
Verification of Memory Performance Contracts with
KeY?

Christian Engel

Universität Karlsruhe (TH), Fakultät für Informatik
Institut für theoretische Informatik

engelc@ira.uka.de

Abstract. Determining the worst case memory consumption is an important is-
sue for real-time Java applications. This work describes a methodology for for-
mally verifying worst case memory performance constraints and proposes exten-
sions to Java Modeling Language (JML) facilitating better verifiability of JML
performance specifications.

1 Introduction

Estimating the worst case memory usage (WCMU) of a Java application is essential for
giving performance or safety guarantees. This becomes even more relevant in the con-
text of real-time and embedded applications where the amount of memory available is
inherently small and software failures caused by memory shortage are not acceptable.
In the context of real-time Java [4] estimating the WCMU is especially relevant with
regard to the concept of scoped memory [3], which allows defining memory areas of
a fixed size (memory scopes) that are not subject to garbage collection. Since unrefer-
enced objects in scopes are not recycled by the garbage collector, which can easily give
rise to memory leaks, it would be desirable to have a means of verifying that the heap
space allocated by an application does not exceed a certain upper bound, for instance
the scope size.

Another field of application for WCMU analysis techniques are smart cards [7]
which usually possess only several KB of RAM memory. This application scenario is
particularly relevant for this work since the KeY tool forming the basis of the presented
technique is targeted on the verification of programs written in JAVA CARD, a Java
dialect for smart cards.

Even though the usefulness and necessity for a methodology for ensuring WCMU
contraints is evident, only few theoretical works [12] [1] [9] [11] in this area exist. In
practice, due to the lack of static analysis tools in this field, WCMU is often validated
experimentally (by measuring the memory usage during runtime). However, this can,
like testing in general, give no guarantees on the correctness of the tested WCMU esti-
mations.

This work will elaborate on how an existing program verification system, namely
the KeY [2] system, was adapted to verify memory performance contracts [14] specified

? This research was funded by the EU project DIANA (Distributed equipment Independent en-
vironment for Advanced avioNic Applications).



using the Java Modeling Language (JML) [13]. It will also propose extensions to JML
that add to overcoming some known [1] shortcomings of JML’s WCMU specification
features.

Outline In Section 2 we give a brief summary of the KeY verification tool as much as is
needed to make the following presentation self-contained. In Section 3 we first describe
the memory consumption specifications of JML as they are now and then present our
suggestions for improvementd. Section 4 quickly explains the general set-up of the
correctness proofs resulting from our approach. Section 5 presents in detail the technical
core of the proof system while Section 6 contains the results from two verification
experiments that show the feasability of the proposed methodology. Sections 7 and 8
conclude with the usual wrap-up and an outlook on future work.

2 The KeY Tool

KeY [2] is a software verification tool jointly developed at the University of Karlsruhe,
Chalmers University and the University of Koblenz. Based on symbolic execution and a
sequent calculus for JAVA CARD DL, a dynamic logic for Java Card, it performs deduc-
tive verification of JAVA CARD programs. JAVA CARD is a sequential subset (excluding
for instance floating point arithmetics) of Java.

KeY features frontends for the formal specification languages OCL [15] and JML
[13], both of which are compiled to JAVA CARD DL before they can be processed in
KeY. JAVA CARD DL is a dynamic logic [8] for JAVA CARD that permits to describe
functional properties of JAVA CARD programs. For two formulasφ andψ and a legal
sequence of JAVA CARD statementsp, the formula

φ → [ p ] ψ,

for instance, is equivalent to theHoare Triple[10]

{φ}p{ψ}

which is valid iff for every program states satisfyingφ the execution ofp when started
in s either (i) terminates in a state satisfyingψ or (ii) does not terminate. Beside this
example for a partial correctness specification, total correctness is expressible with JAVA

CARD DL by the diamond modality (〈〉). Accordingly, the semantics of

φ → 〈p〉ψ

is thatp terminates when started in an arbitrary state satisfyingφ andψ holds in the
corresponding post state.

The semantics of JAVA CARD which is needed for performing symbolic execution,
is encoded in the calculus rules of the JAVA CARD DL sequent calculus. This calculus
operates on proof trees whose nodes are sequents. A sequentΓ ⇒ ∆, whereΓ (the
antecedent) and∆ (the succedent) are sets of JAVA CARD DL formulas, is valid iff the
formula ^

γ∈Γ
γ →

_
δ∈∆

δ (1)



is valid. Thus the formulas in the antecedents can also be thought of as assumptions we
can use to prove the antecedent to be true.

A sequent calculus rule

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
(2)

is correct if the validity of the premises (the sequentsΓi ⇒∆i with 1≤ i ≤ n) implies the
validity of the conclusion (Γ⇒∆). This means that a rule is basically applied bottom up:
The conclusion is the sequent the rule is applied to and the premises are the result of the
application. Since there is always one single premise in each rule this leads eventually
to a tree shaped proof structure.

Example 21 (Calculus Rules)The rule for treating a conjunction in the antecedent
splits the proof branch it is applied to:

andLeft
Γ ⇒ a, ∆ Γ ⇒ b, ∆

Γ ⇒ a∧b, ∆

We say that a proof goal can be closed if it is an instance of an axiom (i.e. a sequent for
which all of its instances are known to be valid). A sequent with f alse (true) occurring
on the top level of the antecedent (succedent) or the identical formula occurring in both
the succedent an the antecedent is valid. Consequently open leafs in a proof tree (proof
goals) of such a form can be closed.

closeByFalse
∗

Γ, f alse⇒ ∆
closeByTrue

∗
Γ ⇒ true, ∆

closeGoal
∗

Γ, Φ ⇒ Φ, ∆

A proof tree is closed if each of its leaves is closed indicating validity of its root node.

In general a rule is applied to an entire sequent and the result of its application is
described relative to this sequent. There are however rules that can operate locally on
subformulas (or subterms). We call such rules rewrite rules. For rewrite rules that are
characterized by changing the sequent they are applied to only locally at one single
point by replacing one subterm (or subformula) by another we use a notation in this
work that differs from the notation of “normal” calculus rules. A rewrite rules replacing

a formulaΦ (a terms) by a formulaΨ (a termt) is written as
Ψ
Φ

and
t

s
respectively.

Note thatΦ does not need to occur on the top level of the regarded sequent (meaning
as an element ofΓ or ∆) for the rewrite rule to be applied but can also be a subformula

of a formulaϕ with ϕ ∈ Γ∪∆. A rewrite rule
Ψ
Φ

(or
t

s
) is correct if for all sequents

S,S′, with

– Φ (or s) occurring inS, and



– S′ can be derived fromSby replacing an arbitrary occurrence ofΦ (or s) in Sby Ψ
(or t),

the validity ofS′ implies the validity ofS. Intuitively one can say a rewrite rule is correct
if it describes an equivalence transformation betweenΦ andΨ or s andt respectively.

Since the verification of imperative programs has to deal with side effects of pro-
gram execution resulting in changes in the program state, JAVA CARD DL provides a
means, called state updates, to describe those state transitions. Intuitively the semantics
of an updateU := {loc1 := val1|| . . . ||locn := valn}, where the termsloci andvali for
1≤ i ≤ n are required to be side effect free, is that the valuesvali are assigned to the
locationsloci (for 1 ≤ i ≤ n) simultaneously. If we compose two updatesU and V
sequentially we write{U;V }

Example 22 (Sequential and Parallel Updates)
The formula〈v=3;u=4; 〉Ψ is logically equivalent to{v := 3;u := 4}Ψ wherev is a
program variable.

The parallel update{a := b||b := a} swaps the values of a and b. Thus, the formula
a = a0∧b = b0 →{a := b||b := a}(a = b0∧b = a0) is valid.

3 JML

The Java Modeling Language (JML) [13] is a behavioral interface specification lan-
guage for Java that allows, among other things, the specification of method pre- and
postconditions, class invariants and assertions intermixed with Java code. KeY’s JML
frontend [6] covers a large fraction of JML which we will refer to in this work as
KeYJML. Although the semantics of KeYJML is in principle consistent with the se-
mantics of JML this work will propose some additions to KeYJML that modify and
extend the existing JML semantics.

3.1 JML Memory Performance Specifications

Besides a variety of constructs aiming at the description of the functional behavior
of Java programs, JML provides means for specifying performance properties such as
worst case execution time and heap memory consumption. The worst case heap memory
usage of a method under a certain preconditionPRE is specified as part of a JML method
contract [14] using theworking_space clause:

/*@ public normal_behavior
@ requires PRE;
@ ...
@ working_space S;
@*/

public void doSth(){...

S is a JML expression of typelong that defines an upper bound on the size of heap space
allocated bydoSth() when invoked in a state satisfyingPRE. S is evaluated in the post
state ofdoSth() and allows (like other JML clauses evaluated in the post state) access



to the prestate by JML’s\old construct. As already identified in [1], this restriction to
two program states can be seen as a severe shortcoming of JML’s memory consumption
specs, on which this work will elaborate in the following.

The space allocated to an objecto (only to the objecto itself not including objects
referenced byo’s attributes) can be obtained by\space(o).

The JML function\working_space describes

the maximum specified amount of heap space, in bytes, used by the method
call or explicit constructor invocation expression that is its argument. (JML
Reference Manual [13])

Example 31 The amount of working space allocated bymaccording to its JML speci-
fication shown below can be refered to in other JML specifications with the help of the
\working_space function.

public myClass{ ...

/*@ public normal_behavior
@ requires a>0
@ working_space 0;
@ also public normal_behavior
@ requires a<=0;
@ working_space 8;
@*/

public static Object m(int a){ ...

The expression\working_space(myClass.m(3)) , for instance, could be replaced
by 0 since there is only one specification case, namely the first one in the above code,
whose precondition (a>0) is true if mis called with the argument3.

Considering, however, the following piece of code:

/*@ public normal_behavior
@ ...
@ ensures \result !=0;
@ working_space
@ \working_space (myClass.m(\result ));

both preconditions(a>0 anda<=0 ) can hold in the state the expression

\working_space (myClass.m(\result ))

is evaluated in as we only know that\result!=0 holds in this state. Thus this expres-
sion equals the maximum of the specified working space clauses of both specification
cases, which is8.

As example (31) illustrated, an expression\working_space(m()) used in the working
space clause of a specification case of a methodm2 denotes the worst case memory
consumption ofm as derivable from those ofm’s specification cases, whose precondi-
tion can potentially be true1 in the state\working_space(m()) is evaluated in (either

1 This means, in other words, it is not constradictory to the pre condition (if the
\working_space(m()) is evaluated in the pre state ofm2) of the specification case



the pre or post state ofm2, depending on whether the expression\working_space(m())

occurs inside an\old expression or not). One could argue that a more fine grained
\working_space function permitting to refer to the working space of a single specifica-
tion case, would be desirable in order to be able to write more precise working space
specifications.

Besides the fact that these restrictions can be considered inconvenient, they could
easily give rise to specification bugs as the following example shows:

static SomeClass instance;

/*@ working_space 0; @*/
public static clear(){ instance = null ; }

/*@ public normal_behavior
@ requires instance == null ;
@ working_space \space (new SomeClass());
@ also public normal_behavior
@ requires instance != null ;
@ working_space 0;
@*/

public static instance(){
if (instance==null ) instance = new SomeClass();
return instance;

}

/*@ requires instance!=null ;
@ assignable instance;
@ ensures \old (instance) != instance;
@ working_space \working_space (clear()) +
@ \working_space (instance());
@*/

public SomeClass freshInstance(){
clear();
return instance();

}

The above specification offreshInstance() is incorrect since in the stateinstance()
is calledinstance==null holds while in the poststate which is the state the expression
\working_space(instance()) is evaluated ininstance!=null holds leading to a speci-
fied working space of0 for this case. Writing\old(\working_space(instance())) does
not help either since in the prestateinstance is also required not to benull . This ex-
ample illustrates that (i) it is not possible with the JML semantics as it is to specify the
working space offreshInstance() relative to the working space ofgetInstance() and
clear() since one does not have access to the state in whichgetInstance() is called
in the code and (ii) that the semantics of the\working_space expression makes JML

\working_space(m()) occurs in or to its post condition (if\working_space(m()) is evalu-
ated in the post state) respectively.



vulnerable to specification bugs since the programmer could be tempted to use method
calls occurring in the specified method’s body by just copying and pasting them into the
working_space clause as has happened in the above specification.

3.2 JML Heap Memory Specifications in KeY

This work we propose propose an extension and modification of JML’s\working_space

function addressing both drawbacks of the current concept: the restriction to the pre and
post state of the specified method and the lack of granularity. To distinguish the present
JML specification from our proposal we will refer to the latter as the KeYJML spec.

The syntax and semantics of KeYJML memory specifications differs in certain re-
spects from the original JML specification. Concretely these differences concern (i)
the applied integer semantics, (ii) the state in which working space clauses are inter-
preted, (iii) the arguments allowed for\space expressions, (iv) a modification of the
\working_space function and (v) an extension of JML’s loop specifications.

Since KeY supports mathematical (unbounded) integers,\space and\working_space
expressions as well as the expressions contained inworking_space clauses do not have
the Java typelong but are treated by KeY as mathematical integers. This makes verifi-
cation tasks a bit easier since modulo arithmetics is no longer required for evaluating
working space clauses themselves2 and prevents subtle (specification) bugs that can
arise if integer overflows are not taken into account.

In contrast to JML,working_space clauses in KeYJML are interpreted in the prestate.
This is motivated by the rationale that in scenarios in which performance and especially
memory consumption specifications are of interest, namely for real-time and embedded
systems with a possibly very limited amount of physical memory or scoped memory in
a certain scope (as in RTSJ), one important application ofworking_space clauses could
be to decide in the design or implementation phase whether a method can be called at a
certain point of the program. Given this scenario, it makes sense that one should be able
to evaluate the working space expressions based on the information that is available at
the point the method is called which is its pre state. However, the approach presented in
this work does not depend on this decision and keeping JML’s original semantics would
only require minor modifications in some of the calculus rules shown in section 5.

We also restrict the expressions allowed in\space expressions to (object as well
as array) constructor calls. In the case of object constructors, this enables us to com-
pute concrete values for\space expressions which would not be possible for arbitrary
expressions of which we do not necessarily know their runtime type. When compiling
JML specifications to their JAVA CARD DL counterparts\space expressions can then
be directly replaced by concrete values.

The\working_space function undergoes the most distinct changes syntactically and
semantically compared to the original JML definition. Beside supporting the original
JML working space function KeYJML incorporates a new working space function that
is written as\working_space(m, pre), wherem is a method signature andpre is a
booleanexpression.\working_space(m, pre) then denotes the maximum of specified

2 Of course we still need modulo arithmetics for reasoning over programs containing arithmetic
operations on integers.



amounts of heap space consumed bym if invoked in a state satisfyingpre. This means
that we have to take the maximum over all working space clauses having a precondition
which is not contradictory topre. If pre is chosen carefully this is only the case for
exactly one contract. The second argumentpre can be thought of as quoted meaning it
is not evaluated in the state the containing expression\working_space(m, pre) occurs
in, thus, making the entire expression\working_space(m, pre) not state dependent (we
call an expression whose evaluation is not state dependent rigid). The expression

\working_space (SomeClass.m(int a1, int a2), a1<a2)

for instance denotes the maximum amount of heap space methodSomeClass.m can con-
sume according to its specification if invoked in a state in which the first ofm’s argu-
ments is smaller than the second one (a1<a2). This alternative suggestion of defining
the\working_space function helps to overcome the drawbacks described in section 3.1
since (i) by making the prestate (of the method) and thus the relevant specifications ex-
plicitly selectable, it supports a finer level of granularity than the original JML variant
of the \working_space function and (ii) reduces the risk of “copy and paste” related
specification bugs as demonstrated in section 3.1.

Since JML lacks features for specifying the memory consumption of loops we pro-
pose a new loop specification clause we callworking_space_single_iteration (wssi)
which specifies the maximum amount of heap memory used by any single loop iter-
ation not terminating with an exception or by abreak statement (continue is allowed
however). An upper bound of the accumulated amount of memory consumed by the
loop in all its normally terminating iterations is then given bydec∗w, wheredecand
w are the prestate values of the expressions specified by thedecreasing and thewssi
clause. Thedecreasing clause specifies a value that is (i) strictly decreasing in every
iteration of the loop and (ii) always greater 0. Thusdecconstitutes an upper bound for
the number of loop iterations. The specification ofinitArr shown below illustrates the
usage of thewssi clause:

/*@ public behavior
@ requires a!=null ;
@ working_space a.length*\space (new Object()) +
@ \working_space (new ArrayStoreException(), true );
@*/

public void initArr(Object[] a){
int i=0;
/*@ loop_invariant i>=0;
@ assignable a[*];
@ decreasing a.length-i;
@ working_space_single_iteration
@ \space (new Object());
@*/

while (i<a.length){
a[i++] = new Object();

}
}



In each normally terminating iteration of the abovewhile loop an object of typeObject
is created. Thus,\space(new Object()) is a correctwssi clause. In case the runtime
type of a is a strict subtype ofObject[], an ArrayStoreException is raised and the
memory consumption of the loop body would be the working space of the construc-
tor call new ArrayStoreException() which includes the space occupied by the newly
createdArrayStoreException itself. Since , if this happens, the loop body doesn’t ter-
minate normally, this case need not be taken into account according to our definition
of the semantics of wssi. However, it has to be taken into account when specifying
initArr’s working space. This example also clarifies the rationale behind defining the
wssi clause only for normally terminating iterations of the loop: The working space
of new ArrayStoreException() (several hundreds of bytes, depending on the created
stack trace) is significantly larger then the space occupied by a newly created object of
typeObject (8 bytes for the JVM characteristics we use). Ifw were also required to be
an upper bound for the heap space consumed by an abruptly terminating iteration the
valuedec∗w would be of no real significance for the worst case memory consumption
estimation of the loop, since:

– If the loop raises no exceptionw is by an order of magnitudes larger then the space
actually consumed by each iteration (\space(new Object())) which also applies to
the worst case estimationdec∗w for the memory consumption of the entire loop.

– If the loop raises an exception, it is only executed once and our worst case estima-
tion dec∗w is wrong by factordec.

By restrictingwssi the way it is done we get at least a more precise worst case estimation
for the first of the above two cases. This information can also be used by the KeY tool for
determining a correct upper bound for the memory consumption of a loop terminating
abruptly in an arbitrary iteration as shown in section 5.

Assumptions on the Java Virtual Machine The approach presented in this work is
independent of characteristics, such as the memory overhead needed to store an object
and alignment issues, of the Java Virtual Machine (JVM) the regarded code runs on.
Nevertheless for the calculus rules and examples presented in the following we will
assume concrete JVM characteristics, namely the ones observable for the Sun J2SE
1.4.2 VM running on the Linux operating system. This entails that we can provide
concrete values for the space occupied by objects and arrays (see section 5), in case
their dimension is known, which should make rules and examples appearing in the
following more illustrative.

In particular the JVM characteristics we assume are:

– The spacease,l required for a one-dimensional array of lengthl with each of its
entries occupyingebytes is:

ase,l = min{a|a≥ 12+e∗ l ∧a mod8≡ 0}

– The spacespaceT in bytes occupied by an object of typeT is:

spaceT := min{a|a≥ 8+s∧a mod8≡ 0}

wheres is the space occupied by the fields of the object.



Mapping JML expressions to JAVA CARD DL In order to make JML expressions
utilizable within KeY, it is necessary to compile them to JAVA CARD DL.

Let T be a mapping from JML expressions to JAVA CARD DL terms and formulas.
For the JML functions\working_space and\space we defineT as:

– T (\working_space(m, pre)) := wsr
m,pre,

with wsr
m,pre being a rigid term meaning its value is not state dependent. This means

in particular thatprecan be thought of as quoted since it is not evaluated in the state
wsr

m,pre occurs in.
– T (\working_space(m(a1,...,an))) := wsnr

m(a1,...,an),
with wsnr

m(a1,...,an) being a non-rigid term.
– T (\space(new T())) := i,

with the integer literali being the amount of heap space an object of typeT occu-
pies.

– For representing\space expressions whose argument has an array type we intro-
duce a new rigid function symbolspacearr , wherespacearr(s, l) denotes the space
occupied by a one-dimensional array of lengthl whose entries (for primitive typed
entries) or entry references (in case of reference typed entries) respectively have
sizes.
T (\space(new T[d1]...[dn][]...[])) :=
spacearr(4,d1)+
d1∗T (\space(new T[d2]...[dn][]...[])),
T (\space(new T[d][]...[])) := spacearr(4,d)
andT (\space(new T[d])) := spacearr(s,d),
where

s :=


1 iff T ∈ {byte,boolean}
2 iff T ∈ {short,char}
4 iff T = int or T is a re f erence type
8 iff T = long

Although spacearr is a rigid function, terms havingspacearr as top level function
symbol can be non-rigid since the second argument of aspacearr term can be non-
rigid.

Example 32 (Heap Space Terms)The formula

{v := 2}spacearr(4,v)

is logically equivalent to the formula

spacearr(4,2)

since spacearr(4,v) is non-rigid. In contrast

{v := 2}wsr
m,v≥0

is equivalent to
wsr

m,v≥0

since wsrm,v≥0 is rigid and the state update does not affect the formula v≥ 0 in the index.



4 Proof Obligations

For checking the correctness of JML method contracts these contracts are compiled to
JAVA CARD DL formulas that are valid iff the contract they are based is correct. The
correctness of these formulas, which we call proof obligations (POs), can be checked
by the KeY system.

For reasoning over memory performance aspects of JML contracts in JAVA CARD

DL, we introduce a program variableh representing the current amount of used heap
space. This variable is increased appropriately whenever a statement consuming mem-
ory is symbolically executed. Since theworking_space clause defines an upper bound
for the amount of heap memory consumed by the specified method, the corresponding
PO must state that the value ofh is increased (relative to the prestate) by at most this
amount. Thus, for instance, the PO expressing the validity of the performance contract
for methoddoSth shown on page 3.1 has the form:

PRE→{hmax := h+S}〈doSth();〉h≤ hmax (3)

whereS is the working space ofdoSth as specified in the considered performance con-
tract (like other JML expressions occurring the contract working space expression is
translated to JAVA CARD DL). Since we decided to evaluate the working space in the
prestate ofdoSth, we introduced a fresh program variablehmax for storing the prestate
value ofh+Swhich is then compared toh in the poststate (h≤ hmax).

Remark 41 (JML and KeYJML) If we apply the original JML semantics, namely that
the working space clause is evaluated in the post state the resulting PO changes only
slightly:

PRE→{hold := h}〈doSth(); 〉h≤ hold +S (4)

5 Calculus Rules

We now turn to calculus rules extending the existing JAVA CARD DL calculus pro-
vided by KeY. These newly defined rules reflect the semantics of KeYJML and JAVA

CARD DL expressions described in section 3.2 and make JAVA CARD DL suitable for
reasoning over memory performance aspects of JAVA CARD programs.

Remark 51 We writeΓ ⇒ ∆ 3 ϕ iff either ϕ ∈ Γ∪∆ or there is a formulaΦ such that
Φ ∈ Γ∪∆ and ϕ is subformula ofΦ. Analogously we define thatΓ ⇒ ∆ 3 t holds iff
there is a formulaΦ such thatΦ ∈ Γ∪∆ and t is subterm ofΦ.

For two working space termswsr
m,ϕ1

andwsr
m,ϕ2

with ϕ1 → ϕ2 the maximum amount
of heap space consumed bym under the preconditionϕ1 cannot be larger then under
the preconditionϕ2 since the set of states satisfyingϕ1 is a subset of the set of states
satisfyingϕ2 (or {s|s |= ϕ1} ⊆ {s|s |= ϕ2}). This leads us to the rule:

wsRigid

Γ ⇒{∗}(ϕ1 → ϕ2), ∆
wsr

m,ϕ1
≤ wsr

m,ϕ2
, Γ ⇒ ∆

Γ ⇒ ∆ 3 wsr
m,ϕ1

, wsr
m,ϕ2



where{∗} is an anonymous update assigning a fresh constant to every location in
ϕ1 → ϕ2 and thus erasing all context information fromΓ and∆ that could influence
the validity ofϕ1 → ϕ2. The reason for applying{∗} in the first premise is that we need
to show that thatϕ1 → ϕ2 holds in an arbitrary state (and not only in the states satisfy-
ing Γ ⇒ ∆). In the second premise we can then usewsr

m,ϕ1
≤ wsr

m,ϕ2
as an assumption

(meaning it becomes part of the antecedent).
We know that a method can have no negative memory consumption which is re-

flected in the ruleswsGEqZeroRandwsGEqZeroNR:

wsGEqZeroR
Γ,wsr

m,ϕ ≥ 0 ⇒ ∆
Γ ⇒ ∆ 3 wsr

m,ϕ

wsGEqZeroNR
Γ,{U}wsnr

m(a1,...,an) ≥ 0 ⇒ ∆

Γ ⇒ ∆ 3 {U}wsnr
m(a1,...,an)

where{U} is an arbitrary state update. If the length of an array is known (meaning it
is a concrete value not only a symbolic expression) the heap space consumed by this
array can be determined:

arraySpaceConcreteDim
ase,l

spacearr(e, l)

where

– eandl are integer literals.
– ase,l := min{a|a≥ 12+e∗ l ∧a mod8≡ 0}

Above we definedase,l in accordance with the characteristics of the Sun JVM imple-
mentation running on Linux (see section 3.2) which means that the space (measured in
bytes) occupied by an array is a multiple of 8 and the overhead (the space occupied by
an array without being available to store array elements) of an array is 12 bytes.

In case the length of an array is not known, we can still determine upper and lower
bounds of thespacearr(e, l) term depending on the value ofl :

arraySizeLowerUpperBound

spacearr(e, l)≤ ub(e, l)∧
spacearr(e, l)≥ lb(e, l)∧
spacearr(e, l)≥minas, Γ ⇒ ∆

Γ ⇒ ∆ 3 spacearr(e, l)

where

– ub(e, l) denotes the least upper bound ofspacearr(e, l) for arbitrary values ofl . For
the VM implementation we consider we get for instance:

ub(e, l) :=
{

8l +16, if e= 8
e(l −1)+20, if e∈ {1,2,4}



– lb(e, l) denotes the greatest lower bound ofspacearr(e, l) for arbitrary values ofl :

lb(e, l) :=
{

8l +16, if e= 8
el+12, if e∈ {1,2,4}

– minas := spacearr(e,0) is the size of an array of length 0 which is for the VM we
consider 16 bytes.

The symbolic execution of a constructor call increasesh by the size of the created
object:

objectCreation
Γ ⇒{U;h := h+spaceT}〈πOCω〉φ, ∆

Γ ⇒{U}〈πv=new T(a1,...,an);ω〉φ, ∆

– spaceT is an integer literal representing the heap space occupied by an object of
dynamic typeT which is in this case (see section 3.2)

spaceT := min{a|a≥ 8+s∧a mod8≡ 0}

wheres is the space occupied by the fields of the object (for a non-primitive field
only the space occupied by the reference, namely 4 bytes, not the object itself).

– OC stands for the code modeling the object’s creation and initialization and the exe-
cution of the constructorT(a1,...,an).

Array constructors are treated in a similar way with the mere difference that the size
of an array cannot necessarily be statically determined since it depends on the array’s
dimension. For the sake of readability we only consider the case of a one-dimensional
array here:

arrayCreation
Γ ⇒{U;h := h+spacearr(e,d1)}〈πACω〉φ, ∆

Γ ⇒{U}〈πv=new T[d1]);ω〉φ, ∆

WhereAC is a placeholder for the code modeling the array’s creation.
In order to be also able to modularly verify performance contracts (as also proposed

in [12]), we need a rule describing the effect of a method’s execution merely by utilizing
the information retrievable from its specification instead of symbolically executing the
method body. For the sake of simplicity we now consider onlynormal_behavior method
contracts that allow only normal termination (without an exception) of the specified
method leading to a more compact rule. LetC be anormal_behavior contract for a
methodm() derived from a JML specification and let the JAVA CARD DL formulasPre
andPostbe the pre- and postcondition as defined byC, Mod the set of locations that are
permitted to be modified bym() (obtained from theassignable clause) andw the term
obtained fromC’s working_space clause. Let further beV an update assigning fresh
constants to all locations inMod as a means of reflecting the state change caused by
m(). For the sake of readability we only consider the contract rule for a parameterless
static method here:

applyContract

Γ ⇒{U}Pre, ∆
Γ ⇒{U}(wsnr

m() = w→
{V ||h := h+wsnr

m()}(Post→ 〈πω〉φ)), ∆
Γ ⇒{U}〈πm();ω〉φ, ∆



The first premise of rule applyContract states that the preconditionPre is required to
hold in the state in whichm() is invoked. In the second premise we can then use the
information that after the execution ofm() the postconditionPostholds. As we can see
applyContract also describes that in every states reachable by state updateU the worst
case memory consumption ofm() (when executed in states) equalsw evaluated in state
s (indicated bywsnr

m() = w and the state updateh := h+w).

Remark 52 (Working space terms inapplyContract) The usage of wsnr
m() could seem

to be counter intuitive on a first glance since the rule

Γ ⇒{U}Pre, ∆
Γ ⇒{U}{V ||h := h+w}(Post→ 〈πω〉φ), ∆

Γ ⇒{U}〈πm(); ω〉φ, ∆

also expresses thath is increased by the value w specified by the applied contract.
However, keeping the information explicitely in the sequent that w equals the mem-

ory consumption of m when called in the state defined byU and the sequent context
Γ and∆ (as expressed by the subformula wsnr

m() = w in rule applyContract) can ease
proving tasks later on in case rigid working space terms occur inφ. This is mainly owed
to the rulewsNonRigidallowing to directly relate rigid and non-rigid working space
terms refering to the same method.

Remark 53 (JML and KeYJML) Basing the rule set on the original JML semantics
that demands evaluation of the working space clause in the post state would result in
the following contract rule:

applyContract′

Γ ⇒{U}Pre, ∆
Γ ⇒{U;V ;(wsnr

m() = w→
{h := h+wsnr

m() }(Post→ 〈πω〉φ)), ∆
Γ ⇒{U}〈πm(); ω〉φ, ∆

The relation between a non-rigid working space term and a rigid one can be defined
in similar manner as done by rule wsRigid for two rigid working space terms:

wsNonRigid

Γ ⇒{U}ϕ, ∆
Γ, {U}wsnr

m ≤ wsr
m,ϕ ⇒ ∆

Γ ⇒ ∆ 3 {U}wsnr
m(a1,...,an),wsr

m,ϕ

If the preconditionϕ is valid in the symbolic states the nonrigid working space term
wsnr

m(a1,...,an) occurs in (first premise) the setS1 of concrete program states defined by
s is a subset of the setS2 of conrete states which are a model ofϕ. Thus according
to the semantics ofwsnr andwsr the relation{U}wsnr

m(a1,...,an) ≤ wsr
m,ϕ holds (second

premise).
With the rules defined so far, it is not yet possible to put a working space term

wsr
m,ϕ in relation to the working spaces specified by any ofm’s contracts. However, we

know that if there is a contractC for m whose precondition is logically weaker thanϕ,
the semantics ofwsr

m,ϕ entails thatwsr
m,ϕ = t, with t being the specified working space



of C, holds in states satisfyingϕ. Analogously, we can define a rule for the case that
ϕ is weaker thanC’s precondition in which every valuet, when evaluated in a state
satisfyingPre, is a lower bound forwsr

m,ϕ. This results in two calculus rules for the two
mentioned cases:

wsContract1

Γ ⇒{∗}(ϕ → Pre), ∆
Γ, {∗}(ϕ∧wsr

m,ϕ = t)⇒ ∆
Γ ⇒ ∆ 3 wsr

m,ϕ

wsContract2

Γ ⇒{∗}(Pre→ ϕ), ∆
Γ, {∗}(Pre∧ t ≤ wsr

m,ϕ)⇒ ∆
Γ ⇒ ∆ 3 wsr

m,ϕ

The motivation for the anonymizing updates{∗} used in each of the above rule’s first
premises is the same as for rule rigidWS namely that, for instance, the implication
Pre→ ϕ (as occurring in rule wsContract2) has to be valid, meaning it is required to
hold in every state not only the ones determined by the context formulasΓ and∆. Since
the working spacet is only defined for states meetingPre, all we can assume in each of
the second premises is that, for instance, the relationt ≤wsr

m,ϕ holds in a state satisfying
Pre. This consideration leads us to the formula{∗}(Pre∧ t ≤ wsr

m,ϕ) that is part of the
antecedent of the second premise of rule wsContract2.

For non-rigid working space terms we can define a similar rule motivated basically
by the same considerations as wsContract1 witht andPreas defined above:

wsContract3

Γ ⇒{U}Pre, ∆
Γ, {U}(wsnr

m(a1,...,an) = {V }t)⇒ ∆

Γ ⇒ ∆ 3 wsnr
m(a1,...,an)

We use the update{V } := {p1 := a1|| . . . ||pn := an} to mapm’s parametersp1, . . . , pn

occuring int to the concrete argumentsa1, . . . ,an taken fromwsnr
m(a1,...,an).

Remark 54 (Soundness of Contract Rules)For the rules wsContract1 and wsCon-
tract3 to be sound we have to require that for any pair C1,C2 of specification cases
for a methodm the conditionφ1∧ φ2 → w1 = w2 holds, whereφi and wi denote the
precondition and working space of contract Ci . For this condition to be true it is suf-
ficient to require that different specification cases for the same method have disjoint
preconditions.

In caseφ1∧ φ2 → w1 = w2 does not hold, as for instance if we setφ1 := φ2 :=
true and w1 := 0, w2 := 1, usingwsContract3we could for instance prove that the
unsatisfiable (according to the semantics of wsnr) formula wsnr

m() < 0 holds as these
derivation steps illustrate:

∗
⇒ true,wsnr

m() < 0 wsnr
m() = 0⇒ wsr

m < 0

⇒ wsnr
m() < 0

By applyingwsContract3again to the remaining goal wsnr
m() = 0⇒ wsr

m < 0 using the
second contract for m we get a proof tree with one open goal of the form

wsnr
m() = 0,wsnr

m() = 1⇒ wsr
m < 0



which can eventually also be closed:

∗
wsnr

m() = 0,wsnr
m() = 1, f alse⇒ wsr

m < 0

wsnr
m() = 0,wsnr

m() = 1,0 = 1⇒ wsr
m < 0

wsnr
m() = 0,wsnr

m() = 1⇒ wsr
m < 0

Remark 55 (JML and KeYJML) Applying the JML semantics leads to the following
working space contract rules:

wsContract1′

Γ ⇒{∗}(ϕ → Pre), ∆
Γ, {∗}(ϕ∧V (Mod)(Post∧wsr

m,ϕ = t))⇒ ∆
Γ ⇒ ∆ 3 wsr

m,ϕ

wsContract2′

Γ ⇒{∗}(Pre→ ϕ), ∆
Γ, {∗}(Post∧ t ≤ wsr

m,ϕ)⇒ ∆
Γ ⇒ ∆ 3 wsr

m,ϕ

wsContract3′

Γ ⇒{U}Pre, ∆
Γ, {U}(wsnr

m(a1,...,an) = {V ′}t ∧{V ′}Post)⇒ ∆

Γ ⇒ ∆ 3 wsnr
m(a1,...,an)

Where Pre and Post are the pre and post condition of the applied method contract, t its
working space and Mod its modifier set. In addition we define

V ′ := {V ;V (Mod)}

and

V := {p1 := a1|| . . . ||pn := an}

As the last step of adapting the JAVA CARD DL calculus to performance verifica-
tion needs we will have a look at a loop invariant rule making use of loop annotations
provided by a JML specification:

– a loop invariantInv holding at the beginning of each and the end of each normally
terminating (meaning not termination bybreak or anexception) loop iteration.

– anassignable clause defining a set of locationsMod modifiable by the loop. Al-
lowing the specification of assignable clauses for loops is a KeY-specific extension
of JML.

– adecreasing clause providing a termvar that is strictly decreasing in each iteration
of the loop while remaining greater or equal to 0 thus inducing termination of the
loop.

– a working spacewsl for a single normally terminating iteration of the loop obtained
from the, again KeY-specific,working_space_single_iteration clause.



loopInvTotal

Γ ⇒{U}(Inv∧var≥ 0), ∆
Γ, {U;V1(Mod)}(Inv∧se)⇒
{U; i := h; j := wsl;

k := var;V1(Mod)}[ tc(p,e) ] ψ1, ∆
Γ, {U;V2(Mod)}(Inv∧se∧var≥ 0)⇒
{U;V2(Mod);k := var}〈tc(p,e)〉ψ2, ∆

Γ, {U;V3(Mod)}(Inv∧¬se)⇒
{U;h := h+var∗wsl;V3(Mod)}〈πω〉φ, ∆

Γ ⇒{U}〈πwhile(se){p}ω〉φ, ∆
The first premise of loopInvTotal states that the invariantInv is valid just before the loop
is executed the first time.

The second premise states that, in case the loop body terminates normally, the loop
invariant is preserved by the loop body and the loop guard3 and the memory consump-
tion of this loop iteration does not exceedwsl. Here

– V1(Mod) is a parallel update assigning fresh constants to the locations inMod.
– tc(p,e) is derived from the original loop body that was transformed in a way that,

for instance, allows capturing the execution ofbreak statements or the raising of an
uncaught (i.e. uncaught within the loop body) exception. Such events are memo-
rized by fresh program variables.

– ψ1 := ψexc1 ∧ψbreak1 ∧ψnormal1
ψ1 describes the conditions required to hold after the loop body terminated nor-
mally (ψnormal1) or abruptly by an exception (ψexc1) or break (ψbreak1).

• ψnormal1 :=
(e= null∧bbreak= FALSE∨
bcont = TRUE)→ (inv∧h− i ≤ j)

The rationale behind this formula is that if no exception has been thrown and
the loop body terminates normally (indicated by the values ofe andbbreak1) or
a continue statement has been executed (indicated bybcont = TRUE) then the
invariant holds andh was increased at most by the pre state value ofwsl.

• ψexc1 :=
e 6= null→
{h := h+ j ∗ (k−var−1)}[ π throw e;ω ] φ

If an exception has been thrown the value ofh is increased byj ∗ (k−var−1)
which is the maximal cumulated amount of heap space the loop has potentially
consumed in all (normally terminating) iterations executed before the observed
iteration leading to the exception has been reached. The heap space consumed
by the last iteration (the one raising the exception) was already added toh
during the symbolic execution of the loop body. In addition after the execution
of the rest of the programπ throw e;ω the postconditionφ must hold. We
inject the statementthrow e; into the remaining code since the exception was
not caught in the original implementation of the loop but only by acatch block
added by the transformationtc for memorizing uncaught exceptions.

• ψbreak1 :=
bbreak= true→
{h := h+ j ∗ (k−var−1)}[ πω ] φ

In case abreak statement terminates the loop we are in a similar situation as in
the exceptional case to that effect thath is also increased byj ∗ (k− var−1)

3 The loop guard can potentially have side effects.



and that the postconditionφ must be shown to hold after the remaining code is
executed.

Recapitulating one can say that these explanations aboutψ1 also clarify why it is
sufficient to specify only the memory consumption of normally terminating loop
iterations: All information needed about abruptly terminating iterations is obtained
by symbolic execution and thus does not need to be part of the specification.

The third premise covers the termination function obtained from thedecreasing

clause by stating thatvar has to decrease strictly if the loop body terminates normally.
Again we have to distinguish between the normal and the two kinds of abrupt termina-
tion:

ψ2 := ψexc2 ∧ψbreak2 ∧ψnormal2

where

– (e= null∧bbreak= true∨bcont = TRUE)→ (var≥ 0∧var < k): In case of non-
abrupt termination of the loop body (and guard)var ≥ 0∧ var < k holds withk
being the prestate value ofvar.

– ψexc2 := e 6= null→〈π throw e;ω〉 true: If an exception was thrown the remaining
partπ throw e;ω of the program must terminate.

– ψbreak2 := bbreak= true→ 〈πω〉 true: If a break occurs the remaining programπω
must terminate.

Finally in the fourth premise of rule loopInvTotal we can use the information that
the loop invariant holds after the last iteration of the loop (at the end of which¬se
holds) and thath was increased at this point by the prestate value ofvar∗wsl, which is
encoded in an update.

6 Examples

In the following we demonstrate the capabilities of the presented approach based on two
examples. In the first one we examine modular verification of performance constraints.
The second one shows the JML specification of a realistic piece of code with perfor-
mance specifications that can be verified by KeY requiring only little user interaction.

6.1 Modular vs. Non-Modular Verification

We will now regard the modular verification of performance contracts illustrated by
a short example containing two static methodscreate andinit. The methodcreate
creates an integer array of lengtha if the value ofa that is passed as an argument is
greater zero.init initializes the static fieldarr with an integer array of length 7 that
was created by thecreate method. This behavior and the corresponding heap space
consumption is specified by JML method contracts.

private static int [] arr;
...
/*@ public normal_behavior



@ requires a>0;
@ assignable \nothing ;
@ working_space 16+a*4;
@ also public normal_behavior
@ requires a<=0;
@ assignable \nothing ;
@ working_space 0;
@*/

public static int [] create(int a){
if (a>0){

return new int [a];
}
return null ;

}

/*@ public normal_behavior
@ assignable arr;
@ working_space
@ \working_space (create(int arg),arg==7);
@*/

public static void init(){
arr = create(7);

}

The proof obligations derived from the two contracts forcreate are

a > 0→{hmax := h+16+a∗4}〈create();〉h≤ hmax (5)

and
a≤ 0→{hmax := h}〈create();〉h≤ hmax (6)

respectively. Both can be proven automatically by the KeY-prover using the extension
described in Section 5. Of the rules defined in this sections the only ones used for these
proof obligations were arrayCreation for the symbolic execution of the array constructor
call and arraySizeLowerUpperBound for deriving that the upper bound of the amount
of memory consumed by the created array is smaller or equal to 16+a∗4.

The proof obligation forinit’s specification is given by the formula:

{hmax := h+wsr
create(int a)(a = 7)}〈init();〉h≤ hmax

Sinceinit() contains the method callcreate(7) we either have to symbolically execute
create’s method body or make use ofcreate’s method contract by applying the rule
applyContract with the first one ofcreate’s contracts.

Non-Modular Verification When symbolically executing the method body we get a
sequent

⇒ h+40≤ h+wsr
create(int a)(a = 7)



after the symbolic execution has terminated which shows thath was increased by 40
bytes and we now have to prove that this is smaller than the maximum specified amount
of space consumed by the methodcreate(int a) when called under the precondition
a = 7. We can achieve this by applying rule wsContract1 (using again the first of
create’s contracts) towsr

create(int a)(a = 7) resulting in two goals

⇒{∗}(a = 7→ a > 0), h+40≤ h+wsr
create(int a)(a = 7)

which is obviously valid since{∗}(a = 7→ a > 0) is valid, and

{∗}(a = 7∧16+ a∗4 = wsr
create(int a)(a = 7))

⇒
h+40≤ h+wsr

create(int a)(a = 7)

which can be simplified to

{∗}a = 7, 16+7∗4 = wsr
create(int a)(a = 7))

⇒
h+40≤ h+wsr

create(int a)(a = 7)

and eventually (since 16+7∗4 = 44 holds) to

{∗}a = 7, 44= wsr
create(int a)(a = 7)⇒ h+40≤ h+44

whose validity is also obvious due toh+40≤ h+44 occurring in the succedent.

Modular Verification In the other case if we decide to verify our program in a modular
way by utilizingcreate’s contract and applying applyContract the symbolic execution
of create leads toh being increased by 44. Thus after the symbolic execution ofinit

is completed we have a sequent:

⇒ h+44≤ h+wsr
create(int a)(a = 7)

which can be shown to be valid by either applying wsContract1 (as done in the first
case) or wsNonRigid which results in the two sequents

{a := 7}wsnr
create(int) ≤ 44

⇒
{a := 7}a = 7,
h+{a := 7}wsnr

create(int) ≤ h+wsr
create(int a)(a = 7)

which is valid since{a := 7}a = 7 (occurring in the succedent) can be simplified to
7 = 7 and eventually totrue, and

{a := 7}wsnr
create(int) ≤ 44,

{a := 7}wsnr
create(int) ≤ wsr

create(int a)(a = 7)
⇒
h+{a := 7}wsnr

create(int) ≤ h+wsr
create(int a)(a = 7)



which is also valid since the formula

h+{a := 7}wsnr
create(int) ≤ h+wsr

create(int a)(a = 7)

in the succedent is logically entailed by

{a := 7}wsnr
create(int) ≤ wsr

create(int a)(a = 7)

occurring in the antecedent.

6.2 Javolution

Javolution [5] is a real-time Java library facilitating the development of real-time com-
pliant Java applications. This is accomplished by, for instance, reducing the need for
garbage collection by using memory contexts in which objects, that are no longer
needed, are recycled and can be reused the next time an object of the corresponding
class is needed in the containing context. Javolution also provides time-deterministic
implementations of standard Java packages such as collection and map data structures.
The example we now consider is taken from the Javolution classFastMap which imple-
ments the same functionality asjava.util.HashMap but shows a more time-deterministic
behavior. Since possessing a deterministic memory performance is essential for real-
time applications, this example also illustrates the suitability of the presented approach
for the field of application it is intented for.

The memory performance of the methodsetup shown below which is part of the
Javolution [5] library was specified in JML. Since the setup method is used byFastMap’s
constructors to create and initialize a new map, its memory performance is of particu-
lar relevance for determining the memory consumption of instances of this class. The
specification cases can be verified almost automatically by the KeY system and could
probably be verified completely automatically using a more advanced quantifier instan-
tiation heuristic4:

/*@ public normal_behavior
@ requires capacity <= (1 << R0) && capacity>=0;
@ working_space \space (new Entry[1][1<<R0]) +
@ (2+capacity)*\space (new Entry());
@ also public normal_behavior
@ requires capacity > (1 << R0) && capacity<1<<30;
@ working_space
@ \space (new Entry[2*capacity][1<<R0])+
@ (2+capacity)*\space (new Entry());
@*/

private void setup(int capacity) {
int tableLength = 1 << R0;
/*@ loop_invariant 1 << R0 < capacity ?

4 A more sophisticated quantifier instantiation heuristics for KeY that could add to a higher
automation degree of the discussed example is currently under development but was not yet
used for this example.



@ tableLength>=1 << R0 &&
@ tableLength<2*capacity :
@ tableLength == 1 << R0;
@ decreases 1 << R0 < capacity ?
@ 2*capacity-2-tableLength : 0;
@ assignable tableLength;
@ working_space_single_iteration 0;
@*/

while (tableLength < capacity) {
tableLength <<= 1;

}
int size = tableLength >> R0;
_entries = (Entry[][]) new Entry[size][];
int i = 0;
/*@ loop_invariant i>=0;
@ decreases _entries.length-i;
@ assignable i, _entries[*];
@ working_space_single_iteration
@ \space (new Entry[1 << R0]);
@*/

while (i < _entries.length) {
int blockLength = 1 << R0;
_entries[i++] =

(Entry[]) new Entry[blockLength];
}
_head = new Entry();
_tail = new Entry();
_head._next = _tail;
_tail._previous = _head;
Entry previous = _tail;
i = 0;
/*@ loop_invariant i>=0 && previous!=null ;
@ decreases capacity-i;
@ assignable _tail._next, i;
@ working_space_single_iteration
@ \space (new Entry());
@*/

while (i++ < capacity) {
Entry newEntry = new Entry();
newEntry._previous = previous;
previous._next = newEntry;
previous = newEntry;

}
}



This demonstrates the potential of the presented approach even for rather complex code
in realistic real-time applications.

Remark 61 Given properties for a concrete JVM one could simplify the performance
specification shown in the example. For instance with the JVM parameters we assume
(see section 3.2) the working space expressions

\space (new Entry[1][1<<R0])+
(2+capacity)*\space (new Entry())

can be simplified to a better human readable

240+capacity*40

This simplified expression does not need to be computed “by hand” but can be retrieved
from the KeY proof for the corresponding contract.

7 Conclusion

Formal software verification can effectively and in many cases also automatically en-
sure the correctness of memory performance constraints even for non-trivial applica-
tions as shown in section 6.2. Section 3.2 presented improvements and extensions to
JML. One of these extensions makes it possible to specify the worst case memory con-
sumption of loop iterations in a way that is verifiable by the KeY prover and also usable
by it for determining the memory usage of the entire loop. Using KeY, memory perfor-
mance contracts are verifiable in a modular way making their verification efficient and
adaptable to software changes.

8 Future Work

Currently all specifications described in this work have to be provided by the user. It
would be preferable to derive some of them, such as, for instance, loop invariants [16]
or the memory consumption figures of single loop iterations, automatically by means of
static analysis. Data flow analysis could help to provide likely memory usage estimation
that does not necessarily need to be correct because they can then be formally verified
as described in this work.

It would also be interesting to incorporate support for RTSJ [4] features, first of
all scoped and immortal memory, in the JAVA CARD DL calculus since real-time and
safety critical systems are, beside smart card applications, apparently the most likely
field of application for formal verification of performance specifications.

Acknowledgements

I would like to thank Prof. Dr. Peter H. Schmitt and Mattias Ulbrich for their advices
and suggestions contributing to this work.



References

1. R. Atkey. Specifying and verifying heap space allocation with JML and ESC/Java2 (pre-
liminary report). InWorkshop on Formal Techniques for Java-like Programs (FTfJP), July
2006.

2. B. Beckert, R. Hähnle, and P. H. Schmitt, editors.Verification of Object-Oriented Software:
The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

3. W. S. Beebee, Jr. and M. Rinard. An implementation of scoped memory for real-time Java.
Lecture Notes in Computer Science, 2211:289–??, 2001.

4. G. Bollella and J. Gosling. The real-time specification for Java.Computer, 33(6):47–54,
2000.

5. J.-M. Dautelle. The javolution homepage,http://www.javolution.org/.
6. C. Engel. A Translation from JML to JavaDL. Studienarbeit, University of Karlsruhe, De-

partment of Computer Science, 2005.
7. P. Giambiagi and G. Schneider. Memory consumption analysis of java smart cards. In

Proceedings of XXXI Latin American Informatics Conference (CLEI 2005), page 12, Cali,
Colombia, 2005.

8. D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors,Handbook of Philosophical
Logic, volume 2 ofExtensions of Classical Logic, pages 497–604. D. Reidel Publishing
Company, 1984.

9. I. J. Hayes and M. Utting. A sequential real-time refinement calculus.Acta Informatica,
37(6):385–448, 2001.

10. C. A. R. Hoare. An axiomatic basis for computer programming.Commun. ACM,
12(10):576–580, 1969.

11. J. J. Hunt, F. B. Siebert, P. H. Schmitt, and I. Tonin. Provably correct loops bounds for
realtime java programs. InJTRES ’06: Proceedings of the 4th international workshop on
Java technologies for real-time and embedded systems, pages 162–169, New York, NY, USA,
2006. ACM Press.

12. J. Krone, W. F. Ogden, and M. Sitaraman. Modular verification of performance constraints.
In ACM OOPSLA Workshop on Specification and Verification of Component-Based Systems
(SAVCBS), pages 60–67, 2001.

13. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller, J. Kiniry, and
P. Chalin. JML Reference Manual. Department of Computer Science, Iowa State University.
Available fromhttp://www.jmlspecs.org, Feb. 2007.

14. B. Meyer. Applying "Design by Contract".Computer, 25(10):40–51, 1992.
15. J. Rumbaugh, I. Jacobson, and G. Booch, editors.The Unified Modeling Language reference

manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.
16. P. H. Schmitt and B. Weiß. Inferring invariants by symbolic execution. Submitted to 4th

International Verification Workshop (VERIFY’07), Workshop at 21st Conference on Auto-
mated Deduction (CADE-21), Bremen, Germany, 2007.


