
Universität Karlsruhe (TH)
Forschungsuniversität · gegründet 1825

Fakultät für Informatik
Institut für Programmstrukturen
und Datenorganisation
Lehrstuhl Prof. Goos

The GrGen.NET User Manual

Refers to GrGen.NET Release 1.0

www.grgen.net

Jakob Blomer Rubino Geiß

July 2, 2007

Technical Report 2007-5
ISSN 1432-7864

ii

ABSTRACT

GrGen.NET is a graph rewrite tool enabling elegant and convenient development of graph
rewriting applications with comparable performance to conventionally developed ones. Gr-
Gen.NET uses attributed, typed, and directed multigraphs with multiple inheritance on
node and edge types. Extensive graphical debugging integrated into an interactive shell com-
plements the feature highlights of GrGen.NET. This user manual contains both, normative
statements in the sense of a reference manual as well as an informal guide to the features and
usage of GrGen.NET.

iii

iv

FOREWORD

First of all a word about the term “graph rewriting”. Some would rather say “graph trans-
formation”; some even think there is a difference between these two. We don’t see such
differences and use graph rewriting for consistency.

The GrGen project started in spring 2003 with the diploma thesis of Sebastian Hack
under supervision of Rubino Geiß. At that time we needed a tool to find patterns in graph
based intermediate representations used in compiler construction. We imagined a tool that
is fast, expressive, and easy to integrate into our compiler infrastructure. So far Optimix
was the only tool that brought together the areas of compiler construction and graph rewrit-
ing [Ass00]. However its approach is to feature many provable properties of the system per
se, such as termination, confluence of derivations, and complete coverage of graphs. This is
achieved by restricting the expressiveness of the whole formalism below Turing-completeness.
Our tool GrGen in contrast should be Turing-complete. Thus GrGen.NET provides the
user with strong expressiveness but leaves the task of proving such properties to the user.

To get an prototype quickly, we delegated the costly task of subgraph matching to a
relational database system [Hac03]. Albeit the performance of this implementation could be
improved substantially over the years, we believed that there was more to come. Inspired by
the PhD thesis of Heiko Dörr [Dör95] we reimplemented our tool to use search plan driven
graph pattern matching of its own. This matching algorithm evolved over time [Sza05,
Bat05b, Bat05a, Bat06, BKG07] and has been ported from C to C# [KG07, Kro07]. In the
year 2005 Varró [VVF06] independently proposed a similar search plan based approach.

Though we started four years ago to facilitate some compiler construction problems, in
the meantime GrGen.NET has grown into a general purpose tool for graph rewriting.

We want to thank all co-workers and students that helped during the design and imple-
mentation of GrGen.NET as well as the writing of this manual. Especially we want to thank
Dr. Sebastian Hack, G. Veit Batz, Michael Beck, Tom Gelhausen, Moritz Kroll, Dr. Andreas
Ludwig, and Dr. Markus Noga. Finally, all this would not happened without the productive
atmosphere and the generous support that Prof. Goos provides at his chair.

We wish all readers of the manual—and especially all users of GrGen.NET—a pleasant
graph rewrite experience. We hope you enjoy using GrGen.NET as much as we enjoy de-
veloping it.

If you find that any statement in this manual needs improvement, we encourage you to
contact the maintainer of GrGen.NET: rubino@ipd.uni-karlsruhe.de. Thank you for
using GrGen.NET.

Karlsruhe in July 2007, the authors of GrGen.NET

v

rubino@ipd.uni-karlsruhe.de

vi

CONTENTS

1 Introduction 1

1.1 What is GrGen.NET? . 1
1.2 Features of GrGen.NET . 1
1.3 System Overview . 2
1.4 What is Graph Rewriting? . 3
1.5 An Example . 4
1.6 The Tools . 5

1.6.1 GrGen.exe . 5
1.6.2 GrShell.exe . 6
1.6.3 LibGr.dll . 6
1.6.4 yComp.jar . 6

2 Graph Model Language 9

2.1 Building Blocks . 9
2.2 Type Declarations . 11

3 Rule Set Language 15

3.1 Building Blocks . 16
3.2 Rules and Tests . 19
3.3 Pattern Part . 23
3.4 Replace/Modify Part . 25

3.4.1 Implicit Definition of the Preservation Morphism r 25
3.4.2 Specification Modes for Graph Transformation 26
3.4.3 Syntax . 26

4 Types and Expressions 29

4.1 Built-In Types . 29
4.2 Expressions . 30
4.3 Type Related Conditions . 33
4.4 Annotations . 34

5 GrShell Language 35

5.1 Building Blocks . 35
5.2 GrShell Commands . 37

5.2.1 Common Commands . 37
5.2.2 Graph Commands . 38
5.2.3 Graph Manipulation Commands . 40
5.2.4 Graph Query Commands . 42
5.2.5 Graph Output Commands . 43
5.2.6 Action Commands (GRS) . 46

5.3 LGSPBackend Custom Commands 49
5.3.1 Graph Related Commands . 49

vii

viii

5.3.2 Action Related Commands . 49

6 Examples 53

6.1 Fractals . 53
6.2 Busy Beaver . 55

6.2.1 Graph Model . 55
6.2.2 Rule Set . 55
6.2.3 Rule Execution with GrShell . 58

Bibliography 61

Index 63

CHAPTER 1

INTRODUCTION

1.1 What is GrGen.NET?

GrGen (Graph Rewrite Generator) is a generative programming system for graph rewrit-
ing. For the potentially expensive matching problem, GrGen applies several novel heuristic
optimizations. According to Varró’s benchmark, it is at least one order of magnitude faster
than any other tool known to us.

In order to accelerate the matching step, we internally introduce search plans to represent
different matching strategies and equip these search plans with a cost model, taking the
present host graph into account. The task of selecting a good search plan is then considered
as an optimization problem [BKG07, Bat06]. For the rewrite step, our tool implements the
well-founded single-pushout approach (SPO, for explanation see [EHK+99]).

For ease of use, GrGen features an expressive specification language and generates pro-
gram code with a convenient interface. In contrast to systems like Fujaba [Fuj07] our pattern
matching algorithm is fully automatic and does not need to be tuned or partly be imple-
mented by hand. GrGen.NET [Gei07] is the successor of the GrGen tool presented at
ICGT 2006 [GBG+06]. The “.NET” postfix of the new name indicates that GrGen has
been reimplemented in C# for the Microsoft .NET or Mono environment [Mic07, Tea07].

1.2 Features of GrGen.NET

The process of graph rewriting can be divided into four steps: Representing a graph according
to a model, searching a pattern aka finding a match, performing changes to the matched spot
in the host graph, and, finally, selecting the next rule(s) for application. We have organized
the features of GrGen.NET according to this breakdown of graph rewriting.

• The graph model (meta-model) supports:

– Directed graphs

– Typed nodes and edges, with multiple inheritance on types

– Node and edge types can be equipped with typed attributes (like structs)

– Multigraphs (including multiple edges of the same type)

– Connection assertions to restrict the “shape” of graphs

• The pattern language supports:

– Plain isomorphic subgraph matching (injective mapping)

– Homomorphic matching for a selectable set of nodes/edges, so that the matching
is not injective

– Attribute conditions (including arithmetic operations on the attributes)

– Type conditions (including powerful instanceof-like type expressions)

1

2 Introduction

– Parameter passing to rules

– Dynamic patterns with iterative or recursive paths and graphs (yet to be imple-
mented)

• The rewrite language supports:

– Attribute re-calculation (using arithmetic operations on the attributes)

– Retyping of nodes/edges (a stronger version of casts known from common pro-
gramming languages)

– Creation of new nodes/edges of statically as well as dynamically computed types
(some kind of generic templates)

– Two modes of specification: A rule can either express changes to be made to the
match or replace the whole match (the semantics is always mapped to SPO)

– Returning certain edges/nodes for further computations

– Copying (duplicating) of elements form the match—comparable with sesqui-pushout
rewriting [CHHK06] (yet to be implemented)

• The rule application language (GrShell) supports:

– Composing several rules with logical and iterative sequence control (called graph
rewrite sequences, GRS)

– Various methods for creation/deletion/input/output of graphs/nodes/edges

– Stepwise and graphic debugging of rule application

– Graph rewrite sequences that can contain nested transactions (yet to be imple-
mented)

• Alternatively to GrShell, you can access the match and rewrite facility through
libGr. In this way you can build your own algorithmic rule applications in a .NET
language of your choice.

1.3 System Overview

Figure 1.1 gives an overview of the GrGen.NET system components. Table 1.1 shows the
GrGen.NET directory structure.

Rewrite
Rules (*.grg)

Graph Model
(*.gm)

GrGen.NET
Generator
(Java, C#)

Rewrite Rules
(C#)

Graph Model
(C#)

Graph Man-
agement (C#)

libGr (C#)

ApplicationsGrShell (C#)
Graph Rewrite
Script (*.grs)

Backend (Run Time)Frontend (Compile Time)

call

read / generate

Figure 1.1: GrGen.NET system components [Kro07]

1.4 What is Graph Rewriting? 3

bin Contains the .NET assemblies, in particular GrGen.exe (the graph rewrite sys-
tem generator), lgspBackend.dll (a GrGen.NET backend), LibGr.dll (the backend
API), and the shell GrShell.exe.

lib Contains the GrGen.NET generated assemblies (*.dll).
specs Contains the graph rewrite system source documents (*.gm and *.grg).

Table 1.1: GrGen.NET directory structure

A graph rewrite system1 is defined by a rule set file (*.grg) and zero or more graph model
description files (*.gm). Such a graph rewrite system is generated from these specifications
by GrGen.exe and can be used by applications such as GrShell. Figure 1.2 shows the
generation process.

model1.gm

model2.gm

model3.gm

rules1.grg GrGen.exe rules1Actions.dll

backend.dll rules1Model.dll

/specs /bin /lib

referencing read / generate

Figure 1.2: Generating a graph rewrite system

In general you have to distinguish carefully between a graph model (meta level), a host
graph, a pattern graph and a rewrite rule. In GrGen.NET pattern graphs are implicitly
defined by rules, i.e. each rule defines its pattern. On the technical side, specification docu-
ments for a graph rewrite system can be available as source documents for graph models and
rule sets (plain text *.gm and *.grg files) or as their translated .NET modules, either C#
source files or their compiled assemblies (*.dll).

Generating a GrGen.NET graph rewrite system may be considered as preliminary task.
The actual process of rewriting as well as dealing with host graphs is performed by Gr-
Gen.NET’s backend. GrGen.NET provides a backend API—the .NET library libGr. For
most issues—in particular for experimental purposes—you might rather want to work with
the GrShell because of its more convenient interface. However, GrShell does not provide
the full power of the libGr; see also note 6 on page 23.

1.4 What is Graph Rewriting?

The notion of graph rewriting as understood by GrGen.NET is a method for declaratively
specifying “changes” to a graph. This is comparable to the well-known term rewriting.
Normally you use one or more graph rewrite rules to accomplish a certain task. GrGen.NET
implements an SPO-based approach. In the simplest case such a graph rewrite rule consists
of a tuple L → R, whereas L—the left hand side of the rule—is called pattern graph and
R—the right hand side of the rule—is the replacement graph.

Moreover we need to identify graph elements (nodes or edges) of L and R for preserving
them during rewrite. This is done by a preservation morphism r mapping elements from L

1In this context, system is not a CH0-like grammar rewrite system, but rather a set of interacting software
components.

4 Introduction

L R

H H ′

Pattern Graph

Match m

Host Graph

Rewrite Graph

Result Graph

Preservation Morphism r

Rule

Rule Application

Figure 1.3: Basic Idea of Graph Rewriting

to R; the morphism r is injective, but needs to be neither surjective nor total. Together with
a rule name p we have p : L

r−→ R.
The transformation is done by application of a rule to a host graph H. To do so, we

have to find an occurrence of the pattern graph in the host graph. Mathematically speaking,
such a match m is an isomorphism from L to a subgraph of H. This morphism may not be
unique, i.e. there may be several matches. Afterwards we change the matched spot m(L) of
the host graph, such that it becomes an isomorphic subgraph of the replacement graph R.
Elements of L not mapped by r are deleted from m(L) during rewrite. Elements of R not in
the image of r are inserted into H, all others (elements that are mapped by r) are retained.
The outcome of these steps is the resulting graph H ′. In symbolic language: H

m,p
==⇒ H ′.

1.5 An Example

We’ll have a look at a small example. Graph elements (nodes and edges) are labeled with
and identifier. If a type is necessary then it is stated after a colon. We start using a special
case to construct our host graph: an empty pattern always produces exactly one2 match
(independent of the host graph). So we construct an apple by applying

p0 : ∅ −→

e1

e2

e3 e4

e5

to the empty host graph. As the result we get an apple as new host graph H. Now we want
to rewrite our apple with stem to an apple with a leaflet. So we apply

p1 :

a

b

x −→

c

b

y z

2Because of the uniqueness of the total and totally undefined morphism.

1.6 The Tools 5

to H and get the new host graph H1, something like this:

e1

e2

e3 e4

e5

p1=====⇒

e1

e2

e6 e7

e4

e5

What happened? GrGen.NET has arbitrarily chosen one match out of the set of possible
matches, because x matches edge e3 as well as e1. A correct solution could make use of edge
type information. We have to change rule p0 to generate the edge e1 with a special type
“stem”. And this time we will even keep the stem. So let

p2 :

a

b

x : stem −→

c

b

a

xy
z

.

If we apply p2 to the modified H1 this leads to

e1 : stem

e2

e3 e4

e5

p2=====⇒

e1 : stem

e2

e3 e4

e5

.

1.6 The Tools

All the programs and libraries of GrGen.NET are licensed under LGPL. Notice that the
yComp graph viewer is not a part of GrGen.NET; yComp ships with its own license.
Although yComp is not free software, it’s free for use in academic and non-commercial areas.

1.6.1 GrGen.exe

The GrGen.exe assembly implements the GrGen.NET generator. The GrGen.NET gen-
erator parses a rule set and its model files and compiles them into .NET assemblies. The
compiled assemblies interact with the GrGen.NET backend.

6 Introduction

Usage
[mono] GrGen.exe [-use <existing-dir>] [-d] <rule-set> [<output-dir>]
rule-set is a file containing a rule set specification according to chapter 3. Usually such
a file has the suffix .grg. The suffix .grg may be omitted. By default GrGen.NET
tries to write the compiled assemblies to the directory ../lib relative to the path of
GrGen.exe. This can be changed by the optional parameter output-dir.

Options
-d Enable debug output. A subdirectory tmpgrgenn3 within the current direc-

tory will be created. This directory contains:

• printOutput.txt—a snapshot of stdout during program execution.

• NameActions.cs—the C# source file of the rule-setActions.dll as-
sembly.

• NameModel.cs—the C# source file(s) of the rule-setModell.dll assem-
bly.

-use Don’t re-generate C# source files. Instead use the files in existing-dir to build
the assemblies.

Requires
.NET 2.0 (or above) or Mono 1.2.2 (or above). Java Runtime Environment 1.5 (or
above).

1.6.2 GrShell.exe

The GrShell is a shell application of the libGr. GrShell is capable of creating, manip-
ulating, and dumping graphs as well as performing graph rewriting with graphical debug
support. For further information about the GrShell language see chapter 5.

Usage
[mono] grShell.exe [-c "<commands>" | <grshell-script>]
Opens the interactive shell. The GrShell will execute the commands in grshell-script
(usually a *.grs file) immediately.

Options
-c Execute the quoted GrShell commands immediately. Instead of a line break

use a double semicolon ;; to separate commands.

Requires
.NET 2.0 (or above) or Mono 1.2.2 (or above).

1.6.3 LibGr.dll

The libGr is a .NET assembly implementing GrGen.NET’s API. See the extracted HTML
documentation for interface descriptions.

1.6.4 yComp.jar

yComp [KBG+07] is a graph visualization tool based on yFiles [yWo07]. It is well integrated
in GrGen.NET, but it’s not a part of GrGen.NET. yComp implements several graph
layout algorithms and has file format support for VCG, GML and YGF among others.

3n is an increasing number.

1.6 The Tools 7

Usage
Usually yComp will be loaded by the GrShell. You might want to open yComp
manually by typing
java -jar yComp.jar [<graph-file>]
The graph-file may be any graph file in a supported format. yComp will open this file
on startup.

Hints
Do not use the compiler graph layout algorithm (yComp’s default setting). Instead
Organic or Orthogonal might be good choices. Use the rightmost blue play button to
start layout process. This may take a while, depending on the graph size:

Requires
Java Runtime Environment 1.5 (or above).

8 Introduction

CHAPTER 2

GRAPH MODEL LANGUAGE

The key features of GrGen.NET graph models as described by Geiß et al. [GBG+06, KG07]
are given below:

Types
Nodes and edges are typed. This is similar to classes in common programming lan-
guages, except for the concept of methods that GrGen.NET nodes and edges don’t
support.

Attributes
Nodes and edges can possess attributes. The set of attributes assigned to a node or
edge is determined by its type. The attributes themselves are typed, too.

Inheritance
Node and edge types (classes) can be composed by multiple inheritance. Node and
Edge are built-in root types of node and edge types, respectively. Inheritance eases the
specification of attributes because subtypes inherit the attributes of their super types.
Note that GrGen.NET lacks a concept of overwriting. On a path in the type hierarchy
graph from a type up to the built-in root type there must be exactly one declaration for
each attribute identifier. Furthermore if multiple paths from a type up to the built-in
root type exist, the declaring types for an attribute identifier must be the same on all
such paths.

Connection Assertions
To specify that certain edge types should only connect specific nodes, we include con-
nection assertions. Furthermore the number of outgoing and incoming edges can be
constrained.

In this chapter as well as in chapter 5 (GrShell) we use excerpts of Example 1 (the Map
model) for illustration purposes.

2.1 Building Blocks

NOTE (1)

The following syntax specifications make heavy use of syntax diagrams (also known as rail
diagrams). Syntax diagrams provide a visualization of EBNFa grammars. Follow a path along
the arrows through a diagram to get a valid sentence (or subsentence) of the language. Ellipses
represent terminals whereas rectangles represent non-terminals. For further information on
syntax diagrams see [MMJW91].

aExtended Backus–Naur Form.

9

10 Graph Model Language

EXAMPLE (1)

The following toy example of a model of road maps gives a rough picture of the language:

1 model Map;
2

3 enum resident {village = 500, town = 5000, city = 50000}
4

5 node class sight;
6

7 node class city {
8 size: resident;
9 }

10

11 const node class metropolis extends city {
12 river: string;
13 }
14

15 abstract node class abandoned_city extends city;
16 node class ghost_town extends abandoned_city;
17

18 edge class street;
19 edge class trail extends street;
20 edge class highway extends street
21 connect metropolis [+] -> metropolis [+]
22 {
23 jam: boolean;
24 }

Basic elements of the GrGen.NET graph model language are identifiers to denominate types,
attributes, and the model itself. The GrGen.NET graph model language is case sensitive.

Ident, IdentDecl
A non-empty character sequence of arbitrary length consisting of letters, digits, or under-
scores. The first character must not be a digit. Ident and IdentDecl differ in their role:
While IdentDecl is a defining occurrence of an identifier, Ident is a using occurrence. An
IdentDecl non-terminal can be annotated. See Section 4.4 for annotations of declarations.

NOTE (2)

The GrGen.NET model language does not distinguish between declarations and definitions.
More precisely, every declaration is also a definition. For instance, the following C-like pseudo
GrGen.NET model language code is illegal:

1 node class t_node;
2 node class t_node {
3 ...
4 }

Using an identifier before defining it is allowed. Every used identifier has to be defined exactly
once.

2.2 Type Declarations 11

NodeType, EdgeType, EnumType
These are (semantic) specializations of Ident to restrict an identifier to denote a node type,
an edge type, or an enum type, respectively.

2.2 Type Declarations

GraphModel

- model
�� �
- IdentDecl - ;

���
�
�TypeDeclaration �

�

-

The graph model consists of its name IdentDecl and type declarations defining specific node
and edge types as well as enums.

TypeDeclaration

- EnumDeclaration�
�- ClassDeclaration

�

-

ClassDeclaration defines a node type or an edge type. EnumDeclaration defines an enum
type for use as attribute of nodes or edges. Like all identifier definitions, types do not need
to be declared before they are used.

EnumDeclaration

- enum
�� �
- IdentDecl - {

���
- IdentDecl �
�- =

���
- IntExpr

�

�
� ,

���
�
�

- }

���
-

Defines an enum type. A GrGen.NET enum is internally represented as int (see Sec-
tion 4.1).

EXAMPLE (2)

1 enum Color {red, green, blue}
2 enum Resident {village = 500, town = 5000, city = 50000}
3 enum AsInC {a = 2, b, c = 1, d, e = (int)Resident::village + c}

The semantics is as in C [SAI+90]. So, the following holds: red = 0, green = 1, blue = 2,
a = 2, b = 3, c = 1, d = 2, and e = 501.

ClassDeclaration

�
�- abstract

�� �

�

�
�- const

�� �

�

- NodeClass�
�- EdgeClass

�

-

Defines a new node type or edge type. The keyword abstract indicates that you cannot
instantiate graph elements of this type. Instead you have to derive non-abstract types to
create graph elements. The abstract-property will not be inherited by subclasses, of course.

12 Graph Model Language

EXAMPLE (3)

We adjust our map model and make city abstract:

1 abstract node class city {
2 size: int;
3 }
4 abstract node class abandoned_city extends city;
5 node class ghost_town extends abandoned_city;

You will be able to create nodes of type ghost town, but not of type city or abandoned city.
However, nodes of type ghost town are also of type abandoned city as well as of type city
and they have the attribute size, hence.

The keyword const indicates that rules may not write to attributes (see also Section 3.4,
eval). However, such attributes are still writable by libGr and GrShell directly. This
property applies to attributes defined in the current class, only. It does not apply to inherited
attributes. The const property will not be inherited by subclasses, either. If you want a
subclass to have the const property, you have to set the const modifier explicitly.

NodeClass

- node
�� �
- class

�� �
- IdentDecl �
�- extends

�� �
- NodeType�
� ,

���
�
�

�

�

�
� - ;

���
�
�- {

���
- AttributeDeclarations - }
���

�

-

Defines a new node type. Node types can inherit from other node types defined within the
same file. If the extends clause is omitted, NodeType will inherit from the built-in type Node.
Optionally nodes can possess attributes.

EdgeClass

- edge
�� �
- class

�� �
- IdentDecl �
�- extends

�� �
- EdgeType�
� ,

���
�
�

�

�

�
��

�ConnectAssertions �

�

- ;
���
�

�- {
���
- AttributeDeclarations - }

���

�

-

Defines a new edge type. Edge types can inherit from other edge types defined within the
same file. If the extends clause is omitted, EdgeType will inherit from the built-in type Edge.
Optionally edges can possess attributes. A connection assertion specifies that certain edge
types should only connect specific nodes. Moreover, the number of outgoing and incoming
edges can be constrained.

2.2 Type Declarations 13

NOTE (3)

It is not forbidden to create graphs that are invalid according to connection assertions. Gr-
Gen.NET just enables you to check, whether a graph is valid or not. See also Section 5.2.2,
validate.

ConnectAssertions

- connect
�� �
- NodeConstraint - ->

�� �
- NodeConstraint�
� ,

���
�
�

-

NodeConstraint

- NodeType �
�- [

���
- *
���
�

�- +
���
�- Number

�- RangeConstraint

�

-]
���

�

-

RangeConstraint

- Number - :
���
- *

���
�
�- Number

�

-

A connection assertion is denoted as a pair of node types in conjunction with their multiplic-
ities. A corresponding edge may connect a node of the first node type or one of its subtypes
(source) with a node of the second node type or one of its subtypes (target). The multiplicity
is a constraint on the out-degree and in-degree of the source and target node type, respec-
tively. Number is an int constant as defined in Section 4.2. See Section 5.2.2, validate, for
an example. Table 2.1 describes the multiplicity definitions.

[n:*] The number of edges incident to a node of that type is unbounded. At least n
edges must be incident to nodes of that type.

[n:m] At least n edges must be incident to nodes of that type, but at most m edges
may be incident to nodes of that type (m ≥ n must hold).

[*] Abbreviation for [0:*].
[+] Abbreviation for [1:*].
[n] Abbreviation for [n:n].

Table 2.1: GrGen.NET node constraint multiplicities

AttributeDeclarations

�
�- IdentDecl - :

���
- AttributeType - ;
���

�

�
�

�

-

14 Graph Model Language

AttributeType

- PrimitiveType�
�- EnumType

�

-

Defines a node or edge attribute. Possible types are enumeration types (enum) and primitive
types. See Section 4.1 for a list of built-in primitive types.

CHAPTER 3

RULE SET LANGUAGE

The rule set language forms the core of GrGen.NET. Rule files refer to zero1 or more graph
models and specify a set of rewrite rules. The rule language covers the pattern specification
and the replace/modify specification. Attributes of graph elements can be re-evaluated during
an application of a rule. The following rewrite rule mentioned in Geiß et al. [GBG+06] gives
a rough picture of the language:

EXAMPLE (4)

1 actions SomeActions using SomeModel;
2

3 rule SomeRule {
4 pattern {
5 n1 : NodeTypeA;
6 n2 : NodeTypeA;
7 hom(n1, n2);
8 n1 --> n2;
9 n3: NodeTypeB;

10 negative {
11 n3 -e1:EdgeTypeA-> n1;
12 if {n3.a1 == 42*n2.a1;}
13 }
14 negative {
15 n4: Node \ (NodeTypeB);
16 n3 -e1:EdgeTypeB-> n4;
17 if {typeof(e1) >= EdgeTypeA;}
18 }
19 }
20 replace {
21 n5: NodeTypeC<n1>;
22 n3 -e1:EdgeTypeB-> n5;
23 eval {
24 n5.a3 = n3.a1*n1.a2;
25 }
26 }
27 }

In this chapter we use excerpts of Example 4 (SomeRule) for illustration purposes.

1Omitting a graph meta model means that GrGen.NET uses a default graph model. The default model
consists of the base type Node for vertices and the base type Edge for edges.

15

16 Rule Set Language

3.1 Building Blocks

The GrGen.NET rule set language is case sensitive. The language makes use of several
identifier specializations in order to denominate all the GrGen.NET entities.

Ident, IdentDecl
A non-empty character sequence of arbitrary length consisting of letters, digits, or under-
scores. The first character must not be a digit. Ident may be an identifier defined in a graph
model (see Section 2.1). Ident and IdentDecl differ in their role: While IdentDecl is a defining
occurrence of an identifier, Ident is a using occurrence. An IdentDecl non-terminal can be
annotated. See Section 4.4 for annotations of declarations.

NOTE (4)

As in the GrGen.NET model language (see note 2) every declaration is also a definition.
Using an identifier before defining it is allowed. Every used identifier has to be defined exactly
once.

ModelIdent, TypeIdent, NodeType, EdgeType
These are (semantic) specializations of Ident. TypeIdent matches every type identifier, i.e. a
node type, an edge type, an enumeration type or a primitive type. All the type identifiers
are actually type expressions. See Section 4.3 for the use of type expressions.

Graphlet

- GraphletNode �
�- Continuation

�

�
�- Continuation

�

- ;

���
-

Continuation

- GraphletEdge �
�- GraphletNode �

�- Continuation

�

�

-

A graphlet specifies a connected subgraph. GrGen.NET provides graphlets as a descriptive
notation to define both, patterns to search for as well as the subgraphs that replace or modify
matched spots in a host graph. Any graph can be specified piecewise by a set of graphlets.
In Example 4, line 8, the statement n1 --> n2 is the node identifier n1 followed by the
continuation graphlet --> n2.

All the graph elements of a graphlet have names. The name is either user assigned or a
unique internal, non-accessible name. In the second case the graph element is called anony-
mous. For illustration purposes we use a $<number> notation to denote anonymous graph
elements in this document. For example the graphlet n1 --> n2 contains an anonymous
edge; thus can be understood as n1 -$1:Edge-> n2. Names must not be redefined; once
defined, a name is bound to a graph element. We use the term “binding of names” because
a name not only denotes a graph element of a graphlet but also denotes the mapping of the
abstract graph element of a graphlet to a concrete graph element of a host graph. So graph
elements of different names are pair wise distinct except for homomorphically matched graph

3.1 Building Blocks 17

elements (see Section 3.3). For instance v:NodeType1 -e:EdgeType-> w:NodeType2 selects
some node of type NodeType1 that is connected to a node of type NodeType1 by an edge
of type EdgeType and binds the names v, w, and e. If v and w are not explicitly marked
as homomorphic, the graph elements they bind to are distinct. Binding of names allows for
splitting a single graphlet into multiple graphlets as well as defining cyclic structures.

EXAMPLE (5)

The following graphlet (n1, n2, and n3 are defined somewhere else)

1 n1 --> n2 --> n3 <-- n1;

is equivalent to

1 n2 --> n3;
2 n1 --> n2;
3 n3 <-- n1;

and n1 --> n3 is equivalent to n3 <-- n1, of course.

The visibility of names is determined by scopes. Scopes can be nested. Names of surrounding
scopes are visible in inner scopes. Usually a scope is defined by { and }. In contrast to pure
syntactic scoping, the replace/modify part is a direct inner scope of the pattern part. In
Example 4, lines 14 to 18, the negative condition uses n3 from the surrounding scope and
defines n4 and e1. We may safely reuse the variable name e1 in the replace part.

GraphletNode

- Ident�
�- .

���
��
�- IdentDecl

�

- :

���
- NodeType �
�- TypeConstraint

�- <
���
- Ident - >

���

�

�

-

Specifies a node of type NodeType with respect to TypeConstraint (see Section 4.3, Type-
Constraint). Type constraints are allowed in the pattern part only. The . is an anonymous
node of the base type Node. Remember that every node type has Node as super type. The <>
operator retypes a node. Retyping is allowed in the replace/modify part only (see Section 3.4,
Retyping).

Graphlet Meaning
x:NodeType; The name x is bound to a node of type NodeType or one of its subtypes.
:NodeType; $1:NodeType
.; $1:Node
x; The node, x is bound to.

18 Rule Set Language

GraphletEdge

- -
���
�

�- EdgeRefinement

�

- ->

�� �
�
�- <-

�� �
�
�- EdgeRefinement

�

- -

���

�

-

EdgeRefinement

- Ident�
��

�- IdentDecl

�

- :

���
- EdgeType �
�- TypeConstraint

�- <
���
- Ident - >

���

�

�

-

Specifies an edge. Anonymous edges are specified by --> or <-- resp. -:T-> or <-:T- for
an edge type T. For a more detailed specification you can use the inplace notated EdgeRe-
finement clause. Type constraints are allowed in the pattern part only (see Section 4.3,
TypeConstraint). The <> operator retypes an edge. Retyping is allowed in the replace/mod-
ify part only (see Section 3.4, Retyping).

Graphlet Meaning
-e:EdgeType-> ; The name e is bound to an edge of type EdgeType or one of its

subtypes.
-:EdgeType-> ; -$1:EdgeType-> ;
--> ; -$1:Edge-> ;
-e-> ; The edge, e is bound to.

As the above table shows, edges can be defined and used separately, i.e. without their incident
nodes. Beware of accidentally “redirecting”2 an edge: The graphlets

-e:Edge-> .;
x:Node -e-> y:Node;

are illegal, because the edge e would have two destinations: an anonymous node and y.
However, the graphlets

-e-> ;
x:Node -e:Edge-> y:Node;

are allowed, but the first graphlet -e-> is superfluous. In particular this graphlet does not
identify or create any “copies”, neither if the graphlet occurs in the pattern part nor if it
occurs in the replace part.

2You cannot directly express the redirection of edges. This a direct consequence of the SPO approach.
Redirection of edges can be “simulated” by either deleting and re-inserting an edge, or more indirect by
re-typing of nodes.

3.2 Rules and Tests 19

EXAMPLE (6)

Some attempts to specify a loop edge:

Graphlet Meaning
x:Node -e:Edge-> x; The edge e is a loop.
x:Node -e:Edge-> ; -e-> x; The edge e is a loop.
-e:Edge-> x:Node; The edge e may or may not be a loop.
. -e:Edge-> .; The edge e is certainly not a loop.

NOTE (5)

Although both, the pattern part and the replace/modify part use graphlets, there are subtle
differences between them. These concern the TypeConstraint clause, the retype operator <>,
and the scope of defined graph element names: Names defined within the pattern part are
valid in the pattern part as well as in the replace/modify part. Names defined within the
replace/modify part are unknown to the pattern part.

3.2 Rules and Tests

The structure of a rule set file is as follows:

RuleSet

- actions
�� �
- IdentDecl �

�- using
�� �
- ModelIdent�

� ,
���
�

�

�

- ;

���
�

�
� - TestDeclaration�

�- RuleDeclaration

�

�
�

�

-

A rule set consists of the underlying graph models and several rewrite rules. In case of
multiple graph models, GrGen.NET uses the union of these models. In this case beware of
conflicting declarations. There is no built-in conflict resolution mechanism like packages or
namespaces for models. If necessary you can use prefixes as you might do in C.

TestDeclaration

- test
�� �
- ActionSignature - {

���
- Pattern - }
���
-

RuleDeclaration

- rule
�� �
- ActionSignature - {

���
- Pattern - Replace - }
���
-

Declares a single rewrite rule such as SomeRule. It consists of a pattern part (see Section 3.3)
in conjunction with its rewrite/modify part (see Section 3.4). A test has no rewrite specifi-
cation. It’s intended to check whether (and maybe how many times) a pattern occurs.

20 Rule Set Language

EXAMPLE (7)

Some graphlets:

x:Node --> . --> . --> . --> x;

. <-- x:Node --> .;

. <-- x --> .;

e1 : stem

e2

e3 e4

e5

. <-e1:stem- n1:Node -e2:Edge-> . -e3:Edge-> .
-e4:Edge-> . -e5:Edge-> n1;

n1 --> n2:Node;
n1 --> n2;

. --> . <-- . <-- . --> .;

e -e:Edge->
<-- . -e-> . <-- ;

And some illegal graphlets:

. -e:Edge-> .; . -e-> .; Would affect redirecting of edge e.

x -e:T-> y; x -e-> x; Would affect redirecting of edge e.

x:Node; negative {y:Node; hom(x,y)} Here x must not occur in the hom statement.
See Section 3.3 for further information.

<-- --> ; There must be at least a node between the
edges.

3.2 Rules and Tests 21

EXAMPLE (8)

We define a test SomeCond

1 test SomeCond {
2 pattern {
3 n: SeldomNodeType;
4 }
5 }

and execute in GrShell:

1 grs SomeCond & SomeRule

SomeRule will only be executed, if a node of type SeldomNodeType exists. For graph rewrite
sequences in GrShell see Section 5.2.6.

ActionSignature

- IdentDecl �
�- Parameters

�

�
�- :

���
- ReturnTypes

�

-

The signature sets the name of a rewrite rule to IdentDecl and optionally names and types
of formal parameters as well as a list of return types. Parameters and return types provide
users with the ability to exchange graph elements with rule. This is similar to parameters of
procedural languages.

Parameters

- (
���
 - IdentDecl - :

���
- NodeType�
�- -

���
- IdentDecl - :
���
- EdgeType - ->

�� �

�

�
� ,

���
�
�

-)

���
-

Within a rule, parameters are treated as (predefined) graph elements of the pattern. Even
if a supplied parameter value is undefined, it is treated as valid node or edge definition. So
in any case a graph element of the specified type has to be mapped. GrGen.NET assumes
the lookup operation for parameters to be in O(1). In case of an undefined parameter value
this might lead to bad search plans, because GrGen.NET has to actually search for such a
graph element.

ReturnTypes

- (
���
 - NodeType�

�- EdgeType

�

�
� ,

���
�
�

-)

���
-

The return types specify edge and node types of graph elements that are returned by the
replace/modify part. If return types are specified, the return statement is mandatory. Oth-
erwise no return statement must occur. See also Section 3.4, return.

22 Rule Set Language

EXAMPLE (9)

Assume the following test that checks whether the edge e is not incident to x:

1 test r(-e:Edge->, x:Node) {
2 pattern {
3 negative {
4 -e-> x;
5 }
6 negative {
7 x <-e-;
8 }
9 }

10 }

If x and e are undefined, test r is equivalent to test s:

1 test s {
2 pattern {
3 x:Node;
4 -e:Edge->;
5 negative {
6 -e-> x;
7 }
8 negative {
9 x <-e-;

10 }
11 }
12 }

In particular, test s is successful if there is some edge in the host graph that is not incident
to x.

EXAMPLE (10)

We extend SomeRule (Example 4) with a user defined node to match and we want it to return
the rewritten graph elements n5 and e1.

1 rule SomeRuleExt(varnode: Node): (Node, EdgeTypeB) {
2 pattern {
3 n1: NodeTypeA;
4 ...
5 }
6 replace {
7 varnode;
8 ...
9 return(n5, e1);

10 eval {
11 ...

We don not define varnode within the pattern part because this is already covered by the
parameter specification itself.

3.3 Pattern Part 23

3.3 Pattern Part

Pattern

- pattern
�� �
- {

���
�
�PatternStatement �

�

- }

���
-

A pattern consists of zero or more pattern statements. All the pattern statements must be
fulfilled by a subgraph of the host graph in order to form a match. An empty pattern always
produces exactly one (empty) match. This is caused by the uniqueness of the total and totally
undefined function.

Names defined for graph elements may be used by other pattern statements as well as
by replace/modify statements. Like all identifier definitions, such names may be used before
their declaration. See Section 3.1 for a detailed explanation of names and graphlets.

NOTE (6)

The application of a rule is not deterministic (remember the example of the introduction in
Section 1.5); in particular there may be more than one subgraph that matches the pattern.
Whereas the GrShell selects one of them arbitrarily (without further abilities to control the
selection), the underlying libGr provides a mechanism to deal with such ambiguities. libGr
allows for splitting a rule application into two steps: Find all the subgraphs of the host graph
that match the pattern and rewrite one of these matches. By returning a collection of all
matches, the libGr retains the complete graph rewrite process under control. As a libGr
user use the following methods of the IAction interface:

IMatches Match(IGraph graph, int maxMatches, IGraphElement[] parameters);
IGraphElement[] Modify(IGraph graph, IMatch match);

In C#, this might look like:

IMatches myMatches = myAction.Match(myGraph, -1, null); /* -1: get all the matches */

for (int i = 0; i < myMatches.NumMatches; i++)
{

if (inspectCarefully(myMatches.GetMatch(i))
{

myAction.Modify(myGraph, myMatches.GetMatch(i));
break;

}
}

Also notice that graph rewrite sequences introduce a further variant of non-determinism on
rule application level: The $<op> flag marks the operator <op> as commutative, i.e. the
execution order of its operands (rules) is non-deterministic. See Section 5.2.6 for further
information on graph rewrite sequences.

24 Rule Set Language

PatternStatement

- Graphlet - ;
���
�

�- hom
�� �
- (

���
- Ident�
� ,

���
�
�

-)

���
- ;
���

�- negative
�� �
- {

���
�
�PatternStatement �

�

- }

���

�- if

�� �
- {
���
- BooleanExpr - ;

���
�
�

�

- }

���

�- return

�� �
- (
���
- Ident�

� ,
���
�

�

-)

���
- ;
���

�

-

The semantics of the various pattern statements are given below:

Graphlet
Graphlets specify connected subgraphs. See Section 3.1 for a detailed explanation of
graphlets.

Isomorphic/Homomorphic Matching
The hom operator specifies the nodes or edges that may be matched homomorphically.
In contrast to the default isomorphic matching, the specified graph elements may be
mapped to the same graph element in the host graph. Note that the graph elements
must have a common subtype. Several homomorphically matched graph elements will
be mapped to a graph element of a common subtype. In Example 4 nodes n1 and n2 may
be the same node. This is possible because they are of the same type (NodeTypeA). A
name may not occur in multiple hom statements. For instance it is illegal to write hom(a,
b); hom(b, c);. Instead write hom(a, b, c);. Inside a NAC the hom operator may
only operate on graph elements that are either defined or used in the NAC.

Negative Application Conditions (NACs)
With negative application conditions (keyword negative) we can specify graph patterns
which forbid the application of a rule if any of them is present in the host graph
(cf. [Sza05]). NACs must not be nested. NACs possess a scope of their own. Names
defined within a NAC do not exist outside the NAC. Identifiers from surrounding scopes
must not be redefined. In general NACs do not care about bindings within the outer
scope. Nevertheless, if you use an identifier that is defined in the outer scope, this
specifies exactly the graph element, the identifier is bound to in the outer scope.

3.4 Replace/Modify Part 25

EXAMPLE (11)

We specify a node x with out-degree of exactly 2:

1 pattern {
2 <-- x:Node -->;
3 negative {
4 <-- x -->;
5 x -->;
6 }
7 }

Attribute Conditions
The Java-like attribute conditions (keyword if) in the pattern part allow for further
restriction of the applicability of a rule.

Return values
The return statement is only allowed for tests. Otherwise the return statement belongs
to the replace part. See Section 3.4, Return Values.

Keep in mind that using type constraints or the typeof operator can be helpful. See Sec-
tion 4.3 for further information.

3.4 Replace/Modify Part

For the task of rewriting, GrGen.NET provides two different modes: A replace mode and a
modify mode.

3.4.1 Implicit Definition of the Preservation Morphism r

Besides specifying the pattern, a main task of a rule is to specify the transformation of
a matched subgraph within the host graph. The transformation specification defines the
transition from the left hand side (LHS) to the right hand side (RHS), i.e. which graph
elements of a match will be kept, which of them will be deleted and which graph elements
have to be newly created. In theory this is done by defining the preservation morphism r. In

L R

H H ′

Pattern Graph

Match m

Host Graph

Rewrite Graph

Result Graph

Preservation Morphism r

Rule

Rule Application

Figure 3.1: Process of Graph Transformation

GrGen.NET the preservation morphism r is defined implicitly by using names in pattern
graphlets and replace graphlets. (We don not need to care about the the differences of the
replace part and the modify part at the moment.) Remember that to each of the graph
elements a name is bound to, either user defined or internally defined. If such a name is used

26 Rule Set Language

in a replace graphlet, the denoted graph element will be kept. Otherwise the graph element
will be deleted. By defining a name in a replace graphlet a corresponding graph element will
be newly created. So in a replace pattern anonymous graph elements will always be created.
Using a name multiple times has the same effect as a single using occurrence. In case of a
conflict between deletion and preservation, deletion is prioritized. If an incident node of an
edge gets deleted, the edge will be deleted as well (in compliance to the SPO semantics).

Pattern (LHS) Replace (RHS) r : L −→ R Meaning
x:T; x; r : lhs .x 7→ rhs .x Preservation
x:T; lhs .x /∈ def(r) Deletion

x:T; rhs .x /∈ ran(r) Creation
x:T; x:T; — Illegal, redefinition of x
-e:T->; -e-> x:Node; — Illegal, redirection of e
x:N -e:E-> y:N; x -e->; r : {lhs .x} 7→ {rhs .x} Deletion of y. Hence del-

etion of e.

Table 3.1: Definition of the preservation morphism r

3.4.2 Specification Modes for Graph Transformation

Replace mode
The semantics of this mode is to delete every graph element of the pattern that is not
used (occur) in the replace part, keep every graph element that is used, and create
every additionally defined graph elements. “Using” means that the name of a graph
element occurs in a graphlet. Attribute calculations are no using occurrences.
In Example 10 the nodes varnode and n3 will be kept. The node n1 is replaced by the
node n5 preserving n1’s edges. The anonymous edge instance between n1 and n2 only
occurs in the pattern and therefore gets deleted.
See Section 3.4.1 for a detailed explanation of the transformation semantics.

Modify mode
The modify mode can be regarded as a replace part in replace mode, where every pattern
graph element is added (occurs) before the first replace statement. In particular all the
anonymous graph elements are kept. Additionally this mode supports the delete
operator that deletes every element given as an argument. Deletion takes place after all
other rewrite operations. Multiple deletion of the same graph element is allowed (but
pointless) as well as deletion of just created elements (pointless, too).

3.4.3 Syntax

Replace

- replace
�� �
�

�- modify
�� �

�

- {

���
�
�ReplaceStatement �

�

- }

���
-

Selects whether the replace mode or the modify mode is used. Several replace statements
describe the transformation from the pattern subgraph to the destination subgraph.

3.4 Replace/Modify Part 27

EXAMPLE (12)

How might Example 10 look in modify mode? We have to denominate the anonymous edge
between n1 and n2 in order to delete it. The node varnode should be kept and does not need
to appear in the modify part. So we have

1 rule SomeRuleExtModify(varnode: Node): (Node, EdgeTypeB) {
2 pattern {
3 ...
4 n1 -e0:Edge-> n2;
5 ...
6 }
7 modify {
8 n5 : NodeTypeC<n1>;
9 n3 -e1:EdgeTypeB-> n5;

10 delete(e0);
11 eval {
12 ...

ReplaceStatement

- Graphlet - ;
���
�

�- delete
�� �
- (

���
- Ident�
� ,

���
�
�

-)

���
- ;
���

�- eval
�� �
- {

���
- Assignment - ;
���
�

�
�

- }

���

�- return

�� �
- (
���
- Ident�

� ,
���
�

�

-)

���
- ;
���

�

-

The semantics of the various pattern statements are given below:

Graphlet
Analogous to a pattern graphlet; a specification of a connected subgraph. Its graph
elements are either kept because they are elements of the pattern or added otherwise.
Names defined in the pattern part must not be redefined in the replace graphlet. See
Section 3.1 for a detailed explanation of graphlets.

Deletion
The delete operator is only available in the modify mode. It deletes the specified
pattern graph elements. Multiple occurrences of delete statements are allowed. Dele-
tion statements are executed after all other replace statements. Multiple deletion of
the same graph element is allowed (but pointless) as well as deletion of just created
elements (pointless, too).

Attribute Evaluation
If a rule is applied, then the attributes of matched and inserted graph elements will be
recalculated according to the eval statements.

28 Rule Set Language

Return Values
Graph elements of the replace/modify part can be returned according to the return
types in the signature (see Section 3.2, ActionSignature). The return statement
must not occur multiple times. The graph element names have to be in the same
order as the corresponding return types in the signature. The named elements must be
compatible to the declared type.

Retyping
Retyping enables us to keep all adjacent nodes and all attributes stemming from com-
mon super types of a graph element while changing its type. Retyping differs from a
type cast: During replacement both of the graph elements are alive. Specifically both
of them are available for evaluation. Furthermore the source and destination types
need not to be on a path in the directed type hierarchy graph, rather their relation
can be arbitrary. The edge specification as well as ReplaceNode supports retyping. In
Example 4 node n5 is a retyped node stemming from node n1.

Assignment

- Ident - .
���
- Ident - =

���
- Expression -

Several evaluation parts are allowed within the replace part. Multiple evaluation statements
will be internally concatenated, preserving their order. Evaluation statements have impera-
tive semantics. In particular, GrGen.NET does not care about data dependencies. Eval-
uation takes place before any graph element gets deleted and after all the new elements
have been created. You may read (and write, although this is pointless) attributes of graph
elements to be deleted.

EXAMPLE (13)

1 ...
2 modify {
3 ...
4 eval {y.i = 40;}
5 eval {y.j = 0;}
6 x: IJNode;
7 y: IJNode;
8 delete(x);
9 eval {

10 x.i = 1;
11 y.j = x.i;
12 x.i = x.i + 1;
13 y.i = y.i + x.i;
14 }

This toy example yields y.i = 42, y.j = 1.

CHAPTER 4

TYPES AND EXPRESSIONS

In the following sections Ident refers to an identifier of the graph model language (see Sec-
tion 2.1) or the rule set language (see Section 3.1). TypeIdent is an identifier of a node type
or an edge type, NodeOrEdge is an identifier of a node or an edge.

4.1 Built-In Types

Besides user-defined node types, edge types, and enumeration types, GrGen.NET supports
the built-in primitive types in Table 4.1. The exact type format is backend specific. The
LGSPBackend maps the GrGen.NET primitive types to the corresponding C# primitive
types. Table 4.2 lists GrGen.NET’s implicit type casts and the allowed explicit type casts.

boolean Covers the values true and false
int A signed integer with at least 32 bits
float, double A floating-point number with single precision or double precision respec-

tively
string A character sequence of arbitrary length

Table 4.1: GrGen.NET built-in primitive types

Of course you are free to express an implicit type cast by an explicit type cast as well as
“cast” a type to itself, except for enum types. The cast operator does never accept an enum
type.

EXAMPLE (14)

myfloat = myint; mydouble = (float)myint; mystring = (string)mybool is allowed,
myenum = (myenum)int; myfloat = mydouble; myint = (int)mybool is forbidden.

PPPPPPPPPto
from

enum boolean int float double string

enum =/—
boolean =
int (int) = (int) (int)
float (float) implicit = (float)
double (double) implicit implicit =
string (string) (string) (string) (string) (string) =

Table 4.2: GrGen.NET type casts

29

30 Types and Expressions

4.2 Expressions

Expression

- BoolExpr�
�- IntExpr

�- FloatExpr

�- StringExpr

�- PrimaryExpr

�

-

BoolExpr

�
�- !

���

�

- PrimaryExpr�

�- BoolExpr - ?
���
- BoolExpr - :

���
- BoolExpr

�- BoolExpr - BinBoolOperator - BoolExpr

�- Expression - CompareOperator - Expression

�- TypeExpr - CompareOperator - TypeExpr

�

-

The ! operator negates a Boolean. Table 4.4 lists the binary operators for Boolean expres-
sions. The ? operator is a simple if-then-else: If the first BoolExpr is evaluated to true, the
operator returns the second BoolExpr, otherwise it returns the third BoolExpr. The BinBool-
Operator is one of the operators in Table 4.4. The CompareOperator is one of the following
operators:

< <= == != >= >

These operators are supported by enum types, int types, and float/double types. String
types and boolean types support only the == and the != operators. Table 4.3 describes the
semantics of compare operators on type expressions.

A == B True, iff A and B are identical. Different types in a type hierarchy are not
identical.

A != B True, iff A and B are not identical.
A < B True, iff A is a supertype of B, but A and B are not identical.
A > B True, iff A is a subtype of B, but A and B are not identical.
A <= B True, iff A is a supertype of B or A and B are identical.
A >= B True, iff A is a subtype of B or A and B are identical.

Table 4.3: Compare operators on type expressions

NOTE (7)

A < B corresponds to the direction of the arrow in an UML class diagram.

4.2 Expressions 31

^
Logical XOR. True, iff either the first or the second
Boolean expression is true.

&&
||

Logical AND and OR. Lazy evaluation.

&
|

Logical AND and OR. Strict evaluation.

Table 4.4: Binary Boolean operators, in ascending order of precedence

IntExpr

�
�- +

���
�- -
���
�- ∼
�� �

�

- PrimaryExpr�

�- BoolExpr - ?
���
- IntExpr - :

���
- IntExpr

�- IntExpr - BinIntOperator - IntExpr

�

-

The ∼ operator is the bitwise complement. That means every bit of an integer value will be
flipped. The ? operator is a simple if-then-else: If the BoolExpr is evaluated to true, the op-
erator returns the first IntExpr, otherwise it returns the second IntExpr. The BinIntOperator
is one of the operators in Table 4.5.

^
&
|

Bitwise XOR, AND and OR

<<
>>
>>>

Bitwise shift left, bitwise shift right and
bitwise shift right preserving the sign

+
-

Addition and subtraction

*
/
%

Multiplication, integer division, and modulo

Table 4.5: Binary integer operators, in ascending order of precedence

FloatExpr

�
�- +

���
�- -
���

�

- PrimaryExpr�

�- BoolExpr - ?
���
- FloatExpr - :

���
- FloatExpr

�- FloatExpr - BinFloatOperator - FloatExpr

�

-

32 Types and Expressions

The ? operator is a simple if-then-else: If the BoolExpr is evaluated to true, the operator
returns the first FloatExpr, otherwise it returns the second FloatExpr. The BinFloatOperator
is one of the operators in Table 4.6.

+
-

Addition and subtraction

*
/
%

Multiplication, division and modulo

Table 4.6: Binary float operators, in ascending order of precedence

NOTE (8)

The % operator on float values works analogous to the integer modulo operator. For instance
4.5 % 2.3 == 2.2.

StringExpr

- PrimaryExpr�
�- StringExpr - +

���
- StringExpr

�

-

The operator + concatenates two strings.

PrimaryExpr

- (
���
- int

�� �
�
�- float

�� �
�- double
�� �
�- string
�� �

�

-)
���
- PrimaryExpr�

�- (
���
- Expression -)

���
�- NodeOrEdge - .
���
- Ident

�- EnumType - ::
�� �
- Ident

�- Constant

�

-

Constant

- Number�
�- HexNumber

�- QuotedText

�- true
�� �
�- false
�� �

�

-

4.3 Type Related Conditions 33

Number
Is an int, float, or double constant in decimal notation.

HexNumber
Is an int constant in hexadecimal notation starting with 0x.

QuotedText
Is a string constant. It consists of a sequence of characters, enclosed by double quotes.

4.3 Type Related Conditions

TypeExpr

- TypeIdent�
�- typeof

�� �
- (
���
- NodeOrEdge -)

���

�

-

A type expression identifies a type (and—in terms of matching—also its subtypes). A type
expression is either a type identifier itself or the type of a graph element. The type expression
typeof(x) stands for the type of the host graph element x is actually bound to.

EXAMPLE (15)

The following rule will add a reverse edge to a one-way street.

1 rule oneway {
2 pattern {
3 a:Node -x:street-> y:Node;
4 negative {
5 y -:typeof(x)-> a;
6 }
7 }
8 replace {
9 a -x-> y;

10 y -:typeof(x)-> a;
11 }
12 }

Remember that we have several subtypes of street. By the aid of the typeof operator, the
reverse edge will be automatically typed correctly (the same type as the one-way edge). This
behavior is not possible without the typeof operator.

TypeConstraint

- \
���
- (

���
- TypeExpr�
� +

���
�
�

-)

���
-

A type constraint is used to exclude parts of the type hierarchy. The operator + is used to
create a union of its operand types. So the following pattern statements are identical:

x:T \ (T1 + · · · + Tn);
x:T;
if {!(typeof (x) <= T1) && · · ·

&& !(typeof (x) <= Tn)}

34 Types and Expressions

EXAMPLE (16)

T

T1

T2

T4

T3

The expression T\(T2+T3) applied to the type hierarchy on the left side
yields only the types T and T1 as valid.

4.4 Annotations

Identifier definitions can be annotated by pragmas. Annotations are key-value pairs.

IdentDecl

- Ident �
�- [

���
- Ident - =
���
- Constant�

� ,
���
�

�

-]

���

�

-

Although you can use any key-value pairs between the brackets, only the identifier has an
effect so far.

Key Value Type Applies to Meaning
prio int node, edge Changes the ranking of a graph element for search

plans. The default is prio=1000. Graph elements
with high values are likely to appear prior to graph
elements with low values in search plans.

Table 4.7: Annotations

EXAMPLE (17)

We search the pattern v:NodeTypeA -e:EdgeType-> w:NodeTypeB. We have a host graph
with about 100 nodes of NodeTypeA, 1,000 nodes of NodeTypeB and 10,000 edges of
EdgeType. Furthermore we know that between each pair of NodeTypeA and NodeTypeB
there exists at most one edge of EdgeType. GrGen.NET can use this information to
improve the initial search plan if we adjust the pattern like v[prio=10000]:NodeTypeA
-e[prio=5000]:EdgeType-> w:NodeTypeB.

CHAPTER 5

GRSHELL LANGUAGE

GrShell is a shell application of libGr. It belongs to GrGen.NET’s standard equipment.
GrShell is capable of creating, manipulating, and dumping graphs as well as performing
and debugging graph rewriting. The GrShell provides a line oriented scripting language.
GrShell scripts are structured by simple statements separated by line breaks.

5.1 Building Blocks

GrShell is case sensitive. A comment starts with a # and is terminated by end-of-line or
end-of-file. Any text left of the # will be treated as a statement. The following items are
required for representing text, numbers, and rule parameters.

Text
May be one of the following:

• A non-empty character sequence consisting of letters, digits, and underscores. The first
character must not be a digit.

• Arbitrary text enclosed by double quotes ("").

• Arbitrary text enclosed by single quotes (’’).

Number
Is an int or float constant in decimal notation (see also Section 4.1).

Parameters

- Text�
� ,

���
�
�

-

SpacedParameters

- Text�
�

�

-

In order to describe the commands more precisely, the following (semantic) specializations
of Text are defined:

Filename
A fully qualified file name without spaces (e.g. /Users/Bob/amazing file.txt) or
a single quoted or double quoted fully qualified file name that may contain spaces
("/Users/Bob/amazing file.txt").

35

36 GrShell Language

Variable
Identifier of a variable that contains a graph element.

NodeType, EdgeType
Identifier of a node type resp. edge type defined in the model of the current graph.

AttributeName
Identifier of an attribute.

Graph
Identifies a graph by its name.

Action
Identifies a rule by its name.

Color
One of the following color identifiers: Black, Blue, Green, Cyan, Red, Purple, Brown,
Grey, LightGrey, LightBlue, LightGreen, LightCyan, LightRed, LightPurple, Yel-
low, White, DarkBlue, DarkRed, DarkGreen, DarkYellow, DarkMagenta, DarkCyan,
Gold, Lilac, Turquoise, Aquamarine, Khaki, Pink, Orange, Orchid. These are the
same color identifiers as in VCG/yComp files (for a VCG definition see [San95]).

GraphElement

- Text�
�- @

���
- (
���
- Text -)

���

�

-

The elements of a graph (nodes and edges) can be accessed both by their variable identifier
and by their persistent name specified through a constructor (see Section 5.2.3). The spe-
cializations Node and Edge of GraphElement require the corresponding graph element to be
a node or an edge respectively.

EXAMPLE (18)

We insert a node, anonymously and with a constructor (see also Section 5.2.3):

1 > select backend lgspBackend.dll
2 Backend selected successfully.
3 > new graph "../lib/lgsp-TuringModel.dll" G
4 New graph "G" of model "Turing" created.
5

6 # insert an anonymous node...

7 # it will get a persistent pseudo name

8 > new :State
9 New node "$0" of type "State" has been created.

10 > delete node @("$0")
11

12 # and now with constructor

13 > new v:State($=start)
14 new node "start" of type "State" has been created.
15 # Now we have a node named "start" and a variable v assigned to "start"

5.2 GrShell Commands 37

NOTE (9)

Persistent names belong to a specific graph whereas variables belong to the current GrShell
environment. Persistent names will be saved (save graph..., see Section 5.2.5) and, if you
visualize a graph (dump graph..., see Section 5.2.5), graph elements will be labeled with
their persistent names. Persistent names have to be unique for a graph.

- Variable - =
���
- GraphElement -

Assigns the variable or persistent name GraphElement to Variable. If Variable has not been
defined yet, it will be defined implicitly. As usual for scripting languages, variables have
neither static types nor declarations.

5.2 GrShell Commands

This section describes the GrShell commands. Commands are assembled from basic ele-
ments. As stated before commands are terminated by line breaks. Alternatively commands
can be terminated by the ;; symbol.

Script

- Command - <line break>
�� �
�

�- ;;
�� �

�

�
�

�

- <end of file>

�� �
-

5.2.1 Common Commands

- help
�� �
-

Displays an information message describing supported commands.

- quit
�� �
�

�- exit
�� �

�

-

Quits GrShell. If GrShell is opened in debug mode, currently active graph viewers (such
as yComp) will be closed as well.

- select
�� �
- backend

�� �
- Filename �
�- :

���
- Parameters

�

-

Selects a backend that handles graph and rule representation. Filename has to be a .NET
assembly (e.g. lgspBackend.dll). Comma-separated parameters can be supplied optionally.
If so, the backend must support these parameters.

- show
�� �
- backend

�� �
-

38 GrShell Language

List all the parameters supported by the currently selected backend. The parameters can be
provided to the select backend command.

- include
�� �
- Filename -

Executes the GrShell script Filename. A GrShell script is just a plain text file containing
GrShell commands. They are treated as they would be entered interactively, except for
parser errors. If a parser error occurs, execution of the script will stop immediately.

- debug
�� �
- enable

�� �
�
�- disable

�� �

�

-

Enables and disables the debug mode. The debug mode shows the current working graph in
a yComp window. All changes to the working graph are tracked by yComp immediately.

- debug
�� �
- set

�� �
- layout
�� �
�

�- Text

�

-

Sets the default graph layout algorithm to Text. If Text is omitted, a list of available layout
algorithms is displayed. See Section 1.6.4 on yComp layouters.

- echo
�� �
- Text -

Prints Text onto the GrShell command prompt.

- !
���
- CommandLine -

CommandLine is an arbitrary text, the operating system attempts to execute.

EXAMPLE (19)

On a Linux machine you might execute

1 !sh -c "ls | grep stuff"

5.2.2 Graph Commands

- new
�� �
- graph

�� �
- Filename - Text -

Creates a new graph with the model specified in Filename. Its name is set to Text. The
model file can be either source code (e.g. turing machineModel.cs) or a .NET assembly
(e.g. lgsp-turing machineModel.dll).

- open
�� �
- graph

�� �
- Filename - Text -

5.2 GrShell Commands 39

Opens the graph Text stored in the backend. However, the LGSPBackend doesn’t support
persistent graphs. The LGSPBackend is the only backend so far. Therefore this command
is currently useless.

- show
�� �
- graphs

�� �
-

Displays a list of currently available graphs.

- select
�� �
- graph

�� �
- Graph -

Selects the current working graph. This graph acts as host graph for graph rewrite sequences
(see also Sections 1.4 and 5.2.6). Though you can define multiple graphs, only one graph can
be the active “working graph”.

- clear
�� �
- graph

�� �
�
�- Graph

�

-

Deletes all graph elements of the current working graph resp. the graph Graph.

- delete
�� �
- graph

�� �
- Graph -

Deletes the graph Graph from the backend storage.

- validate
�� �
�

�- strict
�� �

�

-

Validates if the current working graph fulfills the connection assertions specified in the cor-
responding graph model. The strict mode additionally requires all the edges of the working
graph to be specified in order to get a “valid”. Otherwise edges between nodes without spec-
ified constraints are ignored.

40 GrShell Language

EXAMPLE (20)

We reuse a simplified version of the road map model from chapter 2:

1 model Map;
2

3 node class city;
4 node class metropolis;
5

6 edge class street;
7 edge class highway
8 connect metropolis [+] -> metropolis [+];

The node constraint on highway requires all the metropolises to be connected by highways.
Now have a look at the following graph:

This graph is valid but not strict valid.

1 > validate
2 The graph is valid.
3 > validate strict
4 The graph is NOT valid:
5 CAE: city "Eppstein" -- highway "A3" --> metropolis "Frankfurt" not specified
6 CAE: metropolis "Karlsruhe" -- street "trail" --> metropolis "Frankfurt" not specified
7 >

- custom
�� �
- graph

�� �
�
�- SpacedParameters

�

-

Executes a command specific to the current backend. If SpacedParameters is omitted, a list
of available commands will be displayed (for the LGSP backend see Sections 5.3).

5.2.3 Graph Manipulation Commands

Graph manipulation commands alter existing graphs including creating and deleting graph
elements and setting attributes.

5.2 GrShell Commands 41

Constructor

- (
���
�

� - $
���
- =

���
- Text �
�- ,

���
- Attributes

�

�
�- Attributes

�

�

-)

���
-

Attributes

- AttributeName - =
���
- Text�

�- Number

�

�
� ,

���
�
�

-

A constructor is used to initialize a new graph element (see new ... below). A comma
separated list of attribute declarations is supplied to the constructor. Available attribute
names are specified by the graph model of the current working graph. All the undeclared
attributes will be initialized with default values, depending on their type (int ← 0, enum ←
unspecified; boolean ← false; float, double ← 0.0; string ← "").
The $ is a special attribute name: a unique identifier of the new graph element. This identifier
is also called persistent name (see Example 18). This name can be specified by a constructor
only.

- new
�� �
�

�- Text

�

�
�- :

���
- NodeType �
�- Constructor

�

�

-

Creates a new node within the current graph. Optionally a variable Text is assigned to the
new node. If NodeType is supplied, the new node will be of type NodeType and attributes
can be initialized by a constructor. Otherwise the node will be of the base node class type
Node.

NOTE (10)

The GrShell can reassign variables. This is in contrast to the rule language (chapter 3),
where we use names.

- new
�� �
- Node - -

���
�
�- Text

�

�

�

��
�- :

���
- EdgeType �
�- Constructor

�

�

- ->

�� �
- Node -

42 GrShell Language

Creates a new edge within the current graph between the specified nodes, directed towards the
second Node. Optionally a variable Text is assigned to the new edge. If EdgeType is supplied,
the new edge will be of type EdgeType and attributes can be initialized by a constructor.
Otherwise the edge will be of the base edge class type Edge.

- GraphElement - .
���
- AttributeName - =

���
- Text�
�- Number

�

-

Set the attribute AttributeName of the graph element GraphElement to the value of Text or
Number.

- delete
�� �
- node

�� �
- Node -

Deletes the node Node from the current graph. Incident edges will be deleted as well.

- delete
�� �
- edge

�� �
- Edge -

Deletes the edge Edge from the current graph.

5.2.4 Graph Query Commands

- show
�� �
�

�- num
�� �

�

- nodes
�� �
�

��
�- only

�� �

�

- NodeType

�

�

�- edges
�� �
�

��
�- only

�� �

�

- EdgeType

�

�

-

Gets the persistent names and the types of all the nodes/edges of the current graph. If a
node type or edge type is supplied, only elements compatible to this type are considered. The
only keyword excludes subtypes. Nodes/edges without persistent names are shown with a
pseudo-name. If the command is specified with num, only the number of nodes/edges will be
displayed.

- show
�� �
- node

�� �
�
�- edge

�� �

�

- types

�� �
-

Gets the node/edge types of the current graph model.

- show
�� �
- node

�� �
- super
�� �
�

�- sub
�� �

�

- types

�� �
- NodeType�
�- edge

�� �
- super
�� �
�

�- sub
�� �

�

- types

�� �
- EdgeType

�

-

5.2 GrShell Commands 43

Gets the inherited/descendant types of NodeType/EdgeType.

- show
�� �
- node

�� �
- attributes
�� �
�

��
�- only

�� �

�

- NodeType

�

�

�- edge
�� �
- attributes

�� �
�
��

�- only
�� �

�

- EdgeType

�

�

-

Gets the available node/edge attribute types. If NodeType/EdgeType is supplied, only at-
tributes defined in NodeType/EdgeType are diplayed. The only keyword excludes inherited
attributes.

NOTE (11)

The show nodes/edges attributes... command covers types and inherited types. This
is in contrast to the other show... commands where types and subtypes are specified or the
direction in the type hierarchy is specified explicitly, respectively.

- show
�� �
- node

�� �
- Node�
�- edge

�� �
- Edge

�

-

Gets the attribute types and values of a specific graph element.

- show
�� �
- GraphElement - .

���
- AttributeName -

Gets the value of a specific attribute.

- node
�� �
- type

�� �
- Node - is
�� �
- Node�

�- edge
�� �
- type

�� �
- Edge - is
�� �
- Edge

�

-

Gets the information whether the first element is type-compatible to the second element.

5.2.5 Graph Output Commands

- save
�� �
- graph

�� �
- Filename -

Dumps the current graph as GrShell script into Filename. The created script includes

• selecting the backend

• creating all nodes and edges

44 GrShell Language

• restoring the persistent names (see Section 5.2.3)

but not necessarily using the same commands you typed in during construction. Such a script
can be loaded and executed by the include command (see Section 5.2.1).

- show
�� �
- graph

�� �
- Filename �
�- Text

�

-

Dumps the current graph as VCG formatted file into a temporary file. Filename specifies an
executable. The temporary VCG file will be passed to Filename as last parameter. Additional
parameters, such as program options, can be specified by Text. If you use yComp1 as
executable, this may look like

The temporary file will be deleted, when the application Filename is terminated if GrShell
is still running at this time.

- dump
�� �
- graph

�� �
- Filename -

Dumps the current graph in VCG format into the file Filename.

Visualization Styles

The following commands control the style of the VCG output. This affects dump graph, show
graph, and enable debug.

1See Section 1.6.4.

5.2 GrShell Commands 45

- dump
�� �
- set

�� �
- node
�� �
�

�- only
�� �

�

- NodeType �

�
� - color

�� �
�
�- textcolor

�� �
�- bordercolor
�� �

�

- Color�

�- shape
�� �
- Text

�

-

Sets the color, text color, border color, or the shape of the nodes of type NodeType and all of
its subtypes. The keyword only excludes the subtypes. The following shapes are supported:
box, triangle, circle, ellipse, rhom, hexagon, trapeze, uptrapeze, lparallelogram,
rparallelogram. Those are shape names of yComp (for a VCG definition see [San95]).

- dump
�� �
- set

�� �
- edge
�� �
�

�- only
�� �

�

- EdgeType - color

�� �
�
�- textcolor

�� �

�

- Color -

Sets the color or text color of the edges of type EdgeType and all of its subtypes. The keyword
only excludes the subtypes.

- dump
�� �
- add

�� �
- node
�� �
�

�- only
�� �

�

- NodeType - exclude

�� �
-

Excludes nodes of type NodeType and all of its subtypes as well as their incident edges from
output. The keyword only excludes the subtypes, i.e. subtypes of NodeType are dumped.

- dump
�� �
- add

�� �
- node
�� �
- NodeType - group

�� �
-

Declares NodeType and subtypes of NodeType as group node type. All the differently typed
nodes that point to a node of type NodeType (i.e. there is a directed edge between such nodes)
will be grouped and visibly enclosed by the NodeType-node. The following example shows
metropolis ungrouped and grouped:

right side: dumped with dump add node metropolis group

46 GrShell Language

- dump
�� �
- add

�� �
�
�- only

�� �

�

- node
�� �
- NodeType�

�- edge
�� �
- EdgeType

�

�

�

�- infotag
�� �
- AttributeName -

Declares the attribute AttributeName to be an “info tag”. Info tags are displayed like ad-
ditional node/edge labels. The keyword only excludes the subtypes of NodeType resp. Ed-
geType. In the following example river and jam are info tags:

- dump
�� �
- set

�� �
- edge
�� �
- labels

�� �
- on
�� �
�

�- off
�� �

�

-

Specifies whether edge labels will be displayed or not (defaults to “on”).

- dump
�� �
- reset

�� �
-

Reset all style options (dump set. . .) to their default values.

5.2.6 Action Commands (GRS)

An action denotes a graph rewrite rule.

- select
�� �
- actions

�� �
- Filename -

Selects a rule set. Filename can either be a .NET assembly (e.g. “rules.dll”) or a source file
(“rules.cs”). Only one rule set can be loaded simultaneously.

- show
�� �
- actions

�� �
-

5.2 GrShell Commands 47

s ; t Concatenation. First execute s afterwards execute t. The sequence
s ; t is successfully executed iff s or t is successfully executed.

s | t XOR. First execute s. Only if s fails (i.e. can not be executed suc-
cessfully) then execute t. The sequence s | t is successfully executed
iff s or t is successfully executed.

s & t Transactional AND. First execute s, afterwards execute t. If s
or t fails, the action will be terminated and a rollback to the state
before s & t is performed.

$<op> Flag the operator <op> as commutative. Usually operands are ex-
ecuted/evaluated from left to right with respect to bracketing (left-
associative). But the sequences s, t, u in s $<op> t $<op> u are
executed/evaluated in arbitrary order.

s * Execute s repeatedly as long as its execution does not fail.
s {n} Execute s repeatedly as long as its execution does not fail but n times

at most.
! Dump found matches into VCG formatted files (for a VCG definition

see [San95]). Every match produces three files within the current
directory:

1. The complete graph that has the matched graph elements
marked

2. The complete graph with additional information about match-
ing details

3. A subgraph containing only the matched graph elements

Rule Rewrite the first found pattern match produced by the action Rule.
[Rule] Rewrite every pattern match produced by the action Rule. Note:

This operator is mainly added for benchmark purposes. Its semantics
is not equal to Rule*. Instead this operator collects all the matches
first before starting rewritings. In particular one needs to avoid delet-
ing a graph element that is bound by another match.

v = w Assign the variable w to v. If w is undefined, v will be undefined, too.
v = @(x) Assign the graph element identified by x to the variable v. If x is not

defined, v will be undefined, too.
def(Parameters) Is successful if all the graph elements in Parameters exist, i.e. if all

the variables are defined.
true A constant acting as a successful match.
false A constant acting as a failed match.

Let s, t, u be graph rewrite sequences, v, w variable identifiers, x an identifier of a graph
element, <op> ∈ {;, |, &} and n ∈ N0.

Table 5.1: Graph rewrite expressions

48 GrShell Language

Lists all the rules of the loaded rule set, their parameters, and their return values. Rules can
return a set of graph elements.

- custom
�� �
- actions

�� �
�
�- SpacedParameters

�

-

Executes an action specific to the current backend. If SpacedParameters is omitted, a list of
available commands will be displayed (for the LGSPBackend see Section 5.3).

GraphRewriteSequence

�
�- debug

�� �

�

- grs

�� �
- SimpleRewriteSequence -

This executes the graph rewrite sequence SimpleRewriteSequence.

SimpleRewriteSequence

- SimpleTerm �
� - *

���
�
�- {

���
- Number - }
���

�

�

�

� ;
���
��

� |
���
�� &
���
�

�

�
� $

���
�
�

�

-

SimpleTerm

�
�- !

���

�

- [
���
- Rule -]

���
�
�- Rule

�

�
�- Text - =

���
- Text�
�- @

���
- (
���
- Text -)

���

�

�- def
�� �
- (

���
- Parameters -)
���
�- true

�� �
�- false
�� �
�- (
���
- SimpleRewriteSequence -)

���

�

-

Rule

�
�- (

���
- Parameters -)
���
- =

���

�

- Action �

�- (
���
- Parameters -)

���

�

-

5.3 LGSPBackend Custom Commands 49

Table 5.1 lists graph rewrite expressions at a glance. The operators hold the following order
of precedence, starting with the lowest priority:

; | &

Graph elements returned by rules can be assigned to variables using (Parameters) =
Action . The desired variable identifiers have to be listed in Parameters. Graph elements
required by rules must be provided using Action (Parameters), where Parameters is a list
of variable identifiers. For undefined variables see Section 3.2, Parameters.

Use the debug option to trace the rewriting process step-by-step. During execution
yComp2 will display every single step. The debugger can be controlled by GrShell. The
debug commands are shown in Table 5.2.

s(tep) Execute the next rewrite rule (match and rewrite)
d(etailed step) Execute a rewrite rule in a three-step procedure: matching, highlighting

elements to be changed, doing rewriting
n(ext) Ascend one level up within the Kantorowitsch tree of the current rewrite

sequence (see Example 21)
(step) o(ut) Continue a rewrite sequence until the end of the current loop. If the

execution is not in a loop at this moment, the complete sequence will be
executed

r(un) Continue execution without further stops
a(bort) Cancel the execution immediately

Table 5.2: GrShell debug commands

5.3 LGSPBackend Custom Commands

The LGSPBackend supports the following custom commands:

5.3.1 Graph Related Commands

- custom
�� �
- graph

�� �
- analyze graph
�� �
-

Analyzes the current working graph. The analysis data provides vital information for efficient
search plans. Analysis data is available as long as GrShell is running, i.e. when the working
graph changes, the analysis data is still available but maybe obsolete.

5.3.2 Action Related Commands

- custom
�� �
- actions

�� �
- gen searchplan
�� �
- Action�

�
�

-

Creates a search plan for each rewrite rule Action using a heuristic method and the analyzes
data (if the graph has been analyzed by custom graph analyze graph). Otherwise a default
search plan is used. For efficiency reasons it is recommended to do analyzing and search plan

2Make sure, that the path to your yComp.jar package is set correctly in the ycomp shell script within
GrGen.NET’s /bin directory.

50 GrShell Language

EXAMPLE (21)

We demonstrate the debug commands with a slightly adjusted script for the Koch snowflake
from GrGen.NET’s examples (see also Section 6.1). The graph rewriting sequence is

1 debug grs (makeFlake1* ; (beautify ; doNothing)* ; makeFlake2* ; beautify*){1}

yComp will be opened with an initial graph (resulting from grs init):

We type d(etailed step) to apply makeFlake1 step by step resulting in the following graphs:

The following table shows the “break points” of further debug commands, entered one after
another:

Command Active rule
s makeFlake1
o beautify
s doNothing
s beautify
n beautify
o makeFlake2
r —

5.3 LGSPBackend Custom Commands 51

creation during the rewriting procedure. Therefore the host graph should be in a stage
“similar” to the final result. Indeed there might be some trial-and-error steps necessary to
get an efficient search plan. A search plan is available as long as the current rule set remains
loaded. Specify multiple rewrite rules instead of using multiple commands for each rule to
improve the search plan generation performance.

- custom
�� �
- actions

�� �
- set max matches
�� �
- Number -

Sets the maximum amount of possible pattern matches to Number. This command affects
the expression [Rule]. If Number is less or equal to zero, the constraint is reset.

52 GrShell Language

CHAPTER 6

EXAMPLES

6.1 Fractals

The GrGen.NET package ships with samples for fractal generation. We will construct the
Sierpinski triangle and the Koch snowflake. They are created by consecutive rule applications
starting with the initial host graphs

for the Sierpinski triangle resp. the Koch snowflake. First of all we have to compile the model
and rule set files. So execute in GrGen.NET’s bin directory

GrGen.exe ..\specs\sierpinski.grg
GrGen.exe ..\specs\snowflake.grg

or

mono GrGen.exe ../specs/sierpinski.grg
mono GrGen.exe ../specs/snowflake.grg

respectively. If you are on a Unix-like system you have to adjust the path separators
of the GrShell scripts. Just edit the first three lines of /test/Sierpinski.grs and
/test/Snowflake.grs. And as we have the file Sierpinski.grs already opened, we can
increase the number of iterations to get even more beautiful graphs1. Just follow the com-
ments. Be careful when increasing the number of iterations of Koch’s snowflake—yComp’s
layout algorithm might need some time and attempts to layout it nicely. We execute the
Sierpinski script by

GrShell.exe ..\test\Sierpinski.grs

or

mono GrShell.exe ../test/Sierpinski.grs

respectively. Because both of the scripts are using the debug mode, we complete execution
by typing r(un). See Section 5.2.6 for further information. The resulting graphs should look
like Figures 6.1 and 6.2.

1Be careful: The running time increases exponentially in the number of iterations.

53

54 Examples

Figure 6.1: Sierpinski triangle

Figure 6.2: Koch snowflake

6.2 Busy Beaver 55

6.2 Busy Beaver

We want GrGen.NET to work as hard as a busy beaver [Kro07, Dew84]. Our busy beaver
is a Turing machine that has got five states plus a “halt”-state; it writes 1,471 bars onto
the tape and terminates [MB00]. So first of all we design a Turing machine as graph model.
Besides, this example shows that GrGen.NET is Turing complete.

We use the graph model and the rewrite rules to define a general Turing machine. Our
approach is to basically draw the machine as a graph. The busy beaver logic is implemented
by rule applications in GrShell.

6.2.1 Graph Model

Let’s start the model file TuringModel.gm with

1 model TuringModel;

The tape will be a chain of TapePosition nodes connected by right edges. A cell value
is modeled by a reflexive value edge, attached to a TapePosition node. The leftmost and
the rightmost cells (TapePosition) do not have an incoming and outgoing edge respectively.
Therefore we have the node constraint [0 : 1].

2 node class TapePosition;
3 edge class right
4 connect TapePosition[0:1] -> TapePosition[0:1];
5

6 edge class value
7 connect TapePosition[1] -> TapePosition[1];
8 edge class zero extends value;
9 edge class one extends value;

10 edge class empty extends value;

Furthermore we need states and transitions. The machine’s current configuration is modeled
with a RWHead edge pointing to a TapePosition node. State nodes are connected with
WriteValue nodes via value edges, a moveLeft/moveRight/dontMove edge leads from a
WriteValue node to the next state (cf. the picture on page 59).

11 node class State;
12

13 edge class RWHead;
14

15 node class WriteValue;
16 node class WriteZero extends WriteValue;
17 node class WriteOne extends WriteValue;
18 node class WriteEmpty extends WriteValue;
19

20 edge class moveLeft;
21 edge class moveRight;
22 edge class dontMove;

6.2.2 Rule Set

Now the rule set: We begin the rule set file Turing.grg with

1 actions Turing using TuringModel;

We need rewrite rules for the following steps of the Turing machine:

1. Read the value of the current tape cell and select an outgoing edge of the current state.

56 Examples

2. Write a new value into the current cell, according to the sub type of the WriteValue
node.

3. Move the read-write-head along the tape and select a new state as current state.

As you can see a transition of the Turing machine is split into two graph rewrite steps:
Writing the new value onto the tape and performing the state transition. We need eleven
rules: Three rules for each step (for “zero”, “one”, and “empty”) and two rules for extending
the tape to the left and the right, respectively.

2 rule readZeroRule {
3 pattern {
4 s:State -h:RWHead-> tp:TapePosition -:zero-> tp;
5 s -:zero-> wv:WriteValue;
6 }
7 modify {
8 delete(h);
9 wv -:RWHead-> tp;

10 }
11 }

We take the current state s and the current cell tp which is implicitly given by the unique
RWHead edge and check whether the cell value is zero. Furthermore we check if the state has
a transition for zero. The replacement part deletes the RWHead edge between s and tp and
adds it between wv and tp. The remaining rules are analogous:

12 rule readOneRule {
13 pattern {
14 s:State -h:RWHead-> tp:TapePosition -:one-> tp;
15 s -:one-> wv:WriteValue;
16 }
17 modify {
18 delete(h);
19 wv -:RWHead-> tp;
20 }
21 }
22

23 rule readEmptyRule {
24 pattern {
25 s:State -h:RWHead-> tp:TapePosition -:empty-> tp;
26 s -:empty-> wv:WriteValue;
27 }
28 modify {
29 delete(h);
30 wv -:RWHead-> tp;
31 }
32 }
33

34 rule writeZeroRule {
35 pattern {
36 wv:WriteZero -rw:RWHead-> tp:TapePosition -:value-> tp;
37 }
38 replace {
39 wv -rw-> tp -:zero-> tp;
40 }
41 }
42

43 rule writeOneRule {
44 pattern {
45 wv:WriteOne -rw:RWHead-> tp:TapePosition -:value-> tp;

6.2 Busy Beaver 57

46 }
47 replace {
48 wv -rw-> tp -:one-> tp;
49 }
50 }
51

52 rule writeEmptyRule {
53 pattern {
54 wv:WriteEmpty -rw:RWHead-> tp:TapePosition -:value-> tp;
55 }
56 replace {
57 wv -rw-> tp -:empty-> tp;
58 }
59 }
60

61 rule moveLeftRule {
62 pattern {
63 wv:WriteValue -:moveLeft-> s:State;
64 wv -h:RWHead-> tp:TapePosition <-r:right- ltp:TapePosition;
65 }
66 modify {
67 delete(h);
68 s -:RWHead-> ltp;
69 }
70 }
71

72 rule moveRightRule {
73 pattern {
74 wv:WriteValue -:moveRight-> s:State;
75 wv -h:RWHead-> tp:TapePosition -r:right-> rtp:TapePosition;
76 }
77 modify {
78 delete(h);
79 s -:RWHead-> rtp;
80 }
81 }
82

83 rule dontMoveRule {
84 pattern {
85 wv:WriteValue -:dontMove-> s:State;
86 wv -h:RWHead-> tp:TapePosition;
87 }
88 modify {
89 delete(h);
90 s -:RWHead-> tp;
91 }
92 }
93

94 rule ensureMoveLeftValidRule {
95 pattern {
96 wv:WriteValue -:moveLeft-> :State;
97 wv -:RWHead-> tp:TapePosition;
98 negative {
99 tp <-:right-;

100 }
101 }
102 modify {
103 tp <-:right- ltp:TapePosition -:empty-> ltp;
104 }

58 Examples

105 }
106

107 rule ensureMoveRightValidRule {
108 pattern {
109 wv:WriteValue -:moveRight-> :State;
110 wv -:RWHead-> tp:TapePosition;
111 negative {
112 tp -:right->;
113 }
114 }
115 modify {
116 tp -:right-> rtp:TapePosition -:empty-> rtp;
117 }
118 }

Have a look at the negative conditions within the ensureMove... rules. They ensure that
the current cell is indeed at the end of the tape: An edge to a right/left neighboring cell
must not exist. Now don’t forget to compile your model and the rule set with GrGen.exe
(see Section 6.1).

6.2.3 Rule Execution with GrShell

Finally we construct the busy beaver and let it work with GrShell. The following script
starts with building the Turing machine that is modeling the six states with their transitions
in our Turing machine model:

1 select backend "../bin/lgspBackend.dll"
2 new graph "../lib/lgsp-TuringModel.dll" "Busy Beaver"
3 select actions "../lib/lgsp-TuringActions.dll"
4

5 # Initialize tape

6 new tp:TapePosition($="Startposition")
7 new tp -:empty-> tp
8

9 # States

10 new sA:State($="A")
11 new sB:State($="B")
12 new sC:State($="C")
13 new sD:State($="D")
14 new sE:State($="E")
15 new sH:State($ = "Halt")
16

17 new sA -:RWHead-> tp
18

19 # Transitions: three lines per state and input symbol for

20 # - updating cell value

21 # - moving read-write-head

22 # respectively

23

24 new sA_0: WriteOne
25 new sA -:empty-> sA_0
26 new sA_0 -:moveLeft-> sB
27

28 new sA_1: WriteOne
29 new sA -:one-> sA_1
30 new sA_1 -:moveLeft-> sD
31

32 new sB_0: WriteOne
33 new sB -:empty-> sB_0

6.2 Busy Beaver 59

34 new sB_0 -:moveRight-> sC
35

36 new sB_1: WriteEmpty
37 new sB -:one-> sB_1
38 new sB_1 -:moveRight-> sE
39

40 new sC_0: WriteEmpty
41 new sC -:empty-> sC_0
42 new sC_0 -:moveLeft-> sA
43

44 new sC_1: WriteEmpty
45 new sC -:one-> sC_1
46 new sC_1 -:moveRight-> sB
47

48 new sD_0: WriteOne
49 new sD -:empty-> sD_0
50 new sD_0 -:moveLeft->sE
51

52 new sD_1: WriteOne
53 new sD -:one-> sD_1
54 new sD_1 -:moveLeft-> sH
55

56 new sE_0: WriteOne
57 new sE -:empty-> sE_0
58 new sE_0 -:moveRight-> sC
59

60 new sE_1: WriteOne
61 new sE -:one-> sE_1
62 new sE_1 -:moveLeft-> sC

Our busy beaver looks like this:

We have an initial host graph now. The graph rewrite sequence is quite straight forward
and generic to the Turing graph model. Note that for each state the “...Empty... —
...One...” selection is unambiguous.

60 Examples

63 grs ((readOneRule | readEmptyRule) ; (writeOneRule | writeEmptyRule) ;
(ensureMoveLeftValidRule | ensureMoveRightValidRule) ; (moveLeftRule |
moveRightRule)){32}

We interrupt the machine after 32 iterations and look at the result so far:

In order to improve the performance we generate better search plans. This is a crucial step
for execution time: With the initial search plans the beaver runs for 1 minute and 30 seconds.
With improved search plans after the first 32 steps he takes about 8.5 seconds2.

64 custom graph analyze_graph
65 custom actions gen_searchplan readOneRule readEmptyRule writeOneRule writeEmptyRule

ensureMoveLeftValidRule ensureMoveRightValidRule moveLeftRule moveRightRule

Let the beaver run:

66 grs ((readOneRule | readEmptyRule) ; (writeOneRule | writeEmptyRule) ;
(ensureMoveLeftValidRule | ensureMoveRightValidRule) ; (moveLeftRule |
moveRightRule))*

2On a Pentium 4, 3.2Ghz, with 2GiB RAM.

BIBL IOGRAPHY

[Ass00] Uwe Assmann. Graph rewrite systems for program optimization. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 22(4):583–637, 2000.

[Bat05a] Gernot Veit Batz. Graphersetzung für eine Zwischendarstellung im Übersetzer-
bau. Master’s thesis, Universität Karlsruhe, 2005.

[Bat05b] Veit Batz. Generierung von Graphersetzungen mit programmierbarem Suchal-
gorithmus. Studienarbeit, 2005.

[Bat06] Gernot Veit Batz. An Optimization Technique for Subgraph Matching Strategies.
Technical Report 2006-7, Universität Karlsruhe, Fakultät für Informatik, April
2006.

[BKG07] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. A First Experimental Evalu-
ation of Search Plan Driven Graph Pattern Matching. In Applications of Graph
Transformation with Industrial releVancE - AGTIVE 2007, 2007. preliminary
version, submitted to AGTIVE 2007.

[CEM+06] Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz
Rozenberg, editors. Graph Transformations, Third International Conference,
ICGT 2006, Natal, Rio Grande do Norte, Brazil, September 17-23, 2006, Pro-
ceedings, volume 4178 of Lecture Notes in Computer Science. Springer, 2006.

[CHHK06] Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. Sesqui-
pushout rewriting. In Corradini et al. [CEM+06], pages 30–45.

[Dew84] A. K. Dewdney. A computer trap for the busy beaver, the hardest-working turing
machine. Scientic American, 251(2):10–12, 16, 17, 8 1984.

[Dör95] Heiko Dörr. Efficient Graph Rewriting and its Implementation, volume 922 of
LNCS. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

[EHK+99] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation - Part II: Single Pushout A. and
Comparison with Double Pushout A. In [Roz99], volume 1, pages 247–312. 1999.

[Fuj07] Fujaba Developer Team. Fujaba-Homepage. http://www.fujaba.de/, 2007.

[GBG+06] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam Sza-
lkowski. GrGen: A Fast SPO-Based Graph Rewriting Tool. In Corradini et al.
[CEM+06], pages 383–397.

[Gei07] R. Geiß. GrGen.NET. http://www.grgen.net, June 2007.

[Hac03] Sebastian Hack. Graphersetzung für Optimierungen in der Codeerzeugung. Mas-
ter’s thesis, IPD Goos, 12 2003.

[KBG+07] Moritz Kroll, Michael Beck, Rubino Geiß, Sebastian Hack, and Philipp Leiß.
yComp. http://www.info.uni-karlsruhe.de/software.php/id=6, 2007.

61

http://www.fujaba.de/
http://www.grgen.net
http://www.info.uni-karlsruhe.de/software.php/id=6

62 Examples

[KG07] Moritz Kroll and Rubino Geiß. Developing Graph Transformations with Gr-
Gen.NET. In Applications of Graph Transformation with Industrial releVancE
- AGTIVE 2007, 2007. preliminary version, submitted to AGTIVE 2007.

[Kro07] Moritz Kroll. GrGen.NET: Portierung und Erweiterung des Graphersetzungssys-
tems GrGen, 5 2007. Studienarbeit, Universität Karlsruhe.

[MB00] H. Marxen and J. Buntrock. Old list of record TMs. http://www.drb.insel.
de/~heiner/BB/index.html, 8 2000.

[Mic07] Microsoft. .NET. http://msdn2.microsoft.com/de-de/netframework/
aa497336.aspx, 2007.

[MMJW91] Andrew B. Mickel, James F. Miner, Kathleen Jensen, and Niklaus Wirth. Pascal
user manual and report (4th ed.): ISO Pascal standard. Springer-Verlag New
York, Inc., New York, NY, USA, 1991.

[Roz99] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, 1999.

[SAI+90] Herbert Schildt, American National Standards Institute, International Organiza-
tion for Standardization, International Electrotechnical Commission, and ISO/
IEC JTC 1. The annotated ANSI C standard: American National Standard for
Programming Languages C: ANSI/ISO 9899-1990. 1990.

[San95] Georg Sander. VCG visualization of compiler graphs—user documentation
v.1.30. Technical report, Universität des Saarlandes, 1995.

[Sza05] Adam M. Szalkowski. Negative Anwendungsbedingungen für das suchprogramm-
basierte Backend von GrGen, 2005. Studienarbeit, Universität Karlsruhe.

[Tea07] The Mono Team. Mono. http://www.mono-project.com/, 2007.

[VVF06] Gergely Varró, Dániel Varró, and Katalin Friedl. Adaptive graph pattern match-
ing for model transformations using model-sensitive search plans. In G. Karsai
and G. Taentzer, editors, GraMot 2005, International Workshop on Graph and
Model Transformations, volume 152 of ENTCS, pages 191–205. Elsevier, 2006.

[yWo07] yWorks. yFiles. http://www.yworks.com, 2007.

http://www.drb.insel.de/~heiner/BB/index.html
http://www.drb.insel.de/~heiner/BB/index.html
http://msdn2.microsoft.com/de-de/netframework/aa497336.aspx
http://msdn2.microsoft.com/de-de/netframework/aa497336.aspx
http://www.mono-project.com/
http://www.yworks.com

INDEX

Keywords

abstract, 11
actions, 19, 46, 48, 49, 51
add, 45, 46
backend, 37, 38
bordercolor, 45
class, 12
clear, 39
color, 45
connect, 13
const, 11
custom, 40, 48, 49, 51
debug, 38, 48
def, 47
delete, 27, 39, 42
disable, 38
dump, 44–46
echo, 38
edge, 12, 42, 43, 45, 46
edges, 42
enable, 38
enum, 11
eval, 27
exclude, 45
exit, 37
extends, 12
graph, 38–40, 43, 44, 49
group, 45
grs, 48
help, 37
hom, 24
if, 24
include, 38
infotag, 46
is, 43
labels, 46
layout, 38
model, 11
modify, 26
negative, 24
new, 38, 41, 42
node, 12, 42, 43, 45, 46

nodes, 42
num, 42
off, 46
on, 46
only, 42, 43, 45, 46
open, 39
pattern, 23
prio, 34
quit, 37
replace, 26
reset, 46
return, 24, 27
rule, 19
save, 43
select, 37, 39, 46
set, 38, 45, 46
shape, 45
show, 38, 39, 42–44, 48
strict, 39
sub, 43
super, 43
test, 19
textcolor, 45
type, 43
typeof, 33
using, 19
validate, 13, 39

Non-Terminals

ActionSignature, 21
Assignment, 28
AttributeDeclarations, 14
AttributeType, 14
Attributes, 41
BoolExpr, 30
ClassDeclaration, 11
ConnectAssertions, 13
Constant, 32
Constructor, 41
Continuation, 16
EdgeClass, 12
EdgeRefinement, 18
EnumDeclaration, 11

63

64 Examples

Expression, 30
FloatExpr, 31
GraphElement, 36
GraphModel, 11
GraphRewriteSequence, 48
Graphlet, 16
GraphletEdge, 18
GraphletNode, 17
IdentDecl, 34
IntExpr, 31
NodeClass, 12
NodeConstraint, 13
Parameters, 21, 35
Pattern, 23
PatternStatement, 24
PrimaryExpr, 32
RangeConstraint, 13
Replace, 26
ReplaceStatement, 27
ReturnTypes, 21
RuleDeclaration, 19
RuleSet, 19
Script, 37
SimpleRewriteSequence, 48
SimpleTerm, 48
SpacedParameters, 35
StringExpr, 32
TestDeclaration, 19
TypeConstraint, 33
TypeDeclaration, 11
TypeExpr, 33

General Index

.gm, 2

.grg, 2, 6

.grs, 2, 6
!, 38, 47
*, 47
;;, 37
;, 47
@, 36
#, 35
$<number>, 16
$<op>, 23, 47
$, 41
|, 47
&, 47

action, see graph rewrite sequence
action command, 46
analyzing graph, 49
annotation, 10, 16, 34

anonymous, 16, 26, 36
API, 3, 6
application, 4, 23
associative, 47
attribute, 14, 41–43, 46
attribute condition, 25
attribute evaluation, 27, 28

backend, 2, 29, 37, 48
binding of names, 16
boolean, 29
built-in types, see primitive types
busy beaver, 55

case sensitive, 10, 16, 35
color, 36, 45
command line, 38
comment, 35
compatible types, see type-compatible
compiler graph, see layout algorithm
connection assertion, 12, 13, 39
constructor, 36, 41
continuation, see graphlet

debug mode, 38
debugger, 49
declaration, 10, 11, 23
default graph model, 15
default search plan, 49
default value, 41
definition, 10, 34
degree, see connection assertion
deletion, 26, 27
determinism, see non-determinism
double, 29
dumping graph, 43
Dynamic patterns, 2

Edge, 12
edge (graphlet), 18
edge type, 12
empty pattern, 4, 23
enum type, 11, 29
evaluation, see attribute evaluation

float, 29
Fujaba, 1

generator, 2
graph model, 2, 9, 11, 15, 19, 38
graph model language, 9
graph rewrite rules, 3
graph rewrite script, 2, 6, 38, 43
graph rewrite sequence, 23, 48

6.2 Busy Beaver 65

graphlet, 16, 24, 25, 27
GrGen.exe, 3, 5
group node, 45
GRS, see graph rewrite sequence
GrShell, 2, 6, 12, 35
GrShell script, see graph rewrite script
GrShell.exe, 3, 6

homomorphic matching, 16, 24
host graph, 4, 25, 39

identifier, 10, 16
imperative, see attribute evaluation
incident, 22
info tag, 46
inheritance, 9, 12, 43
int, 29
isomorphic matching, 24

Kantorowitsch tree, 49
Koch snowflake, 53

label, 37, 46
layout algorithm, 7, 38, 53
left hand side, 3, 25
LGPL, 5
LGSPBackend, 29, 49
lgspBackend.dll, 3, 37
LHS, see left hand side
libGr, 2, 6, 12, 23, 35
LibGr.dll, 3, 6

match, 4
matching strategies, 1
modify mode, 26
multiplicity, see connection assertion

NAC, see negative application condition
name, 16, 25, 41
negative application condition, 24
Node, 12
node (graphlet), 17
node type, 12
non-determinism, 23

order of precedence, 31, 32, 49
Organic, see layout algorithm
Orthogonal, see layout algorithm

parameter, 21, 37, 49
pattern, 23
pattern graph, 3, 16
persistent graph, 39
persistent name, 36, 41, 42
pragma, see annotation

precedence, see order of precedence
preservation, 26
preservation morphism, 3, 25
primitive types, 29

rail diagram, 9
re-evaluation, see attribute evaluation
redefine, 16
redirecting, 18
replace mode, 26
replacement graph, 3, 16, 25
return type, 21
return value, 25, 28
retyping, 17, 18, 28
rewrite rule, 2, 19
RHS, see right hand side
right hand side, 3, 25
rule application, see application
rule set, 15, 19, 46
rule set language, 15

scope, 17, 24
script, see graph rewrite script
search plan, 21, 34, 49, 60
search plans, 1
sesqui-pushout, 2
shell, see GrShell
Sierpinski triangle, 53
signature, 21
single-pushout approach, 1, 18, 26
SPO, see single-pushout approach
spot, 4, 16
string, 29
syntax diagram, see rail diagram

test, 19, 22
transaction, nested, 2
transformation specification, 25
Turing complete, 55
type cast, see retyping, 29
type constraint, 18, 33
type contraint, 17
type expression, 16, 30, 33
type hierarchy, 9, 28, 33
type-compatible, 43

UML class diagram, 30
undefined parameter, 21
undefined variables, 49

validate, 39
variable, 36, 41, 49
Varró’s benchmark, 1
VCG, 6, 36, 44

66 Examples

working graph, 39

yComp, 6, 44, 49
yComp.jar, 6, 49

	1 Introduction
	1.1 What is GrGen.NET?
	1.2 Features of GrGen.NET
	1.3 System Overview
	1.4 What is Graph Rewriting?
	1.5 An Example
	1.6 The Tools
	1.6.1 GrGen.exe
	1.6.2 GrShell.exe
	1.6.3 LibGr.dll
	1.6.4 yComp.jar

	2 Graph Model Language
	2.1 Building Blocks
	2.2 Type Declarations

	3 Rule Set Language
	3.1 Building Blocks
	3.2 Rules and Tests
	3.3 Pattern Part
	3.4 Replace/Modify Part
	3.4.1 Implicit Definition of the Preservation Morphism r
	3.4.2 Specification Modes for Graph Transformation
	3.4.3 Syntax

	4 Types and Expressions
	4.1 Built-In Types
	4.2 Expressions
	4.3 Type Related Conditions
	4.4 Annotations

	5 GrShell Language
	5.1 Building Blocks
	5.2 GrShell Commands
	5.2.1 Common Commands
	5.2.2 Graph Commands
	5.2.3 Graph Manipulation Commands
	5.2.4 Graph Query Commands
	5.2.5 Graph Output Commands
	5.2.6 Action Commands (GRS)

	5.3 LGSPBackend Custom Commands
	5.3.1 Graph Related Commands
	5.3.2 Action Related Commands

	6 Examples
	6.1 Fractals
	6.2 Busy Beaver
	6.2.1 Graph Model
	6.2.2 Rule Set
	6.2.3 Rule Execution with GrShell

	Bibliography
	Index

