to handle bids on bundles cannot ensure
to achieve efficient allocations. This is supported by the fact that higher values on bundles
of resources are not considered by the allocation (Bykowsky et al. 2000).

5See http://www.planet—lab.org/ for details.

%See http://ping.ececs.uc.edu/ping/ for details (accessed: 05.04.2006).

7A special case is requirement 5 (R5), as it can be assigned to both groups. On the one hand, it is a
required property of computational mechanism design. On the other hand, a resource allocation manager has
to determine an outcome computationally efficient.
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Driven by
Requirement | Description Mechanism | Resource
Design Manager
R1 Efficient Allocation o
R2 Incentive Compatible °
R3 Individually Rational °
R4 Budget-Balance .
R5 Computational Tractable ° °
R6 Automated Resource Allocation °
R7 Double sided Mechanism °
R8 Support for Heterogeneous Resources °
R9 Support for Different Resource Characteristics °
R10 Bundling of Resources °
R11 Co-Allocation of Resources °
R12 Guaranteed Resource Usage Time °
R13 Advanced Reservation of Resources °
R14 Substitutability of Resources °
R15 Network Quality °

Table 4.2: Requirements upon a Grid market mechanism

In the following, existing market implementations for the Grid are reviewed in regard to
their adherence to the specified requirements.

4.3 Meeting the Requirements

The use of market mechanisms for allocating computer resources is not an entirely new phe-
nomenon. In literature, several auction mechanisms and negotiation protocols have been
proposed for different kinds of distributed systems. Markets for coordinating computational
resources were originally applied to traditional distributed systems. As these propositions in-
fluenced current research on moving markets to the Grid, Section 4.3.1 discusses fundamen-
tal work on market-based load balancing systems and parallel computing® infrastructures.
Subsequently, Section 4.3.2 reviews the current state of the art market based coordination
mechanisms in Grids.

4.3.1 Market Mechanisms for Load Balancing and Parallel Computing

In the following paragraphs, the most fundamental work regarding the application of markets
for allocating resources in traditional distributed systems is reviewed. The discussion briefly
outlines the target environment for the proposed market, the underlying market mechanisms,
and the trading objects.

4.3.1.1 PDP Auctions at Harvard University

Sutherland (1968) is one of the first who proposed the use of auction mechanisms for al-
locating computer resources. He applies a modified English auction for the allocation of a

8Unfortunately, a clear differentiation of the proposed systems is oftentimes impossible. Some systems are
classified as parallel computing market systems, but may also be applicable in meta-computing environments.
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PDP-1° at Harvard University. Users can submit bids manually on a blackboard to purchase
computing hours. Through offers made during the bidding process, they can reveal their
urgency for using the computer. The user with the highest bid is granted exclusive access
to the machine. In experimental studies, Sutherland (1968) shows that the use of auctions
increases the total utilization of the PDP-1 significantly. The proposed approach points the
way towards market-based allocation of computer resources.

4.3.1.2 Ferguson’s Load Balancing Approach

Ferguson et al. (1988) introduce market mechanisms for coordinating resources in a load
balancing scenario. In opposition to technical schedulers, that rely on cooperation and con-
sensus, the authors assume competitive and independent agents that compete for computa-
tional resources. In their approach, they use single sided auctions for allocating CPU cycles
and communication resources. Each processor on a computing node implements an auction
algorithm to determine which job is granted the node’s CPU cycles for a slice of time. Nodes
publish information concerning their auction outcomes and clearing prices at a bulletin board
in order to inform jobs that require resources. Based on of this information, a job can select
a particular auction node to bid for the required resources.

In experimental studies by means of a simulation, the authors use a FPSB auction and
a Dutch auction. They compare the use of auctions with a technical scheduler and measure
technical metrics such as the latency of jobs. As a main result, they show, in regard to the
measured metrics, that the economic approaches perform as well as the technical scheduler.
In addition, the authors show that the technical scalability of auctions is superior to tradi-
tional schedulers. This is a result of the decentralized information processing by means of
distributed entities. However, the authors do not measure economic metrics such as effi-
ciency.

4.3.1.3 The Spawn System

Waldspurger et al. (1992) propose a distributed system that uses market mechanisms for allo-
cating computational resources called Spawn. The system allows load sharing and resource
management for competing computational jobs. Spawn supports tree-based applications,
i.e., applications that can be split into subtasks which can be executed concurrently. In such
applications, partial results are computed on different levels of the tree and are subsequently
sent to a leaf on a higher level of the tree. On each leaf, a manager combines and aggregates
the results received from its children. Subsequently, this manager reports the aggregated re-
sults to its higher leaf on the tree. Such a form of computation — different tasks competing
for computational resources on different levels of the tree — can be efficiently implemented
in a decentralized fashion.

In Spawn, the managers of each leaf serve as funding sponsors for their children. This
funding is used to purchase CPU resources for subtasks associated with each leaf. These
resources are purchased by participating in Vickrey auctions which are instantiated by each
node that offers idle CPU slices. The auction instances and their corresponding price infor-
mation are only advertised to the neighbors of each node. As no central blackboard exists, the
applied propagation mechanism is comparable to existing Peer-to-Peer advertisement algo-
rithms. Out of all available auctions, a requesting leaf randomly joins one particular auction.

9The PDP-1 (Programmed Data Processor-1) is a computer system manufactured in 1960.
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In case an agreement is reached after the auction process, a resource manager controls the
communication with and the monitoring of the supplied resources.

Via a simulation and also with a prototypical implementation of the system, the authors
show that the use of Vickrey auctions leads to economically efficient outcomes. In addition,
the use of a one-shot auction results in lesser communication costs compared to an iterative
auction. Furthermore, the authors show that the distributed nature of the system has advan-
tages in terms of scalability compared to centralized systems. However, the decentralization
has drawbacks concerning the information propagation. As the information is only prop-
agated to neighbors, new information is disseminated with delays. This raises the risk of
unstable price fluctuations due to imperfect knowledge (Huberman and Hogg 1995). As a
result, this may lead to economical inefficient outcomes. Moreover, the results obtained by
Spawn are limited due to the assumption of concurrent applications that do not communicate
(Chun 2001).

4.3.1.4 Popcorn

Popcorn, as proposed by Nisan et al. (1998), is a Web-based computing system for schedul-
ing Java-based parallel applications. Tasks can bid on CPU times of distributed workstations.
This CPU time is measured in Java operations and, as such, the system can account for sys-
tem heterogeneity.

The Popcorn system implements three different kinds of auction mechanisms: Vickrey
auctions, first-price double auctions, and a k-price double auctions (Regev and Nisan 2000).
Both double auction schemes are implemented as call markets. For the announcement of new
auction instances, their states, and current market prices, Popcorn installs a central repository
by means of a Web platform.!® Thus, information dispersion similar to that experienced in
the Spawn system is bypassed. As a disadvantage of this central information aggregation,
the Web platform becomes a communication bottleneck in large-scale settings.

The system is evaluated by means of a field experiment and simulations. As a result
of their experiments, the authors show that all applied mechanisms attain approximately
efficient outcomes. The highest efficiency is attained by the k-price double auction which
makes this type of auction suitable for an application in a distributed computation setting.

4.3.1.5 Resource Coordination with ADAMCO

Lohmann (1999) proposes a market-based allocation of CPU cycles by means of a multi
agent system. In his setting, agents can set up different types of auctions in order to coor-
dinate their resource requirements in a decentralized manner. The author investigates four
different types of single sided auctions: for coordinating single jobs, he applies the English
auction, the Dutch auction, and the Vickrey auction; for coordinating multiple jobs, he ap-
plies the GVA as a single sided combinatorial auction.

The proposed mechanisms are implemented in the multi agent system ADAMCO
(Lohmann et al. 1997). For evaluating the mechanisms, MACRODYN serves as a target
application. MACRODYN is a software package for the numerical simulation of dynamic
systems (Bohm and Schenk-Hoppé 1998). The application is used to generate different prob-
lem settings that have varying demand of CPU cycles.

Gagliano et al. (1995) propose a similar information repository to overcome the problem of distributed
information propagation.
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System Market Mechanism | Trading Object Target Environment

:)Sll)lﬂlilll:;zloi]; 68) English Auction Computer Machine | Computer Pool

Ferguson’s Load Balancing | FPSB Auction CPU cycles, Load Balancing

(Ferguson et al. 1988) Dutch Auction Network

Spawn Vickrey Auction CPU cycles Parallel Computing

(Waldspurger et al. 1992)

Popcorn Vickrey Auction

(Nisan et al. 1998) First Price Exchange | CPU cycles Parallel Computing
k-Price Exchange

ADAMCO Vickrey Auction

(Lohmann 1999) English Auction CPU cycles Load Balancing
GVA

Table 4.3: Summary of market mechanisms for traditional distributed systems

The applied auction schemes are compared to a technical resource manager that bases on
a genetic algorithm. For evaluating the mechanisms, Lohmann (1999) measures technical
metrics such as the processing time of a job. The evaluation shows, that auctions perform
better than traditional schedulers in dynamic and heterogeneous environments. However,
in static and homogenous settings, the applied genetic algorithm results in faster processing
times of the jobs. As such, the author proposes the simultaneous deployment of technical and
economic-based coordination mechanisms for distributed systems. A suitable mechanism —
either with a technical or economical objective — should be selected according to the current
workload setting.

4.3.1.6 Reflection

Table 4.3 summarizes the outlined work on market-based resource allocation in traditional
distributed computing environments. The trading objects in most of these systems comprise
of idle CPU cycles that are made available to resource requesters. All proposed systems
implement basic auction types for allocating the resources. In compliance with the theo-
retical results obtained from common auction theory, most proposed mechanisms achieve
economically efficient results.

As an important result, the deployment and evaluation of the proposed systems show
that proper designed market mechanisms and traditional schedulers achieve similar technical
performance, such as response latency (Ferguson et al. 1988). Furthermore, Spawn and
Popcorn demonstrate the trade-off between information aggregation and scalability. On the
one hand, the decentralization of Spawn has performance advantages in large-scale settings
(Waldspurger et al. 1992). However, the simulation experiments reveal the economical
inefficiency of the applied decentralized information propagation techniques. On the other
hand, Popcorn aggregates all market relevant information and propagates them by means of
a central Web portal (Nisan et al. 1998). This results in economically efficient outcomes.
Unfortunately, the Web portal becomes a communication bottleneck in large-scale settings.

The proposed mechanisms clearly influence further research on market-based resource
allocation in Grids. A direct application of the proposed systems to the Grid is inhibited, as
these mechanisms do not address Grid specific requirements. For instance, the mechanisms
neglect the simultaneous trading of heterogeneous resources with multiple different quality
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characteristics. Despite their inapplicability for the Grid, however, the experiences gained
by the development of these systems build the basis for the design and the implementation
of markets for Grids.

4.3.2 Market Mechanisms for Grids

With the emergence of Grid technologies, the interest in applying market mechanisms to the
resource allocation problem has risen significantly. Aside from several proposals that adapt
and extend classical market mechanisms from traditional distributed systems, several novel
and complex auction mechanisms and negotiation protocols were proposed for allocating
resources in the Grid.

In the following, the most fundamental propositions of market mechanisms for Grids are
reviewed according to their applicability for trading standardized services.!!

4.3.2.1 Nimrod/G and the Computational Economy

Buyya et al. (2000) were among the first researchers to motivate the transfer of market-
based systems from distributed systems to Grids. They propose the resource broker Nim-
rod/G, which is capable of integrating different kinds of economic models. This enables an
economic based scheduling and allocating of the available resources. Nimrod/G provides a
layer that allows a user to submit budget constraints and technical resource requirements for
any kind of computational job. Subsequently, this layer bids on the required resources and
tries to reserve them. Nimrod/G can communicate with different types of trading mecha-
nisms such as bargaining mechanisms, posted price models, and auctions (Buyya 2002). In
order to purchase the required resources, the platform selects a particular trading mechanism
on the basis of the current price information and user policy restrictions.

Nimrod/G is embedded into the Grid Architecture for Computational Economy
(GRACE) framework (Buyya et al. 2001). GRACE allows a generic integration of
economic-based resource brokers such as Nimrod/G, programming environments, and core
Grid middleware such as GT 4. GRACE provides a Grid market directory that can be used to
propagate instantiated market mechanisms such as auctions. A broker that wants to purchase
resources can use this repository to investigate for relevant market instances.

Several different market mechanisms are implemented within GRACE and Nimrod/G;
unfortunately, the implemented mechanisms cover rather basic mechanisms such as English
auctions and bilateral bargaining models. Although Grid specific requirements are supported
by the broker, the underlying mechanisms widely neglect these parameters. For instance, an
English auction supports neither multiple resource attributes, nor time restrictions for ad-
vanced reservation. As such, the mechanisms that are currently applied in Nimrod/G and
GRACE do not fulfill the requirements elicited in Section 4.2. The architectural concepts
provided by GRACE are, however, deemed promising for facilitating a market-based re-
source management in Grids.

4.3.2.2 G-Commerce

Wolski et al. (2001) propose G-Commerce, a computational economy for coordinating re-
source allocations in Grids. The authors introduce commodity markets and repeated Vickrey

'TA comprehensive survey of further economic based models for the Grid can be found in Buyya et al.
(2002) and Sim (2006).
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auctions for trading CPU cycles and storage space. For these trading objects, they assume
that buyers and sellers each have equal supply and demand functions which can both be
communicated.

In the commodity market, prices are publicly agreed upon for each type of commod-
ity and are announced by a Walrasian auctioneer. Subsequently, buyers and sellers decide
whether they want to buy or sell this resource for the announced price. The resulting alloca-
tion constitutes a competitive equilibrium (also called Walrasian equilibrium) if buyers and
sellers maximize their utilities and if the aggregated supply of each commodity equals its
demand (Mas-Colell et al. 1995). In case the announced prices do not constitute such an
equilibrium, they are adjusted by lowering or heighten them. For this, Wolski et al. (2001)
apply the Global Newton process proposed by Smale (1976), which determines equilibrium
prices. In general, the Newton method requires complete information concerning the supply
and demand functions of buyers and sellers. In this context, Saari and Simon (1978, p. 1099)
argue that “this is a staggering amount of information”. Wolski et al. (2001) reduce the re-
quired amount of information by introducing an approximation called First Bank of G. This
approximation uses a large-degree polynomial in order to approximate the required excess
demand functions instead of polling this information frequently.

Although the market mechanism computes equilibrium prices for the traded resources,
the assumption that the supply and demand functions of all buyers and sellers each are equal
still remains. With respect to different policy and service requirements of Grid applications,
this assumption may be violated in practice. Furthermore, a sufficient condition under which
a stable equilibrium can be achieved in competitive markets is gross substitutability. This
property holds if the net demand for other goods does not decrease if the price for one
particular good rises (Mas-Colell et al. 1995). Gross substitutability is violated if there
are complementarities in preferences or technologies (Wellman 1993). In the context of a
Grid market, complementary valuations may exist. As such, the gross substitutability may
be violated, which results in inefficient outcomes. In addition, Bikhchandani and Ostroy
(2000) show that for a bundle of resources which are complementarities (e.g., CPU cycles
and storage space), uniform prices, such as computed by Spawn, may not exist in competitive
equilibrium. As such, a direct application of the proposed model to the envisioned target
market is not possible.

As an important result of their simulations, Wolski et al. (2001) show that a multi-
player market in form of the commodity market achieves better economic outcomes than the
application of repeated classical single sided auctions. As such, their work is a forerunner
for applying double sided markets to the Grid.

4.3.2.3 The Open Computation Exchange and Arbitration Network

The Open Computation Exchange and Arbitration Network (OCEAN) provides an open and
portable software infrastructure for automated commercial buying and selling of computing
resources over the Internet (Padala et al. 2003). The trading objects in OCEAN comprise
of CPU time, memory usage, and network bandwidth. With respect to the layered view
on potential trading objects such as outlined in Section 4.1.1, OCEAN focuses on physical
resources.

In OCEAN, each workstation represents an OCEAN node that can act as a buyer or a
seller of resources.!? In case nodes want to purchase some resources, they describe their

12The architecture also allows a node to act as a buyer and as a seller simultaneously.
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requirements of the resources by means of a resource description language. The language
provided by the OCEAN framework can be used to describe any type of resource charac-
teristics, including computational resource descriptions and time attributes. The proposed
proprietary language is comparable to current communication languages applied in Grids,
such as WS-Agreement and GLUE. After the requirements are described using the resource
description language, the node starts to discover potential sellers on the network. This is
realized by a Peer-to-Peer based search protocol and a matchmaking algorithm. As a result
of the peer discovery process, the requesting OCEAN node receives a list of potential seller
nodes. Based upon this list, it starts bilateral bargaining negotiations with a set of selected
sellers. This negotiation process is realized by exchanging several XML-based intention
documents. If a buyer and a seller agree upon a specified quality of service level, the buyer
can use the resources of the seller.

Besides the negotiation facilities, OCEAN provides additional components that are re-
quired for operating Grid markets. For instance, the framework offers a reputation system
that allows nodes to rate each other. Furthermore, OCEAN is comprised of several security
components that enable the secure communication between two negotiation parties.

The proposed framework is implemented as a prototype and preliminary evaluated by
means of a simulation. In the simulation, the authors test the applicability and performance
of their applied discovery and matching algorithms. Unfortunately, they do not analyze the
communication effort that is required for realizing the bilateral bargaining process. This ef-
fort is, however, assumed to become very high with an increasing number of participating
nodes. Furthermore, the authors do not measure economic metrics such as efficiency, incen-
tive compatibility, and the efficiency of the applied information propagation algorithm. As
the information propagation in decentralized systems plays an important role for achieving
economically efficient results, detailed studies of the propagation performance are crucial
for the application of the system. As such, OCEAN is rather seen as a proof-of-concept of
applying economic algorithms to Grids.

4.3.24 CATNETS

CATNETS is a project that aims to determine the applicability of a decentralized economic
self-organization mechanism for resource allocation in Grids (Eymann et al. 2005). The
project investigates a free market economic self-organization approach on the basis of the
work proposed by Hayek (1945).

The project addresses different types of trading objects: On the one hand, standardized
and non-standardized application services are supported by the system and are denoted as
basic services. On the other hand, the resources required by the basic services to execute
a job are called resource services. In order to trade basic services and resource services,
the environment is divided into two layers: the application layer and the resource layer.
In these two layers, the authors contemplate three different traders: (1) complex services
such as workflows that require specific application services, (2) basic services that provide a
particular application service to the complex services, and (3) resource services that provide
the required computational resources (Eymann et al. 2006).

The partitioning of interdependent logical areas into two different markets is depicted
in Figure 4.2. The service market involves the trading of application services; the trading
objects in the resource market are computational and data resources, such as processors,
storage, and memory. In case a complex service requires a basic service to perform an
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Figure 4.2: CATNETS scenario: Service market and resource market

application job, e.g., a PDF conversion tool, the basic service provides this logical service
and is responsible for purchasing the required computational resources to perform the job.
The logical service is traded on the service market, whereas the resources are traded on the
interdependent resource market.

In CATNETS, the free market economy is realized by an agent-based bilateral bargaining
strategy. In case an agent wants to purchase a service, the agent starts to discover relevant
counterparts. This step is supported by Peer-to-Peer discovery strategies and matchmaking
algorithms. In the instance that potential counterparts are discovered, the agent starts to
negotiate the required resources. The decision process of the agents is supported by different
learning algorithms.

The proposed bilateral bargaining strategies are compared to auction-based mechanisms:
For the service market, a double-auction serves as a benchmark. In addition, an extended
combinatorial exchange is implemented for the resource market'3. The bargaining strategies
and the auctioneers are both implemented in a simulation environment and compared accord-
ing to technical and economic metrics (Reinicke et al. 2006). Furthermore, the bargaining
strategies are integrated into a generic economic Grid middleware (Ardaiz et al. 2005). Un-
fortunately, no empirical results exist at the moment. The work is, however, a promising
approach for applying economic based mechanisms to the Grid.

4.3.2.5 Grosu and Das Approach

Grosu and Das (2006a) study the applicability of different types of auction mechanisms for
allocating resources in the Grid. They compare the FPSB auction, the Vickrey Auction, and a
double auction call market with respect to their applicability in a Grid setting.'* The trading
objects in the proposed markets are computational power, data storage, computer networks,
and all kinds of software services. As such, they comprise all trading object layers outlined
in Section 4.1.1.

3The auction applied in the resource market is a simplified adaption of the mechanism presented in this
work (cf. Chapter 5).

A comparable approach of evaluating different economic based resource allocation models is proposed by
Gomoluch and Schroeder (2003).
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Their general model of auction based resource allocation consists of three basic entities:
User Brokers, Grid Service Providers, and a Local Market for Auctions.

User Brokers: A user broker represents any user that needs computational resources or
software services to execute a predefined set of jobs. In the applied model, a job is
characterized by its execution time, its required resources, and the available budget for
executing it. The user broker is responsible for discovering auction instances, selecting
suitable instances, and bidding for the required resources.

Grid Service Providers: Grid service providers represent computing nodes that offer com-
putational resources. A provider of a resource can specify three parameters that are
used to select a particular auction instance: the processing rate of the underlying ma-
chine, the reservation price for offering the resource, and the costs that arise to use
the resource. By means of a local market for auctions, a Grid service provider can
instantiate new instances of a single sided auction and propagate it to user brokers.
Alternatively, the provider can join an existing instance of a double auction that is also
provided by the local market for auctions component.

Local Market for Auctions: The local market for auction provides functionality to support
service providers in instantiating and propagating their auction instances. Further-
more, user brokers can use this component to discover relevant auction instances, i.e.,
auctions that offer the required resources in the required processing rate.

The proposed model and the applied auctions are evaluated by means of a simulation.
As basis for their simulation environment, the authors extend the SimGrid!®> package. As a
result, the experiments show that the FPSB favors sellers due to higher prices compared to the
Vickrey auction. Similarly, the Vickrey auction is advantageous for buyers, as the expected
prices are lower than in the FPSB. This result is obvious and in line with the theoretical
results: A winner in a FPSB has to pay the highest bid, whereby a winner in a Vickrey auction
only has to pay the second highest bid. From an economic point of view, however, these
empirical results are limited, as the authors assume truthful bidding in their experiments.
The FPSB is not incentive compatible and, as a consequence, it is not a dominant strategy
for users to bid truthfully.

In addition, the experiments emphasize that the double-auction is advantageous for both
buyers and sellers. As such, the authors can transfer the results obtained from former studies
that propose double sided mechanisms for distributed systems to the Grid.

In Grosu and Das (2006b), the authors extend their framework to single sided combi-
natorial mechanisms. They apply a first price combinatorial auction for trading multiple
heterogenous jobs.!® This solves the problem of receiving only a subset of resources that
are required to perform a set of jobs. In a simulation they analyze the profits of resource
providers and the utilization of the computing infrastructure. Unfortunately, they do not
compare their results to non-combinatorial markets or traditional schedulers. Furthermore,
the complexity of the applied combinatorial mechanism is not evaluated.

158imGrid is a framework that provides functionalities for simulating distributed applications in heteroge-
neous distributed environments such as Grids (Casanova 2001).

16 Among others, Gradwell and Padget (2005) and Schwind et al. (2006) also propose the use of combinato-
rial auctions for the resource management in Grids.
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The work proposed in Grosu and Das (2006a) and Grosu and Das (2006b) seeks towards
the requirements proposed in Section 4.2. Moreover, the application of different auction
schemes may even qualify to trade both standardized services and non-standardized ser-
vices. For standardized services, however, the applied auction mechanisms do not meet all
requirements. For instance, the proposed mechanisms neglect the existence of quality and
time attributes. Although the application of a combinatorial mechanism solves the exposure
problem, the single sided nature of the auction does not provide competition on both sides,
which may lead to inefficient outcomes.

4.3.2.6 The tsfGrid Auction

Bapna et al. (2007) propose a family of single sided combinatorial call auctions for allocating
Grid services. Following Wolski et al. (2001), they focus on trading CPU cycles and storage
space.

Bidders who want to purchase computational resources can specify their requirements
by means of a market bidding language. Bapna et al. (2007) propose an extension of RSL
in order to express operational parameters and constraints of the required resources. Buyers
can specify the earliest time slot for starting the job and the latest possible time slot for
finishing it. Furthermore, they can specify the amount of CPU cycles and storage space
needed. The authors consider two different types of storage space: A static amount of space
that is required to upload a file before the job is started and a dynamic amount of space that
becomes larger, the longer the job takes. This dynamic value is parameterized by means of a
linear growing factor. Sellers, that have idle resources, can offer a time interval during which
they can provide their computational resources. Furthermore, they can specify the amount
of available CPU cycles and the maximum size of available storage space.

The authors assume that sellers are price-takers, i.e., sellers participate in the market if
their per unit reservation price for selling their resources is not greater than a given reserva-
tion price. This reservation price is set exogenously and is publicly known. As a result, the
authors can aggregate the submitted bids of the sellers into one virtual order.

For determining an allocation and corresponding prices, the authors propose three differ-
ent mechanisms: an efficient auction, a fair auction, and the tsfGrid auction.

Efficient Auction: The efficient auction is as an extension of a single sided combinatorial
auction that incorporates the CPU cycles and storage space restrictions as additional
constraints. As pricing rule, Bapna et al. (2007) propose a VCG schema. As such, the
auction requires discriminatory prices to achieve efficient outcomes (Bikhchandani
and Ostroy 2000). An auction determines discriminatory prices if a distinct unique
price is determined for each winning bid (Strobel and Weinhardt 2003).

Fair Auction: As the provisioning of discriminatory prices may be disadvantageous in cases
where market prices should be considered, Bapna et al. (2007) leverage the efficiency
property by introducing an optimal fair mechanism that computes uniform market
prices. In a uniform price setting, every originator of a winning bid has to pay the
same price (Strobel and Weinhardt 2003). The fair auction schema is still determined
optimally which requires a staggering amount of computation, as the problem is N/P-
complete.
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tsfGrid Auction: Finally, the third proposed type of auction is called tsfGrid!” and applies a
greedy heuristic to approximate the winner determination problem. Thus, the problem
of determining the winners of the auction becomes computationally tractable. How-
ever, desirable economic properties such as incentive compatibility and economically
efficiency can no longer be achieved by the heuristic.

The authors propose the use of the efficient auction in small scaled settings that require
optimal economic properties. In settings in which a market operator requires uniform com-
modity prices, the optimal fair mechanism should be used. Finally, the tsfGrid auction qual-
ifies for markets that require real-time fast solution techniques for determining an outcome.

The auction mechanisms are evaluated by means of a stochastic simulation. As a result,
the authors show that the welfare loss of the tsfGrid auction is significantly high compared
to both other auction types. This is a result of the greedy heuristic that is applied to compute
an outcome. However, the incentive compatibility violations in the tsfGrid are fairly mild.
As such, it is reasonable to believe that buyers will not strongly deviate from their true
valuations. Furthermore, the simulations show that the overall revenue of the tsfGrid auction
does not significantly differ from the efficient outcome. Thus, the heuristic is a practical
alternative to exact solutions and is highly relevant for further research on combinatorial
mechanisms.

In summary, the proposed mechanisms achieve fairly well economic properties. The auc-
tions do, however, not fulfill all requirements upon a market mechanism for trading standard-
ized services: First, the authors restrict their trading object space to two types of services:
CPU cycles and storage. In some scenarios, this may be insufficient as also standardized
application services may be required by Grid participants. Second, the mechanism does not
incorporate for co-allocation restrictions. Finally, the assumption that all sellers are price
takers may be inadequate in some cases. This restriction assumes that the production and
management costs of computational and application resources are equal for all providers.
Such settings, however, can only be rarely found in practice.

4.3.2.7 Reflection

Most of the reviewed auction based mechanisms achieve desirable economic properties as
outlined in Section 3.2.1.4. The applied auctions are theoretically well-studied and are
known to achieve (approximate) efficient outcomes. Unfortunately, the bargaining strategies
as introduced by Nimrod/G, OCEAN, and CATNETS are currently not evaluated according
to their economic characteristics in a Grid setting. It is, however, hard to consider, whether
the decentralized bargaining strategies may result in economically efficient outcomes. This is
reasoned by the lessons learnt from former decentralized information propagation techniques
such as implemented in Spawn (Waldspurger et al. 1992).

While complying with the desired economic properties, the analyzed systems lack of ful-
filling the Grid specific requirements as elicited in Section 2.3.1. This obstacle is illustrated
in Table 4.4 which denotes whether or not each particular domain specific requirement is
fulfilled.

When reviewing the related mechanisms, it becomes obvious that no market mechanism
fulfills the current domain specific requirements upon a resource allocation manager for the

17This abbreviation stands for time sensitive fair Grid.
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Table 4.4: Summary of market mechanisms for the Grid

Grid.'® Reasons for this stem from recent changes in the technical Grid infrastructures and
the emergence of complex auction mechanisms: On the one hand, past systems such as G-
Commerce had to deal with limitations in infrastructures that mostly based on allocating
physical resources without proper service level agreements. As such, the support for mul-
tiple attributes that characterize different services and the integration of time attributes that
guarantee a predefined usage time were useless. On the other hand, most of the proposed
mechanisms apply simple market mechanisms such as Vickrey auctions. These mechanisms,
however, cannot attain economic efficiency, as they are unable to support complementarities
or substitutability of resources. During the last years, advances have been made in theory
and practice of more complex market mechanisms. For instance, combinatorial auctions can
be successfully applied to achieve efficient outcomes when resources are complementarities.
Table 4.4 further suggests the application of such complex auctions for Grids, as both combi-
natorial mechanisms fulfill several of the requirements upon a resource allocation manager.

The direct application of the combinatorial mechanisms to a real Grid system — such as
proposed by Grosu and Das (2006b) and Bapna et al. (2007) — is still hampered. The combi-
natorial auction proposed by Grosu and Das (2006b) does neither support multiple resource
characteristics, nor time attributes. The support of such properties is, however, indispensable
in a Grid environment. Furthermore, the mechanism does not provide sufficient incentives
for agents to bid truthfully. This is reasoned by the implementation of a pay-as-you bid
pricing schema which is known to be not incentive compatible. Counteractively, the work
proposed by Bapna et al. (2007) supports time characteristics and is approximately incentive
compatible. The auction is restricted to two different types of resources. Thus, the potential
application area of the mechanism is limited to scenarios that only require CPU and stor-
age. Furthermore, both propositions neglect co-allocation guarantees. Moreover, they are

8Moreover, none of the proposed mechanisms made it into practice.
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single sided and, thus, do not install competition on both sides. This fact may lead to further
economically inefficient outcomes.

In summary, none of the proposed mechanisms is directly applicable to the Grid. The
work at hand intends to address these deficiencies by engineering a market-based resource
management system that addresses the requirements outlined before.

4.4 Summary

This chapter outlined the environmental analysis of a Grid market. In the first step, Section
4.1 performed an environment definition: Potential trading objects in a Grid were identified
and classified as standardized services and non-standardized services. Based upon this clas-
sification, potential market segments were outlined for each class of the trading objects. A
market for trading standardized services was targeted, as its number of different application
areas is assumed to be high. Subsequently, the number of potential participants in such a
market was determined by means of an empirical analysis. In Section 4.2, the requirements
upon the target market were elicited. The resulting requirement specification was a confla-
tion of desirable economic properties and general requirements upon a resource allocation
manager.

Section 4.3 reviewed existing market implementations for traditional distributed systems
and Grids with regard to their requirement satisfaction. The result of the analysis was that
currently none of the proposed mechanisms fulfills all requirements outlined in this work.
Furthermore, the analysis evinced that classical auction mechanisms and bargaining strate-
gies are not adequate for efficiently allocating resources in the Grid. Rather, the application
of complex market mechanisms, such as combinatorial auctions, is seen as a promising basis
for designing a Grid market.

This chapter served as a basis for the further design, implementation, and evaluation of
a Grid market. Chapter 5 outlines the design of a market mechanism that is applicable for
trading standardized services and fulfills most of the elicited requirements.
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Chapter 5

Design of a Grid Market Mechanism

It is useful to think of the VCG theory as a lovely and elegant reference point — but not as a
likely real-world auction design. Better, more practical procedures are needed.
(Ausubel and Milgrom 2006, p. 37)

The previous section reviewed existing market mechanisms for the Grid according to the
requirements presented in Section 4.2. It is turned out that no market mechanism installs
competition on both sides, includes combinatorial bids, allows for time constraints, manages
quality constraints, and considers co-allocation restrictions. This chapter addresses these
deficiencies by outlining the design of a Multi-Attribute Combinatorial Exchange (MACE)
for allocating and scheduling Grid resources.

The contributions of MACE are the following: It is the first auction mechanism that si-
multaneously addresses several Grid specific requirements such as quality characteristics,
time attributes, and co-allocation restrictions. MACE allows agents to bid on bundles rather
than on single items. This results in more efficient outcomes compared to traditional auc-
tions, as Grid resources are complementarities. The mechanism applies a new pricing schema
for combinatorial exchanges. In contrast to VCG payments, the proposed k-pricing rule is
feasible and computationally more efficient. In summary, the derivation of MACE is a step
towards an engineered market mechanism for the Grid that accounts for economic and do-
main specific requirements.

MACE relies on the principles of combinatorial mechanisms. As such, the design space
of combinatorial auctions and exchanges is introduced in Section 5.1. After that, Section 5.2
outlines the conceptual design of MACE. This includes (1) the definition of a rich bidding
language that accounts for the characteristics of Grid resources, (ii) the formulation of a
winner determination model that can attain efficient allocations, and (iii) the derivation of a
pricing schema as an incentive mechanism for agents to bid truthfully. Finally, Section 5.3
summarizes the chapter.

5.1 Design Space for Combinatorial Auctions

In the Grid context, a combinatorial auction allows an agent to bid on a bundle! of Grid
resources. For instance, an agent can bid on a bundle that consists of a database service

' A bundle is understood as a set of resources that are concatenated by the logical AND operator.
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and a computation service. In contrast to traditional auctions, the combinatorial mechanism
ensures that the agent is allocated to either both resources or none of them. As such, agents
avoid the exposure risk of obtaining only a subset of resources that may be useless for them.

Aside from bundle bids, an agent can also bid on several bundles simultaneously that
substitute each other. The mechanism ensures that at most one of the bundles is allocated
to the agent. For instance, the agent can bid on a storage service with 200 GB that can be
used for 2 hours and on another storage service with 100 GB for 5 hours. In this case, the
mechanism allocates at the most one of the services to the agent.

Combinatorial auctions are suitable for agents that have complex preference structures
with respect to substitutability and complementarity (Boutilier and Hoos 2001). By express-
ing preferences for bundles and substitutes, agents can reflect their desired valuations for
combinations of resources. Engineering a mechanism for the Grid on the basis of a combi-
natorial auction is practicable, as the Grid resource allocation mechanism should support the
expression of complements and substitutes (cf. Section 2.3.1).

Beside their qualification for Grids, there are further examples of applying combinatorial
auctions in practice: Rassenti et al. (1982) propose them for allocating airport arrival and
departure slots, Schmidt (1999) applies them to coordinate transportation routes, Ausubel
and Milgrom (2002) suggest them for auctioning electromagnetic spectrum licenses, and
Bichler and Kalagnanam (2006) use them for procurement scenarios.

Although combinatorial auctions have a high variety of application areas, the designer of
such an auction faces several challenges (de Vries and Vohra 2003): First, agents require a
comprehensive bidding language to express their complex preference structures. Next, the
designer must solve the problem of allocating bundles of resources with respect to a given
performance criteria. According to the market engineering approach, sufficient incentives are
required that influence agents to reveal their true preferences to the auctioneer (Weinhardt
et al. 2003). In the following subsections, several models are discussed that address these
challenges. Section 5.1.1 describes how logical constraints over resources can be expressed
by means of bids. After that, allocation rules and price schemes are outlined for single sided
combinatorial auctions (Section 5.1.2) and combinatorial exchanges (Section 5.1.3). Finally,
Section 5.1.4 argues why current concepts found in literature cannot be directly applied for
allocating Grid resources.

5.1.1 Combinatorial Bidding Languages

Agents in a combinatorial auction must be able to express their preferences over interdepen-
dent resources in form of bids. Following common auction theory, bids are abstract elements
drawn from the space of strategies defined by the auction (Nisan 2006). The designer of a
combinatorial auction has to decide which bids are allowed to be submitted by the agents,
1.e., the designer has to define the strategy space of the auction.

In combinatorial auctions, the strategy space has to be carefully designed, as the number
of submitted bids may grow immensely. For instance, suppose there are 20 resources to be
auctioned by a seller and 20 agents that are interested in bidding on them. Allowing each
agent to bid on each combination of resources would result in 20 - (22° — 1) = 20.971.500
bids. Assuming that a bid on a bundle can be encoded using 8 bytes?, the submission of all

23 bytes are required to encode the ID of the bundle, 1 byte for the ID of the agent, and 4 bytes are used to
encode the valuation.



CHAPTER 5. DESIGN OF A GRID MARKET MECHANISM 81

bids requires more than 159 MB to be communicated. The objective is to define a bidding
language that restricts the message space in order to become tractable for communication
systems, but allows the formal specification of common bids. Agents can use this language
to encode their bids and, subsequently, to submit them to the auctioneer.

The following notation serves as a basis for the definition of different bidding languages:
Let Z be a set of I agents, where 7 € Z defines an arbitrary agent. Furthermore, there are
G discrete resources G = {g1,...,gc} With g € G to be auctioned. Agents can bid on a
set of D bundles S = {54,...,Sp} with S; € S and S; C G as a subset of resources. For
example, the term S; = {gy, g;} denotes that the bundle S; consists of two resources g;, and
g;. Finally, let v;(S;) be the valuation of agent 7 for bundle \S;. For instance, the formulation
v;(S;) = 10 with S; = {g1, g2} denotes that agent 7 is willing to pay 10 for receiving the
bundle S; which consists of the two resources g; and g2.> Without loss of generality, the
following notation assumes that the reported valuation 7;(-) of an agent 7 is truthful, i.e.,
0;(+) = v;(+). Settings in which this assumption is violated are discussed separately.

For the introduction of different bidding languages, a clear distinction between buyers
and sellers is not necessary. The concepts that are presented in the following are valid for
both, buyer as well as seller bids.

Based on the aforementioned notation, the most fundamental types of bidding languages
are introduced based upon the work by Nisan (2000, 2006). The presented types comprise
atomic bids, OR bids, and XOR bids:

Atomic Bids: An atomic bid is a pair (S;,v;(S5;)), where S; € S is a bundle on which
an agent ¢ bids with a valuation of v;(S;). The use of atomic bids allows agents to
place one single bid. As such, the language intensely restricts the strategy space which
can lead to a reasonable communication effort. In some cases, however, atomic bids
are insufficient to represent common preferences. For instance, even simple additive
valuations cannot be represented by atomic bids.

OR Bids: OR bids allow agents to submit several atomic bids to the auctioneer. This is use-
ful if agents have additive valuations concerning several atomic bids. In formal terms,
OR bids are represented as ((S;,v;(S;)) V + -+ V (Sk, v;(Sk)) where the total number
of atomic bids can be restricted by the auctioneer. Consequently, the required commu-
nication effort can be controlled according to the number of available resources. OR
bids are equivalent to the submission of multiple atomic bids, each from a different
agent. They can represent all bids that do not have any substitutes.

XOR Bids: The use of XOR bids allows agents to submit multiple atomic bids that are con-
catenated by the logical XOR operator. By means of such bids, agents can express
that they are interested in at most one of the atomic bids. A XOR bid is defined as
((Sj,v:(S;)) ® - - - ® (Sk, vi(Sk)), where the number of atomic bids can be limited by
the auctioneer to control the maximum communication effort. XOR bids can repre-
sent additive, sub-additive, and super-additive valuations. However, the length that is
required to encode all valuations may become tremendous. For instance, some valua-

tions that can be represented by OR bids shortly may require exponential size by the
use of XOR bids (Nisan 2006).

31t is abstracted from currencies, i.e., valuations and reservation prices are denoted without any currency
unit.
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Beside these basic bidding languages, Nisan (2000) further proposes combinations of the
OR and the XOR language. Furthermore, he proposes the O R* language which simulates the
XOR operator by means of an OR operator combined with dummy variables. For instance,
the XOR bid ((S;, v;(S;)) @ (Sk, vi(Sk))) can be represented by ((S; U {d}, v;(S;)) V (S U
{d},vi(Sk))), where d is a dummy resource that can be allocated at most once. This allows
a more compact representation of most bids compared to the XOR language.

The decision of which bidding language is supported by the auction depends on the
requirements by the agents and the objectives of the market engineer. For instance, the
objective of the market engineer can be the minimization of the communication complexity
caused by the bidding language.

After the bids are formulated by means of the selected type of bidding language, they
are submitted to the auctioneer that computes an allocation and corresponding prices. In
the following subsections, state of the art of allocation and pricing rules for single sided
combinatorial auctions and combinatorial exchanges are outlined.

5.1.2 Single Sided Combinatorial Auctions

Single sided combinatorial auctions are mechanisms in which either buyers or sellers can
submit bids on multiple heterogenous resources. The following discussion focuses on single-
unit combinatorial auctions in which an auctioneer offers a set of heterogeneous resources
G to a set of agents Z that act as buyers.* An agenti € Z with quasi-linear utility functions
submits a set of XOR concatenated bundle bids (.S, v;(S;)) to the auctioneer, where S; C
G is a bundle of resources and v;(.S;) > 0 is the valuation for the bundle S;. Assume
that v;(()) = 0 and that the valuation function v;(-) satisfies free disposal. Free disposal of
resources implies that agents have weakly increasing values for bundles with more resources,
ie., v;(S;) <wv(S; UT) with S; C Gand T C G (Parkes 2001).

5.1.2.1 Winner Determination

Solving the winner determination problem means selecting a set of bids so that a predefined
objective can be achieved. Following the discussion outlined in Section 3.2.1.4, an efficient
allocation is the objective that a mechanism designer wants to attain.

The conventional way of formulating the winner determination problem — also called
the combinatorial allocation problem (CAP) — is the use of integer programming. This is
advantageous, as standard operations research algorithms and diverse solver packages can
be applied for solving it (Andersson et al. 2000). For this purpose, let z;(.5;) be a binary
decision variable with x;(.S;) = 1 if the bundle S; is allocated to buyer ¢ and z;(S;) = 0
otherwise. Consequently, CAP can be formulated as follows (de Vries and Vohra 2003):

4Sandholm et al. (2002) and de Vries and Vohra (2003) outline formulations for combinatorial multi-unit
and reverse auctions.
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maxz Zvi(Sj)xi(Sj) (5.1

i€Z S;eS8
sty @S <1, Viel (5.2)
SjES
SN wi(S) <1, Vg eg (5.3)
1€ S;j3gx
z:(S;) € {0,1}, Vi€ Z,S; € S (5.4)

The objective function 5.1 maximizes the total value over all agents. By construction,
this objective function attains an efficient allocation if agents bid truthfully. Constraint 5.2
ensures that no bidder receives more than one bundle (XOR constraint). Constraint 5.3 en-
sures that any resource is allocated at most once. Finally, Constraint 5.4 defines the decision
variables of the optimization problem.

The value of the optimal solution is further denoted as V'*, the corresponding allocation
is denoted as S* = (S},...,S}), where S} represents the bundle that is allocated to agent
i in the optimal allocation.’ Furthermore, ties — different allocations that both maximize
the objective function — are broken according to a predefined rule. For instance, ties can be
broken in favour of maximizing the number of agents in the allocation or randomly.

Beside their economic attractiveness, combinatorial auctions have also technical short-
comings. For instance, the winner determination problem belongs to the A/P-complete prob-
lems.

Theorem 5.1: CAP Complexity
The combinatorial allocation problem (CAP) is N'P-complete (Rothkopf et al. 1998).

Sketch of proof. CAP is equivalent to the set packing problem (SPP) on hypergraphs
(Rothkopf et al. 1998, p. 1136), which is known to be N'P-complete (Karp 1972, p. 94). [

As a consequence, solving a combinatorial auction optimally may not be feasible in
large-scale scenarios. For a description of algorithms that can be applied to solve CAP, refer
to Chapter 6.

Example 5.1: CAP Problem Set

As an example of the winner determination problem, consider the bids given in Table 5.1.
The auctioneer sells 3 different goods ¢;, g2, g3 and 3 agents submit XOR bids on each
resource combination. For instance, agent 1 values the bundle Sy = {go} with v1(S55) = 5,
agent 2 the bundle S5 = {g1, g3} with v3(S5) = 9, and agent 3 the bundle S; = {g1, 92, 95}
with v3(S7) = 22. The optimal solution is to allocate the bundle S; = {g¢;} to agent 1
(x1(S1) = 1) and to allocate the bundle Sg = { g2, g3} to agent 3 (23(Ss) = 1). The value of
the allocation is V* = 26.

The allocation determined by CAP is efficient as long as agents report their preferences
truthfully. It is the objective of the price system to provide sufficient incentives to reveal some
of the agents’ private information in order to attain an efficient allocation. In the following
paragraphs, common pricing schemes for combinatorial auctions are discussed.

3If no bundle is allocated to agent 4, then S} = ) with v;()) = 0.
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Agent

Sz = {g2}

S3 = {gs}

Sy = {917 92}

Ss = {91,935}

S¢ = {92, 93}

S7 = {91,92,93}

S1 ={g:1}

5

4

12

10

11

21

3

5

15

9

12

19

4

10

12

10

18*

22

Table 5.1: Valuations of bidders in the CAP problem set

5.1.2.2 Generalized Vickrey Auction

The Generalized Vickrey Auction (GVA) is an application of the VCG mechanism (cf. Sec-
tion 3.2.2.2) to combinatorial auctions. The auction process is as follows (Varian 1995;
Parkes 2001): All agents 7+ € Z submit their XOR bundle bids to the auctioneer by commu-
nicating (not necessarily truthfully) their types 0;. Subsequently, the auctioneer solves the
choice function k:*(é) that maximizes the total reported preferences over all agents. This is
achieved by solving CAP optimally to obtain S*. Next, the auctioneer determines prices for
each agent ¢ by solving the VCG payment rule

pi(0) = v (k2,(0-0),0;) = > v;(k*(6),0;),

where k* ,(0_;) denotes the choice rule with all agents except agent . Let (V_;)* be the value
of the allocation without agent i and let (S_;)* be the corresponding allocation. Then, the
auctioneer has to determine the following payment function for each agent ¢:

pvicwi(S7) = (Vo)™ = > 0i(S5) = vi(S7) + (Vo) = V* (5.5)

J#i

In words, prices agents have to pay for allocated bundles do not only depend on their valua-
tions. The price of each agent gets further influenced by the difference between the value of
the allocation without his own participation (V_;)* and the sum of the valuations v;(S7) of
all other agents in the optimal solution. As such, the price reflects the impact of agent ¢’s par-
ticipation. An agent ¢ must not necessarily pay the value of the bid as he receives a discount
Ay ek > 0in form of a transfer payment (Parkes 2001). This discount is computed as the
difference between the value of the optimal solution and the value of the solution without
agent i, i.e.,

Avioks = V* = (Vo)™ (5.6)

As a consequence, the payment rule of the GVA can be reformulated to
pvick,i(S7) = vi(S]) — Avick,-
Thus, the discount Ay ok ; represents the utility u;(S;) of agent i, i.e.,
wi(S7) = vi(SF) — pvicki(S]) = Avick.

Example 5.2: GVA Problem Set

The GVA payments for the problem set given in Example 5.1 are computed as follows: First,
an allocation is computed without agent 1. This means, that the auctioneer computes (S_;)*
to obtain (V_1)*. Given the bids in Table 5.1, the optimal solution (S_;)* is to allocate
bundle S, = {g1, 92} to agent 2 and bundle S; = {g3} to agent 3. The value of (S_;)* is
accordingly (V_;)* = 25. Thus, agent 1 has to pay py;cx1(S7) = 8 — (26 — 25) = 7 for
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the bundle S; = {g¢1}. As the discount is computed as Ay cx; = 26 — 25 = 1, the impact
of agent 1 on the allocation is assessed with the value 1. Likewise, the payment of agent 3 is
computed as py o 3(S5) = 15 with (V_3)* = 23 and Ay o3 = 3. As agent 2 is not part
of the allocation, his payment sums up to py ;¢ K72(S§) =0.

The GVA is an instance of a VCG mechanism. As such, it is efficient, incentive compat-
ible, and individually rational for agents with quasi-linear utility functions. Furthermore, the
GVA is budget-balanced. This means, that the auction does not have to be subsidized from
outside sources. It is to note, that the Myerson-Satterthwaite theorem (cf. Section 3.2.2.3)
does not hold for the GVA due to its single sided nature.

Aside from the attractiveness due to its economic properties, a practical application of
the GVA has several drawbacks: The first and most commonly discussed weakness of the
GVA is the low (and sometimes even zero) revenue of a seller (Ausubel and Milgrom 2002).
Suppose the bids of the two agents shown in Table 5.2. The optimal solution is to allocate
Sy = {g2} to agent 1 and S; = {g;} to agent 2. The value of the allocation is V* = 4. The
payment of agent 1 is py ok 1(S7) = 2 — 2 = 0, as his impact on the allocation is denoted
with the same value as his bid. The same conclusion applies to agent 2, thus making the
revenue of the auctioneer zero. As a consequence, such a deficit of the GVA “is decisive
to reject it for most practical applications.” (Ausubel and Milgrom 2006, p. 23). Another
weakness of the GVA is its vulnerability to collusion. Agents can improve their own utility
by entering joint deviations with other agents in the auction. Furthermore, they can lower
their payments by shill bidding, as agents can improve their utility by the use of multiple
identities (Ausubel and Milgrom 2002).

Agent | S1 = {g1} | S2 = {g=2}
1 0 2%
2 2* 0

Table 5.2: Valuations of bidders that lead to zero payments in a CAP setting

Most theoretical analyses neglect the computational complexity of the GVA: CAP be-
longs to the N'P-complete problems. In a setting with [ agents, this problem has to be
solved I + 1 times in the worst case.® In several practical application areas, an outcome of
the GVA cannot always be found within a reasonable time frame (Parkes 2001; Dash et al.
2003).

In summary, the GVA has strong and unique economic properties. However, due to the
aforementioned weaknesses, its practical application is hampered. For this reason, Milgrom
(2006, p. 39) suggests the use of alternative designs: “Vickrey auctions, long the darling
of theoretical mechanism designers, are impractical even for auction applications mainly
because the seller’s revenues are too low. There are flexible new designs |[...] that attrac-
tively compromise the incentive properties of the Vickrey auction with the need to avoid low
revenues and that seem to correspond well with mechanisms that are reported to have good
success in economic laboratories.”

One instance has to be solved to determine an allocation and I instances have be computed for the pay-
ments.
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5.1.2.3 Pricing Per Column

One drawback of the GVA is the computational effort that is required to determine an out-
come. In the worst case, / 4 1 instances of CAP must be solved. This is a consequence of the
underlying VCG pricing rule: It values the impact of each agent on the allocation. In contrast
to the GVA, the Pricing Per Column (PPC) mechanism attempts to reduce this computational
effort (Schmidt 1999; Gomber et al. 2000). The mechanism implements an alternative pay-
ment function that is computationally more efficient. The choice rule of the PPC remains the
same as in the GVA. This means the auctioneer first solves CAP to determine an allocation.

The payment rule for agent ¢ with S} depends on the valuations of other agents that bid
for the same bundle. The price agent ¢ has to pay for S is simply the highest valuation for
S¥ if ¢ would not be present. Formalizing the payment rule, let S* = (S7,...,S7) be the
optimal allocation determined by CAP. The price rule is defined as
min(lilgx vE(S5),v:(SF)) if the number of bids on S} > 2

5.7
0 otherwise.

pppci(S)) = {

In words, the function determines the second highest bid for a particular bundle S;. If there
is an unsuccessful bidder that bids more than v;(.S;"), the price is set to pppc;(S;) = v;(S])
in order to ensure individual rationality. In case agent ¢ is the only bidder on S}, his payment
is pppc,i(S;) = 0.

Example 5.3: PPC Problem Set

As an example of the PPC, reconsider the valuations given in Table 5.1. According to the
PPC pricing rule, agent 1 has to pay the second highest bid for S; = {¢}, i.e., the agent has
to pay pppc.1(S1) = 7. Likewise, agent 3 pays pppc3(Se) = 12.

The PPC is budget-balanced and individually rational. From a computational viewpoint,
the auction is less complex than the GVA. However, one instance of CAP has still to be
solved optimally. As the PPC does not implement a Groves mechanism, it is not incentive
compatible. For example, consider the setting given in Table 5.1: For the bundle S, =
{91, g2}, assume agent 2 does not bid the valuation v2(S;) = 15 but overbids up to v5(5;) =
17. As a consequence, agent 2 is part of the allocation. The bid, together with the bid from
agent 3 on S3 = {g3}, maximizes the objective function of CAP. Agent 2 bids more than
his valuation and has a positive utility from this transaction. The agent has only to pay the
second highest bid for Sy with pppc2(Ss) = 12. Moreover, the utility due to overbidding is
greater than the utility for telling the truth. As such, the agent does not have an incentive to
reveal the true valuation.

In a numerical experiment, Neumann et al. (2007) show that deviating from the true val-
uations does not always improve the individual utility of agents. If the number of competing
agents is sufficiently high with respect to the available resources, agents profit more by re-
vealing their true preferences. This property is lost if the number of available resources is
increased. The authors conclude that if the size of the auction is very large, strategic manip-
ulations of bids do not pay off. Competition drives the bidders to reveal their true valuations.
As a consequence, the application of the PPC in such settings may be a practical alternative

to the GVA.
5.1.2.4 Iterative Combinatorial Auctions

Iterative combinatorial auctions such as :Bundle (Parkes 1999), AkBA (Wurman and Well-
man 2000), or the Clock-Proxy auction (Ausubel et al. 2006) allow agents to submit multiple
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bundle bids to the auctioneer. Such auctions do not require that agents submit their valua-
tions at once. Rather, they allow them to reveal their preferences in regard to the information
feedback they get.

One can differentiate between two types of iterative auctions: quantity based and price
based auctions (de Vries and Vohra 2003). In each round of a quantity based auction, agents
submit their bids to the auctioneer. On the basis of these bids, the auctioneer computes
a provisional allocation and propagates the outcome to the agents. Subsequently, agents
can resubmit their adjusted bids to the auctioneer. The auction ends after a predefined stop
rule. For instance, the auction may end after 5 minutes have passed without any new bid.
In contrast to quantity based mechanisms, the auctioneer sets the price for each bundle in a
price based auction. Agents announce which bundles they want to acquire for the given price.
After that, the auctioneer may rise prices according to the number of requests received for
each bundle. Agents in price based settings are usually characterized as myopic best response
bidders. They bid for the bundles that maximize their utility with respect to the announced
prices (Parkes 2001). The intuition behind price based auctions is a Walrasian auctioneer
that announces prices so that supply equals demand for a resource (Hurwicz 1972). Most
iterative combinatorial auctions rely on a price based mechanism.

Price based auctions can be interpreted as primal-dual algorithms. Given a problem that is
represented as a primal and a dual linear program, such algorithms try to find feasible primal
and dual solutions that satisfy complementary slackness conditions’. If both solutions satisfy
these conditions, they are optimal due to the strong duality theorem (Wolsey and Nemhause
1999). A primal-dual auction problem is now interpreted as follows: The provisional allo-
cation is a feasible primal solution and the current prices are feasible dual solutions. The
winner determination problem uses the bids to compute a feasible primal solution that min-
imizes the violations of the complementary slackness conditions. Price updates adjust the
dual solution towards an optimal solution (Parkes 2006). If the announced prices and the
allocation satisfy the complementary slackness conditions, the auction is terminated.

A popular example of a primal-dual auction algorithm is the English auction where the
auctioneer announces prices (dual problem) and determines an allocation on the basis of
the bids (primal problem). Agents bid myopically by raising their hands for a given price
(de Vries and Vohra 2003). An implementation of a primal-dual algorithm as an iterative
combinatorial auction is given by :Bundle (Parkes 1999; Parkes and Ungar 2000).

Iterative combinatorial auctions are advantageous in settings in which agents cannot re-
veal all of their preferences at once. This can be the case if agents do not know their val-
uations correctly or if the submission of all valuations at once requires too much commu-
nication. Due to their multi-round game form, iterative auctions may be disadvantageous if
the underlying resources are time-critical. For instance, an agent may not use an iterative
auction if he wants to sell a storage service from now on for 5 hours. In this case, a one-shot
auction is superior, as the agent gets informed about the allocation decision more quickly.

5.1.3 Combinatorial Exchanges

Combinatorial exchanges are generalizations of combinatorial auctions. They allow multiple
buyers and sellers to bid on a set of heterogeneous resources simultaneously. Analogous to

7Complementary slackness conditions are logical connections between constraints in a primal problem and
its corresponding variables in the dual problem and vice versa (Wolsey and Nemhause 1999).
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the previous discussion, the focus lies on single-unit combinatorial exchanges with agents
that have quasi-linear utility functions and have valuation functions that satisfy v;()) = 0 and
free disposal. For a discussion on multi-unit combinatorial exchanges, refer to Kothari et al.
(2003) and Xia et al. (2005). Furthermore, the focus lies on one-shot (direct) mechanisms.
For an iterative implementation of a combinatorial exchange refer to Parkes et al. (2005).

For simplicity, it is assumed that there are either buyer agents or seller agents. This
means, that no agent can simultaneously act as buyer and seller. Let A be a set of buyers
with n € N as an arbitrary buyer and let M be a set of sellers with m € M as a particular
seller. Both types of agents can submit XOR bids on any bundle S; with S; C G. Itis
assumed that resources g, € S; are indivisible. A buyer n expresses his valuation for a
bundle S; with v,,(S;) > 0 which denotes the maximum price for which buyer n is willing
to purchase the item. The reservation price for selling a bundle S; is denoted by 7,,(S;) > 0
which represents the minimum price for which seller m is willing to sell the item.

The design and analysis of combinatorial exchanges mainly affects two phases: clearing
and pricing. Clearing an exchange means solving a winner determination problem with a
given objective. The result of this problem is an allocation of resources from sellers to
buyers. The pricing mechanism determines the net payments to the agents after the exchange
cleared.

5.1.3.1 Winner Determination

In an exchange, the common objective of the winner determination problem is either the
maximization of surplus or the maximization of trade volume (Kothari et al. 2003). The
first objective maximizes the difference between the valuations of buyers and the reservation
prices of sellers. This objective is equivalent to maximizing social welfare in an economy
as the resources are allocated in a way that maximizes the value of the participants. Under
the assumption that agents are risk neutral and have quasi-linear utility functions, the cor-
responding allocation is efficient if social welfare is maximized (Kothari et al. 2003). The
second objective maximizes the number of traded resource units. Following the argumen-
tation outlined in Section 3.2.1.4, the discussion focuses on the maximization of surplus in
order to attain an efficient allocation.

The clearing interval — i.e., the timing of determining the winners — can be either period-
ically or continuously. In a periodical clearing, agents are given a specific length of time for
posting their bids. After that period, the auctioneer clears the market and calculates prices.
In a continuous exchange, the auctioneer immediately matches compatible bids and tries
to clear whenever a new bid is sent to the market. Parkes et al. (2001) state that a larger
number of bids can be aggregated in periodically cleared combinatorial exchanges. As a
consequence, periodical clearing may increase the value of the allocation. However, the use
of periodical clearing is inferior to continuous clearing in terms of immediacy. For simplic-
ity, this question is not further addressed, as the presented winner determination problem is
applicable for both, periodical and continuous clearing.

Similar to CAP, the winner determination problem of a combinatorial exchange (com-
binatorial exchange problem, CEP) is also formulated as an integer program: Let z,,(.S;)
be a binary decision variable with z,,(S;) = 1 if the bundle S; is allocated to buyer n and
z,(S;) = 0 otherwise. Likewise, let the binary decision variable d,,(S;) denote whether the
seller m allocates the bundle S; (d,,(S;) = 1) or not (d,,(S;) = 0). On the basis of these
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decision variables, the corresponding integer program is formulated as follows (Kothari et al.
2003):

max » > 2 (S)va(S) = > Y du(S))rm(S;) (5.8)

neN S;e8 memM S;e8
stY x(S) <L, VneN (5.9)
SjES
D dn(S) <1, Vme M (5.10)
SjGS
DD w8 <Y D dul(S)), Ve €G (5.11)
SjBQk neN SjSQk meM
ZIZ’n(S]) S {0,1}, VTLEN,S]' esS (512)
dn(S;) € {0,1}, Vme M, S; € S (5.13)

The objective function 5.8 maximizes the surplus which is defined as the difference be-
tween the sum of the buyer’s valuations and the sum of the seller’s reservation prices. The
objective function reflects the goal of maximizing social welfare. The first and second con-
straints guarantee that neither a buyer n (Constraint 5.9) nor a seller m (Constraint 5.10)
are part of the allocation with more than one bundle S; (XOR constraints). Constraint 5.11
ensures that for each good, demand is less or equal than its supply. It is to note that the free-
disposal constraint can be amplified to full market clearing by formulating Constraint 5.11
as an equation. Ties are broken according to a predefined rule such as maximizing number
of trades, or at random.

In the same way as CAP, CEP also belongs to the group of NP-complete problems.

Theorem 5.2: CEP Complexity
The combinatorial exchange problem (CEP) is N'P-complete.

Proof-Sketch. CAP can be reduced to CEP. Obviously, any CAP instance (multiple buyers,
one seller with a zero reservation price) can be solved by CEP. As such, CEP is also N'P-

complete. 0
Buyer Bundle Valuation || Seller Bundle Reservation
1 Ss={9g1,92} 12 1 Sy ={g2}" @ 3
5 | S1={91}® 6 Sy ={g1,92} 9
S7=1{91,92,93}" 13 2 S5 ={91,93}* 5

Table 5.3: Valuations and reservation prices in the CEP problem set

Example 5.4: CEP Problem Set

As an example for CEP, consider the valuations and reservation prices given in Table 5.3.
There are two buyers and two sellers that can bid on any combination of the resources g1,9-,
and gs;. For instance, buyer 2 submits a XOR bid on the bundles S; = {¢;} and S; =
{91, 92, g3} The valuation for S| is given by v5(.S;) = 6 and the valuation for S; by v,(S57) =
13. Seller 2 submits an atomic bid on S5 = {g1, g3} with a reservation price of 75(S5) = 5.
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Figure 5.1: Potential allocations in the CEP example

The objective of CEP is now to find a feasible allocation that maximizes the total surplus. An
allocation is feasible if the constraints of CEP are satisfied. Figure 5.1 depicts four feasible
allocations:® For instance, the feasible allocation 1 allocates bundle S, = {91, 92} from
seller 1 to buyer 1 and bundle S5 = {g1, g3} from seller 2 to buyer 2. The surplus of this
allocation is V¢ = 12 + 6 — 9 — 5 = 4. Analogously, the surplus of feasible allocation 2 is
Via = 13 —9 — 5 = —1 and the surplus of feasible allocation 4 is Vyy = 12 — 3 — 5 = 4.
The optimal allocation is given by feasible allocation 3: Buyer 2 gets allocated the bundle
S7 = {91, 92, g3} from seller 1 (dy(S2) = 1) and seller 2 (d2(S5) = 1). The surplus of this
allocationis Vjy =13 -3 —-5=5.

Similar to CAP, CEP determines an efficient allocation as long as agents bid truthfully.
As such, a pricing schema is required that provides sufficient incentives that agents reveal
their private information.

5.1.3.2 Pricing

The question how to determine payments of the agents to the exchange, and vice versa after
the mechanism has cleared, is referred to as pricing problem (Parkes et al. 2001). With
respect to the objective of achieving an efficient allocation, a pricing scheme based on a
VCG mechanism would attain this objective. However, Myerson and Satterthwaite (1983)
proved that it is impossible to design an exchange that is incentive compatible, (interim)
individually rational, budget-balanced, and efficient in equilibrium (cf. Section 3.2.2.3).
Hence, the VCG pricing scheme is briefly illustrated to serve as a benchmark. Subsequently,
an approximated VCG pricing schema is introduced that achieves fairly efficient allocations
and is budget-balanced. Both mechanisms are applicable for CEP, i.e., they support atomic
bids and XOR bids. For alternative pricing mechanisms that are restricted to atomic bids, the
reader is referred to Fan et al. (1999).

8This figure is not an enumeration of all feasible allocations.
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VCG Pricing: The VCG pricing mechanism for combinatorial exchanges is a generaliza-
tion of the GVA. Agents submit their bids to the auctioneer who computes an allocation by
solving CEP and subsequently determines prices. Analogues to the GVA, payments for buy-
ers and sellers are computed as follows: Let V* denote the surplus of the optimal allocation
S*. Furthermore, let (V_,)* be the value of the optimal allocation (S_,)* without buyer
n and let (V_,,)* be the value of the allocation (S_,,)* without seller m. The discounts of
agents are formalized as Ay}, = V*—(V_,,)* forabuyer n and A{ ¢, = V*— (Vo)
for a seller m. The payment of a buyer n is computed as

p\]\/[IC’K,n(S;;) = v, (5;,) — A%cz(,n = va(Sy) = V' + (Vo) (5.14)

where v,,(S;) denotes the valuation of buyer n for the bundle S?. Likewise, the payment of
a seller m is computed as

p%CK,m(S;) = rm(Sy) + A%CK,m =1m(Sh) + V" = (Vo)™ (5.15)

where 7,,,(S},) is the reservation price of seller m for the bundle S7,. For buyers, the discount
is subtracted from their valuations. They have to pay less (or equal) than their maximum
willingness to pay. For sellers, the discount is added. They get more (or equal) than their
minimum price for which they want to trade.

The application of a VCG mechanism requires to restrict attention to periodical clearing
known as call markets. The reason for this is intuitive: A continuous market tries to clear,
whenever a new bid is submitted to the auctioneer. If adequate counterparts can be found
for the bid, they are directly cleared. Otherwise, the bid is stored in the order book. This
means that CEP could not find any matchable bid in the order book. Now, suppose an agent
¢ submits a new bid that matches with some of the other bids in the order book. Accordingly,
an allocation is determined with a value V*. The VCG price that agent i has to pay is
pi(+) = 0, as (V_;)* = 0. The impact of agent 7 equals the value of the bid. As such, all new
bids that can be directly cleared have a zero price.

The VCG mechanism for a combinatorial exchange is efficient and individually ratio-
nal. According to the Myerson-Satterthwaite theorem (cf. Section 3.2.2.3), it is not budget-
balanced. This means, that the auctioneer has to endow the exchange, which is practically
not realizable. In addition, the drawbacks of the VCG as outlined in Section 5.1.2.2 may
further hamper its practical application. Hence, the VCG pricing schema can only serve as
an economic benchmark.

Example 5.5: VCG Pricing for CEP Problem Set

Applying the VCG mechanism to Example 5.4 (VV* = 5) results in the payments shown in
Table 5.4. Buyer 2 with v,,(S7) = 13 has to pay py ;¢ = 13 — (5 — 4) = 12, as the impact
on the allocation is 1. Seller 1 gets p%mﬂ = 3+ (5 — 1) = 7 for allocating bundle S,;
this is 4 money units more than the reservation price. Likewise, the payment of seller 2 is
computed as pi; . k2 =9+ (5—3) = 7. Summing up the payments from buyers to sellers
results in 12 — 7 — 7 = —2, meaning that the total budget runs in a deficit. As mentioned
above, this is not realizable in practice.

Approximated VCG Pricing: Retaining most of the VCG properties, a possible imple-
mentation of a budget-balanced pricing scheme for a combinatorial exchange is the so-called
approximated VCG pricing mechanism introduced by Parkes et al. (2001). The idea is to
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Buyer | (V_n)* | AT ckm | PVickm || Seller | (Vom)* | AVicxm | PVrckxm
1 1 4 7
2 4 1 12 > 3 > 7

Table 5.4: VCG discounts and prices in the CEP problem set

cleave the budget-balance and individually rational constraints and approximate the VCG
discounts resulting in a relaxation of incentive compatibility.

The goal of the approximated VCG mechanism is to minimize a function L which de-
notes the distance between an original VCG discount Ay ;¢ and an approximated discount
A. Let Oy ¢k be the set of the buyers’ and sellers’ VCG discounts and let © denote the set
of the approximated discounts with AY € ©% as a buyer discount, A¥ € ©M as a seller
discount, and © = O~ x ©M. The minimization problem of the distance function L is
formulated as a linear program (Parkes et al. 2001):

min L(©, Oy rcx) (5.16)

st. Y A+ Y AN <V (5.17)
neN mem

AN < Aok VnEN (5.18)

AM <AV ko, Ym € M (5.19)

AN >0, vneN (5.20)

AM >0, Ym e M (5.21)

The objective function 5.16 minimizes a distance function L between the original VCG
discounts and the approximated ones. Constraint 5.17 guarantees the budget-balance prop-
erty which ensures that the exchange never has to transfer net payments to the agents. Con-
straints 5.18 and 5.19 ensure that no agent gets more than the original VCG discount. The
constraints 5.20 and 5.21 guarantee the individual rationality property of agents.

Parkes et al. (2001) indicate among others the following distance functions L((:)7 Ovick)
for this problem: The quadratic error function

Z (Avick: — Ai)2>

1ENUM

LQ(éa ®VICK) =

a squared relative error function

(Avick, — A;)?
A, ’

Lrpa(0,0vicK) =

2

1ENUM

and a product error function

Avick,
A,

Ly (©,Ovick) =

11

iENUM

On the basis of these approximations, the approximated Vickrey payments (AV) for buy-
ers are computed as

Phva(Sh) = va(Sh) — AY, (5.22)
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where v,,(S?) denotes the valuation of buyer n for the bundle S and AY denotes the ap-
proximated discount. Likewise, the sellers’ payments are computed as

PV (Sh) =T (Sh) + AN, (5.23)

where 7,,(S7,) is the reservation price of seller m and A} the approximated discount. For
the given distance functions, Parkes et al. (2001) show that the resulting linear programm
can also be formulated as an analytic expression using the Lagrange relaxation.

Applying these approximations in order to determine prices, the exchange does not have
to endow the participants. In contrast to VCG pricing, the approximation fulfills the weak
budget-balance property. Numerical simulations show, that the overall efficiency loss is fairly
mild (Parkes et al. 2001).

Example 5.6: Approximated VCG Pricing Exchange

For this example, the quadratic error function (also called threshold function) is applied as a
distance function. Table 5.5 shows the approximated discounts and the corresponding prices
for the problem set of the previous Example 5.4. It is obvious that all discounts get decreased
by the same factor as the quadratic error is minimized. As a result, the payment of buyer 2
is higher than in the VCG case; respectively, the payments of the sellers are smaller than
in the VCG case. The exchange is weak budget-balanced, i.e., the payments sum up to
12.67 - 6.33 — 6.33 > 0.

Buyer | (V_,)* AgICK,n Aﬁ ng,n Seller | (V_,,)* AyICK,m Arl\r/{ p,]a\x/lv,m

1 1 4 3.33 6.33

2 4 1 033 | 12.67 5 3 2 133 | 6.33

Table 5.5: Approximated VCG discounts and prices in the CEP problem set

5.1.4 Reflection

The previous paragraphs outlined state of the art of combinatorial auction design. First, bid-
ding languages are introduced that allow the formalization of bundle bids including OR and
XOR operators. Second, the discussion reflected the two basic types of combinatorial auction
mechanisms in practice: single sided combinatorial auctions and combinatorial exchanges.

However, both types of auction mechanisms cannot be directly applied for trading Grid
resources. With regard to the requirements elicited in Section 4.2, neither auction types
support bids on multiple attributes and time intervals. They further neglect Grid specific
allocation requirements such as resource dependencies and network quality.

In summary, the outlined work builds the basis for the design of MACE that reverts to
the principles of a combinatorial exchange.

5.2 MACE: A Multi-Attribute Combinatorial Exchange

The previous section reviewed basic concepts of combinatorial auctions and exchanges. On
the basis of this exploratory work, this section tailors a Multi-Attribute Combinatorial Ex-
change (MACE) that attains most of the specified requirements for trading standardized Grid
resources.
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The design of MACE follows common assumptions of mechanism design and auction
theory: Agents are assumed to be risk neutral, have quasi-linear utility functions as well
as independent private valuations and reservation prices. The valuation functions of agents
satisfy free-disposal and v;(()) = 0. The valuation functions of sellers allow a linear trans-
formation in case of partial executions. For instance, if a seller values a storage service with
300GB capacity with 10, he values a partial execution of the service with 150GB with 5.
In contrast, buyers do not accept partial executions of their requests or their applications.
Furthermore, it is assumed that buyers can specify their resource requirements in terms of
quality characteristics and job duration. For instance, it is assumed that a buyer can specify
the amount of storage space that is required for executing a job. In addition, the buyer can
specify how long the job has to be executed. Likewise, a seller of resources can specify
the characteristics of those resources that he can offer in the future. The elicitation of the
resource characteristics can be supported by prediction models such as proposed by Smith
(2004). In addition, it is assumed that jobs can be paused and be resumed at a later time.

Resource allocations are interpreted as contracts. This means, that a seller has to provide
the allocated resources. In case of failure, the seller has to offer alternative resources or
compensate the buyer for the failed allocation.

As in any combinatorial auction, the design of MACE mainly affects three components:
(1) the communication language which defines how bids can be formalized, (ii) the winner
determination problem, and (iii) the pricing scheme to determine net payments. As such,
the following description of MACE is structured as follows: First, a bidding language is
introduced which supports multi-attribute combinatorial bids including co-allocation con-
straints. Second, a winner determination model (allocation rule) is proposed that attains an
efficient allocation if agents bid truthfully. Finally, a family of pricing schemes is outlined to
incentivize agents to reveal their private information.

5.2.1 Bidding Language

The design of an auction that meets the requirements specified in Section 4.2 requires an
expressive bidding language. The following notation is used to define such a language:

Let A be a set of N buyers and M be a set of M sellers, where n € A defines an arbitrary
buyer and m € M an arbitrary seller. There are GG discrete resources G = {¢1, ..., g} with
gr € G and a set of D bundles S = {S1,...,S5p} with S; € Sand S; C G as a subset of
resources. For instance, S; = {gx, ¢/} denotes that the bundle S; consists of two resources
g and g;, where g;, could be a computation service and g; a storage service.

A resource g, has a set of A, cardinal quality attributes A, = (af,... ,a’jlk) where
af € A,, represents the i.th attribute of the resource g,. For instance, in the context of a

Grid resource, a quality attribute can be the size of a storage service.

A buyer n can specify the minimal required quality characteristics for a bundle S; € S
with ¢ (S}, gr,af) > 0, where g € S is a resource of the bundle S; and af € A,, is
an attribute of the resource g;. For instance, the minimal required size of a storage service
gr € S; can be denoted by ¢ (S}, gk, a¥) = 200 GB. Accordingly, a seller m can specify
the maximum offered quality characteristics with ¢ (S;, gx, a¥) > 0. The quality attributes
are assumed to be cardinal numbers. The characteristics have to satisfy ¢/ (-) > ¢V (-) if the
first quality characteristic ¢ (-) satisfies at least the second one ¢V (-). These quality char-
acteristics are also used to specify a value for the agent’s network connection. For instance,

this can be used to denote the uplink and downlink rates of the given network connection.
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Parameter Meaning
neN,meM Buyers and sellers
aw€G,.G={g1,--.,9c} Resources

S €S5,5CG.S8={5,...,5} Bundles

af € Ag,, Ag, = (df,....d}) Attributes of a resource

4y (S]’gk7 z) >0 Qm(Sj7gk7 z) ZO

Quality characteristics
q?iV(SJ%gk’ z) qm(SJ7gk’ z)GIR y

Y (S, gk) > 0,7,.(S;, gx) € IN Number of co-allocations

©n(Sj, g6, 1) € {0,1} Coupling of resources

teT, T=(0,...,T—1),teN Time slots

$n(S5) > 0,5,(5;) € N Required slots

eN(S;),eM(S;) > 0,el(S;), el (S ) Earliest time slot

IN(S;), 1M(S;) >0 ZN( s %(Sj) Latest time slot

v, (S;) > 0,v,(5;) € R Valuation of a buyer per slot
rm(S;) > 0,7,(5;) € R Reservation price of a seller per slot

Table 5.6: Notation of the bidding language of MACE

For each resource g5, € \S;, a buyer n can specify the maximum number of co-allocations
in each time slot with 7,,(S;,gx) > 0. This means, that a buyer n can limit the num-
ber of sellers that provide the required resource gi. Let 7,(S;,9x) = K if the resource
gr has no divisibility restrictions, where K is a large enough constant’. The coupling
of two resources in a bundle is represented by the binary variable ¢, (S;, gx, g;) where
©n(Sj, gk, 1) = 1 if resources g and g, have to be allocated from the same bundle bid
of a seller and ¢, (S}, gx, 91) = 0 otherwise. It is assumed that all resources offered in a
bundle are located on the same machine.

Resources in the form of a bundle S; can be assigned to a set of maximal 7" discrete
time slots 7 = (0,...,7 — 1), where t € T specifies one single time slot. A buyer n can
specify the minimum required number of time slots s,,(5;) > 0 for a bundle S;. The earliest
time slot for any allocatable bundle S; can be specified by €)' (S;) > 0 for a buyer n and
eM(S;) > 0 for a seller m; the latest possible allocatable time slot by I2'(.S;) > 0 for a buyer

m

n and by [M(S;) > 0 for a seller m.

A buyer n can express the valuation for a single slot of a bundle S; by v,(S;) > 0,
whereat v,,(S;) denotes the maximum price for which the buyer n is willing to buy. The
reservation price for allocating a single slot of a bundle S; is denoted by r,,(S;) > 0. This
price represents the minimum price for which the seller m is willing to sell.

Table 5.6 summarizes this notation. On the basis of these parameters, an atomic bid of a
buyer is defined as follows:

Definition 5.1: MACE Atomic Buyer Bid
In MACE, an atomic bid B,, of a buyer n is defined as

By(55) = (0n(S)) 0(8), e (8,),13(S)).
(quzv(sﬁgh al)? B 7q’r]7,\7(Sj7gl7 Q%Ag))a (’Vn(sjagl)a cee 7771(5.7'791))7

((pn<5j7g17g2)7¢H<Sjaglug3)7 R 7¢n<5jaglagl)7 R 7(pn<Sjuglflagl>))7

The constant K has to be greater than the total number of seller bids.
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where Gs, = {g1, ..., g1} are the resources of the bundle S;.

It is to note that the atomic bid can also be represented in a more compact way. For
instance, the encoding of the coupling conditions ¢, (-) can be restricted to cases with
©n(+) = 1. For a better readability, however, the atomic bid is formalized in this detailed
way.

An example for a practical application of an atomic bid is given in the following Example
5.7.

Example 5.7: MACE Atomic Buyer Bid

As an example, consider the bid B,(S;) = (1,4,2,10,(3000,30),(2,4),0) with S; =
{91, 92}. Agent n wants to buy a bundle S; that consists of a computation service g; with
one attribute A, = (Speed) and a storage service go with one attribute .A,, = (Space). The
bid expresses that a buyer n wants to buy the bundle S; and has a valuation of v, (S;) = 4
per slot for it. The requested computation service g, should at least be capable of providing
3000 MIPS!'?, and the storage service g, should have at least 30 GB of available space. The
computation service g; can be split in 2 parts at the most, while storage service g, can run
on 4 different machines simultaneously. Furthermore, neither of the services have coupling
requirements. The buyer requires 4 slots of this bundle which must be fulfilled within a time
range of slots 2 and 10.

In order to allow buyers to express substitutes over a set of resources, MACE supports
the submission of XOR concatenated atomic bids.

Definition 5.2: MACE XOR Buyer Bid
A XOR bid of a buyer n is defined as

B, = (B.(S;) @ ... ® Bu(S)).

The total number of atomic bids that are concatenated by the XOR operator can be restricted
by the auctioneer.

The sellers’ bids are formalized in a similar way to those of the buyers. However, they
do not include maximum divisibility and coupling properties and assume that the number of
time slots is equal to the given time range. An atomic bid for a seller is defined as follows:

Definition 5.3: MACE Atomic Seller Bid
An atomic bid B,, for a seller m is defined as

B (5;) =<7"m(5j) Em (S7); L (S5), am (S g1 an)s - -, (dm (S5, 31y alAgl))),

where Gs, = {g1, ..., g1} are the resources that are part of the bundle ;.

Example 5.8: MACE Atomic Seller Bid

Seller m’s bid is given by B,,(S1) = (4,2,8,(4000,20)) with S; = {g1, g»} that consists
of a computation service g; with an attribute A, = (Speed) and a storage service g, with
an attribute A,, = (Space). The bid expresses that the seller m offers the bundle S; and
has a reservation price of 7,,(S;) = 4 per slot for it. The offered computation service g; can
perform 4000 MIPS and the storage service g» has 20 GB of free capacity. The seller offers
the bundle between time slot 2 and time slot 8.

OMillion instructions per second (MIPS) is a measure for a computer’s processor speed.
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For sellers as resource providers, a XOR operator is not necessary. Grid resources are
non-storable commodities. For instance, a computation service currently available cannot be
stored and used at a later time. As such, the bidding space for sellers is restricted to OR bids.

Definition 5.4: MACE OR Seller Bid
An OR bid of a seller m is defined as

By = (Bn(S;) V...V By(Sk)).

The total number of atomic bids that are concatenated by the OR operator can be restricted
by the auctioneer.

In the following subsections, it is assumed that the bid elicitation has already taken place.
This means, buyers and sellers submitted their preferences by means of the bidding language
to the auctioneer. For formulating bids, agents may use preference elicitation techniques to
formalize their preferences (Conen and Sandholm 2001) or may use an autonomous bidding
agent that takes over their bidding strategies.

5.2.2 Winner Determination

Based upon this bidding language, the winner determination problem of MACE (MACE
allocation problem, MAP) can be formulated. Following the previous winner determination
models, MAP is formulated as a linear mixed integer program.

5.2.2.1 Mixed Integer Program Formulation

For formalizing the model, the decision variables x.,,(.5;), 21.t(5;)s Ym.nt(S;), and dp, 1 +(S;)
have to be introduced. The binary variable x,(S;) € {0,1} denotes whether bundle S; is
allocated to buyer n (x,(S;) = 1) or not (z,(S;) = 0). Furthermore, the binary variable
2,4(5;) € {0,1} is assigned to a buyer n and is associated in the same way as z,,(.5;)
with the allocation of \S; in time slot ¢. For a seller m, the real-valued variable y,, , +(.S;)
with 0 < y,,,+(5;) < 1 indicates the percentage contingent of bundle S; allocated to the
buyer n in time slot t. For example, ¥, ,,+(S;) = 0.5 denotes that 50 percent of the quality
characteristics of bundle S; are allocated from seller m to buyer n in time slot . Suppose a
seller is offering a storage service Sy = {g2} with 30 GB of free space. A partial allocation
of 15 GB from seller m to buyer n in time slot ¢ would lead t0 ¥, ,:(S2) = 0.5. The
binary variable d,, ,.(S;) € {0, 1} is linked with y,, ,+(S;) and denotes whether the seller
m allocates bundle S; to buyer n in time slot ¢ (d,, ,,.+(S;) = 1) or not (d,, ,+(.S;) = 0).

By means of these variables, MAP is formulated as follows (Schnizler et al. 2004; Schni-
zler et al. 2006b):

S 3D 3D MACIIICIND 3 D) D) AL TMNCIRENLE

neN S;eSs teT meMneN S;eS teT
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sLY (S S LVneN (5.25)
S;es
> 204(S)) = 2a(S))sn(S;) = 0.¥n € N VS, €S (5.26)
teT
3 Yrna(S;) < LVm € M,VS; € SVt e T (5.27)
neN

The objective function 5.24 maximizes the surplus V'*, which is defined as the difference
between the sum of the buyers’ valuations v, (S;) and the sum of the sellers’ reservation
prices r,,(S;). Assuming bidders are truthful, the objective function reflects the goal of
maximizing social welfare. The first Constraint 5.25 guarantees that each buyer n can be
allocated to one only bundle \S;. This constraint is necessary to fulfill the XOR constraint
of a buyer bid. Constraint 5.26 ensures that for any allocated bundle S}, a buyer n receives
exactly the required slots within the time set 7.

For each time slot ¢, Constraint 5.27 ensures that each seller cannot allocate more than
the seller possesses. The formulation of this constraint implicates that a seller cannot fully
allocate two resources to two different buyers in time slot ¢. For instance, suppose a seller
offers the bundle S; = {gi, g;}. An allocation of the resource gy, to buyer 1 (with y,,, 1 :(S;) =
1) and an allocation of g; to buyer 2 (with y,,, 2 ,(S;) = 1) is not possible. This restriction is
applied to simplify the model. However, the above mentioned allocation can be attained by
submitting an OR concatenated bid on the bundles S,, = {gx} and S; = {g;}.

The constraints 5.25 — 5.27 consider the basic allocation functionality of the exchange.
In designing an adequate mechanism for the Grid, quality characteristics and dependencies
between resources must also to be addressed:

Z zn,t(sj)qn ]79k7 2 Z Z ymnt qm Sj?.gk? z) S 0,

Sj39k S;3gK meM
Vn € N\Vgr € G, Val € A, ,Vt €T (5.28)
Z dent Z’Yn 7> 9k znt(S)_O,
Sj>gr meM S;i39k
VneN,Vg, e G, VteT (5.29)
Z Son<5]agk>gl)<z mnt dent )—0
Si39k,q1 S0k Si3gq

Vn e N,Vm € M, Vg, € GVt €T (5.30)

Z ©n( Sjs Gk i (Z Z dmnt Z Z dmnt _227115(8])) <0,

Si20k,91 Sj2gr meM Sj291 meM

VnGN,ng,gl eg.yvteT (5.31)

Constraint 5.28 guarantees that for any allocated bundle in an arbitrary time slot ¢, all re-
quired resources have to be fulfilled in the same slot in at least the demanded qualities.
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Constraint 5.29 ensures that a resource will be provided by at most 7,,(.S;, g) different sup-
pliers. For simplicity, it is assumed that a resource g, with restricted co-allocations is not
part of further XOR concatenated bids of the buyer n. Furthermore, resources with co-
allocations cannot be allocated as free-disposal items. As an example, suppose a buyer n
values S; = {gx} with v,,(S;) = 1 and S; = {g¢;} with v,,(S;) = 10. For bundle S;, the
buyer has co-allocation restrictions with v,,(S;, g;) = 1. A seller m that offers S, = {gx, g}
cannot allocate the resource g; to buyer n as this would imply a free-disposal allocation of
the restricted resource gy.

Constraints 5.30 and 5.31 account for the coupling of two resources. Constraint 5.30 en-
sures that two resources must be provided by the same seller, in case they should be coupled.
This constraint alone does not suffice the coupling requirements since it would be possible
for two sellers to co-allocate a coupled computation service with 3000 MIPS and a storage
service with 30 GB in different quality characteristics. For instance, MAP could allocate a
computation service with 2998 MIPS and a storage service with 1 GB from one seller, and a
computation service with 2 MIPS and a storage service with 29 GB from another. To exclude
these undesirable allocations, Constraint 5.31 imposes the restriction that coupled resources
cannot be co-allocated. Simplifying the model, this also includes free-disposal resources.
For instance, if the computation service with 3000 MIPS and the storage service with 30 GB
are allocated from one particular seller as a bundle, another seller cannot allocate a bundle
containing a rendering service and another storage service to the same buyer. However, the
seller may allocate any bundle without a storage and computation service to the buyer, e.g.,
the rendering service alone. Furthermore, it is assumed that coupled resources are only part
of one particular atomic bid B, (.S;) in case a buyer submits two XOR concatenated bids
containing coupled resources.

The time restrictions of the bids are given by:

(eﬁ(sj) . t) 20i(S;) <0Yn € NVS, €S,V e T (5.32)

(t . z{j(sj))zn,t(sj) <0,YneN,VS; €S,V eT (5.33)

(eﬁ(sj) - t) 3" Yni(S;) < 0.¥m € M,VS; €SVt € T (5.34)
neN

(t - z,,ﬂf(sj)) > Ymna(S) < 0,¥m € M,VS; € SVt € T (5.35)
neN

Essentially, constraints 5.32 — 5.35 indicate that slots cannot be allocated before the ear-
liest and after the latest time slot of either a buyer (Constraint 5.32 and 5.33) or a seller
(Constraint 5.34 and 5.35).
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Finally, the establishment of the relationship between the real valued decision variable
Ym,n,t(S;) and the binary variable d,, ,, .(5;) needs to be addressed and the decision variables
of the optimization problem have to be defined:

Yt (S;) — dmni(S;) <0,Vn € N,Vm € M,VS; € SVt e T (5.36)
At (S5) = Ymmt(S;) <1,Vn e N,Vm € M,VS; € S,Vt € T (5.37)
z,(S;) € {0,1},Vn e N,VS; € S (5.38)

2ni(S;) €{0,1},Vn e N'\VS, € SVt € T (5.39)

Ymnt(S;) > 0,Yn e N,Vm e M,VS; e S,Vt € T (5.40)

dmnt(S;) € {0,1},Vn e N,VYm € M,VS; e S,Vt € T (5.41)

Constraints 5.36 and 5.37 incorporate an if-then-else constraint. If a seller m
partially allocates a bundle S; to a single buyer n (Y, ,(S;) > 0), the binary variable
dimnt(S;) has to be dp, ,+(S;) = 1 (Constraint 5.36); otherwise, it has to be d,;, ,,.+(S;) = 0
(Constraint 5.37). Finally, the constraints 5.38 — 5.41 specify the decision variables of the
optimization problem.

As multiple solutions may exist that maximize the objective function, ties are broken in
favor of maximizing the number of traded bundles and then at random. A special case of tie
breaking occurs if the total surplus is zero. This can be the case if buyers and sellers balance
their payments or no possible trade can be matched. In such a scenario, the allocation with
the balanced traders is selected.

Following the discussion on combinatorial auctions and exchanges, the presented winner
determination problem is also N/P-complete.

Theorem 5.3: MAP Complexity
The MACE allocation problem (MAP) is N'P-complete.

Proof-Sketch. CAP can be reduced to MAP. Obviously, any CAP instance (multiple buyers,
one seller with a zero reservation price, no attributes and no coupling constraints) can be
solved by MAP. As such, MAP is also \/P-complete. O

5.2.2.2 Example

Suppose there are two buyers 1, 2 and two sellers 1, 2 that can bid on any combination of a
computation service g; and a storage service g,. Both services each have single attributes,
namely a] = (Speed) and a? = (Size). The buyers and sellers can submit bids on the
bundles S1 = {g1}, S2 = {92}, and S3 = {g1, g2}. The bundles can be allocated within a
time range 7 = (0,...,4) of T'= 5 slots. Each buyer submits a set of XOR bids (shown in
Table 5.7) and each seller a set of OR bids (see Table 5.8).

For instance, buyer 2 submits two XOR concatenated bids on the bundles S; and S3. The
buyer has a valuation of v,(S;) = 3 for the bundle S; which consists of the computation
service g;. The service must have at least 400 GB of free space and can be allocated between
the slots €)Y (S;) = 1 and I5'(S;) = 4. The buyer requires s5(.S;) = 3 slots of the service and
has no co-allocation restrictions.



CHAPTER 5. DESIGN OF A GRID MARKET MECHANISM 101

N S; 'Un(Sj) Q,T(Sj, gkaa?) eg(sj) lﬁ(sj) Sn(sj) 'Yn(Sjagk) ‘Pn(sjagiagj)
2 0 4 2

1|5 g1 — 500, g — 15 g1,92 — 1
5 [ 51 3 g1 — 400 1 4 3
53 2 g1 — 300,92 — 25 0 4 2 go — 1

Table 5.7: MACE example: XOR bids of the buyers

MS; [ rm(S)) | aX(Si,gr,af) [ X (S;) | 1M(S))
1 S3 1 g1 — 500; go — 40 0 4
5 |5 2 g1 — 1000 0 3
S3 2 g1 — 700; go — 20 1 4

Table 5.8: MACE example: OR bids of the sellers

An optimal solution for the winner determination problem is an allocation of the bundles
S3 and S; to the buyers 1 and 2 with z1(S3) = 1 and 25(S;) = 1. Seller 1 is part of
the allocation with bundle S5 and seller 2 with bundle .S;. The maximized value V* of the
winner determination problem is V* = 8.6. The corresponding schedule for this allocation
is given in Table 5.9.

Buyer 1 receives bundle S3 = {g¢1, g2} from seller 1 in time slots 0 and 1. The bundle is
allocated from one seller and, as such, the buyer’s requested coupling property is satisfied.
Buyer 2 receives requested computation service S; = {g; } in time slots 1, 2, and 3.

Although buyer 1 does not require the entire allocated space of the storage service go,
a partial execution of the bundle is not possible due to the computation service g; require-
ments. Bundles can only be partially executed as a whole. If an isolated partial execution
of single resources in a bundle would be possible, these single resources would also have
to be valued. However, as resources may be complementarities or substitutes, valuation and
reservation prices for a single resource of a bundle do not always exist (Milgrom 2004). As
such, resources of a bundle cannot be partially executed.

5.2.3 Pricing

The outcome of MAP is allocative efficient as long as buyers and sellers reveal their valua-
tions truthfully. The incentive to set bids according to the valuation is induced by an adequate
pricing mechanism.

As outlined in Section 5.1.3.2, the design of a price mechanism for an exchange is a
challenging problem. The VCG schema cannot be applied as it runs a deficit and requires
outside subsidiary. On the other hand, the approximated VCG mechanism is budget-balanced
and approximately efficient. However, the pricing scheme still requires / + 1 instances of
MAP to be solved if I agents are part of the allocation. As a consequence, an alternative
pricing scheme is designed that is computationally more efficient and still attains desirable
economic properties.

M| S t=0 t=1 t=2 t=3
1 | S3 | n=1:9g1 — 500,90 —40 | n=1:g; — 500, gy — 40
2 St n=2:g; — 400 n=2:g3 5400 | n=2:¢; — 400

Table 5.9: MACE example: Allocation
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In the following paragraphs, the VCG mechanism and the approximated VCG scheme
are both adapted for MACE. These pricing mechanisms serve as an economic benchmark.
After that, the k-pricing scheme is introduced as a novel and adequate pricing scheme for
MACE.

5.2.3.1 VCG Pricing

The application of the VCG mechanism for MACE is derivated from single-unit combinato-
rial exchanges as outlined in Section 5.1.3.2.

Following the VCG formalism, let VV* be the surplus of the optimal allocation &*. Fur-
thermore, let (V_,)* be the value of the allocation without buyer n and let (V_,,)* be the
value of the allocation without seller m. The VCG discounts of the agents are given as
AVickn = V* — (V_p)* for a buyer n and as Aoy, = V* — (V_,,)* for a seller m. On
the basis of these discounts, the price pi); x.n(S;) for abundle S; and a buyer n is calculated
as

ngCK,n(Sj) = vn(5;)8n(S;) — AJ\YICK,m (5.42)
and the price py/;c ,,,(S;) for a bundle S; and a seller m by
AA/I m 3
p%CKm(Sj) B { rml%i) Lnen 2ter Ymaa(S) + =2 il £ O (5.43)
’ 0 otherwise.

The term v,,(S;) denotes the valuation of a buyer n for a single slot. As such, it has to be
multiplied by total number of slots s,,(.5;). Likewise, the term r,,(.S;) denotes the reservation
price of a seller m for fully allocating his bundle in a single time slot. As such, it has to be
multiplied by > _\+ Ym.n.¢(S;) representing the partial allocation of a seller m in time slot ¢
to all buyers. As sellers submit OR concatenated bids, they can participate in the allocation
with multiple bundles. Because the Vickrey discount refers to the seller’s overall impact, the
discount has to be portioned among all of the seller’s successful bids. Thus, the discount is
divided by «, where « is the number of bundles with which a seller m is participating in the
allocation.

It is to note that the bundle prices of a seller which has several bundles in the allocation
may not reflect the VCG impact of each bundle exactly. However, the sum of the bundle
prices of a seller represents the impact of his presence. As a result, the desirable economic
properties of the VCG mechanism are still valid.

In contrast to the previous sections, it is refrained from using the notation S}, to denote
a bundle that is allocated to an agent m in the optimal outcome. As sellers may allocate
several bundles simultaneously (OR bids), the notation is not applicable anymore. As a
consequence, the function py/;x ,,,(S;) computes the price for any bundle S; € S that is
allocated by seller m. In order to be consistent, the same notation is also applied for buyers.

Example 5.9: MAP VCG Pricing
The application of the VCG pricing scheme to the example presented in Section 5.2.2.2
(V* = 8.6) results in the prices pyck,i(S;) and the discounts Ay ;¢ x; shown in Table 5.10
with 0,(5;) = vn(55)8n(5;) and 7 (55) = X pen 2over Ymont (55)rm(S5)-

Aggregating the net payments of the example leads to a negative value with 2 4+ 2.4 —
(3 + 6.25) = —4.85. In this case, the auctioneer has to subsidize the exchange. Naturally,
such a situation cannot be sustained for a long period of time, making the VCG mechanism
unfeasible.
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N[ (V_)* | 9a(S;) AgICK,n ngCK,n(SJ') M (Vom)* | ™m(S)) | AVickm pyICK,m(Sj)
1 6.6 4 2 2 1 7.6 2 1 3
2 2 9 6.6 24 2 4.75 2.4 3.85 6.25

Table 5.10: MACE example: VCG discounts and prices

5.2.3.2 Approximated VCG Pricing

On the basis of the VCG pricing rule for MACE, the adaption of the approximated VCG
schema is intuitive: Let A be the approximated VCG discount of a buyer and let AM be
the approximated VCG discount of a seller. Following the derivation of the pricing schema
as outlined in Section 5.1.3.2, the payment for a buyer is computed as

Phvin(Si) = vn(S;)sa(S;) — A, (5.44)

where v,,(S;) denotes the valuation and s,,(.S;) the required slots for the bundle S;. Likewise,
the sellers’ payments are computed as

A M
M L (S Ynen et Ymanat (S5) + S ifa#£0
S. — J HGN teT )1y J « 5.45
Pavm () { 0 otherwise. (543)
The term r,,,(S;) denotes the reservation price of seller m, Y\ Ymn:(S;) the partial
allocation in a time slot ¢ and « is the number of bundles with which a seller m is participating
in the allocation.

Example 5.10: MAP Approximated VCG Pricing

Applying these approximations on the example presented in Section 5.2.2.2, the approxi-
mated discounts A; using the quadratic error function and the prices p;(.S;) can be deter-
mined as shown in Table 5.11. In this case, the exchange does not have to endow the agents
as the net payments from the exchange are zero.

N | (Von)* | 9a(S5) A5101(,n pj‘\/]ICK 2(85) | M | (Vom)* | 7m(S;) A‘A/lICK,m pIVVIICK,m (S5)
1 6.6 4 0.72 3.28 1 7.6 2 0 2
2 2 9 5.32 3.68 2 4.75 2.4 2.57 497

Table 5.11: MACE example: Approximated VCG discounts and prices

Although Parkes et al. (2001) show approximative efficiency for this pricing schema, the
computational effort that is required to compute an outcome is still very high. The need of
a more computationally efficient pricing scheme gave rise to the development of a k-pricing
scheme which is presented in the next section.

5.23.3 K-Pricing

The underlying idea of the k-pricing scheme is to determine prices for a buyer and a seller
on the basis of the difference between their bids (Sattherthwaite and Williams 1993). For
instance, suppose that a buyer n wants to purchase a storage service for v,(-) = 5 and a
seller m wants to sell a storage service for at least r,,(-) = 4. The difference between these
bids is # = 1, where [ is the surplus of this transaction that can be distributed among the
participants.
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For a single commodity exchange, the k-pricing scheme can be formalized as follows:
let v,(S;) = a be the valuation of a buyer n and r,,(S;) = b be the reservation price
of the buyer’s counterpart m. It is assumed that ¢ > b, which implicates that the buyer
has a valuation for the commodity that is at least as high as the seller’s reservation price.
Otherwise, no trade would occur. The price for a buyer n and a seller m can be calculated
by p(S;) = ka+ (1 —k)bwith0 < k < 1.

The k-pricing schema can also be applied to a multi-attribute combinatorial exchange:
In each time slot ¢ in which a bundle S is allocated from one or more sellers, the surplus
generated by this allocation is distributed among a buyer and the sellers. Suppose a buyer n
receives a computation service S; = {g; } with 1000 MIPS in time slot 4 and values this slot
with v, (S1) = 5. The buyer obtains the computation service S; = {g;} by a co-allocation
from seller 1 (400 MIPS) with a reservation price of r;(S1) = 1 and from seller 2 (600 MIPS)
with 75(S7) = 2. The distributable surplus of this allocation is 3, 4(S1) =5 — (14 2) = 2.
Buyer n gets k3, 4(S1) of this surplus, i.e., the price buyer n has to pay for this slot ¢ = 4 is

Prna(Si) = v(S1) = kBna(S).

Furthermore, the sellers have to divide the other part of this surplus, i.e., (1 — k)3,.4(51).
This will be done by considering each proportion a seller’s bid has on the surplus. In the
example, this proportion 0 < 0,,,.(5;) < 1 for seller 1 is 03 ,4(S1) = % and for seller
218 09,4(S1) = % The price a seller m receives for a single slot ¢ = 4 is consequently
calculated as

Pima(S5) = 1m(S1) + (1 — k) B.4(S1)0mn,a(S1).

Expanding this scheme to a set of time slots, co-allocations, and the allocation of different
bundles to a buyer results in the following formalization: let /3, ,(S;) be the surplus for a
bundle S; of a buyer n with all corresponding sellers for a time slot ¢:

Bnt(57) = 200(S5)0a(S5) = D Y Yt (S)rm(S1) (5.46)

meM S| eS

The iteration over » Se8 Ymon,t(S1)Tm(S)) is required, as one seller may allocate a subset
S; of the required bundle S; to a buyer. For instance, this is the case if a buyer requires
Ss = {g1, g2} and two sellers allocate S; = {g; } and Sz = {ga}.

For the entire job (i.e., all time slots), the price for a buyer n is calculated as

PRn(S7) = 20 (S;)0n(S))5n(S;) = kD Bas(S)). (5.47)

teT

This means, that the difference between the valuation for all slots v,,(.S;)s,(.S;) of the bundle
S; and the k-th proportion of the sum over all time slots of the corresponding surpluses is
determined.

The price of a seller m is calculated in a similar way: First of all, the proportion o0, ,, +(.S;)
of a seller m allocating a bundle \S; to the buyer n in time slot ¢ is given by

ym,n,t(Sj>Tm(Sj)/ Z Z ym,n,t(sl)rm(sl) lf ym,n,t(Sj)rm(Sj) > O
Omnt(S)) = meMS €S
0 otherwise.

(5.48)
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N S [ n(S;) | PEs.n(S5) | M [ S | Fm(S)) | Po’s..(Si)
1 S3 4 3 1 S 2 3
2 S1 9 5.7 2 S 2.4 5.7

Table 5.12: MACE example: Prices using the k-pricing schema with k=0.5

The formula computes the proportion of a seller’s allocation compared to all other allocations
made by any seller to the particular buyer n. In case a buyer is allocated a bundle S, it is
ensured that it is not allocated any other bundle (XOR constraint). As a consequence, any
allocation of a seller to buyer n correlates with this bundle .S;.

Having computed (3, ;(5;) and oy, ,,+(5;), the price a seller receives for a bundle S; is
calculated as:

pk,‘m Zzymnt Zzzomnt ﬂnt Sl) (549)

neN teT neN S,eS teT

Example 5.11: MAP k-Pricing

Applying this pricing scheme with & = 0.5 to the example presented above re-
sults in the prices given Table 5.12 with ©,(S;) = v,(5;)s,(S;) and 7,(S;) =
>t men Ymmt(Sj)rm(S;). For instance, buyer 2 with a valuation of v2(S;) = 9 has to
pay p)'s,(S3) = 5.7. The utility from this transaction is u(S1) = 9 — 5.7 = 3.3. The
exchange does not run in a deficit which makes it practically feasible.

Using the k-pricing schema, the exchange does not have to subsidize the participants,
since it fulfills the budget-balance property in a way that no payments towards the mechanism
are necessary. Hence, the k-pricing schema qualifies as a candidate pricing schema for the
Grid. On the basis of the k-pricing schema, the MACE mechanism can now be defined as
follows:

Definition 5.5: MACE Mechanism
MACE is an auction that implements MAP to determine an allocation and that uses the
k-pricing schema to compute net payments.

Based upon this definition, desirable economic properties such as outlined in Section
3.2.1.4 can be analyzed.

Theorem 5.4: MACE Budget-Balance and Individual Rationality
MACE is budget-balanced and individually rational.

The proof is given in Appendix A.

Following the Myerson-Satterthwaite theorem (Myerson and Satterthwaite 1983), it is
obvious that MACE cannot be incentive compatible. As a simple example, suppose one
buyer n and one seller m. The buyer requires 5; and has a valuation of v, (S5;) = 10 for it.
The seller offers .S; with a reservation price of rm(S ) = 5. For the seller, the price is given
by pos . (S;) = 7.5 using k£ = 0.5 which results in a utility of w,,(S;) = 10 — 7.5 = 2.5.
However, the seller could increase his utility by bidding more than the reservation price,
such as 7,,,(S;) = 9. In this case, the seller increases the payment to py’s ,,,(S;) = 9.5, which
results in a higher utility. In this setting, truth-telling is not a dominant strategy. In practical
settings, however, overbidding also raises the risk of non-execution. In order to evaluate
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these implications of the pricing schema in different settings, further analyses need to be
investigated (refer to Chapter 7). The assumption is that competition among several agents
and the risk of not getting allocated drive them in most cases to reveal their true preferences.

5.3 Summary

This chapter proposed the derivation of MACE, a multi-attribute combinatorial exchange for
allocating and scheduling resources in the Grid. In contrast to other approaches, the proposed
mechanism accounts for the variety of Grid resources by incorporating time and quality as
well as co-allocation constraints.

MACE relies on the principles of combinatorial mechanisms that are outlined in Section
5.1. Although the reviewed mechanisms account for combinatorial bids, they neglect Grid
specific requirements, such as time attributes or co-allocation restrictions. The design of
MACE as outlined in Section 5.2 addresses these deficits by extending the allocation model
of a combinatorial exchange by time attributes, co-allocation restrictions, and multiple at-
tributes.

The mechanism provides buyers and sellers with a rich bidding language, allowing for
the formulation of bundles expressing either substitutabilities or complementarities. The
winner determination problem maximizes social welfare for the submitted bids. The winner
determination scheme alone, however, is insufficient to guarantee an efficient allocation of
the services. The pricing scheme must be constructed in a way that motivates buyers and
sellers to reveal their true valuations and reservation prices. This is problematic in the case
of combinatorial exchanges, since the only efficient pricing schedule, the VCG mechanism,
is not budget-balanced and must be subsidized from outside the mechanism. Although an
approximation of the VCG mechanism results in budget-balanced results, the computational
effort that is required to compute the payments is high.

This chapter developed a new pricing family for a combinatorial exchange, namely the
k-pricing rule. In essence, the k-pricing rule determines the price such that the resulting sur-
pluses to the buyers and sellers divide the entire surplus being accrued by the trade according
to the ratio k. The k-pricing rule is budget-balanced but cannot retain the efficiency property
of the VCG payments. Further evaluations must be investigated to analyze the behavior ef-
fects of agents that do not have an incentive to bid truthfully. In most cases, however, it is
assumed that competition in the market drive the agents to reveal their true preferences.

Following the market engineering process, the next step is to implement the conceptual
model into a software system. This step is processed in the next chapter.



Chapter 6

Implementation of the Market
Mechanism

Hikers encountering a fallen tree blocking a trail can climb over it, cut a path through it, or
walk around it. In general, obstacles can be overcome, reduced, or avoided. Often,
reducing or avoiding the obstacle is a preferable choice.

(Pekéc and Rothkopf 2006, p. 395)

The previous chapter outlined the conceptual design of MACE, a multi-attribute combi-
natorial exchange for allocating and scheduling resources in the Grid. Following the struc-
tured lines of market engineering, the next engineering phase requires an implementation of
the conceptual model into a software system.

An implementation of the proposed auction schema entails several challenges: First,
efficient algorithms are required that determine an outcome of the auction within a meaning-
ful time frame. However, the underlying winner determination problem of MACE is N'P-
complete. Any optimal algorithm to determine an allocation will inherently be intractable
with an increasing number of bids. As a consequence, algorithms are required that can solve
the problem computationally efficient, if necessary with suboptimal outcomes. Second, the
implementation of the auction mechanism has to provide open interfaces in order to be appli-
cable in the Grid. Moreover, the implementation has to support Grid specific communication
standards such as WS-Agreement for the establishment of service level agreements.

The aim of this chapter is to introduce algorithms and concepts that are required for a
practical implementation of MACE. Section 6.1 discusses state of the art algorithms for solv-
ing the winner determination problem of combinatorial mechanisms. A discussion outlines
which algorithms can be applied for realizing MACE. Subsequently, Section 6.2 introduces
the MACE market service, a system that implements the proposed allocation and pricing
schemes. After that, Section 6.3 analyzes whether or not the implemented auction mecha-
nism fulfils the specified requirements (cf. Section 2.3.1). Finally, Section 6.4 concludes the
chapter.

107
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6.1 Solving the Winner Determination Problem

In theory and practice, several algorithms have been proposed to solve the winner determi-
nation problem of combinatorial auctions (among others Papadimitriou and Steiglitz (1998),
Rothkopf et al. (1998) and Sandholm et al. (2005)). They can be classified as exact meth-
ods, algorithms for tractable special cases, and approximations. Exact methods guarantee
feasible and optimal solutions at the expense of long runtime. In contrast, algorithms for
tractable special cases find optimal solutions quickly as they make use of special structures
of a problem. However, these algorithms require the restriction of the agents’ bidding space
in order to attain such special structures. A third way to solve the winner determination
problem is the use of approximations. Such algorithms do not attempt to find optimal so-
lutions, but rather to quickly compute feasible solutions near optimal. However, the use of
suboptimal outcomes entails the risk of inefficient allocations and, thus, the loss of incentive
compatibility.

The following paragraphs briefly outline the intuitions behind these algorithms and dis-
cuss their applicability to MACE. For a detailed survey on these algorithms, refer to Sand-
holm (2002, 2006), Miiller (2006), and Lehmann et al. (2006).

6.1.1 Exact Methods

Exact methods optimally solve the winner determination problem of combinatorial mecha-
nisms. They neither require restricting the bidding space of agents, nor result in suboptimal
and inefficient allocations.

One way to obtain an optimal outcome is the exhaustive enumeration of the complete
search space. This requires analyzing 27 subsets of bids, where B is the number of bids
(Lehmann et al. 2006). As a consequence, such a strategy is impractical for most settings.
Modern search algorithms operate more efficiently as they only analyze a subset of the whole
search space. This is supported by generating upper and lower bounds for a given problem
instance. The boundaries indicate which parts of the search space should be processed in
more detail and which parts can be neglected. Given a winner determination problem, the
value of its linear relaxed solution indicates an upper bound.! Lower bounds are used to store
the best feasible solution obtained at any given time (Papadimitriou and Steiglitz 1998).

A popular example of an intelligent search algorithm for any linear integer program is
Brach-and-Bound. The algorithm tries to find a solution by partitioning the search space
(branch step) and proves its optimality by means of the given bounds. Depending on the
problem set, different branching und bounding strategies can be applied (Papadimitriou and
Steiglitz 1998). Aside from branch-and-bound, similar search algorithms have been pro-
posed, such as CASS (Fujishima et al. 1999) or CABOB (Sandholm et al. 2005).

Most exact algorithms for combinatorial problems are so-called anytime algorithms. In
anytime algorithms approximate solutions are available at any time. Furthermore, the so-
lution quality increases in execution time up to optimum (Garvey and Lesser 1994). This
means that the best obtained solution is returned as an approximate outcome, whenever the
algorithm is interrupted. Such a hybrid model with the objective of obtaining optimal solu-
tions is deemed promising for an application in real-time auction settings.

! Alternatively, a Lagrange relaxation can also be used to find an upper bound (de Vries and Vohra 2003).
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A practical implementation of an anytime algorithm for solving linear integer programs
is the optimization engine CPLEX?. The engine is a commercial product and is currently
the state of the art for solving optimization problems. It implements a branch-and-bound
variant including different branching strategies.> The software has been successfully applied
to different combinatorial auction settings and the system has been shown to be the fastest
algorithm for solving the winner determination problem in a multitude of different settings
(Andersson et al. 2000; Sandholm et al. 2005).*

Although the winner determination problem is A/P-complete, CPLEX can solve large
instances within a few seconds. For instance, Sandholm et al. (2005) report that CPLEX
solves combinatorial auction settings with 500 bids and 50 resources in less than 10 seconds.
Given an initial feasible solution, the software can even determine good solutions near op-
timal for more complex scenarios. In regard to hard optimization problems, finding such
feasible solutions may not always be possible within a meaningful time frame (Schnizler
et al. 2006b). For such cases, alternative algorithms are required to determine an outcome.

6.1.2 Tractable Special Cases

A tractable case of a winner determination problem is an instance for which an algorithm
exists that solves the problem optimally in polynomial time (Miiller 2006). In practice,
these problems can be solved by means of linear relaxations for which the decision variables
remain integral. By means of linear programming techniques, the relaxed problem can be
solved in polynomial time.

In literature, several conditions have been proposed under which the winner determina-
tion problem can be solved in polynomial time (Rothkopf et al. 1998). Given an integer
program, one of the most discussed conditions is total unimodularity of the constraint ma-
trix. A matrix is unimodular if the determinant of each square submatrix is 0, 1 or —1. As
a practical example for such a case, suppose an auctioneer offers land areas along a shore
line. The areas are ordered from north to south. If agents are only allowed to bid on combi-
nations of contiguous areas, the resulting problem suffices total unimodularity and, thus, can
be solved in polynomial time (de Vries and Vohra 2003).

The application of special case algorithms requires the auctioneer to restrict the bidding
space of the agents. Such restrictions, however, may be too rigorous for some allocation
problems. As a consequence, agents may be unable to express their complex preference
structures which can lead to inefficient outcomes.

6.1.3 Approximations

A third approach for solving the winner determination problem is the use of approximations.
The objective of an approximation is not to find an optimal solution, but rather a feasible
solution that is near optimal (de Vries and Vohra 2003). The proposed approximations for
combinatorial mechanisms comprise greedy algorithms (Lehmann et al. 2002), heuristic

%For details, see http://www.ilog.com/products/cplex/.

3Aside from CPLEX, alternative optimization engines can also be applied such as LINDO, XPRESS or
Ip_solve. For a comparison of these engines, refer to Atamtiirk and Savelsbergh (2005) and Linderoth and
Ralphs (2005).

4Sandholm et al. (2005) report that CABOB performs better than CPLEX in some single sided scenarios.
Unfortunately, no analysis of the algorithm’s performance in combinatorial exchanges currently exist.
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search methods (Mito and Fujita 2004), hill climbing (Holte 2001), and evolutionary algo-
rithms (Calegari et al. 1999).

An important characteristic of an approximation is how close its outcome is to the optimal
solution (de Vries and Vohra 2003). This metric can be measured as follows: Let £*(6) be
the optimal choice rule with a value of VV* and let k(6) be the approximated outcome with a
value of V. An algorithm is said to approximate an optimal outcome within g(p) if it finds a
feasible solution for every instance with V* < g(p)V, where p denotes the encoding length
of the instance and g(p) : IR — IR" is an arbitrary function (Lehmann et al. 2006).

The close relation of the winner determination problem to other combinatorial problems
derived several impossibility theorems for approximations. An important theorem is adapted
from Sandholm (2002) and is based on the inapproximability theorem by Hastad (1999). It
states that it is impossible to design a polynomial algorithm that approximates CAP within
g(b, G, €) = min(b'~¢, G¥/27¢), where b is the number of bids, G is the number of resources,
and ¢ is a fixed value with ¢ > 0.° As an example, suppose a setting with 5 resources, 3
bids, and an optimal outcome of V* = 10. Defining ¢ = 0.1, the theorem states that it is
impossible to design a polynomial algorithm for this setting that guarantees a higher welfare
than V' = 5.26. Although CAP is only a special case of MAP, this theorem emphasizes that
the winner determination problem of MACE is hard to approximate.

Aside from these negative approximation results, the application of inexact outcomes
may have further drawbacks. Approximations raise the risk of strategic interactions of
agents. As the resulting outcome is usually not allocative efficient, agents may have an
incentive to misrepresent their preferences (Nisan and Ronen 2000). They can exploit the
approximation in order to increase their individual utility. Despite all drawbacks, the use
of approximations is indispensable in complex scenarios where feasible solutions cannot be
found quickly by means of an exact algorithm.

6.1.4 Discussion

The previous paragraphs outlined methods for solving the winner determination problem of
combinatorial auctions. Although most of the proposed algorithms are designed for single
sided combinatorial auctions, their advantages and disadvantages also apply to MACE.

With regard to the envisioned Grid setting, a restriction of the agents’ bidding space to
attain tractable special cases is seen as too rigorous. Agents may be unable to express their
preferences by not being allowed to bid on their desired resource combinations. Although
there may exist settings in which MAP can be solved in polynomial time, it is refrained from
restricting the bidding language of MACE. Consequently, the focus for solving MAP lies on
exact algorithms and approximations.

The advantage of exact algorithms is the determination of optimal outcomes. Desirable
economic properties such as efficiency can be attained by the use of such algorithms. In
contrast, approximations are able to determine suboptimal outcomes quickly. However, no
fast algorithm can guarantee a solution close to optimum (Sandholm et al. 2005).

For a practical realization of MACE, an application of CPLEX in combination with its
anytime property is deemed promising. CPLEX is applied with the objective of finding an
optimal outcome. Whenever a predefined time limit is exceeded, CPLEX is interrupted and

31t is assumed that NP # ZPP, where ZPP is the class of problems that can be solved in polynomial
time with a randomized algorithm and an error probability of zero (Sandholm 2002).
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Figure 6.1: MACE market service architecture

returns the best feasible solution. Preliminary studies emphasize, that this procedure results
in fairly well outcomes for the envisioned Grid market (Schnizler et al. 2006b). However,
the determination of feasible solutions may be impossible in large-scaled settings. As a
consequence, further evaluations have to identify an upper boundary of agents for which the
problem is still computationally tractable within a meaningful time frame.

6.2 The MACE Market Service

The previous sections discussed conceptual models and algorithms that are required for
building a Grid market mechanism. The objective of this section is to describe how these
models are implemented into a software system. The following paragraphs briefly outline
the architecture of the MACE market service that implements the proposed auction schema.
After that discussion, two practical cases are outlined that apply the MACE implementation
as a resource allocation manager.

6.2.1 Architectural Overview

The MACE market service fully implements the proposed auction schema as a Java based
software system. The objective of the implementation is the provisioning of open interfaces
and flexible components that can be easily exchanged. Figure 6.1 outlines the technical
architecture of the market service.

Agents communicate with the market service by means of APIs or by a WS-Agreement
interface. By means of the provided interfaces, they can submit bids, retrieve status informa-
tion, and can control the market process. The underlying market service implements a three
layered architecture: The Management layer is responsible for managing general market
information such as bids and status information. The Mechanism layer offers an implemen-
tation of the allocation rule and the pricing schema. The Third Party layer encapsulates a
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set of third party components. In addition, specific parameters of each component can be
configured from outside the system.®

6.2.1.1 External Interfaces

The service provides different interfaces through which agents can interact with the mar-
ket. Agents can either submit WS-Agreement documents or directly access the APIs of the
service.

In order to be compliant with current Grid middleware, the market service supports the
submission of WS-Agreement encoded bids. The bidding language proposed in Section
5.2.1 is a subset of the WS-Agreement specification (Andrieux et al. 2005).” The spec-
ification in combination with a resource description language supports multiple attributes,
time characteristics, and logical operators. Furthermore, additional XML-schemes allow the
specification of coupling constraints as well as valuation and reservation prices.

The WS—-Agreement Management component builds the interface between WS-
Agreement documents and the APIs of the market service. The component receives bids and
distributes outcome information as WS-Agreement documents. Whenever an agent submits
a WS-Agreement bid, the component parses the bid’s content and forwards it to the market
service. Likewise, the component distributes allocation information whenever an outcome is
determined.

In addition to the WS-Agreement interface, agents can also interact with the service
by means of three different APIs. First, they can submit bids using the Bidding API.
Second, they can receive status information such as allocation decisions and prices by means
of the Status API. Finally, the service can be controlled from outside by means of the
Control API. For instance, a market operator can use this API to trigger the outcome
determination.

6.2.1.2 Management Layer

The management layer comprises of three basic components for managing bids, outcome
information, and the economic environment. The Bidding Management component
implements an order book that can be used to store and delete bids. The Outcome
Management component is responsible for processing outcome related activities. It trig-
gers the allocation process and receives relevant allocation and pricing decisions. Finally, the
Environment Management component manages information concerning the economic
environment. This includes information about the traded resources and the participating
agents.

6.2.1.3 Mechanism Layer

The mechanism layer offers the winner determination model and the pricing schema. The
Winner Determination component is responsible for computing an allocation, i.e.,
it implements the mixed integer program of MAP. After the computation of the allocation,
prices can be computed by the Pricing component. Currently, this component supports the
k-pricing schema, VCG payments, and the approximated VCG algorithm. According to the

The verification of the service implementation is discussed in Section 7.5.
"The generic mapping from WS-Agreement into the bidding language is, however, not possible as some
parts of the WS-Agreement specifications are not supported by MACE.
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pricing schema, this component also makes use of the winner determination implementation.
The particular models that are used for determining allocations and prices can be easily
exchanged. Beside the proposed MACE mechanism, the service also implements winner
determination problems for single sided combinatorial auctions and exchanges as well as the
PPC schema for computing prices.

6.2.1.4 Third Party Layer

The third layer of the MACE market service comprises of third party components. This
includes mixed integer program solvers that are required to determine an allocation and
database components that are used to log relevant auction data.

The current implementation supports CPLEX and Ip_solve® for solving the winner de-
termination problem. As argued above, CPLEX is currently the state of the art optimization
engine for mixed integer programs. The package Ip_solve is an open source alternative to
CPLEX and implements the branch-and-bound method for solving integer problems.’ For
performance reasons, Ip_solve is only used for testing the service whereas CPLEX is applied
for the evaluation.

6.2.2 Application Areas

The implementation of the MACE market service is currently applied in two independent
projects. The following discussion introduces these projects and outlines the respective role
of MACE as a resource coordination mechanism.

6.2.2.1 CATNETS

CATNETS is a research project funded by the European Union.!? Its objective is the eval-
uation of the use of market mechanisms for coordinating resources in distributed systems
(Eymann et al. 2005). For this purpose, decentral and central market mechanisms are de-
veloped to coordinate distributed resources economically efficient. These mechanisms are
evaluated according to their technical and economical applicability by means of an agent
based simulation and a proof-of-concept prototype.

A slightly modified version of MACE!! serves as an auction based coordination mech-
anism for the CATNETS scenario. The mechanism is compared against a decentralized
bargaining strategy with respect to technical and economical evaluation criteria. For this
evaluation, the MACE market service is integrated into an agent-based Grid simulator called
OptorSim (Bell et al. 2003; Calabrese et al. 2006). The simulator provides a Peer-to-Peer
based communication infrastructure. Agents use this infrastructure to submit bids and to
receive market information from the MACE auctioneer.

Aside from OptorSim, Chacin et al. (2006) describe how the MACE market service can
be integrated into an economic based Grid architecture. The proposed architecture builds on
top of existing Grid middleware such as GT 4 (Ardaiz et al. 2005).

8See http://lpsolve.sourceforge.net/5.5/ for details (accessed 03.10.2006).
The solvers are integrated by means of JOpt, a wrapper for integer programs. See http://www.eecs.
harvard.edu/econcs/ jopt/ for details (accessed 04.10.20006).
10See http://www.catnets.org/ for details.
'"The MACE version applied in CATNETS does neither support time attributes nor co-allocation constraints.
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Requirement | Description Satisfied
R1 Efficient Allocation o
R2 Incentive Compatible o
R3 Individually Rational °
R4 Budget-Balance °
R5 Computational Tractable o
R6 Automated Resource Allocation °
R7 Double sided Mechanism °
RS Support for Heterogeneous Resources °
R9 Support for Different Resource Characteristics °

R10 Bundling of Resources °
R11 Co-Allocation of Resources °
R12 Guaranteed Resource Usage Time °
R13 Advanced Reservation of Resources °
R14 Substitutability of Resources °
R15 Network Quality ®

e requirement is fulfilled, ® requirement is partially fulfilled, o further evaluations are required

Table 6.1: Summary of the preliminary requirement satisfaction of MACE

6.2.2.2 Ontology-driven Markets

A scenario for trading Semantic Web Services by means of an ontology-driven market serves
as a second case for the MACE implementation (Lamparter and Schnizler 2006). The pro-
posed market allows semantically enriched bid formulation by means of ontologies. As a
result, the matching of service providers and requesters is not realized on a syntactically but
rather on a semantically level. As such, the market can be applied for allocating Semantic
Web Services.

The proposed marketplace uses an ontology based communication language that is capa-
ble of representing semantically described requests, offers, and agreements. Agents use this
communication language to submit their bids to the marketplace. In a transformation step,
the ontology based messages are translated into syntactical bids and subsequently submitted
to the MACE market service. The mechanism computes an allocation and prices and subse-
quently communicates the outcome to the market operator. After that, the market operator
informs the bidding agents.

6.3 Preliminary Requirement Satisfaction

The previous sections outlined the design and implementation of MACE for allocating and
scheduling resources in the Grid. In contrast to other approaches, the proposed mechanism
accounts for a variety of Grid characteristics by incorporating time and quality, as well as
coupling constraints.

This section analyzes which of the requirements specified in Section 4.2 are fulfilled by
the proposed auction. Table 6.1 outlines the requirements and states whether or not they are
satisfied by the MACE implementation. The following discussion aggregates these require-
ments and demonstrates how they are satisfied by the mechanism. As a consequence, this
analysis reveals open issues that have to be further evaluated in Chapter 7.
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Efficient Allocation (R1) and Incentive Compatibility (R2): MACE is efficient as long
agents report their preferences truthfully. However, the k-pricing schema is not in-
centive compatible, as agents do not have an incentive to report their types truthfully
to the mechanism. This may lead to inefficient allocations. For measuring the effects
on the allocation, a numerical simulation is performed in Chapter 7 and 8.

Individual Rationality (R3) and Budget-Balance (R4): The mechanism is individually
rational and budget-balanced (cf. Theorem 5.4).

Computational Tractability (R5): The winner determination problem of MACE is N'P-
complete. Although modern search algorithms can solve many problem instances
quickly, the auction schema is computationally intractable in some scenarios. Further
evaluations are necessary to determine whether or not this requirement can be fulfilled
with the estimated number of market participants. A detailed runtime analysis of the
implementation will be performed with respect to the estimated number of agents in
the envisioned Grid market (cf. Chapter 7).

Automated Resource Allocation (R6): The mechanism is fully implemented as a software
system. This allows an automated resource allocation.

Double sided Mechanism (R7) and Support for Heterogeneous Resources (R8):
MACE is a double sided mechanism that allows multiple buyers and sellers to trade
heterogeneous resources simultaneously.

Support for Different Resource Characteristics (R9): Agents can account for different
cardinal quality characteristics by means of the proposed bidding language. The win-
ner determination guarantees that for each request all required resources are supplied
in at least the demanded qualities. Although the quality characteristics are restricted
to cardinal values, it is assumed that this is sufficient for most Grid resources. Further-
more, nominal attributes such as the operating system of a machine can be modelled
by introducing additional resources. For instance, a computation service that runs on
a Linux machine can be modeled as g, = CompServiceynx. Likewise, a Windows
computation service is modeled as g; = CompServicewindows- Both resources will not
match in the winner determination model.

Bundling of Resources (R10) and Substitutability of Resources (R14): MACE is an in-
stance of a combinatorial exchange. As such, it allows buyers and sellers to submit
bids on bundles. In addition, buyers can submit several bundle bids that substitute
each others.

Co-allocation of Resources (R11): The bidding language and MAP support the specifica-
tion of co-allocation constraints and the restriction of possible resource divisions. In
addition, MACE allows the coupling of multiple resources so that they get allocated
from the same provider.

Guaranteed Resource Usage Time (R12) and Advanced Reservation (R13): In case a
buyer gets allocated a bundle, the mechanism guarantees that all of the required us-
age slots are allocated. In addition, MACE allows agents to specify their resource
supply and demand in the future.
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Network Quality (R15): The bidding language allows agents to specify a value for their
network connections. This is limited to static values, such as the upstream or down-
stream of an agent’s network connection. This attribute does not take the dynamics
of the underlying network quality into account. As a result, this requirement is only
partially fulfilled by the mechanism. Due to the central nature of the auctioneer com-
ponent, a more realistic inclusion of the network quality is difficult. Counterparts in
the model (i.e., a buyer that gets resources from a seller) do not know each other be-
fore an agreement is reached. As such, network latencies and network distance metrics
cannot be measured before the auctioneer computed an outcome. One solution to this
problem is to install a negotiation phase concerning network reservation after the out-
come is determined. In addition, the performance of the currently applied method has
to be evaluated by means of a field experiment.

In summary, the MACE implementation fulfills most of the requirements. However, the
open issues such as efficiency, incentive compatibility, and computational tractability need
further evaluations.

6.4 Summary

This chapter outlined the practical implementation of MACE into a software system. Section
6.1 discussed state of the art methods for solving winner determination problems in combi-
natorial auctions. As a result of the discussion, the use of an exact anytime algorithm in form
of CPLEX is chosen for a practical implementation of MACE.

Section 6.2 discussed the implementation of the MACE market service and outlined prac-
tical application areas of the service. First, a flexible architecture is outlined that incorporates
the proposed auction mechanism and algorithms. Second, two case studies are introduced
that use the MACE implementation for their resource coordination.

An analysis whether or not the MACE market service satisfies the requirements upon a
resource allocation manager for the Grid is given in Section 6.3. The discussion emphasizes
that most requirements are fulfilled by the current implementation.

The implementation of the conceptual MACE model into a software system completes
the second stage of the market engineering process. Consequently, the next chapter processes
the testing stage. With respect to the previous work, the focus of this stage lies on the evalu-
ation of the economic properties of the mechanism. This includes an evaluation concerning
the efficiency, incentive compatibility, and computational tractability of the implemented
mechanism.
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Chapter 7

Simulation Design

Nature is capable of building [...] systems whose complexity lies far beyond the reach of our
computers and supercomputers, present or prospective. [...] Modeling, then, calls for some
basic principles to manage this complexity. We must separate what is essential from what is

dispensable in order to capture in our models a simplified picture of reality.

(Simon 1990, p. 7)

The previous chapters outlined the design and implementation of MACE, a market mech-
anism for the Grid. The preliminary requirement satisfaction in Section 6.3 revealed open
issues that need further evaluation. However, the complexities and interdependencies be-
tween these problems make it difficult to provide analytical solutions. As a consequence,
alternative methodologies have to be applied to analyze the proposed auction.

The market engineering approach encompasses different techniques to evaluate market
mechanisms. Due to the lack of large-scaled test-beds, simulations are applied to study the
properties of MACE. Market simulations imitate the economic environment and the behavior
of agents and allow a numerical evaluation of mechanisms. The application of simulations
is seen as appropriate to evaluate the open issues of MACE.

The remainder of this chapter is structured as follows: Section 7.1 outlines the basic
concepts of simulations and introduces a structured approach that assists in performing them.
After that, Section 7.2 defines a set of questions the simulation has to answer. On the basis
of these questions, Section 7.3 introduces a simulation model that imitates a Grid market
system. Section 7.4 outlines a set of bidding scenarios that restrict the evaluation space, as
an exhaustive enumeration of the system model is too complex. Section 7.5 discusses the
derivation of a simulation framework that implements the proposed model and that is used
to perform the simulation runs. Finally, Section 7.6 concludes the chapter.

7.1 Principles of Simulation

Simulation is a technique that uses computers to imitate a system and to evaluate a model
numerically (Law and Kelton 2000). In the context of market engineering, the theory of sim-
ulation is an important building block to study the effects of market mechanisms (Weinhardt
et al. 2006). The following subsections briefly outline the principles of simulations with a
focus on those techniques that are required to simulate market systems.

119
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7.1.1 Basic Concepts

The objective of a simulation is the imitation of a process or a system over a certain time
interval (Banks 1998). Within this interval, state variables denote the collection of variables
that are required to fully describe the system at any point in time (Law and Kelton 2000). In
an auction scenario, the system comprises the economic environment, the strategies of the
agents, and the market mechanism. State variables provide information about the status of
the environment (e.g., behavior of agents) and the outcome of the mechanism.

The analysis of a system is usually performed to gain further information about the sys-
tem’s behavior (Schmidt 1980). For instance, a market engineer is interested in studying the
effects that are caused by a modification of the institutional rules. One way to gather such
information is to study the changes directly in the real system. However, such an analysis
is impossible in many real life settings. If a market engineer wants to study the effects of a
new pricing schema for a stock exchange, he hardly can do this using the productive trading
system. Moreover, in some settings it is even impossible to study effects in the real system,
as it has not yet been installed.

Aside from studying a real system, its behavior can also be analyzed by means of a
system model that acts as a representation of the system and captures certain aspects of it
(Banks 1998). If the model is designed properly, meaningful information can be obtained
concerning the system’s performance (Pritsker 1998). As a consequence, the model design
and the degree of abstraction have to be carefully developed.

According to Law and Kelton (2000, p. 5-6), the characteristics of simulation models
can be classified by three dimensions:

* Static Model vs. Dynamic Model: A static model represents the underlying system at
a particular point in time. In contrast, dynamic models account for the evolution of a
system over time.

* Deterministic Model vs. Stochastic Model: 1f a simulation model does not include any
probabilistic component, it is said to be deterministic. A model is characterized as a
stochastic model when the output is randomly biased and is only an estimate of the
model’s true characteristics.

* Discrete Model vs. Continuous Model: A model is discrete if the state variables change
at particular points in time. In contrast, a model is continuous if the state variables
change continuously and depend on time.

Theory and practice propose different types of simulations and offer tools that support
their implementation. These types usually make assumptions upon the underlying model
characteristics. For instance, a simulation type may require that the implemented model is
static and stochastic. Popular examples for simulation types that are applied in market based
settings are, among others, agent-based simulations and Monte Carlo simulations.

» Agent-based Simulation: The principle of an agent-based simulation approach is the
design of a simple model in which agents interact on the basis of social rules (van
Dinther 2006). The models are usually dynamic and stochastic. Such a simulation
approach is applied in a variety of market settings (Gode and Sunders 1993; Veit et al.
2004; van Dinther 2006).
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e Monte Carlo Simulation: In Monte Carlo simulations, random numbers are used to
solve a stochastic or deterministic problem (Law and Kelton 2000). The underlying
simulation model is rather static than dynamic. Monte Carlo simulations are usually
applied to solve problems that are not tractable analytically. An example for such
a simulation in a market setting is given by Cai and Wurman (2005). By means of
a Monte Carlo approach, the authors determine equilibriums for which an analytical

outcome cannot be computed.

The decision which dimension of a simulation model and, as a consequence, which type
of simulation approach should be applied depends on the particular scenario and the effects
that are to be studied.

7.1.2 Stages in a Simulation Study

The design and implementation of a simulation study follows a structured approach that
assists the market engineer to perform a thorough simulation study. Figure 7.1 depicts the
basic stages of a computerized simulation study for market scenarios and emphasizes their
most important issues in each step (Banks 1998; Law and Kelton 2000; van Dinther 2006).

Problem
Definition

Model
Conceptualization

Model
Implementation

Simulation Runs
and Analysis

e Target Market
¢ Determine effects

e Environment
¢ Agent Behavior

e Implementation
e Verification

¢ (Repeated) Runs

e Analysis of Results

to be observed e Institution e Validation

Figure 7.1: Steps in a simulation study of markets

Stage 1 — Problem Definition: In the first stage of the process, the market engineer defines

the problem that is in the center of interest. In a market based setting, this includes the
identification of the target market, the formalization of the effects to be observed, and
a consideration if simulation is a reasonable approach to study the problem.

Stage 2 — Model Conceptualization: In the second stage, the conceptual simulation model

is designed. With regard to market systems, this stage comprises the definition of the
economic environment, the dynamics of the agent’s behavior, and the applied institu-
tion.

In most cases, this stage requires an abstraction from the target system. For instance, if
the market engineer wants to model human behavior, he has to make assumptions that
restrict their decision space. In addition, complex characteristics of the economic en-
vironment (e.g., characteristics of resources) cannot always be modeled in a thorough
detail. One way to tackle these complexities is the definition of different simulation
scenarios that consider sub-aspects of the real system.

The result of this stage is a conceptual model that can be classified by the aforemen-
tioned three dimensions of simulation models. These characteristics further influence



122 CHAPTER 7. SIMULATION DESIGN

the type of simulation that can be applied for the given problem. For instance, if the
model is static and discrete, the Monte Carlo method can be appropriate to simulate
the market system.

Stage 3 — Model Implementation: After the design of the conceptual model, it is imple-
mented into a software system. This stage can be supported by the use of existing
and generic simulation frameworks such as Repastl, JASA?, or AMASE (van Dinther
20006). After the implementation of the model, it has to be verified and validated.

Verification denotes the process of proving the correctness of a system implementation
with respect to the conceptual model specification. With regard to computerized sim-
ulations, this is supported by software engineering methods such as black box testing,
unit testing, or dynamic program analysis (Hetzel 1993).

Validation is applied to substantiate that a model is an accurate representation of the
real system (Banks 1998). Law and Kelton (2000) propose different techniques for
increasing the validity and, as a consequence, the creditability of the implemented
model: Validation starts with the collection of system relevant information and data.
If no productive system exists for the proposed model, the engineer may rely on data
of similar systems. Subsequently, one compares the implemented model with the real
system by means of the collected data. In addition, validation can be supported by ex-
isting theories and expert interviews in order to compare the result of a simulation with
its expected outcome. Furthermore, sensitivity analysis help to calibrate the model.

Stage 4 — Simulation Runs and Analysis: Having implemented the model, simulation
runs can be performed. In many settings, the output data of a simulation is stochasti-
cally influenced. As a consequence, it is required to repeat the simulation runs to get
an appropriate data basis for the evaluation.

The generated simulation data is evaluated by means of statistical methods such as
computing means, variances, or by means of statistical test procedures (Law and Kel-
ton 2000). A further step is to interpret the results and, if necessary, to repeat the
simulation runs using different parameter settings.

Performing simulation studies is one way to analyze the effects of complex systems such
as markets. The proposed process supports the market engineer in a thorough simulation
study and, consequently, in obtaining creditable results.

7.1.3 Advantages and Disadvantages of Simulations

The previous sections outlined the basic concepts of simulations and introduced a structured
approach that assists in performing them. Although simulations are an appropriate way to
analyze market based systems, they also have shortcomings. In the following discussion, the
advantages and disadvantages of applying simulations to study markets are briefly outlined.

Advantages of simulation: One advantage of a simulation approach is to study effects in
a controlled environment (van Dinther 2006). The market engineer can control the

ISee http://repast.sourceforge.net/ for details.
2See http://www.csc.liv.ac.uk/~sphelps/jasa/ for details.
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model and the influences of single effects. Depending on the simulated market sys-
tem, the approach allows a low cost evaluation of the system while performing a thor-
ough exploration of possible conditions. With regard to a Grid market system, various
effects can be analyzed although the productive system is not yet available. Simula-
tions are particularly useful during the evolution of new technologies as they allow a
comparison of different design alternatives.

Disadvantages of simulation: The approach only estimates outcome information for a
given set of input parameters that are based on abstracted assumptions (Law and Kelton
2000). In addition, results obtained by a simulation cannot be generalized. Further-
more, the modeling and implementation stages are error prone. In complex simulation
settings, it is often difficult to identify mistakes in the model or program errors in the
implementation. Thus, wrong conclusions may be drawn from the obtained output
data (van Dinther 2006).

In summary, simulations are useful in many market based settings. Although they have
disadvantages, their application is often the only practical way to evaluate a system. How-
ever, it is not advisable to rely only on simulation results. The results may help to calibrate
and tune a system. Often, the applicability of a proposed market mechanism has to be further
evaluated by means of other approaches such as laboratory and field experiments.

7.2 Problem Definition

The first step in a simulation study is the definition of the target problem and the effects that
are to be observed. For the work at hand, the target system is a Grid marketplace that com-
prises the economic environment, the agent’s behavior, and MACE as a market mechanism.
In addition to the standard pricing schema of MACE, the target system also comprises the
VCG mechanism and the approximated VCG mechanism as benchmark implementations.

Section 6.3 emphasizes open issues of the MACE mechanism with respect to the pro-
posed requirement specification. These issues are to be evaluated by means of the simulation
study. This includes a detailed analysis of the mechanism’s properties concerning allocative
efficiency, incentive compatibility, and computational tractability.

The following paragraphs raise a set of questions that serve as a basis for the further
evaluation. The questions are classified into problem sets that are either solved by an optimal
winner determination algorithm or by approximations.

7.2.1 Optimal Winner Determination

The first set of questions relies on an optimal algorithm to solve the winner determination
problem of MACE. On the basis of optimal solutions, computational and economical prop-
erties of the mechanism are to be analyzed.

7.2.1.1 Computational Tractability

The winner determination problem of MACE is N'P-complete. As a result, MACE is com-
putationally intractable in large-scale scenarios. Ideally, an upper boundary of problem
instances can be defined for which the problem is still computationally tractable within a
meaningful time frame. In the context of trading Grid resources, a meaningful time frame
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is consistent with the maximum time limit that an allocation process may last. Experiences
suggest that an allocation process shorter than 5 minutes is adequate (cf. Section 2.3.1).

Question 1: Upper boundary for optimal outcomes
What is the upper boundary for which the winner determination problem of MACE can be
solved optimally within a meaningful time frame?

The resulting boundaries indicate which auction instances can be solved optimally and
which instances have to be approximated.

7.2.1.2 Allocative Efficiency

The proposed k-price mechanism is not incentive compatible. Truthful bidding is not a
dominant strategy as agents can improve their individual utility by misrepresenting their
private information. If agents deviate from bidding their true valuation and reservation prices,
the outcome of MACE is no longer efficient. This fact raises the second question to be
answered by the numerical evaluation.

Question 2: Efficiency loss due to misrepresenting agents
What is the magnitude of efficiency loss due to misrepresenting agents?

In this case, misrepresenting means that buyers underbid their valuations and sellers over-
bid their reservation prices. The benchmark for measuring efficiency loss is an incentive
compatible mechanism in which all agents bid truthfully. For this benchmark setting, let V*
be the welfare of the allocation. In a second scenario it is assumed that some agents mis-
represent their private information. Similar to the benchmark setting, let V), be the welfare
of the outcome with manipulating agents. The efficiency loss L can be calculated as the
percentage loss of the resulting welfare due to manipulating bidders:

EL° = ‘;—M -100%, (7.1)

where index O stands for an optimal winner determination algorithm.

7.2.1.3 Incentive Compatibility

The application of the k-pricing schema implicates that agents can gain a higher utility by
misrepresenting their private information. This raises the question if this utility gain can be
measured and if it can serve as a metric for the loss of incentive compatibility.

Question 3: K-Price incentive compatibility
Can agents gain a positive utility by manipulating their bids?

The utility gain is measured as follows: Let 7 be a set of agents that can manipulate
their ValuatNions and reservation prices. In a benchmark scenario with an outcome o, all
agents 1 € Z honestly reveal their preferences. Consequently, their utility u;(0) from bidding
truthfully can be calculated as ) - 5 u;(0). In a second setting with an outcome 0, agents

iel manipulate their bids, whereas the input parameters (i.e., the characteristics of the
underlying bids) remain the same. The resulting utility due to manipulation is calculated as
> ic7 4;(0). Thus, the utility gained due to manipulation can be measured as

UGS (S5) = u;(0) = > (o), (7.2)

ieT iel
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where k stands for the k-pricing schema and O stands for an optimal winner determination
algorithm.® The metric reflects the difference between the utility gained by manipulation and
the utility gained in a truthful scenario. If this value is positive, agents have an incentive to
manipulate their bids. In case the value is negative, agents do worse by manipulating.

A more profound statement concerning the incentive properties of the k-pricing schema
requires a comparison with alternative pricing schemes. It is refrained from comparing the
k-pricing schema with the VCG mechanism, as the VCG mechanism is incentive compati-
ble. Moreover, due to the loss of the budget-balance property, the VCG is not applicable in
practice. In contrast, a comparison of the k-price mechanism with the approximated VCG
mechanism deems promising, as both are not incentive compatible but individual rational
and budget-balanced.

Question 4: K-Price vs. approximated VCG pricing
Can misrepresenting agents gain a higher utility either by an application of the k-price
schema or by use of the approximated VCG mechanism?

An answer to this question requires a comparison of the incentive properties of the k-price
schema and the approximated VCG mechanism. This is achieved by comparing the utility
gain of manipulating agents in both settings, i.e., by analyzing if the inequality U Ggﬁk <
U G?L’ v 1s true, where £ stands for k-pricing, AV for approximated VCG pricing, and O for
an optimal winner determination algorithm.

7.2.2 Approximated Winner Determination

Preliminary studies with the auction schema confirmed that solving the winner determination
problem can become computationally intractable, even in settings with less than 100 agents
(Schnizler et al. 2006b). This implies that exact solutions of the winner determination prob-
lem may require too much computation time. As a consequence, the problem cannot be
solved optimally.

As discussed in Section 6.1, an application of CPLEX in combination with its anytime
property deems promising. The solver is started with the objective of finding optimal out-
comes. Whenever a meaningful time frame is elapsed, the solver is interrupted and returns
the best feasible solution.

7.2.2.1 Allocative Efficiency

The application of approximations results in suboptimal allocations. This raises the question,
how good the proposed procedure approximates the optimal outcome. One way to determine
such a value is the measurement of the approximation’s welfare loss compared to the optimal
outcome.

Question 5: Efficiency loss due to an approximated allocation
What is the magnitude of welfare loss due to an approximated winner determination?

3An alternative technique for measuring loss of efficiency and incentive compatibility is given by Bapna
et al. (2005). The authors propose a game in which all agents first submit their bids truthfully. After that,
the bids of all agents are made public. Subsequently, each bidder is allowed to resubmit a bid based upon this
information.
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Following the discussion on approximations in Section 6.1.3, the quality of such algo-
rithms is measured as follows: Let V* be the value of the optimal outcome and let V' be
value of the approximation. A measure for defining the quality of the outcome is given by
determining g(p) with V* < ¢(p)V, where p denotes the encoding length of the problem
instance (Miiller 2006).

7.2.2.2 Incentive Compatibility

An auction schema that implements an approximated winner determination schema cannot
be incentive compatible (Nisan and Ronen 2000). Following the aforementioned problem
definitions, this raises the question if agents can attain a positive utility by misrepresenting
their bids. In order to isolate this effect, one requires an application of the VCG mechanism
due to its incentive compatibility. If agents gain a higher utility by misrepresenting their
valuations, it is only caused by the approximated allocation schema.

Question 6: Incentive compatibility of the VCG mechanism due to an approximated
allocation

Can agents gain a positive utility by manipulating their bids with the application of an ap-
proximated winner determination algorithm and the VCG pricing schema?

This requires the computation of the utility gain UG% for the VCG mechanism as de-
fined in Equation 7.2. Index V stands for the VCG mechanism and A for an approximated
winner determination algorithm. The value of this metric indicates the incentive loss due
to an approximated winner determination. With respect to this benchmark, the effect of the
approximation can be studied by the use of the k-pricing schema.

Question 7: Incentive compatibility of the k-pricing schema due to an approximated
allocation

Can agents gain a positive utility by manipulating their bids if an approximated winner
determination algorithm and the k-pricing schema is applied?

Following the previous definitions, this requires to determine UG}, where index k stands
for the k-pricing schema and A stands for an approximated winner determination. In order
to compare the loss of incentive compatibility of the k-pricing schema, this procedure is also
applied for the approximated VCG schema.

Question 8: K-Price vs. approximated VCG pricing using an approximated allocation
Can misrepresenting agents gain a higher utility by the use of the k-price schema or by the
application of the approximated VCG mechanism if an approximated winner determination
algorithm is applied?

Finally, this question requires an analysis if UGZ < UGY, is violated, where AV de-
notes the approximated VCG mechanism and A the approximated winner determination al-
gorithm.

7.2.3 Reflection

The previous subsections defined a set of problems that are to be evaluated by the simulation
study. Table 7.1 summarizes these problems and classifies them according to their underlying
winner determination algorithm and the behavior of agents. For instance, question 2 analyzes
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Solver Agents Nr | Question
Truthful 1 | Upper boundary for solving optimally
2 | Efficiency loss
Optimal Manipulation 3 | K —pricp incentive? C‘Oanatibility loss
4 Incentive compatibility loss:
K -Price vs. approximated VCG
Truthful 5 | Efficiency loss
6 | VCG incentive compatibility loss
Approximated Manipulation 7 | K -Pri?e incentivc? gqmpatibility loss
g Incentive compatibility loss:
K -Price vs. approximated VCG

Table 7.1: Summary of problems to be studied by the simulation

the efficiency loss due to manipulating agents that occur by an application of an optimal
winner determination algorithm.

After the review of these questions, the theory of simulation is seen as an appropriate
technique for answering them. As a consequence, the next stage of the simulation study can
be processed by designing the simulation model.

7.3 Simulation Model

A simulation model serves as a representation of certain aspects of a real system. Ideally,
these aspects allow an isolated analysis of the effects to be studied. With regard to the envi-
sioned Grid market, the model encompasses the economic environment including resource
providers and consumers, the behavior of these agents, and MACE as a resource allocation
manager.

At the present moment, no Grid market exists in real life. Moreover, there are only
few test-beds that make use of state of the art Grid middleware. Consequently, the design
of a simulation model is difficult as one cannot rely on existing systems. Although sev-
eral computing platforms such as PlanetLab serve as related systems, they do not cover all
characteristics of the envisioned Grid market. For example, PlanetLab does neither support
prices as a coordination mechanism, nor the possibility of advanced reservations (Albrecht
et al. 20006).

Figure 7.2 depicts the basic simulation model for the work at hand. It comprises resource
consumers as buyers, resource providers as sellers, and MACE as a resource allocation man-
ager. Buyers and sellers submit their resource requests and offers in the form of bids to the
MACE service. Subsequently, the manager computes an allocation, determines prices, and
logs the outcome data. The following subsections describe the model’s components in more
detail.

7.3.1 Economic Environment

Following the notation introduced in Section 5.2.1 and summarized in Table 5.6, the eco-
nomic environment comprises a set of buyers N with n € N and a set of sellers M with
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L
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Figure 7.2: Sequence of the bid submission in the applied simulation model

m € M that submit bids to the auctioneer. The bids reflect their resource requirements,
respectively their offered resource endowments.

When generating a bid, a buyer first selects an appropriate bundle S; € S. After
this step, the agent describes the side-constraints of the required resources g, € S; by
the definition of (i) the required quality characteristics q,]LV (S, 9k, af), (i1) time attributes
eN(5;),15(S;), s,(S;), and (iii) co-allocation restrictions v, (S}, gr.), n(S;, gk, g:)- Finally,
the agent computes his valuation v,,(.S;) for the bundle and determines a bid ©,,(.S;) for it. In
case the agent wants to submit several atomic bids, this process is repeated. Subsequently,
the formalized bid is submitted to the auctioneer. For sellers, the bid formulation is processed

in a similar way.

The bid formulation raises the question how particular resources and their characteris-
tics are modeled. This requires, among others, the modeling of bundles, quality and time
attributes, as well as valuation and reservation prices. Due to the fact that the model is not
based on empirical data, the characteristics of these parameters are drawn from stochastic
distributions. Literature proposes several distributions for generating bids in combinatorial
auctions (Sandholm 2002; Leyton-Brown et al. 2006) and for modeling computer resources
in a Grid context (Lu and Dinda 2003; Kee et al. 2004). For instance, Sandholm (2002) pro-
poses a bundle generation technique that can be used to generate domain independent bids
that are — in most cases — computationally hard to solve. However, no quality characteristics
are supported by the distribution. Kee et al. (2004) propose a set of distributions for com-
puter processors and hard disks. Although their model accounts for quality characteristics
of both resources, it neglects further types of tradable resource and does not consider prices.
Accordingly, none of the proposed distributions covers all aspects of MACE’s bidding lan-
guage. In order to generate bids, existing distributions have to be combined and adapted.
Still, an exhaustive enumeration of all possible distribution combinations is impossible in
a simulation study. Rather a set of bidding scenarios is defined in Section 7.4 that covers
different aspects of the model.

Aside from their particular configurations, the characteristics of Grid resources are also
influenced by their failure probability and the network topology. With respect to the pro-
posed simulation questions, these characteristics are neglected for the work at hand. Grid
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simulation models and implementations that attempt to include these characteristics can be
found in Casanova (2001) and Buyya and Murshed (2002).

7.3.2 Market Mechanism

The applied market mechanism is an instance of the MACE market service. The imple-
mentation is realized as a call market. This means that the auctioneer collects all bids and
subsequently computes an outcome. This results in a one-shot game in which all agents can
submit only one bid.

The CPLEX engine is applied to solve the winner determination problem. In cases an
approximated outcome is required, CPLEX is interrupted after a predefined time frame. For
the model at hand, an allocation time of 5 minutes appears as a meaningful time frame.

The model comprises three different pricing schemes: (i) the k-pricing schema as the
standard mechanism for MACE, (ii) the VCG mechanism, and (iii) the approximated VCG
mechanism with the threshold function as benchmark price schemes. For settings in which
the k-price schema is applied, the parameter k is set to & = 0.5. This favors neither the
buyers’ nor the sellers’ side.

7.3.3 Behavior of Agents

As a last step, the behavior of agents has to be modeled. Following the problem definition,
this requires truthful and manipulating bidders. Truthful bidders submit their true valua-
tions and reservation prices to the auctioneer, i.e., v,,(S;) = 0,(5;) and r,,,(S;) = 7, (5;).
Manipulating agents underbid their valuations (v,,(S;) > 0,(S;)), respectively overbid their
reservation prices (7,,,(5;) < 7, (5;)).

In order to model manipulating agents, simple misrepresentations by 5% of the true
valuations are considered, where A% of the buyers reduce their reported values by 5% and
A% of the sellers increase their reservation prices by bidding 1555 - 7/ (S5;). Instead of
observing only symmetric Nash-equilibriums as in the analysis by Parkes et al. (2001), where
agents either misrepresent their preferences by 0 or by 3%, the ratio of misrepresenting
agents to the total number of participants varies as well. A ratio of A\ = 50%, for instance,
denotes that 50% of the buyers and sellers misrepresent their preferences by (3%, while the
other 50% report truthfully. By exploring the joint strategy space (i.e., varying the share of
misrepresentative and truthful participants as well as the percentage of misrepresentation),
the desired economic effects can be measured.

7.4 Bidding Scenarios

Understanding the effects of the proposed market mechanism requires the generation of rep-
resentative resource configurations, workloads, and bidding strategies of agents. Until now,
there exists no stochastic distribution for Grid configurations that is expressive enough for
the proposed bidding language. As a result, one has to rely on alternative ways to generate
resource configurations and bids.

In the combinatorial auction literature, several distributions have been proposed to gen-
erate bidding streams. These distributions generate bundles and valuations with regard to
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different objectives. Some distributions generate domain independent bids that lead to com-
putationally hard problems (Sandholm 2002). Others attempt to imitate artificial bids that
reflect some sort of real life scenarios (Leyton-Brown et al. 2000). However, the proposed
distributions do not account for Grid specific characteristics such as multiple attributes or
co-allocation constraints. In order to integrate these attributes into a bidding scenario, one
can rely on studies that synthesize particular configurations of Grid resources (Kee et al.
2004). Although these studies do not include complementarities, substitutes, and prices of
Grid resources, they can be combined with distributions for combinatorial bids to generate
adequate test data.

With respect to the proposed simulation questions, a differentiation between bidding
streams that generate domain independent bids and streams for generating realistic bids is
deemed promising. On the one hand, domain independent bids serve as benchmark data
that may amplify the observed effects. On the other hand, realistic bids are applied to study
situations that may appear in a real Grid setting.

The following subsections outline the applied distributions for both bidding streams and
introduce a set of parameter settings that are to be evaluated by the study.

7.4.1 Generating Domain Independent Bids

The first step when generating a bid of an agent concerns the bundle creation. For domain
independent settings, a decay distribution is applied. The decay function has been recom-
mended by Sandholm (2002) because it creates hard instances of the allocation problem in
single sided combinatorial auctions.

At the beginning, a bundle S; consists of one random resource g,. Afterwards, new re-
sources are added randomly with a probability of . This procedure is iterated until resources
are no longer added or the bundle already includes all resources. Following other combina-
torial auction studies, the parameter « is set to a = (.75 as this leads to the hardest instances
on average (Sandholm et al. 2005). In order to determine prices, one picks randomly a
value between 0 and the number of resources in the bundle (Sandholm 2002). To avoid deci-
mal values, the resulting valuation is multiplied by 1000 and then rounded (Andersson et al.
2000).

Quality characteristics ¢, (S;, gk, a¥)* for each attribute af are integer values drawn from
a uniform distribution between [1,...,2000]. The number of attributes of each resource gy
is a parameter that can be varied according to the applied scenario. Likewise to the quality
characteristics, time attributes are also drawn from a uniform distribution. This includes (i)
a uniformly distributed earliest time slot e, (5;) within a range [a., . . ., b.], (ii) a uniformly
distributed latest time slot [,,(S;) within a range [a,, . . ., b;|, and a uniformly distributed num-
ber of required slots s,,(S;) within [as, ..., bs].> The ranges of each distribution are varied
according to particular bidding scenarios.

Subsequently, the distribution settings for co-allocation restrictions of buyer bids have to
be defined. This includes the definition of a maximum number of co-allocations 7, (S}, gx)
and the specification of coupling conditions ¢,,(S;, gk, ¢;). The number of resources in a
bundle and the number of buyers that have such restrictions is set by an external parameter.

“Index n is used to denote a buyer. Quality characteristics for sellers are modeled in the same manner by
using index m.
>The number of slots are only required for buyer bids.
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Bid Characteristics | Distribution Varied Parameters

Bundle creation Decay Total number of goods G

Quality attributes Uniform [1, ..., 2000] Number of attributes Aj,

Time attributes Uniform [a, . .., b Time ranges a and b

Allocation restrictions Fixed Bids & goods with coupling restrictions
Fixed, Uniform [1, ..., (| Bids & goods with divisibility restrictions

Valuation 1000 - Uniform [0, ..., Gs.| | Truthful or manipulated bidding

J

Table 7.2: Distributions and parameters for generating domain independent bids

The maximum number of co-allocations is drawn from a uniform distribution within a range
of [1,...,c|, where c is a parameter that is varied in each bidding scenario. The percentage
number of buyers that have these restrictions is also determined by an external parameter for
each setting.

Finally, the number of buyers and sellers that trade on the market as well as the number
of their atomic bids is determined by an external variable in each scenario. Table 7.2 sum-
marizes the parameters and distributions for generating domain independent bids. Particular
bidding scenarios that apply this technique are introduced in Subsection 7.4.3.

7.4.2 Generating Realistic Bids

The previous subsection introduced a technique for generating domain independent bids. An
alternative technique that attempts to generate realistic bids serves as a second way to model
bids.

The basis for generating realistic bids are distributions provided by the combinatorial
auction test suite (CATS)®. The aim of this suite is the definition of bundles and valuations
with respect to preferences found in real-world scenarios (Leyton-Brown et al. 2000; Leyton-
Brown and Shoham 2006). Most of the distributions are based on a graph of resources that
reflects their economical relationships.

CATS implements five different distributions for generating bundles and valuations. For
instance, one distribution represents the problem of purchasing resources on a connection
between two points. The aim of this distribution is to design path problems such as found in
gas pipeline networks or bandwidth allocation problems (Leyton-Brown and Shoham 2006).
Furthermore, a distribution is provided that accounts for complementarities of resources that
arise due to their adjacency in a two-dimensional space (Leyton-Brown et al. 2000). A
popular real-world example for such settings are spectrum auctions in which segments of
spectrums are sold by means of an auction (Ausubel and Milgrom 2002).

For the model at hand, the arbitrary relationships distribution of CATS is applied. The
basis of this distribution are relationships between single resources. The resulting bundles
have the characteristic that particular pairs of resources have a high probability of being part
of the same bundle. As a consequence, most bundles generated by this distribution include
resources with arbitrary relationships. For the envisioned Grid market setting, such a way
of modeling bundles of resources appears as appropriate. In practice, it is conceivable that
bundles often contain related resources. For instance, if an agent requires a data-mining
service, he most likely also requires a storage service.

6See http://cats.stanford.edu/ for details.
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At the beginning, a bundle S; consists of one resource g;. New resources are added
one by one. The probability of adding a new resource g; depends on its relationship to
other resources g; in the bundle S;. When the bundle is generated, a price is determined
that depends on a common value component and a private value component of the bundle’s
resources.’

Having generated a bundle and a valuation, quality characteristics can be modeled. In
order to model realistic bids, the quality attributes of resources have to be influenced by
valuation and reservation prices. For instance, if a buyer 1 has a high valuation for bundle
S; and another buyer 2 has a low valuation for a bundle S;, agent 1 has probably higher
quality requirements than agent 2. This fact is taken into account by picking particular
quality characteristics as integer values from a normal distribution N (y, 02), where mean p
and variance o depend on the valuation or the reservation price as well as on the number of
resources in the bundle. For the proposed model, 1 is defined as = x - v;(S;) - (y + 0.5)
and o is computed as 0% = z - v;(S;) - Gg,, where y € IR0 < y < 1 is a value picked
from a uniform distribution. The parameters x and z are scaling factors that are set to x = 4
and z = 0.1. The use of normal distributions is in line with the synthesis of realistic Grid
resources such as proposed by Kee et al. (2004). Likewise to the previous bid generation
technique, the number of attributes is set by an external parameter.

Time attributes are drawn from a uniform distribution. The particular ranges of each dis-
tribution are varied with respect to the applied bidding scenario. Furthermore, the maximum
number of co-allocations is drawn from a uniform distribution within a range of [1,...,c|,
where c is a parameter that is varied in each scenario. In addition, the percentage number of
buyers that have such restrictions is varied in each bidding scenario.

The number of buyers and sellers as well as the number of atomic bids is determined by
an external variable in each scenario. Table 7.3 summarizes these distributions and parameter
settings for generating realistic bids.

Bid Characteristics | Distribution Varied Parameters

Bundle creation Arbitrary relations Total number of goods G

Quality attributes Normal N (p1, 0?) Number of attributes Ay, j, o

Time attributes Uniform [a, .. ., D] Time ranges a and b

Allocation restriction Fixed Bids & goods with coupling restrictions
Fixed, Uniform [1, ..., ¢| | Bids & goods with divisibility restrictions

Valuation Arbitrary relations Truthful or manipulated bidding

Table 7.3: Distributions and parameters for generating realistic bids

7.4.3 Simulation Settings

The previous subsections described two techniques for generating bids for the proposed Grid
market model. The configuration of several parameters is externalized in order to allow the
definition of different bidding scenarios. The complete enumeration of all potential configu-
rations is not possible. As a consequence, a set of selected configurations is defined as target
simulation settings. The parameter configurations for these settings are shown in Table 7.4.
For simplicity, the number of atomic bids is set to 1. The economic influences of XOR and

"For the work at hand, prices are computed as integer values.
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OR bids are assumed to be comparable to the effects observed with one atomic bid per agent.
In addition, the number of available resources is set to G = 5.

Id | Attributes Time Coupling Allocation

1 2 0..4], [1..3] 0 0

2 5 0..4], [1..3] 0 0

3 2 [0..12],]1..3] 0 0

4 2 0..4], [1..3] 50%,2 | 50%, 50%, [1..3]

Table 7.4: Parameters of different simulation settings

The first setting defines the baseline scenario. In this setting, each agent submits one
atomic bid on a particular bundle. The bundle consists of at most 5 different goods that each
have 2 different attributes. The earliest start time and the latest possible allocation time for
the bundle are drawn from a uniform distribution within a range of [0..4].® Likewise, the
number of required slots for a buyer bid is uniformly distributed within a range of [1..3]. In
the baseline setting, no agent has any coupling and co-allocation restrictions. The subsequent
scenarios differentiate from this baseline scenario by varying one particular parameter. The
number of attributes is varied in setting 2. In setting 3, the earliest and latest time slots are
drawn from a uniform range within a range of [0..12]. Finally, setting 4 varies the coupling
and co-allocation parameters. In this setting, 50% of the buyers have coupling constraints,
where 2 different pairs of the bundle’s resources are selected randomly. In addition, 50% of
the buyers have maximal divisibility constraints for 50% of their resources. The maximum
divisibility of each affected resource is picked randomly within a range of [1..3].

The bundles for these settings are created either by the use of the technique for domain
independent bids or by the technique for generating realistic bids. Thus, the evaluation space
E for the study at hand is described by

FE :<[1, [2, Ig, ]4, Rl, RQ, Rg, R, >,

where I; denotes an instance of setting ¢ with the application of the domain independent
bid generation technique. A scenario R; is based on setting ¢ and applies the technique for
generating realistic bids. With respect to the particular simulation problem, the number of
buyers and sellers is varied.

The definition of the bidding scenarios concludes the second stage of the simulation
study. The proposed model can be characterized as a static, discrete, and stochastic imitation
of a Grid market. Agents submit their bids as a one-shot game, i.e., they cannot dynamically
adapt their strategies nor bid in a continuous manner. This results in a static and discrete
simulation model. In addition, the agents’ bids are stochastically influenced as values are
picked from different stochastic distributions. Thus, the applied type of simulation can be
based on the Monte Carlo approach.

8First, the earliest time slot is selected at random. Next, the latest time slot is computed by adding another
random number to the value of the earliest time slot. In case the time frame is too small for the required slots
(IN(S) — el (55) < 5,(S;)), the latest time slot is set to 12 (S;) = el (S}) + 5,,(S;).
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7.5 Model Implementation

The third stage of the simulation study is concerned with the implementation of the designed
model. This comprises the process of transforming the model into a software system, veri-
fying the implementation, and validating the model.

Different toolkits have been proposed for simulating market based settings. For instance,
the Repast framework provides a generic platform for agent-based simulations. Further-
more, AMASE as proposed by van Dinther (2006) can be applied for simulating auction
mechanisms within the meet2trade suite (Weinhardt et al. 2006). However, the proposed
simulation toolkits neither implement combinatorial mechanisms nor support the proposed
bid generation techniques.

In order to evaluate the mechanism, a new simulation tool was developed that accounts
for the target model and that can be applied for the analysis of the simulation problems. The
next section briefly describes this tool and demonstrates how simulations can be performed
with it.

7.5.1 jCase — Java Combinatorial Auction Simulation Environment

The Java Combinatorial Auction Simulation Environment (jCase) is a toolkit for simulating
combinatorial mechanisms.’ jCase — shown in Figure 7.3 — is capable of generating different
bidding streams with a varying number of participants, resources, and bundles. The simulator
integrates the MACE market service (cf. Section 6.2) as an auction implementation. jCase
can submit bids to the market service and can trigger allocation decisions by means of the
service’s APIs.

The simulation tool implements, among others, the proposed bidding techniques for gen-
erating stochastically influenced bids. It integrates the CATS 2.0 framework and provides a
set of different bundle distributions. Different evaluation metrics can be measured and stored
into a database for further analysis. Simulation settings are described using an XML based
description language. Once a scenario is encoded by means of this specification, it can be
executed using the graphical user interface or by means of a batch process. The bidding
streams generated by jCase can also be stored as XML files on the local hard disk.

Figure 7.4 depicts a part of the simulation description for the above mentioned simula-
tion setting /; with decay distributed bundles. By means of this description, 5 buyers and 5
sellers are generated that submit bids. The number of atomic bids which a buyer can submit
is fixed to 1. Furthermore, the decay distribution is applied to create bundles. Attribute char-
acteristics are drawn from a uniform distribution within a range of [1..2000]. The valuations
are generated using the proposed technique for decay bundles and subsequently multiplied
by 1000. In this exemplarily setting, 30% of the buyers manipulate their bids by underbid-
ding their valuations by 20%. The time ranges (earliest start and latest deadline) are both
drawn from a uniform distribution within a range of [0..4]. Furthermore, the number of slots
is uniformly distributed within [1..3].10

Aside from MACE, the simulator can also be applied to other combinatorial problems.
The flexible description capabilities for simulation settings allow the analysis of a multitude

°See http://www.iw.uni-karlsruhe.de/jcase for details.
1OWhenever a zero value is selected from the distribution, the random picking process is repeated. This is
required due to practical reasons, as bids with 0 required slots are not valid.
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Figure 7.3: Screenshot of the user interface of jCase

<orderbook type="distribution">
<buyerspertick distribution="Fixed" mean="5"/>
<sellerspertick distribution="Fixed" mean="5"/>
<buyerorder percentage="100">
<maxbids distribution="Fixed" mean="1"/>
<bundlecreator name="Decay">
<attributes id="all">
<distribution name="Uniform" multiplier="2000"/>
<attributes>
</bundlecreator>
<valuation>
<bundlepricing algorithm="Decay" multiplier="1000"/>
<manipulation percentageAgents="30"
percentageManipulation="20"/>
</valuation>
<earlyrange distribution="Uniform" multiplier="4"/>
<laterange distribution="Uniform" multiplier="4"/>
<slot distribution="Uniform" multiplier="3"/>
</buyerorder>
[...]

</orderbook>

Figure 7.4: Part of a jCase simulation description
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of different scenarios. In the context of market engineering, the tool is already successfully
applied to simulate a single sided combinatorial mechanism and the PPC pricing schema
(Neumann et al. 2007). As a consequence, jCase qualifies as a simulation environment that
assists the market engineer in evaluating combinatorial auctions.

7.5.2 Verification and Validation

Having implemented the proposed simulation model, it is verified and validated. In the
verification phase, one analyzes the correctness of the model transformation into a software
system. In the validation phase, one determines that the conceptual model is an adequate
representation of the real system (Banks 1998).

7.5.2.1 Verification

The implementation of the MACE market service and jCase was continuously supported
by performing unit tests.!! Such tests are performed to verify that particular modules of a
software system work properly (Cheon and Leavens 2002). Unit tests call particular methods
or modules with a predefined set of input data. Subsequently, the output of the method is
compared to the expected outcome. For jCase and the MACE market service, such tests were
implemented and performed for most methods and modules.

Aside from unit tests, the platform was verified by means of predefined bidding cases.
Simple bidding settings were constructed manually, solved, and reexamined by the platform.
Furthermore, different example sets found in literature served as additional test cases (Parkes
2001; Parkes et al. 2001).

7.5.2.2 Validation

A holistic validation of the model is difficult as no Grid marketplace or comparable system
exists in practice. However, some of the proposed assumptions and characteristics of the
model can be analyzed by means of existing validation techniques (Law and Kelton 2000).

The requirements upon the mechanism are based on experiences and propositions found
in literature and expert forums such as the OGF. With regard to the work proposed within the
Grid community, the elicited requirements are interpreted to be correct. The design of the
bidding streams cannot be supported by existing theories derived from Grid technologies.
However, the distributions used for the model are applied in several combinatorial auction
studies to analyze similar effects as the ones proposed in this work (Parkes et al. 2001;
Sandholm et al. 2005; Leyton-Brown et al. 2006). Finally, extreme condition tests have
been performed to increase the creditability of the model. As an example, suppose that all
agents manipulate their bids by a high value. As a result, none the of bids are successful,
which leads to an empty allocation set. This observation corresponds with the expected out-
come of the mechanism, as buyers pretend low valuations and sellers high reservation prices.
Consequently, no potential buyer can be found that is willing to pay the reservation prices
of sellers. In addition, an analysis of manipulating bidders and the VCG mechanism was
performed. The effects observed by the simulation correspond with the theoretical findings.
No agent can gain a positive utility by manipulating his bids.

"'"The testing framework jUnit was applied to perform the tests. See http://www.junit.org/ for
more details.
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Although the applied validation of the model cannot be as comprehensive as models that
are based on existing systems, the tests increase the validity and credibility of the model and
its implementation.

7.6 Summary

This chapter introduced basic concepts of simulation, outlined the design of a Grid market
model, and described its implementation into a software system. Section 7.1 outlined the
theory of simulation and described a structured process that assists the market engineer in
performing them. Based upon this process, Section 7.2 defined a set of simulation questions
that are to be evaluated in the study. Subsequently, a simulation model was introduced in
Section 7.3 that accounts for the defined simulation questions. Corresponding with the mar-
ket model, Section 7.4 introduced a set of bidding scenarios that serve as input data for the
MACE market mechanism. Finally, Section 7.5 outlined the implementation of a simulation
framework that can be applied to study combinatorial market mechanisms.

The next chapter is concerned with the presentation and assessment of the obtained sim-
ulation results. The results reveal whether or not MACE fulfills the elicited requirements
upon a Grid market mechanism.
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Chapter 8

Simulation Results

Just as classic mechanism design introduces incentive-compatible constraints to restrict the
space of feasible mechanisms, computational constraints further restrict the space of
feasible mechanisms.

(Kalagnanam and Parkes 2004, p. 179)

The previous chapter introduced a simulation model that imitates agents submitting
multi-attribute combinatorial bids in a Grid market. In addition, a simulation framework
was proposed that is used to perform the simulation runs. Consequently, the aim of this
chapter is to analyze and to interpret the obtained results.

All simulation runs were performed on a Pentium XEON with a single CPU (3.2GHz)
and 2GB of main memory. The Windows 32-bit version of CPLEX 9.1 was used to solve the
winner determination problem of MACE. Most of the standard parameters of CPLEX were
not changed, except a set of settings that were set to emphasize the feasibility of solutions.
The varied parameter settings are given in Table B.1 (Appendix B.1).

The obtained results are biased as the input bidding streams are influenced stochastically.
In order to obtain meaningful data which, ideally, is not affected by stochastic processes,
the simulation runs are replicated with different random seeds (van Dinther 2006).! As the
particular random seeds are independent of each other, the results can be aggregated by
means of statistical procedures such as computing means and variances. For each effect to
be studied, the total number of repetitions is varied.?

With respect to the problem definition of the simulation study, the remaining of this
chapter is structured as follows: First, Section 8.1 analyzes the technical and economical
results obtained by the application of an optimal winner determination algorithm. After
this step, Section 8.2 describes the results obtained by the use of approximated allocation
decisions. Section 8.3 reflects the simulation results with respect to the open problems of the
MACE mechanism and concludes the chapter.

!jCase uses the JET engine to compute pseudo random numbers. See http://dsd.lbl.gov/
~hoschek/colt/ for details.

2Among others, Law and Kelton (2000) propose different techniques to identify the number of required
simulation repetitions. However, most of the procedures make strict assumptions upon the input data which
may not be satisfied for the target bidding scenarios. In line with related combinatorial auction studies, a fixed
number of repetitions is used (Parkes et al. 2001; Sandholm et al. 2005).

139
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8.1 Optimal Winner Determination

The first set of treatments analyzes the effects obtained by the use of an optimal winner deter-
mination algorithm. First, Section 8.1.1 identifies an upper boundary of agents for which the
problem is computationally tractable within a meaningful time frame. Subsequently, Section
8.1.2 analyzes the economic effects that occur if agents deviate from bidding truthfully.

8.1.1 Computational Tractability

The first analysis is concerned with the runtime of CPLEX that is required to solve the win-
ner determination problem of MACE. In order to determine an upper boundary of problem
instances that can be solved optimally, the solver is interrupted after 5 minutes. If no optimal
solution is found within this time frame, the problem instance is marked as non solvable. The
corresponding runtime of this instance is set to 5 minutes. As such, the measured runtime
does not always reflect the true computational effort that is required to solve an instance.
However, solving each instance optimally may require too much computation time.* More-
over, the simulation question at hand only requires the identification of problem instances
that can be solved in less than 5 minutes.

The runtime of CPLEX is measured with a varying number of agents. In each setting,
the number of buyers and sellers is equally distributed. For instance, a setting with 50 agents
represents 25 buyers and 25 sellers each submitting one atomic bid to the auctioneer. The
analysis is performed for all proposed simulation settings (cf. Section 7.4.3). In total, 50
problem instances are created with different initial random seeds for each sample set.

350
m1 =2 o3 014

300 - | L
250 -
200 -

150 A

Runtime (s)

100
50

] ol

10 30 50 70 90 110
Agents

Figure 8.1: Runtime of CPLEX to solve settings /; — I, with independent domain bids

Domain Independent Bids: Figure 8.1 depicts the runtime of CPLEX for the domain in-
dependent bidding scenarios with a varying number of agents. On average, CPLEX requires
more than 8 seconds to determine an allocation if 70 agents submit their /; distributed bids
to the auctioneer. With I3 distributed bids, the solver requires 3.92 seconds to compute an
outcome for 30 agents.

3During preliminary studies, settings were identified that require more than 72 hours to get solved optimally.



CHAPTER 8. SIMULATION RESULTS 141

The graph evinces that I3 distributed bids lead to the hardest problem instances. This is
reasoned by the fact that the earliest and latest allocation slots of the resources are greater
than in other scenarios. Consequently, the decision space of potential solutions increases
considerably.

The bars do not reflect the exponential runtime of the solver. As the solver is interrupted
after 5 minutes, the runtime gets falsified with an increasing number of bids. There are
already instances with 90 agents that cannot be solved optimally within 5 minutes in the [;
bidding scenario.

Number I, I, I3 I,

of agents " o max n o max " o max n o max
10 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.1 0.0 0.0 0.2 3.9 255 | 180.8 | 0.0 0.0 0.2
50 0.4 0.7 4.1 0.6 14 10.1 44.7 87.0 | 300.0 | 0.4 0.9 6.3
70 8.5 213 | 1143 | 4.2 8.5 52.6 | 219.8 | 119.3 | 300.0 | 9.9 29.1 | 1933
90 444 | 78.8 | 300.0 | 28.5 | 60.8 | 300.0 | 295.0 | 29.7 | 300.0 | 81.3 | 108.1 | 300.0
110 123.6 | 119.4 | 300.0 | 123.4 | 124.4 | 300.0 | 300.0 | 0.0 | 300.0 | 141.4 | 125.1 | 300.0

Table 8.1: Mean, standard deviation, and maximum runtime to solve settings Iy — I

Table 8.1 summarizes mean (y), standard deviation (¢), and maximum runtime (max)
for each processed data set in setting /; — ;. The results show that the problem cannot
be solved optimally within 5 minutes for settings with more than 30 agents (/5 setting).
Further, the high standard deviations indicate that the runtime fluctuates intensively for each
setting. This means that two problem sets that are generated by equal distributions require
very different computational effort to get solved. In line with other combinatorial studies, this
result demonstrates that similarly generated bids may require different effort to get solved
(Leyton-Brown et al. 2006; Sandholm et al. 2005).

Realistic Bids: In accordance with the previous analysis, the winner determination prob-
lem of MACE is also hard to solve for settings that are based on realistic bids. Figure 8.2
shows the computational runtime of CPLEX to solve the problem instances R; — R.

An interesting observation is that most realistic bid instances are slightly harder to solve
than the domain independent settings. One reason for this could be the different approaches
that are applied to generate quality characteristics. Domain independent quality attributes
are distributed uniformly and neither depend on each other nor on the underlying price of the
bundle. In contrast, quality characteristics of realistic bids reflect the bundle’s characteristics
as well as the valuation and reservation price. Due to the independent quality attributes in
the domain independent settings, CPLEX may be able to find non-matchable bundles more
quickly.

In contrast to the previous study, the computational runtime of the R, setting with cou-
pling and co-allocation restrictions is also very high. This can be explained by the high
number of overlapping bundles in R, distributed instances. In I, settings, most co-allocation
restrictions cannot be considered, as there are not enough counterparts on the sellers’ side
that offer the required resources from the same machine. Due to the construction of real-
istic bids with arbitrary relationships, the number of potential sellers that can offer coupled
resources is higher than in /, instances.
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Figure 8.2: Runtime of CPLEX to solve settings R, — R, with realistic bids

Number I, I, I3 'n

of agents I o max ©n o max n o max I o max
10 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.1 0.5 34 0.1 0.17 1.1 3.1 16.0 1136 | 6.06 | 384 | 2725
50 39 17.5 | 123.8 | 3.9 15.6 | 109.8 | 137.6 | 137.7 | 300.0 | 77.5 | 114.5 | 300.0
70 24.6 | 65.1 | 300.0 | 28.8 | 72.8 | 300.0 | 192.7 | 137.65 | 300.0 | 238.6 | 111.6 | 300.0
90 95.1 | 119.5 | 300.0 | 59.4 | 103.4 | 300.0 | 260.2 | 93.66 | 300.0 | 281.7 | 59.8 | 300.0
110 1174 | 127.9 | 300.0 | 129.2 | 131.2 | 300.0 | 300.0 | 0.01 300.0 | 2979 | 11.8 | 300.0

Table 8.2: Mean, standard deviation, and maximum runtime to solve settings 21 — Rj
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Table 8.2 shows mean (u), standard deviation (o), and maximum runtime (max) for each
processed data set. The results are similar to the ones obtained from the previous study. The
problem cannot always be solved optimally with more than 30 agents. In addition, the small
standard deviation of settings with 110 agents indicates that most of these problem instances
require more than 5 minutes to get solved. In summary, the analysis shows that the winner
determination problem of MACE is computationally intractable without the introduction of
approximations.

8.1.2 Manipulating Agents

In the second treatment, it is assumed that A% of all buyers and sellers misrepresent their
true valuations and reservation prices. The remaining (100 — \)% agents reveal their private
information honestly. Manipulating buyers n € N underbid their true preferences by only
revealing a valuation of 5 (S;) = 101%55 -v7(S;) and sellers m € M overbid their reservation
prices up to 75, (5;) = % - 17(S;). Each generated bid stream is processed twice, once
with truthful and once with manipulating agents. The differences between these outcomes

serve as a basis for measuring the economic effects of the pricing schema.

In each simulated scenario, 12 buyers and 12 sellers submit their bids to the auctioneer.
The low number of agents allows an expressive analysis of the economic effects caused by
their behavior. The higher the competition is on the market, the lower the influences of single
manipulating agents (Jackson 2002; Schnizler et al. 2006b).

The scenarios are analyzed for 4 different settings: In the first setting, only 1 buyer
manipulates his bids (denoted as 13). In the second setting, 2 buyers and 2 sellers manipulate
their preferences and the resulting utility of all agents is averaged (denoted as 25, 25S). In
the third setting, half of the buyers and sellers manipulate (denoted as 6B, 65); in the fourth
setting, all agents manipulate their bids (denoted as 125, 125). In total, 350 samples are
computed for each bidding scenario and the results are averaged.

8.1.2.1 Efficiency Loss

In the first treatment, the efficiency loss due to manipulating agents is measured for the
baseline scenario /; with domain independent bids.

The left part of Figure 8.3 shows the percentage efficiency loss (cf. Equation 7.1) with a
varying number of manipulating agents as a function of the manipulation factor. For instance,
if half of the agents (6B, 65) manipulate their valuations and reservation prices by A\ = 30%,
the resulting efficiency loss is 46.65%. In case all agents manipulate their preferences by
more than A = 90%, the resulting efficiency loss converges to 100%, i.e., the set of successful
agents in the auction becomes empty. It is apparent that the efficiency loss is higher when
more agents manipulate their bids.

If one agent (13) manipulates by a factor greater than A = 40%, the efficiency curve
stagnates. This stagnation results from the fact that the agent is not part of the allocation
for settings with a manipulation factor higher than 40%. The reported valuation of the buyer
is too low for being part of the allocation set. This means that none of his requests can be
matched with any resource provider.

The graph evinces that an agent increases the risk of not getting allocated in the outcome
if he manipulates his bids. This effect is supported by the right part of Figure 8.3 that depicts
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Figure 8.3: Efficiency loss and decrease of successful agents in setting /; with manipulating
agents

the percentage loss of the number of successful bidders in the allocation. For instance, if half
of the agents (63, 6S) manipulate their bids by A = 30%, the number of allocated agents is
30% smaller than in the non-manipulating scenario. Furthermore, if all agents (12B,12.5)
are manipulating by A = 40%, the size of the allocation set decreases by 70%.

Modification 1B 2B,2S 6B,6S 12B,12S
Factor " o 12 o I o 7 o
5 0.97 | 3.05 4.05 8.00 | 12.16 | 1425 | 21.73 | 17.21
10 191 | 6.01 749 | 1197 | 21.36 | 19.11 | 38.13 | 21.85
15 277 | 873 | 10.63 | 15.65 | 29.03 | 22.34 | 51.46 | 23.81
20 340 | 10.25 | 13.44 | 18.55 | 35.67 | 24.59 | 62.16 | 24.09
30 437 | 12.61 | 18.12 | 22.38 | 46.65 | 27.32 | 77.46 | 22.07
40 494 | 13.80 | 21.98 | 25.23 | 55.55 | 29.28 | 86.97 | 19.39
50 5.28 | 1448 | 25.03 | 27.18 | 62.03 | 29.99 | 9240 | 17.41
60 546 | 1479 | 27.52 | 28.53 | 67.09 | 30.35 | 95.19 | 16.41
70 5.57 | 15.00 | 29.87 | 29.99 | 71.01 | 30.10 | 96.50 | 16.01
80 5.62 | 15.09 | 31.69 | 30.88 | 74.25 | 29.35 | 97.12 | 15.86
90 5.63 | 15.13 | 33.60 | 31.94 | 77.62 | 28.94 | 97.39 | 15.85

Table 8.3: Mean and standard deviation of the percentage efficiency loss in setting /; with

manipulating agents

Finally, Table 8.3 summarizes mean and standard deviation of these results.* The table

shows that the results are partially unstable due to high standard deviations. This can be
explained by the construction of the applied bidding scenarios which are subject to high
degrees of freedom. For instance, the values for quality and time attributes are drawn from

“Means and standard deviations for the decrease of allocated agents are given in Table B.2 (Appendix
B.2.1).
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independent uniform distributions. Consequently, a bid with 5 different resources that each
has 3 different attributes is influenced by more than 15 independent distributions. Thus, it
is in the nature of the generated bids being characterized by a high standard deviation. In
contrast, an analysis that restricts all but one distribution to a fixed value would lead to stable
— but too simplistic — results.

8.1.2.2 K-Price Incentive Compatibility

In the second analysis, the individual utility gain of manipulating agents is measured. This
gives information on whether or not the utility of agents can be improved through manip-
ulation. Following Equation 7.2, the measured metric reflects the difference between the
utility gained by manipulation and the utility gained in a truthful scenario. Consequently, the
following results reflect absolute values. In case a manipulating agent 7 is neither part of the
allocation in the truthful scenario o nor in the manipulating scenario o, the resulting utilities
(u;(0) = u;(0) = 0) are neglected.

Domain Independent Bids: Figure 8.4 depicts the utility gain of agents as a function
that depends on the manipulation factor 5%. The input data is generated using the baseline
setting /; for domain independent bids. The graph points out that agents can increase their
utility by manipulation. For instance, if one agent underbids his valuation by A = 20%,
his average utility gain is UGY = 394.15. However, if the agent manipulates by more than
A = 20%, his average utility gain continuously decreases. This is reasoned by the fact
that he increases the risk of not getting allocated in the final outcome. In settings with a
manipulation factor greater than A = 40%, he has a negative utility gain. Consequently, he
has no incentive to underbid his valuation by more than A = 40%. Utility losses greater than
500 (UGS < —500) are truncated in the graph.
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Figure 8.4: Utility gain of manipulating agents with the application of the k-pricing schema
and bidding scenario I,

If more agents deviate from bidding truthfully, the average utility gain of each agent
decreases. In settings where half of the agents manipulate their bids by more than A = 30%,
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no agent has a positive utility gain on average. Moreover, if all agents manipulate their
bids, none of them can attain a positive utility. This can be explained by the fact that the
total number of potential counterparts decreases as the price span between buyers and sellers
increases.

Modification 1B 2B,2S 6B,6S 12B,128S
Factor n o CcVvV n o CcVv n o Ccv n o cv
5 163.0 | 165.2 1.0 285 | 101.6 | 3.5 12.7 40.0 3.1 -4.7 105 | -2.2
10 304.1 356.3 1.1 54.4 141.8 | 2.6 16.7 65.6 3.9 -17.9 27.8 -1.5
15 3543 | 651.6 1.8 70.2 | 198.0 | 2.8 13.9 88.1 6.3 -37.0 | 465 | -1.2
20 394.1 | 866.1 22 76.8 | 2503 | 3.2 10.0 | 1069 | 106 | -65.6 | 73.0 | -1.1
30 108.0 | 1496.2 | 13.8 | 39.0 | 3475 | 89 | -15.1 | 161.1 | -10.6 | -128.5 | 122.2 | -0.9
40 -337.2 | 1757.2 | -5.2 4.2 416.6 | 973 | -68.7 | 2239 | -3.2 | -1984 | 1714 | -0.8
50 -782.9 | 17155 | -2.1 | -106.8 | 489.5 | -4.5 | -132.0 | 2614 | -1.9 | -280.9 | 239.8 | -0.8

Table 8.4: Utility gain in setting /; with the application of the k-pricing schema for values
A < 50%

Table 8.4 shows mean (), standard deviation (o), and coefficient of variation (C'V =
o /1) for the measured points with A < 50%. The high CV values with C'V' > 1 indicate that
the utility gain fluctuates in most settings. Following the previous argumentation, the input
data for the simulation is already characterized by a high standard deviation.’ Consequently,
the incentive properties of the k-pricing schema strongly depend on particular problem in-
stances. The complete table representing all measured values can be found in Table B.3

(Appendix B.2.2).

600

400 -

ST |
C
(E 0 T T T
9 20 10 20 30
5 407 g1 w2 (1B)

600 1 @3 (1B) o4 (1B)

800 | OI1(6B,6S) (@12 (6B,6S)

EI13 (6B, 6S)  Ell4 (6B.6S)

-1000
Manipulation Factor

Figure 8.5: Utility gain of manipulating agents with the application of the k-pricing schema
in setting I; — I

Figure 8.5 compares all domain independent bidding scenarios I; — I,. It depicts sce-
narios in which one agent (153) and half of the agents (63, 65) manipulate their bids up to a

SFor this setting, an alternative study was performed with an increased number of repetitions. However, a
repetition of 800 times with varying random seeds resulted in similar means that are also characterized by high

standard deviations.
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factor of A\ = 60%. If half of the agents manipulate, the results for the scenarios are compa-
rable. A manipulation factor that is smaller than 30% leads to positive utility gains of agents.
If agents manipulate by a higher factor, they have negative utilities.

In contrast, the results differ if only one agent manipulates (13). The most conspicuous
cases are I3 distributed bids in which the number of allocatable time slots is increased. In
this setting, the agent gains the highest utility. The increased number of allocatable slots
decreases the degree of competition on single slots. Due to the lack of competition, the
manipulating agent still finds counterparts, even if he manipulates by a high factor. In settings
with A > 50%, however, the revealed valuation is too low to find any seller. This results
in negative utility gains. In addition, the baseline setting /; is the only one in which the
individual utility gain is negative for a manipulation factor of A = 40%. This indicates that
I, distributed settings lead to higher competition than the remaining ones.°

In summary, the results show that agents can gain a positive utility by manipulating their
bids. The gains, however, are restricted to settings in which only few agents manipulate their
bids by a low factor.
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Figure 8.6: Utility gain of manipulating agents with the application of the k-pricing schema
and bidding scenario Iy

Realistic Bids: Figure 8.6 shows the utility gain of agents for the baseline scenario R; with
realistic bids. The trends of the curves are comparable to the previous study. The highest util-
ity gain is attained if only one agent manipulates his bids by A = 15% (U Gg (0) = 8699.08).
In settings with a factor higher than A = 40%, the agent cannot gain a positive utility by ma-
nipulating. If more agents deviate from bidding truthfully, the average utility gains decrease
considerably. In contrast to the domain independent bidding scenarios, negative utilities of

6 Appendix B.2.2 (Table B.4-B.5) shows mean and standard deviation for settings I, — I.
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agents are already attained by a smaller manipulation factor. For instance, if 2 buyers and 2
sellers manipulate their bids, they only have a positive utility with a manipulation factor of
A < 10%. This fact supports the assumption that domain independent bids serve as worst
case scenarios for the problem at hand.

Modification 1B 2B,2S 6B,6S 12B,12S
Factor w o Ccv o o cv w o cv o o cv
5 3789 8950 | 2.36 710 6334 8.92 491 3007 6.13 -606 789 -1.30
10 7432 13321 | 1.79 45 10938 | 242.25 -265 5573 | -21.04 | -2734 2416 | -0.88
15 8699 | 20378 | 2.34 | -1459 | 15258 | -10.46 | -2234 8116 -3.63 -6034 4374 | -0.72
20 8340 | 26394 | 3.16 | -3820 | 17948 | -4.70 -5307 | 10866 | -2.05 | -10727 | 6824 | -0.64
30 5110 | 37499 | 7.34 | -8717 | 23232 | -2.67 | -12275 | 14927 | -1.22 | -22706 | 12111 | -0.53
40 -8368 | 45293 | -5.41 | -14994 | 25359 | -1.69 | -18768 | 18017 | -0.96 | -29964 | 15897 | -0.53
50 -25259 | 43344 | -1.72 | -21229 | 26518 | -1.25 | -24392 | 19220 | -0.79 | -30090 | 15974 | -0.53

Table 8.5: Utility gain in setting [?; with the application of the k-pricing schema for values
A < 50%

Table 8.5 shows mean, standard deviation, and CV for settings with A\ < 50%. In accor-
dance with the previous studies, the results are characterized by a high standard deviation and
a high CV. In particular, a high CV value can be found for the settings 25,25 and 6B, 65
with A = 10%. Although the individual utility gains are negative on average, the standard
deviations are considerably high. This means that there are cases in which the average utility
is strictly positive. The complete table that represents all measured values can be found in
Table B.7 (Appendix B.2.2).

Figure 8.7 depicts the utility gains for realistic distributed bids Ry — 4. The graph is re-
stricted to scenarios in which either one agent (1 5) or half of the agents (6 B, 65) manipulate.
The complete data for these settings is shown in Table B.8 — B.10 (Appendix B.2.2).
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Figure 8.7: Utility gain of manipulating agents with the application of the k-pricing schema
in setting 1 — Ry

In analogy to domain independent bids, the highest utility gain is attained if one agent
manipulates by A = 20% in the R3 setting, which includes the increased number of allo-
catable time slots. In contrast to the previous comparison, R, distributed bids favor most
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manipulating agents. A single agent can still gain a considerable high utility by underbid-
ding his valuation by A = 40%. However, if the number of manipulating agents increases,
the individual utility gains are fairly mild.

In summary, the analysis of the realistic bidding scenarios shows that the incentive prop-
erties of the k-pricing schema are better than in domain independent settings. Although a
single agent can gain a positive utility by not revealing his true preferences, the gain de-
creases if more agents start to manipulate their bids. If only one agent manipulates by a low
factor, the overall efficiency losses are small (cf. Section 8.1.2.1). Consequently, the appli-
cation of the k-pricing schema for the Grid deems promising. However, a comparison of the
incentive properties with other price mechanisms is still required.

8.1.2.3 Approximated VCG Incentive Compatibility

An assessment of the incentive properties of the k-pricing schema requires a comparison
with an alternative pricing mechanism. For the work at hand, the approximated VCG pricing
schema serves as benchmark (Parkes et al. 2001). In order to compare both pricing schemes,
the analysis of the utility gain with the approximated VCG mechanism is performed on
the same input data as for the k-price settings. Consequently, the results of both pricing
mechanisms can be compared.

Domain Independent Bids: The first comparison is concerned with domain independent
bids ;. Figure 8.8 shows the utility gained by manipulating agents for both pricing mecha-
nisms. The bars denote the results obtained by the approximated VCG mechanism; the lines
represent the outcomes with the k-pricing schema. If the utility losses are higher than 500,
they are truncated.

A 1B A 2B,2S A 6B,6S A 12B,12S
—=—K_1B --m-- K_2B,2S —+—K_6B,6S --a-- K_12B,12S

Utility Gain
o

Manipulat‘ion Factor

Figure 8.8: Utility gain of manipulating agents using the approximated VCG mechanism and
the k-pricing schema in setting I,
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The graph indicates that the incentive properties of both pricing schemes are similar.
With both mechanisms, the highest individual utility gain of one manipulating agent is at-
tained by a factor of A = 20%. Higher manipulation factors continuously decrease the
agent’s utility. In cases with only one manipulating agent (1B), the k-pricing mechanism
performs slightly better than the approximated VCG pricing. In addition, the agent still at-
tains a positive utility using the approximated VCG schema by underbidding his valuation by
A = 40%. In settings with the same manipulation factor, however, the agent gains a negative
utility with the k-pricing schema. If 2 buyers and 2 sellers manipulate, no considerable dif-
ference between the utilities can be identified. Settings in which all agents manipulate their
bids are equal in both pricing schemes. No individual agent can gain a positive utility by ma-
nipulation as the resulting net payments are equally distributed among all agents. A detailed
overview of the means, standard deviations and CVs of the I; setting with approximated
VCG pricing is given in Table B.11 (Appendix B.2.2).

Modification 1B 2B,2S
Factor Bnav jo2 BAY | pav Mk Bav
5 150.33 163.07 0.92 26.39 28.53 0.92
10 307.64 304.11 1.01 48.98 54.49 0.90
15 399.72 354.34 1.13 58.43 70.21 0.83
20 465.95 394.15 1.18 61.41 76.84 0.80
30 343.29 108.03 3.18 28.38 39.07 0.73
40 10.21 -337.20 | -0.03 4.25 4.28 0.99
50 -372.20 | -782.98 | 0.48 | -93.78 | -106.81 | 0.88
60 -480.54 | -957.00 | 0.50* | -172.57 | -183.33 | 0.94
70 -747.96 | -1251.33 | 0.60* | -271.50 | -286.09 | 0.95
80 -915.92 | -1431.37 | 0.64* | -348.86 | -368.29 | 0.95
90 -979.31 | -1496.45 | 0.65* | -406.38 | -426.84 | 0.95

* denotes significant differences between the samples

Table 8.6: Comparison of utility gains attained by the approximated VCG mechanism and
the k-pricing schema in setting [

Table 8.6 compares both pricing schemes for settings in which one buyer (15) and 2
buyers and 2 sellers manipulate (2B, 25). The table shows the mean of the utility gain for the
approximated VCG mechanism (1 4y) and for the k—pricing schema (y). In addition, the
fraction "ﬁv compares the results of both mechanisms. If the value is greater than 1, agents
gain a lower utility in the k-pricing schema. For these settings, the k-pricing schema has
better incentive properties than the approximated VCG mechanism. If the value is positive
and smaller than one, the approximated VCG mechanism is superior. The negative value
denotes the setting in which the k-pricing schema results in negative utilities while the agent
still attains a positive utility using the approximated VCG mechanism.

The data emphasizes that both pricing mechanisms have similar incentive properties for
A < 40%. In case one agent underbids by a factor greater than 40%, the utility losses in
the k-pricing schema are higher than in the approximated VCG schema. This means that the
k-pricing penalizes manipulating agents higher than the approximated VCG schema.

In order to substantiate these suggestions, the measured samples of both mechanisms are
tested upon equality by means of a statistical test. The underlying data is independent from
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Figure 8.9: Utility gain of manipulating agents using the approximated VCG mechanism and
the k-pricing schema in setting 74

each other and can be characterized as a normal distribution.” Consequently, a paired ¢-test
with unequal variances to test equality of both means can be applied. The corresponding H,
hypothesis states that the curves are not different. For the data at hand, no significant differ-
ence can be determined except for values with one manipulating agent and A > 60%. Due
to the high standard deviations of the samples, there may be further significant differences
which cannot be detected by the test. For completeness, p-values for each sample are shown
in Table B.12 (Appendix B.2.2).

The results for this setting show that the incentive properties of both mechanisms are
comparable for small manipulation factors. As these factors denote the only situations in
which agents can gain a positive utility, the mechanisms show comparable incentive proper-
ties. This fact strengthens the application of the k-pricing schema, as it is computationally
more efficient than the approximated VCG mechanism.

Realistic Bids: In order to extend the obtained results, both mechanisms are compared for
the bidding scenario R; with realistic bids in Figure 8.9. Likewise to the previous setting,
bars represent the approximated VCG settings and lines denote utilities gained in the k-price
setting. In addition, Table B.13 (Appendix B.2.2) shows means, standard deviations and CVs
for the R, setting with approximated VCG pricing.

The graph evinces that the approximated VCG mechanism performs better than the k-
pricing schema. These effects get confirmed by a comparison of the means of both mech-
anisms (u, and pay) and the fraction #4% that are illustrated in Table 8.7. In settings
where one agent manipulates, the approximated VCG mechanism outperforms the k-pricing
schema. This is also the result of a Mann-Whitney U-test that tests whether two samples

"The one-sample Kolmogorov-Smirnov test was applied to test goodness of fit with a normal distribution.
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are drawn from one population. The tests state that most of the samples are significantly
different.® The corresponding p-values are given in Table B.14 (Appendix B.2.2).

Modification 1B 2B,2S

Factor nav ek EAY | pav Mk BAY
5 1945 3789 0.51 502 710 0.71

10 3458 7432 0.47 -31 45 -0.69
15 3589 8699 0.41 -1309 | -1459 | 0.90
20 2242 8340 0.27 -3551 -3820 0.93
30 -1863 5110 | —0.36 | -8024 | -8717 | 0.92
40 -14511 | -8368 1.73 | -13800 | -14994 | 0.92
50 -30342 | -25259 1.20 -19448 | -21229 | 0.92
60 -39644 | -34996 | 1.13 | -23123 | -25075 | 0.92
70 -40448 | -35825 1.13 -23736 | -25695 | 0.92
80 -40448 | -35825 | 1.13 | -23835 | -25772 | 0.92
90 -40448 | -35825 1.13 -23847 | -25761 | 0.93

Table 8.7: Comparison of utility gains attained by the approximated VCG mechanism and
the k-pricing schema in setting R,

This second comparison shows that the approximated VCG mechanism performs better
than the £-pricing for settings in which only one agent manipulates. Likewise to the previous
analysis, both mechanisms perform equally if more agents manipulate. Although the utility
gain of one single agent is higher for most of the measured samples, the incentive properties
of the k-pricing schema are sufficient for an application in the Grid. Due to the envisioned
competition on the market, cases in which only one agent manipulates can be neglected.

8.1.2.4 Reflection

The previous results illustrate that both pricing rules do not rigorously punish inaccurate
valuation and reservation price reporting. Buyers and sellers sometimes increase their indi-
vidual utility by manipulating their preferences. This possibility, however, is limited to mild
misreporting and a small number of strategic buyers and sellers. If the number of manipulat-
ing agents increases, the risk of not being allocated in the auction raises dramatically.

With regard to domain independent bids, no significant differences between both pricing
schemes can be observed for settings with a manipulation factor smaller than 60%. In settings
with realistic bids, the approximated VCG mechanism outperforms the k-pricing schema.
However, on average the utility gains do not deviate too much from each other.

In summary, the simulation has shown it reasonable to believe that agents will not
strongly deviate from revealing their true valuations and reservation prices. Although an
agent’s average utility gain can be improved through manipulation, he increases the risk of
not being allocated in the auction. This risk increases the more agents use manipulation.
The simulation results suggest that the k-pricing schema has accurate incentive properties
resulting in fairly mild allocative efficiency losses. As such, the pricing schema is a practi-
cal alternative to the VCG and approximated VCG mechanism and is highly relevant for an
application in the Grid.

8The Mann-Whitney U-test was applied as the realistic bid samples do not reflect a normal distribution.



CHAPTER 8. SIMULATION RESULTS 153

8.2 Approximated Winner Determination

As denoted in Section 4.2, a computational tractable outcome determination of MACE is
required. However, the previous runtime analysis emphasizes that the auction schema is
computationally intractable in large-scaled scenarios. This implies that exact solutions of the
winner determination problem require too much computation time. To remedy this obstacle,
one has to rely on approximations. However, the application of approximations has impacts
on the economic properties of the mechanism: Approximations result in suboptimal and
inefficient outcomes. Consequently, approximated allocation decisions cannot be incentive
compatible (Nisan and Ronen 2000).

The following subsections analyze the economic effects that occur due to approxima-
tions. Section 8.2.1 measures the resulting efficiency loss of the winner determination prob-
lem. Subsequently, Section 8.2.2 examines the impact of approximations on the incentive
properties of the auction schema.

8.2.1 Efficiency Loss

The measurement of efficiency loss due to approximations requires a metric that reflects the
differences between the optimal outcome V* and the value of the suboptimal solution V.
Following the problem definition in Section 7.2.2.1, one requires the determination of g(p)
with V* < ¢g(p)V, where p denotes the encoding length of the problem instance. However,
preliminary simulation studies showed that the problem oftentimes cannot be solved opti-
mally, even with a time limit of more than 72 hours. In order to measure the desired effect,
the aforementioned metric has to be adapted.

Instead of comparing the approximated outcome with the optimal solution, one can also
rely on upper boundaries of the problem. Oftentimes, an upper boundary denotes the max-
imum value of the linearly relaxed problem instance (cf. Section 6.1.1). Whenever the
solver finished analyzing a sub-tree of the problem instance, this boundary is updated with
respect to the unexplored decision space. CPLEX provides a method for determining such
a boundary. The function computes the value of the maximization problem that comprises
the unexplored nodes of the search tree (ILOG 2005).° Although this value may not reflect
the optimal outcome of the problem, it provides a reasonable and practical way to measure
efficiency loss.

The following simulation treatments assume truthful bidders in order to measure effi-
ciency loss. The analysis is performed for the baseline settings /; and R, and for the settings
I3 and R3, as they lead to the hardest problem instances in the previous runtime study. Like-
wise to the previous studies, the solver is interrupted after 5 minutes. The corresponding gap
between the upper boundary and the obtained suboptimal outcome is computed as

Vg =V

gap = 100% - T

where Vp denotes the boundary and V' represents the suboptimal outcome (Le 2006). Each
sample is repeated 100 times with different initial random seeds and the results are averaged.
The number of buyers and sellers in each treatment are equally distributed, i.e., a setting with
200 agents comprises 100 buyer bids and 100 seller bids.

9In CPLEX, this boundary is provided by the function getBestObjValue ().
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Domain Independent Bids: Table 8.8 summarizes the gaps of the approximated outcomes
compared to the upper boundaries for the domain independent settings /; and /3. The table
shows mean (u), standard deviation (), maximum (max), and minimum (min) gap for the
measured samples. In addition, the percentage number of infeasible outcomes is outlined,
i.e., the percentage share of problem instances for which CPLEX could not determine a
feasible solution within 5 minutes. The corresponding gap for these settings is set to 100%.

. Gap (in %) Infeasible
Setting | Agents -
n ‘ o ‘ max ‘ min | Instances (in %)
100 0.11 0.22 0.65 0.00 0
200 0.59 | 0.28 1.26 0.10 0
I 300 0.56 | 0.20 1.00 0.24 0
400 0.59 | 0.15 0.85 0.25 0
450 0.53 | 0.13 0.78 0.24 0
500 0.60 | 0.23 1.53 0.37 0
100 1.80 | 0.88 5.48 0.47 0
200 1.51 0.46 2.50 0.65 0
I 300 143 | 0.38 2.39 0.54 0
400 1.41 0.35 2.19 0.79 0
450 10.29 | 28.81 | 100.00 | 0.97 8
500 88.38 | 32.15 | 100.00 | 0.64 88

Table 8.8: Optimality gap in settings /; and /3 due to approximated allocation decisions

The measured gaps are fairly mild in the baseline settings /;. If 200 agents submit their
bids to the auctioneer, the average gap is 0.59%, the maximum gap is 1.26%, and the mini-
mum gap is 0.1%. This means that the average value of the best feasible solution is 0.59%
smaller than the upper boundary. With more than 200 agents, the resulting gaps are almost
equal. In line with other combinatorial auction studies, this result states that CPLEX can
find adequate solutions quickly (Andersson et al. 2000). However, the solver is not able to
determine and to proof optimal solutions within the given time limit.

The gaps for the /3 settings are higher than in the baseline scenarios. For 200 agents, the
average gap is 1.51%, the maximum gap is 2.50%, and the minimum gap is 0.65%. With
an increasing number of agents, the gap of the approximation becomes higher. On the one
hand, this is reasoned by the fact that the problem instances become harder to solve within
the given time frame. On the other hand, feasible solutions cannot always be determined.
This results in a welfare loss of 100%. CPLEX could not find a feasible outcome for 8%
of the instances in settings with 450 agents. Furthermore, the solver could not determine
feasible solutions for most of the settings with 500 agents.

The analysis shows that the anytime algorithm achieves fairly efficient results. However,
the applied time limits become useless for settings with more than 450 agents as CPLEX can
oftentimes not find feasible solutions. For such cases, the use of other approximations has to
be considered.

Realistic Bids: Table 8.9 shows the results for the realistic bidding scenarios R; and Rs.
For instance, if 400 agents submit their 5 distributed bids, the average optimality gap is
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0.27%. Likewise to the previous analysis, the solver finds feasible solutions for all base-
line settings R;. In contrast to the I3 setting, the total number of infeasible outcomes is
considerably small.

. Gap (in %) Infeasible
Setting | Agents
n ‘ o ‘ max ‘ min | Instances (in %)
100 0.05 | 0.13 0.56 0.00 0
200 0.10 | 0.10 0.37 0.00 0
R, 300 0.09 | 0.07 0.29 0.00 0
400 0.11 | 0.09 0.39 0.00 0
450 0.11 | 0.07 0.27 0.02 0
500 0.10 | 0.07 0.27 0.01 0
100 0.31 | 0.39 1.55 0.00 0
200 0.25 | 0.23 1.15 0.03 0
Ry 300 0.32 | 0.34 2.05 0.02 0
400 0.27 | 0.22 1.11 0.04 0
450 9.36 | 29.11 | 100.00 | 0.04 3
500 8.42 | 27.08 | 100.00 | 0.04 4

Table 8.9: Optimality gap in settings 1?; and R3 due to approximated allocation decisions

The results emphasize that the average gap of realistic bids is smaller than the measured
gaps in the domain independent scenarios. Furthermore, more feasible solutions can be
determined for realistic bids, even with 500 agents. In contrast to the previous runtime
analysis in Section 8.1.1, this suggests that realistic bids are easier to solve than domain
independent bids with an increasing number of agents.

Likewise to the analysis of domain independent bids, the welfare losses are fairly mild
with the application of the anytime algorithm. With regard to the envisioned Grid market
with 340 agents (cf. Section 4.1.4), feasible and accurate efficient solutions can be found
for both bidding scenarios. From a computational point of view, anytime algorithms make
MACE suitable for allocating resources in the Grid.

8.2.2 Incentive Compatibility

The last treatments of the simulation study are concerned with the incentive properties of
MACE with respect to approximated allocation decisions. The application of approximations
raises several challenges for the study at hand:

First, the analysis cannot be performed under the same conditions as the previous in-
centive evaluation. Studying the same manipulation cases as described in Section 8.1.2.1
and terminating each allocation decision after 5 minutes is computationally very complex.
Consequently, one has to adapt the scenario by setting the time limit of the solver to 30 sec-
onds. In addition, the algorithm is terminated earlier whenever a solution is found with a
gap smaller than 2%. This adaptation allows a worst case imitation of the efficiency results
obtained in the previous study. In each setting, 100 agents submit their bids to the auctioneer.
With regard to the specified termination conditions, the number of agents is seen as adequate
to obtain worst case scenarios.
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Second, the application of approximations biases the obtained economic effects. In VCG
based mechanisms, the use of approximations can lead to violations of the individual ratio-
nality property. This problem can be illustrated by the following example: Suppose a setting
with an approximated welfare of V' = 100 and an allocated agent i. Assume that the optimal
welfare of the problem is VV* = 120. Following the VCG based pricing schema, one has
to compute an allocation without agent 7. Suppose the solver finds a better solution for the
problem without agent ¢ more quickly. In this case, let the approximated value be V_; = 105
with an optimal value of V*, = 107. Here, the agent has a negative impact on the wel-
fare, i.e., his resulting discount is negative. The welfare of such pricing allocations is set to
V_; = V to avoid such violations.

Finally, the applied anytime solver is not deterministic. This means that some decisions
of the algorithm are based on random numbers. As a consequence, it may lead to cases in
which the resulting allocation of one and the same problem instance differs in the k-pricing
study and the VCG study. Consequently, a comparison of these two mechanisms can lead
to different utilities of the agents which are not caused by the pricing schemes. Due to
simulation repetitions, however, it is assumed that these effects are on average negligible.

The following analysis is based on 4 different settings: In the first setting, only 1 buyer
manipulates his bids (denoted as 153). In the the second setting, 4 buyers and 4 sellers
manipulate (453,45). In the third setting, 10 buyers and 10 sellers manipulate (denoted
as 1053,10S) and 20 buyers and 20 sellers manipulate in the fourth setting (denoted as
20B,20S5). Likewise to the previous study, each case is repeated 350 times with varying
random seeds.

Domain Independent Bids: Figure 8.12 illustrates the utility gain of manipulating agents
with the application of the VCG mechanism. As the underlying pricing schema is incentive
compatible, positive utility gains are only caused by approximated allocation decisions. This
indicates a value for the default loss of incentive compatibility due to the applied winner
determination algorithm.

Although approximated allocation decisions are determined, manipulating agents cannot
gain a positive utility on average. In the given simulation settings, the approximations do not
affect considerably the incentive properties of the VCG mechanism. Consequently, agents
have an incentive to reveal their preferences honestly.

The results obtained by the analysis of the VCG mechanism can partially be transferred
to the k-pricing schema. Figure 8.11 illustrates the utility gain of agents with regard to
different manipulation scenarios. The approximations do not have considerably an impact
on the incentive properties of the mechanism. The obtained results are comparable to the
previous study with 24 agents. Agents can attain a positive utility by manipulating their
preferences. However, the cases are restricted to settings in which few agents manipulate by
a small factor.

In contrast to the previous analysis of the k-pricing schema (cf. Section 8.1.2.2), the
average utility gains decrease. For instance, if one agent underbids his valuation by A\ = 20%,
his average utility gain is UG4 = 171.0. In the previous study, the agent gained a utility of
UGY = 394.1 by the same manipulation factor. The reason for this effect is the higher
competition due to an increased number of agents on the market. Moreover, if more agents
manipulate, the average utility gains decrease considerably. Consequently, it can be assumed
that agents do best by submitting their bids truthfully when many agents submit bids to the
auctioneer or the number of manipulating agents is high.
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Figure 8.10: Utility gain of manipulating agents using the VCG mechanism in setting /; with
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Figure 8.11: Utility gain of manipulating agents using the k-price schema in setting /; with
approximated allocation decisions
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Figure 8.12: Utility gain of manipulating agents using the approximated VCG mechanism in
setting /; with approximated allocation decisions

To complete the analysis of domain independent bids, Figure 8.12 depicts the results for
the approximated VCG mechanism. In contrast to the k-pricing schema, the average utility
gains of manipulating agents are negative. In most cases, competition drives the agents
to reveal their true preferences to the auctioneer. Agents can only gain a positive utility if 4
buyers and 4 sellers manipulate by a factor of A = 10%. As a consequence, the approximated
VCG mechanism has better incentive properties as the k-pricing for the measured samples.

Mean, standard deviation, and CV for the different pricing schemes are given in the
Tables B.15 — B.17 in Appendix B.3.

Realistic Bids: The obtained effects with domain independent bids are emphasized by an
analysis of the incentive properties with realistic bids. As the expressiveness of the results is
comparable to the previous study, the utility gains for all pricing schemes are aggregated in
Figure 8.13. The graph illustrates the utilities gained in settings with 1 manipulating buyer
(1B) and 4 manipulating buyers and sellers (453, 45). The values reflect the results obtained
by the application of the VCG schema (V_1B, V_4B,45), the k-pricing schema (K _15,
K_4B,45), and the approximated VCG schema (A_1B, A_4B,4S). The corresponding
means, standard deviations, and CVs are given in the Tables B.18 — B.20 (Appendix B.3).

With the application of the VCG schema and the approximated VCG mechanism, agents
do worse by manipulating their bids. In all settings, they attain a negative utility on average.
With the application of the k-pricing schema, however, one agent can gain a positive utility
by manipulating up to A = 30%. However, this case is restricted to settings in which only one
agent manipulates and the remaining bidders reveal their preferences honestly. In contrast
to the previous study, the use of realistic bids rather decreases the attained utility due to
manipulation. If more than one agent manipulates, no agent can gain a positive utility from
manipulating.

Although the approximated VCG mechanism outperforms the k-pricing schema in both
bidding scenarios, the computational hurdle of the mechanism still remains. With regard to
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Figure 8.13: Utility gain of manipulating agents with different pricing schemes in setting R;
with approximated allocation decisions

an increasing number of agents, the computational effort that is required to solve the problem
becomes intractable. On the one hand, this fact favors the k-pricing schema due to its com-
putational efficiency. On the other hand, the results obtained by this study demonstrate the
tension between computational tractability and economical efficiency (Gomber et al. 2000;
Parkes 2001; Kalagnanam and Parkes 2004). With regard to the few cases in which agents
can gain a positive utility, the computational efficiency of the k-pricing favors its application
for the Grid.

8.3 Summary

The preliminary requirement satisfaction in Section 6.3 revealed open issues that need fur-
ther evaluation. The previous study examined these issues by analyzing the computational
tractability, efficiency, and incentive compatibility of the MACE mechanism.

The runtime analysis showed that the winner determination problem is computation-
ally very demanding. The problem can only be solved optimally in settings with less than
50 agents. With an increasing number of agents, the determination of allocation decisions
requires more than 5 minutes. For these settings, the introduction of approximations is in-
dispensable. The simulations emphasized that approximations adequately solve the problem
and result in fairly mild efficiency losses. However, for problem instances with more than
450 agents, CPLEX cannot always determine feasible solutions. For these cases, the use of
alternative approximations has to be considered.

Transferring the PlanetLab characteristics to the proposed auction schema implies that
MACE has to support 340 agents acting simultaneously on the system (cf. Section 4.1.4).
With respect to the above presented results, MACE is sufficient to fulfill PlanetLab’s resource
bids in a meaningful time. Consequently, Requirement RS (cf. Section 4.2) concerning the
computational tractability of the mechanism is fulfilled for the envisioned setting.

The remaining scenarios are concerned with the incentive properties and the resulting
efficiency losses of MACE. The results showed that the k-pricing schema does not punish
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manipulating agents rigorously. Agents can increase their individual utility when they are
dishonest and do not reveal their true preferences. However, the utility gains can only be
attained by a small manipulation factor and a small number of strategic buyers and sellers. If
agents manipulate by a high factor, they considerably raise the risk of not being allocated in
the auction. In addition, the efficiency losses caused by a small fraction of agents are fairly
small.

The effects obtained with domain independent bids get softened by the use of realistic
bidding scenarios. In these settings, the resulting utility gains are restricted to fewer cases.
These results further strengthen the application of MACE as a market mechanism for the
Grid.

The comparison with the approximated VCG schema showed that the k-pricing schema
has similar incentive properties in domain independent settings with an optimal winner de-
termination algorithm. With the application of realistic bids and the use of approximations,
the approximated VCG mechanism outperforms the k-price mechanism. However, cases in
which agents have a positive utility due to manipulations are restricted to small manipulation
factors. With regard to the tension between efficiency and computational tractability, the
application of the k-pricing schema for the Grid is superior.

In summary, the study showed that the mechanism is not incentive compatible and —
consequently — not efficient. However, the resulting losses are negligible with an increasing
number of truthful agents. As such, the auction schema is interpreted as approximative
incentive compatible and approximative efficient. Thus, Requirement R1 and Requirement
R2 (cf. Section 4.2) are roughly fulfilled. These results evince the practical applicability of
MACE for the Grid.



Chapter 9

Summary and Future Work

Treating distributed computation as an economy turns out to be quite fruitful in the
analysis, design, and control of such systems. In a sense, economics become a new
programming methodology!

(Huberman and Hogg 1995, p. 150)

The increasing standardization of Grid technologies enables the use of computational re-
sources as standardized commodities. Aggregations of computational resources and services
are gradually becoming utilities, much like energy. One of the key issues in aggregating
these resources is to compute allocation and scheduling decisions. In order to tackle this
problem, the main vision of this work is the application of markets for coordinating resource
allocations in Grids.

Currently, the canon of available market mechanisms only insufficiently accounts for the
peculiarities of the Grid and are thus widely inapplicable. A reason for this problem lies in
the different and oftentimes diametric requirements that stem from technical and economical
viewpoints. This work attempted to diminish this gap by designing, implementing, and
evaluating a market mechanism that is applicable for the Grid.

The previous chapters proposed the derivation of a multi-attribute combinatorial ex-
change for allocating and scheduling resources in the Grid. In contrast to other approaches,
the proposed mechanism simultaneously accounts for a variety of technical and economi-
cal requirements. This approach accounts for time and quality attributes of Grid resources,
co-allocation restrictions, as well as efficiency, incentive compatibility, and computational
tractability of the underlying auction schema. The mechanism provides buyers and sellers
with a rich bidding language that allows the formulation of bundles expressing either substi-
tutabilities or complementarities. A simulation study evinced the practical applicability of
the proposed auction.

This work is a step towards understanding the effects and strengths of applying markets
to the Grid. Contributions include the specification of a realistic Grid environment and an ex-
traction of its underlying requirements, the design and implementation of an auction schema
that meets these requirements, and an evaluation of the mechanism by means of a simula-
tion. The results of this work contribute to the further development of market engineering
by providing new design principles of combinatorial mechanisms, a simulation tool for their
evaluation, and new metrics for evaluating their performance.
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9.1 Review of this Work

Chapter 1 briefly outlined the advantages of Grid technologies and motivated the use of
markets to allocate Grid resources efficiently. The general objective of this work is the
design, implementation, and evaluation of a market mechanism that is applicable for trading
Grid resources. In order to fulfill this objective, four research questions were raised and
subsequently answered in the course of this work.

The basic concepts of Grid architectures and resource management systems were intro-
duced in Chapter 2. OGSA was highlighted as state of the art architecture for realizing
service-oriented Grids in practice. An essential component of this architecture comprises
resource management that is responsible for allocating, scheduling, and monitoring Grid re-
sources. A literature review revealed a set of requirements that have to be fulfilled by such
resource management systems.

Chapter 3 argued why markets should be applied to the resource allocation problem in
Grids and introduced tools and methods that assist in engineering markets. The basic con-
cepts of markets and mechanism design were introduced that built the formal basis for this
work. In addition, the market engineering approach was outlined. It offers a structured and
systematic procedure to design, implement, and evaluate market mechanisms in practice.

The foundations of Grid technologies and market mechanisms built the basis for the
environmental analysis described in Chapter 4. The characteristics of a Grid marketplace
were elicited by specifying potential trading objects, user characteristics, and target market
segments. On the basis of this analysis, requirements upon an adequate mechanism were
deduced by conflating technical and economical objectives of Grids and markets. Related
research concerning market implementations for traditional distributed systems and Grids
were reviewed with regard to their adherence to the specified requirements. The result of the
review emphasized that none of the proposed mechanisms fulfills all requirements.

Chapter 5 addressed the lack of adequate Grid market mechanisms by outlining the
design of a multi-attribute combinatorial exchange for allocating and scheduling Grid re-
sources. This included the definition of a bidding language that accounts for multiple at-
tributes and bundle bids, the formulation of a winner determination model that can attain ef-
ficient allocations, and the derivation of a pricing schema that provides incentives for agents
to bid truthfully.

The implementation of the proposed auction schema was described in Chapter 6. First,
state of the art algorithms for solving the winner determination problem of MACE were dis-
cussed. After that, the MACE market service was introduced that implements the proposed
allocation and pricing schemes. Finally, an analysis of the implemented mechanism revealed
open issues that require further evaluation by means of a simulation study.

Chapter 7 was concerned with the design of a Grid market model and its implementation
into a software system. The simulation model comprised different bidding scenarios that im-
itate agents submitting multi-attribute combinatorial bids to an auctioneer. Subsequently, the
simulation tool jCase was introduced that implements the proposed model. In addition, the
tool can be applied to study the latest available forms of combinatorial auction mechanisms.
A set of innovative metrics were introduced that can be applied to measure efficiency and
incentive compatibility for auction mechanisms. Further, these metrics are a step towards un-
derstanding the effects of suboptimal allocation decisions upon the economical performance
of auction mechanisms.
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Chapter 8 discussed the results obtained by the simulation study. The runtime analysis
showed that the auction schema is computationally very demanding. However, the use of
approximated solutions achieved adequate runtime results and fairly mild welfare losses. In
addition, the economical requirements upon a Grid mechanism are approximately fulfilled by
MACE. Comparing these characteristics with an existing Grid test-bed evinced the practical
applicability of the proposed auction.

9.2 Open Questions and Future Directions

In this work, several problems concerning market-based resource allocation in Grids were
addressed. However, there are still open issues that can serve as a starting point for future
work. First, extensions and limitations of the proposed auction schema are discussed. After
that, future work concerning the practical deployment of the mechanism into a real world
test-bed is outlined.

9.2.1 Limitations and Potential Extensions of this Approach

The derivation of MACE relies on the market engineering process that divides the underlying
problem into different stages. The following paragraphs discuss limitations and potential
extensions of the mechanism with respect to the processed stages.

Environmental Analysis of a Grid Market: The specification of the requirements is
driven by the identification of general properties and assumptions that are valid for most
resource suppliers and consumers. However, there may be application scenarios in which
the requirement list is insufficient or some of the items become unimportant. Future work
has to consider different application scenarios and — if necessary — refine specific require-
ments and adapt the mechanism.

In analogy to financial trading systems, the MACE market service will be hosted by a
commercial market operator. Consequently, additional factors such as trading fees influence
the outcome of the mechanism. Market engineering encompasses these issues by analyzing
potential business structures of market operators and their impact on the market performance
(Weinhardt et al. 2003; Burghardt 2006). However, such business structures were out of
scope for the work at hand. As such, future work has to consider and to analyze possible
business models for such operators.

Conceptual Design of MACE: In the design phase, several assumptions upon the tech-
nical infrastructure and agents have been made. The most critical one requires agents to
formulate their bids in a detailed fashion. This requires the specification of resource demand
and resource supply in the future as well as the determination of valuation and reservation
prices. Future work has to deal with bidding tools that support agents in specifying their
underlying resource characteristics and their preferences. This can be supported by related
work on resource prediction models (Smith 2004) and preference elicitation techniques (Co-
nen and Sandholm 2001).

Currently, MACE only supports the specification of cardinal resource attributes. Al-
though this is sufficient for most practical cases, there may be settings in which nominal
attributes are also required. In addition, network topology is only considered by the specifi-
cation of uplink and downlink rates of available network bandwidth. This may be practical
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in an in-house Grid where network constraints can sometimes be neglected. However, this
assumption may fail in networks that do not support advanced bandwidth reservation. Future
work has to consider these issues and extend the mechanism to support them.

The bidding language of MACE is based on pairs of attributes and values that syntac-
tically describe resources and their quality attributes. Consequently, demand and supply is
matched on the basis of attribute-based matching functions. This may be insufficient if an
agent is not only interested in one particular resource configuration but is also willing to
accept similar ones. To remedy this drawback, the use of ontology based bidding languages
has to be considered in the future (Lamparter and Schnizler 2006).

Algorithmic Considerations: The evaluation showed that the anytime algorithm is only
suitable for settings with less than 450 agents. Future research needs to consider alterna-
tive heuristics that simplify the winner determination problem. The application of genetic
algorithms may be adequate to solve the problem more quickly (Chu and Beasley 1998).
Moreover, distributed implementation techniques have to be considered that parallelize the
computational effort.

The current implementation neglects the communication complexity when agents submit
their bids to the auctioneer. In the future, bidding languages and encoding strategies have
to be considered that ensure bid submissions that cause low communication effort. The
implementation of an iterative MACE mechanism may be adequate to reduce the average
communication complexity (Parkes 2001).

Mechanism Evaluation: Future simulation studies of the mechanism need to consider
additional bidding scenarios with varying distribution and initial parameters. A more com-
prehensive study will improve and strengthen the reliability of the obtained results.

The current evaluation considers the interdependencies between economical efficiency,
incentive compatibility, and computational tractability. An interesting future direction lies in
an analysis of how these factor influence each other. Among others, this raises the question
how accurate a winner determination problem has to be approximated in order to preserve
the incentive properties of a mechanism.

9.2.2 Real World Application

A further step towards a functioning Grid market would be to confront the mechanism with
real data in a pilot run. Currently, two research projects named CATNETS and SORMA!
already address this issue by considering the integration of MACE into their middleware
infrastructures (Chacin et al. 2006).

In addition, the application in different business scenarios would reveal further insights
regarding the applicability and performance of markets in the Grid. On the one hand, this
can give insights into the users’ acceptance of the mechanism and their individual needs.
On the other hand, empirical data can serve as input parameter for further evaluation and
refinements of the mechanism.

The application of MACE in real world settings poses several interesting research direc-
tions: An important issue concerns the specification of setting-up costs for different services,

'See http://www.sorma—-project .eu/ for details.
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network latencies, and penalty costs for jobs that are not performed correctly. In addition,
the enforcement of market-based resource agreements as well as a functioning billing and
accounting infrastructure have to be considered. Finally, the application of markets in dis-
tributed computing infrastructures requires a sound and functionally proven security system.
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Appendix A
Proof of MACE Properties

Proof. (Theorem 5.4):

MACE Budget-Balance: To proof that MACE is budget-balanced, the prices that buyers
have to pay must be equal to the prices that sellers receive for their bundles. On the basis of
Definition 5.47 and Definition 5.49, this means:

D2 pn(S) =D D pia(S)): (A1)
neN S;eS meM S;eS
Let
V=" (S
neN S;eS8
be the prices of all buyers with

PV =D (#n(S)un(Si)sn(S5) = kY Bua(S))

neN S;e8 teT

3D 3p ) CRCAREARIEER)

neN S;eS teT

_ Z(Z Z 2t (S5 0n(S;) — k Z Z ﬁn,t(Sj))

teT neN S;es neN S;es

Each buyer n gets allocated at most one bundle S (XOR-constraint). As a consequence,
>_s;es Pnt(S;) can be replaced by [3,4(S};), due to the fact that 3,,(S}) is the only non
zero term of the whole summation. Based upon this simplification, the payments can be

formulated as
PY =D 2a(Sunl(S1) — B Y BualS1)).

teT neN neN
For the formalization of sellers’ prices, let oi;(n) be defined as
ar(n) = Z Z Ymn it (S7)rm(S;)-
meM S;eS

Based upon this definition, o0, ,,+(S5;) can be reformulated as

o (5,) _ ym,n,t(Sj)rm(Sj>/at<n) if at(”) >0
m,n,t\j 0 otherwise.
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As a consequence, it holds that

| a(n)/au(n) =1 if oy(n) >0
Z Z Omnt(:%) = { 0 otherwise.

meM S;eS

Now, let

= Z Z pljﬂ‘{m(sj)

meM SjES

be the prices of all sellers with

(Y [Zym,wsj)r DY S 056050

teT meM S;eS neN neN Sies
:Z(Z&t( Z Zzzomnt ﬂnt Sl))
teT neN meM S;eS neN S eS
=2 el + (18 S5 ualS) 3 3 omnel)])
teT neN neN Ses meM S;eS

Theterm ) . > s,es Om.n,t(S;) is only zero if no buyer gets allocated any bundle. If
this is the case, the prices of all buyers and sellers are zero, as the decision variables z,, +(+)
and Y, ,,.¢(-) are all zero. This results in a budget-balanced exchange.

The following equation only considers cases where at least one buyer gets allocated a
bundle, i.e., a;(n) > 0. This allows the reformulation to

= (S )+ (1 -0 33 Auls)).

teT neN neN S;eS
Replacing Zs cs Bnt(S;) by B,4(S;;) results in

=S () + =03 8u(8))

teT neN neN

Finally, Equation A.1 can be solved by

SN = 33 p(s)

neN S;e8 meM S;eS
S (D znalSien(si) k:Zﬁm $0) = (X am)+ 1=k Y Buls)
teT neN neN teT neN neN
S 2l Swa(8) = S cum)) = SO(D Bual )
teT neN neN teT neN
t;(n;zm Jua(S5) nEN a(n) = ;(%[zn,t(sn>vn(sn) 0l
S w5 = o) = (D zSen(s) - 3 aulm)
teT neN nEN teT neN neN

As a result, MACE is budget-balanced.
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MACE Individual Rationality: It is to show that the payment of each buyer n is always
less or equal than his valuation. In addition, the payments of each seller m have to be greater
or equal than his reservation prices.

For a buyer n, the payment is defined as (cf. Definition 5.47)

pﬁn(Sj) = xn(S )vn( kZ@zt

teT

The payment function of buyer n is individually rational, if

kE)%ﬂ%ZkEX%w%%@ﬂ—EjE)WM@MM&DZO

teT teT meM S;eS

As k > 0, it is sufficient to show that the inequality

20t (S0 (S) = DY Yt (ST (S)

meM S ES

is not violated for all buyers and sellers. This inequality is inherent by the definition of
the objective function of MAP. In case the inequality is violated, the value of the objective
function could be increased by not allocating bundle S; to buyer n.

Likewise, the payment function of seller m is defined as (cf. Definition 5.49)

pkm Zzymnt ZZZOm”t ﬂnt Sl)

neN teT neN SieS teT

To ensure individual rationality, the inequality

ZZZOmnt 5ntsl)

neN SeS teT

must be true. The term (3, ,(5;) is always greater or equal than zero. Otherwise, a higher
objective function could be attained by not generating a surplus in this time step (cf. Defini-
tion 5.46), i.e., by not allocating the bundle to the buyer. Furthermore, as ymm’t(Sj) > 0, the
term o,, , +(.S;) is also greater or equal than zero due to Definition 5.48.

In summary, MACE is individually rational for both, buyers and sellers. [
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Appendix B

Simulation Appendix

B.1 CPLEX Settings

Parameter Setting
IloCplex.IntParam.Cliques 2
IloCplex.DoubleParam.EpInt 0
IloCplex.DoubleParam.EpGap 0
IloCplex.IntParam.MIPEmphasis 1
IloCplex.IntParam.NodeFileInd 3
IloCplex.DoubleParam.TiLim 300
IloCplex.DoubleParam.TreLim 1000
IloCplex.DoubleParam.WorkMem 1200

Table B.1: Varied CPLEX settings
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B.2 Results: Optimal Winner Determination

B.2.1 Efficiency Loss

Modification 1B 2B,2S 6B,6S 12B,12S
Factor o o I o " o I o
5 2.64 | 1645 | 422 | 17.80 | 7.39 | 24.67 | 12.67 | 24.61
10 3.01 | 16.79 | 5.33 | 18.76 | 12.83 | 27.80 | 21.97 | 29.35
15 335 | 17.05 | 7.44 | 20.95 | 18.19 | 29.95 | 29.78 | 31.44
20 393 | 17.81 | 8.64 | 22.06 | 22.71 | 29.33 | 39.66 | 33.75
30 5.14 | 19.05 | 12.32 | 24.57 | 30.68 | 31.44 | 55.53 | 33.48
40 6.10 | 19.46 | 14.65 | 25.84 | 39.34 | 33.22 | 70.45 | 30.83
50 6.10 | 19.75 | 18.23 | 28.25 | 47.24 | 33.16 | 82.75 | 25.55
60 6.35 | 19.90 | 20.01 | 28.63 | 54.55 | 33.35 | 90.42 | 19.20
70 6.75 | 19.71 | 23.69 | 29.37 | 61.48 | 33.34 | 95.27 | 13.46
80 6.80 | 19.73 | 25.72 | 30.69 | 65.86 | 31.88 | 97.55 | 10.20
90 6.88 | 19.78 | 27.74 | 31.38 | 71.33 | 30.17 | 9945 | 3.89

Table B.2: Mean and standard deviation of the percentage decrease of successful agents in
setting /; with manipulating agents

B.2.2 Manipulating Agents
B.2.2.1 K-Price Incentive Compatibility

Modification 1B 2B,2S 6B,6S 12B,12S
Factor I o CcvV I o CcvV I o cv I o cv
5 163.07 165.26 | 1.01 28.53 | 101.65 | 3.56 12.79 | 40.09 3.13 -4.72 10.52 | -2.23
10 304.11 356.30 | 1.17 5449 | 141.83 | 2.60 16.75 65.60 3.92 -17.98 | 27.86 | -1.55
15 354.34 651.64 | 1.84 | 70.21 | 198.02 | 2.82 13.94 88.16 | 6.33 -37.07 | 46.59 | -1.26
20 394.15 866.14 | 220 | 76.84 | 250.30 | 3.26 10.05 | 10691 | 10.64 | -65.64 | 73.04 | -1.11
30 108.03 1496.25 | 13.85 39.07 347.56 | 8.90 -15.12 | 161.18 | -10.66 | -128.51 | 122.28 | -0.95
40 -337.20 | 1757.26 | -5.21 428 | 416.63 | 97.34 | -68.72 | 22390 | -3.26 | -198.49 | 171.43 | -0.86
50 -782.98 | 1715.50 | -2.19 | -106.81 | 489.54 | -4.58 | -132.07 | 261.49 | -1.98 | -280.96 | 239.89 | -0.85
60 -957.00 | 1734.06 | -1.81 | -183.33 | 573.75 | -3.13 | -198.24 | 306.48 | -1.55 | -330.86 | 267.63 | -0.81
70 -1251.33 | 1580.29 | -1.26 | -286.09 | 576.10 | -2.01 | -255.08 | 320.45 | -1.26 | -362.09 | 296.93 | -0.82
80 -1431.37 | 1435.13 | -1.00 | -368.29 | 606.36 | -1.65 | -295.69 | 331.31 | -1.12 | -376.54 | 317.72 | -0.84
90 -1496.45 | 1367.35 | -0.91 | -426.84 | 637.01 | -1.49 | -346.02 | 346.86 | -1.00 | -385.07 | 324.90 | -0.84

Table B.3: Utility gain of manipulating agents using the k-pricing schema in setting [,

Modification 1B 2B,2S 6B,6S
Factor " o I o I o
10 166.14 | 351.24 | 41.40 | 85.51 13.35 61.09
20 160.89 | 685.72 | 71.46 | 142.23 0.33 97.33
30 77.91 996.39 | 50.09 | 272.78 | -20.72 | 130.33
40 37.56 | 1.315.45 | 26.77 | 356.05 | -44.53 | 186.56
50 -570.13 | 1.430.10 | -59.81 | 369.51 | -83.29 | 198.57
60 -966.61 | 1.263.30 | -65.22 | 415.66 | -135.30 | 226.25

Table B.4: Utility gain of manipulating agents using the k-pricing schema in setting I

B.2.2.2 Approximated VCG Incentive Compatibility



APPENDIX B. SIMULATION APPENDIX 175

Modification 1B 2B,2S 6B,6S
Factor 7 o 7 o " o
10 247.80 299.75 60.65 139.51 19.30 63.26
20 397.93 622.73 85.89 | 243.45 2.12 124.89
30 377.78 | 1.011.88 | 77.42 | 34522 | -32.12 | 177.15
40 18543 | 1.338.61 | 47.37 | 419.44 | -86.46 | 247.08
50 -38.22 | 1.576.99 | -16.98 | 494.69 | -149.16 | 305.18
60 -404.06 | 1.722.06 | -162.25 | 566.37 | -221.55 | 321.28

Table B.5: Utility gain of manipulating agents using the k-pricing schema in setting /3

Modification 1B 2B,2S 6B,6S
Factor W o n o n o
10 176.55 594.62 61.50 | 119.84 | 19.98 63.61
20 196.38 967.55 61.25 | 237.14 | 10.07 124.17
30 278.26 | 1.236.19 | 80.82 | 301.73 | -20.26 | 178.25
40 192.58 | 1.548.19 | 27.43 | 398.37 | -88.02 | 240.39
50 -162.84 | 1.852.99 | -15.56 | 465.04 | -157.93 | 286.43
60 -616.66 | 1.978.50 | -98.05 | 531.20 | -197.39 | 311.78

Table B.6: Utility gain of manipulating agents using the k-pricing schema in setting /,

Modification 1B 2B,2S 6B,6S 12B,128

Factor o o Ccv n o Ccv w o cv i o cv
5 3789 8950 | 2.36 710 6334 8.92 491 3007 6.13 -606 789 -1.30

10 7432 13321 | 1.79 45 10938 | 242.25 -265 5573 | -21.04 | -2734 2416 | -0.88
15 8699 | 20378 | 2.34 | -1459 | 15258 | -10.46 | -2234 8116 -3.63 -6034 4374 | -0.72
20 8340 | 26394 | 3.16 | -3820 | 17948 | -4.70 -5307 | 10866 | -2.05 | -10727 | 6824 | -0.64
30 5110 | 37499 | 7.34 | -8717 | 23232 | -2.67 | -12275 | 14927 | -1.22 | -22706 | 12111 | -0.53
40 -8368 | 45293 | -5.41 | -14994 | 25359 | -1.69 | -18768 | 18017 | -0.96 | -29964 | 15897 | -0.53
50 -25259 | 43344 | -1.72 | -21229 | 26518 | -1.25 | -24392 | 19220 | -0.79 | -30090 | 15974 | -0.53
60 -34996 | 37251 | -1.06 | -25075 | 27299 | -1.09 | -28544 | 19652 | -0.69 | -30090 | 15974 | -0.53
70 -35825 | 36514 | -1.02 | -25695 | 27314 | -1.06 | -29088 | 19637 | -0.68 | -30090 | 15974 | -0.53
80 -35825 | 36514 | -1.02 | -25772 | 27274 | -1.06 | -29120 | 19636 | -0.67 | -30090 | 15974 | -0.53
90 -35825 | 36514 | -1.02 | -25761 | 27320 | -1.06 | -29154 | 19657 | -0.67 | -30090 | 15974 | -0.53

Table B.7: Utility gain of manipulating agents using the k-pricing schema in setting R

Modification 1B 2B,2S 6B,6S
Factor 1) o I o " o
10 5606.21 9585.14 1390.49 6271.13 256.22 5162.76
20 7740.77 18674.78 -962.85 10474.95 | -4045.80 8994.63
30 744398 | 2742599 | -2750.76 | 14212.49 | -9271.00 | 13804.83
40 8184.50 | 35272.21 | -8783.41 | 19112.74 | -16771.11 | 17995.05
50 -13853.70 | 41677.28 | -15231.67 | 18942.00 | -22668.13 | 19402.55
60 -31556.63 | 34695.92 | -21314.57 | 19056.80 | -26914.75 | 17721.25

Table B.8: Utility gain of manipulating agents using the k-pricing schema in setting R»
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Modification 1B 2B,2S 6B,6S
Factor n o n o n o
10 8117.21 13518.97 | -113.07 10899.92 | -960.30 6788.91
20 11088.66 | 27134.96 | -1800.64 | 17891.14 | -4733.49 | 12159.85
30 1232.84 | 41729.44 | -6006.06 | 22890.38 | -10676.34 | 16399.31
40 -9254.04 | 47753.82 | -11697.80 | 25321.33 | -17617.81 | 20288.98
50 -21872.47 | 47596.41 | -18041.74 | 26180.02 | -23253.29 | 19681.14
60 -32307.83 | 43529.14 | -24505.86 | 26819.83 | -27910.12 | 19425.77

Table B.9: Utility gain of manipulating agents using the k-pricing schema in setting R3

Modification 1B 2B,2S 6B,6S
Factor 12 o 7 o o o
10 6181.98 16356.59 -307.60 9439.58 -465.45 5720.34
20 8561.83 | 27005.44 | -2810.05 | 14083.68 | -4790.34 9926.74
30 7591.66 | 37992.79 | -7277.67 | 20658.21 | -10966.21 | 14580.95
40 -4596.00 | 47337.30 | -12921.74 | 24155.83 | -16862.82 | 17735.81
50 -24535.79 | 46427.37 | -19632.95 | 26762.06 | -22458.75 | 19140.19
60 -34616.28 | 40133.19 | -23292.29 | 26045.47 | -26971.86 | 19365.82

Table B.10: Utility gain of manipulating agents using the k-pricing schema in setting R,

Maodification 1B 2B,2S 6B,6S 12B,12S
Factor " o cv n o cv n o cv n o cv
5 150 | 175 1.17 26 57 | 217 10 28 | 2.97 -5 11 | -2.23
10 308 | 391 1.27 49 | 105 | 2.13 13 56 | 422 | -18 | 28 | -1.55
15 400 | 608 1.52 58 | 156 | 2.68 9 88 | 10.16 | -37 | 47 | -1.26
20 466 | 787 1.69 61 187 | 3.05 1 109 | 84.10 | -66 | 73 | -1.11
30 343 | 1131 3.30 28 | 258 | 9.10 | -23 | 163 | -7.21 | -129 | 122 | -0.95
40 10 | 1123 | 109.90 4 348 | 81.81 | -71 | 243 | -3.41 | -198 | 171 | -0.86
50 =372 | 1528 | -4.11 -94 | 401 | -4.28 | -129 | 286 | -2.23 | -281 | 240 | -0.85
60 -481 | 1602 | -3.33 | -173 | 502 | -2.91 | -194 | 332 | -1.71 | -331 | 268 | -0.81
70 =748 | 1610 | -2.15 | -271 | 559 | -2.06 | -251 | 343 | -1.37 | -362 | 297 | -0.82
80 916 | 1639 | -1.79 | -349 | 612 | -1.76 | -291 | 349 | -1.20 | -377 | 318 | -0.84
90 -979 | 1603 | -1.64 | -406 | 644 | -1.58 | -340 | 369 | -1.09 | -385 | 325 | -0.84

Table B.11: Utility gain of manipulating agents using the approximated VCG schema in
setting [,

Manipulating Modification factor
Agents 5 10 15 20 30 40 50 60 70 80 90
1B 0.32 | 048 | 0.33 | 0.29 | 0.13 | 0.07 | 0.06 | 0.04* | 0.03* | 0.02* | 0.02*
2B,2S 0.38 | 0.30 | 0.22 | 0.21 | 0.34 | 0.50 | 0.37 | 0.41 | 038 | 0.35 | 0.35
6B,6B 0.11 | 023 | 0.22 | 0.15 | 0.27 | 0.44 | 043 | 043 | 043 | 042 | 041

* denotes significant differences between the samples (p < 0.05).

Table B.12: P-values of a paired ¢-test with unequal variances to test equality of U GTOL’ . and
UGS 4y in setting Iy
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Modification 1B 2B,2S 6B,6S 12B,128
Factor pw | o [ CV v | o ] CV w | o JCV v | o [CV
5 1945 4083 2.10 502 2328 4.63 102 1798 | 17.55 -608 796 -1.31
10 3458 7697 2.23 -31 6283 | -201.25 -949 4202 | -4.43 -2734 2417 | -0.88
15 3589 11965 3.33 -1309 9186 -7.02 -3002 6697 | -2.23 | -6024 4380 | -0.73
20 2242 16330 | 7.28 -3551 13217 -3.72 -6135 9773 | -1.59 | -10713 | 6836 | -0.64
30 -1863 | 23840 | -12.80 | -8024 | 19786 -2.47 -12925 | 14476 | -1.12 | -22685 | 12136 | -0.53
40 -14511 | 43680 | -3.01 | -13800 | 24524 -1.78 -18812 | 18102 | -0.96 | -29943 | 15926 | -0.53
50 -30342 | 57575 | -1.90 | -19448 | 27878 -1.43 -23889 | 19809 | -0.83 | -30069 | 16003 | -0.53
60 -39644 | 60653 | -1.53 | -23123 | 29309 -1.27 -27839 | 20674 | -0.74 | -30069 | 16003 | -0.53
70 -40448 | 60929 | -1.51 | -23736 | 29682 -1.25 -28363 | 20712 | -0.73 | -30069 | 16003 | -0.53
80 -40448 | 60929 | -1.51 | -23835 | 29722 -1.25 -28398 | 20692 | -0.73 | -30069 | 16003 | -0.53
90 -40448 | 60929 | -1.51 | -23847 | 29717 -1.25 -28435 | 20708 | -0.73 | -30069 | 16003 | -0.53

Table B.13: Utility gain of manipulating agents using the

approximated VCG schema in

setting R;
Manipulating Modification factor
Agents 5 10 15 20 30 40 50 60 70 80 90
1B 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
2B,2S8 0.00 | 0.00 | 0.00 | 0.12 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
6B,6S 0.00 | 0.00 | 0.00 | 0.02 | 048 | 0.63 | 0.35 | 0.26 | 0.26 | 0.26 | 0.26

Table B.14: P-values of a paired U-test to test equality of UGS, and UGY, 4, in setting Ry

B.3 Results: Approximated Winner Determination

Modification 1B 4B,4S 10B,10S 20B,20S
Factor n 4 cv n 4 cv I 4 cv n 4 cv
10 -41.6 | 3654 | -8.8 | -32.2 | 2033 | -63 | -245 | 1485 | -6.1 | -147 | 1775 | -12.1
20 -1709 | 6212 | -3.6 | -83.8 | 2423 | -29 | -68.1 | 157.0 | -23 | -739 | 169.7 | -2.3
30 -567.4 | 889.2 | -1.6 | -181.8 | 3244 | -1.8 | -162.6 | 227.2 | -14 | -173.0 | 210.7 | -1.2
40 -918.2 | 1250.5 | -1.4 | -334.8 | 463.7 | -1.4 | -313.4 | 3014 | -1.0 | -314.1 | 2549 | -0.8

Table B.15: Utility gain of manipulating agents using the VCG schema in setting /; with
approximated allocation decisions
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Modification 1B 4B, 4S 10B,10S 20B,20S
Factor I o cv I o cv n o cv I o cv
10 197.9 | 648.7 33 46.0 | 280.1 | 6.1 | 58.2 | 159.5 | 2.7 | 47.1 | 100.2 | 2.1
20 171.0 | 1.2459 | 7.3 662 | 440.8 | 6.7 | 68.2 | 2356 | 3.5 | 449 | 1553 | 35
30 -1245 | 1.736.8 | -14.0 | 154 | 631.6 | 41.0 | 17.7 | 3619 | 20.5 | -3.7 | 222.7 | -60.2
40 -6354 | 2.0143 | -32 | -100.1 | 7643 | -7.6 | -94.0 | 4314 | 4.6 | -99.0 | 291.5 | -2.9

Table B.16: Utility gain of manipulating agents using the k-pricing schema in setting /; with
approximated allocation decisions

Modification 1B 4B,4S 10B,10S 20B,20S
Factor I o CcVv I o CcVv % o CcVv I o cv
10 -35.1 277.2 -7.9 11.6 1712 | 147 | -10.7 | 139.2 | -13.0 | -20.6 | 141.1 | -6.8
20 -1349 | 3418 | -2.5 | -23.1 | 200.5 | -8.7 | -31.4 | 1199 | -3.8 | -52.2 | 146.7 | -2.8
30 -2954 | 7007 | -24 | -63.0 | 217.7 | -3.5 | -89.3 | 182.5 | -2.0 | -110.7 | 187.3 | -1.7
40 -776.4 | 1.360.6 | -1.8 | -175.4 | 401.8 | -2.3 | -156.1 | 256.2 | -1.6 | -192.1 | 266.8 | -1.4

Table B.17: Utility gain of manipulating agents using the approximated VCG schema in
setting [; with approximated allocation decisions

Modification 1B 4B,4S 10B,10S 20B,20S
Factor In o cv In o cv N o Ccv In o cv
10 -2695 | 16510 | -6.1 | -2540.5 | 85584 | -3.4 | -2841 | 7634 | -2.7 | -2981 | 6605 | -2.2
20 -12594 | 29234 | -2.3 | -10120.2 | 14149.5 | -1.4 | -11101 | 12951 | -1.2 | -11256 | 10119 | -0.9
30 -22368 | 36458 | -1.6 | -16555.1 | 20340.8 | -1.2 | -19113 | 18259 | -1.0 | -19720 | 14241 | -0.7
40 -33484 | 42861 | -1.3 | -23024.0 | 22489.3 | -1.0 | -26762 | 21442 | -0.8 | -26822 | 16193 | -0.6

Table B.18: Utility gain of manipulating agents using the VCG schema in setting R; with
approximated allocation decisions

Modification 1B 4B 4S 10B,10S 20B,20S
Factor n o CcVvV I o cv n o cv I o cv
10 7383 | 16620 | 2.3 -997 15241 | -15.3 | -1334 | 10160 | -7.6 -805 7284 | 9.0
20 6688 | 31935 | 4.8 -7604 | 23330 | -3.1 | -9853 | 17634 | -1.8 | -9303 | 12589 | -14
30 61 43110 | 710.2 | -14747 | 28951 | -2.0 | -16977 | 21450 | -1.3 | -17130 | 15753 | -0.9
40 -9699 | 50352 | -5.2 | -20492 | 31348 | -1.5 | -23262 | 22760 | -1.0 | -23488 | 17071 | -0.7

Table B.19: Utility gain of manipulating agents using the k-pricing schema in setting R
with approximated allocation decisions

Modification 1B 4B,4S 10B,10S 20B,20S
Factor n o cv ©n o cv u o cv n o cv
10 -3734 | 17902 | -4.8 | -2151 8772 | -4.1 | -3071 8439 | -2.7 | -3293 | 7048 | -2.1
20 -11655 | 27494 | 2.4 | -9821 | 14126 | -1.4 | -11496 | 13459 | -1.2 | -11701 | 9645 | -0.8
30 -24652 | 41704 | -1.7 | -17925 | 21877 | -1.2 | -19728 | 18857 | -1.0 | -20473 | 13954 | -0.7
40 -37300 | 51840 | -1.4 | -25202 | 26488 | -1.1 | -27356 | 21169 | -0.8 | -27872 | 15599 | -0.6

Table B.20: Utility gain of manipulating agents using the approximated VCG schema in
setting [; with approximated allocation decisions
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The increasing interconnection between computers has allowed the implementation of
Grids. Within these Grids, a user has access to all forms of computational resources,
wherever they are hosted. This accessibility has major ramifications for organizations
as it allows them to reduce costs by outsourcing nonessential elements of their IT infra-
structure to service providers.

This book addresses the challenge of deciding which applications are to be allocated to
which resources at what time. The use of market mechanisms is proposed to coordinate
the resource allocation problem efficiently. A novel auction mechanism is introduced
that accounts for a variety of Grid characteristics by incorporating time and quality con-
straints. An evaluation of the economical and computational properties of the mecha-
nism highlights its practical applicability.
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