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We evaluate the current distribution for a single-electron transistor with intermediate strength
tunnel conductance. Using the Schwinger-Keldysh approach and the drone (Majorana) fermion
representation we account for the renormalization of system parameters. Nonequilibrium effects
induce a lifetime broadening of the charge-state levels, which suppress large current fluctuations.

PACS numbers: 73.23.Hk,72.70.+m

The ‘Full Counting Statistics’ (FCS) of charge trans-
port has proven to be a powerful tool in the description of
current fluctuations [1]. The concept had been explored
by Levitov and Lesovik [2], who expressed the FCS of
an arbitrary mesoscopic structure with non-interacting
electrons in terms of its S−matrix. Much less is known
about the FCS of interacting mesoscopic systems, a prob-
lem which has been addressed only recently [3, 4, 5, 6, 7].

As a fundamental example of an interacting meso-
scopic systems we consider a Single-Electron Transistor
(SET). It consists of a metallic island coupled to drain
and source (left and right) electrodes via low-capacitance
tunnel junctions, with resistances RL and RR, as well as
to a gate electrode. The strength of Coulomb interaction
is characterized by the charging energy EC = e2/2CΣ,
which depends on the total capacitance CΣ =CL+CR+CG.
A measure for the tunneling strength is the dimensionless
parameter α0 =(RL+RR)/2πe2RLRR (we put ~=kB =1).

In Refs. [3, 4] the FCS of a similar system - a quan-
tum dot - has been studied, fully accounting for strong
electron correlations, however only for a particular setup
and parameters, corresponding to the Toulouse point. A
renormalization group approach had been developed for
the regime α0≫1 [5]. In the opposite limit, α0→0, the
FCS has been analyzed to lowest order in Ref. [6] and
next-to-lowest order (cotunneling) in Ref. [7]. However,
effects of quantum fluctuations induced by nonvanishing
α0 are still unknown. The aim of the present paper is to
derive the FCS for a SET beyond perturbation theory in
the intermediate strength tunneling regime α0 .1.

Let us further specify the situation to be considered.
At low transport voltages and temperatures, eV, T ≪EC ,
due to Coulomb blockade tunneling is suppressed in a
SET, everywhere except near specific values of the gate
voltage, e.g., near QG ≡ CGVG = e/2. In the neighbor-
hood of this conductance peak the Coulomb barrier is
∆0 = EC(1 − 2QG/e). For α0 ≪ 1 electrons tunnel via
the island sequentially only when µR < ∆0 < µL, where
µL/R = κL/ReV is the voltage drop between the L/R elec-
trode and the island, and κL/R = ±CR/L(CL + CR)−1.

With increasing α0, higher order effects such as cotun-
neling and quantum fluctuations of the charge gain im-
portance [8]. They lead to a renormalization of ∆0

and α0. The perturbative renormalization group anal-
ysis [9] (for eV = 0) predicts a renormalization factor
z0 = 1/{1+2α0 ln(EC/Λ)} to depend logarithmically on
the cutoff energy Λ = max{∆0, T }.

The model. – We concentrate on the tunneling regime
with inverse RC time 1/RTCΣ = 4πα0EC smaller than
EC , which ensures that the charge-state levels are well
resolved. In the vicinity of the conductance peak, pre-
cisely for |∆0|/EC ≪ 1, it is sufficient to restrict atten-
tion to two charge states with charges differing by e. The
Hamiltonian can then be mapped onto the ‘multi-channel
anisotropic Kondo model’ [9]. Introducing a spin-1/2 op-
erator σ̂ acting on the charge states, we write

Ĥ =
∑

r=L,R,I

∑

kn εrk â†
rknârkn + ∆0

2 σ̂z

+
∑

r=L,R

∑

kk′n(Trâ
†
Iknârk′nσ̂+ + H.c.). (1)

Here â†
rkn creates an electron with wave vector k and

channel index (including spin) n in the left or right elec-
trode or island (r=L,R,I). Tunneling matrix elements Tr

are assumed to be independent of k and n. The junction
conductances are 1/Rr = 2πe2Nch|Tr|

2ρIρr, with Nch be-
ing the number of channels and ρr the electron DOS. We
implicitly assume that energy and spin relaxation times
are fast, and electrons obey the Fermi distribution.

A convenient tool to treat the spin-1/2 operators in
Eq. (1) is the ‘drone’ (Majorana) fermion representa-

tion [11], σ̂+ = ĉ†φ̂, σ̂z = 2ĉ†ĉ− 1. where φ̂ = d̂† + d̂ is a

Majorana fermion and ĉ and d̂ are Dirac fermions. This
formulation enables one to apply Wick’s theorem and the
fermionic Schwinger-Keldysh approach [12, 13].

Cumulant generating functional. – The central object
of our approach is the generating functional of connected
Green’s functions (GFs)

W [ϕ] ≡ −i ln

∫

D[a∗
rkn, arkn, c∗, c, d∗, d] ei

∫

C
dtL(t). (2)
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Here L is the Lagrangian corresponding to Ĥ (1), and six
Grassmann variables have been introduced (see Ref. [14]
for details). The closed time-path C (Keldysh contour)
runs from t = −∞ to ∞, back to −∞, and connects
to the imaginary time-path to end at t = −∞ − i/T .
We introduce auxiliary source fields, the phase of the
tunneling matrix element, Tr → Tre

iκrϕ(t), distinguishing
between forward and backward time-paths, ϕ+(t) and
ϕ−(t). The ‘center-of-mass’ variable ϕc(t) ≡ {ϕ+(t) +
ϕ−(t)}/2 = eV t is then fixed by the transport voltage.

From the Cumulant Generating Functional (CGF) one
finds the number of transmitted electrons q during the
measurement time t0, W(λ) =

∑∞
n=0〈〈δq

n〉〉(iλ)n/n!.
Following Ref. [13], it is derived from Eq. (2) by fix-
ing during the measurement the ‘counting field’ (relative
variable) ϕ∆(t) ≡ ϕ+(t) − ϕ−(t) at a constant value λ:

W(λ) = iW [ϕ]|ϕc(t)=eV t,ϕ∆(t)=λθ(t0/2+t)θ(t0/2−t). (3)

The distribution of q (or equivalently of the current I ≡
eq/t0) is given by the inverse Fourier transformation,

P =
1

2π

∫ π

−π

dλ eW(λ)−iqλ ≈ eW(λ∗)−i(t0I/e)λ∗

. (4)

The integral can be evaluated in saddle point ap-
proximation, with λ∗ following from the relation I =
−ie∂λW(λ∗)/t0 [6]. This approach is valid for long mea-
surement times since W is proportional to t0 (see below).

We proceed following Ref. [14], where a conserving ap-
proximation for the second cumulant had been developed.
Tracing out the electron degrees of freedom leads to an
effective action for the c and d fields, Sλ ≡ Sch + Sλ

t ,
composed of a charging and a tunneling term:

Sch =

∫

C

dt{c(t)∗(i∂t − ∆0)c(t) + id(t)∗∂td(t)}, (5)

Sλ
t = −

∫

C

dtdt′ c∗(t)φ(t)αλ(t, t′)φ(t′)c(t′) + O(T 4
r ). (6)

Here αλ = αλ
L + αλ

R is a particle-hole GF describing tun-
neling of an electron from one electrode to the island.
It depends on the counting field. The connection to the
ordinary GF is established by a rotation by λr = κrλ in
the Keldysh space as follows:

α̃λ
r (ω) = U †

λr
α̃r(ω)Uλr

, α̃r(ω) =

(

0 αA
r (ω)

αR
r (ω) αK

r (ω)

)

,

(7)
where Uλr

= exp(−iλrτ 1/2) and [τ 1]ij = 1 − δij . The
retarded and advanced components are given by

αR
r (ω) = αA

r (ω)∗ = −iπαr
0

(ω − µr)E
2
C

(ω − µr)2 + E2
C

,

where αr
0 = 1/2πe2Rr, and the Keldysh component by

αK
r (ω) = 2 αR

r (ω) coth(ω − µr)/2T. We introduced a
Lorentzian cutoff to regularize the ultraviolet divergence

and ignored the term O(T 4
r ) in the action (6), since it is

small in the limit Nch≫1.

The free retarded GF of the Dirac fermion ĉ, gR
c (ω) =

1/(ω + iη − ∆0), describes the dynamics of charge exci-
tations (η is a positive infinitesimal). The corresponding
self-energy Σλ

c = Σλ
L + Σλ

R accounts for quantum fluc-
tuations of the island charge caused by tunneling. In-
tegrating out d-fields, we obtain the components of the
self-energy in first order in α0:

ΣK
r (ω) = 2αR

r (ω), ΣR
r (ω) =

∫

dω′

2π

iαK
r (ω′)

ω + iη − ω′
. (8)

(For simplicity we present here only the result for λ=0.)
For a symmetric SET (RL =RR, CL =CR), at T =0 and
|ω| ≪ eV , one finds ΣR

c (ω) ≈ α0 ln(2EC/eV )ω − iΓ/2,
where Γ = ΓIL + ΓLI + ΓIR + ΓRI is the sum of the rates
ΓrI/Ir = ±(1/e2Rr) (∆0−µr)/(e±(∆0−µr)/T−1) describing
tunneling into (out of) the island through the junction r,
evaluated by Fermi’s golden rule.

We can proceed in a systematic diagrammatic expan-
sion in α0 [14]. To lowest order one obtains for the
CGF: W [1](λ) = −

∫

C dtdt′gc(t, t
′)Σλ

c (t′, t). We project
the time from the Keldysh contour C to the real axis and
observe that for long enough measurement times we can

approximate δt0(ω)≡
∫ t0/2

−t0/2
dt e−iωt/2π by a δ-function,

δt0(ω) → δ(ω), and
(

δt0(ω)
)2

→ t0δ(ω)/2π. The latter
ensures that any closed diagram, consequently W , is pro-
portional to t0. After Fourier transformation we obtain

W [1](λ) ≈ −t0

∫

dωTr{g̃c(ω)τ 1Σ̃
λ
c (ω)τ 1}/2π

= t0
∑

r=L,R

{P−ΓrI(e
iλr − 1) + P+ΓIr(e

−iλr − 1)}.(9)

Here we used the expression for the Keldysh component
of c-field GF, gK

c (ω)=2i Im gR
c (ω)(P−−P+), which con-

tains equilibrium occupation probabilities of the charge
states QG and QG − e: P± = 1/(e±∆0/T +1).

At this point we note that the naive first order ex-
pansion (9) is insufficient. First, it contains the equi-
librium occupation probabilities rather than the station-
ary ones. Second, due to charge conservation the CGF
should depend only on the difference of the counting fields
λL − λR = λ [15], which is also violated. These prob-
lems are resolved if we sum up an infinite subclass of
diagrams. Specifically, we sum up the geometric series in
(g̃cτ 1Σ̃

λ
c τ 1), which contains the leading logarithms, i.e.

powers of α0 ln(2EC/eV ), and get

W(λ) = t0

∫

dω

2π
Tr ln

[

g̃c(ω)
−1

− τ 1Σ̃
λ
c (ω)τ 1

]

= t0

∫

dω

2π
ln

[

1 + T F (ω)f(ω − µL)h(ω − µR)(eiλ − 1)

+ T F (ω)f(ω − µR)h(ω − µL)(e−iλ − 1)
]

. (10)
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Here f(ω)=1/(eω/T +1), h(ω) = 1 − f(ω) and

T F (ω) = −αK
L (ω)αK

R (ω)/|ω − ∆0 − ΣR
c (ω)|2. (11)

Note that we subtracted a constant from the CGF in
order to satisfy the normalization condition W(0) = 0.

Eq. (10) is the main result of this paper. It is similar
to Levitov-Lesovik formula [2], but the effective trans-
mission probability (11) accounts for quantum fluctua-
tions of the charge. Using the condition Eq. (3), Eq. (10)
can also be obtained from an approximate W given in
Eq. (25) of Ref. [14]. Thus, the first and second cu-
mulants, 〈I〉 = e〈〈δq〉〉/t0 and SII = 2e2〈〈δq2〉〉/t0,
reproduce the average current [10] and zero-frequency
noise [14], derived before.

Although we used only the first order expansion for the
self-energy, Eq. (10) is exact to second order in α0. One
can check that the diagrams ignored in Eq. (10) within
second order expansion, i.e. the diagrams with intersect-
ing interaction lines, are proportional to ∆0/EC ≪ 1.
Furthermore, higher order terms of Eq. (10) generate the
renormalization factor z0 consistent with the renormal-
ization group result [9].

Limiting cases. – In the limit α0 → 0, Eq. (10) repro-
duces the result of the ‘orthodox’ theory [6]:

W(1)(λ) = t0Γ

√

D(λ) − 1

2
, (12)

D(λ) = 1 +
4ΓLIΓIR(eiλ−1)

Γ2
+

4ΓRIΓIL(e−iλ−1)

Γ2
. (13)

The second order expansion in α0 reads,

W(2)(λ) = ∂∆0
{ReΣR

c (∆0)W
(1)(λ)} + Wcot(λ). (14)

The first term of this equation provides the renormal-
ization of the system parameters up to first order in
α0. Namely, the parameters are renormalized as α0 →
α0{1+∂∆0

ReΣR
c (∆0)} and ∆0 →∆0+ReΣR

c (∆0). This
agrees with the corresponding results obtained earlier for
the average current [16]. It is also consistent with the
recent results of Braggio et al. [7]. We also checked that
Eq. (14) can be reproduced by the systematic real-time
diagrammatic expansion similar to that of Ref. [10].

The second term of Eq. (14) is the CGF of a bidirec-
tional Poissonian process

Wcot(λ) = t0{γ
+(eiλ − 1) + γ−(e−iλ − 1)}, (15)

governed by the cotunneling rates

γ± =

∫

dω
2π αL

0 αR
0 (ω − µL)(ω − µR)

(e±
ω−µL

T − 1)(1 − e∓
ω−µR

T )
Re

1

(ω + iη − ∆0)2
.

This term is relevant in the Coulomb blockade regime
and is consistent with the FCS theory of quasiparticle
tunneling [17].
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FIG. 1: Current distribution P of a symmetric SET [T = 0
and eV/EC = 0.2]. (a) Solid lines are plots of P for various
values of ∆0. The dashed lines represent the ‘orthodox’ theory
and the dot-dashed line represents the cotunneling expansion.
The inset shows the average current for the same parameters.
(b) Plot of P at ∆0 = 0 for various values of the conductance
as a function of the current normalized to V/2(RL+RR); inset:
the same distribution normalized to the average current 〈I〉.
(c) The skewness and (d) kurtosis for various conductances.

At the conductance peak, ∆0 = 0, for a symmetric
SET and T = 0, the ‘orthodox’ theory yields W(1) ≈
2 q̄ (eiλ/2 − 1), where eq̄/t0 = V/2(RL + RR). The fac-
tor eiλ/2 leads to a sub-Poissonian value of the Fano
factor SII/2e〈I〉 ≈ 1/2, indicating that tunneling pro-
cesses are correlated. The origin of this correlation can
be understood from the explicit form of the distribution
P (q) =

∑∞
qL,qR=0 PP(qL)PP(qR) δq,(qL+qR)/2, obtained by

inverse Fourier transformation of Eq. (4) without saddle
point approximation. The numbers of electrons trans-
mitted through either junction, qL and qR, follow the
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same Poissonian distribution PP(q) = q̄ qe−q̄/q! . The
Kronecker delta implies that qL and qR are correlated.

With ∆0 approaching the threshold value ∆0/eV =
0.5, the tunneling onto the island becomes the bottle-
neck and the CGF acquires the Poissonian form, W(1) ≈
t0ΓLI (eiλ − 1). It remains Poissonian in the cotunneling
regime, |∆0/eV | > 0.5, Wcot ≈ t0γ

+ (eiλ − 1).
Let us compare our result (10) to the ‘orthodox’ and

the cotunneling theories. The latter theories fail around
the threshold ∆0/eV = 0.5. For example, in the aver-
age current, shown in the inset of Fig. 1(a), we observe
a mismatch between their predictions since ΓLI → 0
while γ+ → ∞. In contrast, the distribution derived
from Eq. (10), shown in Fig. 1(a) by solid lines, behaves
regular. It widens with increasing ∆0. The ‘orthodox’
(dashed lines) and the cotunneling (dot-dashed line) the-
ories show the same trend but overestimate the width.

Renormalization and lifetime broadening effects. – For
large conductance, quantum fluctuations of the charge
are pronounced. However, as long as z0Γ ≪ Λ, where
Λ = max(|z0∆0|, 2πT, |eV |/2), the ‘orthodox’ CGF W(1)

with renormalized parameters z0α0 and z0∆0 remains a
good approximation. This scenario fails in the regime
Λ ≪ TK = ECe−1/2α0/2π where the approximation of
leading logarithms becomes insufficient.

The renormalization effect is illustrated in Fig. 1(b),
where the current distribution at ∆0 = 0 is plotted.
Since z0 decreases with increasing α0, the mean value
of the current, i.e. a peak position, shifts to lower values.
The renormalization effect can be absorbed when we plot
lnP with horizontal axis normalized by 〈I〉 rather than
V/2(RL + RR). However, even after plotting the distri-
bution as a function of the normalized current [inset of
Fig. 1(b)] the three curves do not collapse to a single
one. The remaining differences can be attributed to the
non-Markovian lifetime broadening effect as described by
ImΣR

c . We observe that the current distribution shrinks
with increasing α0. This agrees with the previously noted
suppression of the Fano factor [14]. FCS provides fur-
ther information, showing in detail how the probability
for currents exceeding the average value is suppressed.

The effect of lifetime broadening is also visible in the
moments. At moderately large voltages, eV ≫ TK, and
at T = 0 the real part of the self-energy ΣR

c is negligible
and ΣR

c (ω) ≈ −iπα0eV . The CGF at ∆0 = 0 then is

W(λ) ≈ 2 q̄{(eiλ/2 − 1) − 2α0(e
iλ − 1)

+ π2α2
0(e

i3λ/2 − eiλ/2)/2 + O(α3
0)}, (16)

and the ratio of higher order cumulants to the first one
becomes 〈〈δqn〉〉/〈〈δq〉〉 = 21−n{1 − 4α0(2

n−1 − 1) +
O(α2

0)}. We note that, as α0 increases, higher order cu-
mulants are suppressed as compared to the Poissonian
result 21−n.

Figures 1(c) and (d) show the skewness 〈〈δq3〉〉 and
the kurtosis 〈〈δq4〉〉 as a function of ∆0. A peak around

the threshold develops with increasing conductance. We
expect that this kind of behavior can be observed with
present-day experimental techniques [18].

In conclusion, we have derived the Full Counting
Statistics for a single-electron transistor in the vicinity of
a conductance peak. Quantum fluctuations of the charge
are taken into account by a summation of a certain sub-
class of diagrams, which corresponds to the leading log-
arithmic approximation. In first order in α0 our results
reproduce the ‘orthodox’ theory, while in second order
they account for renormalization and cotunneling effects.
We have shown that in non-equilibrium situations quan-
tum fluctuations of the charge induce lifetime broadening
for the charge states of the central island. An important
consequence is the suppression of the probability for cur-
rents larger than the average value.
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