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Geometrical spin dephasing in quantum dots
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We study spin-orbit mediated relaxation and dephasing of electron spins in quantum dots. We
show that higher order contributions provide a relaxation mechanism that dominates for low mag-
netic fields and is of geometrical origin. In the low-field limit relaxation is dominated by coupling
to electron-hole excitations and possibly 1/f noise rather than phonons.
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Recent experiments [1, 2] demonstrate that spins of
single electrons confined in quantum dot structures can
be manipulated in a quantum coherent way, thus opening
exciting perspectives for quantum information processing
[3]. Thus a thorough understanding of spin relaxation
and decoherence processes is crucial. This requires identi-
fying the sources of fluctuations and the mechanisms how
they couple to the spins, as well as analyzing the non-
equilibrium decay laws. So far, two major mechanisms
of dephasing have been identified: One is the hyperfine
coupling to randomly oriented nuclear spins [4]. While
in a free induction decay this leads to fast dephasing,
on a time scale of order ∼ 10 ns, the effect of the quasi-
static nuclear field can be eliminated largely by spin-echo
techniques, bringing the dephasing time into the range
of ∼ 1µs [2]. The second mechanism is the coupling to
(piezoelectric) phonons in the presence of spin-orbit in-
teraction [5, 6, 7]. Phonons create a fluctuating electric
field acting on the electrons’ orbital degrees of freedom,
which couples via the spin-orbit interaction to the spin.
If time reversal symmetry is broken by a magnetic field
B the process leads to spin relaxation. This mechanism
is important in sufficiently strong fields [5], however, as
usually described in the literature, it is ineffective in van-
ishing fields for electrons in the ground state doublet.

In this paper we study, what processes destroy the spin
coherence in vanishing or low magnetic fields. We show
that higher order (e.g., two-phonon) virtual processes,
usually neglected in the literature, provide a relaxation
mechanism that persists as B → 0. These relaxation
processes are of geometrical origin and related to the dif-
fusion of the Berry phase. Berry phase emerging from the
spin-orbit interaction was introduced in Ref. [8]. A differ-
ent phenomenon also called geometric dephasing was dis-
cussed in Ref. [9]. The processes we consider are the ana-
logues of Elliott’s spin relaxation in bulk semiconductors
and metals [10], for which a geometrical interpretation
has recently been given in Ref. [11]. Processes of this type
have also been studied in the context of phonon-induced
relaxation in electron spin resonance experiments [12],
and were found to lead to a relaxation even as B → 0.

However, the geometric origin of the mechanism has not
been revealed. Moreover, the truncation of the Hilbert
space to two orbital levels, used there, is insufficient, since
amplitude cancelations from higher orbitals prove to be
crucial.

Moreover, we observe that spin relaxation is induced
by any kind of electric field fluctuations, not merely by
phonons. In fact, in order to confine, control, and mea-
sure the electron one attaches electrodes and quantum
point contacts to the qubit [2]. They produce Ohmic

fluctuations with dominant spectral weight at low fre-
quencies. For typical quantum dots we find that such
Ohmic fluctuations provide the dominant mechanism for
Berry-phase dephasing at B = 0, and they also provide
the leading channel for spin relaxation at fields below
roughly 1 Tesla. In addition to Ohmic fluctuations, the
quantum point contacts produce shot noise when driven
out of equilibrium, which further relaxes the spin [13].
Finally, 1/f background charge fluctuations, present in
most mesoscopic systems, also couple to the orbital mo-
tion of the electrons and dephase the spin. In the follow-
ing we shall develop a formalism that allows us to treat
different types of environments on an equal footing, and
also to take into account higher order virtual processes,
leading to a geometrical dephasing.

We consider a single electron confined to a lateral
quantum dot by the potential V (r̂), in the presence of

a magnetic field ~B. To be specific, we assume the field to
be oriented parallel to the plane of the dot, but our pro-
cedure can be generalized to arbitrary directions. The
static part of the Hamiltonian then reads

H0 =
p

2

2m∗
+ V (r) − gµB

2
~B · ~σ + HSO , (1)

HSO = α(pyσx − pxσy) + β(pyσy − pxσx) . (2)

The magnetic field couples to the electron only through a
Zeeman term with g-factor g [14]. The last terms describe
the Dresselhaus (β) and Rashba couplings (α) between
the spin ~σ of the electron and its momentum [14, 15].
For a dot of size d the typical energy of the spin-orbit
coupling scales as ∼ β/d, while the level spacing scales
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FIG. 1: Left: Single electron lateral quantum dot in a mag-
netic field, which lifts the ground state degeneracy. Virtual
transitions to excited states are induced by weak fluctuations
of the external fields δEx(t), δEy(t). Right: Graphical rep-
resentation of the evolution operator. Virtual transitions to
excited states n (wavy lines) are integrated out to yield an
effective Hamiltonian within the doublet subspace.

as ω0 ∼ 1/(m∗d2). Therefore, for dots with small level
spacing, ω0 < 1 K, the spin-orbit coupling cannot be
treated perturbatively.

Next we account for time-dependent fluctuations of the
electromagnetic field, which add a term

δV (t) = Xµ(t) Ôµ (3)

to the Hamiltonian. (A summation over repeated in-
dexes, such as µ, is assumed throughout.) The terms
Ôµ denote independent operators in the Hilbert space of
the confined electron (e.g., x, y, x2, . . .), while the terms
Xµ(t) denote the corresponding fluctuating (in general
quantum) fields (e.g., δEx, δEy , ∇xδEx, ...). They may
be generated by various environments, such as phonons,
localized defects, or electron-hole excitations. Informa-
tion about their specific properties is contained in the
spectral functions, to be specified later. Note that this
formulation covers also quadrupolar fluctuations.

In case of time-reversal symmetry the ground state of
the dot is two-fold degenerate. This degeneracy is split
in an external magnetic field. If gµBB ≪ ω0, and as
long as the noise is adiabatic with respect to the orbital
level splitting, T ≪ ω0, the dynamics of the spin remains
constrained to these two states. Under these conditions
(following the method described in Ref. 16) we can derive
an effective Hamiltonian for the two lowest eigenstates
|σ = ±〉 by expanding the evolution operator U(t) =

T exp{−i
∫ t

0 dt′ δV int(t
′)} and projecting to the subspace

{|σ〉} as sketched in Fig. 1. This yields

PU(t)P = 1 − i

∫ t

0

dt1PδVint(t1)P

−
∫ ∫

t1>t2

PδVint(t1)PδVint(t2)P (4)

−
∫ ∫

t1>t2

PδVint(t1)(1 − P )δVint(t2)P + . . . .

Here δVint(t) denotes the fluctuating part of the Hamil-
tonian in the interaction representation and P =
∑

σ |σ〉〈σ|. We separated terms that involve direct tran-
sitions between the two lowest states from transitions
via excited states. In the spirit of an adiabatic approxi-
mation, these latter processes can be integrated out to
yield an effective Hamiltonian in the two-dimensional
subspace. Technically, this is performed by introducing
slow and fast variables, t ≡ (t1 + t2)/2 and τ ≡ t1 − t2,
in the last term of Eq. (4),

∼ e−it(ǫσ−ǫ
σ
′ )−iτ [ 1

2
(ǫσ+ǫ

σ
′)−ǫn] δVσn(t1)δVnσ′ (t2) ,

expanding the interaction potential in τ as δV (t1,2) ≈
δV (t) ± τ

2
d
dtδV (t) + . . ., and integrating with respect

to τ . Here ǫσ and ǫn denote the eigenenergies of the
lowest doublet and higher eigenstates of H0, respectively.
In this way the last term in Eq. (4) becomes local in

time. Retaining only processes up to 2nd order, we find
an effective Hamiltonian within the lowest-energy two-
dimensional subspace, characterized by the ’pseudospin’
Pauli matrices τx,y,z,

Heff = −1

2
Beff τz + Xµ ~C(1)

µ · ~τ + XµXν ~C(2)
µν · ~τ

+
1

2

(

ẊµXν − XµẊν
)

~C(3)
µν · ~τ . (5)

Due to the spin-orbit coupling, which is not assumed to
be weak, eigenstates do not factorize into orbital and
spin sectors (hence the term ’pseudospin’). The static

effective field, ~Beff ≡ (ǫ+ − ǫ−)ẑ, accounts for the spin-
orbit renormalization of the g-factor and defines the ẑ
direction in the doublet space. The couplings ~C(i), de-
termining the effective fluctuating magnetic fields felt by
the pseudospin, are given by

[

~C(1)
µ · ~τ

]

σ,σ′

= Ôµ
σσ′ , (6)

[

~C(2)
µν · ~τ

]

σ,σ′

= −
∑

n

′ Ôµ
σnÔν

nσ′

ǫσ+ǫ
σ
′

2 − ǫn

, (7)

[

~C(3)
µν · ~τ

]

σ,σ′

= −i
∑

n

′ Ôµ
σnÔν

nσ′

(

ǫσ+ǫ
σ
′

2 − ǫn

)2 . (8)

The summation is restricted to excited states of higher
doublets n 6= σ, σ′. We do not provide explicit ex-
pressions for the eigenenergies ǫσ, ǫn, matrix elements
Ôµ

σσ′ , Ôµ
σn, or couplings ~C(i), but below we will evaluate

them numerically and provide quantitative estimates for

a generic model. We further note that both ~C
(1)
µ and

~C
(3)
µν turn out to be transversal to ~Beff , therefore con-

tributing only to relaxation, whereas ~C
(2)
µν has in general

also a parallel component that leads to pure dephasing.
In time-reversal symmetric situation, (i.e. for B = 0),

the first three terms of Eq. (5) vanish identically [5]. Only
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the last term survives, and leads to spin dephasing. It
has a geometrical origin. To demonstrate this, let us as-
sume that the fluctuating (adiabatic) fields Xµ are clas-
sical. We introduce the instantaneous ground states of
the Hamiltonian, |Φn(t)〉 ≡ |Φn(Xµ(t))〉 defined through
the equation

[H0 + δV (Xµ)]|Φn(Xµ)〉 = En(Xµ)|Φn(Xµ)〉 . (9)

Noting that, to lowest order perturbation theory, the two
degenerate instantaneous ground states are simply given
by |Φσ(Xµ)〉 ≈ |σ〉 +

∑

n
′|n〉〈n|δV |σ〉/(ǫσ − ǫn) , we can

rewrite the last term in Eq. (5) in the familiar form

Heff
σσ′(B = 0) = −i〈dΦσ

dt
|Φσ′〉 , (10)

which shows clearly that the last term is due to a gen-
eralized (possibly non-Abelian) Berry phase [17, 18, 19]
acquired in a degenerate 2D subspace. In vanishing mag-
netic field, Eq. (10) can be shown to hold to all orders of
perturbation theory within the adiabatic approximation.
If at least two linearly independent fluctuating fields cou-
ple to the dot, they can produce a random Berry phase
for the system and cause geometric dephasing at B = 0.
When more noise components are present, the Berry
phase may become non-Abelian and all components of
the spin may decay.

So far, our treatment has been rather general, ap-
plicable for arbitrary noise properties and dot geome-
tries. In its full glory, Eq. (5) describes the motion of
the pseudo-spin coupled to three fluctuating “magnetic
fields”. In general, the dynamics induced by these non-
commuting fields is complicated. To obtain a qualitative
understanding of the dynamics we analyze the spin re-
laxation and pure dephasing times [20], T1 and T ∗

2 (with
1/T2 = 1/2T1 + 1/T ∗

2 ). They are defined only for suf-
ficiently strong effective fields, Beff ≫ 1/T1, 1/T ∗

2 . In
the limit B = 0 we evaluate what we call the geometrical
dephasing time Tgeom. For the quantitative estimate we

consider a parabolic confining potential, V (r) =
m∗ω2

0

2 |r|2
with level spacing ω0 and typical size x0 = 1/

√
ω0m∗.

Furthermore, we take into account only dipolar fluctu-
ations, X̂ ≡ eδExx0 and Ŷ ≡ eδEyx0 coupling to the

operators ÔX ≡ x/x0 and ÔY ≡ y/x0, respectively.
We assume the two components X̂ and Ŷ to be inde-
pendent of each other, but with identical noise spectra,
SX(ω) = SY (ω) = S(ω) = π̺(ω)coth(ω/2T ), with ̺(ω)
being the spectral function of the bosonic environment
(phonons or photons).

The spectral function ̺(ω) for phonons can be esti-
mated along the lines of Ref. 5. For the parameters spec-
ified in Ref. 7 we find for piezoelectric phonons in typi-
cal GaAs heterostructures at low frequencies, ̺ph(ω) =
x2

0 λph ω3 with λph ≈ 4 · 10−6K−2nm−2 [14]. With
these parameters we obtain relaxation rates generated
by the first term in Eq. (5) that coincide with those of

Ref. 7 at not too high values of the field [21]. Similar
values are obtained for the parameters of Ref. 22. For
Ohmic fluctuations the spectral function is linear at low
frequencies, ̺Ω(ω) = λΩ ω [23, 24]. The prefactor λΩ

depends on the dimensionless impedance of the circuit,

λΩ ∼ e2

h Re[Z]. For typical values of the sheet resistance
of the 2-DEG (102−103Ω/�) we estimate it to be in the
range 0.1 > λΩ > 0.01. For 1/f noise the power spec-
trum is S(ω) = λ1/f/|ω|. We will further comment on
its strength below.

We first estimate the contributions T
(i)
1 and T

∗(i)
2 ,

derived from the three terms (i = 1, 2, 3) in Eq. (5),
for a non-vanishing in-plane magnetic field, Beff ≫
1/T1, 1/T ∗

2 . The coupling ~C(1) turns out to be per-

pendicular to ~Beff [7], and for low magnetic fields and

weak spin-orbit coupling is proportional to |~C(1)| ∼
B

x0ω2

0

max{α, β}. This fluctuating field therefore con-

tributes to the T1-relaxation only,

1

T
(1)
1

= 2
(

|~C(1)
X |2 + |~C(1)

Y |2
)

SX(Beff) . (11)

It scales as 1/T
(1)
1 ∼ B2 max{B, T } for Ohmic dissipation

and as ∼ B4 max{B, T } for phonons. As a consequence,
for dots with level spacing in the range ω0 ≈ 1 . . . 10 K
Ohmic fluctuations dominate over phonons for low fields
with B < 1 . . . 3 T.

The second term, |~C(2)| ∼ B
x2

0
ω4

0

max{α2, β2} [30] gives

rise to both relaxation and dephasing. The two rates are

1

T
(2)
1

= 4
(

|~C(2,⊥)
XX,s|2 + |~C(2,⊥)

Y Y,s |2 + 2|~C(2,⊥)
XY,s |2

)

SXY (Beff) ,

1

T
∗(2)
2

= 4
(

|~C(2,‖)
XX,s|2 + |~C(2,‖)

Y Y,s|2 + 2|~C(2,‖)
XY,s|2

)

SXY (0) ,

SXY (ω) =
π

2

∫

dω̃
̺(ω+ω̃

2 )̺(ω−ω̃
2 )

1 − cosh(ω̃/2T )/ cosh(ω/2T )
,

with ~C
(2,⊥/‖)
µν,s denoting the symmetrized component of

~C
(2)
µν perpendicular/parallel to ~Beff . Thus, for Ohmic dis-

sipation 1/T
(2)
1 vanishes as ∼ B2 max{B3, T 3}, while for

phonons it scales as ∼ B2 max{B7, T 7}.
~C(3) is also perpendicular to ~Beff . Its contribution to

the relaxation is

1

T
(3)
1

= 2|~C(3)
XY,a|2SẊY −XẎ (Beff) , (12)

SẊY −XẎ (ω) =
π

2

∫

dω̃
ω̃2̺(ω+ω̃

2 )̺(ω−ω̃
2 )

1 − cosh(ω̃/2T )/ cosh(ω/2T )
,

with ~C
(3)
µν,a being the anti-symmetrized compo-

nent of ~C
(3)
µν . Most importantly, with |~C(3)

XY | ∼
1

x2

0
ω4

0

max{α2, β2}, the rate 1/T
(3)
1 approaches a non-

zero value at low fields, 1/T1, 1/T ∗
2 ≪ B ≪ T , and
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FIG. 2: Spin relaxation rates for a GaAs quantum dot
with level spacing ω0 = 1K as function of the Zeeman field.
We chose a temperature T = 100 mK and Ohmic coupling
λΩ = 0.05. Below B∗ ≈ 1 T spin relaxation is dominated
by coupling to Ohmic fluctuations. For B < B∗∗ ≈ 15 mT
geometrical spin relaxation due to coupling to Ohmic fluctua-
tions dominates. For all B values plotted, the Bloch-Redfield
consistency requirement, Beff ≫ 1/T (i), is satisfied.

scales as ∼ max{B5, T 5} for Ohmic dissipation and
∼ max{B9, T 9} for phonons.

Finally, at B = 0 the geometric dephasing rate is given

by 1/T
(3)
1 , extrapolated to zero field

1

Tgeom
= 2|~C(3)

XY,a|2SẊY −XẎ (ω ∼ 0) . (13)

In our example with only two noise components this pro-
cess dephases only the components of the spin perpen-

dicular to ~C
(3)
XY .

The relaxation rates corresponding to the different
terms in Eq. (5) and various noise sources are shown in
Fig. 2. Clearly, for external fields B < B∗ ≈ 1 . . . 3 T
Ohmic fluctuations provide the leading relaxation mech-
anism. The crossover field B∗ is not very sensitive to
the specific value of the spectral parameter λΩ and is
independent of the spin-orbit coupling. Below a sec-
ond crossover field, B∗∗ ≈ 15mT, the geometric de-
phasing induced by Ohmic fluctuations starts to dom-
inate. This second crossover scale is very sensitive
to the spin-orbit coupling and temperature, scaling as
B∗∗ ∼ max{α, β}(1/x0)(T/ω0)

2. E.g. for a level spacing
ω0 ∼ 1K and temperature T = 100 mK (T = 50 mK)
the Berry phase mechanism gives a relaxation time of
the order of 700 µs (20 ms). For even lower tempera-
tures or smaller dots with level spacing ω0 ∼ 10K the
B → 0 relaxation time is quickly pushed up to the range
of seconds.

Finally, we comment on the effect of 1/f noise. In
most cases, the non-symmetrized correlators for 1/f
noise, needed to calculate correlators as SXY or SXX ,
are not known. Yet, for |ω| ≪ T we can provide an

estimate SXY (ω) ≈
T
∫

−T

dω̃
2π SX(ω − ω̃)SY (ω̃), and sim-

ilarly for SẊY −XẎ . The B = 0 geometrical dephas-
ing rate due to the 1/f noise can be estimated as

T−1
geom ≈ |~C(3)

XY |2λ2
1/f (T )ωc, where ωc is the upper fre-

quency cut-off for the 1/f noise [25]. Accounting for the
high-frequency (Ohmic) noise, sometimes observed to be
associated with the 1/f noise [26, 27, 28, 29], the esti-

mate becomes T−1
geom ≈ |~C(3)

XY |2λ2
1/f (T )T . While the 1/f

noise of background charge fluctuations is well studied
in mesoscopic systems, the amplitude of the 1/f noise
of the electric field in quantum dot systems is yet to
be determined. If we assume that this noise is due to
two-level systems at the interfaces of the top gate elec-
trodes, we conclude that in the parameter range explored
here, the effect of 1/f noise is less important than that
of Ohmic fluctuations. However, in quantum dots with
large level spacings in the low-temperature and low-field
regime, these fluctuations could dominate over the effect
of Ohmic fluctuations and eventually determine the spin
relaxation time.
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